ML20042C079

From kanterella
Jump to navigation Jump to search
Forwards Sargent & Lundy soil-structure Interaction Analysis of Circulating Water Screen House & Addl Info Re Effect of far-field Earthquake on Buried Pipe Design,Per N Chokshi Request
ML20042C079
Person / Time
Site: Clinton Constellation icon.png
Issue date: 03/23/1982
From: Wuller G
ILLINOIS POWER CO.
To: John Miller
Office of Nuclear Reactor Regulation
References
U-0446, U-446, NUDOCS 8203300162
Download: ML20042C079 (46)


Text

. . _ . .

U-0446 L30-82(03-23)-6

/LLIN0/8 POWER COMPANY S04.g2(03 23).s fp 500 SOUTH 27TH STREET, DECATUR, ILLINOIS 62525 March 23, 1982 ,

Mr. James R. Miller, Chief C l'#

Standardizntion & Special Projects Branch A Division of Licensing 'Q>

Office of Nuclear Reactor Regulation m.fr e.O S U. 6. Nuclear Regulatory Commission S -

Washing on, D. C. 20555 -

MAR 201982> _- -

5 ""$S50!ElIi~# M Dour Mr. 7 tiller: uc s W '

Clinton Power Station Unit 1 Docket No. 50-461 'M I *s\

In response to the verbal request of Mr. N. Chokshi, NRC/SEB reviewer, we are enclosing the following:

1. Soil-Structure Interaction Analysis of the Circulating Water Screen House.
2. Additional information on the effect of far-field earthquake on the Clinton buried pipe design.

Sincerely, G. E. Wuller Supervisor - Licensing Nuclear Station Engineering .

GEW/cm Enclosures cci J.11. Williams , NRC Clinton Proj ect Manager II.11. Livermore, NRC Resident Inspector h 5 l N. Chokshi, NRC SEB w/ Enclosures ,

t I  :

i 8203300162 820323 PDR ADOCM 05000461 PUR A.

_ . - _ . - - . - ~ . .. . -. - _ _ . _ =-- . - - -

4 A a -_ _ - -

. --. . . - - . ~ . . . , -

. I s

  • a ~

SARGENT & LUNDY ,,

ENCINEERS Art

i CMicAco \,

/ g-Q[:6 '

)

j SOIL-STRUCTURE INTERACTION ANALYSIS ,, h /

j OF CIRCULATING WATER SCREEN HOUSE .y /

Q,$g,7 /

l In a telecon on February 23, 1982, the NRC staff requgs,#ed that we Y/

provide the results of a soil spring SSI analysis ft Mg water screen house using the site specific spectra. . , o report, contains these results.

NWR 20 B82 kb Merhed of Analysis I I

'"" {' Nil RING The soil profile under the circulating water screen houndP4MMW6own in Figure 1. The upper and lower bound soil properties used are shown in Table 1. The soil is modeled by a visco-clastic layered half-space. The schematic details of the structural model are shown in Figure 2 and the structural frequencies are presented  ;

in Table 2.

The method of soil impedance calculation, the SSI analysis, and the soil properties used for the analysis are identical to those used for the analysis of the main plant and given in our December 3, 1981 submittal.

The input to the soil-structure system is the Clinton design basis time history scaled to envelope the 0.29 RG 1.60 spectrum and the Clinton site-specific spectrum. The spectrum of this time history was given in the information we submitted on February 18, 1982. .

The comparison of the shear wall forces using the soil spring analysis with the design basis forces is presented in Table 3.

It can be observed that forces and moments using the soil spring analysis are, in the majority ,of cases, lower than the design basis forces. For walls where the soil spring forces are larger, the increase is less than 10%. This increase is fully compensated by the actual rebar yield s'trength, which is 17S, higher than the minimum specified yield strength.

/

. SARGENT. & LUNDY ,

.* . ENGlHCERS

  • CHICAGO The comparison of the floor response spectra at the main floor, where essentially all of the safety-related mechanical and electrical equipment is located, is presented in Figures 3 and 4. The dotted line indicates the spectrum based on the soil spring analysis, whereas the solid line indicates the design basic response spectrum.

In the critical >5 Hz frequency range, the design basis spectrum essentially envelopes the soil spring spectrum in the 5-19 Hz range.

In the >19 Hz frequency range, the soil spring spectrum is higher than the design basir spectra, but the maximum increase is less thanm0.lg.

We have reviewed the design basis calculations and the test spectra to determine the margins inherent in the design of Clinton mechanical and electrical equipment. Based on this review, we conclude that these margins are greater than the increase in seismic floor response spectra. .

9 I

..+ ,

I 9

e e

e e ,

4 i

e 9 9

s

. I

~

T b M o C F'

    • ei
3. to I - m:

"4 ;

_ o oo v; o { 1 O O

O

=

l! D fr d

i I

i

!O

'9 c8 'O o 9! 9: o m a o- O o Gi el c yO in m tn . o

@ E M w ss o T f- O @ A N N $

\3

~ -

c -

d J c o. -'

m e S;-- F '

o o

& O W ^ *i - - -

Q D

@ M{ O .' 0; O j ' '

w z ,'

H O i 3 o

y ml yi O' O .O O d i . - i m l @ x!

v Q D8 O O !

d  ; on o O k  % I O @

p E e $ g! N m m) 8!

A uI a--

m D v\

o en ;

o 'O

t4 8 o i O,N l

& o'

{

F y ; T :' 7 y' J i

& h. O .

O O O h h NOi'  ! O i

+lm O c_ .c_n_ g-e n,+ tai.

g . u] c3 s,t i . .

.1 v-

-. 3 2 v- 1 O O O oi C2 T g l Q O gW '

'N & k2 D j o u) v

. 4!6 j 4i g g o S"E '

, i =c.#

eav4 a -

a m +i

= _ _ - . . . _ _ _ ,i 0

TABLE 2O.

S~RULTu?AL ~ 2EPJ oDS - Ho Moot %

M o DE 2ERIOD ( SEc.) FPeGda1Cy(c/s)

I oo917 Io8996 L o056o I7.8723 3 o. o 4 o] I 20 3G84 4- 004I2 2A.2506 5 oo3i+ 3 l 8 GG8 (o 0 0271 36 8923 7 0.02s8 38 700i b o.0248 A- o . 3 + 5 5 s

4 e

0

TABLE 2.b : VEPJICAL STRacrugAL pagicas_

i MODE PERIODC S EC.) FRE$uENCT(ch) l l 'O.3319 S . o i 1_ 9 2 0 3319 -

3_. o 1 3 o l 3 o. I 9 9 2 5.0 foe .

4

~

, 01991 _ ___5_ . _.. 0208__

5 0.i44.3 G . 9 820 Co 0II42 _ _ _ _ _ .

, _ __G . 9 s 54 ___ ,

7 O.l43z ._ _ . . . .

e. 9 8 34 t

! 8 i t

O.1432. _

G.9849

_. 4 .

0) l C. I425 - - . - -

'1. o 2Go . . . - .

, to 0.1428 To2T5 I iI __

l o.Io12 . .. 9 8.78o. - . _ _ . - . _ _

4 I I

.___ _f ._. . O

  • 10 }.b . ._._ O ' b b T 3 . _. . ,

I. ,

13 l

o. l o o/r . _ . _ _ . . . _ _

9 9 G of l l I4 l o .1 o of_ _., _

9 9 G 4G _;

. .I9 '! 'o.o997  : I o. o 309 i

. p .__....q_...._.

i 16 l oo997 lo.03+G .. l 17 , o.oG29  :

(5 9o35 l t

i IS o.oG28_ _ _ _ ., . ' . . . . . 15.9215 ...

18.Go86

19 o. o 9 3 7  !

! Zo o.o935 18.G78f

. , _ _ _ , . _ . , , . ,._ _ - ...m _y.. . . , , . _ , . _ , , _ . . .

'rm 3 Cor:1FAR.tSod._gE.SfiEALWALL C ORC29 FRcM IltllTE EQ4dT AtID SolL_ SYJWq APRoAcHE5 SHEA?s WALL SLAS Forces ( k'IPO MoME#s ( L'-cT) ,

tlo. LocAmog FEM SSM FEH SSM  :

I i

8,2 31 7p 63 37ss39 922.725

2. 4.404 4109 ,

193.799 182 270

! 3 I c oBo 8,988 i 354.002 Bos.o TG m

I,724 l,G G8 7 f,542 f G9,223 4 o l 5 'd 4.l ?4 3.5 SG , 1740 % ! 148,81G m i j

7 0 4.l % 3.986 1 i 74,o46: 148.316 I l 2, J m

I,993 &l95 ! T8lSG ! 85.93S 20 v I.72o 1,664 ! Tl.3To' GS,o 54 l 22 ul 4.395 4,d95

--.__x

! l 92,712 I81,o83 24 g

< l .2o 7 1,138 _ 9 0 1 c 4 47205 2G 1.0 72 1.o B ! _.44-478! + 2.794 q

44 f.c 69 I .o29 l 44570' .

4 2,G84

! 4G , l .2o S l.135l 49,933} 47,o39 l 1 c/ 5.955 9.o S o 97.G24l 8 3.824 .

o --

j 3 3# m 1 o 303 2Gl 5.028l, i

4,3 c3 -

a I 3.o 23 z.587 49,831i 42.534 5 I" q *N ,

G @d I72 i I74 9897 I o ,(o z 3 7 hd s v Soc 2.57 4.3 53 l 4,240 b i52 I90 2.3 C /o 2.,C. l i

TABLE 3 (continued)

SHEAR. WALL SLA8 .FoRG5 ( KIP 6) MoME9T5 ( k-FT)

No. LcGTied FEM S5M FEM $SM i n 558 528 17.289 i G,3 78

  • o
2. g 4-I-2 +T4 13.7c9 14.G97 4 $ 337 3 63 I o,452 (l.2 52 5 y %o 337 I I, l 'o l l o,4+ 7 8 v 234 2 54 7,25l 7,8 71 o) T 558 528 l7289 i G,37S Io $ 228 242 r897 o, 7,491 l2 7 4Io 4 39 12,719 I 3,6 2c I3 $ 525 49I IG.277 19.233 15 48o 44o) 14891, 19.917 i G

, . 4

. . s .

e

.s .

.. o  : ,

s s.

BOTTot.t C.: SCR:EN HOUS2 EXC.claTICN EL. 053 '- O w

~

ILLINC!S GLACIAL TILL

. s 20' LACUSTR!i.'E CIFCS!T ,

00,

  • PRE-ILLINCIS GLAC!AL TILL lY/ /hh,N' Yb F.C C M / A ' ' //ygg..

NVf* }'~ .

p PIGURE 1 .

. SOIL pro.r:LE 3Etow c.. . .

  • m i s e r.

C I n.%b V L.* t A A . .o .e .s.. ta. .r.t. e.J r.n..p r u.. g: rs. t ** P ..*m b . ..w Y D. . *4 h

  • g .

g .

'. s .*

i t a (20P 3 -

eL.75 0'-o' s

/

,2 2L.699 0 0

[ dCA999 LOO 2 _

BL.G78-0 /L-I

, I f ? L . 6 M I- G

e l . .. <

.___. ._ m =--

}

f.DAG?.

R L. G b*^ '- ?> 6' A3

  • 4
  • h ncune 24 . ScHEMAiic DEiaLS .cF THE. build:4. MOREL - !Mt'E t

s a

4 19.N III'd1 G00?

P.L.730-, 0

/ a 41.a.):'x

.u; "

e 6N L70  % n"c'r-- i

=-.\n Gf

-C Ns.ms lN N@~13 12 x O

~. ._:-w..

.4 ~~". , -

__ ' ~

,s Y -

- 28 %

nl

@ W,e Q @ .

t Tp-s r G 4n Y~$% $ % *& y c -- *

.o N az #,Ux t

a_2_E-r '

g-- S7 "TPC ~~ 24 -'49 QN---2S /Ein o- th T q e 4 'YL.Ich.o-

%nnd:re, .

b- f,.- N 'E %r n.L[w c,,.; [o E.f NE%o f

'Er-o ~Lk'~~ ~.3) f TO NT&CV.EDI ATB 'PLOC;'-

u!5 g% M g e 9

g ,3 g 3 3 [' la L.GS 2'- G **

g 32 19 kjl'1 ,,,,,,;g 7 3;7 g g g ,37 g ,,( g g g EL. G7 3'. o

a f4

  • 0 8 h. / -

g .

INTEF.ML WALLS r.g) /.S, ASS P.LO.CO IS e.- ,7

._f  :: - . ,. a1- ,s .

oe z e ,.r. s m., oof r: ..=.s s m. . 4r a .

.. o

.- o...+

- f.. i - q,n,., ,gs u ,m, scn_ s smc 2  :

e:

Revr<.2.b: \/EflTIC.AL STaiK~iWAL ... . -. -... . . -

FODEL .-

a 3.eevaa ro. rr.*.pApi v nF Fi?'IT r ri ra'c.:- c.ic. n o. ; ;1 c.-

SAS.GE:T4 LUf:DY . g.yn , er ,,3

. ,, sop _ S p.,7..c ,.cri nn a g,,,y am nja,,, , , 3 , : .,

1 - r m crwe c ois j j g c -c a c,o y 3,9,,,_ R e'ated l l h on-Sa f ety-R e'ated Peae of t_

l cia !LLit:01S POWER COMPANY Pre:wed by Dee Pro,xt .CLIriT0*4 POWER STATIO*1 Rev ed by cite Prei no. 4536 E quip. No. A c:weved by l 0ste

. trm. us D  !! 2 10 10 il te LS .S

': M

' ' ' ' ' i ' ' i' c0- 'ii' 1 >

tie ~ liC

. . i. -

U t*.0 _ ,

i i i i  ! -

u-  ; j j r i i <

I I I

! so

" 1 1 1 11 l so j "

l u - "

Clinton Design Basis (FEM)  :

~

1, u

- - Soil Spring Method

. 4 e ' c , ,

20 10 -

~ L5 LS ,

m .,

J -

~~

~

LO

, , , _ ,  ; , J LO I

  • i i .

t .  ! I I 'g 8

, s I 'i i i i i -

h ,

f j  ; -H j- q. ; _ -
  • s

%. .  ;,- - \ -

5 I .5 j x ~

5i:

ii \

,\

N A 4

_  ; -- y 3 // ' -

3

j 2

l  :

m n_

t , i . ,

, , i ,

- i i  ! j i Ni 4

'C ' i f i } i i ! -

i i j j i: I I 6

. c.  ;

a i f f 1 t  ?

  • it f f i i
  • i
  • 1 '? ' f n i1 C5 p i t ii t +** i 1 i f

.e .a .ns .e .o. .cs .i .n .: .5 .a .5 .6 .: to to p

  • s,.

m'qi'.E 3 Q. i.ocario*: Main ficor ,

e = c ita r e m NS P ' r'm  ? *' <ct . ..

i r r s e ,15

serevaa roa en.op i m4 or e t t r T r ri r..r.:t tire. No. 3.11. 4-3 S/I.GE::TE LU::DY  :.ETeoo (.eEm r, soit sprit;n METHoo REsutis R e.. o c ie 2/1/s?

1^ -rwcanctes. j; l "C ^ G X Saf ety-R e'eted tl I N on-Sef ety-R c'ated Pn of 1

ci::nt ItLI!;0! S PO'JER COMPMY Preasted by Cete Pro:ect CLitJTC 1 P0'4ER STAT 10!J R evwwed by Oste Prei. No. 4536 Ecuio. No. Ae:wond by Date f reemno. CPS D

n a is 10 is to to .S

'j M8

' ' 'ii' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

M0 .' ' +

11.0 30 -

a0 I . i ,

S' i e i i 6 a0  : 4" 40 60

] _

10 y 40 .

U 10 10

Clinton Design Basis (FEM) to - - -

Soil Spring Method u

  • ?

gg LS to ___--~~ , , [', -

U I

%_ i i i *

8

-y:.~_ ~

j s, '

'g {

a

~

/ , > -

g, y- *f.

, .3 :

3 i.* -

L.

.4 j A 4g

_ , g-

- "/  ;

sE I

.3 ~

/ L

.t ,.

-2

~

I

,p .15 lo . . g . ,

- II i

  • i

.:e -_ OC l

I 1 ' i

.es - .

ts i i i. 'it., , , . , . l1 i , ..!t i, , i in inn, i i

!,I, . 1 , ,,, it -

~

3

.cr .o .m .5 .o* .cs .i .n .: . 4 5 .e .: te o to Peas, sa.

E M C ITAT ICW EW pygggg 3c manw Main h g i, n i r. n . c.. -

- _ ,t _,, _.__.._._ _ _ . , .

4 ,

m c vs.a roa CC'tPARIS0'i 0F FlfilTE El E"EtJT c.ie. Ms. 8.11.4-3 i

ltETHOD (FEM) & SOIL SPRI*iG t'ETHOD P.ESULT" R ev. 0 l D ee. 3/3/82 e nsiwcc sis .

[

[

c ~.c a ra o X Saf ety-S etsted i I Non-bf erv-Retsted Pew of tient ILLIf;0!S POWER CC"PAflY Preewec hy Date Proiect Cl D1TO'i POWER STAT 10fl Reimed by Date Proi. No. 4536 E cuip. No. Asceend by Date preo m y. CPS O 31 N 10 10 13 18 L8 I m, , , , ,,,, , , , , , , .,,, , , . . , ,, .... . > > . - - -

- me

n. :  :

n8 u -

me -  ! , ,

3

' ~

- 4 I i  ! 8 go to ,, i -

40 u

~

u ' "

Clinton Design Basis (FEM) o Soil Spring Method 3 - - -

j J It -

18

~

~

g

- / '

LS g -

to l / L ,. / \ -

_ i -

- . - - - , , i , i i -

- 6 -*N. - -i- i i

{ 8

. - w I { l .

'g {

h ,.

f~~ f '%l l

{

_ g, . , . -

lI

?* .5 -

5I

/

  • {~ TN -

2 .4  ; . , -

dE

. j Q f

'3

.)

~

d, <

/ / ' g'\

.x I

m._

.1

%-ry *E

~

V

.l5 ,

-E 30 . . . t i -

I * -

l 1

I i j

e i

i i

l - 1 -

4 i [ l i . c. .06

" ~

i i i

  • 1 eie i r '

l+ i t t t t t i t t t *i it i* i i

- i t , i ii t i t r cs

( .O .e3 .es .c5 .06 .os .1 .D .2 .1 8 .5 .4 .8 L8 L5 18 es, s r=ctTAvsom ','er t i c a l ,

i c^re *: Main Floor Wall l n..  :-- ~__ ~ t '~ r < ? f* <! ___ _

. 7. .

  • ) s *

' g SARGEN & LUNDY .

ENGINEERS

.g

,g n CHICAGO

  • * ,C S

,'4 \

p. :4%

s 0 ;T.% \/

ADDITIONAL INFORMATION ON BURIED PIPES 'M /

<f r%+ -

CLINTON POWER STATION -

\ #hg 'ifM In December 1981 we provided the justification for t j buried pipe and electrical ducts for a 0.25g RG 1.60 n ie 9 f earthquake. .g, 4 y.v* # .j f In a telecon on March 1, 1982, the staff requested us to prb 4dsf information on: ,

a) apparent wave velocity used in the buried pipe analysis b) effect of far-field earthquake on the Clinton buried pipe design.

This report provides this information.

An apparent shear wave velocity of 2500'/sec was used in the Clinton design. In the information we submitted in December 1981 we stated that this velocity is conservative, and that an apparent shear wave velocity of 3000'/sec is more appropriate for the Clinton site, based on llall and Newmark (1978). This apparent velocity of 3000'/sec is considerably higher than the geophysical sheat wave velocity of 2100'/sec for the soil layers under the Clinton foundation. However, the measured apparent shear wave velocity ~

during past earthquakes has been found to be significantly higher than the corresponding, geophysical shear wave velocity. Attachment

  1. 1 provides a summary of the concept of the apparent shear wave velocity and a comparison of the measured apparent shear wave velocity during past earthquakes with the corresponding geophysical shear wave velocity. Based on this, we conclude that the 3000'/ cec apparent wave velocity is appropriate for the Clinton site.

The effects of a far-field earthquake on buried pipes and electrical r conduits are dif f erent from those resulting from.a near-field earthquake in two respects. First, far-field earthquake enercy is transmitted predominantly by surface waves. Second, the wave f

e e SARGENT & LUNDY ~

i

,

  • E N GIN E E R S CHICAGO i

lengths of the f ar-field carthquake are expected to be very long

- e.g., in the range of 5000 ft. These long wave lengths would  !

tend to move the buried pipes and structures as a unit, thus con-siderably reducing the stresses induced by relative movement between the soil and the pipes at bends and between the structures and

the pipes at pipe entry points. The fact that the energy is being transmitted by surface waves leads to higher soil strains and  !

j pipe stresses.

The site-specific spectra report on the Clinton project submitted to the NRC staff presents the estimated maximum ground particle velocities at the Clinton site due to a New Madrid-type earthquake.

This maximum particle velocity is 13.62 in/sec. We believe that this is very conservative, and that a more appropriate value is ,

1 about 7.5 in/sec, as predicted by TERA (1980) and Nutli and Hermann (1981).

The maximum pipe stress based on a particle velocity.of 13.62 in/sec and an apparent surface wave velocity of 3000 ft/sec is

, 11.4 ksi, which is well below the allowable value of 29.2 ksi.

The design basis stresses were higher because additional stresses due to relative movement between the pipe and the soil at bends j were also considered. As stat'ed earlie.- because cf the very  :

long wave lengths of the distant earthquake, we do not expect any significant relative movment of the pipe with respect to the soil at pipe bends or between the pipe and the structures at pipe "

entry points. 1 '

Based on this evaluation, we conclude that the Clinton buried

! pipe and duct design is conservative.

i f

i j' .

.. i

~

Seis=ic Vulnerability, Behavior and Design of Underground, Piping Systc=s II ,

b7 .

Michaelb'Rourke and Leon Ru-Liang ang i .

Sponsored by The National ' Science Foundation

]

Directorate for Applied Science and I .

Research Applications (ASEA) i 4

. Grant No. PFR78-15856 -

'Tephnical Report (SV3DUPS Project) No.12

- Final Report t . .

. 3uly 1981 .

f= .

4

. Department of Civil Engineering

Rensselaer Polytechnic Institute Troy, New York 12181 e

3

a. .

6 _e -

-4

, - t n ,, n .,, , ,- --,, - ,, - - - , - .-- - , - - - --

t . .

~

CHAPTER II APPAPINT PROPACATION VII CITY 1

II.1 Intreduction &

t As mentioned in Chapter I, the apparent propagation velocity of seis=ic waves with respect to the ground surface, C, is a key para =e:ex in determining the response of buried pipelines to seis=fe wave propa tion.

a 1

.. The value of C has usually been determined frc:. an array of rec::d-ing instrunents with ce==en ti=e.

t McCa=y and Meyer (11) c:ed a cerrela-tien =ethod in the ti=e detain to obtain the apparent prcpag::icn vele:it y Shi=a et al. (17) deter =ined C by =casuring the differences in phase angles of the Fourier spectra'i densi:les across a fixed array. M:re re-i cently Tsuchida and Kurata (20) est *w11shed a heri: ental array c

,1 of six sets of seiseeneters located a: 500 =eter intervals aleng a 2500 I

=eter line running parallel to a runway at Toyko Internatienal Airport.

I t The soil profile consis:s of silty clay, sand and silty sand to a depth .

of about 70 me:crs.

i I Using cross-correla:icn technicues, Tsu:hida and

Kurata verg able to establish the apparen

I prepagatien veloci:y fer three 4

carthquakes which occurred during the su==er of 1974 The value of C at the airport site fer these three events ranged frc= 2.6 te 5 3 k /sec . .

Ta=ura, Neguchi and l'ato (19) have reper:ed en si=ilar field =cuure=c taken a: Ko:o-ku, Toyko.

Six accelerc=cters were placed a: 1 0 =cter l

in:ervals along a 500 =c:*er line en sof t alluvial grcund abeu: 50 ne:crs in thickness.

Again using cross-correla:ien te:'..:icues in the de_nin ,

i they were able to establish the app rent prepajatica veleci:71o

. 1 14 1968 earthquakes. The value of C a: this site fer':hese two events

. vere 2.6 and 2.9 k=/sec. ..

At first glance these apparen: propagatien velocities =ight see:

high. One should keep in =ind, however, that the refractica cf waves  !

at soil and rock-soil in:c faces causes the waves to travel in a =:re .

vertical direction as they app cach the ground surface. As a ca::er cf 1 t

fact, =any soil a=plifica:ica s:udies =edel the seirtie exci:::1en as a vertically propagatinh shear vave. For a vertically prepagating plane wave, the appared: propaga:ics velocity is infini y, while fer quasi-i vertical propagatlen, high values of C should be expected.

- In this chepter, a procedure for deter =ining the apparen: prepaga-tion velocity of body waves for a particular site is developed. The pre-4 L do=inate directic= cf ground =stien fer bcdy waves is de:cr=ined fren t

i three c:thogonal accelera:icn ec=penents. Af ter correcting for :he I '

effect of the fr,ee surface, the resulting angle of incidence is c:=hined .

vith =sterial properties for the top layer at the site to yield an :ppr:x--

. i= ate value for the apparent prepagatien velocity. Ecte tha: this =ethod I

needs acceleration ce=penents and =sterial preperties for a particular 1

l' i

j site only. That is, an array n' instru=ents -ith ce==en ti=e 1: n::

l necessary. Ecucver, n =ece reliable value of C is obtained if esti=a:es

{}

s fro = a nunber of stations in the sa:e general arca are availabic.

II.2 Creund Metien !ntensity Tensor

, i I: is possibic to define a =cving tine vindow intensi:7 ::nr:r f::

i

-J a se: cf ground acceleratiens xa (:), ay(:) and a a(t) known al:ng th ce -

+ =utually perpendicular directicas .

l ?

S

.b

. . s O '

13

. - m -

E E E gg xx xy .

C(t) = g yx g g yy yz - 11.1 E I I zx zy zz where t+0.56 -

  • g =s f3(t)=[ ai (i) a j(T) dT
  • g3 . II.2

. t-0. 5 o, .

and 6.is the width of. the =eving ti=e -d:dev. This definitics of C(t) is si=ilar to that proposed by Arias (1) and Pe=cien e: al.

(9,10,12,13).

The eigenvalues and eigenvectors of the tensor C(:) =ay be found as a function of tine. At any particular ti=e, the eigenvalues correspond to the principal values of the ==ving ti=e vindev intensity.

~

The variances of the three principal values have =axi=u=, =ini=un and inter =ediate values and the co-variances of the principal values are

. =cro. The ec=penents of ground =ction alcng the three principal dire -

tions are therchere statistically independen: of each other. The eigen-

^ .

vector corresponding to the larges eigenvalue indica:es the prede=inen:

direction of gyound =otien between the ti=es :-0.55 and :+0 34. This-direction can be quantified by the colateral angle c and the lengitudinal angle 6, as shown in yigure II.1. 4 gives the declina:icn cf :he princi-pai eigenveeter fre= the vertical axis and rz:ges frc: 0 to 90'. 6 is

casured ccen:crclockvise with respect to Eas: and lies in the range frc

i

-90' to +90*.

l Ey varying :he :i=c, t,

( at which the tenser is evaluated and calcu-1 sting :he correspending values of 4 and 9, the time varia:ien of the .

l

16 .

direction of predominant ground =otien =ay be obtained. This precedura has been used to deter =Ine the types of waves arriving at a site during an earthquake and their approxi=ste ' direction of travel. Kubo and Pen ien (9) and Bond (4) have shown that F-vaves which at:1ve firs:

at the site produce motion predo=inantly in the vertical directica corresponding to a c:all value for $. 0: the other nand, S-vaves which arrive later exhibi: =otion predc=inantly in the hori::::s1 plane,

, corresponding to a value for 4 close to 90*. This is illustrated i i

Figure II~.2 which presents the acceleratio: ti=e history for the Nc :h-3 South ce=ponent redorded a 3S3B Lankershd= during the 1971 San Fernando Earthquake along with &(:) for that site evalus:ed using a :t:e vindev,

.. 6 = 0.5 sec. Notice a sudden shif t in ?(:) at approxi=ately 1.5 se: ends,

~

indicating ~the arrival of :he firs: S vave. After : = 1.8 secends, i::h P and S wuves are arriving, but the S-vaves, which carry :::e energy, d:=-

ins t e. ,

For longirudinal waves such as P-vaves, the particle =otien is p::allel to the directien of p cpagatic=. Hence, at the beginning of the shaking when only ?-vaves are arriving a: the site, ?(:) is closely rela;ed to ,

the angle of incidence of the P vaves at the g: cued surface. It is :::h more difficult to use G(t) and ?(t) a: later ti=es during the sh: king to deter =ine directly the angle of incidence for S vaves. This is due to the fa:: ths: SE, SV and P vaves are arriving ciruitaneously cnd v uld have to be so=chov separated to ec=pute angles cf incidence.

9 5

  • - , - + ,r,

17 II.3 Prede:inani Direction cf Creund Motien vs. Antle of If.:1de :e 3ecause of the reflection of body waves ar the free grcund surfact,- ,

the prede=inan: direction of ground motics $(t) is not exae:1y the sane as the angle of incidence of body vaves with respect to the ground sur-face. gensider the case of a plane har= nic ? vave arriving at the ground surface with an a=gle of incidence y as sho in Figure II.3.

The reflection c: the free surface results in a reflected ? vave as well e

, as a reflected SV vave. The predo:insn direction of =ctien a: the grcund surface due to the incident har:cnic ? vave, is given by 4 = arctan (a /a ) *

.11.3 where xa and aa are hori: ental and vertical acccleratiens a: the greu:d surface.

Utilicing the scalar and vector potentials presented by k*hite (21) for this case and assu=ing that Y p and c are both s=all, yields the -

fellowing approxinate relationship (3) be:veen the angic cf incidence '

Y and the prede=inta: directica of ground =ction $

i . * '

6B y = ---

II.4 P 2 where S = 9/2(1-9)/(1-2v)' and v is the Feissen's ratio of the preparating media. A cc:parisen be:veen ? and y _ for various values of v 1: presen:ed in Figure II.4. For v < 0.35, the prede:inant directicn of grcund =cticn is slightly larger th:n the angle cf incidence shile tha re.erse in true for v > 0.35.

r 2D

  • \

Suzuki (18)'has presented a relationship for the angle cf incidence t

2 Y = arcsin 3 (1-cos?)/2

,P 11.5 Assu=ing both pY and $ are s=all, Equatica II.5 reduces to Equa:ics II.4.

The relationship between y and & in Equa:ics II.4 developed for harmonic ? vaves is assumed herein to also hold for earthquake generated

? vaves.

1 A specific relationship be:veen the angle of incidence of ?-v:ves at the ground surface, Y , and the angle of incidence of S-vaves at the ground surface, Ys, was developed using the =edel sho n in Iigure i

j' 11.5. Although an SV-vave is shown in Figure II.5, :he develo;:en: also holds for an SE-vave. The codel assu=es horicontally layered soil ever-I laying roc'k. Assu=ing the sa=c angle of incidence, Y., for be:h ? and S vaves at the rock surface and applying Snells Law at all rock-scil nd soil-soil interfaces results in 2(1-v* ),

7 1-2v sin y =

  • 1-2V

. II.6 l.

si r

-(#-"s) sin YP -

where sv is the' Poisson's Ratio for the top soil layer and ;v is i

Poisson's Ratio for the rock. Using a representa:1ve value (5,5,21) i i+I of 0.25 for v results i=

r s

'r t 1-29

[ sin Ys = 1.73 ,(1-vs) sin Yp II 7

Combining Equa
fens II.4 and II.7 and asse:ing tha: the angles Y_, Y

, s and c are c=211 yields .

t i

l ee, v.

. 9.

Y ,= 0.87 $ .

11.3 where Y, and 4 are in radians. .

The appare:: heri:c=:a1 propaga:ics velo:ity C thes bece:es C C s - a C= -

II'9 sin Y s 0.87 $ l Y

where C, is the shear wave velocity at the top soil layer. Equation II.9 is valid for angle Y,, & and Yp not exceeding about 25* (0.44 radians). Since -shear waves generally trans:1: ::re energy than pressure vaves, the apparent hori:c=:a1 propaga:1cn velocity of shear waves are -

l . dete=ined in this chapter by cea:s of Equation II.9.' ,

II.4 Attarent Prc acatie Velocity - San yerando 1971

, The procedure described previcusly was applied to ground ac:elera- .

tien ti=e histeries reecrded during the 1971 San ye =ando Ear:hquake.  ;

(

Although most of the acceleratien ti=e histories were recorded at the basements of buildings, it is assu=ed herein tha: they represent the free field conditicus. ~he ground =otion intensity tensors vere evalus- ,

' ted fer a ti=c vindov vidth e equal'to ty, the time of the first S vare ,

arrival at the site. In this =anner, the 1 :ensity tensor is evaluated '

for the entire initial ? vave por:ics of the accelerogrs= and the angle representative of that pertien is obtained. Values fer : spe:ified by Eend (4) were used herein. These values ec pared closely with the time for the first S vave arrival estimated by Eerrill (2).

v

, , , , , , , , yg *"* 4 "'O'=*'

_ , . _ - _ , , , _ _ _ - - , - . _ , . - - c -,

. ,0 4

a . .

1 *

  • The proceduie vus applied to San Fernando si:es fer which s===

infor=ation on C, was available and for which the recording in::r.:::::

triggered a: least ene second before the arrival of the first S vaves.

l The seventeen sites were divided into two categories. Category A c:rres-ponds to sites for which hard infor:ation on C, was available (6,7,15). ,

l Category 3 corresponds to sites for which esti=a:es for C were =2de s

i based upon the sites proxi=ity to loca:icus where hard infer:2:ien =

. C was available. Table II.1 lists the apparent prepagation veleci: des

. s .

, of shear waves, C, f or category A sites as well as the ti=e of the firs:

1 t

S vave arrival ty, the predo=inate directien of greur.d ==:10: during t'ae t

? vave portien 6, and the shear wave velocity of the soil at the si:e C.

s The values for C range frc= 1.26 to 9.33 k=/sec vith a =edian value i

of 2.12 k=/sec. Table II.2 presents s1=ilar infer:ation for es:cg:ry B sites. The values fer C for these sites range frc 0.54 to 7.15 k:/see with a median value of ab:ut 2.22 k=/sec. Notice tha: the :ve parking lot sites, DO5S and S262, which pres"-ably represent true free field -

conditions, have fairly consisten: values for C of 2.67 and 2.56 k=/sec.

, A histograi fo t,he,value of C for both category A and 3 sites is presen:ed 4

i

. in Figure II.6 i

The above infor=a:Los sug;cs:s that a value of about.2.1 k:/sc:

is a reasonable esti= ate for the apparen: propagarica velociti:c cui shear waves for sites reecrding the 1971 San Fernando Earthquake.

11.5 Arparen: Prernestien vele:i:v - I :crisi vallev 1979 The sa=,e' procedure used fer the San Fern:ndo sites was als: 2;;1 icd -

to 19 acceleregram re:crdings of :he 1979 I:perial Valicy Ear:hqua,.c. Thz N *wg -* --

+ --&^

. 2.,

i value of t y used for each record was obtained frb= a preli=inary rep:::

(14) which specified the ti=e betwee: the i=s:r==ents triggeric; and the first S-vaves arrival. Er.act soils data for these 19 sites is pres.

ently unavailable. However, based upen preli=inary soils reports (16) a value of C, = 500 f:/see was assu=ed for the I perial Talley sites, most of which are shown in Figure II.7. Results for :he apparent p:cpa-gation velocity are givcn in Table 11.3. C ranged frc= 1.37 to 20.9 k=/sec' vith a =edian -)alue of 3.76 k=/sec. A histogra: for :he values i

{t of C for 'the 1977 I=perial 7 alley even: using the proposed =ethod is I '

presented in Tig:re II.8 Note tha: the variabien in C values for the I=perial Valley sites is larger than the variatien for San Fernando Si:es. This =ay be due to

~

, the fact that site specific values for =a:crial properties vare used for San Fernando while constan: values were used for :=perial Valley. In additica, so=e of the 1=perial Valley recording sites are quite close to the fault rupture. The angle of incidence for rays. ce=ing fre= the '

point of initiation =sy be different than the angle ef incidence for rays fro: other points along the fault. Eevever, so=e of this varistien is eli=inated by evaluating the intensity tensor over the :1=e range frc:

ini:iation to t y.

, The preliminary report en the 1979 Inpe ial Valley Ear:hquake (14) centains infor:s:1:n which allows direct calculation of the appartn: 7:cp-aga icn veloci:y cf :he ini:ial shear wave. Ipicentral di :cnces, L~TI triggering :ine and the ti=e in:crval be:veen triggering cnd :h2 arrival

1 f

  • 99

{ ,

of the f1rs: S vive are available.

" # a:ing ' data points arked as questic:able in the prel'-ary repor:, the epice=:ral distance'fe: the sites was plotted agains: the ti=c in:crval be:veen initiati:: of the event a: the epicenter and arrival of the first S-vave at the site. The plot of epicentral dis:ance versus travel ti=e is shown 1= Figure !!.9.

I note that the ti=e axis i= rigure ::.9 has been shif:cd sligh:1y. This 1 .

shif t effects the interce:t but does no: effect the sloce of :he epi:entral

' ~

< distance vs. travel :i=e graph which is the para =eter of interest.

Frc= :he slepe e,fI this line, the apparent propagaric: velocities cf shear waves vaa 3.68 k=/sce over a vide range of epicentral distan:es f:: this ev en t . Note this is in close c; rec =ent with the =edian value of 3.76 y km/see obtained using the procedure. described i :his chapter.

The histogrs=s in Figures II.6 and II.S indicate a reistively large variaties in the apparent prcpagatien veloci:ies for near field sites usins the ground =otion intensity tensor =ethod. 0: the other hand, the pl::

1

of epicentral distance versus initial S-vave travel ti=e for the 1979 I=perial Valley event indicates very li
:le variation in C. The varistic

~

in values fer D by'the ground =otien intensi:7 :enser =c: hod could he due

, t'o a nu=ber of reasons including the fae: : hat sc=e recordings were f::

, basc= cats of buildings as cpposed to free field si:es ass ==ed harei:. : d also including possibic errors in the values used for the shear v:ve velocity of the soil. Because of the above, it is recc== ended tha: the

=edian value for c at a nu=ber of si:es for a par:icular cven: bc ::ke 1

2 as the =est represents:ive value when using :he ground =otion in: r.:ity t

tenser cpproach.

l

-j ,

l ..

I *

. 23 -

. Table II.4 presents a su==ary of values for' C, the apparen: heri-

! zental propaga:icn velocity, for five Japanese earthquakes and the two West Coast earthquakes discussed herein. Also presented in tha f

table are site conditions, focal depths, epicentral distances and the method used to calculate C. Although the focal depths for :he Japanese earthquakes are inrger than those for the Wes: Coast of the United States, the apparent p cpagation velocities are similar.

11.6 Su =arv anc Cenclusicns

~

A method for deter =ining the apparent prepagatien velecity, tha: is

. the propaga:ica velocity of body vaves with respe : tc the g cund surface is presented in this chapter. Required as input infor=a:icn are the shear wave velocity at the ground surface, as well as three er:hegenal s

'l acceleratics ti=e histories recorded a: the site. In order to apply the ne: hod, the recording instru=ent =ust have triggered before the arrival of the first S-vav at the site. '

A gror.d notion intensity tenser is used to deteriine the prede:in-4 an: directien cf ground ==:ien at the ground surface.

. I t The an;12 ef in:1-dence cf body unves is calculated frem this predecinan: dire::icn taking into account re.ficerien cf vaves at a . free surface. The che:r utva vel-ocity of the material at the ground surface is cc bined with :he sn;1e of '

incidence to yic1d the apparent prepaga:1:n velocity.

The =e: hod was applied t.o sites which recorded the 1971 5:n Terna:d:

Earthquake. Although =cs: of these vcre recorded at the bacc ct: cf ek '

e- r -- r - - , - -

1. .

,4 4

buildings, it vus assu=ed herein tha: they represen: free field ccedi-

,. .tions. The median apparent propaga:1cn veloci:y of shear waves for 17 San yernando sites is_abou: 2.1 k=Jsec. The sa=e procedure Eas applied to 19 sites which recorded the 1979 I=perial Talley Ear:hqu:ke. The

=ajority of these were free field sites. The =edian apparen: pr:pags-

~

tien velocity of shear vuves for the I:perial Valley sites 1s 3.75 i=/see by this method. This =edian value ec= pared well with a value of 3.69 k=/seecalculctedf:chepicentraldistencesandS-vavetraveltizes for the I=perial'Vclicy sites.

. II.7 Ref erenc es .

l'. Arias, A. , "A Measure of Earthquake Intensity", Seirric Desi; J for Nuclear Pever Plan:s, R:ber: Eansen, Editer, M.I.I Frecs, l Ca= bridge, Msssachusetts 1969.

2. Berrill, J.S. , "A Study of High-?recuen:y Streng G:cund Mo:ien f from the San Fernando Earthquake" - Doe:cral tissertatien, California Institute of Technology, ?asadena, Californic 1973.
I 3. Bloc =, M. , "Apparen
? cpagatien velocity of 3cdy Waves", Mas:ars Proj ec t , Depart:ent of Civil Engineering, Ectsselaer ?cly a '- 'c Institute, Troy, N.T. 1950.
4. Bond, W.E. , " A' Study 'of the Ingineering Characteris:ics ci :he '

1971 Spn Fernando Earthquake Ee:erds Using Tire Dc ain Te:hni-ques", Doe:cral Disser:a:icn, Depart:en: of Civil Ingineering,

, Rensselaer ?cly echnic institute, Troy, N.Y. 1980.

5. Cs=pbell, K. , Chieru::1, R. , Duke, C and Lev, M. , "Correlati:ns of Seis=ic Velocity with Depth in Scuther: California", C. Calif.

Los Angeles Eept. ENG-7965, 1979.

i

6. Duke, C. , Johnson, J. , Kharra:, T. , C :pbell, E. , and 151piede, N . ,

" Subsurface Site Cenditiens and Ge:1egy in the S:n Fernsnd:

Earthquake Ares", U. Calif. Los An;eles, Eept. JESO-7:CE, 1?71.

l 7. Eguchi, R. , C :pbell, E. , Duke, C. , Ch:v, A. , and Paternine , J. ,

" Shear Velocities and Necr-Surface Geologies at Accelcr:;r ph Sitts tha: ?.e:erded the San Fernando Earthquake", U. Calif.

Les Angeles ?.ept. ENS-7 c53, 1976.

s

. 23

8. Iving, U. , J;rdetzky and Press, T. , Ilnstie. Waves in '.svered Media, McGraw-Eill Co., New York 1957.
9. Kubo, T. , and Pen: den, J., "Ti=e and Frequ'ency Dc:ain A alysis of Three-Dimensional G:cund Metiens" San Fe=and: Iarthquake",

EERC 76-6, Universi:y of Calif c=ia, Berkeley, Calif c=ia,1976.

10. Kubo, T. , and Penrien, J. , " Characteristics of hree-Di=ensienal Ground Mo:icns Along Principal Ares, Ss Fernando Iarthquake",

Proceedine . 6th *. ctld Conf erence c: Iz :heuske Inci.eerine, New Delhi, Inf.ia, 1977.

11. McCa=y, K. , and Meyers, R.P. , "A Corrilation Method' of Apparent Velocity Measure =c=:", J. Ge::h3sical Ies., 69, 691-699, 1964.
12. Penzien, J. , and Wetzbe, M. , "Charac:eris:ics cf 3-Di=ensienal Earthquake Grcund Me:icas", Int. J. Earthe . Intne . 5: rue: . 3. 2. ,

vol. 3,~ pp. 365-374, 1975.

13. Penzien, J. , and Kube, T. , " Analysis of Three-Di=ensic:a1 Strong Ground Mc icns Along Prin:1 pal Axes, San Fe =and: Ear:hquake",

Int. J. Earth . En =r. Strue:. D - .. Vol. 7, pp. 2 65-273,1979.

14. Percella, R., and Matthiesen, "Streng Metic: Reccrds, 0::. 15, 1979

- ^

Imperial Valley Eart'nquake", USGS Open-File Rept. 79-1654, 42p, 1979.

15. Shannen & Wilsen, Inc. and Aghabian Associates, "Datz 7:c: Selac:ed Acceleregraph Statiens of Wilshire 3:ulevard, Century City and Ventura Eculevard, Les Angeles, Califc=ia", Nuclear Iagula: cry Co=ission, N1.7.IG/CI-0074, NIC-6A, 1978.
16. Shannen and Vilson, Inc. and A;bahia: Associates, "Gecte h.i:al and Streng Motion Data frc= USGS Acceleratiens a: Zu nnll, Sha}cce .and Il Centre, Calif. , Vol.1", Nuclear Regult: cry Co=issien, NLTIG0029, 52C-6.
17. Shi=a, I. , McCs y, K. , and Meyers, R.?. , "A Tourier hansic= Methed of Apparen Velocity Measure:ents", Eull. Sein 1cci::1 50:. A er.,

54, IS43-1554, 1964.

18. Su uk.. , n.u .he

. . n .31 e c < ..r . . o.. ,... .e o .c +..e

. . . . a_.a_ _,n v..c ...

w ~. . c.a at I:nge and .Mitaks", Still. Earthquake Res. Inst. , 10, 1932, pp. 517-535. ,

- 19 . Tamura, C., Neguchi, T., and Kato, K., "Iarthquake Cbse va:icns Alcng Measuring Lines en the Surface of Alluvial S:f: Gr: nd",

Pre:. Sixth Verld C:nf crcnce en Ear:h uake In . , rev elhi,-

pp. 2-61 to 2-65, 1977.

i 1

1

,e s 6w

. 20. Tsuchida, H., and Kurata, E., "Obsereed Earthquakes Crcund Displace en:s Along a 2500 M2:c Line", ?ree. U.s._;n S c-in a r en Eart i ru C.:e In c in e e-in - R e s e - - .- . .- .- :.- . .-. s o~ L'..'e__c _=..*_n_- . , cf. .L'., .' .c ' 6 .

- 21. *@.1:c, J., Seir-1: "r."es. Radistica.. Tr an rni r s i e- an d A . _ <_>.. ..*. .4. - ,

McCraw-Hill, :se. York, 1 H5.

14 4

en e'

9i Y

g 4

=

. e e

i m

4 .

e f

h .

9 I .

1

  • I i .

I e I

I a

9 l +

l l

l

.i . -

. 27 Ides, i Statio
Loca:Los

' t ,4 C 0 s

I

, , (sec) (deg.) (f:/3e ) ('c/:c:)

w D058 Eo117 .ood Storage.?.E.

Lot, Los Angeles 1.4 4.55 605

  • 2.67 E078 Water and ?cr. er Ildg. ,

Ease =est, Los A=geles 1.3 16.51 1200 1.43 l G107 Caltech Athecaneu=,

, Pasadena 5.0 1.85 850 9.33 G108 Calte ' "  % n Lib.

! Easement, Pasadena 4.3 4.01 600 3.01 I =

N196 Long Beach S:cte College C:cund Level, Long 3ea *- O 9.95 1050 2.12 I

!~

E115 15250 ve :ura 31vd.

Ens c=ent , I.os Angeles 4.1 11.41 713 1.26 1

1137 15910 Te=:ura 31vd. -

Ea s e= en t , Los Angeles 4.8 7.13 713 2.03

.l TA3h. t,, .,

11. 1 n..

.p .g. .AL .i s . -It m%

.V .~ .*s.r.

sa.

. =L, m.5 g.="

L t. O L-F ' ". .' wO'i -C*** * * 'h"L *"*"T.

.~.I. A"A *na L I- *

[A"A L"'W L A'V. A SITES. TES.1971 S.ili TEF2;;2;;0 EAF.TdQU/J2 e

l i

i l

t .

k

23 4

0 C t 4 s r* 1

n. f ; Station Location (se:) (deg.) (f:/se:) G=/s e:)

j I

' 1 1.49 445 Tigueron Stree: 1.3  ; 15.99 2.175 - ,

C054 .

Sub-base =ce:, Los /creles , c 1

I .

1.61 803 S. 01 tie St., St. 4.6 13.84 1100 l 2039 > (

Level, Los Angeles [

j l

1100 3.55 5.7

..Wr 7098 646 S. 011.re 1.ve. Ease- 4.9  ;

, , 3

=es:, Los A=geles

! t 1

i I

3.54

!.867 Sunser 21vd. 3ase- 7.96 1400

?214 1.1 ~~

, een , Los Angeles ,

1 j

i 1 \

4 990 7.13 3345 ilshire 51vd. 1.2 2.77 P217 Base ===:, Los /cgeles t i

I f

510 0.54 1625 Oly=pic 31vd. 6.5 19.47  ;

0199 Ground 71., Les Imgeles ,

1 i _ _  !

0.56 234 Figueroa St. Sase- 3.2 13.93 590 _

7.251

=en:, Les Angeles  ;

j

I 1.39 11.74 1100 R253 535 S. 7
c=ent Ave. 5.9 l Base =ent, Los ! geles )

f i

1

'S' 650 2.56 5900 WilshireLes 31 d. 2.0 5.09 S262 1 geles  ;

Parking Lot, - _

I

\

l S265 ' 3435 or 3411 i 'n'ilshire 990 2.95 ,

Eivd. *, 5th '3asement' 5.9  ;

6.73 ,l

, ._1 Los Angeles L .

r-TA3LE 11.2 ISPA?.ENT CATIGORY 3 SITIS.

??.0 PAG ATICN TI'.CCITY O l

l I

f i

t 9

.-,.u.&-g-i ,

21 3

Iden. ( Station Location t

  • l $ C e 1 s
  • 3 *

(s e:) , (deg)

(f:/ce:) (k j e:)

5028 El Centro Sts 7, 1 I=p. Valley Col. 4.60 4'.04 500 2.43  ;

6 l 942 El Ce=:ro Sta 6, i Ruston Road l

5.50 0.48 500 t

20.9 1

5054 3 cads Corner

} Evys 98 & 113 2.40 1 1 2.67 500 3.76

, t I-

.958 El Centro Sta 8, 95E. Cruickshank 5.05 2.03 500 4.94

~

5165 E.C. Diffcre::ial irray, Dogwood Ed. 5.00 2.37 500 4.23 955 El Centro Sta 4, 2905 Anderce: Ed, 3.50 2.41 500 4.16 5060 3ravicy. Airport, '

, Eravley 6.30 3.47 500 2.59 5055 Eol ville, ?cs: Office 4.10 0.66 . 500 15.2 412 El Cc=tro Sta 10, Cc== unity Hospital 4.90 1.53 500 6.56 5053 Calerico Fire Sta.

Fifth 4.F.ary 3.20 2.37 500' 4.13 t

952 El Centro Sta 5, i 2801 Jc cs Ed. 5.10 1.85 500 5.34 TAELE 11.3 A?PAEENT FRO?AGATION VELCCITf 0F SU.E.G 'w' AVES FOR 0o". . . ' . ' . , -,/c

'C', ".'7..*.1'

. .. V.%" ' ".' 710.~. 2.Q3.'eu"m

_ 7

. . 30

?, .

-i TABLE II.3 (cont'd) . .

iden. # .

Station Location _

t 1 4 C" s.  ::

(ce:) (deg) (f:/se:) (i=/see) 5058 El ce :ro Sta 11, P.:Cabe School 5.60 7.34 500 1.37.

4 5057 El ce=:ro sta 3, Pioe Unica School 5.40 5.91

. 500 1.70 5051

~

4.

Parachute Tes.: Site .

7.00 3.90 500 2.57

. i SILS E1"cen:$6Sta2, Keystone F. cad '

6.00 i 1.33 500 7.25 i

931 El cc=:ro Sta 12, ,

i 907 S:oci=a: Ed. 5.20 7.75 500 1.29 4

5061 calipatria Pire Statie 7.40 3.43 3 500 2.91 1

5059 .El ce : o Sta 13, 3

Strobel Residen:e 5.10 7.50

, 500 1.34 5052 Plaster city store-house 2.40 6.62 500 1.52 .

f Assu=ed value a

L .

. a 9

' e e

s D

2 e

e f

a G

e

,,.m,. ,r, , . ,- ~ -<r-- - --

. . . . . . . . . . . . . . . - - - - - - - - - - - - - - - ~ ~ ~ ~ ~ ~ ' '

l'ocal Epicentral ifethod for Event Depth Dintanco Site Conditions C Cniculating Reference (km) (km) (km/sec) C Japan 1/23/60 60 m. soft alluvium 80 54 2.9 Crono-correintion Tamurn.

array with common  !!o;;uchi and time -

rato (7)

Jnpnn 7/1/68 60 m. dof t alluvium 50 30 2.6 Croon-correintion Tomurn.

array with comunon ,lloguchi'and time Kato (7)

Jnpan 5/9/74 .

70 m. of niity ciny, 10 140, 5.3 annd and nilty annd Cronn-correintion Touchida and array with common time Kurata (6)

Japan 7/0/74 70 m. of oilty clny, 40 161 2.6 nond and 011ty nand Cronn-correintion Tauchida and nrrny with common Kurnta (6) time Japan 0/4/74 70 m. of oilty ciny, 50 54 4.4 nond and 011ty annd Croun-correintion Touchida and array with cocunon time Kurnta (6) inn Fernando 2/9/71 Varinblo

, 13 29 to 44 2.1 Ground motion intennity tennor (median value) eerint Vn11cy 10/15/79 > 300 m. ' Alluvium Shallow 6 to 57 3.8 cround motion Intennity Lenoor (median value) operini Valley 10/15/79 > 300 m. A11uyluse .{ihn110tc 6 to 9,3 3.7 Upicentral dio-t .s toncu vn. luttlui

~

22 .

I Z.1(up) .

Major principc! eicenvector of :G (t )'.

Y(North) . .

c5 =

'creton (/_ ces & )

a

-9'O 5 o,t P

90

' /

/

y 8 .

%v ,-

A. (t.C S T .)

l TIGUF2 II.Il 'CCOEDINATE SYSTIM 7CR DI?INITICN OF ~~?.E PFIDOMI U.2;T DIFICTICN OF GRO'C;D P.CTICN q t .

l J

1 9

O *

-e # '*d e-e4**

  • v

l . ...

33

. . . =

g,- _

r.

"o 500 -

- o ..

to I

\ $ l I '{

}

m

  1. W4A!;j.0Ms a s flf!

g .,

[

hliiM't.

l

'y'1 . Av% N'VP v .

-500 -

1 -

I f '. f I I I I f f  !

- 0 2 4 6 8 10 12 14 16 18 '20 TIME (SEC)

a. Acceleration Time. History (N-S Cornponent) .

~

ti - '

}

80 -

[(4 h I l

/l L[

c. h $ '

t 19 \

r

~\W O GO-

- v 1 n

h 40-j 20 -

)

i f i I t- I t  ! I i 1 j

O 2 4 6 8 10 12 14 16 IS 20 TIME '(SEC)

J

b. p (t) .

?

TIC'JF2 I:.2 Ac;ILI?_;.T!C'; TI.'2 HISTCp;f ;; 2 d (-) s. ; 3 ..;---.. ,. 3 3 t BI"Q . (1.166) FI3. 191 SA:; 72:;;;;,7 3 gjy g.-;jj;

i ,

. 24-AZ .

t 6, e .

.J / A 0Z / Qv i

f n

_//////A\\\\Y//////e. \\\M7 ' .

/ ' '///a\\\\W//////A\\\\. ""X

' /

/

. / 7- p

/ p. Reflected

' /g SV-wave .

incoming -

. P-wave;p -

L' .

Reflected

,. P-wove Y.g =.cciuoi angle or. .incioence .,

6 = principle direction of ground motion oy

=arcian(q) .

. FIGURE 11.3 P *,,'AyE EEFLECTION AT A STFISS TF.EE E0"' OAT.~l t .

G 4

6 k.

35 v= 0.45 A

38 .

= 0.4 0 36 .

7 34 - .

O ca 32 -

v = 0.3 5 V ,

30 'r= 9>

O U

  • O 50 g- 28' -

26

~ - ' v = 0.25 e v = 0.20 0

C 24 ~ ~ - --

c)

'O.

22 -

O c 20 - -

18 -

O I6 -

OJ

~

a 14 -

c v= Poissons Ratio

< l2 -

10 -

s -.

/ .

4 -

/

-j

2

, f I I I i 1 I f 1 i I f t t ,

P O'2 4 6 8 10 12 14 (6 18 20 22 24 26 28 Predominate Direction of Ground Motion p (deg)

FIGUPI II.l. Il:GII O? 1 CII: CI O? F "A7FS VS. ??IDC'::::.22;T DIFICTIC:; CF CF.C":D P.0TIO 1

  • e a

.. . . 3.

as ,

. s .

MWAwNNwwaAwNNw//frwwv// ,

,e/rpNwwy/a/,ssssNsya, yp ys s .

a op Sor.i Lcyer -

PO!SSOCO MCilO:%a

/ /

. f P-wave  !

  • ' S-wove Rock

% Poisson: Ratic =vc Tr <7 m Tr i .

i .

i ,

t IGU.,. .: 1 1. 5 1.,.y;:.. . , . ._..

. .  : 0:. D ._.

:.:.r.x .s .7.,u :.:.u. . . w.. .. . :, . =. .,. :. . -~ :. :. ,.

Y /SD y P . s e

e g .- _ . . -

37 9I h

Median =2.1 km/sec Y

5 -

ed 4 -

. . u .

O

.O -,

E O a

Z

.s 2 .. . . .

I i i

~

1 2 3 4 5 6 7 8 9 10 '

Apparent Propagation Velocity of Shear Waves, C (km/

1 ' . .

O m y 5

! .su n:wmo s:ns -

i y .

1 -

i i

e  :

J ..

9

+

l P l

. . ww

_~,

0, 10 .

s-y.,  % , ....

. ,;..; h.l.t.C u...- : . u g.

e r. .

S ~, , i O.s 5 , S: A. . :.,.>I

=:. e ,r 1,

.,- .~ -

s..c

.g .  :

L,.

J t:..n p ,. CALIPATRIA\ .. -

Q%,s til 89

)

\an*5-

- p ERAWL;_Y c .o '

U,__

. ' o

11) -

P e. ~x >- <

. aeL,u.UT:

_l Y o

S: -r~ -

co

/ =_.=. . a ,", L e_v, vlis.9 m .

r ULi o NO.3

- N61 O. 0 NO' o NO.4 .

l IMPERIAL No NO. IC' '

HO'TVlt ! : ---

L h,0~w o EL CENTRO o ,

- m -

2 - ,__ _ - - _ _ -

-an) s W~ ~- gg, go i

.g,

. p- '" I '

O NO. ll o '<%

!!! '(< %  %

0 NO.l? .

O" -

J 0 N O,[3 ,

V Y CC... 0 ER 7 cAi :xicO ,,.

usa

. _ _y ___

N --

1,, _v ^ p o m

- . ,,.s:a

.__. ... u. m. / 4 a

.c, ,

.c .. .. .._:, .c.,

.., ,,, ,c.. e . .....e. .. _

- s... ..,..........u ..

1. c...u v II.,,

s..s. r _ . . : .... ..,-u _ce t

i

._..._..._.,-..-%a.u_,..a. .. _ , .-~~,+G~.,,-.4 r,.: ..,

3 ..

39 c ..

w 4

n ..

5 -

h1.edian = o.7o km/sec 3 .

d

  • 1 u .

3 . . .

'3 c .

2 7

7 -

l -

1

, t , , , , , , , ,

5 10 '%

15 20 Apparent Propagation Velocity of Shear Waves c C(km /sec)

FIGURI 11.8

- EISTOG?M FOR T:iI VALUES FOR C 70R THE 1979 n2ERIA'.

VALLEY SITIS 1

l l . .

l .

~

6

. . to

)L 100- .

90 o

80~- . ..

70 E .

x a

60 .

O .

C O

.E-50 -

o C -

O 1 tc 40 -

~

c) -

O a.

u) 30 -

0 Apparent Pro.pogetion Velocity C = 3.68 km/sec - '

20 -

IO -c .

} l I I I O o 10 20 .-

l la- 20 00 Time (sec)

7. ..

3 r_.-_..__ . - - . . . _ _ . . . .--