ML17325A092
ML17325A092 | |
Person / Time | |
---|---|
Site: | Cook |
Issue date: | 12/31/1986 |
From: | AMERICAN ELECTRIC POWER SERVICE CORP., INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG |
To: | |
Shared Package | |
ML17325A093 | List: |
References | |
NUDOCS 8705060424 | |
Download: ML17325A092 (660) | |
Text
January*1,.
ThroughDecember31,1986indiana8cMichiganElectricCompanyBridgman, MichiganDocketNos.50-315&50-316LicenseNos.DPR-588cDPR-74/~KIR~+ERt$YSTE+8/D5060424 smllayPDRADOCKp5pppgggPDR P\hi"Llf1$Trpl%1f-0CfiI' TABLEOFCONTENTS" Section.I.Introduction PageII.III.IV.ChangestotheEnvironmental Technical Specifications Non-radiological Environmental Operating ReportA.1PlantDesignandOperation A.2NPDESPermitandStateCertification Reporting B.1Herbicide Application C.lCorbicula Monitoring Program4C.2University ofMichiganSpecialReport120C.3University ofMichiganSpecialReport119Radiological Environmental Operating ReportA.Changeso'rControltotheREMPB.SpecialSampleCollection ProgramC.1AnnualMilkFarmSurveyC.2AnnualResidential LandUseSurveyD.Condition Reports3-'5:3~3-'4;44-5.6-86-7~':7-888 10t~Q~~QAA~$t'I~II~g%4 AppendixF11~21.31.41.51~6Listof.Appendices,
':-.:TitleRequested ChangetoNPDESPermitMI0005827 Environmental Evaluation:
UpgradeandTemporary UseofBeachAccessRoad.NPDESNonroutine Reports1986Herbicide Application Program1986Corbicula Monitoring Program1986DiverAssessment oftheInshoreSoutheastern LakeMichicCan Environment NeartheD.C.CookNuclearPlant197319821.7C.CookNuclearPowerPlant2~12'2'1986AnnualReportRadiological Environmental Monitoring ProgramSurfaceandDrinkingWaterResultsforJanuarythroughMarch1986EnhancedRadiological Environmental Monitoring ProgramResultsArisingfromtheAccidentattheChernobyl NuclearPowerStation.2.42.52.6MilkFarmCensus1986Residential LandUseCensus1986Condition Reports1986 C4IzrF0~uA~Opt0Cs+jrIfg4'IP'4I)IA~iC,'>~+rJ.t,t~~P~'L':IP0 I.INTRODUCTION, Environmental Technical Specifications,,Appendix A;Section6:9.1.6andAppendixB,PartII,Section5.'4;1requirethatanannualreportbesubmitted totheNuclearRegulatory Commission whichdetailstheresultsandfindingsofongoingenvironmental radiological andnon-radiological surveillance programs.
Thisreportservestofulfilltheserequirements andrep=esents theAnnualEnvironmental Operating ReportforUnits1and2oftheDonaldC.CookNuclearPlantfortheoperating periodfromJanuary1,1986tillDecember31,1986.During1986,basedonthemonthlyoperating reportsforUnit1andUnit2,theyearlygrosselectrical generation, averageunitserviceandcapacityfactorswere:Grosselectrical generation (MWe)Unitservicefactor(%)UnitcapacityfactorMDCNet(%)Unit16,918,330 85.274'Unit24J335g567 61.546.7TheSemi-Annual Radioactive EffluentReleasefor1986reporting yearindicated that'here wereeffectstotheenvironment andgeneralpublicdueoperation oftheDonaldC.CookNuclearPlant.ReportsnoadversetotheII.CHANGESTOTHEENVIRONMENTAL TECHNICAL SPECIFICAT1ONS TherewerenochangesmadetotheNon-radiological Environmental Technical Specifications during1986.Achangewasrequested totheNationalPollution Discharge Elimination System(NPDES)permitMI0005827 inwhichtheapplicant requested permission torerouteMakeupPlantprefilter backwashtoLakeMichigan.
Forfurtherinformation, seeAppendix1.1tothisdocument.
TherewasonechangemadetotheRadiological Technical Specifications during1986.Amendment no.94toDonaldC.CookUnit1andAmendment no.80totheUnit2AppendixATechnical Specifications wereissuedonApril22,1986anddeletedtherequirement tosampletheNewBuffalodrinkingwaterintake.NootherchangesweremadeintheseTechnical Specifications during1986.1 0pgI/4r>~a'fgi~J~>~eOW~I'<~g~J~4>i'a~t~>laJ' NON-RADIOLOGICAL ENVIRONMENTAL OPERATING REPORTEnvironmental Protection Plan(EPP)III.A.lPlantDesignandOperation Therewerenochangesinstationdesign,testsorexperiments performed whichconstituted anunreviewed environmental question.
Theconstruction activities performed in1986whichledtohook-upoftheLakeTownshipwatersupply,officeextension andassociated sewagetreatment expansion, andtraining/simulator facilityreportedintheenvironmental evaluations inthe1985AnnualEnvironmental Operating Reportresultedinnoadverseenvironmental impact.Oneenvironmental evaluation wasconducted todetermine whetherconstruction activities associated withtheupgradeandtemporary useofthebeachaccessroadwhichisincludedasAppendix1.2tothisdocument.
Basedonthisevaluation, itwasconcluded thatwithpropermitigation practices therewouldbenoadverseenvironmental impactarisingfromtheproposedactivity.
III.A.2Reporting RelatedtotheNPDESPermitandStateCertification Notifications madetotheMichiganDepartment ofNaturalResources regarding theNPDESPermitarelistedunderNonroutine Reportswhichcomprises Appendix1.3to C~rgC'I~~,r thisdocument.
ZII.B.Environmental
-Monitoring.,
IIZ.B.1.Herbicide Application KrovarIandOust'wereused-forbaregroundweedcontrolintheareasandconcentrations specified intheattachedletterfromL.A.ShepardtoH.E.Brooks(Appendix 1.4).Atotalof303poundsofKrovarIand2.6poundsofOustwereappliedtoapproximately forty(40)acreswithintheownercontrolled areain1996.Therewerenoapplications oftheherbicide Torden101Ras.therewasnotransmission lineright-of-way maintenance performe'd withintheownercontrolled areain1986.IZZZ.C'quaticStudies,During1986threeaquaticstudieswereperformed fortheDonaldC.CookNuclearPlant.ZII.C;1Corbicula Monitoring ProgramAspartoftheCorbicula Monitoring Program,performed
,inaccordance withourresponsetotheNRCIEBulletin81-03;entrainment, diver-collected sandandgravelsamples,andbeachareasattheDonaldC.CookNuclearPlantwereexaminedforthepresenceoftheAsiaticclam,Corbicula fl'uminea.
Noveligers, smalloradultclams,oremptyshellsweredetectedinanyofthesampling.
Todate,inspections oflakewatersystemsforbiofouling, conducted byEnvironmental Sectionpersonnel haveindicated noevidenceofCorbicula.
TheCookPlantCorbicula Monitoring Programconducted bytheUniversity ofMichiganwillcontinuein1987,aswellasin-houseinspections oflakewatersystems.Forfurtherinformation concerning theCorbicula Monitoring Programresultsfor1986,pleaserefertoAppendix1.5.
~~b~
III.C.2DiverAssessment oftheInshoreSoutheastern LakeMichician Environment NeartheD..C.CookNuclear.Plant1973-1982 Thisreportisasummaryandanalysisofobservations'ade bydiversinsoutheastern LakeMichigannear.theD.-C.CookNuclearPlantfrom1970to1982.Thisinvestigation wasonecomponent ofamulti-disciplinary environmental impactstudyconducted bytheGreatLakesResearchDivision, University ofMichigan, fortheDonaldC.CookNuclearPlant.Overallscopeofworkincluded:
physicalstudies-hydrology, sediments, shoreerosion,iceeffects;chemicalstudies-standardwaterchemistry, nutrients, tracemetals;andbiological studies-psammo-littoral organisms, periphyton, algae,zooplankton, benthos,andfish.Xnaddition, studiesbyotheragenciesincludedradiological work,weatherandcurrents, thermalplumemapping,terrestrial floraandfauna,andotherenvironmental, sociological, andeconomicassessments associated withplantsiteselection andpreconstruction activities.
Zn1986,thevariousstudiesconducted bytheGreatLakesResearchDivisionwereintegrated intoanoverviewoftheaquaticenvironment ofthestudyarea.Thepurposeoftheunderwater assessment programwastogatherdataviadirectobservation oranalysisofhand-collected samples.Information amassedthroughtheseeffortswasusedtocollaborate oraugmentotherstudiesattheCookPlantandtoprovideauniqueassessment oftheaquaticenvironment, itsecology,andplantinduced effects.Forfurtherinformation onthisreport,pleaserefertoAppendix1.6ofthisdocument.
.NuclearPowerPlantThisreportdocuments indetailtheprocedures usedandtheprogramswritteninestablishing thedatabasemanagement systemfortheD.C.Cookecological studyanddescribes thedatacontained inthedatabaseaswellasthewayinwhichthesedatacanbeaccessed.
Thisdocumentation canbeusedasareference whenaccessing thedatabaseandtoclarifyquestions thatariseduringtheuseofthis system.Forfurtherinformation concerning thisreport,pleaserefertoAppendixl.7of'hisdocument.
4~
IVRADIOLOGICAL ENVIRONMENTAL MONITORING'ROGRAM'REMP)
'V.AChangesorControltotheREMPAsdiscussed above,theD.C.CookNuclearPlantUnit1andUnit2Technical Specifications werechangedin1986toremoveNewBuffaloasadrinkingwatersamplelocation.
TwonewmilkfarmswereaddedtotheREMPduring1986onNovember21,1986.TheseweretheZelmerandTheWarmbienMilkFarms.During1986,ControlsforEnvironmental Pollution, Inc.(CEP)hasconducted theREMPsampleanalysis, exceptforsurfaceanddrinkingwatersamples.UpuntilMarchof1986,plantchemistry personnel wereperforming theradiological analysisforthesurfaceanddrinkingwaterrequirements.
Duringthereviewofthedataforthe1985AnnualEnvironmental Operating Report,itwasdiscovered thatthecountingmethodology usedbytheplantpersonnel wasunabletomeettheTechnical Specification 4-12.1LowerLimitsofDetectability requirements withoutusingexcessively largesamplevolumesandextremely longcounttimes.Tocorrectthisproblem,surfaceanddrinkingwatersamplesweresenttoourREMPcontractor foranalysisbeginning inAprilof1986.Thismatterwasdiscussed inmoredetailinthespecialreportwhichwassubmitted totheNRCRegionIIIofficeonMay1,1986.During1986samplingfortheRadiological Environmental Monitoring Programwasaccomplished bybothplantandcontractor personnel.
UpuntilNovemberof1986,contractor personnel wereresponsible fortheallREMPsamplesexceptfordrinkingand-surface watersamples,andforfishsamples.OnNovember1,1986plantpersonnel tookoverresponsibility forcollection ofthesesamples.Inaddition, plantpersonnel havehadcontinuous responsibility forthecollection ofdrinkingandsurfacewatersamplesaswellasfishsamplecollection.
Zngeneral,theAnnualEnvironmental Operating, Reportshowsnoobservable effectonthesurrounding.
environment fromtheoperation
.oftheDonaldC.'ookNuclearPlant,Units1and2.Forfurtherinformation concerning theRadiological Environmental Monitoring Program,pleaseseeAppendices 2.1and2.2whichcontaintheresultsofthecontractor andplantperformed analysisonenvironmental samples.IV.BSpecialSampleCollection ProgramReportOnSeptember 10,1986,areportwasissuedtotheNRC.inresponsetoNRCZEInformation Notice86-32,"RequestforCollection ofLicenseeRadioactivity Measurements Attributed totheChernobyl NuclearPlantAccident."
Theenhancedsamplecollects,on andanalysisprogramwasinitiated onMay3,1986andcontinued throughJuly3,1986bywhichtimethelevelsofobservedactivityhadreturnedtobackground levels.Thepurposeofthisenhancedmonitoring programwastoevaluatethelevelsofradioactive falloutresulting fromtheChernobyl NuclearPlantaccidentandtoassurethatanyactivitydetectedinourenvironmental programwasproperlyidentified astothesource.Concurrent with.andupon.completion oftheenhancedenvironmental samplecollection andanalysisprogram,ourroutineradiological environmental samplecollection andanalysisprogramcontinued "uninterrupted.
TheresultsoftheroutineREMPresultsarecontained inAppendix2.1ofthisReportandtheresultsoftheenhancedsamplingandanalysisprogramarereportedinAppendix2.3tothisreport.IV.C.LandUseCensusZV.C.1AnnualMilkFarmSurveyTheannualmilkfarmsurveyfor1986wascompleted onSeptember 12,1986,usingtheupdatedMilkFarmListfromtheMichiganDepartment ofAgriculture andthepreviousyear'smilkfarmsurveymap.Nealsocontacted BerrienCountyfarmersbyphoneinperforming thissurvey.Anewmilkfarmsurveymapandlistwerecompleted according totheappropriate Plantprocedure.
Changeswereidentified fromthepreviousyearfortheclosestmilkfarmintheninelandcoveringmeteorological sectorswithinthefive(5)mileemergency planningzone.Thecomparison results
betweenthereporting year(1986)andtheprioryear(1985)areshowninAppendix2.4tothisreport.Two(2)newmilkfarmswereaddedtooursampling'-.
programasaresultof.thefindingsofthe1986annualmilkfarmsurvey.OnNovember21,1986,the.-Zelmer Farm(4.75milesSSE,SectorH)andtheWarmbienFarm(7;8milesS,SectorJ)wereinitiated intotheroutinemilkfarmsamplingprogram.Inadditiontothesetwofarmsaddedtotheprogram,two(2)farmsinSectorFwerecontacted forpossibleinclusion inthesamplingprogram,buttheyindicated thattheydidnotwishtoparticipate intheprogram.IV.C.2AnnualResidential LandUseSurveyThe1986Residential LandUseSurveywascompleted onAugust20,1986usingtheupdatedlistofnewbuildingpermitsfromLakeTownshipandthepreviousyear'ssurvey.map.Therewerenonewresidences havinganewbuildingpermitandwhichwerelocatedcloserthanthepreviousyear'sclosestresidence ineachofthenine(9)landcoveringmeteorological sectorswithinthefivemileemergency planningzone.Thecomparison resultsoftheresidential landusesurveyfor1985and1986arefoundinAppendix2.5tothisReport.IV.DCondition ReportsIn1986,four(4)condition reportswereissuedwithrespecttotheREMP.Theyareidentified belowandaremorefullydocumented inAppendix2.6ofthisReport.Thefourcondition reportsissued:1)12-04-86-388
'pecialreportforviolation ofT/STable4.12-1LLDlimitsfordrinkingandsurfacewatersamples.2)2-04-86-474 3)12-10-86-1165 Xe-138LLDlimitinexcessofT/SlimitforUpperContainment Purge.Unplanned partialreleaseofgasdecaytank.4)12-11-86-1347 Violation ofallowable intervalforcollection ofenvironmental airsamples.
Appendix1.11REQUESTED CHANGETONPDESPERMITMI0005827 ATTACHMENT 8INgIPNP.gMICHIGANELECTRICCOMPANY"P,O.8OX.ldd3l
"'OLLJQ8US, OHIO.iieldJanuary22,1987AEP:NRC:0170C 10CFR50.36(b)DonaldC.CookNuclearPlantUnitNos.1and2DockecNos.50-315and50-316'i.cense Nos.DPR-58andDPR-74NATIONALPOLLUTANT DISCHARGE ELIMINATION SYSTEM(NPDES)PERMITNuclearRegulatory Commission Attn:DocumentControlDeskWashington, D.C.20555
DearSf.rs:
Inaccordance wichSecti.on3.2ofAppendixB(Environmencal Proceccion Plan)oftheDonaLdC.CookNucLearPlaneUnicNos.1and2FacilityOperating Li,cense, attachedi.sacopyofanappLicacion cotheStaceofMichi.gan Department ofNacuralResources formodificaci.on oftheD.C.CookNPDESPermitNo.MI0005827.Thisappli.cation isforyourinformacion onlyandhasbeensubmicted tocheStaceofMichigan=orapprovalofafaci.licy changewhichwouldallowdischarge ofmake-upplantprefilter backwashwatertoLakeMichigan.
Thisdocumenthasbeenpreoaredfollowing Corporate procedures whichincorporace areasonable secofcontrolstoinsurei.csaccuracyandcompleceness priorcosignacure bychendersigned.
'1erytru'vyours,cmAttachment M..Aleich".icePesident,~>>9cc:Jonn"-.DolanG.Smith.Jr.-Br'dgmanR.C.CallenG.Bruchmann G.Charnoff.'fRCResidentInspector
-Br'dgmanJ.G.Keppler-Regi.onIII AEP:mC:0170C-2-ATTACHMENT 8bc:J.G..Feinstein/M.
M;EvartsS.H.Horovitz/7.
0.Argenta/R..-
C.CarruthJ.J.Narkovsky/S.
H.Steinhart/P.
G.SchoepE/G.'.,w'right R.W.Jurgensen R.F.KroegerM.L.Hozvath-BridgmanE.A.Norse-BridgmanC.A.EriksonJ.B.ShinnockJ.A.Druckemiller J.Fryer/D.Fitzgerald-Stuart D.L.Vigglnton, NRC~washington, D.C.AEP:NRC:0170C DC-N-6015.1
ATTACHMENT BATTACHMENT TOAEP:NRC:017OC NPDESPERMITAPPLICATION LETTERFROMJACKA.DRUCKEMILLER (I&NECo)TOPAULD.ZUGGER(MICHIGAN DEPARTMENT OFNATURALRESOURCES),
DATEDDECEMBER23,1986 Attachment toAEP:NRC:0170C ATTACHMENT 8eeeseeee
,WIJIaNAh,eICWuaN ELECTRICCON/'~~V-ON4$~~'P.o.soX40,.COATWAYNE.IN~1~++Pcp%g1tl4252111IDecember23,1986PaulD.'ugger, Executive Secretary WarerResources Commission Deparcmenr.'f NacuralResaurces P:0.'Box'3Q028 Lansing,michigan48909
DeariW.Zugger:
'E:DonaldC.CookNuc3.earPlantIDESPermitNo.MI0005827 Enclose'd isarevisedindustrial andCoamercial Wastewater Discharge Appli'ca'cion forcheDonaldC.CookNuclearPlant.Thisapplication is:submitted forapprovalofafacilitychange.fgThefaci3.ity changeinvolvesrerouting ofMakeupPlantPrefilcer back-washwarerroLakeN.chiganviaoutfalls001or002(Unit1andUnit2discharges).
Thefilterbackvashvateriscurrently discharged tothePlant',sTurbineRoomSump,vhichsubsequently discharges toanonsiceAbsorption Pond.Theabilitytodischarge thiseffluenttoLakeMichiganvould'aid usinperforming repairscochesumpandvouldallovustoreducethevolumeofgroundvarer discharges.
Screening dataforthisvastesrreamisprovidedintheenclasedapplicatian.
Noterhatchelinediagramflovsheec forSeccion1,Item6isaspra-posed,reflectng theplannedrerouring oichefilterbackvashwater.'IYourtimelyconsideration ofcherequescforfaci3.ity modification isappreciated sincerepairsoftheTurbineRoomSumparescheduled forearly1987.Pleasecallmeifyourequireinformation orhaveanyquestions regarding theinformation provided.
Wevouldbehappyromeecwiththepeopleresponsible fordraftingchepermitmodification,
-~.Verytrulyyours,,~'.cz~J~~JackA.Druckemiller
~anagerof"nv'ronmental AffairsJAD/dfEnc3.osure c:W.C.Smith,Jr.
ATTACHHENT 8SECTIONKTJAI.O.%54(KRPERMITNUMBERi~M8647e>>SEEINSTRUCTIONS ONREYERSE SIOE-',APPLICATION FOROISCHAERMtKR)(fIIT(cttES(QT(tt(
IdtrItcREAsED I(5K~RK(55IJAJKK C30slTEMPHYSICALLOCAT(dft AOORKSSAHOPARK(ITCfttlt(T/tie./Ode(t
">>TYPECfFACIL(TYF.STREETIAPZERSTREET'WCIIIIC'II>>CITYIWCDIYJNSIKAMP(fttfCRfAC(tI&II>IIIIe>>KeSTAtt)JRO (ttAJSTRIFC, CLASS(f(CATICN(RErERTOTA(LKll)leZ(P~IHFORMAT14H J,IOOCDIIPC'ss~~st~IIIXeCCQ(TT(RKFeTOTARLK()L>>tIJPKCfJtt(III&~a(ACTteÃtTITLEI'"SSII>>~e>>AAXERII~OeACQCSS(IfDIFFTRQIT PREJASTVK)I~L2'>A>L4ZPsC(TYtWCOeSTATEReE(PCXX5,IYPKOfTZKA~uTcACP(IY-.4SAK(I)IfeSACR~PtdRJISAL,FACEEl-.C3t.Cl..T,IRSRIAdfICREFFECT(>IK RE5(DWStsdtIFOETKTIT Q~QIoE3R.A.DATE(tftsfemn VePOLL(IT(ttl (IC((KNTPREVQITICII PI>>AIIr.WRNICfSAIIKl%E5 p~XeTTPKOfOISCARCEQSIttfActrATSRQV,OO~&vtAClsffff(ED CPSRATOI?
a-CPEJJ4T(JI5~D.PFACI1Y4CERTIFfCATICJI SIs1TEM2MAILINGAOORKSSOfAPPLICANT A~WICI~sI~Se<WCN>D~'KANA&~sit>ZCH>j>G>A>N>>E>L>E,C>T,R I>>C~C>0CeSTREETJCCRKSS&POSTCFFICKÃXOeCl'IYtt>PKdt'It(O5I~a4I't~I>>)sSTAIKZIPCXK,4.680~1eI,t~ttdIICJ>>st, Ctttt~I~tttide>>>IsI~JtsdJl>Jetddttetss>t J>>sd>tttOII~>>effI>>stol~~s>>>tse~t>~,Jcc>>etd~>>s>>>>>4d>>eds~to,ddt1>O~I~~'OItlatJ>>edWlQtw,>>etIvdtttdddtttttdltttdIhdye~dellttt~s>>1etd<<>Otdttdh1>>sd>stffdd InWI~IOOIICJtl J>t4ff.>>>>1J~*dttet>ed>Iese>>td~tttltet>Cd>>>1>e>
~edtddtts>>S>>>>>d t'>>~t>>etd~dtldts, IJdl~d>~'+JtOttttt+~tet>>dtdjht1>J>>ss~>CJ>>>>~Jt>>>>~Itldttds>set>sett
~l>>>>tf~>>idIt>tdtt>>tttdtt tCI~III+5(~IATOFE CFAtti:mT5('CIIATCAE CFLOCALC>,IEA>dsfdfAI.
AttdtSEIIIAT('It (SEE1OftOIIAIYTASESIX)L'~~((geltx39tVicePz'~~>ttt~CvJP15 SEEINSTRUCTlONS ONREVERSESlOESECTlOHlATTACHMENT 8FKRMfTHu~~'~HI0005827
)TEM3SOURCEOlcWATKRSUPPLYPESIICIFAL 1gggrACEWTCEItffsttEticPECfc'ccATEcSCAY aAtCTITYIWX.)C,PIIIYATE~~ffvHer.)fELEfcS/WY'.
cf)eRcprcv)TEM4FACILITYWATKRUSAGEITEM5FCRITICALtcctec'FsIEIsf&4E PAVPCTEII tAPNEAtfI.vItcctt,>WeCPSIEISTAtCE auWtITY(~.)PceCESS~TE)fIIICLACIt4
~JETCCCLISG~feil)a.tEYEETtfACT Ca@.I:a~TER~TITVftcAtt.)C,SAICIT~ccAfER",SrTVt..)C.CT)eIIrccvcaALEEfcs/nAY, CPELCte/EAT IEEEpcs/nAY GLLlCNS/5A MATERIALS PRIORITYPOI.LUTANTSUSEDSTOREDPRODUCEDCL'ccvIcCPIIPtteER tapgfRfsttttfIIY~CPSmST~cEEptftptets/I tlpegOkVPITYREFERTOTABLESIVAVIPOUNDSGALLONSCUBICYARDS4TQNSccIatccteCPSu)ST"CEpcAcre.-E MpnaCiiPtttITY
!litecpsufsttt4E PcAtreTEct'APACE~CuctttItYticpecpsisstAtcE PIPteTEIItAPSGIted%CPSINSTAtCE PcAA"ETOI lCl~OtAtttltfI1IIIIetclfsLJ/YEAtfNochangeEzofninfoznfanion pzevfousLy pzovtded.
~,
SEEINSTRUCTIONS ONREVERSESIOEiSECTIONIPERMITNUMBER~~Hl0005827 ATTACHMENT
.8lTEM6vA,JCI"ICE ASRISfQSSCRt~ttat NOuteaip4RJHQo'Itetta~TSR'Lo'HKLGM.hug RICII.ITY iqalINTA~ttlClschuaa9c4J.CRSRATIa CISPrWSViltlS
'>>AS'>ilRil>
IICIASItte FROIXSSACI~ICNAelfA>>SJIIITJRY
~Sttttt>IR a>etATtaCS IRtt)ASIIAgQIIT,beIrAtKR54ACE~,SICR.>WV4CRICkS:QChllIASt&IRICAtlT ASKS<FrrATSRTORCCLClt>>'eASUCT%RIS
~AVAILAbtE:
rlbeISIISS IISS7CUISSSTSSTII'ATS,'-
AIIOQIAIIRAI>t Seelinediagramonfoll.owing page.
IronUnitIor2WtcupVaterPlanYISO,OOOIb/hrWlnHLbolterbaci-UpHt.NellHo.lPotabl~andrNarNellHo.2InternalOut/allOOC(NI396)0.0liNGOAvb.Ylsltor'CenteIPl~IltSanitary$/,000GPOfaten4c4AerationSIPOutfallOOC(NlStt)OuatSeepa9etaboonsOperatedAlternately O.OISIeibArb.~.0)))CO.HaaOutfallUOI(Ml191)<ICIltulIalIgQl200'//shore lllbHGDAvb.~I2/INGOWaulrrralel northCetshlaslnIVIIsscntl~IbervfrcHater24.8~r~UnftIsssh98ay~ISteinInternalOutfallOOA(HI)9/).0.II2ICDAv..0.266HGOWaHorssaIFlashUnitIStnGenStart.UpFlashOutfall00)'(l)Intise~trlb IntaielorcbaykUnftIWtc-UpHaterPlantUnit2Hain-UpHaterPlantRe9eneratlon FurblneRoonSunpl.8l2Outfall(Nl3/i)do<ItcAbsorption
.PondOutfall002(Nl)9i)(ICIfitlliIllI>Ql200'ffshore li2SHCDAvb.,II/8NCDWaHssslulRriIsscnlI~IServscelsetcr28.8ILOUnit2SteinCundrnHorasalFlashlaniStart-Uplashlani!nPlantSunpslscFloorDralUnit2tnnInternalOutfall008Ml398O.I09It'0Avb.~0.282IIMHcatateHlshlban.Stulnurter SouthCatchbasinS02tOutfall00IOe.1sIniUsch9uesusedi2daysInIbdi--22iNlAr9..419NSOWa'sOutfallOOFPrefl)tiy4tiuathtaUnitIorUnit2Olstharbe bay0.0912HGOavb.Nasteua:cr FlouOl~bran,l98iDonal4t.CoolNuclearPlantC.C.Hsrk-2/20/4SRevla,ed-II/Ib/86 ATTACHMENT B5ectionI,Item6,cont'd.OutfallOescriptions OutfallOOF-Pre-Filter BackwashMake-upwaterofultra-high purityisrequiredforthesteamgenerators.
Thefirststepintreatingintakelakewaterissolidsremovalusingmulti-mediafilters.Thefiltersarecalledpre-filters sincetheyaretheinitialstepinthetreatment process.Alum(aluminum sulfate)isinjectedintothewatersupplyupstreamofthepre-filters toactasacoagulant onthefiltermedia.Mhenthepre-filters aresaturated withsolidsremovedfromthelakewater,thepre-filters arebackwashed withadditional lakewater,andthesolidsareflushedtotheturbineroomsumpthendischarged toanon-siteabsorption pond.Theproposedplantmodification wouldreroutethepre-filter backwashtoLakeMichigan.
TherewouldbeasmallnetincreaseintheamountofsolidsreturnedtoLakeMIchiganasaresultofthealumaddedduringtreatment.
Thedesignmaximumamountofalumwhichcouldbeusedis624lbalumperdaywhichwouldcauseanetincreaseof0.05ppmsolidswhendischarged throughOutfall001or0.04ppmsolidswhendischarged throughOutfall002.Theattachedscreening datashowthatthetypicalpre-filter backwashcontainsonly1.7ug/1aluminumand25ug/1sulfate.
SEEINSTRUCTIONS ONREVERSESIOESECTION1PERMIT~,NuueER~~o<<>g~7A!TACHME!Il' ITEM7A,HCNICSl!'ANM'.%Q~e~~IIIgy~III~~<IO!S!eS'!IO~ETIO!mQIsotkeaR)I!It(S)
!!SS4~[~BIO!g~I!meeISESIm<S:iZK,II.OCATION MAPSeetopomaponfollowing page.II~I21
,vO>aa4~~~vvJ~ote'l00hUnitlStcamCenerator BloudounOOBllnlt2S$teamCenerator BloudounOOChlrHeatingBoilerBloudou>>Arealldlscharg<<d thruOOIor002OOPHakeupPlantPrefitter Backwashdischarged thru00lor002BRIDOMAN.
MICH.ter~$4444oawSl$OUanalH0$
a)44)52.5-W86301).S
)970A$4s$44)IIIF.-afalfa va42Wavcrland Veach8'rinking WaterWellsatResidences ISSIas!;I".-..-...-~:-x~,.-i-'.-9--$~~4pL4$IU4LI44NUIU00IIII.I..:-:.il:;,~-"
-"'=A.":.aIgwp$44llaII--~.':.I:.=--:~
-,.)$$IIIIiaP)4QO4IlIII'IIUN$0iULI.IJ.:IIA.I..lCO)l)OuRI)I)ERVAL lofeltOAI4$$4ISIIKAIISIA4CVf4"(".-./t'!.'.:lN033~'~4$k'S.~f~~IUrh~~~Ic~Ool003UHlTSl12DEICIHC002UNIT2HONCONTACT COOLIHCOODOHSlTEABSORPTIOll PONDOOESEWAGEhBSORl'TION FIELDSS02STOWMATNDTSCIIARGE SOUTIII~al'l'>>Il.l)rl>>kl>>g WaterWellsS01STORHWATER 0ISCIWRGENORTII,.,ary QUNl'l'HONCOH'l'ACT COOl.fHC0+yU4$$l'0~~~+y~I~I~.r$~~v.'I'gL)f44l."~J.:Croundua terHonitoring Wellso)(I.Uri4.4$~~"4~44~~~ICrounduaterHo>>ltorl>>gWella.DrinkingWaterWellsatReside>>ces 4",4"4I'~y\<'-.q)jv~~I').'.f'..Ix41.-~
~I/~I/is4..Qt4V4&44 ceoaI~~~gE~/~N$$j../':0I4/0PropertyBoundaryIIIS~04IIIvln)INIUII
~I~I4C44p~~~I4$+lO~~~hfr~I~~(~4>>ll$4~IIlClm SEEINSTRUCTICNS QNREVERSESIONSECTIONIATTACHMENT 8PERMITHUMBER~HI0005827 (4'lC(tCPQIATEAs>>CENTRATED AN(ssfLFEE@((4FACIL(IYI (tft4CO(IT(ascii TQIIQI{g)CONCENTITATEDANIMALFEEDINGOPERAT(ONgiIEGERCfASSISIt(ED?CROSP(IR)STITFEED(t40, CiIFle%15CPSImf(r~sIIASAAtt/FfQ(VQ(5(CN GENIALSTS(TSISEBIC4TIIICTEDT (IF!4,Cttf(IAKTQ(Tgl'3)DiIGITT($DC~IGI5(5($PXDECSITICLSTSTPF,C)ECt((NEOf1%?CLI>>II!4 A(4QITQIMtf!QICt'VIESOPRAINQII~~IiIIIEiIAIAT($IHEtAJSERCFL<<IESCFC'dt(RIS(tftt4 CRA(NIQE.
a&ATIS54~~(CIIMFEIYFACTORFQRDIISI>>NTRCLSYSTQI7Q9'TE?R,2(IIcXRSD551Q25m+@~mdQOT)EN(5?ECIFY)
Ll~u~r~INSETSItOES'~~IICIE5'.fTEM9TYPE5NUM8EI(OFANIMALSINOPENANDHOUSEDCONFINEMENT III4>>l44ncI4nI4~I>>AeLISTsSEOFA(I(ateSsGIVE>sE:A(SQI CFIH($TYPECf&NIL(NCPQICSPts~CQtVE~?IIT'3ER CPAt($aeECFAtl(MAL(NHX(EDC>>PI:~"sT.AiC(Sf'eeEO?'INAte 5~GIVEttc:At'SER CF11IISTTTIEOFAII(PAL(NCPQI(3P(Mcttf.C.Q(VE'WE!At~CFtH($IYPECFAti(W.tNICV(EDC.!SII:IT.Ae't(STTYPECFAtttssAL.
SaGIVEIIIEA?SERCfIH(3tYPECFAAINCL(ttCPQICw'sF(IAP~~CeQ(VEt)EN?SQ(CPIMSIYPECfAIIL~l!IKlt(IDCSt!f?'QIT
~AeLISTTYIIEOfAtl(N?L~SiGIVE1eEIC?SfilCFTHISsSECF&I?WtNCPBI(3!NfItQ%NTeCaQ(VEIHEIA?SQ(CF(HIS~CFAN(PALINICIISEDWsSI'S'~IY As1.(STTY?ECFAtlIts?LeSeGIVEIHEICJ13EROF11IISIY?ECFJN(taALINCPQI<<.Flth&VT.CeQ('sEtteEIA?SERCFIH(SIYPECfAN&it(NIC(t(EDI!SI'~,sfeif Ast(ST'sSECFJ?IIN?LsSiG(VEDE'C?SEIICF(HIS'eaEOFAN(NILI!IOPQICOIFI!.Estf.CQIV'E.>>EIA?8EROFIHISIYPEOF&(PAL(NIC(t(EDCCISIref?EstfAeI.IST,IPECfAlttnk.s5GIVEDCatSQ(CFTH($IY?EAAN(tact:N V%A~sf'ITC.QIIEI%Etc?SQI CF:HISs"IEECFINI?IN.IN~C<<!PI:Kt%tP.A~ttSTTIPS".fIIIINIL.b.<<if.O'E!CIAA<<?iHIStf?E'iANirALIN0(DIFIN~'P.C.C('eiIHEIA?SERCF(HISiltsE"iAN(."AtINIOIISED"'St!EsEttf.
IsIIIIIIIIIIIIIIIeIIIIIsIIe SEEINSTRUCTIONS Ot4REYERSESIDESECTIONIATNUMBFR5NI0005827 PERMIT,'TEM10AQUATICAPIIMALPAODUTION FACILITYTICAN!ru.PRCKACTICN FACILITY?
(tFtd.CONTI!adTOt~g>>ttdtCATKMTOTALIAPTKROFPOCS.RACKHAYSA!dSt!5I4+STXACIISIKS ATYTKIIFACILITI, SPECIFYIiCaItd!CATEtao'~IOI~zV4HSNIHNAÃttlflre)titLOCCUIS~OCIISII%AL'l/%tIIFPOUCS"FRZOF87DRIIdaHIS.LY,TH?AaISitHISSP'ECtCA~ICRCOLO'WfdtSPECIE.a.SINKIHKV"!-L~THISSPECIE.~.laaaaa.I~SPECIESOFAQUATICAIIIMAI.SPAODUCKDATTIII5FACII.ITYV>>4ICLolC.5!ITKRfnETOfALHARYKSTABLE KIOITOFTHISSPECIEooOCAC>Sv~ISAGILITYocB"SQINP9fd5~Oic.'aTV~~KvAXIPXPcnEICIIToOKSKNTCCRIHI5SPECIEWCICH'AXL5AEoRESnlf YORICPPW.CPKOATICNa IAatn!55IIEC;EevaN4~ICKIERSPcCIEYGIYK'aaKIW<OFIiHlSSPECIKaCaKNfKRK'ibT4~a'RVESTABLK RIGHTOFTiHtSSPECIEPoOOUCKOAYavtlPACILalTY oKRYEANINPOLfdS~OiLRfcRfoEma'Ott>:oltGHfOoESdff~IHISSPECIE~ICHKlc'a~'ICLltVRQL,CP9ATICNa A,ISPI!ISSPEC!KA>>aaNCRCC4)nAIKRSPECIE?SaGll'K'aaEINCCFTiHlSSPcZIKiC.cJlcRMTOTALHAITVESf~
'WIGHTOFIHISSPECIK OWCV~i!CXCITVOCRVCIRINC0c'ITKR"nc"AXI'IPI<IGHTPRKSKIITFORIHISSPECIEWIOI~t"X=>>cIEa'T Iat'~AL&ERATIQt.
AaIStHISSPECIEAHCRNCRCRDHITUISPECIK?BaGIYKTnEIF'KCFTHtS5PECIEaC.KNIERa>KTOaALrkhESTABLE HEIGHTOF!HISSPECIE0+09XIDIYTHISPAC;LiTVoERYEARIN4XTOS.OaENYO>iE~I.IflWIGHTPRESETFdtIHI5SPECIEHCICH~IKPOKSCIT TOPI~OPCRATICN AaIS!HIS5PECIEAnAPI!ORCIXDIocfEIISPECIE?SaGIIK'IIKate%OFTHISSPKCIEaENTER<<w.<<,ALnARVESTABLE
'nKIGnTOF'IHISSPECIEtv.'~A~Sv'.IIISF&PI~IocRccARINPOLICS,5;PiER.m"AX!'LflHEIGnTPRESENTFOIiHI5SPECIENCICH:oclcNTIOLIIICPPlcLMRATII.A.ISTIIISSPECIEAHARlORCLJnctKRSPECIE.IIIIIIPvXPdSS.Gt'IK:IIK hrWCF!HISSPECIE.CacHTKRIY4TOTALnCRVESa4?l
-<:~a4WISSPECIE IaoavlgcD Xv,a!IXXC~Iaacocao"IIKR5CNAXIltllvKISCPRESENT5RIIIISSPECIE~laVW<a>~cteiCJI'r~IIIIII~IIII~~~~~~
SFCTlONIPERMlTNUMBER~~MI0005827 8ITEMLIST~JtO'AILI!0NKRKSS.N~PQQPfgft044FS~,IQneIRKAI%AT,PKILITi llOCA5!~OI~~,MAILINGOFAOJACKNTPROPKRTYOWNKRSNochangefrominformation previously provided.
';29 E(NSTRUCTIONS NREVERSES(OESECTIONIfATTACHMENT(T BlG0005827
'eeI4re,ITFMOISCHARAMIELOCATIONQJ(FILLi1K(AeUXl'rttbl CPOISCWRCK',
INCILECELVIICI'leEYTR'IE~YELL CRNf/ECPILRFACE.>>,f>>AeC.LLSXllOIODA%KMASCttfLLY.
(lpNsCQptrtuaroK)O,IFYESLISTOISC4iKEtfEILCOSeI/e./OAYee/IS,/OAVPI.OW-RATEWASTEWATKR ZXLCSQRLICONTACTCOOLLNQ2HONCONTACT COOLNQPROCESS4SANITARY5STORMWATER (i~IT(~IMQT2MQOGPOtTEM2E~LftNQAFFLI(lrtct YAtKFsrrr>>ECF'~MIENOIS(?tfAOE OISCNA/fCE SCALES(YKPALYAVEFPCE)IN>>/Hls~~~Hie/CAYLN,/Lft,~~LJ~~wCIffAS>>>SLALER LYFE~LJICLRS/CAY OLY/YEA/I
~KL5JH.O!SCNA>>XE FLCNPATtILLTALYKPALYCALLYNINIHJICltLY/fAXL/5JL 0.972tttlvCOLE~2LLJJsl%(l?VICKSLCLQLS(?f/IOE FLatPAYK>>xrcuLSE~tvmrArwrrmtrtvEsLQIILKATrcLRoic?fAAAEY LiF/AI.~L.LKTotrn3)bs~F>>rf(rta<.
JldfQKNICPLC?P05trt(N (Pt(>>ESEACOITIVKS>>
CESI(It0jei?IENAXL~OLSCWRCEPISSYftALKYQSKAt/t?fCRI~
INt>>LRIIT~fpttrcxK4IWATERTREATMENT AOOITIVES UhfeecereIMg/I2Vg/ICe!WEALP/EIACCRES5CF/fP/AP~>>OFlt>>ESEPCOLTIVTS>>
O>>~eOLSOfP/f(E COCENtrtATICN CFAOIITIVES>>
ACOITLYENP/EACOITLVKNA/KPCIIITIVE/ff/E/fLNQtPIMfttSAVKRAOEMttrbPli'rtt/tPt LtrtrtCAKCLEADCOCKLJ;~LJ:~LJLJ:~LJE.mYet/LREATQEQLS(Notre m~mtrtvKS?F.fAfATISQ>>KftQCVALEFFI(IOf(v
//0CIS(ffAACE
>>AE~ACO!rlvE!P/EPCOtrtvK'ff/vtQ"51eCvPLfRS>>/CAr~IOAYS/feet eImtrtvK.~O~ASPNAlAC?t'5'IY:Q
'f>>LSAF>>e>>,CAf'I
~LCKIFE(svt(A~PL'PNatACLtArt(,
XI'a'V,'(PL CAYAatAEFgQCE+HIOIP/fEAVALLPSLE A'fOItfFal'Artaf c/I~EplrEa:(E~L:afwm~F(RF~ptrStrtvK.
31 SEEINSTRUCTIONS QNREVERSESlOE~SECTIONII4PERMITNUMBER~)G0005827 CiHQ..'IJ$
gITEM'.3A>>le%O'ICCESSCCNIIL(ifflt4 IOOCOISCBWE>>K OFT1XNI(I(5OITFAAL,NO SICOXES.PRXKSSSCNGXAX(YQILLYAVE(LACK).
~00TIetjts/CAT LCL2J*TUItfCf/(PROCESSSTREAMSCONTRIBUTING TOOUTFALLOISCIIAROE OiPTOCESSPIIOC'JTICTIPATEiVTOTALTQILLYCALLYIIINIHJLOllLYWXINJI0.0'7~6(PL(TSrTtm(I>>0tIPOUNOS2GALLONS3CUBICTAROSATONS5MGYOMGOTGPOAiW%CFPICLQ'5$(NTPISLLT(l4 iO'IEOISQYLRCK
'TLFTNXNr~tsamALL"4SICmP~SQEI4'(AE (TQILLTAVEilJCK) gC.P0(CESS'CLIPS'~AATKOIVCLOiPIICCESSP00QXT(cll AAIKA>>~OFPINESSOfOLISUTIL4 TOII%OISQWLCKfHNAASITHIS:&:0LL ZeSIC(OCESiPit(CESS5QE9AE(TQALYAVEPACE)CiPITXKSS~cuPKFLOIAAIKLIeTOe0>>~0$PICQXTI>AATKt>>444/e>>Y
~'Yt/Y>>4>>
TOTALTQRLYOAILYNINOLJLOl(LYPVAIPLPI(OTALTQALYOl(LYNIN(tsPIOltLY.'VA(tttl LNITSTLSNTS+T(MEHOUR2OAY~3WEE)(4MONTH5YEARAiPW%OFP0OCES'iTS(stfftt4
'OTLEOISQ>>AFOK
~Ž~~40SIC(.L>>E8>>PLIOCKSSSQEOLLELTQALTAVERAGE)CiPI((CESS'4UJKFLI)NAAIKtttt/AY~~>>Y>>/Yt/>>ilffALTQALTOl(LYIIINILTPL OLILT>>ILIIINJI LAITCO>>PRXESSP0COLCTICN
>>TALK.VrLCFPROCESSCWITIISVftt4 TOTIED(504NOEOTIOVH%(5>>InFALLWD5(CCZfSiP0CXESSWCXLZ(TQWLYAVE(LACK)
C>>P0(CESS'AXLEFLCNAAIKP0(XKSSP0COCTI"N AALKIOULS/OAT
>>I4/Y>>4>>tOfkTQALTIL'f>>I(N(ttPI OAILT"AXI'fP4>><~~IILPI(IS~I44LN(tsntrC4IIII4 SEEINSTRUCTIONS ONREVERSESIDESFCTfO,RlIATTACHMENT S'PERCENTNUMBER-~NI0005827 IKF!'Q.NIKE,>>"'1TEM'01'q,~iO'O>>ECRCLPE)'CR A>>ISI!eSQ+rK'4YLCUTFQJ.v(RECAPIC&LPSS!ATERS/
Llf'c)I~(Me(OITa(I"JJ"
'."~*Ht(3(33~(C/C.
S~ICRITSc3((YrLEHT SEKH~CRIS'()ERESLFF(CIKHT
'~I~(~T(clAva((ALEgREIS((PEG Kr~~fKRRESTS(tcK cstltsslct PATT.C.~(KRPLIES(>>Fr(f>>Usf,~((Il$9R.3DcdJ7.(P(GEog)FOR.tHISERLSTL(8CRP(ICPOSG) 0(so@AGE?
IFrESATTProtAcdCFTHEREPOSIT>>GROUNOWATKR DISCHARGE It(FORMATION C.AEYO(,>++sr::G "Ic.'<S~ICH FPOI5(33((ITT(Y(
ArrrCRCGECLCG(CH.
REFCRTLPCERRULER.)b.':7.;:.).Lc.ci(s)GRFpocGRCL(KP(LTKR rL)rtlrcRIIG PEOUIReens Lrt!RCtrc?.)M...aI)L.rGELI~CFMiPLATYSRLLES~IFYESATTACH"C>>rs"0r>>LP~AT((
'ITOCSCICSTRAIK (HATCCLtlOISO(r(A(E ICRAD~IFYPCR'IQ,II,>>'iIAPE!CURSOrcsfHAvr>>tt~c(IOILAE323,~(PPGEGQ)(Xretl(AOATICII)
O4!CCLRCKS 053(CHPAR!2GLCLt(OcC(KR W.S~(F>Es>>ATTPCHLlQICC(CUc'fsAsict!3(ARr TOc>>C"(3RALE'ceYEKDECRAYPR(r(rCK (HTE(tcSCFL)eCA(>>ci1(A4irECIF>>("RAF)Q>>~)PcGE4$)CF%PARTQILES~t(eJr!PANIC; lrI(Yaccert(If((D TO00(COLT(OW.
(!APEXWWYRS>>Olsrc4'iM
(.~Q'Ci!4(si>>CS OOIKHLARA'f ICHITEM5'BC'IYKaY8(ciaIC,<OxcCEYCE~)aa(Oe..C,LL
~ExmAre)i~C(TOTALCM>>(CMKfr)~IArr(TRGGK(i (AsH)TOTALSUSPK'CKO 3J.l'3E)(PECTKO WASTEWATER CHARACETKRISTCSIliliiCQDIli>>>>(>>>>>>(>>C>>($
(iiIMgil2Ug/I3COUNTS/(OOmtAS.U.5'F6I.SS/OAYTCTALRES(CULLOwCR('N:0ISSCLYEOCAYGKrtP!CALCL;cdi(ACic,RtA i'TCPERA'>>>>RE (f(Pt'ER)
Ot!4>>A(L((E (H('iicR) 8>>OTHE!II!LSTKLIA>>>>l OTIC..PIL(si(CSK.':(r:~C(>>E"XA.LEST"C5!4!ICHrRE(H"(CH((PE'5 Qt(TLCPLWLKR(PLSREG(STERTAKE(Y(pcfEorAcct(r.s.!p-"5.~(x;(YpoLLUTAYT L:sr:AKLK vLppGK/)GRrrrro()eRSLGST'MICH~EI"(IAYTS:O'K(r(APILCUS "OO%XS(GHC~iUSESCrrTte(AXK84(TKR CRIOO(EPCELLC~~IHr~r~OISCHCRGcD CRCLPEC.KDrOBEOISOCLRGED TOIteSCVESCCTKR SYLH(sCCC.",Y.ESTO"0'!(1W.cFFLLRHfCO!CK>>((RAT(Crt 4443RECORDALLCATA(rt(T(rt7%SECT(CIIII:(fH(58:0'((LKT.
wrAPPL(C(LBLE/MLIEYKD AESKHTrctESKHT.
oa!APR(P/tfmLR(m7C3(ttt(ScsOE4crt(LL~SAPPY(CLXKLJI~I~I>>ll>>I~pcCHASKAHOURCQMPOSITI:
0Iii...4.A~~III~IIIIIII~(!I~I'I~II~~~'llLI"L~iILILJ~L~IISeeattachedsheetsfordata.35 SEEINSTRUCTIONS 0NREVERSESIDESECTlONllPERMITc(ResNUMSERATTACHMEILIT 9NZ0005cI27.
lTEM6PRIORITYPOLL(ITANTSANOAOOITIONA(.
INFORMATION FORSURFACfWATERDISCHARGE ONLY0%'AJ.'J'6,DeFCLIAsi(NI RSRSSTKD!!FORMATION e)SiiieeACKRKSSKD SLYSLSIFACKCA(KROt~.!i~V5EDISOeARCE&
~'FCOeICE<<~ECTEDVALLESFORDeOIAOIT(flf(VK HgCALLI'fATIVK:~ICI REOLESiio EELQe~lsDi(SFAN.ITYAFR(r~IICuSTRY?
(R~TOTABLEIAFK%c>t.(F4,K)(FYes4TO5)siIIOICTKTTFEOFFR(NARYIIKS(sliY ASI.(5TKOIN'fABLEIAFIT@43.(r.f"~'<<!teeC.)C,XE)ii(5CIITF~SfscriI<<4E
~ATA(liAffPROCESSeeASTDCATER) t(g(CA,SmlcrirC/'15e'4ACT(Q4 "UsfIKTESTEDFCR~BELIE~Re~'~CCI:5eFACTICNOEQIKDiQCHSPC(FtCCF4ANICTQ(fC.OULIffANT ie(TIefkEi'QiPAC.:"-:i
~'1<<'AYEQFCR(SKETASLEItAW)KIgf,tkAf/)IfICNiALLFRIIiARYIi<<e(STAY A)e'<<LNIS
<<!Tie<<FCOCESS'<<AstseAFH OISOIIRIIE
~FCOVICEOOANTITAT(VE
%R<<<<'Qii<<<<IIC~)Mtk~A(LEIIIA<<IrF,<<I),~TAc!IFOFNSFcov(CEDIlistI)lkDI(sBCOFLKfi(CCIT:!IIE el'.<SELL)El.sO'IIIfIiECLAT(LEQEASE/iei(TRAL QACIOQFESTICICE IF"'cLCE~:Dc<<1CKNFL(CLATfeiIINIRY ORSECCNCARY INCLD(RY),
eKr<<IRCLESS IN~1'"V!AeOKS~~~IStsovOIOED FcoeINYoffveLLDerAFNTITAflvKSE<<cov(CeZ.
<<EC<<ROALL<<1A~-iF".FrsIeICVIOED t(TOI7)tkIII($BOOKLET.FitF~iYSLAFiICK~1!EeOfsovW'E~!CUIT(FC(l'PRY CRSECFQAfff I(CVSriiY)
~AEOARCLASS CF'TIFE'-5:IO<<A)K,~&$CRrASREASY'OSKLIKVEANYeOUJ(TANTS LISTEDINTABLEVA"u%C1-'YKOtsn~ne~WivQffckt)CAFFLIGVIT
<<~CESCRIEEAEASCis>'4lrE<<i~i~ifSEI.'4FRESOIfJ!4IcIOVICKAIIYAVAILABLE OOANTITATIVK CATA,lifAckFt'<<fsFcov(CED{ITENI)INDIISBcocLKT.O.A'iSLRF~~~(ER5(soeWiE~ICAVfs(PlftWlvAkf)SECT(CARY INCLSTRIES) e~~.-AAFACnSES 2.4,5-OIIQLCROFWae ACETICACID.(2.4.5-r):-Ig.'>>'.j-TR(crLDRCFvK!ore)
Fcoeec}tc ceto(5(LvKR,2.4,5,IP)I'rOi.p(~IT@i)E!IIYL2,2OIQRTFRFeICPICNATK (E)IBCN)I OiOr~ill'~,,<<,5DII'~NYL)
~t)IIOAIK tiectAEL)I
'.e.WTR;mPCmm irCFI;m>>C(FOAI~m tm);(ALLOA'TAFORM4@I'I.'1STSKOOA'RATED cs(NSSTAICARDANALYTICAL CALIIYIATICN FeeCTTAAES)
&iCCIiSCR~5AEAS'IfoSELIKIKIIeLTTCSISCRrAYSEFe!ESOITINDe(ROISOICROE.
C7Ž0fI<<eLIATIVECATAiCE!eiIA(KDiceIQlI!5ED1SQI5gtII4~4VT4ii'Lcrco
<A!A.TYING.
sfwRDS,FOR253,/8iTKTRAQAA0(48c-c o(oxtktf~'QI.<<5RD~i'MTAONFCFfesFCOVIXDt(TOI3)tNTIi($XCCLKT.JiiF<<EII<<eFACK<<AICROISOAFCIK AFT(CANTqOesCRieesREASONTOSELIKVK(beefSICCCIIC<<L 141(C:VTESTSWK.~JACKtkDCILAST7NEE(5)YEARSCNANYP.%IISLES%rCNACEre(VMiieCTKRINRe<<CTICN'OAISQIAIIOK<<
~(CEfH(5l'hRATICR w:NAfiAQ(&T.ODI($WICATICNi c(F1'AC~ATCRYCRCoes(LTI'4 FIReF~k(YCFIE~YSESEOLI(eEDBY.<<IS~A:r%:~i.
4CVIOEDeWA(4AOCRESSCFEAOIVaCRamIYCRFI~udO'EA<<'<<I5ieeRF'~ASANAfiAQTENTOFII(ISWtrolfiCNi LiO)<CJCISQAACKeievC~IORICAlN,LR(ops
~(OILILSSViCES'4f:SMf4@5iVer'eI<<Il(AISO(Feeel'iEsgg(F5M,KVTIVCrLICILILSSTAICES iViocSTLicff~iiALfeeiEVTCAeVTFAiI'JiSIISeli~~(5naiAsJN1..~'~Br'.
~i.-~e.tar:Qe.
N)TAFFLICASLE/MLI KVIDABSOITClClFRESKNT/CArA ISArf~QXmtAFFL(cAELK/SKLIEvED ABSENTC3FRKSE)IT/CATA ISATTAC)ED2N)fAFFLICABLee 4ELIKVED-.)QFRKSENT/CATA ISATT~QXNOTAFFICASIeQAFt~elEEAr~Clie)TAf<<PlCASIQXAFFL(aaarsKE
~BELOW,,XWT~'CABLEC3CleIEKA~r~K.NUSCorporation Laboratory ServicesDivision5350CaotpbelLs RunRoadPirrsburah, PAL520537 SEEINSTRUCTIONS
,QNREYERSES)OESECTlONIIMI0005827 i~ITEM7hCRITICALMATERIALS TOXICPOLLUTANTS 0(lr%..'ttKR 4USKTH(SCATADRETraFECDRDIRFCFtaAT(CN AsaREQIIRKD (fll.(OCCXJIPR(saR(ATK?DX f(SIHIICII(IFtSKaAT(CN al(5aarA~AEPRKSF(ffsa}
~~'..SECT(CNtt.(TEN+A.CNXFKRAma(5(MAREK f~rlCN(FAaaK P5CTICN(I~(TIN6l(CR(TYF(XSJTANTS (RSU(FACE&TERa(SCHARrE (PA(IE)7)SeCaCC(SChe4 daaaSheotS.3,3,saba(cR(rt~~.~
(ALS(Ttv)(RueacE~TERatsaeaz(Fum3)HAZARDOUS SUBSTANCES OtSCHARCE LIST"frCqtl(C..L aa"t~~I~.I~ViK6)aarACCPESSED (R5KCT(CN3((TENRtf(FIIIYVlfsm(OI'.5.'WCA".4VEUSCN~SELIEVE.afSEAESBITtfl'Ma(SCH4XIK.
SFSAK'~SESla~"FablsA~AaRPa~Aa(RECT~aarrAPFL(CAKLE APFL(CIKLE (SEKSKLOf)CCQ\sIA'w"Ecvl'f'a."A~(a!gt<%(cFITYACLUlTJÃr AVKRAT4CCaatrt&lSA'Vaa~fvaiE;4CF'NALYSES C'X("IraCa.&faaAT(~I 4D"Ass&IfCQjsfrVaLEfYFE<8A'IAIYSESLJ&IrCXK(NITCXIKIWKCFCR(r:CAL"ArKRIALCRFR(CA(TYFIXLIITANT 3,AVQUCEC<<SPAT(DNSA'aParTYPE(,"AX(frfaf.l='ear:"'I
'."ASlalIfCQXSarFIX'aaKOANALYSESLJ~lrmz~UIIT~actaaUNITSCOOSIMQ/I2Ug/ILBSa'OAY4XQ/OAYAMPLTYPIQRA(3221HR.COMP.CCIVaahi'A'.CR(rf"A'.
-"ATD'AL'0catt(5((IY
~affr5~AVKRFDKaug!~ATOll~ea+,fPE(I'af(ALYSKS C.'AXLaO'.C'mt(VAT;Cf<
A4.ASSCR<T.CAL,aATSAIAL XRaCRITYRXJATAffr 5~AVERAGEC"ICK.'ffaaart 5!P4WrTY~~;5AANALYSES"Ax(~c"cKvrRA.(cN ANI~ssCA(r(CA(.
"APT(AL%Aaf(CA(IY
~>~Affr3~AVKvA'KrlCCITFAT(CN:
~.rFEI0aFANN.YSESC."AXe(i~:XEaf(RAT(CN AIDPASS*'~E~aCR(f:W"ATOI(ALCAAA(OI(IYFCLLIJTAIIT 3,AVKVACKCJrr;ITFAT(CNI
~rYOEIg~ANALYSES"AXCVIC~CQITZAT(CN uoWSSIN(lCa@LJWlCAXIN(r(ISRSArPLEfYPE4CFANALYSESLJQI(rCXEUf(TC(XKLaaN(T~SAalafc,YPEICFANALYSESLJ(NITCXXVI(fCXXLJWlrCmIA~ra~5OFAafALYSKS LJMfr<<-CEVlfTCaXIlklraai'~CFCR(r(CAL"ATERlALPMICR(.r~~a.AffrAVERACEwmrvr;m;~*~~.4SFANALYSES"AAIHA'CENTI'W
%AC"ASSclr.KSAM'(PK4a.FAAALYSKSPIXaNI~CCaA~'WEr/CYI~l"'llAYKA(4.IR~0!TY~'f.kfrCCaabaa~AYPJ4rg~CvaaNLAPaOAI4LISESIIIIIII~frais0A'Vafaacl<<'ifI~&If~ACOIT:ug.
AACKSy>(5:~7AAEATTAOC)FCAM<ESTa4MCR(T:W"Ala((ALS AIC/CR&(CR(TYArLTaffrsAEVI(REDTQ3E~a+0539 L450ftt~5e~~Peniweyg7eei$3@)~poellgRUnRoed'NMineReeaaplttaourgh, pA15%5.~plraaourgn, pA>~.412ras>oeoLABANALYSXSREPORTCUBfTMEtAi)ORESSlATTBOI0N(
IIIANA4NIC))ISAN ELECTRICC0.P,O.5N312/9,C,C00KPtA)ff5RIISKNANi NI49106REPNT0ATE(N/29/86iISQ.JESTI)(01804l)S5AHtEN0a16090400VEN00RN0)05411000NCNMN)558305ATKRECEIVB(08/08/86e~IK(TIFICATI0N!
NAKE@'UNT PREFI1.1U MXMASHCC)0'8/06 0P/0TEST~nN360M032M050Mi!6Mi"0M490M610N361N010N040N150NIPON230N240N260N340N350MOSSM060M225M310%HOM410M435M440M540M730M740M760M770N362N020KfENINATI0N uneNP0ESPARTMKSIRE3AaooniaasN(distillation) miSWs(02)OrsanicCarbon(nco~atsaabl a)C00(02)rHSolids'asrandad at103CNPSESPARTV"5Aluainan(Al)5ariaa(Ba)Cobalt(Co)Ircnitotal(Fa)Nasncsiaa (Ns)Nansanasa (Nn)No!sbdanaa(lb))Tin(Sn)Titaniai(Ti)5oron0)5raaidaQr)ColoredTraeFluoridate total(F)Nitrata00Nitric(X)XitroSani Kialdahl(N)Nitrosaai OrSaaic(N)Phosrhorasi biota)(P)Sulfatattarbidiaatric (S04)Sulfidt(S)Salfita(SLDSurfaccents(lSAS)XPOESPARTV<IM:CKTALSAntiaons(Sb)<0.123.8107.f161.7<0.1<0.010.08f.'f<0.01<0.03<0.5(0.2<2.052.70.3(0.010.40.40.3425(0.!<1(0.05(0,!Wlas/1Allos/1as/Ias/1a/18/1as/1as/1PtWas/Ias/1as/1as/1as/l~s/1as/1as/1rt/1~as/1as/1;AHalaaunon CamnanyPASEN0l1CL,IENTORlQINA,]
7'TTACHMENT 8Leeenevy~~~~~ewet~SQSOCanna~~~-~CW~maestl~~'PA152C5~Neaawrgh, PA1527'.as&7N~LABANALYSXSREPORTCUEXT%UK!AONESS)TESTX050X050X090XL<0Xld0X2005250X270X290)600)KOXNOKOO4000110OVOLOV02OVOIDOV45OVOd$07OVNOV09OV10OVLLOV12OVL4OV1SOVldOVL7OVLSOVL9116GWA5ÃICXISQEKBICCOoP.a;Sm512/3.C.COOXPVXTNBGKMiIQHLOd3FITEEM9STTE)Aj.lT
~eIENTlFICATINGKfERGXATIN 0%Arsenic(As)Setsl1iam(3e)Cadaiaa(Cd)Chrwiva(Cr)Cortet(Ca)Lead(Pb)Xetars(i(s)Xichel(Xi)Selanian(Se)Silvet(As)Theiliaa(T1)linc(2n)Csanideitotal(COPhenolicsYRATI)ASMiXSATBAcroleinAcrsloeitrileSenme3roeotora CarbonTetrachloride ChlorobenoneChlorodibroaoaethaneChloroethane
~loroethsIvinsIEtherChloroforaOichlorobroaoaethsne LilHichloroethane 1i2-Oith)oroethaneLil-3ichloroethsiene L>2-3ichlorotror>ne LsS-3lchlororrorslene EthslbenreneKSLTS0.002<Oe002(0.005C0.01COo41CO.NC0,4002CO.OXC4.004C0.01COwl0.07C0.005(0.02<100<100(5(5(5(5(5(10(10(5<5(5<5(5(5(5C5NSCUUTXO!OLÃ04NSSABINEXat1408800VmlCl)0$11000Nmm))ERX6)5538BTKKX?VE3iN08/8das/1as/Ias/1<<s/1as/1as/1vs/1as/Ias/1as/1as/1as/1as/1as/l's/1as/1as/1tAOKNt2CLlCHTORl61i(AL LABANALYSXSREPORTCLIBffQt%)AOggg$!ATKfGON(D(MANAilGQGMELEVECO.P.O.KX312/I).C.
CÃKPUNTNI))K%4)(I49104CSQJBfT)(6(ll0904)0)S~}g)Ig400Kue)0)I0540000'IOIImlNKt)0OtZK4MTE)(KEIR(OS/08/SdQ)(PLElaENTIFICATIO)lt MHPPUNTP%KFKTER@ANSICN4/04093)TESTOV20OV21OV22OV23OV24OV25OV2hOV27OV28OV29OV30OV310120OAO1OAO2OA03OAO4OAO5OAOdOAO7OA08OA09OA10OhllOE30013003010302OW0.04OM0504KKNlNATI()N
)(eQsI3raoide))ethelChlori*)(eQl~eChiori*1i1e2i2-Tetr echloroeQeneTetrechiorceQmi eee(Perchl cro)Tolaene'<2-Trans-)
ic))loraeQ31eaelitic-TrIchlaraeQene Iili2-TrichloraeQane TrichloraeQalaneTrichlaraf1actcaeQene Vinelchlcrid>>ACI3S-PP9NATERclarahanoi2i4-)ichIararheeol 2~4-5ianQslPhenol4id-Sinitr~rasoi 2>4-Oinitrarhenol 2+Itrarhenol Hlitrorhenol>WI~resolPentach)orMenoIPhenol2i4id-Trichlcrwhenol AcidExtrecticn-Meter QKKfHALS-PP1)lHATERAcenerhQene AcenerhQelene Aothrecene iteeidine seneo(e)hnQrecene 3anso(e)Psrene KILTS,<10(10<5(5<5(5<5(5<5(5(10(10(10<10('0<50(10<50(10<50(10(10<10<10(10(A(10(10ea/Iaa/Iea/Ie&1ee/Iaa/1~,PASK)(Ot3""'NITSartqC~~g,IIf7/'flu.~Acksef/1jeas'1ncieeck'-ie5/1es/1atl1a&1a5/1e5/Ie5/1e&IahullAHa)i(burton CompanyC1,lEMT0)tIG(h'L,j AT~AHQT8C4N04%ParaWeetTeeCXOCarnyaoHs Runlb'WLQneRoag&~on,PA1$2NPkhOurgh.
fA)5gl54~2.tas-~
LABANAL.YGXBREPORTCUQTNKtueKSSATTBITIQI tI)NUAAiHIMMEET2ICCO.P.O.NX312'.CoCÃKPUNT3RII86lNi
)6.49LNSAHPQ06fTIFICATIQl QKQPMA'RFiL7H
?AIXNS(INCUEN+l010904N)SSgtg4tLgg4KEN)It05411004NNGCBX0tX830NTERECQVQt08/0Sf84GRP08/040930807SOS0309NLO8110312NQN14NI5031b031703LSNL90320N21N220l23N24N25N2LN27N28N29N340331N320333Ol64N35SQ0337maamTI(0) 3i4-3eat61aotaatheae
.3eaxo<@i)Petsleoe 3eato(OFT aotxatheae 31s(2W)otoethoxx)
%thine3)s(2W1otoethiI)
Ethet3)s<~lotoiseth))Ethet.3is<2<Lelhexs I)Phthilate4-Wee>>mal PheoaiEthet3etalhealPhthiiite
~lotcaaththil eae4Mlototheasf PheaxlEthetChtsseaeOibeato<iih)
Aathtsceae 42-lichlotobeateae Li3-Oichlotobea teat1iHichlotobeateae 3iP-3ichlotobeatidine liethelPhthi!iteIiaechelPhthilite liM3otxlPhthi1ite2i4-31a1ttotolacne2ik-3ioittotolaeae Oi~islPhthiiite 1~2-3ishaoxlhsdtstine<Atoht)Flootiathene FlaoteaeHexxchlotbea teneHexxchlotobotxdl eneHexxchlot~cl opentidleneHexich)otoethine Iadeao(ii2i3 cd)Pxtene Isarhorone IIMLTS(10(LO(10"':(10<10<10(10<14C'10<,10<,10(10(LO<10"(LO'10'20<14<10(10(LO'10<10<20(14(10(10(14(10(10<14<10;~SGTS';ax/1aVTaa/Iad/1aa'Iet/Iat)/1aaf/Tefflei/Iat/Ce5/1af/1aa/1aa/1aa/laa/)~V'1ad/1af/)aa/1at/3aa/)aa/1aa/1at/1ad/1at/)aa/1ad/1aa/1AHall)burton CarnpanyPARE)I)tCLLENTCRJQlHAL ATTACHMENT BLabe~5enicee~5o5QQanygelae 8vnAceantlCxbvrgh, PA,15%5RCMTTck1ontwaxT~CCNi4neRoadIRANurgtl.
eA15275LABANALYSXSREPORTANKSS>NTBNOXtIQBÃA!MMEBK?RICCC.P.C.bOX312/b.C.CXKPUNNIXPANiQ49104NICLIENNb>010904e5QeQe~~Nli05411000Im(NSQXCL5590jAQbECEIlIEbl 08/49/QCb390340C3410842Cb43Ob44Q45Q4hOE250142CELOCPOiCP02CPO3OPO4(1059806CP07OP(I8CPO9CP!0OP!1CPL2OP!3CP14OP!5OPLhOPOCP18(t19CP20tp21KfBHINhTICX
)hththaIeaeXittobenxeae X-Xittosodiaethx1xaincÃ-i(ittosodi~cesl xaiae&Hitrosoditheax IainePhenaathr eaePxteaeii2i4-Ttichlotoben!eaehseXeettalExttxctioaMtet PEST!CITES/PCb'5 PPIINTERPesticide/PQ ExttxctioaWter Aldtiaxltha3%betaQCdeltabicsxaaaNCQ.iadxae)
Chlordane 4-4'bbl4-4'MEW'bbTbieldriaEadosalha IEadosalfxa IIEndoselfxn SaluteEndtiaEndrinAidxhx*PettxchlorHetxchlotEtoxideToxxtbenePCb-L01bPCl-L221PI3-1232RERLTS<10<ie(10<10(10<10<14(10<0.05<0.05<0.05(0.05<0.05(0'0(0.10(0.10<0.10(O.LO<0.05(0.10(0.10(0.10<0.10(0.05(0.05(1.0(0,5<0.5<0.5IN%colaf/1ee/lee/Ie5flet/1ee/Ietflee/1xf/Ief/1xe/1H/laf/1ef/1xe/lxs/1as/lxe/1xfllsf/1as/1as/1os/1es/las/1H/1e,MKXCi5AHalllburtOll COlllp4IIY CL.IENTORIGl1 MUQATTACHMENT 8~~Seraieso~pgsy4$HvllRoodPltte~P'Al~RCPTTCkParaWear7'WlAneAced.Pkttowgh.
7A15%5412.7801080LABAHALYSXSREFCRTCLIENTNeE<INBIQA4HIM%IBKtRICN.gyQSJP0.3GX22/l.C.CNKPUKfNIXKMrlQ8104ATTENTImi lFTTZmALB/Smear
%5CLIENTEll08904NSSARGEN(CQ80440YB8NNIi05411000NNSMNimaoMKJKCEIKkl08/08/NSVtuIMTIFICATIBN~
~metmaudWaarC(BCPemery,myBP220P23CP240P25MON04R9CfR800N01NI50BaaeeuTIm
~~aua'namPCB-t242N[248N-Q4PQ-12b0RABIIN22kNQ223Rsdise-22k bdiea-22S I'assAI>46tosshtaChicidirTo@iJhsBPS(CI2)KKT3(Oolce.z(1,0C1aece.s(S(4(0.1<InKNsin8)/IIs/IC~.(TS:Alaalllbunon companyCLIX~gggGPlAL
~~MURAT7ACHMENT B~~Servkas~IheaWaa~5%0Camgee4s~~~CN4Nnefloa4RCsbwgh,tA152M*'RSNurgh, PA1~7'.41+75/10OOLABANALYGXSREPORTIQINA!BENISONELKTTGCN.CNESSiP.C.RN312ll.C,C0NPUNNIXQQz60104ATTBA160$5CUBffXicI&04Ii5QBQCl!140@44%ON%li5QII000QRK8%%NcQTKmaniOaaVSQelXBQTIFICATIi5i<
MELtPVKREFlLTERNCSASHRQIIIXtr04MNliETGKQTIN FecalColifertOP%3Oiliextrscti~avieetr ic0)~RESI.TSQ<30CG75col/NhRcall'QSBOS:4,g~,~~~~(~~~q~g,~AHall1button CacnptnYCLIPTORIGl,A MLITTATTACHMENT 8Laba~5~~~,RatweetTeeCSOCaeebAN~P404CWLHneRea4.Pltueurg~
PA15%8,~&Mwrgh.PA18%541278410CO,LABANAL'YSXSRKPQRTCLKrtMKt1NIQA4NMMEETRICCO.QNESS~P.O.KX312f{I.C.
CCRPLNt3RIÃc~b68104ATTBfTINl SSLIBTXOi01'$SAP@Ct140$HN%emhei0911000NSKSSBN>!gg5A1XREEBOK48!OMhIE5TM5M3XIBNINATIN 4FecalColiFaaOP%4Oilintracti~sviset:
ic(i)RBULH8<3.0UxOScal/?00si eNCCNK6$l CCVFCR4TZ
.ATTACHMENT S~TCeLabor~5eenceeCteaacnp~gypeegy~55NCanooeusRun~aN~~JIBEDrgh.
PAl5205'%RSOeergh.
lA'~+MISCN'ABANAIYGXSREPORTQUENTN%tBOIH5MMMELKTRICN.AlNESSiP.O.XX3t2ll.c.CNNPLNrfNIXBN4ÃI4NOCATiMICXiREPNTQTKi08f2t/SbNSCUEDS~0IH04CSQuiteeiUN'INiWu000BSKNSBNsNlXKAMICeumnS9EiO)%TIKI
%0FenlhtifetaOt$2OiliexCtacti~xvioeh'ic Q)KRl8(33.IWGSro)nCSnieV10'CSGlG:~AHalUburtan CompulYCLlEHTORIGIN HUHecggcRcTt3U ATTACHMEilT 8Lasoreory
~~~~WeecTwomo~~~.~C4fhQno~PIOee~HL15205ACaeutgtl, PA15g75alf+7COpegLABANALYSXSREPORTaIagAVEtBSEQA4MMMERICN,CORES'!P.O.3N312'.C.CXKPUNTNBKQÃiHI19104iTLEXGNIiFOZKQU/STEMT m5amrrNiiMSMOKENI1$09H41KQNNlII541180NNNSBNOIRa30lkTKJKK[9QIN/N/MSeeElcmlFECATTEI>
NQlPPlNTPRPELTHJACQ~tQ1OWN1125nenM2MOKlGflIQTelFee]1hlifote-tPfOilpsxVsctiaamsviaetr it:KITS(5<$.0tNOSml/NhleI/TPdUQITSlgay;maama~>>,mb,,~AHaOaunonCompanyCLEMENTORIQlNAL,
.MATTACHMENT 8Laba~SarNcaa~Soaocang~lionjaoag&eau~a'A~~~~A~41&7caioaoAgA+A}YSXSREPORTQJgff~)ABRBSiTtGfT1IN1 MD%!NICHISANMETRECO.P.O.XX312/0.C.CO(N'UNNIÃBQÃi8$9106KPQtTICEtlV07/86INCLIENTN!l040f04IS%PlEN1116101256ANNIli05lll000CRKMBCIIQWEKXIVE3110/17/86SamzImrmC6TImi am@~m-m.mbahts<mS10/Q-14TEST0110%01OV02$030V05OV06OV07OV0eONHOV10OVllOV12OVlhOV15OV16OV17OV1SOVD0V20OV21OV22OV23OV240V250V26OV27OV290V2VOV30OV31KfER/IXATI1%
n~nVOLATllESM 9QTGAcfoleiaAcraioaiverileSsl1eae0'ocofora CarboaTetrachloride Chiorobea1aneChlorodlbr oaoaethaae Chioroethaae
~loroetha1vina1EQerChlorofor a5ichlorobroaoaeMuae lil-lichloroethaae li2-lichl oroethaae li1-5ichloroetha1aaali2.9ichloralroroaali3-lichliorraraleaeBhslbenzeae Hethal1roaideiiethslChloridelethalaneChloride1111212-Tetrachloroethaae Tetrarch1oroethsiane<Wchioro>Taiaaneli2-Trios-9ichloroathslaae lilil-Trichlotoethaaa lili2-Trichioroathihe Trichloroechoione Trichlorofloor~thaae Viaalchloride<100<100(5(5(5(5<5(10(10<5(5(5(5(5<5(5<5(10<14(5<5(5<5(5(5(5<5(5<10af/1offlaf/1afflasflafflaf/lafflasflafflof/1afflofflaf/1af/1sfflaf/1af/1of/1of/1af/1of/1of/1af/1of/1of/1of/1of/1ClNSOSaReviewedoadAr>rovedhaoJCAHallibunpn CompanyCLlENTORMlN' Appendix1.2ENVIRONMENTAL EVALUATION DonaldC.CookNuclearPlantBB-0J';i INDIANA6MICHIGANELECTRICCOMPANYDONALDC.COOKNUCLEARPIANTENVIRONMENTAL EVALUATION FORIt~"UPGRADEANDTEMPORARY USEOFTHEBEACHACCESSROADI(Preparedby:T.GHarshbarer,Radiological SupportSectionApprovedby:WS.rewer-Manager,
'Radiological SupportSectionConcurred by:Fryer,EnvironmntalCoordinator Td5IZOPCXRFGQITS T.Executive SummaryII.PurposeoftheEnvironmental Evaluation III.Description oftheActivityandAffectedAreaIV.Environmental ImpactsV.Environmental ControlsVI.Conclusions ThisEnvironmental Evaluation was'conducted to',determine ifthe..upgradeandtemporary,use ofthe,D:',C.
Cookbeachiaccess roadconstitutes anunreviewed environmental questionpursuantto.PartII.,Section3.1oftheDonaldC.CookTechnical Specifications..
Dueto'theinstallation ofwaterandsewagelinesattheplantsitenormalaccesstothecurrenttrainingfacilitywillbeunavailable.
Therefore, thebeachaccessroad,whichconnectstoLivingston Road,willbeusedonatemporary basistoprovideaccesstothetrainingfacility.
BasedonthisEnvironmental Evaluation itisconcluded thattheupgradeanduseofthebeachaccessroadisnotanunreviewed environmental question.
Therefore, itwillnotbenecessary toobtainapprovalfromtheNuclearRegulatory Commission priortothestartoftheroadupgradeanduse.
0vVThe.purposeof.this.Environmental Evaluation is.to;determine if,the*proposedupgradeand.use.of,theDonaldC.Cookbeach.accessroad-constitutes.
anunreviewed environmental questionas,definedby.Part'I,Section3.1oftheDonaldC.CookPlantTechnical Specifications.
AsstatedinPartII,Section3.1oftheDonaldC.CookPlantEnvironmental Technical Specifications, "Aproposedchange,testorexperiment shallbedeemedtoinvolveanunreviewed environmental questionifitconcerns(1')amatterwhichmayresultinasignifi-cantincreaseinanyadverseenvironmental impactpreviously evaluated inthefinalenvironmental statement (FES)asmodifiedbystaff'stestimony totheAtomicSafetyandLicensing Board,supplements totheFES,environmental impactappraisals, orinanydecisions oftheAtomicSafetyandLicensing Board;or(2)asignifi-cantchangeineffluents orpowerlevel(inaccordance with10CFRPart51.5(b)(2))
or(3)amatternotpreviously reviewedandevaluated inthedocuments specified in(1)oftheSubsection, whichmayhaveasignificant adverseenvironmental impact."
TheIndiana&MichiganElectricCompany(I&M)isinstalling
.newwaterandsewagelines,tosupporttheDonald.C.CookNuclearPlant.Duringashortperiodofthe.installation (approximately 8.weeks)thenormalaccesstothecurrenttrainingfacilitywillbeunavailable foruse.Thistrainingfacilityisutilizedby75-100plantpersonnel eachdaytomeetNuclearRegulatory Commission andInstitute ofNuclearPowerOperations trainingcommitmencs.
Inaddition60plantemployees workoutofthetrainingfacilityonpermanent basis..Inordertomain-tainaccesstochetrainingfacilityandthuskeepthetrainingfacilityoperational icisproposedtoupgradeandusetheexistingbeachaccessroad.Theexistingbeachaccessroadwasusedasasiteaccessduringtheconscructi.on oftheplantandiscurrently usedbyplantsecuritytoconductsecurityinspections ofthebeachfront.Theroutethatisbeingproposedforupgradeanduseexitsthetrainingfacilityparkinglottothenorthandimmediately turnswesttorunad]acenttothesouthedgeoftheplantprotected areaEorapproximately 300feet.TheroadthenturnssouthandrunsparalleltotheLakeMichiganshoreline Eorapproximacely 1700feetbeforeitintersects Livingston Road.Onlythe1700feetofaccessroadthatrunsparalleltotheshoreline requiresupgrading.
Thisupgrading wouldinvolveadding480cubicyardsof22Agravelandcrushedstonetothissectionoftheroad;Thegravelwouldbeaddedtomaketheroadsurfacesmoothandtofillinwashouts.Thisupgradewouldbeanaverageof3inchesofstoneoverthe1700Eeetlengthofcheroad,20feetwide.Thetotalcostoftheupgradeisestimated atapproxi-mately$8,000formaterialandlabor.Adiscussion oftheGeologyandSoils,Groundwater andSurfaceWater,Biological Resources, andCulturalResources intheareaofchebeachaccessroadcanbefoundinthe"Indiana&MichiganElectricCompanyDonaldC.CookNuclearPlantEnvironmental Evaluation fortheProposedDrinkingWaterHookuptotheLakeTownshipWaterSupply".
17.voeamacA.Sincethebeach.accessroadwaspreviously usedfor.siteacce's'sduringtheconstruction oftheplantand-isnowusedforperiodicsecuritypatrolscompaction ofthesoilsbeneath-the.roadhasalreadyoccurred.
Useoftheroadbycarsandlighttrucksisnotexpectedtocausefurthercompaction ofthesoilsinthisarea.Inaddition, noexcavation willoccurastheresultoftheroadupgradeanduse.Therefore, therewillbenoimpacttothegeological formations andsoilsinareaofthebeachaccessroad.B~ueUaead0oudwateCTheupgradeanduseofthebeachaccessroadwillnothaveanyimpactoneitherthewatertable orsurfacewaterintheareaofthebeachaccessr'oad.IBoocaesoucesl.eestcooTherewill"be'o impactstotheterrestrial ecologyastheresultofthe'pgrade anduseofthebeachaccessroadfor-thefollowing r'easons.
a.Nohabitat.willberemovedasaresultoftheupgradeandtemporary useofthebeachaccessroad.b.SincethebeachaccessroadisalreadysubJected totheintrusion ofmanandmachinery (i.e.recreational useofthebeachadJacenttoaccessroad,periodicsecuritypatrols,andexistingsecuritylights)animalsresidinginthe:areasadJacenttotheconstruction shouldnotbedisturbed bytheincreased activity.
Therewillbenoimpacttotheaquaticecologyintheareaasthe'result oftheroadupgradeanduse.utuaesouceTherewillbenochangeinlanduseastheresultoftheupgradeandtemporary useofthebeachaccessro'ad.Noarchaeological resources areknowntoexistintheareabasedonpreviousconstruction excavations.
IIE.~RoseNoiselevelsgenerated bytheincreased flowoftrafficI(approximately 100vehiclesperday)onLivingston Roadandthebeachaccessroadcouldbeconsidered anuisancebyindividuals usingtheadJacentbeachandlakeareaandbyindividuals
'I"residingalongLivingston Road.However,thisisatemporary impactthatwilllastforonly8weeks.
VThefollowing environmental controlsshallbeutilized.to minimizeimpacttotheenvironment resulting fromtheupgradeand'useofthebeachaccessroad.Theseenvironmental controlsshallbereviewedandenforcedbytheD.C.CookEnvironmental Section,Asstated,theimpactofnoiseinthesurrounding community isatemporary impact(approximately 8weeks).Ifuseofthebeechaccessroadisrequiredbeyondthescheduedeightweeks,writtenauthorization todosomustbeobtainedfromtheD.C.CookEnvironmental Section.B.voetaObseatTheD.C.CookEnvironmental SectionwillinspectLivingston Roadandthebeachaccessroadonceaweektodetermine ifuseoftheaccessroadiscausinganyadverseimpacts.TheD.C.CookEnvironmental Sectionwilltakeappropriate actionstomitigateanyobservedimpacts.~em@"sIthasbeendetermined throughdiscussions withtownshipandcountyauthorities thatnopermitsarerequiredtousetheLivingston Road/Beach AccessRoutetothetrainingfacilities.
0Itiaconcluded thatwithpropermitigation practices as.outlined inthoEnvironmental Co'ntrols
.Sectionofthisevaluation nosignificant adverseenvironmental impactwillresultfromthe-proposed activity.
Itisfurtherconcluded thattheupgradeandtemporary useofthe'eachaccessroaddoesnotinvolveanunreviewed environmental question.
Therefore, itwillnotbenecessary toobtainapprovalfromtheNuclearRegulatory Commission toupgradeandusethebeachaccessroad.However,itshouldbenotedthatthisEnvironmental Evaluation shallbeincludedaspartofthe1986AnnualEnvironmental Operating Report.
Appendix1.3NPDESNon-Routine
~Reorts-1986 0RIIgIP~ta'P0lt, NONROUTINE REPORTSEVENTDATE5/28/866/16/866/29/866/30/869/3/8610/31/8611/7/85to11/10/86IC/RNUMBER12-06-86-0634 02-06-86-0708 02-07-86-0816 12-06-86-0759 12-09-86-1043 12-11-86-1281 1-11-86-1303 DESCRIPTION Heatingboilerblowdown-totalsuspended solidsconcentration exceedNPOESPermit-limit.Steamgenerator blowdown-totalsuspended solidsconcentration exceededNPDESPermitlimit.Steamgenerator blowdown-totalsuspended solidssamplewasmissed.TurbineRoomSumpdischarge piperuptured.
Whilemakingrepairstopipeon7/16/86and7/17/86,thesumpoverflowed toLakeMichigan.
TurbineRoomSumpoverflowed toLakeMichigan.
TurbineRoomSumpdischarge pipewasbroken.Unit1intakeanddischarge temperature readirgsweremissed.
~l'II Appendix1.4 04-'IIIEP'
.7ATE:March26,1987PTJAgHMEHT
(:C'HDIAHA6MICHIGAHELECTRICCOMPAHYOWERSYSCE5UBJEcT:1986Herbicide SpravReport-D.C.CookPlantFRov:L.A.ShepherdToiH.E.BrooksSUMMARYOFPROGRAMA.DuringAprilandMay,BentonHarborDivisionSprayingCrewusedamixtureofKrovarI(K-I)andOusttocontrolgrassandweedgrowthontheplantsite.Locations treatedincluded:
KVyards,roadways, parkinglots,perimeters ofthesewagepondsandcontrolled/uncontrolled areasinsidetheplantfence.Atotalof303lbs.ofK-Eand2.6lbs.ofOustwereused.(SeeAttachment 1)B.C.Thisyearnoapplications ofTordon101R(DowChemical) weremadetotreestumpsbecausetherewasnotrimmingoftreesbyGoshenTreeCrew.MajorAreascoveredandObservations (SeeAttachment 1).SewagePond:Verygoodweedcontrolaroundpondsandonroad,veryfewweedsfound.2.Absorption Pond:Roadwayherehassomeweedgrowthstartedthroughthestones.3.4.U-1MainTransformer:
Excellent control,noweeds.1U-2MainTransformer:
3weedsdiscovered alongwestsideofthemiddlesinglephasetransformer catchbasinattheconcrete/sand interface.
5.U-1DieselFue'ilTankUnloading Area:Excellent Control,noweeds.6.U-2DieselFuelOilTankUnloading Area:Sparsegrassesinsidebasin.Twoclumpsofweedsdiscovered onsouthsideofturbinebuildingatbuilding/sand interface.
ChlorineBuilding, CimcoaAEPSCSiteDesignOfficeTrailers:
Excellent weedcontrol,noweedsdiscovered.
4IHTRASYSTELI 1986Herbicide SprayReportMarch26,1987,Page2ATTACHMEi'(T C.I8.HydrogenandNitrogenStorageTankArea(near609'astAux.Cranebay):
Excellent control,noweedsfound.9.EastPerimeter Fence,IceCrew/Westinghouse/ANR/Com-puterOfficeTrailers:
Excellent control,2weedsobservedinwholearea.10.SouthPerimeter Fence:Excellent control,noweedspresent.11.WestPerimeter Fence:Asphaltarea,noweeds.12.13.NorthPerimeter Fence:Excellent control,noweeds.SixTrailers, SouthSide(Cimco,STAandFirewatch Trailers):
Areaaroundtrailersclear,clumpsofweedsaroundbaseof.nearbypoles.14.U-2Start-upTransformer:
Severalpatchesofweedsunderbaseoftransformer.
15Hydro-Nuclear Office(U-2WestEndofTurbineBldg.):Patchesofweedsatbuilding/sand interface, noweedsundertrailer.16.U-2OutsideTrashBasketArea:Excellent control,noweeds.17.U-1SpentResinandCharcoalDumpingArea(nearscreenhouse roll-updoor):Clumpsofweedsinsandarea.18.HeatingBoilerFuelOilTankUnloading Area:Excellent Control,noweedspresent.19.GasCylinderStorageArea(SouthSideofOldOficeBldg.):Excellent control,noweedsdiscovered
.20.EmployeePicnicLunchArea:Excellent Control,noweecs.21.VehicleEntryControlArea:Excellent Control,noweeds.
ATTACHMENT C1986Herbicide SprayReport.March26'age322.NewOfficeBldg.Construction Area:Excellent Control,noweeds.23.Construction
&SecurityOfficeBuildingandGuardIsland:Excellent control,noweedsfound.24.Westinghouse, ANRTrailers:
Noweedgrowthundertrailers.
25.Unit41Containment andRWST,CSTandPWST,StorageTankAreas:NoweedgrowtharoundUnit1RWST.GrassgrowingonNorthandEastsidesofUnit1CSTStorageTankconcretebaseandsandinterface.
SmallclumpsofgrassonnorthsideofBrown-Boveri transformer.
GrassandweednoticedonnorthandeastsideofUnit1PWSTtankconcretebase.andsandinterface.
Excellent weedcontrolaroundandundertrailersinthisarea.26.Unit42Containment andRWST,CSTandPWSTStorageTankAreas:Clumpsofgrassoutsidesouthwest cornerofsinglephasetransformer ASEApad.10X20ft.sparsepatchofweedsandgrassonthenorthside ofUnit2CSTandRWSTStorageTanks.SmallclumpsofgrassonnorthsideofUnit2PWSTStorageTankatconcretepadandsandinterface.
Smallclumpsofgrassonthenorth,east,andsouthsidesofUnit2CSTatconcretepadandsandinterface.
VerysparseclumpsofgrassnearenceeastofUnit2PWSTandCSTStorageTanks.Sparsepatch(10ftX3t.)ofgrassnoticedwhererailroadtrackscomeintofencedareaonsoutheast side.,WeedcontrolaroundHNSLaundrytrai'erexcellent; noweeds.
ATTACHMENT C1986Herbicide, SprayReportMarch26,1987Page427.345KVSwitchgear Yard:Spotofcloverdiscovered alongsouthfence.Onesmallpatchofgrassinsouthwest cornerneartransformer berm.Smallpatchesofchickweeds alongnorthfence.28.765KVSwitchgear Yard:Grasspresentonthesoutheast, northeast andnorthwest sidesofyardnearfence.29.DaycoBuilding:
Goodweedcontrol,afewweedsaroundbuilding.
30.CraftEmployees ParkingLot:Excellent weedcontrol;noweeds.31.XGMEmployees ParkingLot:Excellent weedcontrol;noweeds.32.VisitorsParkingLot:Excellent weedcontrol;noweeds.33.Construction Storeroom ParkingLot:Goodweedcontrol,twoclumpsofgrassbyAlltelparkingspace.34.Contractor Supervisor's ParkincLot:Chickweed andgrassalongtemporary fence.Goodweedcontrolinparkinglot.35.SewagePlant669/KVSwitchgear Station:Clumpsofgrassonsouthsideofsewageplant.Excellent weedcontrolin69to4KVSwitchgear yard.Noweeds.36.TrainingCenter:Afewdandelions oneastsideofthemaintainingcenterneartherailroadtiesusedforparkingstops.Grassnoticedinthevicinityofparkingstopsintheeastsideoftheparkinglot.Noweedsincenteroflot.NoweedsaroundNewSewagePlant.-'kI3".PlantManager's Lot,AuditorsOfficeandConstruction Storeroom Office:Goodweedcontrolaroundparkingstopsandlotingeneral.Noweeds.TwoclumpsofgrassonsouthsideofQAauditor's office.Excellent weedcontrolaroundConstruction Storeroom Office.Noweeds.,
ATTACHMENT C1986Herbicide SprayReportMarch26,1987,Page538.69/4KVlines:Pinesdonotseemtoberesprouting butoaks'areresprouting atthebaseoftheirstumpsandsomeresprouting ofsassafras isapparent.
Maximumheightofresprouting 6-8ft.39.765KVlines:Largestumpsshownosignsofresprouting
-appeartobedead.40.345KVlines:Largestumpsshownosignsofresprouting
-appeartobedead.Theobservations madeinNovemberandDecemberclearlyindicatethatthethorouqhsprayingprogramcontinues tocontrolencroaching vegetation resulting inareduction ofmaintenance costsandanincreaseinoverallplant-site visibility.
Theoneexception tothisseemstobetheresprouting ofoaksandsassafras near69/4KVlines.Ifyouhavequestions orrequirefurtherinformation pleasecontactmeatExt.1326.LAS/jsIL.A.Shepherdcc:W.T.J.E.D.CG.Smith,Jr./A.A.Blind/L.S.Gibson/J.
E.Rutkowski A.Kriesel..nrem E.Fryer'.MallenFitzgerald-Stuart R.Mort ATTACHMENT 1OFC0.C.COOKNUCLEARPLANTHERBICIDE APPLICATION OATA1986MeedSprayApplication by:B.H,OivisionIImMElectricName:OennisRunkelGregMyersOate4/18/864/22/864/22/864/23/864/24/864/25/864/28/864/28/864/29/865/2/865/2/865/5/865/6/865/6/865/7/865/8/865/9/86Lbs.KROVARI18181518271891818182222834306Ratee/Acre610101010101010Gal1ons.300300250300450300150300300300220220804034030060OUST1oz/acre3.03.02.53.04.53.01.53.03.03.02.22'0.80.43.43.00.6Acres3,03.02.53.04.53,01.53.03.03.02.22.20.80.43.43.00.6Location765KVyard765KVyard69/4KVyard765KVyard765KYyard765KVyard765KV'yard345KVyard345KVyard345KVyardPlantperimeter Plantperimeter Plantperimeter SewagePondsA/8Micro69/4KVyardParkingAreasCookParkingLotsCookParkingLots303lbs.3960gals42.1oz.39.6acresSummary:Used303lbs.KrovarIaooliedtoapprox.40acresiee177~96~/acre-ou:e.yards126=.910~/acre-inneryards2.6lbs..0UST
-allareas ATTACHMENT CepicAN7>>>>/c,IHDIAHA5MICHIGAH, ELECTRICCOMPAHY>>>>WE'RsYsTe~~DATE:
SUBJECT:
rch19>>1987Right-of-Way Maintenance Herbicide UseFROM:H.E.BrooksTO>>E.C.NallenThiswillconfirmourphoneconversation oftoday.Therewasnoright-of-wa'aintenance performed onthebustiesorexitlinesonCookPlantlandsin1.986.Accordingly, noherbicides wereusedin1906.He.3roocsHEB:e=cc:J.RIA.Druczemi'eLIPawliscnIMTRA~SYSTEM
'j Appendix1.5 I'I1I ATTACHMENT AATechnical ReportTo:TheD.C.CookVuclearPlantIAmericanElectricPowerServiceCorporation IndianaandMichi'gan ElectricCompanyI,~LRESUITS.OFTHE1986MOHITORIiVG PROGRAM1I(WITHASUMMARY.'OF'1982-1985 RESUITS)TODETECTTHEASIATICCI,AM(CORBICUIA)
IVTHEVICIVITYOFTHED.C.COOKNUCI,EARPOWERPI.ANTDavi'dS.WhiteGreat[.akesResearchDivisionBen'thost.aooratory 1861iVorthUniversity BuildingUniversity o."MichiganAnnAr"or,MI48189,,,3')764-7486RDA"ontracVo.83-'66-P'cem'"er 9,'86 ATTACHMENT ASUMMARYEntrainment, divercollected sandandgravelsamples,andbeachareasattheD.C.CooknuclearpowerplantwereexaminedfortheoresenceoftheAsiaticclamCorbicula flumineainmid-June,mid-July, andmid-August 1986.Noveligers, smalloradultclams,oremptyshellsweredetectedinanyofthesampling.
'hereisonlyoneconfirmed reportofthespecies(asingleemotyshellin1984)beingcollected fromanysiteinf.akeMichiganintheimmediate vicinityoftheD.C.Cookplant.f.iveCorbicula werecollected inl,akeMichiganneartheJ.H.Campbelloowerplant(Whiteetal.1984)northoftheD.C.Cookpowerplant,inNovember1983.Wehavenofurtherdatatoshowifthatpopulation stillexists.Thus,itisconcluded thatnopopulation hasbecomeestablished norwerethereanyreproduc.'ng individuals detectedatD.C.Cook.Atoresent,Coroicula doesnotappeartobeathreattooperations o"tne~atersystemsattheoowerplant.ENTRODUCTiON Corbicula fluminea(Muller)(=Corbcula mani'nsis) wasintroduced intotneCo'umbiaRiverofWashington Stateintnelate1939sandsince'.".asspreadeastwar"throughout theMississiooi E.akeE"ie.seartheJ.Riverdrainageandmostrecently(1983-1981) intoForCakeMch.'gan,asma'1pooulation wascetectedH.Campbe'powerp'ant(southeastern EakeMi=hi"an) inNovember1983(Whiteeta'.1984),andasine'eintact,empty0-ATTACHMENT Ashellwasfoundindiver-collected sandand.gravel,.22Nay1984,fromthewaterintakeatD.C.Cook.Biofouling ofpowerplantservicewatersystemsbyCorbicula inthei'mississippi andsoutherndrainages andnowwesternl,akeEriehaspromptedmonitoring ofallGreattakespowerplantstoallowforprocedures.
earlydetection andcreationofcontrolAmonitoring programspecifically forCorbicula wasinitiated attheD.C.Cookpowerplantin1982.Tnthatyear,three24hrentrainment sampleswereexaminedforveligers(planktonic larvae)andsmallclams.Datesofsamplingin1982werelateNay,mid-August, andearlyOctober(Table1).Entrainment samplesweresupplemented bycollections ofclamshellswashedontothebeachinfrontofthepowerplantandnear=hemouthoftheSt.JosephRiver.Beachwalkswereconducted inlateSeptember andlateOctober1982(Table1).TheSt.JosephRiversitewaschosenasapossibleoointofentryofCorbicula into[.akeMichigan.
9oCorbicula veligersorsmallc'amsweredetectedinentrainment samplesnorwerespecimens foundinthemorethan488shells(primarily fingernail clamsinthefamilyrPisidiidae) collected inbeachwalks.ShellsofCorbicula aremuchmoresturdythanareshellsofpisidiids; thus,iforesentinthelake,theyshould<<ashashore(Nh'e'979).<<uwt'pevCorbicula hadbeencol'ected ln'akebenthossam"'ngprogramsfrom1970throughApril1982orinoreviousentrainment studiesnorhadtherebeenanyvalidated reportscollected fromf.akemichiganor.'tsd"ainage2debaandNhite1985).oCorbi='being(~ackaeeral.'981 ATTACHMENT AFntrai.nment, samples,beachcollections, andgravelsamples~ereagainexaminedin1983-,1984.>1985,and.1986;Samplingperiodsweremovedtomid-June,.
mid-July,.
andmid-August baseduponlifecycledatagatheredforwesternLakeEriebyScott-Wasilketal.(1983)(SeeTable1forsamplingdates).Nospecimens ofCorbicula werefoundinthoroughexamination ofentrainment samples.SeveralhundredPisidiidae (fingernail clams)werecollected inthebeachwalkseachyear,butnoCorbicula werelocatedeitheratD.C.CookoratthemouthoftheSt.JosephRiver.FromaNovember1983divercollected sampleneartheJ.C.Campbellpowerplant,weidentified 18liveCorbicula (Whiteetal.1984)whichweassumedwereintheirfirstyearofgrowth.<edonotknowifthatpopulation hassurvived.On7January1985,Iconfirmed asinglewholeshellofCorbicula fromdivercollected sandandgravelco'lected 22<>lay1984fromthewaterintakeofD.C.Cook.Itwasmyooinionthatthespecimenwasauiterecentbecauseitwasintact,anditapoearedtobeo=thesamecohortasthespecimens collected nearJ.C.Campbell.
Inthesummerof1985,Iexaminedasimilarsamp'e"romtheD.C.Cookwaterintakebutfoundonlynatu"allyocc'rringPisidiidae.
Todate,theonlyveri=iedspecimenofCoroi"'"umineacollected inthev'cin'tyo.theC.Cooknuc'earpowerplantwasthatfoun"itthe1984.sandandgrave'o':ect'n.1986samplings.Onlyas'ng'eemptyshellhasbeencol'ected CONCLUSIONSNoCorbicula veligersorsma'1c'amswerecollectec
'ntne, ATTACHMENT ATABf,E1Sampling.dates,sampletype,andnumbersoiCorbicula collected fxom1982thxough1986attheD.C.Cooknuclearpowerplant.DateSampleType198225-26May18-.19Aug21Sep5-6Oct26Oct198315-16Jun13-14Jul17-18AugEntrainment nonenonenonenonenonenoneBeachWalknonenonenonenonenoneSandandGravelA~II~~I198422Nay14-15JL1n12-13Jul16-17Augnonenonenonenonenonenone198513-14JunJuly12-13Jul15-16Augnonenonenonenonenonenone-nonenonenone,198616-17Jun14-15Jul18-19Augnonenonenonenonenonenoneintactemptyshe'1 ATTACHMENT A(1983)overthepast17yearsofmonitoring{1978-1986)
'..Prom:hesedata,itisconcluded thatindividuals, ofCorbicula have.occurredinthevicinity.
oftheD.C.-Cooknuclearpowerplant;however,atthistime,therearenoestablished populations alongthesoutheastern shoreline ofLakeMichigan, particularly intnenearshore areasatoradjacentto0.C.Cook.
ATTACHMENT AREFERENCES CITEDMackie,G.L.ID.S.White,andT.W.Zdeba.1988.Aguidetofreshwater mollusksoftheLaurentian GreatIakeswithspecialemphasisonthegenusPisidium.EPA-688/3-88-968.
144pp.Scott-Wasilk, J.,G.G.Downing,andJ.S.Leitzow.1983.Occurrence oftheasiaticclamCorbicula flumineaintheMaumeeRiverandWesternLakeErie.9:9-13.J.GreatLakesRes.White,D.S.1979.Theeffectoflake-level fluctuations onCorbicula andotherplelcypods inLakeTexoma,TexasandOklahoma.
Proc.1stInternat.
Corbicula Symp.pp.81-88.White,D.S.,M.H.Winnell,andD.J.dude.1984.Discovery oftheasiaticclam,Corbicula flumineainLakeMichigan.
J.GreatLakesRes.19:329-331.
Zdeba,T.W.,and0.S.White.198S.Part4:Pisidiidae.
93pp.In:D.S.White(ed.).Southeastern LakeMichiganEcologyofthezoobenthos ofneartheD.C.CookNuclearPowerPlant.Spec.Rept.GreatLakesRes.Div.,"niv.Mich.,AnnArbor,Mich.
C'It'Jtt Appendix1.6DiverAssessment oftheInshoreSoutheastern LakeEichician Environment NeartheD.C.CookNuclearPlant1973-1982SpecialReportNo.120GreatLakesResearchDivisionUniversity ofMichigan THELilbERSITYOF>MICHIGAN DiverAssessment oftheInshoreSoutheastern LakeMichiganEnvironment NeartheD.C.CookNuclearPlant,1973-1982hJOHNA.DORRIIIandDAVIDJ.JUDESpecialReportNo.120oftheGreatlakesResearchDivision, DIVERASSESSMENT OFTHEINSHORESOUTHEASTERN LAKEMICHIGANENVIRONMENT" NEARTHED.C.COOKNUCLEARPLANT,1973-82JohnA.DorrIIIandDavidJ.JudeUndercontractwithAmericanElectricPowerServiceCorporation Indiana6MichiganElectricCompanyRonaldRossmann, ProjectDirectorSpecialReportNo.120GreatLakesResearchDivisionTheUniversity ofMichiganAnnArbor,Michigan481091986 C'I CONTENTS'~PaeLISTOFFIGURES.............................................
ivLISTOFTABLES..............................................viii LISTOFAPPENDICES..........................................
xACKNOWLEDGMENTS.............................................
xiINTRODUCTION................................................
1METHODS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~5RESULTSANDDISCUSSION......................................
15PHYSICALFEATURES............
WavesandCurrents......
ThermalEffects.........
Surficial Features......
Sediment................
Transparency............
Inorganic Debris........
BIOLOGICAL FEATURES~~~~~~~~~~OrganicDetritus........
Periphyton..............
AttachedMacroinvertebraFree-living Macroinverte FishSpawningJuvenileandAdultFish.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~tes~~~~brates.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~15~~~15~~~20~~~22~~~26~~~31~~~35~~~37~~~3746~o~54~~~58~~~70~~~80COLOGY~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~117EPLANTEFFECTS................
PhysicalPresence.......
Operational Effects.....
~~~125125~~~127~~~~~~~~~~~~~~~~~~~~~~~UMMARYoo..o...........................oo..o..o.............
131SREFERENCES..................................................
140APPENDIXl..o.............o...o..o..
...o....oo..........o..
145PPENDIX2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~156APENDIX3..................................................
160AP LISTOFFIGURESFiureNumberSchemeoftheCookPlantstudyareainsoutheastern LakeMichigan, 1973-.1982,
.showinglocationsofthescuba-monS toredintake,discharge, andreference structures andstations.Stippledarearepresentsapproximate dimensions ofriprapzone.Depthsat,intake,discharge, andreference stationswere9m,6m,and6m,respectively...
Prescribed formatinwhichobservations andmeasurements wererecordedunderwater onwaterresistant paperduringdivesinsoutheasternLakeMichiganneartheD.C.CookNuclearPlant,1973-1982............
~~Pae~~~~8~~~~11Lengthofperiphyton(mm)ontopofthesouthintakestructure (atthe3-mdepthstraturn)andontheuppersurfacesofriprap(atthe7.4-mdestratum)adjacenttothebaseofthestructure.
Measurements weremadeduringdivesinsoutheastern LakeMichiganneartheD.C.CookNuclearPlant,1973-1982........................
Totalnumberandpercentcomposition bymajorgroupsofperiphyticalgaecollectedbydiversfromthetopofthesouthintakestructure oftheD.C.CookNuclearPlant,locatedatthe3-mstrataofthe9-mcontourinsoutheasternLakeMichigan.
Onesamplewascollected eachmonth,April-October,1974-1981, inmostyears.Awet-mounted subsample wasqualitatively analyzedunderamicroscope, andalgaewereidentified tolowestrecogniza bletaxon.Totalnumberofsamplesanalyzedeachyearwas:1974~1,19755,19766,19774119787,19797i19807119817Numbersofsnailsobservedbydiversinsoutheastern LakeMichiganneartheD.C.CookNuclearPlant,1973-1982.
Snailswereseenonlyatstationswithintheriprapzoneandnonewasobservedafter1978.ND~nodivingthatmonth................
pth~~~~48~~~~51~~~~620Numbersofcrayfishobservedbydivers(1973-1982) andimpingedontraveling screens(1975-1981) attheD.C.CookNuclearPlant,southeastern LakeMichigan.........,,.......,...
~~~~65iv0; LISTOFFIGURES(Continued)
Totalnumbersofcrayfishseenbydiversduringdayandnightswimsovertwoadjacent1x10-mtransects (20m2totalarea)alongthebaseofthesouthintakestructure oftheD.C.CookNuc1earPlant,southeastern LakeMichigan, 1975-1982...............
66Chronology ofmaturation,spawning, eggincubation,andhatchingofalewife,spottailshiner,yellowperch,johnnydarter,andslimysculpin,insoutheastern LakeMichiganneartheD.C.CookNuclearPlant.SpawningperiodswerecitedfromAuer(1982);allotherdatawerecompiledduring1973-1982 studiesattheCookPlant...................................
Comparison ofrelativerankedabundance ofyellowperchobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeasternLakeMichigan.
Ordinatescaleisinvertedandextendsfromlowest"tohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch.ND~nodivingor71sampling......t
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~87Comparison ofrelativerankedabundance ofcommoncarpobservedbydiversduringalldives(1973-1982) andtransectswims(1975"1982),collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975>>1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch.ND~nodivingorsampling............................................
90Comparison ofrelativerankedabundance ofalewivesobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch.NDnodivingorsamplingo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~94 LISTOFFIGURES(Continued) 12Comparisoh'of relativeranked,abundance of'pottailshinersobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch.NDnodivingorsampling................................
'.......'..
'....sIIs13Comparison ofrelativerankedabundance of)'rout-perch observedbydiversduringall"dives(1973-1982) andtransectswims(1975-.1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescaleisinveitedandextendsfromlowesttohighestrank.ofrelativeabundance.
Blanksindicatezero(.,",observationsorcatch.NDnodivingorsampling.................
9710014Comparison ofrelativerankedabundance ofrainbowsmeltobservedbydiversduringalldives(1973-1982) andtransectswims(1975-,1982),
collected instandardseriesfieldsamples,(1973-1982),
andimpinged(1975-1982) a'ttheD.C.CookNuclearPlant,southeastern
'akeMichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighest.rvankof'relative abundance.
Blanksindicatezeroobservations orcatch.NDnodivingorsampling............................................
10215Comparison ofrelativerankedabundance ofsculpins(Coccus~conerueorC.beirdi)observedbydiversduringslldives(9973-1982) andtransectswims(1975-1982);
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescale'sinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicate'eroobservations orcatch.NDnodivingorsamplinge
~~~~~~~~~~~~~~~~~~~'~~~~~~~~~~e1050 LESTOFFIGURES(Continued) 16Comparison ofrelativerankedabundance ofburbotobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch.NDnodivingorsampling............................................
10917Comparison ofrelativerankedabundance ofjohnnydartersobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch.NDnodivingorsampling:...,....................,...,,.............
11118Comparison ofrelativerankedabundance ofwhitesuckersobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezetoobservations orcatch.NDnodivingorsampling............................................
114 LISTOFTABLESTableNumberSummaryofdayandnightdivesperformed during1973-1982 insoutheastern LakeMichiganinthevicinityoftheD.C.CookNuclearPlantneatBridgman, Michigan................................
~PaeDirection of'generation(quadrant),
height(trough-to-crest),
andwidth(crest-to-crest) ofripplemarksobservedbydiversinreference areasnorthandsouthoftheD.C.CookNuclearPlant,duringsomemonthsfrom1973to1982.Quadrant:
I~northtoeast(0-90');II~easttosouth(90-180');
III~southtowest(180-270');
IVwesttonorth(270-360');
Asymasymmetric (nocleardirection ofgeneration).
Dimensions areincm.Blanksindicatenodata................................
23Depth(mm)offlocculent surficialsedimentmeasuredonriprapsurrounding theD.C.CookNuclearPlantintakestructures andatreference stationsnorthandsouthoftheplant,1973-1982.
T(trace)~detectable,butunmeasurable.
Blanksindicatenomeasurements weremade..............................................
Horizontal visibility (m)asmeasuredbydiversonthebottomnearCookPlantintakestructures (9m)andinreference areas(6m)northandsouthoftheplant,1973-1982.
Asterisk(*)showsmonthswhenmeasurements werenotmadeonthesamedayatintakeandreference stations.Measurements atreference stationswerealwaysmadeonthesamedayforanygivenmonth.Omittedmonthsandblanksindicatenomeasurements made..........................
z~32Frequency ofobservation (X)oforganicdetritusonthebottomofsoutheastern LakeMichiganduringstandardseriesdivesinthevicinityoftheD.C.CookNuclearPlant,1973-1982.
Observationsoffish(F)areexpressed inabsolutenumbersoffishcountedduringdives......................,,,.....
39RecordofdeadfishobservedduringalldivesinthevicinityoftheD.C.CookNuclearPlant,southeasternLakeMichigan, 1973-1982.
Blanksindicatenodata.................
viii43:
LISTOFTABLES(Continued)
Totalnumberandnumberofpreviously
.unrecorded taxaofperiphyton identified indiver-collected samplesscrapedfromthetopofthesouthintakestructure oftheD.C.CookNuclearPlant,1974-1981.
Onesamplepermonth,April-October, wascollected eachyearwiththeexception of1974(allmonthsbutJuneomitted),
1975(AprilandSeptember omitted),
1976(Octoberomitted),
and1977(April,May,andOctoberomitted).
Fraction(X)oftotalperiphyton taxathatwereidentified insamplesofentrained phytoplankton collected fromtheplantforebayisalsolisted.Blanksindicatenosamplescollected..................
528.Composition bynumber(andpercent)ofthenumberoftaxafoundindiver-collected periphyton samples'crapedfromthetopoftheD.C.CookNuclearPlantsouthintakestructure during1974-1981.
Onesamplepermonth,April-October, wascollected eachyearwiththeexception of1974(allmonthsbutJuneomitted),
1975(AprilandSeptember omitted),
1976(Octoberomitted),
and1977(April,May,andOctoberomitted).
Algaewerecategorized asfollows:diatomsBacillariophy ta,greenalgaeChlorophy ta,blue-green algae~Cyanophyta, golden-brown algae~Chrysophyta, redalgae~Rhodophyta, andotheralgaeEuglenophy taandPyrrophyta....................
52lAnnualrelativerankedabundance offishobservedduringalldivinginsoutheastern LakeMichiganneartheD.C.CookNuclearPlant,1973-1982.
Fishweregroupedaccording tofrequency ofobser-vation.Blanksindicatenoobservation.
Commonnamesoffishassignedaccording toRobinsetal.(1980)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~8110Annualrelativerankedabundance offishobservedduringduplicate observations madeduringtransectswimsinsoutheastern LakeMichigan, 1975-1982.
Observations weremadebytwodiversswimmingside-by-sidefor10malongthebaseofthesouthintakestructure oftheD.C.CookNuclearPlant.Eachdiverexaminedanarea1mwide;observations weresummedandthenrankedforthetotalarea(20m)examined.
Fishweregroupedaccording tofrequencyofobservation.
Blanksindicatenoobservation.
Commonnamesoffishassignedaccording toRobinsetal.(1980)..........................................
84,ix LISTOFAPPENDICES AendixNumber~Pae1Summaryofobservations madeduringdivesonriprapsubstrate surrounding theD.C.CookNuclearPlantintakeanddischarge structures insoutheastern LakeMichigan, 1973-1982..................................
1452Duplicate observations madeduringtransectswims.insoutheastern LakeMichigan, AprilthroughOctober,1975-1982.
Observationsweremade,'bytwodiversswimmingside-by-side for10m'alongthebaseofthesouthintakestructure
- ,oftheD.C.CookNuclearPlant.Eachdiverexaminedanarea1mwide.Totalareaofeach;transect was10m.Omittedswimsareindicated byanasterisk(*).........................
156,~3:Sci'entific name,commonname,andabbreviations y,l"forspeciesoffishobservedbydiversin"southeas ternLakeMichiganneartheD.C.CookNuclearPlant,1973-1982.
Nameswereassigned,'according toRobinsetal.(1980)....................
160I ACKNOWLEDGMENTS Wewouldlike,tothankthepresentprojectdirector.
RonaldRossmannandpastdirectors JohnAyersandErwinSeibelfortheirsupport,guidance, andeditorial acumen.Valuableon-siteassistance andpractical expertise wereprovidedtousbypastandpresentIndiana&MichiganPowerCompanystaffmembersJonBarnes,TomKriesel,andEricMallen.Wewouldliketorecognize ourcolleagues JimBarresandLaurieFeldtfortheireffortstoidentifytheperiphytoncollected duringthestudy.ThanksareextendedtoSamRitterwhodraftedthefiguresfoundinthisreport,andtoBeverlyMcClellan andMarionLuckhardt whoassistedinthetechnical preparation ofthereport.Manyusefulsuggestions forimprovement ofthetextwereprovidedbyJimBowers.Wewouldliketorecognize andgratefully acknowledge theextensive time,effort,anddedication ofLeeSomerswhohassupervised andguidedthedevel>>opmentofdivingactivities atTheUniversity ofMichiganandwithoutwhosesupportandassistance thisstudycouldnothavebeenconducted.
Finally,ourdeepestappreciation isextendedtothemanydiverswhoseefforts,dedication, andsacrifices contributed duringthemanyhoursofphysically andmentallydemanding workmadethisstudypossible.
ThisprojectwasfundedbyagrantfromtheIndiana&MichiganPowerCompany,asubsidiary oftheAmericanElectricPowerServiceCorporation.
WethankAlanGaulkeforhisliaisonworkthroughout thestudy.
.,~III; INTRODUCTION Thisreportisasummaryandanalysisofobservations madebydiversin.southeasternLakeNichiganneartheD.C.CookNuclearPlant,1973-1982.
Thisinvestigation wasonecomponent ofamulti-disciplinary environmental nimpactstudyconducted bytheGreatLakesResearchDivision, University ofMichigan, fortheDonaldC.CookNuclearPlantfrom1970through1982.Overallscopeofworkincluded:
physicalstudies"hydrology, sediments, shoreerosion,iceeffects;chemicalstudies-standardwaterchemistry, nutrients, tracemetals;andbiological studies-psammo-littoral organisms, periphyton, algae,zooplankton, benthos,andfish.Inaddition, studiesbyotheragenciesincludedradiological work,weatherandcurrents, thermalplumemapping,terrestrial floraandfauna,andotherenvironmental, sociological, andeconomicassessments associated withplantsiteselection andpre-construction activities.
In1986,thevariousstudiesconducted byGreatLakesResearchDivisionwereintegrated intoanoverviewoftheaquaticenvironment inthestudyarea.Thepurposeoftheunderwater assessment programwastogatherdataviadirectobservation oranalysisofhand-collected samples.Information amassedthroughtheseeffortswasusedtocollaborate oraugmentotherstudiesattheCookPlantandtoprovideauniqueassessment oftheaquaticenvironment, its1ecology,andplant-induced effects.TheD.C.CookNuclearPlantislocatedinBerrienCountyontheshoreofsoutheastern LakeMichigannearBridgman, Nichigan.
Theplantsitewaspurchased in1959andpre-construetionactivitiesbeganinthe1960s.Construction ofthetwo-unit, 2,200megawattplantbeganinthelate1960s.Placement ofin-lakestructures (intakeanddischarge pipesandstructures, andriprapfield)wascompleted inlate1972.Unit1achieved"on-line"
.statusduring.1975, following a'priorstartupperiodin,1974.Un'it2wenton-lineduring1977.Great.LakesResearchDivisionstudiesbeganattheCookPlantin1970andweredividedintotwogeneralphases:preoperational andoperational.
Underwater studieswereconducted during1973-1982 andincluded-10annualperiodsofobservation fromAprilthroughOctoberduringmostyears.Inaccordance withtheplantconstruction
- schedule, thepreoperationalstudyperiodbeganin1970andextendedthrough1974whenUnit1wenton-line.Therefore, thepreoperational databasefordivingobservations encompassed the2-yrperiodfrom1973to1974.Operational studieswereconducted from1975through1982,althoughfulloperational statuswasnotattaineduntillateLnthestudy.Animportant featureofCookPlantstructureandoperation regarding.
Ltspotential effectsonthelakewasthepresenceofLn-lakestructures andonce-throughcirculation ofwatertocooltheplantreactors.
Atpeakoperation,
'6.1millionlLtersperminute(1.6milliongpm)ofwateraredrawnthroughasystemofthreewaterintakeslocated223m(2,250ft)offshorein9mofwater,circulated oncethroughtheplant,andreturnedtothelakevia.twodischarge structures located109m(1,100ft)offshorein6mofwater.Aquaticbiotaentrained inthecoolingwaterareexposedtophysicalandthermaleffects,asistheenvironment immediately surrounding thedischarge area.Also,thepresenceofLn-lakeplantstructures (Lntakesandriprap)createsaphysicalenvironment thatLsatypicalofthesurrounding area.Hearshore surficialsedLments inthestudyareaaretypically composedofcoarse-tomedium-sized grainedsand(1.0-0.25-mm diameter) withfine-toveryfine-sized sand(0.25-0.06-mm diameter) becomingpredominant offshore(Davis; andMcGeary1965,HawleyandJudge1969).Adistinctchangein.sediment composition thatoccursoffshoreatabout,24m.isafunction'of.depthand.severityofnearshore physicalprocesses (Seibeletal.1974;RossmannandSeibel1977).Anaccumulation of1-10mmoffineparticulate materialconsisting ofsediment, periphyton, organicdetritus, anddiatomtestsoftencoversthebottom(DorrandJude1980a,b).Inshoresurficial sediments areunstable, andtopography canbeattributed tonearshore physicalprocesses including wavesandcurrents.
Typicalmanifestations inthestudyareaareaninnerandouterbarandagentleslopeoE1:100orlessbeyondadepthof4m(DavisandMcGeary1965).Thusmostareasofthebottomexhibitonlylittlereliefandprovideminimaltonosurficial shelterorprotection formacroscopic biota,e.g.,fish,crustaceans,andmolluscs.
Incontrast,substrate surrounding theintakeanddischarge structures andsub"surface watercirculation pipesconsistsofcrushedlimestone riprap(0.1"1.0mindiameter).
Itwasinstalled duringplantconstruction toreducescourbyplantdischarge wateronin-lake,cooling-water structures.
Initscentralarea,theriprapbedismounded1"2mabovebottom,andthestructures riseanadditional 3mabovetheriprap.Consequently, thesurfaceprofileinthewaterintakeanddischarge areasisconsiderably morerugosethanthesurrounding naturalenvironment.
ThefocusoEourunderwater studieswastoexamineselectedfeaturesofthisman-madeenvironment andtocompareandcontrastthemwiththoseofthesurrounding area.Throughtheseobservations, abetterunderstandingoftheaquaticenvironment inthevicinityoEtheplantwasachieved, aswellasoftheplantimpactonthatenvironment.
PatternsoEcolonization ofaquaticbiotawerealsodelineated.
Withinthereport,Cookplantdataand,findings.
areintegrated withothunderwater studiesconducted inLakeMichigan".
Changesin.)heecology,.of theCookPlantarearelatedtothe.impact oftheplantare.alsodiscussed.
Theknowledge gainedthroughtheunderwater assessment studyhasprovideduniqueinsightintotheinshoresoutheastern LakeMichiganenvironment.
Thisinsightaugmentsthatobtainedfromothercomponents oftheCookPlantenvironmental study.Ourresultsshouldhelpguidefuturesimilarstudies,aswellasaddtotheunderstandingofphysicalandbiological processes intheGreatLakesandelsewhere.
METHODSTheunderwater assessment studyattheCookPlantisuniquetotheGreatLakesintworespects:,
itsduration, whichencompassed 10separatefield.seasons,anditsdesign.Divingbeganin1973andcontinued through1982.Duringthisperiod,281(221day,60night)diveswereperformed inthestudyarea(Table1),andmorethan161hofunderwater timewereamassed.Theareawasexaminedbydiverseachmonth,April-October, for8"10seasons.Theseconduniqueaspectofthisstudywastheextenttowhichobservational techniques, effort,andsamplingwerestandardized.
During1973-1974, divingandunderwaterassessment techniques were,developed forthestudyareaandwereincorporated intotheCookPlantenvironmental monitoring schemeforplantoperation asrequiredbytheNuclearRegulatory Commission andtheMichiganDepartment ofNaturalResources.
Theseenvironmental technical specifications (U.S.AtomicEnergyCommission 1975)wereineffectfrom1975throughcompletion ofourfieldstudiesin1982,andstringently definedbaselinestudyobjectives andsamplingregimesforallsectionsoftheCookPlantenvironmental surveyincluding underwater studies.Strictadherence tothesespecificationsresultedinasamplingprogramthatwasbothrigorousandrelatively inflexible withregardtomodifications.
However,ithadtheadvantage ofgenerating acontinuum ofdatathatpermitted identification andanalysisofecological
- patterns, changes,andplantimpactsontheenvironment overaperiodofyears.Environmental technical specifica tionsstipulatedthatvisualobservations wouldbeconducted atleastoncepermonth,AprilthroughOctober,atfivespecified locations, including twodives(oneday,onenight)intheareaoftheintakestructures, onedaydiveintheareaofthe TableI.Summaryofday(D)andnight(N)divesperformed during1973-1982 insoutheastern LakeHichiganinthevicinityoftheD.C.CookNuclearPlantnearBridgman, Hichigan.
Divingwasnotconducted duringJanuary,Hovember, andDecember.
Honth1973197419751976DNDNDHDN197719781979DNDHDH1980DN1981DN1982DNFebHarAprHayJunJulAugS>>pOct3I4I2I3I5I3I6I224I25I4I34I4I4I3I3III4IIII3'47I46I44I43I5II43I4I924I4I5I4I4I823I3I33I3I3II3.IIIII2II2IIIIIIITotBIDiv>>s10I153218247257285328277267137Tim>>(min)445715762209493699074281,0352757992497183156473.0708225266180 discharg'e structures, andtwodaydivesinreference areas(onenorthandone.southoftheplant)(Fig.,1).
'tationnameswereabbreviated asfollows:southintakestation-SI,middleintakestation-HI,northintakestation-NI,southdischarge station-SD,northdischarge station-ND,southreference stationIII-SR-III,southreference stationII-SRII,southreference stationI"SR-I,northreference stationIII-NR-III,northreference stationII-NR-II,andnorthreference stationI"NR-I.Diveswereseparated intotwocategories:
standardseriesdives(thosewhichwereperformed tosatisfytechnical specifications) andsupplemental dives.Standardseriesdiveswereconducted according tofixedprocedures whichdescribed theareaexaminedbydivers,observational andsamplingtechniques, andrecording ofdata.Theformatsforsupplemental diveswereflexibleinresponsetotheobjectives ofthedive.Duringstandardseriesdives,twodiversequippedwithscubaswamside-by-sideandeither1or2mapart.Diversmadeobservations andcollected samplesattheintakestructure stationsbyswimmingaroundthetop(61mincircumference) andbase(78mincircumference) ofthestructure.
Whileswimming, eachdiverexaminedaplotof2minwidth;theareasexaminedontopandaroundthebaseofthestructures wereapproximately 244mand312m,respectively.
Inaddition, diversswama10-mtransectalongthenorthsideofthesouthintakestructure basefollowing ananchoredlineplacedthereforthedurationofthestudy.Whileswimmingatransectalongthisline,eachdiverexaminedadjacentplots1minwidth,resulting inobservations collected from1x10m(10m)plots.Theseobservational effortsinmeasuredareasprovidedaquantified database.Swimsandobservations atthedischarge stationswereconducted inexactlythesame MIDDLEINTAKESTRUCTURE SOUTHINTAKESTRUCTURE NORTHINTAKESTRUCTURE 4~t'VN4AUXAMttMAPUSOUTHREFERENCE STATIONIIILAKEMICH!GANSOUTHREFERENCE STATIONI~SOUTHREFERENCE STATIONISOUTHDISCHARGE STRUCTURE NORTHREFERENCE STATIONINORTHREFERENCE STATIONIINORTHDISCHARGE STRUCTURE RIPRAPZONENORTHREFERENCE STATIONIISOUTHRANGEPOLEOONALOC.COOKNUCLEARPLANTMICHIGAN'ORTHRANGEPOLEMiter'IPig.1.SchemeoftheCookPlantstudyareainsoutheastern LakeHichigan, 1973-1982, showingloca-tionsofthescuba-monitored intake,discharge, andreference structures andstations.
Stippledarearepresents approximate dimensions ofriprapzone.Depthsatintake,discharge, andreference statiowere9m,6m,and6m,respectively.
11)~'It~~
mannerasdescribed fortheintake-structure stations.
Areasexaminedon.top(213m)andaroundthebase(256m2)ofthedischarge structures differedslightlyinsizefromareasexaminedattheintakestructures; however,transectswimsalonganchoredlinesatthetwolocations wereconducted identically.
Often,butnotalways,areasinadditiontothosedescribed wereexaminedduringadive.Thiswasdonetoincreasethetotalareaexaminedinthevicinityoftheplantstructures.
Atreference stationsnorthandsouthoftheCookPlant(outsideriprapzoneinFig.1),two1x10m(10m),side-by-side transects wereswumparallelto,shoreinlinewiththedischarge structures.
Ateachreference astation,a10-mlinewastemporarily anchoredforthedurationofthetransectrswimanddiversswamouttothefullextentoftheanchoredline.Znadditiontothetwo10-m2plotsexaminedatareference station,a5-to10-minswimwasconducted paralleltoshoreandtowardthedischarge structures, following completion ofeach10-mtransectswim.The10-mtransectswimsatthereference stationsprovidedquantified datatocomparewiththoseobtainedwithintheplant-structure area(stippled zoneinFig.1).The5-10-mswimsincreased theareaexaminedatthereferencestations.
Thepreviously described stationsandobservational methodscomprised ourmonthlystandardseriessamplingeffort.Wheneverpossible, thiscompletestandardserieseffortwasconducted AprilthroughOctober,1975-1982.
Occasionally, badweatherorotherunsafedivingconditions forcedareduction inthisstandardseriessampling.
effort,particularly atthebeginning andendofthefieldseason.Also,overthedurationofthestudyseveral-basicalterations occurredinthestandardseriesdivingeffort.Asnotedearlier,1973"1974 divingprecededtheenvironmental monitoring specifications andslightdifferences occurredindivingeffortsandtechniques.
Duringmid-1977,
.two-unit-operation,wasachieved.andwaterwasdischarged frombothstructures.
Consequently, thisareabecameunsafefordiverstoenterandthestandardseriesdiveatthislocationwaseliminated.
Occasionally afterthis,whenwaterwasnotbeingdischarged fromoneofthestruetures,supplementary divesweremadeinthisarea.Finally,inJune1982,thetechnical specifications forenvironmental monitoring werealteredandthemonthlystandardseriesdivingwasreducedtoonedayandonenightdiveinthevicinityofthesouthintakestructure.
Observations weremadefollowing aprescribed format(Fig.2)andwererecordedunderwater onwater>>resistant paper..Occasionally, observations werecommitted tomemoryandtranscribed atthesurfaceordictatedinataperecorderforlaterreference.
Observations madebybothdiversduringnon-'ransect swims(e.g.,swimsaroundthetopandbaseofthestructures, 5~10"minswimsatreference
- stations, andduringsupplementary dives)werepooledanddiscussed astotalobservations, observations perunitarea(m),oras2,subjective descriptions ofabundance.
Transectobservations werepooledandameanandstandarderror(SE)calculated.
Formostdata,numberswereexpressed asnumbersper10m,100m,or1,000mtoavoidfractional units.Althoughdatawerecollected inbothaqualitative (descriptions ornumerical estimations) andquantitative (counts)manner,suspected violations ofassumptions associated withnormal-based statistical analysesprecluded reliableparametric analysis(seeDorrandJude1980aforadiscussion oftheseviolations astheypertaintounderwater observations andstudies).
Therefore, analytical procedures werelimitedtosubjective interpretation ofdata,anddevelopment andinterpretation oirankedordersofabundance.
10 Depth(ft)ObserverLocationIp!Sbe-SSRRRIEOOO':NQ~VES.enit'urbidi VLOWLOWhhFDHl,VHI,CurrentiNO'ES:FromSpeedsEplxl:snp',nGravel.RockFloe(mm)Organicdebries(Num/Den):
ALGAk/DUNE,GRASS/CHIPS/TERR.PTANTSISARKI-lEAVESITTTISS~BRANCHES/TRUNKS/STUMPS/CLAMSHELLS/UNIDPLANTInorganic debris(Item,Num,Den)EUNIDANIMLOTHER~Ripplemarks:From:Loosealgae:NOYES;ColorDesertPenphytons NOYESiColorDesutSPARSEhhEDLUXURIANT HtWdtllSizeLenLenScour:NOYESNum/Den%CoverageGostropods:
NumShellsDescr(location, behav)Clams:NumShellsLive:NOYEStNum/DenCrayeishi DeadrNOYES(Num)Descf(size,location, behav)tive:NOYEStNum/Denbails:NOYES(Desu)DoserLive:NOYESNum/DenFhheggs:NOYESELocationNum/DenRel.sizeSubstrate ColorskCleor'4OpaqueTkFungusOtherMiscinvert.(sponge.gydia, bryozoa,insects,crustaceans)
NvmtsepDensitySiteIorvYOYtvvodt.LocoPionbehov'Nsr 50AlTP~~Numeiicot ettimotena code.ActvotcountorrFevoIf)oI10ManyIM)TeII50Nvmeiovs(N)o50-100Abundant(AlEei~Veryebundenc(T)10(O+Commentst Pig.2.Prescribed formatinwhichobservations andmeasurements werere-cordedunderwater onwater-resistant paperduringdivesinsoutheastern LakeMichiganneartheD.C.CookNuclearPlant,1973-1982.
~e Observations andfindingspresented are.basedonobjective andsubjective analysis.
ofquantified data,temperedby.ourqualitative data,-general,
.knowledge ofthestudy-area,andinterpretation oftheliterature.,
DorrandJude.(1980a)discussed limitations associated withunderwater visualassessments whichincludeequipment andpersonnel traininglimitations andphysicalandpsychological stress,allofwhichservetoreducetheaccuracyandprecision ofobservational data.Underconditions oflimitedvisibility (oftenlessthan3minthestudyarea),abundance ofpelagicorganisms isusuallyunderestimated bydivers,particularly forhighlymobileanimalssuchaslargefish.'Mheresubstrate isuneven,abundance ofdemersalorcryptozoic organisms mayalsobeunderestimated.
Throughstandardization ofourobservational techniques, weattempted toobtainatleastconsistently biased(underestimated) parameter estimates wheretheerrorwasproportional tothetruepopulation size.Finally,Hiller(1956)described theplateaueffectwhichisrelatedtoperceptual handlingofsimultaneously presented stimuli.Shaw(1975)discussed implications ofthisplateaueffectrelatedtofishschooling and"flashexpansion" ofschoolstopresentmultiplemovingtargetsandpromotepredatoravoidance.
Enasense,adiverisalsoapredatorsubjectedtotheconfusing effectoftheseavoidance responses.
Experience hasshownthatthevisualplateaufordiversrangesfrom8to15tatgetswhenpresentsimultaneously, depending onvisibility anddurationoftheobservation period.Asaconsequence, wedeveloped astandardized codeforestimating numbersofobjectsinaconsistent manner.Theyincluded:
few1-10,many10-50;numerous50-100,abundant)100.Vhenpoolingdata(counts)suchasthese,estimates couldbeaveraged(e.g,,few+many1-10+10-50,or5+3012 35)orlower(1+1011)andupper(10.+5060)limitsplacedonparameter estimates.
Smallaggregations,.
ofanimalsorobjectswereestimated orcountedintotal,largeaggregations werevisuallypartitioned andthenumberofitemsinasinglepartition countedorestimated andmultiplied bythenumberofpartitions toobtainanestimateoftotalnumber.Theseestimates wereusedduringsubjective evaluation offishabundance baseduponcombinedcountedandestimated numbers.Thepreceding discussion underscores oureffortstodevelopacontinuous andconsistent database.Samplinglocations wereexaminedinaspatially andtemporally consistent manner.Observational targets(Fig.2)andeffortswerestandardized.
Subjective descriptions (Fig.2)andnumerical estimetiontechniques werealsostandardized andlearnedbydivers.Finally,toreducevariation associated withdifferences inpersonaldivingtechniques andcapabilities, theseniorauthorperformed allbuttwomonthsofdivingduringtheentirestudy.Therefore, aboutonehalfoftheobservational databaseincludednodiver-to-divervariation.
Theoperationalandobservational divingtechniques usedduringthisstudyweredeveloped overa10-yrperiod1973-1982.
Hanyofthesetechniques aredescribed inotherunderwater studiesthatwehaveconducted intheGreatLakes,theresultsofwhichareoftenrelatedtothisstudy.Theyinclude:Dorr(1982),DorrandJude(1980a,1980b),Dorretal.(1981a,1981'b),Judeetal.(1981a,1982),Ruteckietal.(1983,1985),Schneeberger (1982),andSchneeberger etal.(1982).DuringJune1974,andApril-October 1975-1981, diverscollected samplesofperiphyton fromthetopofthesouthintakestructure andriprapsurrounding thebaseofthestructure.
Periphyton wasscrapedfromthe13 structure withaputty.knifeintoaplasticmasonjar.Effortsweredirectetowardcollection ofanadequate-sized'.sample; noattemptwasmade.tosampleaquantified orconsistently-sized area.Asmallpieceofriprapabout4cmLndiameterwhichsupported anoticeable amountofperiphyton wasselectedandplacedLnasecondjar.Thesesampleswerepreserved in10%formaldehyde forlaboratory
- analysis, butbecauseoftimeconstraints, onlythesamplescollected fromtheintakestructure'ere examined.
Inthelaboratory, thesampleofscrapings wasstirredthoroughly, andasubsample wasremovedforwet-mounting inwater.Algalidentifications weremadeat400-600XusingaLeitz-Wetzlar Ortholuxmicroscope.
Taxaidentified Lnthesewet-mounts becametheyearlylistsofperLphyton collected fromtheCookPlantarea.Datausedforcomparison withdivingobservations werederivedfromcompanLon studiesonimpingedfish(ThurberandJude1984,1985)andfield-collected fish(Tesaretal.1985,TesarandJude1985).Impingedfishwerecollected andprocessed everydayduring1975andeveryfourthdayduring1976-1982.
FishweresampledinLakelfichLgan usingseines,trawls,andgillnetsatavarietyofstationsfromApril-i'november, 1973-1982.
14 RESVLTSANDDISGUSSIONPHYSICAL-FEATURES WavesandCurrent's SurfaceWavesThefetchofLakeHichiganrangesfromabout100kmwesttoabout'350kmnorth.Forlargelakessuchasthis,themaximumwaveheight(h)isrelatedtothefetch(x)ofthelakeasfollows:h0.105x(Mortimer 1975,Wetzel1975).Basedonthis,maximumwaveheightsatthestudysitewouldrangefrom3:3mfromthewestto6.2mfromthenorth.Weobservedstormwaveswithacycloiddiameterorheight(trough-to-crestdistance) inexcessof4m,whilewaveheightsof1-2mwerecommonduringperiodsofonshorewinds.However,itwasunsafeforustodivewhenwaveheightsexceeded1.5m;therefore, ourobservations werebiasedtowardconditions extantduringquiescent periodsinthelake.Wetzel(1975,p.94)statedthatfortravelling surfacewaveswithacycloidcross-sectional path,"thedecreaseofverticalmovement(ofthewater)withincreasing depthcanbeapproximately described asahalfingofthecycloiddiameterforeverydepthincreaseofX/9",whereAisthewavelength measuredascrest"to-crestdistance.
Wetzelfurtherstatedthattheratioofamplitude towavelength ishighlyvariablefrom1:100to1:10,butthatexceptatshallowbeachareas,wavelengthsofshortsurfacewavesarelessthanthedepth.Giventhis,thewavelengthofawave1.5mhighIshouldnotexceed10mwhenwaterdepthislessthan10m.Forawavewithaheightof1.5mandandawavelength of9m(asmighthaveoccurredduringourdivesatthe9-mstations),
theverticaldisplacement ofwateronthebottomshouldbeabout3mm.OntopoftheCookPlantintakestructures, whichare15 about4m.belowthe,surface,theverticaldisplacement ofwater.shouldbe-about90mm.These.calculations.
are.inagreement withconditions.that weobservedduringdivesin,.the.studyarea.Zfsurfacewavesexceeded.1minheight,somewaterdisplacement wasnoticeable onthebottomatall6-and9-mstations.
Materdisplacement wasusuallyevidenced byaswayingoftheperiphyton orsloshingmovements ofsurficial floe.Ontopoftheintakeordischarge structures thismovementwasgreatlyaccentuated relativetoconditions onthebottom.Becausetheriprapwasmoundedfromlakebottomlevelatitsperiphery toseveralmetersoffbottomatthebaseoftheintakeanddischarge structures,themovementofwatercausedbysurfacewaveactionattenuatedasdiversswamfromthestrueturesacrosstheriprapanddowntolevelbottom.Movementofwateronthebottomat<9moccurredwhensurfacewaveswerelessthan.1mhigh,buttheeffectswereunnoticeable todivers.Theseobservations suggestthatcirculation ofwaterandresuspension ofsurficialsedimentandflocculent organicmaterialoccursthroughsurfacewavaction.Thethreshold fortheseeffectsprobablyoccurswhenwaveheightsarebetween0.5-1.0m;effectsincreaserapidlywithincreasing waveheight.Evidencethattheripraptrapssedimentwillbepresented later.Thisfactorincombination withsurfacewaveactionprobablycontributed totheincreased levelsofsuspended materials observedbydiversnearbottominriprapped areasrelativetothesurrounding sandareas,whenlakesurfaceconditions wererough.Barresetal.(1984)notedelevatedlevelsofparticulates inphytoplankton samplescollected fromtheCookPlantforebayduringperiodsofstormyweatherandnearshore turbulence.
Asdiscussed later,plantintakewaterwasoftennotedbydiverstobedrawnfromthebottomofthewatercolumnatthebaseoitheintakestructures.
Theresuspension ofsuriicial 168 materialnotedbydiversduringandimmediately.,after periodsofroughlake.conditions.
mayaccount,fortheelevatedlevelsofparticul'atesnoted in.these'"',.'samples.Rossmann.et al.(1982)suggested thatelevatedconcentrations oforthophosphate anddissolved silicainwatersamplescollected inthestudyareamayalsohaveresultedfromstorm-induced turbulence.
Theseobservations indicatethatsurfacewaveactionincreased theamountofsuspended materialintheriprapareas,relativetosurrounding areas.Attachedalgaeandinvertebrates (sponge,bzyozoans,
~gdra);benthicinvertebrates, suchasworms,insectlarvae,snails,andcrayfish; andfishwithdemersallifestagesconcentrated intheriprapareaswereexposedtoeffectsofthisincreased suspension.
Sucheffectsmayhaveincludedincreased siltation andimpairment offilterfeeding.Surfacewaveactionundoubtedly promotedcirculation ofwaterinandaroundtheriprap.Theriseoftheriprapoffbottomincombination withitsmanyinterstices permitted surfacewaveactiontomoreeffectively perfusethissubstrate.
Thisinturnwouldimprovetheavailability ofoxygenandexchangeofgases,whileservingtocontinually removefloefromthesurfaceofthesubstrate.
CurrentsWindfrictionandatmospheric pressurechangesresultinseiches,differ-entialheatingofthelake,diffusion ofdissolved materials fromthesedi"ments,influxandoutflowofwater,andgeostrophic (e.g.,Coriolis) effects(llortimer 1975).InLake'tichigan, surfacecurrentsoftencirculate inlargeswirlsorgyres(Ayersetal.1958)whichinturnaresubjecttomodifications bystandingwavemotions.Lakebasinmorphometry alsoinfluences direction andspeedofsurfacewatercurrents.
Althoughgeneralcurrentpatternsmaybe17
\established inlargebodiesofwatersuchasthesouthernbasinofLakeMichigan,'urrent velocity.ata'ygivenpointmay'varywithlocalconditions.
Thisisparticularly true'ortheinsho'reregionwherelocaleffectssuchaspresenceofoffshorewindsorsandbarsmayinfluence currentflow.Studiesoncurrentswereconducted in1975and1978(Indiana&MichiganPowerCompany1975,1976;ETA1980)atlocations about600mnorthandsouthoftheCookPlantatthe3-and6-mdepthcontours.
Generally, currentspeedsmeasuredduring1975rangedfrom6to12cm/s(0.2-0.4fps)withamaximumspeedapproaching 60cm/s(2fps).Currentstendedto'flowtothenorth,althoughconsiderable day-to-day variation occurred.
Thesedatasuggestthatconsiderable variability existedinbothcurrentspeedanddirection inspaceandtime.Mortimer(1975)hasfoundthatcurrentvectorsnearshore arepredominantly shore-parallel, whileoffshore, theclockwise rotatingcurrentvectorsofPoinchrewavesdominatethelake.Effortsbydiverstoestablish generalcurrentdirection andspeedatagivenlocationwereunsuccessful.
Considerable variability wasmeasuredamonglocations separated byonly200maswellasdifferences atvariousdepthsinthewatercolumn.Consequently, noattemptwasmadebydiverstoassesscurrentvelocities, althougheffectsofcurrentswererecordedwhenobserved.
Absenceorpresenceofcurrentswasbestobservedbythehorizontal transport ofsuspended materialpastastationary diver.Vhensurfacewavesexceeded0.5minheight,verticaldisplacement ofthewaterobscuredthehorizontal movementofsuspended materialatdepthslessthan3m.%hencurrentswerepresent,horizontal movementofsuspended materialcouldbediscerned within1mofthebottomat6mand9m,regardless ofwaveheightsatthesurface.Thiswastheresultoftherapidattenuation oivertical18O displacement ofwaterwithincreasing depth.-Inareaswheresedimentaccumulated, suchas1'ocalized depressions in-thesandobservedatthereference stationoratthe-periphery oftheriprapfield,bothcurrentandsurfacewavesactedtoresuspend sediment.
Ingeneral,currentflowanddirection appearedtobeinfluenced byproximity totheintakeanddischarge structures atthesurfaceandonthebottom.Strongcurrentswereencountered throughout thewatercolumnatstations100mnorthandsouthoftherespective discharge structure duringdischarge ofwater.Asbestascouldbedetermined, thedirection offlowwasalwaysawayfromthestructure.
Strongeddycurrentswereencountered duringdivesatastationlocatedinlinewith,andmid-waybetween,thetwodischarge structures.
Butatthereference stationslocated900mnorthand1200msouthoftheCookPlant,noeffectofplantwaterdischarge onlocalwatercurrentwasdiscerned.
Withintheripraparea,pronounced currentsassociated withplantwatercirculation obscuredanygeneralcurrentpatternsnoticeable todivers.Largedifferences intheforceoftheintakecurrentcouldbefeltatdifferent pointsaroundthebaseofeachstructure.
Thesedifferences rangedfromcurrentsthatwerealmostundetectable tothosethatweredifficult toswimagainst.Thedirection andspeedofthenaturallakecurrentandtherecirculation patternsestablished betweentheintakeanddischarge structures influenced thedirection andstrengthoftheintakecurrentandthewithdrawal ofwaterfromvariouslevelsofthewatercolumn.Inbothriprapareasandonopenlakebottomincreased rugosityofthebottomprofileactedtoreducecurrentspeedwithinafewcentimeters ofthebottom.Thisobservation isinkeepingwiththeexistence ofaboundarylayer19 ofslack.waterknownto.existasafunctionofvertical'reliefdimensions variability andofcurrentforceanddirection.
Bothriprapandlargeripple1markswouldcontribute tovariability inverticalreliefandcurrentflowatthewetexsedimentinterface.
ThermalEffectsWatertemperature regimesencountered duringourunderwater studiesparalleled thosecharacteristic ofsouthernLakeMichigan.
Watertemperatures were4-8'CduringAprilandincreased rapidlyduringMay>>June.
Temperatureslessthan10'Cwererarelyencountered duringJune-September.
Duringfall,temperatures declinedandreached10'CduringlateOctober-early Novemberasdetermined fromotherdivestudiesintheregion(DorrandJude1980a,Dorretal.1981b).thermalstratificationduringJune-Augus t.Diversexperienced threemajorthermaleffects.ThefirstwasverticalItwascommontoencounter a1thicklayerofverywarmwateratthesurface,particularly whenthelakesurfacewascalm.Anabruptdropinwatertemperature couldbefeltonexposedskinasdiversdescended throughthislayer.Temperaturesintheadjoining layerremainednearlyconstantuntil1-2moffbottom.Atthispoint,asecondabruptthermaldeclinewasnoticed.Thislayerofcoldwateronthebottomwasoftenmoreturbidthanoverlying water,andcontained higheramountsofsuspended particles.
Itwasbelievedthatthesewererelatively distinctthermallayersandthatmixingofwateramonglayerswasreducedrelativetohomothermal conditions.
Observation ofthedistinctcoldnepheloid layeronbottomsupportsthiscontention.
20 Thesecondeffectexperienced by.dLvers.
wasthatofhorizontal thermalstratifica.tion.
Thiscondition wasagainencountered duringthewarm-water monthsandwasparticularly.
noticeable duringthe5-minswimsatreference stations.
Diversoftenswamthroughwatermassesofdifferent temperatures; thermalinterfaces wereusuallydistinctandonlyafewmetersthick.Becauseallswimswereconducted onthebottomat6mlittleisknownofconditions inmid-water.
Itispossiblethatisolatedmassesofcoolerwaterwerepresentonthebottomandsurrounded bywarmerwater,perhapsasiaresultofunevendevelopmen torbreakdown, ofverticalstratificationfollowingachangeinlakeconditions (e.g.,surfacewaves,currents, upwelling).
Thefinalthermaleffectencountered'y diverswassummerupwelling ofcoldwaterinshorefollowing periodsofstrongoffshorewinds.Unusually coldwaterwasoccasionally encountered duringtypically warm-water periods,L.e.,JulyorAugust.Onsomeoccasions, watertemperatures declinedconsiderably duringdivingwhichoccurredovera2-dayperiod.Again,cold-water upwellings wereoftenaccompanied byincreased turbidity andpronounced decreases inunderwater visibility.
Becauseoflakesizeanditsgentleslopingbottom,themajorthermocline betweentheepilimnion andthehypolimnion laywelloffshoreofthestudyareaduringtheperiodofmaximumverticalthermalstratification.Duringoccasional divesLndeepwater()12m),adistLnctthermocline wasencountered alongwithalargedifference intemperature betweentheepilimnion andhypolimnion.21 Surficial
- Features,
.Presenceofriprapandin-lakeplantstructures createdartificial:
featuresandatypicalhabitat.Mostofthelakebottomininshoresouth-easternLakeMichiganiscomposedofcoarse-tofine-grained sandwith~occasional areasofpebbles,andpresentsaflat,unbrokenprofile.Onlyiso-latedrocksandanoccasional logorbranchwereencountered duringourstudies.Dorr(1982),DorrandJude(1980b),andJudeetal.(1978)conducted'xtensive.
diversurveysofareascontaining roughsubstrate ofnatural(moraines, claybanks)andartificial (reefs,utilitystructures, harborbreakwalls) originfromMuskegon,
- Michigan, southtoMichiganCity,Indiana.Areasofroughsubstrate wereisolatedwithinthetotalinshoresystemandrepresented onlyasmallportion((1Z)ofthetotalinshorearea.Ripplemarksandoccasional largedepressions wereobservedar,thereference stationsandduringswimsalongthe6-mcontour.Thedimensions anddirection ofripplemarksobserved1000mnorth(StationIII)and1200msou(stationIII)oftheplantweremeasuredandrecordedduring1973-1982 (Table2).Mostoften,ripplemarksweregenerated fromawesterly-to-northerly direction (quadrant IV-270-360').
Thiswasthesituation during84ofthedivesatthenorthstation,and74:lofthedivesatthesouthstation.Theslightreduction (10:l)infrequency ofgeneration fromthefourthquadrantobservedatthesouthstationwasprobablycreatedbytheriprapnorthofthesouthstation.Thishypothesis issupported byourobservations thatripplemarkswereconsistently smallestatthesouthreference station(stationI)closesttotheriprap.Discharge ofwaterinanorthandwesterlydirection combinedwiththe"reef-Like" barrierthattheriprapanddischarge structures presented, undoubtedly actedtodiminishthe22 Table2.Direction ofgeneration (quadrant),
height(trough-to-crest),
andwidth(crest-to-crest) ofripplemarksobserved.bydiversin.reference areasnorthandsouthoftheD.C..CookNuclearPlant,duringsomemonthsfrom=1973to1982..Quadrant:
I,northtoeast(0-90');II~easttosouth(90"180');
III~southtowest(180-270');
IV~westtonorth(270"360');
Asym.asymmetric (nocleardirection ofgenera-tion).Dimensions areincm.Blanksindicatenodata.NorthReference AreasSouthReference AreasMonthQuadrantHeightWidthQuadrantHeightWidth1973SepEV17611974AprJunJulIV315IVIV18101975MayJunJulAugSepOctIVIEZIIIIIVI5151ll4103962059IVIIIIIIEV173113191976AprMayJunJulAugSepIEIIIEIVIVIIV11754155162861568IIIIIIVIVIV5145661977AprMayJunJulAug(Continued)
.IVIVIVEVIV1310021841031025IVAsymIVIV11651523 Table2.Continued.
NorthReference AreasSouthReference Areas"MonthQuadrantHeightWidthQuadrantHeightWidth1978AprMayJunJulAugSepOctIZIIVIVIVIVIV4653253202518155010ZZIAsymZIIZVIVIV5<1523215<120101551979MayJunJulAugOctIVIVIVIVIV420515310520315ZVZVZVIVIV4204125150518261980AprMayJunJulAugSepOctIVIVIVIVIVIVIV414515443129015601265IVAsymIVIVIVIVIV2010158151061981AprMayJunJulAugSepOctIVIVIVIVIVIVIV501002620603102661048IVIVIVIVIVZVI1982AprMayIVIV8121015IVAsym61024 strengthofwayesandcurrentsapproaching fromthatdirection, whichistheprevailing direction ofapproachatthislocation.
onthelake.Ingeneral,ripplemarksweresmallestandmostasymmetrically developed atreference stations(stations IandII)closesttotheriprapanddischarge area.Verylargeripplemarkswithamplitudes (heights) exceeding 10cmwereoccasionally observedatthetwomostnortherly reference stations.
Thesemarksoftenhadwavelengths of50-100cm,andextendedfor10mormorealongthebottom.Theywerealwaysgenerated fromthe270>>360'uadrant (quadrant IV-west-'north),
andwereneverobservedatsouthreference stations.
Theselaigemarksusuallyoccurredinisolatedpatchesalongthe6-mcontourandweres'epara'ted byextensive areascontaining muchsmallerripplemarks.Often~,~~thesesmaller'marks weregenerated fromadifferent direction andcross-hatchedthelargemarks.Hostlikely,theselargeripplemarksweretheremnantsofmarksgenerated duringconditions ofhighwindsandlargesurfacewavescomingfromawesterlytonortherly direction.
Largemarkswereneverobservedatthenorthreference station(stationI)closesttothedischarge area,againprobablyaresultofthedisruptive effectofthenorth-westerly directeddischarge currentonincomingwaves.Infact,thedisruption ofsurfacewavesbytheplant'swaterdischarge isobservable fromshore.Theothersurficial featureofthebottomobservedinthevicinityofthereference stationswasthepresenceoflocalized depressions inthelakebottom.Thesedepressions wereonlyobservedduringswimsparalleltoshorebetweennorthreference station.II andstationIII.Duringthe5"10-minswims,diversoccasionally encountered depressions about1mdeepand5-10macross;becausethethirddimension wasnotmeasured, theactualshapeofthesedepressionsisnotknown.Mesuspectthattheymayhavebeenroughly25 ovalinshapewiththelongaxisorientedmorecloselyperpendicular.to shothantheshortaxis.Thesedepressions weresurficial features.
ofthebottomthatweredistinctly different fromthemajortroughsthatwerelocatedbetweenthemajorsandbars.Onepossibility isthatthesedepressions weretrenchesorcutsacrossthesemajorbarsandthatthedepressions connected adjoining troughs.Anotherpossibility isthatthedepressions wereremnantsofoldtroughsthathadbeenmostlyfilledinduringtherelocation ofabar.ThesefeaturesarenotuniquetotheCookPlantarea,sinceweobservedthemduringotherunderwaterstudiesininshoresoutheastern LakeMichigan.
SedimentQualitative microscopic analysisoftheflocculent
("floe")layerofmaterialoverlying theriprapandsandrevealedittobecomposedprimarily ofsediment, diatomtests,andsomeorganicdetritus(primarily algae).Thethickness ofthislayerrangedfromcompleteabsencetoabout10mm;alayer2"3mmthickwastypicalofthearea(Table3).Whenpresent,similaramountsoffloewereobservedinbothreference areasandontheriprap.However,onlyonce,inApril1982,wasfloetotallyabsentfromtheriprapsurrounding theintakestructures, whereas,completeabsenceoffloeinreference areaswasmorecommon(8occurrences atnorthreference stationIII,lloccurrences atsouthreference stationIII).Observations offloedeeperthan10mmweremadeontwooccasions northoftheplantandoncesouthofit.Thefloelayerontheriprapwasneverthickerthan6mmbetween1975and1982.Weattribute themorecontinuous presenceoffloeonriprapcomparedwithsandtobetheresultofthebettertrappingactionofther'prapsurface.26 Table3.-Depth(mm)~offlocculent surficial sedimentmeasuredonriprapsurrounding theD.C.CookNuclearPlant-intakestructures andatreference stationsnorthandsouthoftheplant,1973-1982.
T(trace)~detectable, butunmeasurable;"
Blanksindicatenomeasurements made.MonthIntakeAreaN.Reference S.Reference 1973JunAugSep<5<5<5<51974AprMayJunOct)105"10<555-101975MayJunJulAugSepOct6<54332<5T2T001976AprMayJunJulAugSepOct232322422012021977AprMayJunJulAugSep(Continued).15220T000027 Table3.Continued.
MonthIntakeAreaH.Reference S.Reference 1978AprMayJunJulAugSepOct433820324241979AprMayJunJulAugSepOct123T113812025332001980AprMayJunJulAugSepOct1981AprMayJunJulAugSepOct23202022520232420320244522401982AprMayAugOct03228
.Theunevensurfaceofindividual clastsand.thepresenceof.periphyton causedfloeto.beretainedmoreeffectively thanonthesmoothsurface,-of "thesandbottom.Twogeneralobservations supportthiscontention:
(1)floeaccumu-latedinthetroughsoftheripplemarks,andnotonthesidesorcrests,and(2)surfacewaveactionoftencausedmovementoffloeonthesandbottombutnotontheriprap.Rarelydidfloeaccumulate onthesidesorcrestsofripplemarks.Hostoften,itwascarriedintothetroughs-bywatermovement.
Itwasnotedearlierthatsurfacewaveactioncouldbefeltonthebottomatk6mwhenwavesexceeded1minheight.Also,thethreshold fornoticeable IIII~watermovementoccurredwhenwaveswere0.5-1.0m'in:height.
Whensurfacewaveswere1m,aslightoscillation ormovemento'fth'efloeinthetroughsofru1ripplemarkswasapparent.
Underthesesamecond':tibns, theperiphytononIriprapwasobservedtosway,butnomovementofthefl'occouldbeseen.Additional evidencethatunevensurfacestrapped.sedimentmoreeffectively thatsmoothsurfaceswasprovidedbytheoccasional deepaccumulations offloeindepressions observed'inthesandbottominthenorthreference area(seeprevioussection-SurficialFeatures).
Floe10-20cmdeepwasmeasuredinsomeofthesedepressions (Table3).Suspended
- material, transported alongthebottom,probablyencountered thesedepressions wherewatervelocities werereducedresulting inthismaterialbeingdeposited inthicklayers.Inasense,theselargedepressions wereanalogous tosmallIpocketsorintersticesinthesurfaceoftheriprap.Asmalltrough(1-2mIwideandlessthan1mdeep)inthesand,bottomadjacenttotheriptapoftenformedalongtheperimeter oftheriprap.Quiteoften,floeaccumulated intthisrestricted areatodepthsof10-20mm.Mostlikely,thiswastheresultofasmallareaofstagnantwatercreatedbythebarrierwhichtheriprap29 imposedasitroseoffthebottom-atthispoint.Observations.
madeduringstudiesof.otherareas.ofnaturally formedsand(Jude.etal.1978,~Dorr'ndJude1980b),rockorclaybottom(Dorr1982),andartificial substrates (Dorretal.1981b,Dorr1982)confirmthatrugosesurfacestrapsedimentmoreeffectively thansmoothsurfaces.
Thereappearedtobeadirectrelationshipbetweenabsenceorpresenceoffloeandwaterdepth.Inthisstudyandothers(Dorr1974,Dorrandliiller1975,Dorr1982),floewasrarelyobservedatdepthslessthan6m.However,itwasalwayspresentat12mormote.Seibeletal.(1974)andRossmannandSeibel()977)notedadistinctdemarcationat24mwherefiner-grained sedimentpredominated.
Itsoccurrence wasafunctionofdepthandseverityofnearshore physicalprocesses, including waveactionandcurrents.
Ourobservations, combinedwiththecalculated attenuation ofeventhelargestsurfacewavesobservedduringanyperiodofseveralyears,suggestthatatdepthsgreaterthan12m,themovementofwaterisnotsufficient toswe'epevensmoothbottomclearofflocculent
- material, muchlessrugosesurfaces.
Thisobservation hassignificant implications regarding thedepthlocationofstructures suchasartificial reefsornaturallaketroutspawningreefs,wheretheremovalorabsenceoffloefromthesurfacesorinterstices ofthesubstrate bynaturalmovements ofthewaterisdesired.Ina1977experimentwe positioned severalverticalsediment-collecting tubes1moffbottomoverCookPlantintakeriprap.Following a21-dayperiod(25i!ay-16June),74mmofmaterialwascollected inthe3.8-cmdiametertubes.Thetubeswereconstructed topermitdiffusion offormaldehyde fromanattachedreservoir intothecollection chamber,therebypreserving themater-ialfromdecomposition.
About90.';ofthefloecollected wassediment; 30 theremaining portionwas'omposed ofdiatomtestsandorganicdetritus.
Thisexperiment confirmed, thepotential,forrapi'd deposition andaccumulation ofsedimentininshoredepressions.'locculent materialmaychangethecirculation ofwater,dissolved gasexchange, andsedimentoxygendemand(SOD)inmicrohabitats suchassurfacesandinterstices ofsubstrates,whichmightadversely impactbiological entitiessuchasincubating laketrouteggs.TransarencWatertransparency, themaximumdistancebetweentwodiversatwhichtheyremainedvisible,wasmeasuredonthebottomwithalinemarkedat0.5-mintervals; valueswererelativelycomparable amongriprapandreference stations(Table4).Highestvisibility recordedwas6.8matthe9-mintakestation,whilethelowestwas0.6matanorthreference station.Typicalvalueswere2-3matallstations.
Visibility tendedtobehighestduringsummermonths(June-August).
Thiswasprobablytheresultofsummerthermalstratification, followedbydepletion ofnutrients, andreducedplanktonproductivity.
Also,fewerseverestormsandreducedturbulence duringsummerpermitted suspended materialtosettle.Highestvisibilitiesoccurredfollowing aperiodofonetotwoweeksofcalmlakeconditions.
Severalpatternswerenotedinthevisibility amongstations.Visibilities wereusuallyloweratthetwostationsclosesttothedischarge structures (NR-1,SR-1)thanatotherreference orriprapstations.
Also,therewasanoticeable decreaseinvisibility fromsurfacetobottom(6m)atthesetwostations.
Thereduction invisibilityattheselocations wasthe31 Table4.Horizontal visibility (m)asmeasuredbydiversonthebottomnear=Cook Plantintakestructures (9m)andinreference areas(6m)northandsouthofthe,plant,1973-1982.
=Asterisk(*)showsmonthswhenmeasurements werenotmadeonthesamedayatintakeandreference stations.
Measurements atreference stationswerealwaysmadeonthesamedayforanygivenmonth.Omittedmonthsandblanksindicatenomeasure-mentsmade.MonthEntakeAreaH.Reference S.Reference 1973Jun*AugSep2.04.51.22.01.81974Apr*May,JunJulOct1.03.83.31.20.63.31.71975May+JunJulAug*SepOct2.17.64.53.02.72.72.06.14.03.02.72.04.51.52.51976Apr*May+JunJulAug*SepOct2.52.04~01.53.02.03.01.81.84.51.53.01.51.01.23.02.03.01977MayJunJul+AugSep(Continued).
3.06.85.06.02.5326.13.04,02.06.04.54,02,0 RTable4.Continued..
MonthintakeAreaN.Reference
- S.Reference 1978AprMayJunJul*AugSepOct1979AprMayJunJulAugSepOct+1980AprMayJunJulAug*Sep*Oct+1981AprMayJunJulAugSepOct1982AprMay*JunJulAugSepOct1.01.03.02.02.52.01.02.02.02.04.53.03.01.32.03.01.02.02.02.51.52.03.02.03.03.01.51.53.04.04'4.03.03.01.02.03.03.02.52.03.02.52.04.03.02.03.03.03.02.52.02.52.01.52.03.03.04.02.51.01.03.01.02.03.03.03.02.02.02.04.03.02.02.02.53.01.52.02.52.52.02.03.01.03.02.02.01.03.033 resultofincreased turbulence andsuspension ofsedimentnearthepointofwaterdischarge.
Noeffectofplant-induced turbulence andreducedvisi6ility wasnotedatreference stationsfarthestfromthe=-discharge structures.
~.Onseveraloccasions (Table4),visibility atintakestructures wasgreaterthanatreference stations.
Thissituation occurredduringsummermonthswhenaslightthermalstratification developed inshore(seeprevioussection-ThermalEffects).
Awarm,clearlayerofwateroccasionally overlaidanarrowband(1-2mthick)ofcolder,moreturbidwateradjacenttothebottom.Atreference stationswheretheselayerswereundisturbed, visibility wasmarkedlyreducedbyone-halformorecomparedtotheintakearea.Theoverlying waterlayerwasoftendrawndownintothelowerlayerattheintakestruetures,thusdisplacing thecooler,moreturbidwaterandaccounting forlowervisibilitiesatreference stations~Whiledivingonthedrawnevenlyfrombothlayersatallpointsaroundthestructures.
Ourstudiesinotherinshoreareasofsoutheastern LakeMichiganrevealedthatwatertransparency, measuredasunderwater visibility, didnotvaryconsistently amonglocations.
Underwater visibilities recordedattheCookbottomaroundthebaseoftheintakestructures, diversoftenswaminandoutofthesetwowatermasses.Thisprobablyoccurredbecausethewaterwasnot~'IPlantweretypicalofthearea.But,inanotherstudy(Dorr1982)southofAtheplantnearNewBuffalo,Michigan, wefoundvisibility onthebottom(6-12m)inanisolatedareaofclaysubstrate andextensive submarine trenchestobeconsistently lowerthanthesurrounding area,including thatoitheCookPlant.Thiswastheresultoferosionoftheclaysubstrate combinedwithrelatively stagnantwatercontained intrenches.
Thewaterwasusuallymuchmoretransparent severalmetersabovebottom.34; Observations atthe.CookPlantandelsewhere in,theareasuggestthatinshorevisibility.
(transparency),is largelya,functionofwatermovements orcurrentsthatsuspendsedimentoffbottom.Duringquiescent periods,thismaterialsettlesandtransparency increases significantly.
Presenceofaccumulations ofsedimentorerodablematerialsuchasclaymayreducevisibility locally.InoranicDebrisWedistinguished betweeninorganic debrisobservedinthestudyareaandorganicmaterialwhichwastermeddetritus.
Twogeneraltypesofdebriswerenoted:thatwhichwasdeposited duringinitialconstruction andsubsequent repairofin-lakeplantstructures, anddebriswhichaccumulated asaresultofactivities unrelated toplantconstruction andmaintenance operations.
Avarietyofmaterials wasdeposited ontheriprapduringconstruction including:
steelgirdersandplates,metalpipe,plastic,steelcable,andtires.Forthemostpart,heavyobjectsremainedinplaceforthedurationofthestudy.Subsequent repairworkonthesestructures (e.g.,replacement ofbrokeniceguardsonthestructures, additionofripraporcementscourpads,etc.)resultedinaccumulationofdebriswhichremainedinthearea.However,sometransport oflightermaterials (plastic, tires,containers, etc.)fromtheareaoccurredduringmajorstorms.Zncontrastwiththeripraparea,debrisfromplantconstruction wasneverobservedonthesurrounding sandbottom.Efsuchdebrisweredeposited inthisarea,lightermaterials wereprobablyrapidlytransported fromthearea,whileheavyobjectssankintothebottomandwerecoveredoverbysand.Theendresultwasthatplantconstruction debrisdidnotremainexposedin35 Tsandbottomareasforanextendedtime.In,contrast, inorganic debrisandorganicdetritusdeposited on,theriprap,couldnotsinkintothesubstrate,-
butsnaggedontheprojections andinthecrevicesoftherugosesubstrate andwasheldinplace.Thisdebrisservedtoexpandthevarietyofsubstrates andhabitatsavailable tolocalbiota.Theothergeneraltypeofdebristhatwasnotedintheareawasthatwhichresultedfromthedumpingoftrashintothelake.Someofthismaterial(beverage containers, clothing,fishingtackle,household items,etc.)wasdumpeddirectlyintotheareabypeoplefishingfromsmallboats.Itwasnotuncommontocount20ormoresmallboatsovertheriprapareaonasummerday.Theothersourceofthistrashcamefromrefusedumpedinsurrounding areasofthelakeorerodedfromthebeach.Ingeneral,thebulkofthistrashwascomposedoflighteritemswhichwereeventually transported fromthearea.Trashwaslessabundantintheearlyspringfollowing theprolonged absenceoffishermen fromtheareacoupledwiththeintensefallandspringstormswhichswepttrashfromthearea.Evidenceofsuchtransport wasprovidedbytheoccasional observation ofsuchtrashatallreference stations.
Ourobservations duringthisandotherstudiesrevealthatwhilemosttrashiswashedonshoreorburiedandeventually degradedinthesubstrate, considerable amountsoflittermustbeexposedandwashedalongthebottomofthelakeatanygiventime.Webasethisobservation onconsideration oftherelatively smallareasofthelakebottomobservedbydivers,andthefairlyhighfrequency atwhichtrashwasobserved.
Withtheexception oftheriprapareaitself,accumulations andobservations oftrashneartheCookPlantweresimilartothosenotedelsewhere inthelake.30 Whileplantconstruetionmaterials thatremainedin'laceontheriprapprovidedexpandedsubstrate.and habitat,the,trashdid.not..Trashwas-,.an.
inevitable resultoftheintensive.use ofasmall.areaof.thelakebythefishingpopulace.
BIOLOGICAL FEATURESOranicDetritusOrganicdetritusobservedinthestudyareabydiverswasclassified intotwogroups:microscopic andmacroscopic.
Microscopic organicdetrituswasdefinedasorganicmaterialwhoseoriginalformcouldnotbediscerned bytheunaidedeye.Thesema'terials includedremainsofplanktonic organisms orpartsoflargerorganisms thatwerefinelydivided,suchasshreddedplantsordecomposed animaltissue.Macroscopic organicdetritusincludeddeadalgae,partsofplants(e.g.,grasses,bark,twigs,limbs,trunks),anddeadanimals(e.g.,crayfishandfish).Accumulations ofsedimentgreaterthan10mmthickwereuncommonbutamountslessthan5mmthickwerefrequently observedinthestudyarea.Nodiver-collected sampleswereanalyzedforlossoforganicmaterialuponigni-tion,atwhichtimeorganicmaterialwouldbeoxidizedtocarbondioxideandwater.However,inaseparatestudy,analysisof34samplescollected atdepthslessthan15minthevicinityofthestudyareashowedameanlossinsampleweightuponignitionof4.3/withastandarddeviation of4.1X(Rossmann andSeibel1977).Combinedwithdivingobservations, theseresultssuggestthatboththetotalaccumulation ofsurficial sedimentanditsorganiccomponent arevariableininshoresoutheastern LakeMichigan.
Typicalvaluesforthickness andorganiccontentofinshoresurficial sedimentare3-5mmand37 4.3%totalweight,respectively.
Theseobservations also-suggestthatsmalamountsofmicroscopic organicmaterialareconsistently available tobenthic-detritivores including epibenthic zooplankton, sponges,bryozoans,
~Hdra,snails,clams,crayfish, insectlarvae,andfish.Notsurprisingly, alloftheseorganisms werefoundinthestudyarea,althoughtheywereunevenlydistributed.Presenceofmacroscopic organicdetrituswasrecordedinoneofseveralcategories contained intheprescribed recordformat(Figure2).Someofthesegroupswerelatercombinedandsummarized insixgeneralcategories ofmacroscopic material:
algae(A),dunegrass(B),shredsorchipsofwood(C),twigsandbranches(D),treetrunksandstumps(F),andEish(F)(Table5).Othermaterials suchasmolluscshells,insectlarvaeexuviae,crayfish, andfishfeceswereseenonoccasion, butnotoftenenoughtowarrantinclusion
'inthegeneralsummarization ofobservations.
Itwasnotpossibletodiscerncountindividual detritalobjects.Therefore, onlypresence(orabsence)odetrituswithinthevariouscategories wasnotedandsummarized asfrequency ofoccurrence
(%)amongstationsandyears(Table5).Hosttypesoforganicdetrituswereobservedatonetimeoranotheratallstations.
Twigsandbranchesweremostcommonandwereseenatallstationsatleastonceinallyears.Clumpsofloosealgaewereseenduring22%and26%ofalldivesatthenorth-andsouth-reference
- stations, respectively, DunegrasswasnotedmoreoftenatthereEerence stationsthanattheintakeordischarge stations.
Shredsandchipsofwoodwereconsistently seenatallstations, butwereobservedmorefrequently inreference areas.Thesmooth,flatbottomatthereEerence stationsfacilitated diverobservation ofsmalldetritalobjectssuchasalgae,dune38, Table5.Frequency ofobservation (7')oforganicdetritusonthebottomofsoutheastern.
LakeMichiganduringstandardseriesdivesin'thevicinityoftheD.C.Cook"NuclearPlant,1973-1982.-1 Observations offish(F)"are-expressed inabsolutenumbersoffishcountedduringdives.Cateor3YearandNo.ofstationdivesABCDEF1973NRSRID11001425252525333333310AL1974NRSRID1975NRSRD1976NRSRID1310096650450ll71465126100100100335AL335050671SS,1YP,1XX67331AL504AL,1YP27~1AL14100431767501AL20401AL171AL33100337AL1977NRSRID817507556020204751284254AL,1SP2AL,1SM9Aji1CP,1SS1978NRSRID7296'71281714882AL1CC,1XX1979NRSRIDContinued).
7714514291414144329141414802AL39 Table5.Continued.
Cateor3IYearandstation2No.ofdivesABCDEF1980NRSRID7714314434AL14142AL1472AL,1YP1981NRSRID1982NRSRID~al1ears7297291432214250100437114577733333JD32AL,2YP9AL501ALTota1494611646257226353526924154<1413772054144162514AL,1SP257AL,1CC,213ALI2016AL,2SS)1XX5100AL,3JD,1CC)1SIN)2XX3JD)3YP)1XX1YP2YP)CPI6YP,2SS,1CPI1SP,Frequency ofobservation
(%)~-'x100NtMhere:No~no.divesatstationwhenobserved, iVttotalno.ofyearlydivesatstation.NR~northreference
- stations, SR~southreference
- stations, 1~intakestation,Ddischarge station.A~loosealgae,Bdunegrass,Cshredsorchipsofeood,Dtwigsandbranches, Etrunksandstumps,Ffish(AL~alewife,CC~channelcatfish,CP~commoncarp,JD~johnnydarter,S;1~rainbowsmelt,SP~spottailshiner,SSsculpin,YPyellowperch,XX~unidentified fish).40; grass,andshredsorchipsofwood..Attheintakeanddischarge.
- stations, theunevensurfaceofriprapandabundance ofinterstices made.observation ofthesesmallobjectsmoredifficult thanatreference stations.
Treestumpsandtrunkswereobservedinfrequently (5Xoftotaldives)andonlyonceatareference station.Stumpsandtrunksweremostoftenobservedatthedischarge station.Theirprojections snaggedontheunevensubstrate.
Thesolidfoundation formedbytheriprapalsoprevented theheavystumpsandtrunksfromsinkingintothesubstrate.
Materdischarge currentsfromtheCookPlantkepttheseobjectswashedfreeofsedimentthatmightotherwise haveeventually coveredthem.Onseveraloccasions (1974-1976),
Idiversobservedtreetrunkswhichwereadjacenttothedischarge structures andremainedinplaceforseveralmonths,including winter.Inareasofsandsubstrate, moderately heavyobjectsrestingonthebottomsankintothesubstrate andwererapidlycoveredbysediment.
Meobservedmanylargechunksofwood,logs,andstumpsduringexcavation ofthelakebottomforplacement ofplantintakeanddischarge pipes.Aportionofanexcavated stumpwasexaminedandthoughttohavebeenburiedalongtheshoreline duringapreviouslow-level stageofthelake;possiblyduringtheChippewa(5,000-6,000 yearsago)orNipissing (4,000-5,000 yearsago)stages(Hough1958;personalcommunica tion,C.I.Smith,Department ofGeology,University ofNlchigan)..
Shellsofsnailsandsphaeriid clamswereobservedoccasionally, mostoftenintroughsoflargeripplemarksorinshallow,flat-bottomed depressions intheriprap.Theseshellswereoftenfragmented andmanywereseverelyeroded.Thissuggeststhattheshellsweretransported bywavesandcurrentsandaccumulated intheseareasofslackwater.Diversoften41 encountered shellsor.fragments when~siftingthroughcoarse-.sand,-but rarely~whenexamining'ine.
sand.Again,thiswasprobably"the result~"ofthesortingofsediments bywatermovement; shellfragments-contained inthefinesandweretoosmalltobeobservedbytheunaidedeye.Fishfeceswerecommonlyobservedatreference stations.
AlewifefecesweremostabundantduringMay-Junewhenthesefishconcentrated inthearea.Following commencement ofheatedwaterdischarge fromtheplantduring1975,commoncarpbegantobeattracted totheareaandfecesof'.this:fish wereoftenfoundinabundance atreference stationsclosestto',thedischarge 1structures.
Thefecesofthesealewivesandcommoncarpundoubtedly increased tthesupplyoforganicmaterialtodetritivores and.recycled."nutrients toalgaeinthelocalarea,butthesignificance ofthiscontribution
.'isunknown.~t1pOnafewoccasions, deadcrayfishwereobservedintheriprapzonebutno4patternwasdetectedintheiroccurrence.
However,crayfish:are oftenusedbyfishermen asbaitforyellowperchthatcongregate overtheriprap.Someofthedeadcrayfishseenbydiversmayhavebeendiscarded, by'theselocalfisbermen.Deadinsectlarvaeandshellswereobservedoccasionally butneverinlargenumbers.Larvaeofmayflies, waterbugs,caddisflies,andwaterbeetleshwereseenatbothsandandriprapstations.
Thepreceding observations indicatethataspectrumofplantandanimalfmaterialisavailable todetritivores inhabiting theinshoreregionofsoutheastern LakeMichigan.
Therolethatdetri,tal-feeding organisms playinlakeecologyisdiscussed inmoredetaillaterin,thisreport(seeECOLOGY).
I~Largeaccumulations ofdeadfishwerenever'observed duringdivesinthevicinityoftheCookPlant(Table6).Thelargest"numberofdeadfish42 Table6.RecordofdeadfishobservedduringalldivesinthevicinityoftheD..C.CookNuclearPlant;southeastern LakeMichigan, 1973-.1982.
Blanksindicate.no data.DateMatertern.('C)FishTimeSurfaceBottomSpecieslobservedDeadLive2Northreference stations25Jun7513May769Jun7619May7713Jul7728Jun7825Jun7924Jun8026May8119451333173015301745151516051605"161519.013.021.719.023.720.513.519.014.819.012.016.216.021.616.59.517.412.3ALALALALSPALALALJD75-1001Southreference stations15Jul76191019May77163028Jun7818Jul7828May8026May8123Jun8)162015561804l63518351Jul81163019May82172218Jun73171722Jul74194523J5174144517Jul75145022.015.615.625'23.519.520.518.013.614.517.419.018.010.07.822;822.716.519.515.011.912.516.017.0ALALALALYPALALSMCCYXALALALYPALYPAL1014511211121301111>1)00025-3020>100Entakestation16Jul758Jun7615Jul7628May8028Jul'026May8123Jun811Jul81(Continued).
1425214517051559040017201900173022.222.219.016.223.522.613.0lory518.012.515.512.018.016.518.013.0ALALSSALYPALALAL1>1,000216073043 Table6.Continued.
DateMatertern.('C)FishobservedTimeSurfaceBottomSpecies)DeadLive>Discharestation16Aug7322May74110321.117.8YP115012.011.0SSYPXXALALSSCP192019.016.2AL16Jun7712May76154014.411.819May77133019.6)5.4111111I112188))00ALtmalewife,YPamyellowperch,SSmtorC.ahridi),JDJohnnydarter,CCCPcommoncarp,SHrainhousmelt,XX~unidentified fish.SeeAppendixnames.sculpin(C.~conatuschannelcatfish,SPmtspottailshiner,3forscientific Numberoflivefishofsamespeciesobservedduringsamedive.44
- observedduringasingledivewas30alewives, whichwereseenduringadiveinJune1981atasouth.reference s,tation.
Observation ofmorethan.5dead.fishduringadivewasrare,~andofthe281divesmadeinthevicinityoftheCookPlantduring1973-1982 (Table1),deadfishwereobservedononly35occasions (12%ofthedives).Duringthe281divesmadeneartheCookPlant,125deadfishwerecount-ed.Ofthistotal,107or86%ofthefishwerealewives(seeAppendix3forscLentific names);theremainder wascomprised ofyellowperch(5),slimysculpinandjohnnydarter(3each),commoncarp(2),spottail'shiner (1),channelcatfish(1),rainbowsmelt(1),and2unidentified fish.Allofthesefishspecieswereabundantinthestudyarea(TesarandJude1985)andwerecommonlyobservedbydivers,withtheexceptLon ofchannelcatfish.Hoparticular patternortrendwasdetectedinnumbersofdeadfishobservedamongstationsoryears.However,71%ofthedivesduringwhichdeadfishwereseenwereconducted duringMay-June.
Thisobservation wasnotsurprising becauseofthehighpercentage (86%)ofdeadfishthatwerealewives.
Annualdieoffsofalewiveshavetypically occurredduringHay-JuneLnsoutheastern LakeHichigansincethelate1960s(Brown1968,Judeetal.1979).'nfact,considering thethousands ofdeadfishoccasionally seenfloatingonthesurfaceofthelakeabovethediversandwashedupdirectlyonshore,thesmallnumberofcarcasses seenonbottomwasunexpected.
Anunquantified butprobablysmallproportion ofthealewifecarcasses thatsanktothebottommayhavebeeneatenordecayed,butseverelyerodedordecayedFfishwereseldomseen.Hostdeadalewivesseeninshoreofthe10-mdepthcontourofthelakeprobablyfloatedonthesurfaceorbottomuntiltheyeventually washeduponshore.Thecontinuous exposureofthisinshoreregion45 eIofthelaketowavesandcurrentsundoubtedly quickened thetransport ofdeafishtothebeach;DeadfishwereneverobservedduringApril,September, andOctober.Inshorewatertemperatures werelowerduringthesemonthsthaninHay-August, andadultalewifeandyellowperchremainedfartheroffshore.
Thefewdeadyellowperch(5)observedduringtheunderwater studywereprobablycaughtanddiscarded bylocalfishermen fishingfromboatsabovetheriprapandin-lakeplantstructures.
Observations ofallotherspeciesofdeadfishwereincidental andshowednopatternorparticular significance.
le~PerkhreekInstallationoftheCookPlantintakestructures andassociatedriprapk,fieldwascompleted inlate1972.Thesurfacesoftheseobjectsthenunderwent arapidsequenceofinitialrusting(ofmetallicsurfaces),
accumulation of'sediment andorganicdetritus, andformation ofbacterial slime.k'luch;ofthisoccurredin1972-1973.
-Astheinshorewaterwarmedduringspring1973,thesurfacesofthekstructures andriprapbegantobecolonized byperiphyton (attached algae),associated zooplankton, andothermicroscopic invertebrates.
Hacroscopic at"tachedinvertebrates suchassponges,bryozoans, andHvdraalsoappearedinsmallnumbersonthesesurfaces.
'hestructures andriprapfieldwerefirstexaminedbydiversinJune1973.'rom1973-1902, thelengthofperiphytononthetopofthesouthintakestructure andonriprapsurrounding itsbasewasmeasuredbydiversduringmostmonthlydives(Appendix 1).Extensive colonization andgrowthofperiphyton onthetopoftheintakestructure occurredduringitsfirstyearH6; inthelakebecausetheperiphyton wasalready.3.7cmlongwhenfirstexaminedinJune1973.,P'eriphyton 0.5cminlengthalsoappearedontheuppersurfacesofriprapsurrounding.
thestructure at..thistime.Periphyton grewrapidlyontopofthestructure duringlatespringandattainedpeaklengthsduringmid-summer.Thiswasfollowedbysloughing dfthealgaeduringlatesummerandover-wintering atminimallengths(Fig.3).Althoughthepatternofgrowthforperiphyton ontopofthestructure wassimilarforallyears,peaklengthattainedeachyearvaried.Thiswasprimarily theresultofmechanical abrasionbyropestiedtobuoyssurrounding, thestructure anddiver-construction activities duringsomeyears.Periphyton attainedgreatestlengthsonprotected portionsofthestructure (e.g.,crevices, flanges,etc.)andalongthetopedgesofthestrueture.Periphyton growthonriprapsurrounding thebaseofthesouthintakestructure followedanannualpatternthatparalleled thatontopofthestructure.
Peaklengthswereusuallylessthanthoseattainedontopofthestructure, exceptduringyearsofabrasiontothetopofthestructure.
Theprimaryreasonforreducedgrowthofperiphyton ontheriprapwastheincreased depth(anadditional 3m)andcommensurate reduction inlight.Somebasicpatternsinperiphyton growthonthestructure orsurrounding riprapweredetectedduringthe10seasonsthattheareawasexamined(Fig.1).Periphyton growthwasmostluxuriant attheedgesofthestructure topandwithin5mofthebaseofthestructure, probablytheresultofmaximalwatercurrentswhichoccurredattheselocations.
Themovementofwaterkepttheperiphyton freeofsedimentandincreased exchangeofgasesandnutrients.
Periphyton growthwaslimitedonverticalsurfacesandnon-47 E~UZOcvI-rQ0XIIIIIIIII(~IIIIIIIIIIIjIIIIIIIIIIIIIIIIII~145~rl$01~SS$t~iS$0%0<IllsaiSSOIC ISQyrlSCIIC IISO)si$01Cte7ste74ts75te75te77te7eIJ.O-XI-~C9z-ILJQ0ItItIIIIIII(IIIIlIIIIIIs>>IIItIITOPOFSTRUCTURE (3.5-mstratum)RIPRAPSURROUNDING BASKOFSTRUCTURE (73-mdepth)SIIIIIIIIIIIIIIsItIIIIIIIIIII-tMls~~$$01c~$1$Iiss$010<1sotssso~ctSJsawsSCIOt1seJJs$010ts78te79leolectIsedtSSSSDATEFig.3.Lengthofperiphyton (mm)ontopofthesouthintakestructure (atthe3-mdepthstraturn)andontheuppersurfacesofriprap(atthe7.4-mdepthstratum)adjacenttothebaseofthestructure.
ileasurements weremadeduringdivesin"southeastern Lake.'tichigan neartheD.C.CookNuclearPlant,1973"1982.
48:
existenton theundersides ofthestructure, riprap,andotherunlighted surfacesatalldepths.Therapidattenua'tion oflightwithincreasing depthalsolimitedgrowthofperiphytiealgae.Periphyton growthatdepthsexceeding 10mwasminimalincomparison withthatwhichoccurredatlesserdepths.Asimilarob-servation wasmadeduringourunderwater examinations in1978-1981 offine-meshscreens,intakestructures, andriprapattheJ.H.CampbellPowerPlantatPortSheldon,Michigan, located100kmnorthoftheCookPlant(Judeetal.1982).Periphyton growthonallobjectswasdepauperate incomparison withthatobservedontheuppersurfacesoftheCookPlantstructures andriprap.However,depthsattheCookPlantrangedfrom4to9m,whilethoseattheCampbellPlantexceeded10m.AtHamiltonReef,locatednearMuskegon,
- Michigan, about140kmnorthoftheCookPlant,periphyton wasverysparseand~Cladshotsuasabsent(Cosnalius f984).Theminimumdepthofthisteefis8m3m.Observations ontheCampbellandHamiltonreefssuggestthatperiphy-tongrowthislimitedatdepthsgreaterthan7-8mineasternLakeMichigan.
Theseobservations alsosuggestthat,giventhegenerallight,tern>>perature, andwatertransparency regimeinsoutheastern LakeMichigan, cloggingofwaterintakestructuresbyperiphyticalgaeshouldbelimitedtohorizontal surfacesexposedtodirectsunlightatdepthslessthan8m.However,cloggingofstructuresbyattachedinvertebrates suchassponges,bryozoans, and~Hdrawouldnotnecessarily beeliminated byincreasing depth,andinfacttheseorganisms becameverydenseontheCampbellPlantintakescreens(Ruteckietal.1985,Judeetal.1982).Forseveralyearspriorto1975,periphyton samples'were collected fromartificial substrates placedinthelake.Analysisofthesesamplesprovided49 baselineinformation onthetaxonomic composition.
ofperiphytoninthe-studyarea.Preliminary studiesin1974andfullsamplingeffortsoccurredfrom1975through1981.Duringthistime,thesamplingprogramwasalteredsothatsamplesofperiphyton werecollected fromthetopofthesouthintakestructure andsurrounding riptapbydivers.Comparison ofthe1974-1981 diver-collected sampleswiththosecollected earlierfromtheartificial substrates revealedthatdirectsamplingofperiphyton fromthestructures andripraptoqualitatively assesscolonization andgrowthofperiphytic algaeontheseobjectswaspreferable touseofhand-placed artificial substrates.
Adistincttrendoccurredtowardincreasing numbersoftaxa,ortaxonomic diversity, withtime(Fig.4;Table7),Totalnumbersoftaxaincreased from97in1975to189in1981.Humbersofpreviously unrecorded taxafollowedatrendsimilartothatobservedfortotaltaxabutwaslesspronounced.
Thistrendwasmostlytheresultofanincreasingly diversediatomflora.Thefractiondiatom(Bacillariophyta) taxamadeoftotaltaxaincreased everyye(except1980)from58%in1975to75%in1981(Table8);datafrom1974wereconsidered inconclusive becausetheywerebasedonanalysisofonlyonesamplefromJune.Thepercentage ofthetotalthatgreenalgae(Chlorophyta) comprised decreased by14%duringthesameperiod.Percentcomposition oiblue-green algae(Cyanophyta) remainedrelatively stableandvariedfrom4%in1976to9%in1978(range5%).Otheralgae(Chrysophyta, Euglenophyta, Pyrrophyta, andRhodophyta) comprised from1%(1979)to8%(1975)bynumberofthetotaltaxarecordedforeachyear.Theincreaseinalgaltaxonomic diversity wasaccompanied byadecreaseinnumbersofdominantforms.In1977,8of97taxaoccurredinallsamples;in1978,3of117taxawerepresentinallsamples;in1979,notaxonwas50 ANNUAL1OTAL~----aPREVIOUSLY IPRECOROEO x8OR0hOOIOIATOMSQGREENS$74$75l976$771978l979l980$8lYEARQa.uE-oREENs QorNERFig.4.Totalnumberandpercentcomposition bymajorgroupsofperiphytic algaecollected bydiversfromthetopofthesouthintakestructure oftheD.C.CookNuclearPlant,locatedatthe3-mstrataofthe9"mcontourinsoutheastern LakeNichigan.
Onesamplewascollected eachmonth,April-October, 1974"1981, inmostyears.Awet-mounted subsample wasqualitatively analyzedunderamicroscope, andalgaewereidentified tolowestrecognizable taxon.Totalnumberofsamplesanalyzedeachyearwas:1974~1)1975~5,1976~6)1977=4,1978=7)1979~7)1980~7,1981~7.
Table7.Totalnumberandnumberofpreviously unrecorded taxaofperiphyton identified indiver-collected samplesscraped,fromthetopofthesouthintakestructure oftheD.C..CookNuclearPlant,1974-1981.
Onesamplepermonth,April-October,wascollected eachyearwiththeexception of1974(allmonthsbutJuneomitted),
1975(AprilandSeptember omit<<ted),1976(Octoberomitted),
and1977(April,May,andOcto-beromitted).
Fraction(%)oftotalperiphyton taxathatwerealsoidentified insamplesofentrained phytoplankton collected fromtheplantforebayisalsolisted.Blanksindicatenosamplescollected.
TotalNo.ofno.ofYearsamplestaxaHo.(%)taxapreviously unrecorded Percentageoftaxaentrained 197419751976197719781979198019812197679711713114118921(100)66(68)1(1)34(35)43(37)45(34)38(27)54(29)7481797878Table8.Composition bynumber(andpercent)ofthenumberoftaxa'foundindiver-collected periphytonsamplesscrapedfromthetopoftheD.C.CookNuclearPlantsouthintakestructure during1974-1981.
Onesamplepermonth,April-October, wascollected eachyearwiththeexception of1974(allmonthsbutJuneomitted),
1975(AprilandSeptember omitted),
1976(Octoberomitted),
and1977(April,!ay,andOctoberomitted).
Algaewerecategorized asfollows:diatomsBacillariophy ta,greenalgaeChlorophyta, blue-green algaeCyanophyta, golden-brown algaeChrysophy ta,redalgaeRhodophyta, andotheralgae~Euglenophyta andPyrrophyta.
Blue-Golden-GreengreenbrownRedOtherYearDiatomsalgaealgaealgaealgaealgae197415(71)5(24)197556(58)28(29)197644(63)19(27)197761(63)25(26)197875(63)29(25)1979101(70)31(2))198091(64)37(26)1981142(75)29(15)1(5)5(5)3(4)5(5)10(9)11(8)11(7)9(5)05(5)3(4)2(2)1(1)1(1)1(1)(2)001(1)2(2)1(2)01(1)3(3)02(2)001(1)1(1)05(3)52 presentinallsamples;in1980and1981,onetaxon-was
.presentinallsamples.Duringtheperiod1975-1980, thedominantgreenal'gaeonthestructure werespeciesofCladophora.
During1979-1981, lengthanddensityofCladophora filaments growingonthestrueturewerereducedrelativetoearlieryears.Oscillatoria spp.werethedominantblue-green algaeduringallyearsexpect1981when~Ance"-risincertawasmostabundant.
DiatomsofthegeneraAsterionella,
~Cmbella,
~Frailaria,Nelosira,
- Navicula, gitzschia, brounalgae~Dinobronsp.wascommonlyrecordedinsamples,whileredalgae,flagellates, andeuglenoids wereoccasionally noted.Successive comparison oftotalnumbersoftaxaidentified annuallyintheperiphyton samplesrevealed:
54taxawerepresentin1981only;48taxawerepresentin2ofthe7years;23taxawerepresentin3ofthe7years;17taxawerepresentin4ofthe7years;10taxawerepresentin5ofthe7years;17taxawerepresentin6ofthe7years;and37taxawerepresentinallyears.ThefractionofperIphyton taxaobservedinsamplesofentrained phytoplankton collected fromtheCookPlantforebaywasconsistently high,varyingfrom74Kto81%during1977-1981 (Table7).Thisobservation suggeststhatconsiderable sloughing ofperiphyton occurseachyear.Hostlikely,sloughing ratesarehighestduringlatesummerandearlyfallasdecreasing lightlevelsandwatertemperatures resultindie-offofmuchoftheperiphyton.
Comparison betweentaxonomic listsofalgaecollected bydiversandthosecollected inentrainment samplespumpedfromtheplantforebay,suggeststhatentrainment samplIngisaneffective methodforqualitatively assessing thediversI.ty ofperiphyton attachedtoIn-lakepowerplantstructures duringmonthswhendivingIsnotpossible.
53 Severalconclusions maybedrawnfromtheobservations presented inthisection.Almostimmediatelyupontheirplacement inthelake,underwaterstructures werecolonized byperi'phyton, andconsiderable taxonomic diversity'as achievedduringthefirstyear.However,therewasasteadyincreaseinthetotalnumberoftaxarecordedeachyear,whichwasaccompanied byadeclineinnumberofdominantformsnoted.Asubstantial numberofraretaxawasrecordedeachyear,andlong-term dominanttaxawerefewinnumber.Thelargestnumberofpreviously unrecorded taxawasidentified in1981samples,duringthefifthandfinalyearoftheperiphyton study.Thissuggeststhatecological succession continued tooccur7yearsafterthestructures andripraphadbeenplacedinthelake,andthatthetaxonomic composition andrelativeabundance ofperiphyton hadnotyetstabilized attheendofthisperiod.Evidence(Fig.4)also'ndicated thatperiphytic succession wouldcontinueandthattaxonomic stabilization wasnotimminent.
sThedeclineinabundance ofCladophora during1979-1981 wassignificant because,priortothat,thesealgaecomprised mostofthemassofperiphytonseenandsampledfromthearea.Reasonsforthisdeclinearenotknown,butreducedabundance oE~Cladohorsisrelatedtodeciiaing phosphorus levelsinLakes1ichigan duetothephosphate banin1977andreduceddischarges atChicagoandVaukegan, illinois.
Presence(absence)oECladoohora onsubstrateswasshowntoaffectthedistribution ofsomeinvertebrates (Lauritsen and4hite1981).Attached.'lacroinvertebratesSeveraltaxaofinvertebrates havingoneormoresessilestagesduringwhichtheymustattachtoasubstrate wereobservedbydiversandincluded:
54 freshwater sponge,bryosoans, and~Hdraspp.~Observations oftheseaaimalsweregenerally
.incidental relativetothose.ofotherinvertebra'tes (snailsandcrayfish),
buta-fewpatternsemergedfromthelimiteddata(Appendix
-1);Attachedinvertebrates wereonlyobservedonsubstrates intheriprapzone.Attachedinvertebrates werenotobservedinreference areasbecauseoftheabsenceofstablesubstrate.Branchedormulti-filamentous
~HdrawerefirstobservedduringSeptember 1973andwereattachedtoriprapsurrounding theintakestructures.
Theywerenotobservedagainuntil1978whentheywereseenduringstandardseriesdivinginOctober.~Hdraweresubsequently observedtwicein1979,andoncein1980and1982.Thesedataaresomewhatmisleading inthattheysuggesttheabundance of~Hdrawaslowinthestudyarea.Whenobserved,
~Bdraoccurredintremendous numbersandoftencompletely coveredtheuppersurfacesoftheriprap.DuringFebruary1977,asupplemental divewasmadeintheCookPlantforebaywherematsof~gdraI-Icmthickandmorethan10mindiameterwereseenattachedtotheforebaywalls.Commercial diversnotedsimilaroccurrences of~gdraduringinspection oftheinteriorwallsoftheplantintakeanddischarge pipes(personal communication, A.Sebrechts,
- Bridgman, Mich.).Theabundance of~Hdraontheintakestructures andpipeexplainsitsconsistent occurrence inlargenumbersinentrainment samples.lntheopenlake,~HdrawereseenonlyduringHayandaugustWctober, suggestingthatconditions (e.gegwatertemperature, availabili tyofspecificplanktonic prey)duringJune-July werenotconducive to~Hdragrowth.Anotherpossibility isthat~Hdracompetedforsubstrate wirhalgalperiphyton whichattainedmaximumgrowthduringJune>>July.
Thishypothesis isconsistent with diverobservations that,~Hdrawereconcentrated onthelateralandundersides.
oftherip'rapandpl,antstructures whereperiphyton wasabsent.Thelong-term distribution of~Hdrashoved.adistinctpattern.ofinitialcolonization withinoneyearofplacement ofsubstratesinthelake,followedbyanextendedperiod(1974-1977) ofgradualexpansion indistribution anddensityonthesesubstrates.
Peakabundance wasachievedduring1978-1980, although~Hdracontinued tobeobsetvedthroughout thedurarionofthestudy.Bryozoans wereobservedduringmonthlydivesoncein1974,threetimesin1976,oncein1977,1978,and1980,andtwicein1981.Colonieswereisolatedandgenerally small,neverexceeding acentimeter indiameter.
Noseasonalortemporalpatternintheabundance ordistribution ofthisorganismwasdetectedduringthisstudy.Colonization ofthestructure andriprapbybryozoans occurredduringthefirsttwoyearsthatthesesubstrateswereinthelake.Freshwater spongeswerenotobservedinthestudyareauntil1975,whentheywereseenduringtwomonthlyd1ves.Subsequently, theywereseenduring3moin1976,allmonthsin1977,4moin1978,3moin1979,1moin1980,4moin1981,and1moin1982.Bothitsseasonalandtemporaldistributions weremorecontinuous thanthatof~ttdraorbryozoans.
Abouttwoyearswererequiredforspongestocolonizetheplantstructures andriprapinsufficient numberstobenoticedbydivers.Ktispossiblethatcolonization ofthesesubstrates mayhaveoccurredmoreslowlythanforHvdraorbryozoans, althoughthiscannotbesubstantiated byourdata.Numbersofspongecoloniesappearedtostabilize during)976-1978 andremainedatsimilarlevelsofabundance throughtheremainder ofthestudy.56 Boththestructures andriprapservedassubstrates forattachment ofsponges,althoughtheywereobservedmostfrequently onthe'.riprap.
Spongeswerenotobservedduringdivesinearlyspring(April"May) exceptin1977.Generally, colonieswerefirstobservedduringJune,continued toincreaseinnumbersthroughout thesummer,andremainedabundantduringthefall(September October).
Inlatesummer,spongeswereoftenbrightgreenincolor,aresultoftheinclusion ofalgalcellsinthespongematrix.Coloniesusuallyappearedasflattened disksupto1cminthickness and10cmindiameter, butoccasionally formedfinger-like outgrowths 2-3cminlength.Duringlatefall,spongecoloniesbecameflattened andtanorwhiteincolorasthealgalcellsdied,andareduction ordie-offofspongewassuspected tooccurduringthewinter.Winterdie-offanddormancyofmostlivingcellscontained inupperstrataoftheunderlying skeletalmatrixistypicaloftemperate freshwater sponges(Pennak1953).Thegeneralpatternofcolonization ofCookPlantsubstrates byattachedinvertebra teswasoneofearlyappearance followedbyslowexpansion toavail-ablesubstrates.
Riprapappearedtoprovideamoresuitablesubstrate thandidthemetalstructures, perhapsbecauserustingandsloughing ofthemetalsurfaceoccurredthroughout thestudy,althoughtherateatwhichthisprocessoccurreddeclinedinlateryearsofthestudy.Peakabundance ofattachedmacroinvertebrates occurredfourtosixyearsafterplacement ofsubstrates inthelake.Duringthelastseveralyearsofthestudy,theabundance of~Hdraandbryozoans
- declined, whilenumbersofspongecoloniescontinued tofluc-tuateandshowednoparticular patternortrend.Availability ofsubstrate combinedwithmoving(plant-circula ted)waterandpresenceofsurficialsedi-ment,organicdetritus, andperiphyton combinedtoprovideahospitable but57 isolatedmicro-environment thatwasatypicalofthesurrounding inshoreen-vironment.
Underwater observations atboththeCampbellPlantreefnearPortShel-don,Michigan(Judeetal.1982)andHamiltonReefnearMuskegon, Michigan(Cornelius 1984)documented thecolonization ofriprapbyspongeswithinonetotwoyearsofsubstrate placement inLakeMichigan.
AttheCampbellPlant,spongecoloniesattachedtowedge-wire intakescreensinadditiontotheriprap,eventually necessitated cleaningofthesescreens.FarthernorthoftheCampbellPlantatHamiltonReef,spongesandunidentified fungiwerecommonindivercollected samplesofinvertebrates attachedtotheriprap(Cornelius l984).Free-livin Macroinver tebratesOiverobservation ofunattached orfree-living macroinvertebrates inthestudyareaincludedaquaticstagesofinsectlarvae,molluscs(clamsandilsnails),andcrustaceans (crayfish).
Theseobservations aresummarized inAppendices l-2.Withinandoutsidetheriprapzone,diversobservedlarvaeofDiptera(Chironomidae
-truemidges),Ephemeroptera (mayflies),
andTrichoptera (caddisflies).Observations oftheselarvaewereinfrequent withnoclearpattern.However,insectlarvaewereobservedonlyduringmid-spring (April-May)inthestudyarea.Otherinvertebrates observedintheareaincludedthecrustaceans
.'Ivsfssummerandfall(August-October) andneverduringspringorearlysummer.58 Sightings oftheabove.invertebrates weregenerally limitedtotheriprapzone.Often,theseorganisms wereseenclingingtothesidesor.undersurfaces ofstones.Theseanimalswererarelyseeninareasnorthorsouthoftheplant.Mostlikely,invertebrates livinginsuchareasofshiftingsandsubstrate eitherburiedthemselves intheupperlayersofthesedimentandwerenotvisibletothediversorwerequicklyeatenbyfish.MolluscsobservedduringthestudyincludedSphaeriidae (fingernail clam)andGastropoda (snails).
Livesphaeriids werenotobservedbecausetheywereburiedinthesediment.
However,largenumbersofemptyshellswerecommonlyseenatallstations.
Sphaeriid shellsaccumulated inthetroughsofripplemarksandinopendepressions amongtheriprap.Theseaccumulationswereoftenseveralcentimeters thickandseveralmetersinlengthordiameterandattestedtotheabundance oftheseorganisms inthestudyarea.Ononeoccasiononevalveofalargepocketbook clam(~iamsilisventricose) vasfoundat6matthemostnortherly reference station(Fig.2).WhetherthespecimencamefromLakeMichiganorwastransported fromaconnected inlandlakewasnotknown.However,wefoundlampsilid clamsinabundance intheGrandMereLakes,achainofshallowbarlakeslocatedabout3kmnorthoftheCookPlantandwhichconnecttoLakeMichiganviaanintermittent outlet.Gastropods(snails)observedintheareaduring1973-)992 included~phsa,Goniobasis, and~Lmnaea.~Lmnaeawereeasilyrecognized bythehigh,sharpspireoftheirshell.Onlyshellsofthissnailwereseenonafewoccasions, andlivespecimens wereneverobserved.
~phsaandGoniobasis weredistinguished underwater bydifferences inthecoiloftheirshell(sinistral anddextral,respectively).
Laboratory identification ofsnailscollected overaperiodofseveralyearsrevealedthatmostspecimens were~Phsa~kneera59 anddocumented
-this.snailtobethepredominant, gastropod inhabiting theCooPlantriprap.Gastropod speciation attheJ..H.-Campbell Plantdifferedconsiderably fromthatobservedfortheCookPlant.TheCampbellPlantriprapwasinitially colonized byValuatevhichverelaterdisplaced by~Lmnaea,and~PhsavereneverobservedattheCampbellPlant(Ruteckietal.1985).Interesting3.yp Valvatawereseeningreatabundance duringapre-construction underwater surveyofthesitein1977(Judeetal.1978)andwerethemostabundantgastropod inPonargrabsamplesofsedimentcollected during1977-1979 fromareasnorthandsouthoftheplant(WinnellandJude1981).Thedifference inspeciesdistribution ofgastropods betweentheCookandCampbellreefswasprobablyrelatedtodifferences inphysicalandbiological conditions atthetworeefs.Theincreased sizeoftheriprapandinterstitial spaces,combinedwithgreaterdepthandsubsequently reduced'Isstorm-generated vsterturbulence, lessperiphyton, andabsenceof~CladohorstontheCampbellPlantreef,mayhavefavoredorexcludedcertainspeciesofsnails.Pennak(1953)notedthatPhvsaoccursingreatestabundance wherethereisamoderateamountofaquaticvegetation butisrareinareaswheretherearedensematsofvegetation.
Thismay,inpart,explainwhy~Phsainitially colonized theCookriprapbutdisappeared inlateryearsasperiphyton becamemoreabundantonthereef.Absenceofperiphyton orothervegetation ontheCampbellriprapmayhavediscouraged colonization ofthisreefby~phsa.Ontheotherhand,Lvmnaesisfoundinavidevarietyofhabitats(Pennak1953).ThissnailwasabundantontheCampbellreefanditsshellswereoccasionally collected attheCookreef.Hoexactexplanation couldbemadeforthepresenceofValvataontheCampbellreefanditsabsence60' ontheCookreef.However,thereisama)or'natomical andphysiological difference intherespiratory mechanism oftheValvatidae when,comparedwiththePhysidaeandLymnaeidae.
TheValvatidae haveexternalplumosegills;whereas,thePhysidaeandLymnaeidae havea"lung"orpulmonary cavity.Also,mostpulmonate snailscometothesurfacetobreathe(although alargenumberdonot)andtherefore generally tendtoinhabitat shallowwater.Theincreased depthoftheCampbellreefalongwithabsenceofperiphyton thatmightinterfere withexternalgillsmayhavefavoredthevalvatidsnails.Numbersofsnails(primarily
~Phsa)attheCookPlantdidnotshowanystrongpatternofseasonalabundance duringApril-October, exceptthattheytendedtobemostabundantduringApril"June andAugust-October andwereneverabundantduringJuly(Fig.5).However,aclearpatternoftemporalabundance emergedduringthestudy.Snailswereobservedinlargenumbersduring1973-1975andpeakedinabundance duringHay1975when30-100snails/mwerecounted,duringdivesatthesouthintakestation..These numbersincludeonlysnailsimmediately visibletodiverswithoutdisturbing theriprap.Inactuality, thedensityofsnailswasprobablyseveraltimesgreaterthan30-100/m,becausetheywereabundantonthesidesandundersurfaces oftheriprapaswellasonstonesbeneaththesurficial layerofriprap.Following 1975,aprecipitous declineinsnailabundance occurredduring1976-1978.
Nosnailswereobservedinthestudyareafrom1979through1982.Theriprapwascolonized bysnailsduringitsfirstyearinthelakeandsupported largepopulations of~Phsaforaboutthreeyears.Atthatpoint,Ihabitatconditions orsomeotherecological effectoccurredthatrenderedtheriprapunsuitable for~Phsa.Aspreviously noted,itispossiblethatafterseveralyears,theaccumulation ofsedimentandperiphyton onthesurfaceof61 OO~~~NLASERGREATERTHANIQQQ4NUMBERGREATERTHANIQOWO0ZQGQ0OFMAMJJASONOFMAMJJASONOFMAMJJASONO.FMAMJJASONOFMAMJJASONOFMAMJJASO$73I97~l975I976I977I978DATEVII,.5.Hninbersofsnailsobservedbydiversinsoutheastern LakeHichiganneartheD.C.CookIInc1earPlant,1913-1982.
SnaIlsucreseenonlyatstationsuithintheriprapzoneandnoneuasobservedafter1978.ND~nodivlnI,thatmonL theriprap-reachedapoint.atwhichitinterfered withtherespiration ormovementofthesnails.,Anotherpossibility isthatcomposition of~microscopic floraandfaunathatsnail'sfeduponwasalteredthroughtheaccumulation ofsedimentandperiphyton, andeventually theriprapsurfacesnolongerprovidedsuitablefoodforthesnails.Yetanotherpossibility isbasedontheobservation thatsnaileggcaseswerecommonlyobservedduringthefirstfewyearsofdivingbUtnotinlateryears.Perhapsasthesurfaceoftheriprapagedandaccumula'ted
- material, itwasnolongersufficiently cleantoserveassubstrate fortheattachment andincubation oftheseeggs.Onafewoccasions,.live snailswereseenonthemetalsurfacesoftheIhintakeanddischarge structures.
However,onlyisolatedanimalswereobservedanddensities neverexceeded.','one snailperseveralsquaremeters.Thesurfaceplofthestructures wasalways'covered witheitherperiphyton andsediment, or,whenperiphyton wasabsent,;rust.
Thesnailsmayhaveavoidedallsuchsurfaces.
Also,snailswerequiteobviousontheflatsurfaceofthestructure andmayhavebeen,moresusceptible topredation byfish.Tncontrasttosightings ofValvatainareassurrounding theCampbellreef,livesnailswereneverobservedbydiversinsand-substrate areassurrounding theCookPlantriprapzone.LVoexplanation canbeofferedforthisdifference.
However,snailswereobservedinareasofnatural(clay,cobble)roughsubstrate northandsouthoftheCookPlant(Dorr1982).Theseisolatedareasofnaturally occurring, stablesubstrate probablyservedaspreserves onthelakebottomwheresnails,alongwithcrayfishandattachedinvertebrates c'ouldsurviveandemigratetoareasofnewlyplacedartificial substrate.63 sInformation on.theabundance anddistribution-of decapods(crayfish) inthestudyareaoriginated fromtwosources:-divingobservations madeduring1973"1982 andrecordsoftheirimpingement from1975through1981onCookPlanttraveling screens(Fig.6).Threespeciesofcrayfishwerepresentinimpingement samples;Orconectes
~roinuus,O.virilis,andCambarus~dfoence~dfoenas.Onlyisolatedspecimens ofthelattertuospeciesverecollected, representing onlyafractionofapercent(0.08%)ofallcrayfishcollected (Winnell1984).Crayfishwereobservedduringallyearsoftheunderwater study,althoughtheirabundance fluetuatedduringthisperiod.ItwasassumedthatmostcrayfishobservedbydiversvereO.~roinuus,basedonthepredominance ofthatspeciesinimpingement samples.Crayfishwereobservedmorefrequently atnightthanduringtheday(Fig.7).Thiswasinaccordance withthegenerally nocturnal habitsofthis'animalwhichremainshiddeninburrowsorundersubstrate duringthedaytimev(Pennak1953).AttheCookPlant,crayfishcouldbefoundduringdaytimebyexcavating someoftheriprap.Atnight,crayfishemergedandrestedontopofthestonesoramongtheinterstices.Comparison oftotalnumbersofcrayfishobservedbydiverseachmonthwithnumbersofcrayfishimpingeddocumented ageneralpatternofinitiallowabundance, followedbyrapidpopulation growth,andthenbyadeclinetoaboutone-tenth ofpeakabundance.
Crayfishwereobservedin1973andhadtherefore colonized thereefwithinoneyearofitsplacement inthelake.During1979-1982,numbersofcrayfishobservedandfmpingedfluctuated butremainedwithinthesamegeneral.upperandlowerlimitsduringtheperiod.DuringApril-October, 1975-1982, dayandnightobservations weremadeattwoside-by-side, 1x10mtransects adjacenttothebaseofthesouthintake64 OI"IlIIIIII'IIIIIIIIIIIIII11IIIIIIIIIIIIIR"tIIIIIIIIIIIIIII(I~(>JfspvnnSg<~ng~gE(~0~~~'ptfII(IIlIIIII((III)OOOOO'EIMAMJJASONO(978O2gFMAMJJASON MAMJJASOHOFMAMJJASOHOFHAMJJASOHOCl(973(974(975(978l977LLICBSERYEDV)~--~IMPINGEDCQCiUJZ:CLOWIIIIlllIIIIIIIII7I(I(IIIf4I'iIIIII((IIIIIIIII((I,>n,<'uIIA(IIl/IIIII('OOOOEIFHAMJJASON MAMJJASONO FMAMJJASONO FHAMJJASONO IIAMJJASOHO 19781979880198((988(983DATEFig.6.Numbersofcrayfishobservedbydivers(1973-1982) andimpingedontraveling screens(1975-1981) attheD.C.CookNuclearPlant,1975-1981, southeasternLakeIiichigan.
65 0ED00J0CU0OJ00ZIIIIIlIIIIIpsfboFMAMJJASONMAMJJASONOFMAMJJASONOFMAMJJASONOl975I976877-l978l9790CUFMAMJJASONMAMJJASONOFMAMJJASONOFMAMJJASONOl979I980I98II982l985DATEI:ig.7.Totalnumbersofcrayfishs<<enbydiversduringdayandnightswimsovertwoad]acentix10mtrans<<cts (20mtotalarea)alongtlutebaseofthesouthintakestructure ofthe0.C.2NuclearPlant,south<<asternlakeHichigan, 19982.0,IIIt+'~i~4+~~
structure.
Theseobservations werepooledtoyieldnumbersofcrayfish(andotherorganisms) observedper20m.Thesequantified observations werebasedonstandardized methodology andconstitutedthemostreliabledatabasefromwhichconclusions couldbedrawnbasedonunderwater observations.
Comparison oftransectobservations ofcrayfish(Fig.7)withtotalnumbersofcrayfishobservedandimpingedinthestudyarea(Fig.6)revealedacorroborating
'Ipatternoftemporalabundance.
Aswithtotalnumbersofcrayfishobservedandimpinged, peakabundance ofcrayfishrecordedduringtransectobservations l(72/20m2)alsooccurredduring1976,althoughmorewereseenduringSeptember thanAugust.Transectobservations alsosupporttheconclusion that'crayfishweremostabundantontheCookPlantriprapduring1975-1977 andthattheirabundance declinedprecipitously during1978.Theycontinued tobeobs'eryed insmallnumbersthrough1981butnonewasseenin1982.Thereasonfortheabruptdeclineinabundance ofcrayfishin1978.isunknown.Peaknumbersofcrayfishimpingedduring1978approached 1977levelsbutsustained impingement during1978wasclearlylessthanthat'of1977.Totalandtransectobservations ofcrayfishdeclinedbyafactorof10duringtheperiod1977-1978.
Itappearsthatsomeenvironmental factororecological relationship changedduringtheperiodfall1977-spring 1978andcausedarapiddeclineinabundance ofcrayfishontheCookPlantriprap.Asimilardeclineinabundance ofsnailswasdiscussed earlier,althoughitoccurredIduring1976,abouttwoyearsinadvanceofthecrayfishpopulation decline.Peakabundance ofcrayfishrecordedduringtransectobservations (September 1976-Fig.7)was72/20m2orabout4/m2.However,thisnumberincludedonlythoseanimalsvisibletothediverswhodidnotdisplacetheriprapduringtransectswims.Basedonnon-transect observations duringwhich67 theripripwasoverturned, itispossiblethatactualabundance ofcrayfish, mayhavepeakedat8-10/m2.Based-onnumbersand'weightsof",crayfish impingedduringthesamemonth,theaverageweightofthesecrayfishwas5.1g.Thisextrapolates toanobservedabundance of20.4g/m2(162lbs/acre) andanestimetedabundance of41-51g/m2(364-445lbs/acre)
.Pennak(1953)notedthatpondpopulations ofcrayfishgenerally donotexceed100lbs/acrebutinexceptional casesmayattain500-1,500 lbs/acre.
Thesedatasuggestthatatpeakabundance, theriprapsupported arelatively densepopulation ofcray-fish.Itispossiblethatwithinrwotothreeyearsthecarryingcapacityofthehabitatmayhavebeenexceededwhichresultedinthesubsequent declineincrayfishabundance observedduringlateryearsofthestudy.UnliketheCookPlantreef,nocrayfishwereobservedduringfouryearsofdiving(1978-1981) ontheCampbellPlantreef.Ruteckietal.(1985)attributed thisdisparity todifferences inreefcomposition andconfiguration, Surficialriprapsurrounding theCookPlantintakeswascomposedofstonerangingfromabout0.1-0.6mindiameterandweighingabout1-50kg.CampbellPlantriprapwasconsiderably largerthanCookPlantriprap,usuallyexceeding 1mindiameterandweighing225-900kg.TheintersticesamongtheCampbellriprapweremuchlargerthanthoseoftheCookPlantandmayhaveprovidedcrayfashwithlessprotection fromfishpredation (e.g...slimysculpin,yellowperch),especially duringtheeggandjuvenilestages.Anotherpossibleexplanation fortheabsenceoicrayfishontheCampbellreefisthat,incontrasttotheCookriprap,periphyton wasextremely depanperare cntheCaapbellriprapand~Cladsheraaasabsent.Princeetal.(1975)foundthatinSmith.'1ountain Lake,crayfishwereabundantinareas supportlagluxuriant
~Gladehorsand,absentfromareaswithlittleornogrowthofthisalga.Crayfishareomnivorous andare,knownto-eataquaticvegetation
-,(Pennak1953).itispossiblethat~Cladohorsconstituted animportant component ofthedietofcrayfishattheCookPlantandthatabsenceofthisorotheraquaticvegetation ontheCampbellriprapresultedinaninadequate supplyoffood.Lauritsen andWhite(1981)foundthattheseasonalabundance ofsomepredacious andfilter-feeding zoobenthos wascorrelated withthetheluxuriance of~GladehorsontheCookPlantriptap.Thesezoobenthos mayhaveservedaspreyforcrayfish, thusproviding atrophiclinkthroughwhichtheabundance of~Gladehorscouldaffectrheabundance ofcrayfishonthereef.Theseobservations correspond withthoseofCornelius (1984)forHamiltonReefneartkluskegon, tklichigan.
Thisartificial reefissimilarincomposition andlocationtotheCampbellreef,althoughitsconfiguration issomewhatdifferent inthattheriprapisseparated intonumerouspilesseveralmetersapartwhichareinterspersed byareasofsand.LiketheCampbellreef,periphytonuasscarceonthe!luskegon reef,~Cladohorswasabsent,andcrayfishwerenotobservedduringthreefieldseasonsofdiving,Elsewhere inthearea,Dorr(1982)documented thepresenceofcrayfishinareasofnaturallyoccurringcobblesubstratelocatednearSaugatuckandSouthHaven,ilichs9betweentheCampbellandCookPlants.Thesesubstrates alsosupported periphyton, althoughgrowthswereneverasluxuriant asthoseseenattheCookPlant.However,abundance ofcrayfishwasalsolowerattheselocations thanattheCookPlant.Theaboveobservations arguefortheexistence ofarelationship betweenabundance ofperiphyton,~Gladehorsinparticular, andthat,ofcrayfishoninshorereefsineasternLakeHichigan.
69 Ouring10yearsofdivingat"theCookPlant,onlyonecrayfishwasseeinanareaofsandsubstrate outsidetheriprapzone.Thisatteststothecriticalrolethatsubstrate playsasalimitingfactorinthelifehistoryanddistribution ofcrayfish, particularly insuchaharshenvironment asoccursinshoreineasternLakeMichigan.
FishSawninSpawningbynumerousspeciesoffishhasbeeninferredfromcatchesofmaleandfemalefishwith:ripe-running gonadsiatheinshoreregionofLakeMichiganneartheCookPlant(Judeetal.1979,Tesaretal.1985).Occurrence ofnewlyhatchedyolk-saclarvaeinplanktonnethaulsinthelakeandentrainment samlescollected fromthelantforeba(Bimberetal.1984PpyNoguchietal.1985)supportsthisinference.
lahoredirectevidenceoffishi1spawningintheimmediate vicinityoftheCookPlantwasprovidedbyinsituobservation ofeggsoffivefishspecies:alewife,spottailshiner,yellowperch,johnnydarter,andslimysculpin.fisheggswereobservedduringallyearsofthestudyexcept1982(Appendix 1).Eggswereobservedexclusively duringi1ay-August (Fig.8).Durationofoccurrence foragivenspeciesrangedfromabout3weeksforyellowperchandsculpintoabout10weeksforalewife.ThelinegraphsinFigure8mustbeinterpreted withcarebecausetheypresentinformation ondifferent components ofthereproductive cycle.Thebasicprogression oieventsduringreproduction shouldbetheappearance ofripe-running fish1ntheareafollowed(orparalleled) byspawninganddeposition ofeggs."Nextwouldcomeaperiodofeggincubation duringwhich708' VISI~ISI~ISISIQISISISISISISI
~'LW%%%'LW'POTTAI.
99NER~ISISISI~ISISII%%WVNSSSN%%94%%%%%
EoWwYELLOII0PERCHCOJENNYDARTERSLIMYSCIA.PUI~ISISI~ISI~Isssss&%%%A1
~I~ISISISINISI~INISI5LWM%%CISISISI~ISISI~ISINISI~'A%%%1SOURCEOFWFORMATIOH
~ISI~ISUTERATURE NNTXSSSIPNEOCAANANCE OFICEFEMALESNFIELDSAINT.ES(l91S-I979)
OCOVISVSCE CVVCEKSICOOSISENFIELOSAMPLESO9YS-l979)
OCCURRENCE OFYCLK-SACLA%SfNENTIIANQGIT SAIR.ESDSTS-)9TSI EOOSCOSOIVEOKVCIVKII~JAHFEBMARAPRMAYJUHJIA-AUGSEPOCTHOIDECMONTHFig.8.Chronology ofmaturation,
- spawning, eggincubation, andhatchingofalewife,spottailshiner,yellowperch,johnnydarter,andslimysculpin,insoutheastern LakeHichiganneartheD.C.CookNuclearPlant.SpawningperiodswerecitedfromAuer(1982);allotl)erdatawereco)npiled during1973-1982 studiesattheCookPlant.
eggsmightbeobservedinsitufollowedbyhatching-and appearance ofyolk-sac,
'arvaeinthearea.Hostdataptesented inFigure8werecompiledexclusively fromdivingobservations andconcurrent studiesofadultandlarvalfishattheCookPlant,withtheexception oftheliterature survey.Therefore, somedisparity betweenreportedspawningperiodsandthetimingofothereventsinthereproductivecycleshowninFig8.wasexpected.
Thisoccurredbecausetheliterature surveyincludedhabitatsotherthantheCookPlantwhereenviron-mentalconditions mightelicitspawningatothertimesoftheyear.Forex-ample,temperature-dependent spawningoffishmayoccurearlierintheyearinashallowinlandlakewherethewaterwarmsmorerapidlyinspringthaninLake'lichigan.
Anothercauseforthedisparity amongeventsdepictedinFigure8maybethatthesedata'ummarize thefindingsfromseveralyearsofstudy.SomevarIability occurredamongyearsinthetimingofreproductive events(e.g.,maturation ofgonads,deposition ofeggs,andhatchingoflarvae).Therefore, foranygEvenyear,thedurationofreproductive eventswasprobablyshorterthantheperiodsshown.Alewifeshowedthemostprotracted periodofreproductive activityamongthefivespecies.Overa4"6-yrperiod,yolk-saclarvaeweretakeninfieldsamplesasearlyasAprilandappearedinbothfieldandentrainment samplesuntilthebeginning ofOctober.Occurrence ofripeadults(early.'lay-mid-July)andobservation ofeggs(June-mid-August) wereincloseagreement intermsofthesequenceofthesereproductive events.Thespawningperiodreportedintheliterature foralewifewaslongerthanthatsuggested byadultfishstudiesanddivingobservations butagreedwiththeoccurrence ofyolk-72S saclarvaelateinthesummer.Theappearance ofyolk-sac.larvae infieldandentrainment samplesduringAp'ril.was difficult, toexplainintermsofthe.data.presented inFigure8butmayhaveresultedfromexceptionally earlyspawningbyafewfish.Yolk-saclarvaewerenevercapturedinlargenumbersduringAprilorearlyHay.Theperiodfrommid-MaythroughJulyappearedtoencompass thebulkofalewifespawningandeggincubation inthestudyarea.MosteggsobservedduringlateJulyandAugustwereeitheropaqueorfungused, indicatingthattheywerenolongerviable.Ofthesefivefish,alewife,spottailshiner,yellowperch,johnnydarter,andslimysculpin,onlyalewifehaspelagiceggsthatarerandomlybroadcast duringspawning; theotherfourspecieshavedemersaleggsthatadheretothesubstrate.
Also,onlyalewifeeggswereobservedinareasoutsidethet'iprapzone.Theeggsoftenaccumulated andformedathinlayerinthetroughsoftheripplemarksatthesand-substrate reference stationsnorthandsouthoftheplant.Alewifeeggswerecommonlyobservedontopoftheriprapandplantstructures, trappedamongthefilaments ofperiphyton.
Eggswereseeninaboutequalabundance intheriprapzoneandatreference stations.
Noindication ofarea-orsubstrate-selective spawningwasnoted.During1973-1982 adultfishstudiesneartheD.C.CookNuclearPlant,severalthousandyellowperchstomachswereexamined.
Manywerefoundto4containalewifeeggs,therebydocumenting predation byyellowperchontheseeggs(unpublished data,GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.).ThesestudiesandthoseofDorr(1982)showedextensive yellowperchpredation onyoung"of" the-yearandadultalewifeaswell.Yellowperchpredation onlargelarvalalewiveswassuspected, butlarvaewerenotfoundinthestomachsofyellowperch,probablybecauseoftherapidrateatwhichthismaterialwas73 digestedbeyondrecognition..
TheCookPlantadultfishstudiesalsodocumented adramatic.,increase inabundance ofyellow.perch,intheareaandaconcurrent declineinabundance ofalewife(TesarandJude1985,JudeandTesar1985).Therecentdeclineinabundance ofalewifeinLakeMichiganprobablyresultedfromsalmonine predation.
Increased abundance andpredation ofyellowperchoneggs,larvae,juveniles, andadultalewifecombinedwiththatfromstockedsalmonids maycauseapossiblefuturecollapseofalewifestocksinLakeMichigan.
Spottailshinerswereobservedspawningontopofthesouthintakestructure duringanightdivein1973.Astheeggswerebroadcast overthematofperiphyton thatcoveredthesurEaceofthestructure, theysettledintotheperiphyton andadheredtothealgalfilaments.
Spawningwasnotobservedontheriprap.Onseveraloccasions duringlateryears,afeweggswerecollected fromthetopofthestructure andincubated inthelaboratory, andthenewlyhatchedlarvaewereidentified asspottailshiners.Thechronology ofreproductive eventsobservedforspottailshinersinthestudyarea(Fig.8)closelyparalleled theexpectedtimingoEevents.Ripefishwerecaughtduringmid-April-mid-July.
SpawningandeggswereobservedduringJune.Yolk-saclarvaeappearedinfieldsamplesfromJunethroughmid-August andinentrainment samplesfromJunethroughmid-October.
Thebulkofspottailshinerspawning, eggincubation,andhatchingoccurredduringJune-mid-July inthestudyarea.Theonlyunexplained component oithedata(Fig.8)wastheobservation oEyolk-saclarvaeinentrainment samples.?duringSeptember andOctober,onetotwomonthsafterripeEishceasedtobecollected inthearea.Thespawningperiodreportedintheliterature Eor74 spottailshinerswasincloseagreement withthatwhichwouldhavebeenpredictedfromfieldstudydata.Spottailshinereggswereoccasionally seenontheriprapbutneveratreference stations.
Thisisprobablyduetothemorenearshore distribution
((3m)oftheireggs.Maturation,
- spawning, eggincubation, andhatchingofyellowperchinthestudyareawasexaminedindetailbyDorr(1982).Hedocumented thatspawningandincubation ofyellowpercheggswaslimitedtoareasofrough(naturalorartificial) substrate.
Yellowpercheggmasseswereneverobservedonsandsubstrate duringnearly500divesinthestudyareawhichencompassed 10spawningseasons(DorrandJude1980a,b;Dorr1982).Thesefindingsconcurwiththosereportedintheliterature andclearlyestablish thatinsoutheastern LakeMichiganyellowperchspawnedselectively onstable,rugosesubstrate.Thesesubstratesprobablyservetoanchortheeggsandsuspendthemslightlyabovebottom,therebyreducingsettlingofeggsintothesubstrate ortransport toareaswithconditions lessfavorable tosurvival, e.g.,theturbulent beachzone.InadditiontotheCookPlantreef,evidenceofyellowperchspawningonFtwootherartificial reefsineasternLakeMichiganhasbeencompiled.
Al-thoughyellowpercheggmasseswereneverobservedontheCampbellPlantreef(Ruteckietal.1985),thehighabundance ofripefishandyolk-saclarvaeinfieldsamplesandpredominance ofyellowperchlarvaeinentrainment samples(Judeet.al.1982)suggestthatperchspawnedonthisreef.Yellowpercheggsewereusuallyobservedinsitufornomorethan2weeks(Dorr1982);mostlike-ly,thetimingandintensity ofdivingontheCampbellreefwasinadequate to75 permitobservation of,eggs.Biener(1982)reportedaggregation andspawninofyellowperchonHamiltonReefnearMuskegon,.
- Michigan, in1981.YellowpercheggmasseswerealsoobservedinareasofnaturalroughsubstratebyDorr(1982).Masseswereseenat6-9monco'bblesubstrate nearSaugatuckandSouthHaven,Michigan, andonrugoseclaysubstrate 3kmnorthoftheCookPlantandonNew-Buffalo shoalssouthoftheplant.Eggmasseshavealsobeenseenonclaysubstrate nearMichiganCity,Indiana(personal communication, G.McDonald, BallStateUniv.,Muncie,Indiana).CaptureofripeyellowperchduringearlyApril-early Juneandobserva-tionofeggsduringmid-May-early Junecorresponded withtheexpectedtimingoftheseevents.Occurrence ofyolk-saclarvaeinfieldandentrainment sam-plesduringmid-May-July corresponded withmaturation andspawning.
Theoc-currenceofyolk-saclarvaeinthestudyareaduringAprilandearlyMayhasbeenattributed toriverineinputoflarvae'spawnedininlandwatersthatwarmtospawningtemperatures earlierinthespringthaninshoreLakeMichiganwaters(Wells1973;Judeetal.1979,1981a;Dorr1982;Perroneetal.1983).Appearance ofyolk-saclarvaeinAugustentrainment samplesmayhavebeentheresultofsomeisolatedlatespawningorunusually slowmaturation oilarvae.Thespawningperiod(mid"Maytomid-June) reportedforyellowperchinsouthernLakeMichigancorresponded closelywiththatpredicted fromCookPlantfishandunderwater studies,LakeMichiganyellowperchhaveashortreproductive seasonrelativetootherfishspecies,andthebulkofspawning, incubation, andhatchingoccursduringa3-4-weekperiodfrommid-MaythroughearlyJuneinthisareaofthelake.Johnnydartereggswerefoundontwooccasions in1977,duringMayandJune.InMay,oneclusteroieggswasfoundattachedtotheunderside ofa76Cl fiberglass washtubandanotherwasattachedtotheunderside ofaswimfin."Bothoftheseobjectshadbeenlostfromthediveboatduringthepreviousmonth.InJune,twomoreclustersofeggswerefoundattachedtotheunderside ofaflatslabofwood.Thefemaledarteroftenlayshereggsinseveralclusterseachcontaining 20-200eggs(ScottandCrossman1973);thetwoclustersofeggsfoundonthewoodslabmayhavebeenspawnedbyasinglefish.Theclusterswere2-3cmindiameterandwerecomposedofseveralhundredeggspackedcloselytogetherinasinglelayer.Theeggswerecollected, hatchedinthelaboratory, andlarvaeverifiedasjohnnydarters.Theconcurrent appearance ofripefishinfieldsamplesandobservation ofeggsduringmid"Maytomid-June(Fig.8)definedashortspawningperiodforjohnnydartersinthestudyarea.Theoccurrence ofyolk"saclarvaeinfieldandentrainment samplesduringmid-Hay-July wasingeneralaccordwiththetimingofspawningandincubation ofeggs,aswasthespawningperiodreportedintheliterature.
But,liketheotherspecies,bothearlyandlateoccurrences ofyolk-saclarvaewerenoted.Thesedatasuggestthatthebulkofjohnnydarterspawning, incubation, andhatchingoccursfrommid-HaythroughlateJuneinthestudyarea.Sculpineggswerefoundontwooccasions, ini'layof1974and1978.Inbothinstances, theeggsoccurredasaflattened massattachedontheunderside ofapieceofriprap.Thesemassesweresimilarinappearance tothejohnnydartereggclustersexceptthatboththeindividual sculpineggsandsieoftheeggmasswerelargerthanthoseofthedarter.Onbothoccasions, thecollected eggswereincubated inthelaboratory untilthelarvaehatchedandwereidentified asslimysculpin(Cottus~conatus).77 Thechronology ofreproductive eventsdocumented'for slimysculpinbyCookPlantfishanddivingstudieswasnearly.perfect,inbiological terms.RipeadultswerecaughtduringApril-mid<<May, andeggswereobservedduringthefirstthreeweeksofMay.Yolk-saclarvaeappearedinentrainment samplesfrommid-MaythroughJuneandinfieldsamplesduringJune.Larvaeappearedinentrainment samplesabouttwoweeksearlierthaninfieldsamples,becausesculpinspawningwasconcentrated intheriprapzonewhereEieldnettawswerenotconducted.
Nettingwasconducted northandsouthoftheriprap,andsometimeprobablyelapsedbeforethenewlyhatchedlarvaemigratedfromtheirnestsintheriprapzonetosurrounding areasofthelakewheretheyweresubsequently netted.Thespawningperiodreportedintheliterature generally agreedwiththatpredicted fromCook"Plantdata.AgaLn,spawningreportedduringMarch-early AprilprobablyoccurredLninlandwatersthatwarmtospawningtemperatures morerapidlythaninshoreLakeMichigan.
Thesedata(FLg.8)indicatespawning, eggincubation, andhatchLngofsculpinsoccursduringarelativebriefperiod,withthebulkoEthLsactivitytakingplaceduringlateApril-lateMay.Severalconclusions maybedrawnEromthepreceding discussion onreproductive activityoffishinthestudyarea.Twogeneralmodesofspawningwerenoted:fishthatbroadcast theireggsatrandomwithoutregardtosubstrate typeandfishwithsubstrate-specific spawningrequirements.
,Alewifewasaprimaryexampleofthefirstcategoryofspawner.ltseggswerepelagicandubiquitously distributed.
Fxamplesoftheotherspawningmodeincludedspottailshiner,yellowperch,)ohnnydarter,andslimysculpin.Spottailshinereggsweredemersalandadhesiveandwerefoundattachedtoavarietyofstablesubstrates, Itappearedthatwhilethisspeciesselects78-9 stablesubstrates forspawning, thecomposition andconfiguration ofthatsubstrate isnotacriticalfactorintheselection process.Johnnydarterandslimysculpinweremoreselective inthateggswerelaidontheflat,cleanundersides ofriprapandinorganic ororganicdebris.AsinotherstudiesLnthearea(Biener1982,Dorr1982,Ruteckietal.1985),yellowperchwerefoundtohaveratherspecificsubstrate requirements thatfocusedonsubstrate configuration andrugosity.
Finally,related'studies(DorrandJude1981a,Dorretal.198lb,Judeetal.1981b)Lntheareahavecompiledevidencethatsomespeciessuchaslaketrouthaveextremely specificspawning-substrate requirements thatincludecharacteristics suchascomposition, configuration,
- rugosity, andinterstLtial dimensions.
Withtheexception ofalewifeandspottailshiner,spawningwasconcentrated intheriprapzone,andmuchofthereproduction ofthespeciesdiscussed occurredduring."lay-June.
DuringthisperLod,survivalandgrowthofthesefishpopulations couldbeaffectedbyperturbations ofspecificevents(spawning, incubation, hatchingandearlysurvival)
Lntheirreproductivecycle.Populations ofpelagicspawnerssuchasalewifethatbroadcast theireggsrandomlyoverawideareaarelesslikelytobeaffectedbyapointecological impactthanpopulations offishwhichconcentrate theirspawningintheareaoftheimpact.Withregardtojohnnydarters,slimysculpins, andtoasmalldegreespottailshiners,anecological trade-off existsbetweenreproduction andplantoperation.
Thesespeciesconcentrate aroundandspawnonin-lakeplantstructures, thusincreasing theirvulnerability toimpingement, entrainment, andphysical(heat)andchemical(chlorine) discharges.
Butatthesametime,populations ofthesefishhave79 beenenhancedbythecreationofthisartificialsubstrate,.andwouldnotexiinsuchabundance if-theplant"structure.were notpresent.JuvenileandAdultFishTwenty-two taxaencompassing 24speciesoffishwereobservedbydiversduringthestudyandweregroupedaccording tofrequency ofobservation (Table9)fromdatapresented inAppendix1.Frequently observedspeciesincludedalewife,yellowperch,sculpins(slimysculpinandmottledsculpin),
johnnydarter,andspottailshiner.Allofthesefishwereseenatleastonceduringeachyearofthestudy.Commonlyobservedspeciesincludedtrout-perch,commoncarp,rainbowsmelt,burbot,andwhitesucker.ThesefishwereIseenduringseventonineyearsofthestudy.Uncommonly observedspeciesincludedlargemouth bass,laketrout,channelcatfish,blackbullhead, smallmouth bass,andlongnosesucker.Thesefishwereseeninmorethanone4yearbutlessthanhalfofallstudyyears.Speciesthatwererarelyobservandwereseenduringonlyoneyearincludedemeraldshiner,browntrout,quillback, walleye,coregonids (bloaterandlakeherring),
andshorthead redhorse.
The10taxathatwerefrequently orcommonlyobservedcomposedthebulkoftheobservations offish.Theremaining 12taxawereseentooinfrequently tomakedetailedinferences basedonunderwater observations.
Atotalof72speciesoffishwereidentified amongthe1.1millionfishcollected during1973-1982 fieldstudiesneartheCookPlant(TesarandJude1985)and5.8millionfishimpingedonitstraveling screensduring1975-1982 (ThurberandJude1985).Therefore, aboutonethird(31':)ofthespeciesdocumented inthestudyareabyCookPlantstudieswereobservedbydivers.Theseobservations suggestthatalargenumberofthespeciesthatoccurredin80 Table9.Annualrelativerankedabundance offishobservedduringalldivinginsoutheastern LakeMichiganneartheD.C.CookNuclearPlant,1973-1982.
Fishweregroupedaccording tofrequency ofobservation.
Blanksindicatenoobservation.
Commonnamesoffishassignedaccord-ingtoRobinsetal.(1980).SpeciesNo.yrsYearobserved73747576777879808182~FreuentAlewifeYellowperchCottusspp.lJohnnydarterSpottailshiner1010101010261343512634125111332545244773111422554646375CommonTrout-perchCommoncarpRainbowsmeltBurbotMhitesucker45677758889991086642991088367672899109UncommonLargemouth bassLaketroutChannelcatfishBlackbullheadSmnllmouth bassLongnosesucker91091010910RareEmeraldshinerBrowntroutQuillback
'walleyeCCoreionusspp.Shortheadredhorse101010Tota1taxa6121211101111131014IncludesbothC.~conatus(alleysculpin)andC.bairdi(mottledsculpin).
IncludesbothC.artedii(ciscoorlakeherring)andC.~hoi(bloater).81 theareawere.rare,.and thatdiverobservations offishwerelimited, to.the.moreabundantspecies.The5fishtaxa'most-,frequently observedby-divers werealsoamongthe10fishtaxamostfrequentlycollected infieldandimpingement samples.Totalnumberoffishtaxaobservedeachyearvariedfrom6to14(Table9).If1973dataareignored(boththedivingmethodology andschedulewereincomplete thatyear),numbersoffishtaxaobservedrangedfrom10to14,annually.
Considering that11taxawereseenatleast7outof10years,and5taxawereseeneveryyear,thediversity ofspeciesregularly observedbydiverswaslowincomparison withtotalnumberofspeciesoccurring inthearea.However,themostabundantspeciesinfieldandimpingement sampleswerenearlyalwaysobservedbythedivers.Theseobservations suggestthatdivingis,effective Eordocumenting thepresenceofabundantspeciesbutineffective forstudyingrarespecies.Fishspeciesobservedbydiverscouldbedividedintotwocategories basedontheirbehaviorandresponsetothepresenceoEtheCookPlant.TheEirstcategorydescribed orientation oEEishinthewatercolumn-pelagicordemersal.
ThesecondcategorywasrelatedtotheresponseoffishtothephysicalpresenceoraspectsoEplantoperation
-attracted orindifferent (speciesrepelledbytheplantwerenotdiscetned bythisstudy)(seeTesarandJude1985).Fourcombinations ofthesebehavior-response categories wererepresented intheobservational database:pelagicEishthatwereattracted totheplant(pelagic-attracted),
pelagicfishthatwereindifferent totheplant(pelagic-indifferent),
demersalfishthatwereattracted totheplant(demersal-attracted),
anddemersalfishthatwereindifferent totheplant(demersal-indif ferent)~82Ill Pelagicfishthatappearedtobeattracted tothein-lakestructures oroperation oftheplantincludedyellowperchandcommoncarpandpossiblylargemouth bass,smallmouth bass,andwalleye.Pelagicspeciesthatappearedgenerally indifferent tothein-lakepresenceoroperation oftheplantincludedalewife,spottailshiner,trout-,perch, rainbowsmelt,laketrout,emeraldshiner,browntrout,andcoregonids.
Demersalfishthatappeared'to'eattracted tothein-lakepresenceoroperation ofthepl'antincludedsculpins, burbot,channelcatfish,andblackbullhead.
DemersalfishthatIIIappearedindifferent tothein-lakepresenceoroperation oftheplantincludedjohnnydarter,whitesucker,longnosesucker,quillback, andshorthead redhorse.
Inspection ofrelativerankedabundance offishwithinandamongyearsrevealedthatinmostyearsalewifewasmostabundant.
Yellowperch'lways attainedoneofthenextthreeranks(second-fourth).
Alewife,yellowperch,)ohnnydarter,spottailshiner,andsculpinsalwayscomprised at.leastfourofthetopfiverankseachyear.Relativerankedabundance offishspeciesobservedduringtransectswimsIalongthebaseofthesouthintakestructure (Table10)generally.'aralleled thatestablished fortotaldives(Table9).Totalnumberoffishspecies~gt~~observedeachyearrangedfromfivetonine.NumberofspeciesobservedIduringtransectdiveswasalwayslessthanthetotalnumber'bserve'd foranyIgivenyear,primarily becausetheobservational effortfor.tiansectswimswasmuchlessthanfortotaldives.however,duringtransectswims,observations werefocusedonthebottomanddidnotextendabovebottombeyondtherangeofvisibility, whichwasusuallybetween2and3m(Table4).Consequently, aslightlyhigherpercentage (44%)ofthosespeciesclassified asdemersalwas83 Table10..A'nnualrelativerankedabundance offishobservedduringduplicate observations madeduringtransectswimsinso'utheastern LakeMichigan, 1975-1982.
Observetionsweremade,bytwodiversswimmingside-by-side for10malongthebaseofthesouthintakestructure oftheD.C.CookNuclearPlant.Eachdiverexaminedanarea1mwide;observations weresummedandthenrankedforthetotalarea(20m)examined.
Fishweregroupedaccording tofrequency ofobservation.
Blanksindicatenoobservation.
Commonnamesoffishassignedaccording toRobinsetal.(1980).SpeciesNo.yrsobservedYear7576777879808182~FreuenuAlewifeYellow.perchCottusspp.l113422111462422341353213-CommonJohnnydarterSpottailshinerRainbowsmeltTrout-perch43235635544544656128677UncommonBurbotRareBlackbullhead67'otaltaxa585'7974includesborhC.~conurus(slimysculp(n)sndC.belcdf(sosoledsculpin).
84 seenthanofthoseclassified aspelagic(38%).Ofthosespeciesfrequently orcommonlyobservedduringthetotaldivingeffort,onlyburbotandwhitesuckerdidnotappearinthesesameobservational frequency categories duringtransectdives.Thesetwospecieswerenotabundantandneverattainedarankhigherthanninthintotaldivesconductedafter1974.Aswithtotaldives,alewifewasthemostfrequently observedfishspeciesduringtransectdives.Sculpinsdisplaced yellowperchasthesecond-mostabundantfishspeciesobservedduringtransectswims.Thiswasnotunexpected considering thegenerally highabundance anddemersalbehaviorofsculpin.Yellowperchwasgenerally thethird-most abundantspeciesseenduringtransectswims.Johnnydarterandspottailshineroccupiedalowerfrequency categoryfortransectdivesthanfor'totaldives.However,thesignificance ofthisshiftwasrelativelyinconsequential considering theoverallabundance ofthesetwospeciesinthestudyarea.Nopelagicspeciesclassified asuncommonorrareamongtotaldivingobservations (Table9)wereobservedduringtransectswims(Table10).Inadditiontototaldivingobservations(summarized fromAppendix1)andtransectobservations (summarized fromAppendix2),summarydataarepresented fromstandardseriesfieldsampling(TesarandJude1985)andstudiesonimpingement offishontheCookPlanttraveling screens(ThurberandJude1984,1985)for10speciesoffish:yellowperch,commoncarp,alewife,.spottail shiner,trout-perch, rainbowsmelt,sculpins, burbot,)ohnnydarter,andwhitesucker.Theremaining 12speciesoffishobservedduringunderwater studiesattheCookplantwereseentooinfrequently topermitmeaningful analysesbasedonobservational data.Speciesdiscussions are85 groupedaccording tothefourbehavioral categoriesnoted,earlier:pelagic-'attracted, pelagic-indifferent, demersal"a ttracted,and.demersal-indifferent.
Pelagic-A ttracted-Thespeciescomplexofdiver-observed pelagicfishthatappearedtobeattracted tothein-lakestructures orplantoperation includedyellowperch,commoncarp,andpossiblylargemouth bass,smallmouth bass,andwalleye.SuEEicient evidence(Tables9,10)wascompiledduringthestudytoinfertheattraction ofyellowperchandcommoncarptotheplant.Theattraction oftheotherthreespeciestotheplantwashypothesized morefromgeneralknowledge ofthespeciesandtheirhabitsthanfromempirical data,Yellowperchwasusuallythesecond-orthird-mos tabundantspeciesobservedduringalldivesandtransectswimsandwasneverlowerthanEourth(Fig.9).ItwasalsoamongtheEivemostabundantspeciesinEieldandimpingement samples.During1973-1977, therelati,ve rankedabundance ofyellowperchfluctuated amongthefoursamplingcategories.
Adistinctdeclineinabundance occurredinfieldandimpingement samplesbetween1977and1978andwasfollowedbyasteadyincreaseinrelativeabundance.
Althoughthispatternwasnotreflected indivingobservations, yellowperchwerefrequently observedduring1978-1982 underwater studies.Thedisparity intrendsofrelativerankedabundance betweenEieldandimpingement samplingandalldivesandtransectswarmsmaybeexplained bytheCdocumented affinitythatyellowperchhaveforroughsubstrate inthegenerally smooth,sandy-bottom areasofinshoreeasternLake.'michigan (Dorr1982,Ruteckietal.1985).Theattraction ofyellowperchtotheriprapzone,established throughunderwater observations, elevatedtheirlocalCP cuCOUJ"~ONDND>>>>CIMPINGEMENT SAMPLES>>2a~Dc)CQCC>UcnOo?>>>>>><<k<s'>>pFIELDSAMPLES~CVIO0LLt~>m+~oNDND'jan,sLsw'.'>>'>>.siiTRANSECTSWIMS~4ps;t'>>'~t~>>t.if'Sy,t<<<<3>>>>"i,Pc's4s>>&s't<<>>'tg:Js<<"qs>>?>>~t~t>>C,t>>ALLDIVESI1973;I974,$75l976l9771978l979l980l98Il982YEARFig.9.Comparison ofrelativerankedabundance ofyellol?perchobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern Lakes'Iichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch;NDnodivingorsampling.
87 abundance incomparison withfieldsampling, whichwas-conducted, onlyinareaofsandsubstra'te (Fig.9)..Theparallelinrankedabundance, ofyellowperchinimpingement sampleswiththatoffieldsamplessuggeststhatrateof-impingement wasrelatedmorecloselytotheirgeneralfieldabundance thantheirattraction totheriprapzone.Hostyellowperchobservedbydiverswereadults;)uveniles wereseldomseen,althoughtheywereabundantinfieldandimpingement
'samples.
Adis-tinctpatterninthetemporaldistribution ofyellowperchwasnoted.Adultfishmovedinshoreintothestudy.areaduringApril.Thismovementappearedtobemorecloselyrelatedtoinshorespawningthaninitialfeeding,becausemostfishdidnoteatuntilspawningwascompleted (Dorr1982).Spawningoc-curredinthestudyareaduringlateHay,andyellowperchremainedconcen-tratedintheriprapzonethroughout thesummer.Feedingcommenced shortly1afterspawningwascompleted.
Duringfall,yellowperchmovedoffshoreandwereseldomseenbydiversduringOctoberdives.Largestnumbersofadultfishwerecollected infieldsamplesduringHay-August.
Young"of-the-year werecollected intrawlandseinehaulsduringlatesummerandfallandinimpingement samplesduringfallandw'inter.Atleastrwopatternsinthespatialdistribution ofyellowperchwerediscerned bythisandrelatedstudies.Thefirstpatternwastheseasonalinshoremigrationofadultsinspringandanoffshoremigrationduringfall.Thesemovements weredocumented byunderwater observations, fieldstudies(TesarandJude1985),andimpingement studiesattheCookPlant(ThurberandJude1984,1985).Juvenileyellowperchinhabited theinshoreareathroughout fallandwinter,asevidenced bytheirimpingement attheCookPlantduringthesemonths.Thesecondpatterninspatialdistribution wastheSS45 concentration ofadultfishinareasofroughsubstrate.
Aswatertemperatures increased inspring,adultfishmovedinshoreandontonaturalandartificial reefspresentinthearea.AlthoughDorr(1982)compiledsomeevidencethatlimitedmovementoffthe'reefs occurredafterspawning, thebulkofthefishappearedtoremainclosetoareasofroughsubstrate.
Yellowperchwereneverobservedatsmooth-bottomed reference stations; however,theywerecommonlycollected thereduringsummermonthsintrawlsandgillnets(TesarandJude1985).Adultyellowperchweredistinctly day-active andatnightrestedonthebottom,oftenincrevicesformedbytheriprap.Asfurtherevidenceofyellowperchnocturnal inactivity, diverswereabletograspfishatnight.Duringtheday,fishonseveraloccasions werefedcrayfishbydivers.Fishformed,looseschoolscomposedofvarioussizesoffishwithalengthrangeoftenexceeding 100mm.Randomswimmingor"milling" wastypical;closelycoordinated groupmovements werenotobserved.
Bothsolitaryfishandschoolsremainedwithin1-3mofthebottomortheplantstructures.,
Commoncarpwasthesixthorseventhmostcommonlyobservedfishinthestudyarea;theywereseenduringallyearsexcept1973.Fieldsamplingandimpingement ofcommoncarpattheplantsuggested thattheoverallabundance ofthisspeciesinthestudyareawasrelatively constantduringthestudyperiod(Fig.10).However,severalpatternsandchangesinthetemporalandspatialdistribution ofcommoncarpwereevidenced byunderwater observations andotherstudiesofadultandlarvalfish.Divingobservations documented adistinctincreaseinabundance oftheserfishneartheplantfollowing thestart-upofwarm-water discharge.
Thislocalincreasewas,paralleled infieldstudycatches(TesarandJude1985).Of89 CuQJOl~OcZ~~DloCD~UOoNONDIMRNGEMENTSAMPLESFIELDSAMPlESClQOJlOh3g0mUJ~NDNDTRANSECTSWNS'1'iIl973874875l976l977l978l979l980l98Il982YEARALLDIVESFig.10.Comparison ofrelativerankedabundance ofcommoncarpobservedbydiversduringalldives()973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973"1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern Lakellichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch;M)~nodivingorsampling.
90I them'rethan460commoncarpobservedduringthestudy,nonewasseenin1973,andonlytwowereseenin1974,preoperational years.Ninefishwereseenin1975.From1976to1982,numbersoffishobservedannuallyvariedfrom14tomorethan200(Appendix 1)andaveragedabout40.Larvalcommoncarpwerenevercollected inpreoperational years1973-1974 attheCookPlantbutwerecollected andentrained attheplantduringitsfirstoperational year(1975)andinmostlateryearsofthestudy(Noguchietal.,1985).
Larvalcommoncarpwerenotcollected during1973-1979 atreference stationslocated7kmsouthoftheCookPlantnearVarrenDunesStatePark,butafewlarvaeweretakenatthesereference stationsduringthelastyearsofthestudy.Bimberetal.(1984)attributed thisunevendistribution oflarvalcommoncarptospawninginthewarm<<water plumeoftheplant.Althoughcommoncarpwereattracted totheplant,annualimpingement waslowandrangedfromzeroto34fishbetween1975and1982(ThurberandJude1985).Thissuggeststhatthefishwerenotparticularly susceptible toentrapment attheintakestructures, probablybecausetheyconcentrated nearthedischarge area.Furtherevidenceofattraction ofcommoncarptothewarm-water plumewasthatofthemorethan460fishobservedbydivers,only12wereseenattheintakesandnonewasseenatreference stations.
Allotherobservations weremadeinthevicinityofthedischarge stations.
Onseveraloccasions duringlatespringandsummer,diversinboatsandonshoreobservedschoolsofcommoncarpswimminginthevicinityofthedischarge structures; nonewasseeninthevicinityoftheintakestructures.
Diversobservedcommoncarpingreatestabundance duringtheperiodMay-August.Hostfishtakeninfieldsampleswerecollected duringthesame.period.However,theimpingement ofcommoncarpdidnotshowanytemporal91 pattern,probablybecausetheirsusceptibility waslowevenwhentheywere,abundantinthe,vicinityof:thedischarge.
I~Commoncarpwereday-active andseldom,seenatnight.Thefewfishthatwereobservedduringnightdiveswereonthebottom,solitary, andinactive.
Mostoften,commoncarpwereseeningroupsratherthanindividually.
Mostdiver-observed fishwereswimmingrandomlyinthevicinityofthedischarge structures,.
Theyoftenapproached the.diverscloselyandonseveraloccasions swamintothedivers.Asnotedearlier,theirfeceswereoftenabundantattheclosestreference stationnorthofthedischarges (northreference stationI-Fig.1)butwererarelyseenatotherdivingstations.
Largemouth bass,smallmouth bass,andwalleyewereseenthreetimes,twice,andonce,respectively,duringthestudy(Table9)andneverduringtransectswims(Table10)oratreference stations.
Inallinstances, thefishwereseenincloseproximity totheintakeordischarge structures.
Itisbelievedthatthesefishwereattracted tothestructures andnotjustthesurrounding roughsubstrate, perhapsbecauseoftheelevatedprofilethatthestructures presented.
Allfishwereseenduringthewarm-water months(May-September) andduringtheday.Onlysolitaryfishwereobserved.
Pelagic-Indifferent
"-Thespeciescomplexofdiver-observed pelagicfishindifferent tothein-lakestructures orplantoperation includedalewife,spottailshiner,trout-perch, rainbowsmelt,laketrout,emeraldshiner,browntrout,andunidentified coregonids (bloaterorlakeherring).
Sufficient observational datawerecompiledonthefirst,fourspeciestopermitmeaningful discussion 92 andinferences.
Theremaining fishspecieswereseeninfrequently andlittlecanbeconcluded basedonthesesightings.
Alewifewasgenerally themostabundantspeciesobservedandcollected inthestudyarea.Comparison ofsummarydata(Fig.11)revealedfewfluctuations inannualrelativerankedabundance withineachofthefourdatacategories.
Fieldsamplingdataandotherevidenceindicated thattheabundance ofalewifeinthestudyareadeclinedduring1980-1982 relativetopreviousyears(JudeandTesar1985).'hisdeclinewasparalleled bytransectswimdatawhereannualobservational effortwasstandardized.
Thedeclinewasnotreflected indatacompiledfromalldives.Itispossiblethatthesmallannualvariation intotaldivingeffortthatoccurredduring1975-82mayhaveobscuredthisdecline,althoughmorediveswereconducted annuallyduring1975-1979 (17-19divesyearly)thanduring1980-1982 (15-17divesyearly).Anotherexplanation maybethatlargeschoolsofalewiveswererarelyencountered duringtransectswims;whereas,theywerefrequently encountered duringnon-transect diving.Also,estimation oftheselargeschoolsoffish(oftencontaining morethan1,000individuals) mayhavesmoothedandobscuredyearlyvariations inabundance.
Nonetheless, alewifewerethemostabundantandubiquitously distributed fishinthestudyarea.Nopatternsortrendswereobservedinthespatialdistribution ofalewifeduringtheunderwaterstudy.Individual andschooling fishwereobservedatbothriprapandreference stations.Adistincttemporalpatternwasnotedintheabundance ofalewife.AlewifewererarelyobservedduringAprilbutwereusuallyseeningreatabundance duringMay-June, andtheimpingement ofalewivesusuallypeakedduringthesameperiod.Adultfishwerecollected infieldsamplesin93 tal~OlD~Z>>WIACD~Ue()O'I'v~pjijJI~IIMRNGEMENT
,SAMPLESFIELDSAMPLESOcLLJ~NDNDTRANSECTSWNSIOEOCOOI973874875l976l977l978l979l980l98Il982YEARALLDIVESFig.11.Comparison ofrelativerankedabundance ofalewivesobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CooklVuclearPlant,southeastern LakeMichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch;VDnodivingorsampling.
94:'1 greatestabundance duringthesameperiod.Theabundance ofalewife.inthestudyareaduringthisperiodcorresponded withtheirspringmigration fromoffshoreareasofthelaketothemorerapidlywarminginshorewaterswheretheysubsequently spawnedduringlateMay-August.
Adultfishcontinued tobeobservedthroughout thesummer,althoughnumbersoffishobservedwerereducedfrompeaklevelsthatoccurredduringMay-June.
NumbersofadultfishseenduringOctoberwerealwayslowandcorresponded withthefallmigration offishtooffshoreareas.Young-of-the-year (YOY)alewives'ere usuallyfirstobservedbydiversduringAugustorSeptember andlargeschoolswereoftenseenduringSeptember-October.Thisfallpatternwasparalleled byanincreaseinimpingement ofYOYalewives, whichbythistimewerelargeenough()50mm)toberetainedbythetraveling screens(ThurberandJude1984,1985).Young-of-the-year fishwereoftenseinedingreatabundance duringAugust-September.
Hhenobserved, schoolsofbothadultandYOYalewivesweredistributed throughout thewatercolumn.Schooling ofadultfishwasobservedonlyduringtheday.Movements ofindividual fishwererarelycoordinated intosimultaneous groupmovements andconsiderable "milling" offishoccurred.
Solitaryfishwerecommonlyseen.Atnight,fishoftenoccurredingroupsoraclustered atvariouslocations aroundtheintakestructure.
Althoughthefishwereactiveatnight,swimmingappearedundirected, andfishcouldoftenbeapproached closelyortouchedbydivers.SchoolsofYOYalewifewereonlyobservedatnightandwereclosertothesurfacethanthebottom.Onseveraloccasions, adultfishwereobservedtogroupneartheintakestructure andfaceintotheoncomingcurrent.,
Someindividuals madesnappingorsucking95 (notcoughing) movements.wi ththeirmouthandmayhavebeen.ingesting zooplanktoninthewater.Spottailshinerwasincludedamongthegroupof-frequently observedspecies;theywereseenduringallyearsofthestudy.Itwasalsoincludedamongthefivemost-abundant speciesinfieldandimpingement samples.Therelativerankedabundance ofspottailshinersinimpingement catchesfluctuated somewhatamongyearsbutremainednearlyconstantforfieldsamples(Fig.12).Anearlyconstantlevelofrelativeabundance wasalsoreflected intransect-swim data.Pooledobsetvations fromalldivessuggested thattherelativeabundance ofspottailshinersdeclinedduringthelate1970s,butthisdeclinewasnotreflected amongtheotherthreedatabases.Therefore, itwasconcluded thattherelativerankedabundance ofspottailshinersremainedrelatively, unchanged duringthestudy.Spottailshinerswerenotobservedatreference
- stations, butfieldand~impingementstudiesdidnotirtdicateanynotabledifferencesinspatialdistribution.
However,divingwasmoreextensive intheriprapareaandthesmallsizeofthefishmadethemdifficult toseeoffbottom,particularly whenvisibility waslow.iVootherevidenceofsubstrate-selective behaviororattraction toplantstructures oroperation wascompiledduringtheunderwater studies.Adistincttempotalpatternwasnotedintheseasonaldistribution ofspottailshinersasobservedbydivers.FishwererarelyseeninthestudyareainAprilandOctoberandweremostoftenobservedduringJune-August.
Asimilarpatternofseasonalabundance spottailshiner(TesarandJude1985).wasreflected infieldcatchesofThistemporalpatternofabundance resultedfrom,movementotfishintotheinshoreareaofthelakeduringJune-96:
OllOtOQJCl~ONDNDIMPINGEMENT SAMPLESG~WIALQ~c()o1'~fCFIELDSAMPLESQOltOlXLLJ~Omgt2NDNDJj,h'4+vTRANSECTSWIMS\~$O'IVI4.~gp1975874875I976l977l978I979l980l98Il982YEARALLDIVESFig.12.Comparison ofrelativerankedabundance ofspottailshinersobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
col-lectedinstandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinatescale~isinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations'r catch;NDnodivingorsampling.
97 4Augustwhen,spawningandfeedingoccurred.
Duringfall,,fishmovedoffshore.
Althoughpeakimpingement ofspottail.-shiners usuallyoccurredduringMay-..August,fishwereoftenimpingedinlargenumbersthroughout the-year.Therelatively highimpingement offishduringperiodsoflowfieldabundance mayhaveresultedfromtheirseekingshelternearthestructures duringfallandwinterstormsorfromtheirgeneraldisorientation andincreased susceptibili.ty toentrapment duringtheseperiodsofsevereinshoreturbulence.
Spottailshinersweremorecommonlyobservedatnightthanduringtheday,butthiswasbelievedtobemoretheresultofincreased vulnerability toapproachandobservationatnightbecauseofreducedlightthantoactualincreases innocturnal activity.
Thisbeliefwasbasedontheobservedsimilarity betweendaytimeandnighttime
- behavior, including levelsofactivityandalertness.
Mostspottailshinersseenbydiverswereadults;)uveniles andYOYfishwererarelyobserved.
Althoughschooling probablyoccursforthisspecies(iVursall 1973),itwasnotobservedbydivers.iVodifferences indielactivitywerenoted.Fishwereseenthroughout thewatercolumnanddidnotappearattracted tothestructures orriprap.,Duringa1973nightdiveonthesouthintakestructure, severalthousandspottailshinerswereobserved, someofwhichwereseentobroadcast theireggsovertheperiphyton growingontopofthestructure.
Spawningwasnotobservedinsubsequent years,butspottailshinerswereusuallyseeninconsiderable abundance duringJunenightdivesinthevicinityofthestructures.
Thefishareabundantandwidelydistributed inLakeMichigan, andnoevidencesupporting substrate-selective spawningwascompiledduring98 thisstudy.Spottailshinereggsaredemersal,
- adhesive, andprobablyrandomlybroadcast withoutregardtosubstrate configuration orcomposition.
Mostspawningoccursinthe(3mdepthzone(TesarandJude1985,Noguchietal.1985).Trout-perch wereseenduring9ofthe10studyyears(Table9)butusuallynotingreatabundance, i.e.,morethan60fishduringanysetofmonthlydives(Appendix 1).Trout-perch wereneverseeninabundance duringtransectswimsalongthebaseofthesouthintakestructure (Table10).Thiswasattributed totheirtendencytoremainoff-bottom duringtheday,whichencompassed halfofthetransectdivingeffort.Therelativerankedabundance oftrout-perch remainedsimilaramongyearsforimpingement andfieldsamplesandtransectswims(Fig.13).Adeclineinrelativerankedabundance occurredindatasummarized fromall'dives, butthisdeclinewasnotreflected'n theotherthreedatasets.Althoughtrout-perch wereneverseenatreference
- stations, noevidencewascompiledduringfieldsamplingandimpingement studiestosuggestthattheywereattracted totheplantstructures orripraporbyplantoperation.
Aseasonalpatternwasevidentinthetemporaldistribution ofthefish.Generally, trout-perch wereseenmostfrequently duringMay"August; sightings duringothermonthswererare.Bochfieldandimpingement catchesoftrout-perchwerelargestduringMay-September andsmallduringthewinter.Nopat-ternwasnotedinthedieldistribution offishasobservedbydivers.Allfishobservedweresolitary.
Duringtheday,trout-perch werealertandactiveandweredifficult toapproach.
Atnight,mostfishwereseenwithin1-2mofthebottom,andalthoughtheywereactive,swimmingwas99 cu¹NDNDIMRNGEMENT SAMPIESI'lOCD~LXaQo~CVLtJ~0m~CllUJ~IINDNDIIFIELOSAMPLESTRANSECTSWNSTALLOIVESI973874I975l976I977l978l979l980198II982YEARFig.13.Comparison ofrelativerankedabundance oftrout-perch observedbydiversduringalldives(1973-1982) andtransectsuims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeIichigan.
Ordinatescaleisinvertedandextendsfromlovesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch;ID~nodivingorsampling.
100 undirected andsporadic, andthefishappeareddisoriented andoftendartedagainstthebottomwhenapproached.
Rainbowsmeltwereseenduring8ofthe10studyyears.Adultfishwereneverseeninabundance althoughschoolsofYOYfishwereoccasionally ob-servedduringSeptember andOctober.Therelativerankedabundance ofrainbowsmeltremainedsimilaramongyearsforfieldsamplesbutvariedamongimpinge-mentsamples,transectswims,andoveralldivingobservations (Fig.14).Apronounced seasonalpatternwasnotedinthetemporaldistribution ofrainbowsmelt.Fishweremostcommonlycollected infieldandimpingement samplesduringtheearlyspringwhenthefishmovedinshoretospawnandduringfallafterthelakewatercooled.Exceptions tothispatternoccurredduringsummerwhenupwellings broughtfishassociated withoffshorecold-watermassesintothestudyarea.Muchofthevariability amongyearsfordivingobservations wasattributed tothesporadicoccurrence ofupwellings inshoreduringsummermonthsandtheassociation ofrainbowsmeltwiththesemassesofcoldwater.Rainbowsmeltwerenotobservedatreference
- stations, butnopatternordifferences inspatialabundance offishwereestablished duringtheunderwater studies.Quitelikely,fishavoidedthewarm-waterdischarge areaandplume,butthiswasundoubtedly alocaleffectandhadnegligible impactontheoverallinshoredistribution orabundance ofrainbowsmelt.Adultfishwereseenmoreoftenatnightthanduringtheday.Fishweresolitary, active,andalert.Theywereusuallyseenoff-bottom anddidnotexhibitanyaffinityforthestructures orriprap.Schooling wasnotobservedforadultfish,butsmallschoolsofYOYfishwereseenduringsomenightdivesinSeptemberandOctober.101 OJtOUJ~ONDNDJ'tVIJVIMRNGEMENT SAMPLESZeQ3~LLaQo~JFIELDSAMPLES~cutOhlg~m+~oNDNDII~VJtJ~TRANSECTSWlMS9:IllCOcoiJloALLDIVESl973I974l975l976I977l978l9791980l98Il982Pig.14.Comparison ofrelativerankedabundance ofrainbovsmeltobservedbydiversduringalldives(1973-1982) andtransectsvims(1975>>1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern Lakelfichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch;ND~nodivingorsampling.
102I Laketroutwereseenduringthreeofthestudyyears,andemeraldshiner,browntrout,andunidentified coregonids (bloaters orlakeherring)wereseenduringoneyear.Browntrout,emeraldshiner,andunidentified coregonids wereseentooinfrequently topermitmeaningful inferences regarding thesefish.However,noevidencewascompiledduringtheunderwaterstudieswhichindicated thatanyofthesefourspeciesoffishwereattracted orrepelledbypresenceofi'n-lakestructures orripraporbyoperation oftheplant.Inaseparatestudy,laketroutwereseeninabundance intheCookPlantintakeareaandat6minanareaofroughclaysubstrate 5kmnorthoftheCookPlantofftheGrandHereLakesduringnightdivesconducted on14Novem-ber1977.Thefishwereactive,alert,andoccurredingroups,butspawningwasnotobserved.
Thesubstrate wasexaminedclosely,butnoeggswerefound(unpublished data,GreatLakesResearchDivision, University ofMichigan, AnnArbor,Michigan).
Theonlyotherobservations oflaketroutwereinci-dentalsightings ofsolitaryfishmadeprimarily atnight.During9-10Novem-ber1975,anintensestormpassedthroughtheGreatLakesregion,andthou-sandsofwindrowed laketrouteggswereobservedalongthebeachattheCookPlant(personal communication, J.Barnes,Indiana&MichiganPowerCompany,Bridgman, Mich.)aswellasnearCharlevoix, Michigan(personal communication, T.Stauffer, Marquette Fisheries ResearchStation,Marquette, Michigan).
However,laketrouteggswereneverobservedbydiversortakeninentrainment samplespumpedfromtheplantforebay.Onafewoccasions, salmonideggswerefoundinthestomachsofslimysculpinsimpingedattheCookPlant,butthespeciesandlocationwheretheeggswerespawnedandeatenwerenotestab-lished.During10yearsofstudy,noevidencewascompiledtosuggestthatlaketroutspawnedontheCookPlantriprap.103 Demersal-A ttracted-Thespeci'escomplexofdiverobserveddemersalfislithatappearedtobeIsattracted tothein-lakestructures orplantoperation includedsculpin(Cottus~conatusorC.bairdi),turbot,channelcatfish,andblackbullhead.
Webelievesculpinsandburbotwereattracted totheplantarea.Theat-tractionofchannelcatfishandblackbullheadtotheplantareawashypothe-ssizedmorefromgeneralknowledge ofthespeciesandtheirhabitsthanfromempirical data.ThreespeciesofsculpinwereEoundinfieldandimpingement samplescol-Ilectedinthestudyarea:Cottus~conatusorslimysculpin,C.:bairdi ormot-hsculpinswererarelycollected andareexcludedfromthisdiscussion.
ttBothslimysculpinsandmottledsculpinswereidentified infiel'dandimpinge-mentcatchesmadeinthestudyarea(TesarandJude1985;ThurberandJude1984,1985).Therewassomeevidencethatmottledsculpinweremoreabundantinshoreduringsummerthanslimysculpin.However,itwasnotpossiblefordiverstodistinguishbetweenthetwospecies;therefore, theyaretreatedasasinglegroupandreferredtocollectively assculpins.
Sculpinswereseenduringeveryyearofthestudyforbothtotalstandardseriesdives(Table9)andtransectswimsalongthebaseoEthesouthintakestructure (Table10).Overall,itrankedasthefourth-orfifth-most abundantfishspeciesseenbydiversduringthestudy.Comparison oftherelativerankedabundance ofsculpinsobservedduri'ngalldivesandtransectswimswiththeirrankedabundance inimpingement andfieldsamplesindicated theattraction ofthisfishtotheplantarea(Fig.-15).Sculpinsranked'asonlythesixth-toninth-most abundantfishinfieldsamples".atwere104I tOQJ~ONDNDIMPINGEMENT SAMPLESCl~ZeEQa)LXoQoserhIds"FIELDSAMPLEScuK~LLJ>QC9f-~NDNDopP,s.avitatr1~gm.'hytrrrTRANSECTSWlMSIAcocnOj~h'~s=IJI!hj.r'@bl+utjvI'dj~pighaahb+E'jj,"f:th~r,ALLDIVESIl973I974I975l976l977l978l979l980l98II982YEARFig.13.Comparison ofrelativerankedabundance ofslimysculpins(Cottus~coatuaorC.bafrdi)observedbydiversduringalldives()973-1982) andtransectswims(1975-1982),
collected instandardseriesfijeldsamples(1973"1982),andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeMichigan.
Ordinate'scaleisinvertedandextendsfromlowesttohighestrankof.relativeabundance.,
Blanksindicatezeroobservations orcatch;NDganodivingorsampling.
105
!collected exclusively insand-bottom areas.Butinimpingement samples,theyrankedasthefifthtosixthmostabundantspeciesandwerealwaysamongthefirstfivemostabundantspeciesin,transect andtotaldivingobservations.
Sculpinsarecryptozoic intheirbehaviorwhichisreflected intheirpreference forrugosesubstrate (ScottandCrossman1973).Theinterstices amongtheriprapprovidedidealshelterandhabitatforthesefi.sh.Sculpinswereprobablyattracted totheriprapandtheprotection itaffordedratherthantoanyspecificfactorassociated withplantoperation (e.g.,circulati.on, heated-water discharge, turbulence, suspension ofsediments andlocallyelevatedturbidity, etc.)Evaluation of'hetemporalabundance ofsculpinsasreflected intheirrelativeabundance amongyearsshowedthatadeclineoccurredduring1976-1977,whichwasfollowedbyagradualrecoveryduring1978-1982 (Fig.15).ThisdeclineandrecoVerywasnotedinbothfieldandimpingement collections aswellasindiverobservations ofsculpins.
Noexplanation canbeofferedforthesechangesinannualabundance.
Ofallfishobservedbydivers,sculpinswerethemostevenlydistributed throughout theobservational period(April-October).
Unlikemostotherfish,sculpinswerefrequently observedinthestudyareaduringApril-i'lay andSeptember-October.
Althoughsculpinswereimpingedduringmostmonths,numbersoffishtakenduringApril-ifay usuallypeakedatlevels10<<foldhigherthanduringothermonths(ThurberandJude1984,1985).Thiswasprobablyrelatedtohigherlevelsofactivityandmovementassociated withspawninginriprapareassurrounding theintakesandsubsequently, increased vulnerability toimpingement.
Elsewhere inthearea,sculpinswerefoundtomoveshoreward inearlyspringtospawnbutgenerally avoidedthewarminshorewatersduringsummer(TesarandJude1985).1068 Comparison ofdivingobservations andimpingement catcheswiththefielddistribution ofsculpinsunderlines theattraction andconcentration offishintheriprapzoneduringperiods(summer)whentheoverallabundance intheinshoreareawaslow.Theunevenspatialdistribution ofsculpinsreflectstheirpreference forroughsubstrate andtheirattraction totheriprap.Sculpinswererarelyobservedinsand-bottom areassurrounding theriprap,althoughsmallnumbersoffishweretrawledandseinedfromtheseareas(TesarandJude1985).Sculpinswerealsoobservedduringotherunderwater studiesinareasofnaturalroughsubstrate northandsouthoftheCookPlant(unpublished data,GreatLakesResearchDivision, Univ.Mich.,AnnArbor,Mich.).Allsculpinsobservedbydiversweresolitary.
Mostfishwereadults,butjuveniles wereoccasionally seenduringlatesummer.Sculpinsshowedadistinctly nocturnal activitypatternwhichwasreflected inthelargenumberoffishobservedduringnighttransectswims(Appendix 2).Duringtheday,fishremainedhiddenbelowthetoplayerofriprapandwereless"frequently observed.
Atnight,theymovedontotheuppersurfacesofthestoneswheretheyremainedactiveandalert.Nonewaseverseenswimmingoffbottom,andonlyanoccasional fishwassightedatnightontopoftheintakestruetures.Burbotwerecommonlyobservedintheriprapareaandwereseenduring7ofthe10studyyears.Theywereconsistently theninth-most abundantfishobservedduringalldives(Table10)butwereamongtheleastfrequently observedfishspeciesseenduringtransectswims(Table10).Similartosculpins, burbotwererelatively lessabundantinfieldsamplescollected outsidetheriprapareathaninimpingement catchesanddiverobservations 107 whichsampledthepopulation ontheriprap(Fig.16).Thesedatasuggestth*burbotconcentrated intheripraparea.Theattraction wasprobablyrelatedtotheincreased protection thatthemorerugosesubstrate providedandnottosomeaspectofplantoperation.
Divingobservationsrevealednotemporalpatteamintheseasonalinshoreabundance ordistribution ofburbot,althoughfieldsamplingandimpingement catchesindicated thatthefishlefttheinshoreareaduringsummermonths.Underwater observations ofburbotrevealedaclearpatternintheirdieldistribution.
Nearlyallfishwereseenatnight,andtheyremainedoutofsightduringtlieday.Aswithsculpins, allburbotobservedweresolitary, alert,andacti've~divers.Theywerealthoughtheycouldusuallybeapproached andgraspedby;alwaysseenonthebottomandwereusuallyentwinedamongtheriprap.Despitetherelatively lowabundance ofburbotinthearea,ononeoccasionaspecimenwasfoundlodgedheaddowninsidea7-cmdiametertubethIhadbeensu'spended perpendicular toand1moffthebottomforthreeweekstocollectsuspended sediment.
Thisattestedtotheactiveexploration oftheareabythisparticular species.Burbotwereneverobservedatreference
- stations, andtheirspatialdistribution reflected theirattraction andconcentration intheripraparea.Therelatively frequentimpingement ofburbotinrelationtotheirlowfieldabundance alsoreflected theirconcentration inthearea.Construction diversworkinginsidetheintakeanddischarge pipesandplantforebayreportedseeingburbotinhighabundance relativetotheripraparea(personalcommuni-cation,A.Sebrechts, Sebrechts inc.,Bridgman, L'fichigan)
.Quitepossibly, 108 tOUJ~0+NCh~Ze~D4)CQa)0aoNDNDIMPINGEMENT SAMPLESFIELDSAMPLESQOJfOUJ~~ChNDND'RANSECTSVlNSV~4<',<<:..;kg'Pi",.ALLDIVESl975874l975l976l977l978l9791980198Il982YEARFig.16.Comparison ofrelativerankedabundance ofburbotobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
collected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeasternLakeMichigan.
Ordinatescaleisinvertedandextends.fromlowesttohighesttankofrelativeabundance.
Blanksindicatezeroobservations orcatch;NDnodivingor.sampling.
109 hthefishwereattracted tothedarkinteriorofthesestructures, andendedbeingimpingedas.aresult.Channelcatfishandblackbullheads wereseenduringtwoyearsofthestudy(Table9),andablackbullheadwasseenonceduringanighttransectswimalongthebaseofthesouthintakestructure (Table10).Thesefishwereneverobservedatreference stationsandwerenotseeninabundance onthereef.Hostsightings occurredatnight;fishweresolitaryandalert.Nofishwereseenswimmingoffbottom,andtheywereusuallyfoundintheinterstices amongtheriprapratherthanontopofit.Demersal-Indif ferent--Thespeciescomplexofdiver-observed demersalfishthatappearedtobeindifferent tothein-lakestructures orplantoperation includedjohnnydarter,whitesucker,longnosesucker,quillback, andshortheadredhorse.
Thecomposite ofdivingobservations, fieldstudies,andimpingement samplingindicated thatthesefishweredistributed throughout thestudyareaanddidnotappeartpcongregate intheripraparea.Johnnydarterswereobservedduringallstudyyears(Table9)andduringtransectdivesinallbutthelastyearofdiving(Table10).Theyweretypically aboutthefourth-most frequently observedspeciesoffish.Althoughjohnnydarterswereobservedinabundance intheripraparea,theywerealsofrequently seinedinthebeachzoneandtrawledat6-and9-mstationsduringfieldstudiesoffish(Tesaretal.1985,TesarandJude1985).Comparison oftherelativerankedabundance ofjohnnydartersshowedthattheywerethesixth-toeighth-most frequently collected speciesinfieldsamplingandthe110 NCOQJOl~ONDNDIMPINGEMENT SAMPLESZ>>~DlACO~Uo+o,>><<<<4<<FIELDSAMPLES~CVtOLLJ~>m~+oNDNDE>>*WTRANSECTSWlMSLAClto0)O<<J,<<>>I,"4>><<IJ'w'I'.~'<<!'P.ALLDIVESl973l974875l9761977l978l979l980198Il982YEARFig.17.Comparison ofrelativerankedabundance of)ohnnydartersobservedbydiversduringalldives(1973-1982) andtransectsuims(1975-.1982),
col-lectedin~standardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookNuclearPlant,southeastern LakeIichigan.
Ordinatescaleisinvertedandextends-.from lowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch;ND~nodivingorsampling.
111 Iinabsolutevalueof,annualrank.betweenthesedatasetsneverexceededthreeandwasoftenonlyone.Thesedifferences wereprobablynotsignificant anddidnotsuggestanunusually highrateofimpingement offishinrelationtotheirgeneralfieldabundance.
Johnnydarterswereoccasionally observedatdivestudyreference
- stations, althoughtheywereseeninfargreaterabundance ontheriprap.Therelativerankedabundance ofjohnnydartersobservedduringtransectswimsandforalldivesdifferedslightlyinabsolutevaluebutfollowednearlyidentical patternsintermsofannualvariation.
Theclosesimilarity inthesepatternsofabundance wasattributed totheabundance, demersalbeHavior, andratherevendistribution ofjohnnydartersontheriprap.Asaresult,thesmallareasofriprapexaminedduringtransectswimsservedwellasrepresentative samplesoftheabundance ofjohnnydarters.Severalpatternsappearedinthetemporalabundance anddistribution ofjohnnydarters.Diverobservations andfieldandimpingement catchessuggested thattheabundance oijohnnydartersrelativetootherspeciesdeclinedafter1977andthenfluctuated atlowerlevelsduringremaining yearsofstudy.Thereboundinrelativeabundance wasmoreapparentinfieldsamplesthaninimpingement samplesordiverobservations.
Thissuggeststhatthedeclinewasmorepronounced intheripraparearelativetothesurrounding areaandthatrecoverytoformerlevelsofrelativeabundance wasslower.Quantitative substantiation andexplanation foradifferential declineandrecoveryinabundance ofjohnnydarterbetweentheriprapandsurrounding sandareaarelacking.Secondly, johnnydarterswereabsentfromtheareaduringAprilandOctober,incontrastwiththeirhighabundance andwidespread distribution 112 duringwarm-water months(May-September).
Monthlypeaksinnumbersoffishobserved,
- impinged, andcollected infieldsamplesoftenoccurredinMayandcoincided withthespawningperiodforthesefish(Fig.8).Afinaltemporalpatternoccurredindielabundance.
Althoughjohnnydarterswerecommonlyseenduringtheday,numbersobservedduringtransectswimswereconsistently higheratnight'(Appendix 2).Asnotedearlier,althoughjohnnydarterswereseeninmuchgreaterabundance atriprapstationsthanatreference
- stations, nooverallpatternsordifferences inthespatialdistribution ofthisspeciesweresupported amongthethreegeneralstudies(diving,field,impingement).
Whilejohnnydartersmaypreferroughsubstrate, particularly forspawning, theyappeartobewidelydistributed inshoreduringspring,summer,andfall.Thedeclineinrateofimpingement ofjohnnydartersduringwintersuggested thateitherthefishmovedoffshore, ortheiractivityandsusceptibility toimpingement werelowerduringthisperiod.Nearlyalljohnnydartersseenwereadultfish,whichweresolitary, alert,andactiveduringdayandnight.Allfishwereseenonthebottomandoftenrestedontheuppersurfacesoftheriprap.Occasionally, afishwasobservedontopoftheintakestructure.
Whitesuckerswereseenduring7ofthe10studyyearsandrankedastheninth-ortenth-most frequently observedspeciesoffish(Table9).Whitesuckerswereneverobservedduringtransectswims,primarily becauseoftheirlowabundance inthearea.Thereiativerankedabundance ofwhitesuckersinfieldsamplesremainedthesame(seventh) forallbuttwoyears,whenitdeclinedbyonerank(Fig.18).Relativerankedabundance of,whitesuckersinimpingementsamplesfluetuatedslightlybutshowednostrongpatternsor113 Ol¹ZeaDc)Q3u)UaOoQCVUJ~~m~OlLLJ~lXnNDNDIINDNDIMRNGEMENT SAMPIES+c?aFIELDSAMPLESTRANSECTSWIMS9IA(0C)OlOALLDIVESl973874I975l97619771978l979l980l98ll982YEARPig.18.Comparison ofrelativerankedabundance ofwhitesuckersobservedbydiversduringalldives(1973-1982) andtransectswims(1975-1982),
co'lected instandardseriesfieldsamples(1973-1982),
andimpinged(1975-1982) attheD.C.CookLVuclearPlant,southeastern LakeLlichigan.
Ordinatescaleisinvertedandextendsfromlowesttohighestrankofrelativeabundance.
Blanksindicatezeroobservations orcatch;!ID~nodivingorsampling.
,
trends.Whitesuckerswereobservedconsistently butinlownumbersduringmostyearsoftheunderwater study.Aseasonalpatterninthetemporalabundance ofwhitesuckersappearedinbothunderwater observations andfieldcatchofthisspecies.Fishwereobservedexclusively duringMay-August exceptononeoccasioninSeptember; mostcollected infieldsampleswerealsotakenduringMay-August.
Impingement ofthesefishtendedtobegreaterinsummer,butwhite'uckers wereimpingedduringmostmonthsandoccasionally inrelatively highnumbersduringwinter.Thesedatasuggestthatwhitesuckersaregenerally moreabundantinshoreduringwarm-water months.Itispossiblethattheymoveoffshoreduringwinterorsomefishmayhavesoughtshelterfromstormsandiceinsidetheintakestructures andpipes,thusaccounting fortherelatively highimpingement duringwinterwhenfieldabundance wasrelatively low.Whitesuckersweremostoftenseenatnightwhentheyweresolitary, alert,andactive.TesarandJude(1985)foundthatthisspeciesmovedshoreward atnightinthestudyarea.Althoughwhitesuckerswerenotobservedatreference
- stations, therewasnoevidencethattheywereattracted totheplantstructures orripraporthatoperational factorsaffectedtheirdistribution.
Infact,analysisofgillnetdatarevealedthatwhitesuckersweresignificantly lessabundantneartheCookPlantthanatareference stationlocated11kmsouthoffWarrenDunesStatePark,Michigan(TesarandJude1985).ThesedataindicatethatwhitesuckersmayactuallyhaveavoidedtheCookPlantarea,perhapsinresponsetosomeoperational factorsuchasdischarge ofheatedwater.Asimilarpatternofavoidance wasnotedattheJ.H.CampbellPlantlocatednorthoftheCookPlant(Judeetal.1982).115 Longnosesuckerswereseenonseveraloccasions duringthestudy.Quillback andshorthead redhorsewereeachobservedononeoccasion.
Allofthesefishwereobservedintheriprapzone,butattraction ofthesespeciestotheareawasnotestablished.
Theoverallabundance anddistribution ofmostfishobservedbydiverswereinfluenced byseveralfactors.Onefactorwastheannualwatertemperature regime.Fishabundance, diversity, andlevelsofactivityasobservedbydiversweregenerally highestduringthewarm-water months(May-September),
withlowestlevelsofabundance, diversity, andactivityoccurring duringApril.Abundance anddiversity offishobservedbydiverswasgenerally higheratnightthanduringtheday.Partofthiswasbecausemanyfishwerelesswaryatnightanddidnotfleetheareaasdiversapproached.
Also,manyspeciesoffishseenwerenocturnal orshowednoclearpatternofdielactivity.
Thosespeciesthatwereday-active oftenremainedonbottomatnightwheretheywerereadilyvisibletothedivers.inshoreturbulence associated withstormsandsurfacewavesappearedtocausemanyfishtoretreatfromthearea.Offshoremovements weremostlikely,butsomefish(alewifeandyellowperch)intheimmediate vicinityoftheCookPlantappearedtoseekshelterintheleeoftheintakestructures andwereconsequently morevulnerable toimpingement duringtheseperiods.Thisresponsetostormswasalsodocumented byLiftonandStorr(1977).Finally,formanyofthespeciesoffishobservedduringthisunderwater study,theironshoremovements andpeakabundance inthestudyareawereoftendirectlycorrelatedwithspawningactivities.Thiswastrueforspeciesthatwereattracted totheplantareaforspawningsubstrate (e.g.,yellowperch,116
- sculpins, johnnydar'ter)oranoperational, factor(commoncarp)andforspeciesthatappearedindifferent tothepresenceoroperation oftheCookplant(e.g.,alewife,spottailshiner,rainbowsmelt).Thespatialandtemporalabundance ofLakeMichiganfishfoundinthestudyareaappearstobestronglyinfluenced byenvironmental factors(substrateconditions, watertemperature,storms,turbulence, ice,dielperiod)actinginconcertwithphysiological needsofthefish(maturation,
- spawning, feeding,survival, growth)andthedistribution ofotheraquaticbiota(predators andprey).Ourstudiesalsoindicatethatthelevelofinfluence thatthesefactorsassertonfishabundance, distribution, andbehaviorchangesasfishpassthroughvariousstagesintheirlifehistoryandphysiological needs.ECOLOGYGivensomeannualvariation, mostofthephysical,
- chemical, andbiological featuresofthestudyarearemainedbasically unchanged, duringpreoperational andoperational phasesoftheCookPlant(Rossmann 1986).Suchfactorsincludedcomposition andconfiguration ofsurficial sediments, presenceoflakecurrentsandoccasional occurrence ofstorms,annualwatertemperature regime,nutrientcycling,andtheseasonalappearance ofvariousanimalpopulations inthearea.Thesefactorsalongwithmanyotherscomprisetheenvironment anddictatethegrowthandsurvivalofplantsandanimalsinthearea.Enmostinstances, theseenvironmental interrelations andresponses arecomplexanddifficult toisolateorexplain.However,construction andoperation oftheCookPlantresultedinsomegrossalterations inlocalenvironmental conditions, whichcouldbeidentified 117 andexplored.
Theplacement ofplantstructures andriprapinthelake.,createdasmall,isolatedbenthicenvironment thatwasatypicalofthesurrounding area.Subsequent operation oftheplantwhichincludedwithdrawal ofwater,circulation andwarmingofwaterinsidetheplant,anddischarge ofwaterbackintothelakefurtheraffectedboththebenthicandpelagicenvironment intheimmediate vicinity.
Twobasicthemesunderlietheinitialdiscussion inthissection:thefirstisanevaluation oftheresponseofselectedbiotatotheintroduction ofnewhabitatorsetsofenvironmental conditions.
Thesecondthemeistheresponseofthesebiotatohabitatagingandchangesinenvironmental conditions.
Thediscussion islimitedtoobservations andinferences thatarederivedfromthisunderwater study.Theinshorephysicalenvironment inthisregionofthelakeisvariableincomparison withmanyotheraquaticenvironments.
Waves,currents, shiftingsurficial sediments, exposuretoicescour,andwidelyfluctuating watertemperatures contribute tothesetofconditions thatstressplantsandanimalslivinginthearea.Theriprapandin-lakeplantstructures providedastablesubstrate thataffordedincreased protection formobilebenthicorganisms andasurfaceforattachment ofsessilebiota.Thiswasreflected intherapidcolonization ofthishabitatbyorganisms notfoundinthesurrounding environment, (e.g.,periphyton andattachedinvertebrates) orwhichnormallyoccurredinlesserabundance (e.g.,snails,crayfish, andsomefish).Following placement ofthestructures andriprapinthelake,agingoftheirsurfacescommenced andalteredtheconditions ofthismicro-environment.
Thestructure surfacesfirstrustedandthenaccumulated bacterial slime,finesediment, andparticulateorganicmaterial.Bacterial slimegrewonthe surfaceoftheriprapwhiletheholesandcrevices, particularly thoseinitsuppersurfaces, trappedsedimentandorganicmatter.Periphyton rapidlycolonized theexposed,uppersurfacesofthestruc>>tuteeandriprap,and
~Cladshorswasoftenabundant.
Snailsappearedontheriprapwithinayearandattachedinvertebrates
(~Hdra,bryosoans, andsponges)colonized thesubstrate inthefirstfewyears.Crayfishalsoappearedonthereefwithinthefirstseveralyears.Abundance ofsnails,crayfish, andsomeinvertebrates peakedduringthefirstthreetofiveyearsandthendeclinedtovaryingdegrees.Snailsdisappeared completely fromtheriprapbythesixthyear,andnumbersofcrayfishobservedandimpingeddeclineddramatically bytheseventhyear.Theabundance ofmostattachedinvertebtates declinedinlateryearsofthestudy,buttheseorganisms continued tobeobservedthroughout the10-yrstudyperiod.Interestingly, f'luctuations occurredintheabundance offishthatwereattracted tothearea,butclearpatternsortrendsintheirabundance werenotevident.Thereasonforthismaybethatthosefactorswhichattracted thefish(e.g.,shelter,circulating water,etc.)werenotalteredasmuchduringthestudyasthemicro-environment onthesurfaceoftheriprap.Thisinturnsuggeststhatattraction offishtotheareamayhavebeenmorearesponsetothephysicalconfiguration ofthereefthantobiological factorssuchasavailability ofprey(e.g.,sculpinfeedingonsnailsorperchfeedingoncrayfish).
Inastableenvironment, associated
- physical, chemical, andbiological conditions oftenachievesomebalancewitheachother.Patterns, trends,andrandomvariations intheseconditions areexpectedtooccurduringlongperiodsofobservation, butradicalchangesareeitheratypical(e.g.,damage119 ordestruetionofthestruetures)oratleastpredictable(upwellings)
.Whenexistinghabitatis.alteredornew.habitatisintroduced,,
theextantenvironmental condi,tions changeandanewsetofphysical,
- chemical, andbiological conditions begintoappear.Usually,someperiodoftimeisrequiredtoreformastableandrelatively predictable balancewiththisnewsetofconditions.
Theresponseofindividual organisms totheseenviron-mentalchangesvariesbutiseventually reflected inpopulation abundance anddiversity.
Populations mayincreaseordecreaseinnumbers,andtherateatwhichthisoccursmayalsovary.However,severalbasicpatternsareknown,andsomeoccurredattheCookPlant.Onepattern,shownbysnailsattheCookPlant,iswherepopulation densityfollowsaJ-shapedcurveovertime.initially, apositiveacceleration phaseoccurs,followedbyalogarithmic growthphase.Eventually, population densitypeaksandisthenfollowedbyalogarithmic decreaseinpopulation densityandlacer,anegativeacceleration phase(Knight1965).Colonization,rapidpopulation
- increase, peakabundance, andpopulation declineofsnailstookplacewithina4-yrperiod;overthenexttwoyearsthepopulation trailedoffintoextinction onthereef,Theprimaryfactorwhichinitially encouraged population growthwasmostlikelytheap-pearanceofclean,stablesubstrate.
Themajorfactorwhicheventually causedtheextinction ofsnailsonthereefmayhavebeentheaccumulation ofathickcoatingofmaterial(sediment, organicdetritus, andalgae)onthesurfaceofthesubstrate.
Thismaterialmayhaveinterfered withsnailmovement, ventilation, orincubation ofeggsattachedtothesubstrate.
Changesmayalsohaveoccurredinthecomposition ofthedetritalmaterialuponwhichsnai1sfed.120Cl Asecondpopulation densitycurvewhichdevelopsinresponsetochangingenvironmental conditions isthesigmoidcurve.Inthisinstance, theascending limbandpeakofthecurvearefollowedbyaseriesofoscillations whichmaybecyclicornonperiodic andshowtrendsand'atterns ortotallyrandomchangesinpopulationabundance overtime.Attachedinvertebrates andcrayfishfollowedthisgeneralformofpopulation density'curve.Giventimeandeventualstabilization ofenvironmental conditions onthereef,thepopulation densitycurvesoftheseorganisms mighteventually flattenorshowsomeperiodicity ortrend.Butthedurationandintensity ofsamplingconducted duringthisstudy,wereinsufficient tor'evealsuchfeaturesinthesepopulation curves.Theseasonalgrowthof~Cladohorsfollowedavariation ofthiscurvewherethelengthanddensityofthealgashowedcyclicfluctuations according toseason(maximuminsummer,minimuminwinter).However,nolong-termtrendsuperimposed onthesecyclicoscillations wasidentified duringthestudy.Changesinsurficial substrate conditions suspected tohaveaffected'1~snailsprobablyalsoaffectedattachedinvereegrates andcrayfish.
EvidenceItindicated that~Ciadohorsmayhavehadadirect.effectontheseanimals.~1/Instudiesofartificial substrates placedon,theCookPlantriprap,Lauritsen
~~ItandWhite(1981)foundthat~tladohorsincreased spaceavailable forclinging4invertebrates suchasNaididae, Oligochaeta, watermites,andamphipods.
Withthedisappearance ofmost~tladohorslinthefall,thetotalnumberofbenthicinvert'ebrates decreased, andfilterfeedersdominated thefauna.Princeetal.(1975)foundthatatSmithilountain Lake,Virginia, crayfishueremostabundantinareasoiluxuriant
~Gladehorsgrowthandabsentfromareasofthereefwithlittleorno~Cladohorsgrowth.These.observations 121 tcombinedwiththoseofthepresentstudy(seeFree-living Macroinvertebrates) suggestthatadirectrelationship existsbetueen,tha presenceof~Cladohors..(orfactorswhichpromotegrowthofthealga)andtheabundance ofinvertebrates attheCookPlant.Thepopulation growthofsnailsmayhavebeenrepressed byluxurianr.
~Cladohorsgrowth;uhereas,thepopulation grouthofcrayfishmayhavebeenenhanced.
Attachedinvertebrates mayhavehadtocompetewiththealgaforsubstrate, andsomeoftheaquaticinsectlarvaeobservedduringthestudymayhavefedonorganisms livinginassociation with~Cladohors.Anotherpopulation densitycurveisasymptotic inshape.UnliketheJ<<shapedcurve,noclearpeakdensityisachievedbutratheranasymptotic orflat,linearphaseisestablished.
Somepossibleexamplesofthiscurvewerethepopulation densities ofyellowperch,sculpin,johnnydarter,andburbotthatwereattracted totheroughsubstrate.
Unfortunately, divingwasnotconducted beforeandimmediately afterplacement ofthesubstrate inthelake.Therefore, theinitialincreaseindensitywhichoccurredasfishlocatedandcolonized theareawasnotrecordedandtheascending limbofthecurvewasnotreflected inthedata.However,therelativerankedabundance ofmanyoithesefishunderwent onlyminorfluctuations following colonization, andtheactualabundance ofthesereeffishmayhavestabilized.
Asnotedearlier,theattraction ofthesefishtothereefmayhavebeenmorearesponsetoitsgrossphysicalconfiguration andstability whichremainednearlyunchanged duringthestudy,thantoreeforganisms (algaeorinvertebrates) thatservedasprey,ortomicro-environmental conditions onthesurfaceoftheriprap.Znterestinglyp laketrout,whichappeartohaveextremely specificrequirements regarding spawning-substrate conditions, wereneverfoundtos122 utilizetheCookReefforspawning; whereas,otherfish(yellowperch,slimysculpin,johnnydarter,spottailshiner,andalewife)withlessstringent spawning-substrate requirements spawnedextensively onthereef.Encontrast, laketroutdidspawnonthenewly-placed largeriprapattheCampbellPlant(Judeetal.1981b).Thepopulation densitycurvesofperiphytic algaeattheCookPlantreefIfollowedapatterntypicalforcolonialalgaebutuniqueincomparison withcurvespreviously discussed.
Zngeneral,abundance ofindividual algalformspeakedsoonaftercolonization andthendecreased slowly,thusdefiningasymmetric population densitycurvesthatwereskewedtotheright.However,asindividual population densities decreased andmorestability wasattained; totaldiversity offormsincreased almostlinearlythroughout thestudy.Theseopposingprocesses mayhavebeentheresultofagingandincreased stability ofsurficial substrate conditions actinginconcertwiththelargenumberofrareformspresentinthelake.Hostorganisms studiedduringthisinvestigation exhibited bothtemporalandspatialvariation intheirabundance anddistribution.
Thethreemostobviousenvironmental effectsweresubstrate conditions, watertemperature, andphoticconditions.
Pronounced effectsofsubstrate werefoundonthedistribution ofperiphyton, attachedinvertebrates, snails,andcrayfishandonthedistribution andspawningofsomefish.Forallanimalsstudied,presenceofstable,rugosesubstrate attracted andconcentrated biotathatwerelessabundantinthesurrounding environment offlat,exposed,shifting-sandbottom.Hostorganisms notattracted totheriprapzone(e.g.,pelagicfish)weredistributed intheareainamannersimilartothatofthesurrounding environment.
However,thefaunaldistributions ofsomeorganisms 123 thatwouldundoubtedly havebeenreducedbythepresenceofhardsubstrate,,
suchasthose,ofburrowing
.invertebra tes,including sphaeriid, clamsorworms,werenotstudied.Althoughshort-term fluctuations inwatertemperature, suchasupwellings, wereencountered, theireffectsontheabundance anddistribution oflocalbiotaweredifficult todiscernthroughdiverobservations.
However,seasonalchangesinwatertemperaturehadobviouseffectsonbothplantsandanimals.Ingeneral,abundance anddiversity ofmostorganisms observedbydiverswerefargreaterduringmonthsofwarmwaterthanduringearlyspring(April)orlatefall(October).
Partofthisreduction waslikelythe.resultofreducedmetabolic activityandmovements asafunctionoflowerwatertemperatures.But,frequentstorm-genera tedturbulence andscouringofthebottombyicemadetheinshoteareaconsiderably moreinhospitable duringthecaid-weather periodoftheyear.Thedieldi,stribution ofsomeanimalswasadirectresultofphototrophi responses.
Crayfishweredistinctly moreactiveatnightasweresculpinandYOYalewives.
Yellowperchandcommoncarpwereactiveduringthedayandinactiveatnight.Whileabundance ofadultalewivesappearedunaffected byphotoperiod, schooling wasadistinctly daytimeactivity.
Ingeneral,mostfishwerelessalertandmoreapproachable bydiversatnightthanduringtheday.Also,orientationoffishtothestrueturesandriprapwasoftenclearlyobviousduringthedayandobscureorabsentatnight.Finally,adistinctprocessoftcolonization andsuccession ofbiotaontheCookPlantstructures andriprapwasdocumented duringthisstudy.Althoughspecificpopulation densitycurveshavebeendiscussed, theoverallpatternwasoneofinitiallocationofhabitatbyextantbiota,explosive
- 124O, population growthwhichpeakedduringthefirstfewyearsofthereef'sexistence, andadeclineinpopulation abundance tolowerlevelsoffluctuating population abundance orextinction.
Thisgeneralpatternwasmoststrikingly exhibited bysessilebiota,perhapsbecausetheyweremoredirectlyaffectedby'hanges insubstrate conditions thanweremotileorganisms suchasfish.Thesechangesprobablyincludedshiftsinmicro-habitat conditions suchascirculation ofwaterandexchangeofgasesandnutrients atthe'Isubstrate/wa terinterface.
Thephysicalocclusion ofthesubstrate surface,pores,cracks,andinterstices byanaccumulation ofalgae,sediment, andorganicdetritusprobablyinfluenced thesemicro-habitat conditions anddictatedtheresponseoforganisms tothathabitat.Generally, artificial reefsareusedthroughout theworldtoincreaselocalbiological productivity (Ruteckietal.1985).Suchincreases areachievedbyexpanding thevarietyandabundance ofhabitatavailable tobiota.Theseconditions favorthesurvivalandgrowthofindividual organisms andpromotelocalpopulation increases.
TheCookPlantstructures andripraphaveprovidedjustsuchanenvironmentwhichthrough1tsphysicalpresenceand,'mo'dification ofextantenvironmental conditions actingincombination with,effectsofplantoperation havehadadistinctimpactonthelocalecology.1Fromthestandpoint ofdiver-observed effects,thisimpactappearslimitedalmostexclusively tothereefitselfandhasnotinfluenced theecologyof'Ithesurrounding areatoanynoticeable extent.PLAiNTEFFECTSPhsicalPresenceThephysicalpresenceofCookPlantin-lakestructures andriprap125 appearedtohaveseveraleffectsonthelocalenvironment thatwerenot.relatedtoplantoperation.(e;g.,
circulation ordischarge'of heatedwater).Theseeffectsweregenerally relatedtoanexpansion ofhabitatwhichprovided.
increased substrate forattachment, shelter,orreproduction ofbiota.Thestructures andriprapprovidedstablesubstrate fortheattachment andgrowthofperiphytic algaeandattachedinvertebrates including
~Hdra,bryozoans, andfreshwater sponges.Theseanimalswerenotfoundonshifting-sandsubstrateinthesurrounding area.Snailswereattracted totheclean,stablesubstrate thatprovidedasurfaceonwhichtheycouldmoveaboutandlaytheireggs.Crayfishmayhavefedon~Gladehorsorotherperiphyton attachedtorheripraphutalsousedtheintersticesamongthestonesforshelterandprotection.
Severalspeciesoffishwereattracted tothestructures andriprap.Yellowperchcongregated intheareainthelatespringandremainedmoreconcentrated intheriprapzonethanthesurrounding areathroughout theIsummer.Althoughalewivesdidnotshowanyparticular attraction totheareabasedondiverobservations, impingement recordsindicated thatfishclustered nearthestructure duringstormsandweretherebymorevulnerable toentrapment (ThurberandJude1984,1985).Demersalfishincluding
- sculpins, burbot,johnnydarter,blackbullheads, andcatfishwereattracted totheriprapprobablyasaresultoftheircryptozoic behavior.
Enallcases,thepresenceofthestructures andriprapincreased theamountoiprotected habitatavailable tothesefish.Therefore, strictlyfromthestandpoint oftheirphysicalpresence, thestructures andriprapenhancedandexpandedlocalpopulations ofsomefishspeciesinamannerthatwouldnothaveoccurredintheabsenceofthishabitat.However,thisenhancement mustbebalanced1269 againsttheoperation oftheplantwhichoftencontributed tomortality offishoccurring inthearea.Theriprapservedasspawningsubstrate foryellowperch,slimysculpin,andjohnnydarter,andthroughthisprocessmayhaveenhancedthegrowthoflocalpopulations ofthesefish.SpottailshinerswereobservedtospawnonMperiphyton growingontopofthesouthintakestructure, whichprovidedanadditional butprobablyinsignificant amountofspawninghabitat.Znoverview, thephysicalpresenceofin-lakeplantstructures andriprapcreatedanatypical, moresheltered, andmorediversehabitatascomparedtothesurrounding area.Thesefactorsservedtoattractandconcentrate biotawhichnormallywouldbeabsentfromtheareaoroccurinconsiderably reducednumbers.Enmostinstances, thepresenceofthishabitatenhancedlocalpopulations ofsomeplantsandanimals,whileothers(e.g.,thoseofburrowing animals)werelikelyreduced.But,theattraction andenhancement ofthesepopulations mustbebalancedagainsttheirincreased vulnerability tooperational effectsoftheCookPlantandplant-induced mortality.
0erationalEffectsTheentrainment oforganisms duringintakeofplantcoolingwateranddischarge ofheatedwaterandcurrentsassociated withthewithdrawal anddis-chargeofwaterwerethemajoreffectsofplantoperation thatwerenotedbydivers.Someofthephysicalimpactsfromplantoperation havealreadybeendescribed andaresummarized here.Ashallowsurfacelayerofwarmwaterwasoccasionally encountered bydiversatreference stationsclosesttothedis-chargestructures.
Warmwaterwasalsoencountered whendivinginthedis-chargeareaduringone-unitplantoperation.Elevatedturbidity wasoccasion-127 allyencountered atthenorthreference
.stationnearesttheplant,andonond'ive,debriswasflushedfromthenorthdischarge during"cleaningof the:plant forebay.Intakeanddischarge ofwatermodifiedlakecurrentsandwaves.intheimmediate vicinityoftheplant.Meobservedchangesinripplemarkpat-ternsonthebottom,encountered eddycurrentsatthedischarge, anddetectedwatermassesofclearlydiffering temperature andtransparency inthestrati-fiedintakewater.Althoughtheripraptrappedsedimentandorganicdebris,someofthesematerials werere-susp"nded byplant-generated watercurrents.
Althoughthepelagiclifestagesofattachedorganisms werevulnerable toentrainment andpossibleplant-induced mortality, sessileadultorganisms wereco'nsiderably lesssusceptible tooperational efEectsoftheplant.Oiverob-servations revealedthatportionsoftheintakestructures mostdirectlyexposedtointakewatercurrentsoftensupported, themostluxuriant periphytoa ngrowth.ICrayfishwereattracted totheriprap.However,intakecurrentsstrongenoughtodislodgetheseanimalsfromthesubstrate andresultintheirsubsequent impingement intheplantwereneverencountered.
- Crayfish, whichshowpronounced negativephototatiebehavior(Pennak1953),mostlikelywereattracted tothedarkinterioroftheintakestructures andpipesandeventually enteredorwereentrained intothetheplantforebayandimpingedonthetraveling screens.ThesameprocessmayhaveoccurredEorsculpinswhichconcentrated intheripraparea;sculpinsarealsonocturnally active.Diverobservedeffectsofplantoperation onEishwerelimitedtoattrac-tionofcommoncarptotheheateddischargewaterandageneralresponsiveness ofsomespeciestocurrentsattheintakestructures.
Althoughcommoncarpspawnedinthewarmwaterasevidenced bytheconcentration oEnewlyhatched128O larvaeatsamplingstationsnearestthethermalplume(Bimberetal.1984),theymayhavebeenattracted totheplumeforotherreasons.Noevidencewascompiledtoindicatethatcommoncarpwouldhavebeenattracted totheareastrictlyinresponsetothephysicalpresenceofplantstructures orriprap.Severalspeciesoffish,including yellowperch,alewives, andspottailshin-ers,wereobservedtoexhibitpositiverheotaxis andsomeposition-holding intheareaofstrongintakecurrents.
Onoccasion, someofthesefishwereobservedtoselectively congregate atvariouslocations aroundtheintakewheretheincomingwaterwaswarmerorlessturbidthanatotherpoints.CookPlantimpingement recordsandotherstudiessuggestthatbothalewivesandyellowperchmayhaveconcentrated neartheintakestructures duringstormsandperiodsofextremeinshoreturbulence, perhapsinsearchofshelterintheleeofthestruetures(LiftonandStorr1977;ThurberandJude1984,1985).tSuchconcentrations, combinedwiththeincreased activityoffishduringstormsandpossibledisorienting effectsofextremeturbulence, mayhaveresultedinincreased impingement offishduringandimmediately following severeinshoreturbulence.
Pelagicfish,including juvenileandadultalewife,spottailshiner,andyellowperch,wereobservedtoswiminandoutoftheintakestructures.
Thisobservation suggeststhatwaterintakecurrentsoutsidethestructures andatmanypointswithinthestructures werenotsostrongastoover-power thefish.Roughmeasurements ofcurrentspeedmadebydiversattheintakescreensofthestructures bytimingthetransport ofsuspended materialalongameasureddistanceindicated thatintakecurrentsatthescreenswereusuallylessthan0.5m/sec.Duringseven-pump plantoperation, currentsatthein-takescreensoccasionally approached 1m/secatpointsalongthestructure 129 whichfaceddirectlyintotheoncominglakecurrent.Commercial diversre-,pairingtheintakestructures reportedthattherewerespecificlocations withinthestructures whereintakecurrentswouldsuddenlyincrease(personal.
communication, A.Sebrechts, Sebrechts Inc.,Bridgman, Mich.).Theseloca-tionsvariedwiththenumberofpumpsoperating, direction andspeedoflakecurrentsandsurfacewaves,andeddycurrentscausedbyrecirculation ofdis-chargewater.Reviewoffishswimmingperformance, summarized byHocuttandEdinger(1980),indicates thatwatervelocityattheCookPlantintakescreensiscon-siderably lessthanthe"burst"swimmingspeedsofmostpelagicand)uvenilefishfoundinthestudyareaanddoesnotexceedthe"sustained" swimmingspeedforspeciessuchasalewifeandyellowperch.Theyalsoreportedthatalewifedemonstrate acountercurrent orientation instreamsandpreferhighvelocityflow;whereas,yellowperchareinconsistent intheirorientation tocurrent.WetheorizethatattheCookPlantmostfishvoluntarily enterthestructureandthenmaybeunexpectedly subjected tostrongcurrentsoccurring.
atvaryinglocations withinthestructure.
Uponenteringthestructure andsuddenlyencountering thesecurrents, manyfishprobablyretreattoareasofreducedcurrentwithinoroutsidethestructure; thisscenariomayberepeatedmanytimesbeforethefisheventually leavetheareaorareentrapped.
Intakecurrentsinsidethepipesmayapproach1.8m/sec(6ft/sec)duringseven-pump operation,whichwouldbe10bodylengths/sec fora180mmfish.Basedonfishswimmingperformances citedinHocuttandZdinger(1980),thisvalue(10lengths/sec) probablyexceedsthe"burst"swimmingspeedformanyoithespeciesoffishcommonlyimpingedattheCookPlant,particularly smallfish.130I HocuttandEdingernotedthatswimmingperformance isalsorelatedtotherateofvelocityincrease.
Therefore, ifafishunexpectedly encounters astrongintakecurrentinsidetheCookPlantstructure, escapemaybedifficult, particularly ifthefishhasbeendrawnthroughthestructure anddownintotheintakepipe.Iffishcongregated nearthestructures forshelterduringstorms,theincreaseinturbulence couldwelldisorient themormasktheintakecurrentsothatthefishmighthaveincreased difficulty sensingthesuddenincreases inintakecurrentflowinsidethestructure.
Theendresultwouldbethatmorefishwouldbeentrained andimpingedduringstorms,whichwasexactlywhatwasobservedattheCookPlant.Diversnotedplanteffectsthatweretheresultofthesimplephysicalpresenceofthestructures andriprapandsomethatwereafunctionofplantoperation.
Hostoftheseeffectsservedtoenhancelocalpopulation densities oforganisms attracted tothearea.Negativeeffects(e.g.,primarily entrainment andimpingement) appearedtobelimitedmoretoplantoperation thanthephysicalpresenceofthestructures andriprapinthelakeandwereinferredfromotheraspectsoftheCookPlantstudies.Barringalargechangeinthein-lakestructure oftheCookPlantoritsoperation, futurediverobservation ofadditional majororsignificant ecological changesorplantimpactsarenotanticipated.
SUHHARYThephysical,
- chemical, andbiological featuresoftheinshoreenvironment surrounding theCookPlantin-lakeintakeanddischarge structures andriprapdefinedaharshregimeofenvironmental conditions relativetomany.otheraquaticenvironments.
Aspectrumoffloraandfaunaexistedinthis131 environment, buttheabundance and.distribution ofmostorganisms appearedtoberatherstrictlydictatedbytheenvironmental conditions they'ncountered.,
- TheinshoreLakeMichiganenvironment evaluated duringthisunderwater studyappearedrelatively homogeneous, andconsiderable opportunity existedforthemobilelifestagesoffloraandfaunatomigrateandcolonizenewhabitat.Knshoresurfacewavesmayattain4minthestudyareaduringintensestorms,whichcontribute totheharshnatureoftheenvironment.
Effectsofwaves0.5-1.0mcouldbefeltonthebottombydiversatdepthslessthan10m.Lakecurrentswereoccasionally encountered bydivers,buttheireffectsweremaskedinareaswhereplant"generated currentscouldbefelt.Bothuni-directional andeddycurrentsweredetectable throughout thewatercolumnwithin100mofthedischarges; atstationsmorethan300mfromthedischarges, weakplant-generated currentswerenotedoccasionally, butlake~%currentsappearedtopredominate.
Variablecurrentspeedswereencountered attheintakestructures, butdistinctdifferences oftenoccurredatvariouspointsaroundthestructures.
Currentswerestrongest duringseven-pump operation, andpresenceofwarmwaterdrawnintotheshoreward sidesoithestructuressuggestedsomerecircula tionofdischarge water.Thermaleffectsencountered duringdivingincludedseasonallarge-scale changesinwatertemperacure,short-termprocesses, including upwellings, andtemperature stratification withinthewatercolumn.Athinlayerofnaturally warmedwaterwasoccasionally foundatthesurface.Planteffectsincludedpresenceofwarmwaternearthedischarge areaandrecirculation ordischarge water.ThebottomprofileoftheinshoreLake.'1ichigan environment wastypically flatandunbroken.
Sediments werecomposedofcoarse-andfine-grained 132I shiftingsand.Occasional "islands" ofrockorclaysubstrate occurredintheinshoreareaofeasternLakeMichiganbutwereextremely limitedinnumberandarealextent.Theseislandsincludedhabitatandenvironmental conditions'ore dissimilar tothesurrounding areathantothephysicalconditions createdbytheCookPlantin-lakestructures andriprap.Accumulations ofsurficial flocculent materialtypically rangedfrom1to5mmthick.Occasionally, large(10-mdiameter, 1mdeep)depressions con-taining20-40mmoffloewereencountered atreference stations.
Theripraptrappedsedimentalongwithotherinorganic andorganicmaterials.
Matertransparency rangedfromlessthan1mtomorethan6mandwasreducedduringperiodsofinshoreturbulence.
Hightransparency wasusuallyassociated,with extendedperiods(daystoweeks)ofstableweatherandcalmlakeconditions.
Transparency wasoccasionally reducedinthevicinityofthedischarges andatspecificpointsaroundtheintakestructure.
Thesereduc-tionswereattributed todischarge turbulence andwithdrawal ofwaterfromdiscretewatermassesofdiffering turbidity.
Inorganic debrisandorganicdetritusweremorecommonlyobservedintheriprapzonethanatreference stations.
Thiswasbelievedtobeprimarily afunctionoftheincreased trappingactionofthemorerugosesurfaceoftheriprap.Inorganic trashaccumulated asaresultofplantconstruction anditemsdiscarded byfishermen anglingoverthereef.Organicdebriswascomposedprimarily ofterrestrialplantmaterial.
Periphyton colonized thestructures andriprapwithinayearofplacement inthelake.Seasonalgrowthpatternswereclearlyobvious,withalgallength,density,andtaxonomic diversity peakingduringsummermonths.Mostalgaesloughedfromthesubstrate durfngminter.~Cladshorsuasabundantand133 gwassuspected tohaveaffectedtheabundance ofotherorganisms onthe-reef,including attachedorclinginginvertebrates,
- crayfish, and.possibly, snails.Nolong-term patterninlengthorluxuriance ofperiphyton growingonthe,plantstructures orriprapwasidentified.
However,taxonomic diversity andnumberofnewformsrecordedeachyearincreased almostlinearlythroughout rthestudy.The'seobservations documented apatternofcolonization andsuccession thatwastypicalf'rperiphytic algaeandalsoattestedtothelargenumberofrareformspresentinthelake.Attachedtuvertehrates chsetveddurtugthestudytucluded~gdra,bryozoans, andfreshwater sponges.~Hdracolonized thes'tructure andriprapduringitsfirstyearinthelake,asdidbryozoans.
Freshwater spongesappearedtorequireabouttwoyearstocolonizethesubstrate.
Peakabundance oftheseinvertebrates onthereefoccurredfourtosixyearsafterplacement inthelake.Duringthelastseveralyearsofthestudy,abundance of~Hdraandbryozoans
- declined, whilenumbersofspongecoloniescontinued tofluctuate andshowednoparticular patternortrend.Riprapappearedtoprovideamoresuitablesubstrate thandidthemetalstructure, althoughlargematsof~Hdrawereobservedontheinteriorwallsoftheintakepipesandplantforebay.Snailsandcrayfishcolonized theriprapwithinitsfirstyearinthelake.Abundance ofsnails(~Phsa)peakedduringthethirdyearofthereefandthendeclinedrapidly.Nosnailswereobservedduringthelastfouryearsofthestudy.Extinction wasbelievedtohavebeencausedprimarily bychangesinthesurfaceofthesubstrate asitagedandaccumulated
- sediment, bacterial slime,periphyton, andorganicdetritus.
Crayfishabundance peakedoneyearafterthatofsnails.Arapiddeclineinabundance thenoccurred, 134.
butunlikesnails,crayfishcontinued tobeobservedinlownumbersthroughout thedurationofthestudy.Declineincrayfishabundance wasbelievedtoberelatedtochangesonthereefsubstrate surfaceoperating incombination withinitialoverpopulation ofthehabitat.Forbothsnailsandcrayfish, predation oneggs,juveniles, andadultsbyothercrayfishandfishmayhavecontributed tothedeclineinabundance oftheseinvertebrates.
Severalspeciesoffishincluding yellowperch,slimysculpin,andjohnnydarterspawnedonthereefinpreference tothesurrounding sand"bottom area.Spottailshinerswereobservedtospawnoverperiphyton growingontopofanintakestructure.
Alewifeeggswereseeninabundance butwereaboutequallydistributed overriprapandsandsubstrate, indicating thatthisspeciesbroadcasts itseggsatrandomwithoutregardtosubstrate composition.
ObservationoffisheggswaslimitedtoHay-Augus t,andspawningactivityoftheabovespeciesappearedtobeconcentrated inMay-June.
Twenty-two taxa,encompassing 24speciesoffish,wereobservedbydiversVduringthestudyandweregroupedaccording tofrequency ofobservation.
Frequently observedspeciesincludedalewife,yellowperch,sculpins, johnnydarter,andspottailshiner.Allofthesefishwereseenatleastonceduringeveryyearofthestudy.Commonlyobservedspeciesincludedtrout-perch, commoncarp,rainbowsmelt,burbot,andwhitesucker.Thesefishwereseenduringseventonineyearsofthe10-yearstudy.Uncommonly observedspeciesincludedlargemouthbass,laketrout,channelcatfish,blackbullhead, smallmouth bass,andlongnosesucker.Thesefishwereseeninmorethanonebutlessthanhalfofthestudyyears.Speciesthatwererarelyobservedandwereseenduringonlyoneyearincludedemeraldshiner,browntrout,quillback, walleye,unidentified coregonids, andshorthead redhorse.
135 Pelagicfishthatappearedtobeattracted tothein-lakepresenceoroperation of,theplantincludedyellowperchandcommoncarpandpossiblylargemouth bass,smallmouth bass,andwalleye.Pelagicspeciesthatappearedgenerally indifferent tothein-lakepresenceoroperation oftheplantincludedalewife,spottailshiner,trout-perch, rainbowsmelt,laketrout,emeraldshiner,browntrout,andcoregonids.
Demersalfishthatappearedtobeattracted tothein-lakepresenceoroperation oftheplantincludedslimysculpin,burbot,channelcatfish,andblackbullhead.
Demersalfishthatappearedindifferent tothein-lakepresenceoroperation oftheplantincludedjohnnydarter,whitesucker,longnosesucker,quillback, andishorthead redhorse.
Severalgeneralizations relatedtofishbehaviormaybemadebasedonthisstudy.Speciesdiversity andoverallabundance offishwerehigherduringthewarm-water months(June-Augus t)thaninthespringorlatefallandhigheratnightthanduringtheday.Day-active fishincludedyellowperch,commoncarp,andjohnnydarter.Nocturnally activefishincludedsculpinsandburbot.Alewife,spottailshiner,trout-perch, andrainbowsmeltshowednoobviouspatternindielactivity.
Daytimeschooling wasobservedamongadultalewife(500-1,000/school),
yellowperch(10-50/school),
andcommoncarp(5-20/school),
althoughaggregations tendedtobelooseandoftenincludedfishofwidelydiffering sizes.Schooling amongYOYfishwasobservedforalewife,yellowperch,andrainbowsmelt.Forallspeciesthatwereactiveatnight,swimmingwasmoreundirected andslower,andfishweremoreeasilyapproached bydiversthanduringtheday.SchoolsofYOYalewifewereobservedinSeptember andOctoberduringmostyears.SchoolsofYOYyellowperchwereoccasionally seeninAugust.136 Observation oftheseYOYfishcoincided withtheirappearance inshoreatthistimeoftheyearandwasfurtherdocumented infieldandimpingement catches.Fishabundance anddiversity weregreaterintheriprapareathaninthesurrounding areaofsandsubstrate.
Yellowperch,slimysculpins,
)ohnnydarter,burbot,channelcatfish,andblackbullheads wereprobablyattracted totheverticalreliefandprotection thattherugosesubstrate offered.Commoncarpappearedtobeattracted tothewarm-water discharge.
Largemouth bass,smallmouth bass,andwalleyewereseenincloseassociation withthestructures andmayhavebeenattracted totheverticalreliefthattheseobjectspresented.
Alewiveswereseeninabundance inallofthestudyareabutmayhavesoughtshelternearthestructures duringperiodsofinshoreturbulence.
Spottailshiners,rainbowsmelt,andtrout-perch didnotappearattracted orrepelledbythephysicalpresenceofthereefor.operation oftheplant.Excluding theoperational effectsofentrainment andimpingement onfishatvariouslifestages,thephysicalpresenceofthestructures andriprapappearedtoenhancefishpopulations byproviding additional habitatforspawning, feeding,andprotection frompredation andharshinshorelakeconditions.
Theseasonalabundance offishobservedbydiversinthestudyareawasoftendirectlycorrelatedwiththeirspawningactivities.
Thiswastrueforspeciesthatwereattracted totheplantareaforspawningsubstrate (e.g.,yellowperch,sculpins, johnnydarter)orbyanoperat'ional factor(commoncarp),aswellasforspeciesthatappearedindifferent tothepresenceoroperation oftheCookPlant(e.g.,alewife,spottailshiner,rainbowsmelt).Thespatialandtemporalabundance ofLakeMichiganfishfoundinthestudyarea.appearedtobestronglyinfluenced byenvironmental factors137 (substrate conditions, watertemperature, storms,turbulence, ice,dielperiod)actinginconcertwithphysiological needsofthefish(maturation,spawning, feeding,survival, growth)and"presence ofotherlakebiota(predatorsandprey).Ourstudiesalsoindicatedthatthelevelofinfluence thatthesefactorsassertonfishabundance, distribution, andbehaviorchangesasfishpassthroughvariousstagesintheirlifehistoryandphysiological needs.TheCookPlantstructures andriptaphavecreatedhabitatatypicalofthesurrounding environment.
Throughitsphysicalpresenceandmodification ofextantenvironmental conditions actingincombination witheffectsofplantoperation, ithashadadistinctimpactonthelocalecology.Population increases forsomeorganisms, including periphytic algae,attachedandfree-livinginvertebrates, andpelagicanddemersalfish,havebeenachievedthroughtheexpansion ofsubstrate toprovideincreased shelterandamorediversified habitatrelativetothesurrounding environment.
Environmental conditions onthereefhavefavoredthesurvivalandgrowthofindividual, organisms andresultedinlocalpopulation increases.
Fromthestandpoint ofdiverobservations, effectsofthesechangesappearedlimitedalmostexclu"sivelytothereefitselfandhavenotinfluenced theecologyofthe.sur"roundingareatoanynoticeable extent.Presenceoftheriprapservedtoenhancelocalpopulation densities oforganisms attracted tothearea.Theattraction andenhancement oftheseQ'ipopulations mustbebalancedagainsttheirincreased vulnerability tooperational effectsoftheCookPlantandplant-induced mortality.
LVegativeeffects(e.g.,primarily entrainment and.impingement) appearedtobelimitedmoretoplantoperation thanthephysicalpresenceoftheplantstructures and138 riprapinthelakeandwereinferredmorefromothercomponents oftheCookPlantstudiesthanfromdiverobservations.
Barringmajormodifications tothein-lakestructures oroperation oftheCookPlant,futurediverobservation ofadditional largeorsignificant ecological changesorplantimpactsarenotanticipated.
-139 REFERENCES Auer,H.A.(ed.)1982.Identifica tionoflarvalfishesoftheGreatLakesbasinwithemphasisontheLakeMichigandrainage.
.Spec.Publ.No.82-3.GreatLakesFish.Comm.,AnnArbor,Mich.744pp.Ayers,J.C.,D.C.Chandler, G.H.Lauff,C.F.Powers,andE.B.Henson.1958.CurrentsandwatermassesinLakeMichigan.
Publ.No.3.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.169pp.Barres,J.,L.Feldt,W.Chang,andR.Rossmann.
1984.Entrainment ofphyto-planktonattheDonaldC.CookNuclearPlant-1980-1982.
PartXXXII.BentonHarborPowerPlantLimnological Studies.Spec.Rep.Ho.44.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.92pp.plusmicrofiche.
Biener,M.E.1982.Evaluation ofanartificial reefplacedinsoutheasternLakeMichigan:
fishcolonization.M.S.thesis.Mich.StateUniv.,EastLansing,Mich.40pp.Bimber,D.L.,M.Perrone,Jr.,L.S.iVoguchi, andD.J.Jude.1984.Fielddistribution andentrainment offishlarvaeandeggsattheDonaldC.CookNuclearPowerPlant,southeastern LakeMichigan, 1973"1979.
Spec.Rep.iVo.105,GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.320pp.Cornelius, S.D.waterreef.Brown,E.H.,Jr.1968.Populationcharacteristiesandphysicalcondition ofTech.Rep.No.13.GreatLakesFish.Comm.,AnnArbor,Mich.20pp.1984.Macroinvertebrate colonization oftheMuskegonfresh-M.S.thesis..'lich.
StateUniv.,EastLansing,Mich.109pp.Davis,R.A.,andD.F.R.McGeary.1965.Stabilityinthenearshore bottomtopography andsedimentdistribution, southeasternLakeiMichigan.
Pages222-231inProc.8thConf.GreatLakesRes.,GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.DorrIII,J.A.1974.Underwateroperations insoutheastern LakeMichiganneartheDonaldC.CookNuclearPowerPlantduring1973.Pages465-475inE.Seibel,andJ.C.Ayers,eds.Thebiological, chemicalandphysicalchar-acterofLakeMichiganinthevicinityoftheDonaldC.CookiVuclearPlant.Spec.Rep.No.51.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.DorrIII.J.A.1982.Substrate andotherenvironmental factorsinrepro-ductionoftheyellowperch(Percaflavescens).
Ph.D.thesis.Univ.iVich.,AnnArbor,Mich.276pp.DorrIII,J.A.,andD.J.Jude.1980a.SCUBAassessment ofabundance, spa~n-ing,andbehavioroffishesinsoutheastern LakeMichiganneartheDonaldC.CookNuclearPlant,1975-1978.
iVich.Acad.12:345-364.140O DorrIII,J.A.,andD.J.Jude.1980b.Scubaobservations ineasternLakeMichigannearMuskegonHarbor,13-14September 1979.Spec.Rep.No.76.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.15pp.DorrIII,J.A.,andT.J.Miller.1975.Underwater operations insoutheastern LakeMichiganneartheDonaldC.CookNuclearPlantduring1974.PartXXII.BentonHarborPowerPlantLimnological Studies.Spec.Rep.No.44.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.32pp.DorrIII,J.A.,D.V.O'onnor,N.R.Foster,andD.J.Jude.1981a.Sub-strateeconditions andabundance oflaketrouteggsinatraditional spawn-ingareainsoutheastern LakeMichigan.
N.Amer.J.Fish.Mgt.1:165-172.
DorrIII,J.A.,D.J.Jude,G.R.Heufelder, S.A.Klinger,G.E.Noguchi,T.L.Rutecki,andP.J.Schneeberger.
1981b.Preliminary investigation ofspawninghabitatconditions andreproduction oflaketroutineasternLakeMichigannearPortSheldon,Michigan.
Pub.No.MICHU-SG-81-213.
Mich.SeaGrantProg.,Univ.Mich.,AnnArbor,Mich.22pp.ETA.1980.Reportonthecharacteristics ofthermaldischarge fromD.C.CookUnits1&2.Vol.I.Environmental Technical Assessment.
Chicago,Illi-nois.50pp.Hawley,E.F.,andC.W.Judge.1969.Characteristics ofLakeMichiganbot-tomprofilesandsediments fromLakeside, MichigantoGary,Indiana.Pages198-209inProc.12thConf.GreatLakesRes.,Internat.
Assoc.GreatLakesRes.Hocutt,C.H.,and,J.E.Edinger.1980.Fishbehaviorinflowfields.Pages'143-181inC.H.Hocuttetal.,eds..Power Plants:effectsonfishandshellfish behavior.
Acad.Press.NewYork,NewYork.Hough,J.L.1958.GeologyoftheGreatLakes.Univ.Ill.Press.Urbana,ill.313pp.indiana&MichiganPowerCompany.1975.DonaldC.CookNuclearPlantUnit1environmental operatingreport,July1,1975throughDecember31,1975.AmericanElectricPowerServiceCorporation.NewYork,NewYork.Unnum.pp.Indiana&MichiganPowerCompany.1976.DonaldC.CookNuclearPlantUnit1environmental operatingreport,January1,1975throughJune30,1975.AmericanElectricPowerServiceCorporation.NewYork,NewYork.26pp.plusappendices.
Jude,D.J,,andF.J.Tesar.1985.RecentchangesintheforagefishofLakeMichigan.
Can.J.Fish.Aquat.Sci.42:1154-1157.
Jude,D.J.,B.A.Bachen,G.R.Heufelder, H.T.Tin,M.H.Winnell,F.J~Tesar,andJ~A.DorrIII.1978.AdultandJuvenilefish,ichthyoplankton "andbenthos.populations inthevicinityoftheJ.H.CampbellPowerPlant,EasternLakeMichigan, 1977~Spec.-Rep.No.65.GreatLakesRes,Div.,Univ.Mich.,AnnArbor,Mich.639pp.141 Jude,D.J.,F.J.Tesar,J.C.Tomlfnson, T.J.Miller,N.J.Thurber,G.G.Godun,andJ.A.DorrIII.1979.InshoreLakeMichiganfish,populations neartheDonaldC.CookNuclear,PowerPlantduringpreoper-ationalyears-1973,1974.Spec.Rep.No.71.GreetLakesRes.Div.,Univ.ifich.,AnnArbor,Mich.529pp.Jude,D.J.,H.T.Tin,G.R.Heufelder, P.J.Schneeberger, C.P.Madenjian, T.L.Rutecki,P.J.Mansfield, N.A.Auer,andG.E.Noguchi.1981a.Adult,juvenileandlarvalfishpopulations inthevicinityoftheJ.H.CampbellPowerPlant,easternLakeMichigan, 1977-1980.
Spec.Rep.No.86.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.364pp.Jude,D.J.,S.A.Klinger,andM.D.Enk.1981b.Evidenceofnaturalrepro-ductionbyplantedlaketroutinLakeilichigan.
J.GreatLakesRes.7:57-61.pdJude,D.J.,C.P.Madenjian, P.J.Schneeberger, H.T.Tin,P.J.Mansfield, T.L..Rutecki,G.E.Noguchi,and.G.R.:Heufelder.
1982.Adult,juvenileandlarvalfishpopulations inthevicinal.,ty oftheJ.H.CampbellPowerPlant,1981,withspecialreference tbtheeffectiveness ofwedge-wire intakescreensinreducingentrainment an'dimpingement offish.Spec.Rep.No.96.GreatLakes.Res.Div.,Univ.Mi'ch.:,AnnArbor,Mich.516pp.pKnight,C.B.1965.Basicconceptsofecol'ogy.
TheMacmillan Company,NewYork,NewYork.468pp.f.auritsen,D.D.,andofanaturalandMichigan.
Spec.AnnArbor,i'fich.D.S.White.)981.Comparative studiesofthezoobenthos aman-maderockyhabitatontheeasternshoreofLakeRep.No.74.CreatLakesRes.Div.,Univ.Mich.,65pp.Lifton,ft.S.,andJ.F.Storr,1977.Theeffectofenvironmental variables onfishimpingement.
Pages299-311inL.0~Jensen,ed.Proceedfngs oftheFourthNationalWorkshoponEntrainment andImpingement.
Ecological Analysts,Inc.,ifelville, NewYork.hfiller,G.A.1956.Themagicalnumberseven,plusorminustwo:somelimitsonouqcapacityfotprocessing information.
Psych.Rev.63:82-97.
- Mortimer, C.H.1975.Environmental "statusoitheLakeifichigan region.Part1,physicalcharacteristics ofLakefichiganandf.tsresponses toappliedforces.Environ.Cont.Tech.EarthSci.ArgonneNat.Lab,Argonne,Ill.121pp.Noguchi,L.,D.Bimber,H.Tin,P'.Mansfield,.and D.Jude.1985.Fielddis-tribution andentrainment offishlarvaeandeggsattheDonaldC.CookNuclearPowerPlant,southeastern Lakeifichigan, 1980-1982.
Spec.Rep.No.116,GreatLakesRes.Div.,Univ.'lich,AnnArbor,Mi.251pp.Nursall,J.R.1973.Somebehavorial interactions ofthespottailshiner(~Noctoishudsonius),
yellouperch(Perceflevescens),
sndnorrhernptee(Esoxlucius).J.Fish.Res.BoardCan.30:1161-1178.
142 Pennak,R.W.1953.Fresh-water invertebrates oftheUnitedStates.TheRonaldPressCompany,NewYork,NewYork.769pp.Perrone,M.Jr.,P.J.Schneeberger, andD.J.Jude.1983.Distributionoflarvalyellowperch(Percaflavescens) innearshore watersofsoutheastern LakeMichigan.
J.GreatLakesRes.9:517-522.
Prince,E.D.,R.F.Raleigh,andR.V.Corning.1975.Artificial reefsandcentrarchid bass.Pages498-505inR.H.StroudandH.Clepper,eds.Blackbassbiologyandmanagement.
SportFish.inst.,Washington, D.C.Robins,C.R.,R.M.Bailey,C.E.Bond,J.R.Brooker,E.A.Lachner,R.N.Lea,andW.B.Scott.1980.Alistofcommonandscientific namesoffishesfromtheUnitedStatesandCanada.4thed.Spec.Pub.No.12.Amer.Fish.Soc.,Bethesda, Maryland.
174pp.Rossmann, R.(ed.)1986.Southeastern nearshore LakeMichigan:
impactoftheDonaldC.CookNuclearPlant.Publication22.GreatLakesRes.Div.,Univ.Hich.,AnnArbor,Mich.440pp.Rossmann, R.,andE.Seibel.1977.Surficial sedimentredistribution bywaveenergy:element-grain sizerelationships.
J.GreatLakesRes.3:258-262.
- Rossmann, R.,W.Chang,andJ.Barres.1982.Entrainment ofphytoplankton attheDonaldC.CookNuclearPlant-1979.PartXXX.BentonHarborPowerPlantLimnological Studies.Spec.Rep.No.44.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.98pp.Rutecki,T.L.,P.J.Schneeberger, andD.J.Jude.1983.Diverandunderwater television observations offishbehaviorinaGreatLakesCommercial trapnet.J.GreatLakesRes.9:359-364.'utecki,T.L.,J.A.DorrIIE,andD.J.Jude.1985.Preliminary analysisofcolonization,and succession ofselectedalgae,invertebrates, andfishontwoartificia'1 reefsininshoresoutheastern LakeMichigan.
Pages459-489inF..M.D'Etri,ed.Artificial reefs:marineandfreshwater, applications.
Lewi'sPublishers, Enc.,Chelsea,Hich.Schneeberger, P.J.1982.Observationsandmodelingoffishgillingincommercial trapnetpots.M.S~thesis.Univ.Mich.,AnnArbor,Mich.Schneeberger, P.J.,T.L.Rutecki,andD.J.Jude.1982.Gillingintrap-netpotsanduseofcatchdatatopredictlakewhitefish gillingrates.N.Amer.J.Fish.Mgt.2:294-300.
Scott,W.B.,andE.J.Crossman.
1973.FreshwaterfishesofCanada.Bull.184.Fish.Res.Board.Can.,Ottawa,Ont.966pp.143 Seibel,E.,R.E.Jensen,andC.T.Carlson.1974.Surficial sediment.distri butionof'thenearshore watersinsoutheas,tern LakeMichigan..
Pages369-432inE.SeibelandJ.C.-Ayers,eds.-Thebiological,
- chemical, andphysicalcharacter ofLakeMichiganinthevicinityoftheDonaldC.CookNuclearPlant.Spec.Rep;No.51.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.Shaw,E.1975.Schooling fishes.Amer.Sci.66:166-175.Tesar,F.J.,andD.J.Jude.1985.Adultandjuvenilefishpopulations ofinshoresoutheastern LakeMichiganneartheCookNuclearPowerPlantduring1973-82.Spec.Rep.No.106.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.94pp.Tesar,F.J.,D.Einhouse, H.T.Tin,D.L.Bimber,andD.J.Jude.1985.Adultandjuvenilefishpopulations neartheD.C.CookNuclearPowerPlant,southeastern LakeMichigan, duringpreoperational(1973-74) andoperational (1975-79) years.Spec.Rep.No.109.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.341pp.Thurber,N.,andD.J.Jude.1984.Impingement lossesattheD.C.CookNuclearPlantduring1975-1979 withadiscuss1on offactorsresponsible andrelationships tofieldcatches.Spec.Rep.No.104.CreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich.24pp.plus75-pageappendix.
Thurber,N.,andD.J.Jude.1985.Impingement lossesattheD.C.CookNuclearPowerPlantduring1975-1982 withadiscussion offactors'esponsible andpossibleimpactonlocalpopulations.
Spec.Rep.No.115GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mi.158pp.U.S.AtomicEnergyCommission.
1975.Environmental technical specificationsfortheDonaldC.CookNuclearPlantUnits1and2,BerrienCounty,Michigan.
DocketNos.50-315and50-316.DirectorateofLicensing, Washington,D,C.Wells,L.1973.Distribution offishfryinnearshore watersofsouth-easternandeast-central LakeMichigan, May-August 1972.Admin.Rep.GreatLakesFish.Lab.,AnnArbor,Mich.24pp.Wetzel,R.G.1975.Limnology.
W.B.SaundersCompany,Philadelphia, Penn.743pp.Winnell,M.H.1984.Ecologyofthezoobenthos ofsoutheasternLakeMichiganneartheD.C.CookNuclearPowerPlant.Part,5:Malacostraca (Amphipoda, Mysidacea, Isopoda,andDecapoda).
Spec.Rep.No.99.GreatLakesRes.Div.,Univ.Mich.,AnnArbor,Mich,94pp.Winnell,M.H.,andD.J.Jude."1981.Spatialandtemporaldistribution ofbenthicmacroinvertebrates andsediments collected inthevicinityoitheJ.H.CampbellPlant,easternLakeMichigan, 1980.Spec.Rep,No.87.GreatLakesRes.Div.,Univ..'lich.,
AnnArbor,Mich.110pp.]44O:
Appendix1.Summaryofobservations madeduringdivesonriprapsub-stratesurrounding theD.C.CookNuclearPlantintakeanddischarge structures insoutheastern LakeNichigan, 1973-1982.
CategoryNo.ofdives>~PeriheeaiAprHayJunJulAugSepOct197333StruetureRiprapInvertebratesCrayfishSnails~HdsaBryozoans Sponge0therFish4YPJDSSTPSPALBRCCCPESBBLTWSSBSilLBBTLSQBSR3.70.595121050>1,000>2003'3'2.02.511>10026X35650~FishesdRiprapSand(Continued).
SP145 Appendix1;Continued.
'CategoryAprMay.Jun"Jul,Aug~Sep,,Oct.1974lissvivIvNo.,ofdivesl~PerihreevStruetureRiprapInvertebrates3Grayfish.Snailsv~HdraBryozoans Sponge0therFish4YPJDSSTPSPALBRCCCPESBBLTWSSBSMLBBTLSQBSRXCWL~PishesVRiprapSand(Continued).
23303.87.500.51.015300100>10025453960>100250>10035111*111SSSP123.01.350175>100P275726F146O; Appendix1.Continued.
CategoryNo.ofdives1~Perihton~AprMayJunJul19753AugSepOctStruetureRiprapdenvertebrates300.52.513.812.51.012.55.07.54.05.05.01.01.0CrayfishSnails~HdraBryozoans SpongeOther5>1,0003795308928103770Fish4YPJDSSTPSPALBRCCCPBSBBLTWSSBSi1LBBTLSQBSRXCWL~Ftshes~5419>1004>1001>100>1,0006762>10060>1,00013+1*54>133>1281551322'>1,000>1)000>1,000RiprapSand(Continued).AL)SP,YPAL147 Appendixl.:Continued.
CategoryAprMayJunJulAugSepOctNo.ofdives1~PerihreeF33197633331StruetureRiprapInvertebrates3CrayfishSnails~HdraBryozoans Sponge0ther31827>216>382>134521TEXXXX002.511.510.06.35.01.21.21.52.51.00.50.5P1sh4YPJDSSTPSPALBRCCCPESBBLTWSSBSMLBBTLSQBSRXC'WL~FishesF21>119137928111071324ll895912272>1,000>100113598323>243>1,0001081730t'iprapSand(Continued).SP,ALALALALAL148 Appendix1.Continued.
CategoryAprMayJunJulAugSepOctNo.ofdives>~Perihreai3319773332StruetureRiprapdenvertebrates3GrayfishSnails~HdraBryozoans SpongeOtherFish4YPJDSSTPSPALBRCCCPESBBLTWSSBSi'1LBBTLSQBSRXCWL~FishesiRiprapSand(Continued).
0.50.51.51.83.01.50.41.01.01.21.50.3XX743142005021428187132811751'9>1,000116>1,00015133114>102JDPYPJDFYPPALALALAL>225122>125>298>151151149 Appendix1.Continued..
9CategoryAprMayJunJulAugSepOctNo.ofdivesl2331978333~PerihteePStruetureRiprapdenvertebrates30.30.17.510.03.02.01.701.03.58.07.52.52.0CrayfishSnails~HdreBryoaoans Sponge0ther5711il,C11147XXXFfsh4YPJDSSTPSPALBRCCCPESBBLTWSSBSsMLBBTLSQBSRXCWL~FishesdRiprapSand(Continued).
111325~76155.1482>360>1,0002525504SSAL,SPALAl155.8103ll23>100>1,000150 Appendix1.Continued.
CategoryNo.ofdivesl~PerihreaPStruetureRiprapInvertebratesCrayfishSnails~Hdr'aBryozoans Sponge0therFish4YPJDSSTPSPALBRCCCPESBBLTWS,SBSMLBBTLSQBSRXCWL~FishesdAprMayJunJulAugSepOct197933333216XXXX9983123691117059382368>1,000111283327>1,0008411*5300.51.53.06.01.01.00.51.23.05.55.03.02.5RiprapSand(Continued).
YPALAL151 Appendix1.Continued.
- CategoryNo.ofdives>~Periheee2StruetureRiprapdenvertebrates3AprHayJunJulAugSepOct.1980223322002.01.66.51.03.01.81.56.01.01.31.0CrayfishSnails~HdraBryozoans Sponge0ther47XX13105Fish4YPJDSSTPSPALBRCCCPESBBLTWSSBSi!LBBTLSQBSRXC'4L~Fishes~RiprapSand(Continued).
7915253111111477103331382711067154050)10330ALAL26415210srI-h152,
'Appendix1.Continued.
CategoryAprHayJunJulAugSepOctNo.ofdives>~PerihteaP19813233222StruetureRiprapdenvertebrates01.512.57.51.00.80.71.0,2.5'.02.0,1.51.8CrayfishSnails~HdraBryozoans Sponge0ther49XXXPXXXPFfsh4YPJDSSTPSPALBRCCCPESBBLTWSSBSilLBBTLSQBSRXCWL~FishesdRiprapSand(Continued).
>1102>109282189111>1755731460151830ll159>2435411322303111402>1,000153 Appendix1.Continued.
-CategoryNo.ofdivesl~perihreePAprMayJunJulAugSepOct198222332StruetureRiprapInvertebrates3CrayfishSnails~HdreBryozoans SpongeOtherFish4YPJDSSTPSPALBRCCCPESBBLTWSSBSifLBBTLSQBSRXCML~FfsheedRiprapSand00.51.01244>7655841112>17811>1004.0>1317341532112>170>114>1,0001>100+6*154, Totalnumberofstandardseriesdives(usuallythree)madeintheriprapedareasurrounding theplantintakeanddischarge structures.
FromAugust1977toMay1982,divingintheareawasreducedtoonlythoseoccasions whenwaterwasnotbeingdischarged fromoneofthestructures.
DuringJune1982,thetechnical specifications formonitoring werereducedtotwodivespermonthintheintakeareaonly.Length(cm)ofperiphyton ontopofthestructure andonriprapadjacenttothebaseofthestructure asmeasuredbydivers.Numbersofcrayfishandsnailswerecountedbydivers.Valuesshowingthegreaterthan())symbolaretotalswhichincludedopen-ended estimates of100+or1,000+(seeFig.2andMethods).
Presenceofotherinvertebrates wasnoted(X)butanimalswerenotenumerated.
CtmChironomid (midge)larvae,E~Ephemeropterid (mayfly)larvae,M~Msfs,MMotomectid (backsvimmer),
SeeAppendix3forscientific andcommonnames,andabbreviations forfish.*~observedatintakestations.
Denotesobservation ofeggsofthefishspeciesindicated during'tandardseriesdivesonriprapsubstrate orduringdivesatreference stationsnorthandsouthoftheplantinareasofsandsubstrate.mIisssI~~~v.155 Appendix2.DuplIceteobservations aadeduringtransectsul>ssInsoutheasternLakeNlchlgan, AprilthroughOcto-ber,1975-1982.
Observations vereaad<<bytvudiverssvlanlngside-by-side forlo>salongthebaseofthesouthIntakestructure uftheD.C.CuokNuclearplant.FachdiverexaalnedanareaIs>vide.TotalareaofeachtransectvusIos>.OalttedsvlnsareIndicated byanasterisk(*).D"day,Nnight.Invertebrates CroyflshSnaIlsAprND1a*ND5,0*3U,100~JunND8,416,0O,U0,0JulNU19756,3054,01,05,0AugND18,713,82,03,1SepND5>33>l1,20,0OctND14,66,20,00,0FishYellouperchAlevlfeJoin>nydarterSculplnSputtallshlncr4,0+I040+5U,IOU00aA30,0s35,80a~0,0ae6,0150,00,00,00,015,00,02,10,050,210,015,323,05,1716,0O,OU,U8,77,100,7,100 9,47,40,00,00,02,42,00,00,00,07,100,7,100 0,00,04,03,23,00,00,00,00,00,07,100,7,1000,00,04>8I~30,00,0Invertebrates Crayfish3,0SnaIIs0~0FishYeIluvperch2>0A1ev1leU>UJuluu>ydarterU,USoulpin3,1SputtallshinerU,Ul(ulnbuvseeltI>0durbutU,UTruut-perch 0,0U,oU,oU,UU,UU,oI,oU,oU,OU,oU,oIU~6U,o11,42,0l,oI,UU,U0,0I00045000,012,1030,02>0.4>68>44>3178251617230,00,01,0U,ol,o0,0U,U0,0U,UO,Ul,o0,0000~0I,UUU40,230,04,12,00,05,60,00,0O,U0,019763,60,00,00,00,0l,o0,00,00,00,032.415,80,00,00,00,0>100,300,00,0I,o14,11,41,00,00,00,0l,o0,00~00,050,220,0l,o2~180,01,6l,o0,00,00,0l,o0,00,00,00,0l,o0,0U,oU,o0,02,30,00,00,00,00,00,00,00,00,02>40,00,00,00,00,00,00,00,00,0 Appendix2.(Continued).
Invertebrates AprNayNDJunNDJulND1977AugSepOctNDCrayfishSnalielp~85~28~0,00,00,00,013,62,00,00,00,017,355,00,0l,p23,26I,p0,00,09,42,00,00,0aaa*FishYellouperchAleulfeJohnnydarterSculplnRalnbousnelt0,00,00,00,00,00,03,24,22,00,02,60,07,64,6l,p1,0l,p4,70,00,01,12,115,850,254,6l>23,13,00,00,06>30>0l,p0>00,02,00,00,00,00,00,00,01,10,0b,p4,10,01,00,00,00,0l,p0,00,00,00,00,00,00,0********InvertebratesCrayfishSnails*a25**QP0,00,00,010000019780,0*0,01,30,00,00,00,00,00,00,0*0,0*0,0FishYellouperchAleulfcJohnnydarterSculplnSpottallshinerRalnbousacltContinued.*l,p**QP**p0**0P**pp**-0,00>00,00,00,00,02,88,02,530,30I,p1,31,00,0l,p0,00,00,0*0,0*0>0*3,5*l,p*0,0*0,00,00,01,00>01,00,0l,p0,02,20,00,00,00,00,00,00,0l,p0,00,00,00,00,00,00,0*0,0*>1,000,>I,QQQ
- 0,0p*0,0*0,0 Appendix2.(Continued).
lnvertebratesCruyflshAprNDi*NayND3,10,0JunND0,00,0JulND19798,00,0AugND1,00,0ND0,00,0OctN00,03,0PfshYellouperchAleulfeJohnnydsrterSculplnSpottaIIshinerturbotTrout.-perch 6~60,00,00,00,01,00,00,00,00,02,00,00,0U,UO,U0,0I.UO,U0,0U,O0,0U,O5,0O,U5,00,05,00,08,100,01,100,00,0U,O2,00,00,03,00,00,00,06,00,00,00,0)1,000,)I,OOO 0,00,01,010,00,00,00,00,00,00,00,00,02,00,00,00,02,20,00,00,00,00,00,00,01,00,05,00,00,00,01,01,00>00,00,00,00,00,0InvertobrateaCrayfish0,0PishYellouperch0,0AleulfeO,UJuhnny>Isrter0,0Sculpln0,0Spottullslllner0~0Ltalnbuus>>eltO,Uturbot0,0Truut-perch 0,0Contlnued).0,00,00,0U,OU,OU,OU,OU>OU,UI~I0,02,00,00,00,00,01,06'0,00,00,00,0O,U0,00,00,0D,O0,00,02,00,01,3O,U0,00,03,00,0I,O0,01,00,01,00,0U,O0,019803,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,0I,O0>02,10,02,50,00,00,00,00,01,30>00,00,05,00,00,00,00,00,00,00,01,00,00,00,01,00,01,00,02,00,030,200,00,00,00,00,01,02,00,00,00>00,00,00,01,00,00,00,00,00,00,00,00,'00>0 Appendix2.(Concluded).
hprNDNsyNDJunNDJulND1981hugNDSepNDOctNDInvertebrateeCrsyElsh4,01>04;0.0>0>->>.0,00,0I,I0,00,00,00,00,00,00,0PishYellouperchAleullcJolrunydsrterSculplnSpottsI1ehIncrRslnbous>>>eltTrout-perch 0,04,02,020,05,00,01,00,00,00,00,00,00,00,0-8;00,00,02,05,00,00,0:0,00,03,12,00,00,00,0-2>00,02,03.30,06,50,00,00,04,00,00,00>00,00,00,00,0,0,00,05,100,00,00,00,00,00,00,00,00>02,00,0I,o0,00,00,00,00,00,00,00,00,00,00,00>02,00,00,00,00,00,02>l0>00,00,00,00,00>00,00,00,00,00,00,00,00,00,00,00,0=0>00,0PishYellouperchAleulEcSculplnSpottnllshiner0,00,00,00,00,0'>00>00>02,05,00,00,00,00,00,00,00>02,530,301,00,01,00,01982*s**********1*******s***s***
Appendix3.Scientific name,commonname,andabbrevia-tions.
forspeciesoffishobservedbydiversinsoutheastern, Lake.MichiganneartheD..C.CookNuclearPlant,.1973-1982.
Nameswere'assigned according to.Robinsetal.(1980).Scientific nameCommonnameAbbreviation~Carfades~cronus(Lesueur)
Catostomuscatostomus(Forster)Catostomuscommersoni (Lacepede)
~coreonusspp.lCottusspp.2Cg>rinus~carioLinnaeusEtheostoma nflfrumRaffnesque Ictalurus melas(Rafinesque) ictalurusEunctatus(Rafinesque)
Lotaiota(Linnaeus) t'loxostomamacroleidoturn(Lesueur)
~Retroisatherinoides Rafinesque
~Retroishudson(us (Clinton)
Osmerusmordax(t'litchill)Percaflavescens (lfitchill)SalmotruttaLinnaeusEolvelinus
~nametush(Walbaum)
Stizostedionvitreumvitreum(Nitchill)alewifequillback longnosesuckerwhitesucker.unident.coregonid unident.cottidcommoncarp)ohnnydarterblackbullheadchannelcatfishburbotsmallmouth basslargemouth bassshorthead redhorseemeraldshinerspottailshinerrainbowsmeltyellowperchtrout-perchbrowntroutlaketroutwalleyeALQLLSXCSSCPJDBBCCSBLBSRSPSilYPTPLTHayincludeboth~CoreonusartediiLesueur(lakeherringorcisco)and~Coreonus~hoi(Gill)(bloater) becausediverscouldnocdistinguishbetweenthesespecieswhileunderwater,:(ayincludebothCottusco"natusRichardson (slimysculpin)andCottusbairdiGirard(mottledsculpin)becausediverscouldnotdistinguish betweenthesespecieswhileunderwater.
160 Appendix1.7~E-forRelatedtotheDonaldC.CookNuclearPowerPlantSpecialReportNo.119GreatLakesResearchDivisionUniversity ofMichigan THEU>'IVERSITY OFMICHIGAN.iN Interactive DataBaseManagement SystemforEcological StudiesRelatedtotheDonaldC.CookNuclearPowerPlantWILLIAMY.B.CHANGanclMARYAMS.SHAHRARAY SpecialReportNo.119oftheGreatLakesResearchDivision9, Interactive DataBaseManagement SystemforEcological StudiesRelatedtotheDonaldC.CookNuclearPowerPlantbyWilliamY.B.ChangandMaryamS.Shahraray UnderContractWithAmericanElectricPowerServiceCorporation Indiana6MichiganElectricCompanySpecialReportNo.119oftheGreatLakesResearchDivisionGreatLakesandMarineWatersCenterTheUniversity ofMichigan2200Bonisteel Blvd.AnnArbor,MI481091986 ACKNOWLEDGMENTS 8Wewouldliketoacknowledge thecooperation andassistance obtainedfromallthePrincipal Investigators oftheD.CCookNuclearPowerPlantwaterqualitystudiesduringvariousphasesofthispro)ect,andareparticularly indebtedtoDr.RonaldRossmannforhiscontinuous supportandinsightful com-mentaries duringthecourseofthisprospectandforhiscriticalreviewofthisdocument.
Assistance renderedbyMichaelWinnell,JamesBarres,andDavidBimberisgratefully acknowledged.
WethankDrs.JamesBowerandDavidJ.Judeforreviewing thisdocumentandforproviding valuable.suggestions.
TABLEOFCONTENTSACKNOWLEDGMENTS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~PaeLISTOFTABLES..ooooo.o......o..
~oa~osoooooo...oo.o.oo.ooooooooooo.woo viLISTOFFIGURES~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~viiINTRODUCTION~~~~~~~~~~~~~~~e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Chapter1.DATABASEMANAGEMENT SYSTEMSAdvantages ofUsingaDBMSDataBaseDesignTypesofComputerDataBaseModelsHierarchical ModelNetworkModelRelational DataModelAvailability ofDBMLanguageUtili,zed FileOrganization AccessMethodandLevelofCriteriaforSelecting
'aDBMS~~1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Sy~~~~~~~~~~~~~~ers~~~~~~~~~~~~~~~~stemUs~~~~~~~~~~~~~~~~~~~~~~~~55677891011111112Chapter2.DBMSSUPPORTED BYMTS~.o..o.......oo...o..o.
MichiganTerminalSystem....................
DBMSonMTSSupported bytheComputing CenterTaxirSPIRES~~~~~~~~~~~~~~~~~~~~~~o'~~~~~OtherDBMSMICRO~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~MIDASandOSIRISADBMS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ARCHoMODEL
~~~~~~~~~~~~~~~~~~~~~~~~~Relational Management System(RIM)CriteriaforaSuitableSelf-oriented DBMSJustification forSelection ofTaxir~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4~~~~~~~~~~~~~~~~~~~~~~~~~~13131414151616171717181818Chapter3.TAXIRORGANIZATION TaxirDataBaseFlat-File DataModelFlat-File NatureofTaxirDataBankDesignoftheDataBankTypeofDataSupported byTaxirRunningTaxirDataEntryandDataCompression Retrieving DataandBooleanExpressions Displaying DatainTaxir~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~20202121222223232426(continued)
Chapter4.TABLEOPCONTENTS(continued)
~~~~~~~~~~~~~~~~~~~~~PROGRAMMING PROCEDURES FORESTABLISHING THECOOK.'DATA, BASE.Description oftheCookDataBaseGeneralProcedures
....-.......
.......'~~~~,~~~~~'~LakePhytoplankton
.~~~...~..~~.....~~~.~......~.~.~~.Phytoplankton DataPilesandtheReformatProgramsTaxirCreateProgram.............................
AddedParameters DataTapeandTaxirTableAnExampleforPreparing thePhytoplankton ComputerDataBaseEntrained Phytoplankton OriginalDataandReformatProgram...............
TaxirCreateProgramforEntrained Phytoplankton..
AddedParameters
......"."...........
.~DataTape.~.~...~..~~.~~..~...~..~~......~~.~.~.LakeZooplankton
...~~....~~~~~~~~~.~.~~~.~~~~~~~~~~~~~~~Lake.Zooplankton DataBankDataTapeEntrained Zooplankton Entrained.
Zooplankton DataBank~~~~~~~~~~~~~~~~~~LakeBenthosLake.BenthosDataBank."......ReformatPrograms~~~~~~~~~~~~~~~~~~~~~~~~~~~~~TaxirCreateProgram"."....~...........
Entrained BenthosEntrained.
BenthosDataBank......................
ReformatProgram~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~TaxirCreateProgram.......ImpingedBenthosImpinged.
BenthosDataBankReformatProgram..............................
TaxirCreateProgram............................
SummaryStatistics forAdultLakeandImpingedPishAdult.Pish.Summary.Statistics DataBank..........
Field-caught andImpingedPishReformatProgram~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~TaxirCreateProgram"".".".".".'"..."Peld1A~ieldoLarvalPishe~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ReformatPrograms~~~~~~~~~~~~~~~~~~~~~~~~~~~~~TaxirCreateProgram........-..-..............
Entrainment:
LarvalPishReformerProgram~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~TaxirCreateProgram..........................
NutrientandAnion.....................................
TaxirCreateProgram.....................
~..~~~~~LakeWaterChemistry TaxirCreateProgram.............................
SedimentTextureandChemistry TaxirCreateProgram........-~~~~~~~~~~~~~~Pae~2727,282931323838424446484852535557596162646671737576767981828285878992949699103105107107111113115116119120'continued) iv TABLEOFCONTENTS(concluded)
Chapter5.INTERACTIVE PROGRAM~~~~~~~~~~~~~~~~~~~~~~~ProgramINTERACT~~~~~~~~~~~~~~~~~~~~t~~~~~Interface WithTaxirUsingINTERACTProgramLINK..............................
Procedures forOperating INTERACTandLINKUnitAssignments forProgramsINTERACTand~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\~~~~~LINK~~~~~~~~t~~~~Pae123123124149150152Chapter6.DISCUSSION 154BIBLIOGRAPHY............................o.o.e.......o.o...........woo...
157 NuebecLISTOFTABLES~Pae14.14.24.34.44'4.64.74.84.94.104.114.124.134.144.154.164.174.184.194.204.214.224.234.244.254.264.274.284.294.304.314.324.334.344.354.364.374.384.394.404.414.424.434.444.455.15.25.3SummaryOf,dcL'taSets,'~~~~~~~~~~~~~,~~~~~~~~,~~~~~~~~~~~~~~~~~~~~,~~Thenumberofdataitems.inLake.Phytoplankton*data:bank ProgramREFORfAT1oo.e..oee~.oo.~o~.o.eo..e~..o~o...o..o..o.~oo~o.ProgramREFORMAT2 ooeeo.o..
~~ooo..~o.ohio...o
~~o~~~o..o.o.~o~oo..~.oProgrcgLREFORMAT3
"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~e~~~~~~~~~~~ProgramREFORMAT4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~ProgramPLTAXIRCR
.".~"~~...~~"~~"~~~~~~~~....................
P1OgramREDUNDANCY
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~ProgramPREDUNDANCY
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Anexampleofgenerating tablesusingTaxirprogram...ThenumberofdataitemsinEntrained.Phytoplankton databank....ProgramEREFORMAT
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~ProgamPETAXIRCR
~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ProgramORGANTABLE
~~~~~~~~~~~~~~~~~~e~~~~~~~~~~~~~~~~~~~~~~~~~~~~ThenumberofdataitemsinLake.Zooplankton databank...........
ProgramZLTAXIRCR
~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~e~~~~~~~~~~~~ThenumberofdataitemsinEntrained.
Zooplankton databank"....ThenumberofdataitemsinLake.Benthosdatabank...............
ProgamBLARRAN1.o..eoooooo...ooeo~.o.oo.oo~o~o.o~o~o.o.o~.o.~.oo.ProgramBLARELAN2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ProgramBLTAXIRCR ThenumberofdataitemsinEntrained.
Benthosdatabank..........
ProgramBUSESe.o.oooo.
~~~~~oooeoo~o.eocene'
~.oeo.o.ooooo
~~oeo.eeveeec'\A'LTProgramBETAXIRCR
~.~~...............................
~...~~~~~~...ThenumberofdataitemsinImpinged.
Benthosdatabank.ProgramBIAESAN~~~~~~~~~e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ProgramBITAXIRCR
~~~~~~~~~~~~~~~~~~~~e~~~~~~~~~~~~~~~~~~~~~~~~~~~ThenumberofdataitemsinAdult.Fish.Summary.Statistics databankProgramAFSSTAXIRCR
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ThenumberofdataitemsinLake.Adult.FishdatabankThenumberofdataitemsintheImpinged-Adult.
Fishdatabank.....
ProgramCHNGFRMTeee~~~~~~~~~~~~~~~~~~~~o~~o~e~~~~oe~~~o~~~e~~ooooP1'OgramAFTAXIRCR
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~e~~~ThenumberofdataitemsinLake.LarvaedatabankProgramLLARVARR...~...~...~....~..~~~.....~....~.~~...~~..~.....ProgramMERGE~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~ProgramFLTAXIRCR
...........................................
ThenumberofdataitemsstoredintheEntrained.
LarvaedataProgramELARVARR~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ProgramELTAXIRCR
~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~e~ThenumberofdataitemsstoredintheNutrients databank.......ProgramNUTTAXIRCR
~oooo~ooo.o.o~~~~~~.o~.~o~ooo~ooe~oooo.o.o.oooo ThenumberofdataitemsintheLakewater databank.............
ProgramTAXSOURCENAT.
~.~~~~~~..~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~ThenumberofdataitemsintheSedimentdatabankP1ogramTAXSOURCESEDo
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ProgramINTERACT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~FileHELP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ProgramLINK~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'2303334353637394041454749505458606367697274777880838486889091939597100102104106108110112114116117120121125141144~~~~~bank.vi LISTOFFIGURESNumber5.1~PaeFlow-chart representation ofstagesinvolvedinoperations ofINTERACTandLINK~~~~~~~~~~~~.~~~~~~.~~~~~...151 lPICl,PI INTRODUCTION Ecological studiesrelatedtotheDonaldC.CookNuclearPlantareunique.Theydifferfrommostenvironmental impactresearchintheextentoftheircoverageandthegreatlengthoftheresearchperiod.Thisinvestigation in-eludedstudiesofbacteria, phytoplankton ecology,zooplankton ecology,benthicmacroinvertebrate populations, fisheries, waterchemistry, andphysicallimnol-ogy(winds,currents, ice,sediments).
Thisstudycanserveasavaluableexampleforfutureenvironmental monitoring andisagreatsourceofinformation fortheenhancement ofourunderstanding ofthelong-term dynamicsinthenear-shoreregionofalargelake.Accumulated datacanbeusedforfuturepowerplantsiteplanningandsitingontheGreatLakescoastline.
Thedatabasewasbegunin1970andhassincegrownrapidlyinsize.Althoughdataarchiving hasbeenmqintained continuously byeachsection,theIarchivedinformation.
doesnotinterface easilyandcannotbeusedreadilybyapersonwithoutcomputertraining.
Purthermore, duetotherapidexpansion ofthedatabase,fewindividuals canmaintaincompleteawareness ofallavailable dataandutilizepertinent information whenanalyzing aproblem.Theresultisinefficiency inreportwritinganddata'nterpretation.
Toimprovethissitua-tion,apro)ecttodeviseaninteractive databasemanagement systemwasinitiated.
Thisdatasystemcanimproveefficiency indataretrieval andCstorageandhouseinoneplaceallinformation fromthestudiesrelatedtotheD.C.CookNuclearPowerPlant.Thelatterprovidesasafeguard foraccesstoIthesedatabyotherinterested personsfortheirresearchonGreatLakesecosystems afterthecompletion ofthepro'feet.
Thisdatabaseencompasses 13individual studies.andis'ummarized inTable1.Thetotalincludesmorethan TABLE1.Summaryofdatasets,OSub-project Phytoplankton Zooplankton BenthosField-caught PishLarvalPishNutrientandAnionLakeWaterChemistry Sediments SampleTypeLakeSamplesEntrainment SamplesLakeSamplesEntrainment SamplesLakeSamplesEntrainment SamplesImpingement SamplesSummaryStatistics LakeSamplesImpingement SamplesLakeSamplesEntrainment SamplesEntrainment andLakeSamplesLakeSamplesLakeSamplesYearsArchived1970-1982 1975-1982 1970-1982 1975-1982 1970-1982 1975-1982 1975-1981 1973-1982
'973-].982 1973-1982 1973-1982 1975-1982 1974-1982 1973-1982 1973-1977 O-one-halfmillioncasesofbiological,
- chemical, andphysicalinformation onthenearshore ofsoutheastern LakeMichigan.
Thedatabasemanagement programusedisTaxir,whichisaninformation storageandretrieval programandhasgeneralpurposefeaturesforkeepingtrackoflargeorganized datasets.Thecapability andbenefitsofsuchasystemextendfarbeyondthisandincludethefollowing items:l.Itoffersacentralized datasourceandcanbecontrolled andmonitored effectively 2.Itallowsformultipleusers'.Itreducesthedataredundancy andincreases efficiency indataretrieval andstorage.4.Itcanenhancedataintegrity, consistency, andaccuracyandcanprovidesecuritywhilegreatlyreducingeffortsneededforgenerating reportsandtables.Forthisstudy,ageneralprocedure wasfollowed.
Thefirststepwastoreorganize "rawdata"inaformcompatible withtheTaxirdataprogram.Commentswerethensolicited fromeachsub-project leaderwithrespecttotheappropriateness andadequacyoftheinformation.
Ifimportant parameters shouldbeincludedbutwerenotyetincludedinthedatabase,effortsweremadetoincorporate suchinformation.
Dataverification wasthenperformed, anderrorswerecorrected
.Becauseitwasourintentthatthedatabasebeaccessible toallinterested persons,aninteractive userprogramwaswrittenwhichwasdesignedtoimproveuseraccessandeaseofoperation'his reportdocuments indetailtheprocedures usedandtheprogramswrit-tenforestablishing thedatabasemanagement systemfortheD.C.Cookecologi-cal'tudyanddescribes thedata=-contained inthedatabase'swellastheways inwhichthesedatacanbeaccessed.
Anoverviewof.eachchapterisgiven,.below.Chapter1isareviewofDataBaseManagement Systems(DBMS)andtheir.importance inscientific z'esearch, aswellastheelementsthatneedtobeconsidered whenselecting aDBMSprogram.Chapter2isanintroduction toavailable (DBMS)pz'ograms fromtheMichiganTerminalSystem{MTS)ofTheUniversity ofMichiganalongwiththecharacter-isticsofeachDBMSprogram.Comparisons betweenthesesystemsaremade.ThereasonsforchoosingtheTaxirprogramforthistaskarediscussed.
Chapter3isanintroduction todataorganization andhowTaxirhandlesdatastructure.
Italsodescribes ma)ortermsandnotations usedinassociation withtheestablishment ofthedatabase.Chapter4isadescription oftheprocedures andtheflowdiagramforestablishing adatabaseforeachsub-pro5ect.
Detailsaregivenregarding thestructures ofdifferent datasets,whichincludeformats,parameters, ranges,softwareprogz'ams, andmethods.Allpz'ocedures andsoftwareprogramsusedaredescribed anddocumented.
Explanations ofhowtoaccessthedatasetsarealsogiven.Chapter5includesapresentation oftheInteractive ComputerProgram,9'hichiswritteninFORTRANandcanbeinterfaced withTaxir.Thisprogramisintendedtoimproveuseraccessandcanhelppersonswithlittleexperience inaccessing datawithcomputers.
CHAPTER1DATABASEMANAG~NTSYSTEMSDataBaseManagement Systems(DBMS)isatermthatreferstothecomputertechnology necessary fordatacollection, organization, storage,retrieval, andmanipulation.
Adatabasesystem(DBS)dealswithrecord-keeping andmakingthecomputerfunctionasasuperfilingsystem.ADataManagement System(DMS)workswiththesmallestunitofdata,whichisusuallycalledadataitem.Acollection ofitemsiscalledarecord,andanorganized collection ofrecordsconstitutes afile.Theoccurrences oftherecordsinafileareassociated bymeansofaspecified relationship.
Thegenerally-accepted requirements foraDBMSincludethecapability tocreate,revise,add,anddeleterecordsfromafile;retrieverecords;sort;performlimitedcomputations; andgeneratereports.ADVANTAGES OFUSINGADBMSTheadvantages ofworkingwithaDBMSratherthananon-computer filingIsystemarethatthedatacanbeaccessedinagreatervarietyofways,searchedquickly,andchangedmoreeasily;andauxiliary programscanbeappliedtothedataintheDBMStoproducereports,copiesofthedata,andotheroutputs.In,non-computer filingsystems,suchoutputsusuallymustbeproducedmanually, aprocesswhichistime-consuming, sub)ecttotranscribing errors,andineffi-cient.5e Theadvantages ofDataBase(DB)technology inareasotherthandatafiling,caninclude::-dataindependence,
-datashareability,
-non-redundancy ofstoreddata,-reliability,
-integrity,
-accessflexibility,
-security,
~i'-efficient performance (especially inviewoflarge"size files),and"-greateradministrative control.IITheseadvantages areessential fordeveloping andsupporting moderninte-gratedinformation systems,whichbringtogetheravarietyofdataandinter.relateitforavarietyofusers,notgustforoneorforaLimitedfew.Theabilitytoshareorusethesedataalsominimizes theamountofredundant
'istorage.DATABASEDESIGNDatabasedesignisthemostimportant attribute ofadatabasemanagement systemandshowshowthedataitemsareclassified andinterrelated.
Indesign-ingnon-computer filingsystems,anoffice-clerical typically inventsanumber.offilingcategories anddecideswhichfilesareinwhichcategories andwhatkindsofthingsaresortedineachfile~Thesamedesigndecisions mustbemadewhencomputersystemsanalystssetupdatabases-TYPESOFCOMPUTERDATABASEMODELSTechnically, databasedesignscanbegroupedaccording totheirlogicalcharacteristics.
Onedatabasedesignmayhavemanyfilecategories withfileswithineachcategory, anothermayalloweachfiletobelongtoseveralcate-goriesatonce,andsoon.EachDBMShascertaincapabilities andrestrictions regarding thedatabasedesignsthatitwillsupport.Thesetofrulesthatdetermines whichdatabasedesignsagivenDBMScansupportiscalledthe"datamodel"oftheDBMS.Theterm"datamodel"isusedbecausethedatabasedesignrulesforeachDBMSconstitute asetofassumptions abouthowafilingsystemgenerally behaves'ecause mostdatabasemanagement systemsareexpectedtobegeneral-purposecomputing tools,itisthegoalofmostdatamodelstobeasgeneralandassimpleaspossible.
Therearethreema)orkindsofdatamodelsthatarecommon:hierarchical, network,andrelational.
Ofthese,onlytherelational modelmaintains thelogicalsimplicity ofso-called flatfiles.Abriefdes-criptionofthesemodelsfollows.Hierarchical ModelThehierarchical modelkeepsdatainaformresembling thefollowing out-line.Forexample,supposethereisaneedtokeeprecordsofuniversity stu-dentswhoarebei.ngusedassub)ectsinpsychology experiments.
Ahierarchical systemwouldorganizethedatalikethis:
I.Researcher, AddressExperiment,.Type, A.SubjectTelephone MajorSex:Dr.Know.=-.:MedicalBldg.:Attention
..:John:665-9988
- Computer Science:Hale.O.BoC~II.Researcher Thebasicideaofthehierarchical modelisthatthedataareorganized intogroups(inourexample,researchers) whichhavesubgroups (individual subjectsinthisinstance);
inturn,theycanhavesubgroups, andsoon,totherequireddegreeofcomplexity.
Itisimportant tonotethateachgroupinahierarchical databasemayIhavemanysubgroups, buteachsubgroupisinoneandonlyonegroup.Thisisanexampleofwhatiscalleda"1-N"relationbetweengroupsandsubgroups.
Themajorfailingofthismodelisthatfewdatabasemanagement problemsremainstrictlyhierarchical'or example,ifonepersonservesasasubjectfortwodifferent reseachers, thenthedatawouldnolongerbehaveinastrictlyhierarchical manner.NetworkModelThenetworkmodelcouldbeconsidered anextension ofthehierarchical datamodel.Anetworkdatamodelissimplyamodelthatallowsmoreorlessarbitrarily complexrelationships
~Thus,inourexamplenotonlycantherecordsofoneresearcher berelatedtothoseofmanysubjects, butalsoone subjectrecordcanberelatedtomanyresearcher records.Thisiscalledaman~anrelationship
~Thefollowing relationships canserveasanexample:Researcher Dr.KnowResearcher Dr.BestSubectJohn~Subecr.Mary~SubectBobSubectNancyThebiggestproblemwiththenetworkdatamodelisthatthedatabasecanbecomeexcessively complicated.
Relational DataModelTherelational datamodelisthemostmodernofallthedatamodels.Thisisactuallyanextension oftheflat-file datamodel(seeChapter3).Theflat"file datamodeltreatsdataasasinglecollection ofordereditems,eachwiththesameformat-Forexample,thefollowing flatfilecontainstheinformation aboutthesubjectsinourpreviousexample,~SubectJohnT~elehone665-9988I~tbtotComputerSciencetSexMalewhilethefollowing flatfilekeepstrackof'esearchers:
Researcher DryKnowAddressMedicalBldg.IExerimentTeAttention Thenifweneedtostoretheinformation about-therelationship betweenre-1I'earchers and-subJects, therewillbeanotherflatfile,suchastheo'ebelow:Researcher Dr.KnowI~SubectJohnIDateAssined4/1/82Inordertohaveapractical recordssystemusingtheseflatfiles,wewouldneedsomedatabasemanagement capablenotonlyofstoringthembutalsoofmanipulating themto;,retrieve aadupdatethestoredinformation.
ClThisdatabasemanagement system';would havetoextractandcombineinformation fromtheflatfilesiavarious'ways,buttherelational modelhasaflexibility 4Ms>thattheflat-file datamodelcannotattain.Ingeneral,aaydatabasedesignthatcanberepresented inthehierarchi-calortheaetworkmodelscanalsoberepresented asasetofrelations intherelational model~Whileitistruethattherelational modelisconceptually simple,therestillremainsagooddealofworktomakethatsimplicity avail-abletousersatloweast'VAILABILITY OFDBMThecommercial productsassociated withdatabasesanddatamanagement systemshavechangeddramatically inthelastseveralyears,especially becauseofnewhardwareand"software technologies'n the1970stherewerenomorethantwodozenwidelymarketedDBMSproductlines;todaytherearehu'ndreds.
MaJordatamanagement systemsdifferprimarily inlanguageutilized, fileorganization, andaccessmethodandlevelofsystemusers.t10 LanuaeUtilizedThisdealswiththedifference betweenwhatarecalledself"contained andhost-contained systems.Theformerusuallyprovidealanguagedesignedforthenon-programmers, whereasthelatteraretiedtosuchlanguages asCOBOL,PL/1,ALGOL,andFORTRAN,andareespecially fortheapplication programmers whousetheselanguages.
Self-contained systemsprovidetheirownlanguage, whichisuser-oriented anddesignedtobeusedbymanagersandotherswithmini-malknowledge ofprogramming't isimportant tonotethatself"contained languages areusuallymachinedependent.
Fewsystemscanoperateeffectively onmorethanonetypeofcom-puterequipment.
FileOranization Inexamining datamanagement systems,onemustseparatelogicalandphysi-calfileorganization.
Astudyoflogicalorganization willshowwhetherusertrequirements canbesatisfied
.Astudyofphysicalfileorganization indicates thehandlingprocedures, filemaintenance, retrieval capability, output,andsimilaroperational featuresofthedatamanagement system.AccessMethodandLevelofSstemUsersAdatamanagement systemmakesitpossibleforvarioususerstoworkswithacommondatabasewhenthedatabaseisaninterrelated
.setoforganiza-tionfiles.Threelevelscanbedefinedwithinthesystemusers:l.systems~Desinersdetermine long-range objectives
~2."fiddle~Hanganentoverseesthedailyoperations ofacompany.3.GeneralUsersneedto'avenoknowledge ofprogramming, and/orself-.contained systemlanguage.
11 CRITERIAFORSELECTING ADBMSToooften,decisions ontheselection ofaDBMSarebasedonincomplete andinaccurate factorsthat,canresultinrevisions andcostlylong"range repercussions
~Selection ofaDBMSshouldbedonecarefully inordertoavoidalossoftimeandmoneyinthelongrun.Inselecting adatabasemanagement-system,fourcriteriashouldbeconsidered:
1.suitability oftheDBMStothespecificcharacteristics ofthedatatobehandled,2.simplicity'f thesystemused,3.timeandcostinvolved, and4.futureneeds.AgoodDBMSshouldoffer:')dataindependence, 2)datadictionary todefine'andcontrolthedataenvironment, 3)goodquerylanguagetoallowaccesstotheIdatabase,4)goodreport-generating
- features, and5)asimplehigh-level userlanguage.
Thetimededicated toananalysisandevaluation oftheuser'srequirements andlimitations, aswellastheevaluations oftheassetsandlimitations ofthevariousDBMSavailable, canbethetimem'ostvaluablyspent.Theplanningtime,carefully spent,canmaketheinstallation anduseofaDBMSaprofitable expe-rienceinbothfinancial andmanagerial terms~12 CHAPTER2DBMSSUPPORTED BYMTSMICHIGANTERMI~iSYSTRt~~'heMichiganTerminalSystem(MTS)isaverypowerfuloperating systemsupported bytheUniversity ofMichiganComputing Center.Likemostlargecomputerinstallations, itprohibits directoperation oftheequipment byanyonebutprofessional operators.
Thecomputerisunderthecombinedcontrolofitshumanoperators and'amasterprogramcalledtheoperating system,whichcoordi-natesthejobsofthevarioususersandprovidesthemwithavarietyofauxil-iarycomputing services.
MTSpermitsitsuserstooperateineitherinteractive modeorbatchmode.Ininteractive mode,alargenumberofusersatremoteterminals areabletouseinteractive modeonhisterminalkey-thenextstatement, isthesame,butnoTheusersubmitshisfortheentireoutputthecomputerconcurrently andindependently.
Theuserinusuallytypesamessage(e.g.,command,statement, queiy)boardandsees'responsefromthecomputerbeforetypingwhichmaybeamodification ofthefirstone.Forjobsrunninginbatchmode,theoperating system*~I'ialogue ispossiblebetweentheuserandthecomputer.
entirejobatonce(intheformofacarddeck)andwaitsofthejob.:Batchmodeisusefulwhenthereisnoneedforhuman-computer interaction.
Inbothmodes,theuserappears,fromhisownpointofview,tohavetheentirecomputertohimself.13 DBMSONMTS,'SUPPORTED BYTHECOMPUTING CENTER.Thecomputing centersupportstheTaxirandSPIRESdatabasemanagement systems.Bothsystemsareusedprimarily foracademicapplications, althoughtheyhavebeenappliedtoafewadministrative projects.
TBZK2Taxirisageneralized information storage.andretrieval systemwhichcanbeusedatanycomputerinstallation withintheMTSoperating system.Itiswrittenandsupported bytheUniversity ofMichiganComputing Center.Itisacompletely self-contained systemthatprovidesfacilities fordefining, searching, andmanagingdatabasesthatcanbeimplemented asflat-file databases.Taxiristhesimplestdatabasemanagement systemavailable onMTSatTheUniversity ofMichiganandistheeasiestsystemtolearnanduse.Ingeneral,Taxirisveryinexpensive touse.Itstoresdatainahighlycompressed form,whichreducesthecostofstorage,'anditretrieves dataveryrapidly,therebyreducingcomputerprocessing costs.Taxircanberuninbothinteractive andbatchmode.Itprovidesanumberoffeaturesthatmakeitanattractive databasemanagement systemformanydatabaseapplications.
Ithasasinglehigh-level
- language, somewhatresembling English,thatprovidessimplecommandsfordefining, manipulating,
- updating,
,andqueryingdatabases.Thesystemhasflexiblereport-generation facilities, whichallowuserstoproduceordered,labeled,formatted outputs-Taxirpro-videsaninterface withMIDAS,apowerfulstatistical analysisprogramavailable tocompensate forTaxir'sfewfacilities forstatistical features.
Inaddition, itcanbecalledthroughstandardFORTRAN-calling conventions.
Ingeneral, Taxircanbestbeusedfordatabaseapplications inwhich1)thedataarerepresented inaflat-file structure, 2)theapplication requiresacheap,easy"to-usesystem,3)userswanttosearchonanyfieldorcombination offields,and4)MTSsecurityfacilities aresufficient.
SPIRESTheStanfordPublicInformation Retrieval System(SPIRES)waswrittenatStanfordUniversity.
Itisanon-linegeneral"purpose information andretrieval systemavailable intheMTSoperating systemandsupported bytheComputing CenteratTheUniversity ofMichigan.
Itisacompletely self-contained DBMSthatprovidesextensive facilities fordefining, searching,
- updating, andmanagingdatabases.SPIRESisbasedonthehierarchical datamodel,butitalsoprovidessomenetworkcapabilities (seeChapter1).AlthoughSPIRESisa-general-purpose system,ithasspecialfeaturesforefficiently andconveniently storingandretrieving textorcharacter data.Anyapplication thatrequiresstorageoflengthytextualmaterialisastrongcandidate forSPIRES.Forexample,designers ofbibliographic databaseswouldprobablyfindSPIRESthemostappropriate databasemanagement systemonMTS.OutputformatsandotherspecialSPIRESfeaturescanbeusedtogeneratereports,construct tables,sortdata,anddisplaydatainavarietyofformats.BecauseSPIRESissoflexible, itisalsoverycomplex.Thismeansthatitismorecostlyandoftenmoredifficult tousethantheotherDBMSavailable onMTS-Itistruethatsearching anexistingSPIRESdatabaseisnotdifficult, butdefininganewdatabaseusuallyisnotasimpletask.Someprogramming background isoftenrequiredforabetterunderstanding ofthislanguage.
Ingeneral,oneshouldconsiderSPIRESfordatabaseswhenthedata1)involvelengthytextualmaterials such-ascharacters, orstrings,2)requiremany15 repeating fields,.3)canbestbestoredhierarchically,
.4).areverylargeinnumber,and-5)requireextensive DBM.facilities
~OTHERDBMSOtherunitsatTheUniversity ofMichiganalsosupportsomeDBMSoniITS,whichmaybeusedbyanyonewithacomputing MICRO,MIDAS,OSIRIS,ADBMS,ARCH:MODEL, andAbriefdescription ofeachsystemfollows.centeraccount.ThemajoronesareRelational Management System(RIM).MICRO~~~~ITheMICROinformation management system,which'.operates onlyonMTS,liswrittenandsupported bytheInstitute ofLabo&:and Industrial Relations,
~Plajointinstitute ofTheUniversity ofMichiganand'ayneStateUniversity.
lMICROisaself-contained information, storage,andretrieval system.Itisbasedontherelational datamodel.IMICROpermitsnon-programmers todefine,enter,interrogate, manipulate, I'ndupdateuser-defined collections ofdatainarelatively unstructured andunconstrained environment.
Ithasgeneral"applicability toawidevarietyofeducational, administrative, andresearchdataprocessing activities.
tItscapabilities lieroughlybetweenthoseofTaxirandSPIRES.Itisdesignedtoberuninteractively fromcomputerterminals, butcautionisrequiredwhentryingtorunabatchjob.MICROisverypowerfulintermsoftheprogramming languagebecauseofitsEnglish-like grammer,whichmakes'teasytolearnanduse.Predetermined ltprocedures canbeeasilyexecutedinMICROtodealwithcomplexreporting andretrieval problems.
Ithaslimitedfacilities forcharacter string(text)16:
data.Itcanbeinterfaced toMIDAS(thestatistical packageonMTS)foranystatistical analysis.
MIDASandOSIRISThesearebothstatistical analysispackageswhichprovidesomedataman-agementcapabilities.
MIDASissupported bytheStatistical ResearchLabora-tory.OSIRISissupported bytheSurveyResearchCenteroftheInstitute forSocialResearch.
Theybothworkininteractive andbatchmodes.ADBMSThisisahost"language-dependent DBMSbasedonthenetworkdatamodel.Usersmustwritetheirown"interface" programtouseADBMS.ItiswritteninFORTRANbutcanbecalledfromprogramswritteninFORTRAN,COBOL,andPL/1onMTS.ADBMSisparticularly usefulwhenoneisfacedwithcomplexstructures andwhenaccessandreporting requirements arealgorithmic innature.Italsocanbeusedwithmanydifferent operating systems,andcomputers.
ADBMSiswrittenandsupported byaResearchPro)ectoftheInformation SystemDesignOptimization Society(ISDOS)inthedepartment ofIndustrial andOperations Engineering (IOE),theCollegeofEngineering atTheUniversity ofMichigan.
ARCH:MODEL ARCH:MODEL isaDBMSdesignedforapplications involving geometric model-ing,suchascomputer-aided architectural design.Itissupported bytheArchi-tecturalResearchLaboratory oftheCollegeofArchitecture andUrbanPlanningatTheUniversity ofMichigan.
17 Relational ManaementSstem(RIM)Thisisaself"contained systembasedontherelational model.It'provides featuresforcombining andmanipulating flatfiles-Datacanincluderealandintegervectorsandalsomatrices.
Ithasextensive on-linedocumentation andhelpfacilities.
Itissupported bytheArchitectural ResearchLaboratory butisavailable toallintheUniversity community.
CRITERIAFORASUITABLESELFWRIENTED DBMSInchoosingagoodself-contained high-level
- language, oneshouldconsiderthefollowing properties:
1)Asubstantial numberofprospective usersofthelanguagemustexist;2)Thelanguagemustsolveasubstantial portion"of theproblemsconfronting theintendedusers;3)Itshouldnotbeneedlessly difficult to.learn;4)Itshouldbenaturaltowriteprogramsinthelanguagewhichareeasytounderstand; Cli5)Anylimitation ofthelanguageshouldbeclearly]ustified (e.g~,learningease,processing efficiency, available capacity);
and6)Thelanguageshouldprovidetheuserswithappropriate accesstofacilities foreffective communication withtheenvironment.
JUSTIFICATION FORSELECTION OFTAXIRAftercarefulstudyandcomparison oftheavailable DBMSonMTS,Taxirwaschosenforthisproject.Comparisons weredonemainlybetweenTaxir,SPIRES,andMICRO.Allthreearegeneral-purpose DBMSandaresimpler18 andstrongerthantheothers.AlthoughSPIREShasmanygoodfeatures, runningSPIRESprogramsiscostlyandtimeconsuming.
Furthermore, theadvantage whichSPIREShasindealingwithbibliographic featuresisnotofinteresthere.Becauseofthecomplexity involvedinthedesignofanewSPIRESdatabase,ithasbeenrecommended that,whenpossible, oneshoulduseTaxirorMICROinsteadofSPIRES.Becauseinthisstudydatasetsarerepresented informsofflatfiles,thefinalcomparisons weredonebetweenMICROandTaxir.AlthoughMICROcanworkwithseveraldatasetssimultaneously andhasrathergoodon-linedocumen-tation,Taxirhasthefollowing advantages:
1)Taxiriswritten,supported, andmaintained bytheComputing CenterofTheUniversity ofMichigan; 2)TaxiristhesimplestDBMStolearnanduse',3)ItischeapertorunaTaxirprogram;4)Taxirstoresdatainahighlycompressed form(lessmemoryspaceisneeded);5)Information retrieval isfasterwithTaxir;6)Taxirhasflexiblequeryinganddisplayfeatures; 7)ItispossibletocallTaxirfromaFORTRANprogramforfurtherapplications; and8)Taxircanberunsafelyinbothinteractive andbatchmodes.Theseadvantages determined thechoiceofTaxirfortheDBMSfortheD.C.Cookenvironmental impactstudy.19 CHAPTER3TAXIRORGANIZATION TAXIRDATABASEATaxirdatabankisacollection ofitems,eachofwhichcontainsdatabelonging toinformation categories calleddescriptors containing alltherelevantinformation aboutsomeentitybeingdescribed bythedatabank.Porexample,'aphytoplankton databankwouldcontainoneitemforeachspeciesonthe.'listsEachiteminthatdatabankwouldconsistofseveralpiecesofinformation aboutonepresented species,suchasday,month,year,location, ma]orgr'up',callnumber,andsoon.'tEachdescriptor represents anattribute oftheentitiesbeingdescribed bythedatabank.Forexample,aphytoplankton databankcouldhavethedes-criptorssuchasday,month,year,location, ma)orgroup,cellnumbers,etc.Thatis,eachiteminadatabankisassociated withaseriesofdatavalues(descriptors).
Thereshouldbeonevalueforeachdescriptor.
ThusaTaxirdatabankmaybethought,ofasatwo-dimensional matrixinwhicheachrowcor-'responds toanitemandeachcolumncorresponds toadescriptor.
Thisdataorganization iscalledaflat-file structure (discussed innextsection).
IEveryTaxirdatabankhasthefollowing structure:
Descriptor 1Descriptor 2Descriptor 3.~~~~~~~~~.Descriptor NItem1Item2StatesStatesStatesStatesItemN20 Therangeofvaluesallowedforadescriptor inadatabankiscalledadescriptor state,whichmaybeinteger/real numbersorstringsofcharacters.
Thisconceptisidentical tothatofrangeforaparameter.
Forexample,ifthedescriptor stateforyearsis1971to1973,thenthedescriptor yearcouldhavethestates1971,1972,and1973.PLAT-PILE DATAMODELAswasmentioned inChapter1,therelational modelistheextension oftheflat-file datamodel.Theflat-file datamodelisthesimplestandtheoldestdatamodel.Aflat-file DBMSkeepsdataintheformofaflatfile,(e.g.,mailinglistdatabank)~EachitemintheflatfileiscalledarecordsEachrecordcorresponds toasinglecompleteentryinthefile.Recordsarecomposedofdataelements' dataelementisbasically anirreducible datacomponent
~Eachdataelementhasanameoravalue~Datae'ementsaresometimes calledfields~Everyrecordintheflat-file databasehasthesamenumberofelements, andeachrecordhasdatavaluesthatrepresent oneobjectintherealworld.FLAT-FILE NATUREOFTAXIRDATABANKThewayinwhichTaxirorganizes andmanipulates dataisbasedonasimplenotionofsettheoryusingaflat-file datamodel.Ingeneral,,
iftheinfor"mationcanbestoredasasingleflatfile,thenthe'databasecanbestoredasaTaxirdatabank.IneachTaxirdatabank,eachitemhasoneandonlyonestateforeachdescriptor.
.Thatis,eachiteminaTaxirdatabankcorresponds toarecordinaflat-file database,,each-descriptor corresponds toafield,21 andeachdescriptoz-state, corzesponds toavalue.Furthermore, like,otherflat-f'ileDBMS,'Taxir.does not'allow stzucture fields(i.e.,-descriptors maynotconsistofotherdescriptors);
anditprovidesnodirectaccesstotheitemsinonedatabankbasedoninformation storedinanotherdatabank.DESIGNOFTHEDATABANKBeforeusingTaxir,oneneedstoconsiderthefollowing forthedesignofadatabank:1)Numberofdatabanksneeded2)Item(s)ineachdatabank3)Listofthedescriptors foreachitem4)Listofstatesforeachdescriptor 5)Kind'fqueries(questions) expected6)Natureofinformation flowandworkflow7)Costandtimeinvolved4llInmostcases,planningandtimewillbeneededtodecideuponthesepoints,butitisessential tostudyalltheconstraints inordertodesignandcreateadatabankthatmeetsalltherequirements'YPE OFDATASUPPORTED BYTAXIRAssociated witheachdescriptoz inaTaxirdatabankisadescriptor typewhichspecifies whatdatavaluesmaybeusedasstatesforthatdescriptoz.
Taxirpermitsthreedescziptor types:from-to,order,andname,whichprovidethecapability tostorenumerical (integer/real values),codified(categorical),
andgeneralcharacter-string (wozds)data,respectively.
Taxiralsoprovides22 somefeaturesforhandlingmissingdataforeachofthesedescriptor typesidentified asunknownstates.Thedescriptor typesarespecified bythedesignerofadatabankwhenthedatabankisdefined.ThethingtoconsiderhereisthatTaxirautomatically assignscodenumbersforbothdescriptors andtheirstatestoadatabank.Thusausercanhavethechoiceoftypingeitherthenameofthedescriptors andtheirstatesorthecodesforbothofthemwhencommunicating withTaxir.RUNNINGTAXIRTherearethreewaystouseTaxir:1)asaninteractive systemfroma'erminal; 2)asanon-interactive systeminbatchmode,and3)asasubroutine bycallingitfromauserprogram.Ineachcase,userinputstoTaxirmustbeintheformofTaxirstatements, MTScommands, orinputdata.EachTaxirstate-mentisarequestforTaxirtodosomedataprocessing ortomodifytheTaxirenvironment.
Eachstatement beginswithastatement name,knownasastatement type.Moststatements alsoincludeadditional information, whichfurtherspeci-fieswhattheuserwantsTaxirtodo.Thesystemreadsandexecuteseachstate-mentbeforetreatingthenextstatement.
Therearenofacilities forcondition-al)umps;hence,noprogrambranching orlooping.Inotherwords,theexecution oftheTaxirstatements issequential.
DATAENTRYANDDATACOMPRESSION Taxirprovidesthefollowing dataentrycapabilities:
1)Datacanbeenteredinbatchmodeorininteractive mode.23 2)Datacanbeentered.directlyfrompunch.cards,MTSdiskfiles,orterminals, and,indirectly.
frommagnetictapesandotheravailable machine-readable forms.3)Datatobeenteredcanbeinavarietyofuser-specified fixedorfreeformats.4)Taxirassignsadefaultstateforanymissingvalues.5)Taxirdoessomedatavalidation onalldata.6)Dataareautomatically storedinahighlycompressed form.Thislastcapability ofTaxirisparticularly important insavingmemoryspace.Thecompression processiscompletely automatic andunseenbyTaxiruserswhocannot(neednot)controlit~,RETRIEVING DATAANDBOOLEANEXPRESSIONS Thepowertoretrieveinformation selectively fromadatabankisthepowertonamesubsetsofinterestfromthetotalbank.Forthispurpose,Taxirappliesthelanguageofbooleanalgebra.Abooleanexpression whichdefinesthesubsetofitemsfromthedatabankconsistsofaseriesofoperators andoperands.
Asetofrulesdefineshowtheoperators actontheoperandstoyieldaresult.Theseoperators arecomplement (NOT),intersection (AND),andunion(OR)~24 Theoperandsaresets,asaretheresults.Thefiguresbelowexplaintheseconceptsgraphically:
UAComplement, ifU~allthestudentsintheclassandA~thosevithhats,thenNOTAthosewithouthats(shadedarea).Intersection, ifUallthestudentsintheclassandAAthosewithhatsandBthosewithcoats,thenAANDBthosewithbothhatsandcoats(2)(shadedarea).Union,ifUallthestudentsintheclassandAthosewithhatsandBthosevithcoats,thenAORBthose'ith hatsorcoatsorboth(shadedarea)~25 Taxirbooleanexpressions providesimple,flexiblewaysforusersto*select Nitemsby,specifying simpleorcomplexsearch,criteria.involving any-orall-ofthedescriptors inadatabank.Theretrieving statements enableTaxirusers:to:1)Pindouthowmanyitemsmeetsomeuserspecified
- criteria, priortodisplaying,
- deleting, orupdatingthem.2)Retrieveandimmediately displaysomeuser"specified setofitems.3)Retrieveitemsbasedonthestatesofanydescriptor inadatabank.4)Issuecomplexsearchrequestsinvolving anycombination ofdescriptors.
5)Narrowasearchresultbeforedisplaying orupdatingtheitemsinit.DISPLAYING DATAINTAXIRTaxirdisplayfacilities includefeaturesfor:1)Displaying someorallofthedescriptor-state forselecteditems.2)Displaying datainavarietyofformats.3)Sortingoutputintermsofanydescriptor
~.4)Generating areport,including subtotals andtotals.9(NotethatTaxircaninterface withNIDASforfurtherstatistical computations.)
26 CHAPTER4PROGRAMMING PROCEDURES FORESTABLISHING THECOOKDATABASEDESCRIPTION OFTHECOOKDATABASEaThemethodsusedtoestablish theCookPro)ectdatabaseare,discussed inthischapter.Thisdatabaseincludes15databankswhichareshownbelow:~GazooPhytoplankton Zooplankton BenthosField-Caught FishLarvalFish~DataTeLakeSamplesEntrainment SamplesLakeSamplesEntrainment SamplesLakeSamplesEntrainment SamplesImpingement SamplesSummaryStatistics LakeSamplesImpingement SamplesLakeSamplesEntrainment SamplesNameofDataBank1.Lake.Phytoplankton 2.Entrained.Phytoplankton 3.Lake.Zooplankton 4.Entrained.
Zooplankton 5.Lake.Benthos6.Entrained.
Benthos7.Impinged.
Benthos8.Adult.Fish.Summary.Statistics 9.Lake.Adult.Fish10.Impinged.
Adult.Fish11.Lake.Larvae12.Entrained.
LarvaeNutrientandAnionLakeandEntrainment Samples13.Nutrients LakeWaterLakeSamplesChemistry 14'akewater Sediments LakeSamples15.Sediments Theexplanations forthemethodsusedalongwiththelistsoftheprograms, etheexamples, andotherhelpfulcommentsareprovidedinthesectionswhichfollow.Itishopedthatthisinformation canfacilitate usersinaccessing dataofinterest,-
retrieving theneededinformation, andusingtheprovidedmethodsforestablishing a.similardatabaseinthefuture.27 GENERALPROCEDURES CSToestablish adatabase,usingTaxir,thedatamustbeinflat-file form.Oncetheyareinthatform,aTaxirprogramisusedtoenterthesedatatothecomputerdatabaseprogram.BecausemostoftheCookdatawerenotintheformofflatfiles,PORTRANprogramsverewrittentoreorganize thesedataintotheflat-file forms~Thegeneralprocedures involvedinthisoperation areshowninthefollowing flovchart.OriginalDataSetsDataarealreadyflatfil'esOtherthanflatfiles,FORTBANprogramisusedtoreorganize thedataintoaflatfile.PlatDataFilesTaxir-Create Program:DataBankPoreachdataset,thePORTRANprogramandtheprogramstocreateaTaxirdatabaseforthisdatasetarepresented alongviththeflovchartdiagram.ItisnotedthatthePORTRANprogramsvrittenforthispro)ectareusednotonlytoreformatthedatasetsbutalsoinsomecasestocombinetheparameters ofinterestfromseveraldatasetsintoasingleflatfile.28S, LAKEPHYTOPLANKTON rTheLake.Phytoplankton databankisoneofthelargestdatabankscreatedforthispro)ect.Itcontains13descriptors and90,076items.Thedescriptors andtheircodesarelistedbelo~.1-DAY,2-MONTH3-YEAR4-LOCATION 5-NAME6-TEMPERATURE 7-SPECIES CODES8-MAJORGROUPS9-CELLS10-FRACTION 11-TOTALCELLS12-DIVERSITY 13-REDUNDANCY Themonthlynumberofphytoplankton itemscollected sinceNovember1970islistedinTable4.1.29 TABLE4.1.'Thenumber,ofdataitems.intheLake.Phytoplankton databankfortheD.C.CookPlantdata.CllTotal0YearMonthofItemsYear,MonthTotal0ofItemsYearMonthTotal8ofItems70NOV71APRJULSEPNOV72APRJULOCT73APRJULOCT74APRMAYJUNJULAUGSEPOCT75APRMAYJUNJULAUGSEPOCT(1,179)(988)(10799)(1,589)(985)(1,078)(758)(1,607)(1,621)(1,321)(1,495)(1,628)(513)(498)(1,654)(393)(338)(2,190)(1,727)(393)(685)(1,461)(455)(643)(2,839)76APR(2,105)MAY(735)JUN(545)JUL(1,925)AUG(504)SEP(880)OCT(2,441)77APR(2,405)MAY(602)JUN(598)JUL(1,861)AUG(708)SEP(991)OCT(2,390)NOV(590)78APR(2,432)MAY(852)JUN(989)JUL(2,897)AUG(638)SEP(671)OCT(2,610)NOV(743)79APRMAYJUNJULAUGSEPOCTNOV80APRMAYJUNJULAUGSEPOCTNOV81APRMAY'JUNJULAUGSEPOCTNOV82APRMAY(2,302)(674)(736)(1,516)(690)(491)(2,045)(724)(2,108)(696)(653)(1,919)(850)(725)(2,180)(555)(1,705)(695)(-371)(1,248)(571)(762)(2,080)(655)(1,749)(429)I'l30CS'.
Theflowchartrepresenting thestagesinthecreationoftheLake.Phytoplankton databankisasfollows:OriginalPhytoplankton DataUseReformatProgramFlatDataFilesUseTAXERCreateProgramLAKE.PHYTOPLANKTON AddAdditional Parameters LAKEePHYTOPLANKTON Phtoplankton DataFilesandtheReformatProramsTheoriginalphytoplankton datafilesarestoredinthefiles:RDmonthyear (forexample,RDNOV70)~ThedatabetweenNovember1970andDecember1980aresavedonthetape"Phyto,"the1981and1982datafilescanbefoundonthe"Phyto2"tape~Becausetherearesomedifferences inthedatastructures inthesefiles,especially intheformatsoftheheadlines, different reformatprogramsareneededtohandletheseformsofthedatastructures.
Thefollowing isalistofthenamesofthereformatprogramsfordifferent setsofthedata.31 ReformatProramREFORMAT1 DataSetAllmonthsof1971,1972,1973andMay,.REFORMAT2REFORMAT3REFORMAT4 June,August,September.
in1974.November1970;allmonthsof1975;andApril,May,July,Octoberin1976.April,July,Octoberin1974.-June,August,September in1976;andallmonthsof1977,1978,1979,1980,1981,and1982.ThesereformatprogramsarelistedinTables4.2-4.5.TaxirCreateProramReformatprogramsdiscussed inthelastsectionvereusedtoprovidethephytoplankton dataintheformofflatfiles.TheTaxirCreateprogramPLTAXIRCR wasthenusedtocreatetheLAKE.PHYTOPLAKCZON databank.ThecontentsofthePLTAXIRCR programaregiveninTable4.6.32Cl, TABLE4.2.ProgramREPORHAT1.
CPROGRAMREFORMlTf ISRUHTORfORGAHIZE LAKEPHTTOPLAHKTOH RAWDlTlCFILES.THISPROGRAMIStlSEDFORALLMOHTHSOF1971.19T2,1913;AHDCMAT.JUHE,AUGUST.SEPTEMBER IH19T4.CUHITSISASSIGHEDTOIHPtlTFIt.E.(RlMDlTAfILE).CUHIT6ISASSIGHEDTOOUTPUTFILE,'(REFORMATTED DATlFILf).Ct!HITTISASSIGHEDTOAHOTHEROUTPUTFILEFORTHEVlLUESOFDL6SW'.CCCCCo~0~0~0Ca~0~04~IHITIlLIZE VARIASLES.
CaaaaoaaCLOCICAL01 CObE(8,200)
REALCTS(200)oFRAC(200)ok(
16)CCO~ST-1./*LOC(2.)
CCa~0~4~0CooaaaaaREADTHEHEADLIHES.
Co~0~0~0CREAD{5,100.EN0099)(k(I),I~1,16),IDL,IS'M100FORMAT(16A4,I2,1X,I3)VRITE(7,200)
IOL,ISV200FORI4AT(I2.
1X,I3)CSUM00.NS~1CCo~0~0~0Coaoa~4~READTHEDATlLIHES.Coaa~aa~C5READ(5.300.END010)
(CODE(J,NS),J
~1,9).CTS(NS) 300FORMAT(9A 1,F7.0)IF(CTS(NS).LT.1.)
COTO18CTS(NS)oCTS(NS)/1000.
SUM~SUMoCTS(NS)
~NSaNS01COT05C10DIV00.NSoNS-1C~~0~0~~Co~~~0~~Ca~~~0~~CORRECTTHfFRACTIOHlHDDIVERSITT VlLUES.0015!~1,NSFRAC{I)oCTS(I)/SUMDIV00IV+F RAC(I)~ALOC(FRAC(I
))oCOkSTFRAC(I)~FRAC(I)0100.15CCa~oooa~Ca~0~0~0Ca~0~0~0CWRITETHECORRECTVAt.UfS.C99STOPEND330020I01.NS20VRITE(6,400)
(k(K),K02,9),k(10),
(CODE(J,I),J01.9),
1CTS(I)~FRAC(I),SUM,OIV 400'FORMAT(8A4,6X,A4,2X,9A1,F8.
1.F7',F8.1,F6.2)CCDTO1 TABLE4.3'rogram REZOWAT2..
CPROCRAH'EFORktAT2
'ISRUHTOREORGAHI2f LAKEPHYTOPLAHKTOH RAYOA1'lCFILES.THISPROGRAM/ISUSEDFORHOVEH8ER19TO:.lLLHOHTHSOf19T51CAHDlPRIL.HAY,'ULY.
OCTOSERIH19/6,CUHIT5ISASSICHEDTOIHPUTFILE.(RlVDATlFILE).CUHIT6ISASSICHEDTOOUTPUTFILE,(REFORHlTTED DATlPILE).CUHIT7ISASSICHEDTOAHOTHERCUTPUTFILEFORTHEVlLUESOFDL4SH.CCCCC14~4~4~Co~4~1~4IHITIALIZE VARIABLES Co~4~4~4C'LOCICAI11CODE(9,200)
REALCTS(200)~FRAC(200)eH(
16)CQNST41./ALQC(2.)
CCo~1~1~1Co~1~1~4READTHEHEAOLIHES.
C114~1~4C1READ(5.100,END199)(H(I).I~1.16),IOL~ISV1COFORMAT(16*4ol2o 1Xol2)WRITE(7.2CO)
IDL~IS%200FORMAT(I2,1X,IQ)CCF~(IOL+1,)441.4516/ISM SUM40.NS41CCoooooooCoooo~1~READTHEDlTlLIHES.Coooooo~C5READ(5+2COoEND410)
(CQOE(deNS)odom 9)ACTS(NS)2COFORMAT(SA1eFT.O)
IF(CTS(NS).l.T.
1.)COTD10CTS(NS)oCTS(NS)oCF SUMoSUMoCTS(NS)
NSoNS41CQTD5C10DIV10.NSoNS-1CC144~144Cooooo~4Co~4~44~CCORRECTTHEFRACTIOHAHODIVERSITY VALUES.OO15I~1,NSFRAC(I)oCTS(I)/SUMOIVoOIV4FRAC(I
)4AtOC(FRAC(I)
)oCQNST15FRAC(I)~FRAC(I)1100~C~4~1~1~~1~4~1~~4~41~1VRITETHECORRECTVALUES.OO20I~1,NS20VRITE(6,400)
(H(X),K42,9),H(10),(CODE(d, I),J11,9),
1CTS(I),FRAC(I
),SUM,OIV400FORMAT(8A4 o6XoA4e2Xe9*1oF8~1oFTo2mF8~1oF6.2)CCQTO1C99STOPEND34 TABLE4.4.ProgramREPORHAT3.
~~CPROGRAMREFORMAT3 ISRUHTOREORGAHIZE LlKEPHVTOPLAHKTOH RAVDlTlCFILES.THISPROGRAMISUSEDFORlPRIL,JULY,OCTOBERIH19T4.CUHIT515lSSIGHEDTOIHPUTFILE,(RAVDATAFILE).CUHIT6ISASSIGHEDTOOUTPUTFILE,(REFORMATTED DATAFILE).CUHITTISASSIGHEDTOAHOTHEROUTPUTFILEFORTHEVALUESOFDL8SV.CCCCCo~oo~o~Co~o~o~oIHITIlLIZE VARIABLES.
CoooooooCLDCICALo1 CODE(9.200)
REALCTS(200),
FRAC(200),H(16)
CCONSTo1./ALOD(2,)
CCo~o~o~~Co~o~o~~READTHEHEADLIHES.
Co~o~oooC1READ(5,100.ENDo99)(H(I),I~1,'16),IDL,ISV100fORHAT(16A4,I2,1X,13)VRITE(7.200)
IDL,ISV200FORMAT(I2e 1XeI3)CIF((IDL.EO.O).AND~(ISV.EO.O))CF~1IF((IDL.NE.O).OR.
(ISV.NE.O)
)CF(IDL+1,)41.4516/ISV SUM%0.NSo1CCoooooooCo~o~~~~READTHEDlTlLIHES.~o~o~o~C5READ(5,300.
ENDo10)(CODE(J.NS),Jo1,9),CTS(NS) 300FORMAT(QA1,F7.0)
IF(CTS(NS).LT.
1.)COTO10CTS(NS)~(CTS(kS)/1000.)oCF SUMoSUMoCTS(NS)
NSokSo1COTO5C10DIVRO.NSokS-1CCo~o~o~~Co~o~o~~Co~o~o~oCCORRECTTHEFRACTIOHAHDDIVERSITY VALUES.DO15I~1eNSFRAC(I)oCTS(I)/SUI4DIVoDIVoFRAC(I
)oALOG(FRAC(I)
)~CONSTFRAC(I)oFRAC(I)
~100.15CCoooooo~Coo~~~o~CoooooooCVRITETHECORRECTVlLUES.DO20I~1,NS20VRITE(6,400)
(H(K),Ko2,9),H(10).
(CODE(J,I).Jo1,9).
1CTS(I),FRAC(I),SUMeDIV400FORI4AT(BA4e6XeA4e2XeQA1eFB.1eF7.2eFB
~1eF6.2)CGOTO1CQQSTOPEND35 TABLE4.5.ProgramREFORHAT4.
CPROCRAkfRCFORNAT4 ls'RvHTO-REORCAHIZE LAREpHYTOpLAHftroH RAvDlTlCPILESeTHISPROCRAffISUSEDPORVVHC~AVCVST>>SEPTEHSCR IH19rdtAHDCALLffOHTHSOP19rrel9TSe19T9e19COe19fle1992oCVHIT5I5ASSICHEDTOIHPVTPILC.(RAvDlrlPILE),CVHlrelsASSICHEDrOOvrPVTPILE.(REPOaHATTED DlrlPILE).CVHITTl5ASSICHEDTOAHOTHERCVTPVTPILEf'RTHfVALVESOPDL5SV.CCCCCO<<00001CO~0~1~0IHITIALIEE VARIASLE5.
CO~11000CLOCICAt.~1CODE(Qe200)
REALCTS(2CO)eFRAC(200) oN(15)C55T<<~1e/ALDO(2
'CC<<010000C<<4100~0READTHCHCAOLIHE5e C<<414104CREAD(5,100,EXO<<99)(N(I)I<<1~12),DLSV1COFORMAT(12A4etXo2F4e2)
IDt.<<DLISv<<SvVRITE(7,200)
IDI.~ISV2COFORMAT(I2 1X~I2)CCF~(IDt01.)041.4510/ISV SVMOO.ks<<1CCO<<014~0CO<<0<<44~RCADTHEDA1'ALIHCSoC1411~1~C5READ(5~200eCNO<<10)
(CteDE(4eHS)
~401eS)~CTS(HS)200FORMAT(OA1,FT.O)
IF(CTS(XS).LT.1.)
COTO10CTS(XS)<<CTQXS]OCF SVMOSVM<<CTS(NS)
Ns<<ks<<1CDTO5C10OIV<<OoNS<<NS-1CC<<1110~0CO~10<<~1C<<111~0~CCORRECTTHfPRACTIDHAHDDIVERSITY VALVESoDO15I~1,HSFRAC(I)OCTS(I)/SttNDIV<<OIV<<f RAC(I)<<ALDC(FRAC(I
))<<CONST15FRAC(I)<<f RAC(I)~100eCC<<0~0001COO~4<<~<<ValrfTHECORftfCTVlLVE5,CO<<1~0~4CDO20I~1,NS20VRITE(d.400)
(N(K),t(42,9),N(12),(~E(4
~I)e44'1.9),
1CTS(I)~FRAC(I)~SlfMeDIV400FORMAT(EA4edXeA4e2Xe941eFSo1,FTo2
~FE~1efse2)CCOTO1C90STOPENO36 TABLE4.6.ProgramPLTAXERCR.
RUN~TAXIRCREATELAKE.PHYTOPLANKTON, DAY(FROM1TO31),MONTH(ORDER,JAN,FEB,I4AR,APR,MAY, YEAR(FROM 70TO85)sLOCATION(NAl4E
),NAME(NAME),
TEMPERATURE(FROl4
.1TO40+0),CODE(NAME)
~CROUP(ORDER,C AD,FeCeH+OoPoR AS)~CElLS(FROM
.1TO9999.9),FRAC(FROl4
.01TO100~00)eTOTALCELLS(FROM
.1TO100000.0),
DIVERSITY(FROM
.01TO6.00)~ENTERDATALQCATION<LREFORM, FORDAYc56>,MQNTHc810>,YEARc1213>,LOCATIONc14 25>,NAMEc2730>,TEMPERATUREc39-42>,
CQDEc45-52>,
CROUPc53>,
CELLSc5561>,FRACc6368>,TOTALCELLSc69-76>,
DIVERSITYc79-82>
~SAVESTOPJUNeJUL~AUGoSEPeOCTeNQVeDEC)e MAT~FIXED, 37 AddedParameters CWhentheLake.Phytoplankton databankwasfirstcreated,itcontained 12descriptors butdidnotinclude-redundancy indexes.Itwaslaterfeltthattherewasaneedtoaddsuchindexes;a13thdescriptor calledREDUNDANCY wascreated,anditsvalueswereaddedtothedatabank.Becausethevaluesneededtocalculate redundancy werenotavailable, theywerederivedasfollows:Step1:UseRedundancy program(Table4.7)toassemblethevaluescorres-pondingtothenumbersof'forms,diversities, andtotalcellsfromthephytoplankton tables~Step2:UsePredundancy program(Table4.8)tocomputeredundancy indexesfromthesevaluesassembled fromthephytoplankton tables.Thenewlycreateddescriptor REDUNDANCY wasthenaddedtotheLake.Phyto-planktondatabankbyfirstusingtheTaxirStatement ofDefineMoreDescriptor whichisshownasfollows:DMDREDUNDANCY (FROM0.000to1.0000)Then,Correction Statement wasusedtoenterthevaluesofthedescriptor intothedatabase.Anexampleofthisprocedure isshownlater.DataTaeandTaxirTableThecompleteLake.Phytoplankton databankissavedontapewithvolumenameCOOKandIDCodeCOOK,beginning atfirstposition.
Anexampleof'theuseoftheTaxirprogramtogenerateatableforreportsisshowninTable4.9.38Cll TABLE4.7.ProgramREDUNDANCY.
CPROGRAMREDUHDAHCT PROVIDESTHEVALUESCORRESPOHDlHG TOTHECNUMBERSOFFORMS,DIVERSITIES AHDTOTALCELLSCUHIT5lslHPUTFILE,(PHTTOPLAHKTOH TABLES).CUHIT8lSASSlGHEDTOOUTPUTFlLE.CCCCCaoaaaaaCaaaoaaoIHJTIALIZE VARIABLES.
Ca~oo~a~CLOGICALa4 UNDL/'-'/,UNDL1,TITLE/'Tots'/,T1 LOGICAL1bATE(9).CODE(9).EDUC,TOTAL(9)CCo~~o~~oCoo~o~o~READTHELOOP,Cao~ooooC1READ(5,100,ENDo99)UNDL1100FORMAT(3X,A4
)IF(EDUC(UNDL.UNQL1))
GQTO2GQTO1C2CALLSKIP(0.2,5)
READ(5,101)
DATE,CODE,N,OIV 101FORMAT(2X
~9A1~9X~9A1~55X~I4~34X~F6~2)N1~(No1)/2+5 CALLSKIP(0.N1,5)READ(5,102)T1,TOTAL102FORMAT(101XeA4o4Xe9A1)
IF(EDUC(T1o TITLE))GOTO45CDO5I~1,N1READ(5,102)T1,TOTALIF(EQVC(T1,TITLE))
GOTO4CONTINUECo~~~~~~0~~~o~~~Co~~~~~~CHECKTHEERRORS.CCo~~o~~oCo~~~~~oCooooo~oC4103CWRITETHECORRECTVALVES'RITE(6, 103)DATE,CODE,N,TOTAL.DIV FORMAT(1X,BA1, 1X,BA1,1X,I4,1X,9A1,1X,F6.2)GOTOSTDPENDWRITE(6,104)CODE.DATE 104FORMAT('~~ERROR~~oTOTALNOTFOUNDFORSTATION:',9A1,1X,6'OkDATE:',9A1)STOP9939 TABLE4.8.'rogram PREDUNDANCY; LOQICALo1 DATE(9),CDOE(9)
CCo~o~o~oCoooooooCoooooooC31CCoooooooCooboffoCo~~o~o~CREADTHESTATISTICS, READ(5.1.ENDo4)DATE,CODE.N.A,DIV FORMAT(1X,QA1,1X,RA1,1X,IA,1X,FQ.1,1X,F6.2)COMPUTETHEREDUHOAHCT IHDEZ.Bo2A3.1416doSORT(B)
BoALOQ10(B)
CoA/2.71828 CoAoALOQ10(C)
Oo2o3~1A16o(A/N)DoSORT(O)
OALOQ10(O)
Eo(*/N)/2.71828 E~(A/N)oALOQ10(E)
F~(BoC)Qo(DoE)oN OMAXo(3.3219/A)
~(F-Q)To23~1A16~(A-(N~1.))Uo(A(N1.))/2.7'1828 ToSORT(T)
ToALCQ10(T)
Vo(A-(N-1.
))UoVoALDQ10(U)
UoUoTOMINo(3.3219/A)o(F U)RI~(DMAXOIV)/(OMAX-DMIN)
CCoo~o~~o~ooooooWRITETHEOUTPUT.Co~o~o~oCCPROGRAMPREDUHOAHCT READSIHSTATISTICS OHPPh'TOPLAHXTOH CATCHESCFROMUNIT5,CC>PUTESARECVHOAHCT IHDEZAHDWRITESTHEOUTPUTCTOUNIT8.CCCCCo~o~o~oCo~o~o~oIHITIALIZE VARIABLES.
CoooooooC2CCAVRITE(6,2)
DATE,CODE,RI FORMAT('0',SA1,1X~9A1,'REOUNOANCT
~'.E10.3)STOPEND40 rt~~TABLE4.9~Anexampleofgenerating tablesusingTaxirprogramoRUNiTAXIRGETLAKE.PHYTOPLANKTON 0'IYEARIlfONTHILOCATIONICODEIGROUPICELLS'<<P1>~No.offiatsfnqueryresponse:
161Ho.offteissfndatabank:90078Percentage oft'esponse/total databank:0.59%!<<P1>,('('<<P1,A>,
YEAR<<P4>,
'('<<PS,A>.
NONTH<<P13>,
'('<<P18,A>.
LOCATION<<P22>,
'<<P31,A>,
CODE<<P34>e
'I'<<P44oA>o GROUP<<P4S>o
'!'<<P54oA>I CELLS<<P57>o
'<<P65,A>)
FORITEMSWITHFRAC>50.0i
!YElR'NONTM,'LOCATION
,'CODEGROUPCELLS10'OV71JULSEP72JULOCTIIIII.II73IJULIIIeoeeDc2DC3Dc5HOC.21HOC.SOHDC.51NDC11HOC20SOC.21SDC.SOSDC10SOC24SOC4-0SDC12SDC7-3Dc2Oc4OC5HOC11HDCT2NDCIHDC.S2HDC2-4NDC40SDC.52SDC.53SDCtSDC1-3SDC43SOC4-4HDC1HOC43NDC7-5SDC.52Dc6NDC10HDC11HDC20HDC21HDC40HDC4HOC44HDC7,1NDC73SDC10SDCt-1SDC2-0SDC4-1SDC4-4DC-3,,SOC4-'3OCSPECAACGSPECAAOCSPECAACGSPECAAGLSPECAANESPECAAGLSPECAATAFEHESTFRCROTOHCGSPECAATAFEHESTCHLINHETNEGRlHULCHLINHETNEGRANULCHLINHETCYSTELLlI41FPRCRc"II531~3525.3131.1551.5504.8169.0158.0420~061.'141.9.118.2155.1348.2300.3321.91118.31208.1351.32793.11194.81894.6169.4161.0803.1t26.1216.1125.1181.0572.5121.163'585.239.9104.4460.3834.81400.4ff05.61500.61254.03964.1415.33984.5'758.82919~81'136.389'7.81098.8368.9311.4821.5 AnExampleforPreariathePhtoolankton ComuterDataBaseInordertoaddanev'data'file whichvecall"RDJUN82" anditisredundancy indextotheestablished database,thefolloving procedure isfolloved:
PSIGXXXX(signonMTS)(Password)
&~(Thefolloving statements reformatthedataset.)ARUN*PTNSCARDS~REPOMAT4 SPUNCH~FOR.OB J:ARUNPOR.OBJ5RDJUN826>REPORMJUN82 (To'runtheTaxirprogramtoenterthedataintothedatabank)ARUNMAXIRGETLAZE.PHYTOPLANKTON ENTERDATALOCATION~LREPORM JUN82PORMAT~PIZED,DAY<5&>,SameasinPLTAXIRCR SAVESTOP(Tocomputetheredundancy, index)ARUN*FTNSCARDS+REDUNDANCY SPUNCH~RED.OBJ ARUNRED.OBJ5~PHYTOJUN82 6~RJUN82ARUN*PTNSCARDS'>PREDUNDANCY SPUNCH~PRED.OB JARUNPRED.OBJ5RJUN826PRJUN82(RunTaxirprogramtoenterredundancy indexintothedatabank.)426:
ARUN*TAXIRGETLAKE.PHYTOPLANKTON CORRECTION (REDUNDANCY~*.***)
- MONTH~JUN ANDYEAR~82ANDLOCATION~DC-0*
I(entering redundancy valuesfordifferent locations ofmonthofJune)CORRECTION (REDUNDANCY~*a***)
- MONTH~JUN ANDYEAR~82ANDLOCATION~NDC7-5*
SAVESTOPPSIG$(signoffMTS)43 ENTRAINED PHYTOPLANKTON.
TheEntrained.Phytoplankton databankcontains63,748itemsand21des-criptors.
Thedescriptors arelistedasfollows:1-DAY2WONTH'-YEAR4-LOCATION 5"TIME6-SPECIES CODES7-MAJORGROUPS8-CELLS9-FRACTION 12-REDUNDANCY 13~OROPHYLL A14MHLOROPHYLL B15MHLOROPHYLL C16-PHAEOPHIN 17-CHLOROPHYLL AINCUBATED 18MHLOROPHYLL BLNCUBATED 19MHLOROPHYLL CINCUBATED 20-PHAEOPHIN 10-DIVERSITY 11-TEMPERATURE 21-HOURSINCUBATED Thenumberofdataitemscollected forEntrained.Phytoplankton databankbeginning in1975islistedinTable4.10.44 TABLE4.10.ThenumberofdataitemsinEntrained.Phytoplankton databank.YearMonthTotal8Total8ofItemsYearMonthofItemsYearMonthTotal8ofItems75FEBMARAPRMAYJULAUGSEPOCTNOVDEC76JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC77APRMAYJUNJULAUGSEPOCTNOVDEC460)465)290)237)590)619)534)441)659)604)559)653)687)711)673)723)789)(1,054)(641)(1,017)706)686)678)635)666)557)769)692)563)724)627)559)677)78JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC79JANFEBMARAPRMAYJULAUGSEPOCTNOVDEC(692)(587)(483)(661)(983)(1>023)(1,254)(899)(1,208)(1,408)(871)(991)(1,074)(838)(1,021)(537)(465)(384)(870)(1,033)(1,210)678)(732)808182JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECJANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECJANFEBi~fRRAPRMAY(795)(788)(795)(870)(793)(638)(487)(1,099)(1,259)(1,047)(634)(617)(879)(811)(797)(742)(793)(513)(475)(865)(1,174)(632)(754)(792)(911)(624)(888)(723)(706)45 ThestepsforcreatingtheEntrained.Phytoplankton databankveresimilar.totheonesthatveredescribed fortheLake'.Phytoplankton databank.Theyareshovnasfollovs:RavDataPileReformatProgramFlatDataFileTaxirCreateProgramENTRAINED.
PHYTOPLANKTON AddAdditional Parameters ENTRAXNED.
PHYTOPLANKTON OriinalDataandReformatProramOriginaldataarestoredonthecomputertapeinafilesuchasRDENTXCCK, wherethefirstXXXisacodeformonthandthesecondXXisacodefortheyear(forexample,RDENTAPR82)
~Theentrainment datafilespriorto1980arestoredonatapecalledPHYTO.The1980,1981,and1982datafilescanbefoundonatapecalledPHYT02.TheReformatProgramforentrained phytoplankton iscalledEREFORMT.
Thisprogramisverysimilartothatusedforlakephytoplankton.
AlistingofthisprogramisgiveninTable4.11'645 ITABLE4.11.ProgramEREFOWAT.
LOCICAL01 CODE(9.200)
REALCTS(200)eFRAC(200) eH(13)CONST'./ALOC(24)
CCo~0'00CO~~0~0~READTHEHEADLINES.
CO~0~0~0C1READ(5,100,END 99)(H(I),I~1.13)~DL,SV100FORllAT(13A4, 1'F442)IDLOOLISNoSVVRITE(74200)IDLoISV200FORKAT(I2e1X4I3)CF~(IDL01~)41.4$1C/ISVCSVNOO.NS01CCO~0~0~0300FOC00~0~0~READTHEOATlLINES,CO~0~0~0C5RE0AD(5,300,END 10)(CODE(al,NS),001,9)
CTS(NS),RllAT(QA1,F740)
IF(CTS(NS)
.LT~1.)COTO10CTS(NS)OCTS(NS)OCF SUKOSUNOCTS(NS)
NSONS01COTO5CPROCRANEREFORNAT ISUSEDTOREORCAHIZf EHTRAIHNENT PH1'TOPLANXTOH CRlh'lTAFILES.CVHIT51$ASSICHEDTO1NPVTFILE,(RANOATlFILE),CVHITd1SASS1CHEDTOOVTPVTFILfo(REFORNlTTED OlrlFILE).CVHIrT1SAHOrHEROVrPVrF1LfFORrHEVALVESOFDLAHDSN.CICCCCO~0~0~0CO~0~0~0INITIALIZE VARIABLES.
COO~0~0~CC10DIV00.NSokS1CC00~0~0~CO~00~0~COO~0~0~CCORRECTTHEFRACTIONAHDDIVERSITY VALVES.DO15I01.NSFRAC(I)OCTS(I)/SVN OIVoOIVOFRAC(
I)~ALOC(FRAC(I
))OCONST15FRAC(I)~FRAC(I)~100.CCO~0~0~0COO~~0~0NRTTETHECORRECTVALVES.COO~0~~0CIOD20I~1.NS20VRITE(4,400)
(H(K),K02,9),
(CODE(V,I),001~9)~1CTS(I),FRAC(I),SVM.DIV,H(
12)400FORINT(444,2X,QA\,Fb.
1,FT.2~Fb,1,FC.2~2X,A4)CCOTO1CQQSTOPEND47 TaxirCreateProramforEntrained Phtonlankton Toestablish the'Entrained.Phytoplankton.data bank,aTaxirCreateprogramPETAXIRCR (Table4.12)isuse'd.'his.programusestheentrained phytoplankton datainflat"file formtostoretheminaTaxirdatabankcalledEntrained.Phytoplankton.
CSAddedParameters Additional descriptors wereaddedtotheEntrained.Phytoplankton databank.Thesedescriptors areChlorophyll a,Chlorophyll b,Chlorophyll c,Phaeophin, Chlorophyll aIncubated, Chlorophyll bIncubated, Chlorophyll cIncubated, Phaeophin Incubated, HoursIncubated, andRedundancy Index.ThevaluesforChlorophyll andPhaeophin areobtainedbyusingthecomputerprogramORGAÃZABLE (Table4.13).Thisprogramselectstheparameter information fromthechloro-phyllandphaeophin tables.RunningtheaboveprogramresultsintheoutputIdatafilescorresponding totheseparameters whichareinaformsuchthatTaxir.Statement CORRECTION canbeapplied.Inthisway,theseadditional descriptors arestoredinthealreadyestablished Entrained.Phytoplankton databank.Inordertomergetheadditional descriptors withappropriate casesofentrained phytoplankton, identification codes(IDcodes)ofY~,MONTH,DAY,LOCATION, andTIMEwereused.Becausethespecifictimesofcollection aredifferent ateachsamplingbuttheperiodsbasically correspond tomorning,noon,andeveningperiods,theseperiodswereusedinplaceofactualsamplingtimeforIDcodes.Theseperiodsareshownasfollows:MorningNoonEvening2-8:30a.m.8:30-14:00 p.m.18:00-24:00 p.m.48 TABLE4.12.ProgramPETAXIRCR.
RUNiTAXIRCREATEENTRAINED.PHYTOPLANKTON.
OAY(FROM1TO31),MONTH(ORDER,JAN.FEB,MAR.APR.MAY.JUN.JUL.AUG,SEP
~YEAR(FROM 70TO85),LOCATION(NAME),
TIME(FROM 1TO2400),CODE(NAME).
GROUP(ORDER.C,O,F.G.HoO.P.ReS)o CELLS(FROM
.1TO9999.9),FRAC(FROM
.OlTO100.00),DIVERSITY(FROM
.01TO6.00),TEMPERATURE(FROM 0.0TO100.0)~PENTERDATALOCATION~EREFORM, FORMAT~FIXED, DAYc78>>,MONTHc10-'12>>,YEARc1415>>,LOCATION~18 20>>oTIME<2225>>,CODEc3542>>,GROUPc43>>,
CELLS<4651>>.FRACc5358>>,DIVERSITYc69-72>>,
TEMPERATURE<74 78>>~SAVESTOP49 ALE4.13.ProgramORGANTABLE.
RKALLOCTON,MKANA DEMEANS,14KANC,MKANP INTEGKRl4ONTH,OAY,YKAR.TI14K.HRSINC CCo~0~~~~Co~0~4~~READTHEMEANVALUES,(OHElrlTIME).Co~~0~~~C100RKAO(4.1.END<99)MONTH,DAY.YKAR,TIME.LOCTQN,HRSINC.lIKANAREAD(5.2)
MEANSREAD(So2)
MKANCREAD(7,2) l4EANPANAT(11X.S(I2.
1X).IA,1X,A2,1X,I2,9X~E10.2)RMAT(29XEiowa)1FO2'FOCCeooeoo~CeooooooCo~04~I~Cocoa~ooCCHECKTHETOTlLHOURSOfIHCVBlrIOH FORElCHSAMPLEAHOCOHSTRVCT rlZIRCORRECTIOH STATEHEHTS.
IF(HRSINC.EO.O)
GQTQ10IF((TI14E.CK.200).AND.(TIME.LE.820))
GQTQ20IF((TIME.GT.$
20).ANQ.(TIME.LE.1400))
GQTO20VRITK(da2)
MKANAoMKANBoMKANC+MKANPoHRSINCo YKAR+MCNTHeOAYoLOCTCN FORMAT(1X,'(Irw'F8.4.,1X,'ISED',F8.4,,1X,1'(19~',FS.4,')','(20,F8.4,
')',1X,'(21
~',I2,')',1X,'2>',1I2.'2>'.12.'1~',I2,'4<',A2,'5>1800b5c2400i')
GQTO1COCPROGRAMORGlHrlBLE ISFORREORGAHI2IHG THECHLOROPHYLL*AHO PHAEOPHIH.
CVALVESFROMTHEIRTABLES'HE IHPVTFILESARE:CVHIT4tCHLOROPHYLL, ATABLE.CVHITStCHLOROPln'LL 8TlBLE.CUNIT6:CHLOROPHYLL CTABLE.CUNITTtPHAEOPHYTIH TABLECTHEOUTPUTFILEISUHIT8ttHICHCOHTlIHSTHETlXIRCORRECTIOH CSTATEMEHTS.
LATERBYSETTIHGTHESOURCEFILEEOUlLToTHEOVTPUTCFILETHEUHKHottHCHLOROPHYLL AHOPHAEOPHIH VALVESCAHBEAOOEOToCEHTRlIHEO.PHYTOPLAHKTOH OArlBlHK,CCCCCo~~ooaoCo~~~~4~INITIALIZE VARIABLES.
Co~~4~~4CC204C205C10WRITE(8,4
)MEANAeMEANS~MEANCoMEANPaHRSINCeYEARoMONTHaOATeLOCTCNFOR14AT(1X,
'C(17<',F~.4,')',1X,'(l$>',F8.4,')'.1X,I'19~',F$.4,,'20~',F8.4,,1X~'21<I,I2,1X.'2~',1I2.'2>'.I2.'1~'.I2,'4>',A2~'50200b5+820~')GQTO100IIRITK(do5)
MKANA,MKANB,MEANC 14EANP,HRSINC,YEAR,MQNTH,OAY
~LDCTONFORMAT(1X,
'C(Irs',FS:4,
')',1X,'(l$<',F8.4,,1X.1'19'FS~4e'20~'FS~4~.1X.'21~'12m.1X~'~'12.'2<'.I2,'1~',I2,'4<',A2,'5>$20b5<1400~'GQTO100IF((TIME.GE.2OO).AHo.(TIME.LE.820))
GQro4oIf((TIME.GT.eJO).AHD.(TIME.LE.t400))
GoToSoItRITE(8.6)
MEAHA.MEAHB.MEAHC.MEAHP.HRSIHC.YEAR.MOHTH.OAY.LOCTOH FORltlT(tX.'C(12'.F8.4.')',lX,'(14~'.F8.4~')'.1Z.I'(IS~',F8.4.')'.'(16~'.F'8.4~')'.1Z.'(21~'.12~')',tX.'Si'112.'2',12'd1'.12,'4',A2,'S>1800dSc2400')GoTotOOConttnuect onnextpage.50 TABLE4.13.(Continued).
407C508VRITE(8,7)MEANA,MEANB,MEANC,MEANP,HRSINC.YEAR,MONTH.DAY,LOCTONFORMAT(1X,
'C(13',F8.4.,1X,'14~',F8.4,,,1X,1'(15~'.F8.4.')','(16>'.F8.4,
')'.1X,'(21>',I2.')',1X,'~3~'.112,'2~'.I2.'1~',I2,'4~',A2.'5>20065<830)COTO100VRITE(8')MEANA~MEANB~MEANC~MEANP~HRSINC~YEAR.MONTHeOAY
~LOCTONFORMAT(1X,
'C(13~',F8.4,,1X,'14<',F8.4,
,1X,1'(15~',F8.4,')','(16~',F8.4,')'.1X,'(21~',I2,')',1X,'~3>',1I2,'2',I2,'1'.I2.'4~'.A2.'5>83065<1400')COTO100C89STOPENO51
,Computer
-commands usedinthisprocess,areshown-below:"19'ARUN*FLfSCARDS~ORGAÃZABLE SPUNCH~-LOAD.
ARUN-LOAD4&HLORAXX 5atCHLORBXX 6WHLORCZL 7~PHAXX8~CHLPHAXX RESOURCECHLPHAXX(XXaaYEAR)(4,5,6,7)~INPUT FILES8WUTPUTPILE~DataTaeThecompleteEntrained
.Phytoplankton databankwith21-descriptors issavedonthetapecalledCOOKbeginning atthe2ndposition.
9'29 LAKEZOOPLANKTON TheLake.Zooplankton databankcontains32,113itemsand10descriptors.
Thedescriptors are:1-STATION 2-MONTH3-YEAR4-DEPTH5-TAXON6MOUNT7-PCCOMP8-TAXON9-TEMPERATURE 10-SECCHI DISCThemonthlynumberofdataitemscollected forlakezooplankton beginning inJuly1970islistedinTable4.14.53 TABLE4.14.ThenumberofdataitemsinLake.Zooplankton databank.Total8Total0YearMonthofItemsYearMonthofItemsYearMonthTotal'ofItems70JULSEPNOV71APRJULSEPNOV72APRMAYJUNJULAUGSEPOCTNOV73APRMAYJUNJULAUGSEPOCT74APRMAYJUNJULAUGSEPOCT(459)(508)(461)(189)(464)(603)(402)(421)(90)(104)(353)(121)(116)(393)(115),(417)(134)(167)(566)(173)(171)'582)(389)(223)(247)(511)(307)(307)(606)7576I77I78-APRMAYJUN'ULAUG.SEP.'CT;DEC~APRMAYJUNJULAUGSEPOCT~APRMAYJUNJULAUGSEPOCTNOVDECAPRMAYJUNJULAUGSEPOCTNOV(441)(228)(312)(630)(718)(322)(611)(281)(391)(488)(260)(637)(336)(323)(593)(442)(215)(250)(635)(318)(321)(660)(288)(238)(454)(260)(282)(570)(304)(337)(702)(309)79APRMAYJUNJULAUGSEPOCTNOV80APRMAYJUNJULAUGSEPOCTNOV81APRMAYJUNJULAUGSEPOCTNOV82APRMAY(431)(211)(204)(582)(298)(280)(677)(296)(488)(253)(262)(489)(299)(342)(625)(251)(401)(243)(214)(456)(305)(312)(547)(290)(416)(186)54 Thestepsforconstructing thisdatabankfollowtheflowdiagramshownbelow:SURVEY70-82 lTaxirConversion FlatDataFileErrorCorrections Corrected PlatDataFileTaxirCreateProgramLAKE.ZOOPLANKTON AddedParameters LAKE.ZOOPLANKTON Lake.ZoolanktonDataBankTheLake.Zooplankton databankwasestablished usingthestepslistedabove.Thesestepsarethesameasthosetakenfortheestablishment ofthephytoplankton databank,exceptthatthelengthforeachdescriptor namevasreducedtosixcharacters, whichisthemaximumnumberoflabelingcharacters thatMIDASpermits.Tvodescriptors, TEMPERATURE andSECCHIDISC,werealsoaddedtothisdataset.Theseadditions veremadeusingtheTaxi,rStatement CORRECTION.
Boththestepsforadding.additional parameters andprocedures whichvereusedtocreatetheLake.Zooplankton data.bankareshovnbelow:55 1)ConverttheSURVEY70-,82!
toalinefile.//RUN*TAXIRGETSURVEY70-82!
Q<DATA,SURVEY>ALL*ALL*STOP2)CorrecttheerrorsintheSURVEYdatafilchPEdSURVEY:AQA/FJANUARY;JANbbbb;tI:A8A/F;DECEMBER;DECbbbbb;
- AQA/F'DCWW;DCWbb'A8A
/F;NDC-7-5;NDC 7-5b;:STOP4SOURCEZLTAXIRCR 3)(AddvaluesofSECCHIDISCandTBPEMTURE tothedatabank.CORRECTION (SECCHIDISC~.
~~~)AND(TEMPERATURE
~~~~)56
- MONTH~.~~~ANDYEAR~.a~aANDSTATION~~~.*SAVESTOPZLTAXIRCR ispresented inTable4a15.~DataTaaThefinalversionoftheLake.Zooplankton databankissavedonthetapecalledCOOKatthe3rdposition.
57 TA3LE4.15.ProgramZLTA.'HRCR.
RUNiTAXIRCREATKLlÃK.ZOOPLANMTON, STATION(NAME),
MONTH(ORQER
~afANoFESoMAR
~APR~MAY~JVNo4Jle~AUSeSKP~OCT~NOV~OKC)
~YEAR(FROM 6sTOes),OEPTH(FROM 0TO60),TAXONS(FROM10001TO99999),COUNT(FROM 0TO1CCCCCO),
PCCQMP(FROli O.C0TO100.00),TAXON(NAME),
TEMPERATURK(F'RQM 0.1TD40.0),SECCHIOISC(FROM O.COTQ100.00)~ENTERCATALQCATIQNrSVRVKY
~FORMATaFIXEO~STATIQNc1 dh,MQNTHc10~1dh, YEARc20-21m, OEPTHc2324>,TAXONec2630~,CQUNTc32-3e~.
PCCQMPc40
@SingTAXQNc47d1o,TEMPERATUREc83-66>,
SECCHIOISCcde-93><
SAVESTOP58 ENTRAINED ZOOPLANKTON ITheEntrained.
Zooplankton databankconsistsof19,703itemsand11des-criptors~Thedescriptors arelistedbelow:1-TYPE2WRATE3-MONTH4-DAY5-YEAR6-TIME7-TAXON8-COUNT9-PCCOMPP10-TAXON11-TEMPERATURE Themonthlynumberofdataitemscollected forentrained zooplankton beginning in1975islistedinTable4.16.59 TABLE4.16.'The numberof;dataitems.inEntrained.
Zooplankton databank.9Total8Total8YearMonthofItems,YearMonthofItemsTotal0YearMonthof.Items757677JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECJANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC(30)(149)(118)(126)(121)(166)(204)(218)(222)(203)(182)(142)(153)(101)(101)(109)(156)(258)(312)(509)(192)(189)(184)(173)(33)(187)(160)(138)(175)(436)(598)(312)(290)(174)(164)78JAN'EBMARAPRMAYJUNJULAUGSEPOCTNOVDECJANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC(165)(95)(88)(120)(184)(336)(523)(550)(355)(445)(197)(401)(235)(179)(210)(151)(191)(166)(396)(535)(436)(383)(273)(266)808182JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECJANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECJANFEBAPRMAY(304)(170)(151)(185)(224)(163)(146).(266)(330)(276)(169)(155)(203)(134)(150)(119)(216)(117)(152)(326)(417)(138)(158)(258)(220)(128)(213)(179)(171)I'0O.
Entrained.Zoo lanktonDataBankTheEntrained.
Zooplankton databankcontains11descriptors; thelastofwhich,TEMPERATURE, wasaddedtothisdatabaseafteritwascreatedbytheTaxirprogram.ThefinalversionoftheEntrained.
Zooplankton databankisstoredonthetapeCOOKatthe4thposition.
61 LAKEBENTHOSTheLake.Benthosdatabankhas72,504itemsand16descriptors
~Thedescriptors are:1-YEAR2MONTH3-REGION4-ZONE5-DEPTH6WON+PACT 7-AREA8-STATION 9~0UP10MODE11ILLS12-PRIMSED13-SECSED14-TERTSED15UATSED16-VOLUME Thenumberofdataitemscollected fortheLake.BenthosdatabankisshownbymonthsinTable4.17.62 TABLE4.17.ThenumberofdataitemsinLake.Benthosdatabank.YearMonthTotal8Totalf/ofItemsYearMonthofItemsYearMonthTotal8ofItems707117147117245678910ll73456789107445678910(595)(817)(702)(857)(610)(898)(318)(363)(1,970)(371)(294)(1,996)(335)(1,774)(222)(440)(3,074)(448)(486)(2,173)(2,030)(600)(753)(1,629)(879)(844)(1)327)75456789101245678910456789'01112(1,065)(696)(784)(1,862)(1,030)(934)(1,301)(561)(1,081)(667)(434)(1,360)(536)(495)(1,036)(1,153)(533)(515)(1,884)(565)(614)(1,373)(642)(543)78798081824567891011456789101145678910114'6789101145(,((839)586)598)(881)("490)556)476)980)482)564)(1,881)(585)(652)(1,572)(599)(698)(556)627)949)576)531)911)545)625)570)539)922)582)625)882)445)701)478)532)63 Procedures for=establishing theLake.Benthosdatabankareshovnby.thefollowing flowdiagram:MIDASLakeBenthosData79-82MIDASLakeBenthosData70-78UseMIDASConversion LineFileLineFileUseReformatProgramAddAdditional Parameters FlatDataFileFlatDataFileTaxirCreateProgramLAKE.BENTHOSLake.BenthosDataBankTheoriginalLakeBenthosdataverestoredinMIDASinternalfilesCCOIQKRGE andCOOK79-82
'heformerhousesthedatabetween1970and1978,andthelattercontainsthedatabetveen1979and1982.Theprocedures forestablishing thisdatabaseare:(1)tochangetheseMIDASinternalfilestolinefiles,then(2)tochangethelinefilestoflatfiles,and(3)touseaTaxirCreateprogramtocreatetheLake.Benthosdatabank.64 Toaccomplish thefirststep,weusedthefollowing computerstatements toconvertCOOKMERGE toalinefile:(whileinMTSmode)ARUNSTAT:MIDAS
?READINTERNALFILE~COOKMERGE VARIABLE~ALL (writingthevariables ofinterestintherequiredorderinthefileLINVMIDAS, anMTSlinefile)?WRITEVARIABLE1-5j9,155-156,10-147,150-154,200-205,300-303,400-406,500-510 PILELINVMIDAS CASES~ALL FORMAT~(2(F3.0,2X),2(F2.0)2X),F4.1)2X)P5.2)2X,F2.0)2X, F4~02Xi166(F10~2~2X))4(P2~0~2X)~F4~1)?FINISHNotethattheorderofthevariables inthefileLINVMIDAS followsthesequenceofvariables, YEAR,MONTH,REGION,ZONE,DEPTH,CON.PACT, AREA,STATION,166SPECIESVALUES,PRIMSED,SECSED,TERTSED,QUATSED,andVOLUME.Withaslightchange,theabove.statements wereappliedtochangeCOOK7982toalinefile.Thecompletestatements areasfollows:ARUNSTAT:MIDAS
?READINTERNALPILE~COOK7982 VARIABLE~ALL
?WRITEVARL4BLE1-31,34-61 FILE~MCOOK7982 CASES~ALL POR!6lT~(2(F3.0,2X),F2.0,2X,2(P2.0,2X)>F4.1,2X,F5.2,2X,4(F2.0,2X),F4.1,2X,46(P10.
2,2X),P4.0)
?FINISH65 4Theorderofthevariables infileMCOOK7982 is-different fromthatintheLIÃMIDASandisshownas'follows:
YEAR,MONTH,.AREA,REGION,ZONE,DEPTHjCONFACT~PRIMSEDjSECSED~TERTSED~QUATSED~VOLUME~46'"SPECIESVALUESandSTATION.ReformatProramsEachbenthosspeciesintheBLINVMIDAS istreatedasaparameter.
Thereare166speciesincludedinthisfile,butonly46speciesoccurfrequently.
Alargeamountofspaceinthefileis,therefore, occupiedbyspeciesoccurring onlyrarely;thisrepresents aninefficient utilization ofspace.Wedecidedtochangetheformofdatastoragesoastomakemoreefficient useoffilespace.ProgramsBLARR&flandB~t3AN2werewrittenforthispurpose.Theseprogramsignorethosespecieswithcountsof0.0;theremaining speciesareplacedinaflat-file formwithonespeciesperline.TheprogramBLARRAN1isusedforIrestructuring the1970-1978 datawhileBLDGLQ/2isusedforrearranging the1978-1982 data.TheresultsoftheseprogramsarestoredinfilesREMCOOK7982 andBLREMIDAS.
Thecommandstatements forusingtheseprogramsarelistedbelow:ARUN*FTNSCARDS~BLQQ4Qll SPUNCHWBJ1
!/RUN*FTNSCARDSBLAEG4Qi2 SPUNCHWBJ2 2!RUNOBJ15~BLINVMIDAS 6~BLREMIDAS ARUNOBJ25~MCOOK7982 6~RBfCOOK7982 ThecontentsoftheseprogramsarelistedinTables4.18and4.19.66 TABLE4.18.ProgramBLARRAN1.
CPROGRurBLARRAN1ISUSEDTOORGANIZELAKEBENTHOSDATASETSFORCTHEPERIODOF19TOTO19TB.THEOUTPUTFILEISINTHEFORMOFCFLATFILEWHICHLATERCANBEADDEDTOLAKE.BEHTHOS DATABANK.CUNIT6ISTHEINPUTFILE.CUNIT6ISASSIGNEDTOOUTPUTFILE,(FLATFIlE)~CCCCCo~0~0~0CO~0~0~0INITIALIZE VARIABLESe Co~0~0~0CREALYEAR,l40NTH,REGIN.ZONE.DEPTH.CONFAC,AREA, STAT.PRSD, 15ESD.TESD.QUSD.VOLUME.SPCONT(
166)REAL08SPNAME(166)INTEGERIYEAR.Il40NTH,IREGIN,IZONE~IAREA.ISTAT.IPRSD, 1ISESD,ITESD.IQUSDLOCICAL~1GROUPN(166)
Co~1~1~1CO~1~0~1Co~0~11~INITIALIZE DATA.CDATASPNAME/SH CDFLUVeSHC.ANTKReSHCHIRNMUSeSH CLADOe18HC.ROLLI,BHCRYPTO 1,8HCRYPTO 2,8HCRYPTO 3,8HCRICOT,18KQEMICRYP, SHK.CHANGI,SHH.OLIV,BHHYDROB,SHMICROP,18HM.TUB.SHP~ABORT.BKP.NEREI5,SHP.UNDINE, SHP.CAMPTQ,18KP.VINN,SH P.FALLX,SH P~SCAI.,SHPOLY2,8HP.LONG,18HPROCIADeSHP~SI14ULeSHRHEOTANY
~SHRDEMdeSH5'YLUSe18HTANYTAR.BHTHIEN GR,BH0.CHIR,SHA.LEYO,SHA.LQMOND.
18HC.DIAPH,BH CDDIASoSHC.SETOSUeSH DEROeBKN.PA'ROe18KN.PSEUDO,BH N.VAR,SHN.SIMP,SH P.LIT,SHP.SIMPLX, 18HPMICHeBHP~FORELIeSKP
~LONQISeBHP
~OSBORNeBHS
~APPENOe18HS.aIOSIN,SH S.LACUS,SH U,UNCIN,SH V.INTER,BHIl4 VOHC,'18HIMWHC.BHL~ANCVST.SH L.CLAPSHL.CERVIX,BH L.HOFF,18HL.PROF,SK L.SPIR,BH L.UDEK,SH P.FREYI,BH PELOMM,1SHPELOML,BHP~SUPER,SHP.BEDOTI.SH P.440LO,SH P.VEU,18HA.AI4ER,SK A.LIMNO,SH A.PLUR,BH I.TEMP,SHT.TVBIFX
~18HR.CQCC,SHV.SIN,SHV.TRI,BKAMNI COLA,SHBYTHINI A,18HSOMATO,SH LYMNAEA,SH PHYSA,SHQ.
GASR,SKS.NITID,18HS.STRIA,SH5.TRANS,SHS.CORN,BHP.ADAMSI,BHP.CASER,18HP.COMP,BK P.CQNV,SH P.FALL,SH P.FERR,BK P.HENS,18KP~IDAHOeBHP~LILLUeBHP~MILLeSKP~NITeSHP~PAUPe18HP.SUPIN,SH P.SVB.SHP.VAR.BHP.WALK,SH H.STAG.18HD.PARVA,SHN.OBSC.SHG.CDMP,SHQ~HIRUO,SHQINSECT,18KP~HOYI1eBHP~HOYI2oSKP~HQYI3eSHP~HOYI4eBKP~KOYICe18HP.HQYI S,BHP.HOYI M,SHTPQNTO,SH TMYSIS,BH TGAMM,18HTHYALLeBH TCHIReSHTNAIDeSHTTUBIFeSHTENCHYe18HTSTYLO,BH TOLICO.SH TGASTRO,SH TSPKAER,SH TPISIP.18HTPELECY,BH TKYDRAC,BH THIRUD,SH THYORA.BHTTURBELL, 18H.TOTHER,BH TANII4AI.,SH TAEOLOS,BH ASELLUS,BH 0~NAID,18K0'ERPeBHN~CQI4MeSHPEFRICieSHN.BRETSCeSHN
~BEHNQI~18HO.TUBIF,SHP.VARIQ,SHP,HAMM,BH A.PIG,SHM.PISID,18KU.PISID,BKS.RKQMB,SH P.AMNIC,SH S.SECVR.SHO.
SPHAE,18HP.VENTRI
.SHM.CHIR,SHKIEFF,BHC.HALO,SHPARACLAQ, 18HHARNISCH.SHPKAENOP.SHDICRO,SHCLYPTO,SHPARATANY, 18HRHEOTANY,SH STICTO/DATACROUPN/32
~1HC~21~1HNe22~1HTe801HG 4~1HS1611KP1511KHe1HOe8~1KAe1HQo201HAe1HCe1HNe1HTe301HQe1HCe1HSe1HPe1211HO.1HH,611HO,601KN,401HT,211HP,1H5,1HP,201H5,1HP,1'101HC/Cs~1~~~~Cs~~~~0~Co~~1~~~67oContinued onnextpage.READDATALINESCONTAINING 166SPECIESCOUNTS.
TABLE4e18.(Continued)
IYEAR<YEAR INQNTH~ICONTH IRKCIN>REQIN IZONE<ZONE IARKA<AREA ISTAT<STAT IPRSD<PRSD ISESD<SESD ITESD<TESD IQUSD<QUSD CCo~11~~~Co~oltllCt4~4~1~Co~0~0~1CVRITETHEFLATFlLENlTHTHESPECIFICATlOHS OFOHESPKClESATEACHLlHE.QO20I~1.166IF(SPCQNT(I).LE.O
~)COTO20telRITE(6.
30)IYEAR,IMCNTH.IREQINeIZQNK,DEPTH, CQNFAC.IAREA,1ISTATeQRQUPN(I
)eSPNANE(I) eSPCQNT(I
)eIPRSOeISESOeITESD~1IQUSD,VOLUME 30FQRNAT(2(I3.
3X).2(I2,3X).F4.1.3X,F5.2,3X~I2~3X,I4,3X,A1, 13X~ASe3X~F102~3Xe4(I2~3X)eF4~1)20CONTINUECCOTO100100RKAO(5,10END~99)YEAR,ANTH.REGIN.ZONE,DEPTH CQNFAC,AREA.
1STATe(SPCQNT(J)eJ+1e 166)ePRSDeSESOeTESDeQUSDeVQLUME 10FQRNAT(2(F3.0e2X)e2(F2.0e2X)eF4.
1,2X.F5.2 2Xel'2Oe2XeF4~Oe12X~166(F10.2,2X),4(F2.0,2X),
F4.1)CCQSSTOPENO68 TABLE4.19.ProgramBLARRAN2.
CPROGRAMBLlRRlH2ISUSEDTOORGANIZELlKEBEHTHOS'lTA SETSFORCTHEPERIODOFt9T9TO1982.THE'UTPUTFILEISIHTHE'FORMOFCFLlTFILE1'HICHLATERCAHBEADDEDTOLAKE.BENTHOS DlTlBAHK.CUNIT5ISTHEIHPUTFILE.CUNIT6ISlSSIGHEDTOOUTPUTFILE,(FLATFILE),CCCCCaa~~aaaCaaaaaa~IHITIALIZE VlRllBLES.
Ca~~o~~~CREALYEAR,MONTH,AREA,REGIN,ZONE, DEPTH,CQNFAC,PRSD,SESD, 1TESD,QVSD.VOLUI4E.SPCONT(46),STAT REALoSSPNAME(46)
INTEGERIYEAR.1140NTH.IAREA,IREGIN.IZONE,IPRSD,ISESD.11TESD.IQUSD,ISTATLOGICA!.a1 GROVPN(46)
Co~~o~~aCa~~a~~~Co~~a~~~CIHITIALIZE DATA.DATASPNAME/BHP.HOYI 1,8HP.HOYI 2,8HP.HOYI 3,8HP.KOYI 4,18HP.HOYI Q,SKP.HQYI S,BHP.HOYI M,SHTPONTO,SH TMYSIS.18HTGAMM~BHTKYALL~SHASELLUS~BHV~LEVISI~SHV~SIN~18HAMNICOLA,SHBYTHINIA,BH SOMATO,BHLYMNAEA,SHPHYSA,18HTGASTROeSHTPISID,SHS~MARGINeBH5~NITIOeSHS~SIMILFe18H5~STRIAeSHS.TRANSeBHTSPHAEReSHTPELECYeSKTCHIR,18HTSTYLO,SH TNAID,BHTTUBIF,BH TENCHY,SK TOLICO.18HGLDSSOPH,SH H.STAG,BH D.PARVA,BH N.OBSC,BKO.
HIRUD.1BHTHIRUD,SH THYDRAC,SH THYDRA,BHTTURBELL,SH TOTHER,18HOINSECT,BH TANIMAL/DATAQ'ROUPN/Ba 1HA1HO2a1HA~1KO~Ba1HC~1HP~6a1HS~1HO~11HCe1HQe1KNe1HTe2o1HOe6 1HHe6a1HO/
CCo~~a~~~Co~~a~a~READOlTlLIHESCOHTAIHING 46SPECIESCOUHTS.Caa~~~~~C100READ(5,10.END~99)YEAR,MQNTH,AREA,REGIN,ZONE,DEPTH,1CQNFAC,PRSD,SESD,TESD,QUSD,VOLUME,(SPCQNT(ot),et F1,46).STAT 10FORMAT(2(F3.0.2X),F2.0,2X,2(F2.0,2X),F4
~1,2X,1F5.2,2X~4(F2.0,2X),F4.
1,2X,46(F10
',2X),F4.0)
IYEARaYEAR IMONTHaMONTH IAREAoAREA IREGINaREGINIZONEOZONEIPRSDaPRSD ISESDRSESD ITESDRTESD IOVSDaQUSD ISTATaSTAT IF(IYEAR.E0.10)
IYEARF79IF(IYEAR.E0.11)
IYEARo80IF(IYEAR.EQ".12)IYEAR~81IF(IYEAR.E0.13)
!YEAR~82IF(CQNFAC.EO.
1.)CQNFACa60.60 IF(CQNFAC.E0.2.)
CONFAB20.40IF(CQNFAC.E0.3.)
CQNFAC~30.30Continued cnnextpage.69 TABLE4.19.(Continued).-
CC1~~4~4~C1~1~IQCo~~4~1~Cool100~WRITETHEFLATFILEARITHTHESPECIFICATIOHS OfOHESPECIESATEACHLIHE.DO20I<1,46,IF(SPCONT(I).LE.O.)
GOTO20VRITE(6e30)IYEAReIHQNTH.IREGIN,IZQNE~DEPTH,CQHFAC,1IAQEAeISTATeGAQVPN(I) eSPHAME(I) eSPCQNT(I) eIPQSDe1ISESD.ITESD,IQUSO,VOLUME 30FO$WAT(2(I3,3X),2(I2,3X),
FA~1e3XeFS~2~3XeI2~3XeIA13XeA1e3XeAS
~3XeF10~2e3X~4(I2~3X)~F4~1)20CONTINUECGOTO100CSSSTOPEHD70 TaxirCreateProramProgramBLTAXIRCR isaTaxirCreateprogramforestablishing theLake.Benthosdatabank.ThisCreateprogramusestheresultofthereformatprogramsestablishing aTaxirdatabase,LAKE.BENTHOS,whichissavedontheCOOKtapeatposition5.TheTaxirCreateprogramfortheLake.BenthosdatabankisshowninTable4.20.71 TABLE4.20.ProgramBLTAXIRCR.
RUNiTAXIRCREATELAME.BENTHOS,YEAR(FROM 70TO85)SMONTH(FRCM 0TO12),REGION(FROM 0TO9)~2DNK(FROM WTO9)~DEPTH(FROM M.OTO9Q~9),CON.FACT(FROM M.COTO99.99),AREA(FROM 0TO9)iSTATION(FROM MTO999).CROUP(ORDERS AC6HN0~P~5~T)~CODK(NAME).
CELLS(SSCll 0.01,TC1CCCCCC.SS)
~PRIMSEO(FROM0TO9).SECSEO(FROM0TO9),TERTSED(FROM0TO9),OUATSED(FROM0TD9),VOLUME(FROM 0.0TO99.9)~ENSERDATALOCATION>BLREMIOAS, FORMAT<FIXED, YEARc13>>,MONTHc79>>,REQIONc13 14>>,2ONEc1819>>,OEPTHc2326>>,CON.FACTc30-34>>,
AREAc3839>>.STATIONc43 46>>,CROUPc50>>,
COOEc5461>>,CELLSc65-74>>,
PRIMSEDc7879>>.SECSEDc83-84>>,
TERTSEOc88-89>>.
OUATSKDc93Qe,VOLUMEc98 101>>iSAVKSTOP72 ENTRAINED BENTHOSTheEntrained.
Benthosdatabankcontains11descriptors and7,911items'hedescriptors are:1-SAMPLE2-YEAR3-MONTH4WEEK5-PERIOD6-PUMP7-REPLICATION SWUBIC.METER 9-GROUP10-CODE11MELLSThemonthlynumberofdataitemsstoredintheEntrained.
BenthosdatabankisshovninTable4.21.73 TABLE4.21.ThenumberofdataitemsinEntrained.
Benthosdatabank.,OTotal0Total0Total9YearMonthofItemsYearMonthofItemsYear.MonthofItems7576771234567891011121234567891011123456789101112(54)(94)(25)(48)(47)(65)(69)(109)(83)(39)(61)(125)(66)(31)(95)(68)(79)(97)(135)(70)(77)(45)(6)(24)(26)(51)(5)(123)(67)(222)(90)(136)(23)(150)78798012345678910ll12123456789101112123456789101112(75)(22)(21)(46)(98)(195)(159)(189)(96)(86)(112)(119)(50)(32)(20)(109)(100)(178)(134)~(183)(80)(97)(117)(99)(131)(43)(29)(50)(75)(235)(142)(207)(102)(107)(108)(109)818212345678910111212345(62)(42)(79)(59)(131)(281)(185)(200)(99)(131)(105)(184)(29)(21)(9)(29)(5)74Q ThestepsusedtocreatetheEntrained.
Benthosdatabankareshowninthefollowing flowdiagram:Entrainment BenthosIMIDASConversion LineFileReformatPrograms, Additional Parameters FlatDataFileTaxirCreateProgramENTRAINED.
BENTHOSEntrained
.BenthosDataBankTheoriginalentrained benthosdataarestoredinaninternalMIDASfileasENTRAINMENT-REV.
Thisfilewasfirstconverted toanMTSlinefileandthenchangedtoaflatfile.Thedetailedprocedures forcreatingalinefilefrom'faninternalMIDASfilewasdiscussed previously.
Thesimilarprocedures forcreatingalinefileforentrained benthosareshownbelo~:ARUNSTAT:MIDAS (readingallthevariables)
?READINTERNALFILE~ENTRAIRKNT-REV VARIABLEALL(writingtherequiredvariables with.thedesiredorder).WRITEVARIABLE~1-7,9-16,18-22,24-25.FILE~EINVMIDAS CASES~ALL FORMAT~(F4.0, 1X,6(F3.0,1X),F6.2,1X,34(F10.5',1X))?FINISHTheorderoftheparameters intheEINVMIDAS isasfollows:YEAR,MONTE,REEK,PERIOD,"PUMP,REPLIC,CUBIM,and34parameters forspecies.ReformatProramEachspeciesintheentrained benthosfileEINVMIDAS istreatedasaparameter inthesamevayasthatinthelakebenthosfile.TheprogramBEARRANwaswrittenforthesamepurposesasthoseforthelakebenthosdata,toreducethespacereservedforthosespeciesthatshovnocountsandtorearrange thedatabyplacingonespeciesperlineinaflatfile.ThecontentofthisprogramislistedinTable4.22.TheresultfromprogramBEARRANvassavedinafilenamedBEREMIDAS.
TaxirCreateProramATaxirCreateprogram,BETAXIRCR, vasusedtocreatetheEntrained.
Benthosdatabank.Thiscomputerdatabankissavedatposition6oftheCOOKtape.ThecontentsofBETAXIRCR arelistedinTable4.23.76 TABLE4.22.ProgramBEDPAN.CPROGRAHBflRRANJSVSfDTOORCAHJZEENTRAJHVENT BENTHOSDlTASETSCFORTHEPERJODOf1915TO1992.THEDUTPtlTFJLfJSJNTHEFORHOfCFLlTFILEVHJCHLlTERCANBfADDEDTOENTRlJHED.BENTHOS DillBANK.CVHJT5JSTHEJNPtlTFILE,CVHJT5JsTHEOUTPUTFILE,(FLATFILE).CCCCCo~0~0~0Co~0~0~0INITIALIZE VARIABLES.
Coo~0~0~CREALSAIIP,YEAR
~kQNTH,VKEK,PERID.PVkP
~REP~CUBICk,SPCONT(3A)
REAL,obSPNAkf(34)
INTEGERISAkP~IYEAR~IlCIMTH>>I'VKEKIPERID~IPUkP~IRKPINTEGER%2 CROUPN(3A)
Coo%ooooCoo~0~0~Co~0~00~INITIALIZE DATA.DATASPMAkf/BH P.HOY11,4H
~.HQYI2,4H P.HQYI3,4H P.HOYIA,14KP.HQYI C,BHP~HOYIS,BHP.HQYI k>>4HTkYSIS>>BHTCAXko14H7HYALL~BHCRANCQMX,BH TASKLt.,bH TCHIR,BHTMAID>>14H7TUBIF,BHTSTYLD>>4HTENCHY>>BHTHIRUDebHTCASTRO>>14HTSPHAER,BH TPISID,bHT HYDR*C~BH7HYDRA,4HTTUB&,14HCRAYFISH,CH OTHERS,BH TRICHOP~BHEPHEk,bHOOOMATA,1dHCQt.EQPT,BH CHAOBOR,dH CULICID~BHSIMULIID,BHQIMSKCTA/
DATACROUPN/7'HAk,2HXY.3
~2Hlk.2HAS.2HCH>>A 2HQL.2HHI.
12HCA~2HSP.2HPI
~302HQT,2HCR,2HOT
~4%2ICII/CCoo%ooooCo~00~0~RfAD'lTALJHESCONTAJHJHG3lSPECI5SCOtlHTSeCo~0~0~0C100READ(5~10>>EMQ099)SAXP>>YEAR>>kQNTH>>VEEK>>PERID>>PUkP>>
RKP~1CUBICk~(SPCQMT(1
)eI~1~3+)10FQRKAT(FA.O, 1X,C(F3.0, 1X),FC.2,1X~3A(F10.5~1X))ISAxP05AKP IYEAR~YEARIIIOMTHokQMTH IVEEKRVEEK IPERIDRPKRIQIPUKP~PUIIPIREEREFC~~00~0~Co~~0~00Co~0~0~0CHANGEYEARCDDES,(EZlCHANCE1TO75).IF(IYEAR.EO.1)IF(IYEAR.E0.2)
IF(IYEAR.EQ.3)IF(IYEAR.EO.A)IF(IYEAR.E0.5)
IF(IYEAR.EO.C)IF(IYEAR.KO.T)
IF(IYEAR.EO.4)I'YEARRT5 IYEARRTCIYEARF77IYEARRTBIYEAR~79IYEAR~40IYKARAD&1IYEAR042Coo%~~0~Coo%ooooCoooo~0~Co~0~~0~VRJTETHfFLATFILEVJTHTHESPECJfJCATJOHS OfOHfSPECJESlTEACHLJHE.OO20I~1,34IF(SPCQMT(I
).LE.O.O)
CQTO20VRITE(C.30)
ISAxP.IYKAR,IIIQMTH.IVEEK.IPERID, 11'UMP,11REP.CUBICk
~CRQUPM(1),SPMAkf(
1),SPCQNT(1) 30FORXAT(13'X>>C(12'X)~FC.2'X>>A2F3'b>>GX>>F10.5) 20CQMTII>>UE CQTO100C99STOPENQ77 TABLE4.23.ProgramBETAXIRCR.
RVNITAXIR.CREATEENTRAINED.SENTHOS.
SAMPLE(FROM 100TO999),YEAR(FROM 70TO85),MONTH(FROM 1TO1'2)~VEEX(FROM 1TD5)~PERIOD(FROM 1TO9)~PUMP(FROll 1TD2)~RKPLIC(FROM 1TO2),CUBICM(FROMOoCOTOQQ9F99)oCROUP(OROERoAMeAS
~CH+CReCArHI
~OIeOL~OToMYePIoSP)e CODE(NAME),
CELLS(FROM 0.00000TD9999F99999)~KNTKRDATALOCATION>BERKMIDAS, FORMAT<FIXED, SAMPLE<13>,YEAR<7da,MONTHc12130,WEEK<1718>,PERIODc22 23>,PUMP<27-28),
RKP!IC~3233+aCUBICIi<3742>,CROUP<4847>,'COOEc51ddt,CELLS<6271>iSAVESTOP78 IMPINGEDBENTHOSTheImpinged.
Benthosdatabankcontains4,103itemsand11descriptors, whicharelistedbelow:1-YEAR2MONTH3-PERIOD4-CASE5-NARK6-SEX7-REPRODUCTION 8-SIZE9-NUMBER10-TOTALNUMBER11-TOTALWEIGHTThemonthlynumberofdataitemsstoredintheImpinged.
BenthosdatabankisshowninTable4.24.79 TABLE4.24~Thennmberof,dataitemsinImpinged.
Benthosdatabank.OTotal8'otal8Total8YearMonthofItemsYear.MonthofItemsYearMonthofItems"75767712345678910ll121234567891011'2123456789101112(13)(26)(51)(104)(101)(46)(18)(638)(525)(150)(120)(39)(57),(30)(36)(57)(22)(48)(102)(102)(81)(41)(38)(33)(11)(9)(39)(94)('6)(69)(110)(45)(29)(24)(18)(50)78798012345678910ll121234578910111223'5678910ll12(27)(19)(26)(53)(10)(17)(28)(47)(17),(19)(19)(4)(4)(4)(18)(9)(2)(41)(49)(32)(16)(16)(2)(16)(38)(59)(66)(12)(15)(63)(31)(21)(2)(13)811(34)2(12)3(40)4(34)6(10)7(56)8(49)9(14)10(11)11(15)12(14)809 Thestepsforestablishing thisdatabankareshowninthefollowing flowdiagram:ImpingedBenthosMIDASConversion LineFileReformatProgram&Additional Parameters FlatDataFileTaxirCreateProgramIMPINGED.
BENTHOSIminged.Benthos DataBankThedataforimpingedbenthosarealsoinaninternalMIDASfile.IMTSprocedures usedforbothlakeandentrained benthosareusedhere.computerstatements fortheoperations arelistedbelo~:~IARUNSTAT:MIDAS (readallthevariables)
?READINTERNALFILE~IMPINGE VARIABLE~ALL (writetherequiredparameters)
?WRITEVARIABLE"1-44,46-49FILE~IINVMIDAS CASES~ALL FORMAT~(3(F3.0, 1X),45(F7
~1,1X))?FINISHThesame81 Theorderoftheoriginalvariables inIINVMIDAS isas..follows:;
YEAR,'MONTH,REPRODUCTION, SPECIES(theparamet'ersof:43 species),
TOTAL"NUMBER,TOTALWEIGHT.ReformatProramThereformatprogramBIARRANwasusedtoreducethespaceoccupiedbythoseimpingedbenthosspeciesthatshownocountsandtorearrange thedatasothateachspeciesisintheformofonespeciesperlineinaflatfile.ThecontentsofBIARRANarelistedinTable4.25.TaxirCreateProramTheTaxirCreateprogramBITA.'GRCR wasusedtocreatetheImpinged.
Benthosdatabank.ThecompleteImpinged.
BenthosdatabankisstoredontapeCOOKatposition7.ThecontentsoftheprogramarelistedinTable4.26.82 TABLE4.25.ProgramBIARRAN.CPROGRAHblARRAHISVSEDTOORGAHIZEIHPINGEHEHT bEHTHOSOlTlSETSCFORTHEPERIODDFt575TOtbtt.THEOVTPVTFILEISIHTHEFORKOFO'LlTPILEVHICHLATERCAHbEADDEDTOINPIHGEO.SEHTHDS DATASANK.CVHIT5ISASSIGNEDTOIHPUTFILE,CVHITbISTHEDUTPVTFILE,(FLATFILE).CCCCCoo%ooooCo~0~000tHITtlLIZE VARIASLES.
C0000000CREAL,YEAR($15),ICONTH($
15),PERIOD($
15)~SlCONT($15~42)o1TOTALN($15),TOTALV($15)REAL~4NAKE(42)INTEGERIYEAR($15)~IVOMTH($15)~IPERID($15)INTEGERS2SEX(42),RKPRQQ(42)
ASSIZE(41)
CCoo%~0~1Co~1~111C01~0~1~CIHtTtALIZE DillDATANAME/41~CHQRC'PROP,CHVUTILATK,CHQTHER SP/DATASKX/212HFe2HN1e2HK2e202H Fe2f4l1o2HK2
~212HFi12%41,2HMZ
~2'HF,2&41,2l442,$
2HF,2HN1,2HK2,2 2HF,121441,2HM2.2
'HF,2HH1~2HK2.2%2H F,2HK'I'HK2.202H F,12HK1o2HKZe2 2HFe2HI1iZHK2
~2HKe22H/DATAREPROD/2H RE21441,202H
~2HRE2HG1,202H
~2HRE12HMR.1%2H
,ZHR,2~R,2~2H,ZHRE2HNR~2%2Ho2HRE12HNR,22H~2HRE2HNR,2'H~2HRE214V1~202H,2HRE12141R~2%2H~2HRE2141R~5'H/DATASIZE/401H 1,402H2,402H2,4%2H4,42H5,4~2H4,1402HT,402H$,4%2H$,42H10,112H
/CO~0~00~C~1~0~1~Co%11~10READDATALINESCONTllNING 45SPECIESCDUNTS.),lCQMTH(I
),PKRIOD(I),
(SPCQMT(I,J),J
~1,41),I),45(FT.1,1X))DQ10I%1,$.15READ(5,20)
YEAR(I1TQTALN(I),TOTALV(
20FORRAT(1(F1,0.
1X)!YEAR(I)~VEAR(I)IIIQMTH(I)~KQMTH(I)IPERID(I)%PERIOD(I
)CC~oho~0~~1~0~1~CHANGETEARCOOKS,(EZsCHANGE1TO75).C100100~CIF(IYKAR(I
).EQ.1)IF(IYEAR(I).EO.2)IF(!YEAR(l).E0.1)
IF(IYEAR(I).E0.4)
IF(!YEAR(l
).E0.5)IF(!YEAR(I).EQ.4)IF(IYEAR(
I).EQ.7)!YEAR(I)075 IYEAR(l)%7$
IYEAR(I)077!YKAR(l)07$
!YEAR(!)OTQ
!YEAR(I)%40IYEAR(I)0$
1Coo~oo~1Co~1~~1~C11~1~11Co~1~0~1VRITETHEFLATFILEVITHTHESPECIFICATIONS OFONESPECIESATEACHLINE.OO10K~1,41IF(SPCQNT(I,K).LE.O.
)CQTD10VRITE(4,40)
!YEAR(I),IVOMTH(I),IPERID(I);I,NAKE(K)
.1SEX(K),REPRQD(K),
SIZE(K),SPCQMT(I,K),TOTALN(I),TOTALV(
I)40FOR+AT(2(I2
~1X)~I1~1X~AC~2(2X~A2)~1(1X~FT~1))10CONTINUE10CONTINUECSTOPEMQ83 TABLE4.26'rogram BITAXIRCR'UH
~TAXIRCREATEIMPINCKD.BKHTHOS
~YEAR(FROM 70TO85),MONTH(FROM 1TO12)iPERIOD(FROM 1TO9),CASK(FROM 1TO999),NAME(NAME),
SEX(NAME),
RKPROO(NAME),
SIZE(FROM 1TO10),NUMBER(FROM 0.0TD99999.9),
TOTAL(FROM 0.0TO99999.9),
TOTALS(FROM 0.0TO99999.9)~
ENTERDATAl.OCATION<BIREMIDAS YEARc12P,MONTHc6~70
~PERIODc11 12m,CASEc16180',NAMEc2229~eSKXcQQ-Sea, REPROOc28 29i,5I2EcAQ~liv, NLIMBKR<<48-54>,
TOTAl.Nc58 64),TOTALWc68-74)
~SAVESTOPFORMATFIXED, SlMfARYSTATISTICS FORADULTLAKEANDQfPINGEDFISHThisAdult.Fish.Summary.Statistics databankisoneofthelargestintheCookpro)ect.Itconsistsof102,238itemsand10descriptors.
Thedescriptors arelistedbelow:.1-SPECIES 2-MONTH3-YEAR4-GEAR5-STATION 6-SERIES7-TEMPERATURES j8-INTERVAL 9-TOTALNUMBER~10-TOTALWEIGHT~I'I'I~ThemonthlynumberofdataitemsstoredintheAdult.Fish.Summary.Statistics databankislisted'in'able4.27.85 TABLE4.27.ThenumberofdataitemsintheAdult.Pish.Summary.Statistics databank.YearMonthTotal8ofItems.YearMonth.Total0ofItemsYearMonthTotal0ofItems..:.737475123456789101112123456789101112123456789101112(25)(127)(282)(847)(922),(1,257)(891)(1,126)(792)(870)(145)(,68)(114)(21)(445)(805)(15160)(867)(1,564)(1,097)(725)(584)(326)(165)(285)(215)(791)(2,843)(2,698)(3,286)(1,872)(1,875)(1,580)(1,682)(2,279)(2,102)767778123456"78910111212345678910111212345678910111286(992)(728)(569)(1$125)(1$314)(997)(1,652)(1,006)(1$016)(761)(316)(233)(51)(67)(257)(507)(936)(951)(1,115)(891)(1,088)(936)(748)('179)(150)(56)(141)(412)(718)(1,128)(1,359)(1,368)(1,140)(1,373)(724)(222)79808182123456789101112123456789101112123456789101112123456789101112(261)(87)(267)(1,227)(788)(1,042)(1,131)(1,177)(1,445)(1,000)(752)(112)(62)(149)(185)(669)(1,562)(1,681)(15006)(1,141)(1,496)(1,288)(730)(491)(307)(143)(123)(959)(1,562)(1,722)(1,617)(840)(966)(1,176)(1,233)(550)(250)(90)(128)(1,147)(908)(1,131)(875)(709)(817)(584)('602)(91)O Theprocedures forestablishing thisdatabankareshownasfollows:AdultFishSummaryStatistics FilesTaxirCreateProgramADULT.PISH.SURGERY~STATISTICS DataBankAdult.Fish.Summar
.Statistics DataBankTheoriginaldataforadultlakeandimpingedfishsummarystatistics arestoredinflat-file form,therefore, noprocedure isnecessary torearrange thisdataformat~ATaxirCreateprogramwasusedtocreatetheAdult.Pish.Summary.Statistics databankdirectlyfromtheoriginaldatafiles~Thesecorn"puterdataarestoredontapeCOOKatposition8.TheTaxirCreateprogramAFSSTAXIRCR isshowninTable4.28.87 TABLE4.28,.ProgramAPSSTAXIRCR.
RUNiTAXIRCREATEAOULT~FISH~SUMMARY~STATISTICS, SPECIES(FROM 0TO9Q),MONTH(FROM 1TO12),YEAR(FROM 70TO55).CEAR(FROM 0TO99),STATION(f ROM0TO99)eSERIKS(FROM 0TO99)oTEMPERATURE(FROM 0.0TO99.9)~INTERVAL.
(FROM0TO999),TOTALNUMSER(FROM 0TOQQ9999),TOTALVEIGHT(FROM 0.0TOQ9999999.9)
~ENTERDATALOC*TION<44ASTERFIL.K
~FORMATSFIXED,SPECIESc1-2>>,
MONTHc2-a>>,
YEARc5-6>>,
CEAR+76>>oSTATION<910>>,SERIES<11-12>>,
TEMPERATURE<13 16>>,INTERVA(.c17-19>>,
TOTAUAMBKRc20-25>>,
TOTALVEICHT<26 35>>~SAVESTOPI~g1'li'Iklli~~88 FIELD-CAUGHT ANDIMPINGEDFISHThedataforfield-caught andimpingedfishconstitute thelargestdatasetintheCookprogect~Becausethedataaretooextensive tobeheldinasinglefile,thedataweredividedintotwofiles.ThefirstonecontainstherawdataonadultlakefishstoredincomputerdatabaseLake.Adult.Fish;thesecondoneincludestherawdataonimpingedadultfishstoredinthecomputerdatabaseImpinged-Adult.
Fish.Bothdatabankshave22descriptors:
1-MONTH2-DAY3-YEAR4-TIME5-GEAR6-SERIES7-STATIC8-WATERTEMP.9-FISHUSE 10-BIOL.COND.11-PHY.COND
~12-SPECIES 13-FISHNO~14-LENGTH 15~IGHT16-SEX17-GONADCONDo18-GILLNET HRe19WILLNET MIN.20-FOODPRESENT21-SUBSAMPLE22-TWNONSUBTheLake.Adult.Fishdatabankhas181,156items,andtheImpinged.
Adult.Fishdatabankincludes110,843items'henumbersofdataitemsstoredinthedatabanksareshowninTables4.29and4.30.89 TABLE429.ThenumberofdataitemsinLake'Adult.Pish databank.CPYearMonthTotal0ofItemsYearMonthTotal8Total8ofItems'earMonth'f,Items 737475234567891011121345678910111213456789101112(80)(830)(25611)(2,445)(3,746)(2,219)(3,130)(1,568)(2,263)(211)(7)(82)(419)(1,866)(3,516)(2,448)(3,177)(2,256)(1,526)(1$284)(567)(91)(94)(376)(703)(2,319)(3,156)(2,055)(1,753)(2$495)(1$541)(1$208)(917)76777879234,567891011345678910111245678910114567891011(143)(205)(2,146)(2$700)(2,008)(3,302)(2,117)(2,153)(1,448)(326)(206)(413)(2,057)(1,947)(20554)(2,205)(2,646)(2,063)(1,494)(40)(434)(1,313)(2%854)(3>417)(2,976)(2,175)(3,227)(1,313)(2,399)(1,934)(3,004)(2,967)(2$647)(3,509)(25677)(1,719)818280456789101145678910114567891011(953)(4,508)(3,819)(2,957)(2,411)(3,738)(2,887)(1,725)(2,324)(2,973)(4$264)(4,443)(1,275)(1,769)(2,418)(2,099)(1,663)(1,711)(2,128)(1,433)(1,621)(2,258)(896)(1,186)'0 TABLE4.30.ThenumberofdataitemsintheImpinged.
Adult.Pishdatabank.YearMonthTotal8ofItemsYearMonthTotal8ofItemsYearMonthTotal8ofItems73747576123410ll1212345678910111212345678910ll12123456789101112(33)(157)(11)(99)(2)(6)(140)(98)(30)(745)(255)(173)(38)(1,193)(767)(276)(52)(122)(205)(467)(424)(1,063)(8,084)(4,853)(6,153)(2,097)(1$735)(1,344)(3,879)(4,189)(3,697)(2,626)(1,249)(1,611)(574)(759)(616)(1,099)(548)(575)(593)(378)(522)77787910121234567891011121234567~89101112(68)(118)(456)(588)(337)(325)(521)(80)(148)(622)(326)(316)(305)'(73)(376)(333)(470)(408)(1,235)(1,286)(468)(628)(388)(484)(719)(130)(514)(661)(45)(5)(1,053)(1,027)(1,359)(814)(124)(276)80818212345678910ll1212345678910ll12.123456789101112(132)(383)(572)(2,667)(1,667)(2,159)(488)(1,384)(2,260)(1,530)(51)(1$294)(1,247)(284)(256)(708)(3,466)(2,231)(1,326)(983)(519)(997)(1>754)(2,606)(565)(206)(262)(2,140)(1,575)(1,872)(1,032)(296)(134)(384)(562)(228)91 Theprocedures" forcreatingthesetvodatabanksareshovnin.theflovdiagrambelov:.,TheOriginalAdultPishDataPilesReformatProgramPlatDataPilesAdultLake'ishDataFlatDataPilesAdultImpingement PishData:TaxirCreate~'rogramTaxirCreateProgramLAKE.ADULT.FISHLPINGED.ADULT FISHReformatProramITheprogramCHNGZRMTvasusedtoreorganize thedatafortheadultlakeandimpingedfishvhicharestoredinafilenamedTRANSREC.
Itseparates lakefishItdatafromtheimpingement dataandenterstheresultsofthisprograminflat-I'ileformsstoredinREPTRANPIE andREPTRANGQ',
vheretheformercontainsthelakedataandthelatterhousestheimpingement data.Theseprocedures areshovnbelov:ARUN*PTNSCARDS~GFLiT SPUNCHW+OBJ ARUNC.OBJ5~TRANSREC 6~REPTRANFIE 7~REPTRAN26'Table 4.31isacopyofprogramCHNGFRMT) 92 TABLE4.31~ProgramCHNGFRMT.
INTEGERABREALO,E.HLOGICAL~1 A(13)eAC(7)oB(20)oC(18)CCs~~~~~~CS~4~~~~Co~~~~~~C100READ(5.1,EHO99)A.AS.AC.O,B.E.C,H 1FORMAT(1341,I'1,741,F4.1,2041.F5.0,1841,F7.0)
CCo~~~4'~Co~~ooo~Coo~~0~0CREADTHEDATALIHESFRONTRAHSRECFILES.CHECKTHETYPEOFTHERECORDS(INPINGENEHT ORFIELD).IF(H.E0.0.0)
1)GOTO20CCo1I~0~~Co~~~~~~Co~~0~~~CWRITETHEINPIHGENEHT ANDFIELDRECORDS'RITE(6,2
)A,AB,AC,O,B,E,C.H FORMAT(1341.11,741, F4.1,20A1,F8.2,1841,F9.1).GOTO100AlCPRDGRANCHHGFRNTISUSEDTOSEPARATEfiELDRECORDSFROMTHEINPIHGENEHT CRECORDSIHTHETRAHSRECFILES.THEOUTPUTFILESPROVIDEDBYTHISPROGRANCAREIHTHEFORNOFFLATFILES.CUHIT5ISTHEINPUTFILE.(TRAHSREC FILES).CUHIT6ISTHEOUTPUTFILEFORINPIHGENEHT RECORDS.CUHITTISTHEOUTPUTFILEFORFIELDRECORDS.CCCCC1~~44~~C1~0~0~0IHITIALIZE VARIABLES.
CI~~0~~1CC20C10WRITE(7,2
)A.AS,AC,O,8,E,C.HGOTO100IF(AS.EO.
1)COTO30WRITE(6,3)
A,AB,AC.O,S,E,C FORMAT(1341.I1,741,F4.1.20A1,FB~2.1841)COTO100C30WRITE(7I3)
AeABeACeOoSoEoC GOTO100IC99STOPENO93 TaxirCreateProramTheTaxirCreateprogramAFTAXIRCR (Table.4.32) wasused.tocreateadultlakeandimpingedfishdatabanks,fromtheflatfilesREPTBANPIE andREPTRANLW.
TheresultsoftheTaxirCreateprogramaresavedintheLake.Adult.PishandImpinged.
Adult.Pishdatabanks.ThefinalversionofLake-Adult.
FishissavedontapeCOOKatposition9,andthatforImpinged.
Adult.Pishisstoredonthesametapeatposition10.94 TABLE4.32.ProgramAPTAXIRCR.
RUNiTAXIRCREATEIMPINGED~ADULT.FISH,MONTH(FROM 1TO12),DAY(FROM1TD31),YEAR(FROM 70TO85),TIME(FROM 0TO2400).GEAR(FROM 0TO9),SERIES(FROM 0TO99),STATION(FROM 0TO9).VATERTEMP.(FROM 0.0TO99~9)eFISHUSE(FROM 0TO9),BIOL.COND
~(FROM0TO9),PHY.COND.(FROM 0TO9).SPECIES(FROM 0TO99).FISHNQ.(FROM 0TO999999),LENGTH(FROM 0TO9999),LtEIGHT(FROM 0.00TO99999~99).SEX(FROM0TO9),GQNADCOND.(FROM 0TO9),GILLNETHR.(FROM 0TQ99),GILLNETMIN.
(FROM0TO99).FOODPRESENT(FROM 0TQ9),SUBSAMPLE(FROM 0TO99),TWNQNSUB(FROM 0.0TO9999999.9)~
ENTERDATALOCATIQN~REFTRANIMP
~FORMATSFIXED,MONTH<12>,OAYc34>,YEAR<5-6>,
TIME<912>,GEAR<<14>,
SERIES<<15 16>.STATIONc19>,NATERTEMP.<22 25>.FISHUSE<29>
~BIOL.COND.c30>,PHY.COND.<<31>,SPECIES<<32-33>,
FISHNO.<34 39>~LENGTHc41-44>,VEIGHT<46-53>,
SEX<56>,GQNADCQND.<59>,
GILLNETHR.c60 61>,GILLNETMIN.
c6263>,FQQDPRESENTc64>,
SUBSAMPI.E<68 69>~TVNQNSUB<<72-80>
~SAVESTOP95 FIELD:LARVALFISHTheLake.Larvaedatabankcontains20descriptors and14',110items.Thedescriptors areasfollows:1WODENOo2-SAMPLENO.3-PERIOD4MONTH5-DAY6-YEAR7-DIAL8-TIME9WEAR10-TOMDEPTH11~TE12-STATION 13-TEMPERATURE 14-REVOLATION 15-SPECIES NAME16-SPECIES DENSITY17-IVaaERVAL 18-NUMBER 19-SUMLENGTH20-SUMSQUARELENGTHThemonthlynumberofdataitemsstoredintheLake.LarvaedatabankislistedinTable4.33.96 TABLE4.33~ThenumberofdataitemsinLake.Larvaedatabank.Total0Total8Total8YearMonthofItemsYearMonthofItemsYearMonthofItems7374757634567891011134567891011Tj56789101124567891011(8)(80)(55)(404)(372)(151)(45)(52)(10)(4)(12)(58)(171)(395)(463)(336)(155)(58)(30)(74)(120)(300)(521)(419)(102)(80)(68)(8)(73)(79)(299)(930)(439)(73)(47)(12)7778798045678910114567891011456789101145678910ll(56)(56)(213)(398)(311)(91)(17)(17)(78)(86)(150)(121)(237)(74)(19)(13)(72)(88)(125)(507)(358)(122)(34)(12)(73)(169)(124)(743)(207)(96)(14)(13)81824(77)5(139)6(239)7(184)8(480)9(111)10(12)11(12)4(76)5(106)6(483)7(492)8(466)9(12)10(12)ll'(12)97 Theflovchartbelowshovsthedifferent'stages involvedinthecreationo'ftheLake.Larvaedatabank.InputDataPilesTOTAL,STAT,HISTOReformatProgram1OutputDataPilesSortintermsofspeciesnameandcodenumberLineFilesReformatProgram2FlatDataFileSortintermsofspeciesname,codenumber,andintervalFlatDataPileTaxirCreateProgramLAKE.LARVAE98Cl Thepurposeofthisoperation istocombinethedatainvariousformatsinthreefilesintoonesingleflatfile,whichisthenenteredintotheTaxirdatabasemanagement programtocreateadatabasemanagement file.,Theorigi-naldataarecontained inthreefilescalledHISTOYR,STATYR,andTOTALYR,where"YR"indicates theyearwhenthedatawerecollected.
Boththeopenlakeandthenearshore beachdataareincludedinthesefiles.TheHISTOYRfilecontainsthefollowing parameters:
CODENO.,SAMPLENO.,PERIOD,DATE,DIAL,TIME~GEAR~TOWDEPTH~GRATE~STATION~TEMPERATURE
~REVOLATION
~SPECIESNAME~and51different densi.tyintervals.
Thefirst12parameters oftheSTATYRfilearethesameasthoseinHISTOYRfilebuttheparameters whichfollowareSPECIESCODESandstatistical valuesofTOTALNUMBER,SUM,andSUMOFSQUAREfor20species.Thefirst12parameters oftheTOTALYRfilearealsothesameasthoseintheHISTOYRfile,butarefollowedbythesingleparameter, totaleggcounts.ReformatProramsAllthreefilesareidentical inthefirst12parameters butaredifferent intheparameters whichfollow.Reformatprogramsareneededtorearrange thesefiles,sothatallparameters canbemergedintoonesingleflatfile.Tworeformatprogramswereused.ThefirstreformatprogramiscalledLLARVARR, asshowninTable4.34.Themajorfunctions ofthisprogramare1)tochangeSTATYRfilefrom20speciesperlinetoonespeciesperline,2)todeletethoselineswithnodensityvaluesintheHISTOYRfile,and3)toaddthecharacter "EG"toeachlineinTOTALYRfiletoindicatethatthesedataareforfisheggs.99 TABLE4.34.ProgramLLARVARE.
Cf'RCCRAVLLARVARRHASTHRttFUNCTIONS.
ITCHWGC5,STAT FILIJHTOAfLAT0flLC,DELETE5THCDATlLJHC5ARITHNOHJSTCCRAV VlLUCSFRCVHISTOfJLE,C'NOFIHlLLTITlOO5CHARACTER
'ECTOCACH.LINE OfTOTlLflLt.CUNITS2.4.WDdARCTHtINPUTFILC5.CUNITS5.5.WOTARCTHCOUTPUTFILES.CCCCC00~0~0~C0~100~0INITIALIZE VARIASLKS
~C00~0~0~CINTEGK'RSPN(20)~)AJQI(20)~SLVPNQ~PRD<<DAT'C
~DIEL<<TIVE
~CKAR~1TQVQKP,CRATE,STATN,SPECN,IRCV,ECCCQNRtALSUVI(20)<<SUVSI(20)<<TEVP<<RCV<<RCUNQC(S1)<<SP~(20)
<<RCAL04CQQENOCC00~1~0~C0~0~0~~PCLCTCTHEDlTALIHC5PROVSTlTfILEVITHNOSTATJSTJC5, C0~1~1~1VANESTATFILCfLlT~C0~00~0~C100RCAO(2~10,EN0094)
CQQCNO,(SPN(I
)~)LIVE(I)~SUVI(I)~15VVSI(1).1~1.20)10FORVAT(AS<<42X<<20(1X<<A2
~1X<<14<<1X~Fb<<1~1X,F11~1))CIF(ILIVI(1).CO.0)CQTQ1CO2020CDO20I~1<<20Il(Mhll(I)~EO.O.)COTQ20VRIT'C(2,20)
CQDCN0.5PN(1)
<<141VI(1)
<<SUVI(1)~SUVSI(1)FQRVLT(AS
~1X~A2~1X~14~1X~Fb~1o'IX~F11~2)CONTI%ItCOTO100CC0~1~0~0C~\~100~C00~001~C99READ(4.11~CN00999)CQOENQ.SAVPNO,PRO.OATE
~Oltt..?INC
~1CCAR,TQVDEP,CRATE
~STATN,Ttl4P,REV,SPECN,(RQUNOC(I).I 1,S1)FORVAT(AS
~1X,A4~1X~12,tX<<IC<<1X~11<<tX<<14<<1X<<L1<<tX~1*2~A1,A2~1X,F4.1~1X~f4.0,1X~A2~51F4.0)OCLETtDATALJNC5fROSrHISTOfILKWITHNOHI5TOCRAV VALUES.21CDO21I~1.51IF(RQUNQC(I
).EO.O.)CQTD21CQTQ'01CONTINUCCOTO99C101VRITE(5~11)CQQCNO,SAVP145~PRQ,DATE,DICL,TIVE~CKAR,1TQVOtPoCR*TE~STATNoTENPoRCVe5PECN<<(RQ(RR)C(I)~I~1oS1)CCOTO99ADOCHARACTER
'CC'OEACHLINCOFTOTlLflLK~C9999STOPENOCC0~10000C00~0~1~C0~0~0~0C999RCLO(4.12.END09999)
CODKNO,SLVPNO,PRO, DATE,DIEL
~TIVt~1CEAR,TDVOEP,CRATE,STATN,TEVP,RCV,ECCCDN12FORVAT(AS
~1X~A4~1X~12~1X~I~o1X~I1~1X~14~1X~A1o1X<<L2<<A1~1L2~1X,F4.'1,1XFb~0CX19)IRCV0RtVVRITt(T.21)
CDDENO~SAVPNO.PRO.
DATE,DIEL,TIVE,CCAR, 1TOVQEP<<CRATE ST*TH,TEVP JREV<<ECCCQN
'1FORVAT(AS
~'1X~44~1X~12~1I~14~'IX<<1'1~1X~14~'IX<<A1~1X~A2~141.42<<1Xof4.1~1X~IC,1X~'EC'1X<<19)CQTO999100 ThesecondreformatprogramiscalledMERGE,asshowninTable4.35.ThisprogrammergesthethreeoutputfilesprovidedbytheLLARVARRprogram.Inordertousethisprogram,theoutputfileswerefirstsortedbyspeciesnameandcodenumber.ThesorteddatawerestoredinfilesSRSTATYR, SRHISTOYR, andSRTOTALYR, respectively.
TheMERGEprogramwasthenused,firsttocopytheSRTOTALYR atthebeginning ofanewfile,andthentocombineeverypairoflines(oneeachfromSRHISTOYR andSRSTATYR) intoasinglelineofparameters inthenewfile.The51densityintervals, however,werechangedtoasingledensityintervalperline~Thus,thenewfileisflat,containing allinforma-tionforfishspecieswiththeirstatistical valuesandonedensityintervalper.line.Thenewfile,calledMERGEYR,wassortedagainattheendoftheoperation.
ThisfinalsortedflatfilenamedSMERGEYRwassetasinputtoaTaxerCreateprogram.Thecomputercommandsandstatements usedinthisprocessforthe1981fieldlarvalfishdataareshownbelow:ARUN*FINSCARDSLLARVARRSPUNCHLLARV.OBJ ARUN-LLARV.OBJ 2STAT814HIST0816TOTAL813~RSTAT81 5~RHIST081 7~RTOTAL81 (tosorttheoutputfilesintermsofspeciesnameandcodenumber)ARUN*SORTPAR~SORT~CH,A,1,5,CH,A,7,2 INPUT~RSTAT81,U,35,35 OUTPUT~SRSTAT81,U)35y35 ENDARUN*SORTPAR~SORT~CH,A, 1,5,CH,A,49,2 INPUT~RHIST081,U)356,356 OUTPUT~SRHIST081,U)356,356 ENDARUN*SORTPAR~SORT~CH,A,1,5 INPUT~RTOTAL81,0,64,64 OUTPUT~SRTOTAL81)U,64>64 END101 TABLE4.35..ProsramMERGE.CPROGRAMNERGEISUSEDTONERGESRSTATAHO'SRHISTOFILE.THEOVTPVT,'OFTHISPROGRAMISIHTHEFORMOFFLATFILE~CUHITS3,S.AHOTARfTHEIHPVTFILES.CVHIT9ISTHEOUTPUTFILE.(FLATFILE).CCCCCO44~4~4CO~4~44~IHITIALIZE VARIABLES.
Co~4~4~4CINTECERNUMI,SAMPNO.PRO.DATE.DIEL,TIME,CEAR, TQVOEP,1CRATE,STATN,IRKV,SPN,IROUNQ(51)
REALSUMI,SUMSI,TEMP,RKV,ROUNOC(51)
RKALobCDOENQCO~4~4~4CO~4~4~4Co~4~4~4Co~444~4VR!TETHESRTOTALFILEIHTHEBEGIHHIHG OFTHEOUTPUTFILE.10READ(3.10,Eh0499)CQDEND,SAMPNO.PRO.DATE.DIEL.
TINK~CEAR.tTQWOEP.CRATE,STATN.TKMP, IREV,5PN,ECCCDNFORMAT(A5
~1X~A4~1X~I2~1X~I8~1X~I1~1X~I4~1X~A1eiX~A2~A1~1A2e1XeF4~1e1XeI6e1XeA2e1XeIQ)VRITK(9e10)CDQENQeSAMPNQePROeDATEeDIELeTIMEeCKAReTOVDEPe1CRATE~STATN,TEMP, IREV,SPN,ECCCDN CCo~4~44~CO~4~4~4Co~4~4~4CO~4~44~C99RE20FDREADOHELIHEFROMSRSTATFILEAHOOHELIHfFROMSRHISTOFILEATATINf.AO(5.20.ENDOQQQ)NUMI,SUMI.SUMSIRMAT(9X,I4,1X.FQ.1,1X,F11.2)READ(7,30,ENO4999)
CQOENQ.SAMPNO.PRO,DATE.DIEU, TIME.1CKAR,TQWDEP,CRATE,STATN.TKMP,REV.SPN.(RQUNDC(I).I~1,51)30FORMAT(A5e 1XeA4>>1XeI2e1X~l8e1Xell~1Xel4e1XeA1e1XeA2eA1e 1A2,1X,F4.1,1X,F8~0,1X,A2.51F6,0)IRKVOREVCCo~~4~4~Co~~4~4~NRITETHENfRGEOLIXES.C444~4~4C5040COQ40I~1.5tIF(RQUNDC(l).EO.Q.)
COTO40IRQLIND(l
)OROUNDC(I
)VRITE{9,50)CDDKNQ,SAMPNQ,PRO,DATE,DIEL,TIME,GEAR,tTQVOEP.CRATE.STATN, TEMP.IREV,SPN,IROUND(I),
I,1NUMI,SUMI~SUMSIFORMAT(AS, 1X.A4,1X,I2,1X,I8,1X,I1,1X,I4,1X,A1,1X,A2,A1,A2,11XeF4~1e1XeI8e1XeA2e4XeI6~1X~I2,1X~I4e1XeF9~1e1XeF11~2)CONTINUECQTQ99CQQQ5TQPENO102 (toproduceMERGE81){!RUN+FTNSCARDS~MERGE SPUNCH~MER.OBJ ARUNMEROBJ3~SRSTAT81 5~SRHIST081 7~SRTOTAL81 9~MERGE81 (tosortMERGE81intermsofspeciesname,codenumber,andIntervals)
ARUN*SORTPAR~SORT~CH,A,1,5,CH,A,49,2,CH,A,62,2 INPUT~MERGE81,U,90,90 OUTPUT~SMERGE81,U,90,90 ENDTaxirCreateProramATaxirCreateprogramFLTAXIRCR isusedtocreatetheLake.LarvaedatabankfromSMERGEYRfiles.ThisdatabankisstoredonthetapeCOOKatposition11.ThecontentsofFLTAXIRCR arepresented inTable4.36.103 TABLE4.36.ProgramPLTAXIRCR.
R<<TAZIRCREATELAKE.LARVAE,CODENO(NAME),
SAMPNO(NAME)p PERIOD(FROM 0TO99)pMONTH(PROM 1TO12),DAY(FROM1TO31),YEAR(FROM 70TO85).,DIET(FROM0TO9),TIME(FROM0TO9999),GEAR(NAME)pTOWDEP(NAME),GRATE(NAME),STATN(NAME),TEMP(FROM 0.0TO99.9),REV(PROM0TO999999),SPECN(NAME),
SPECDEN(FROM 0TO999999),INTERVAI(FROM 0TO99),NUM(FROM0TO9999),SUMLEN(FROM 0.0TO9999999.SUMSLEN(FROM 0.00TO999999ENTERDATALOCATION~SMERGE, CODENO<1-5>,
SAMPNO<7-10>,PERIOD<12-13>,MONTH<15-16>,DAY<17-18>,YEAR<19-20>,
DIEL<22>,
TIME<24-27>,
GEAR<29>,
TOWDEP<31-32>,GRATE<33>,
STATN<34-35>,
TEMP<37-40>,
REV<42-47>,
SPECN<49-50>,
SPECDEN<55-60>(
INTERVAI<62-63>,
NUM<65-68>,
SUMLEN<70-78>,
SUMSLEN<80-90><<
SAVESTOP9),9.99)<<FORMAT~FIX"D, 104 ENTRAINMENT:
LARVALFISHTheEntrained.
Larvaedatabankcontains12,111itemsand25descriptors.
Thedescriptors inthisdatabankareshownbelow:1-CASE2-CODE3-SAMPLENUMBER4-MONTH5-DAY'6-YEAR7-JDAY8-MONTHPD 9-GEAR10-SERIES 11-GRATE12-NORTH/
SOUTH13-INTAKE/DISCHARGE 14-DEPTH15-STARTH 16-STARTM 17-STOPH18-STOPM19-TTIME20-DIEL21-TEMP22-REVS23-SPEC24-SPDEN25-INTERVAL ThemonthlynumberofdataitemsstoredintheEntrained.
LarvaedatabankislistedinTable4.37.105 TABLE4.37..Thenumberofdatait'emsstoredI'ntheEntrained.
Larvaedatabank..Total0Total8-YearMonthofItemsYearMonthofItemsTotal0,YearMonthofItems75767712345678910ll121234567891011123456789101112(8)78(8)(8)(17)(72)(423)(603)(201)(22)(21)(22)(34)(21)79(25)(25)(50)(44)(191)(761)(306)(33)(34)(33)(40)(32)(40)(46)(489)(311)(210)(42)(32)(16)(32)12356789101112123456789101112123456789101112(27)(31)(34)(28)(45)(109)(192)(154)(58)(56)(34)(31)(28)(32)(29)(32)(66)(242)(482)(384)(54)(43)(32)(32)(34)(32)(31)(36)(62)(208)(238)(108)(38)(33)(32).(32)811(32)2(32)3(31)4(33)5(73)6(721)7(380)8(679)9(42)10(32)11(32)12(31)82,1(32)2(32)3'32)4(32)5(93)6(1,070)7(1,024)8(143)9(40)10(40)11(32)12(32)106 Theprocedures forestablishing thisdatabankareasfollows:Entrainment LarvaeFishDataReformatProgramFlatDataPilesTaxirCreateProgramENTRAINED.
LARVAEReformatProramTheoriginalentrainment larvaefishdatawerestoredinthefileENTXXHISTDEN, whereXXindicates theyearwhenthedatawerecollected.
ThereformatprogramELARVARRwasthenusedtoconverttheentrained larvalfishdataintoaflat-file formandtoabbreviate thecodesforthespeciesnames.Thesecodesareshowninthereformatprogram(Table4.38)~Itisnotedthateggsareconsidered asonecategoryforlarvaeandarecodedas"EG."The'omputer controlstatements usedareshownbelo~:Yf/RUN*FTNSCARDS~ELARVARR SPUNCH~EL.OBJ ARUNEL.OBJ5~ENTXXHISTDEN 6~REFENTXXHDEN TaxirCreateProramATaxirCreateprogramELTAXIRCR wasusedtocreatetheEntrained.
Larvaedatabank.ThedatabankissavedontheCOOKtapeatposition12.TheprogramELTAXIRCR ispresented inTable4.39'07 TABLE4.38..PxogramELARVARR.'
PROGRAMELARVARR'ISUSEDTOCONV"-RTTHEENTRAINMENT LARVAEFISHDATAINTO"CAFLATFILEFORMANDTOABBRVIATE THECODESFQRTHESPECIZSNPBKS,CUNIT5ISTEKINPUTFILE.CUNIT6ISTHEOUTPUTFIIF(FLATFILE)~CCCCCtsssees-CassetteINITIALIZEVARIABLZS~CassetteCINTGZRCASE,CARD,CODE,SNO,MO,DAY INTEGERYR,JDAY,MOPD,IGEAR INT-GZRSFRIES,GRATE,NS,IID,DEPTH INTEGERSTARTSSTARTM~STOPHtSTOPM INTEGERTTIHE,DIM, REVS,EGGS,C80INTGERCCBO,SP,SPDEN(51)
INTEGZR$2SPECREAITK6'IVISION SPEC(19)CCassetteCassetteCtsessesCINITIALIZE DATA,DATASPEC/2HAL,2HSP,2HSM,2HYP,2HTP,2HJD,,2HXP,2HSS,2HMS, 12HCPt2HNS~2HFSt2HQL 2HBRt2HUC
~2HZM2HXC~"2HXE
~2HXX/CCtssasssCteeesssICHTHYOPLANKTON SPECIESANDGROUPENTRAINED ATTHECtsseessD+CoCOOKPLANTeCassetteCesssesestessssssssseeseessssssessssssessstsssesssssssesstsssssstsstttstte CtCODE.$COMMONNAMEQRCATGORYtSCIENTIFIC NAMEQRCATGORYC$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'ssstssseseeesssssettettttsstteettttttt C$(1)ALtALEWIFEAI,OSAPSZUDOHARENGUS (WILSON)Ct(2)SPtSPQTTAILSHINERNOTRQPISHUDSQNIUS (CLINTQN)
Ct(3).SM$RAINBOWSMELTOSMERUSMORDAZ(MITCHILL) tCt(4)YP$YELLO'WPERCHPERCAFLAVESCZNS (MITCHILL)
Cs(5)TPtTROUT-PERCH PERCOPSIS QMISCQMAYCUS (WALBAUM)t Cs(6)JDsJOHNNYDARTERETHEOSTOMA NIGRUM(RAFINESQUZ)
C$(7)XPeUNIDENTIFIED FISHLARVAEtCASARESULTOFPOORtCeaCONDITION etCt(8)SSeSLIMYSCULPINCOTTUSCCGNATUS(RIQQRDSON)
Cs(9)MStMOTTLEDSCULPINC~iSBAIRDI(GIRARD)tC$(10)CPsCOMMONCARPCYPRINUSCARPIO(LINNAEUS
)C$(11)NSsNINESPINE STICKLEBACK ePUNGITIUS PUNGITIUS (LINNAZUS)
C$(12)PStDEEPWATER SCULPINMYOZOC-PHALUSTHQMPSONI (GIBARD)tCt(13)QLtQUILLBACK CARPIODES CYPRINUS(IZSUEUR)
C$(14)BRtBURBOTLOTALOTA(IINNAEUS) tCt(15)UCtUNIDENTIFIZD SCULPINSsCO~SSPP.tC$(16)XMtUNIDENTIFIED MINNOWS$CYPRINIDAE tCt(17)XCtUNIDENTIFIED COREGQNIDS sCOREGQNUS SPP.tCt(18)XEtUNIDENTIFIED DARTZRStETHEOSTQMA S?P~tC$(19)XXtUNIDENTIFIED FISHLARVAEtCtZGeEGGStt'C$$$$$$$$$$'$$$$$$$$$$$$$$$$$$$$$$$$$$$$$tsttstststttttttttttttttttttttttt't 108 TABLE4.38.(Continued)
~CCesssessCeesaeasREADTHEFIRSTDATALINEFROMTHETRANSRECFILE.CsseesssCI00READ(5I0iEND~999)CASEgCARDCODESNOWHOiDAY~YRJDAY~IMOPDgIGEARiSERIESiGRATEtNSgIID~DEPTH~STARTHiSTARTMgISTOPH,STOPM,TTIME,DIEL,TEMP, REVS,EGGS,C8010FORMAT(I4iI IiIXiI4IXtI4tIXi3I2iIXiI3iIXiI2iIX2IIIXi2II~IIX,II,I2,IX,ZI2,IX,2I2,IX,I4,IX,II,IX,F4~I,IX,I5,2X,I10,II)CCeseaesaCsssssssCssaessaCsssseseCWRITETHEFIRSTRECORDWHENTHEREARENOHISTOGRAM VALUESEXISTED.20WRITE(6,20)
CASE,CODE,SNO,MO,DAY,YR,JDAY,MOPD,IGEAR,SERIES/
IGRATEiNS
~IID~DEPTHiSTARTH
~STARTMiSTOPH
~STOPM~TTIMEQADILgITEMP,REVS, EGGSFORMAT(I4,2X, I4,IZ,I4,IX,3I2,IZ,I3,IZ,I2,IX,2II,IX,2II,IX,III~I2~IX~2I2~IXi212IZiI4tIXiII~IXiF4~I~IX~I5~2ZiEGi2XI10)IF(C80~EQ.'0)GOTO100CCssseassCessssssREADTHESECONDDATALINE~CsaeaseeC200READ(5,30,ENDa999)
SP,(SPDEN(L),LaI,SI),CC80 30FORHAT(',IOX,52I5tSX
~I5)CCssasasaCsesaaaaCaaaaasaCaaaaaaaCCOMBINETHEFIRSTANDSECONDRECORDSWHENTHEREAREMORETHANONEHISTOGRAM VALUES.50DO40I%1,51IF(SPDEN(I).EQ.0)GOTO40WRITE(6,SO)
CASE,CODE,SNO,MO,DAY,YR,JDAY,HOPD,IGEAR,SERIES, IGRATE,NS, IID,DEPTH,STARTH,STARTM,STOPH,STOPM,TTIH
,DIEL,TEMP, IRVS,SPC(SP),SPDEN(I),I FORMAT(I4i 2ZI4iIXI4iIX~3I2~IXiI3iIZ~I2tIZi2II~IX2II~IIXiIliI2 IX~2I2IX2I2iIXI4IXIltIXF4I~IXIS~2XA212XgI10i2XtI2)40CONTINUECIF(CCBO.EQ
~0)GOTO100GOTO200C999STOPEND109 TABLE4.39..,ProgramELTAXIRCR.
RUNiTAXIRCREATEKNTRAINED.LARVAE'ASK(FROM 0TDQS09)oCODE(FROI4 0TOQSSS)oSAl4PLKNO(FROl4 0TOQS99)~l4CNTH(FROM 1TO12)~DAY(FROM1TQ21)>>YEAR'(FROM 75TO85)~>>lOAY(FROM 0TOQ9S)oMCNTHPD(FROM 0TO00).CEAR(FRQl4 0TO0)oSERIES(FROM 0TD0),CRATE(FROM 0TO9),NQR/SQU(FROl4 0TO0)~INT/QIS(FROM 0TO0)>>DEPTH(FROM 0TO90),STARTH(FROM 0TO00)~STARTM(FROM 0TOQS),STOPH(FRQI4 0TQ09),STOPli(FROl4 0TQQQ)oTTIME(FROM 0TOQQ9Q),DIEL(FRQl4 0TQ9),TKl4P(FROM 0~0TOSQ~0)oREVS(FROM 0TDQQSSS)oSPEC(NAl4E)o SPOKN(FROM 0TO9QS99QQSS),
INTERVAL(FROl4 0TO00)~ENTERDATALCCATICN~RKF KNTHIST~FORMAT~FIXED, CASEc1i0oCOQKc7-10>.
SAMPLKNQc12-15>>,
MCNTHc1718+oDAYct9-20>,
YEARc21-22m
>>>>lOAYc2i26>oMCNTHPOc2$
2S>,CKARc21~,
SERIESc22i,CRATEcoi>,
NCR/SCUc25o, INT/DISc27~.
OEPTHc282So,STARTHci1~i2i, STARTl4ciQ-ii),
STOPHci6i7>,STOPMci8-40m, TTIMEc51Si>oDIELc56),
TKMPc58-C la,REVSc8267>,SPECc7071>.SPQKNc7i82>,INTERVALc86 870iSAVESTOP1LO NUTRIENTANDANIONTheNutrients databankcontains12descriptors and10items.Itin-cludesthedatafrombothentrainment andlakesamples.Thedescriptors forthisdatabankare:1-STATION 42MONTH3-YEAR4-TOTALP5-ORTHOPHOSPHATE P6-DISSOLVED SILICAS1027-TEMPERATURE 8-NITRATE N9-NITRITE N10-CHLORIDE 11-SULFATE 12WXYGENSATURATION TotalPandorthophosphate Pareinunitsofppbwhile'dissolved silicaSi02,nitrateN,nitriteN,chloride, andsulfateareinunitsofppm.ThenumberofdataitemsstoredintheNutrients databankisshowninTable4.40.111 TABLE4'40.ThenumberofdataitemsintheNutrients databank.OTotal8Total~JTotal8YearMonthofItemsYearMonth.ofItemsYear,MonthofItems747576774567891047101234567891011123456789101112(18)(23)(18)(25)(25)(11)(15)(24)(30)(18)(19)(31)(31)(31)(31)787980123456789101112123456789101112123456789101112(31)(31)(31)(31)(31)(31)(31)(31)(31)818212345678910111212345(31)(31)(31)(31)Cll112.
Thestepsforestablishing theNutrients databankareshownonthediagrambelow:PlatDataPileNUTRIENTS TaxirCreateProgramATaxirCreateprogramNUTTAXIRCR wasusedtocreatetheNutrients databankwhichisstoredasNUTRIENTS ontapeCOOKatposition14.ThecontentsofNUTTAXIRCR areshowninTable4.41'13 TABLE4.41~~Pzogran.HUTTAXIRCR.
R*TAXIRCREATENUTRIFNTS, STATION(NAME),
MONTH(FROM 1TO1'2),YEAR(FROM 74TO82),TOTALP(FROM0.000TO9999.999),
ORTHOPHOSPHATE P(FROM0.000TO9999.999),
DISSOLVED SILICASIO2(FROM 0.000TO9999.999),
TEMPERATURE C(rROM0.00TO100.00),NITRATEN(FROM0.000TO9999.999),
NITRITEN(FROM0.000TO9999.999),
CHLORIDE(FROM 0.000TO9999.999),
SULFATE(FROM 0.000TO9999.999),
OZYGFNSATURATION(FROM 0.000TO9999.999)>>
ENTERDATALOCATION~REFREMI FORMAT~FIZEDp STATION<1-20>,
MONTH<21-30>,
YEAR<31"40>,TOTAIP<41-50>,ORTHOPHOSPHATE P<51-60>,DISSOLVEDSILICASIO2<61-70>,
TEMPERATURE C<71-80>,
NITRATEN<81-90>,
NITRITEN<91-100>,
CHLORIDE<10 1-110>,SULFATE<111-120>,OXYGENSATURATION<121-130>>>
SAVESTOP114 LAKEMATERCHEMISTRY TheLakewater databankcontains48descriptors and735items.Thedataaresolelyfromlakesamples.Thedescriptors forthisdatabankare:1-STATION 2-MONTH3-YEAR4-TOTALPHOSPHORUS-PPB 5-ORTHOPHOSPHORUS-PPB 6-DISSOLVED SILICA-PPM 7-TEMPERATURE-DEGREES C8-NITRATE-PPM N9-NITRITE-PPM N10-CHLORIDE-PPM 11-SULFATE-PPM 25-DISSOLVED SODIUM-PPM 26-DISSOLVED NICKEL-PPB 27-DISSOLVED LEAD-PPB28-DISSOLVED STRONTIUM-PPB 29-DISSOLVED ZINC-PPB30-PH31-SECCHI DISK-M32-EH-MV33-CONDUCTIVITY-UMHOS 34-SAMPLE DEPTH-M35-PARTICULATE BARIUM-PPM 12WXYGENSATURATION PERCENT36-PARTICULATE CALCIUM-PPM 13-ALKALINITY-MEQ/L 14-DISSOLVED BARIUM-PPB 15-DISSOLVED CALCIUM-PPM 16-DISSOLVED CADMIUM-PPM 17-DISSOLVED COBALT-PPB 18-DISSOLVED CHROMIUM-PPB 19-DISSOLVED COPPER-PPB 20-DISSOLVED IRON-PPB21-DISSOLVED POTASSIUM-PPM 22-DISSOLVED MAGNESIUM-PPM 23-DISSOLVED MANGANESE-PPB 24-DISSOLVED MOLYBDENUM-PPB 37-PARTICULATE COBALT-PPM 38-PARTICULATE CHROMIUM-PPM 39-PARTICULATE COPPER-PPM 40-PARTICULATE IRON-PPM41-PARTICULATE POTASSIUM-PPM 42-PARTICULATE MAGNESIUM-PPM 43-PARTICULATE MANGANESE-PPM 44-PARTICULATE MOLYBDENUM-PPM 45-PARTICULATE SODIUM-PPM 46-PARTICULATE NICKEL-PPM 47-PARTICULATE STRONTIUM-PPM 48-PARTICULATE ZINC-PPM1Theunitforeachdescriptor isindicated inthedescriptors afterthesign"-".ThenumberofdataitemsstoredintheLakewater databankisshowninTable4.42.115 TABLE4.42.ThenumberofdataitemsintheLakewater databank.Total0Total8'otal8YearMonthofItemsYearMonthofitemsYearMonthof,Items744(18)(23)6(18)7(25)8(25)9(11)10(15)75'(24)7(24)8(6)10(18)767778794(18)7(30)4(30)7(30)10(30)4(30)7(30)10'30)4(30)7(30)10(30)804(30)7(30)10(30)4(30)7(30)10(30)4(30)TaxirCreateProramATaxirCreateprogramTAXSOURCEWAT wasusedtocreatetheLakewater databankwhichisstoredasLAKEWATER ontapeCOOKatposition'15.
ThecontentofTAXSOURCEWAT isshowninTable4.43.ThelinefilefromwhichtheTaxirdatabasewascreatedisnamedCOOKWATER.
116 TABLE4.43.ProgramTAXSOURCENAT.
RUNeTAXIRCREATELAKEWATER, STATION(NAME),
MONTH(FROM 1TO12)~YEAR(FROM 73TO85),TOTALPHOSPHORUS-PPB(FROM 0.00TO3300F00),ORTHOPHOSPHORUS-PPB(FROM 0.00TO1500F00);DISSOIVED SILICA-PPH SI02(FROM 0+00TO12.30)~TEHPERATURE"DEGREES C(FROM0.0TO30.0)iNITRATE-PPM N'(FROM0F00TOF50)iNITRITE"PPM N(FROM0.000TO0.100)~CHLORIDE-PPM (PROM1.00TO110.00),SULFATE-PPM (FROMF00TO70F00),OXYGENSATURATION PERCENT(FROM0'TO160'),ALKALINITY-MEQ/L (PROM1.00TO5.00),DISSOLVED BARIUM-PPB (FROM10.0TO130+0),DISSOLVED CALCIUM-PPM (FROM20.0TO80')~DISSOLVED CADMIUH"PPM (FROM0.120TO0'50),DISSQLMMCOBALT-PPB (FROM0.050TO5.000),DISSOIVED CHROMIUM-PPB (FROM0.500TO3.700),DISSOLVED COPPER-PPB (FROM0.900TO10.600)gDISSOLVED IRONPPB(FROM1'0TO460F00)~DISSOLVED POTASSIUM"PPH (FROM0.700TO7.100),DISSOLVED MAGNESIUM-PPM (FROM7.40TO32F00),DISSOLVED MANGANESE PPB(PROM0F050TO184F000)DISSOIVED MOLYBDENUH-PPB (FROM2'0TO4150)~DISSOLVED SODIUM-PPM (FROM2.80TO69F50),DISSOLVED NICKELPPB(FROMF00TO54F50)~DISSOLVED LEAD-PPB(FROM0.600TO0.680),DISSOLVED STRONTIUM PPB(FROH40'TO190')tDISSOLVED ZINCPPB(PROM0'0TO97F00)PH(FROM7.40TO8.85),SECCHIDISK-H(FROM0.65TO12'0),EH-MV(FROM370TO640),CONDUCTIVITY-~QS (FROM212TO672),SAMPLEDEPTH"H(FROM0.0TQ30.0),PARTICULAT BARIUM-PPM (PROM0.0000TO0.0160),PARTICULATE CALCIUM-PPM (FROM0.00TO2.32),PARTICULATE COBALT-PPM (FROM0.00TO0'1),PARTICULATE CHROMIUM-PPM (FROM0.0000TO0.0110),PARTICULATE COPPER-PPH (FROM0F00000TO0.00930),
PARTICULATE IRON-PPM(FROM0.000TO1F000),PARTICULATE POTASSIUM-PPM (FROM0.000TO0.380),PARTICULATE MAGNESIUM-PPM (FROM0.000TO1F000),PARTICULATE MANGANESE-PPM (PROM0,000TO0.120),PARTICULATE MQLYBDENUH-PPH (FROM0.00000TO0.00570),
PARTICULATE SODIUM-PPH (FROH0.0250TOF8000),PARTICULATE NICKEL-PPM (FROM0.00000TO0'0270),PARTICULATE STRONTIUM-PPH (FROM0.00000TO0'0260),PARTICULATE ZINC-PPH(FROM0.0000TO0.2200)*ENTERDATALOCATION~WATER, FORMAT~PI~~
tSTATION<1-20>,HONTH<21-23>,YEAR<24-26>,TOTALPHOSPHORUS-PPB
<27-38>,ORTHOPHOSPHORUS"PPB
<39-50>,DISSOLVED SILICA'-PPH SIQ2<51-62>,TEMPERATURE-DEGREES C<63-74>,Ni'iiATE-PPH N<75-86>,NITRITE-PPM N<87-98>,
TABLE4.43.(Continued)
~tCHLORIDE-PPM<99-110>,SULFATE-P PM<111-122>,OXYGENSATURATION PERC~VP<123-134>,
ALKALINITY-MEQ/L
<135-146>)
DISSOLVED BARIUM-PPB
<147-158>,
DISSOLVED CALCIUM-PPM
<159-170>,
DISSOLVE)
CADMIUH-PPM
<171-182>)
DISSOLVE)
COBALT-PPB
<183-194>,
DISSOLVED CHROMIUM-PPB
<195-206>,
DISSOLVED COPPER-PPB
<207-218>,
DISSOLVED IRONPPB<219-230>)
DISSOLVED POTASSIUM-PPH
<231-242>,
DISSOLVED MAGNESIUM-PPM
<243-254>,
DISSOIVED HANGANESE-PPB
<255-266>,
DISSOIVED MOLYBDENUM-PPB
<267-278>,
DISSOLVED SODIUM-PPH
<279-290>,
DISSOLVED NICKEL-PPB
<291-302>,
DISSOLVED LEAD-PPB<303-314>,
DISSOLVED STRQNTIUH-PPB
<315-326>,
DISSOLVED ZINC"PPB<327"338>,
PH<339-350>,
SECCHID!SK"H<351-362>,
9L-MV<363374>,CONDUCTIVITY-UHHQS
<375-386>)
SAMPIEDEPTH-H<387-398>,
PARTICULATE BARIUH-PPM
<399-410>)
'ARTICULATE CALCIUM-PPM
<411-422>,
PARTICULATE COBALT-PPM
<423-434>,
PARTICULATE CHROMIUM-PPM
<435-446>,
PARTICULAT COPPER-PPM
<447-458>,
PARTICULATE IRON-PPH<459-470>)
PARTICULAT POTASSIUM"PPH
<471-482>,
PARTICULATE MAGNESIUM-PPM
<483-494>,
PARTICULATE HANGANESE PPM<495-506>,
PARTICULATE MOLYBDENUM-PPH
<507-518>,
PARTICULATE SODIUM-PPH
<519-530>,PARTICULATE NICK%"PPH
<531-542>,
PARTICULATE STRONTIUM-PPH
<543-554>,
PARTICULATE ZINC-PPH<555566>+SAVESTOP SEDIMENTTEXTUREANDCHEMISTRY TheSediments databankcontains52descriptors and430items.Thedataarefromlakesamples.Thedescriptors forthisdatabankare1-STATION 2-YEAR3-STATION DEPTH34-STATION NUMBER5-SAMPLEDEPTHWM6-LOSSONIGNITION-X 7-WATERCONTENT-%
8-3PHI-X~9-2PHI-X10-1PHI-X11&PHI-X12-1PHI-X13-2PHI-X14-3PHI-X15-4PHI-X16-5PHI-X17-6PHI-/i18-7PHI-X19-8PHI-X20-9PHI-%21-10PHI-%22CARAVEL-%
23-SAND-X 24-SILT-%
25-CLAY-/i 26-MEANGRAINSIZE-PHI27-STANDARD DEVIATION OFMEANGRAINSIZE-PHI28-KURTOSIS OFGRAINSIZE29-SKEWNESS OFGRAINSIZE30-INSOLUBLE FRACTION-X 31-BARIUM-X 32-TOTALCARBON-X33-INORGANIC CARBON-X34WRGANIC CARBON-1.
35-CALCIUM-X 36-COBALT-X 37-CHROMIUM-X 38-COPPER-X 39-IRON-X 40-POTASSIUM-%
41-MAGNESIUM-%
42-MANGANESE-%
43-MOLYBDENUM-X 44-SODIUM-%
45-NICKEL-X 46-LEAD-X 47-STRONTIUM-X 48-ZINC-X 49-EH-MV50-PH51-X-LOCATION 52-Y-LOCATION ThenumberofdataitemsstoredintheSediments databankisshowninTable4.44.119 TABLE4.44.Thenumberofdataitemsinthe.Sediments databank.YearTotalNumberofItems19731975(158)(160)1977(112)TaxirCreateProramATaxirCreateprogramTAXSOURCESED wasusedtocreatetheSediments
.databankwhichisstoredasSEDIMENTS ontapeCOOKatposition16.ThecontentofTAZSOURCESED isshowninTable4.45.ThelinefilefromwhichtheTaxirdatabasewascreatedisnamedCOOKSEDIMENT.
120S TABLE4.45.ProgramTAXSOURCESED.
),(FROM0.130TO2'00),500),.000),IFIXE~RUNeTAXIRCREATESEDIMENTS, STATION(NAME)i YEAR(FROM 1973TO1977),STATIONDEPTH-M(FROM4.5TO61.5)gSTATIONNUMBER(FROM1.TO233.)~SAMPLEDEPTH-CM(FROM0.5TO62.5),LOSSONIGNITION-X (FROM0.7TO60.4),WATERCONTENT-X (FROM14.4TO95'),-3PHI-X(FROM0.00TO8.47),'-2PHI-X(FROM0.00TO20.71),-1PHI-X(FROM0.00TO42.38),0PHI-X(FROM0F00TO57'5),1PHIX(FROM0~00TO65~41)i2PHI-X(FROM0~00TO82.51),3PHI-X(FROM0.00TO81~01),4PHI'X(FROM0~00TO85~70)5PHI-X(FROM0.00TO39.40),6PHI-X(FROM0.00TO26.86),7PHI-X(FROM0F00TO64.76),8PHI-X(FROM0.00TO23.58),9PHI-X(FROM,O.OO TO9.36),10PHI-X(FROM0F00TO19.62),GRAVEL-X(FROM0.00TO63.10),SANDX(FROM15'0TO102F00)gSILT-X(FROMO.OO,TO62.30),CLAY-X(FROM0.00TO47'0),MEANGRAINSIZE-PHI(FROM-1'00TO6.100STANDARDDEVIATION OFMEANGRAINSIZE-PHIKURTOSISOFGRAINSIZE(FROM-5.600TO2.SKEWNESSOFGRAINSIZE(FROM-3,000TO35INSOLUBLE FRACTION-X (FROM6.00TO99.00)BARIUM-X(FROM0.000000TO0.019000),
TOTALCARBONX(FROM0'5TO7'5)INORGANIC CARBON"X(FROM0.00TO5.30),ORGANICCARBON-X(FROM0.00TO5.30),CALCIUM-7 (FROM0.000TO11.700),COBALT-X(FROM0.000140TO0.004200),
CHROMIUM-X (FROM0.000018TO0.025000),
COPPER-X(FROM0.000020TO0.005000),
IROH-X(FROM0.120TO9.200),POTASSIUM"X (FROM0.035TO0.760),MAGNESIUM X(FROM0+000TO8'40)MANGANESE-X (FROM0.000730TO0.095000),
MOLYBDENUM-X (FROM0.000000TO0.003580),
SODIUM-X(FROM0.0100TO0.0860),NICKEL-%(FROM0.000000TO0.010300),
LEAD-X(FROM0.000094TO0.001090),
STRONTIUM-X (FROM0.000380TO0.010700),
ZIHC-X(FROM0.00100TO0.03000),
EH-MV(FROM-70.0TO485.0),PH(FROM6.95TO8.55),X-LOCATION (FROM1.00TO18.00),Y-LOCATION (FROM0'5TO10.00)sENT"RDATALOCATION~COOKSEDIMEHT, FORMAT>-STATION<1-16>,YEAR<17-21>,STATIONDEPTH-M<22-31>,STATIONNUMBER<32-41>,SAMPLEDEPTH-CM<42-51>,
TABLE4.45'Continued)
~IOSSONIGNITION" X<52-61>,WATERCONTENT-X
<62-71>,"3PHI-X<72"81>,-2PHI"X<82-91>,-1PHI-X<92-101>I 0PHI-X<102-111>,
1PHI-5<112121>~2PHI-I<122-131>I3PHI-X<132-141>,
4PHI-X<142-151>,
5PHI-X<152-161>,
6PHI-X<162-171>,
7PHI-%<172-181>,
8PHI-X,<182-191>,
9PHI-X<192-201>,
10PHI-X<202-211>,
GRAVEL-X<212-221>,
SAND-X<222-231>,
SILT-5<232-241>,
CLAT-X<242-251>,
MEANGRAINSIZE-PHI<252-261>,
STANDARDDEVIATION OFMEANGRAINSIZE-PHI<262271>,KURTOSISOFGRAINSIZE<272-281>,
SKEWNESSOFGRAINSIZE<282-291>,
INSOLUBLE FRACTION-X
<292-301>,
BARIUM-'X
<302-31.1>,
TOTALCARBON-X<312-321>,
INORGANIC CARSON-5<322-331>,
ORGANICCARBON-I<332-341>,
CALCIUM-5
<342-351>,
COBALT-X<352-361>,
CHROMIUM-X
<362-371>,
COPPER-X<372-381>,
IRON-X<382-391>,
POTASSIUM-X
<392"401>,
MAGNESIUM-%
<402-411>,
MANGANESE-X
<412-421>,
MOLYBDENUM-I
<422-431>,SQDI.UM"X<432441>,\NICKEL-X<442451>,LEAD-X<452-461>
iSTRONTIUM-5
<462-471>,
ZINC-X<472-481>)
EH-MV<482-491>,
PH<492-501>,
X-LOCATION
<502-511>,
7-LOCATION
<512-521>eGAVESTOP122 CHAPTER5INTERACTIVE PROGRAMPROGRAMINTERACTTheprogramINTERACT(Table5.1)isaninteractive computerprogramwhichiswrittentoprovideon-lineinstructions touserswishingtoaccesstheCookVwaterqualitydatabase.Itishopedthatthisinteractive programcanfacili-tatetheuseofthisdatabasebyuserswithlittleornoknowledge ofcomputerprogramming, MTS,orTaxir.TheprogramINTERACTconsistsofsevenma5orcommandsforaccessing thedatabase.Abriefdescription ofthesecommandsisgivenbelow.1~"H"~HELPThisprogramoffersaHELPfile(Table5.2)whichuserscanrequestatanypointinthedata.accessing process.BysimplytypingintheIIcommand"H,"usersareprovidedwithacompleteexplanation ofothercommandsusedinconnection withthedatabase~2."S"~SELECTDATABANKAnyoneofthe13databankscontained inthedatabasesystemcanbeselectedusingthiscommand.Sinceitisimpossible tokeepall13databanksonlineatalltimes,anadditional programhasbeenwrittentoaccessthosedatawhicharestoredonacomputertape.ThisFORTRANprogramiscalledLINK(Table5.3).Itwillselectandrestoreinformation fromatapewheneverafilerestoration requestismade.Whenthejobiscompleted, thecomputerwillreturntothismainprogramINTERACT.
123 3."0"~SELECTOUTPUTOPTIONThiscommandprovides.threepossibleoptionsfor,output:terminalscreen,temporary, orpermanent linefile,.andMTSlineorpageprinter.4."V"VARIABLEDESCRIPTION Thelistandtypesofdescriptors inthisdatabasemanagement systemcanbeobtainedusingthiscommand.5~"P"~PERCENTAGE OFTOTALDATAITEMSThepercentage oftotaldataitemscanbeobtainedbyapplyingthiscommand.6~"Q"~QUERYThisisanimportant commandforretrieving data.Bytyping"Q,"userscanquerytheneededinformation andgeneratenecessary tablesandreportswithrequested data.7~"T"~TERMINATE THEPROGRAMEntering"T"resultsinthetermination oftheexecution oftheprogram.tInthefollowing presentation ofthecomputerprogramsINTERACTandLIKE,boxeshave'eenusedtoprovideinformation andexplanations ofthedifferent stagesofoperations, aswellastheassignments fortheinputandoutputunitsanddevices'NTERFACE WITHTAXIRUSINGLVZERACTINTERACTisaFORTRAN-based interactive program.Itactsasaninter"mediarybetweentheusersandTaxirbyaskingtheusersaseriesofquestions 124 TABLE5.1.ProgramLtTERACT.
CTHISINTERACTIVE PROGRAMINTERFACES WITHTAXIRTORETRIEVEDATACFROMTHE13DATABANKSCREATEDFORCOOKPROJECT,TOWORKWITHACPARTICULAR DATABANK,THEDATASHOULDBEAVAILABLE ONLINEINACTEMPORARY ORPERMANENT FILE.HOWEVER,THISPROGRAMHASANOPTIONCTORESTORETHEDATABANKSFROMATAPE.CCTORUNTHISPROGRAMTYPE:"SOURCEINTERACTIVE" CCINTHERUNCOMMANDUNITSAREASSIGNEDASFOLLOW:CUNIT5ISASSIGNEDTO$MSOURCEiTOREADTHEINPUTFROMTHE'SCREEN.
CUNIT6ISASSIGNEDTO$SINKtTOPRINTTHEMESSAGESONTHESCREEN.CTAXIRMESSAGESAREWRITTENONSERCOM,INTHISPROGRAMSERCOMISCASSIGNEDTOATEMPORARY FILECALLED"-CHECK".
CUNIT7ISALSOASSIGNEDTO"-CHECK"TOCHECKTAXIRMESSAGES.
CCCC$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$CCMAINPROGRAMTOINITIALIZE CCALL$CSYSTEMSUBROUTINES.
tC$$Cttttiitttttitatttttattttttttttttatttttatttatttttt CCCLOGICAL'RESPLOGICALEQUCC~CCALLINITLZWRITE(6,1)
FORL1AT(//,'ARE YOUALREADYFAMILIARWITHTHEPROGRAM?'/,
1'TYPE"Y"FORYESTOSK!PTHEDESCRIPTION OFTHECOK%ENDSo'/,
1'TYPE"NIFYOUNEEDHELP.')CCCALLFREAD(5,'TRING:',RESP,1)IF(EQUC('Y',RESP).
OR.EQUC('y',RESP))
GOTO1000CA?LHELP(0)CC1000CALLCMDNOE('SEM
-CHECK'p10')WRITE(6,4) 4FORMAT(//,'SELECT NEXTCOMMAND:(H,S,O)V,P,Q,T)')
CCtitttaaCtttiiitCtaaatttCACCEPTACOMMANDANDDECODEIT.C10C20CALLDECODE(NCOh9JD)
GOTO(10,20,30,40,50,60,70),
NCOMNDCALLHELP(1)GOTO1000CALLSELDBGOTO1000C30'ALLOUTOP125 TABLE5.1.(Continued).
GOTO1000C40CALL.VOCABGOTO1000C50CALIPERCNTGOTO1000C60CALIQUERTGOTO1000C70CALLTERMINGOTO1000CCENDSUBROUTINE INITLZCCCCCCCCCCCCALLTAXIR('DUMMY',0)
CALLPREAD(-2,
'LENGTH',
.TRUE.)CAILPREAD(-2,
'DELIMITERS',
'/XC/;/'CCRETURNENDSUBROUTINE DECODE(NCOMND)
CCCCCCCCCCCC$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$SUBROUTINE DECODE;TORECEIVETHECOMMANDl$$DECODEIT.$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$IOGICAL$1RESPLOGICALZQUC$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'$$$$$$$$$$$$$'$$$$$$$SUBROUTINE INITLZ;TOINITIALIZE TAZIRPROGRAM.$$0~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$10NERR~0NCOMND$0LZN$1CALIFARAD(5,'STRING:',RESP,IZN)
IP(ZQUC('Hr,RESP)+OR.ZQUC('h',RESP))
NCOMND$1IF(ZQUC('S',R SP).OR.ZQUC('s',R SP))NCO&lD2IF(EQUC('O',RESP).OR.ZQUC('o',RESP))
NCOMND~3I.(EQUC('V',RESP).OR.
QUC('v',RESP))
NCOMND~4126 TABLE5.1.(Continued).
IF(EQUC('P'ESP).
OR.EQUC('p',RESP))
NCOMNDsSIF(EQUC('Q',RESP).
OR.EQUC('q',RESP))
NCOMND6IF(EQUC('T',RESP).
OR.EQUC('t',RESP))
NCOMNDs7IF(NCOMND.GT.0)RETURNCCNERR~NERR+1 IF(NERR.GE.2)
GOTO20CWRITE(6,1)1FORMAT(//,
'NVALIDCOMMAND,TRYAGAIN.'GOTO10CCassssaaCssssassPRINTTHELISTOFCOMMANDS.
CsassssaC20WRITE(6,2) 2FORMAT(//,'NVALID COMMANDlTHECOMMANDSARE:'//,1'HHELP'/,1'SSELECTDATABANK'/,1'0SEIECTOUTPUTOPTION'/,
1'VVARIABLEDESCRIPTION'/,
1'PPERCENTAGE OFTOTALDATAITEMS'/,1'QQUERY'/,1'TTERMINATE THEPROGRAM!'
CCNERR~OGOTO10CCENDSUBROUTINE HELP(I)CCCCCCCCCCCCCCssaaasssassssasasasssssas'ass vasss'sasssssaasssssssassssaaasssas sssSUBROUTINE HELP'HISROUTINEISUSEDTOHELPsTHEUSERTOUNDERSTAND THEQUERTCOKAANDSUSEDsINTHEPROGRAM.THEPROGRAMCONTENTSAREREADsaFROMTHEMTSLINEFILESDIS:HELP sssssaaafs'saasaassaass' ssassssssassassaaasssaassssasssaassasaa'ssa IF(I.NE.O)
GOTO5'ALLCMDNOE('SCOPT SDLS:HELP(001,071)
TOsSINKaOSP
',38)RETURNCCSWRITE(6,1)1FORMT(//q'HELP:
SELCTTHECOMMANDTHATYOUWANTTO'/q1'BE.EXPLAINED:
(H,S,O,V,P,Q,T)')
CC127 TABLE5.1.(Continued).
CAILDECODE(NCOMHD)
QOTO(10t20t30t40't50t60
~70)tNCOMNDC10CALLCMDNOE('SCOPY SDLS:HELP(072,089)
TORETURNC20CALLCMDNOE('SCOPY SDLS:HELP(090, 104)TORETURN$SINK$0SP',38)sSINKsOSP
',38)C30CALLCMDNOE('COPY SDLS:HELP(105, 120)TO$SINK$0SP',38)RETURNC40C50CALLQC)NOE('COPY SDLS!HELP(121, 135)TORETURNCALLCMDNOE('COPYSDLS:HELP(136, 151)TORETURNsSINKsOSP
',38)~~C60',38)CALL~NOE('SCOPY SDLS:HELP(152, 166)TOsSINK$0SPRETURNtlIC70CALLCa(DNOE(SCOPYSDLSHELP(l67t181)TOCCRETURNENDSUBROUTINE SELDBCCCCCCCCCCCC$SINK$0SP',38)INTGERERRNUMIOGICALs1RESPLOGICAIEQUCCCsssssssCsssssssCsssssssC10WR!2FOPRINTTHELISTOFDATABANKS~TE(6,2)RMAT(//tTHEDATABANKSANDTHEIR1//,1'AKE.PHYTOPLANKTON 1'HTRAIHED.PHYTOPLAHKTON l'AKE.ZOOPLANKTON 1'NTRAINED.
ZOOPLANKTON 1'AKE.BENTHOS1'NTRAINED.BENTHOS1'MPIHGED.BENTHOS1'DULT.FISH.SUMMARY.STATISTICS1'AKE.ADULT.FISHCODENUMBERSARE;'1t/2'/,/4t/5~/6t/7~/8'/,9~/$$$'$'$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$s$$SUBROUTINE SELDB;TOSELECTASPECIFICsDATABANK.$s$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~$$$$$$$$$$$$$$$$128 TABLE5.1.(Continued)
~1'MPINGED~ADULT.FISH 1'LAKE.LARVAE 1'ENTRAINED.LARVAE 1'NUTRIENT.AND.ANION 1'LAKEWATER.CHEMISTRY 1'SEDIMENTS OR10'/,OR11OR12'/,OR13'/,OR14'/,OR15'CCsssesesCsssesssCHECKTHEAVAILABILITY OFTHEDATABANK(S)~CssessssC20WRITE(6,3) 3FORMAT(//t THEDATASHOULDBEAVAILABLE ONLINEo/t1'ISTHEDATABANKOFYOURINTERESTAVAILABLE ONLINE?'/,1'PLEASEANSWER"Y"OR"N"o')CC304LEN~1CALLFREAD(5,'STRING:',RESP,IEN)
IF(EQUC('Y',RESP).
OR.EQUC('y',RESP))
GOTO30CAILCNDNOE('OURCERESTORE',14)STOPWRITE(6,4)
FORMAT(//,'TO PLACETHEREQUESTED DATABANKINTHETAXIRPROGRAM,'/,
1'ENTERTHEDATABANKCODENUMBER:'/g 1'(EX:ENTER1FORLAKE.PHYTOPLANKTON)')
CALLFREAD(5,'I:',IC)GOTO(110i120l130i140'50~160'70t180'90i200i210i220
~230t240~250)iICWRITE(6,5)FORMAT(//,
'ADOPTION!'GOTO10CCsssssseCssssessTAXIRINTERFACE WITHTHEDATABASE.CsseesesC110CALLTAXIR('GET LAKE.PHYTOPLANKTON',22)
CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ.0)
RETURNCALLTAXIR('DUMMY',-1)
CALLCMDNOE('SEM
-CHECK',10)
'CALLTAXIR('GET
-LAKE.PHYTO',
l5)CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ.0)
RETURNGOTO300C120CALLTAXIR('GET ENTRAINED.PHYTOPLANKTON'i27)
CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ.0)
RETURNCALLTAZIR('Dt&KY',-
1)CALLCMDNOE('SEM "CHECK',10)
CALLTAXIR('.GET
-ENT.PHYTO',14)
CALLERRCHK(ERRNUM)
IF(ERRNUM.ZQ.O)
RETURN129 TABLE5.1.(Continued).
C130C140C1$0C160C170C180GOTO300CALITAXIR('GZTLAKE~ZOOPLANKTON',20)
CALLERRCHK(EKQ1UM)
IF(ERRNUM.EQe 0)RETURNCAIITAXIR('DUMMY'-1)
CALLCMDNOE('EM-CHECK',10),CALLTAXIR('GET
-LAKEZOO'13)CALLERRCHK(ERRNUM)IP(EitRNUMZQ.O)RETURNGOTO300~CALLTAXIR('GET ENTRAINED+
ZOOPIANKTON',25)
CALLERRCHK(ERRNUM)IP(ERRNUM.EQ.
0)RETURNCALLTAXIR('DUMMT',-1)
CALLCMDNOE('EM
-CHECK'10)CALLTAXIR('GET
-ENTZOO',12)CALLERRCHK(ERR')IF(ERRNUMoEQ,0)RETURNGOTO300CALLTAXIR('ZTLAKZ~BENTHOS',16)CALIERRCHK(EKQRJM)IF(EKQAJMoEQ.0)RETURNCALLTAXIR('DUMMY',-1)
CALLCMJNOE('R4-CHECK',10)CALLTAXIR('GZT LAKE.BEH',
13)CALLZRRCHK(ZRRNUM)
IF(ERRNUM,EQo0)RETURHGOTO300CALLTAXIR('GET ENTRAINEDiBENTHOS',21)
CALLERRCHK(EKQfUM)
IP(EKQiUM.EQ.0)RETURNCALLTAXIR('DUMONT',-1)
CALLQC)NOE('R4
-C¹CK',10)CALLTAXIR('GPT EHT+BEN',
12)CALLERRCHK(ERRNUM)IF4ZRRNUMEQ.0)RE~iGOTO300CALLTAXIR(GZTIMPINGEDoBENTHOSI20)CALLERRCHK(EK1NUM)
IP(EJ1RNUM, EQ.0)RETURNCALLTAXIR('DtPKT',
1)CALLQC)NOE('EMCHEZ(',10)CALLTAXIR('GET
-IMP~BEN',12)CALLERRCHK(EKQfUM)IF(FXRNUMEQ,0)RETURNGOTO300CALLTAXIR('ZTADULT.PISH.SUMMARY~STATISTICS
',33)CALLERRCHK(EJKNUM)IF(ERRNUM.EQ.O)
RTURNCALLTAXIR('DUMMY',-1)
CALLCANOE('ZM-CHECK',10)CALLTAXIR('~c, "AD.PISH.S.S',16)
CALLERRCHK(EKQ1UM)IP(ERRNUM,EQ,0)RETURN130 TABLE5.1.(Continued).
C190C200C210C220C230240GOTO300CALLTAXIR(GETLAKE~ADULTFISHg19)CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ>>0)
RETURNCALLTAXIR('DUMMY'-1)
CAILCMDNOE('EM
-CHECK'0)
CALLTAXIR('GET
-LADFISH',14)CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ,O)
RETURNGOTO300CALLTAXIR(GETIMPINGEDADULT>>FISH g23)CALLERRCHK(ERRHUM)
IF(ERRNUM.EQ,O)
RETURNCALLTAXIR('DUMMY',
1)CALLCMDNOE(SEMCHECK~10)CALLTAXIR(GETI~AD>>FISH~14)CALLERRCHK(ERRHUM)IF(ERRHUM.EQ.0)RETURNGOTO300CALLTAXIR('GET LAKE.LARVAE',1S)CAILERRCHK(ERRNUM)
IF(ERRNUM.EQ.0)
RETURNCALL.TAXIR('DUMMY',-1)
CALLCMDNOE('SEM
-CHECK',10)CALLTAXIR('GET
-L.LARVAE',13)
CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ.O)
RETURNGOTO300CALLTAXIR('GET ENTRAINED.
LARVAE',20)
CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ.0)
RETURNCALLTAXIR('DUKAY',-1)
CALLCMDNOE('SEM
-CHECK',10)CALLTAXIR('GET
-E.LARVAE',13)
CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ.0)
RETURHGOTO300CALLTAXIR('GET NUTRIENTS','13)
CALLERRCHK(ERRHUM)
IF(ERRHUM.EQ.O)
RETURNCAILTAXIR('DUMMY' 1)CALLCMDNOE('SEM
-CHECK',10)
CALLTAXIR('GET
-NUTRIENTS',
14)CALLERRCHK(ERRNUM)
IF(ERRNUM.EQ.0)
RETURNGOTO300CALLTAXIR('GET LAKEWATER',13)
CALLERRCHK(ERRNUM)
IF(ERRHUM.EQ.O)
RETURH~CALLTAXIR('DUMMY' 1)CALLCANOE('SEM
-CHCK',10)CALLTAXIR('GET
-LAKERATER'4)
CAILERRCHK(ERRHUM)
IF(ERRNUM.EQ.0)
RETURNGOTO300131 TABLE5.1.(Continued).
250CALLTAXIR('GET SK)IMEHTS',.12)
CALLERRCHK(ERRNUM)
IP(ERRNUM.EQ.0)RE'eeNCALLTAXIR('DUMMY',-1)
CALLQC)NOE(SEM'HECKp'10)CALLTAXIR('GET SEDIMENTS',
14)CALLERRCHK(ZRRHUM)'IP(EIGQRJMe ZQe0)RETURHCC40004$0CesaasssCHECK'TAXIRMESSAGES'0$
00000C300CALLTAXIR(DUMMY',1)CALLCMDNOE(>SZM-CHECK'10)WRITE(6,6) 6FORMAT(//g
'REQUESTED DATABANKISNOTAVAILABLZ
~'/,1'DOYOUMANTTOSZLZCTAHOTHERDATABANKS'/,1'ENTER"Y"PORYES,'N"PORNO')CALLPReeD(5,,'TRING:
',RESP,LEH)
IP(ZQUC('YRESP).OR.ZQUC('y',RESP))
GOTO20C\C'RTURNENDSUBROUTINE OUTOPCCCCCCCCCCCCCC0000000000$
00$0000000$000'40004000$
$00000$000000000$
0000SUBROUTINE OUTOP;TOSELECTAHOUTPUT00.PILEORDEVICEe00(00040000000$
$$$4$$$404000000$
00$$$$0$$000$00$040004400 LOGICAL*'1 LINE(29)DATALINE(1)~LINE(2)JLINE(3)~LINE(4)~LINE(5)tLIHE(6)1LINE(7)/'1HSe1HEI1HTe1H~1HOf1HUe1HT/DATALINE(8),LINE(9),IINE(10),LINE(11)/1HP g1HUg1HTg1H$/CCesaessaC$004000,OUTPUTPILE/DEVICE OPTIONS'ssaeaea C5%RITE(6,1)1'ORMAT(//,
'SLZCTOUTPUTPIIZ/DEVICE TYPE!'//13Xi'TERMIVAI'/i13X,'2LINEPRINTS'/,
13X,'OUTPUTPILENAM~'CCCALLPREAD(5,',IC)IP(IC.EQ.
I)GOTO10IP(IC.EQe2)
GOTO30132 TABLE5.1.(Continued)
~CCWRITE(6,2) 2FORMAT(//,'BAD OPTION)')
GOTO5CCsssstasCsaesaesCassetteC10CAINTERFACE WITHTAXIRLLTAXIR(SETOUTPUTssMSINKs
~'18)RETURNC20CALLTAXIR(SETOUTPUTasPRINTs g18)RETURNLENs18CALLFREAD(5,'TRING:',LINE(12),LEN)
LENALLEN+11CALLTAXIR(LINE,LEN)
CCC30WRITE(6,3) 3FORMAT(//~ENTERNAMEOFTHEOUTPUTFILE)CCssseaetCassetteINTERFACE WITHTAXIR,CesssasaC~CCCCCCCCCCCRETURNENDSUBROUTINE VOCABtssaaessstsaassassesaeaasaaatsessesssaatastssesaastestsatsststt ttSUBROUTINE VOCAB;TOPROVIDETHEUSERWITHTHEtsLISTOFDESCRIPTORS FORTHESELECTSDATABANK.tsasssstsaaattssssaaaassssasssassssasssssssssssstassstsssss'attests INTEGERERRNUMLOGICAL$1LINE(87),ASTRIS,RESP IOGICALEQUCCCDATAASTRIS/1Ha/DATALINE(1)~LINE(2)~LINE(3)LINE(4)/1HS~
1)U(g1HO~1HW/DATALINE(5)/1H
/CCassetteCassetteCtaastaaCOBTAINDICTIONART INFORMATION.
WRITE(6,1)1FORMAT(//i AREYOUFAMILIARWITHALLTHEOPTIONSFOROBTAINING'/g 1'INFORMATION ABOUTDATADESCRIPTORS7'/,
133 TABLE5.L.(Continued).
1'TTPE"T"FORTES'OSKIPTHEDESCRIPTIONS.
'/,1'TTPE"N"IFTOUNEEDTHEDESCRIPTIONS
~')CALIPREAD(5,'STRING:',RESP,1)IP(EQUC(TpRESP)oOReEQUC(p~RESP))GOTO10CC4025WRITE(6,2)
FORMAT(//,
1'PTION1:WRITE(6,3)FORHAT(//,
1'TPE'/,1I1'RITE(6,4)
FORMAT(//,
1'HEIR'/,
1RITE(6,5)
FORMAT(//,
1'AME'/,1'I1THEOPTIONSARELISTEDBELOW:'///g TTPE'SUM"TOGETTHEDATASUHMARTFQRTHE'/,SELECTEDDATABANK+OPTION2:TOOBTAININPORHATION QNDESCRIPTORSg
'THENAHESORCODESOPTHEDESCRIPTORSp/J(SEPARATED BTp)~/gENTER"ALL"FORALLTHEDESCRIPTQRS
~'/g(EX',2,3ORMONTH,DAT ORALL)OPTION3!PORLISTINGSQPBOTHDESCRIPTORS AND',STATS,TTPEFFOLLOWING APARA/,NAHEQRCODEASINTH"ALEBELOW.'/,(EX:1P,2P,3PORMONTHF,DATFORALLF)')'OPTION4:TOOBTAINTHELISTOPTHECODE(S)AND',(S)OFDESCRIPTOR STATE(S)THATCONTAINS'/,
ORBEGINSWITHAPARTICULAR STRING'TPE'/,
THEDESCRZPTOR NAHEORCODEALONGWITH'/~THEWORDS"BEGINSOR"CONTAINS ANDTHE'/gSPECIFIED STRING~'/,(EX:NAHECONTAINSHARTORNAMEBEGINSM)'/,eNOTETHATFORTHISOPTIONTHEDESCRIPTOR'/
TTPESHOULDBENAHEORORDER+'CC106WRITE(6,6)
FORHAT(//,'~
THEDESCRIPTOR NAHE(S)QRCODE(S)AIONG'WITH',1'THEREQUZ~~STRING(IPANT)')CCeasasssCssassssCssassasCTAXZRINTERFACE WITHTHEDATABASELEN>80CALLPREAD(5tSTRINGLINE(6)/LATE)LEN<LEN+6LINE(~)~ASTRISCCCALLTAXIR(LINE, LEN)CCessssssCsesssseCsssesssCCHECKTAXIRHESSAGESo CALLERRCHK(ERRNUM)IP(ERRNUM.EQ
~0)GQTO20134 TABLE5'.(Coatiaued)
~CALLTAXIR('DUMMY',-1)
CALLCMDNOE('CEM "CHECK',10)WRITE(6,7)
FORMAT(//,'THE INFORMATION YOUASKEDCANNOTBELISTED,'/,
1'THESTATEMENT YOUHAVETYPEDCONTAINSERROR(S).'/,
1'DOYOUWANTTOTRYAGAIN?(Y/N)')CC308CALLFREAD(5,'STRING:',RESP>
1)IF(EQUC('Y',RESP).
OR.EQUC('y',RESP))
GOTO30GOTO20WRITE(6,8)FORMAT(//,'DO YOUNEEDHELPTOCONSTRUCT YOURQUESTION?
(Y/N)!)CALLFREAD(5~STRINGtRESP~1)IF(EQUC('Y',RESP).
OR~EQUC('y',RESP))
GOTO40GOTO10CC20RETURNSUBROUTINE PERCNTCCCCCCCCCCCC'eeeeeteeeeeeeeeteeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeeeeeee tetSUBROUTINE PERCNT;TOPRODUCESTATISTICS INeeTERMSOFPERCENTAGES FORADATABANKSeteeetteeeeeeeeeeeeeeeteeeeeeeteeeeeet'eeetteeeeeeetteeee'eeeeet INTEGERERRNUMLOGICALe1IINE(86),ASTRIS,RESPLOGICALEQUCDATALINE(1)~LINE(2)~LINE(3)LINE(4)~LINE(5)/1HHJ 1HMt1Hg1Htg1H/DATAASTRIS/1He/CALLFREAD(5,'STRING:',RESP,1)IF(EQUC('Y',RESP).
OR.EQUC('y',RESP))
GOTO10GOTO20CC102WRIT(6,2)FORMAT(//,
'TOSPCIFYYOURQUSTIONYOUSHOULDEN.ERTH-',NAbK'/,'ORCOD"OFTHEDESCRIPTOR ALONGWITHITSTYPE'/1'SEPARATEBY).'CCteeeeeeCeeeeeeeINSTRUCTIONS TOOBTAINTHENECESSARY STATISTICS.
CteeeeeeC30'RITE(6,1)1FORMAT(//,'DO YOUNEEDHELPTOCONSTRUCT YOURQUESTION.
(Y/N)')CC135 TABLE5.1.(Continued)
~CC20~ITE(6,3) 3PORMAT(//~ENTERTHEQUESTION~)CCessesesCesoseseCeeeeeseCTAXIRINTERPACE WITHTHEDATABASE,LZNs80CALXPREAD(5,'TRING:',LINE(6) gLEH)LEHsLEH+6 LINE(LEN) sASTRISCCCALLTAXIR(LIHE,L'1)1'EX1DAT,31OR'EAR,80)
'//tTOCOMBINETHEDESCRIPTORS USELOGICALSTA~NTS'/,
1'AND/OR".'OU
.CANALSOUSEPAR&THESES TO'PTHE'/1'SUBSETOPINTRESTPROMTHETOTALBANK,'/,1'EX:TEAR,80ANDMONTH,MAT'/g 1'EAR,80ORMONTHgMAT
/~1(TEARt80ANDMONTHtMAT)
ORDATt31)CCsssseseCseessseCsesesseCCHECKTAXIRMESSAGZS~CCCALLERRCHK(ERRNUM)
IP(ERRNUM~EQ+0)
GOTO40CALITAXIR('DUMMT',-1)
CALLCMDNOE('EM-CHECK',10)WRITE(6,4)
FORMAT(//,'THE PERC~AGZCAHNOTBECOMPUTED.'/,
1'THESTATEMENT TOUHAVETTPEDCONTAIHSERROR(S)e/p1'DOTOUWAHTTOTRTAGAIN?(Y/N)')CALLPREAD(5,'TRING:',RSP,1)I(EQUC('T',R SP).OR.ZQUC('y',RESP))
GOTO30CC40RETURNENDSUBROUTINE QUZRYCCCCCCCCCCCCINTGERERRNUMLOGICALe1LINE(166),ASTRIS,RESPLOGICALEQUCsseeeee'eeeseeeeessseseoeseeeseeoeeeeoeeoseeeessosseeeeses eesSUBROUTINE QPMT;TORETRI~~INPORMATION eeFROMTHESELECTEDDATABANKseeeeeeeeeeeeeeeseseeeeesseeeesseeeesssseeesssssssssessesse 136 TABLE5.1.(Continued).
DATAASTRIS/1He/
DATALINE(1),LINE(2)/1HQ, 1H/CCeeeeeeeCeeeeeeeCeeeeeeeC401CCINSTRUCTIONS TOCONSTRUCT THEQUERIES.CALLFREAD(5,'STRING:',RESP, 1)IF(EQUC('Y',RESP).
OR.EQUC('y',RESP))
GOTO10GOTO20WRITE(6,1)FORMAT(//,
'DOYOUNEEDTHEINSTRUCTIONS TOMAKEYOURQUERY?(Y/N)')CC102WRITE(6,2)FORMAT(//,
'THEQUERY"Q"COMMANDISTHEMOSTPOWERFULRETRIEVALOOL'/,
'NTHISPROGRAM.THECONSTRUCTION OFAQUERY'1'TATEMENT'/,'CONSISTS OFTWOPARTS:'///,
1I~THESPECIFICATIONOFTHEDESCRIPTOR(S)WHICHMUSTBE/g1'ISTEDINTHEDATAOUTPUT.THEREAREFIVEOPTIONSFOR'/t1'HISPARTASSHOWNBELOW:'//
1'.THENAME(S)ORCODE(S)OFTHEDESCRIPTOR(S)
CAN'/,1'EENCLOSEDINPARENTHESES, (SEPARATED BY,)o/p1'YPINGAN"AINENCLOSEDANGLEBRACKETS"<>"'/,1'OlLOWING DESCRIPTOR CODEORNAMEWILLRESULTIN'/,PRINTOFDUPLICATE STATES'~'/,1'X:(YEAR,MONTH,DAY)'/g 1'YEAR<A>,MONTH<A>,DAY<A>)'//,
1'.TYPING"ALL"RESULTSINTHELISTFORALLOFTHE'/1'ESCRIPTORS.
'/,1'X:(ALL)')WRITE(6,3)
FORMAT(/,'.
hTOTALORSUBTOTALOFNUM=RICAL DESCRIPTORS 1'EOBTAINEDBYTYPINGA"TN"INAPAIROFANGLE'/,1'RACKETS, WHERENINDICATES THESUBTOTALFORTHE'/,INTHDESCRIPTOR~IFNISZEROgTHENTHEGRAND/g1'OTALISPRINTS+ANEXAMPLEISSHOWNBELOWIN'/,1'WHICHTOISTHEGRANDTOTAlANDT1ANDT2ARETHE'/,1'UBTOTALS FORDESCRIPTORS 1AND2'/g1'X(YEARgMONTHgSPCONT<TO gT1gT2>)//g1'.IFTHEOUTPUTISDESIGNEDTOSERVEASANINPUTTO'/,1'IDASFORFURTHERSTATISTICALANALYSISTHE'f1'TATEMENT
"<STAT,FN>"
SHOULDBETYPEDBEFORETHE'/,1'ESCRIPTOR LIST,WHERE"FN"ISTHENAYOFTHE'/g1'UTPUTFILEPROVIDEDBYTHE"0COMMAND'/1'X:<STAT,RESULT>(YEAR,MONTH,DAY,SPCONT)'//g 1'.IFTHEWORD'TAB"ISUSEDINAPAIROFANGLE'/,1'RACKETS BEFORETHEDESCRIPTOR IIST,THE'/,I'ERCENTAGE OFDATAITEMSFOREACHCELLINAN'/,1'-WAYTABULATION ISPRINTED'/1'TAB>(YEAR,MONTH,SPCONTS)')
WRITE(6,4)
FORMAT(//,'I.
THE.BOOLEANEXPRESSION, WHICHDEFINESTHESUBS-TITEMSFROMTHEDATABANK,WHICHMUSTBE~RETRIED.'/,
1OCOMPBETE.HIS,THENA~ORCOD"OFTHED"SCRIPTOR'/,
1'ANDITSTPESHOULDBEENTER~M,(SFPARATED BY,),'/,CAN'/,pgi/137 TABLE5.1.,(Continued).
EX:MMRr80'/,MONTH,MAY'/,THISSUBSETMAY.CONSiSTOFACOMBINATION OF'/,DESCRIPTORSr INTHISCASETHELOGICALSTATANTS'/r"AND/OR"ANDPARENTHESES
"()"CANBEUSEDTOSELECT'/,
THESUBSET.IF'ALL"ISENTEREDTHESUBSETOF'/,INTERESTISEQUALTOTHEWHOLEDATABANK~'/rEX:YEAR,80ANDMONTH,MAY'/,
YEAR,80ORMONTH,MAY'/,
(MMR,80ANDMONTH,MAY)
ORDAY,31'/,
ALL')1'I1~1C20ICOUNTa3WRITE(6,5)
FORMAT(//r ENTERTHEDESCRIPTOR LISTANDTHENECESSARY KEYWORDS' 1EX(YEAR<A>rMONTH<A>rSPCONT<A>)
/r1'YEAR,SPCONT<TO,T1>)'/,
1'STAT,RESULT>(YEAR,MONTH,SPCQNT)'/r 1'TAB>(YEAR,SPCQNT>')
LZNa80CALLFARAD(5r'STRING,LINE(ICOUNT),LEN)
ICQUNTaICQUNT+LEN+1 IINE(ICOUNT)aASTRIS ICOUNTalCOUNT+1 MITE(6,6)FORMAT(//,
'ENTERTHEBOOLEANEXPRESSION TONAMETHE'1SUBSETOF/rINTERESTFROMTHETOTALBANK~/r1rEX'EAR~80ANDMONTHrMAYCCCCeeeeeaeCsseeeeeCeeeesssCTAXIRINT~ACZWITHTHEDATABASE.LZNi80CALLFREAD(5rSTRINGrLINE(ICOUNT)rLF1)ICQUNTaICQUNT+LBf+
1LINE(ICQUNT)
~ASTRISCALLTAXIR(IINE,ICQUNT)CCeeeaaseCseeeeeeCeeeeseeCCHECKTAXIRMESSAGZSo CALLERRCHK(ERRNUM)IF(ER11NUM.EQ.O)
GOTO30CALLTAXIR('UMMY',-1)
CALLCMDNOE('EM-CHECK',10)WRITE(6,7)
FORMAT(//,'THE LISTCANNOTBEPRINTED.',
1'THESTA~TYOUHAVETYPEDCONTAINSERROR(S)~'/r1'DOYQUWANTTOTRYAGAIN7(Y/N)')138 TABLE5.1.(Continued).
CC30CCCCCCCCCCCCCC1CCCC2CCCCCCCCCCCCCCCALLFREAD(5'TRING:',RESP1)IF(EQUC('Y',RESP).
OR.EQUC('y',RESP))
GOTO40RETURNENDSUBROUTINE TERMIN$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$SUBROUTINE TERMIN;TOTERMINATE THEEXECUTION
$OFTHEPROGRAM.et$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$sttttttttt LOGICALEQUCWRITE(6,1)FORMAT(//,
'DOYOUWANTTOENDTHEEXECUTION OFTHEPROGRAM?(Y/N)'CALLFREAD(5~STRING~RESPg1)IF(EQUC(YgRESP)~OR~EQUC('y',RESP)
)STOPWRITE(6,2)FORMAT('OMMANDIGNORED'IRETURNENDSUBROUTINE ERRCHK(ERRFLG) tttttteattattttetttattttstttfttttasatttttattttttattattttttttta
$$SUBROUTINE ERRCHK'OCHECKTHEERRORMESSAGESt$PRODUCEDBYTAXIRPROGRAM.tttttatatstftattttt'$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ttattttttsatta INTEGERERRFIGLOGICAL>1ERROR(6)LOGICALEQUCCCaaataaaCtaattaaCataaaaaCsaaaaaaCRADTAXIR~SSAGESFROMTHEFILESASSIGNEDTOSFRCOM,WHICHCONTAINSERRORMESSAGESRECOGNIZE)
ATTHISPOINT.READ(7,1)ERROR.FORMAT(6A1) 139 TABLE5.1.{Continued).
CCCALLVKINOE('SEM
-CHECK',10)
ERRFLG~1lF(EQUC('READY',ERROR))ERRPLG~O140 TABLE5.2.PileHELP.eeTHISISANINTERACTIVE PROGRAM++
IFYOUARENOTNOWUSINGTHE"UPPERCASE"OPTION,PLEASEDOSO.SINCETHISPROGRAMCANWORKONLYWITHTHE"UPPERCASEOPTION.THEGOALOFTHISPROGRAMISTOHELPYOUTORETRIEVETHEINFORMATION YOUNEEDFROMANYOFTHE13EXISTINGDATABANKS,WHICHARELISTEDASFOLLOW:LAKE.PHYTOPLANKTON OR1ENTRAINED.
PHYTOPLANKTON OR2LAKE.ZOOPLANKTON OR3ENTRAINED.
ZOOPLANKTON OR4LAKE.BENTHOSOR5ENTRAINED+BENTHOS OR6IMPINGED.
BENTHOSOR7ADULT.FISH.SUMMARY.STATISTICSOR8LAKE.ADULT+FISH OR9IMPINGED.
ADULToFISHOR10LAKE~LARVAEOR11ENTRAINED.
LARVAEOR12NUTRIENT.AND.ANIONOR13LAKEWATER.CHEMISTRY OR14SEDIMENTS OR15THEREARESEVENCOMMANDSINTHISPROGRAMHELPSELECTDATABANKSELECTOUTPUTOPTIONVARIABLEDESCRIPTION PERCENTAGE OFTOTALDATAITEMSQUERYTERMINATE THEPROGRAMHINTS:FORDATARETRIEVAL, THESEQUENCEOFOPERATIONS LISTEDBELOWISUSUALLYFOLLOWED;
<1)(2)(3)FIRSTYOUSHOULDSELECTTHEDATABASEOFINTEREST.
ONCETHATISDONE,YOUSHOULDTELLTHECOMPUTERWHATDEVICEYOUAREUSINGANDHOWYOUWANTYOURINFORMATION PRINTED'HIS CANBEACCOMPLISHED BYTYPING"0"ANDRESPONDING TOTHEQUESTIONS WHICHAPPEARAFTERTHECOKVdiD'0THREETYPESOFINFORMATION CANTHENBEACCESSED'F YOUNEEDTHEVARIABLES CONTAINED INTHEDATABASE,TYPEV".IFYOUWANTTO.KNOWTHEPERCENTAGE OFDATAITEMSINTHEDATAQUERYTYPEP".IFYOUNEEDTHEACTUALDATAFORALLORPARTOFTHEDATABAS-,TYPE"Q".PLEASEANSWERTOALLOF.HEQUESTIONS, WHICH'PPEARAF.ERYOUTYPETHECOMQND.141 TABLE5.2.(Continued).
(4)FINALL7,WH~rRTOU'DONQTMANTTOPROCEEDFURTHER,"T"WILLTERMINATE THERETRIEVAL OPERATIONS ANDRETURNYOUTOMTS~TOGETTHEDESCRIPTION OFTHECOMMANDSTIPE"HPORHELP,THENTYPETHEPIRSTLEKVAROFEACHCQRVd63WHILEYOUAREINHELPMODE,(EX:S,PORSELECTDATABANK).HELPrrsa"H"FUNCTION:
TOEXPLAINONEORMORECOMMANDSFORTHEUSER+HOWTOCALL:~WPRESS"H"TOGZTALISTQPALLTHEEXISTINGCOMMANDS~IPTOUAREINTERESTED INASPECIPICCOMMANDENTERTHEFIRSTLETTEROPTHATCOMMAND,(H~S,O,V,P,Q,T)
~SELZCTDATABANK'S"ssrsrrrssssasrss FUNCTION:
TOSELECTONEOPTHZEXISTINGDATABANKS.HQWTOCALL:0PRESS'S"TOCHOOSEADATABANKANDTOGETALISTOPEXISTINGDATABANKS+SELECTOUTPUTOPTION"0'rrrarraaasaraaarrrs FUNCTION:
TOCHOOSEANORATPILE/DEVICE THATOUTPUTSGETPRINT~ON,(M:FINALSCREN,LINEPRINTR,LINEPILE)oHOWTOCALL:PRESS'0"TOSZLZCTTHEOUTPUTFILE/DEVICE.
142 TABLE5.2.(Continued).
VOCABULARY "Vrsssssssss FUNCTION:
TOGETTHEVOCABULARY LISTFORSOMEORALLOFTHEDESCRIPTORS.
HOWTOCALL:PRESS"V"TOGETTHEVOCABULARY LIST.PERCENTAGE P"$$$$$$$$$$FUNCTION:
TOPROVIDETHEUSERWITHTHEPERCENTAGE OFITEMSINTHETOTALDATABANKBELONGING TOTHESUBSETOFINTEREST.
HOWTOCALL:PRESS'P"TOGETTHEPERCENTAGE+
QUERY"Q"$$$$$FUNCTION:
TORETRIVEINFORMATION FROMTHESELECTED; DATABANK.HOWTOCALL:PRESS'Q"TORETRIEVETHEACTUALDATAFORALLORPARTOFTHESELECTEDDATABASE.TERMINATE THEPROGRAM"T'$$$$$$$$$$$$$$$$$$$$FUNCTION:
TOTERMINATE THEEXECUTION OFTHEPROGRAMSHOWTOCALL:PRESS'T"TOENDTHEPROGRAM.143 TABLE5.3.ProgramLI'K.INTZGERIARR(I5)iNUMtNI,OGICALLIRESPLOGICAIZQVCCCissssssCissssssCsssesssC30IE'ITERTHECODENUMBER(S)
OFTHEDATABANK(S)~WRITE(6,I)FORHAT(//,
'ENTRTHECODE1'LIKETOViQRKARITHDURINGI'THESEDATABANKSWILLBEI'BEACCESSZDLATERQNEATI'SZPARATZD BTA'(EXNUMBER(S)
QPTHEDATABANK(S)WHICHYOU'/,THEEXECUTION QPTHISPROGRAM+'/,RESTOREDFROMTHETAPEANDCAN'/,ATIHE~CODENUMBERSSHOULDBE/f1,2,3,4)')
NsFREAD(5INTEGERVZCTORiIARR~'I5)IP(N.NE.O)
GQTO10WRITE(6,2)
FORHAT(//,'NO ZNTRTI'/i I'DOTOVNEEDTHELISTOFTHEDATABANKS?(7/N)')CALLPREAD(5,'STRING:',RESP, 1)IP(EQUC('I',RESP).
OREQUC('p',RESP))
GQTO20GOTO30CCsssssssCissssssCissssssC20WRI3FOPRINTTHELISTOPDATABANKSIFNEEDED.TZ(6,3)RHAT(//,'THE DATABANKS1//,I'AKE.PHITOPLANKTON 1'NTRAINED.
PHYTOPLANKTQN 1'AKE.ZCOPLANKTON I'NTRAINED.
ZOOPLANKTON
AKE.BENTHOS I'NTRAINED.
BENTHOSANDTHEIRCODENUMBERSARE;',OR1'/,OR2'/IOR3'/,OR4'/,OR5'/,OR6'/,CRUNPROGRAHLINKRESULS"INCMATIONQFT%QRARV"PILE-F,CWHERE"FINDICATES THENAHEOFTHEFILEWHICHCONTAINSTHECCOMMANDSNECESSARY FORRESTORATION OPTHEDATABASESFROMACeFSTAPE.CUNIT5ISASSIGNEDTOiMSOURCZs TOREADTHECODENUMBER(S)
COPTHEDATABANK(S)%iICHNEEDTOBERESTO~~~CVNIT6ISASSIGNEDTOiSINKeTOPRINTTHEMESSAGESONTHZCTERHINAI, CUNIT7ISASSIGNEDTOPILE"-G"FORsFSVSE.CUNIT8ISASSIGNEDTOPILE-P"PORRESTORATION CQMHANDS.
CCCCesssssessesssssssssssessssessessssssssssssssessse CseCPROGRAMlINK;TORESTORETHEDATAsCBASESFROMTHETAPE+sCisCsesesssssssssssssssssissessssesssssssssssssssssss CCC TABLE5.3.(Continued).
1'MPINGED.
BENTHOS1'DULT.FISH~SUMMARY.STATISTICS 1'LAKE.ADULT.
FISH1'MPINGED.
ADULT.FISH1'LAKE.LARVAE 1'ENTRAINED.LARVAE 1'NUTRIENT.ANDoANION 1'LAKEWATER.CHEMISTRY 1'SEDIMENTS CGOTO30OR7'/,OR8OR9'/gOR10'/,OR11'/,OR12'/,OR13'/~OR14'/,OR15'CCeeeseesCeeeseesCesssessC10CHECKTHEENTEREDCODENUMBER(S).
40CIF(J.EON)
GOTO50IF((J.NE.O).AND.(J.LT.N))
GOTO60GOTO70JsODO40Is1,NIF((IARR(I
).NE.O).AND.(IARR(I).LT.16))GOTO40JaJ+1CONTINUEC504805C606WRITE(6,4)
FORMAT(//,'THE ENTEREDCODENUMBER(S)
ARENOTACCEPTABLE.')
WRITE(6,5)
FORMAT(//,'DO YOUNEEDTHELISTOFTHEDATABANKS?(Y/N)')CALLFREAD(5,'STRING:',RESP, 1)IF(EQUC('Y',RESP).
OR.EQUC('y',RESP))
GOTO20GOTO30WRITE(6,6)JFORMAT(//,15, 1X,'WRONG CODENUMBER(S).'/,
1'DOYOUWISHTOREENTERTHELINE?(Y/N)')CALLFREAD(5,'STRING:',RESP,1)
IF(EQUC('Y',RESP).
OR.EQUC('y',RESP))
GOTO80CREATIONOFFILE"-GCALLCMDNOE('M
-G',6)DO90I~1,NWRIT(7,8)FORMAT('Y' CONTINUE890CCsessseeCsseseeeCsssssseCCREATIONOFFILEF~WRITE(8,9)
FORMAT('CO~~DS' CCsesesseCeeeeessCsesseeeC70WRITE(7,7) 7FORMAT('ESPONDS'C TABLE5.3.-(Continued).
CCCALLQC)NQE('EH "F',6),DQ100!~1,NNUM~IARR(I)GQTo(120,130,140,150,160,170,180,190,210,220,230,240,250,260,270)
/NUMC12012CWRITE(6,11)NUHFORMAT(//g I5~1XGQTo100WRITE(8,12)FORMAT(~azsToazGoTO100t'NOTANACCEPTABIE CODENUMBER~'LAKE,PHTTOPLANKTON
-LAKE~PHTTO'130WRITE(8,13)13'FORMAT('RESTORE ENTRAINED PHTTOPLANKTON
-ENTPHTTos)GoTo10014014C15015C16016C17017C18018C19019C21021C22022C23023C24024C250WRITE(8,14)PQRMAT('ESTOREGQTo100WRITE(8,15)PQRHAT('ESTOREGQTO100waITE(8,16)FORMAT('zsToar.GQTo100WRITE(8,17)PQRMAT('zsToazGQTO100WRIm(8,18)FORMAT('zsToazGQTO100Wa?TE(8,19)
PORHAT('RESTORE GQTo100WRITE(8,21)
PORMAT('zsToazGoTO100WRIT(8,22)PORMAT('azsToaz GQTO100WRITE(8,23)FORMAT('ESTOREGOTo100waIT(8,24)PORHAT('RESTORE GQTO100WRIT(8,25)LAKE.ZOOPLANKTON
-LAKE.ZOO'ENTRAINED oZCQPLANKTON
-ENT.ZOQ'LAKE.BENTHOS
-LAKEiBEN' E'.1TRAINED.BENTHOS
-~~.BEN'IMPINGED.BENTHOS
-!HP.BEN' ADULT.PISH
~SUGARY.STATISTICS
-AD.PISHoSis'LAKE+ADULT+PISH LoAD+FISH' IHP!NGED.ADULT.
FISH-I.AD.FISH' LAKE.LARVAE-L.LARVAE'
~STRAINED.LARVAE
-EoLARVAE' TABLE5.3.(Continued).
25FORMAT('ESTORENUTRIENTS
-NUTRIENTS
'GOTO100C260WRITE(8,26) 26FORMAT('RESTORE LAKEWATER
-LAKEWATER')
GOTO100C270WRITE(8,27) 27FORMAT('RESTORE SEDIMENTS
-SEDIMENTS' 100CONTINUECCsssssssCsssssssENDOFTHEsFSCOMMANDSINFILE'-F"eCsssssssCWRITE(8,28) 28FORMAT('STOP' CWRITE(6,29)29FORMAT(//,
'ATTHISPOINTTHETAPEISBEINGMOUNTEDANDTHEREQUESTED'/g 1'DATABANK(S)AREBEINGRESTORED.
COMPLETION OFTHIS'/~1'PROCESS WILTTAKEAFEWMINUTES+PLEASESTANDBTl')CCSTOPEND147 andthenpassingtheirresponses ontotheTaxirprogram.Thisprogramismade.possiblebythefactthatTaxii.canbeloaded;and runasa.subroutine ofa',.largerprogram.Usingthisfeatureinprogramming, twoprogramscanbeloadedtogether, andcontrolcommandscanbepassedtoeachotherwithoutunloading thefirstprogram.Thisallowsbothprogramstoremainloadedandmaintainanupdatedvalueoftheirvariables.
However,ifaprogramisloadedalongwiththeinitialization ofthevariables byusinganordinaryruncommand,problemscanoccurwhenasecondruncommandisissued.Thisresultsinloadingthenewprogramandunloading ofthefirstprogram,andcanleadtothelossoftheupdatedvaluesfortheparameters ofthefirstprogram.TheprogramINTERACT, usingaTaxirFORTRANcallablesubroutine, storesthenecessary commands(statements) inanarrayofcharacters andpassesthemtoTaxirasanargumentofthesubroutine, asshowninthefollowing form:CALLTAXIR(ARRAY,LENGTH)ARRAYisthefirstcallingargumentcontaining theTaxircommand,andLENGTHisthe2ndcallingargumentrepresenting thelengthincharacters ofthecom-mand.TheLENGTHargumentisimportant becauseateachcallTaxirshouldlookonlyatthemeaningful characters storedinthearrayatthattimesoastoavoidproblemswhichcanbecausedbythecharacters leftbythepreviouscom-mandsofgreaterlength.Asanexample,theTaxircall(asseeninvarioususesinprogramI~iRACT)canbe:CALLTAXIR('SETOUTPUT~*MSINK*',
18)Here,18isthenumberofthecharacters inthiscommand,andthiscallcouldbemadewhentheterminalscreenistobeselectedastheoutputdevice.1484$
Theaboveexplanations showhow,ingeneral,different TaxircommandsarepassedbyINTERACT(oranyotherFORTRANprogram)toTaxir.However,TaxircanbecalledfromINTERACTintwootherspecialformsfortwospecificpurposes.
Onthesetwocalls,theLENGTHarguments havedefinitevalues,buttheARRAYarguments canbeignoredandreplacedbydummyparameters.
Thesetwocallsareexplained asfollows:1.LENGTH~0CALLTAXER('DUMMY',0)
Thiscallinitializes Taxirandisequivalent toinvokingTaxirwiththeSRUN*TAXIRcommand.Thiscallismadeonlyonceinthebeginning oftheprogramINTERACT.
2.LENGTH~-1 CALLTAXIR('DRAY')-1)
Thisisequivalent topressingthereturnkey(incaseTaxirisrunningbyitself)tocancelastatement oradataitem.ThiscallisusedinINTERACTwheneveranerrorinthestatement (command) passedtoTaxirisdetected.
PROGRAMLINKThereare15different databankscontained intheCookdatabase~Someofthesedatabanksareverylargeandoccupyalargememoryspace.Asaresult,itisnoteconomical tokeepallthedataon-linc'ur approachistosavethesedatabanksonmagnetictapeandtorestorethemintemporary fileswhentheyareneeded'TheprogramLINK(showninTable5')isdesignedtoaccomplish thistask.ThisprogramcanbecalledbyINTERACTwhenevertherequestismade149 torestoresomeorallofthedatabase~Whenusersrespondtothecomputer'uery astothe.namesofdata;.bankstoberestored,
'therestoration ofthes'e.databanksvillbe.madeintemporary files.Thisprocess,however,often:takes considerable time,especially duringpeakcomputeruseperiods~PROCEDURES FOROPERATING INTERACTANDLINKToruntheprogramINTERACT, theusershouldfirstsignontoNTS.ThisisdonebyenteringthecomputercenteraccountID(CCID)andthepassvordforthataccountshownasfollows:DSIGNONXXXX(accountID)?KCK(Password)
Thenenterthecommand:PSOURCEINTERACTIVE O:Thisstatement villstarttheexecution oftheprogramINTERACT.
Thecom-munication fromthispointonisinteractive; theuserssimplyrespondtothequestions askedbytheprogram.Toensurethesuccessofthedataretrieval, itisimportant torespondtoallthequestions askedbytheprogram.However,duringtheexecution oftheprogramifthereisaneedtoselectadatabank,whichmayormaynotbeon-line,theprogramvillfirstcheckvhetherthedatabankbeingrequested ison-linc'f thefileisnoton-line,theprogramLINKvillberunautomatically torestorepartoralloftherequested data.Theflow-diagram inFigure5.1represents thema]orstepsintheaboveoperations.
1506 STARTSIGNONPASSWORDSOURCEINTERACTIVE fRUNINTERACT+OBJ+
TAXIR.e.S(SELECTDATABANK)
ISDATABANKONLINECONTINUEWITHNEXTSTEPSNOSOURCERESTORERUNLINK.OBJ.
o~MOUNT9TPM*+o~RUN*FS0~&*...RUNINTERACT.OBJ~MAXIR.
~~(TERMINATE THEPROGRAM)Figure5~1.Flow-chart representation ofstagesinvolvedinoperations ofINTERACTandLINK.151 UNITASSIGiiENTS FORPROGRAMSINTERACTAND,LINK" AnyCCIDwhichisusedtoruntheinteractive programwillhaveaccesstothefollowing fourfiles:FileI:INTERACT.OBJ Thisfilecontainstheob)ectcodesfortheIiiERACTprogram.FileII:LINK.OBJTheobjectcodesfortheLINKprogramareinthisfile.FileIII:INTERACTIVE Thisfileconsistsofthefollowing RUNcommand:RUNINTERACT.OBJ+*TAXIR 5~*MSOURCE*
6>*SINK*7~-CHECKSERCOM~-CHECK ThisruncommandinvokesTaxirandINTERACT, simultaneously.
HUnits5and6areassignedtotheterminalscreentoserveasinteractive input/output devices.TaxirerrormessagesarewrittenonadevicecalledSERCOM.SERCOMandUnit7areassignedtothetemporary file-CHECK.Thisfileisusedtodetectandcontroltypingerrorsmadebytheuser.:FileIV:RESTORETherearefourcommandsinthisfile:CommandA:RUNLI'iiK.OBJ 5~*MSOURCE*
6~*SLY*7~G8~-PUnit8isassignedtofile-PEPile-Pcontainstherestoration commands.
Units5and6areassignedtotheterminalscreenasexplained inIII.Unit7isassignedtoMtobeusedlaterinMTSfilesavingprogram(*PS)~1526 CommandB:MOUNTC0073A9TPM*VOL~COOK'COOK'his lineoffileRESTOREspecifies thatthe9-trackcomputertapeshouldbemounted.CommandC:RUN*FS0~*T*SCARDS~-F "GUSER~-GSERCOM~-S SPRINT~-SP Runningthe*FSprogramwillresultinrestoration oftherequested databanks.
SCARDSisassignedto-Fforinputcom-mands.GUSERisassignedto-GwhichiscreatedbyCommandAforthesourceofresponse's to*FSprompting messages.
SERCOMisassignedto-SfortheerrormessagesandSPRINTisassignedto-SP,forsavingothermessagesfrom*FS.CommandD:RUNINTERACT.OBJ+*TAXIR 5~*MSOURCE*
6~*SINK*7~-CHECKSERCOM~-CHECK Finally,thislastlineoffileRESTOREisthesameruncommandasIinCommandA.Thisidentical runcommandwillrestarttheprogramINTERACT.
Atthispoint,thefilerestoration iscompleteanddataretrieval canbecontinued.
153 CHAPTER6DISCUSSION 9Thisreportdocuments indetailtheprocedures usedandtheprogramswrit-teninestablishing thedatabasemanagement systemfortheD.C.Cookecologi"Tcalstudyanddescribes thedatacontained inthedata.baseaswellasthewayinwhichthesedatacanbeaccessed.
Thisdocumentation canbeusedasareference whenaccessing thedatabaseandtoclarifyquestions thatariseduringtheuseofthissystem.Acomputerdata.basemanagement systemisessential foralargepro)ectbecauseitcanincreaseefficiency inreportwriting,dataanalyses, anddatainterpretation.
Itcanalsoenhancedataexchangeandutilization; provideanefficient waytoarchivethedata;andactasasafeguard foraccesstoandcentralized management ofthedata.TheCookcomputerdatabaseencompasses 15indiuidual databanks.Thetotalincludesmorethanone-halfmillioncasesofbiological,
- chemical, andphysicalinformation onthenearshore ofsoutheastern LakeMichigan.
Thisdatabaseisconsidered oneofthelargestwaterqualityinformation basesforthesoutheastern portionofthelake.Considerable experience hasbeenOgainedfromtheestablishment ofthisdatabase.Thisexperience canbeusefulforestablishing acomputerdatasystemforotherpro)ectsandisdiscussed intheparagraphs whichfollow.Anysizableresearchpro]ectshouldhaveacomputerized databasemanage-mentsystem.Suchasystemshouldbeestablished attheonsetoftheresearchproject,beginning atthesametimeasthebeginning ofdatacollection.
Nhenoneisstillintheresearchplanningphase,considerations shouldbegivento154 1)thetypeofdatawhichwillbecollected, 2)thekindofanalysisandreportformatwhichwillbeneeded,3)thetypeofaccesswhichisexpected, and4)thetypeofinformation retrieval whichwillbeusedfrequently.
Theseconsidera-tionsarecriticaltoensurethatthecomputerized databasemeetstheneedsoftheusers.Oncetheanswersforthesequestions areprovided, auniformdatareporting formatshouldbeused.Thiscanreducethetimeandeffortneededtoestablish adatabasemanagement system.OneneedstoknowwhatDBMSprogramsareavailable fromthemain,frameofthecomputerandatwhatcostfordataentryandsubsequently updating'ne shouldalsoknowthecapabilities andlimitations oftheavailable DBMSprograms, whetherthecapabilities ofaDBMSprogrammeetthebasicneedsforaproject,andwhetherthelimitations wouldimposeaseriousrestriction ontheoperation anduseofthedatabase.Considerations ofDBMSshouldalsocoverthemaintenance andexpansion ofadatabaseandthedegreeofdifficulty forapersontouseandoperatethedatabasemanagement system.'IThediscussion thusfarhasassumedthatthestateofcomputertechnology anddatabasemanagement hasremainedunchanged.
Etisimportant torealizethatisnotthecase,thataDBMSwhichservesyoutodaywillcertainly differgreatly't sometimeinthefuture.Wehaveobservedrapidprogressintheuseandoperation ofcomputers inthepast10years.Wecanexpectthatsimilarevenfasterprogressmaybemadeinthetimetocome~Forexample,itwouldnotbeunthinkable thatonecouldsimplyspeaktoacomputerreceivertoretrieveneeded-information fromaDBMSinthenearfuture,asvoicerecognition andnaturallanguagequeriesbecomecomponents ofdatabasemanagement systems.Ascomputers becomemorepowerfulandabletostorelargeamountsofdatalessexpensively, aDBMScouldincludegraphicsorinstantresultsofstatistical 155 analysesvithafewsimplecommands.
Simplified protocolcanmaketheuseofDBMSaneasytaskand,villenabletheusertoaccessmanyon-lineinformati'on servicesvithoutlearningspecialized techniques, orcommandlanguages foreachone.Accessing anecological databaseinthiscasewouldnotdiffertoomuchfromgettingcashfromyourbankaccountbyusingacomputerterminal~Bythen,DBifSwilltrulybeanintegralpartofourdailylife.Thetedioustaskofdataselection andanalysesforaquaticstudiescanbeaccomplished inamatterofafewminutestWhiledreamingofpossiblefuturedirections incomputertechnology fordatabasemanagement systems,wehopeandbelievethattheCookdatabasemanagement systemrepresents thestateoftheartforthepresentandcanfacilitate theuseandaccessofecological dataforsoutheastern Lake"fichigan.
45156I; BIBLIOGRAPHY Ayers,J.C.,andE.Seibel.1973.BentonHarborPowerPlantLimnological Studies.PartXVII.ProgramofaquaticstudiesrelatedtotheDonaldC.CookNuclearPlant.Univ.ofMichigan, GreatLakesRes.Div.,Spec.Rep.No.44,ii,1,2pp~Bassler,R.A.,andJ.J.Logan.1976.Thetechnology ofthedatabasemanagement systems.CollegeReadings, Inc.,Virginia.
- Berryman, J.1981'atabasemanagements Computing CenterNewsletter.
Univ.ofMichigan, Computing Center.Vol~11,Nos~10,11,12.Bridges,T.1982.Databasemachines.J.DataManagement 11:14-16.Brill,B.C.1983.TAXIRPrimerManual.Univ.ofMichigan, Computing Center.Cordenas, A.F.1979.Databasemanagement systems.AllynandBacon,Inc.,Massachusetts~Enger,N.L.1983.Developing databasestructure specifi,cations.
J.DataManagement 2:16-19.Hamper,R.1983.Integrating WPandDP.DataProcessing J.London1:17-18.Hermann,K.H.1983.Caughtbetweentwostools.DataProcessing J.London1:11-13.Kahn,M.A.,D.L.Rumelhart,andB.L.Bronson.1977.MICROManual.Univ.ofMichiganandWayneStateUniv.,ILIR.Kaplowitz, H.1981.Application development inadatabaseenvironment.
J.DataManagement 9:24-26.Lane,L.L.1980.Firstevaluateuserneeds,limits,thenproductassets,limits~J.DataManagement 5:52-55.Martin,J.1977'Databaseorganization.
Prentice-Hall Inc.,NewJersey.157 Omar,M.H..198ODBMSsimplified.
J.,DataManagement 10:,23.-26.
Russell,J.'.1983'lltheinfo-allthetime-on=line-.J.DataManagement' 2:41&2.Schussell, G..1983~MappingouttheDBMSterritory.
J.DataManagement 2:24-27.Silbey,V.1979.Documentation standardization.
J.DataManagement 4:32-35.1976.SPIRESNormal~StanfordUniv.,Stanford, California.
I158 Appendix2.1,1986AnnualReportRadiological Environmental Monitoring ProgramDonaldC.CookNuclearPlantUnits1and2ControlsforEnvironmental Pollution, Inc..
Ill'lt.
AMERICANELECTRICPOV/ERSERVICECORPORATION DONALDC.COOKNUCLEARPLANTRADIOLOGICAL ENVIRONMENTALMONITORING PROGRAMANNUALREPORTFOR1986SUBMITTED BY:CONTROLSFORENVIRONMENTAL POLLUTION, INC.l925ROSINASTREETSANTAFE,NEWMEXICO87502CopyNo.PreparedBy:3BobBates,ContractManagerApprovedBy:amesJ.Mveller,President CONTENTSSectionl.02.03.04.0TitleAbstractIntroduction Description oftheMonitoring ProgramAnalytical Procedures MajorInstrumentation
~Pael25.0IsotopicDetection LimitsandActivityDeterminations l66.07.0S.OQualityControlProgramDataInterpretations andConclusions MissingSamplesList24AppendixA:Appendix8:EPACross-check Program,CEPTLDCross-check DataII2l23 TABLESNumberSamplingLocations Collection Schedule~Pael0IVAliquotUsedForDetection LimitCalculation andActualAnalysisDetection LimitsByOtherThanCammaSpectrometry 21VYIVIIYIIIIXXISampleCountingTimesDetection LimitsByGammaSpectrometry CrossBetaInAirParticulates, FirstQuarter1986CrossBetaInAirParticulates, SecondQuarterl986CrossBetaInAirParticulates, ThirdQuarter1986CrossBetaInAirParticulates, FourthQuarterl986CrossBetaInAirParticulates, QuarterStatistical Summary222327293l3335XIICrossBetaInAirParticulates, Statistical Summaryl98636XIIIXIVAirborneRadioiodine, FirstQuarterl986AirborneRadioiodine, SecondQuarterl9865lXYXVIXYIIXVIII~XIXXXAirborneRadioiodine, ThirdQuarterl986'irborne Radioiodine, FourthQuarterl986Thermoluminescent Dosimetry (TLD}FreshMilk,SchulerFarm-Radiochemical FreshMilk,SchulerFarm-CammaSpectrometry FreshMilk,TotzkeFarm-Radiochemical 535572737tXXIXXIIXXIIIXXIVFreshMilk,TotzkeFarm-GammaSpectr'ometry FreshMilk,LozmackFarm-Radiochemical FreshMilk,LozmackFarm-.GammaSpectrometry FreshAlilk,'5'yantFarm-Radiochemical 7577 TABLESNumberXXVXXVIXXVllXXVIIIXXIXXXXXXXIXXXIIXXXIIIXXXIVXXXVXXXVIXXXVIIXXXVIIIXXXIXYXXXXXXXIXXXXIIXXXXIIIXXXXIVXXXXVXXXXVIXXXXVIIXXXXVIIITitleFreshMilk,WyantFarm-GammaSpectrome'try Fresh.'Ailk,Livinghouse-Radiochemical FreshMilk,Livinghouse-GammaSpectrometry FreshMilk,ZelmerFarm-Radiochemical FreshMilk,ZelmerFarm-GammaSpectrometry FreshMilk,WarmbienFarm-Radiochemical Freshhiilk,WarmbienFarm-GammaSpectrometry Croundwater
-Radiochemical
'roundwater-GammaSpectrometryVegetation
-GammaSpectrometry Fish-GammaSpectrometry BottomSediment-GammaSpectrometry DrinkingWater,LakeTownship-Radiochemical DrinkingWater,LakeTownship-CammaSpectrometry DrinkingWater,St.3oseph-Radiochemical DrinkingWater,St.3oseph-CammaSpectrometry DrinkingWater,NewBuffalo-Radiochemical DrinkingWater,NewBuffalo-CammaSpectrometry SurfaceWater,NorthLake-Radiochemical SurfaceWater,NorthLake-CammaSpectrometry SurfaceWater,SouthLake-Radiochemical SurfaceWater,SouthLake-GammaSpectrometry Circulating Water-Radiochemical Circulating Water-CammaSpectrometry
~Pae79SOSj99100101102103100105106107ICS109110 FiguresNumberTitleCollection Locations Map-D.C.CookPlantCollection Locations Map-Surrounding Locations GrossBetaInAirParticulates
-StationONS1WeeklyActivity~Pae37GrossBetaInAirParticulates
-StationONS2WeeklyActivity38CrossBetaInAirParticulates
-StationONS3WeeklyActivity39CrossBetaInAirParticulates
-StationONSETWeeklyActivity90GrossBetaInAirParticulates
-StationONS5WeeklyActivityCrossBetainAirParticulates
-StationONS6WeeklyActivityGrossBetaInAirParticulates
-StationNBFWeeklyActirity43l0CrossBetaInAirParticulates
-StationSBNWeeklyActivityCrossBetaInAirParticulates
-StationDOWWeeklyActivity12GrossBetaInAirParticulates
-StationCOLWeeklyActivity13GrossBetaInAirParticulates
-bleaniVeeklyActivityIOThermoluminescent Dosimetry
-LocationONSl59l5l7l9Thermoluminescent Dosimetry
-LocationONS2Thermoluminescent Dosimetry
-LocationOYS3Thermoluminescent Dosimetry
-LocationONS<Thermoluminescent Dosimetry
-LocationOYS5Thermoluminescent Dosimetry
-LocationOYS659606l6l' FiguresNumber2021TitleTherrnoluminescent Dosimetry
-LocationONS7Thermoluminescent Dosimetry
-LocationONSS~Pae62622223Thermoluminescent Dosimetry-tThermoluminescent Dosimetry,-
LocationONS9LocationOFSIThermoluminescent Dosimetry;-
LocationOFS2636Q602526272S2930Thermoluminescent Thermoluminescent Thermoluminescent Thermoluminescent Thermoluminescen tDosimetry-fDosimetry-lDosimetry-Dosimetry.-
Dosimetry-Thermoluminescent Dosimetry.'-
LocationOFS3LocationOFSOLocationOF55LocationOF56LocationOFS7LocationOFSS6565666667673lThermoluminescent Dosime'try
-LocationOFS932Thermoluminescent Dosimetry
-LocationOFSIO333gThermoluminescent Dosimetry-
/Thermoluminescent Dosimetry-LocationVBFLocationSBN69693536Thermoluminescent Dosimetry
-LocationDO~VThermoluminescent Dosimetry
-LocationCOL707037TritiuminCroundwater
-l98690 AbstractControlsforEnvironmental Pollution, Inc(CEP)hasconducted aoperational radiological environmental monitoring programforAmericanElectricPowerServiceCorporation (AEPSC),DonaldC.CookNuclearPlant,UnitsIand2,startingOctober1,1985.Thisannualreportpresentsdatafor1986.Analytical resultsarepresented anddiscussed alongwithotherpertinent information.
Possibletrendsandanomalous results,asinterpreted byCEP,arediscussed.
1.0 Introduction
ThisreportpresentsananalysisoftheresultsoftheRadiological Environmental Mon!toring Programconducted duringl986forAmericanElectricPowerServiceCorporation, DonaldC.CookNuclearPlant,UnitsIand2.Incompliance withfederalandstateregulations andinitsconcerntomaintainthequalityofthelocalenvironment, AEPSCbeganitsradiological monitoring programin1973.Theobjectives oftheradiological environmental monitoring programareasfollows:I)toestablish baselineradiation levelsintheenvironspriortoreactoroperations; 2)tomonitorpotential criticalpathwaysofradioeffluent toman;3)todetermine radiological impactontheenvironment causedbytheoperation oftheD.C.CookNuclearPlant.Anumberoftechniques arebeingusedtodistinguish CookPlanteffectsfromothersourcesduringtheoperational phase,including application ofestablished background levels.Operational radiation levelsmeasuredinthevicinityoftheCookPlantwillbecomparedwiththepre-operational measurements ateachofthesamplinglocations.
Inaddition, resultsofthemonitoring programwillhelptoevaluatesourcesofelevatedlevelsofradiation duringreactoroperation intheenvironment, e.g.,atmospheric falloutorabnormalplantreleases.
TheDonaldC.CookNuclearPlantislocatedontheshoreofLake5!ichigan approximately onemilenorthwest ofBridgman, 1!ichigan.
ThePlantconsistsoftwopressurized waterreactors, UnitI,l030RIFLEandUnit2,IIGG5!O'E.(:nitIachievedinitialcriticality on3anuaryIS,1975andUnit2achievedinitialcriticality onKlarchIG,l97S.
DuringtheweekendofApril26,1986,,aSovietUnion(USSR)NuclearreactorlocatedatChernobyl (northofKiev)sufferedamajoraccident, resulting inasignificant releaseofradioactivity.
Duetotheeasterlyflowoftheupperair,theradioactive plumedriftedovertheAsiancontinent andthePacificOceanbeforearrivingonthewestcoastoftheUnitedStates.D.C.Cookfirstdetectedcontamination fromtheplumeintheairparticulate samplescollected on05/13/86.
Othersamplematrixesindicated increases inactivityduringthesecondquarter1986.Allelevatedlevelsofactivitycanbedirectlyattributable'o theChernobyl accidentandtheresulting radioactive plume.Changestothemonitoring programduring1986areasfo11ows:November21,1986-TwonewmilkfarmsareaddedtotheREMP.2.NovemberI,1986-TheD.C.Cookplantpersonnel begancollecting allenvironmental samples,takingtheplaceoftheCEPhiredsamplecollector.
'3.5.September 8,1986-Airsamplesarecollected onllonday's versusTuesdays.
i%lay15,1986-NewBuffalodrinkingstationisdeletedbyTechnical specification (Amendment 90forUnitf/IandAmendment 80forUnit//2).3anuaryIP,1986-Allairsamplesbegantobecollected onthesamedayoftheweek.Thisreplacestheoldsystemwhereon-sitesampleswerecollected onadifferent daythantheoffsitesamples.2.0DescritionoftheMonitorin ProramAmericanElectricPowerServiceCorporation hascontracted withControlsforIEnvironmental Pollution, Inc.startingOctoberI,1985,todetermine theradiation levelsexistinginandaroundtheDonaldC.CookNuclearPlantarea.From3anuaryI,1986toDecember31,1986,CEPandCookPlantpersonnel havecollected thesamplesandshippedthemtoCEPforanalysis.
Thetypeofsamplescollected during1986were:milk,airborneparticulates, airborneradioiodine, directradiation (TLD),groundsater,,foodproducts, fish,bottomsediment, drinkingwaterandsurfacewater.Supplemental i'/IG</20/87 Locations ofthemonitoring sitesareshowninFiguresIand2.TableIpresentsmonitoring.
sitesandtherespective samplescollected.
Samplecollection frequency foreachofthemonitoring locations isdepictedinTableII.MeaningsofsampletypecodesusedinTableIareasfollows:CODEMEANINGONSSBNDO'dt'OLOFSLSOnSiteLocationNewBuffalo,A!ILocationSouthBend,INLocationDowagiac, MILocationColoma,,'.ll LocationOffSiteLakeSediment FigureIUNRESTRICTEDAREANORTHNORTHPROPERTYLINE-Wi.Al.A7A2ROADM/chfgonLl=%5ILnI==L2SHORELINEIN-SPLANT,,I==L3RAIL.ROAO
~:A(:,XjP;:.:
TRACK('r9,A8545kVlYARDII,'/.';:::,,::
,j::.'..-",.':;,.-.;:,',:,::::
r',;,i',,::",:::'=IB PLANT,::.:-j765kY~3.:!jyj'::YARD.~/A4:-'j'"'::j
//::::-j.:-'j',000 FOOT.,'"'je"C'0LIOOO2000SCALE30004000FEETAAir,Precipitation, TLOStotionsQ/WellWaterSampleStationsLLakeNtaterSampleStationsNoteStationsA78and9areTI,DStationsOnlv Aairparticulate, TLD,racllolod Inc.'MmilkTTLDFigureZ20rr!EZS~A~Watervttet ColomaBENTONHARBORST,JOPHNewBuffaloStevensviete D.C.COOKLllPLANT~Qridgrnan
~)5BerrienSprings'EauClaireNILES"IDOWAGIAC/+el/////asjoi~/CHIONiNOIaNA5IONewCarlisleSOUTHBEND20SCALEOFMILES TABLEISAMPLINGLOCATIONS
'LOCATIONCODEONS-l(Al)ONS-2(A2)ONS-3(A3)ONS-0(A0)ONS-5(A5)ONS-6(A6)NBFSBNDO%COLONS-7(A7)ONS-3(AS)ONS-9(A9)OFS-lOFS-2OFS-3OFS-0OFS-5OFS-6OFS-7OFS-gDESCRIPTION+
0.0miNiNE,Meteorological Tower0./imiNE,YisitorsCenterroad0.5miENE,765KVYard0.4miESE,Onsite0.4miSC',QnsiteQAmiSS%',Shoreline andFenceLine3unctionl6.0miSSEV,TownofNewBuffalo,Ml24.0miSE,CityofSouthBendID26.0miENE,TownofDowagiac, i'll20.0miNNE,TownofColoma,Ml0.0miNNE,Onsite0.0miENE,Onsite0.3miSSE,Onsite3.5miNNE,Intersection ofRedArrowHighwayandX',arquette 5'oodsRoad,Pole//B294-003.0miNNE,Stevensville Substation 0.0miNE,Pole//B296-I3 3.2miENE,Pole//B350-723.2miESE,Intersection ofShawneeandCleveland, Polei/B3S7-323.5miSE,Intersection ofSnowRoadandHoldenPole//B<26-702.0miS,BridgmanSubstation 3.0miSSE,California Road,Pole//B424-20SAMPLETYPESAir,TLDAir,TLDAir,TLDAir,TLDAir,TLDAir,TLDAir,TLDAir,TLDAir,TLDAir,TLDTLDTLDTLDTLDTLDTLDTLC'LD TABLEI(Continued)
SAMPLINGLOCATIONS 45LOCATIONCODEOFS-9OFS-IODESCRIPTION+
3.25miE,RigglesRoad,Pole//B369-2102.6miSSW,Intersection ofRedArrowHighwayandHildebrant Road,Pole//B022-I52SAMPLETYPESTLDTLDWIW5W6W7TotzkeWyantLozmackSchulerLivinghouse WarmbienZelmerONS-5ONS-iVOFS-5OFS-NLS-2LS-3LI0.0miiViVE,RosemaryBeach0.5miNE,Scrapyard 0.7miENE,itSUTrailerO.OImiiVW,OnsiteO.OImiW,OnsiteO.OImiSSW,Onsite0.0miS,Livingston Beach.0.5miENE,TotzkeFarm,STV(At)IS.OmiE,WyantFarm,DOW(~t)9.0miSSE,LozmackFarm,TOK(iit)l.25miSE,SchulerFarm,BRD(it)20miS,Livinghouse Farm,LPT(At)7,8S,WarmbienFarm,TKS(At)0.75miSSE,ZelmerFarm,BDC(~t)0.5miS(maximum),
Lakeiitichigan 0.5miiV(maximum),
Lake~tichigan0.5miS(minimum),
LakeMichigan0.5miN(minimum),
Lake~itichigan 0.25miN,NorthShoreline, Lake!~tichigan 0.25miS,SouthShoreline, Lake~tichiganCirculating intakeWell'WaterWellWaterWellWaterWellWaterWellWater'WellWaterWellWateri>>titkitiik.>>tilk.itiik'tilkiIilkFishFishFishFishSedimentSedimentCirculating Supplemental
//I00/20/S74S TABLEI(Continued)
SAMPLINGLOCATIONS LOCATIONCODEL2L3DESCRIPTION+
O.lmiSSW,frompointofdischarge (SouthLake)O.lmiNNE,frompointofdischarge (NorthLake)SAMPLETYPESSurfaceWaterSurfaceWaterVlV2STZ(D)LTW(D)NBF(D)"OnsiteOnsiteSt.3osephStationLakeTownshipStationNewBuffaloStationVegetation Vegetation DrinkingWaterDrinkingWaterDrinkingWaterWIII~~JftI1+Alldistances aremeasuredfromthecenterlinebetweenUnitlandUnit2.++Deleted fromREMPonMayl5,l986,asperTechnical Specification change3.12.1,Table3.12-I,Item3C(Amendment No.90forUnitdlandAmendment No.80forUnit82).
Collection SiteONS-I(AI)ONS-2(A2)ONS-3(A3)ONS-0(AO)ONS-5(A5)ONS-6(AC)ONS->.(Az)
ONS-fl(A3)ONS-9(A9}Of.s-IOlS-2Of.s-3OI-S-OOf.s-5OI.S-6OIS-7OlS-8OfS-9OIS-l0NI(lSIINI>OWCOLAirParticulates WWWAirlladioiodine WWTABLEIICOLLECTION SCHEDULEWellLakeDrinkingWaterWaterWaterSedimentFishMilk~VeetatinnTktsQQQQQQQQQQQQ TA.II(Continued)
COLLECTION SCllEDULECollection SiteAirParticulates AirRadioiodine WellWaterLakeDrinkingWaterWaterSedimentFishMilk~VeetatienTLDW-5W-6W-7i3DG(M)STY(M)TKS(M)BOW(M)LPT(M)TOK(M)l3RD(M)ONS-SONS-NOrs-SOPS-NLS-2LS-3LIL2L3YlY2STj(D)LTW(D)NDl-(D)M(2)M(2)>>M(2)<<SA(2)>>>>SA(2)<<>>SA(2)<<>>SA(2)<<>>SA(2)<<>>SA(2)>>>>M(2)<<M(2)<<M(2)<<M(2)>>M(2)<<M(2)<<M(2)>>"TwiceaInonthSA=SemiAnnualW=WeeklyQ=Quarterly Y=YearlyM=Monthly I3.0AnalticalProcedures Theanalytical procedures.discussed inthisreport'are thoseroutinely usedbyCEPtoanalyze.samples.3.1FreshMilk3.1-1Iodine-131 Twolitersofmilkcontaining standardized iodinecarrierarestirredwithDowex1X8anionexchangeresinforonehour.Theiodineisstrippedfromtheresinwithsodiumperchlorate (NaCIOii) andprecipitated withsilvernitrate(AgNO3).Theprecipitate isfilteredontoataredglassfiberfilter,anddried.Thedriedprecipitate isweighedforpercentrecoveryandcountedforiodine-131 inathinwindow,gasflow,proportional counter.3.1.2GammaSctrometAsuitablealiquotofsampleisplacedinamarinelli beakeranCcountedwithamultichannel analyzerequippedwithanintrinsic Germanium detectorwhichiscoupledtoaii096channel,computerbased,mu!ti-channelanalyzer(TracorNorthernTNii500).
o3.2Veetation(FoodProducts) 3.2.1CammaSctrometRefertoMilkSubsection 3.1.2.3.3SurfaceWaterGroundWaterandDrinkinWater3.3.1GammaSctrometRefertoMilkSubsection 3.1.2.3.3.2CrossBetaAoneliteraliquotofsampleisevaporated todrynessandtrar.sferred toastainless steelplanchet.
TheCrossBetaradioactivity ismeasuredby countingtheplanchetinaninternalgasflow,simultaneous proportional, lowbackground counter.3.3.3TritiumThreemilliliters ofthesamplearemixedwithPackardOptifivorcocktail.
Themixtureisnineteenpercentsampleinacleargeltypeaquasol.The'ialsarethencountedforTritiuminaBeckmanModelLS-5801LiquidScintillation Systemfor000minutes.3.0,AirParticulate 3A.1GrossBetaThefilterisplacedinastainless steelplanchetandcountedforGrossBetaactivityusingalowbackground, internalgasflow,simultaneous proportional counter.3.0.2GammaSctrometrTheairfiltersaresealedinsmall,plasticMarinelli beakersandcountedutilizing themethoddescribed inMilkSubsection 3.1.2.3.5AirborneRadioiodine (Alkaline LeachMethod)Radioiodine isremovedfromactivated charcoalalongwithastandardized iodinei~carrierusingconcentrated ammoniumhydroxide (fAHqOH)andhydrogenperoxide'H202).Thecharcoalisfilteredandtheremaining solutionisacidified withnitricacid(HNO3)andextracted withcarbontetrachloride (CClq).A0.2~ohydrazine solutionsuppliesfutherpurification andanaqueousmediaforprecipitation.
iodineisprecipitated withsilvernitrate(AgNO3)andfiltered:ontoataredglassfiberfilterassilveriodide(Agl),Thedriedprecipitate isweighedforrecoveryandcountedforiodine-131 inathinwindow,gasflow,proportional counter.
3.6Sediment(Shoreline)
-GammaStromeRefertoMilkSubsection 3.I.2.3.7Fish-GammaSctrometrRefertoMilkSubsection 3.I.2.1.0MaorInstrumentation 0.1BeckmanLiuidScintillation CountinSstemABeckmanLS-5801LiquidScintillation SystemwillbeusedforallTritiumdeterminations.
Thesystemhasatritiumcountingefficiency ofsixtypercentinawideopenwindow.0.2TracorNorthernComuterBasedGammaStrometerTheGammaSpectrometer consistsofaTracorNorthernTN-4500Multichannel Analyzerequippedwith:I)aDECLSI-II/23 microprocessor; b)aDECRT-IIversionIVoperating system;c)afreestandingconsoleconsisting ofafullASCIIkeyboard; d)acomprehensive MCAControlSectionande)twosolidstateGe(LI)detectors andthreeintrinsic detectors having2.SKeV,3.0KeV,2.07KeV,2.20KeVandI.S5KeVresolutions andrespective efficiencies ofl6.I.6,8.9%,22.6%,30.6'nd25.IF~.TheComputerBasedTracorNorthernGammaSpectrometry SystemisusedforallGammaCounting.
ThesystemusesTracorNortherndeveloped software(automatic isotopeanalysis) tosearchandidentify, aswellasquantizethepeaksofinterest.
0.3BeckmanWideBetaIILowBackroundGasPrortionalSstemTheBeckmanWideBetalltwo-inchdetectorcountingsystemhasanaverageof2.5cpmBetabackground andO.lcpmAlphabackground.
Thesystemcanalsobesetup'withaone-inchdetector.
Thesystemcapacityisonehundredsamples.Thedetectorhasanefficiency of60K~forStrontium-90 and4095forPlutonium-239.;
~~~'OABeckmanWideBetaIILowBackroundCasPrortionalSstem(Simultaneous)
TheBeckmanWideBetaIItwo-inchplanchetcountingsystemhasanaverageof2.5cpmBetabackground andO.lcpmAlphabackground.
Thedetectorhasasixtypercentefficiency forStrontium-90 andfortypercentforPlutonium-239.
Thissystemhasbeendesignedforsimultaneous AlphaandBetacounting.
Thesystemsamplecapacityisonehundredsamples.4.5BeckmanLowBetaIILowBackroundBetaSstemTheBeckmanLowBetaIICasproportional one-inchdetectorcountingsystemhasanaverageofl.5cpmBetabackground andO.lcpmAlphabackground anddetectorefficiency ofsixtypercentforStrontium-90 andfortypercentforPlutonium-239.
Thesystemcapacityisonehundredsamples.Thesystemcanalsobesetupwithatwo-inchdetectorhaving2.5cpmBetabackground and0.1cpmAlphabackground.
0.6TennelecLB5100S'stemTheTennelecLB5100Systemhastwo-inchplanchetcountingsystemandhasanaverageof2cpmBetabackground andO.lcpmAlphabackgorund.
Thissystemhasbeendesignedforsimultaneous AlphaandBetacounting.
Thesystemsamplecapacityisfiftysamples.Thesystemefficiency forAlpha(Plutonium-239) istwenty-one percent,whiletheBeta(Strontium-90)efficiencyisfifty-onepercent.0.7,Berthold-10-Channel Low-Level PlanchetCountinSstemTheBertholdLB770iscapableofsimultaneously counting10planchets forCrossAlphaandCrossBetaactivities alternately withproportional gasflowdetectors.
Thesystemhasanaveragebackground countrateoflessthan1countperminuteforBetaandlessthan0.05countperminuteforAlpha.Theinstrument hasanAlphaefficiency ofthirty-three percentforPlutonium-239 andBetaefficiencies offorty-five percentforStrontium-Yttrium-90, andforty-three percentfor
!Cesium-i37..
Thesystemisconnected to-acomputertocalculate samplespCi/unitvolume.5.0IsotoicDetection I.imitsandActiviDeterminations Analytical Detection limitsaregovernedbyanumberoffactorsincluding:
Thesamplesizetakenisbasedonthenumerical dataonewishestoobtainwhichcandescribeaparticular situation andcanbeinterpreted asabasisforpossibleaction.Thesamplesizehastoberepresentative andprovideforaccurateanalysisortheentireprocessisinvalid(TableIII).5.2CountinEfficienThefundamental qualityinthemeasurement ofaradioactive substance isthenumberofdisintegrations perunittime.Aswithmostphysicalmeasurements inanalytical chemistry, itisseldompossibletomakeanabsolutemeasurement ofthedisintegration ratebutratheritisnecessary tocomparethesamplewithonormorestandards.
Thestandards determine thecounterefficiency whichmaythenbeusedtoconvertsamplecountsperminute(c'pm)todisintegrations perminute(dpm).5.3BackroundCountRateAnycounterwillshowacertaincountingratewithoutasampleinposition.
Thisbackground countingratecomesfromseveralsources:l)naturalenvironmental radiation fromthesurroundings; 2)cosmicradiation; and3)thenaturalradioactivity inthecountermaterialitself.Thebackground countingratewilldependontheamountofthesetypesofradiation andthesensitivity ofthecountertotheradiation.
5ABackroundandSamleCountinTimeTheamountoftimedevotedtocountingbackground dependsonthe!evelof activitybeingmeasured.
Ingeneral,withlowlevelsamples,thistimeshouldbeaboutequaltothatdevotedtocountingasample(TableV).5.5TimeIntervalBetweenSamleCollection andCountinDecaymeasu'rements areusefulinidentifying certainshort-lived isotopes.
Thedisintegration
- constant, oritsrelatedquantity, thehalf-life, isoneofthebasiccharacteristics ofaspecificradionuclide andisreadilydetermined ifthehalf-lifeissufficiently short.5.6ChemicalRecoveoftheAnalticalProcedures Mostradiochemical analysesarecarriedoutinsuchawaythatlossesoccurduringtheseparations.
Theselossesoccurduetoala'rgenumberofcontaminants thatmaybepresentandinterfere duringchemicalseparations.
Thusitisnecessary toincludeatechnique forestimating theselossesinthedevelopment oftheanalytical procedure.
TheLowerLimitsofdetection arecalculate'd usingthefollowing formula:LLD=0.66sbE~V~2.22~Yexp(-X5t)WHERE:LLD"Apriori"lowerlimitofdetection asdefinedabove(aspCiperunitmassorvolume).sbVStandarddeviation ofthebackground countingrateorofthecountingrateofablanksampleasappropriate (ascountsperminute).Countingefficieny (ascountsperdisintegration).
Samplesize(inunitsofmassorvolume).2022Y8umberofdisintegrations perminuteperpicocurie.
Fractional radiochemical yield(whenapplicable).
Radioactive decayconstantfortheparticular radioisotope.
6t=Elapsedtime'etween samplecollection (orendofthesamplecollectio period)andtimeofcounting.
Thevalueofsbusedlnthecalculation oftheLLOforaparticular measurement systemisbasedontheactualobservedvarianceofthebackground countingrate,or,ofthecountingrateoftheblanksample,(asappropriate),
ratherthanonanunverified theoretically predicated variance.
Incalculating theLLDforaradionuclide determined bygamma-ray spectrometry, thebackground includedthetypicalcontributions ofothernuclidesnormallypresentinthesamples.Theactivities perunitsamplemassorvolumearedetermined usingthefollowing formula:C-8+1.96C+8YiT2(2,22)(V)(R)(E)(e-Xt)(2.22)(V)(R)(E)(e-At)WHERE:2.22(eXt)1.96ActivityaspCiperunitssamplemassorvolume.Samplecountrateincountsperminute.Background countsperminute.Samplevolumeormassanalyzed.
Counterefficiency ascpm/dpm.Numerical constanttoconvertdisintegrations perminutetopicocuries.
Decayfactortocorrecttheactivitytotimeofcollection.
Countingtimeinminutes.Statistical constantforthe959~confidence level.Chemicalrecoveryorphotonyield..6.0ualitControlProramCEPemploysamutli-faceted QualityControlProgramdesignedtomaintainhighperformance ofitslaboratory.
Theoverallobjectives oftheprogramareto:l.\20Verifythatworkprocedures areadequatetomeetspecifications ofAEPSC.Coordinate anin-housequalitycontrolprogramindependent ofexternalprograms, toassurethatCEPisoperating atmaximumefficiency.
-Ig-Objectives aremetbyavarietyofprocedures thatoverseeareasofsamplereceiptandhandling, analysisanddatareview.Theseprocedures includestandardoperating procedures, knownandunknownspikeanalysis, blankanalysis, reagent,carrierandnuclidestandardization aswellasparticipation intheU.S.Environmental Protection Agency'sInterlaboratory Cross-check Program.(SeeAppendixAforEPARadiological Cross-check results).
TABLEIIIALIUOTUSEDFORDETECTION LIMITCALCULATION ANDACTUALANALYSISSamleTCrossBetaGammaScIodine-I3ITritiumAirParticulatesAirborneRadioiodine MilkVegetrrtion(FoodProducts)
SurfaceWaterGroundWaterl)rinking WaterSedirrrent (Sltorelinc:)Fisb265rn31000ml265m31000ml500g1000ml1000ml1000ml200g200g265rn32000ml3rnl3rnl3nr14 TABLEIVDETECTION LIMITSOYOTHERTI-IANGAMMASPECTROMETRY Sam)IeTGrossBetaIodine-l3l TritiumAirParticulates Airborrre Radioiodirre Mill<SurfaceWaterGrouu<l%'aterDrirrkinl, Water0.00rrpCi/rn32.0pCi/I2.0pCi/I2.0pCi/I0.005pCi/m3O.rrpCi/I0.5pCi/I0.5pCi/I0.5pCr/I300pCi/I300pCr/I300pCi/I TABLEVSAMPLECOUNTINGTIMESSamleTGrossBetaIodine-l3lTritiumAirParticulates AirbornePiadioiodine MilkVegetation (FoodProducts)
SurfaceWaterGroundWaterDrinkingWaterSediment(Sl>orelinc) lislil00minl00beninl00n)inl00n>in8lirs8brs8l>rs8brs8l)rs8lirs8I>rs8l>rsl00min100min000min000min000min TABLEVIDETECTION LIMITSBYGAMMASPECTROMETRY IsotoVegetation i/K(wet)VaterMilkAirFilter~CI/I~CI/I~I/m3FishCi/K(wet)SoilCi/K(dr)Cerium-104Barium-La-100 Cesium-130 Ru,Rh-106Cesium-137 Zr,Nb-95hlanganese
-50iron-59Zinc-65Cobalt-60 Cobalt-58 12175291430066212160633017523155510160.0050.0300.0230.0010.001Q.0260.0010.0060.0450.0190.02%~I800000601001003060QP70Qp803010080+CharcoalTrap
7.0 DataInterretationandConclusions
Interpretations andconclusions regarding alltypesofsamplesanalyzedduring1986arediscussed inthefollowing sections.
Forthecalculation ofmeansthedetection limitvalueisusedforallsampleswithactivities belowthedetection limit.7.1AirParticulates Airparticulate sampleswerecollected fromeachofthetenmonitoring sitesonaweeklybasisduring1986.Duringtheyear,foursamplescouldnotbereportedduetothefollowing reasons:DateStationReason01/21/8602/00/8603/11/8607/22/86ONS6ONSET,iVBFONS5Malfunctioning meterLostduringshipmentSamplemissingatsitePo~eroffatstationAirfilterswereanalyzedforGrossBetaactivity.
GammaSpectralanalysis otheairfiltersisdoneontheindividual stationcomposites onaquarterly basis.TableVIIpresentstheGrossBetaactivities observedduringthefirstquarterof1986.L'evelsrangedfromalowoflessthan0.000pCi/m3toahighof0.038+0.003 pCi/matStationOiVS3(02/18/86).
Meanweeklyactivities rangedfromlessthan0.000pCi/m3attheoffsitecollection locations, to0.022+0.016 pCi/m3attheonsitecollection locations on02/18/86.
Thisdataisconsistent withpreoperational data.TableVIIIpresentstheGrossBetaactivities observedduringthesecondquarterof1986.Levelsrangedfromalowoflessthan0.000pCj/m3toahighof0.155+0.005 pCi/m3atStationSBiV(05/27/86).
Meanweeklyactivities rangedfrom0.005+0.001 pCi/mattheoffsitecollection locations on00/15/860.135+0.020 pCi/mattheoffsitecollection siteson05/27/86.
Gammaspectralanalysis ofthesecondquartercomposites indicated thefollowing activityduetotheChernobyl accident(SeeSection1.0).GAMMASPECTRALANALYSIS SECONDQUARTER1986COMPOSITE oe/01/86-07/01/86LocationONSI'NS2ONS3ONSETONS5ONS6COLDOWNBFSBNCS-1300.023+0.008+0.002 0.011+0.001CS-1370.001+0.013+0.002 0.009+0.002 0.0I0+0.0020.008+0.002 0.0I2+0.0020.010+0.002 0.005+0.002 0.016+0.002 0.006+0.002 RU-1030.001+0.005+0.011 0.031+0.0 I00.000+0.019 0.022+0.010 0.062+0.010 0.023+0.011 RU-1060.001%0.059~0.0270.001+0.0200.090~0,016
+Lowerlimitofdetection
++Lessthanlowerlimitofdetection lTableIXpresentstheGrossBetaactivities observedduringthethirdquarterofl986.Levelsrangedfromalowoflessthan0.004pCi/m3atseverallocations toahighof0.063+0.004 pCi/m3atstationONS2(09/02/96).
%leanweeklyactivityrangedfrom0.010+0.005 pCi/m3attheonsitecollection locations on09/29/86, to0.033+0.023 pCi/mattheoffsitecollection locations onOS/19/86.
Thisdataisconsistent withpreviousquarters(excluding thesecondquarterofl986).TableXpresentstheGrossBetaactivityobservedduringthefourthquarterof1986.Levelsrangedfromalowoflessthan0.004pCi/rn3aflocationSBN(12/22/86) toahighof0.059+0.003 pCi/m3atstation'COL
(}2/29/86).
IMeanweeklyactivityrangedfrom0.009+0.003 pCi/m3attheonsitecollectio locations on10/06/86, to0.052+0.007 pCi/m3attheoffsitecollection locations
-=-on12/29/86.
TableXIcontainsthemeanGrossBetaactivities bysamplingstation.Meanquarterly andmeanannualactivities arecalculated usingallweeklyactivities exceptthosemarkedinvalid.Ifaparticular samplewasbelowthedetection limit,thedetection limitisusedforthatsamplewhencalculating means.Meanactivityforeachqua'rterrangedfromalowof0.006+0.004 pCi/m3atStationONSlduringthefirstquartertoahighof0.057+0.059 pCi/m3atStationSBNduringthesecondquarter.TableXllcontainsthemeanGrossBetaactivities bystationfor1986.Annualmeanactivities comparewelltooneanotherandrangefrom0.020+0.025 pCi/m3atstation005'o0.030+0.030 pCi/m3atstationONS5.Theannualmeanactivityforonsitestationswas0.028+0.027 pCi/mduring1986.Theoffsitestation's annualmeanactivitywas0.026+0.028 pCi/m3,Meanactivities seenduring1986areelevatedduetotheactivityfromChernobyl beingdetectedduringthesecondquarter.Man-madeGamma-emitting Nuclideswerelessthandetection limitinallofthequarterly composite airfiltersamplesduring1986,exceptasnotedduringthesecondquarter.
TABLEVllGROSSBETAINAIRPARTICULATES (Ci/m3)1986Collection DateONSIONS2ONS3ONSOONS5ONS6WeeklyMeanGrossBetaActivities
+Standard Deviation oftheMeanOl/O7/8601/IIi/8601/21/860I/28/8602/00/8602/II/8602/18/8602/25/8603/00/8603/II/86o3/ls/s603/25/8600/01/860.006~0.0020.013~0.002 0.000i0.0010.008+0.0020.020'.003 0.009>0.0020.018>0.0020.008~0.0020.020~0.0010.00<(t0.0030.019>0.000 0.008~0.0030.020i0.0000.011+0.002 0.010~0.0020.016'.0020.013i0.0020.018i0.0020.023+0.002 0.038i0.0030.020~0.0030.012i0.0050.017'.0030.012+0.002 0.023'.002 0.013~0.002 0.013~0.002 0.016+0.002 0.000'.001 0.023+0.002 0.036~0.003 0.025+0.003 0.017i0.002 0.018i0.0020.010i-0.0020.011~0.0020.013i0.0020.011+0.002 0.000+0.002 0.015'.000 0.028+0.005 0.012+0.003 0.000+0.002 0.016+0.002 0.012+0.003 0.022+0.003 0.026+0.000 0.010~0.0000.006+0.001 0.018+0.002 0.006~0.0020.017+0.002 0.015~0.002 0.019+0.002 0.036+0.002 0.026+0.002 0.025+0.002 0.023+0.002 0.017+0.002 0.021+0.002 0.008+0.000 0.008~0.0050.013+0.005 0.012+0.010 0.01I+0.0060.016+0.010 0.022+0.016 0.015i0.0100.020+0.007 0.015+0.009 0.009+0.006 0.01I+0.0000.019+0.003 0.006i0.009MeanGrossBetaActivity~StandardDeviation ofthcMean0.011i0.0080.017>0.008 0.017w0.0080.010+0.008 0.018+0.010
<Lessthanlowerlimitofdetection (0.000pCi/rn3)alnvalitl sai>>pic(malfunctioning meter)bSarnplclostduringshipping TABLEVII(Continued)
GROSSBETAINAIRPARTICULATES (Ci/m3)FIRSTUARTER1986IhJ00ICollection Date01/Qrr/86 01/Iri/8601/21/86QI/28/8602/Qrr/86 02/II/8602/I'8/8602(25/8603/Qrr/86 03/11/8603/18/8603/25/86Qrr/0I/86NBF0.005~0.001 0.019'.002 0.000r0.0020.008r0.0020.01rrr0.002SBN0.009>0.0070.006~0.0020.00rrr0.0020.005+0.003 0.007r0.0020.021I0.002DOW0.009+0.0010.008~0.0020.013i0.002 0.005+0.003 0.018r0.00rr0.012'.003O.QI0>0.002COL0.020r0.0060.000+0.0030.011~0.0030.008r0.0050.00540.002 0.015>0.002WeeklyMeanGrossBetaActivities
+Standard Deviation oftheMean0.005~0.002.0.005~0.0020.012r0.0060.009>0.007 0.006+0.000 0.008+0.007 0.007+0.000 0.006+0.002 0.015~0.0050.006r0.005MeanGrossBetaActivityrStandardDeviation of'tileMeall0.006r0.0050.008~0.0050.007>0.005"Lesstlranlowerlimitofdetection (0.000pCi/m3)aSarrrple rrrissinI;
- atsite, rTADLEVIIIGROSSBETAINAIRPARTICULATES
{Ci/m3)SECONDUARTER1986Collection DateONSIONS2ONS3ONSrrONS5ONS6WeeklyMeanCrossDetaActivity+StandardDeviation oftheMean~.Qrr/08/86 OO/15/86Orr/22/86 0rr/29/86 05/06/8605/13/8605/20/8605/27/8606/03/86.06/10/86 06/17/8606/2rr/86 07/01/860.0Irr>>0.0020.005>>0.0010.0I0>>0.0010.028>>0.0030.028r0.0030.131>>0.005 0.122>>0.00rrO.Irr2>>0.0050.093r0.00rr0.103>>0.00rr0.017r0.0020.025>>0.0030.011r0.0020.013+0.002 0.005>>0.001 0.008+0.001 0.030>>0.0020.020>>0.002 0.132r0.00rr0.128+0.0040.127>>0.00rr0.083>>0.003 0.067>>0.00rr0.020>>0.003 0.019>>0.0020.007>>0.0020.013>>0.0020.005>>0.0010.015>>0.0020.025>>0.0030.018>>0.002 0.131+0.0050.106>>0.00rrO.Irr2>>0.00rr0.III+0.00rr0.068+0.003 0.02I+0.0020.02rr>>0.0020.008>>0.0020.013+0.002 0.005+0.001 0.009+0.002 0.020>>0.0020.015+0.002 0.093+0.00rr 0.113>>0.00rr0.131+0.005 0.087+0.005 0.051>>0.003 0.015+0.002 0.021+0.OQ3 0.011+0.002 0.00rr>>0.0010.011>>0.002 0.020+0.002 0.016+0.002 0.131+0.00rr 0.118>>0.00rr0.127+0.000 0.10rr+0.000 0.06940.0030.023+0.002 0.02rr+0.002 0.012>>0.0020.016+0.002 0.006+0.001 0.012+0.001 0.032>>0.003 0.018+0.002 0.120+0.00rr 0.016r0.0030.09rr+0.005 0.10rr>>0.0070.085+0.006 0.019+0.002 0.026+0.002 0.013+0.002 0.013+0.002 0.005+0.OQ I0.011+0.003 0.026+0.005 0.019+0.005 0.123+0.015 0.101+0.0rr 20.127<0.018 0.097+0.011 0.07rr+0.018 0.019+0.003 0.023+0.003 0.009+0.003 McarlGrossActaActlvrty>>Standard.Deviation tlrcMcarr0.056r0.0530.051>>0.0500.053>>0.0510.0rr5>>0.0rr50.052>>0.0500.0rr3+0.0rrI"Lesstlranlowerlirrritofdctcction
{0.00rrpCi/rn3)
TABLEVill(Continued)
GIKOSSBETAINAIRPARTICULATES (Ci/m3)SECONDUARTER1986Collection DateNBI.SBNDOWCOLWeeklyMeanGrossBetaActivities
+Standard Deviation oftheMean0.013i0.0020.011>0.0020.019'.002 0.015~0.0020.105'.000 0.102'.000 0.15</t0.005Q.IQI)O.ppll0.008i0.0030.018'.002 0.029>0.0020.011i0.0020.008)0.0<190~/08/86OO/15/86Oi>/22/86 04/29/8605/06/8605/13/8605/20/8605/27/8606/03/8606/10/8606/17/8606/20/8607/01/84MeanGrossBetaActivitywStandardDeviation oftheMean0.010i0.0020.005~0.0010.012i0.0020.016i0.0020.019e0.0020.166i0.0050.107<0.0000.15540.005 0.120<0.0050.067i0.0000.02200.0020.026)0.0030.009)0.0020.057i0.0590.009~0.0020.0IIi0.0020.036i0.0030.011~0.0020.117i0.000 0.078'.000 0.122+0.005 0.058+0.0000.057+0.003 0.020~0.0020.020~0.002 O.OD9~0.0020.003'.001 0.01240.0020.005+0.001 0.012<0.0020.021~0.0020.016~0.0020.130~0.005 0.108+0.000 0.107~0.0000.077~0.0000.055i0.0030.015<0.0020.017i0.002 0.009+0.002 0.005+Q.py60.012~0.0020.005i0.0010.012~0.00I0.023+0.009 0.015i0.0030.131+0.027 0.099<0.0100.135+0.020 0.089+0.027 0.057i0.0080.020+0.OPLessthanlowerlimitofdetection (0.000pCi/in3)
TABLEIXGROSSBETAINAIRPARTICULATES (CI/m3)TIIIRDVARTER1986Collection DateONSI07/08/860.020i0.00207/15/860.01Ii0.00207/22/860.014i0.00307/29/860.018i0.00208/05/860.025I0.00208/I2/86.0.020i0.00308/19/860.024i0.00308/26/Sf>0.026'.00309/02/86i 0.033i0.00209/08/860.023i0.00309/15/860.029i0.00209/22/860.016i0.00209/29/860.01I>0.002MeanCrossBetaActivityStandirdDcviatio)i thcMean0.021i0.007ONS20.0I5+0.0020.0I6i0.0030.014+0.0030.018+0.0040.0I7+0.0030.036i0.0050.032i0.003 0.007i0.0020.063i0.0040.022'.003 0.063~0.0030.020'.002 0.014i0.0020.02Gii0.0I8ONS30.023i0.0020.017i0.0020.016~0.0030.024~0.0030.018>>0.0030.020i0.0020.026'0030.039i0.0030.020i0.0020.021i0.0030.022i0.0020.021i0.0020.0I9i0.0050.022i0.006ONS40.026~0.007 0.02I+0.0050.0I3+0.0030.0I8~0.0030.0I8+0.0030.014'.002 0.024i0.0020.042i0.0030.0I5+0.0020.03Ii0.0030.0I7i0.0020.028~0.0020.017+0.002 0.022~0.008ONS50.024<0.0020.0I9+0.0020.01?o0.0030.026+0.003 0.026~0.0030.030~0.0030.027i0.0030.022~0.0030.026~0.0030.027i0.0030.053i0.0030.006+0.002 0.025~0.01IONS60.040+0.003 0.025+0.002 0.035+0.003 0.029+0.003 0.024+0.0020.042i0.003 0.040+0.005 0.023+0.0020.020+0.002 0.0I7+0.0030.022+0.0020.018+0.002 0.0I6+0.0020.027~0.009WeeklyMeanCrossBetaActivity+StandardDeviation oftheMean0.025+0.008 0.0I8+0.0050.018+0.0090.021+0.0050.021+0.0040.026+0.01 I0.029+0.006 0.027+0.013 0.029+0.0 I80.023+0.005 0.030+0.0 I70.026'.0140.0I4+0.005alflvall(l sarnplc-poweroffatstation TABLEIX(Continued)
GROSSBETAINAIRPARTICULATES (Ci/m3)TICIRDUARTER1986Collection DateNBFSBNDOWCOLWeeklyMeanGrossBetaActivities
+Standard Deviation oftheMean07/08/860.023<0.00307/15/860.031<0.0030?/22/860.017<0.00307/29/86.0.023<0.00208/05/860.019<0.00208/12/860.022<0.00208/19/860.040<0.00308/26/860.024+0.003 09/02/860.019<0.00209/08/860.023~0.003 09/15/860.024<0.00309/22/860.015<0.002 09/29/860.01I<0.002MeanGrossBetaActivity+StandardDeviation oftheMean0.022<0.0070.021<0.0030.021<0.0020.017<0.0030.021<0.0030.021<0.0020.025<0.0030.060+0.003 0.030<0.0030.020<0.0020.026<0.0030.018<0.002 0.013<0.0020.015<0.0020.024<0.0120.019+0.002 0.016+0.002 0.013<0.0030.033+0.0030.010>0.002 0.013<0.0020.024<0.0030.026+0.0030.020'.002 0.027+0.003 0.023+0.003 0.014<0.0020.019<0.0030.020~0.0070.021<0.0030.017>0.0020.017<0.0030.018<0.0030.048<0.0030.023+0.003 0.006+0.002 0.035+0.003 0.033+0.003 0.023+0.003 0.037+0.003 0.018<0.020.018+0.002 0.024i0.0110.021<0.0020.021<0.0070.016<0.0020.024+0.007 0.025<0.0160.021<0.0050.033+0.023 0.029<0.0050.023+0.007 0.025+0.0020.026+0.008 0.015+0.002 0.016+0.004 TABLEXGROSSBETAINAIRPARTICULATES (CI/m3)FOURTHUARTER1986Collection Date10/06/8610/.I3/8610/20/8610/25/86II/03/86ll/10/86II/17/86Il/2>>/86>
12/01/8612/08/8612/I5/8612/22/8612/29/86>
ONSI0.008<0.0020.015<0.0020.014<0.0020.035<0.0030.020<0.0030.019<0.0020.024<0.0020.030<0.0020.020<0.0030.020<0.0020.020<0.0020.014<0.0030.042<0.003ONS20.009+0.002 0.018+0.002 0.012+0.002 0.035~0.0030.021+0.002 0.024~Q.0030.026'.0030.036+0.003 0.025~0.0030.021~0.0020.024~0.003 0.01840.0030.051~0.003ONS30.01040.0020.016<0.0020.012<0.0020.040~0.0030.023<0.002O.Q19<0.0020.028~0.0030.041<0.0030.024<0.0030.022~0.0020.024<0.0030.017<0.0030.048<0.0030.009+0.002
-.0.015i0.0020.01I<0.0020.040<0.0030.021+0.003 0.020+0.002 0.025~0.0030.03240.0030.022<0.0030.021~Q.OQ30.022+0.002 0.012~0.0030.046'.003 ONS5Q.Q04+0.002 0.029+0.003 0.014+0.002 0.044+0.003 0.035+0.003 0.020+0.002 0.029+0.003 0.039+0.0030.027+0.0030.023'.002 0.028+0.003 0.023+0.003 0.053+0.003 ONS60.012<0.0020.023'.003 0.019<0.0020.048>0.0030.022t0.003 0.019+0.002 0.032+0.003 0.038+0.003 0.026t0.003 0.024i0.003 0.026t0.003 0.033+0.003 0.051t0.003%'eeklyMeanGrossBetaActivity+StandardDeviation oftheMean0.009+0.003 0.019+0.006 0.014+0.003 0.040+0.005 0.024+0.OQ6 0.020+0.002 0.027~0.0030.036+0.004 0.024+0.003 0.022+0.002 0.024+0.003 0.020+0.008 0.049>0.004MeanGrossOctaActivity<StandardDeviation thcMean0.022<0.0090.025<0.0110.025<0.0120.023+0.011 0.028~0.013 0.029<0.011 TABLEX(Continued)
GROSSBETAINAIRPARTICULATES (Ci/m3)FOURTIIVARTER1986Collection Date10/06/8610/13/8610/20/8610/25/86II/03/86II/10/8611/17/86II/20/8612/01/8612/08/8612/15/8612/22/8612/29/86NBF0.011'.0020.016~0.0020.013i0.002 0.000i0.0030.020'.002 0.019'.002 0.015'.007 0.030i0.0030.021i0.0020.018~0.002 0.020i0.0020.013'.0030.003~0.003SBN0.010>0.002 0.017'.002 0.010~0.0020.003'.003 0.025~0.003 0.023'.002 0.029~0.0030.030i0.0030.027~0.0030.018(0.0020.023~0.002 0.052i0.0030.017~0.002 0.019'.003 0.012i0.0020.007i0.0030.021~0.0030.022'.002 0.027~0.0030.033~0.0030.027<0.003Q.OI8~0.0020.027i0.0030.019>0.0030.052I0.003COL0.007~0.0010.020~0.0020.01240.0020.000+0.0030.020+0.003 0.022'.002 0.029'.0030.035~0.003Q.Q20+0.0030.020'.003 0.025+0.003 0.020i0.0030.059~0.003WeeklyMeanGrossBetaActivities
+Standard Deviation oftheMean0.0IIi0.0000.018c0.0020.013~0.0010.000+0.003 0.023+0.002 0.022>0.0020.025~0.0070.033+0.002 0.025+0.003 0.020~0.003 0.025+0.002 0.010i0.0070.052~0.007MeanGrossBetaActivity+StandardI')eviation oftheMean0.022'0.010 0.025'.0130.026ip;012 0.027~0.013<<Lessthanlowerlimitofdetection (0.000pCi/m3)
TABLEXIGROSSBETAINAIRPARTICULATES (Ci/m3)UARTERLYSTATISTICAL SUMMARY1986ONSIONS2ONS3ONSETONS5ONS6IIRSTQUARTERSECONDQUARTERTIIIRDQUARTERFOURTlIQUARTER0.006~0.0000.056i0.053 0.021+0.007 0.022+0.009 0.011~0.0080.051i0.0500.026i0.0180.025i0.0110.017~0.0080.053'.051 0.022~0.0060.025+0.012 0.017+0.008 0.005+0.005 0.022+0.008 0.023+0.011 0.010~0.0080.052+0.050 0.025~0.0110.028+0.01 30.018>0.010 0.003+0.00 I0.027+0.009 0.029+0.011 FIRSTQUARTERSECONDQUAiiTruTIHIRDQUARTERFOURTI.IQUARTERNBF0.006<0.0050.008i0.0<190.022>0.0070.02240.0100.006i0.0050.057i0.0590.020i0.0120.025'.013 DOW0.008i0.005 0.003~0.0010.020+0.007 0.026+0.012 COL0.007~0.0050.005<0.006 0.020~0.0110.027+0.013 TABLEXIIGROSSBETAINAIRPARTICULATES (Ci/m3ANNUALSTATISTICAL SUMMARY'986StationONS1ONS2ONS3ONSETOiVS5ONS6OnsiteStationsMeanSBiVDOWCOLOffsiteStationsMeanMean0.026+0.032 0.028+0.0 300.029+0.030 0.027+0.026 0.030+0.030 0.029+0.02~
0.028+0.027 0.025+0.029 0.028~0.035 0.020+0.025 0.0260.0270.026+0.028 LowValue<0.000<0.000<0.000<0.0000.0000.0000.0000.0000.0000.0041986RaneHihValue0.142~0.005 0.132+0.000 0.102+0.000 0.131+0.005 0.131~0.000 0.120+0.004 O.150~0.005 O.166+0.005 0.122+0.005 O.134+0.00 Fig<(re3GROSSBETAIt'tAIRPARTICULATES WEEKLYACTIVITY-STATIONOtl51~o618)4
.20Fig<ire4GROSSBETAINAIRPARTICULATES VfEEKLYACTIVITY-STATION ONS21986.I8.I6.1208.0604--02l'~+
OQFigure5GROSSBETA)t')A)RPART)CULATES WEEKLYACT)VITY-STATIONOt'I55196.06Q4-++0It~~I-I}~I~I-l-~,27WEEK+++
.20Figure6GROSSBETAINAIRPARTICULATES V/EEKLYACTIYITY-STATION ON54198616.'I00-1-OSl-.O6-Q4-0227WEEK
.20Figure7GROSSHFTAINAIRPARTICULATES V/EEKLYACTIVITY-STATIONONS5198618".16.14.1210..08.0604-.0227V!EEK Figure8GROSSBETAIHAlRPARTICULATES WEEKLYACTIYITY-STATION.
Ot'IS619627 20Figure9GROSSBETAINAIRPARTICULATES WEEKLYACTIVlTY-STATIONNBF19o61614-.I2.1008..06Q402-+t.a.++++++++-414+++
Figure10GROSSBETAINAIRPARTICULATES WEEKLYACTIVITY-STATION 5HN19u~6V/EEK Figcire'I1GROSSBETAINAIRPARTICULATES NEEKLYACTIVITY-5TATION DON198616-Q4.-n."-++++++++<)II~~>IAM>~I-I-27V!EEK
')pFigure12GROSSBETAlblAIRPARTICULATES WEEKLYACTIVITY-STATION COL1986.18I6.14qn~~IJ.10I-oa-I-C)O6-
.20Figure13GROSSBETAINAIRPARTICULATES MEANV/EEKLYACTIVITY-ONSITECOLLECTION 19S6I5OCL)0l-05.20CROSSBETAIt<AIRPARTICULATES MEAtI0/EEKLYACTIVITY-OFFSITECOLLECTION 19S6l339 7.2AirborneRadioiodine Samplesforairborneradioiodine werecollected concurrently withtheairparticulate samplesfromthetenmonitoring stations.
Thesesampl'eswerecollected incharcoalcartridges andanalyzedforl-13l:Airborneradioiodine levelsforthefourquartersofl986canbeseeninTablesXlllthroughXVI.Asnoted,elevatedlevelsofradioiodine weredetectedduringthesecondquarterandaredirectlyattributable totheChernobyl accident.
Thedetectedlevelsofradioiodine duringthefirst,third,andfourthquarterswerelessthantheplantTechnical Specification detection limit(7E-2pCi/m3)oftableO.l2-l.
TABLEXIIIAIRBORNERADIOIODINE (Ci/m3)FIRSTUARTERCollection DateONSIONS2ONS3ONSETONS60l/07/86ol/Irr/86 01/21/860l/28/8602/04/8602/II/8602/l8/8602/25/8603/orr/86 03/II/86o3/l8/8603/25/86,Orr/O.l/86 0.009+0.007 "Lesstlranlowerlimitofdetection (0.005pCi/m3)alnvalidSarnplc(meterproblem)"Samplelostduringslripping TABLEXIII(Continued)
AIRBORNERADIOIODINE (Ci/m3)FIRSTUAIKTERl986Collection DateNBFSBNDOWCOL0I/04/860I/I4/860I/2I/860I/28/8602/04/8602/II/8602/l8/8602/25/8603/04/8603/I1/8603/l8/8603/25/8604/Ol/86<Lesstlianlowerlimitofdetection (0.005pCi/m3)SamplecnissinI; atsite TABLEXIVAIRIIORNE RADIOIODINE (Ci/m)SECONDUARTEIKf986Collection DateONSIONS2ONS3ONS4ONS5ONS604/08/8604/I5/8604/22/8604/29/8605/06/8605/I3/8605/20/8605/27/8606/03/8606/lo/8606/I7/8606/24/8607/0I/860.06I~0.0090.122+0.009 0.044'0.007 0.009'.0070.0I0>>0.006O.II5i0.0090.096i0.0060.070i0.0060.060i0.0080.027~0.0080.008i0.0060.093+0.0 I00.098i0.0080.050+0.006 0.0I4'.0060.073+0.009 0.087~0.0070.048'.009 0.008+0.006 0.020+0.005 0.0I3+0.0070.0II~0.0060.088+0.0 I00.093~0.007 0.055i0.0070.008~0.0050.0I3i0.0040.0I6~0.0050.08I~0.0090.0l8~0.0060.048'.0I00.013~0.010"Lesstitanlowerlimnitoldetection (0.005pCi/rn3)
TABLEXIV(Continued)
AIRBORNERADIOIODINE (Ci/m)1986Collection DateSONCOL00/08/86oo/is/8600/22/8600/29/86Os/O6/8605/13/8605/20/8605/27/8606/03/86o6/io/8606/17/8606/20/8607/0I/860.081~0.0090.088m0.0070.050i0.0070.025+0.010 0.012t0.0060.008)0.005O.O97,0.O iO0.109+0.008 0007~00060.092io.ol10.075+0.007 0.006'.008 0.060+0.010 0.107<0.0080.038+0.011 0.010'.000 0.018+0.007 "Lessthanlowerlimitofdetection (0.005pCi/m3)
TABLEXVAIRBORNERADIOIODINE (Ci/m3)l986Collection DateONSIONS2ONS3ONSrrONS5ONS607/08/8607/IS/8607/2?/8607/29/86o8/os/86O8/i2/8608/l9/8608/26/86o9/oz/8609/08/8609/l5/8609/22/8609/29/860.01240.005<Lesstlrarrlowerlimitofdetection (0.005pCi/rn3)Invalidsarnplc-poweroffatstation TABLEXV(Continued)
AIRBORNERADIOIODINE (Ci/m}THIRDUARTERl986Collection DateNBI'ONDO%COI07/08/860?/I5/8607/22/86o7/29/8608/05/8608/05/86OS/l2/86oS/l9/s608/26/8609/02/8609/08/8609/I5/8609/22/8609/29/860.020+0.008 Q.OO9.O.OO~
Lessthanlowerlimitofdetection (0.005pCi/m3)
ABLEXVIAIRBORNERADIOIODINE (Ci/m3)1986Collection DateONSIONS2ONS3ONSOONSETONS6io/06/36io/i3/s6Io/zo/s6io/25/86Il/03/86II/Io/s6Il/I7/S6ii/20/86l2/0I/36Iz/03/86l2/l5/86lz/22/s6iz/29/86"Lesstitanlowerlimitofdetection (0.005pCi/m3)
TABLEXVI(CONTINUED)
AIRBORNERADIOIODINE (Ci/m3l986Collection DateNBI.COL10/06/8610/13/8610/20/8610/25/8611/03/86>>/10/861I/Ir/8611/20/8612/01/8612/08/8612/15/8612/22/8612/29/860.017)0.010"Lessthanlowerlimitofdetection (0.005pCi/m) 7.3Thermoluminescent DosimetrThermoluminescent Dosimetry (TLD)wasemployedtodetermine directradiation tinandaroundtheDonaldC.CookNuclearPlant.TheTLD'swereplacedat23locations andexchanged quarterly.
Listedbelowarethemeanquarterly readingsinmR/weekforallTLD's.FirstQuarterSecondQuarterThirdQuarterFourthQuarterAnnualOnsite1.19+0.090.75+0.091.09+0.161.16+0.161.05+0.32mR/weekOffsite1.02+0.200.71+0.101.13+0.071.29+0.201.06+0.27Backround0.80+0.370.76+0.121.00+0.061.26+0.090.95+0.27Figures10through36presentthemR/weekvaluesobtainedforeachTLDstationcollected duringeachquarterof1986.ThehighestreadingforOnsitestationswasseenatStationONS-7duringthefirstquarterwithavalueof2.07mR/week.ThehighestreadingforOffsitestationswasatStationOFS-5(1.65mR/week)inthefourthquarter.Background stationshadahighvalueof1.36mR/weekduringthefourthquarteratStationSBN.
TABLEXVIITlIERMOLUMINESCENT DOSIMETRY (mR/week) 1986StationLocationONS-IONS-2ONS-3ONS-4ONS-5ONS-6ONS-7ONS-8ONS-9MeanTLD+StandardDeviation OfthcMeanOFS-1OFS-2OFS-3OFS-4OFS-5OFS-6or-s-7ors-8OI-.S-9OI.S-I0MeanTLD+StandardDeviation OftheMeanNBI.SBNDOIVCOLMeanTLDiStandardDeviation OfthcMeanFirstuarter01/QI/86-04/06/860.960.740.591.181.18O.S92.071.851.261.19~0.49 I.lI1.330.890.890.81I~IS0.71Missingl.410.891.02'.240.371.260.740.810.80'.37Seconduarter04/06/86-07/07/860.690.830.860.760.650.890.630.720.720.?5~0.090.66Missing0.780.730.780.630.55hlissing0.670.850.7Ii0.100.760.680.660.92Q.?6~Q.12Thirduarter07/07/86-10/04/861.141.260.901.090.960.981.351.220.921.09~0.16 1.151.291.101.031.1I1.141.091.211.151.061.13~0.08 1.020.981.070.921.00.0.06 Fourthuarter10/04/86-01/05/871.181.181.400.801.181.24I.lI1.161.181.16+0.16 1.261.361.221.231.651.441.271.320.861.321.29'.201.301.361.201.161.26~0.09
2.0 FigureQUARTERLY
THERMOLU}Alt IESCENTDOSIMETRY LOCATION0NS-119S61.51.0j2,0QUARTERFigure15QUARTERLYTHERMOLUMltIESCENT DOSIMETRY LOCATIOt'I ONS-21SS61.51.0.5QUARTER
'7PFigure1SQUARTERLY THERMOLUMINESCEI'IT DOSIMETRY LOCATION0NS-5'1986LdCLV)OQLsl).5'I.0.5KI,S0pQUARTERFigure17QUARTERLY THERMOLUMIt'IESCEIIT DOSIMETRY LOCATIGtIONS-019861,51,0EZt'aiO0rrv~4sjri<~.~4*QUARTER
'7PFiguref80UARTERLYTHEPMOLUMItIESCENTDOSIMETRYLOCATIONONS-51986f.51.0.5CLt~sip'7Q1.51,0QUARTERFiguref9'UARTERL'(
THERMOLUMlt IESCEI'(T DOSIMETRY LOCATIOt"I ONS-61986.5QUARTER Figure20QUARTERLY THFPMGLUMINESCEt'tT DOSIMETRY LOCATIONONS-71986v!v!'!t'!2QUARTER,Figure21QUARTERLY THEPMOLUWINESCENTDOSIMETRY LOCATIONONS-81986,!!v~Ppvvvjk,v~v.'vi~.!".~.Aii~~vkQUARTER FIQUt822QLjPRTERLYTHERMGLUMIPIESCENT DOSIMETRY LOCATIONONS-91986'F~,+~sw~'9QUARTER,~
f(gut'025QUARTERLY THEPMOLUMINESCENT DOSIMFTRY IOCATiONOFS-11986O.5if~)I(I)QQUARTERfIgut824QUARTERLY THEPMGLUMIHESCENT DQSIMETRY LOCATIONOFS-21986CACtr7O,5
2.0 Flgute25QUARTERLY
THERMOLUMlt JESCENTDOSIMETRY LOCATIOlIOFS-5i986i.51,0.5re'~rr*qr2,01.51.0QUARTERFigure26QUARTERLY THERMOLUMJ>JESCEJ JTDOSIMETRY LOCATIOlIOF'S-41986*.lQUARTER 2,0Figure27QUARTERLY THERMGLUMlt'lESCENT DOSlb/ETRYLOCATIONOFS-51986LIJ1,51,0OLLICk2,01,51,0QtJARTERFigure28QUARTERLY THERMGLUMItlESCENTDOSlMETRYLOCATlQtl OFS-61936f'I~h+LJJC')C}.5'IJI$I~*QtJARTER 2V)O2,01.51.0.5FIg0t'829QUARTERLY THERMOLUMltlESCENT DOS1METRY LOCATlONOFS-71986QUARTEFlgul85QQUARTERLY THERMOLUMItlESCEI'JT DOSIMETRYLOCATlOtl OFS-81986+iLaJLJLLIQUARTER 2.0f,51.0Figure31QUARTERLY THERMQLUMINESCENT DOSIMETRY' LOCATIONOFS-9,1986CLlAOCL,'12,0QUARTERFigure32QUARTERLY THERMOLUMINESCEHT DOSIMETRY LOCATIONlOFS-101986LLICLtJCYOCL>CLd1.51.0QUARTER Figure35QUARTERLY THERMOLUMINESCENT DOSIMETRY LOCATIONNBF1986LhOCLOCt~.5wC)I2QUARTER'2QFigure34QUARTERLY THERMOLUMINESCENT DOSIMETRY LOCATIOtl SBt'ItSG6LdC?'.V')OQ.5QUARTER flgute35QUARTERLY THERMOLUMINESCEHT DOSIMETRY LOCATIONDOVj1986)gtg~iR.IQUARTERFigure36QUARTERLY THERMOLUMII'IESCEHT DOSIMETRY LQCATIOIl COL1986r'Iv'QUARTER 7.0Milk(Fresh)Freshmilksampleswerecollected onatwicemonthlybasisduring1986fromthefollowing locations:
I.SchulerFarm2.TotzkeFarm3.LozmackFarmWyantFarm5.Livinghouse FarmBeginning November21,1986,twonewmilksamplinglocations wereaddedtotheprogram.ThesearetheZelmerFarmandtheWarmbienFarm.AllmilksampleswereanalyzedforIodine-131 andGamma-emitting nuclides.
Resultsoftheseanalysesarepresented inTableXVIIIthroughXXXI.Iodine-131 wasdetectedinthemilksamplesduringtheperiod05/2w/S6-06/21/86; activitvwhichisdirectlyattributable totheradioactive plumecausedbytheChernobyl accident.
Activityduringthatperiodrangedfrom!essthanthelowerlimitofdetection (0.4pCi!I)attheTotzkeFarm(06/07/S6) toahighof22.2pCi/IattheWyantFarm(05/24/86).
Allothersamplesduring19S6werelessthanthelowerlimitofdetection.
Gamma-emitting nuclidesofinterestremainbelowthelevelofdetection forallmilksamplescollected in1986,withtheexception ofonesample.Thesamplewascollected attheLozmackFarmonOS/16/S6andindicated Cesium-137 activityof11.3+4.7pCi/I,butitislessthanthedetection limit(!SpCi/I)ofCookPlantTechnical specification 3.12.1,Tablea.12-1.-71-Supplemental fi'Oa/20/S7 TABLEXVIHFRESHMILK5amleLocationSchulerFarmCollection
.DateOl/II/86Ol/18/8602/01/S602/15/8603/01/8603/15/8603/29/8600/lz/8600/26/8605/10/8605/24/8606/07/8606/21/8607/05/860?/19/S6OS/02/8608/16/8609/02/S609/13/8609/27/8610/11/86IO/25/8611/07/S6II/21/S6IZ/O5/8612/19/86RaChochemical (C>/I)I-1310.00.00.00.00.00.00.00.0Q.g0.45.7+0.9I.l+0.80.7+0.50.00.40.00.00,0Q.OO.O0.00.90.40.00.0p,g TABLEXIXFRESIIMILKGAMMASPECTROMETRY SampleLocationCollection DateCs-1345>>Cs-137Mn-542>>Co-583>>Ci/ICo-60Zr,Nb-95Fc-59Zn-65Ba,La-I405>>8>>3>>16>>4>>SchulcrFarinOl/II/86ol/I8/8602/0I/8602/l5/8603/0I/8603/29/8604/12/8604/26/8605/lo/8605/24/8G06/07/8606/2l/8607/05/8607/I9/8608/02/8608/IG/8609/02/8609/I3/8609/27/86IO/II/86IO/25/8GII/07/86II/2l/86l2/05/86I2/I9/86LESSTIIANLOWERLIMITOFDETECTION "Lowerlimitofdctcction TABLEXXFRESHMILKSamleLocationTotzkeFarmCollection Date01/II/8601/18/8602/01/8602/15/8603/01/8603/15/8603/29/8600/12/8600/26/8605/10/S605/20/8606/07/S606/21/S607/05/8607/19/8608/02/86OS/16/8609/02/S609/13/S609/27/8610/II/8610/25/86II/07/S6II/21/8612/05/S612/19/86Radiochemical (Ci/I)I-1310.0O.O0.40.00.00.00.40.00.40.00.8+0.70.01.6+0.70.00.00.40.00.40.00.00.00.00.40.40.40.0 TABLEXXIFRESHMILKCiAMMASPECTROMETR YSampleLocationCoIleetIonDateCs-I345>>Cs-I374>>Mn-542>>Co-583>>Ci/ICo-605>>Zr,Nb-95Fe-59Zn-65Ba,la-1403>>t6>>4>>Totzkel.armol/II/86ol/I8/8602/0I/8602/I5/8603/Ol/8603/29/8604/l2/8604/26/8605/lo/8605/24/8606/07/8606/2l/8607/05/8607/I9/8608/02/8608/l6/8609/02/8609/I3/8609/27/86lo/II/86IO/25/86II/07/86II/2l/86l2/05/86l2/l9/86LESSTHANLOWERLIMITOFDETECTION "Lowerlimitofdctcction TABLEXXIIFRESHMILKSamleLocationLozmackFarmCollection Date01/Ii/86OI/I9/8602/02/8602/16/8603/03/8603/15/8603/29/8604/13/S600/26/8605/II/8605/25/S606/07/8606/21/S607/05/8607/19/86OS/02/S608/16/8609/02/8609/13/8609/27/8610/II/8610/25/S6II/07/86II/21/8612/05/8612/19/S6Radiochemical (Ci/I)I-I310.40.00.0<.0.00.00.00.10.90.40.01.3+0.72.0+0.81.2+0.70.00.00.00.00.00,>>0.40.40.40.>>0.>>O.>>'.4 TABLEXXIIIFRESHMILKCAMMASPECTROMETRY SampleLocationLozrnackFarmCollection DateOl/II/86Ol/l9/8602/02/8602/IG/8603/03/8603/I5/8603/29/86Orr/I3/86Orr/26/86 05/II/8605/25/8606/07/8606/2I/8607/05/8607/I9/8608/02(8G08/I6/8609/02/8609/I3/8609/27/8GI0/II/86IO/25/86II/07/86II/2I/8'6I2/05/8Gl2/l9/86Cs-13rr5%Cs-I37Il.3~rr.7NXMn-502+Co-583%Ci/ICo-605%Zr,Nb-958"Fc-593rrZn-65l6~Ba,La-1rr0lg%"Lowerlirrritofdctcction
""Lesstlranlowerlir>>itofdctcction TABLEXXIYFRESHMILKSamleLocation%'yantFarmCollection Date01/lI/86oI/18/8602/01/8602/15/8603/01/8603/15/8603/29/86OO/I2/8600/26/8605/10/8605/20/8606/07/8606/21/8607/05/8607/19/8608/02/86OS/16/8609/02/8609/13/8609/27/8610/11/8610/25/86II/O?/86II/21/8612/05/8612/19/86Radiochemical (Ci/I)I-1310.40.00.00.00.00.00.00.00.0O.O22.2+1.322.1+1.32.5+0.70.00.~0.00.40.00.90.40.0O.~0.00.<0.40.0 TABLEXXVFRESHMILKGAMMASPECTROMETRY SampleLocattonCollection DateCs-l305>>Cs-l37Mn-502>>Co-583>>Ci/ICo-60Zr,Nb-95Fc-59Zn-65Ba,La-l00 5>>8~3"l6~8~WyantFarmOl/II/86Ol/l8/8602/0I/8602/I5/8603/0I/8G03/I5/8603/29/8600/I2/8600/26/86o5/lo/8605/20/86oG/o7/sG06/2I/8607/05/86O7/I9/86os/o2/sG08/I6/8609/02/8609/I3/8G09/27/86IO/II/86lo/25/8GII/07/86II/2I/86I2/05/86l2/l9/86LESSTHANLOWERLIMITOFDETECTION "Lowerliniitofdetection TABLEXXVI.FRESHMILKSamleLocationLivinghouse FarmCollection Date01/II/86Ol/IS/8602/01/8602/15/8603/01/8603/15/8603/29/8604/12/8600/26/8605/Ip/8605/25/8606/07/8606/21/8607/05/8607/19/S608/02/S608/16/8609/02/8609/13/8609/27/8610/11/8610/25/86II/07/8611/21/8612/05/8612/19/86Radiochemical (Ci/I)I-1310.00.00.90.00.00.00.00.0(00.02.9+0.8I1.0+I.I2.3+0.70.00.00.00.<0.00.0p,y0.00.00.9(p,i'.Q0.0 TABLEXXVIIFRESHMILKGAMMASPECTROMETRY SampleLocationColicetionDateCs-I34Cs-I375IMn-542>>Ci/ICo-5SCo-60Zr,Nb-953%5%Fe-59Zn-65Ba,La-I403~16>>>~Livingtiouse Farinoi/ii/86Oi/iS/8602/0I/8602/I5/8603/0I/8603/I5/8603/29/8604/l2/8604/26/SGo5/io/86O5/25/86OG/O7/8606/2I/8607/05/8607/I9/8608/02/S608/I6/86i 09/02/8609/I3/8609/27/86I0/II/86>I0/25/86>ii/O7/86II/2I/86I2/05/8GiI2/I9/86LESSTIIANLOWERLIMITOFDETECTION 5~4*jI"LowerIi<nitofdetection TABLEXXVHIFRESHMILKSamleLocationZelmerFarmCollection DateII/21/86+12/05/86I2/I9/86Radiochemical (CI/I)1-1310.00.00.0+Firstcollection date TABLEXXIXFRESI-IMILKGAMMASPECTROMETRY SampleLocation2elrnerFarmCoIIectIonDateII/2I/8612/05/86I2/I9/86Cs-I305NCs-l37g~Mn-502>>Ci/ICo-58Co-603%5%Zr,Nb-95Fe-59Zn-65Da,La-l003a[gayaLESSTIIANLO%ERLIMITOFDETECTION
~Lowerlimitofdetection TABLEXXXFRESHMILKSamleLocation,%'armbien FarmCollection Date11/21/86+
12/05/8612/19/86Radiochemical (Ci/I)I-1310,90.00.0+Firstcollection date TABLEXXXIFRESHMILKGAMMASPECTROMETRY SampleLocationCollection DateCs-l345+Cs-137Mn-542>>Co-583%.Ci/ICo-60Zr,Nb-95Fe-59Zn-65Ba,La-140 5a8"3%I6>>Warrnbien IarmII/21/8612/05/8612/19/86LESSTHANLOWERLIMITOFDETECTION "LowerIiinitofdetection 7.5Groundwater Quarterly groundwater sampleswerecollected fromsevenwells.Agroundwater sampleswereanalyzedforTritiumandGamma-emitting nuclides.
Resultsobtainedfromtheanalysisofthesamplesispresented inTablesXXXIIandXXXIII.Fourgroundwater sites;WellNo.0-Onsite,WellNo.5-Onsite,WellNo.6-OnsiteandWellNo.7-Livingston Beachexhibited tritiumactivityduring1986.Thesesiteshadactivityrangingfrom049+270pCi/1atWellNo.7-Livingston Beach(03/06/86) to3012+300pCi/1atWellNo.5-Onsite(08/15/86).
WellNo.5wasresampled on08/21/86andindicated tritiumactivityof0730+302pCi/l.Wellnumbers1,2,and3hadnotritiumactivityabovethelowerlimitofdetection (300pCi/1)during1986.Gammaspectralanalysis ofthegroundwater samplesrevealednogamma-emittingisotopesofinterest.
TABLEXXXIICROUND%'ATERSamleLocationWellNo.I-RosemaryBeachWellNo.2-Scrapyard Collection Date03/06/8606/06/8608/15/86IO/09/8603/06/8606/06/8608/15/8610/09/86Radiochemical (Ci/I)TrltlUm~Ci/i<300<300<300<300<300<300<300<300WellNo.3-MSUTrailer'WellNo.0-OnsiteIWellNo.5-OnsiteWellNo.6-OnsiteWellNo.7-Livingston Beach03/06/8606/06/8608/15/8610/09/8603/06/8606/06/S608/15/8610/09/S603/06/S606/06/86OS/15/S608/21/S6IO/O9/S603/06/S606/06/86OS/i5/S610/09/8603/06/8606/06/S608/15/8610/09/86<300<300<300<300<3001209+207>>
2500+295" 2270~320>>
<3001066+210>>
3012+300>>
4734~302>>
2167-370"
<300<3GO965~2SO>><300009+270>>717+205>>1530+2882412+30G>>
>>Verified byreanalysis TABLEXXXIllGROUNDWATER GAMMASPECTROMETRY SampleLocationWellNo.lRosemaryBeachWellNo.2Scrapyard WellNo.3MSUTrailerWellNo.4OnsiteWellNo.5OnsiteCollection Date03/06/8606/06/86os/l5/s6l0/09/86o3/o6/8606/06/8608/l5/86lo/09/8603/06/86o6/o6/s608/l5/86lo/09/8603/06/8606/06/8608/l5/86lo/09/8603/06/8606/06/86os/l5/8610/09/86Ci/ICs-l34Cs-l37Mn-54Co-58Co-60Zr,Nb-95Fe-59Zn-65Ba,La-l40 7>>2>>5"5>>3>>I5>>4>>LESSTllANLOWERLIMITOFDETECTION "Lowerlimitofdetection TABLEXXXIII(Continued)
GROUNDVfATERGAMMASPECTROMETRY SampleLocationWellNo.6OnsiteColleetionDate03/06/8606/06/8608/15/86lo/09/86Ci/1Cs-130Cs-137Mn-50Co-58Co-60Zr,Nb-95Fe-597%2+2>>.5>>5>>5>>3>>Zn-65Ba,La-IOO 15>>0>>WellNo.703/06/86Livit>l;ston Beacli~06/06/8608/15/86l0/09/86LESST)IANLOWEI(LIMITOFDETECTION "Lowerliinitofdetection 35005000~2500-C3CL2000n+1500Figure37TRITIUMINGROUNDWATER
.1986LOCATIONVIELLH0.1%ELLt40.~VfELLNO.ZV/ELLH0.4DWELLW0.SNELLt40.6%ElLN0.7100050050003/06o6/o6oa/<5COLLECTION DATE<o/o9LLG=3i/t 7.6~VeetationFivevegetation sampleswerecollected fromtwosectorsduringl986.Allsampleswereanalyzedforman-madegamma-emitting isotopes.
TableXXXIVpresentstheresultsofthegammaspectralanalysis ofthevegetation samples.Gamma-emitting nuclidesofinterestwerelessthanlowerlimitofdetection.
TABLEXXXIVVEGETATION GAMMASPECTROMETRY SampleIdentification SectorDDateCollected Cs-13060>>Ci/K(wet)Cs-I3780>>BroadLeafGrapes-Gfape:Leaves 08/l3/8608/20/8608/20/86LESSTHANLOV/ERLIMITOFDETECTION SectorBGrapes-GrapeLeaves08/20/8608/20/864c+Lowerlimitofdetection 7.7FishFishsampleswerecollected fromfourlocations onatwiceyearlybasis.Speciesoffishcollected during1986includecohosalmon,browntrout,whitesucker,laketrout,andlongnosesucker.Cammaspectralanalysis wasperformed onallfishsamples.AllresultsareintermsofpCi/Kg(wet).TableXXXVliststheresultsofanalysis.
Allsamplescollected on05/15/86indicated thepresenceofCesium-137.
Activityrangedfrom08+8pCi/kgattheonsite-southsamplepoint(CohoSalmon)to291+08pCi/kgattheoffsite-southsamplepoint(browntrout/white sucker).Twosamplescollected 09/17/86indicated thepresenceofCesium-137.
Thelaketroutsample(ONS-S)hadanactivityof32+9pCi/kgandtheotherlaketroutsample(OFS-N)hadanactivityof.62+8pCi/kg.Allothergamma-emitting nuclidesofinterestwerelessthanthelowerlimitofdetection inthe1986fishsamples.
TABLEXXXVrlsiiGAMMASPECTROMETRY LocationIdentification Collection DateCs-13000>>Cs-l3700>>Mn-506o>>i/K(wet)Co-5860"Co-6030>>Fe-59l00>>Zn-65loo>>ONS-Sors-sors-NONS-NCohoSalmonBrownTrout/WhiteSuckerCohoSalmonCohoSai<non05/I5/86OS/i5/86OS/iS/86OS/iS/8608~829IF488l~0.885+IIONS-SI<ors-sor.s-NONS-NLai<eTroutLoni,noseSuci<er/WhiteSuci<erLakeTroutLongnoseSuckeIO9/i7/8609/l7/8609/l7/8609/i7/8632+962~8>>Lowerlimitofdetection
>>Lessthanlowerlimitofdetection Not.ookPlanttech,spec.detection limitforCs-137i>Ci/kg(wet)andreportable levelis2,000pCi/kg(wet).t 7.8BottomSedimentBottomsedimentsampleswerecollected twicefromtwolocations ofLakeMichiganin1986.Sampleswereanalyzedforgamma-emitting nuclides.
TableXXXVIliststheresultsofthegammaspectralanalysis.
Onesample,LS-3(05/30/86) indicated aCesium-13?
activityof?3+23pCi/Kg,butitislessthanthedetection limitof180pCi/kg(dry)asperCookPlanttechnical specification 3.12.1,TableO.I2-1.Allothergamma-emitting nuclidesofinterestwerelessthanthelowerlimitofdetection inthebottomsedimentsamples.
TABLEXXXVI...BOTTOMSEDIMENTGAMMASPECTROMETRY Ci/K(dr)LocationLS-2LS-3Collection Date05/30/8605/30/86Cs-13470"Cs-I3740>>73t23Mn-5480>>Co-6080>>Zr,Nb-9540>>Fe-5930>>Zn-65Ba,La-l40100>>10~LS-2LS-3I0/20/86I0/20/86"Lowerlimitofdetection
'Lessthanlowerliinitofdetection 7.9WaterThreetypesofwatersamplesarecollected.
Drinkingwatersampleswerecollected fromLakeTownship, St.Joseph,andNewBuffaloduring1986.Surfacewatersampleswerecollected fromNorthLakeandSouthLake.Circulating watersampleswerealsocollected during1986.TablesXXXVIItoXXXXIIlisttheresultsoftheanalysesofthedrinkingwatersamples.GrossBetaactivityfor1986rangedfromlessthanthelowerlimitofdetection (2.0pCi/1)toahighof125+3pCi/1intheNewBuffalosampleof05/15/86.
Thissampleindicated Cobalt-60 activityof140+10pCi/1whenanalyzedbygammaspectrometry.
Thisistheonlyanomalous samplefromNewBuffaloduring1986.Allsamplesbeforeandafter05/15/86wereroutineandthecomposite samplethatincludedthetime-frame oftheanomalous samplewasroutine.Tritiumanalysisofthedrinkingwatersamplesindicated activityintwosamplesduring1986.LakeTownship(09/25/86) was520+309pCi/1andSt.3oseph(08/21/86) was050+268pCi/l.Allothersampleswerelessthanthelowerlimitofdetection (300pCi/1).Gammaspectranalysis ofthedrinkingwatersamplesindicated thatnogamma-emitting isotopesofinterestwereabovethelower4limitofdetection.
Theexception istheNewBuffalosample(05/15/86).
TablesXXXXIIItoXXXXVIlisttheresultsoftheanalysesofthesurfacewatersamples.GrossBetaactivityfor1986rangedfromlessthanthelowerlimitofdetection (2.0pCi/1)toahighof20.5+1.6pCi/1intheSouthLakesampleof12/18/86.
Tritiumanalysisofthesurfacewatersamplesindicated activityinthreesamplesduring1986.NorthLake(06/,ll/86) was015.+265pCi/1,North'ILake(08/10/86) was966+266pCi/landSouthLake(07/J7/86) was650+271-97,-
pCi/l.Allothersampleswerelessthanthelowerlimitofdetection (300pCi/ICammaspectralanalysis ofthesurfacewatersamples,indicated "thatnogammaemittingisotop'es ofinterestwereabovethelowerlimitofdetection.'ables XXXXVIIandXXXXVIIIlisttheresultsoftheanalysesofthecirculating watersamples.GrossBetaactivityrangedfromlessthanthelowerlimitofdetection (2.0pCi/I)toahighof20.2+2.8pCi/l(l2/l8/86).
Tritiumanalysis3indicated allsampleslessthanthelowerlimitofdetection (300pCi/I).Nogamma-emitting isotopesofinterestweredetectedinanyofthecirculating watersamplesduring1986.
TABLEXXXV1IDRINKINGV/ATER1986Radhochemical (Ct/I)SamleLocationLakeTownshipCollection Date02/27/8603/13/8603/27/8600/IO/8600/20/8600/25/86o5/os/s605/22/86O6/O5/8606/19/8607/03/8607/31/86Os/i~/86OS/2S/S609/II/S609/25/S610/09/86Io/23/S6il/O6/S6Il/20/8612/00/86i12/IS/S612/31/S6GrossBeta2.0+'<2.0<2.02.5+1.1<2.0<2.0<2.02.1+0.9<2.05.5+I.o<2.03.0+1.22.S+1.02.7+I.I3.0+I.I5.7+1.0<2.02.3+1.5<2.0<2.03,3+0.96.4+I.STritium300+<300<300<300<300<300<300<300<300<300<300<300<300<300<300<300520~309a<300<300<300<300<300<300<300+Lowerlimitofdetection (LLD)++Quantity notsufficient foranalysisValueislowerthanthetech.spec.LLDof2000pCi/I TAB--XVillDRINK<ATERGAMMASPECTROMETRY CI/I1SampleLocationCollection DateI-131Cs-130Cs-137Mn-50I>>7%2>>2>>Co-58Co-6O5%5%Zr,Nb-955%Fe-59Zn-65Oa,La-100 3%15%LakeTownshipO2/27/8603/13/8603/27/8600/10/8600/20/SG0~/25/8605/08/8605/22/8606/05/8606/19/8607/03/8607/31/8608/Io/8608/28/8609/II/8609/25/8610/09/8610/23/86II/06/86II/20/8612/00/SG12/18/8612/31/86'LESSTHANLO%'ERLIMITOFDETECTION
>>Lowerlimitofdetection Supplemental 81ols/20/87 TABLEXXXIXDRINKINGWATER1986Radiochemical (Ci/I)SamleLocationSt.3osephCollection Date02/27/8603/13/8603/27/8600/Io/8600/20/8600/25/86o5/os/s605/22/S606/05/S606/19/8607/03/S607/31/S6os/ie/86OS/2S/S609/11/S609/25/S610/09/S6Io/23/8611/06/8611/20/8612/00/8612/I8/S612/31/S6GrossBeta2.0+2.02.9+0.50.3+I.I2.02.02.02.02.7+1.02.0+0.92.02.02.03.2+I.I2.06.3+1.02.02.5+1.53.0+0.52.02.0-"..0-0.9 Tritium300+<300<300<300<300<300<300<300<300<300<300300,<300<300050268<300<30G3GG30G<3GG3003003003OC+Lowerlimitofdetection
++Quantity notsufficient foranalysis-101-TABLEXXXXDRINKINGWATERGAMMASPECTROMETRY Ci/1SampleLocationSt.3os<<phCollection Date02/27/8603/13/8603/27/8600/10/8600/20/8600/25/8605/08/8605/22/8606/05/8606/19/8607/03/8607/31/8608/JO/8608/28/8609/ll/8609/25/86lo/09/8610/23/86ll/06/8611/20/8612/00/8612/18/86l2/3l/861-131Cs-1305<<Cs-1374~Mn-502"Co-583<<Co-605>>Zr,Nb-95Fe-593>>Zn-6516>>Ba,La-lOQ Q<<rlimitofdetection tbanlowerlimitofdetection not,icieara...sis'.Isupplemental 0t TABLEXXXXIDRINKINGWATER1986SamleLocationCollection DateGrossBeta2.0+Tritium300>>Radiochemical (Cj/1)NewBuffalo02/27/8603/13/86-03/27/8600/10/8600/20/8600/25/86o5/os/s605/22/86c 08/29/861O/17/S610/23/861O/31/S6b 11/06/86b 2.02.8+0.92.1+1.02.02.5+0.97.8+1.22.0125+3++2.2+1.82.02.5+1.5d<300<300<300<300<'00<300300<300<300300<300300+Lowerlimitofdetection
++Verified byreanalysis SpecialsamplingtocheckGrossBeta/Gamma bDipsamplecThisisthelastdatarequiredbytech.specs.Stationdeletedbytech.spec.change(Amendment ft90forUnit81andAmendment
/IsoforUnitL/2).dQuantity notsufficient foranalysis-103-TABLEXXXXIIDRrNKfNGWATEfCGAMMASPECTROMETRY Ci/1SampleLocationCollection DateI-13IiaCs-1305aCs-137Mn-502ICo-583lCo-605%.Zr,Nb-95BaFe-593%Zn-6516~Ba,La-100 4INewBuffalo02/27/8603/13/8603/27/8600/10/8604/20/8600/25/8605/08/8605/22/86c 08/29/86a 10/17/8610/23/8610/31/86b
>>/06/86b100+10"Lowerlimitofdetection
>>Lessthanlowerlimitofdetection aSpecia1sampling"Dip.piecDeromtech,spec.andnolongerrequiredtobesamplSupptal//l00/2 TABLEXXXXIIISURFACEV/ATER1986Radiochemical (Ci/1)SamleLocationNorthLake(L3)Collection DateOe/10/8600/25/8605/15/8606/12/8607/03/S607/31/86QS/28/8609/25/8610/23/S611/20/8612/1S/S6CrossBeta2.0+2.2+0.5<2.03.2+1.03.6+1.0<2.02.4+1.03.5+1.1<2.017.0+1.0Tritium300+300015+265<300<300<300300466~266<300<300<300300+Loaferlimitofdetection
++Quantity notsufficient foranalysis-105 TABLEXXXXIVSURFACEV/ATERCAMMASPECTROMETRY Ci/1SampleLocationCollection DateI-131I>>Cs-1347>>Cs-1372"Mn-542"Co-58Co-60Zr,Nb-955>>5>>5>>Fe-593>>Zn-65Ba,La-140 15"4>>NortliLake(L3)04/l0/8604/25/8605/l5/8606/l2/8607/03/8607/31/8608/28/8609/25/8610/23/86ll/20/86l2/l8/86LESSTIIANLOWERLIMITOFDETECTION
>>Lowerlimitofdetection Supplemental 8l04/20/87 TABLEXXXXVSURFACEWATER1986Radiochemical (Ci/I)SamleLocationSouthLake(L2)Collection DateOO/io/8600/25/8605/15/8606/12/8607/03/8607/31/S608/28/S609/25/8610/23/S611/20/8612/IS/S6GrossBeta2.0>>2.6+0.5<2.03.0+1.03.0+1.0<2.0<2.0<2.020.5+1.6>>>>
Tritium300>><300<300<300<300<300650+271300300300300300>>LowerLimitofdetection
>>>>Verified byreanalysis Quantitynotsufficient foranalysis-107-TABLEXXXXVISURFACEWATERGAMMASPECTROMETRY Ci/1SampleLocationCollection DateI-131Cs-130Cs-137Mn-507N2tCo-58Co-60Zr,Nb-955>>5+5IFe-593%Zn-65Ba,La-100$5aQaIClOoISouthLake(L2)Orr/10/86 Orr/25/86 05/15/8606/12/8607/03/8607/31/8608/28/8609/25/8610/23/8611/20/8612/18/86LESSTllANLOWERLIMITOFDETECTION "Lowerlimitofdetection Supplemental 8100/20/87 TABLEXXXXVHCIRCULATING WATER1986Radiochemical (i/I))SamleLocationCirculating Intake(LI)Samle8//II/2I/I//2IIIk/2IIII/II/2Collection Dateoe/10/8600/10/8600/25/8600/25/86os/is/86os/is/8606/12/8607/03/8607/03/8607/31/8608/28/8609/25/86I0/23/8611/20/8612/18/86GrossBeta2.0+2.02.03.6+I.I5.3+I.I2.1+0.92.03.I+1.02.5+1.22.02.02.02.02.020.2+2.8"
+Tritium300+<300<300<300<300<300<300<300<300<300<300<300<300<300<300<300<<Lowerlimitofdetection
++Verified byreanalysis aguantity notsufficient foranalysis-109-TABLEXXXXVIIICIRCIJLATING WATERCiAMMASPECTROMETRY SampleLocationCollection Cs-134Date7%Cs-1372"Mn-542"Ci/ICo-58Co-60Zr,Nb-95Fe-59Zn-65Ba,La-1405x5a3%15>>4"CirculatingIntai<e//I//2//I//2//I//2//I//I//204/io/86P4/IP/8604/25/8604/25/8605/i5/8605/i5/8606/l2/8607/03/8607/03/8607/3I/8608/28/8609/25/86I0/23/86I2/I8/86LESSTIIANLOWERLIMITOFDETECTION L..!rlimitofdetection
Samle7RequiredLocationCollection DateReasonAirparticulate/radioiodine Airparticulate Radioiodine Airparticulate TLDTLDTLDDrinkingWaterDrinkingWaterAirparticulate/radioiodine ONS-6ONS-0COLiVBFOFS-8OFS-2OFS-8LakeTownshipSt.3osephOPS-5OI/2I/8602/00/8602/II/8603/II/8600/06/8607/07/8607/07/8607/10/8607/10/8607/22/86Malfunctioning meterLostinshipmentLostinshipmentA1issingatsite11issingatsiteMissingatsiteK1issingatsiteLostinshipmentLostinshipment.
Poweroffatstation APPENDIXAResultsoftheEPACross-Check Program1986ForControlsforEnvironmental Pollution, Inc.-112-EPACROSS-CHECK PROGRAM1986GrossAlha/BetaInWaterDateI/S63/S67/S69/S6Parameter CrossAlphaCrossBetaGrossAlphaGrossBetaCrossAlphaCrossBetaGrossAlphaCrossBetaEPAKnownValueCi/I+la3+57+515+56+5IS~515+5S+5CEPReportedValueCi/I+2a5+I6+I7+I7+I9+I10+I13'15+316+315+316+317+35+I6+I6+I153163IS312+212+2IO+217+0IS+3203,,-113-EPACROSS-CHECK PROGRAM1986GammaInWaterDate2/866/8610/86Parameter Cesium-130 Cesium-137 Cobalt-60 Zinc-65+Cesium-137
- inc-65Ruthenium-106 Cesium-130 EPAKno~ValueCi/1+1a30+522+5IS+540+510+586+570a528+5CEPReportedValueCi/I+2~29+420+033+518+016+021+025+229+021+357+1556+1256+129+212+210+2S7+880+890+865+2167+671+2322+226+22S+2.I+Spikesamplewasreanalyzed andavalueof01+10pCi/IwasobtainedSupplemental 8100/20/87-114-EPACROSS-CHECK PROGRAM1986GammaInWater(Continued)
Date10/86Parameter Cesium-137 Cobalt-60 Zinc-65EPAKnownValueCi/1+1o31+585+5CEPReportedValueCi/1+2(y02+003+108+328+029+029+077+778+779+7(~~~I~a~t-115-EPACROSS-CHECK PROGRAM.1986TritiuminWaterDate2/866/8610/86Parameter TritiumTritium"TritiumEPAKnownValueCi/I+Ia5227+5233125+3605973+597CEPReportedValueCi/1+2a9100+0IO0590+4590190+0192290+2302170+2202050+2105062+6005257+6005880+600+Spikesamplewasreanalyzed withtheLS-5801andavalueof3533+565pCi/Iwasobtained-116-Supplemental 81oe/zo/87 EPACROSS-CHECK PROCRAM1986Iodine-131 InWaterDate0/868/86Parameter LowLevelHighLevel+EPAKnownValueCi/1+la9+605+6CEPReportedValueCi/1+2o9+07+07+030+033+039+0+Spikesamplewasreanalyzed andavalueof00+0pCi/1wasobtainedSupplemental 8100/20/87-117-EPACROSS-CHECK PROCRAMl986Radionuclides InMilkDate6/86Parameter Iodine-131 Cesium-137 EPAKnownValueCi/I+IaOI+631+5CEPReportedValueCi/I+2a36+632+000+730+526+028+010/86iodine-131 Cesium-137+
09+639+543+333+937+053+2558+2208+20+Spikesamplewasreanalyzed andavalueof30+5pCi/IwasobtainedSupplemental
//I00/20/87-118-EPACROSS-CHECK PROGRAM1986Iodine-131 InMilkDate2/86Parameter LowLevelEPAKnownValueI/L+Ia9+6CEPReportedValueCi/I+2o9+I9+iIO+lIt~~-119-EPACROSS-CHECK PROGRAM1986Radionuclides inAirFiltersDate0/869/36Parameter GrossAlphaGrossBetaCesium-137 GrossAlphaGrossBetaCesium-137 EPAKnownValueCi/filter
+1g15+507+510+522+566+522+5CEPReportedValueCi/filter
+2o15+315+316+356+657+658+68+3939323+222+226+260+263+266+223L325322+3-120-EPACROSS-CHECK PROGRAM1986Radionuclides InFoodDate1/31Parameter iodine-131 Cesium-137 EPAKnownValueCi/k+1a20+615+5CEPReportedValueCi/k+2a20+521+722+715+516+517+5Potassium 950+103910+91950,+95900+90-121-APPENDIXBTLDCROSSCHECKDATA-122-FIFTHINTERNATIONAL ENVIRONMENTAL DOSIMETER
!NTERCOMPARISON PROJECT)rttanirers:
TF.CcsilI.'ntvcrxtty ofTexasSchoolotPublicHeahhI'.O.Box20lt)6Houston,Texas77025(713)7924376C.dePlanqueU.S.Department ofEnergyEnvironmental
'4Ieasurements Laboratory 37oHudsonSt.YewYork,N.Y.10014t212)o20-3635Commercial t212)oo0-3o35FTSSponsors:
iJ.S.Department ofEnergyUniversity ofTexasSchoolotPublicHeahhAugust0319glFifthEnternational Intercomparison ofEnvironmental Dosimeters k
DearParticipant:
Enclosedisanindividual datarecordforeachdosimeter whichyouenteredintheintercomparison, anexplanation ofthecodingusedfortheindividual datarecord,andafewpreliminary summarystatistics.
Theindividual datarecordhasbeengenerated directlyfromthedatathatwehaveinourcomputerfile.Pleasecheckeachentrycarefully foraccuracyandreportanydiscrepencies tomeassoonaspossible.
Thiscomputerfilewillbeusedforfurther,detailedanalysessotheaccuracyoitheinputdatawhichyouprovideisextremely important.
Pleasenotethatwedonotcomputerize allthedatawhichyouprovidesoblankspacesdonotimplymissingdata.Wheredataismissing,afieldof9'sappears.Pleasesupplymissingdataifpossible.
Tablel-3providesummarystatistics forthethreeexposurecond'tions andthecorresponding figuresprovidethedsstribut'on.
lngeneral.therewasverygoodagreement betweentheaverageofallparticipants andindependently measuredvalues.Afterareasonable periodoftimeisallowedforcorrections tothedatafiletobereceived, andnoted,wewillperformamoredetailedanalysisandforwardtheresultstoyou.Sincerely, ThomaF.Gesell,Ph.o.Associate Professor ofHealthPhysicsTG:ls:"nc;l.Endividual datarecord(s) 2.xplanation oftheindividual datareco.'d3.Summarystatistics andfiguresfortheintercomparison Firstlntercomparison Houston.Texas~1974Fourthlntercornparison Houston.Texas~1979Secondlntercomparison ThirdImcrcomparison
,'v'ewYorLCi:y,x'eivYork~1976OaLRi'ge.Tennessee
~1977Fifthlntercomparison IdahoFalls.Idaho~lo80 EXPLANATION OFTHEINOIVIDUALOATA0Theserialnumber.appearsinthesecondlineoftherecord.Pleasechecktoseethatitcorresponds totheserialnumber(s) ofyourdosimeter set(s)~Thesectionslabeled"Itotalexposuremeasured" and"IIestimated exposures, participant's results"shouldexactlyreflectthecorresponding information whichyouprovidedonyourresponseforms.Thecorrections arecodedasfollows:nocorrections analytical correction physicalcorrection bothanalytical andphysicalcorrections noinformation suppliedThesectionlabeled"IIestimated exposures, author'sresults"reflectourcalculation oftheestimated exposures baseduponsuredatafromsectionI.Whereadiscrepency ofmorethan0.1mRoccursweplantousetheauthor'resultsinthesubsequent analysesunlessyoucontactus.SectionIIIBshouldbeequaltothesumoftheestimated storageexposures whichyouprovidedunderitemIIIBoftheresponseform.ItemIIIcgivestheestimated transitexposurewhichyoucalculated aswellastheauthor'scalculations Aswiththelabandfielddata,whereadiscrepency occursweintendtousetheauthor'sresultunlessyounotifyus.Theremainder oftheindividual datarecordshouldbeselfexplainatory exceptforthecodeswhicharegivenbelow:IVA.REAOERTYPE1EberlineTLR-5,TLR-62EG&G(all)3Harshaw20004Harshaw40005Harshaw22716HarshawCP-1112/PO 7Teledyne71008Teledyne73009Teledyne830010TeledyneUO-505A11Victoreen 260012Krackow74813Conrad5100Aand814Harshaw300015ROCMKIV,1000 16Victoreen 280017LOT-2018.National andPanasonic UO505A19AtomicEnergyofCanadaAEP5256A20TNOAutomatic 2)Kyokko120022Matsushita NationalUO502B23Aloka20224Teledyne910025PitmanToledo26StudsvikAuto1313A27Victoreen 281028Panasonic 710A30Non-Commercial TLO31Non-Commercial TSEE32Oensitometer (all)33ToshibaFGO6, 34TheradosAB,Uppsula35Panasonic UD?02A36RDL7837TLD-0438X-RiteModel301IV.BDOSIMETER MATERIALTLD1BeO2CaF2:Dy3CaF2:Mn4CaF2:natural 5CaS04:Dy6CaS04:Tm7LiF:Mg,Ti 8LiB,LiFincombination 9Mg2Sig:Tb13CaS04:inLif14LiF:Mg,Cu,P 15A1203IY.ELEVELOFPERFORMANCE TSEE20BeOFILM30AllRADIOPHOTOLUMINESCENCE 40AgP0399.Not~eportedl.2.3.9.RoutineBestEffortExperimental systemnotusedinroutinemonitoring NotreportedV.CALIBRATIONINFORMATION Calibration isotope6090137226238500999Ca1ibration1.2.3.9.cobal,t60strontium 90cesium137radium-226uranium-238x-raysnotreportedgeometrycollimated beampointsourceinfreeairothernotreportedV.C..PACKAGING DURINGCALIBRATION 1.sameasintercomparison dosimeters 2.different franintercomparison dosimeters 3.other9.notreportedV.D.'.CALIBRATION DURINGORBEFREREADOUT1.duringreadout2.beforereadout3.other9.notreported.
Page3V.E.CALIBRATION "METHOO1.individually 2.bythebatch'.bythebatchwithindividual corrections 4.other9.notreportedV,F.CALIBRATION EXPOSUREDETERMINATI CN1.calculation frcmsourcestrength2.measurement 3.other9.notreportedPREVIOUSPARTICIPATION 0.didnotparticipate inanypreviousinterccmparison l.participated inonepreviousinterccmparison 2.participated intwopreviousinterccmparisons 3.participated inthreepreviousinterccmparisons 4.participated infourpreviousintercomparisons TYPE'FORGANIZATION UnitedStatesParticipants1.Manufacturers andccnsultants 2.Government agenciesandnationallaboratories 3.Universities 4.Utilities Participants outsidetheUni,tedStates5.All FIrfl<Tfi<I<Atlii>>hLIHTt,t<l'hl<I'.OuOFfHVII<A(<>f'f<fhLAOSI(lETERS f>>f)IVII>l>hL OnTAl<EC<)kl)
FOI<Sfl<IALHuiiof'R0660IToTnll>I'n~>l<ir
>Ih'..Olil.t>
ftrLI><.>sI><f.1EkIFlrLuI)nit<<fTEP2rCl>n,~<ll<r I>k)ER><OkI<<kICORRECTIONS FAOt(inEl>EI<OTO(RECfTONALSfI.Fll\RAOTAT(ON I)f<=1<>i<INi)
IhflI>n)>t'il TlI>I!f<"IH<<IH<:Ir<Iun'>14'fTrk'>00Ion.nr<nLnnL>)c(~LfII<1thnLnul!Dst<LIE(I2t(1~01(5'rn<<tkoL<))5t:E(LI<<('O<<TR<>I.
f)~)>:IlwL1L<<19019.i)Ec(IHAIln<>><~i>su<<LOI'hliTI<.Il"><'sSklbuL~SIIrI')t<<>u<<<l.E)If<:I<<><I<<<I.APIX<'I'><I<<EfrillLA<II><l><>i<k!f26.i)')9.09>>~n(.O2S~t<000nn0000000hut(><)k~
Ilil><<II><IlI.<)r><>>u)>uf<f
<3r'<<NINnLPQExl>05<0'It,)<O<.RII6>>POSvkt2(>.n70.5>'r<.0IIf.<fwtI1(tI>Nli>>rtfII!I>>s>>leer0~0IIIrreal>.ht>
I>fi>n<~><I1I.XIii,<><ifI'hl<I'CI<'0>Iikkl'><'LiSh<~1<~<0<r<lifs>'II1.0Ip.n5~>~~~~~~~~~~~~~~~~~~~>~~~~~~~e~~~~~~~~i~~~>~~+~~~~~~~~1I1t~~>~0E~~~~~i~~~~i~~~~~i>i>~~ti~~tr0~i~~'>01~14~~i~'~i~lt0'~~tl4tIvF>lNEf(ALl(iful<<ll<I0>>AI<(ADt)II1)>t8DOSIHl1)ft(<A<<<<(h<.EI.IV<<.<rINI>>>ORr(ANCI vchlI(3khT(uw INFok<nhttotvPf'I<STCALI(3RAII>>)fI5OTOPE.SLCO><t)rhLI(tkhfleN ry<l.Iltkh1I<>l4G<DWIkT<<ACKh<)I<<)VI<I<<<iCAII8RAII<>NI)rhl.lpJ<ht lokI!u<<IH<okftt'F<>>>E kl>tDODTEmtlllkhTlv)I MII)lon<INDI<>lt)uh<,
pjAIL<<.rfr.lfC<>L(l<l(AT<ON I><<'<>bv><L nLTfl<h<I<<A(IOH
(;6II~h)fDrnL(tlWATIOH Ekf(0>tI><PE<3<.L4T riil)E.030231379992IIII9!9.91<<E<l'OuSI>ANTICIPhfIDHTYF>fO>t(hkIZATION ItI Appendix2.2SurfaceandDrinkingWaterResultsJanuary-March,1986DonaldC.CookNuclearPlantUnits1and2Note:DrinkingandSurfacewatersampleresultsfortheremainder of1986aretobefoundinAppendix2.1ofthisreport.
12THP6010.RAD.OSO ATTACHMENT 2TABLEI~DONALDC.COOKNUCLEARPLANTNATERBORNE, SURFACERITIUM,QUARTERLY COMPOSITE
(~LD=2000pCi/E)Concentrations inpCi/21stQR2ndQTR3rdQTR4thQTRL2L3+SemenCoo&hJo7EkTRK~<~<~>~<o~~~Page1of1Revision0 12THP6010.RAD.050ATTAQQKNT 3TABLEIICOOKNUCLEARPLANTWATEEKORNE SURFACEGM9Q,ISOTOPICNONTLHY'OMPOSITEConcentrations inpCi/2Cs-137(LLD=1SpCi/2)SAlG'LZLOCATION:
COLLECTION DATE~Fl2-t3-S'Q8-f3-.F(Ll~L,uOc.LLQL2I-Ia-SY...-i3-8(8->3-S's-134 (LLD=15pCij2)~LLb-cLb-~Lb+SamerQc~.Dga-2-T&czqD~-IcTerONLR<E'age1of1Revision0 12THP'6010.RAD.050 ATTACE4ENT 3SAMPLELOCATION:
COLLECTION DATE8-I3.-34TABLEIIDONALDC.COOKNUCLEARPLANTVATE3&ORNE, SURFACEQQPJAISOTOPIC, MONTIBRCOMPOSITE Concentrationtm inpCi/iC-40(LLD=I5pCi/S)Ll-LLQ-LLQ-c.IQL3Laling'LLD~l5pCi/E)*L-cfQ-L.Nl4III+.gg'+ZAN CCgMblCTHF/Ak'EPJL6oPage1of1Revision0QIJ~e 12THP6010.RAD.0S0 ATTACHMENT 3SAMPLELOCATION:
COLLECTIOH DATE-i@-Sk>-I-ZiZ-13-SkTABLEIIDONALDC-~COOKNUCLEARPLANTWATERBORNE, SURFACEGAL(ISOTOPICg NOHTLEYCOMPOSITE Concentrationa inpCi/EF~.H(LLD=30pCirx><ILI-uQL3I-'~--5k>-i3-$4Z-19-S"C+&$:LLD~,3CpCi/2)-LIU3NCiHclAKcP'.'6'G ZC'CGQMKEPage1of1Revision0, 12THP'6010.RAD.050 ATTACHNENT 3SANPLZLOCATION:
COLLECTIOH DATEi-IaW4-(39(,-r3-2TASLEIIDONALDC.COOKNUCLEARPLANTMATIDRORNE, SURFACEGAyyg<ISOTOPIC, NONTLHYCONPOSITEConcentrations inpCi/EQ~~S(LLD=l5pCi/t)LlL2cLLQ4~Q<<L~%4&f:LLD~I-pCi/R)c.~Q'+SAmpm('a~@M~7-g=TedgeD'eTo;z'c.'FGJ~BCPage1of1Revision0 SAHPKZLOCATION:
COLLECTION DATE~-i3-SY12THP'010.RAD.050 ATTACHMENT 3TABLEIIDONALDC.COOKNJCLEARPLANTMATEEKORNZ, SURFACEGag~ISOTOPIC, NONTLHYCONPQSITEConcentrations inpCi/iZrIBLLD=30pci/~)Ll"LLDcLDIgb-ggLLD~i~~pCi/9)LW+~p~QpggQg-,gp'QJ3lcGJDQETo~t='n/LAKE.Revision0, 12THP'6010.RAD.050 ATTACHMENT 3SAMPLELOCATIONS COLLECTIOH DATETABLEIIDONALDC.COOKNUCLEARPLANTWATERBORNE
~SURFACEQA&RISOTOPIC<NONTLHYCONPOSITE~'Concentrations inpCi/EZ-/3i(LLD=IpCi/E)L1L2I14Ie,p.-pj's'LLD
~QQpCi/2)cLLI~"wSRm~C'ot:t.g~+Ter~ReIo~c'<~,~,~,~~OdLP<E.Revision0 12THP6010.RAD.050ATTACHMENT 4TABLEIII>ONALDC.COOKNUCLEARPLANTNATERBORNE, DRINKINGTRITIUM,QUARTERLY COMPOSITE (LLD=2000pCi/2)Concentrations inpci/RIlSt.JosephLakeTownshipNewBuffalols:QTR2ndQTR3rdQTR4thQTR0Page1of1Revision0:
12THP6010.RAD.050 ATTACHMENT 5TABLEIVDONALDC.COOKNUCLEARPLANTWATERBORNE, DRINKINGGROSSBETA,MONTHLYCOMPOSITE (LLD=4pCi/2)Concentrations inpCi/2SAMPLELOCATION:
SAMPLEDATE:z-z-,P(/-/s-h(/-3()-$'6ST.JOSEPHg.s3egg)LAKETOWNSHIP-.2,PC"P,7$'d.75NEWBUFFALO'.Page1of1Revision0 12THP6010.RAD.060 ATTACHNE2FZ 6TABLEVDONALDC.COOKNUCLEARPLANTWATERBORNE, DRINKINGGAL(ISOTOPIC,MONTHLYCOMPOSITEConcentrations inpci/iSAMPLELOCATION:
SAMPLEDATE/-4.$k'-BO-Zb<LLUC/fQ-LLb~LLQCs-137(LLD~18pCi/2)ST.JOSEPHLAKETOWNSHIPNEWBUFFALO~EL'LQc.+JQCs-134(LLD=15pCi/2)~ELL>g-lC-LLD"L.LIPage1of1Revision00 12THP6010.RAD.050 ATTACHK'NT 6SAMPLELOCATION:
SAMPLEDATEs-~-sbr-/-8'o-ZbTABLEVDONALDC.COOKNUCLEARPLANTWATEEgeRNE, DRINKINQQANNAISOTOPIC, MONTHLYCOMPOSITE Concentrations inpCi/EZ.-(3i(LLD~IpCi/X)ST.JOSEPHLAKETOWNSHIP~LLQ-~cbcI<LL~LL)lI-ld-0-cV-/'Q~-IAO(LLD
=60pCi/L)~LLDcELIO*LLDILzt.b~L,Lt0~Lt-LLPage1of1Revision0 12THP6010.RAD.OSO ATTACHHERT 6TABLEVDONALDC.COOKNUCLEAR=-
PLANTWAKM3ORHE DRI2KI2%GAKKAIISOTOPIC, NOPZHLYCONPOSITE" 1SANPLELOCATIOH:
SANPLZDATEi-a-sb~LLQ~LLQ~LL~LLQ-~cb~LLb~LLConccntrationa inyCi/JLZR-15(LLD~80yCi/I)ST.JOSEPHLAKETC%NSHIPNEMBUFFALO~LlQJi-ld-NG75(LLD=l5pCi/~)~LgQ~LLb*LLEWLLLab-tcbLL~LLQ~LLE)Page1of1Revision0 12THP60?O.RAD.050 ATTACBKWZ 6SmrLZLOCATION:
SAKPLEDATEs-~-sbi-/-8'-ZdTABLEVDONALDC.COOKNUCLEARPLANTWATERBORNE DRINKINQGAMBAISOTOPIC, MONTHLYCOMPOSITE Concentrations inpCi/ECG-5~{LLD
~l9pciya)ST.JOSEPHLAKETCNÃSHIP~lLQ-cLb~LLb~LLcJgj)s.~a~@~LLQI-/6-0-gg-gg(LLD
=/~pCi/I)-LLD~LLEW*LLEW)"LL~jLb~LLE)LL~LLEW~LLE)Page1of1Revision0 12TBP6010.RAD.050 ATTACHKBlT 6TABIDVDONALDC;COOKNUCLEARPLANTMATE'.GARNE, DRINKINGQAKNAISOTOPICi'cMNTHLYCOMPOSITSConcentrations inpCi/S:,PSAMPLELOCATION:
SAMPLEDATEs-a-sbc.gagLL~LLQ<LLFC-5R(LLD
~80pCi/X)ST.JOSEPHLAKETOMÃSBIP~tlbx~Q~LLQIt-/6-~~~~(LLD=30pCi/~)~pcQ~LLEW*LLEW"'ILLL.b-ubegg4L~Lt.Q~tLE)Page1of1Revision.0 12THP6010.RAD.050 ATTACHNENT 6SAMPLELOCATIOM:
SANPLEDATEs-~-rb-Zc.gag<<ILQTABLEVDONALDC.COOKNUCLEARPLANTMATEIU3ORNE, DRINKINl~~ISOTOPICMONTHLYCOMPOSITE Cont:entzationa inpci/EQp-Cga(LLD
~15pCi/L)ST.JOSEPHLAKETEWHSHIP<LIb~LL~-Igg(LLD
=l5~pCi/i)-LLDcLLIO~LLD-LLPage1of1Revision0
~-IP1I Appendix2.3EnhancedRadiological Environmental Monitoring ProgramResultsArisingfromtheAccidentattheChernobyl NuclearPowerStation10
.4f=3.I1iJ 1317TECHNICAL
-PHYSICALSCIENCESOEPARTHENT ACTIONREQUESTR.J.Clendenning TO:SECTION:Radiation Protection I/1/~ActionRequestduetoOepartment HeadonThisdatehasbeenchosentoallowforadequatereviewandpreparation ofsupplemental responses.
Recommendations/Assignment:
ReviewI.E.Information Notice86-32:RequestforCollection ofLicenseeRadioactivity Heasurements attributed totheChernobyl NuclearPlantaccidentandaddresstheplant,manager's comments.
Reference Oocument:
I,E.Information Notice86"32~.Additional ResonseOueTo:OueOate:N/AA.C.CDTechnical/Physical SciencesSuperintendent OateIssuedResponse:
/~Q(w~Qfv4)li~Y~wuCompleted 8y:TechnicaI/PhysicaISciencesSuperintendentSate:icMate~Extension datesmaybe'obtainedfromTechnical
-PhysicalScienc'esSuperintendent forthoseitemswithnoresponses dueoutsidetneOeoartment.
AllAR'swit5iesponses dueoutsidet'eDepartment areexpectedto5ecompleted on
~~/pRECBVEOt4tY13l986Technical Oept.
PRIORITYATTENTION RE(UESTEO UNITEDSTATES.,'UCLEAR REGULATORY CtMISSIONOFFICEOFINSPECTION ANDENFORCEMENT WASHINGTON, O,C.20555Hay2,1986SSINSNo.:6835IN86-32+~~~p,PLCkg~c-4
~0~gIEINFORNATION NOTICENO.86-32:REQUESTFORCOLLECTIOH OFLICENSEERADIOACTIVITY HKASURENENTS ATTRIBUTED TOTHECHERNOBYL NUCLEARPLANTACCIDENTAddressees:
Allnuclearpowerreactorfacilitylicensees holdinganoperating license(OL)orconstruction permit(CP).~Putose:Thepurposeofthisinformation noticeistoupdatelfconsoes ofthorecentChornobyl nuclearpowerplantaccidorft andtoroquostvoluntary reporting oganylicenseeenvfronmentalradioactfvfty measurooont dataprobablycausedhg.thatevent.InordertoenhancetheFederalandstatemonitoring progiams,'llnuclearpowerreactorfacilitioswithon-goingenvironmental monftorfng programsarerequested toconsidertheNRCrequesttoreportconfirmed anomalous environmental radioac-t'vitymeasurements probablycausedbyradfoactive materialreleasedintheaccidentattheChernobyl nuclearpowerplantinthoU.S.S.R.Itisrcquestedthatrecipients reviewthoattachedfnforaatfon andprovidethoonvfromental datadiscussed heroin.DescritionofCircumstances:
Information issuedbytheEnvironmental Protection Agency(EPA)concerning therecentreactoraccidentinChernobyl, USSRiscontained inAttachments 1,2and3~Intheweekfollowing theaccidentat,Chernobyl, elevatedlevelsofradioactivity havebeendetectedinair,rainwater, soilandfoodinmanyEuropeancountries.
Theradfonuclfdos thathavebeendetectedinairinthesecountries include:I-131,Cs-137,Cs-134,Te-132,Ru-103,Ho-99,Np"239,andNb-95.Althoughestimates ofplumearrivaltfmoandlocationofentryintothecontinental UnitedStatosarehighlyuncertain atthistime,theplumemayarriveinthoPacificNorthwest UnitedStatesduringNay7-10,1986.Discussion:
Itappearslikelythatradioactive materialfromtheChernobyl accidentmayarriveiriewithinthecontinental U.S.inconcentrations thatarereadilydetectabe.-Idtonhancenationwide environmental surveillance, theEPA(andsomenorerenc>estobebettersaetts)haveincreased theairborne"monit'oring s~lingfrequotandreinforce
-aeo-bltodetectanytracesoftheplume.Inordertosupplomon thisstateandfederalnationwide surveillance program,th.e.NRClicensees
<aswan~QwG3+(<'~yqD+ca~ca'8605020492 q,~~+<c=+a~
~p~g~gt2!00P8pKKRSOAYiHAY1~l986CCSTACT4OAVKCOBRA(202)382-C]SSOnTuesday,theEnvironmental Protection Agency,whichmafntafnsthonat'ion'radiation monitoringnet<orkzincreased ftssanplfngfreauency torairbornoraffoactfvityto,daily.Result:'btafnedthusfarsho~noineroasoinradioactivityabovenormalbackground levels.TheCanadfanairmonitoring networkhasalsoincreased ftssamplingfroauency todaily.Resultsthorosho~noincreasefnradioactivity.
~.Thoair~asscontaining theradioactivity fr~~thefnk~iplChernobyl nuclearovontisno<<idalydfsporsed throughout northernFuroreandPolarrogfons.Portf.inc ofradfoactf vileofCthenorth~est tlo~eqfan coastyesterday morningshouldcontinuetodisporsevfthpossiblenoveaonttowardtheeastfnthenextsaveraldays.Otherportionsoftheradioactive airmassanynovoeastthroughtheSovietUnionandthroughthePolarregionsoverthconing~oek.ThoSovietshavoreportedtheyhavesnothwred thefire.Fro~ourinformation itisnotclear~botherthofireisoutornot.aeaLsocannotconfirnn~<<c'eportsofda~ageatasecondreactir,hu~thesecondhotspotseenintheLVAS~Tphotosisnotareactor.TheU.S.Government hasoffe.edtoprovidetechnical assisancetotheSovietGovernment todealwiththeaccident.
OnMdnesdayafternoon, aseniorSovietof.icialfrnmtheirEmbassyinWashinctton delivered anotetotheDepartment ofStateexnressinct appreciation forourofferofassistance andstatingthaforthecinebeing,assiscancu isnotneded~Atthepresenttine,theU.S.."~oi.rnnenthasnodataonradiation level~orcontamination LevelsatanyLocationvie.'~intheSovietUnion.Wealsohavenofirninformation concetni~4'.4 thenumberofcasualties fromtheaccident.
(nore)
Attachtnent 2IH86-32Hay2,l986T~IgQPOINTSiCBERCORTL gQCLEARACCIDENT'~>f~"'April30'96<'ril25.orearlySaturday.
April26$a@prodattheChernobyl nuclearfacilityseriousaccidentoccurredatant,thefacilityexperienced acorofiroCausesofthoaccident'aremeltdown, explosion, andfire.auaesnotkncwn.oTheoxpoionandrosultingfirereleasedaplumeofdoiereactorcoro,firecontinues<
'radioactivo gasesvoff.volvodisagraphite~oratod,~
oThofacilityinvolveressure-tube unt.gpsuchunitsatChornobyl.
Togunit<kn~asVnit44,isinvolvnoavelodinanorthwest
.diroction oTheinitialplumetraveoit~illmovei~'tmrardScandanavxa.
Predictions nmsuggest1bovenormalbackground anoast~arddirection.Radiation lovesahavebon,detctedinScanScandanavian countre~levelsposenosignificant risktohumanea0nvilonmentovernmenthasmadeanofferoftechnical sisttothoutofgonulneconcernondedApril30thatnopeople.oTheSovietgovernment responeod~foreignassistanceisnoodtodsecificinformation onthef11sposto~ehavenotreceivedauthatrequest.ThisisalsoamatteroStates.Unltpdationlumeemittedas'resultoftheChernobyl accidentilld~spHomi6phoro
~Eventually, someradxoctasontobelievethattikvc.there,isnoreasogtvillposeanybenvironment.
easefactsheetonradiation healtheffectsoronexposure.
p~Attachment' IH86-31.May2,1986FactSheet-Chornobyl SOVIETNUCLEARACCIOEHTFORRELEASE:2:00P,M.,FRIOAY,MAY2,l986COHTACT:OAVECOHEH(202)382-4355Radiation monitoring networks.intheUnitedStatesandCanadaarecontinuing toanalyzeforairborneradioactivity daily,Noincreases inradioactivity abovenormalbackground levelshaveboondotoctodineithercountry.Canadianofficials intendtoincreasethosamplingfrequency oftheirmflkmonftorfng network,whichconsistsof16stationsnearpopulation centersinsouthernCanada,towooklybogfnnfng nextweek.Itfsbelievedthataircontaining radioactivity nowcoversmuchofEuropoandala~gopartofthoSovietUnion.Thedistribu-tionofradioactivity islikelytobepatchy.Aircontaining radioactivity detectedbyaircraftat5000feetabout400mileswestofnorthernNorwayisbelievedtohavemovedwestwardandewappearstobeheadingsouthorsoutheastward perhapstoreturnto~esternEurope.Thereisnoindependent conffraation oftheradio-activityintheairmovingeastwardacrossAsfa.(A~cathermapshouldboattachedtotoday'sTaskForceReport.Ifyoudonothaveacopy,itcanbopickedupintheEPApressoffice,room311,MostTower,401MSt.,S.M.(202)382-4355.)
Environmental monitoring datahavebeenprovidedbytheSwedishgovernment forthoStockhol@
areaforApril28-30.Extrapolations ofthosedatasuggestthatradiation exposurelevelsattheChernobyl sitewouldhavebooninarangefrom20remtohundredsofreNwhole-body forthotwo-dayperiodoverwhichmostofthoradiation releaseprobablytookplace.Radiation dosesforthothyroidglandhaveboonestimated tobeinarangefroo200remtothousands ofreaforthesameperiod.Thesedosesaresufficient toproduceseverephysicaltraumaincluding death.Itshouldbeemphasized thattheseareestimates subjecttoconsiderableuncertainty.
TheU.S.hasasyetnoinformation fromtheSovietUnionastoactualradiation levelsexperienced attheaccidentsite.O,
~3&/PTheSl)tbHousehasestablished anInteragency TaskForcetocoordinate theGovernment's responsetothenuclearreactoraccidentinChornobyl.
TheTaskForceisunderthedirection ofLeeH.Thomas,Administrator oftheEnvironaontal Protection Agency,withrepresentatives frowtheWhiteHouse,Oopartment ofState,EPA,Oeparteent ofEnergy,NuclearRegulatory Coeaission, NationalOceanicandAtaospheric Achinistration, U.S.AirForce,Oepartsont ofAgriculture, FoodandDrugAdministration, FederalEaergency management Agency,Oepartaont ofInterior, FederalAviationA@sinistration, theU.S.PublicHealthService,andotheragencies.
PLEASENOTE:THEEPAPRESSOFFICEWILLBEOPENOVERTHEMEEKEHOFORUPDATING.
HOURSMILLBEFROH10amTO2N.202-382-4355.'"
SSIHSHo.:6835IH86-32,-Suppleient 1,Icc:.t.p.AIexichT.a.Ar,"eneaS.J.BraverJ.M.Cleveland C.Jl.ErpceonUNITEDSTATESNUCLEARREGULATORY COHHISSIOH J.B.shl~tOFFICEOFINSPECTION ANOEHFORCEMEHT D.H.villiarne.Jr.WASHINGTON, D.C.2OS56g'Jii6N5EINFORHATIOH NOTICENo86-32SUPPLEMENT 1REquESTFORCOLLECTION OFIEINFORHALICEHSEERADIOACTIVITY MEASUREHEHTS ATTRIBUTEO TOTHECHERHOBYL NUCLEARPLANTACCIDEHTAddressees:
Allnuclearpowerreactorfacilities holdinganoperating license(OL)oraconstruction, permit(CP).Purpose:Thepurposeofthissupplement istoprovideanupdateontherisponsetoInformation Notice86-32andtoinformthelicensees thatthereportingofenvironmental monitoring data.attributable toChernobyl (within24hours)ilongerneeded.Discussion:
Ift'otice(IH)86-32issuedMay2,1986requested thatreactorlicensees reportwithin24hoursanyenvironmental datacollected attheirfacilityattributable totheChernobyl reactorincident.
Todateover461'pondedbyreporting evaluated levelsoffissionproducts-131inaroundtheirfacility.
Alllicensees responding toIN86-32reportedI-rainwaterandairsamples.Measurable levelsofCs-134,Cs-137,Ru-103,Ba-140,La-140,andTe-132alsowerefrequently.
reportedin.airsamples.ManyoftheI-131concentrations reportedinair,milk,andfoodproduct(leafyvegetables) samples,althoughlow,wereabovethespecialreporting levelslistedinTable3.12-2ofthestandardRadiological EffluentTechnical Specifi-cations(RETS).IN86-32wereentirelyonavoluntary basis.TheHRCappreciates Responses to-werthecooperation receivedonthiseffort.Thelicensees adtawererovidedtoptheeerancraghFd1ItragencyTaskforceestablished todealwiththeChernobyl "theenviron-accien.e'dt.ThEnvironmental Protection Agencyhasindicated thatmentalradiation datasuppliedbyNRCl>censees wereinstrumenta 1inunder-standingparticular aspectsoftheUPS,radiological situation andinanswering concernsofU.S.citizensrelativetogaseousradioiodine intheair".,8606040003 ANcLgc)HD)AHP8,glCHlGAHELECTRICCOMPAHY>WCRSYST<September 9,E9888807tusJECT'E Infozmation Notice86-32RequestforColleccion ofLicenseeRadioactivity Measurement attributed totheChernobyl NuclearPlantAccident.
FROM<TOtS.R.KhalilR.J.Clendenning InresponsetotheChernobyl reactoraccidentonApril26,1986,westartedaspecialsamplecollection andanalysisprogramtoevaluatethelevelsofradioactivity resultedfromthisaccidentandtoassurechatthedetectedmaterials areproperlyidentified astosource(e.g.eitherplantoperations ortheChernobyl event).Threesamplestationsvereselected, tvoon-sitescacions(ONS-2andONS-4)andoneoff-sitestation(Coloma).
Airbornesampleswerecollected fromthesestationsthreetimesperveek(i.e.Tuesday,ThursdayandSaturday).
Theenhancedsamplecollection programstartsonMay3,1986andwascompleted onJuly3,1986.Theresultsofairborneradioiodines andairborneparticulates (grossbeca)samplesarepresented inFigures1and4.Sampleswerealsocollected inaroutinebasisaccording toourplantREMPeverysevendaysfromsixon-sitestationsandfouroff>>sicestacions.
Theresultsoftheweeklyroutinesamplesfromthesetenstationsduringsecondquarterof1986areshovninFigures2,3,5and6.OnMay10,1986,theiodinelevelsshowedaveryslightincreaseinallthreestations, followedbyasharpincreaseforbothairborneparticulate andiodinelevelsonMay13,1986.DuringthesecondhalfofchemonthofMay1986,Figure1showsthatthreeradioiodines levelsweredetectedonMay15,May22,.andMay31,1986vhichindicatetwodecayperiodsfortheI-131radioactivicies inourplanearea.Also,Figure4shovsthatthreepeaksoftheairborneparciculate activityduringMay13throughcJune5,1986period.Following thistime,theradioiodines andparticulates activities weredecreased tonormalbackground levelsduringthemonthofJuneuntiltheenhancedsamplingprogramwasdiscontinued.
Ourroucinesamplingprogramcontinued withoutinterruption asscheduled andindicates thattheseobservedlevelsvasduecotheChernobyl event,nocfromD.C.CookPlant.ArainsamplevasobtainedonMay20,1986fromColomastacionandthegammaspec.analysisindicaced nodetectable activicyinchissample.Theanalysisofourroutinemilksamplescollected every14daysduzingchesecondquarterof1986arepresented inFigure7for.fivemilkfarmscat'ons.
Milksamplescollected onMay24andJune7shovsaI-131levelincreased, specially zromWyancstationsamplesinDowagiac, MI.OnJune2),1986cheiodineradioactivity levelvasdecreased inallstations.
~v.qS.R.Khalil/lgcc:ARd1317IHTRASYSTEM APR29MAY3MAY6MAYSMAY10MAYl3MAY15MAY17MAY20MAY22MAY24MAY27MAY29MAY31JUN3JUN5JUN7JUN10JUN12JUN14JUN17JUN19~21f~824guH26JUN28JUL1JUL3ONSET[I131]'(5<5c5w567185206131659439301563c536c527c5<5+5c.5(5c5c5c5(5c.5(X131]<5(545~854.1822091105888474119341128c.58c5c520471810c5c5c.5c,5xCOLOMA{I131]<5(5C5(549202222805511336274145132320c532(510(5c527c5c5c5ONS2(BETA]3019209273183331284630099695374183510426720332031421782210llONS4(BETA]201815820314303112423749967.338117318839512816153240117209COLOMA[BETA]21141692331331877243381769479319615340552625153838121116128APRXL12APRIL26MAY10MAY24JUNE7'UNZ21IODINETOTZKE<0.4<0.4~0.40.80.51.6RESULTSSC1KLZR<0.4(0.4~0.45.71.10.7PCi/Liter LOZMACKLXVXNGHOU (Qo4(0~4<04wQcQ~4~0~41~32'2'111~22.3NYANT(0.4eQ~4<<0~422.122F12.5AIRBORNEIODINERESULTSPCi/M3
.~R8APRlSAPR22APR29MAY6MAY13MAY20MAY27JUN3JUN10JUN17JUN24JULl'!3~!ON81~0.005<0.005<0.005cp,pps~0.0050~0610~1220.044<0~0050.009<0.0050F01c.p.005."<<%%ate,~gi
~<<(<<ONS3-4O.aos<0,ooS(0.005cp.pps(0~005co~005(0~005-(0~005<0.005(0.0050.115.0.0930.0960.0980.070.050~06c0F0050.0270.014cp.ppsc.p.pps0.008(0.005<0.005~.005ONS4cp005coF005c0.005c0.005c0.0050.0730.0870.048c.0.0050.0080.020~013cp.005,ONS5&.005~0.005~0.005co.oos0.0110,0880'930.055~0.PPS0.0080~0130~016c,p~005ONS6cp~005c0.005<0.005coF005cp~0050'810~0180~048c0.0050~013co~005c.p.pps(0~005NBF~0.005~0~005c0.005<0.005cp.0050~0810.0880.0540~0250.012(0~0050.008co~005SBN,(0.005cp.pps~0.005c.p.005~0.0050.0970.109c.o.pps<<.0.005c.0~005<<.O.005O'.007cd005AlRBORNEAPR8APR15APR22R296813~Y20MAY27JUN3JUN10JUN17JUN24JULlONS1ONS20~014,0~013~0~005c0~0050.010.0080.0280.030.028,0.020~1310~1320.1220.1280.1420.3.270.0930.0830.1030.0670.0170.020~0250~0190.0110.007PCi/M3ONS30~013<0.0050.0150.0250.0180~1310.1060~1420.1110.0680~0210~0240.008ONS40~013cp.0050.0090~020~0150.0930~1130.1310.0870~0510.0150~021<0.005ONS50.011cp.0040~0110~020~0160~1310.1180.1270.1040.0690.0230.0240~012ONS60~0160.0060~0120'320~0180~120.0160.0940.1040~0850.0190.0260.013NBF0~013.;.(0F0040.0110~0190.0150.1050.1020.1540.1010.048O.O180.0290.009SBN0.01440.0050.0120~016O.0190.1660~1070'550.120.0670'220'260.009
)Wc4.005(0~005<0.005(0.005~0.0050~0920.0750.046c0.005q0.005~0.005c'.005c.p.005COG(0.005(0.005~0,005~0.005c0~PQ50.0640.107(0.0050.038(0.0050F010.018<0.005DOW0.0090.0040.0110.036o.011g.1170.0780.1220.0580.0570.0240.020.011COL0.012<0.0050.0120.0210.0160.1340.1080.1070.0770.0550.0150.0170.009 D.C.COOEPLANT(REAP)184ONS4'::46APEDh!AYlbLfAY25JUN12JUN26DATEAPRlL29TOO'ULY8f986 D.C.COOKPLANT(REMP)013.0O.OM0.0520.0260.000.:.:-OQ5'tONS3OjtlS4APABAP829NN20JUNOAPRIL8TO\UL'Y11986 D.C.COOKPLANT(REMP)0.M0.0880.0660.0440.022g8E-8iNDON0.000CAPABAPA29NAY20NNt0'PRIL 8TO'JULY11986 D.C.COOKPLANTl,REMP)ll(V}PPABINNNN23NN2NNS'PRIL29TJULY31986 D.C.COOKPLANT(REMP)O.t500tN.0.0O00.M0.0@00.000APRIL8TOJULY11986 Ts;iD.C,COOKPLANT(REMP)Q.tNQ,f860.>020.068Q.QQQAPR8CAPR29NAY20gggggPItBATEAPRIL8TOOULy]]986 s.c.coo@az,<xv(zsuaj10.4IMT0TLKE'-:.'.SCHULML028ACKLWINGHOUS 4,60,0APRIL12.MAYIOAPRIL26JUNL'21NY243ATEAPRIL702U'5'E/986
~giC>>KL.ZCqCIHPIPHPghllCHIGAH ELECTRICCOMPAHY/ONCRSY5TE,1$808September".~
%986IZInformation Notice86-32S.R.KhalilR.J.Clendenning IreviewedtheRadiological SupportSection,AEPSC Report,whichwaspreparedbyH.JonesonJune23,1986.Thefollowing aresomeincorrect information inMr.Jone'sreport:-a)SampleresultsforMay31andJune5,1986,arenotlistedinthisreport'stable.b)GraphpresentsonlyresultsforMay3throughMay29,,1986,andneglecting therestofthedata.c)ThisreportwasdatedJune23,1986,inspiteofitcontainsresultsuptoJuly3,1986.d)Itcontainsamisleading statement thatthenormalsamplingroutinewasresumedwhentheenhancedsamplingprogramwasdiscontinued.
Routinesamplingwasneverstopped'..andnoviolation toTechni'cal Specification 3/4.12.1.:
.requirements asMr.Jone'sstatement couldbeinterpreted.
e)Itcontainsanincorrect statement fornoactivitydetectedinmilksamples.Samplescollected onMay24andJune~..'1986,showedincreased anddetectable I-131level.~cS.R.Khalilcc:AR51317+~',IHTRA~SYSTEki DATIsAIaQRICAK ELECTRICPOER~rJuno23,1986OasCASd%S.SC~ufo5ERV)CECORPORATIOK
~+~galOiprafgSvart+SUIJKCTsNRCIEInformation Notice86-32-RequestforCollection ofLicenseeRadioactivity Heasuraments Attributed totheChernobyl NuclearPlantAccidentCloso-Out Information SummaryfRahhTOsH.V.JonesAEP:NRC'9455 Following theChernobyl reactoraccidentandtharesulting releaseofradioactive matexialtotheatmosphere, thoNuclearRegulatory Commission issuedNRCIEInformation Notice86-32invhichtheyxoquostod licensees
'toreportanyanomalous findingsinthoirradiological onvironmantal monitoring pxogramvhichwouldreasonably beattributod tothaChornobyl plume.C'onsequently theD.C.CookPlant'sRadiation Protection Sectionroquostodg
.thatControlsforEnvironmental Pollution, Inc,(CEP)beginanenhancedseCplecollection andanalysisregimeonair-borne particulate andair-borne radioiodine samples.Atotaltothree(3)samplestationswarosoloctodforthisregime,tvoon-sita(ONS-2andONS-4)andoneoff-sita(Coloma)stationsvhichveresampledthreetimesaveek(Tuesday,
- Thursday, andSaturday).
Theresultsofthiss~plingregimeareattachedinbothtabularandgraphical formtothisreport.andissummarized belov.Allthreeairsamplestationsshovedbackground levelsofairborneparticulates (i.e.grossbeta)andI-131upuntilIay8,1986.Atvhicht'meonlyonooftheon-sitesamplestationsshovedaveryslightincxeasainI-131.FromthisciaountilMay15,1986;boththeairborneparticulates andI-131levelssteadilyincreased.
Afterthisdate,theradioactivity levelsdecreased gradually exceptforthosesampleswhichshowedanincreaseinbothairborneparticulates andI-131levelscollected onMay22,1986.Thistransitory increaseishypothesized tohaveoccurredbecauseofachangeinthedirection oftheupperatmospheric jetstreampriortosamplecollection.
+g/8'I1Thenotoddecroaseinactivitylevelscontinued toapproachnormalbackground'evels, untilsucincreased samplingvasd'iscontinued andthenormalsamplingroutinevasresumedInadditiontochaseairborneparticulate andiodinesamples,aspecialrainsamplevasobtainedonMay20,1986;nodetectable activicyuasobserved.
lnadditiontochesssamples,r'outinemi~smples collected duringthiscimeverefoundtohaveno1.t.fablelevelsofactivitynoted.Peradis'cussion vichamemberofthaRadiation Proc~eaconSection(oniiay30,19863havobeenreportodtocheNRC.OnJune6,theNRCissuedSupplement 1toNRCIEInformation Notice86-32,notifying Licensees thatsuchenhancedenvironmental sampleanalysisregimosarenolongerrequired, andthePlant-Radiation Protection Sectionvassubsequently notifiedonJune17,1986.
AEP.NRC:9455Juno23,1986Pago2Zfyouhaveanypleasecontactmeacquestions concerning anyinformation foundinthismemo,edgAttachments cc:S.J.BrewerM.P.Alexich.R.W.Jurgensen D.V.ShallerT.A.Kriesel,w/oact.R.J.Clendenning, w/oacc.S.R.Khalil,w/oatc.D.Allen,w/oact.J.Kambach,w/oact.i
~~IH"'l'lP'J&v~iicc>Xiyl;l~>ar'pen~.ez.~'a+ers+.<<"iuiin.iu(,<'..c>>:(ri~,z,'~vy~ii~
JI(~roseI-<'SLIIO.P,O0sIIIIIo~mIII")-~jIo/l~'LI7$xsyfC?il/y~rPJr..'lgrn/'tniny~
Badiological Environttle>>t.al Honitoring ProgramEnllanced Sam!)leAnalysisResults-33l-131{10pCi/m)ONS-2OHS-4CO!.E)HA-33CrossBeta{10pCi/aa)ONS-2OHS-4COMHA-3-86-6-06jl-13-06l:)-15-06i-17-llE) 3-20-065-22-065-27-065"29-06g)I-3-:IGDa~E)100646-12-066-14-866-17-8646-2)-866-24-866-26-866-28-867-1-06c5c.5IE)7-1E)I1ll')-l42I)l.-l71ll-1'tI+9-l2+39-93ll-0+15-0I'La>c53CgXC2I->>c5a5+EI-l102-l4,tI)lt'I1II!llI-l!')'>>-'I.t4'I-l04I-III0-I>~)20-547-1ll-7t10-75545I~I')-IlIJl).'.-]I(I..'-I>>I~(IIl1)-!5t~ll-lIIt10-4527-9c5~54~)+')ll-'>7-431>>-7ct~lt)-l~lj95tE)9-4+.53-5rl~ljlyI~t2ll-433-4'vj31-4t42-4+17-2El-310-415-2+8-120-3314-7.303-9+'.112-5,t42-3+374-999-5t67-4+33"4yf173-~1t+739-4t5.-3+28-4+15-2+32-440-420-4+8-214-416-2gal23-'33l3-777-424-2+'330-9+17-369-4+47-540-4+55-326-4t25-315-3El-4+38-412-211-316-4t12-2i..7E).,',C)s~~~...wIr(~~ll(ll()I)Il'.i11-4 I".~lg~4-logicalm~vironmental Nonitoring Program~no~SampleAnalysisResultsCs-134~~i>iSPECBCSCQPYANAI.YSIS Composite Partaculate SamPLeso33HAH-HADERAQIQNUCLIDES
{10pCi/m)Cs-137I131Ru10390-13166+86-34+29919Remarks r)II Appendix2.4MilkFarmCensus-198611 0I~I0'I0, 12THP6010.RAD.050 ATTACHMENT 9TABLEVIIIDONALDC.COOKNUCLEARPLANTMILKANIMALSURVEYTABLESECTORSURVEYTEARDISTANCE(ETLES)NAMEADDRESSl3:c)QckhtQTz.Cma~JdCPtAlSNtX25Tcg~VVEli'd~leOL)lE.hl3pRltJSSPAitdQ-i8'.oSdRo,&RorAArIShou'SAADb+K0.7ZTHPp70/5.GhsTRDBAibeS.~Bairn.'TizmOarsRt).QamOecsIOPECAkSSmÃ60kb.HaecOhes.Allothersectorsareovervater.Reporting Year=I'RS(ubYearPriortoReporting Year=/IR5Page1of1Revision1
'
Appendix2.5Residential LandUseCensus-198612 7II1k>>4;l' 12THP6010.RAD,0SP ATTACHMENT 8'ABLEVIIDONALDC.COOKNUCLEARPLANTRESIDENTIAL LANDUSESURVEYTABLESECTORSURVEYYEARHOUSEI~DISTANCEINFEETLOTODn77L7-%-.oo-7.P/07-lO>7-(03'7-IO3-/Q.5Allothersectorsareoverwater..House4indicated isnotaddressbutreference numberusedonmapwhenobtaining therawfielddata.Report'nq'Year bYearPriorto.Reporting Year=/RgbPage1of1Revision1 F1f Appendix2.6Condition Reports-REMP13 l-~IJP IoolaaMoIofcoloao aocrolccoaaaaorDONALDC.COOKNUCLEARPLANTP.O.Box458,BricIlman, Michigan49106(tI1614864%1May1,1986DonaldC.CookNuclearPlantUnitNos.1and2DocketNos.50-315and50"316LicenseNos.OPR-58andOPR-74Mr.J.G.Kepp'ler, RegionalAdministrator UnitedStatesNuclearRegulatory Commission OfficeofInspection andEnforcement RegionIII799Roosevelt RoadGlenEllyn,IL60137
DearMr.Keppler,
Inaccordance withTechnical Specification 3.12.1wearesubmitting thisspecialreporttoadviseyouthattheminimumlowerlimitsofdetectability inthelakewatersamplingstationsandthedrinkingwaterstationsexceededthelimitsofTable4-12.1.During1985samplesofwaterfromLakeMichiganwerecompositedbythree(3)indicator andthree(3)background srations.
Samplescollected throughout theyearforthethree(3)background stationswereccmposi'te'd onamonthlybasisandanalyzedforgaarnaemittersandgrossbeta.Samples.for'thethree(3),indicator stationswerecomposited onabi-monthly basisandanal,yzed.
forgammaemittersandgrossbeta,TheresultswereincludedintheAnnualEnvironmental Operations Reportfor1985whichwassubmitted onMay1,1986.~gItwasidentified byplantpersonnel thattheradiochemistry countingequipment was,unabletomeettherequiredtechnical specification LowerLimitsofDetection (LLOofT/S4-12.1)andthattheMinimumDetectable Activity(MDA)"insomecasesexceededthereporting valuesasspecified inT/S3.12.1.TheLLOisdefinedasthedetection capability fortheinstrument onlyusingtheequat'ioh inT/STable4.12-1andtheMDA,asthedetection capability foragiveninstrument,
'procedure andtypeofsample.Thiswasnotpreviously identified becausetheLLDvalueswerenevercomparedtothemaximumvaluesforLLDinTable4,12-1orthereporting levelsrequiredbyT/S3.12.1.<edonothavethedatatoprovecompliance withtheLLDvaluesrequiredbyT/S4'I2-IsinceApril15,1983whentheRadiological Environmental Technical Specifications wentintoeffect.However,thesystembackgrounds wouldhaveincreased withtimeandefficiency reduced,bothofwhichwebelieve,wouldgenerateLLOvaiuesequaltoorlowerthanthosepresently obtainable.
Priortothisdate,nomaximumvaluesforLLDwererequired, Intwoinstances forCs-134and1-131theMDAvaluesobtainedexceededthereporting levelsinTechnical Specification Table3.12-2.Thefollowing isacomparison oftheD.C,Cook'PlantMOA,theTechnical Specifications maximumvaluefortheLLO(Table4.12-1),CookLLDlimits,andthereporting levelsrequiredbyTable3.'12.2.
Mr.J.G.Keppler'ay1,1986'Page2MAXIMUMLLOpCI/1COOKMOAVALUECOOKLLDL'MITSRAOIONUCLIOET/STABLE'4'.12-1)pCi/IoCi/1'EPORTING LE(T/STABLE3.)GrossBetaH-3Mn-54Fe-59Co-58,60Zn-65Zr-95Nb-95*1-131Cs-134Cs-137Ba-140La-140LLO>ReportingIeveI'OA>Reporting Level20001530153030151518602700-3540500-610295758,494075754850451961962700-3540500-6102.815.415.8,18.615.610.610.74.98.4i2.8i2.621.8N/A.20,000I10004001,000-300300400400305020020~InadditiontothecasesofCs-134andI-131MOAvaluesexceeding thereporting level,therewasoneinstancewherealrhoughtheLI0valuewaslessthanthereporting level,thequarterly averageconcentration exceededthereporting level,Thisoccurredduringthefirstquarterof1985forthelakewatersamplestationLiforCs-137.Thecauseofthisoccurrence hasbeendetermined tobetheelevatedMOAvaluesfortwo(2)monthsofthequarterwhencombinedwiththesomewhathigherresultsForthethirdmonthofthequarter.Noelevatedreleaseswhichwouldhavebeenexpectedtoincreasetheenvironmental samplingradioactivity levelsabovethemaximumLLOweremadear.anytime.ItisbelievedthattheMOAbeingovertherequiredreporting levelisananalytical problemandnotaresultofplantoperations.
TheseFindingsaresummarized below:RAOIONUCLIOE Cs-134,1-131Cs-137SAMPLESTATIONLi,L2,L3St.JosephLakeTownshipNewBuffaloCALENOARQUARTERI,2,3,4I,2,3,4I,2,3,4I,2,3,4CAUSEMOA>Reporting LevelMOA>Reporting LevelMOA>Reporting LevelMOA>Reporting IevelElevaredMOAcausedaverquarterly concentrar.ion texceedreporting level.
Mr,J.G.Keppler8aP1,1986Page3Topreventrecurrence wehavestartedandwillcontinuesendingthelakeanddrinkingwatersamplestotheradiological environmental monitoring programcontractor, ControlsforEnvironmental Pollution, Inc.(CEP),oranotherqualified laboratory withthecapability toreachtherequiredlimits.Inaddition, aplantprocedure nowdirectsthereviewandcomparison oftheRadiological Environmental Monitoring ProgramDatatoTechnical Specification requirements'he requiredLLDvaluescurrently achievable byCEParesunmarized below:RADIONUCLIDE GrossBetaCEPDETECTION LIHITS-oCI/IHAXIHUHLLD-pCI/I(T/STABLE4.12-1)H-35002000Mn-54Fe-59Co-58,60Zn-65Zr-95151530153030Nb-9515I-131Cs-134Cs-137Ba-140La-140186015PlantHanager/sgcc:JohnE.DolanM.P,AlexichR.F.KroegerC.A.EriksonR.W.Jurgensen J,F.StietzelR~C~CaIIen,EPSC'G.Charnoff, Esq.D.HahnINPOPNSRCS.R.BrewerB.A.SvenssonA.A.BlindDottieSherman,ANILibraryT,A.KrieselR;J.Clendenning NRCResidentInspector PMI-7030ATTACHMENT NO.lC/RCategory:
ABClassified By.DNDC.COOKNUCLEARlfVCONDITION REPORT,\EPPLANTPage1C/RNo.:LERNo.;OffsiteNotification:
()NRC-ENS()NRC-Res.()AEPSC()ZgMCompleted By:Date/Time:
EZC-PAInvestigation AssignedTo:LZRAssignedTo:'T-4~'ee~Condition ReportDueDate:(A~-/-LZRDueDate:PNSRCReviewDate:Mtg.Na.:PNSRCSjgnatete:
55SSSSSSSSSSSSSSSS C/RInitiated (Date):;~
IDateofEvent:SSSSSSSSSSS eUnitAffected:
TimeofEvent:SSSSSSPlantConditions atTimeofEvent:ItemReportedOn:$'a~v~y,'-1Made1U-2ModeIgPoverPaverLevelLevelCaJe"jEvent,Description:
gg.'oeiL;MIW~~~CsiaICyod~~t.>RWiO4~leit.t.cs(.~~4~8<<-0'<>resteJ~).+~4Ard.:rRALt-b1t~t~5ie.<.S'fIX)Oz0CoS0le4'.~Ca~W-Cog*R(<<e~t~C.l4ReportedBy:Immediate Actions:Se.e~H-~A.eJ.i'4i~JlAve<<<<4&~45+44ergJIMeleeSz0C5'z0ZobOrderNo.:Act'onTakenBy:i'w~~k'HALD'CATEGORYA,C,D,EINITIALDISTRIBUTION:
PlantManager',
PNSRC.SecreOriginator, QCSuperintendent, AEPSCQASupervisor, NRC;Rasjdept...
Inspector, Originating DeparmentHead,Others:Page1of3vRev.7 PMI-7030ATTACHMENT NO.1DETERMINATION OFSIGNIFICANT EVENTSTheevaluators aretorevieweacheventdescription todetermine ifthiseventwarrantsPNSRCreviewofinvestigation andcloseoutactions.Zfanyquestionisanswered"Yes",theeventissignificant andrequiresPNSRCrevie~forcloseout.
Zftheanswertoallquestions is"No",,theeventisnotsignificant enoughtowarrantPNSRCreviewoftheinvestigation andtheeventistobeevaluated anddispositioned bytheassignedDepartment Headinaccordance withparagraph 5.5.1.YesQNo-Doestheeventconstitute aviolation ofapplicable codes,regulations, licenserequirements orTechnical Specifications (anLCO/Action Statement notmet)2QYesgNo-ZftheeventinvolvesTechnical specification/safety relatedequipment, is'additional followupwarranted otherthanJobOrdercompletion ozdrawingrevision/
review(consideration forPart21reporting)?
~e(QYesNo-Zstheeventofgenericinterestwhichshouldbeenteredasanoperating experience ontheNuclearNETNORKSystem?(Requires Distribution toSTAs)QYes:,.No-~~Zsthisarepetitious occurrence whichrequiresresolution beyondthespecificcorrective action'?(e.g.,adversetrendfromfrequency ofoccuzzence.)
NOTE:~1)2)If"Yes"boxischecked,theinvestigation andcloseoutofthiseventmustbereviewedbyPNSRC.Othereventsmaybedes'gnated forPNSRCcloseoutreviewatthediscretion oftheevaluators.
~>~:,e>s~y~~~'~RQ~~~~LeadReviewerDateAPRr.1~F6OONgU)C.COOKPLANtg,g.PEPAHTMEL!
rPage2of3Rev,7 PMI-7030ATTACHMENT NO.1/CONDITION REPORTNO,:-OVeach39Investigation Report:gCee>>~$4CLd.S-~h?age2ofJcad~bt-Illv~C~lI-I~4,4~i+-I'b~~ika.)t<4e4v<<k4V44oi4C';V,,4.ltl,;'1C..C5M+U4W<~1$4,Ve<4%Q.+CMI.A~4VA,Jf4~454L%5tek M44lAAIR<ea~~MIig~e4Q>-t-~,u-JCauseofEvent:QPersonnel EzrorQDefective Procedure
+ExternalCauseQComponent FailureQDesign,Manufacturing, Construction/Installation
+Environmental Qualification QElectrical Component Aging~UnknownIZOther:~mW~~$'~C4<Idfi<We6eShouldthisEventbeConsidered For:10CFR21lstheCorrective/Preventive Actionapplicable tootherequipment/unit?
YesQres+Preventive ActionTaken:cu-~~4v,S~~M~Jc4Il~~~lQ~E-oa.<<dgJ'b~>3w~l~\@JAN.I.It.-IIi5do'6Oek'Tar4~~4.J~~aa~4c,0siInvestigation Completed By:Preventive ActionTakenv:wA~M~.~4~~Date:iS4Date:'//ddDepartment HeadApproval:
Date:Page3of3Rev.7 CgR12-04-86-388 ReviewReDoztescritionofCondition:
Duringpreparation oftheAnnualEnvironmental Operating Reportfor1985asper12THP6010.RAD.050, itappearstousthatthewaterborne (surfaceanddrinking) resultsdonotmeettheTechnical Specification, Table4.12-1LLDlimitsforallreportedradionuclides, excepttritium.Theseresultshavebeenreviewedinaccordance with12THP6010.RAD.052.
The,averageconcentration forcalendarquarterwascalculated foranysampleresultequaltoorgreaterthanthereportedLLDvalue,andcomparedtotheTechnical Specification, Table3.12-2.Technical Specification Review:Technical Specification 3/4.12.1, Table3.12-2and4.12-1werereviewedforthereporting levelconcentration andLLDconcentration forallreportedradionuclides.
ItwasfoundthattheLLDvaluesforallradionuclides, excepttritium,arehigherthantheLIDlimitsofTable4.12-1.Also,theaverageconcentration percalendarquarterforCs-134(LakeTownshipStation-2ndquarterandL1Station-1stquarter)andCs-137(LlStation-1stquarter)arehigherthanthereporting levelconcentrations ofTechnical Specification, Table3.12-2.CauseofOccurrence:
ThiseventwascausedduetotheChemistry Sectioncountingequipment wasnotabletoreachtherequiredlowerlimitsofdetention withoutusinglargevolumesamplesandextremely longcounttimes.Thereporting levelconcentration fo"Cs-134andCs-137exceededtheTechnical Spec'cation, Table3.12-2becauseoftheuncertain LLDreportedvaluesforthesetwoisotopes.
Corrective Action:Actionhasbeentakentosendthewaterborne (surfaceanddrinking) samplestoContolforEnvironmental Pollution, Inc,,(CEP),thecurrentcontractor "orourRadiological Environmental Monitoring Program..he CEPLaboratory hasthecapability toreachtheequiedTechnical Spec'fication LLDlimitsfo"allradionuclides (seeat"achment)~Preventive Action:Thewaterborne sampleresultsw'llbereportedaspartofthecurrentcontractor
'monthlvreport.=ortheRad'ological Environmental Monitoring Program.
7C/RCategory:
AClassified By:0OffsiteNotification:~+~
()NRC-ENS()Completed By:Date/Time:
NRC-Res.()AEPSC()ZaM()PMI-7030ATTACHMENT NO.1/DONALDC.'OOK:NUCLEARPLANT.-CONDZTZW.REPORT,
,.--Page1~nunc-WP~P'CQDRFC/RNo.:W-OP-
/LERNo.:,aEXC-PAZnvestigation AssignedTo:,A.LERAssignedTo:Condition ReportDueLERDueDate:~14pAsCt'ls-8Mtg.No.:gdPNNRCNigaeturel)-I-)PNSRCReviewDate:55S55S5555S55SS555555SSS5SS5SS5ASSSItemReportedOn:UoV(Ltw%UlC/RXnitiated (Date):IftDateofEvent:PlantConditions atTimeofEvent:UnitAffected:
TimeofEvent:U-lModeiPowerU-2Made2PawerP>>,.C,NalaLevel9bLevelDaEventDescript'n:
14e.isa~c~~~cfoXci'd&'ich0-ccrWet'~C.a~Woldm8'mmediate Actions:ReportedBy:C2:OROVJobOrderNo.:ActionTakenBy:CATEGORYA,C,D,EINXTXALDZSTRIBUTXON:
PlantManager,PNSRCSecretary,-
Originator, QCSuperintendent, AEPSCQASupervisor, NRCResidentInspector, Originating Department Head,Others:Pace1of3
- N.PMI-7030 ATTACHMENT NO.1DETERMINATION OPSIGNIFICANT EVENTSTheevaluators aretorevieveacheventdescription todetermine ifthiseventvarrantsPNSRCrevievofinvestigation andcloseoutactions.Zfanyquestionisanswered"Yes",theeventissignificant, andrequiresPNSRCrevievforcloseout.
Zftheanswertoallquestions is"No",theeventisnotsignificant enoughtovarrantPNSRCreviewoftheinvestigation andtheeventistobeevaluated anddispositioned bytheassignedDepartment Headinaccordance withparagraph 5.5.1.>~use'Zep~C a+re.YesQNo-Doestheeventconstitute aviolation ofapplicable codes,regulations, licenserequirements orTechnical Specifications (anLCO/Action Statement notmet)?YesQNo-ZftheeventinvolvesTechnical Specification/safety relatedequipment, isadditional followupwarranted otherthanJobOrdercompletion ordravingrevision/
reviev(consideration forPart21reporting)
?QYesoNo-Istheeventofgenericinterestwhichshouldbeenteredasanoperating experience ontheNuclearNEWORKSystem'?(Requires D'stribution toSTAs)QYesNo-1sthisarepetitious occurrence whichrequiresresolution beyondthespecificcorrective action?(e.g.,adversetrendfromfrequency ofoccurrence.)
NOTE:2)If"Yes"boxischecked,the'nvestigation andcloseoutofthiseventmustbereviewedbyPNSRC.Othereventsmaybedesignated forPNSRCcloseoutreviewatthediscretion oftheevaluators.
)"1D;ErMlCH.ELECTAPR2Bl9nn6CO.l~'ILeadRevieweDONALDC.COOKPlANTnoncnaATMENT Page2of3 PMX-7030ATTACHMENT NO.1"'CONDITION REPORTNO,:2)4-Investigation Report:page~or~CauseofEvent:QPersonnel ErrorQDefective Procedure
+ExternalCauseQComponent FailureQDesign,Manufactu'ring, Construction/Xnstallation QEnvironmental Qualification QElectrical Component AgingQUnknownOther:ShouldthisEventheConsidered For:10CFR21IstheCorrective/Preventive Actionapplicable tootherequipment/unit?
Preventive ActionTaken:Yes+resWHoQ~P0Investigation Completed By:Preventive actionTakengy:k(sgC~Department HeadApproval:
C/R2-04-86-474 A.Technical Specification, 4.11.2.1.1 wasviolatedinthattheLowerLimitofdetectability determined forXenon-138 exceededtheallowable lowerlimitofdetectability.
Thisviolation willbereportedintheAnnualRadiological Environmental Operating Report@(0 05+0'~4~~hL~~~(/~B.Forpurge,threesamplesaretaken:UpperContainment, LowerContainment, andInstrument Room.Thereisonlyonecountingsystem,inthecountingroom,foranalyzing thesegassamples.The'ounttimeforeachgassampleis4000seconds(66.67minutes).BythetimetheUpperContainment gassamplecouldbecounted,theXenon-138 activityhaddecayedoffenoughsothatwecouldnotachievetheTech.Spec.LowerLevelofDetectability.,
C.D.E.Nocorrective actionwastaken.agoM~ChemicalSectionUpdate~wasissueddirecting thatnomorethan~minuteselapsebetweensampletimeandcounttime.~4~5Nopreviousoccurrences areknowntotheinvestigator.
F.Nopreviouscommitments areknowntotheinvestigator.
IHDIAHA8MICHIGAHEIRCTRICCOQPAHY'hemicalSection-UpdateHo.290.."OwERsyitcMay13,1986TimeLimitforCountingGasMarinelli's RussLookerAllChemicalSectionPersonnel InordertoachievetheTech.Spec.LLDrequiredonagassample,thegasmarinelli mustbe.countedwithin35minutesaftersampling.
ThistimelimitistoinsurewemeettheT.S.LLDfortheXenon/Krypton (Xe133,Xe133m,Xe135,Xel38,Kr87,Kr88)isotopes.
Thedetermining isotopeisXel38,whichhasahalflifeof17minutes.Thiswillmeanthatgasmarinelli samplesontheCAEJ,GSE,GDT's,.VentStacks,andpurgesamplescannotbedrawntogether.
Inthecaseofthepurgesamples,wewilltrytogetR.P..to'tagger thesamplesbyatleast1)hours,andwemayhavetocountthemattheECF.FortheCAEJ,GSE,GDT's,andVentStacks,theywillhavetobedrawnapprox.ljhoursapart.The,T.S.LLDfortheGDT'sandpurgesamples,forgases,is1x10-"gCi/ml.TheT.S.LLDfortheCAEJ,GSE,andVentStackis1x10-6pCi/ml.Uponcompletion ofanalysis, iftheseLLD'sarenotmet,anewsamplewillhavetobetakenandanalyzed.
9ThisChemicalSectionUpdatesupercedes Update4287.RssLookerRL:bwcc:J.T.WojcikChemicalSectionFiles(1)
~brac<>Ct.tg~~L4~C'gQIgNALMICHIGANKIECTRICCOMPANYA~AowgeMATC>December18,1986Ivliecv:Condition ReportsPNSRCT04R.A.Palmer/L.
G.HolmesPNSRCThCditionReport(s) listedbelowhavebeencompleted andthedataisTheCondition eporreadyforyourreviewandapproval.
1X-.10-86"1165
.Technical ACCattachment cc:STASection
~~~ATTACHMENT NQ,CRTEQDRYABCDQEFp~I.~DITIca(~ptcArcv At(ocalm(pTIOII Ce;~~nota/CetooICcctdCace ccOOorc'//04~otO~cory:os%C'~ttonIetaotrwWwCIteportod by:bc(coodhko AeonTdcoa~~~%~MOROupsQ&c(4E,~BAOcAaCA~~LIMi90%'%EMiW~CSLns~Pre&~v.Au.rmacS6-a-pmWaN.Z)o~h44Q-pContmttcc(
Neo'atcnTc(con..L.(G'6KPART2eQFP4PZ74OTIPICAVX4 QgOeOIunctmesaSeam7rto(R%Acoeochtce ClycoIK3(teClyde53hloAc4cct~contRshomtt!C3y~QIIoClyooQIIoCm~tIOI~ba:OASCC:~CRepatIo(abc:oC3ARPC~EoContocbrcb OotaC3IaCSPcnon Contoctock Oota~IIACICNOPcceonContcc~Oota+(neo(erA~(ott(Iotton OyI3Octo:Oy:TeaOy.TheaQy.ThealO4Oy:T(nBaRadbDOmL~WCbaOcoerNIhepcwCReSag I(ho.RN~RO~AQPStCC:Le@orNh.RRFQRIIIOCII OOCVCLBfTS 7~by.Octoer+NHCSee(dent~~Contoctcd QyOo(aPART5PAOAEVI@V+LXllDMotaPNOIICby:HIICby:AookynodIa+OtttorI(oportoOootaPmI(Cby:IDeNACeorocheroottNdoega(cyby'oo(O(tod ia+PertR'n(noter toCot((oebcl PAO.IOIbtTrorwtorrodtoAIPSCtQA:
Port21Ootone(netkn OuoOy.Prob(eraPn~ReportNAIDBOCbiota(coy(eO(rbed FQONPICMIT P(ICILYlPI45RCIhociecrJteqolroco; II~+Cond(5onItoportIheoponeo Aequ(rodOy.TLE(aQyTeIoDetente(nod Tooh~Qqdcsaccct hcopcntb(o QyooQIteTechOooo.htccnss(cnt h(cpcrob((o
+Too@ItoDrecrtn(I NccebonOooo(Coodcn RevalueOCC~~~~~OC~y(Ore~OCCOCIttcr.Ihotoronco PHNcabx~PINItoIcronca Ihc4scence POIecalec:Ihehronce I(PCItaoBbcc:
~AOlttrQwly:rOICIcc:Ret(Mentlnapector, PlantMoneyer,QASuperrteor, OCSuperfnton&mt, PNSMSeoul~,g.L.5(~~(~~Page1of3Rev.10 PXI-7030ATTACHMENT NO~1DETERMINATION OFSIGNIFICANT EVENTSTheevaluators aretorevieweacheventdescription todetermine ifthiseventwarrantsPNSRCreviewofinvestigation andcloseoutactions.Zfanyquestionisanswered"Yes',theeventissignificant andrequiresPNSRCrevie~forcloseout.
Zftheanswertoallquestions is"No',theeventisnotsignificant enoughtowarrantpNSRCreviewoftheinvestigation andtheeventistobeevaluated anddispositioned bytheassignedDepartment Headinaccordance withparagraph 5.5.l.QYesNo-Docstheeventconstitute aviolation ofapplicable codesxegulations, licenserequiremants orTechnical Specifications (anLCO/Action Statement notmet)2YesQNo-ZftheeventinvolvesTechnical Specification/safety relatedequipment, isadditional followupwarranted otherthanJobOrdercompletion ordrawingrevision/
review(consideration forPart21reporting) 2\QYesNo-Istheeventofgenericinterestwhichshouldbeentexedasanoperating experience ontheNuclearNET%)RKSystem?(Requires Distribution toSTAs)No-Isthisarepetitious occurrence whichrequiresresolution beyondthespecificcorrective action?(e.g.,adversetrendfromfrequency ofoccurrence.)
NOTE:2)If"Yes"boxischecked,theinvestigation andcloseoutofthiseventmustbereviewedbyPNSRC.Othereventsmaybedesignated forPNSRCcloseoutreviewatthediscret'n oftheevaluators.
LeadRevieweeOre&Pago2of3Rov.7 asts.slreosap+4
'Q-ZmalpRpaLEMREPORTHo.+-i0-8IXV%571QATlQN-~r0-ZZI~,CC>>wc~44vxK.iO~CAuaEOtLtChteytaX Iv4Q0QQC'L~scIx17.'tt'Prauct-OATA,Pttrt2fPtottcayo Net.~.CymeCognacGZZZK3.5CArty~tora'ctionSttttentenga)
(ncyor~.MenR".Clyeo~auttdtne~tsmCodet.65ptcorOcecttonhcosrrCocoIR21ZZOP~xent~~:
~E2.~ttuctcotroctoro~~~QenutocturtrtO,
~e~CrkanagCgutoOO4eettee Prtscodsrre COAltICTt&f ACTtcthtr"C~atAoottrtrtce.Osrr tcttncy~~~Otttotco~cytva~cccagPltRY!WTIVtr ACTI)NPACVlPCT1YIACTKlpt toPrecludehocurrerscsc
-~-HcctrnPortenttrrccttcnAche@Conocthort
~~~~CofleesttCra
~ePreoesarre Corrosrttco
-~-ProOrtsrtrcsctto Correct!on Ott~OLtTOOCULNBfT4
&otortton Are(~tvelPreventtve Actkrser~Tobotrropternentod betor>>amodecttenyeTQO~Tobolmpternest tedbytttoendolnextrefuottng outrsyeT~QJJ7NLOctpt.Ouo0+~5MRsho-ss-Pgt+x(QtQrazCIIHx+rQzQxQiOeQt+eOKPARTQIDJT HKAQlohlOIHATOh APPPrOYAt I.Irsreetf/retioe lefstfleieet toOetenioeRootCasseI~coxfscIITe Acttrxtetseeeetpyesptoee ottreeless0~tpsrzrrtIti ACTIccetreolo4etecsrreece otcasse1.Ieeeetieetioa teeeeleoetel4eAsreooysotiricattoss Aesrstre4
$.ticatticxrrt ttOIIarrttleecAevleeAecrslre4t t.torsseAxetllle4OstCosspletety t.Ooeesetattoe leCossplete p.Ieeeetipatloe xeporrAetsroe4fortsrttserActloeToshf4CNo,Oetrt.0ueCosttPt.betetorseree4 s~tesApproeedftsOepertsaeet eee4A/pgsrssee4 ttsOklrutecOctosOctosCoseeeeto sC4//csnOriginacing DrtParrItonc Head/Originator, IRC.Original, QkSuPorvfaor, SLLSectionsHSDRCSubcotoraitrao onCorporate andPlaneOccurrences PACE2RKV.of3Ll I*"~vs((mCONTlNUATlON SHEETQpga-s-St-alaPRNO.C:ls~(VgVATTACH~iIP,'SotZSDose<<PtlonofCondition/Finding:
MethodofOiscovecY:
immediate ActionTakenaaRSuOInvestigation:
MAim~~>KlLhoPQ.P0~i%%<QSPQm~',R0E<Cb<VPew~pN.&t'uxYwNBL5PQQioN.QAPLAUPwMRQC0<0'0oWV'S'LXoVwC.v'El0A0.4A,RXVcC.AXkQg.
>Y-3W>>9'Pr4a&%SON%Nw3~9~KP6P.64vi"roxes=R<c+wKOV9c.@bi'aalu, 0NRune<~G.MWUOiWP&cuvRVwcu->0&iE0om~rOFGescription ofCause:CORRECTIVE ACTIONTaken:REYENTIVE ACTIONTakenToPrecludeRecurrencs:
PACE3of3RZV.11
/.p~~w4oEB.Igrg.-g~)/~f>/r"4'/"~/'"/iezvsse).77-fr~/e.7jC-II/P7g4g~~/rp/rgjar-,~/'=->8-,+//rciP./ac.y/Fr'8=g"'/f7r/~~OC~--neRl~Iv,/~/..r/rr67~c~/4rfir7'"l/P~r/F=r.i)WJg-,/<rd7~r1g//gr,'./~g~~a,F~.4~~,~rq~Jr+~7//Cry/~"'~~~/pr~J////wrr~-/c.mW/,
Yik'~GASDECAYTANK"Lr<LOo.bFy,ftgi<<'jys7.r'j(ri)r..09OCT86RPC-310.~-110.00HIHI=150.0007:5I)s.aug~VuMIYi2no.18n'%p~~Q4~..gargyes'r160pan120inn.Po40tc1<q')r'qi':P..>>".;
,'g)\:,,b30.2O~kg..:'r*rOISPLAYi, 9080..PAGELEFTFOR2HOUf4r100PAGE:-Q335.:."3210r;4<'.XIXUgV'04YOATATRKN5.&LOT HENURANGC:<CtfAftCE
=QQp~+C 2HRTRENDPLOTiiddic:.'V OCT8611-17:36uH1I.Y1GASDECAYTANK1LtlL00.0025.'PSP5IGRPC-310110.00HIHI=150.009ptn.Cpa~.t~1Ch,.trr~Vt"~Y'.4(8-c.nrw~6rc60.Ct3n.0a'4"a'%aIala22.5-.~Y1'VSY21201101009080rt'06050403020100HINUTESP4GERIGHTFOR90HINVTESURRENTVALVES:CHTRENDPLOTHENUR4NGECH4NGEY1Y2P4GELEFTFORPREVIOUS120tlINUTWLIHITLINC'RECDISPLAYTRENDWLO"Y'-'HO.
>-CQit,l.;'t=.~2:.~3=Qj6 It)gw)'R%)~F~ge(YiHFTPENDPLOD"tIDEC~YTANK1O'ALIILO0.00aT"MLITT'0'4OCT8612-06:50-,6~07PSIG-RPC-310110.00HIHI=150.001100.CI~~ace))akig.iar~/~)a8FJ70.(i(i~."6II4Fi0.))'II~~Jr)r)I~-Q]Y1VSYiY2Y2240230220210'500190180170160150140130120'CHIN)HPAGERIGHTFORHEAT120INVTES...."4P'451.PAGCDISPLAYED TRENDPLOTHENVRANGECHANGEDISPLAYTIIKfQ'):ga.'j,
-:QQ1.QQ2.Q3-QI-Q5-+6L OFC)9Kgyo84-hi~PeraioOr-25OHP,TPENDPLOTPTggDCCOOK0'9OCT8612:05-06YiASDECAYTANK-1PRESS.6.O7PSIGRPC-310LO(O0.00LON,~~'.00KI=iiO.OOHIHI=15O.OOYi1Fin,6lI5Fll)Fl2(l:~Y1"5Y21201101009080706050'903020100NINVTESPAGELEFTFORPREVIOUS120MINUTESPAGERIGHTFOR90NIHUTESLINITLINKSARECVRRKHTVALUESTRENDPLOTNEHVY2=~'iA4"~i@M;RANGECHANGEDISPLAYTRKNDPLOtNO.-):~I-.Q33-g]w-~5-.Q36 CQ4>-io-8t-lt~Veauiiow~I,~*"HF.'P.EBB PLOT0ygpDCCOOK04OCT8612:06:03Y1G"5CECAYT4HK1PRESS.'.-ig6.07PSIGRPC-3100.00LO-','.)~~'.d."00HI=110.00HIHI=150.00Yff00IIIIIj'11'0.7CI411311211f01~Y1115YtY202402302202102001901801701601501'40130120HIHPAGERIGHTFORNEXT120MINUTESL4STPAGEDISPLAYED
-.[T]TRENDPLOTMENURANGECH4HGEDISPL4YTRENDPLOTMO.->.-Q]1:jg2:Q33-Q34H35Kl
'RTRENDPLOTOT)gDCc00K0'4OCT8612:04:46YiGASDECAYT4NK1PRE55OLOO.OOLO6.0VPSIGRPC-3100.00MI=110.00HIHI=150.00'AllY1'l~vJ,>a~(,tr'I)6050.qnkli(((IrI)V~20in/(.n-~YiU-Y21201101009080P4GELEFTFORPREVIOUS120MINUTESLINITLINE5~'i+..sg~P~,Qi.2DI5PL4YTRENDPLOTHO.->To6050'tO3020100HINVTESPAGERIGHTFOR90NIHUTES4RECURRENTVALVES;H3TRENDPLOTHENUR4HGECH4HGE-Q]1-[g2:Q3-[gI:+5-.CG6 3(<HIflTRENDPLDTPTgPDCCOOK0'tOCT8612:03:34(1GA=DECAYTAt4KiPRESSLeHALOn.ooLo=Y1100,7.99PSIGRPC-310o.ooHi=1io.nnHIHI=1so.00<0,I~6II50,403024(t)pl(0j'I(t-~lpI~11009nsO7o6050.'to'02010HINP4GELEF'TF'R2HOURD4TALIHITLINESARECURRENTVALUESYiY2DISPL4YTRENDPLOTNO.->-.+1:+2:Q335't3210HIt4PAGEUPFOR2D4YDATATRENDPLOTHENUR4NGECH4NGE-.[QS:.Q6I.~~k~:
C)S<~-1~-8t-iitSW0E'Q@3;HIrtTPENDPLOTa,0DCCOOK0'tOCT8612139"52ASCtECAYT4NK1PRESSr345DECAYTAttK5PRESS159PSIG28.39PIGPPC-310Ppi350fFtAfFtit8lt706Ft5(t50.<<tt3Ft2tl2(tfAfAA.<<68Q7QPAGELEF'TF'R2HOURD4T4YlY260-50t0302010HIN--.-6--.,EXECUTECOHPLETEPAGE5tt3210HINVPFOR2DAYDAT4TRENDPLOTHENVRANGECH4NGEDISPLaYTRENDPLOTMO.->-:g31~-CO2-CG-3-[Q5-Q36
'Pan.F-L4oW~$P~/ZOoc~fQ~c<<4f~4~px)~~Egg+y~~g4~~4LCc~~&i~~*cCA,4r'/~W~P.>iSC..24',~~Pah+gCPS'PT~~~.~.CCMi~:~nMwc'c-~a~ga724'~~~L-az~.E'-+'aacr~(~Eec-frw9-d'Cr1arse~~axr~zz)r.Q4a~o~*QC~>z.zsi).d~~~/ger.gme~'~~+~C./A~M//
F'~~rc-y-P'C Cl~12-lo-gt->i~512PNP601QURE.0019AawigoP~%6.2.2.2Enterconcentrations andflows,for"thefollowing asapplicable:
'.CONCENTRATION RELEASEPOINTFLOW*CFN/Eo5zoo>2)I'~Dp505~To~('.V/I>dpci/cc-7I'Pxiapci/cc~IOPci/CC9~xi/ci/ccI.&<<pci/cc/~lfXioci/ccUnit1UnitUnit2UnitUnit1GSLOUnit2GSLOUnit1SJAEUnit2SJAE(I).O5x//VentXIaCFM$74'ent~<aXCFMCFMCFM(CFMCFM6.2.2.36.2.2.4(o/(W4->>~zfVaioanwSIQ*Readventflowfrom1,2-NR-54orfromthemonitorsflowchannel.SeePNP2080EPP.001-ECC-13 todetermine ifanEmergency Condition Classification hasgbeenenteredbasedontheRMSreadings.
(Onehou-rNRCnotification iftheEmergency Planisentered.)
pr/o~/.7,-zQ)SeePMP2080EPP.006todetermine thesiteboundarydoserateusingexistingweath+conditions.
(One-hour NRCnotification iftheEmergency Planisentered.)
I8o+Tt~/-~o+~(~~6.2.2.5E.,ZC0/QiCI(oTR4PAGE5OF7REV.2Quantifytherelease(assuming Xe-133)usingthefollowing equationforeachreleasepoint,asapplicable:
~ci/ccXCFMXMlN()X2.83E-2RELEASE*CURIESKOALA(akyqq7g~~)'3iog5T.RELEASED*Thereleasedurationisdefinedasthetimefromthefirstindication ofrelease(highalarm)towheneverthemonitorreturnstonormalortothepresenttimeifthereleasehasnotbeenterminated.
qgsGC-XPgoy.xiW)(~/XRFRXioP5(FS,INC-~/>v<<vg<Z.Fa/ioI"7)('lo/(~Vg8C)/M(M1<Sro-4-<C~ioSJWC.
C(QA.->o-la-!~4812PMP6010URE.001Ado>KQ6.2.3Estimation ofthePercentoftheTechnical Specification WholeBodyDoseRate.6,2.3.1Thereleaseratelimitof<500mremperyeartoanindividual atorbeyondthesiteboundaryisprovidedtoinsurethatthedoseratefromgaseouseffluents frombothunitsonthesitewillbewithintheannualdoselimitsof10CFRPart20forunrestricted areas.Theannualdoselimitsarethedosesassociated withtheconcentrations of10CFRPart20,AppendixB,TableII.6.2.3.2Usingtheconcentrations andflows~~from6.2.2.2,converttoreleaseIo('I"SIO"q,0Unit1UnitVent~ci/cc XCFNX4.72E+2=/~><ci/secy~7y(o1Unit2UnitVent~ci/cc X'~CFMX4.72E+2=2~22ci/secUnit1GsLoJ~cj/ccx'"cFNx4.72E+2=~~ci/secto<<l~(a~w7Unit2OSLO9"~ci/ccX1'~W"CFMX4.72E+2=~~ci/secUnit1SJAEis>~>>'i/cc XCFNX4.72E+2=>pci/secUnit2SJAE~,qs~>>'0ci/ccXICFMX4.72E+2=~>ci/sec8><X60=pci/minS,z.WX(o~~C;/Ifthereleaserateinpci/minexceeds4.25E+6,whenaveragedover1hour,then2timesthe10CFR20concentrations havebeenexceededandtheNRCmustbenotifiedwithin4hours.SeePMS0.034.
PAGE6OF7REV.2 UnitUnitUnitUnitUnitUnit1GSLO1SJAE-~0ci/secX2.48E3-=6mrem/yr2SJAE~Oci/secX2.48E3-=+mrem/yrC(0.ia-<O-8b-ilb512PMP60l0URE.001F~w<9acZ~6.2.3.3.Usingthereleaserate,thewholebodydoseratecanbecalculated, usingthewholebodydoseratefactorforXe-133(2.94E+2)andtheaverageannualX/Q(8.44E-6).
$)71UnitVentpci/secX2.48E-3=~mrem/yrg'D2UnitVent+pci/secX2.48E-3=.~mrem/yra<~pci/secX2.48E-3=~mrem/yrr~042GSLO~pci/secX2'8E3=so~mrem/yr6.2.4AfterthetotalreleaseandpercentoftheTechnical Specifications hasbeencalculated, issueaCondition ReportwithalldataincludedandfollowPNI-7030instructions.
Thesumofthedoseratesfromallreleasepointsdividedby500(thewholebodydoseratelimit)multiplied by100isequaltothepercentoftheTechnical'pecification limit.~2~>+mrem/year X100=i~cftheTech.Spec.Limity935006.2.56.2.6Athirty-day writtenreportisrequiredifanyairborneradioactive releaseexceeds2timestheapplicable concentrations ofthelimitsspecified in10CFR20,AppendixBinunrestricted areas,whenaveragedoveronehour.Ensurethatdatagenerated bytheuseofthisprocedure isforwarded totheEnvironmental Section.ThetotalquantityreleasedisrequiredtobeincludedintheSemi-Annual Radioactive EffluentReleaseReport.Off-sitedosesduetounplanned gaseousreleaseswillbeincludedinthequarterly andyearlydosecalculations.
PAGE7OFREV.*2 LNlTVENTEh4OMTOR(vas~50605)CltGECOUTVENT10MENTORREM%49(pcilcc)10'10METERDOSERATE(RADnlR)100-10'ASQULL CATEGORYUNlTVEHTFFLOWRATE(ewe20,000--10I10-lot--10t--10'O'010'-101O'10'lO'0C50,00060,00070,00080.000,000100,000lo'o-'~io-lO'>2x10'1050>O~06Yahdtowards~~nsglAKfdtdDossBats(SiloBorardary BygP'oc.Pc LNITVENTEFFLUENTMD4TOR=(VRS1505/2505)
Cl/SECOUTVENT104LlONfORREA!%48(pc1/cc)10'10METERDOSERATE(RAD/1H)1O4-10I1l/PtDl'ASOVLLCATEGORYUN1TVENTFRONRATE(can20,000--10I1010'210-10'010'0'10-1O'-10'41O'41O'0C60,00070.000SO,OOO60.000100.00010'01O'32x10010~OTOaO2Wordtowards~)-C.dtdDossRatoy.ltttorddD/ridDatotrindl~iolaosDoundaraDossRata)Dtr~C/>X/0~@~/f~
09IOENATO ALOEPARTMENT OATEJOSOROEUNITI~UNIT2@SNAREDDESIGNCHANGENO.NIAr~~9999~PM~TURBINESERVICELOCATIONDESCRIPTION PROBLEMDESCRIPTION AUXILIARY
~SCREENHOUSE
~CONTAINMFNT
~SERVICEEXT.~OFFICE~OTHER:zFILEDESIGNATOR (OFDEPT.PERFORMING JOB)VAENUNCONTROLLED DOCUMENTxBLUEJOBORDEIITAG~YESG2EIOoHUNG2E2~izQEMERGENCY QREGULAREXPEDITEHOURSDAYSEVENTS2TECHSPECIF"YES"ATTACHFORMRELATED2QYESNOWILLCOMPLETION OFTHISJOBEUMINATEAPERSONNEL SAFETYHAZARD~YESNOCOEcJQBORDERASSIGNEDTQc2~~MAINT.~TECH.P.S.~TECH.ENGR.CEg~OPS.~QC~CONST.~OTHERADDITIONAL INFORMATION RE0BYOATE,NEAOAPPROVALOA'TE9OFURTHEREVALUATION iF-YES"FiLLiX"SCOPEOFOFJOBSCOPEfWORK"SECTIQNBELQWREQUIRED~YESSCOPcOFWORK~NOSAFETYRELATEDOR~IF"YES",ATTACHSAFETYINTERFACE
~ESFORMPMI229M~NO9UEDRAWINGREFERENCES 2-FLOWDIAGRAMZ2ELECTRICAL a.OTHER12-SIST~TECH.SPEC.IF"YES",ATTACHFORMPMI22EELS~YESIFNOTALREADYATTACHEDONOES~NQSdZ/c.8ZPROCEDURES REQUIRED(OTHERTHANFORPOSTMAINTTESTINGIPROCEDURE NO,99T~Da.PLAN/CONDITIONS REQUIREDoMREGULARMLOADREDUCTION
~OUTAGE.~OTHER6>>,>>9'2EPBTPAEAPPRPVEOSTPATEEEancEnF2 ISSUEQTOUSIABSISSAPPR>E CR,a,-io-W-)YS,rAIARTWORK
~YESIESfNOK~0w~,JOBOROERNUMSPERMITSREOUIREDOLEARANOO
~YESC]NORWR:~YES~NOOTHER:~YES~ONO.NO.ADDITIONAL INFORMATION
~tEv(~HAr&'LEANLINESS RATINGPERPMI2220QIQ23QNIAAPPROVALTOSTARTNIVSIASSISSDESCRIPTION OFWORKDON)~c,xACC'TIW.O.IGATE,SYSTEMINTERNALCLEANLINESS P.INSPECTION BY~~NIAINIVIOVALPFORNQWORKVERIFIEOBYNIACLEANLINESS INSPECTOR OATEWORKPERFORMED BYlo....I--IAVSIASSISSfBLUETAG~YESREMOVEO[j7jNIAWORKANDWORKAREAINSPECTED BYINTOSGNATUOAEITS+A/.'r,RYIr,~4,IIrADDITIONAL INFORMATION PARTSIMATERIALOESCRIPTION
,MATENUMSERA'TAONO.Iio~2WSOTY.OSTAINEOOTY.USEODOCUMENTATION REVIEWEDANOACCEPTEDBYSUPERVISOR
/~+OATSFlI.REVIEWER/0~IP'+GATE QN.SPEC.REFERENCE(sl'ECHHl-CQ.n.<o-Pg-"
E>aQA~aFORMJOBOROERNUMBE<ONSTATEMENT ALREADYENTEREDPY'ESSSNOTIFIEDBYNAMEOATETIMEACTIONSTATEMENT WILI.BEENTEREDIFWORKISNOTrCOMPLETED BY'ATE/TIME OROPERATIONAL MOOEPYESACTIONSTATEMENT ENTRYREQUIREDTOPERFORMWORKQYESNOBRIEFDESCRIPTION OFMOSTLIMITING"ACTIONSTATEMENT" REQUIREMENTS'PPLICABIUTY:
DETERMINATION PERFORMED BY'AMEIPI.EASEPRINT)SURVEILLANCE ANDMAINTENANCE OFENVIRONMENTALI YQUALIFIED, SAFETYRELATEDELECTRICAL EQUIPMENT(REFERTO PMI5025)PYESNORESULTSACCEPTABLE STORINSPECTION REQUIRED(PROCEDURE NUMBER.JOBORDERNUMBERORDESCRIPTION)
DEPT.PERSONTOCONTACTYESNOVERIFIEDBYDATE~S(ARKS.'LI.REQUIREDTESTSANDINSPECTIONS VERIFIEDSIGNEDOFF:SUERVISOSIONATURE OATE Cg.tz-ic-ce-<<sSP~~~XSaCp~~~'p~~Q,~'~L~8'Aa7r+c-dSIJ'.MC+r'p~R4TZZ7g.dc7AC-re~4.d9~F0~i~Wrg4',I' INDIANA8MICHIGANELECTRICCOMPANY<PECANEL,EC>C'December4,1986OWERSYStS.N964sue>acT:Condition Reportgl2-11-86-1347 FROMiTOiD.M.AllenS.J."Brewer/H.
W.JonesAccording toRadiation Protection procedure II12THP6010.RAD.052, Revision0,acondition reportwasissuedforaviolation oftheCookPlantTechnical Specification 3/4-12.1concerning airsamplecollection frequency.
Pleasefindattachedacopyofthiscondition reportwhichshouldbeincludedintheNRCsubmittal oftheAnnualEnvironmental Operating Reportfor1986.jmattachment cc:W.G.Smith,Jr./L.S.GibsonT.A.KrieselR.J.Clendenni IHTRA-SYSTEM ceca~sCONDlT1QN REPORTNo.PARTt-CONDITION IDENTIFICATION AHODESCRIPTION uao'ILIVER+ATTAC~TNp,TREHOINQ/TRACItlNQ DATAOeacrlpttonatCondltlon/Flndln+
VIOS>Z4sCrCondtucnReportDate:DatectCondltlon:
3J.MethodolDiscovery.
Ccnttnuatlcn SheenCl/Ss/4Immediate ActionTaken:/Ot.Reportedb.Askssdrrl>.I2"leP~HISDITIeeANSeQVEI8~ESPSoCcntlnuatlcn Sheet:ActionTakenby:PARTOFFSITEHOTIFICTIOHC3,AEPSC/Poracn Contacted:
0'ate:C3,I@M/Peracn Contacted; Date:C3NRC/ENSPasacnContacted:
Date:+NRCReatdentInapector Contacted ByDate.QMtchtgan/Peracn Contacted:
Date:+HctApplicable/Determined by.Date:+fnltfatSTAlnveallgallcn SyPART5PAQREVIEWSy.Time:By.TimeSy.Time:Time:By.Time:Time:Data:QaetereteOrlateeters oetest/trac~I~s4tercettQOaatteeaeeertQrrssotees aressleeaeaesstaessssers Qatositleeet rssshslee Iaerieaestelreat stssaeoeteaelee4 Qteveetieettee aeetaee4Tos'~~1sseeetleottsse oeeits~/~/~Qaatacseeteteeeeaeqsttre4 s?rssessoeefysI/QveaeWtereaesaetssscaayeteeIOeeteOeeerfeletereetl
+tartllsvreeetertecet~tea,oetesIIOctoVrsaeterree tearrSSC(sls~Iteralloetessstesttee oeeaysIItetivy~/Cga<~UnitAffectedC3IC32@BothUnit1Mode:PowertavebsIReactorTrltcESFActuatlc~nQYeap,NoQTesActionStatement Ento/sash Yea+NoUnit2Made:PowerLevel:AfReactorTrip:ESFActuation:
CIYealgHo+VssgsActtonStatement Ense(@YeaQHoComponent IDNumber.QA/QC/NSORC ReportNumber.FlndlngHc.NRCInspection Report/Ftndlng Ho.815/21/t/AEP.HRC:LatterNo.REFERENCE DOCUMENTS Tech.Reterence:
~~Tech.Spec.TableRelerence TechSpec.Equipment lneperable DYeaNoTachSpec.Instrument Incperabl
~+YeacDrawingHumRev.Rev.~ProceduyHum
.Cs-stRev.ReviSpeclltcaucn Number:OCCQCRtv.DCCQCRev.Relerence PMNumberPMRav.Code/Standard Raterencesoeevss~LateQotheraetserte~frea~oetse.~tyaeetaeeectstseevessIIo~~l/~i/~/Relerance PONumber.Re/erence RFCNumber.Re/erence JONumber.CC:Residentnspector, Plantlaager,QASupervisors PNSRCSecretary,
&TASection,A/tsigned Dept.(Original) 4IOriginator, IRC(PileCopy)-
~I<<<<~tCCCXI~<<.IM<<<<<<<<<<0~~PROBLEMREPORTNo.INVESTIQATION AATAI.ntc..<<ihQ<<TRENOINQITRACKINQ DATAlnveaUga3/'<<IContinuaUonSheenDoecrfpUon ofCauae.ŽTCAUSEOESCRIPTIOH 3~0.~ConUnuaUon Shoe<CICORRECTIVE ACTIOHCORRECTIVE ACTION:LL,NVICFTS'sREConUnuaUonSheenPREVENTIVE ACTIONPREVENTIVE ACTIONloPrecludeRecurrence:
ShtttPa%F4Vl5uttVlR4AXNEDZZX ConUnuaUon Shoot~Oat<<Evaluator.
AroCorroctlvolPravontko ACUona:ClTobeImplemontod boforsamodochan@ayC3TobeImplomontod bytheondolnextrefuel!nff out>>goy<<,Part21PackageNo.PfantSyatemCod<<CEILEDSafetySyatomActionStatemontfa)
Inoperable Mot:YoeC3YeaClNDNo.C3SuUdfnflLocationCodo:RoorElevaUonRoomCodo:Li'.:I~!Oopartmont Invokect':
LCAUSECODESI,~HumanFatterOeatgn,Manura"..'IiI
'".Construct!Or:,I III:l'stl.~'~~Extorllal Cau~sDofoctkop--~ManatfsmsII<<,'.
~autarIC~rDlhorCORRECTIVE ACTION~.'-HumanFactorsCence!'co M.MActkltyCorrection ExternalCorrection Procedure Correct!on
-.-Programm>>UC Correction
-.-OtherCLOSEOUTDOCUMENTS LERNo.Dept.OuoCompt.J.O.No.Dept.OueCornpl.Procoduro Dept.DueComplQZQ>>QyQ>>QyC3>>QyQ>>QZQ>>QyQ>>C3yC3>>QyQ>>l~2~2.4~S~S~y~a<<DEPARTMENT HEAOIORIQINATOR APPROVALZsrestiqatioa iaSoificieat toDstsnaiss lootCawscoaaactxva Ac.ZDNSxssedyaysetoss,ot tvooxestaavaÃyzva
~DMSPreclsdaascszrssoo OXCaseszarsstiqatxoo lavealsDstsidsAqescy>>otixicatioo as@stradSZC>>XPZCA>>y'aOBLQI IP>>alClsrtev.ascpIXred!
tonaAcatilledOIItCosplatsly DoosssDtatioa isCosaletsxsvsstxeatxoD aapoztAatcrsedrotPIIstrIar Actio4TOIDraw!nflDept.OusCompl.RFCNo.Dept.OueCompl.PMNo.Dept.OueCompl.DatetotvardedI CosweotsIAppcorsdayIDepartment leadApproredayIOl/>>SDOC*Cosssotsl DateIDataISpec.NoOopl.DueCompLP.O.No.-OopL,OueCompt.AEP:NRCNo.Dept.OueCompl.OtherDept.DusCompLcc:Originating Department Bead/Originator, IRCOriginalIgASupervisor, STASection,NSDRCSubcommittee onCorporate andPlantOccurrences PACE2'REV.
Al%lQPpJill/W~CQNTINUATlON SHEETCalJiJglgATTAC'cBENT NO.caNa.PRHO.Description ofConditioniFinding:
MethodofDiscovery:
Immediate ActionTaken'nvestigation:
Description ofCause:CORRECTIVE ACTIONTaken:PREVENTIVE ACTIONTakenToPrecludeRecurrence:
viS's6.I~V2)PACE3oi3REV.lI IgPIAZZA6MICHIGAHELECTRICCOMPAHY<aiCi>E'~~4owgsssy5TEDATEsNovember24,1986sue>ECTsCondition Reportinvestigation Ag12-11-86-1347 rReaoR.A.Palmer/L.
G.HolmesTDs'lf.'.'I'andennMg
'TheattachedCondition ReporthasbeenassignedtoyoursectionfortonPleasecompletetheinvestigation andreturno12/15/86theTechnical Superintendent byUponcompletion oftheCondition Reportinvestigation, insurethatcopiesofanyJobOrderswhichresultedeitherfromtheoriginaloccurrence oranywhichweregenerated asaresultofyourinvesti-gationareattachedtotheCondition Report.ZftheCondition Reportinvestigation cannotbecompleted tedwithinthetimeperiodspecifiedabove,pleaseforwardaxeroxedcopyoftheCondition ReporttotheTechnical ACC,statingyourestimated dateofcompletion, priotothecompletion da-eshownonthe.Condition Report'over letter.Reortsfeel"~eeZfyouhaveanyŽuestions concerning Conc'tion Reports,feeleetocall.Technical ACC/sgAttachment IKTRASYSTEM
\I'Jt