ML17263A728

From kanterella
Revision as of 12:56, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Proposed Tech Specs Providing NRC W/Opportunity to Communicate at Early Stage Any Concerns W/Respect to Differences from NUREG-1431
ML17263A728
Person / Time
Site: Ginna Constellation icon.png
Issue date: 07/15/1994
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17263A729 List:
References
RTR-NUREG-1431 NUDOCS 9407190408
Download: ML17263A728 (175)


Text

{{#Wiki_filter:1.12Frecruenc'otation Thefrequency notationspecified fortheperformance ofsurveillance requirements shallcorrespond totheintervals definedbelow.NotationPrecruenc S,EachShiftD,DailyTwiceperweekW,WeeklyB/W,BiweeklyM,MonthlyB/M,Bimonthly Q,Quarterly SA,Semiannually A,AnnuallyN.A.Atleastonceper12hoursAtleastonceper24hoursAtleastonceper4daysandatleasttwiceper7daysA<leastonceper7daysAtleastonceper14daysAtleastonceper31daysAtleastonceper62daysAtleastonceper92daysAtleastonceper6monthsAtleastoncepe12monthsAtleastonceper18monthsPriortoeachstartupNotApplicable PriortoeachstartupifnotdonepreviousweekWithin12hourspriortoeachrelease1.13OffsiteDoseCalculation ManualODCY'heODCMisamanualcontaining themethodology and.parameters tobeusedforcalculating theoffsiteqq07>cocoa esO7>sPDRADOCK05000244pPDR 3~EmerencCoreCoolinSstemAuxilaCoolnSsteA'rRecirculation FanCoolersContainment SraandarcoalHEPAFiltersOb'e'veTodefineseconditions foroationthatareneces-sary:(1)toremoveecayhearomthecoreinemergency ornormalshutdownsituat,'2) toremoveheatfromcontain-mentinnormalcratingandergencysituations, (3)toremoveaiorneiodinefromthecainmentatmosphere follxnqapostulated DesignBasisAccidenand(4)tominimizecontainment leakagetotheenvironment subse~nttoaDesignBasisAccident. ~/3.3.1SafetIn'ection andResidualHeatRemovalSstems3.3.1.1Thereactorshallnotbetakenabovethemodeindicated unlessthefollowing conditions aremet:CQ3,5.4SR,o.5.'t~<SQ.Z.S.~.R.a~b.Abovecoldshutdown, therefueling waterstoragetankcontainsnotlessthan300,000gallonsofwater,withaboronconcentration ofatleast2000ppm.Aboveareactorcoolantsystempressureof1600psig,(3,vi4C.u3.S.Z.L3~L.Iic~exceptduringperformance ofRCShydrotest,eachaccumulator, ispressurized toatleast700psigwithanindicated levelofatleast50<andamaximumof824withaboronconcentration ofatleast1800ppm.Atoraboveareactorcoolantsystemtemperature of350F,threesafetyinjection pumpsareoperable. AtoraboveanRCStemperature of350oF,tworesidualheatremovalpumpsareoperable. AtoraboveanRCStemperature of350'F,tworesidualheatremovalheatexchangers areoperable. Attheconditions requiredinathrougheabove,allvalves,"interlocks andpipingassociated withtheabovecomponents whicharerequiredtofunctionduringaccidentconditions areoperable. AtoraboveanRCStemperature of350F,A.C.powershallberemovedfromthefollowing valveswiththevalvesintheopenposition: safetyinjection coldleginjection valves878BandD.A.C.powershallberemovedfromsafetyinjection hotleginjection valves878AandCwiththevalvesclosed.D.C.controlpowershallberemovedfromrefueling waterstoragetankdeliveryvalves896A,896Band856withthevalvesopen.AtoraboveanRCStemperature of350F,checkvalves853A,853B,867A,867B,878G,and8788shallbeoperablewithlessthan5.0gpmleakageeach.Theleakagerequirements ofTechnical Specification 3.1.5.2.1 arestillapplicable. Aboveareactorcoolantsystempressureof1600psig,exceptduringperformance ofRCShydrotest,A.C.powerishallberemovedfromaccumulator isolation valves841and865withthevalvesopen.AtoraboveanRCStemperature of350F,A.C.powershallberemovedfromSafetyInjection suctionvalves825AandBwiththevalvesintheopenposition, andfromvalves826A,B,C,Dwiththevalvesintheclosedposition. 3'12o~.~.9i3~i.v3.3.1.3L,C-O'Z.s.i(iQ3.3.1.4L.c.o-,s,23.3.1.5~~lCo3.5.2Iftheconditions of3.3.1.1aarenotmet,thensatisfythecondition within1hourorbeathotshutdowninthenext6hoursandatleastcoldshutdownwithinanadditional 30hours.Therequirements of3.3.l.lband3.3.l.limaybemodifiedtoallowoneaccumulator tobeinoperable orisolatedforuptoonehour.Iftheaccumulator isnotoperableorisstillisolatedafteronehour,thereactorshallbeplacedinhotshutdownwithinthefollowing 6hoursandbelowaRCSpressureof1600psigwithinanadditional 6hours.Therequirements of3.3.1.lcmaybemodifiedtoallowonesafetyinjection pumptobeinoperable forupto72hours.Ifthepumpisnotoperableafter72hours,thereactorshallbeplacedinhotshutdownwithinthefollowing 6hoursandbelowaRCStemperature lessthan350oFwithinanadditional 6hours.Therequirements of3.3.1.1dthroughh.maybemodifiedtoallowcomponents tobeinoperable atanyonetime-Morethanonecomponent maybeinoperable atanyonetimeprovidedthatonetrainoftheECCSisoperable. Iftherequirements of3.3.1.1dthroughh.arenotsatisfied withinthetimeperiodspecified below,thereactorshallbeplacedinhotshutdownwithin6hoursandatanRCStemperature lessthan350Finanadditional 6hours.aeOneresidualheatremovalpumpmaybeoutofservice~-'q+~-q+~cayg.'rovided thepumpisrestoredtooperablestatuswithin72hours. 4'.5.2b.cooneresidualheatremovalheatexchanger maybeoutofserviceforaperiodofnomorethan72hours.Anyvalve,interlock, orpipingrequiredforthefunc-tioningofonesafetyinjection trainand/oronelowheadsafetyinjection train(RHR)maybeinoperable providedrepairsarecompleted within72hours(exceptasspeci-fiedine.below).Powermayberestoredtoanyvalvereferenced in3.3.1.1gforthepurposesofvalvetestingprovidednomorethanLc.o".s.2.Cuow')e.onesuchvalvehaspowerrestoredandprovidedtestingiscompleted andpowerremovedwithin12hours.Thosecheckvalvesspecified in3.3.1.1hmaybeinopera-ble(greaterthan5.0gpmleakage)providedtheinlineMovsarede-energized closedandrepairsarecompleted within12hours. a~Thefacilityhasfourservicewaterpumps.Onlyonineededduringtheinjection phase,andtworeiredduringtherecirculation phasepostuatedloss-of-coolant accident.' Theontrolroomergencyairtreatment systemisdignedtofilterthcontrolroomatmosphere duringeriodswhenthecontroloomisisolatedandtomaiIainradiation levelsintcontrolroomataceptablelevelsfollowing "heesignBasisAcc'nt.'Reactoroperation maycotinueforalimitedtimewhilerepairsarebeingdetotairtreatment systemsinceit.isunlikelytattesystemwould,beneeded.'Zechnical Specification 3.3.5appliesonlytotheequipmen" necessary oilterthecontrolroomatmosphere. Equipmetnecesrytoinitiateisolation of.t!>econtrolroomiscove)edhyanotherspecfication. Thelimitsrtheaccumulator pessureandvolumeassuretherequiredamountofwater'njection'uring anaccint,andarebasedonvalueusedfortheaccidtanalyses. Theindicated 1velof50%corespondsto1108cubicfeetofwatrinthea.cumulator andtheindicated levelof82%coespondsto1134cubicfeet.Thelimitation ofnomorethan.onesafetyinjetionpumptobeoperablewhenoverpressure protection 'sbeingprovidedbyaRCSventof>1.1sq.in.insures3.3-13Amendmen't No.gg,48 hatthemassadditionfromtheinadvertent operation setyinjection willnotresultinRHRsystempresreexcedingdesignlimits.Thelimitation onnoafetyinjecionpumpsoperableandthedischarge linessolatedwhenovrpressure protection isprovidedbytpressur-izerPOR'sremovesmassinjection frominadvertent safetyinjetionasaneventforwhichthiconfiguration ofoverpress eprotection mustbedes'gnedtoprotect.iinoperability asafetyinjection mpmaybeverifiedfromthemaincotrolboardwithtepumpcontrolswitchinpullstop,ortepumpbreakeinthetestrackedoutpositionsuchthatthepumpcouldnotstartfromaninadvertent safetyi'ectinsignal.Isolation ofasafetyinjection pump'argepathtotheRCSmaybeverifiedfromthemainrolboardbythedischarge MOVswitchpositionindictingosed,orthedischarge valveclosedwithA.C.werremoed,oramanualdischarge pathisolation vlveclosedshthatoperation oftheassociated saftyinjection pumpouldnotresultinmassinjection ttheRCS.Highconctrationboricacidisnoneededtomitigatetheconequencesofadesignbasisac'dent.Reference (10)emonstrates thatthedesignbasisccidentscanbemigatedbysafetyinjection flowofRWSToncentration. erefore,SIpumpsuctionistakenfromthRWST.Requiring thatthesafetyinjection suctionvves(825Aand8,826A,B,CandD)arealignedwithA..powerremovedinsuresthatthesafetyinjection systewouldnotbeexposedtohighconcentration boricacidantheassumptions oftheaccidentanalysisaresatisfied. Amendment No.,573.3-14 eferences ()Deleted(2)UFSARSection6.3.3.1(3)UFSARSection6.2.2.1(4)FSARSection15.6.4.3(5)UARSection9.2.2.4(6)UFSSection9.2.2.4(7)Deleed(8)UFSARection9.2.1.2(9)UFSARSction6.2.1.1(Containm tIntegrity) andUFSARSetion6.4(CREmergency AirTreatment) (10)Mestingho seReport,"R.E.G'aBoricAcidStorageTankBoroConcentration eductionStudy"datedNov.1992C.J.McHughdJ.J.SprysbakendmentNo.P,5733.14a Channelescitio10.RodPositionBankCountersTABLE4.1-1(Continued) ~CeckCalibrate TestS(1,2)H.A.H.A.1)2)liemarksWithrodpositionindication Logrodpositionindications each4hourswhenroddeviation monitorisoutofservicell.SteamGenerator Level12.ChargingFlow13.ResidualHeatRemovalPumpFlowH.A.fl.A.H.A.H.A.14.BoricAcidStorageTankLevelDH.A.Note4saz.s.~.>15.RefuelingWaterStorageTankLevelH.A.H.A.16.VolumeControlTankLevelN.A.N.A.17.ReactorContainment PressureM(1)1)Isolation Valvesignal18.Radiation Monitoring System19.BoricAcidControlN.A.N.A.AreaMonitorsRltoR9,SystemMonitorR17SRa.~eiS.z20.Containment DrainSumpLevelH.A.N.A.21.ValveTemperature Interlocks H.A.H.A.22.Pump-Valve Interlock 23.TurbineTripSet-Point sas.s.i.2.24.Accumulator Levelandsa3.s.i.2,pressureN.A.N.A.N.ADM(1)N.A.1)BlockTripAmendment Nc.g574.1-6 2'R.ii.~~~TABLE41-2MINIMUMFREUENCIFSFOREUIPMNTANDSAMLINGTESTS1.ReactorCoolantChemistry Samples2.ReactorCoolantBoronChlorideandFluorideOxygenBoronConcentration ~Frou~onc3times/week andatleasteverythirdday5times/week andatleasteveryseconddayexceptwhenbelow2504FMeekly3.Refueling WaterSpp.gq2,StorageTankWaterZ.Jt,'a1,$Sample4.BoricAcidStorageTankBoronConcentration BoronConcentration WeeklyTwice/Week"'. ControlRods6a.FullLengthControlRod6b.FullLengthControlRod7.Pressurizer SafetyValves8.HainSteamSafetyValves9.Containment Zsolation Trip10.Refueling SystemZnterlocks RoddroptimesofallfulllengthrodsHoveanyrodnotfullyinsertedasufficient numberofstepsinanyonadirection tocauseachangeofposi.tion asindicated bytherodpositionindication systemHoveeachrodthroughitsfulllengthtoverifythatthorodpositioni.ndication systemtransitions occurSotpointSetpointFunctioning Functioning Aftervesselheadremovalandatleastoncepor18months(1)MonthlyEachRefueling ShutdownEachRefueling ShutdownEachRefueli.ng ShutdownEachRefueling ShutdownPriortoRefueling Operations Amendment No.,574.1-8 11.ServiceMaterSystemT69tFunctioning ~Fe~encEachRefueling Shutdown12.FireProtection PumpandPowerSupply13.SprayAddi.tiveTankQg,S,S.i."(14.Accumulator Functioning NaOHConcentBoronConcentration 15.PrimarySystemEvaluateLeakage16.DieselFuelSupplyFuelXnventory MonthlyMonthlyBi-Monthly DailyDailyKQ'atZ.t'~'ih<P.'ii.c.17.SpentFuelPit18.Secondary CoolantSamplesBoronConcentration GrossActivityMonthly72hours(2)(3)19.Circulating MaterFloodProtection Equipment Calibrate EachRefueling ShutdownNotes:Alsorequiredforspecifically affectedindividual rodsfollowing anymaintenance onormodification tothecontrolroddrivesystemwhichcouldaffectthedrotimeofthspecificrods.Notrequiredduringacoldorrefueling shutdown. (3)AnisotopicanalysisforI-131equivalent activityisrequiredatleastmonthlywheneverthegrossactivitydetermination indicates iodineconcentration greaterthan104oftheactivit,deteallowable limitbutonlyonceper6monthswhtheneveregrossy,eermination indicates iodineconcentration below104oftheallowable limit.(4)WhenBASTisrequiredtobeoperable. Amendment Nn.g,5741-9 4.5SafetIniection, Containment SoraandIodineRemovalSstemsTests4Aolicabilit AppliestotestingoftheSafetyInjection System,theContain-mentSpraySystem,andtheAirZiltratior SysteminsideCcn-V~~'l"7~Vtainment. Obiective: Toverifythatthesubjectsystemswillrespondpromptlyandperformtheirintendedfunctions, ifrequired. \JI~t4.5.l.1SafetInectionSstema.Systemtestsshallbeperformed ateachreactorrefuel.ing interval. Thetestshallbeperformed inaccordance withthefollowing: Withthereactorcoolantsystempressurelessthanor,equalto350psigandtemperature lessthanorequalto350F,atestsafetyinjection signalwillbeappliedtoinitiateoperation ofthesystem.Thesafetyinjection andresidualheatremovalpumpmotorsareprevented fromstartingduringthetest.4.5-1 Thcsystemtestwillbcconsidered satisfactory ifZRcontrolboardindicati;n andvisualobservations indicatethatallvalveshavereceivedtheSafetyinjection signalandhavecomplctcd theirtravel.\$~yThcproperscnucnceandtimingofthcrotatingcomponents aretobcverifiedinconjunction xvith~~Section4.6.1b.4.5.l.2Containmcnt SnraS~stema.Systemtestsshallbcperformed at.eachrc"ctorre-fuelinginterval. Thetestshall.bcperformed withtncssolatacn valves,in thcspraysupplylines,atthccon-tainmcntblocltcdclosed.Ppcration ofthesystemf'~Ie~~ts)nitiatcd bytrippingthcnormalactuation instrumcn-mctation.b.Thcsprayno@alesshallbccheckedforproperfunctioninr; %~C~atleasteveryfiveyears.Thctestwillbcconsidered satisfactory ifvisualobser-vationsindicateallc'Opponents haveoperatedsatisfac-torily.4.5.2ComonentTests4.5.2.1PumpsExceptduringcoldorrefueling shutdown)s thhsafetyl'njectxon pumps,residualheatrea'ovalpu~s,andS'a3.g.z.."I QQ~cccontainmcnt spraypumpsshallbesa,artedatintervals nottoexceedonemonth.Thepumpsshallbetestedpriortostartupifthetimesincethelasttestexceeds1month.4.S-2 0 3.e.i.l~~3'X.4.L.b.Acceptable levelsofperformance forthepumpsshallbethatthepumpsstart,operate,anddeveloptheminimumdischarge pressurefortheflowslistedinthetablebelow:DISCHARGE PRES&JRE .Containment SprayPumpsResidualHeatRemovalPumpsSafetyInject:ion Pumps35.gpm[200gpmj450gpm[50gpml150gpm240psig[140psigJ138psig[1420psigj1356psigNotes(2)Table4.5-3.Notes(1)Itemsinsquarebracketsareeffective untiltheinstallation oft:henewresidualheatremovalminimumflowrecirculation system.(2)Itemsinsquarebracketsareeffective untilinstallation ofthenewsafetyinjection minimumflowrecirculation system.4.5.2.2Ve3.vesa.Exceptduringcoldorrefueling shutdowns thespray4additivevalvesshallbetestedatintervals nottoexceedonemonth.Withthepumpsshutdownandthevalvesupstreamanddownstream Aaandramt No.3345-3

3Q,ill4.5.2.3of"hesprayadditivevalvesclosed,eachvalvewillbeopenedandclosedbvoperatoract'on.Thistestshallbeperarmedpriortostartupi=hetimesincethelasttestexceedsonemon&.heaccumulator checkvalvesshallbecheckedoroperabili"y duringeachrefueling shutdown. Air.'"ratanSystem4.5.2.3.1 At'eas"=nceevezv18monthsorateevery720hoursafchac"atra"ionsvstemoperat'on sincethelasttest,~o11orallowingpainting, ieorchemicalreleaseinanyve.-a-'"."."onecommunicating withthesvstem,the"ostaccidenta.The"ressuredropaczossthecharcoaladsorberbankischar""a'ystem shallhavethefollowing cond'ians demonstrtedb.lessthan3inchesazwateratdes'gnzlowrate(~105).InplaceFreontesting,underambientconc't'ons, shallC~showatleast99%removal.Theiad'neremovaleffic'ncyozatleastonecharcoalfi'ercellsha'1bemeasured. Theftercel'obetestedshallbeselectedrandomlyfromthosecellswiththelongestin-ban3cresidence time.The.;mi~a~4 py414acceptable valueforiltereficiencyis90%'rre-movalo"methyliod'dewhentestedatatleast2S6'Fand954RHandat1.5ta2.0mg/m3load'..gwithtaggec.CK3I.45-4 ATTACHMENT CProposedRevisedR.E.GinnaNuclearPowerPlantImprovedTechnical Specifications Revisethepagesasfollows:RemoveTableofContentsEntireSection1.0EntireSection2.0EntireSection3.0EntireSection4.0EntireSection5.0EntireSection6.0InsertGinnaStationITSTableofContentsGinnaStationITSSection1.0GinnaStationITSSection2.0GinnaStationITSSection3.0GinnaStationITSSection4.0GinnaStationITSSection5.0ONLYSECTION3.5ISPROVIDEDATTHISTIME Accumulators 3.5.13.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)3.5.1Accumulators LCO3.5.1TwoECCSaccumulators shallbeOPERABLE. APPLICABILITY: MODES1and2,MODE3withpressurizer pressure>1600psig.ACTIONSCONDITION REQUIREDACTIONCOMPLETION TIMEA.Oneaccumulator inoperable duetoboronconcentration notwithinlimits.A,1Restoreboronconcentration towithinlimits.72hoursB.Oneaccumulator inoperable forreasonsotherthanCondition A.B.1Restoreaccumulator toOPERABLEstatus.1hourC.RequiredActionandassociated Completion TimeofCondition AorBnotmet.C.1ANDC.2BeinMODE3.Reducepressurizer pressureto<1600pslg.6hours12hoursD.Twoaccumulators inoperable. D.1EnterLCO3.0.3.Immediately R.E.GinnaNuclearPowerPlant3.5-1 Jtl Accumulators 3.5.1SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR3.5.1.1Verifyeachaccumulator motoroperatedisolation valveisfullyopen.12hoursSR3.5.1.2Verifyboratedwatervolumeineachaccumulator isz1120cubicfeet(50%)andg1190cubicfeet(82%).12hoursSR3.5.1.3Verifynitrogencoverpressureineachaccumulator is>700psigandS790psig.12hoursSR3.5.1.4Verifyboronconcentration ineachaccumulator isZ1800ppmandg2900ppm.31daysonaSTAGGERED TESTBASISSR3.5.1.5Verifypowerisremovedfromeachaccumulator motoroperatedisolation valveoperatorwhenpressurizer pressureis>1600psig,31daysR.E.GinnaNuclearPowerPlant3.5-2 ECCS-Operating 3.5.23.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)3.5.2ECCS-Operating LCO3.5.2TwoECCStrainsshallbeOPERABLE. APPLICABILITY: MODES1,2,and3.-NOTES1.InMODE3,bothsafetyinjection (SI)pumpflowpathsmaybeisolatedbyclosingtheisolation valvesforupto2hourstoperformpressureisolation valvetestingperSR3.4.14.1.Powermayberestoredtomotoroperatedisolation valves878A,878B,878C,and878Dforupto12hoursforthepurposeoftestingperSR3.4,14.1providedthatpowerisrestoredtoonlyonevalveatatime.2.Operation inMODE3withECCSpumpsdeclaredinoperable pursuanttoLCO3.4.12,"LowTemperature Overpressure Protection (LTOP)System,"isallowedforupto4hoursoruntilthetemperature ofbothRCScoldlegsexceeds375'F,whichever comesfirst.ACTIONSCONDITION RE(UIREDACTIONCOMPLETION TIMEA.Onetraininoperable. ANDAtleast100%oftheECCSflowequivalent toasingleOPERABLEECCStrainavailable, A.1RestoretraintoOPERABLEstatus.72hours(continued) R.E.GinnaNuclearPowerPlant3.5-3 IIV41~au ECCS-Operating 3.5.2ACTIONScontinued CONDITION REQUIREDACTIONCOMPLETION TIMEB.RequiredActionandassociated Completion Timenotmet.B,lANDBeinMODE3.6hoursB.2BeinMODE4.12hoursC.Twotrainsinoperable. C.1EnterLCO3.0.3Immediately SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR3.5.2.1VerifythefolloWing valvesareinthe~~~~listedposition. NumberPositionFunction12hours825AOpen825BOpen826AClosed826BClosed826CClosed8260Closed851AOpen851BOpen856Open878AClosed878BOpen878CClosed878DOpen896AOpen896BOpenRWSTSuctiontoSIPumpsRWSTSuctiontoSIPumpsBASTSuctiontoSIPumpsBASTSuctiontoSIPumpsBASTSuctiontoSIPumpsBASTSuctiontoSIPumpsSumpBtoRHRPumpsSumpBtoRHRPumpsRWSTSuctiontoRHRPumpsSIInjection toRCSHotLegSIInjection toRCSColdLegSIInjection toRCSHotLegSIInjection toRCSColdLegRWSTSuctiontoSIandContainment SprayRWSTSuctiontoSIandContainment Spray(continued) R.E.GinnaNuclearPowerPlant3.5-4

  • 4-~"5L3,~'~II.II ECCS-Operating 3.5.2SURVEILLANCE REQUIREMENTS continued SURVEILLANCE FREQUENCY SR3.5.2.2VerifyeachECCSmanual,poweroperated, andautomatic valveintheflowpath,thatisnotlocked,sealed,orotherwise securedinposition, isinthecorrectposition.

31daysSR3.5.2.3Verifyeachbreakerorkeyswitch,asapplicable, foreachvalvelistedinSR3.5.2.1,isinthecorrectposition, 31daysSR3.5.2.4VerifyeachECCSpump'sdevelop'ed headatthetestflowpointisgreaterthanorequaltotherequireddeveloped head.Inaccordance withtheInservice TestingProgramSR3.5.2.5VerifyeachECCSautomatic valveintheflowpaththatisnotlocked,sealed,orotherwise securedinpositionactuatestothecorrectpositiononanactualorsimulated actuation signal.24monthsSR3.5.2.6VerifyeachECCSpumpstartsautomatically onanactualorsimulated actuation signal.24monthsR.E.GinnaNuclearPowerPlant3.5-5 ECCS-Shutdown3.5.33.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)3.5.3ECCS-ShutdownLCO3.5.3OneECCStrainshallbeOPERABLE. 'PPLICABILITY: MODE4.ACTIONSCONDITION RE(UIREDACTIONCOMPLETION TIMEA.RequiredECCSresidualheatremoval(RHR)subsystem inoperable. A.1InitiateactiontorestorerequiredECCSRHRsubsystem toOPERABLEstatus.Immediately B.RequiredECCSSafety~~~injection (SI)subsystem inoperable. B.1RestorerequiredECCSSIsubsystem toOPERABLEstatus.1hourC.RequiredActionandassociated Completion TimeofCondition Bnotmet.C.1BeinMODE5.24hoursR.E.GinnaNuclearPowerPlant3.5-6 ECCS-Shutdown3.5.3SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR3.5.3.INOTE-AnRHRtrainmaybeconsidered OPERABLEduringalignment andoperation fordecayheatremoval,ifcapableofbeingmanuallyrealigned totheECCSmodeofoperation. Thefollowing SRisapplicable forallequipment requiredtobeOPERABLE: SR3.5.2.4Inaccordance withapplicable SRR.E.GinnaNuclearPowerPlant3.5-7 ~~~>y RWST3.5.43.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)3.5.4Refueling WaterStorageTank(RWST)LCO3.5.4TheRWSTshallbeOPERABLE. APPLICABILITY: MODESI,2,3,and4.ACTIONSCONDITION RE(UIREDACTIONCOMPLETION TIMEA.RWSTboronconcentration notwithinlimits.A.lRestoreRWSTtoOPERABLEstatus.8hoursB.RWSTwatervolumenot~~~~~withinlimits.B.IRestoreRWSTtoOPERABLEstatus.IhourC.RequiredActionandassociated Completion TimeofCondition AorBnotmet.C.lBeinMODE3.ANDC.2BeinMODE5.6hours36hoursR.E.GinnaNuclearPowerPlant3.5-8 SURVEILLANCE REQUIREMENTS SURVEILLANCE RWST3.5.4FREQUENCY SR3.5.4.1VerifyRWSTboratedwatervolumeisZ300,000gallons(88%).7daysSR3.5.4.2VerifyRWSTboronconcentration isZ2000ppmandg2900ppm.7daysR.E.GinnaNuclearPowerPlant3.5-9 'pf~1$ Accumulators B3.5.1B3.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.1Accumulators BASESBACKGROUND Thefunctions oftheECCSaccumulators aretosupplywatertothereactorvesselduringtheblowdownphaseofalargebreaklossofcoolantaccident(LOCA),toprovideinventory tohelpaccomplish therefillphasethatfollowsthereafter, andtoprovideReactorCoolantSystem(RCS)makeupforasmallbreakLOCA.TheblowdownphaseofalargebreakLOCAistheinitialperiodofthetransient duringwhichtheRCSdepartsfromequilibrium conditions, andheatfromfissionproductdecay,hotinternals, andthevesselcontinues tobetransferred tothereactorcoolant.Thereactorcoolantinventory isvacatingthecoreduringthisphasethroughsteamflashingandejectionoutthroughthebreak.Theblowdownphaseofthetransient endswhentheRCSpressurefallstoavalueapproaching thatofthecontainment atmosphere. IntherefillphaseofaLOCA,whichimmediately followstheblowdownphase,thecoreisessentially inadiabatic heatup.Thebalanceofaccumulator inventory isavailable torefloodthecoreandhelpfillvoidsinthelowerplenumandreactorvesseldowncomer soastoestablish arecoverylevelatthebottomofthecore.Theaccumulators arepressurevesselspartially filledwithboratedwaterandpressurized withnitrogengas.Theaccumulators arepassivecomponents, sincenooperatororcontrolactionsarerequiredinorderforthemtoperformtheirfunction. Internalaccumulator tankpressureissufficient todischarge theaccumulator contentstotheRCS,ifRCSpressuredecreases belowtheaccumulator pressure. (continued) R.E.GinnaNuclearPowerPlant83.5-1 lg,'IJl~ills<<yif:,I4I,>.tkl,ll>i,)hP aII Accumulators B3.5.1BASES(continued) BACKGROUND (continued) Eachaccumulator ispipedintoanRCScoldlegviaanaccumulator lineandisisolatedfromtheRCSbyamotoroperatedisolation valveandtwocheckvalvesinseries.Themotoroperatedisolation valves(841and865)aremaintained openwithACpowerremovedunderadministrative controlwhenpressurizer pressureis)1600psig.Thisfeatureensuresthatthevalvesmeetthesinglefailurecriterion ofmanually-controlled electrically operatedvalvesperBranchTechnical Position(BTP)ICSB-18(Ref.1).Thisisalsodiscussed inReferences 2and3.rTheaccumulator size,watervolume,andnitrogencoverpressureareselectedsothatoneofthetwoaccumulators issufficient topartially coverthecorebeforesignificant cladmeltingorzirconium waterreactioncanoccurfollowing aLOCA,Theneedtoensurethatoneaccumulator isadequateforthisfunctionisconsistent withtheLOCAassumption thattheentirecontentsofoneaccumulator willbelostviatheRCSpipebreakduringtheblowdownphaseoftheLOCA.APPLICABLE SAFETYANALYSESTheaccumulators areassumedOPERABLEinboththelargeandsmallbreakLOCAanalysesatfullpower(Ref.4).ThesearetheDesignBasisAccidents (DBAs)thatestablish theacceptance limitsfortheaccumulators. Reference totheanalysesfortheseDBAsisusedtoassesschangesintheaccumulators astheyrelatetotheacceptance limits.Inperforming theLOCAcalculations, conservative assumptions aremadeconcerning theavailability ofECCSflow.IntheearlystagesofalargebreakLOCA,withorwithoutalossofoffsitepower,theaccumulators providethesolesourceofmakeupwatertotheRCS.Theassumption oflossofoffsitepowerisrequiredbyregulations andconservatively imposesadelaywhereintheECCSpumpscannotdeliverflowuntiltheemergency dieselgenerators start,cometoratedspeed,andgothroughtheirtimedloadingsequence. Incoldlegbreakscenarios, theentirecontentsofoneaccumulator areassumedtobelostthroughthebreak.R.E.GinnaNuclearPowerPlantB3.5-2(continued) .~i:ceeua.giSiI,)4>4Ii> Accumulators B3.5.1BASES(continued) APPLICABLE SAFETYANALYSES(continued) ThelimitinglargebreakLOCAisadoubleendedguillotine breakatthedischarge ofthereactorcoolantpump.Duringthisevent,theaccumulators discharge totheRCSassoonasRCSpressuredecreases tobelowaccumulator pressure. Asaconservative

estimate, nocreditistakenforECCSpumpflowuntilaneffective delayhaselapsed.ThisdelayaccountsforSIsignalgeneration, thedieselsstarting, andthepumpsbeingloadedanddelivering fullflow.Duringthistime,theaccumulators areanalyzedasproviding thesolesourceofemergency corecooling.NooperatoractionisassumedduringtheblowdownstageofalargebreakLOCA.TheworstcasesmallbreakLOCAanalysesalsoassumeatimedelaybeforepumpedflowreachesthecore.Forthelargerrangeofsmallbreaks,therateofblowdownissuchthattheincreaseinfuelcladtemperature isterminated solelybytheaccumulators, withpumpedflowthenproviding continued cooling.Asbreaksizedecreases, theaccumulators andsafetyinjection pumpsbothplayapartinterminating theriseincladtemperature.

Asbreaksizecontinues todecrease, theroleoftheaccumulators continues todecreaseuntiltheyarenotrequiredandthesafetyinjection pumpsbecomesolelyresponsible forterminating thetemperature increase. ThisLCOhelpstoensurethatthefollowing acceptance criteriaestablished fortheECCSby10CFR50.46(Ref.5)willbemetfollowing aLOCA:a.Haximumfuelelementcladdingtemperature isg2200'F;b.Haximumcladdingoxidation isg0.17timesthetotalcladdingthickness beforeoxidation; c.Haximumhydrogengeneration fromazirconium waterreactionis<0.01timesthehypothetical amountthatwouldbegenerated ifallofthemetalinthecladdingcylinders surrounding thefuel,excluding thecladdingsurrounding theplenumvolume,weretoreact;andd.Coreismaintained inaeoolablegeometry. Sincetheaccumulators discharge duringtheblowdownphaseofaLOCA,theydonotcontribute tothelongtermcoolingrequirements of10CFR50.46.R.E.GinnaNuclearPowerPlantB3.5-3(continued) Accumulators B3.5.1BASES(continued) APPLICABLE SAFETYANALYSES(continued) ForboththelargeandsmallbreakLOCAanalyses, anominalcontained accumulator watervolumeisused.Thecontained watervolumeisthesameasthedeliverable volumefortheaccumulators, sincetheaccumulators areemptied,oncedischarged. forsmallbreaks,anincreaseinwatervolumeisapeakcladtemperature penaltyduetothereducedgasvolume.Apeakcladtemperature penaltyisanassumedincreaseinthecalculated peakcladtemperature duetoachangeinaninputparameter. Forlargebreaks,anincreaseinwatervolumecanbeeitherapeakcladtemperature penaltyorbenefit,depending ondowncomer fillingandsubsequent spillthroughthebreakduringthecorereflooding portionofthetransient. Theanalysisusesanominalaccumulator volumeandincludesthelinewatervolumefromtheaccumulator tothecheckvalveduetothesecompeting effects.Theminimumboronconcentration setpointisusedinthepostLOCAboronconcentration calculation. Thecalculation isperformed toassurereactorsubcriticality inapostLOCAenvironment. Ofparticular interestisthelargebreakLOCA,sincenocreditistakenforcontrolrodassemblyinsertion. Areduction intheaccumulator minimumboronconcentration wouldproduceasubsequent reduction intheavailable containment sumpconcentration forpostLOCAshutdownandanincreaseinthemaximumsumppH.Themaximumboronconcentration isusedindetermining thetimeframeinwhichboronprecipitation isaddressed postLOCA.Themaximumboronconcentration limitisbasedonthecoldestexpectedtemperature oftheaccumulator watervolumeandonchemicaleffectsresulting fromoperation oftheECCSandtheContainment SpraySystem.Avalueof2,900ppmwouldnotcreatethepotential forboronprecipitation intheaccumulator assumingacontainment temperature of40'F(Ref.6).Analysesperformed inresponseto10CFR50.49(Ref.7)assumedachemicalspraysolutionof2000to3000ppmboronconcentration (Ref.6)whichprovidesamarginof100ppm.ThechemicalspraysolutionimpactssumppHandtheresulting effectofchlorideandcausticstresscorrosion onmechanical systemsandcomponents. ThesumppHalsoaffectstherateofhydrogengeneration withincontainment duetotheinteraction ofContainment Sprayandsumpfluidwithaluminumcomponents. (continued) R.E.GinnaNuclearPowerPlantB3.5-4 PaS Accumulators B3.5.1BASES(continued) APPLICABLE SAFETYANALYSES(continued) ThelargeandsmallbreakLOCAanalysesareperformed attheminimumnitrogencoverpressure, sincesensitivity analyseshavedemonstrated thathighernitrogencoverpressureresultsinacomputedpeakcladtemperature benefit.Themaximumnitrogencoverpressurelimitpreventsaccumulator reliefvalveactuation at800psig,andultimately preserves accumulator integrity. Theeffectsoncontainment massandenergyreleasesfromtheaccumulators areaccounted forintheappropriate analyses(Refs.8and9).Theaccumulators satisfyCriterion 3oftheNRCPolicyStatement. LCOTheLCOestablishes theminimumconditions requiredtoensurethattheaccumulators areavailable toaccomplish theircorecoolingsafetyfunctionfollowing aLOCA.Twoaccumulators arerequiredtoensurethat100%ofthecontentsofoneaccumulator willreachthecoreduringaLOCA.Thisisconsistent withtheassumption thatthecontentsofoneaccumulator spillthroughthebreak.Iflessthanoneaccumulator isinjectedduringtheblowdownphaseofaLOCA,theECCSacceptance criteriaof10CFR50.46(Ref.5)couldbeviolated. Foranaccumulator tobeconsidered

OPERABLE, themotor-operatedisolation valvemustbefullyopen,powerremovedabove1600psig,andthelimitsestablished intheSRsforcontained volume,boronconcentration, andnitrogencoverpressuremustbemet.APPLICABILITY InNODES1and2,andinNODE3withRCSpressure>1600psig,theaccumulator OPERABILITY requirements arebasedonfullpoweroperation.

Althoughcoolingrequirements decreaseaspowerdecreases, theaccumulators arestillrequiredtoprovidecorecoolingaslongaselevatedRCSpressures andtemperatures exist.(continued) R.E.GinnaNuclearPowerPlantB3.5-5 ,0byI"az Accumulators B3.5.1BASES(continued) APPLICABILITY (continued) ThisLCOisonlyapplicable atpressures >1600psig.Atpressures g1600psig,therateofRCSblowdownissuchthattheECCSpumpscanprovideadequateinjection toensurethatpeakcladtemperature remainsbelowthe10CFR50.46(Ref.5)limitof2200'F.InNODE3,withRCSpressure<1600psig,andinNODES4,5,and6,theaccumulator motoroperatedisolation valvesareclosedtoisolatetheaccumulators fromtheRCS.ThisallowsRCScooldownanddepressurization withoutdischarging theaccumulators intotheRCSorrequiring depressurization oftheaccumulators. ACTIONSA,1Iftheboronconcentration ofoneaccumulator isnotwithinlimits,itmustbereturnedtowithinthelimitswithin72hours'nthisCondition, abilitytomaintainsubcriticality orminimumboronprecipitation timemaybereduced.Theboronintheaccumulators contributes totheassumption thatthecombinedECCSwaterinthepartially recovered coreduringtheearlyreflooding phaseofalargebreakLOCAissufficient tokeepthatportionofthecoresubcritical. Oneaccumulator belowtheminimumboronconcentration limit,however,willhavenoeffectonavailable ECCSwaterandaninsignificant effectoncoresubcriticality duringrefloodsincetheaccumulator watervolumeisverysmallwhencomparedtoRCSandRWSTinventory. BoilingofECCSwaterinthecoreduringrefloodconcentrates boroninthesaturated liquidthatremainsinthecore.Inaddition, currentanalysistechniques demonstrate thattheaccumulators arenotexpectedtodischarge following alargemainsteamlinebreak.Eveniftheydodischarge, theirimpactisminorandnotadesignlimitingevent.Thus,72hoursisallowedtoreturntheboronconcentration towithinlimits.(continued) R.E.GinnaNuclearPowerPlantB3.5-6 Accumulators B3.5.1BASES(continued) ACTIONS(continued) B.1Ifoneaccumulator isinoperable forareasonotherthanboronconcentration, theaccumulator mustbereturnedtoOPERABLEstatuswithin1hour.InthisCondition, therequiredcontentsofoneaccumulator cannotbeassumedtoreachthecoreduringaLOCA.Duetotheseverityoftheconsequences shouldaLOCAoccurintheseconditions, the1hourCompletion Timetoopenthevalve,removepowertothevalve,orrestoretheproperwatervolumeornitrogencoverpressureensuresthatpromptactionwillbetakentoreturntheinoperable accumulator toOPERABLEstatus.TheCompletion Timeminimizes thepotential forexposureoftheplant'oaLOCAundertheseconditions. C.1andC.2Iftheaccumulator cannotbereturnedtoOPERABLEstatuswithintheassociated Completion Time,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoMODE3within6hoursandpressurizer pressurereducedto~1600psigwithin12hours.TheallowedCompletion Timesarereasonable, basedonoperating experience, toreachtherequiredplantconditions fromfullpowerconditions inanorderlymannerandwithoutchallenging plantsystems.D.1Ifbothaccumulators areinoperable, theplantisinacondition outsidetheaccidentanalyses; therefore, LCO3.0.3mustbeenteredimmediately. R.E.GinnaNuclearPowerPlantB3.5-7(continued) I+~l'")4f=,kl,>la><~siyi~hr5 Accumulators B3.5.1BASES(continued) SURVEILLANCE RE(UIREHENTS SR3.5.1.1Eachaccumulator motor-operated isolation valveshouldbeverifiedtobefullyopenevery12hours.Useofcontrolboardindication forvalvepositionisanacceptable verification. Thisverification ensuresthattheaccumulators areavailable forinjection andensurestimelydiscovery ifavalveshouldbelessthanfullyopen.Ifanisolation valveisnotfullyopen,therateofinjection totheRCSwouldbereduced.Althoughamotoroperatedvalvepositionshouldnotchangewithpowerremoved,aclosedvalvecouldresultinnotmeetingaccidentanalysesassumptions. ThisFrequency isconsidered reasonable inviewofotheradministrative controlsthatensureamispositioned isolation valveisunlikely. SR3.5.1.2andSR3.5.1.3Theboratedwatervolumeandnitrogencoverpressureshouldbeverifiedevery12hoursforeachaccumulator. ThisFrequency issufficient toensureadequateinjection duringaLOCA.Becauseofthestaticdesignoftheaccumulator, a12hourFrequency usuallyallowstheoperatortoidentifychangesbeforelimitsarereached.Haincontrolboardalarmsarealsoavailable fortheseaccumulator parameters. Operating experience hasshownthisFrequency tobeappropriate forearlydetection andcorrection ofoffnormaltrends.SR3.5.1.4Theboronconcentration shouldbeverifiedtobewithinrequiredlimitsforeachaccumulator every31daysonaSTAGGERED TESTFrequency sincethestaticdesignoftheaccumulators limitsthewaysinwhichtheconcentration canbechanged.The31daySTAGGERED TESTFrequency isadequatetoidentifychangesthatcouldoccurfrommechanisms suchasstratification orinleakage. (continued) R.E.GinnaNuclearPowerPlantB3.5-8 It'tIIt~ Accumulators B3.5.1BASES(continued) SURVEILLANCE RE(UIREHENTS (continued) SR3.5.1.5Verification every31daysthatpowerisremovedfromeachaccumulator isolation valveoperatorwhenthepressurizer pressureis>1600psigensuresthatanactivefailurecouldnotresultintheundetected closureofanaccumulator motoroperatedisolation valve.Ifthisweretooccur,noaccumulators wouldbeavailable forinjection iftheLOCAweretooccurinthecoldlegcontaining theonlyOPERABLEaccumulator. Sincepowerisremovedunderadministrative controlandvalvepositionisverifiedevery12hours,the31dayFrequency willprovideadequateassurance thatpowerisremoved.REFERENCES 1.BranchTechnical Position(BTP)ICSB-18"Application oftheSingleFailureCriterion toHanually-Controlled Electrically OperatedValves."2.LetterfromD.H.Crutchfield, NRC,toJ.E,Haier,RGLE,

Subject:

"SEPTopicsVI-7.F,VII-3,VII-6,andVIII-2,"datedJune24,1981.3.LetterfromR.A.Purple,NRC,toL,D.White,RG&E,

Subject:

"IssuanceofAmendment 7toProvisional Operating LicenseNo.DPR-18,"datedHay14,1975.4.UFSAR,Section6.3.5.10CFR50.46.6.UFSAR,Section3.11.7.10CFR50.49.8.UFSAR,Section6.2.9.UFSAR,Section15.6.R.E.GinnaNuclearPowerPlantB3.5-9 ECCS-Operating 83.5.2B3.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.2ECCS-Operating BASESBACKGROUND ThefunctionoftheECCSistoprovidecorecoolingandnegativereactivity toensurethatthereactorcoreisprotected afteranyofthefollowing accidents: a.Lossofcoolantaccident(LOCA)andcoolantleakagegreaterthanthecapability ofthenormalcharging=system;b.Rodejectionaccident; c.Lossofsecondary coolantaccident, including uncontrolled steamreleaseorlossoffeedwater; andd.Steamgenerator tuberupture(SGTR).Theadditionofnegativereactivity isdesignedprimarily forthelossofsecondary coolantaccidentwhereprimarycooldowncouldaddenoughpositivereactivity toachievecriticality andreturntosignificant power.TherearetwophasesofECCSoperation: coldleginjection andcoldlegrecirculation. Intheinjection phase,wateristakenfromtherefueling waterstoragetank(RWST)andinjectedintotheReactorCoolantSystem(RCS)throughthecoldlegsandreactorvesselupperplenum.Whensufficient waterisremovedfromtheRWSTtoensurethatenoughboronhasbeenaddedtomaintainthereactorsubcritical andthecontainment sumphasenoughwatertosupplytherequirednetpositivesuctionheadtotheECCSpumps,suctionisswitchedtoContainment SumpBforcoldlegrecirculation. Afterapproximately 20hours,simultaneous ECCSinjection isusedtoreducethepotential forboilinginthetopofthecoreandanyresulting boronprecipitation. TheECCSconsistsoftwoseparatesubsystems: safetyinjection (SI)andresidualheatremoval(RHR).Eachsubsystem consistsoftworedundant, 100%capacitytrains.TheECCSaccumulators andtheRWSTarealsopartoftheECCS,butarenotconsidered partofanECCSflowpathasdescribed bythisLCO.(continued) R.E.GinnaNuclearPowerPlantB3.5-10 IIt'l~,dfl1 ECCS-Operating B3.5.2BASES(continued) BACKGROUND (continued) TheECCSflowpathswhichcomprisetheredundant trainsconsistofpiping,valves,heatexchangers, andpumpssuchthatwaterfromtheRWSTcanbeinjectedintotheRCSfollowing theaccidents described inthisLCO.Themajorcomponents ofeachsubsystem aretheRHRpumps,heatexchangers, andtheSIpumps.TheRHRsubsystem consistsoftwo100%capacitytrainsthatareinterconnected andredundant suchthateithertrainiscapableofsupplying 100%oftheflowrequiredtomitigatetheaccidentconsequences. TheSIsubsystem consistsofthreeredundant, 50%capacitypumpswhichsupplytwoRCScoldleginjection lines.Eachinjection lineiscapableofproviding 100%oftheflowrequiredtomitigatetheconsequences ofanaccident. Theseinterconnecting andredundant subsystem designsprovidetheoperators withtheabilitytoutilizecomponents fromoppositetrainstoachievetherequired100%flowtothecore.Duringtheinjection phaseofLOCArecovery, suctionheaders'upplywaterfromtheRWSTtotheECCSpumps.AcommonsupplyheaderisusedfromtheRWSTtothesafetyinjection (SI)andContainment SpraySystempumps.Thiscommonsupplyheaderisprovidedwithtwoin-series motor-operated isolation valves(896Aand896B)thatreceivepowerfromseparatesourcesforsinglefailureconsiderations. Theseisolation valvesaremaintained openwithDCcontrolpowerremovedviaakeyswitchlocatedinthecontrolroom.TheremovalofDCcontrolpowereliminates themostlikelycausesforspuriousvalveactuation whilemaintaining thecapability tomanuallyclosethevalvesfromthecontrolroomduringtherecirculation phaseoftheaccident(Ref.1).TheSIpumpsupplyheaderalsocontainstwoparallelmotor-operated isolation valves(825Aand825B)whicharemaintained openbyremovingACpower.TheremovalofACpowertotheseisolation valvesisanacceptable designagainstsinglefailuresthatcouldresultinundesirable component actuation (Ref.2).(continued) R.E.GinnaNuclearPowerPlantB3.5-11 UILllsq"f(P'Isgs ECCS-Operating B3.5.2BASES(continued) BACKGROUND (continued) Aseparatesupplyheaderisusedfortheresidualheatremoval(RHR)pumps.Thissupplyheaderisprovidedwithacheckvalve(854)andmotoroperatedisolation valve(856)whichismaintained openwithDCcontrolpowerremovedviaakeyswitchlocatedinthecontrolroom.TheremovalofDCcontrolpowereliminates themostlikelycausesforspuriousvalveactuation whilemaintaining thecapability tomanuallyclosethevalvefromthecontrolroomduringtherecirculation phaseoftheaccident(Ref.3).ThethreeSIpumpsfeedtwoRCScoldleginjection lines.SIPumpsAandBeachfeedsoneofthetwoinjection lineswhileSIPumpCcanfeedbothinjection lines.Thedischarge ofSIPumpCiscontrolled throughuseoftwonormallyopenparallelmotoroperatedisolation valves(871Aand871B).Theseisolation valvesaredesignedtoclosebasedontheoperating statusofSIPumpsAandBtoensurethatSIPumpCprovidesthenecessary flowthroughtheRCScoldleginjection linecontaining thefailedpump.Thedischarges ofthetwoRHRpumpsandheatexchangers feedacommoninjection linewhichpenetrates containment. Thislinethendividesintotworedundant coredelugeflowpathseachcontaining anormallyclosedmotoroperatedisolation valve(852Aand852B)andcheckvalve(853Aand853B)whichprovideinjection intothereactorvesselupperplenum.ForLOCAsthataretoosmalltodepressurize theRCSbelowtheshutoffheadoftheSIpumps,thesteamgenerators providecorecoolinguntiltheRCSpressuredecreases belowtheSIpumpshutoffhead.Duringtherecirculation phaseofLOCArecovery, RHRpumpsuctionismanuallytransferred toContainment SumpB(Refs.4and5).Thistransferisaccomplished bystoppingtheRHRpumps,isolating RHRfromtheRWSTbyclosingmotoroperatedisolation valve856,openingtheContainment SumpBmotoroperatedisolation valvestoRHR(850Aand850B)andthenstartingtheRHRpumps.TheSIandContainment SpraySystempumpsarethenstoppedandtheRWSTisolatedbyclosingmotoroperatedisolation valve896Aand896BfortheSIandContainment SpraySystempumpcommonsupplyheaderandclosingmotoroperatedisolation valve897or898fortheSIpumpsrecirculation line.(continued) R.E.GinnaNuclearPowerPlantB3.5-12 S'I+1k$<rI~lg)IA)>~l"llIIl'.II~(0~) ECCS-Operating B3.5.2BASES(continued) BACKGROUND (continued) TheRHRpumpsthensupplytheSIandContainment SpraySystempumps(asneededforpressurecontrolpurposes) iftheRCSpressureremainsabovetheRHRpumpshutoffhead(Ref.6).Thishigh-head recirculation pathisprovidedthroughRHRmotoroperatedisolation valves857A,857B,and857C.Theseisolation valvesareinterlocked withvalves896A,896B,897,and898.Thisinterlock preventsopeningoftheRHRhigh-head recirculation isolation valvesunlesseither896Aor896Bareclosedandeither897or898areclosed.IfRCSpressureislessthanapproximately 140psig,theSIandContainment Spraypumpsremaininpull-stop andonlyRHRisusedtoprovidecorecooling.Duringrecirculation, flowisdischarged throughthesamepathsastheinjection phase.Afterapproximately 20hours,simultaneous injection bytheSIandRHRpumpsisusedtopreventboronprecipitation (Ref.7).Thisconsistsofproviding SIthroughtheRCScoldlegsandintothelowerplenumwhileproviding RHRthroughthecoredelugevalvesintotheupperplenum.Thetworedundant flowpathsfromContainment SumpBtotheRHRpumpsalsocontainamotoroperatedisolation valvelocatedwithinthesump(851Aand851B).Theseisolation valvesaremaintained openwithpowerremovedtoimprovethereliability ofswitchover totherecirculation phase.Theoperators forisolation valves851Aand851Barealsonotqualified forcontainment postaccidentconditions. TheremovalofACpowertotheseisolation valvesisanacceptable designagainstsinglefailuresthatcouldresultinanundesirable actuation (Ref.2).TheSIsubsystem oftheECCSalsofunctions tosupplyboratedwatertothereactorcorefollowing increased heatremovalevents,suchasamainsteamlinebreak(HSLB).Thelimitingdesignconditions occurwhenthenegativemoderator temperature coefficient ishighlynegative, suchasattheendofeachcycle.Duringlowtemperature conditions intheRCS,limitations areplacedonthemaximumnumberofECCSpumpsthatmaybeOPERABLE. RefertotheBasesforLCO3.4.12,"LowTemperature Overpressure Protection (LTOP)System,"forthebasisoftheserequirements. (continued) ~~R.E.GinnaNuclearPowerPlantB3.5-13 J('~0~aW~tJI6$~ ECCS-Operating B3.5.2BASES(continued) BACKGROUND (continued) TheECCSsubsystems areactuateduponreceiptofanSIsignal.Theactuation ofsafeguard loadsisaccomplished inaprogrammed timesequence. Ifoffsitepowerisavailable, thesafeguard loadsstartimmediately intheprogrammed sequence. Ifoffsitepowerisnotavailable, theEngineered SafetyFeature(ESF)busesshednormaloperating loadsandareconnected totheemergency dieselgenerators (EDGs).Safeguard loadsarethenactuatedintheprogrammed timesequence. Thetimedelayassociated withdieselstarting, sequenced loading,andpumpstartingdetermines thetimerequiredbeforepumpedflowisavailable tothecorefollowing aLOCA.TheactiveECCScomponents, alongwiththepassiveaccumulators andtheRWSTcoveredinLCO3.5.1,"Accumulators," andLCO3.5.4,"Refueling WaterStorageTank(RWST),"providethecoolingwaternecessary tomeetAIF-GDC44(Ref.8).APPLICABLE TheLCOhelpstoensurethatthefollowing acceptance SAFETYANALYSIScriteriafortheECCS,established by10CFR50.46(Ref.9),willbemetfollowing aLOCA:a.Maximumfuelelementcladdingtemperature isg2200'F;b.Maximumcladdingoxidation is<0.17timesthetotalcladdingthickness beforeoxidation; c.Maximumhydrogengeneration fromazirconium waterreactionisg0.01timesthehypothetical amountgenerated ifallofthemetalinthecladdingcylinders surrounding thefuel,excluding thecladdingsurrounding theplenumvolume,weretoreact;d.Coreismaintained inaeoolablegeometry; ande.Adequatelongtermcorecoolingcapability ismaintained. TheLCOalsolimitsthepotential foraposttripreturntopowerfollowing anMSLBeventandhelpsensurethatcontainment temperature limitsaremetpostaccident. (continued) R.E.GinnaNuclearPowerPlantB3.5-14 es'h ECCS-Operating 83.5.2BASES(continued) APPLICABLE SAFETYANALYSIS(continued) BothECCSsubsystems aretakencreditforinalargebreakLOCAeventatfullpower(Refs.6and10),Thiseventestablishes therequirement forrunoutflowfortheECCSpumps,aswellasthemaximumresponsetimefortheiractuation. TheSIpumpsarecreditedinasmallbreakLOCAevent.Thiseventestablishes theflowanddischarge headatthedesignpointforthepumps.TheSGTRandHSLBeventsalsocredittheSIpumps.TheOPERABILITY requirements fortheECCSarebasedonthefollowing LOCAanalysisassumptions: a~AlargebreakLOCAevent,withlossofoffsitepowerandasinglefailuredisabling oneRHRpump(bothEDGtrainsareassumedtooperateduetorequirements formodelingfullactivecontainment heatremovalsystemoperation); andb.AsmallbreakLOCAevent,withalossofoffsitepowerandasinglefailuredisabling oneECCStrain.DuringtheblowdownstageofaLOCA,theRCSdepressurizes asprimarycoolantisejectedthroughthebreakintothecontainment. Thenuclearreactionisterminated eitherbymoderator voidingduringlargebreaksorcontrolrodinsertion forsmallbreaks.Following depressurization, emergency coolingwaterisinjectedbytheSIpumpsintothecoldlegs,flowsintothedowncomer, fillsthelowerplenum,andrefloodsthecore.TheRHRpumpsinjectdirectlyintothecorebarrelbyupperplenuminjection. Theeffectsoncontainment massandenergyreleasesareaccounted forinappropriate analyses(Refs.10and11).TheLCOensuresthatanECCStrainwilldeliversufficient watertomatchboiloffratesquicklyenoughtominimizetheconsequences ofthecorebeinguncovered following alargeLOCA.ItalsoensuresthattheSIpumpswilldeliversufficient waterandboronduringasmallLOCAtomaintaincoresubcriticality. ForsmallerLOCAs,theSIpumpsdeliversufficient fluidtomaintainRCSinventory. ForasmallbreakLOCA,thesteamgenerators continuetoserveastheheatsink,providing partoftherequiredcorecooling.TheECCStrainssatisfyCriterion 3oftheNRCPolicyStatement. (continued) R.E.GinnaNuclearPowerPlantB3.5-15 ECCS-Operating B3.5.2BASES(continued) LCOInMODES1,2,and3,twoindependent (andredundant) ECCStrainsarerequiredtoensurethatsufficient ECCSflowisavailable, assumingasinglefailureaffecting eithertrain.Additionally, individual components withintheECCStrainsmaybecalledupontomitigatetheconsequences ofothertransients andaccidents. InMODES1,2,and3,anECCStrainconsistsofanSIsubsystem andanRHRsubsystem. Eachtrainincludesthepiping,instruments, andcontrolstoensureanOPERABLEflowpathcapableoftakingsuctionfromtheRWSTuponanSIsignalandtransferring suctiontoContainment SumpB.Thisincludessecuringthemotoroperatedisolation valvesasspecified inSR3.5.2.1inpositionbyremovingthepowersourcesaslistedbelow.EINPositionSecuredinPositionB825A825B826A826B826C826D851A851B856878A878B878C878D896A896BOpenOpenClosedClosedClosedClosedOpenOpenOpenClosedOpenClosedOpenOpenOpenRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalofACPowerofACPowerofACpowerofACPowerofACPowerofACPowerofACpowerofACPowerofDCControlPowerofACPowerofACPowerofACPowerofACPowerofDCControlPowerofDCControlPowerThemajorcomponents ofanECCStrainconsistsofanRHRpumpandheatexchanger takingsuctionfromtheRWST(andeventually Containment SumpB),andcapableofinjecting throughoneofthetwoisolation valvestothereactorvesselupperplenumandoneofthetwolineswhichprovidehigh-head reci}culationtotheSIandContainment SpraySystempumps.(continued) R.E.GinnaNuclearPowerPlantB3.5-16 eeNWH' ECCS-Operating B3.5.2BASES(continued) LCO(continued) AlsoincludedwithintheECCStrainaretwoofthreeSIpumpscapableoftakingsuctionfromtheRWSTandContainment SumpB(via.RHR),andinjecting throughoneofthetwoRCScoldleginjection lines.InthecasewhereSIPumpCisinoperable, bothRCScoldleginjection linesmustbeOPERABLEtoprovide100%oftheECCSflowequivalent totoasingletrainofSIduetothelocationofcheckvalves870Aand870B.Theflowpathforeachtrainmustmaintainitsdesignedindependence toensurethatnosinglefailurecandisablebothECCStrains.APPLICABILITY InNODES1,2,and3,theECCSOPERABILITY requirements forthelimitingDesignBasisAccident, alargebreakLOCA,arebasedonfullpoweroperation. Althoughreducedpowerwouldnotrequirethesamelevelofperformance, theaccidentanalysisdoesnotprovideforreducedcoolingrequirements inthelowerMODES.TheSIpumpperformance requirements arebasedonasmallbreakLOCA.MODE2andMODE3requirements areboundedbytheMODE1analysis. ThisLCOisonlyapplicable inMODE3andabove.BelowMODE3,theSIsignalsetpointismanuallybypassedbyoperatorcontrol,andsystemfunctional requirements arerelaxedasdescribed inLCO3.5.3,"ECCS-Shutdown." Asindicated inNote1,theflowpathmaybeisolatedfor2hoursinMODE3,undercontrolled conditions, toperformpressureisolation valvetestingperSR3.4.14.1.Theflowpathisreadilyrestorable fromthecontrolroomorfieldtestpersonnel. ThenotealsoallowsanSIisolation MOVtobepoweredforupto12hoursfortheperformance ofthistesting.Asindicated inNote2,operation inMODE3withECCStrainsdeclaredinoperable pursuanttoLCO3.4.12,"LowTemperature Overpressure Protection (LTOP)System,"isnecessary sincetheLTOParmingtemperature isneartheMODE3boundarytemperature of350'F.LCO3.4.12requiresthatcertainpumpsberenderedinoperable atandbelowtheLTOParmingtemperature. Whenthistemperature isneartheMODE3(continued) R.E.GinnaNuclearPowerPlantB3.5-17 ECCS-Operating B3.5.2BASES(continued) APPLICABILITY (continued) boundarytemperature, timeisneededtorestoretheinoperable pumpstoOPERABLEstatus.InMODES4,5and6,plantconditions aresuchthattheprobability ofaneventrequiring ECCSinjection isextremely low.Mode4corecoolingrequirements areaddressed byLCO3.4.6,"RCSLoops-Mode4,"andLCO3.5.3,"ECCS-Shutdown." Corecoolingrequirements inMODE5areaddressed byLCO3.4,7,"RCSLoops-MODE5,LoopsFilled,"andLCO3.4.8,"RCSLoops-MODE5,LoopsNotFilled."MODE6corecoolingrequirements areaddressed byLCO3.9.5,"Residual HeatRemoval(RHR)andCoolantCirculation -HighWaterLevel,"andLCO3.9.6,"Residual HeatRemoval(RHR)andCoolantCirculation -LowWaterLevel."ACTIONSA.1Withonetraininoperable andatleast100%oftheECCSflowequivalent toasingleOPERABLEECCStrainavailable, theinoperable components mustbereturnedtoOPERABLEstatuswithin72hours.The72hourCompletion TimeisbasedonanNRCreliability evaluation (Ref.12)andisareasonable timeforrepairofmanyECCScomponents. AnECCStrainisinoperable ifitisnotcapableofdelivering 100%designflowtotheRCS.Individual components areinoperable iftheyarenotcapableof-performing theirdesignfunctionornecessary supporting systemsarenotavailable. TheLCOrequirestheOPERABILITY ofanumberofindependent subsystems. Duetotheredundancy oftrainsandthediversity ofsubsystems, theinoperability ofonecomponent inatraindoesnotrendertheECCSincapable ofperforming itsfunction. Neitherdoestheinoperability oftwodifferent components, eachinadifferent train,necessarily resultinalossoffunctionfortheECCS.TheintentofthisCondition istomaintainacombination ofequipment suchthat100%oftheECCSflowequivalent toasingleOPERABLEECCStrainremainsavailable. Thisallowsincreased flexibility inplantoperations undercircumstances whencomponents inoppositetrainsareinoperable. R.E.GinnaNuclearPowerPlantB3,5-18(continued) ECCS-Operating B3.5.2BASES(continued) ACTIONS(continued) InthecasewhereSIPumpCisinoperable, bothRCScoldleginjection linesmustbeOPERABLEtoprovide100%oftheECCSflowequivalent toasingletrainofSIduetothelocationofcheckvalves870Aand870B.Aneventaccompanied byalossofoffsitepowerandthefailureofanEDGcandisableoneECCStrainuntilpowerisrestored. Areliability analysis(Ref.2)hasshownthattheimpactofhavingonefullECCStraininoperable issufficiently smalltojustifycontinued operation for72hours.B.landB.2Iftheinoperable traincannotbereturnedtoOPERABLEstatuswithintheassociated Completion Time,theplantmustbebroughttoaHODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoHODE3within6hoursandHODE4within12hours.TheallowedCompletion Timesarereasonable, basedonoperating experience, toreachtherequiredplantconditions fromfullpowerconditions inanorderlymannerandwithoutchallenging plantsystems.C.1IfbothtrainsofECCSareinoperable, theplantisinacondition outsidetheaccidentanalyses; therefore, LCO3.0.3mustbeimmediately entered.Withoneormorecomponent(s) inoperable suchthat100%oftheflowequivalent toasingleOPERABLEECCStrainisnotavailable, thefacilityisinacondition outsidetheaccidentanalysis. Therefore, LCO3.0.3mustbeimmediately entered.R.E.GinnaNuclearPowerPlantB3.5-19(continued) 0itVJl'a-II04Vlt~FPrill ECCS-Operating B3.5.2BASES(continued) SURVEILLANCE RE(UIREMENTS SR3.5.2.1Verification ofpropervalvepositionensuresthattheflowpathfromtheECCSpumpstotheRCSismaintained. Useofcontrolboardindication forvalvepositionisanacceptable verification. Misalignment ofthesevalvescouldrenderbothECCStrainsinoperable. ThelistedvalvesaresecuredinpositionbyremovalofACpowerorkeylockingtheDCcontrolpower.Thesevalvesareoperatedunderadministrative controlssuchthatanychangeswithrespecttothepositionofthevalvebreakersorkeylocksisunlikely. Theverification ofthevalvebreakersandkeylocksisperformed bySR3.5.2.3.Mispositioning ofthesevalvescandisablethefunctionofbothECCStrainsandinvalidate theaccidentanalyses. A12hourFrequency isconsidered reasonable inviewofotheradministrative controlsthatensureamispositioned valveisunlikely. SR3.5.2.2Verifying thecorrectalignment formanual,poweroperated, andautomatic valvesintheECCSflowpathsprovidesassurance thattheproperflowpathswillexistforECCSoperation. ThisSRdoesnotapplytovalvesthatarelocked,sealed,orotherwise securedinposition, sincethesewereverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring. Avalvethatreceivesanactuation signalisallowedtobeinanonaccident positionprovidedthevalvewillautomatically reposition withintheproperstroketime.ThisSurveillance doesnotrequireanytestingorvalvemanipulation. Rather,itinvolvesverification thatthosevalvescapableofbeingmispositioned areinthecorrectposition, The31dayFrequency isappropriate becausethevalvesareoperatedunderadministrative control,andanimpropervalvepositioninmostcases,wouldonlyaffectasingletrain.ThisFrequency hasbeenshowntobeacceptable throughoperating experience. (continued) R.E.GinnaNuclearPowerPlantB3.5-20 ~I'I0~pVIIWy1<It~ai>s<w'E.'1>>>'4~f' ECCS-Operating 83.5.2BASES(continued) SURVEILLANCE REQUIREHENTS (continued) SR3.5.2.3Verification every31daysthatACorDCpowerisremoved,asappropriate, foreachvalvespecified inSR3.5.2.1ensuresthatanactivefailurecouldnotresultinanundetected misposition ofavalvewhichaffectsbothtrainsofECCS.Ifthisweretooccur,noECCSinjection orrecirculation wouldbeavailable. Sincepowerisremovedunderadministrative controlandvalvepositionisverifiedevery12hours,the31dayFrequency willprovideadequateassurance thatpowerisremoved.SR3.5.2.4Periodicsurveillance testingofECCSpumpstodetectgrossdegradation causedbyimpellerstructural damageorotherhydraulic component problemsisrequiredbySectionXIoftheASHECode.Thistypeoftestingmaybeaccomplished bymeasuring thepumpdeveloped headatasinglepointofthepumpcharacteristic curve.Thisverifiesboththatthemeasuredperformance iswithinanacceptable tolerance oftheoriginalpumpbaselineperformance andthattheperformance atthetestflowisgreaterthanorequaltotheperformance assumedintheplantsafetyanalysis. SRsarespecified intheInservice TestingProgram,whichencompasses SectionXIoftheASHECode.SectionXIoftheASHECodeprovidestheactivities andFrequencies necessary tosatisfytherequirements. (continued) R.E.GinnaNuclearPowerPlantB3.5-21 8F44Cl ECCS-Operating B3.5.2BASES(continued) SURVEILLANCE RE(UIREMENTS (continued) SR3.5.2.5andSR3.5.2.6TheseSurveillances demonstrate thateachautomatic ECCSvalveactuatestotherequiredpositiononanactualorsimulated SIsignalandthateachECCSpumpstartsonreceiptofanactualorsimulated SIsignal.Thissurveillance isnotrequiredforvalvesthatarelocked,sealed,orotherwise securedintherequiredpositionunderadministrative controls. The24monthFrequency isbasedontheneedtoperformtheseSurveillances undertheconditions thatapplyduringaplantoutageandthepotential forunplanned planttransients iftheSurveillances wereperformed withthereactoratpower.The24monthFrequency isalsoacceptable basedonconsideration ofthedesignreliability (andconfirming operating experience) oftheequipment. Theactuation logicistestedaspartofESFActuation Systemtesting,andequipment performance ismonitored aspartoftheInservice TestingProgram.REFERENCES 1.LetterfromR.A.Purple,NRC,toL.D.White,.RG&E,

Subject:

"Issuance ofAmendment 7toProvisional Operating LicenseNo.DPR-18,"datedHay14,1975.2.BranchTechnical Position(BTP)ICSB-18,"Application oftheSingleFailureCriterion toManually-Controlled Electrically OperatedValves."3.LetterfromA.R.Johnson,NRC,toR.C.Hecredy,RG&E,

Subject:

"Issuance ofAmendment No.42toFacilityOperating LicenseNo.DPR-18,R.E.GinnaNuclearPowerPlant(TACNo.79829),"datedJune3,1991.4.LetterfromD.H.Crutchfield, NRC,toJ.E.Haier,RG&E,

Subject:

"SEPTopicVI-7.B:ESFSwitchover fromInjection toRecirculation Mode,Automatic ECCSRealignment, Ginna,"datedDecember31,1981.5.NUREG-0821. 6.UFSAR,Section6.3.(continued) R.E.GinnaNuclearPowerPlantB3.5-22 'Il~P~varhlier~4~'4c<WaswcI<e ECCS-Operating B3.5.2BASES(continued) REFERENCES (continued) 7.LetterfromD.H.Crutchfield, NRC,toJ.E.Haier,RGLE,

Subject:

"SEPTopicIX-4,BoronAdditionSystem,R.E.Ginna,"datedAugust26,1981.8.AtomicIndustrial Forum(AIF)GDC44,Issuedforcomment July10,1967.9.10CFR50.46.10.UFSAR,Section15.6.ll.UFSAR,Section6.2.12.NRCHemorandum toV.Stello,Jr.,fromR.L.Baer,"Recommended InterimRevisions toLCOsforECCSComponents," December1,1975.R.E.GinnaNuclearPowerPlantB3.5-23 f,h1II4eCCIII4if'1~fIhd~+ktIII4 ECCS-ShutdownB3.5.383.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.3ECCS-ShutdownBASESBACKGROUND TheBackground sectionforBases3.5.2,"ECCS-Operating," isapplicable totheseBases,withthefollowing modifications. InMODE4,therequiredECCStrainconsistsoftwoseparatesubsystems: safetyinjecti'on (SI)andresidualheatremoval(RHR).TheECCSflowpathsconsistofpiping,valves,heatexchangers, andpumpssuchthatwaterfromtherefueling waterstoragetank(RWST)canbeinjectedintotheReactorCoolantSystem(RCS)following theaccidents described inBases3.5.2.TheRHRsubsystem mustalsobecapableoftakingsuctionfromcontainment SumpBtoproviderecirculation. APPLICABLE SAFETYANALYSESTheApplicable SafetyAnalysessectionofBases3.5.2alsoappliestothisBasessection.Duetothestableconditions associated withoperation inMODE4andthereducedprobability ofoccurrence ofaDesignBasisAccident(DBA),theECCSoperational requirements arereduced.Itisunderstood inthesereductions thatcertainautomatic safetyinjection (SI)actuation isnotavailable. InthisMODE,sufficient timeexistsformanualactuation oftherequiredECCStomitigatetheconsequences ofaDBA(Ref.I).OnlyonetrainofECCSisrequiredforMODE4.Thisrequirement dictatesthatsinglefailuresarenotconsidered duringthisMODEofoperation. TheECCStrainssatisfyCriterion 3oftheNRCPolicyStatement. LCOInMODE4,oneofthetwoindependent (andredundant) ECCStrainsisrequiredtobeOPERABLEtoensurethatsufficient ECCSflowisavailable tothecorefollowing aDBA.(continued) R.E.GinnaNuclearPowerPlantB3.5-24 ECCS-ShutdownB3.5.3BASES(continued) LCO(continued) InMODE4,anECCStrainconsistsofanSIsubsystem andanRHRsubsystem. Eachtrainincludesthepiping,instruments, andcontrolstoensureanOPERABLEflowpathcapableoftakingsuctionfromtheRWSTandtransferring suctiontothecontainment sump.Themajorcomponents ofanECCStrainduringMODE4consistsofanRHRpumpandheatexchanger, capableoftakingsuctionfromtheRWST(andeventually Containment SumpB),andabletoinjectthroughoneofthetwoisolation valvestothereactorvesselupperplenum.AlsoincludedwithintheECCStrainareoneofthreeSIpumpscapableoftakingsuctionfromtheRWSTandinjecting throughoneofthetwoRCScoldleginjection lines.Thehigh-head recirculation flowpathfromRHRtotheSIpumpsisnotrequiredintheMODE4sincethereisnoaccidentscenariowhichpreventsdepressurization totheRHRpumpshutoffheadpriortodepletion oftheRWST.Basedonthetimeavailable torespondtoaccidentconditions duringMODE4,ECCScomponents areOPERABLEiftheyarecapableofbeingreconfigured totheinjection modefromthecontrolroomwithin10minutes.ThisincludestakingcreditforanRHRpumpandheatexchanger asbeingOPERABLEiftheyarebeingusedforshutdowncoolingpurposes. APPLICABILITY InMODES1,2,and3,theOPERABILITY requirements forECCSarecoveredbyLCO3.5.2.InMODE4withRCStemperature below350'F,oneOPERABLEECCStrainisacceptable withoutsinglefailureconsideration, onthebasisofthestablereactivity ofthereactorandthelimitedcorecoolingrequirements. InMODES5and6,plantconditions aresuchthattheprobability ofaneventrequiring ECCSinjection isextremely low.Corecoolingrequirements inMODE5areaddressed byLCO3.4.7,"RCSLoops-MODE5,LoopsFilled,"andLCO3.4.8,"RCSLoops-MODE5,LoopsNotFilled."MODE6corecoolingrequirements areaddressed byLCO3.9.5,"Residual HeatRemoval(RHR)andCoolantCirculation -HighWaterLevel,"andLCO3.9.6,"Residual HeatRemoval(RHR)andCoolantCirculation -LowWaterLevel."R.E.GinnaNuclearPowerPlantB3.5-25(continued) I\S4,a"),~. ECCS-ShutdownB3.5.3BASES(continued) ACTIONSA.1WithnoECCSRHRsubsystem

OPERABLE, theplantisnotpreparedtorespondtoalossofcoolantaccidentortocontinueacooldownusingtheRHRpumpsandheatexchangers.

TheCompletion Timeofimmediately toinitiateactionsthatwouldrestoreatleastoneECCSRHRsubsystem toOPERABLEstatusensuresthatpromptactionistakentorestoretherequiredcoolingcapacity.

Normally, inMODE4,reactordecayheatisremovedfromtheRCSbyanRHRloop.IfnoRHRloopisOPERABLEforthisfunction, reactordecayheatmustberemovedbysomealternate method,suchasuseofthesteamgenerators.

Thealternate meansofheatremovalmustcontinueuntiltheinoperable RHRloopcomponents canberestoredtooperation sothatdecayheatremovaliscontinuous. WithbothRHRpumpsandheatexchangers inoperable, itwouldbeunwisetorequiretheplanttogotoMODE5,wheretheonlyavailable heatremovalsystemistheRHR.Therefore, theappropriate actionistoinitiatemeasurestorestoreoneECCSRHRsubsystem andtocontinuetheactionsuntilthesubsystem isrestoredtoOPERABLEstatus.B.lWithnoECCSSIsubsystem

OPERABLE, duetotheinoperability oftheSIpumporflowpathfromtheRWST,theplantisnotpreparedtoprovidehighpressureresponsetoDesignBasisEventsrequiring SI.The1hourCompletion TimetorestoreatleastoneSIsubsystem toOPERABLEstatusensuresthatpromptactionistakentoprovidetherequiredcoolingcapacityortoinitiateactionstoplacetheplantinMODE5,whereanECCStrainisnotrequired.

C.1WhentheRequiredActionsofCondition Bcannotbecompleted withintherequiredCompletion Time,acontrolled shutdownshouldbeinitiated. Twenty-four hoursisareasonable time,basedonoperating experience, toreachMODE5inanorderlymannerandwithoutchallenging plantsystemsoroperators. R.E.GinnaNuclearPowerPlantB3.5-26(continued) ~8"4II4slv'hIt)owl'l ECCS-ShutdownB3.5.3BASES(continued) SURVEILLANCE REOUIREHENTS SR3.5.3.1Theapplicable Surveillance description fromBases3.5.2apply.ThisSRismodifiedbyaNotethatallowsanRHRtraintobeconsidered OPERABLEduringalignment andoperation fordecayheatremoval,ifcapableofbeingmanuallyrealigned (remoteorlocal)totheECCSmodeofoperation andnototherwise inoperable. Thisallowsoperation intheRHRmodeduringHODE4,ifnecessary. REFERENCES Theapplicable references fromBases3.5.2apply.1.WCAP-12476, "Evaluation ofLOCADuringHode3andHode4Operation forWestinghouse NSSS,"November1991.R.E.GinnaNuclearPowerPlantB3.5-27 N'~' RWSTB3.5.4B3.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.4Refueling WaterStorageTank(RWST)BASESBACKGROUND TheRWSTsuppliesboratedwatertobothtrainsoftheECCSandtheContainment SpraySystemduringtheinjection phaseofalossofcoolantaccident(LOCA)recovery. AcommonsupplyheaderisusedfromtheRWSTtothesafetyinjection (SI)andContainment SpraySystempumps.Aseparatesupplyheaderisusedfortheresidualheatremoval(RHR)pumps.Isolation valvesandcheckvalvesareusedtoisolatetheRWSTfromtheECCSandContainment SpraySystempriortotransferring totherecirculation mode.Therecirculation modeisenteredwhenpumpsuctionistransferred tothecontainment sumpbasedonRWSTlevel.UseofasingleRWSTtosupplybothtrainsoftheECCSandContainment SpraySystemisacceptable sincetheRWSTisapassivecomponent, andpassivefailuresarenotrequiredtobeassumedtooccurcoincidentally withDesignBasisEvents.TheRWSTislocatedintheAuxiliary Buildingwhichisnormallymaintained between50'Fand104'F(Ref.1).Thesemoderatetemperatures provideadequatemarginwithrespecttopotential freezingoroverheating oftheboratedwatercontained intheRWST.Duringnormaloperation inNODES1,2,and3,thesafetyinjection (SI)andresidualheatremoval(RHR)andContainment SpraySystempumpsarealignedtotakesuctionfromtheRWST.TheECCSandContainment SpraySystempumpsareprovidedwithrecirculation linesthatensureeachpumpcanmaintainminimumflowrequirements whenoperating atornearshutoffheadconditions. Therecirculation linesfortheRHRandContainment SpraySystempumpsaredirectedfromthedischarge ofthepumpstothepumpsuction.Therecirculation linesfortheSIpumpsaredirectedbacktotheRWST.(continued) R.E.GinnaNuclearPowerPlantB3.5-28 f4NI"0 RWSTB3.5.4BASES(continued) BACKGROUND (continued) WhenthesuctionfortheECCSandContainment SpraySystempumpsistransferred tothecontainment sump,theRWSTandSIpumprecirculation flowpathsmustbeisolatedtopreventareleaseofthecontainment sumpcontentstotheRWST,whichcouldresultinareleaseofcontaminants totheAuxiliary BuildingandtheeventuallossofsuctionheadfortheECCSpumps.ThisLCOensuresthat:a.TheRWSTcontainssufficient boratedwatertosupporttheECCSduringtheinjection phase;b.Sufficient watervolumeexistsinthecontainment sumptosupportcontinued operation oftheECCSandContainment SpraySystempumpsatthetimeoftransfertotherecirculation modeofcooling;andc.Thereactorremainssubcritical following aLOCA.Insufficient waterintheRWSTcouldresultininadequate NPSHfortheRHRpumpswhenthetransfertotherecirculation modeoccurs.Improperboronconcentrations couldresultinareduction ofSDMorexcessive boricacidprecipitation inthecorefollowing theLOCA,aswellasexcessive causticstresscorrosion ofmechanical components andsystemsinsidethecontainment. APPLICABLE SAFETYANALYSESDuringaccidentconditions, theRWSTprovidesasourceofboratedwatertotheECCSandContainment SpraySystempumps.Assuch,itprovidescontainment coolinganddepressurization, corecooling,andreplacement inventory andisasourceofnegativereactivity forreactorshutdown(Ref.3).Thedesignbasistransients andapplicable safetyanalysesconcerning eachofthesesystemsarediscussed intheApplicable SafetyAnalysessectionofB3.5.2,"ECCS-Operating"; B3.5.3,"ECCS-Shutdown"; andB3.6.6,"Containment SprayandCoolingSystems." TheseanalysesareusedtoassesschangestotheRWSTinordertoevaluatetheireffectsinrelationtotheacceptance limitsintheanalyses. (continued) R.E.GinnaNuclearPowerPlantB3.5-29 0(,~v'aajarp4>fiI RWSTB3.5.4BASES(continued) APPLICABLE SAFETYANALYSIS(continued) TheRWSTmustalsomeetvolume,boronconcentration, andtemperature requirements fornon-LOCAevents.Thevolumeisnotanexplicitassumption innon-LOCAeventssincethevolumerequiredforReactorCoolantSystem(RCS)makeupisasmallfractionoftheavailable RCSvolume.Thedeliverable volumelimitissetbytheLOCAandcontainment analyses. FortheRWST,thedeliverable volumeisselectedsuchthatswitchover torecirculation doesnotoccuruntilsufficient waterhasbeenpumpedintocontainment toprovidenecessary NPSHfortheRHRpumps.Theminimumboronconcentration isanexplicitassumption inthemainsteamlinebreak(HSLB)analysistoensuretherequiredshutdowncapability. Themaximumboronconcentration isanexplicitassumption intheevaluation ofchemicaleffectsresulting fromtheoperation oftheContainment SpraySystem.ForalargebreakLOCAanalysis, theminimumwatervolumelimitof300,000gallonsandthelowerboronconcentration limitof2000ppmareusedtocomputethepostLOCAsumpboronconcentration necessary toassuresubcriticality. ThelargebreakLOCAisthelimitingcasesincethesafetyanalysisassumesthatallcontrolrodsareoutofthecore.Theupperlimitonboronconcentration of2900ppmisusedtodetermine thetimeframeinwhichboronprecipitation isaddressed postLOCA.Themaximumboronconcentration limitisbasedonthecoldestexpectedtemperature oftheRWSTwatervolumeandonchemicaleffectsresulting fromoperation oftheECCSandtheContainment SpraySystem.Avalueof2,900ppmwouldnotcreatethepotential forboronprecipitation intheRWSTassuminganAuxiliary Buildingtemperature of50'F(Ref.1).Analysesperformed inresponseto10CFR50,49(Ref.2)assumedachemicalspraysolutionof2000to3000ppmboronconcentration (Ref,1)whichprovidesamarginof100ppm.ThechemicalspraysolutionimpactssumppHandtheresulting effectofchlorideandcausticstresscorrosion onmechanical systemsandcomponents. ThesumppHalsoaffectstherateofhydrogengeneration withincontainment duetotheinteraction ofContainment Sprayandsumpfluidwithaluminumcomponents. TheRWSTsatisfies Criterion 3oftheNRCPolicyStatement. R.E.GinnaNuclearPowerPlantB3.5-30(continued) irs~kFw~c--.>>ilIV, RWSTB3.5.4BASES(continued) LCOTheRWSTensuresthatanadequatesupplyofboratedwaterisavailable tocoolanddepressurize thecontainment intheeventofaDesignBasisAccident(DBA),tocoolandcoverthecoreintheeventofaLOCA,tomaintainthereactorsubcritical following aDBA,andtoensureadequatelevelinthecontainment sumptosupportECCSandContainment SpraySystempumpoperation intherecirculation mode.Tobeconsidered

OPERABLE, theRWSTmustmeetthewatervolumeandboronconcentration limitsestablished intheSRs.APPLICABILITY InMODES1,2,3,and4,RWSTOPERABILITY requirements aredictatedbyECCSandContainment SpraySystemOPERABILITY requirements.

SinceboththeECCSandtheContainment SpraySystemmustbeOPERABLEinMODES1,2,3,and4,theRWSTmustalsobeOPERABLEtosupporttheiroperation. Corecoolingrequirements inMODE5areaddressed byLCO3.4.7,"RCSLoops-MODE5,LoopsFilled,"andLCO3.4.8,"RCSLoops-MODE5,LoopsNotFilled."MODE6corecoolingrequirements areaddressed byLCO3.9.5,"Residual HeatRemoval(RHR)andCoolantCirculation -HighWaterLevel,"andLCO3.9.6,"Residual HeatRemoval(RHR)andCoolantCirculation -LowWaterLevel."ACTIONSA.lWithRWSTboronconcentration notwithinlimits,itmustbereturnedtowithinlimitswithin8hours.Undertheseconditions neithertheECCSnortheContainment SpraySystemcanperformitsdesignfunction. Therefore, promptactionmustbetakentorestorethetanktoOPERABLEcondition. The8hourlimittorestoretheRWSTboronconcentration towithinlimitswasdeveloped considering thetimerequiredtochangetheboronconcentration andthefactthatthecontentsofthetankarestillavailable forinjection. (continued) R.E.GinnaNuclearPowerPlantB3.5-31 J'w~t,ai~~l~l,Iia,ti>i",>liewi~h RWST83.5.4BASES(continued) ACTIONS(continued) B.lWiththeRWSTwatervolumenotwithinlimits,itmustberestoredtoOPERABLEstatuswithin1hour.InthisCondition, neithertheECCSnortheContainment SpraySystemcanperformitsdesignfunction. Therefore, promptactionmustbetakentorestorethetanktoOPERABLEstatusortoplacetheplantinaHODEinwhichtheRWSTisnotrequired, Theshorttimelimitof1hourtorestoretheRWSTtoOPERABLEstatusisbasedonthiscondition simultaneously affecting redundant trains.C.1andC.2IftheRWSTcannotbereturnedtoOPERABLEstatuswithintheassociated Completion Time,theplantmustbebroughttoaNODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastHODE3within6hoursandtoHODE5within36hours.TheallowedCompletion Timesarereasonable, basedonoperating experience, toreachtherequiredplantconditions fromfullpowerconditions inanorderlymannerandwithoutchallenging plantsystems.SURVEILLANCE REgUIREHENTS SR3.5.4.1TheRWSTwatervolumeshouldbeverifiedevery7daystobeabovetherequiredminimumlevelinordertoensurethatasufficient initialsupplyisavailable forinjection andtosupportcontinued ECCSandContainment SpraySystempumpoperation onrecirculation. SincetheRWSTvolumeisnormallystableandtheRWSTislocatedintheAuxiliary Buildingwhichprovidessufficient leakdetection capability, a7dayFrequency isappropriate andhasbeenshowntobeacceptable throughoperating experience. (continued) R.E.GinnaNuclearPowerPlantB3.5-32 IH~y~0H'Ia1 RWSTB3.5.4BASES(continued) SURVEILLANCE RE(UIREMENTS (continued) SR3.5.4.2Theboronconcentration oftheRWSTshouldbeverifiedevery7daystobewithintherequiredlimits.ThisSRensuresthatthereactorwillremainsubcritical following aLOCA.Further,itassuresthattheresulting sumppHwillbemaintained inanacceptable rangesothatboronprecipitation inthecorewillnotoccurandtheeffectofchlorideandcausticstresscorrosion onmechanical systemsandcomponents willbeminimized. SincetheRWSTvolumeisnormallystable,a7daysamplingFrequency toverifyboronconcentration isappropriate andhasbeenshowntobeacceptable throughoperating experience, REFERENCES 1.UFSAR,Section3.11.2.10CFR50.49.3.,UFSAR,Section6.3andChapter15.R.E.GinnaNuclearPowerPlantB3.5-33 ATTACHMENT DMarkedUpCopyofImprovedTechnical Specifications (NUREG-1431) Includedpages:Allpagescontained inNUREG-1431. ONLYITS3.5ISPROVIDEDATTHISTIME Accumulators 3.5.13.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)3.5.1Accumulators LCO3.5.1~~0+Fet+PECCS accumulators shallbeOPERABLE. APPLICABILITY: MODES1and2,1400MODE3withpressurizer pressure>+NO~psig.hACTIONSCONDITION RE(UIREDACTIONCOMPLETION TIMEA.Oneaccumulator inoperable duetoboronconcentration notwithinlimits.A.1Restoreboronconcentration towithinlimits.72hoursB.Oneaccumulator inoperable forreasonsotherthanCondition A.B.lRestoreaccumulator toOPERABLEstatus.1hourC.RequiredActionandassociated Completion TimeofCondition AorBnotmet.C.1ANDC.2BeinMODE3.Reducepressurizer pressureto~@40@psig.~4oo6hours12hoursD.Twoe~m~accumulators inoperable. 0.1EnterLCO3.0.3.Immediately 3.5-1 Accumulators 3.5.1SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY 5i.'tMaco~c4SR3.5.1.1Verifyeachaccumulator isolation valveisfullyopen.12hoursSR3.5.1.2Verifyboratedwatervolumeineachtt~dIll.a~Q;~~P(54Ta)>>RO~S'cC+(ZXI>)12hoursSR3.5.1.3Verifynitrogencoverressureineachaccumulator is>psigandgPRR-Tpssg. ~no79012hoursSR3.5.1.4Verifyboronconcentration ineachaccumulator is>-@9~pmand<~~pm.iso+?.,0oo31dayson~Rw~recavae,Rs'<fANDGL.cil.-----NOTE------ nlyrequiredbeperformefraffectedacumulators Onceithi6houtereachsltionvolumencreaseof>[[galons,()%ofind'cated leel]thatisntheresutadditionromtherefueling waterstoragetank3.5-2(continued) Accumulators 3.5.1SURVEILLANCE REQUIREMENTS continued SURVEILLANCE FRE(UENCY SR3.5.1.5Verifypowerisremovedfromeachaccumulator isolation valveoeratorwhenpressurize pressureispslg.>/4~31days(Q~+ro~dk3.5-3 ECCS-Operating 3.5.23.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)3.5.2ECCS-Operating LCO3.5.2TwoECCStrainsshallbeOPERABLE. APPLICABILITY: MODES1,2,and3.gg.Va.'eNOTES1InMODE3,bothsafetyinjection (SI)pumpflowpathsmaybeisolatedby'closingtheisolation valvesforupto2hourstoperformpressureisolation valvetestingperSR3.4.14.1.v-sa~~>s <<SOperation inMODE3withpumpsdeclaredinoperable pursuanttoLCO3.4.12,"LowTemperature Overpressure Protection (LTOP)System,"isallowedforupto4hoursoruntilthetemperature of~E~wRCScoldlegsexceeds+75@F,whichever comesfirst.ACTIONSCONDITION RE(UIREDACTIONCOMPLETION TIMEsz.vi.~A.Onetrai~inoperabe.ANDAtleast100%oftheECCSflowequivalent toasingleOPERABLEECCStrainavailable. A.l4RestoretraintoOPERABLEstatus.72hoursB.RequiredActionandassociated Completion Timenotmet.B.lBeinMODE3.ANDB.2BeinNODE4.6hours12hours3a53.5-4 Insert3.5.3(sQC.Twotrainsinoerable.C.1EnterLCO'3.0.3immediately Insert3.5.14Powermayberestoredtomotoroperatedisolation valves878A,878B,878C,and878Dforupto12hoursforthepurposeoftestingperSR3.4.14.1providedthatpowerisrestoredtoonlyonevalveatatime. II~III~~IIN~~II~III~'~IIIIII~I~III~IIII~I~~'I~~~'~II~~III~Ii~a~i%AIL~~ Insert3.5.4EINPositionFunction5Z.vii'i825A825B826A826B826C826D851A851B856878A878B878C878D896A896BOpenOpenClosedClosedClosedClosedOpenOpenOpenClosedOpenClosedOpenOpenOpenRWSTSuctiontoSIPumpsRWSTSuctiontoSIPumpsBASTSuctiontoSIPumpsBASTSuctiontoSIPumpsBASTSuctiontoSIPumpsBASTSuctiontoSIPumpsSumpBSuctiontoRHRPumpsSumpBSuctiontoRHRPumpsRWSTSuctiontoRHRPumpsSIInjection toRCSHotLegSIInjection toRCSColdLegSIInjection toRCSHotLegSIInjection toRCSColdLegRWSTSuctiontoSIandSprayRWSTSuctiontoSIandSprayInsert3.5.15SR3.5.2.3Verifythebreakerorkeyswitch,asapplicable, foreachvalvelistedinSR3.5.2.1,isinthecorrectposition. 31days ECCS-Operating 3.5.2SURVEILLANCE REQUIREMENTS continued SURVEILLANCE FREQUENCY SR3...7Verify,foreachECCSthrottlevalvelistedbelow,eachpositionstopisecorrectposition. ValveNumbe[18]ms[]SR3.5.2.8isualinspection, eachECCStraincontainmen etio'notrestrictedbyde'lettsandscreensshownoevidenceostructural distressorabnormalcorrosion. onths3.5-6 ECCS-Shutdown3.5.33.5EMERGENCY CORECOOLINGSYSTEHS(ECCS)3.5.3ECCS-ShutdownLCO3.5.3OneECCStrainshallbeOPERABLE. APPLICABILITY: MODE4.ACTIONSCONDITION REQUIREDACTIONCOMPLETION TIME.RequiredECCSresidualheatremoval(RHR)subsystem inoperable. A.IInitiateactiontorestorerequiredECCSRHRsubsystem toOPERABLEstatus.Immediately s'<4'n)~o~ ()T)B.RequiredECCShead.subsystem+ inoperable. B.IRestorerequiredECCSIhourS'Zsubsyste~ toOPERABLEstatus.C.RequiredActionandassociated Completion Time+ofCondition EPnotmet.C.lBeinMODE5.24hours3.5-7 ECCS-Shutdown3.5.3SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR3.5.3.1-NOTEAnRHRtrainmaybeconsidered OPERABLEduringalignment andoperation fordecayheatremoval,ifcapableofbeingmanuallyrealigned totheECCSmodeofoperation. Thefol1owiog Sibraapplicable forallequipment requiredtobeOPERABLE: Inaccordance withapplicable S~SR3.5.2.43.5-8 RWST3.5.43.5EHERGENCY CORECOOLINGSYSTEHS(ECCS)3.5.4Refueling WaterStorageTank(RWST)LCO3.5.4TheRWSTshallbeOPERABLE. APPLICABILITY: HODES1,2,3,and4.ACTIONSCONDITION RE(UIREDACTIONCOHPLETION TIHEA.RWSTboronconcentration notwithinlimits.A.1RestoreRWSTtoOPERABLEstatus.8hoursRWSTbooratertemperature not'ini'ts.B.RWSTrablreasoneitionAvalgus~~(~s~>~~~~sWB.lRestoreRWSTtoOPERABLEstatus.1hourC.RequiredActionandassociated Completion Timenotmet.o4c~&in~4oc-<C.lBeinHODE3.ANDC.2BeinHODE5.6hours36hours3.5-9 RWST3.5.4SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR3.NOTEuiredtobeperformed whentairtempera'3'[100]'F.iyRWSTboratedwatertemperature is>[35]'Fandg[100]F.hoursSR3.5.4~VerifyRWSTboratedwatervolumeis73oo,oooq~~g(3KI,)7daysSR3.5.4.3VeriyRWSTboronconcentration is000~pmandZ~98jppm.Z,QOO7days3.5-10 SealInjection Flow3.5.3.5ERGENCYCORECOOLING'SYSTEMS(ECCS)3.5.5S1Injection FlowLCO3.5.5Reactorcoolantpumpsealinjection flowshallbe[40]gpmwith[centrifugal chargingpumpdischarge headerpressure>[2480]psigandthe[charging flow]controlvvefullopen.APPLICABILITY: MODEI,2,and3.ACTIONSCONDITION REQUIREDACTIONCOMPLETION TIMEA.Sealinjection flownotwithinlimit.A.Adjustmanalsealinjection throttlevalvesgiveaflowwithinimitwithcentifugalchargingpmpdischarge heer]pressure80]psigandthechaingflow]controvalvefullopen.4hoursB.RequiredActionandassociated Completion Timenotmet..IBeinMODE3.ANDB.2BeinMODE4.6hoursl2hours3.5-11 (QsSealInjection Flow3.5.SURILLANCEREQUIREMENTS SURVEILLANCE FREQUCYSR3.5.5.NOTE--Notrequiredtobeperformed until4hoursaftertheReactorCoolantSystempressurestabilizes at>[2215psigand2255psig].Verimanualsealinjection throttlevalveareadjustedtogiveaflowwithilimit'th[centrifugal chargingpumpdischarheader]pressure>[2480]pgandthe[argingflow]controlvalvfullopen.31days3.5-12 3.5ERGENCYCORECOOLINGSYSTEMS(ECCS)3.5.6BoonInjection Tank(BIT)LCO3.5.6TheBITshallbeOPERABLE. APPLICABILITY: MES1,2,and3.ACTIONSCONDITION REQUIREDACTIOCOMPLETION TIMEA.BITinoperable. RestoreBtoOPERABLstatus.1hourB.RequiredActionandassociated Completion TimeofCondition Anotmet.8.1ANDB.2ANDB.38inMODE3.BoraetoanSDMequivlentto[l]%hkat200'F.RestoreBIToOPERABLEstats.6hours6hours7daysC.RequiredActinandassociated mpletionTimeofCoditionBnotmet.C.1BeinMODE4.12hours3.5-13 0SURVEIANCEREQUIREMENTS lSURVEILLANCE 83..6FREENCYSR3.5.6.1VerifyBITboratedwatertemperature isZ[145]'F.24oursSR3.5.6.2VeriyBITboratedwatervolumeisz[110]gallons.7daysSR3.5.6.3VerifyBI~T)oronconcentration is>[20,000]pmand<[22,500]pp.7days3.5-14 Accumulators B3.5.1B3.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.1Accumulators BASESBACKGROUND Thefunctions oftheECCSaccumulators aretosupplywatertothereactorvesselduringtheblowdownphaseofalossofcoolantaccident(LOCA),toprovideinventory tohelpaccomplish therefillphasethatfollowsthereafter, andtoprovideReactorCoolantSystem(RCS)makeupforasmallbreakLOCA.~~~ECcofa.n%in,e~ruWVa.~a.4wq ~<<a~~g@ho.su~~+c,wQL~4,~q~4~~%a+.ou+~auN~o&~5'I.<v.~TheblowdownphaseofalargebreakLOCAistheinitialperiodofthetransient duringwhichtheRCSdepartsfromequilibrium conditions, andheatfromfissionproductdecay,hotinternals, andthevesselcontinues tobetransferred tothereactorcoolant.Theblowdownphaseofthetransient endswhentheRCSpressurefallstoavalueapproaching thatofthecontainment atmosphere. IntherefillphaseofaLOCA,whichimmediately followstheblowdownphase,n-ed@-@he-eugh-4haa, kremlin.~ecoreisessentially inadiabatic heatup.balanceofaccumulator inventory is~available toelpfillvoidsinthelowerplenumandreactorvesseldowncomer soas,toestablish arecoverylevelatthebottomfthecore.$'l.iv.hTheaccumulators arepressurevesselspartially filledwi.thboratedwaterandpressurized withnitrogengas.Theaccumulators arepassivecomponents, sincenooperatororcontrolactionsarerequiredinorderforthemtoperformtheirfunction. Internalaccumulator tankpressureissufficient todischarge theaccumulator contentstotheRCS,ifRCSpressuredecreases belowtheaccumulator pressure. Eachaccumulator ispipedintoanRCScoldlegviaanaccumulator lineandisisolatedfromtheRCSbyamotoroperatedisolation valveandtwocheckvalvesinserieemooroeraeisoaionvaveareinterlocw1'zerpressuremeannelstoensurethatthevalvesw'sRCSpressureiaovethepermissive circuitP-(continued) B3.5-1 Insert3.5.1(841and865)aremaintained openwithACpowerremovedunderadministrative controlwhenpressurizer pressureis>1600psig.Thisfeatureensuresthatthevalvesmeetthesinglefailurecriterion ofmanually-controlled electrically operatedvalvesperBranchTechnical Position(BTP)ICSB-18(Ref.1)Thisisalsodiscussed inReferences 2and3~ Accumulators B3.5.1BASESBACKGROUND (continued) 5l.iv.a.T>>i'rlockalsopreventsinadvertent closureevalvesdurrmaloperation priorto)dent.Thevalveswillautoma'pen,h,asaresultofanSIsignal.Thesefeaturesethatthevalvesmeettherequirements oftheastuteof'calandElectronic Engineers Itandard279-1971(Ref."operating bypaandthattheaccumulators willbeavailar'ectionwithoutrelianceonoperatoraction.oneMoTheaccumulator size,water(volume, andnitroencover~~ressureareselectedsothat~g~of teaccumulatorsi~ sufficient topartially coverthecorebeforesignificant cladmeltingorzirconium waterreactioncanoccurfollowing qLOCA.Theneedtoensurethatg~>u~~accumulator~~'adequate forthisfunctionisconsistent withtheLOCAassumption thattheentirecontentsofoneaccumulator willbelostviatheRCSpipebreakduringtheblowdownphaseoftheLOCA.APPLICABLE SAFETYANALYSESTheaccumulators areassumedOPERABLEinboththelargeandsmallbreakLOCAanalysesatfullpower(Ref.~."ThesearetheDesignBasisAccidents (DBAs)thatestablish theacceptance limitsfortheaccumulators. Reference totheanalysesfortheseDBAsisusedtoassesschangesintheaccumulators astheyrelatetotheacceptance limits.Inperforming theLOCAcalculations, conservative assumptions aremadeconcerning theavailabilit ofECCSflow.IntheearlystagesofaLOCA,witorwithoutalossofoffsitepower,theaccumulators providethesolesourceofmakeupwatertotheRCS.Theassumption oflossofoffsitepowerisrequiredbyregulations andconservatively imposesadelaywhereintheECCSpumpscannotdeliverflowuntiltheemergency dieselgenerators start,cometoratedspeed,andgo.through theirtimedloadingsequence. Incoldlegbreakscenarios; theentirecontentsofoneaccumulator areassumedtobelostthroughthebreak.ThelimitinglargebreakLOCAisadoubleendedguillotine breakatthedischarge ofthereactorcoolantpump.Duringthisevent,theaccumulators discharge totheRCSassoonasRCSpressuredecreases tobelowaccumulator pressure. (continued) B3.5-2 ~VgSBASESSLgsgaoSLcgvm~+onAccumulators B3.5.1APPLICABLE SAFETYANALYSES(continued) ~~5'I.iV,Z.5I.i.v,4.Asaconservative

estimate, nocreditistakenforECCSpumpflowuntilaneffective delayhaselapsed.Thisdelayaccountsfothedieselsstarting, andthepumpsbeingloadedanddelivering fullflow.0igliti,h1lydasproviding thesolesourceofemergency corecooling.NooperatoractionisassumedduringtheblowdownstageofalargebreakLOCA.TheworstcasesmallbreakLOCAanalysesalsoassumeatimedelaybeforepumpedflowreachesthecore.Forthelargerrangeofsmallbreaks,therateofblowdownissuchthattheincreaseinfuelcladtemperature isterminated solelybytheaccumulators, withpumpedflowthenproviding continued coolin.Asbreaksizedecreases, theaccumulators ands~~cpumpsbothplayapartinterminating eriseinciatemperature.

Asbreaksizecontinues todecrease, theroleoftheaccumulators continues todecreaseuntiltheyarenotrequiredandthecga&+in$~ipumpsbecomesolelyresponsible forterminating etemperature increase. ThisLCOhelpstoensurethatthefollowing acceptance criteriaestablished fortheECCSby10CFR50.46(Ref.~willbemetfollowing aLOCA:a.Haximumfuelelementcladdingtemperature is<2200'F;b.Haximumcladdingoxidation isg0.17timesthetotalcladdingthickness beforeoxidation; c.Haximumhydrogengeneration fromazirconium waterreactionisg0.01timesthehypothetical amountthatwouldbegenerated ifallofthemetalinthecladdingcylinders surrounding thefuel,excluding thecladdingsurrounding theplenumvolume,weretoreact;andd.Coreismaintained inaeoolablegeometry. Sincetheaccumulators discharge duringtheblowdownphaseofaLOCA,theydonotcontribute tothelongtermcoolingrequirements of10CFR50.46.ForboththelargeandsmallbreakLOCAanalyses, anominalcontained accumulator watervolumeisused.Thecontained (continued) B3.5-3 ~~c.hc~~~~~~c3n,~cBASES2.,wv.~Accumulators B3.5.1VUL&~~Q.y~~Q~APPLICABLE SAFETYANALYSES(continued) watervolumeisthesameasthedeliverable volumefortheaccumulators, sincetheaccumulaorsareemptied,oncedischarged. Forsmallbreaks,anincreaseinwatervolumeisapeakcladtemperature penaltyForlargebreaks,anincreaseinwatervolumecanbeeitherapeakcladtemperature penaltyorbenefit,depending ondowncomer fillingandsubsequent spillthroughthebreakduringthecorerefloodin portionofthetransient. Theanalysislinewatervolumefromtheaccumulator toecvaveTesafetyanaysisassenes-~F so[646gand-g&X9]hm.oallowforinstrument inaccuracy 20]gaonsKmf-[6820]clams areesI.iv'.hSi.v5'I,iv,QTheminimumboronconcentration setpointisusedinthepostLOCAboronconcentration calculation. Thecalculation isperformed toassurereactorsubcriticality inapostLOCAenvironment. Ofparticular interestisthelargebreakLOCA,sincenocreditistakenforcontrolrodassemblyinsertion. Areduction intheaccumulator minimumboronconcentration wouldproduceasubsequent reduction intheavailable containment sumpconcentration forpostLOCAshutdownandanincreaseinthemaximumsumppH.Themaximumboronndeterminin vere-~m+A4%88~ump-pk, 4-~~~.s;aThelargeandsmallbreakLOCAanalysesareperformed attheminimumnitrogencoverpressure, sincesensitivity analyseshavedemonstrated thathighernitrogencoverpressureresultsinacomputedpeakcladtemperature benefit.Themaximumnitrogencoverpressurelimitpreventsaccumulator reliefvalveactuation, andultimately preserves accumulator integrity. +ck,20QpgsgTheeffectsoncontainment massandenergyreleasesfromtheaccumulators areaccounted forintheappropriate analyses(Refs.~nd4f.Theaccumulators satisfyCriterion 3oftheNRCPolicyStatement. B3.5-4(continued) Insert3.5.2thetimeframeinwhichboronprecipitation isaddressed postLOCA.Themaximumboronconcentration limitisbasedonthecoldestexpectedtemperature oftheaccumulator watervolumeandonchemicaleffectsresulting fromoperation oftheECCSandtheContainment SpraySystem.Avalueof2,900ppmwouldnotcreatethepotential forboronprecipitation intheaccumulator assumingaContainment temperature of60F(Ref.6).Analysesperformed inresponseto10CFR50.49(Ref.7)assumedachemicalspraysolutionof2000to3000ppmboronconcentration (Ref.6)whichprovidesamarginof100ppm.ThechemicalspraysolutionimpactssumppHandtheresulting effectofchlorideandcausticstresscorrosion onmechanical systemsandcomponents. ThesumppHalsoaffectstherateofhydrogengeneration withincontainment duetotheinteraction ofContainment Sprayandsumpfluidwithaluminumcomponents. Accumulators B3.5.1BASES(continued) LCOSt.l.u,aSl.v'1TheLCOestablishes theminimumconditions requiredtoensurethattheaccumulators areavailable toaccomplish theircorecoolingsafetyfunctionfollowing aLOCA.~HŽaccumulators arerequiredtoensurethat100%ofthecontentsofaccumulator&will reachthecoreduringaLOCA.Thisisconsistent withtheassumption thatthecontentsofoneaccumulator spillthroughthebreak.Iflessthan3M~ccumulatorW~injected duringtheblowdownphaseofaLOCA,theECCSacceptance criteriaof10CFR50.46(Ref.@couldbeviolated. 62.bout.2(el0('s'imb Foranaccumulator tobeconsidered OPERABLE,) the~isolation valvemustbefullyopen+sWPpowerremove,andthelimitsestablished intheSRsforcontained volume,boronconcentration, andnitrogencoverpressuremustbemet.APPLICABILITY l(ooS'L.i.aCRInMODES1and2,andinMODE3withRCSpressure>~0psig,theaccumulator OPERABILITY requirements areased.onfullpoweroperation. Althoughcoolingrequirements decreaseaspowerdecreases, theaccumulators arestillrequiredtoprovidecorecoolingaslongaselevatedRCSpressures andtemperatures exist.1(o00<taaThisLCOisonlyapplicable atpressures >~psig.Atpressures g4M~sig,therateofRCSblowdownissuchthattheECCSpumpscanprovideadequateinjection toensurethatpeakcladtemperature remainsbelowthe10CFR50.46(Ref.glimitof2200F.i(.ooInMODE3,withRCSpressure<P680psig,andinMODES4,5,and6,theaccumulator motoroperatedisolation valvesareclosedtoisolatetheaccumulators fromtheRCS.ThisallowsRCScooldownanddepressurization withoutdischarging theaccumulators intotheRCSorrequiring depressurization oftheaccumulators. ACTIONSA.1Iftheboronconcentration ofoneaccumulator isnotwithinlimits,itmustbereturnedtowithinthelimitswithin72hours.InthisCondition, abilitytomaintainsubcriticality orminimumboronprecipitation timemaybe(continued) B3.5-5 Accumulators 83.5.1BASESACTIONS8taxCu~O~iauap4.Ml Vibhu~t2,u~Suartahg~~~~~Q+cR.cS~RlA.mR'V'.~aA.l(continued) reduced.Theboronintheaccumulators contributes totheassumption thatthecombinedECCSwaterinthepartially recovered coreduringtheearlyreflooding phaseofalargebreakLOCAissufficient tokeepthatportionofthecoresubcritical. Oneaccumulator belowtheminimumboronconcentration limit,however,willhavenoeffectonavailable ECCSwaterandaninsignificant effectoncoresubcriticalit durinreflooBoilingofECCSwaterinthecoreduringreloodconcentrates boroninthesaturated liquidthatremainsinthecore.Inaddition, currentanalysistechniques demonstrate thattheaccumulators 4e.note..~+discharge following alargemainsteamlinebreak@em-@he

  • Eveniftheydodischarge, theirimpactisminorandnotadesignlimitingevent.Thus,72hoursisallowedtoreturntheboronconcentration towithinlimits.B.1Ifoneaccumulator isinoperable forareasonotherthanboronconcentration, theaccumulator mustbereturnedtoOPERABLEstatuswithi1hour.InthisCondition, therequiredcontentsoPaccumulator~annot beassumedtoreachthecoreduringaLOCA.Duetotheseverityoftheconsequences shouldaLOCAoccurintheseconditions, the1hourCompletion Timetoopenthevalve,removepowertothevalve,orrestoretheproperwatervolumeornitrogencoverpressureensuresthatpromptactionwillbetakentoreturntheinoperable accumulator toOPERABLEstatus.TheCompletion Timeminimizes thepotential forexposureoftheplanttoaLOCAundertheseconditions.

C.landC.2Iftheaccumulator cannotbereturnedtoOPERABLEstatuswithintheassociated Completion Time,theplantmustbebroughttoaNODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoNODE3within6hoursandpressurizer pressurereducedtoslggdpsigwithin12hours.TheallowedCompletion Timesarereasonable, basedonoperating experience, toreachtherequiredplantconditions fromfullpowerconditions inanorderlymannerandwithoutchallenging plantsystems.(continued) B3.5-6 Accumulators B3.5.1BASESACTIONS(continued) SL.cv,wD.lQ.~Tf~1t1pPl,thpltacondition outsidetheaccidentanalyses; therefore, LCO3.0.3mustbeenteredimmediately. SURVEILLANCE RE(UIREMENTS L.cvA.SL.i.v.Qumph,Wa~(t5bg~bKAKl~oA,9r.v~~i4o~iSR3.5.1.1~~r~@~~+lRbhOWOA. Eachaccumulatorvalve shouldbeverifiedtobefullyopenever12hours.Thisverification ensuresthattheaccumulators areavailable forinjection andensurestimelydiscovery ifavalveshouldbelessthanfullyopen.Ifanisolation valveisnotfullyopen,therateofinjection totheRCSwouldbereduced.Althoughamotoroperatedvalvepositionshouldnotchangewithpowerremoved,aclosedvalvecouldresultinnotmeetingaccidentanalysesassumptions. ThisFrequency isconsidered reasonable inviewofotheradministrative controlsthatensureamispositioned isolation valveisunlikely. s~uh4~u~gP~QSl.ivgSl.hv.wBoosg~~~s~~e~<hiePpro~>~SR3.5.1.2andSR3.5.1.3~hd1d1gfh1t.Thl1dissuicienttoensureadequateinjection duringaLOCA.Becauseofthestaticdesignoftheaccumulator, a12hourFrequency usuallyallowstheoperatortoidentifychangesbeforelimitsarereached.0cratingexperience hasshownthisFrequency tobeappropriate forearlydetection andcorrection ofoffnormaltrends.~SgRbbCRal~ SR3.5.1.4fTheboronconcentration shouldbeverifiedtobewithinsi.i~irequiredlimitsforeachaccumulator every31dayssincetheignoftheac~um~l~t~rs limitsthewasinwhitheconcentration canbechanged.The31dayrequencyisadequatetoidentifychangesthatcouldoccurfrommechanisms suchasstratiicationorinleakaegccumuatorwitinera1%volumeincreasewillideeakagehascausedare'oronconcentration tobeo(continued) 'B3.5-7 Accumulators B3.5.1BASESSURVEILLANCE RE(UIREMENTS SR3.5.1.4(continued) Itisnotnecessary toverifyboronconcentrati theaddedwa'oryisfromtherefue'rstoragetank(RWST),becaontainedintheRWSTiswithintheaccumulonconcen'quirements. Thisisco'iththerecommendation ofNUtQ~Lo~+m~~e'tvW~~ah4~~A+Mxe,t~ ~o~OP4RAQm>ttaCIOSi.iv.0ash.Va~afCPthg,+Ca~ CVtA'-,@C.U~~QFAR.w~~a-charttCAX9-po<th~~C~('3TcSB-iZ"pppli~e,~04+~Si~<a,iu~~Au~W4aevau~.~~~VaQ.Kl~aVealaf~,'R3.5.1.5Verification every31daysthatpowerisremovedfromeachaccumulator isolation valveoperatorwhenthepressurizer pressureissigensuresthatanactivefailurecouldnoresu>ntheundetected closureofanaccumulator motoroperatedisolation valve.Ifthisweretooccur,accumuaorswoueaieforinjectioSincepowerisremoveduneradministrative controlthe31dayFrequency willprovideadequateassurance thatpowerisremoved.SRallowspowertobesuppliedtothemotoropera~isolatealveswhenpressurizer pressureis<28psig,thusallowingrationalflexibility byavoi'unnecessary delaysnipulatethe~bealCersduringplantstartupsorshutdowns. ithpoWersuppliedtothevalves,inadvertent closure'tedbytheRCSpressureinterlock associated i4".thevalves.Shouldcloofavalveoccurinspiteoftheinck,theignalprovidedtothevalveswouldopenacloseveintheeventofaLOCA.REFERENCES UFSAR,Qmp4er~c..a10CFR50.46.~~~~@~~Caea~AcM,W<+,~g.GC<+~g)~:"St=PaCaP<<<ivt7FVal3Vtt-~fChAaEhV<lh-24.0W&uvveWN,t8~L.~sA-.~FSAR,ChapterQHhqtJPggRc~~(5'3.M~WeveR,FI,P~e-~QA.+~L.ath,W4a'tatQ.Ge4,Ca4AmVh~~-l+CaPnutaaaifta3 0~'th-'eatfVQ ~a~~~0.bPR.tg'4~~~iw,tsas.. WOGSTSB3.5-8Cn~&PRlOtQ~~~ace-B.9,7.tOCF'PSo.HR.Rev.0,09/28/92 ECCS-Operating B3.5.283.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.2ECCS-Operating BASESBACKGROUND 5~.s.'yi',Yis4,with.~elflfeAaaki'~QA+nMAA5Z.~Ya.ca.Sa~~~MCC-~asutah~W~~(ta~+M.vt'..bThefunctionoftheECCSistoprovidecorecoolingandnegativereactivity toensurethatthereactorcoreisprotected afteranyofthefollowing accidents: a.Lossofcoolantaccident(LOCA)>>coolantleakagegreaterthanthecapability ofthenormalchargingsystem;b.Rodejectionaccident; c.Lossofsecondary coolantaccident, including uncontrolled steamreleaseorlossoffeedwater; andd.Steamgenerator tuberupture(SGTR).Theadditionofnegativereactivity isdesignedprimarily forthelossofsecondary coolantaccidentwhereprimarycooldowncouldaddenoughpositivereactivity toachievecriticality andreturntosignificant oer.~o~44.sa.Thereare44veephases ofECCSoperation: injection~cold legrecirculationIntheinjection phase,wateristakenfromtherefueling waterstoraetankRWSTandin'ectedintotheReactorCoolantSystem(RCS)througtecoegs.Whensufficient waterisremovedfromtheRWSTtoensurethatenoughboronhasbeenaddedtomaintainthe reactorsubcritical and495containment sump'nough watertosupplytherequirednetpositivesuctionheadtotheECCSpumps,suctionisswitchedto4Q-containment gumpforcoldlegrecirculation. Afterapproximately Iiours,*oilinginthetopofthecoreandanyresutingoronprecipitation. TheECCSconsissof@H.-e@separate subsystems: safetyinjection (SIandresidualheatremoval(RHR)Eachsubsystem consistsoftworedundant, 100%capacitytrains.TheECCSaccumulators andtheRWSTarealsopartofthe(continued) B3.5-9 ECCS-Operating B3.5.2BASESBACKGROUND (continued) 5'2..vi.~ECCS,butarenotconsidered partofanECCSflowpathasdescribed bythisLCO~~~tJL~f4M~4,~~~~aVXaQTheECCSflowpathsconsistofpiping,valves,heatexchangers, andpumpssuchthatwaterfromtheRWSTcanbeinjectedintotheRCSfollowing theaccidents described inthisLCO.Themajorcomponents ofeachsubsystem aretheeRHRpumsheatexchaner~g.~aandtheSIpumps.ubsyste~onsists oftwo100%capacitytrainshatareinterconnected andredundant suchthateithertrainiscapableofsupplying 100%oftheflowrequiredtomitigatetheaccidentconsequences. ~ThWinterconnecting andredundant subsystem design',provide+theoperators withtheabilitytoutilize,components fromoppositetrainstoachievetherequired100%flowtothecore.SQ.vi..ODuringtheinjection phaseofLOCArecovery, 4suctionheadlwaterfromtheRWSTtotheECCSumps.~~~atepipingsuppieseachsusysem.andeacrawithinsubsystem. Thedischarge fromthecifugalchargingpumpmbinespriortoenterinoroninjection tank(BI'ftheplantu'esaBIT)andthendividesagainintofourss,eachofwhichfeedstheinjection linetoonecoeg.Thedischarge fromtheSIandRHRpumps'desandfeeds'njection linetoeachoftheRCSdlegs.ControlvalvesarttobalancetowtotheRCS.Thisbalanceensuressuff'tflowtothecoretomeettheanalysisassumptiowingaLOCAinoneoftheRCScoldlegs.ForLOCAsthataretoosmalltodepres'heRCSbelowtheshutoffheadoftheSIpumps,themuntiltheRCSressureecreasesbelowtheSIumshutoffadL4~~~nMcx'pcQvAsE~~~WLMQ,52..vi..<3.s'.9@+0~2.2.7DuringtherecircuationphaseofLOCArecovery, fgIRpumpsuctionistransferred to4heMntainment s%m.gheRHRpumpsensy.recirculatio ..'uthesamesaseinJection hase.s.w.s.g(continued) B3.5-10 Insert3.5.55QVa~a~TheSIsubsystem consistsof.threeredundant, 50%capacitypumpswhichsupplytwoRCScoldleginjection lines.Eachinjection lineiscapableofproviding 100%oftheflowrequiredtomitigatetheaccidentconsequences. Insert3.5.65~.Va~AcommonsupplyheaderisusedfromtheRWSTtothesafetyinjection (SI)andContainment SpraySystempumps.Thiscommonsupplyheaderisprovidedwithtwoin-series motor-operated isolation valves(896Aand896B)thatreceivepowerfromseparatesourcesforsinglefailureconsiderations. Theseisolation valvesaremaintained openwithDCcontrolpowerremovedviaakeyswitchlocatedinthecontrolroom.TheremovalofDCcontrolpowereliminates themostlikelycausesforspuriousvalveactuation whilemaintaining thecapability tomanuallyclosethevalvesfromthecontrolroomduringtherecirculation phaseoftheaccident(Ref.1).TheSIpumpsupplyheaderalsocontainstwoparallelmotor-operated isolation valves(825Aand825B)whicharemaintained openbyremovingACpower.TheremovalofACpowertotheseisolation valvesisanacceptable designagainstsinglefailuresthatcouldresultinundesirable component actuation (Ref.2).Aseparatesupplyheaderisusedfortheresidualheatremoval(RHR)pumps.Thissupplyheaderisprovidedwithacheckvalve(854)andmotoroperatedisolation valve(856)whichismaintained openwithDCcontrolpowerremovedviaakeyswitchlocatedinthecontrolroom.TheremovalofDCcontrolpowereliminates themostlikelycausesforspuriousvalveactuation whilemaintaining thecapability tomanuallyclosethevalvefromthecontrolroomduringtherecirculation phaseoftheaccident. ThethreeSIpumpsfeedtwoRCScoldleginjection lines.SIPumpsAand8eachfeedsoneofthetwoinjection lineswhileSIPumpCcanfeedbothinjection lines.Thedischarge ofSIPumpCiscontrolled throughuseoftwonormallyopenparallelmotoroperatedisolation valves(871Aand871B).Theseisolation valvesaredesignedtoclosebasedontheoperating statusofSIPumpsAandBtoensurethatSIPumpCprovidesthenecessary flowthroughtheRCScoldleginjection linecontaining thefailedpump.Thedischarges ofthetwoRHRpumpsandheatexchangers feedacommoninjection linewhichpenetrates containment. Thislinethendividesintotworedundant coredelugeflowpathseachcontaining anormallyclosedmotoroperatedisolation valve(852Aand852B)andcheckvalve(853Aand853B)whichprovideinjection intothereactorvesselupperplenum.

Insert3.5.7B(Refs.4and5).Thistransferisaccomplished bystoppingtheRHRpumps,isolating RHRfromtheRWSTbyclosingmotoroperatedisolation valve856,openingtheContainment SumpBmotoroperatedisolation valvestoRHR(850Aand850B)andthenstartingtheRHRpumps.TheSIandContainment SpraySystempumpsarethenstoppedandtheRWSTisolatedbyclosingmotoroperatedisolation valve896Aor896BfortheSIandContainment SpraySystempumpcommonsupplyheaderandclosingmotoroperatedisolation valve897or898fortheSIpumprecirculation line.Insert3.5.8SIandContainment SpraySystempumps(asneededforpressurecontrolpurposes) iftheRCSpressureremainsabovetheRHRpumpshutoffhead(Ref.6).Thishigh-head recirculation pathisprovidedthroughRHRmotoroperatedisolation valves857A,857B,and857C.Theseisolation valvesareinterlocked withvalves896A,896B,897,and898.Thisinterlock preventsopeningofthe,RHRhigh-head recirculation isolation valvesunlesseither896Aor896Bareclosedandeither897or898areclosed.IfRCSpressureislessthanapproximately 140psig,theSIandContainment SpraySystempumpsremaininpull-stop andonlyRHRisusedtoprovidecorecooling.DuringInsert3.5.9Afterapproximately 20hours,simultaneous injection bytheSIandRHRpumpsisusedtopreventboronprecipitation (Ref.7).Thisconsistsofproviding SIthroughtheRCScoldlegsandintothelowerplenumwhileproviding RHRthroughthecoredelugevalvesintotheupperplenum.Thetworedundant flowpathsfromContainment SumpBtotheRHRpumpsalsocontainamotoroperatedisolation valvelocatedwithinthesump(851Aand851B).Theseisolation valvesaremaintained openwithpowerremovedtoimprovethereliability ofswitchover totherecirculation phase.Theoperators forisolation valves851Aand851Barealsonotqualified forcontainment postaccidentconditions. ECCS-Operating B3.5.2BASESSx.vi..tBACKGRO.(continued) 5K.V1..C.S.~Thesubsystem oftheECCSalsofunctions tosupplyboratedwatertothereactorcorefollowing increased heatremovalevents,suchasamainsteamlinebreak(HSLB).Thelimitingdesignconditions occurwhenthenegativemoderator temperature coefficient ishighlynegative, suchasattheendofeachcycle.Duringlowtemperature conditions intheRCS,limitations areplacedonthemaximumnumberofECCSpumpsthatmaybeOPERABLE. RefertotheBasesforLCO3.4.12,"LowTemperature Overpressure Protection (LTOP)System,"forthebasisoftheserequirements. TheECCSsubsystems areactuateduponreceiptofanSIsignal.Theactuation ofsafeguard loadsisaccomplished inaprogrammed timesequence. Ifoffsitepowerisavailable, thesafeguard loadsstartimmediately intheprogrammed sequence. Ifoffsitepowerisnotavailable, theEngineered SafetyFeature(ESF)busesshednormaloperating loadsandareconnected totheemergency dieselgenerators (EDGs).Safeguard loadsarethenactuatedintheprogrammed timesequence. Thetimedelayassociated withdieselstarting, sequenced loading,andpumpstartingdetermines thetimerequiredbeforepumpedflowisavailable tothecorefollowing aLOCA.TheactiveECCScomponents, alongwiththepassiveaccumulators andtheRWSTcoveredinLCO3.5.1,"Accumulators," andLCO3.5.4,"Refueling WaterStoraeTank(RWST),"providethecoolingwaternecessary tomeet(Ref.$AaP-SQC.4 tAPPLICABLE SAFETYANALYSESTheLCOhelpstoensurethatthefollowing acceptance criteriafortheECCS,established by10CFR60.46(Ref.2f,willbemetfollowing aLOCA:9'.Haximumfuelelementcladdingtemperature is~2200'F;b.Haximumcladdingoxidation isg0.17timesthetotalcladdingthickness beforeoxidation; B3.5-11(continued) ECCS-Operating B3.5.2BASESAPPLICABLE SAFETYANALYSES(continued) C.Maximumhydrogengeneration fromazirconium waterreactionisg0.01timesthehypothetical amountgenerated ifallofthemetalinthecladdingcylinders surrounding thefuel,excluding thecladdingsurrounding theplenumvolume,weretoreact;d.Coreismaintained inaeoolablegeometry; ande.Adequatelongtermcorecoolingcapability ismaintained. SZ.iv.c52.~~.hTheLCOalsolimitsthepotential fearaposttripreturntopowerfollowing anHSLBeventanden'sur@Pthatcontainment temperature 1imitsareme@ok~~~~,~~EtbWG.~"Each'CCS subsystems M-takencreditforinalargebreakLOCAeventatfullpower(Refs.3and+.Thiseventestablishes therequirement forrunoutflowfortheECCSpumps,aswellasthemaximumresonsetimefortheiractuation. TheSIpumpsarecreditedinasea1breakDitAeven.sseventestablishes theflowanddischarge headatthedesignpointforthepums.TheSGT+andNSLBeventsalsocrestepumps.TheOPERABILITY requirements forteECCSarebasedonthefollowing LOCAanalysisassumptions: 'a~AlargebreakLOCAevent,withlossofoffsitepowerandasinglefailuredisabling oneRHRpump(bothEDGtrainsareassumedtooperateduetorequirements formodelingfullactivecontainment heatremovalsystemoperation); andb.AsmallbreakLOCAevent,withalossofoffsitepowerandasinglefailuredisabling oneECCStrain.DuringtheblowdownstageofaLOCA,theRCSdepressurizes asprimarycoolantisejectedthroughthebreakintothecontainment. Thenuclearreactionisterminated eitherbymoderator voidingduringlargebreaksorcontrolrodinsertion forsmallbreaks.Following depressurization, emergency coolingwaterisinjectedintothecoldlegs,flowsintothedowncomer, fillsthelowerplenum,andrefloodsthecore.5Z,arran>APHR.Pu~gwvkgt,c.'r 4a~~a~~u~ubcsxs.<> ~mpp~/~a-vtv~w.gleane$~pu~(continued) B3.5-12 ECCS-Operating B3.5.2BASESAPPLICABLE SAFETYANALYSES(continued) Qap1c3tC5z.vi~SKp~~sTheeffectsoncontainment massandenergyreleasesareaccounted forinappropriate analyses(Refs.'Wand.TheLCOensuresthatanECCStrainwilldeliversufficient wateromatcoioraes'~enoughtominimizetheconsequences ofthecorebeinguncoverefollowinalargeLOCA.ItalsoensuresthatthecSIpumpswilldeliversufficient waterandboronduringasmallLOCAtomaintaincoresubcriticality. ForsmallerLOCAs,tdeliver&sufficient fluidtomaintainRCSinventory. ForasmallbreakLOCA,thesteamgenerators continuetoserveastheheatsink,providing partoftherequiredcorecooling.TheECCStrainssatisfyCriterion 3oftheNRCPolicyStatement. LCOInNODES1,2,and3,twoindependent (andredundant) ECCStrainsarerequiredtoensurethatsufficient ECCSflowisavailable, assumingasinglefailureaffecting eithertrain.Additionally, individual components withintheECCStrainsmaybecalledupontomitigatetheconsequences ofothertransients andaccidents. 5'~qa.aOcsQ.Va.InMODES1ECCStrainconsistsof~anSIsubsystem~and anRHRsubsystem. Eachtrainincludesthepiping,instruments, andcontrolstoensureanOPERABLEflowpathcapableoftakingsuctionfromtheRWSTuponanSIsignalandtransferring suctionto444containment jumpn.<-~.Durieventrequiring ECCSactuation, aflowisrequiredto'anabundantsupplyoffromtheRWSTtotheRCSviaCSpumpseirrespective supplyheaderstoeachoftcoldleginjection nozzles.Intheionm,thisflowmaybeswitchedtotakeitssfromthecontainment sumpsupplyitsfltheRCShotandcoldlegs.Theflowpathforeachtrainmustmaintainitsdesignedindependence toensurethatnosinglefailurecandisablebothECCStrains.(continued) 83.5-13 Insert3.5.10Thisincludessecuringthemotoroperatedisolation valvesasspecified inSR3.5.2.1inpositionbyremovingthepowersourcesaslistedbelow.EINPositionSecuredinPositionB825A825B826A826B826C826D851A851B856878A8788878C878D896A896BOpenOpenClosedClosedClosedClosedOpenOpenOpenClosedOpenClosedOpenOpenOpenRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalRemovalofACPowerofACPowerofACPowerofACPowerofACPowerofACPowerofACPowerofACPowerofDCControlPowerofACPowerofACPowerofACPowerofACPowerofDCControlPowerofDCControlPowerThemajorcomponents ofanECCStrainconsistsofanRHRpumpandheatexchanger capableoftakingsuctionfromtheRWST(andeventually Containment SumpB),andabletoinjectthroughoneofthetwoisolation valvestothereactorvesselupperplenumandoneofthetwolineswhichprovidehigh-head recirculation totheSIandContainment SpraySystempumps.AlsoincludedwithintheECCStrainaretwoofthreeSIpumpscapableoftakingsuctionfromtheRWSTandContainment SumpB(viaRHR),andinjecting throughoneofthetwoRCScoldleginjection lines.InthecasewhereSIPumpCisinoperable, bothRCScoldleginjection linesmustbeOPERABLEtoprovide100%oftheECCSflowequivalent toasingletrainofSIduetothelocationofcheckvalves870Aand870B. ECCS-Operating B3.5.2BASES(continued) APPLICABILITY Sk.vi.~Nz~~tt0Crae.+~JULCydvW-4~vaaa&okhq3oSRau)ScsAS,Z+O~pCa~4.Qa-asp+4L~~u~~s-~~<rvtata.etc', O~~52..VL.I< g'2..ii..hInMODESI,2,and3,theECCSOPERABILITY requirements forthelimitingDesignBasisAccident, alargebreakLOCA,arebasedonfullpoweroperation. Althoughreducedpowerwouldnotrequirethesamelevelofperformance, theaccidentanalysisdoesnotprov'linrequirements inthelowerMODEThecentrifugal char'erosCA,whichestablishes rormancecceonower.epumpperformance requirements areaseonasmabreakLOCA.MODE2andMODE3requirements areboundedbytheMODEIanalysis. ThisLCOisonlyapplicable inMODE3andabove.BelowHODE3,theSIsignalsetpointismanuallybypassedbyoperatorcontrol,andsystemfunctional requirements arerelaxedasdescribed inLCO3.5.3,"ECCS-Shutdown." Asindicated inNoteI,theflowpathmaybeisolatedfor2hoursinMODE3,undercontrolled conditions, toperformpressureisolation valvetestingperSR3.4.14.1.Theflowpathisreadilyrestorable fromthecontrolroo.Asindicated inNote2,operation inMODE3withECCStrainsdeclaredinoperable pursuanttoLCO3.4.12,"LowTemperature OverressureProtection (LTOP)System,"isnecessary CAPs*~~LTOParmingtemperatur neartheNOOE3oundarytemperature of350'F.LCO3.4.12requiresthatcertainpumpsberenderedinoperable atandbelowtheLTOParmingtemperature. Whenthistemperature is@~neartheMODE3boundarytemperature, timeisneededtorestoretheinoperable pumpstoOPERABLEstatus.InMODES,and6,plantconditions aresuchthattheprobabilit ofaneventrequiring ECCSinjection isexremeyow.Corecoolingrequirements inMODE5areaddressed byLCO3.4.7,"RCSLoops-MODE5,LoopsFilled,"andLCO3.4.8;"RCSLoops-MODE5,LoopsNotFilled."NODE6corecoolingrequirements areaddressed byLCO3.9.5,"Residual HeatRemoval(RHR)andCoolantCirculation -HighWaterLevel,"andLCO3.9.6,"Residual HeatRemoval(RHR)andCoolantCirculation -LowWaterLevel."~tala~~~au~~3.W.C.,"gC,S~~F~Qb48$~Q+c-t>j'.3,cccs-s~)Q(continued) B3.5-14

ECCS-Operating 83.5.2BASES(continued) ACTIONSA.I6X.vi..o-Sa.vi,c.0Withone~trainer'inoperable andatleast100%oftheECCSflowequivalent toasingleOPERABLEECCStrainavailable, theinoperable components mustbereturnedtoOPERABLEstatuswithin72hours.The72hourCompletion TimeisbasedonanNRCreliability evaluation (Ref.'andisareasonable timeforrepairofmanyECCScomponents. tota'7oAnECtrainisinoperable ifitisnotcapableofdelivering designflowtotheRCS.Individual components areinoperable iftheyarenotcapableofperforming theirdesignfunctionorsuortingsystemsarenotavailable. met.msTheLCOrequirestheOPERABILITY ofanumberofindependent subsystems. Duetotheredundancy oftrainsandthediversity ofsubsystems, theinoperability ofonecomponent inatraindoesnotrendertheECCSincapable ofperforming itsfunction. Neitherdoestheinoperability oftwodifferent components, eachinadifferent train,necessarily resultinalossoffunctionfortheECCS.TheintentofthisCondition istomaintainacombination ofequipment suchthat100%oftheECCSflowequivalent'to asingleOPERABLEECCStrainremainsavailable. Thisallowsincreased flexibility inplantoperations undercircumstances whencomponents inoppositetrainsareinoperable. 3.5'.2bAneventaccompanied byalossofoffsitepowerandthefailureofanEDGcandisableoneECCStrainuntilpowerisrestored. Areliability analysis(Ref.'hasshownthattheimpactofhavingonefullECCStraininoperable issufficiently smalltojustifycontinued operation for72hours.66Re6describes situations inwhichonecornsuchasanssovervalve,candisablECCStrains.Withoneoromponeinoperable suchthat100%oftheflowequivale'eOPERABLEECCStrainisnotavailable acilityisina'onoutsidetheaccidentsos.Therefore, LCO3.0.3mustbe'ately(continued) B3.5-15 Insert3.5.21InthecasewhereSIPumpCisinoperable, bothRCScoldleginjection linesmustbeOPERABLEtoprovide100%oftheECCSflowequivalent toasingletrainofSIduetothelocationofcheckvalves870Aand870B. ECCS-Operating B3.5.2BASESACTIONScontinued) 5l.,v'Ia~3,s'.iiB.landB.2Iftheinoperable traincannotbereturnedtoOPERABLEstatuswithintheassociated Completion Time,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoMODE3within6hoursandHODE4within12hours.TheallowedCompletion Timesarereasonable, basedonoperating experience, toreachtherequiredplantconditions fromfullpowerconditions inanorderlymannerandwithoutchallenging plantsystems.52.i.iSURVEILLANCE REQUIREMENTS Z..i.vC.52.v'i.oW~vt9cvah+ooc'QQ~vcLQJphpoLl+o~<~a.~chekaUcAiWm9aoe,SR3.5.2.1Verification ofpropervalvepositionensuresthattheflowpathfromtheECCSpumpstotheRCSismaintained.c, Hisalignment ofthesevalvesorederbothECCStrainsinocrabSecuringthesevalvesinposition0welposltlonensurethattangepositionaslurerbeinadvertentl misali4,thesevalvescandisablethefunctionofbothECCSrainsaninvalidate theaccidentanalyses. A12hourFrequency isconsidered reasonable inviewofotheradministrative controlsthat~ensureamispositioned valveisunlikely. SR3.5.2.2Verifying thecorrectalignment formanual,poweroperated, andautomatic valvesintheECCSflowpathsprovidesassurance thattheproperflowpathswillexistforECCSoperation. ThisSRdoesnotapplytovalvesthatarelocked,sealed,orotherwise securedinposition, sincethesewereverifiedtobeinthecorrectpositionpriortolocking,sealing,orsecuring. Avalvethatreceivesanactuation signalisallowedtobeinanonaccident positionprovidedthevalvewillautomatically reposition withintheproperstroketime.ThisSurveillance doesnotrequireanytestingorvalvemanipulation. Rather,itinvolvesverification thatthosevalvescapableofbeingmispositioned areinthecorrectposition. The31dayFrequency isappropriate becausethevalvesareoperated(continued) B3.5-16 Insert3.5.11C.1IfbothtrainsofECCSareinoperable, theplantisinacondition outsidetheaccidentanalyses; therefore, LCO3.0.3mustbeimmediately entered.Withoneormorecomponent(s) inoperable suchthat100%oftheflowequivalent toasingleOPERABLEECCStrainisnotavailable, thefacilityisinacondition outsidetheaccidentanalysis. Therefore, LCO3.0.3mustbeimmediately entered.Insert3.5.12ThelistedvalvesaresecuredinpositionbyremovalofACpowerorkeylockingtheDCcontrolpower.Thesevalvesareoperatedunderadministrative controlssuchthatanychangeswithrespecttothepositionofthevalvebreakersorkeylocksisunlikely. Theverification ofthevalvebreakersandkeylocksisperformed bySR3.5.2.3. ECCS-Operating B3.5.2BASESSURVEILLANCE REQUIREMENTS Z.s.igSR3.5.2.2(continued) underadministrative control,andanimpropervalvepositionwouldonlyaffectasingletrain.ThisFrequency hasbeenshowntobeacceptable throughoperating experience. 3.5.2.3Withtheceptionoftheoperating centrifugal chingpump,theEumpsarenormallyinastandbyonoperating mode.Assuch,wpathpipinghasthentialtodevelopvoidsandpotsofentraineses.Maintaining thepipingfromtheECCmpstoeRCSfullofwaterensuresthatthesystemwilormproperly, injecting itsfullcapacityintotheRponand.Thiswillalsopreventwaterhammerumpcavitatio ,andpumpingofnoncondensible e.g.,air,nitrogen, hydrogen) intothereactorselfollowing anSIsignalorringshutdowncoolinhe31dayFrequency takesintoconsitionthegranatureofgasaccumulation intheECCSpipindeprocedural controlsgoverning systemoperation. SR3.5.2.4Periodicsurveillance testingofECCSpumpstodetectgrossdegradation causedbyimpellerstructural damageorotherhydraulic component problemsisrequiredbySectionXIoftheASHECode.Thistypeoftestingmaybeaccomlishedbmeasuring thepumpdeveloped headat.po>ntofthepumpcharacteristic curve.Thisverifiesoththatthemeasuredperformance iswithinanacceptable tolerance oftheoriginalpumpbaselineperformance andthattheperformance atthetestflowisgreaterthanorequaltotheperformance assumedintheplantsafetyanalysis. SRsarespecified intheInservice TestingProgram,whichencompasses SectionXIoftheASHECode.SectionXIoftheASHECodeprovidestheactivities andFrequencies necessary tosatisfytherequirements. SR3.5.2.5andSR3.5.2.6TheseSurveillances demonstrate thateachautomatic ECCSvalveactuatestotherequiredpositiononanactualor(continued) B3.5-17 Insert3.5.17SR3.5.2.3Verification every31daysthatACorOCpowerisremoved,asappropriate, foreachvalvespecified inSR3.5.2.1ensuresthatanactivefailurecouldnotresultinanundetected misposition ofavalvewhichaffectsbothtrainsofECCS.ifthisweretooccur,noECCSinjection orrecirculation wouldbeavailable. Sincepowerisremovedunderadministrative controlandvalvepositionisverifiedevery12hours,the31dayFrequency willprovideadequateassurance thatpowerisremoved. ~C3BASESAMWOMKGoMCAgg~p~M~~~V~~~~c~mM,cc-c4e~~uGKAPPA,g&~~ ~4,~ECCS-Operating B3.5.2SURVEILLANCE RE(UIREHENTS hR3.5.2.5andSR3.5.2.6(continued) simulated SIsignalandthateachECCSpumpstartsreceiptofanactualorsimulated SIsignal.ThemohFrequency isbasedontheneedtoperformtheseSurveillances undertheconditions thatapplyduringaplantoutageandthepotential forunplanned planttransients ifthurveillances wereperformed withthereactoratpower.ThmonthFrequency isalsoacceptable basedonconsideration ofthedesignreliability (andconfirming operating experience) oftheequipment. Theactuation logicistestedaspartofESFActuation Systemtesting,andequipment performance ismonitored aspartoftheInservice TestingProgram.S5.2.7Realignment oesintheflowpathonanSIsiisnecessary forpropererformance. Theveshavestopstoallowproperpositi'orictedflowtoarupturedcoldleg,ensuringtthercoldlegsreceiveatleasttherequired'umflow.Thisveillance isnotrequiredfontswithflowlimitingori.The18montquencyisbasedonthesamereasonsastsinSR3.5.2.5andSR3.5.2.6.S.5.2.8~~~3.5'.<>Periodicinsionsofthecontainment sumpsuctioninleensurethatitisstrictedandstaysinproperatingcondition. The18monequencyisbasedeneedtoperformthisSurveillance unthecionsthatapplyduringaplantoutage,onthehaveaccesstothelocation, andbecauseofpotential anunplanned transient iftheilancewereperforme'hereactoratr.ThisFrequency hasbeenfoundsuff'todetectabnormaldegradation andisconfiroperating experience. REFERENCES 10CFR50.46.A~~~~~m~m~~n,~C.AgFQ%bc-~0,~ssuah.Ar~w~wp(continued) B3.5-18 Insert3.5.131.LetterfromR.A.Purple,NRC,toL.D.White,RG&E,

Subject:

"Issuance ofAmendment 7toProvisional Operating LicenseNo.DPR-18,"datedMay14,1975.2.3.4.5.BranchTechnical Position(BTP)ICSB-18,"Application oftheSingleFailureCriterion toManually-Controlled Electrically OperatedValves."LetterfromA.R.Johnson,NRC,toR.C.Mecredy,RG&E,

Subject:

"Issuance ofAmendment No.42toFacilityOperating LicenseNo.DPR-18-R.E.GinnaNuclearPowerPlant(TACNo.79829),"datedJune3,1991.LetterfromD.H.Crutchfield, NRC,toJ.E.Haier,RG&E,

Subject:

"SEPTopicVI-7.B:ESFSwitchover fromInjection toRecirculation Mode,Automatic ECCSRealignment, Ginna,"datedDecember31,1981.NUREG-0821. 7.LetterfromD.H.Crutchfield, NRC,toJ.E.Haier,RG&E,

Subject:

"SEPTopicIX-4,BoronAdditionSystem,R.E.Ginna,"datedAugust26,1981,ll.UFSAR,Section6.2.~~~ ECCS-Operating B3.5.2BASESREFERENCES (continued) 4o.3iFSAR,Section~AVFShR~Eois4NRCMemorandum toV.Stello,Jr.,fromR.L.Baer,"Recommended InterimRevisions toLCOsforECCSComponents," December1,1975.B3.5-19 ECCS-ShutdownB3.5.3B3.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.3ECCS-ShutdownBASESsa.vi.4BACKGROUND TheBackground sectionforBases3.5.2,"ECCS-Operating," isapplicable totheseBases,withthefollowing modifications. za4.+i+)~%on (s~)52.~vInMODE4thereuiredECCStrainconsistsoftwoseparatesubsystems: andresidualheatremoval(RHR)"TheECCSflowpathsconsistofpiping,valves,heatexchangers, andpumpssuchthatwaterfromtherefueling waterstoragetank(RWST)canbeinjectedintotheReactorCoolantSystem(RCS)following theaccidents described inBases3.5.2.<~a~e.~~~~Svc.+o~~~~~0.i~~~~C.Wcw~hoJngw eAPPLICABLE SAFETYANALYSESTheApplicable SafetyAnalysessectionofBases3.5.2alsoappliestothisBasessection.Duetothestableconditions associated withoperation inMODE4andthereducedprobability ofoccurrence ofaDesignBasisAccident(DBA),theECCSoperational requirements arereduced.Itisunderstood inthesereductions thatcertainautomatic safetyinjection (SI)actuation isnotavailable. InthisMODE,sufficient timeexistsformanualactuation oftherequiredECCStomitigatetheconsequences ofaDBA.4c.aa.5.OnlyonetrainofECCSisrequiredforMODE4.Thisrequirement dictatesthatsinglefailuresarenotconsidered duringthisMODEofoperation. TheECCStrainssatisfyCriterion 3oftheNRCPolicyStatement. LCO5'z.vi'.~InMODE4,oneofthetwoindependent (andredundant) ECCStrainsisrequiredtobeOPERABLEtoensurethatsufficient ECCSflowisavailable tothecorefollowing aDBA.InMODE4,anECCStrainconsistsofaZ~subsystem andanRHRsubsystem. Eachtrainincluesepiping,instruments, andcontrolstoensureanOPERABLEflow(continued) B3.5-20 ECCS-ShutdownB3.5.3BASESLCO(continued) pathcapableoftakingsuctionfromtheRWSTandtransferring suctiontothecontainment sump.~neventrequiring ECCSactuation, aflowsrequiredo'anabundantsupplyoffromtheRWSTtotheRCSviaSpumeirrespective supplyheaderstoeachofldleginjection nozzles.Intheerm,thisflowpabeswitchedtotakepplyfromthecontainment sumpandverowtotheRCShotandcoldlegs.APPLICABILITY InMODESI,2,and3,theOPERABILITY requirements forECCSarecoveredbyLCO3.5.2.InMODE4withRCStemperature below350'F,oneOPERABLEECCStrainisacceptable withoutsinglefailureconsideration, onthebasisofthestablereactivity ofthereactorandthelimitedcorecoolingrequirements. InMODES5and6,plantconditions aresuchthattheprobability ofaneventrequiring ECCSinjection isextremely low.Corecoolingrequirements inMODE5areaddressed byLCO3.4.7,"RCSLoops-MODE5,LoopsFilled,"andLCO3.4.8,"RCSLoops-MODE5,LoopsNotFilled."MODE6corecoolingrequirements areaddressed byLCO3.9.5,"Residual HeatRemoval(RHR)andCoolantCirculation -HighWaterLevel,"andLCO3.9.6,"Residual HeatRemoval(RHR)andCoolantCirculation -LowWaterLevel."ACTIONSA.IWithnoECCSRHRsubsystem

OPERABLE, theplantisnotpreparedtorespondtoalossofcoolantaccidentortocontinueacooldownusingtheRHRpumpsandheatexchangers.

TheCompletion Timeofimmediately to'initiate actionsthatwouldrestoreatleastoneECCSRHRsubsystem toOPERABLEstatusensuresthatpromptactionistakentorestoretherequiredcoolingcapacity.

Normally, inMODE4,reactordecayheatisremovedfromtheRCSbyanRHRloop.IfnoRHRloopisOPERABLEforthisfunction, reactordecayheatmustberemovedbysomealternate method,suchasuseofthesteamgenerators.

Thealternate meansofheatremovalmust83.5-21(continued)

Insert3.5.16Themajorcomponents ofanECCStrainduringNODE4normallyconsistsofanRHRpumpandheatexchanger, capableoftakingsuctionfromtheRWST(andeventually Containment SumpB),andabletoinjectthroughoneofthetwoisolation valvestothereactorvesselupperplenum.AlsoincludedwithintheECCStrainareoneofthreeSIpumpscapableoftakingsuctionfromtheRWSTandinjecting throughoneofthetwoRCScoldleginjection lines.Thehigh-head recirculation flowpathfromRHRtotheSIpumpsisnotrequiredinMODE4sincethereisnoaccidentscenariowhichpreventsdepressurization toRHRpumpshutoffheadpriortodepletion oftheRWST.Basedonthetimeavailable torespondtoaccidentconditions duringNODE4,ECCScomponents areOPERABLEiftheyarecapableofbeingreconfigured totheinjection modefromthecontrolroomwithin10minutes.ThisincludestakingcreditforanRHRpumpandheatexchanger asbeingOPERABLEiftheyarebeingusedforshutdowncoolingpurposes. ECCS-ShutdownB3.5.3BASESACTI0NSA.l(continued) continueuntiltheinoperable RHRloopcomponents canberestoredtooperation sothatdecayheatremovaliscontinuous. WithbothRHRpumpsandheatexchangers inoperable, itwouldbeunwisetorequiretheplanttogotoMODE5,wheretheonlyavailable heatremovalsystemistheRHR.Therefore, theappropriate actionistoinitiatemeasurestorestoreoneECCSRHRsubsystem andtocontinuetheactionsuntilthesubsystem isrestoredtoOPERABLEstatus.5Q,vt~QB.1S~WithnoECCS~subsystem OPERABLEQuetotheinoperability ofthepumporflowpathfromtheRWST,theplantisnotpreparedCo,providehighpressureresponsetoDesignBasisEventsrequiring SI.The1hourCompletion TimetorestoreatleastoneubsystemtoOPERABLEstatusensuresthatpromptactionistakentoprovidetherequiredcoolingcapacityortoinitiateactionstoplacetheplantinMODE5,whereanECCStrainisnotrequired. C.1WhentheRequiredActionsofCondition Bcannotbecompleted withintherequiredCompletion Time,acontrolled shutdownshouldbeinitiated. Twenty-four hoursisareasonable time,basedonoperating experience, toreachMODE5inanorderlymannerandwithoutchallenging plantsystemsoroperators. SURVEILLANCE RE(UIREMENTS +ms.;SR3.5.3.1Theapplicabie Survei11ance descriptiongfrom Bases3.5.2apply.ThisSRismodifiedbyaNotethatallowsanRHRtraintobeconsidered OPERABLEduringalignment andoperation fordecayheatremoval,ifcapableofbeingmanuallyrealigned (remoteorlocal)totheECCSmodeof(continued) B3.5-22 ECCS-ShutdownB3.5.3BASESSURVEILLANCE REQUIREHENTSSR3.5.3.1(continued) operation andnototherwise inoperable. Thisallowsoperation intheRHRmodeduringMODE4,ifnecessary. REFERENCES Theapplicable references fromBases3.5.2apply.B3.5-23

RWSTB3.5.4B3.5EHERGENCY CORECOOLINGSYSTEHS(ECCS)B3.5.4Refueling WaterStorageTank(RWST)BASESBACKGROUND +/,t.t<0,TheRNSTsupj~ieboratedwatertong-eendiN ebs~y-System-Our-ing-ace Me~mMi~ns. '5/.CS.s43,g,lsbothtrainsoftheECCSandtheContainment SpraySystem~~duringtheinjection phaseofaossocooanaccident(LOCArecovery. p~He.5f.Ci.hpumpsuctiontheCVCSvolumecontroi~anR (VCT)totheRWSTthroughtheusisolation va.'LvWs. Eachsetofisolation valvesisinteresothattheVCTisolation alveswillbeintocloce'Sisot'alvevgnRTlaionsarefullyopen.SietheVCTisunressure,thepreferred pumctionwillbefromtheVtilthetankisisol.Thiswillresultinadelayinob'gtheRoratedwater.Theeffectsofthisdelayaredissedamdtherecirculation modeisenterewarto>>ransferred tothecotainmentsumpUseoasingletosupplybotrainsoftheanContainment SpraySystemisacceptabl'e sincetheRWSTisapassivecomponent, andpassivefailuresarenotrequiredtobeassumedtooccurcoincidentally withDesignBasisEvents.itchoverfromnormaloperation totheinjectio~p aseofECCS.ationrequireschangingcentrifuga chargingM~CL%W'AAJE~ Cp~~~~~~~a%~~~a+a~~~W~~~O~Y.~Ad4a.~M~~S~(continued) S'l,t.t.,a~ntheApplicable SafetyAnalysessectionoftheseBases.~'J.s'.Isgoringnormal.operation inNODESl,2,and3,thesafetyinjection (SI)andresidualheatremoval(RHR)pumpsarealignedtotakesuctionfromtheRWST.Cvma~tv.v~TheECCSandContainment SpraySystempumpsareprovidedwithrecirculation linesthatensureeachpumpcanmaintainminimumflowrequirements whenoeratinatornetof.headconditions. ~~~~~o~it~~~~~R-ApB3.5-24 Insert3.5.18AcommonsupplyheaderisusedfromtheRWSTtothesafetyinjection (SI)andContainment SpraySystempumps.Aseparatesupplyheaderisusedfortheresidualheatremoval(RHR)pumps.Isolation valvesandcheckvalvesareusedtoisolatetheRWSTfromtheECCSandContainment SpraySystempriortotransferring totherecirculation mode.Insert3.5.19TheRWSTislocatedintheAuxiliary Buildingwhichisnormallymaintained between50Fand104F(Ref.1).Thesemoderatetemperatures provideadequatemarginwithrespecttopotential freezingoroverheating oftheboratedwatercontained intheRWST.

BASESRWSTB3.5.4~+AMpu~BACKGROUND (continued) 58.ii4WhenthesuctionfortheECCSandContainment SpraySypumpsistransferred tothecontainment sump,theRWSTflowpathsmustbeisolatedtopreventareleaseofthecontainment sumpcontentstotheRWST,whichcouldresultinareleaseofcontaminants tothehere"andtheeventuallossofsuctionheadfortheECCSpumps.Qlhihk'l~g ThisLCOensuresthat:<.ii~<'~~~~~WPzH+~~<<Mpu~a.TheRWSTcontainssufficient boratedwatertosupporttheECCSduringtheinjection phase;b.Sufficient watervolumeexistsinthecontainment sumptosupportcontinued operation oftheECCSandContainment SpraySystempumpsatthetimeoftransfertotherecirculation modeofcooling;andc.Thereactorremainssubcritical following aLOCA.Insufficient waterintheRWSTcouldresultinwhenthetransfertotherecircula ionmodeoccurs.mproperboronconcentrations couldresultinareduction ofSDMorexcessive boricacidprecipitation inthecorefollowing theLOCA,aswellasexcessive causticstresscorrosion ofmechanical components andsystemsinsidethecontainment. APPLICABLE SAFETYANALYSESDuringaccidentconditions, theRWSTprovidesasourceofboratedwatertotheECCSandContainment SpraySystempumps.Assuch,itprovidescontainment coolinganddepressurization, corecooling,andreplacement inventory andisasourceofnegativereactivity forreactorshutdown(Ref.+2Thedesignbasistransients andapplicable safetyanalysesconcerning eachofthesesystemsarediscussed intheApplicable SafetyAnalysessectionofB3.5.2,"ECCS-Operating"; 83.5.3,"ECCS-Shutdown"; andB3.6.6,"Containment SprayandCoolingSystems." TheseanalysesareusedtoassesschangestotheRWSTinordertoevaluatetheireffectsinrelationtotheacceptance limitsintheanalyses. TheRWSTmustalsomeetvolume,boronconcentration, andtemperature requirements fornon-LOCAevents.Thevolumeisnotanexplicitassumption innon-LOCAeventssincetheB3.5-25(continued) BASES&l.s.i6RWSTB3.5.4~~~)~~~Z~<~C<~bma~pAPPLICABLE SAFETYANALYSES(continued) analsistoensuretherequiredshutdowncaability~TheVtstovaem-RcsrequiredG~I& isasmallfractionoftheavailablevolume.

  • Thedeliverable volumelimitissetbytheLOCAandcontainment analses.FortheRWSTtdel'verable volumeoavoumecontaine'thedesignofthetnba.'anheminimumoronconcentration isanexplicitassumption inthemainsteamlinebreak(HSL~So~Lo4~w,tcgLk~opsx~o~oW~~~0.vva,v~~s.~~1vaueissmaorunitsoninjection tank(BITwiconcentration.

ForunitswithnoucedBITboronrequireoronconcentration limitisanimporanassumption inensuringereuiresuowncapability. ThemaximumpronrationisanexiciassumioinertentECCSacuaionanaysis,althoughitistypicaonlimiting eventandtheresultsveryinsensitive toconcentrations. Taximumtemperature ensuresthaamocoolingprovidedfromtheRWSTduringtheheatuafeedlinebreakisconsistent withsaanalysisassump'heminimumisanassumpti'ththeNSLBandinadverten actu'nalyses, althoughtheinadvertent ECCSacentisticallnonlimiting. g{,tttTLBanalysishasconsidered adelayassociated withinterloctweentheVCTandRWSTisolation valvestheresultsshowthedeparture fromnucleate'ngdesign~~~~'asisismet.Thehasbeenestabl's[27]seconds,withoffsiwera'le,or[37]secondswithoutoffsitepower.Thissetimeincludes[2]secondsforelectro'elay,asecondstroketime'ortheRWSTvalv,anda[10]secondstrtimefortheVCTvalves.ntswithaBITneednotbeconcewiththedesincetheBITwillsupplyhighlyboratedwatoRWSTswitchover, providedtheBITisbetweenthepumpsandthecore.KthaAuJ~ForalarebreakLOCAanalysis, thewater volumelimitofaallonsandthelowerboronconcentration limitof+000~pmareusedtocomputethepostLOCAsumpboronconcentration necessary toassuresubcriticality. ThelargebreakLOCAisthelimitingcasesincethesafetyanalysisassumesthatallcontrolrodsareoutofthecore.g,BooTheupperlimitonboronconcetrationof~~ppmisusedtodetermine =.Za,z(continued) B3.5-26

Insert3.5.20isselectedsuchthatswitchover torecirculation doesnotoccuruntilsufficient waterhasbeenpumpedintocontainment toprovidenecessary NPSHfortheRHRpumps.Insert3.5.22thetimeframeinwhichboronprecipitation isaddressed postLOCA.Themaximumboronconcentration limitisbasedonthecoldestexpectedtemperature oftheRWSTwatervolumeandonchemicaleffectsresulting fromoperation oftheECCSandtheContainment SpraySystem.Avalueof2,900ppmwouldnotcreatethepotential forboronprecipitation intheRWSTassuminganAuxiliary Buildingtemperature of50F(Ref.1).Analysesperformed inresponseto10CFR50.49(Ref.2)assumedachemicalspraysolutionof2000to3000ppmboronconcentration (Ref.1)whichprovidesamarginof100ppm.ThechemicalspraysolutionimpactssumppHandtheresulting effectofchlorideandcausticstresscorrosion onmechanical systemsandcomponents. ThesumppHalsoaffectstherateofhydrogengeneration withincontainment duetotheinteraction ofContainment Sprayandsumpfluidwithaluminumcomponents, 00 RWSTB3.5.4BASESAPPLICABLE SAFETYANALYSES(continued) recircuwingaLOCA.ThepurofromcoldlegtohotsoavoidboronsnthecorefollowieatheECCSanalysis, thecontainment spraytemperature ssassutobeequaltotheRWSTlowertemperature limit[35]'F.thelowertemperature limitisviolatedecontainment ayfurtherreducescontainment psure,whichdecreases rateatwhichsteamcanventedoutthebreakandincreapeakcladtempeure.Theuppertemperature limitof[I'FisusenthesmallbreakLOCAanalysisandcontainment OPYanalysis. Exceeding thistemperature willresunigherpeakcladtemperature, becauseteislesshtransferfromthecoretotheinjectwaterforthesmaleakLOCAandhighercontainpressures duetoreducedtainmentspraycool'apacity. Forthecontainment ressefollow'nHSLB,thelowerlimitonboronconcentr'onaeupperlimitonRWSTwatertemperature areusedaximizethetotalenergyreleasetocontainment. TheRWSTsatisfies Criterion 3oftheNRCPolicyStatement. LCOTheRWSTensuresthatanadequatesupplyofboratedwaterisavailable tocoolanddepressurize thecontainment intheeventofaDesignBasisAccident(DBA),tocoolandcoverthecoreintheeventofaLOCA,tomaintainthereactorsubcritical following aDBA,andtoensureadequatelevelinthecontainment sumptosupportECCSandContainment SpraySystempumpoperation intherecirculation mode.Tobecopsidered

OPERABLE, theRWSTmustmeetthewater'1i~litestablished intheSRs.hAPPLICABILITY InHODESI,2,3,and4,RWSTOPERABILITY requirements aredictatedbyECCSandContainment SpraySystemOPERABILITY requirements.

SinceboththeECCSandtheContainment SpraySystemmustbeOPERABLEinHODESI,2,3,and4,theRWSTmustalsobeOPERABLEtosupporttheiroperation. Corecoolingrequirements inHODE5areaddressed byLCO3.4.7,"RCSLoops-NODE5,LoopsFilled,"andLCO3.4.8,"RCSB3.5-27(continued)

RWSTB3.5.4BASESAPPLICABILITY (continued) Loops-MODE5,LoopsNotFilled."NODE6corecoolingrequirements areaddressed byLCO3.9.5,"Residual HeatRemoval(RHR)andCoolantCirculation -HighWaterLevel,"andLCO3.9.6,"Residual HeatRemoval(RHR)andCoolantCirculation -LowWaterLevel."ACTIONSA.1WithRWSTboronconcentration notwithinlimits,CgfaustbereurnetowithinimMiswithin8hours.Undertheseconditions neithertheECCSnortheContainment SpraySystemcanperformitsdesignfunction. Therefore, promptactionmustbetakentorestorethetanktoOPERABLEcondition. The8hourlimittorestoretheRWSTboronconcentration towithinlimitswasdeveloped consleringthetimerequiredtochange~~theboronconcentration andthefactthatthecontentsofthetankarest>11av'ailable forinjection. 8.1ma~votal~h~~KiwuhanWiththeRWSTinoperaeorreasonsotherthanCondition Ae.g.,waervolumelmustberesoreosauswl1nour.InthisCondition, neithertheECCSnortheContainment SpraySystemcanperformitsdesignfunction. Therefore, promptactionmustbetakentorestorethetanktoOPERABLEstatusortoplacetheplantinaNODEinwhichtheRWSTisnotrequired. TheshorttimelimitofIhourtorestoretheRWSTtoOPERABLEstatusisbasedonthiscondition simultaneously affecting redundant trains.C.landC.2IftheRWSTcannotbereturnedtoOPERABLEstatuswithintheassociated Completion Time,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastNODE3within6hoursandtoNODE5within36hours.TheallowedCompletion Timesarereasonable, basedonoperating experience, toreachtherequiredplantconditions fromfull(continued) B3.5-28

RWSTB3.5.4BASESACTIONSC.1andC.2(continued) powerconditions inanorderlymannerandwithoutchallenging plantsystems.SURVEILLANCE REQUIREMENTS S5.4.1TheRWSTborwatertemperature shouldbever'devery24hourstobew~'helimitsassumedieaccidentanalysesband.Thisencyissuff'nttoidentifyatemperature changethatwoupeitherlimitandhasbeenshowntobeacceptable operating experience. TheSRismodifiedaNotethateliminaherequirement toperformthiurveillance whenambientairraturesarewithieoperating limitsoftheRWST.Witha'taireratureswithintheband,theRWSTtemperature uldnotexceedthelimits.~555.5.4.TheRWSTwatervolumeshouldbeverifiedevery7daystobeabovetherequiredminimumlevelinordertoensurethatasufficient initialsupplyisavailable forinjection andtosupportcontinued ECCSandContainment SpraySystempumpoperation onrecirculation. SincetheRWSTvolumeisnormaystaeana7dayFrequency isappropriate andhasbeenshowntobeacceptable throughoperating experience. SR3.5.4MTheboronconcentration oftheRWSTshouldbeverifiedevery7daystobewithintherequiredlimits.ThisSRensuresthatthereactorwillremainsubcritical following aLOCA.Further,itassuresthattheresulting sumppHwillbemaintained inanacceptable rangesothatboronprecipitation inthecorewillnotoccurandtheeffectofchlorideandcausticstresscorrosion onmechanical systemsandcomponents willbeminimized. SincetheRWSTvolumeisnormallystable,a7daysamplingFrequency toverifyboron(continued) B3.5-29

RWSTB3.5.4BASESSURVEILLANCE REQUIREMENTS SR3.5.4.3(continued) concentration isappropriate andhasbeenshowntobeacceptable throughoperating experience. REFERENCES s'a~~(o.3 FSAR,4hay4ev~andChapter$15+uP~OAm~om2.)liscFR.So.~g83.5-30 QssSealInjection FlowB3.5.B3.EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.5SealInjection FlowBASESBACKGROUND ThisLCOisapplicable onlytothoseunitsatutilizethecentrifugal chargingpumpsforsafetyinjtion(SI).Theunctionofthesealinjection throttleivesduringanacidentissimilartothefunctionofeECCSthrottlevaesinthateachrestricts flowfrthecentrifugal chaingpumpheadertotheReactoroolantSystem(RCS).Thererictiononreactorcoolanpump(RCP)sealinjection flowli'tstheamountofECCSowthatwouldbedivertedfromthe'njection pathfollow'ng anaccident. Thislimitisbasedosafetyanalysissumptions thatarerequiredbecauseRCPealinjection owisnotisolatedduringSI.APPLICABLE SAFETYANALYSESAllECCSsubsystesatakencreditforinthelargebreaklossofcoolaccident(LOCA)atfullpower(Ref.I).TheLOCnalysisestablishes theminimumflowfortheECCSpump.hecentrifugal chargingpumpsarealsocreditedinthemallreakLOCAanalysis. Thisanalysisestablishes thflowandischarge headatthedesignpointforthecentfugalchar'ngpumps.Thesteamgenerator tuberupturandmainstealinebreakeventanalysesalsocreditthcentrifugal charingpumps,butarenotlimitingintheirdesign.Reference theseanalysesismadeinassess'changestotheSealnjectionSystemforevaltionoftheireffectsinelationtotheacceptance lim'intheseanalyses. isLCOensuresthatsealinjectioflowofZ[40]gpm,ithcentrifugal chargingpumpdischrgeheaderpressure>{2480]psigandchargingflowcontrvalvefullopen,willbesufficient forRCPsealintegriybutlimitedsothattheECCStrainswillbecapableofelivering sufficient watertomatchboiloffratessnenoughtominimizeuncovering ofthecorefollowing largeLOCA.Italsoensuresthatthecentrifugal chargingpmpswilldeliversufficient waterforasmallLOCAandufficient borontomaintainthecoresubcritical. ForslierLOCAs,thechargingpumpsalonedeliversufficient fluitoovercomethelossandmaintainRCSinventory. Se1(coninued)B3.5-31R BASSealInjection FloB3..5APPLICAESAFETYALYSES(continud)injection flowsatisfies Criterion 2oftheNRCPicyStatement. LCOTheintentoftheLCOlimitonsealinjectonflowistomakesurethatflowthroughtheRCPsealaterinjection ineislowenoughtoensurethatsuffientcentrifugal cargingpumpinjection flowisdirectdtotheRCSviathein'ectionpoints(Ref.2).TheL0isnotstrictlyaflowlim't,butratheraflowlimitasedonaflowlineresisnce.Inordertoestablitheproperflowlinesistance, apressureandflowmusbeknown.Theflowineresistance isdetermined byassuminthattheRCSpreureisatnormaloperating pressureanthatthecentr'gal chargingpumpdischarge pressureiseaterthanoequaltothevaluespecified inthisLCO.Thecentrifug chargingpumpdischarge headerpressureremainessent'ly constantthroughalltheapplicable MODESfth'sLCO.Areduction inRCSpressurewouldresultinmeowbeingdivertedtotheRCPsealinjection linethantnormaloperating pressure. Thevalvesettingsestablish dattheprescribed centrifugal chargingpumpdischarge hederressureresultinaconservative valvepositionouldSpressuredecrease. Theadditional modifierofth'sLCO,thcontrolvalve(charging flowforfourloopunisandairoratedsealinjection forthreeloopunits)eingfullopeisrequiredsincethevalveisdesignedtfailopenforthaccidentcondition. Miththedischargpressureandcontrovalvepositionasspecified bythe0,aflowlimitisesblished.Itisthisflowlimitatisusedintheaccidtanalyses. Theimitonsealinjection flow,ombinedwiththecetrifugalchargingpumpdischarge eaderpressurelimitdanopenwidecondition ofthechagingflowcontrolalve,mustbemettorendertheECCSPERABLE.Iftheseconditions arenotmet,theECCSfloww11notbeasassumedintheaccidentanalyses. APPLICABI TYInNODESI,2,and3,thesealinjection flowimitisdictatedbyECCSflowrequirements, whicharesecifiedfor(ntinued)B3.5-32

~ssSealInjection Flow'~B3.5BASESAPPLICABIL TY(continue )NODESI,2,3,and4.Thesealinjectionflow1im'snotapplicable forHODE4andlower,however,becauseighsealinjection flowislesscriticalasaresultofelowerinitialRCSpressureanddecayheatremovalreirementsintheseNODES.Therefore, RCPsealinjection fowmustbelimitedinNODESI,2,and3toensureadeqteECCSerformance. ACTIONSA.1Withtsealinjection flowexceengitslimit,theamountofchar'ngflowavailable totheCSmaybereduced.UnderthisCond'tion, actionmustbetentorestoretheflowtobelowits'mit.Theoperatoras4hoursfromthetimetheflowisknotobeabovetheimittocorrectly positionthemanualvavesandthusbincompliance withtheaccidentanalyis.TheColetionTimeminimizes theotentialexoseofthelanttoaLOCAwithinsufficient ingection owansealinjection flow~iMw1imig<Thistimeisconservative withrcttotheCompletion TimesofotherECCSLCOs;itisbasonoperating experience andissufficient fortak'orrective actionsbyoperations personnel. B.landB.2WhentheRuiredActionscantbecompleted withintherequiredompletion Time,acorolledshutdownmustbeinitiat.TheCompletion Timef6hoursforreachingNODE3romNODEIisareasonabl timeforacontrolled shutdn,basedonoperating expernceandnormalcooldownrat,anddoesnotchallenge plantafetysystemsor'pators.Continuing theplantshutownbeguninRequiredAionB.1,anadditional 6hoursisareasonable time,asedonoperating experience andnormacooldownrates,toreachNODE4,wherethisLCOisnolongeapplicable. B3.5-33R

BASES(continued) SealInjection FlowB3.5SURVEILLAEREQUIREHEN SR3.5.5.1Verification every31daysthatthemanualsealnjectionthrottlevalvesareadjustedtogiveaflowwiinthelimitensuresthatpropermanualsealinjection thrttlevalveposition, andhence,propersealinjection fow,isaintained. TheFrequency of31daysisbedongineering judgmentandisconsistent wiotherECCSvalveSuveillance Frequencies. TheFrequency hasproventobeacctablethroughoperating experienc .Asnod,theSurveillance isnotreuiredtobeperformed until4hoursaftertheRCSpressurhasstabilized withina+20psirangeofnormaloperatipressure. TheRCSpressurequirement isspecificsincethisconfiguration willproductherequiredpresreconditions necessary toassurethatemanualvalvesresetcorrectly. Theexception is'mitedto4horstoensurethattheSurveillance istimely.REFERENCES 1.FSAR,Chapter2.10CFR50.46.andChapter[15].B3.5-34 BITB3.5.6i83.5EMERGENCY CORECOOLINGSYSTEMS(ECCS)B3.5.6BoronInjection Tank(BIT)BASESBACKGROUND TheBITispartoftheBoronInjection Systemwhichistherimarymeansofquicklyintroducing negativreactivity totheReactorCoolantSystem(RCS)onaafetyinjection ()signal.TheinflowpaththroughtheBoronIectionSystemisfromedischarge ofthecentrifugal chargingpumpsthroughlineseuippedwithaflowelementadtwovalvesinparallelthatopenonanSIsignal.Thevalvescanbeoperatedomthemaincontrolbod.Thevalvesandflowelementshaemaincontrolboardindications. Downstream ofthesevalves,theflowenterseBIT(Ref.I).TheBITisastinlesssteeltankcontaining concentrated boricacid.Twotrainsoftripheatersaremountedonthetanktokeepthemperatreoftheboricacidsolutionabovetheprecipita ionoint.Thestripheatersarecontrolled bytemperteelementslocatednearthebottomoftheBIT.ThetempatureelementsalsoactivateHighandLowalarmsonthemnontrolboard.InadditiontothestripheatersonteBIT,thereisarecirculation systemwithaheattrac'systeincluding thepipingsectionbetweenthemotoperated'solation valves,whichfurtherensuresthatteboricacidtaysinsolution. TheBITisalsoequippewithaHighPreurealarmonthemaincontrolboard.TheentirecontentsofheBITareinjectedwhenrequired; hus,thecontained andeliverable volumesarethesameDurinnormaloperation,oneofthewoBITrecirculation pumptakessuctionfromtheboronin'tionsurgetank(BT)anddischarges totheBIT.TheolutionthenreturnsttheBIST.Normally, onepumpisrunn'ngandoneisshutff.OnreceiptofanSIsignal,theruningpumpshutsoffandtheairoperatedvalvesclose.FlowttheBITisthensuppliedfromthecentrifugal chargingpumpsThesolutionoftheBITisinjectedintotheRCSthroughtRCScoldlegs.B3.5-35(contined) BIB3.56BAS(continued) APPLICALESAFETYALYSESDuringamainsteamlinebreak(MSLB)orlossofcolantaccident(LOCA),theBITprovidesanimmediate srceofconcentrated boricacidthatquicklyintroduces egativereactivity intotheRCS.ThecontentsoftheBITarenotcreditedfocorecoolingorimmediate borationintheLOCAanalysis, btforpostLOCArecovery. TheBITmaximumboronconcenttionof22,500]ppmisusedtodetermine them'nimumtimeforhot1recirculation switchover. Themimumboroncoentration of[20,000]ppmisusetodetermine theminiummixedmeansumpboronconcetrationforpostLOCAshutdnrequirements. FortheSLBanalysis, theBIT'stheprimarymechanism forinjecting oronintothecoreocounteract anypositiveincreases ireactivity causdbyanRCScooldown. Theanalysisusetheminimumbronconcentration oftheBIT;whichalsoafctsbothtdeparture fromnucleateboilingandcontainment designaalyses.Reference totheLOCAandMSLBanalysesissedassesschangestotheBITtoevaluatetheirefctntheacceptance limitscontained intheseanalyses. Theminimumtempeturlimitof[l45]'FfortheBITensuresthatthesolutiodoestreachtheboricacidprecipitation int.Thetemperature ofthesolutionismonitored andalarmedontemaincontrolboard.TheBITbonconcentration 'mitsareestablished toensurethattheoreremainssubcritialduringpostLOCArecovery. TheBITillcounteract anyposiveincreases inreactivity causedyanRCScooldown. TheITminimumwatervolumelimit[1100]gallonsisusedtoensurethattheappropriate quantiofhighlyboratedwterwithsufficient negativereactivyisinjectedintoheRCStoshutdownthecorefollowing nMSLB,todetermine thehotlegrecirculation switcovertime,andtosafeguard againstboronprecipitation. TheBITsatisfies Criteria2and3oftheNRColicyStatement. (contined)83.5-36 BITB3.5.BAS(continued) LCOThisLCOestablishes theminimumrequirements forctainedvolume,boronconcentration, andtemperature ofthBITinventory (Ref.2).Thisensuresthatanadequasupplyofboratedwaterisavailable intheeventofaLOorHSLBtomaintainthereactorsubcritical following theeaccidents. Tobeconsidered

OPERABLE, thelimitsestabshedintheSRorwatervolume,boronconcentration, andtemperature mustbmet.Ifeequipment usedtoverifyBITpaameters(temperature, volumandboronconcentration) isterminedtobeinoperle,thentheBITisalsoinerable.APPLICABILITY InMODESI,and3,theBITERABILITY requirements areconsistent witthoseofLCO.5.2,"ECCS-Operating."

InNODES4,5,an6,theespective accidents arelesssevere,sotheBIisnorequiredintheselowerMODES.ACTIONSA,lIftherequiredvlumeisntpresentintheBIT,boththehotlegrecircutionswitchvertimeanalysisandtheboronprecipitation nalysiswouldntbemet.Undertheseconditions, omptactionmustetakentorestorethevolumetoaoveitsrequiredlimstodeclarethetankOPERABLE, rtheplantmustbeplaedinaMODEinwhichtheBITisnrequired. TheBIboronconcentration isconsidedinthehotlegrecirulationswitchover timeanalysis, heboronpreipitation

analysis, andthereactivit analysisforanMSB.Iftheconcentration werenotwithitherequiredmits,theseanalysescouldnotbereliedo.Undertheseconditions, promptactionmustbetakentoreoretheconcentration towithinitsrequiredlimits,ortheplantmustbeplacedinaMODEinwhichtheBITisnotequired.TheBITtemperature limitisestablished toensureatthesolutiondoesnotreachthebo}icacidcrystallizatio point.Ifthetemperature ofthesolutiondropsbelowthe(continue B3.5-37R 0

BASBITB3.5ACTIONSA.I(continued) minimum,promptactionmustbetakentoraisethtemperature anddeclarethetankOPERABLE, oreplantmustbeplacedinaHODEinwhichtheBITisnotruired.TheIhourCompletion TimetorestoretheBtoOPERABLEstatusisconsistent withotherCompletio Timesestablished orlossofasafetyfunctionandensurethattheplantw1notoperateforlongperiodsoutsieofthesafetyanayses.B.IB.andB.3WhenRequedActionA.1cannotecompleted withintherequiredCpletionTime,acotrolledshutdownshouldbeinitiated. ixhoursisarsonabletime,basedonoperating expience,torehHODE3fromfullpowerconditions andobeboratdtotherequiredSDHwithoutchallenging plansystemsoroperators. BoratingtotherequiredSDHassuiesthgtheplantisinasafecondition, withoutneedforah,a6itionalboration. Afterdetermining ththeBITisinoperable andtheRequiredActionsofB.andB.2havebeencompleted, thetankmustberetuedtOPERABLEstatuswithin7days.TheseactionsenurethattheplantwillnotbeoperatedwithaninoperleBITforalengthyperiodoftime.ItshouldbenotlI,however,ttchangestoapplicable HODEScannotbemaeuntiltheBIT'srestoredtoOPERABLEstatuspursuanttotheprovisions ofCO3.0.4.C.1EvenhoughtheRCShasbeenboratedoasafeandstableconitionasaresultofRequiredActinB.2,eithertheBITmtberestoredtoOPERABLEstatus(ReuiredActionC.l)oreplantmustbeplacedinacondition swhichtheBITisnotrequired(HODE4).The12hourCompleionTimetoreachHODE4isreasonable, basedonoperating exerienceandnormalcooldownrates,anddoesnotchallengplantsafetysystemsoroperators. 83.5-38(coninued) BB3..6BAS(continued) SURVEILLNCERE(UIREMTSSR3.5.6.1Verification every24hoursthattheBITwateremperature isatorabovethespecified minimumtemperatreisfrequentenoughtoidentifyatemperature changethawouldapproachtheacceptable limit.Thesolutiontemperureisalsomonitored byanalarmthatprovidesfurtrassurance ofprotection againstlowtemperature. Th'requency hasbeenowntobeacceptable throughoperatigexperience. SR.5.6.2Verifitionevery7daysthateBITcontained volumeisabovethrequiredlimitisfrquentenoughtoassurethatthisvoluwillbeavailablforquickinjection intotheRCS.Iftvolumeistooow,theBITwouldnotprovideenoughboratdwatertoenuresubcriticality duringrecirculation rtoshutownthecorefollowing anHSLB.SincetheBITlumeisormallystable,a7dayFrequency isappropriate adhasbeenshowntobeacceptable throughoperating experieceSR3.5.6.3Verification ery7dathattheboronconcentration oftheBITisw'inthereqiredbandensuresthatthereactorremainssubriticalfollowgaLOCA;itlimitsreturntopowerfolwinganHSLB,anmaintains theresulting sumppHinanaceptablerangesothaboronprecipitation willnotoccurithecore.Inadditiotheeffectofchlorideandcaust'cstresscorrosion onmecnicalsystemsandcompnentswillbeminimized. TeBITisinarecirculation loopatprovidescontinuous irculation oftheboricacidsolutiothroughtheBITandtheboricacidtank(BAT).Therearenumberofpointsalongtherecirculation loopwherelocasamplescanbetaken.Theactuallocationusedtotakesampleofthesolutionisspecified intheplantSurveilanceprocedures. SamplingfromtheBATtoverifytheconcenttionoftheBITisnotrecommended, sincethissamplemaynotbehomogenous andtheboronconcentration ofthetwotanksmdiffer.(coinued}83.5-39 BITB3.5.BASESSURVEILLA EREQUIREMEN SR3.5.6.3(continued) ThesampleshouldbetakenfromtheBITorfrompointintheflowpathoftheBITrecirculation loop.REFERENCES 1.FSAR,Chapter[6]andChapter[15].2.10CFR50.46.B3.5-40 ATTACHMENT ECrossReference BetweenGinnaStationTechnical Specifications andNUREG-1431 ONLYRELEVANTSECTIONSAREPROVIDEDATTHISTINE GINNASTATIONTSCROSSREFERENCE TONUREG-1431 GINNASTATIONTS8NUREG-1431 ATTACH.ANOTES3.3.1.1.A 3.3.1.1.A 3.3.1.1.A 3.3.1.1.6 3.3.1.1.B 3.3.1.1.B 3.3.1.1.C 3.3.1.1.D 3.3.1.1.E3.3.1.1.F3.3.1.1.F 3.3.1.1.F 3.3.1.1.G 3.3.1.1.I 3.3.1.1.I 3.3.1.1.J 3.3.1.23.3.1.33.3.1.43.3.1.53.3.1.5.A 3.3.1.5.B 3.3.1.5.C 3.3.1.5.D 4.54.5.1.1.A 4.5.1.1.B 4.5.2.1.A 4.5.2.1.B 4.5.2.2.C TABLE4.1-1,15TABLE4.1-1,24TABLE4.1-1,24TABLE4.1-2,14TABLE4.1-2,14TABLE4.1-2,14TABLE4.1-2,3TABLE4.5-1LCO3.5.4SR3.5.4.1SR3.5.4.2LCO3.5.1LCO3.5.2LCO3.5.2LCO3.5.2LCO3.5.1LCO3.5.2LCO3.5.4LCO3.5.2LCO3.5.1SR3.5.1.5LCO3.5.2LCO3.5.4LCO3.5.1LCO3.5.2LCO3.5.2LCO3.5.2LCO3.5.2LCO3.5.2LCO3.5.2SR3.5.2.5SR3.5.2.5SR3.5.2.4SR3.5.2.4SR3.5.4.1SR3.5.1.2SR3.5.1.3SR3.5.1.4SR3.5'.2SR3.5,2.313.II13.VII13.VI13.I13.III13.VIII13.II13.I13.IV32.IV32.I32.II32.II32.III28.I.A28.II.C28.II.A28.II.B28.II.D32.II*Attachment A,SectionC.2notenumberwhichdiscusses andjustifies allchangestotheGinnaTSsection. Sl)))l'IFI}}