ML17334B450

From kanterella
Jump to navigation Jump to search
Hydrogeologic Evaluation of Cook Nuclear Plant,Bridgman, Mi
ML17334B450
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/31/1991
From:
AMERICAN ELECTRIC POWER SERVICE CORP.
To:
Shared Package
ML17334B449 List:
References
NUDOCS 9210150310
Download: ML17334B450 (140)


Text

HYDROGEOLOGIC EVALUATION OF THE COOK NUCLEAR PLANTg BRIDGMANg MICHIGAN

(

Prepared for Indiana Michigan Power Company Prepared by American Electric Power Service Corporation December 1991 9210150310

'721008 PDR ADOCK 05000315 i

} )

PDR

~1<

HYDROGEOLOGIC EVALUATION OF COOK NUCLEAR PLANT, BRIDGMAN, MICHIGAN TABLE OF CONTENTS Introduction Topography Geology Hydrogeology Groundwater Quality Baseline Conditions Groundwater Monitoring Program Groundwater Quality Operational Monitoring Program Hydropunch'Data and New Monitoring Wells Potable Supply Wells Conclusions Appendix 1

Aquifer Pump Test Data Appendix 2

Well Logs of Observation Wells Appendix 3~

Hydropunch'Data Appendix 4

Tables Appendix 5

Figures Plate 1 - Well Construction Details Plate 2

Time Dependent Plots of PPT, S04 SWL Well 1A, TRS Discharge Hydrogeologic Site Investigation Work Plan Dwg. CE-SK 3/25/91-2 Page No.

1 13 17 18

  • -Trade Mark

0

Introduction A hydrogeologic study has been prepared to evaluate the potential impacts resulting from the discharge of the turbine room sump (TRS) effluent to the plant's TRS absorption pond.

This report defines the aerial and vertical extent of the aquifer based upon a review of previous hydrologic studies.

The baseline groundwater quality is derived from a review of the previous Dames Moore hydrogeologic study and the upgradient observation well of the current NPDES monitoring program.

The NPDES groundwater monitoring program does indicate an increase in total dissolved solids, sulfate and sodium concentrations above baseline quality concentrations downgradient of the absorption pond.

These parameters are used as key indicator. parameters to determine the areal extent of influence upon the shallow aquifer resulting from the discharge to the TRS pond.

An additional hydrogeologic investigation was implemented in May 1991 to address concerns raised by the Michigan DNR that seepage from the TRS absorption pond to the underlying aquifer may have migrated off-site and potentially degraded

groundwater resources beneath ad)acent properties.

The investigation included the drilling of four new monitoring wells along Livingston Road (the plant's southern property boundary).

The migration of the TRS effluent plume and subsecpxent attenuation was also evaluated by analyzing a

number of groundwater samples collected by the Hydropunch sampling method.

The results of this investigation indicate that the TRS plume has dispersed and/or attenuated to acceptable concentrations along Livingston Road.

4 Topography The site is located within a local physiographic area known as the Grand Marais Embayment.

This area, 16 miles long and with an average width of about 1 mile, lies adjacent and parallel to the shoreline of Lake Michigan in western Berrien County.

The area adjacent to the beach is

.characterized by high sand dunes of Pleistocene and Recent origin.

The area is bounded on the east by a glacial moraine which parallels the shoreline and is known as Covert Ridge.

The area east of Covert Ridge is a glacial plain, with morainic ridges.

(Figure No. 1).

Topographic relief within the dune area ranges from 580 ft.

NGVD which is the elevation of Lake Michigan, to a high of slightly more than 800 ft. NGVD.

In the southern part of the embayment, the area of high dunes extends from the lake shore to the crest of Covert Ridge.

To the north, however, the belt of high dunes is separated from Covert Ridge by Thornton Valley and the Grand Marais Lakes.

The higher sand dunes extend inland about 3,000 feet from the beach.

The eastern portion of the site is characterized by scattered lower dunes with broader intervening flat lowlands or

basins, some of which contain small shallow ponds.

The crest lines of the dune ridges and the floors of the enclosed basins are essentially horizontal.

Geology The site geology consists of a sequence of deposits comprised of a surface deposit of dune sand which overlies older beach sand which in turn is underlain by glacial lake clays, glacial till and shale bedrock.

In the eastern half of the property, the beach sands are absent and the dunes I

rest directly on glacial lake deposits.

The dune sands are light brown to tan, poorly graded, fine to medium sands that commonly are loose at and near the surface and grade to moderately compact at depth.

In the

eastern half of the site (Borings 12 and 18) the dune sands directly overlie glacial lake sediments.

In this area, the upper 10 to 20 feet of lake sediments are often silty and sandy.

Figure No.

1 depicts boring locations.

In the western portion of the site, the dune sands overlie beach sands which are generally coarser grained and not as uniformly graded.

In places, the beach deposits contain a

small percentage'of fine gravel.

The beach sands may be a bar-type of deposit, probably related to an old shoreline of Lake Michigan.

The maximum thickness of the beach sand is about 52 feet in the southern portion of the site.

In the west-central portion of the property near the lake, the beach sands generally range from about 25 to 35 feet in thickness.

Underlying the beach sands and/or the dune sands is a thick sequence of glacial lake sediments.

These glacio-lacustrine

deposits, which are approximately 80 to 90 feet thick, consist generally of gray silty clay and sandy clay with occasional sand and silt partings.

Varve-type bedding is not typical but does occasionally occur in places.

The deposits exhibit considerable variation in detailed characteristics between borings and comprise an irregularly interbedded series of sediments.

I, II The top few inches of the lake secpxence often is marked by a

'considerable amount of organic material which in place is concentrated in peaty layers one or two inches in thickness.

The layer immediately beneath the organic soil generally

'I contains an abundance of gastropod shells.

Throughout most of the site, the upper five to ten feet of lake deposits consists of silty or sandy soil with varying amounts of dispersed organic material and decayed vegetation.

At greater depth, the lake deposits consists of silty clay with occasional lenses containing coarse sand and fine gravel.

Lenses of silty sand and sandy silt are also common.

The deepest part of the lake secpxence is commonly a clayey silt deposit.

A compact glacial till of silt and gravel with cobbles was encountered 'at a depth of about 118 feet in Boring 19.

This stratum, is about, 22 feet, is probably continuous across the site and fills in any depressions in the underlying bedrock.

Boring 19 was advanced 12 1/2 feet into the underlying bedrock.

The rock was encountered at a depth of 140 feet and consists of gray, thin-bedded to fissile, calcareous shale containing thin interbeds of impure, shaley limestone.

The shale is horizontally bedded and is cut by two sets of

cemented points.

One set of points is vertical and the other set is inclined 60 degrees from the horizontal.

The rock appears to correlate with the Berea-Bedford shale, a

lower Mississippian formation.

Hydrogeology Covert Ridge is a groundwater barrier as well as a watershed boundary between the glacial plain to the east and the Grand Marais Embayment to the west.

Static water levels east of the ridge are generally at an elevation of 650 ft. NGVD.

Zn contrast, static water levels west of the ridge occur generally at elevations of 580 to 610 ft. NGVD.

Test borings and water level measurements at the site indicate that the aquifer is unconfined.

The aquifer is comprised of the dune sands and beach sands.

This unconfined aquifer oyerlies low permeable,glaciolacustrine clays and silts that extend to a stratum of glacial till overlying shale bedrock.

The base of the shallow aquifer is delineated as the stratigraphic contact between the sandy beach deposits and the lacustine clay deposits.

The surface of the lake clays slopes upward gradually from elevations of about 555 to 560 ft.

NGVD along the beach to about an elevation of 589 ft. NGVD at the location of Boring 14 in the southeast corner of the site (Figures 2, 3 and 4).

Groundwater is recharged by the infiltration of precipitation through the permeable, sandy surficial soils.

The average annual precipitation for Benton Harbor Airport located approximately 12 miles from the plant, is 36.04 inches/year (Table No. 1). Surface runoff is limited to minor quantities and is restricted to the northeast and east portion of the site.

Basins of interior drainage and closed depressions characterize most of the site.

Initial site investigation observed static water levels ranging from 582 to 609 ft. NGVD inside perforated plastic pipe installed in the 19 test borings (Table No. 2).

A generalized potentiometric map which characterizes baseline conditions is depicted in Figure No. 5.

The groundwater elevations reflect to some extent the irregular topography of the dunes and basins.

The direction of groundwater flow is toward the west to Lake Michigan.

Of significance; *is the preferred direction of groundwater.flow towards the control area of the plant site (i.e.

RP Well Nos.

4, 5 and

6) indicating a discharge area from the shallow aquifer into Lake Michigan.

Short duration pumping tests were performed to determine values of permeability across the site.

These pumping tests indicated that permeability values would range from 115 to

.196 ft/day (4.06 x 10 to 6.91 x 10 cm/sec) assuming an aquifer thickness of 30 feet.

This pump test data is referenced in Appendix No. 1.

Groundwater Quality Baseline Conditions The baseline groundwater quality reflects the solubility of minerals present in the aquifer and the residence time of the water in contact with various minerals.

An analysis of the plant's two drinking water wells in March 1972 yielded a calcium bicarbonate type water with an average total

~ dissolved solids concentration of 390 mg/1.

Chloride and sulfate concentrations of the plant's former potable supply wells are also presented in Table No.

3 and reflect concentrations similar to baseline conditions reported by the previous Dames

& Moore site investigation. lt is reasonable to extrapolate the analysis of the potable supply wells to establish the concentration of the dominant cations and anions (Ca, Mg, NA, HCO3, SO4

& Cl) in the groundwater quality baseline.

Figure 6 illustrates the relationship between the. dominant cations and anions for the March 1972 analysis.

The water quality of the upgradient Well No.

8 provides a

contrast.in water quality between groundwater upgradient of the TRS pond and groundwater that is downgradient and has been influenced by seepage from the the TRS pond.

Groundwater Monitoring Program Two separate groundwater monitoring programs are active at the plant,.

The radiological protection program is comprised of 7 monitoring wells for the plant and 4 monitoring wells for the temporary steam generator storage facility.

These wells are used to monitor the shallow aquifer for radiological parameters.

The NPDES groundwater monitoring program is composed of eight wells at four sites.

Two wells are located at each site where one well is equipped'with a submersible pump to obtain water samples and the other well to be used to'bserve static water levels.

Four additional monitoring wells were drilled as part of this site investigation'o supplement the NPDES monitoring program.

Plate No.

1 lists the specifications for both the radiological protection (RP) and environmental monitoring wells.'ell logs are contained in Appendix No. 2.

Drawing No. CE-SK-3/25/91-2 depicts the location of the observation wells with respect to the plant's absorption pond, sanitary ponds and the plant's former potable supply wells.

The absorption pond creates a groundwater mound and superimposes,a radial flow pattern from the pond center on the regional flow regime.

The monthly average discharge to the absorption pond is 0.46 MGD and ranges from 0.13 MGD to 0.84 MGD (Table No. 4).

Table No.

4 also lists the static water levels, TDS and S04 concentrations for the period of record from November 1976 to October 1990.

Drawing No. CE-SK-3/25/91-2 depicts a water= table map based on static water level measurements observed on October 30, 1990 (Table No. 5).

The water table map is also, in part, inferred from the ponded dune swales.

The configuration of the water table is also reflective of the static water levels measured in the hollow stem augers during the Hydropunch'sampling program for May-August, 1991.

The direction of groundwater flow was also indirectly modified by the installation of sheet piling in 1973-74 along Lake Michigan to control beach erosion.

This piling was driven into the low permeable lacustrine deposits'and created a barrier to ground-water flow.

Ponding occurred behind this barrier and eventually spilled over the piling and flowed again to Lake Michigan.

Several drains were cut in the piling in order to alleviate the ponding of groundwater.

10

Well hydrographs for observation wells Nos.

1A, 8, 11, and 12 are depicted in Figure No. 7.

The well hydrographs depict fluctuating water levels in response to a non-uniform discharge rate, seasonal evapotranspiration, and precipitation etc.

For example, field data recorded in 1983 depicts a decline in water levels and is probably due to a precipitation deficit of nearly 7 inches.

A similar decline is noted for the 1988 drought.

Groundwater Quality Operational Monitoring Program Significant variations occur between upgradient and downgradient wells for the parameters pH,

COD, TDS, Na', Cl, SO4 and Hardness.

Downgradient wells reflect a water quality similar to the water quality of the effluent discharged to the Absorption Pond.

Time dependent graphs of sulfate (SO4) and total dissolved solids (TDS) concentrations demonstrate the influence of the absorption pond on the. aquifer system.

The monthly average TDS concentration of the wastewater has varied from 300 mg/1 to 1100 mg/1 over the period of record.

Similar concentrations of total dissolved solids are observed in the downgradient observation wells Nos.

11 and 12 (Figure No.

8). The average monthly sulfate (SO

) concentration of the wastewater has generally ranged from 100 to 330 mg/1.

Similar concentrations and time dependent trends are observed in downgradient observation well Nos.

11 and 12 (Figure No 9).

Sulfate concentrations for observation well No.

8 are generally less than 50 mg/1 and show no significant departure from baseline groundwater quality conditions.

Sulfate concentrations reported for baseline 'conditions in the Dames

& Moore study ranged from 22 to 38 mg/1 SO In 1983, there was an operational change to improve the steam generation water quality by more frequent flushing and increasing the volume of makeup water; A result of this operation is a significant increase in the number of regenerations of the demineralizers.

The anion beds are recharged with a caustic solution (NaOH) and the cation beds are recharged with an acidic solution '(H2SO4).

This operational change is reflected in the monitoring program by the increase in TDS, and sulfate concentrations.

The water quality of observation Well No.

1A from July, 1977 to March 1982 is very similar to baseline quality due to its location and screened interval.

After March 1982, Observation Well 1A is influenced by the overflow from the 12

absorption pond into the remaining portion of the dune swale.

This is indicated by a steady increase in sulfate concentrations (Plate No. 2).

By comparison concentrations at the upgradient observation Well No.

8 have ranged from less than detection to 200 mg/1 and have averaged 22.3 mg/l.

Hydropunch'Data

& New Monitoring Wells Groundwater samples were collected via a special sampling device referred to as Hydropunch and from four new monitoring wells drilled along Livingston Road.

The Hydropunch sampler is a stainless steel and Teflon' sampling tool that is capable of collecting a representative ground water sample (approximately 500 ml) without requiring the installation of a ground water monitoring well.

The Hydropunch sampler was connected to AW drill rods and driven to the desired sampling depth using a 140 lb hammer.

As the tool is advanced, it remains in the closed position, which I

prevents soil or water from entering the Hydropunch sampling chamber (Figure No. 10).

Once the desired qampling depth is obtained, the tool is; opened to the aquifer by pulling up the drill rods approximately 1.5 feet (0.46m).

ln the open position, ground water can flow freely into the sample chamber of the 13

tool (under in>>situ hydrostatic pressure).

When the sample chamber is full, the Hydropunch is pulled to the surface.

As the tool is retracted, check valves close and trap the ground water in the sample chamber.

At the surface the sample was transferred from the Hydropunch sampler to a polyethylene sample container.

The Hydropunch samples were taken at various depths (up to five discrete sample depths) across the project site to allow vertical profiling of the aquifer.

The Hydropunch sampling and drilling started on May 4, 1991 and was completed on August 26, 1991.

The location of the sampling sites was restricted to existing access roads and thus precluded any disturbance of the sand dunes.

Groundwater samples collected by this method were analyzed for field parameters of pH, temperature and specific conductivity by the AEP drilling crew.

Select samples were analyzed for major indicator water quality parameters (TDS, sulfate

& sodium).

The data is contained in Appendix No. 3.

Three cross-sections were prepared to illustrate the dispersion and attenuation of the TRS absorption pond effluent.

The monitoring wells were sampled for TDS, sodium and sulfate (Table No.

6) and were also included in the 14

evaluation of the Hydropunch data.

(Figure No. 11).

The minimum detection value was used as the concentration value where the data was reported as such.

The cross-sections illustrating the vertical distribution of.

sodium and sulfate concentrations were developed using SYSTAT/SYGRAPH 5.0, a data management and graphic computer software package.

This software package was also used to illustrate the spatial distribution of sodium and sulfate concentration in plan view at various depths within the aquifer.

The isopleth contours were generated using a

distance weighted least squares smoothing subroutine for the cross-sections and an inverse squared distance smoothing subroutine for the plan view.

. Cross-section number 1, identified as Cut gl in Figures No.

12 and No.

13 includes HP (Hydropunch)

Nos.

3, 2, 17, 13, 14 and 26 (Table No. 7).

The cross-section, ordinate begins at HP No.

3 (located at the TRS pond) and continues northeast away from the absorption pond approximately 2,500 feet.

Figure No.

12 shows that the sulfate concentrations diminish to within drinking water standards within 800 feet of the 1

absorption pond (sulfate standard is currently 250 mg/1).

Figure No.

13 supports this finding for sodium concentrations.

15

Cross-section number 2, identified as Cut 52 in Figures No.

14 and No.

15 includes HP Nos.

18, 19, 20, 21, 22, 23, well Nos.

1A, HP 24 and 25 (Table No. 8).

The cross-section ordinate begins at HP No.

18 (an upgradient site) and continues northwest to monitoring well 1A, then southwest to HP No.

25 (approximately 2000 feet).

Figure No.- 14 shows that the sulfate concentrations are within the drinking water standards within 1000 feet downgradient of monitoring well 1A.

Figure No.

15 supports this finding.

Cross-section number 3, identified as Cut g3 in Figures No.

15 and No.

17 includes environmental monitoring well number 16 and HP Nos.

15, 16, 4, 8, 5, 6, 9, 10, ll, 12, 13, 14, and 26 (Table No. 9).

The cross-section ordinate begins at environmental monitoring well No.

16 (an,upgradient well site) and continues northwest approximately 5000 feet.

Figure No.

16 shows all the sulfate concentrations to be within drinking water standards.'igures No.

16 and No.

17.

do indicate,

however, anomalous'sources of sodium and sulfate in the vicinity of HP Nos.

4 and 8 and HP 12 upgradient of the absorption pond.

However, we know,of no company operations in these areas that would contribute to sodium and sulfate.

Environmental monitoring wells installed along Livingston Road, the plant boundary, show that sulfate and TDS are within drinking water standards.

(Table No. 6).

Therefore, 16

we conclude that there is no negative impact to off-site groundwater resources as a result of TRS absorption pond discharges from the Cook Nuclear Plant.

Figures No.

18 through No. 27, which are plan views of the sodium and sulfate concentrations at various descending elevations, support this conclusion.

The x, y (o,o) ordinate cartesian grid corresponds to the State plane coordinates of E 1,392,560

& N 178,500, without any rotation of the axis.:

Potable Supply Wells Potable supply wells are located approximately 1,400 feet north of the absorption pond.

These wells serve as a source of drinking water for plant personnel and the visitor center from 1970 to 1987.

(The plant is now served by municipal water from Lake Township.)

Potable Well No.

2 is located downgradient of the Absorption-Pond based upon the existing flow regime.

Potable Well No.

1 is located about 300 feet further inland and is located near a large sand dune which may exert local groundwater mounding.

The wells were sampled two to three times a year for'everal parameters (Table No.

10 and No. 11).

Figures No.

28 and No.

29 depict time dependent graphs of Ca, Mg, Na,

HC03, and Cl expressed in milliecpxivalents per liter (meq/1).

A calcium bicarbonate type water characteristic of baseline conditions is exhibited by both wells from 1976 to early 17

1979.

In August 1979, potable Well No.

2 experienced a

change in'water quality to a sodium sulfate type water (Figure No. 28) and reflects the influence of the absorption ponder Potable Well No.

1 experienced a marginal shift in water quality (Figure No. 29) and is affected by the absorption pond to a lesser degree than Well No. 2.

Sulfate concentrations for Well No.

2 have occasionally exceeded the drinking water limits of 250 mg/1 and consistently exceeds the total dissolved solids limit of 500 mg/1.

Well No.

1,

however, does not exceed either of these limits.

Conclusions The Cook Nuclear Plant is sited within a groundwater basin bounded by Lake Michigan to the west and Covert Ridge (a

terminal end moraine) to the east.

The aquifer is unconfined and is composed of beach sands overlain by sand dunes and underlain by low permeable lacustrine clays.

Construction of the sheet piling and the Absorption Pond has modified existing ground-water flow directions.

Discharge to absorption pond has created a groundwater mound which superimposed a radial flow pattern on the regional flow towards Lake Michigan.

A significant departure from baseline conditions has been observed in the 18

upgradient observation Well No.

8 and is attributed to an anomalous increase in chloride 'concentration.

The Hydropunch sampling program also detected an anomalous concentration of sodium and sulfate upgradient of the TRS pond e Total dissolved solids and sulfate concentrations have increased above baseline conditions downgradient of the absorption pond as a result of the effluent discharge.

Similar water quality changes were observed in the plant's former potable Well No.

2 and marginal changes were observed in the former potable Well No. 1.

The northern areal extent of the TRS effluent is bracketed between the plants former potable supply wells and. R.

P. Wells No.

1 and No. 2.

The downgradient observation Wells Nos.

11 and 12 and former potable supply Well No.

2 detect the influence of the TRS pond as groundwater flows into Lake Michigan.

The southern areal extent of the TRS pond effluent appears to be bracketed by observation Wells 1A and the recently installed monitoring wells drilled along Livingston Road.

The concentration of key indicator parameters (TDS, S04 Na) does indicate that the TRS pond effluent plume has migrated to Livingston Road.

The plume,

however, has dispersed and/or att'enuated to acceptable levels based on the first round of sampling and the Hydropunch data.

19

~t I'I 4

Appendix No.

1 f

4 L

(

(-

1 Aquifer Pump Test Data

(

(

V

)*

(

g

~

$)( j( + (,Lpga)~~] tj+(((4 (j $@(;P~~(( (m((( L L

~

,(( ( ((,'Lj(j((" (". j~'g f (j( Q~>(P(~rjfmk&"';i

~.

  • , II jL1L '( L(+,

~ iraq-~ ~ i ~ ~ ~i<A~p iX.-'i+gpg 4

'g '~'EH)'t<'>~a

.,;<i~.4;" >"):!. >~~~.>>

4)gg

~~-gk.)':$e,~..'.,<.g~~~

~,

P

~

pter".q,A >p,,

p E

C' I

~.r*.

V.'. 4~A'$94'>4k%t, l&PN4.4%

lQqy%p y<Wg~+~ Q> ~g p ~"$5+

E LI t

't

'I l

'l w

~

A A

h

  • I V

1 I

I 1

I J

I,'

I

Summary of Aquifer Pump Test Data OBS 0

WELL (gpm)

No+

r (ft)

(gpd/ft) k (ft/day)

S Analytical Nethod 8

lAll 12 10 25 25 25 10 10 9.5 10 58,666 31,428 36g666 25g882 196 140 163 115

l. 22x10 3 14x10 5.07x10
3. 50x10 Jacob Jacob Jacob Jacob 38 p 160 153 5

Notes:

1.

The drawdown for each production well is plotted'on semi-logarithmic paper for comparison with the drawdown observed in the respective observation veil.

2.

The permeability is derived from the transmissivity, T,

divided by the aquifer thicknesses.

The aquifer thickness at observation veil No.

8 is estimated

=o be 40 ft. and 30 ft. for the remaining observation veils.

3.

Data Source:

Donald C. Cook Nuclear Plant.

Annual Environmental Operating Report, 1981.

/p ao 4 v aaOI

~

~

~

~

~

~

s4 s

I a4

~

so 4 g os so

~

~

~

s s

s I I

I I

I I

I II soI I

SEMI LOGARITHMIC5 CYCLES X 70 DIVISIONS i'EUFFQ. 4 CSSER CO.

SSOOO SO 4OO I

I I

I I

I I

I I I I I

~ K

...P sssssl 46 6210 so s4 I

I I

I I

I I

I I

I Iii is ll I

I I I ao 4 v assai I

I I

I I II I

I I

I I

I I

I I s4 I

I I

I I

ao 4 'h v %soak I

I I

I I I I

I I

I I I I

I..

I I I I I

I I

.I I III I

I I 'I I

I II I

s

/y u a vcej4II

~4 l4 I

I I

I IA Pl '4 sal I

I I

I II s

4 I

I

/0 a

o a usj4I l

l l

I III I

I I

I III I

I I

I I II SEMI LOGhRITIIMICS CYCLES X 70 DIVISIONS

~E KtuFSCL a ESSDl CO. lllolncaa 46 6210 I

I I

I 4 a 4sP I

I I II I

I III I

I I II I

I I II l4 I

I I

I I

144 I

I I

I I

I I

I I

1 I

I I

I I

(..

'j4 S eo 3

'3 Iij 4

ii kI

~4 O>>>>s CO >>OI s

~

~

~

~

s lO Ql a

a a>>sa>>o s

s s

s s

s

~

s I

I' I

I I

I III

>>sI SB u a paso>>

s

~

s ssl I

f I

I IIII SEMI.LOGARITIILllCS CYCLES X 10 QI VISIONS Se KCUFFEL a ESSES CO.

ssssca

~ LL I

I,II s>>s I

I I

I I

I I

I 46 6210 3

a gaLP I

I I I ll I

I I

I II I

I I III I

I I

I I I Q

I I

I I

I I

I I

I I

s I

I I

s s

I I

I I

I I

s o>>ssee I I.I I I

I I I I

I I I I

I II I

I I hl p

s

/p a 0 '4 ss4e

~

~

~

~

~

~

M I

I s

~

~

s

~

s I

l4 4

a a paso I

I I

I I

I I

I I I SEMI.LOOARITHMICS CYCLES X 70 OIVISIONS ce KKUFFEL 4 sssEA co. saaceelk 4

a 0

I I

I I

I I

s I ssl I

I III I

I II M

I I

I I

I I

I I

46 6210 I

I I

I I

I I

I I

I I

I I

I I

II s

u a vows I

I I

I I II I I I

I sI s

s 3

~ '

4t

Appendix No.

2 Well Logs Cr 0

,~,"

e

~

J

, e

~,

'r h

I e,

r'

,rk;e e

b~

'4 "-'; S<VI>r4~ C'S".t iSXW)k~),r):-+~g+@4))S ")~

t'ttg'"

IL 4S IS, It 4

I v

l ar St'~as))

~ rg )~~~+bkwlta) Qf~

~(444) Q, t ) gv

~f i~i

\\

v t

t rI 5

~ I p"v)

~

)4' h

) 'I v

  • 4 4 4

~ I 4,$)I),v "p b +"'C" Vb

+

S'", t '4 4"4 ii'ra'- '4V ~

.,:,.;v,",.4;.)4 ".:"rl ta'!II Akttt (~va)$6444," kb)'Wv", hAv)tt4)t;,3 f4; kP@~84a'A4t rtvttat rr,t 4

C'

INDIANA NlCHIG4N POWER Oate Parch 13, 1991 Lake Township Monitoring Well

$95 F)pm J.

ED Oetken Tp J.

T. Massev-Norton The following information pertains to the Lake Township monitorinct well:

c Well depth:

Screen length:

Casing diameter:

Casing tvpe:

Install.ation method:

Sealing method-:

Backfill:

.12 feet (approximate) 3.5 feet 2 inches Galvanized Driven Bentonite Hone The gxound and casing elevations have not been determined.

If vou recruire anv additional information ifi order to incorporate this well into vour hydrogeologic study, feel free to call me at X1326.

c:

D.

M. Fitzgerald tntra-System

T.

PIFZOMETER INSTALLATION REPORT Project Piez. Type Mat'la Tip Method ar lnstall~tion Type cf Grnd Protection Grnd Elev.

o 5Tea e

Jt gL Dept h.

Sample g Riser Elev.

Riser

Desc, y c 8Q'lllg Oia ~

Piez Tip Eiev.

filter Material Seal Material fno to lied By Date installed Method of'esting Plez.

Ef Ca~

t Kl from Bev' to Bev.

Date Tested Time B~pscd, Depth Time "~

to 0/ster Time Elapsed Tirne Depth to iater Time Elapsed Time Depth to Nater RKh'ARKS 0+1clmy 6n.ou T'/9C - CI/So Wa T'c w F lcv'agio w

- Octa. $ 0 Q-z-83 el to-i-Gl Scebcew s l ~

I

~ a

. ~

I C

G

~

0 ~ 0

~

e

~ w1

'ep$~

~

'f tC ~'

e

~

~

~

~

~

~

~

~

~

r

~

~

~

o

~

~

~

~

~.

~

~

~

PIEZQMETER INSTALLATION REPORT Project bt-Piez. Type Mat'l Tip Method t;f lnstat4fion Type O'rnd Protection Sir Depth.

d,a Sample/

Riser Dcsc.

BGrIflg Did-Grnd Kiev.

Rrt rEI Picz Tip Kiev.

Filter Material

~

from Kiev. 4~C to Kiev.

Seal Material installed By TC r

R

.REREAD I

Et

. ~E Date installed Method of Testing Piez.

p Date Tested T)me Ebpscd..

Time " Depth to VVater Time Elapsed TiA10 Depth to vlztcr Tirlle.

Elapsed Tirtle Depth to Mater

e

~ e XIOM,/ C.

C i..'<~WQHA~

> MIC~T<A~.'.,

I ) I '.,

)

I

) }:, l I

~

~

~ I I '

I e

~

~

~ I f l

e I

~

~

~

~

l ~,

~ I

~

~..

I

~

~

) (:fl)

((!.;,(I:)

j '

) )! j (fgZ)I~A'C:rlICPIr.hu':POw.tR.': C,OMPAfd'f.';:

I

'L%

'O'Q>C.

h)U L.

A.>..

Pl A~

~

~ f

~

~

~

~

. WAT'E)fj; WQ'kQZTOKIh'Ct I e

@WOUK'

~

~

~

~

~

~

~

~

~

~ I

~

e

~

~

~ I

~

~

~

~

~

e f I

~

I l

~ I

~ f I

~

~

~

~ (

~

~

~ l f t I

~

~

~

I

~

a at se ~

~ asf

~ s t oog Late t

~ l ~

~

~

~

~4f t

~

~

i i:.

~'

~

~ f

~ I

~

I

~

~

~

~

~

~

~

~

~

~

~

~:'I ~

-',t:

I '-l 1

~

~

~ ~

I

~

~

e

~

i

~ I

~

~

~

~

I f

'OIKLL,T,jf qaovO:-

o~~

oet

.- a L+VWViou'..;658.P': h~aX

'h <<,Wpt~ryopj.t+C.

ut)=t.t.':XR, ';;.

OC.'.~Viahi:. : SI)O.':I:SOUTH: ',Or- '.!.:;:

I~

I~

I~I~~

~

I~

I~~

~

!~II

~

~

I~III IIII~~~

I~

I I~

~

I~

~

~

~

~I

~~

~

~

~II

~I

~

~

~

~~IIII II ~

~

~II It!~I

~

II~

~~~

~~I

~

~

~~III~

IIIIo I ),'((('

',;;Z.ufI)'.Z~TXOV..SaSX,~

P 'LEVATLOQ-'65~l+ ':.:.

Q J

~ OScEWVATIO)>

yVgLg A gA

~

o

~

O

~

too <<oA ah I<< fe

~

~

~

~

~

~

~

~

~ I

~

) I

~

~

~ I

~

f LO.ChXLOQ,": 'X,O'. '&V..Of- )

)., (,

j f. } ~4+6'4R:Kt4+:Ql&Ll EI.LI TOP? ELEVATM'Q:6SI. 54

} )

I

~

~ I

~ (

e

~ I I )

~

~

) ( )

~

i CjWOVQQ 'LPVKTI.OQl 60,'5 APPFCX.

~

~

I

) I

~ if ~

~

t f o

)

I ) o.

)

if.

~

~

~

~

I

~

~

~ :i' t

e

., f (.O'Q j':.:0 f>>I 6,-,L9.- lP....,..SO+.O'T.

w;-'z.s-.;vs.:,::

'.:sob;wS'n-.a--

ps:..'.'Co i WATER. 'T'LE. '

E'L~VATZOt>S

~

~

~

e I

~ t t

i I

f oe l f ! I I

~

~ t I

~ i I l. e: I...

~

~

~

~ l

~

e

~

~

~

~

I i

I

~ f I o

l ).;'"

~ ! i

I

((

~ :

f )

I

~

~

~

o.;'I i If

~ t I

~

I'

~

~

~

t II. ~
.il

~ ):-'-

l) Ii)l r;,

i I i I

~

~

~

~

~ '

~

~

I 1

~

~

~ I I

~

~

~

~

I o

) ((I'

.i.t-f.4 ~

l...;

';:! I, I

~ f I (If>>

~.>>l

~ '

I

~

~

oI

e i l

1;ol

1)

~

' f}

flic ~

~

~ f

~

I

~

I

.QI C,L

..f-O~AVZ.CrA

~

~

~

~

~

~

~

e

~

'OS,.Of.>, fqb D 6 5 C WZPfTIOA.;,I

.':THICK@)655' DE%'TH,TG

': );!,: l.'::':,: SO> T'eW I

~

~

~

~

~

~

LlQB.'Ahl>

WA'T&K 1hLA~MQ 'SAND

~

~

e

~

~., i I,

i I

I I

~

~

~

o I

I

~

~ I

~

~

I

~

~ I ) I l

e I I

~

I I

~

~ l:; Ii

~ I oe ~

~ i'

~

~

., '55

~...'..:

o l',

~

~

I

~ llI

~

~

f

. I. i

~ i.'

~

~

~ e e(etc I f

~

~

~ f

~

lo.

~ >>ll.

(

~

0 O ~ ~ e

~

~

3 5 ': '

~

~

~ e4 e

~

~

~

~

1 I f

~

~

)"l 0

ee

~

~

o I )!'

ie't

I)i':,

',.: ()'-. I

) I I I i

~

~ a I

~

e o

~

~

~

~ I '

I

~'

~

(

I o

I I

e o

o I

~

~

~

~I;'

~

I

~

~

(. I

~

~ f t

I' i

~ r

~

~

~

I I I! t f

~

~

I

~

~

~ I f

~

~

Ift, i

~

I f I f)li

)(((;:

I, l I

)

~

~

~

I

~ t e I

~

~

I I '.

~

f

~

o

~

o I

~

~

~

o

~

i if:

~

~ I

~

~

o I

~

I

~

~

~

~

o

~

~

<<o I

~ l i

~

e e e e e

~

) I

~

~ I f

~

t'

~

~

o

~

~

~

~

~

~ I

~

~

f

~

i i l I:'I elf

~

I)

~

r I I e

~

I

~

I I

I f

~

~

t '

I ~,

~

oelfle

I I '

~

~

~

~

j i I O

e

~

~

~

~

I

~

I o

~

~

~

~

~ I i '.;

,'.ll lit f

~

( ( f l) o

~

~

~

~

~

~

o I

~

~ i I 4

~

~

~

~

~

~

~

I I

~

o

~

~

~ f>>i! ~

~

~

I

~

~

~

~

~

~

~

'(I:

~

~ ~,

I

~

~

~

I I I o

~

~

I I

~

e

~

~

~

~

1

~

~

o l

~ I i

~

~ f i f I '

l ~ I

~ i I

~ I '

le' f

~ I 0LO l '.::;

(:.

I'I'

~

~

I

('!

I i

I

r>>

o

~

a

~

~

~

~

f<<I,';;.

~

(

~

~ (

~

.'I<<

iI:.}"

. ~ l. (

i

(<<

~ I

~ I

<j.",

~

~

.'t49X~A'e:H IC4X(: t D; ) 'P'O~,E'~i

< XiOMbLD;: C I CO&<<<

. h)UCL.B.AR,

'mD,C>l.lAA y WICKET,@Ah:;,:

~ C,OWPAM'f l

~

~

PLA)~, ',

~ <(

}It<I}to

~ )j.

<(

~ ( I

~

~

Cq R,OUTED (l

WWT'Se; '0'~arTO~ZI~Cp'..'.;

a

~

~

~

~

~ jt

~

a

~

~

~

< (

~

~ ~,

~

~ '

~

~

~ I I

< I

~

~

~

I I

I.

~

~

~

o Oh$ 1TOR.TMQ &ElL'

~

~

~

~

~

~

QQ'("A IOI'3'-(.:2440

! '0 ST

. 4F..'..':

I I

'! l';

I <: e!:'Z<<j:tat<<<aTI<<<j:

(<<<Sf<<;'. l'.

'WgLL: TO<<; RLavATr.ow:.

GXS.? 4.",:::

qgOueD"f: ~L'CURAT OQ ~,; %14:-

h7PEOX:

~

I

~ l

~..

LO.Cat I

o<<!'

VlELLl

~

~

~ I

~

~

/WOLD

~

~

~

~

zov:,: Lo'. 5.m..'or-

'; j

< HO t4ZTORXN4

'. 'g BLL

'p:. ELEVATOR,.

<<<(<3.5 t((6 I

.).<

~

~,.I

'ELEVKTIQ M:::, 'Sl+.S hPPR,0X.

TO

~

~

a (

MQ

7.'~

~ 085BWVATXOt>

9lEL L + 6

<I

~

e

< ~

~

a>><<

'} i t: I I I.'

~

~,:I

. ~ I)l1t ~j j.!i !;,:!

I

~

~

. I.

~

I:.<<

I:(

<.:I elt; f

~ e

} ".:.;

~o

~

~

e(

~ t 7

i I

~

~

~

I '

~

~

VI((<T&W T'E

. 'l.

~

~

~

~

~

~

~

~

~

~

~

~

(:

~

~

~

~

<< I

~

~ I

&VAiTIO<<'bs'

..:,,6b5 Sh

.':::.so 5;6o'..
'@'O (7.'43

')'('it

~

~

( I

~ ~

i

~ ( t

~

o

~

I I <<.'

~

~

)

~

~

~

a

~

~

~

I.

~. ( I

~ 0 ee

~

o I

~

~

~

~

j.(I. ~:. e'.

~ I

~

~

~

a

~

~

~

~

I

~

e i!i::

~ a

~

~

r

~ I I

~

e. >>1 0

WH I,':

'( I

~

~

~

.<<l II..

~

~

~

~ <,

~

~

.,I)

I;:.

~ t I I e

~

~

iti'},.

~

~

~

~ I

, I,

~ j

~ ~ ~<<

~

~

~

I

~

~ }

o

~ j

~

~

~

~ !<I(<<

I,:.

~ }.

o

"}I 1>"'I e

I o

I '.'

I

~

~

j(

r'j-( r

~

~

~'l l I:<<}

~

o

< t

~

~

I

~

~

~

~

~

~ <<

~

~ I

~ I e

';
'..0 Q: '.;0 F-965 C.<<'..LPTX,O>>. '

.:: (V'Oi::.SorL.:.':

D((t<R.K. ALLO'(M 5AQb:

} ': I TIGHT: sANxl. }

i R~~~ p~~~~4:5>>~:

'QL'QP<<<

~i':e'il

~

~

~

~

~

~

a

~ ~

.e(.

< I:.

~ w e

(i<(

~

o

~

~

~

~

a

~

t>><!:.

t 3R.!

k 3.~y.'.! ':

( 1.'

~

o

': ' '18 ':. '.

! I:: '32;$

~ I ggg

~

~

~

~

~

~

~

~ ~

I i

I at '

~

~

<<I i I'.ll:';}'.

<I} ~ I.

I,I i

}i' e ~ <<(<

~

~

.t'I;'I

!<!!.;jjj

~ rll<!,.<(

~...,

~,:i

<<ji<ifI,i I:'iIji:

ij}i'(i

~

~

<)Ii

}

I ',:

. Iii a

~ 4 L

la(l (ie<<

I

~

~

~

I

~

I

!((.

a a

~

( e, I

li}

.Ii}

~

o

~

~

',I

"'l":;P fiP

<,:((

~ I

~

f"'<

i

}I I I I

~

I

(

~

I,'

I

~

r jl

~

~

j <<

a I

I I

~

~

o

(

~

I I

e

~

e

~ (

o

~

~

~

~

I Ill'.j)

( }(.II

~

~

~

.<<(I<

i'( I

~

~

<o:,(;I

~

j

~

~

i I

~. ~e',

I I

~ <I::

i<<

.,(I.

il'I

Ii t(;I i:

~

~

i <<'"

I:i

~

~ I '

~

~

~

~

(

~

~

'j}:-'.<<.:;..

<.}

III:. Ilt

~ OLO./ICAL,I.:.";F-OR&~V.'OA.::: ';.:.:

.<<t.'

}'7+TCKAESS', 'BERTH <TO

~ '.

);:.:i.

'; }:'; [;:,aoTwow: <<'.;

i

~

e o

e o

~

a oa

<< ~

j'<<9! l:'.:X!49ZI9QA 't MIO' Ig'f IO POWER. 'COMPPIO9I

+4+4 L+: C C+++

~~

L+++ l'

'QQN Ci MAIS HIC HTQhO

.,';': '; ',: I:

~

~ t

~

6

~

~,

~

~ I

~ f fo) t t j~.t.f~..'-

6

~

~ ~,

~

KOUh:D.'AT &8, NOl4ZTOKIACt

~

t e f I

~ I f

~ ~,

~ I

~

~ l

~ I

~

~ ~ ~

~

~

~ I t

~

~

~

~

~

I e ~ '

~

~

l

~

~

5

~

~

~

5

~

~

~

~ lll

~ ~

I t

~

6 6o>> t't

~

~ e

~

~

~

~

~

~

~

t

~ '

1

~

~

o

~ o

~

~

I

~

~

~

6 ~.HeaaTOa~ht m~t t

+ ll 2, +. 0$!ERVATIof4

%EL,L ~ 1>

gyCATIOlQ:

. 400'OW.

OF:..: '

i t i I j!i','.':XIOFItT~TEOIO 'S.ASZIO:

jjrggt 'TOP: FLEYAt'IOQ-f 05 41...:.

MJlQD.: ELKVATIOhl~"60'9 '5 APl)R,QX e>><<<< ~ L~~ ~

e

~

~

t.Ol:aTGSO:

XO'&ST Or-

.::, ',; I..;)",HOQIT4RXMcl WEI L' e

o

~

~

)

~ o

~

~ ~,

~

~

~

%&LL TOP EL EVCTZOM 4

.609 S7 QROVMQ '. RL.QVKYIOh%: e60 f RS APPROX.

~

6

~

~

~

~

~

~

t t

~ I e 6

~

.l).ft-e,f 1'

o61 l

~

~ f t

~

~

~

~

~

~

~

~

L ~,

~ a~

~ I o ~ l

~ i>>>>

~

~ '

QI e e>>fJ

~

~

~

t

~

~

~ e

~

~

~

6 fe ~

~

~

~ e

~ o

~

I I

~ e

~

6 5

~ '

~

~

o

~

~

~

~ t I f f

~

~

~

~

~

~

1, f

~ I

~ l 1

~

o.f I I l TkR, 'T'E L&VPT'ZOtQS 1.'.6.- 9.-'l5 !.,6'll, 5:

i:-:5::'.6: 6 ~ 'le.::I: 5'9

~ 6':

'9

~-*.%..5 I'1*'.-

I

~

~

~

~

it

~ ~-

~

~

~

~

~

~

~ I

~

e

~

~

~

~

~

i ~ ~ ~

~

~

t

~ I>>

~

6

~

~

~ I~

~

~

~

~ I 4f.

~

~

~

~

~

~.

~. "-

) fA ~ lot" f.e,,f,'.

~'It I

~

~

~

l

~ e I

~

GQ. 't

.qf.aVOQTCAt ';XO~PTZ,OA..

.,r

~

~

~ 6] I '

1

~

~

~ t f

~

~

~

j.

lt t

~

~ fff~

't"-,

PESC R IPTI4Q DE~H'O

.BoTT'cH

' rHIctft:%&$5' t

f '

~

~

~

~

~

~

I j

~

~

~

~

~

~

~

~

I

~It'

~

~

~

~

t

~

9 9 'IIE' f

~

~

~

~ I ~ I '

6f '

~

~

~

~ 6t

~

~ I i fee

~ i ~ I

'XKVhlE':5AQD

~

~

~

~

~

~

VCAT9lt, Q&hiGNQ 5AQD I

~

~ o 5

~

~

1

~

~

1

~

~

~

~ e

~

~

~

~

~

~

6 l 6

f

~

~

~

~

~ f 1 e

~ t

~ t

~ fee>>

~ lfo I

1 I

~

~ I ~ I

~

~

~

~

t

~

~

~

I

~

~

6 f

~,

I

~ \\

I

~ I

~

) I o

~ ~

~ e e r

~

~

~

6

~

~

~

~

~ '

~

~

C

~

~

~ o

~

6

~

~

~

~

I

~ o I f

~- ~ e

~

~

5 1

~

6+

~

~

~

~

~

~

~

~

~

~

~ gJ.

~

~

~ <<o I

~

~

~

~ t

~

~

e I

~ I

~

~

~

5

~

~

~

~

~

6

~

~

~

1

~

~ o e

~

~ I 1

~

~

6

~

~ *

~

e

~

~

~ 'I I 5

~

~

~ >> ~

e

~

~

~

~ 0 l ~

~ ~

~

~

5 t

~

~

o o

~

e

~

~

~

~ t o

~ o,

~

~

~

~

~

~

~

~

~

~

~. ~

~

~

~

~

) t

~

~

I~

~ I

~

~

~

~ g

~

~

e 6

~

~

~

I f

~

~ I

~

o

~

~

~

~

~

~

~

~

~ I

~

~

~

~

~

~

~

~

f 6 I o e ~

~

I

~ o

~

~

~

~ '

~

~ I

~

~

~

I

~I')lg

~

\\

~

~

~

t

~

~

~

~

t

~

e t f '.

~

1 t '

~ ~

~

~

1

~

e e

~

~ off).r ~

~

~

~

~

~

~ *

~ o

~

~

~

~

~

~

~

~ o

~

o

~

~

~

~

~

~

~

~

~

~

~

f e

~

~

~

6

~

f

~

~

~

~ e

~

~

e

~

~

~

~

~

i:Ittttf off I

i~o

~ of led

~

~

t+ j r

~

~

~ t

~

f

~

~

~

~

~

6 eo

~

~

I I ~ '

~

~

~ f I

~

tl I o

~ pt t o

i.i'it<

L e~ tA]

.il'.t

~ ~

~ l I

~

~

~

~

~

~

~

~ I I ~

~

~

~

oe l ~ t>> ~ f '

t'.+' t f-'e

~

~

~ o 5

~

~

~

~ I I y>> ~

~ f

~

I 5

~ f I>>e. pt f pe

~ t e

~

~ I

~ $

~

~

~

6 i tg

~

~

~

~

~

o

~

~

~

~

~

~

~

~

I o

~

~

~

o>>

~

~ I

~

l'. f'

~

~

~

~

I

~

~

~ f

~

~ o

~

~

~

~

~

~

~

~

~

91 O

~ ~ I e

~.l ~I e

~

~

~

~

~

~

~

~

~

~

~

~

~

~ I 6 I

~

, f I I

~

e

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

e

~

6

~

~

~

~

~

~

~

I

~

~

~

~

~

~

~

~

~.f).:.:

~ t t \\

~ 9f

~

~ I

~ I e

~

'O '

~

~

~

~

I.s<<" ~

5 ~

tllj ~

) I t' i't<<eo f ~ f f 1

~

o I

~ f

~

~ I l

~ io 1

6 I I

~

~

~

~

~

~

~ I I

~ '

I

~

~

~ ~

1

~ o t e

~

~

~

~

~

~

6

~

~ ~If 5 l~ 1.1 i

~

~

6

~

~

~, I

~

~

~ '

~

~

~ I

~

~

~ I 1

~

~

~

~ I

~

~ e

~ t I

~

')

~

~

~ l I tl.

I

~

~ t I

~

~

~

~ ill o

~

~

~e t 1

~ '

t

~

~

~

~

5

~

6 I ~,. ~

~

~

I

~ I I

~

~

~ e

~ I.1 6

~

~

~

~

~

~

~

~

~

~

~

~

~.I:6

~

~

~

6

~

~

~

~

~

.K. ceo'e>>>>

<<<<6

~

~ ~

~

~:j

),

~.

~ If{),l IANNA C;QT{"WQQhQ Po~'5R'. l CCl'"(76%',f,'. f!,'I i 0

KLD; j 5 '

C,QQ)C.: h)UCf.&'A~<<;Pl A>~7;;.'; ':;

I

! ff8tfl'~~>II'i't~'alt~~'~:Iiii'j iiiii'I..ii!...,

t i

)I!);) af gaea mal

~ j j j

~ j ) f

~

j I

~

IIi'i'i'I I

~ I )

~ I l QP,OUSTED;

~

)

~ feft

%ATOP' OMXTOXI IIlff

~ flf)j ittttt ~ i!ll,".l',1.'.

I j):::Ijl

)) I;)ll..

'. i i I i

'. i i: i l: '.

tfft,."I;l..te!

) ).4 " laputa aWi) ')'eic:~> m l ';:, ',:

~ I ~,

~

~

~ I

~

~

~

I I

~

+'TOOM:I; 'I:TOO I

!MASSY::QE. '

I'l{

'!'E'LL iTDR: fII.LVlloT'taII;i'.I)lb 'f 5'!!.'i I((:'I.'.I;li

~

~ It>i !>I.ll

..ill'5jROQU~

E,lR'VWT bQ >

lt}O. 5~PP~

f )

~

~

~

~

~

~

~

~ ) I

~ l l I I I I

~ I

! aiaV~V aO..

Sza.eq C

~g e

o

'eI NELL, '.70 QWOU AX)

. FLRQbTX, W..GXC.O. A~t. O..

I

~

~

~

~ I

~

~

~

~

~ f

~

~ '

LO,t KTLOQ:.:;!IO.'i 'SOUT'6 'F-'. '. i:

~

~

e p

t

'I'ltt I

~

f ee ~ I jl;

~

~ I

~

j I

~

~

~

~

~

~

~

~ I:'.

~ o~

j I

~

o

~

I

~

~

~

~ I oui

~

~ I

~

~

~

~

.'; t!:OQ jl!-;;Dv

'.'I)i!')j'T 5L.E E-'l. E'UC'VXO)AS':::.

.6.-,.'L'9:-:'75;:::

':.59 '45'.':!

~ e e

0

~

~

i I

~

~

o

~

~

~ee

~

~

~ f f

~

~

~

~

~

~ j

~

~

~

~

~

~

~ 0 ~ 4 oe

~

j'.'II'I

~

~ I,

~

~

~

~

~

)

~

~ l I

~

~ I

~

j

~

~

I I

(

~

~ 'j':

~ j

~

o

~

~ a

~

o

~

f

~

~ 0

~

~

~

I ',

I I

~

~

I

~

I

~ I

~

~

~

j }lt if I"

. ~ I I (

~

~ :

~ f).

~.

)

4

~ lory ~~

I t

~

~

~ I

~

~

~ I

~

o

~

~

oe 0

~ 0

~

~

~ :j

~ ~

I I

Da

=~r.WP'X,OP.;',:.

}

~

.Il):" I) II

'.)l I 1

~

~

~

! THZt'K)4&S5','<VI H j70::;

BOTT.0H..

.. Ej;RAVEL;.; ','

.4 J. i I.:,

.Vl 4a QAIQ3)':;

~ B&~b; PRAT.SAQD

~ )

~ 'I' Ci 8 I'o~i. I."Y(~ 5AtoIt}i '.!

'WNQ

~/ GRAVE;L, '

lii',I

~ of i

'f'))

~ l

~

~

~

a lj)'
j'))a

~

~ '

llI'I:)!.

I f

~ I I

) f

~ j

~

)

I

~

~

~

~

ee ~ 0 0

a ~

~

o

~

~

g$ I

~ I

~

oil/6;'.o

'l QK ll

.::'52.'.:

~

~

te f I

~ I

~ } f l !

~ a I I f

~

~ I l ) i

~ I ) l o } e I

) I

~

~

~

oII ~ "

~

I II I) I

~

I

~ I I

~

~

~

~

~ I

~

~ f I

~

~

~ I

~

~

~

~

~

~ I I

~

ef f

~

'nS.,':aF-!

'. qa:aaO.(ZV 4';FOaWW Z.O!v, I

I

~

~

j e..'t.

~

~

~

~

l

~

~

~

I f

l j

): i

~

I

~

~

~

~

~

a \\ 4 f

~

~

~ I j

~

~ I

~

)f)

~

e

~

~

~

~

~

~

~

~

I

~

~

~

e

~

~

I

~

~I

~

~

~ f

~

}lit~

)llj

~,

I o

) I e

~

o..'

~

)

i!
'l a I

)

) ! I t I tli)i'.'I

~ fw foaf I

~

.}ij

~

o I

~

~

~

~

~

~

t to

)')

~ f it>

j) I

'::.'.iij':, ij ftl ~ !

ili!ll i o

) j':j r--,t l!!

I

ll.

~

e::I

],1 Itf.;

~

I ) I

~

)lf.t

--:,'! I

I

) I l,.;

!{)'I

~

I I

~

~

~

~

I I

I I l i

~ I

~

I f

~

~ ~

I I

( I I

~

f I I

~

~

~

~

~

~

~

I I::.; ',

I I:lei

!i!I

I o I e '

~

~

~

~

I

~

~

~

I I;;

I

~e ~

~

fIj{,

Ilji

) I I I

~

I f

I

~

I

~

I

~

o I

I I

~

~

~

I I

a I I a.

~

~

'jjoI, e

~

I

~

~ ))f.

~

~

I j.:

1

, cg LOCATION OF WELL Tawhshlcl N orstsnce And olrection tram Road Int<<sections WATER WELL RECORD ACT 994 PA 1905'r schon A/tj/~~;

MICHIGAN OEPAImilENT OF WBLIC HEALTH Soctlah Numa<<

town Nurhaer Range N

~9 C

C~aS.

S'troat sddtoss g 'City of Well Location Lacer ~ wlI sh section so low Sketch Mso!

4 WELL OEPTH:

I omolecedl Oats ot omsietran I

I I

I J

I I

I I

'THICONC55 OF STRATUM OC)TN To SOTTOM OF 5TRATUM 7

R4

}<

5 Q Csb( ~ cooi Q Hollow rod 5 MSEI QOomestic Q Irrigation Test Well Ilotsty Oriven Oug Jotted Q

Eared Q

Q Public Suooly' Industry Q Alt Candltionihg C

cisl 7 CASINQI 0 ism.

Alhe \\0 In. to Welde4 Q Height: Abave/agan IS f tg, I Wsiaht Ibsatc.

Orive Shoe? Yes No tt, Oeoth tt Oeoth 8 SCREEN:

Type; ~+

Ol~

'lttlnget

~I~

9 STATIC WATEII LEVEL 5

I tt. below lsn4 surface

'lg PcIM NQ LEVELbei lsh4 s sco

+s.o<<

11 wATER QIJALITYin P<<ts P<<Million:

g.o.m.

Iron IFOI Chlorides (Cli Hstdhoss Othet Well di ~intectod uoon C<<rsrietian Yes No 15 PLIMP:

Not installed Manufacturer's N<<he Model N<<tarot HP Volts l.ength of Orao pipe tc. csoocity GNJs.

Typot Q Suom<<sibl ~

Q Jet Q Reciptocsting 1

WELI. HEAO COMPLETION Ih Aoorav 4 pit Pltleee Adept<<

IS" Abave Grade IS Well Qrouced) Q Yee No Q Nest CofMht Q Sohtohite Q

OOOcht Fram tt. to 14 N St Source ot oossibl ~ Con nenon Tyoe use A coa s<<sst I'ccoca 15 Remarks. elevation. Source of data. etc Cu~ z, Tog g f~ ~~

O'I<'-'I im II<<AI IF ~7 jO<<

I II, 7 IOOM (Rov, 'IS ea)

SUSIIIC55 OAMC sfsl5TSArloh OO, Addros Signed IIORI CO IICFII II ATIYC Oste 17 WATER WELL CONTRACTOR'S CERTIFICATION:

This II wss drIII+uhoot mv Iutisdiction snd this roo<<t Is true to t ost ot hIY gdgo d

~ lot, IMIIORTANTE Rl~ wBII daecL WELL OWNER COPY,.~j.',:.";

GCOLOGICAI. SUIIVSY SAMPLE No.

I.OCATION OF WELL I

CJO w

-! ~~~@I To'whs N

WATER WEt.L RECORD ACT 2S4 PA ISSS NCHIGAN OEPARTMENT OF FUBLIC HEALTH Fraction I

Section Numeer Town N~r nance Numoer

-grkM;

< es.

oistance And oirection tram liood Intersections Street address SI City of Well Location P~~Qo Adaess Locate wiin in aeclloii slow Sketch SMOI 4 wSU OCPTHI Iconiol ecl Oats ol Conoietion ft.

1 I

I I

I I

I 5 Q Cabl ~ cool Q Hollow rod 6 USSI QOomestic Q Irrioation Teat Well Q iiotaly Jetted Q Ofiven Q Ouc Q~

Q Public Suooiy 0 industry Q Air conditionino Q conynercial FORMATION TIIICKSCSS OF sTNATOM OCFTII td

~OTTCM OF ST14'tvM 7 CASING; Threa4ed Welde4 Q Oiam.

I ~lt ONlill In. to ft, Oeoth He I Oil'l; *boveIISei<<w ii 8 ~II.

l weioht IbsJft.

Orive Shoe) Yes o

9 STATIC WATIILSVSL ft, below land swface 10 Pu ING LYSI. below I~

surl

~

ceo+el Il. III I

0 I"I

'I 1 wATGI QUAI.ITY in Pans Per Milliont o,o.m.

Iron ifel Chlorides ICII Hardness Other WSLL HSAO COMPLSTIONI Q ln Aooroved pit Pltless Adaoter 12 Above Grade 19 Well Groutedf Q Yes No Q Neet Cement Q Sentonite Q

OOOtht from ft. to 14 Hearse wce of ooaaibl ~ contamination 0 IObJIIon Well 4i~infscte4 uoori canoletion Yes No I6 PUMP:

Manufactwer'5 Name Not installed Model Number HP Volts Lenoth of oroo Floe It. caoscitv GpJa Tyoe: Q Submersibl ~

Q Jet vie << 1<<o

$<<ccr it <<ccoco 17 WATER WELL CONTRACTOR'S CERTIFICATION:

This II was drilled

<<der my luri ction and this reoon i~ true tO th t Ot my k

~

~ PO b lilt.

z./9 Iurg gtp-CJri//

iitev. I2 SS il clstca avsliicss <<<<Mc

~

A44ress 5 loned

<<oalt 0 il sc<<A ivc acgista<<rio<<<<o, F

Oats IMPORTANTS File Willt tfeed Wii I nlWT:O' nod -.R~.':.".'r. -'-.;

CCOLOOICAL $VlLVCT5AMPLC Nei mcoocrrom WATER WELL RECbRO l(ICHICANOEFANMQ4T ACT 554 PA 1544 OF LOCATION OF WELL FLIN.IC CHEALTH fIecuon Section Nuanoor t4wn irunaoer nonce Nuitwor A

~4

.1 4

4P CD M'w.

Ol stones An4 Oirectlon from h444 Intersections 5treoc oddrese o C(tv ot Wo(l Loose(on Loco(4 wite In section

~ ow I

4 WSLL OtpTHI (comoiecedl octo ol c I

I I

I J

I I

J ~W I

I I

I FORMATION rr LlpJ'a TNICCNCSS O'CPTII TO Ot OOTT0M OP STOSTOM STOSTIIM

+G 7

C~(e cooi Q Hollow rod hotsnr Oriven Ouo Q Jecto4 Q

Oored Q

Qoomeet(4 Pueilc 5uoolv Q indus~

C3(ri(oet(on Q Air cond(t(on(ne Q conw rclel Test Well 7 cA5INC'tueoded wei444

(

HeiOnt: AOOvotoesew lee4'<

In. Ie Orivo yeef Yee 8 5Ch55NI

/ PI Tvoe:

Oi<<t 51or/Cteeee L

r

'fitt(neet g II~~

9 5TATI TC(t LCVCL below Iend sultoco IO IK LcvcL oelow lend sur(eco Q Q

a. aaaa2~>>. aaaa~ ~<-I a.aaa a

I a

~ aaa "a

Oaoain 11 WATT(t aUALITYin Pons Por Milliont lion IP4 Ciiloridaee (Cll Herdneoe Olnor 1

WE'LL HCAO COMPLlTIONI Q (n A~~'Pit Pit(see A4iotor I5" Asove Credo

~ well Clouted)

Yeo No Q N ~C~cjf~(co Q Oootrv.

from ~

rc. co 14 Nosiest Soiece ol ooseiol ~ conteitunecion

'Well die(elected uo4n conwlenon Yes I(o 1

PUMP, Q Not Instilled Menu(securer 1 Nome WN I Lenin Ol Oroo PIOe lt. COOeeiCV u.P.M.

I'voe:

Qj SusitwrsIOI ~

Q

)C~

Q gec Q

heCIOIOCSCIIIO Tvoe uSC S See I CV I~ aICCOCO 16 Rernerttoa elevetlan, saurae at d&o. Otc.

/I "~C,: P~ i f".."-I--

(q I ji'~.;j

(~ gP Md

/I'ST4 IOOM (neua IZa((8(

eCCISZC euSiuCSS IIC A441es eCSIStoara u <4, 5(oned utaaoei 0 AC Cn s Ivc Oice 17 WATER WFLL CQNTRACTQRaS CERTIFICATION:

TIIIS It Wso on(led uaader Iur(edidti In<1 Ieaen ao nue to t st ol 44 ti~ I~

~ MM ILlIShN'AVW, CH

...~, ~

a

mcaoazoco~

I 'TION OF WELL Co Townanio Name WATER WEt.L RECORO ACT 104 tA 1555 Fraction irAk&~

MICHIGANOa ARTMENT OF PueuC HEALTH Section umoer Iovtn Numoer Rance Nunclat ms.

F +

%'W.

Distance And olr Ion rrom Intersections Locate wn In sec'cion Sketch Maot W'fcfg~w~+c~g

~ig~sn Q Cd' WELL OEFTHI ICOmpletedl Oats Of Ccnelatian I

I I

I I

I C

cab l~ cool

~ Q Rotary Hollow rod Q Jetted Q Driven Q Ouo Qsed Q

6 vsE-'ooneatlc P tubllc suooiy P Ind tty Q lnlcation Q AirCondiclonino Q Conrnatclai Teat Well I

j~.AC I SIILC FORMATION '

.r Tiilccacss ot

$TRATIIM octtn to

~OTTOM OF'TSATVM Threaded Wel4e4 Q Heiohtl Deva/

low

~

Oisin.

~&ff

~ Surface~

tt.

In. to SR M Depth

~ Weiohtgg Ibad'tc.

In. to tt Depth Otive Sheet ves No 8 SCREENI Type:

Oi~.

Sec betweetLEg '7+ and ~C.'~tt Fitti I

I' f'/

9 ATIC WATER LEcfEL

~

I tVLPtNQ LEVEL below land surface

~l4n~C It thf hh rwoi o 11 wATER OUAUTY in tens ter Million:

Chi<<14es ICII Iten Ital Other WEU HEAD COMtLETIONI Q In *ootove4 Ht

~Itless Adaoter 12" Above Grade 1~ weii Grouchier Yes No QN atC~ 05 onite Q

Dept!it tt. Io 14 ar urea of posaibl ~ corn Ion CPM Wall dl~Infected lawn coneletion es o

o,o.m.

Type tUMH Not I elle4

~ v Manufacturer'a Nale Model NICIOet Lencch ot Droo tlpe~tt. Caoacicv~GJ'.M.

~

Type: g Submara ibl~ //f/

Q Jet Q Raciptocatino

'usc A sile Ducat It uccscs 16 RematkS. OIOVOtiotl~ SOIXCO Of ddtoo OtCe 4ocr~da, ld~-.

/

Cr..r< a'o~ /RIctaci<!

fA-~ E~- ( gd/u~~)

100M IRev, IRAQI

,4

'tcaetnrse a an'ct

.IAI.

17 WATER WELL CONTRACTOR'S CERTIFICATION:

Thl~ well as dtills4 under my Iurladlction and thi~ repen la clue to tne I ol mv ad en4 bei c'~

acaistca ausiiicss IIAIAC

~

ilcsis'laAf!cu lloyd Address ~~

~

/

Si,~

-".6

./6 AII IIOIII5

GE~OG(CAL SURVEY SAMPt,E Ho.

~T.=

1 LOCATION OF wELL LLILLl LLLLILLjQI3.

ACT2'A I 9(SS PUBLIC HEALTH Co(rn~

~

To(p.

Prectlen X

'9'rDK M c

A

~et ~

ross Ity of We Location c

Sect(en He.

Taws Re>>4o IA

/S.

3 OWHER OP WELL~

g v

AJ*e so 4

POR(JATIOfl TNICCNCSS Of STII AT VIS OCTET>> TO

~ oTToM or ST>>ATOSI i wEI.I.DEPTH(

e

~leteJ) 'ete of Cygyplef(~

ft.

5 Cch ~ tool Retery Q Hel(ee roJ Q Je Driven Doc Q BoroJ Q

Three JeJ

~ IJeJ Q (He(yhtt A4vo/Boiovr Is(rrfoco +

ft, (KK~a.rr

~. D th Orl Sh y Y sKH4oCl 7

ASIHGI 8 SCREEN(

Ole.

6 IISEIQ 0~st( ~

chile Solely Q I>>Jsfry Q Irr(set(on Q Air Cen Jltlenl>>4 Q C~~( ~ (

QTostwell Q

, 4-g" ~4@

9 TATIP WAgR LEVEL ft. 4(ow ImJ swfece 10 PUMPING LEVEL44vr Io>>J swfoco 2:7 r,.~

16 Riess

~ I~vetion, sowce of Jete, etc.

E P~

t(r 4 IOOIS lMPORTANT: Fife wltb deed 11 WATER OUALITY(n Perte Per M(ll(e>>I (r I rK(<<ii (c((

KN(

12 wELt. HEAD DMPLETIDHI I>> AisreveJ Pit P(t4ss AJeotor Q 12" Ahove GreJe 13 GROUTIHGI Well Gro(rtoJ? Q Yes Cc

~

MotwlcltQ Hect Ce(sent Q

Dootht Frere~.

ta 14 SANITARYI Well JlslnfecreJ uoon ce(os(et(en C3 Yes Q Ho 15 PUMP(

Men(rfectwor' New Mole( Num P

Le>>+ of Dr (F>>~4ft. esses(ty~~.P JJ.

Tyoet Sub(oorslhle Q

Q J.t Q Rec(orecst n

17 wATER wELt. coHTRAcTDR's cERTIF(cAT(oHI Thl~ well ms *llloJ vnJer (sy Iwls J let(en e>>J thl ~ resort Js tr(re to

~ 4st of sy hnewleJ(( ~ ~

4(lof.

~(sfcaco sus(ness oaaec ccs( Tosflse Ke AJJres Sl Dote OfneOISCO S

1CSC>>TATIVC

~ ~.

+

~ >> v~

WELL OWNER COPY dE./

AMERICAN ENVIRONMENTAL SERVICES CO., INC.

Welf Detail Summary Amerfcan Efectrfc Power O.C. Cook Nuclear Plant Brfdgeman, Mlchfgan AE-964 7/7/89

+0'4 0 t0 e

$>> I ~u~F~.$.:g

'<<e~>>;..

Opening for manhole Ground Surface Concrete Manway 4 I8 ~

~(

30'0 j~p~AQ~Q 4~

<<qrggp$

48 Diameter Boring Sand Backfill 8

Sched. 40 PVC Screen

.010 Slot Bottom Plug, Bottom of Borehole Note:

Drawing Not to Scale.

AMERICAN ENVIRONMENTAL SERVICES CO., INC.

Well Detail Summary American Bectrfo Power D.C. Cook Nuclear Plant Brfdgeman, Michigan AE-ge4 8l6/89 QÃ~k popO E

E Ground Surface 2

l ocking Well Plug Roadway Box t t5 ~

Clean Native Send 2'0 Bentonite Pellet Seal (hydrated prior to backfilling) 3E00 2 PVC Riser Pipe Pea Gravel Backfill 2

Threaded Flush Joint 0.020 PVC Weft Screen 13'0 t 4'0 Bottom Plug Bottom of Borehole 20 Diameter Boring Note:

Drawing Not to Scale.

MERICAN c

ENVIRONMENTAL SERVICES CO., INC.

Well Oetall Summary American Efectrfc Power O.C. Cook Nuclear Plant Brfdgeman, Michigan AE-964 6/6/89 0c0 ~

1'0 Xvj rc v>

c gee, m4:a Ground Surface 2

Locking Well Plug Roadway Box Chan Natfve Sand 2c0 ~

Bentonite Seal (hydrated prior to backfilling) 2 PVC Riser Pipe Clean Native Sand Backfill 13'0'g~%Q'~pc'@

':?ji>g'<<j4c'g4, 2

Threaded Flush Joint 0.020 PVC Well Screen Cotton Cheesecloth Wrapping 18'0 4

Diameter Borfng Bottom Plug, Bottom of Borehole Note:

Orawfng Not to Scale.

4

~ ~

~

~

~:

~

~

0 ~ 0

~

~ 0 0 0"

~ ~ 0'

~ 0 0 0' 0 0

~

I 0

~ 0 ~

~

~ 0 ~

0 0 0

~

~ 0 0' 0 0

~

vs 0 0

~ 0 0I 0 0 0

~

ass-0 0 0 0

~

~ 0 ~ 0 0 0 0

~

~ 0 0 0

~ 0 1 0 0 0

~ 0 0 s

~ 0 0 0 0 0 0

~

~ 0 0 0

~ 0 0 I

~

~

~

~

~ '

~

~

~ ~

~

~

~

~

e ~

~

t s I

~

o ~

~

~: I:

I

~

~

JOI S4 CoiltNIT PaoIRct Cooaoiwavcs DATC TIDC C

c~~i t' S

WELL CONSTRUCTION

SUMMARY

ELEVATIONS (tt NQYD)

WELC Na GRADE R.

ENTONIT 3.

SCREEN Vo l e l&P'"

P'VC TOP OF BENTONITE SEAL ~~

(

lVl'OP OF GRAVEL PACK TOP OF SCREEN BOTTOM OF 7

7Z SCREEN BOTTOM OF BLANK SECTION BOTTOIN OF GRAVEI.

PACK BOTTOM OF BOREHOLE GEOTECHNlCAL. ENGlNKERlNG SKCTlON CIVlL OESIGN STANDARD APPROVED REVISION OSSf RVAT10N Nf LL

4oi Ho.

ColtlNY Pa~ ccrc COOhOIIIATCS Oazz Tzac IT z.v9 WKLL CONSTRUCT(ON

SUMMARY

KLEVATlOHS (CC, lleVO)

WELL m RKF. DATUM PT.

R.

NT HIT TOP OF eKW'ONITK SEAL~~

5.

SCRKEN g,

PQQ 4.

G RAV PA z " I'zz TOP OF GRAVKL PACK TOP OF SCRKKN 8OT TOM OF SCRKEN bOTTOM OF 8LAHK SECTION 8OT TOM OF GRAVKL PACK SOT TOll OF 8ORKHOLK GEOTECHNlCAL KNGINKE:RlNG SKCTlON ClVlL OESlGN 'TANDARO APPROVED AMERtCAN ELECTRIC POWKR SVC.

CORP.

REVISto N 08 SERVATION WELL CDS -04 SH.

Joe No CoMtNIY PawtcY COO%0)IIASjs

~

DAI~

Tlsa maP

0. V7 WELL CONSTRUCTlON

SUMMARY

ELEVATlONS (ra. NaVO)

WELL No OL NT NIT II I TOP OF BENTONITE SEAL~~

3.

SCREEN Z

Pfc TOP OF GRAVEL PACK 8.

R IS ER PI 2

PlC TOP OF SCREEN BOTTOM OF SCREEN BOTTOM OF 8LANK SECTION ~

~

BOTTOM OF GRAVEL PACK BOREHOLE BOTTOM OF gq GEOTEGHNIGAl ENGINEERING SATION GIVIL OF. SIGN STANDARD APPROVED REVlSIO N OB SKRVATIOH WK.L L

elOl HO+

.C0staar C00NOINAri0 Oars Tira

~ J 3 Ief'Z.

WKLI. CONSTRUCT ION

SUMMARY

KLKVATIONS

{a,Novo)

WKLL Na RKF. OATUM PT.

NT NT 3.

SCREEN di i p

~I Qe TOP OF SKNTONITE SEAL~

TOP OF GRAYEL PACK TOP OF SCREKN BOTTOM OF SCRKEN BOTTOM OF Bt.ANK SECTtON BOTTOM OF GRAVEL PACK

~ ~4

~

BOTTOM GEOTECHNICAL KNGINEERING SECTION CIVIL DESIGN STANDARD APPROVKO AMKRICAN KLKCTRIC POW KR SVC.

CORP.

REVISION 0 B SKR VATI{',.

NK lL CDS-04 SH.

Joi No.

CoQfiNY Paletot CoogolN1'tel Deva T<sa WELL CONSTRUCTION

SUMMARY

KLEVATlONS t tLsova)

WELL Na RKF. OATUM PT.

well Cove~ will be 2.

EN T NIT SCRK'E N J

< ~ <*<

A 08 TOP OF 88NTONITK 88AL~

TOP'OF GRAVEL PACK TOP OF SCREEN BOTTOM OF BI.ANK SECTION 570'C BOTTOM OFr BOTTOM OF SOReHOI.Z

,2L GEOTFGHNIGAL ENGINEERING SECTION CIVIL OESIGN STANOARO APPROVED REVISiON OB SKRVATIOH WK LL

'.-'; Appendix:3 Hydropunch'.Data r

4 r

4 4 4

~=

year

~

4 1

~ 4-

I

~ 9'. >99,l9

'9 9

t r, 99 r

999,4'q19 H 9rj9~, 99i'gA i 4't999)>r 9i

~ J ~ ",

~

~

9 9 ',9 9

/

\\

9 1

9

~." ~k~.:".'-9(~ <<8 i~49'm7~a<'9", ""

99',"0f tp,,"~1mVJP'.'c%9$ 99~Yg99999t9>>199~1~iff Ji~999 '.9.'9'Ir f

~'g.t '.99'99rg4+"/~9999'iJ~99V j 99:999 r

+

\\

~ W 9

DEPIH 'IO STATIC WATER LEVEL 43.0 FEET STATIC WATER ELEVATION 607.55 FEET NGVD BCjIGNG NO HP-2 QXNDINATES:

E 1393878.22 N 180417.58 GRADE EL'50.55 FEET NGVD

(

IRTE OF SAMPLE COLLKCI'ION TIME RQKYE SAMPLE SAMPLE DEPHi ELEVATION %)IlHE FEET FP NGVD ml TEMPER'ZURE su F

C TDS SODHM SULFATE mg/1 ag/1 mg/1 1

4.MAY.91 10:00 AM 11:07 AM 53.5 NO 63.5 587.05

~

350 9.05 57.0 13.9

51. 0 73.5 577.05 500 8.86 83.5 NO REXXMKY 1, 180 1; 180 644 NA, 339 676 176 511

DEPHI 'IO STATIC HATER LEVEL 10.3 FEET STATIC NATIR ELEVA'I'ION 608.66 FEEP NGVD BORING NO HP-3 COORDINATES:

E 1393744.33 N 180326.01 GRADE Ef.

618.96 FEEP NGVD DATE OF SAMPLE CGLLECI'ION TIME SAMPLE SAMPLE SAMPLE DEPIH ELM'ION VOIlNE pH TB6'ERA'IURE FEET FP NGVD ml su F

C umho/an ng/1 mp/1 ag/1 1

4.MAY.91 4:30 M 5'05 PH 3 14.MAY.91 11:45 AM 13.0 605.96 23.0 595.96 250 33.0 585.96

'50 7.38 8.82 62.0 16.7 59.0 15.0 425 8.04 60.0 15.6 1, 130 711 131 407 1,330 NA 164 NA 1,110 616 186

'36 43.0 575.96 NO 53.0 565.96 NO RHCOVFRY BHOCIVERY N.A.

NO ANALYSIS

DEPIH 'IO SI'ATIC RLTER LEVEL 4~6 FEET SI'ATIC WATER ELEVATION '10. 1 FEET NGVD BORING NO ~4 COORDINATES:

E 1396126.89 N 180207.62 GRADE EL.

614.7 FEEY NGVD DATE OF SAMPLE CDLLECI'ION TIME SAMPLE SAMPLE SAMPLE DEPIH IKZVATIONVOIlNE p8 TEMPHQXURE FEET FZ NGVD ml su F

C BODHH SOLVE mg/1 ng/1 mg/1 1 15.MAY.91 10:05 AM 1:35 B4 2:35 Rf 18 0 596.70 '00 7.20 28.0 586.70 NO RECOVERY 38.0 576.70 5

48.0 566.70 NO REKX3VERY 58.0 14.4 74.0 23.3 410 213 18.7 5.5 N.A. =

NO ANALYSIS

DEPIH 'IO STATIC HKHK ILWEL 13.8 FEEI'IATIC HATER ELEVATION 604 FEEI'GVD BCSGNG NO COORDINATES:

E 1395709.18 N 180319.65 GRADE EL.

617 FEEI'GVD DATE OF SAMPLE COLUKTION TIME 1 16.MAY.91 9:35 AM SAMPLE SAfPLE SAMPLE DEPIH ELEVATION VOllHE pH T&PHQTURE PEEP FT NGVD ml su F

C 21.3 596.17 525 6.68 52.0 11.1 26.3 591. 17 NO RHCOVHIY

36. 3 581. 17 NO RECOVERY

'IDS SODGH SULFATE mg/1 mg/1 mp/1 600 342 11.9 18

DEPIH 10 SI'ATIC WATER STATIC WATER ELEVATION BORING NO HP-6 COORDINATES:

E 1395705.71 N 180320.74 GRADE EL.

617..42 FEET NGVD 13.8 FEET 603.62 FEET NGVD IRTE OF SAMPLE COLL1XI'ION TIME 1 16.MAY.91 2:57 PH SAR'LE SAMPIZ SAMPLE DEPIH ELEVATION %Mid pH TEMPBQXURE FEET FZ NGVD.

ml su F

C 18.0 599.42 HO RKOVKRY 28.0 589.42 '25 7.06 58.0 14.4 38.0 579.42 'O RKOVERY 48.0 569.42 ng/1 mp/1 ng/1 440 N.A.

15.8 N A.

N.A, =

NO ANALYSIS

DEPIH 'IO STATIC WATER LEVEL 5.1 FEET SI'ATIC HATER ELEVATION 609.55 FEET NGVD BOIGNG NO COORDINATES:

E 1396133.69 N 180206.18 GRADE EL.

614.65 FEET NGVD DATE OF SAMPLE COLAKTION TIME SAMPLE SAMPLE SAMPLE DEPIH ELEVATION VOUS p8 T&PEBAXURE FEET Fl'GVD ml su F

C ng/1 mg/1 ug/1 1 29.MAY.91 6:30 B4 8 OOPH 8:00 AM 13.0 601.65 23.0 591.65 33.0 581.65 43.0 571.65 500 6.85 62.0 16.7 525 7.22 58.0 14.4 550 7.37 61.0 16.1'50 9.19 64.0 17.8 370 261 16.5 25 384 178 24.5 10 677 331

56. 0 28 8,170 620 31.0 150

DEPIH 'IO STATIC WATER 1-2 FEET SI'ATIC WATER ELEVATION 6;25 FEET NGVD KHGNG NO HP-9 COORDINATES:

E 1395702.9 N 180321.4 GRADE EL.

617.45 FEET NGVD DATE OF SAMPLE SAMPLE SAMPLE SAMPLE DEPIH ELEVATION VOIlNE pH TEMPERAXtHK COLUK7ION TIME

~

FEET ET NGVD

~

ml su F,

C TDS SODIlM SULFLTE mp/1 ag/1 mg/l 1 30.MAY.91 1:10 B4 2:00 M 2 45 W 3:50 PH 18.0 599.45 500 7.21 60.Q 15.6 28.0 589.45 3Q N.A.

N.A.

N.A.

38.0 579.45

~ '50 7.08 69.0 20.6 48.0 569.45 530 7.57 6&.0 20.0

928, 413 398 160 37.5 L.D.

10.5 30 671 314 6.5 L.D.

N.A.

236 18.5 L.D.

N.A. =

NO ANALYSIS L.D. =

LESS IHAN DEHXTION LIMI'I,'F5.0 ag/1

DEPIH 'IO 8PATIC WATER LEVEL 8.2 FEET SI'ATIC WATER ELEVATION 603 75 FEET NGVD BORING NO COORDINATES' 1395302. 59 N 180447.4 GRADE EL.

611.95 FEET NGVD DATE OF SAMPLE CDLLHCrION TIME SMtPLH SAMPLE SAMPLE DEPIH ELEVATION VOIIHE pH TEMPERA'IURE FEET FZ NGVD ml su F

C

'IDS SODHH SULFATE mg/1 mg/1 ag/1 1 31.MAY.91 8:45 AM 10 15 AM 17.8 594.15 475 7.16 58.0 14.4 27.8 584.15 530 6.94 60.0 15.6 37.8 574.15

'00 7.06 66.0 18.9 47.8 564.15 400 7..>3 68.0 20.0 471 233 14.5 N.A.

275 30.0 N.A.

246 19.0 N.A.

231 9.0 25 33 23 37 N.A. =

NO ANALYSIS

C g D

'IO SI'ATIC WATER LEVEL

7. 1 FEET SIATIC WATER ELEVATION 602.17 FEET NGVD BORING NO fP-11 COORDINATES:

E 1394899.08 N 1&0591-01 GRADE EL.

609.27 FEET NGVD

, DATE OF SAMPLE CDLUXTICN TIME 1 31.MAY.91 2:30 PM 3:10 PH 3 50' 00Pf 13.3 595.97. '30 6.71 64.0 17.8 23.3 585.97 33.3 575.97 43.3 565.97 400 6.&8 64.0 17.8 450 6;78 65.0 1&.3 475 7.15 64.0 17.8 SAMPLE SAMPLE

~

SAMPLE DEPIH EUMQYOH VOILHE pH TEMPERAIURE FEEI'P NGVD -

ml su F; C N.A.

N.A.

N.A.

N.A.

1QS SODHH SVIZ'ATE ng/1 ag/1 ag/1 218 21.0 9.4 293 10.5 14.0 214 13.0 20.0 216 8.0 32.0 N.A. =

NO ANALYSIS

DEPIH 'I0 ~TIC HATER UMK 25.7 FEET SPATIC WATER EU;VATION 603.61 FEET NGVD BORING NO HP=12 CXGBDINATES:

E 1394776.78 N 180939.06 GRADE EL.

629.31 FEET NGVD DATE OF SAMPLE COIL.'FION TIME 1

1.JUN.91 10:15 AM 11'00 AM 1:50 B4 2

55'3.1 596.21 300 6.89 58.0 14.4 43.1 586.21 252 7.49 61.0 16.1 53.1 576.21 '75 7.30 63.0 17.2 63.1 566.21 73.1 556.21 425 7.75 63.0 17.2 500 8.17

'6.0 18.9 SAMPLE SAMPLE

~

SAMPLE DEPIH EUWATION VOUS

- pH TEMPHNItHK FEET FI'GVD.

ml su F

C N.A.

N.A.

N.A.

N.A.

N.A.

KS SODHH SOIZtQR ng/1 mp/1 mg/1 382 8.0 120 237 13.5 19 353 29.0 40 238 25.5 30 356 26.0 36 N.A. =

ANALYSIS

DEPIH IO STATIC MATER LIBEL 26.8 FEET STATIC NATER EMTATION 601.30 FEEP NGVD KSGNG NO HP=13 OXNDINATES:

E 1394668.88 N 181183.64 GRADE EL.

628.10 FEET NGUD DATE OF SAMPLE CDLUX'PION TIME RSPLH SAMPLE SAMPLE DEPIH ELEVATION lRIIHE pH FEEP FP NGVD ml su TPPBVQURE F

~

C mg/1 mg/1 mg/1 1

1.JUN.91 5:40 PM 6:15 B4 3

2.JVN.91 7.00 AM

'9:30 AM 10:20 AM 33.0 595.10 43.0 585.10 53.0 575.10 63.0 565. 10.

73.0 555.10 500 7.54 58.0 14.4'00 7.26 63.0 17.2 500 7.67 62.0 16.7 325 7.61 N.A.

N.A.

250 8.07 70.0 21.1 N.A.

265 N.A.

312 309 234 383 276 64.5 29 23.5 31 18.0 31 23.0 36 N.A.

260 5.0 29 N.A. =

ANALYSIS

DEPIH IO SI'ATIC HATER LEVEL 28.2 FEET STATIC HATER ELEVATION 600.66 FEET NGVD BORING NO HfP-14 CGCHKIINATES:

E 1394557.88 N 181595.94 GRADE EL.

628.86 FEEI'GVD DATE OF SAMPLE COLUXTION TIME 1

2.JUN.91 1:35 PH 2:40 PM 3.10 PM 4:15 Rf 5 10 PN 33.1 595.76

'75 7.48 65.0 18.3 43.1 585.76 53.1 575.76 63-1 565.76 73.1 555.76 475 7.32 60.0 15.6 525 7.18 64.0 17.8 500 7.39 64.0 17.8 250 8.23 66.0 18.9 SAMPLE SAMPLE SAMPLE DEPIH ELEVATION VOIlÃE pB TEMPERATURE FEET Fl'GVD'l su F

C umho/an mg/1 ng/1 mg/1 726 L.D.

18.0 44 456 280 23.0 33 604 355 23.0 24 527 268 21.5 53 380 214 N.A.

29 N.A. =

NO ANALYSIS L.D. =

LESS 'IHAN DETHCZION LIMIT OF 1.0 ag/1

c DEPIH IO STATIC WATER LEVEL 6.3 FEEP STATIC HATER ELEVATION

. 608.25 FEET NGVD REHUNG NO HP-15 QXBDINATES:

E 1396470.33 N 179438 ~ 09 GRADE EL.

614.55 FEET NGVD DATE OF SAMPLE COLLKTION TINE

~ 'I SAMPU" SAMPLE SM%%Z DEPIH EUMKX(NVOIlME pH TEMPERATURE FEEI'Z NGVD.

ml su F

C

'IOS SODDED

- SULFATE mg(l ag(1 ag(1 1

3.JUN.91 10:10 AM 13.2 601.35 '..

510 7.19 72.0 22.2 849 425

71. 5 12 10 50 AM 11:35 AM 23.2 591.35 500 7.10 65.0 18.3 33.2 581.35 100 7.88 70.0 21.1 43.2 571.35 NO R1XOVERY 994 575 386 N.A.

23.0 69.0 12 N.A.

N.A. =

NO ANALYSIS

DEPIH 10 SIATIC WM'ER LEVEL 17.4 FEET SI'ATIC HATER ELEVATION 606. 14 FEET NGVD BORING NO HP-16 QXNDINATES:

E 1396369.61 N 180025.93 GRADE EL.

623.54 FEET NGVD DATE OF SAK'LE COLLECrION TIME SAMPLE SAMPLE

.SAMPLE DEPIH KZVATIONVOIIME pH FEET FP NGVD ml su TEMPHNIURE F

C ng/1 mg/1 mg/1 1

3.JUN.91 3:00 H4 3:35 Bf 4:20 PH 23.0 600.54 33.0 590.54 43.0 580.54 510 6.80 60.0 15.6 525 6.82 64.0 17.8 150 7.13 65.0 18.3 401 272 26.5 22 732 428 58.5 18 575 364 N.A. 'l

DEPIH 'IO STATIC WRY IZVEL 6.& FEET STATIC WATER ELEVATION 601. 19 FEET NGVD BCSGNG NO HP=17 CDORDIWQ'ES:

E 1394139.42 N 180691.70 GRADE EL.

607.99 FEET NGVD lRTE OF SAMPLE COLLECTION TIME 1 11.JUN.91 9:05 AM 9 55 AM 10:35 AM 11:30 AM 1 45 BC 13.9 594.09 l 500 7-70 64.0 23.9 584.09 510 7.62 65.0

17. &
18. 3 33.9 574.09

=500 7.87 64.0 17.8 43.9 564.09 500 7.45 64.0 17.8 53.9 554.09 425 7.69 66.0 18.9 SAMPLE SAMPLE SdQ%'LE DEPTH ELEVATION VOIIHE pH TEMPERATURE FEET Fl'GVD.

ml su C

mg/1 ag/1 mg/1 880 474 87.7 210 1, 160 759 133.5 400 910 587 104.6 270 970 642 98.4 280 503 250 17 4 400

DEPHI TO SIATIC HATHI L1VEL 8.1 FEET STATIC HATER ELhVATION 607. 08 FEET NGVD BOURG NO

~18 GXNDINATES:

E 1394602.17 N 178806.54 GRADE EL.

615.18 FEET NGVD DATE OF SAMPLE COLLECFION TIME SAMPLE SAMPLE SAMKZ DEPIH EUVATION M)IlME pH TEMPHaZORE FEEI'l'GVD ml su F

C mg/1 ng/1 mg/1 1 12.JUN.91 4:00 W 4 45 PH 5:15 M 6 00 PH 18.0 28.0 38.0 597.18 587.18 577.18 48.0 567.18 400 6.93 450 6.10 525 6.6&

525 7.47 58.0 14.4 60.0 15.6 60.0 15.6 62.0 16.7 926 374 385 142 N.A.

75 7.3 32 510 309 33.6 34 536 245 27.6 36

DEPT TO STATIC WATER LEVEL 31.9 FEET Sl'ATIC WATER ELEVATION 609.07 'FEET NGVD REHUNG NO HP-19 GXSDINATES:

E 1394479.65 N 179226.10 GRADE Ef.

640.97 FEET NGVD DATE OF SAMPLE COLUM'ION TIME SAMPLE RQ4PU" SUPPLE DEPIH ELEVATION MIlNE pH TEMPERAIURE FEET FZ NGVD el su F

C

'IDS SODHH SULFA mg/1 mg/1 ag/1 1 21.At@.91 2:30 PH 3:10 FH 4 15PH 5:15 PH 43.3 597.67 525 8.14 58.0 14.4 53.3 587.67 425 6.97 62.0 16.7 63.3 577.67 525 6.89 63.0 17.2 73.3 567.67 325 8.27 64.0 17.8 226 356 482 288 805 374 390 358 23 49 73 22 48 42

DEPIH 'IO SZKTIC HATER LEVEL 17..6 FEET STATIC WATER ELEVATION 610.16 FEET NGVD KKUNG NO HP-20 QXBDINATES:

E 1394389.28 N 179410.49 GRADE Ef.

627.76 FEEI'GVD DATE OF SAMPLE COLLECI'ION TIME SAMPLE SAMPLE SAMPLE DEPIH ELEVATION %OIIHE pB TBPEKQVRE FEET FI'GVD.

ml su F

C ag/1 mg/1 mg/1 1 24.AU.91 4:00 PM 4 30PH 9:30 AM 4 25.At@.91 10:15 AM 5

ll:10 AM 23 '

604.76 450 8.27 57.0 13.9 33.0 594.76 475 7.42 63.0 17.2 43.0 584.76K.

525 8.10 60.0 15.6 53.0 574.76 525 7.87 62.0 16.7 63.0 564.76"'50 8.27 64.0 17.8 268 126 390 268 662 352 502 255 352 254 21 42 94 60 45 28 39 47 28 41

DEPIH 'Io ANTIC HATER LEVEL 12.3 FEET STATIC HATER ELEVATION

- 605.95 FEET NGVD BORING NO

~21 COCK@)INATES:

E 1394233.26 N 179474.88 GRADE EL.

618.25 FEET NGVD DATE OF SAMPLE (DLLIRI'ION TIME SAMPLE SAMPLE SAMPLE DEPIH ELEVATION VOEIKE pH TEMPERA'IUBE FEET Fr NGVD.

ml su F

C

'IDS SODHH SULEXPE axy/1 ag/1 ng/1 1 24.AtE.91 9:30 AM 10:30 AM 11:30 AM 1 00 PM 1:45 PM 18.0 600;25 28.0 590.25 38.0 580.25 48.0 570.25 58.0 560.25 500

8. 31
60. 0
15. 6 525
7. 35
61. 0
16. 1 500 7.50 61.0 16.1 200 7.57 66.0 18.9 30 7.55 70.0 21.1 211 99 290 221 1,048 651 658 350 415 N.A.

30 24 35 L.D.M.

158 365 N.A.

127 36 N.A.

N.A. =

NO ANALYSIS I.D.M. = LESS %QN DETECrION LIMITOF 25.0 ng/1 DUE lQ M~GX

DZVm m VATIC~ATIm LEVEL 4.8 FEZr SI'ATIC HATER ELEVATION 606.98 FEEI'GVD BORING NO HP-22 COORDINATES:

E 1394130.47 N 179534.51 GRADE EL.

611.78 FEEI'GVD DATE OF SAMPLE COLUKI'ION TIME QQ&LE SAMPLE SAHPIZ DEPIH ELEVATION V0IlÃE pH TRPERAIUIK FEEI' Fl'GVD.

ml su F

C KS KOIlM SULFATE

-mg/1 ng/1 ng/1 1 23.AIR.91 1:30 B4 2:15 B4 3 OOBf 4:30 E8 4:40 PH

13. 0 23.0'98.78 i

525 588.78 525 6.63 6.82 33.0 578.78 525 7.79 43.0 568.78 525 7.25 53.0 558.78 500 7.76 70.0 21.1 68.0 '0.0 66.0 18.9 66.0 18.9 66.0 18.9 974 653 549 457 764 439 518 258 350 199 298 289 277 113 98 215 79 '0 41 40

DEPIH 'IO SIATXC WAT1% LEVEL 24.2 FEET SI'ATIC RATER EUWATION 596. &3 FEEI'GVD RXUNG NO HP-23 OXNDINATES:

E 1393904.27 N 179523.80 GRADE EL.

621.03 FEET.NGVD DATE OF SAMPLE CQLLBCTXCN TIME SAMPLE SAMPLE SAMPLE DEPIH ELEVATION UOIIME pH TBPEBATURE FEET FI.'GVD ml su F

C KS SODIUM SULPXIE m/1 m/1 m/1 1 11.AU.91 1:50 PH 3 3084 4:00 R 5:00 N 28.1 592.93 38.1 582.93 48.1 572.93 58.1 562.93 525 7.95 8.00 64.0 17.8 66.0 18.9 525 6.87 58.0 14.4 525 7.96 64.0 17.8 460 528 160.4 206 750 685 143.9 321 1294 1280 224.1 698 291 288 N.A.

23

DEPIH 10 SZATIC WATER L1WEE 35.8 FEET SZATIC HATER IX&ATION 604.51 FEET NGVD BCjEGHG NO ~2 OXNDINATES:

E 1393647.95 N 197466.93 GRADE EL'40.31 FEET NGVD DATE OF SAMPLE COLLHCFION TIME SAMPLE SAME~

SAME~

DEPIH ELEVATION VOUS pH TBPERKURE FEEI'Z NGVD ml su F

C

'IOS SODHH SUIZ'ATE mg/1 ag/1 mg/1 1 10.AU.91 2:30 M 4 OOBf 5:15 PM 4 11.AU.91 8:50 AM 5

10'00 AM 4

43.3 597.01

~

500 8.34 53.3 587.01 525

'8.19 63.3 577.01 530 8.19 73.3 567.01 500 '.44 83.3 557.01 250 7.90 60.0 15.6 64.0 17.8 64.0 17.8 62.0 16.7 64.0 17.8 767 716 121.2 318 505 424 123.2 151 998 889 102.3 509 547 492 71.5 166 268 322 N.A.

47

DEPIH %) SZKTIC WATER LEVIK 36.1 FEET STATIC WATER IKKVATION

.611.31 FEET NGVD KKUNQ NO HP-25 COOL)INA'.IES:

E 1393349.43 N 179352.10 GRADE EL.

647.41 FEET NGVD DATE OF SAMPLE COLLBCFION TIME SAMPLE SAMPLE SAMPIZ DEPIH ELEVATION VOIIHE pH FEET FT NGVD ml su TEMPERAKVRE F

C SODHH SUCS'ATE ag/1 ng/1 mg/1 1

9.AM.91 43.0 604.41 '.')

KXOVERY 5:25 M 3 10.AM.91 9:00 AM 4

10 00 AM 5

11 00 AM

51. 0 596.41 63.0 584.41 73.0 574.41 83.0 564'1 500 7.70 66.0 18.9.

525 7.51 61.0 16.1 525 7.87 62.0 16.7 500 7.17 61.0 16.1 628 304 10.4 8.3 754 706 45.4 334.0 384 334 28.3 114.0 330 283 31.7 8.7-

DEPIHI SHOD HATER LEVEL 21.4 FEET STATIC WATER ELEVATION 597.14 FEET NGVD KRING NO

~26 GMBDINATES:

E 1394671.98 N 182101.75 GRADE EL.

61&.54 FEET NGVD DATE OF SAMPLE COLLHCFION TIME SAMPLE SAMPLE SAK~

~ DEPIH EU'.VATION VOIlHE p8 FEEP FZ NGVD ml

~ su TKHPRRAXUBE F',

C KDS SODHH SULFATE mg/1 ag/1 mg/1 1 25.AIR.91 2:25 PH 3:00 K8 3:45 M 4:30 PM 38.0 580.54 48.0 570.54 58.0 560.54 500 7.22 72.0 22.2 500 7.20 70.0 21.1 450 7.45 71.0 21.7 28.0 590.54 -'50 7.57 65.0 18.3 765 414 631 360 84 25 51 11 448 354 29 41 853 443 66 37

/

~

d P

'I f

~

1 I

I'

~-

I

\\

Appendix 4

l I

1

Tables, I

I I

I I

I h

1,

."~r hah Z'"the 1'hh~,"-"~~(~-""1~/AD"',"',g>>';>"."

I

~ -

~ go, ', "'"><) 'g7. 'gII y

-PZ 0',ahh 11, 8'1I

  • '. ~,

~

I II I

,- ~

'. 'I

'I I

I fh 4

g ~ -y g"lP'IINh Qh rl g jh. $g 1P N~P, 1 Q9)+)

b I' f <<NeAr" I

h

~-

1

~ '

P 4

vv Pl

'pv II

'I g " "5 ~ '

1972 JAN 2.43 2.04 5.34 3.73 2.61 2.33 3.32 N/A 0.42

~ 48 N/A

~ 89

. 64

'F

'ABLE NO.

1 PRECIPITATION DATA BENTON HARBOR AIRPORT, MICHIGAN (inches) 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 FEB 2.14

.85 1.37 2.70 3.48 1.96 0.84 N/A 0.91

3.55 N/A 1.01

, 1.40 MAR

3. 57
2. 57
5. 22
2. 29
4. 23
3. 17
l. 27 N/A 1.78 1.48 8/A 2.42 1.17 APR 3.57 4-18 4.49 5'6 5.01 2.72 3.73 3'9 2'1 4-23

.23 4.42 3.91 HAY

l. 96 4 ~ 43 5 ~ 39
3. 94
4. 25
0. 92
2. 58 gUN 3.77 4.89 3 ~ 79 4.56 3.26 4.02 4.32
1. 55
2. 88 3.34 3.85 4.64 6.24 3.91 6.14 4 68 1 74 1 38 1 54 JUL
2. 68 4." 59

.89 2.34

3. 06
l. 54
3. 93
2. 56
3. 36
2. 01 3;60
l. 33
3. 46 5EP
7. 00 3.41 3.4 &
l. 56 1'. 74
6. 88
6. 91 N/A
5. 81
5. 08
3. 36
4. 46 AUG 3-33 1.65 1.79 6.21 0.61 5.11 3.35 2.18 7 ~ 10 2.40 1.81 1.67
2. 44 I

8.44 OCT

3. 27
4. 04
2. 29 1.19 1.78 3.47, 2.69 N/A 2.71 2.8&

0.98 1 92

2. 92 NOV 2

67 24&

3 72 3.7&

2.36 2.58 1.48 N/A 1.41 2.28 5.15 2.68 2.46 DEC 6.04 4.82 2 ~ 27 3-64 1.4S

2. &S 2.83
2. 98
1. 64
2. 37
5. 90
2. 98
2. 37 ANNUAL
41. 93
39. 95
40. 04
41. 74
33. 84
37. 55
37. 25 N/A
34. 58
36. 08 N/A
29. 07
36. 89 DEPART.

FROM 5-&9 3.91 4.00 NORMAL N/A = Not Available 2>>20 1-51 1.21 N/A

-1.46

.04 N/A 6.97 0

48

TABLE NO.

1 CONTINUED PRECXPITATION DATA BENTON HARBOR AIRPORTS MICHIGAN (Inches) 1985 1986 1987 1988 1989 1990 1991 JAN FEB MAR AP JUN JUL AUG OCT NOV 2'1 2'4 5'1 2'1 2'2 2.59 3.84 3.40 1.89 4'9 F 15 2'6 1 ~ 28 2'9 1 ~ 23 2'7 4'6 4 F 88 4'7 2'4 9.92 3'3 1 ~ 21 0.95 1 ~ 28 0

0 1 ~ 54 0'7 0 93 2 ~ 64 1 ~ 59 2 46 2.46 3 22 8'9 2.55 2 ~ 7 3 4'2 1 ~ 67 0 ~ 15 0'9 2'1 F 84 5'4 0 ~ 63 0 ~ 67 2 ~ 39 2'9 2'0 4 73 6 ~ 94 5'6 3'2 1.27 1.80 5.92 '.

2 16 2

42 1 ~ 44 1 ~ 85 1 ~ 28 2 70 F 51 3'7 F 84 2'4 5'6 5.74 2.94 5.16 5.74 1.12 0.48 4.27 5.35 3.67 2.17 ANNUAL 4 1 ~ 3 1 40 ~ 53 29 ~ 63 30 ~ 13 34 ~ 1 1 N/A DEPART.

FROM NORMAL 4'0 N.A.

-6 78

-6'8 2'0 N/A

TABLE No.

2 BASELINE WATER TABLE ELEVATIONS (National Geodetic Vertical Datum 1929)

BORING NO.

10 12 13 16 17 18 SURFACE ELEVATION (feet) 601.4 664.4 641.6 621. 8 605. 2 584. 3

~ 583. 5 605. 8 596. 8 600. X, 625. 4 625. 5 605. 6 616. 7 603. 8 658. 4 588. 5 613. 0 592. 7 GROUND WATER DEPTH (feet) ll.0 62.0 53 3

37. 3
18. 2 1.5 2.2 9.8 8.7 9

2 23.

0'4.

5

3. 5 7.9 7.2
51. 5 6.0 6.2
10. 0
DATE, 7-21-66 7-.28-66 11'-23-66 11-23-66 11-23-66 11-23-66 7-23-66

?-23-66 11-23-66 11-23-6 6 11-23-66 7-25-66 11-23-66 11-23-66 11 66 7-23<<66 11-23-66 11-23-66 8-4-66 GROUND WATER ELEVATION (feet) 590 '

602.4 588. 3 584.5 587-. 0 582. 8 581. 3 596.0 588. 1 590.9 602.4 601.0 602.1 608.8 596. 6 606.9 582

~ 5 606.8 582.?

SASEIJNE WATER QUALITY (mq/1)

OANES S NOORE SANPXZ SORVET 810 ga Ng Na K

g(30 50 Cl F

q0 Total Total 2

3 4

3 Nard.

Solids 9 Wells (40-60 Ft.

Oeep) 12 17 Wells (60-160 Ft.

Deep) 13 10 Wells

(

160 Ft. Deep) 13 24 10 38 20 25 17 30 16 245 306 256 327 0.9 262 307 C. 5 255 3).6 0.-6 O.C Cook' PotabLe Mell No.

1 Harch 21, 1972 8

Mell No.

2 flu'ch 21, 1972

11. 2 73 22 10 4.0 257 28 50 0 29 0 7 275 398 ft 67 21 10 3.2 249 28 44 0 29 0.8 255 '83 Upqradient Observation Well No.

S 9.5 76 3 ~ 2'19

~ 5

'436

/Otal Values for observation dwell No.

8 are aedian values for period of oonitorinq froa Suly 1, 1977 to Oecember 31, 19S4

TABLE NO.

4 DISCHARGE TO THE TRS PQQ (AVERAGE DAlLY DISCHARGE PER ICRITH)

QJT FALL 374 FLM NCQ 1976 1977 1978 1979 1980 1981 1982 1983'984 1985 1986 1987 1988 1989 1990 1991 0.33 0.56 0.44 0.36

- 0.51 0.50 0.47 0.51 0.44 0 55 0.39 0.34 a.45 o.82 FEB 0.31 0A2 0.43 0.50 0.61 0.33 0.48 0.49 0.38 0.51 0.64 0.36 0.35 0.38 0.84 0.36 0A4 OA2 OA8 0.61 0.55 0.5'I 0.54 0.40 OA'I 0.58 0.37 0.49 OA5 0. 53 0.38 0A2 0.25 0.48 0.59 0.49 0.63 0.39 0.62 0.44 0.72 0.38 0.35 0.39 0.68 IWY 0 19 0.36 OA6 0.53 0.59 0.50 0.67 0.35 0.63 OA1 0.26 o.24 0.28 0.36

0. 78 0.33 0A5 0.40 0A4 0.63 0.81 0.37.

0 51 0.37 0.53 a.58 0.50 0.39

. 0.68 0.61 0.39 OA3 0A4 0.34 0.68 0.68 0.25 0.39 0.14 0.50 0.61

0. 75 0 13 0.47 0.58 0.51 0.47 0.39 0.54 0.44 0.35 0.68 0.84 0.47 0.48 0.44 0.40 0A2 0.50 0.53 0.33 0.33 0.35 DAO 0.39 0.35 0.59 0.61 0.39 0.45 0.31 0A2 0.51 I

0.29 0.34 0.64 0.42 0.33 0.62 0.45 OA4 0.42 OA8 0.40 0.38 0.42 0 57 0 60 0.28 0.27 0.71 0.34 0.48 0.58 0.44 0.27 OA2 0A6 0A1 0A9 0.50 0.49 0.60 0.33 0.39 0.75 DEC 0.39 OA7 0.70 0 40 0.30 0.53 0 37 OA2 0A7 0.49 OA4 OA8 0.30 0.39 0.62

DONALD C.

COOK NUCLEAR PLANT CRmWDMATER DISCHARQE NNITORING Table No. 4 continued SAHPLE DATE 11/29/76 2/25/77 QUARTER MELL 1A SULFATE TDS 74.9 200 150 LEVEL 52.5 60.8 MELL 8 SULFATE 4.9 42.7 TDS 422 5CB LEVEL 7;66 MELL 11 SULFATE 169.5 241.6 TDS 634 598 LEVEL 9.5 11.2 MELL 12 SULFATE 244.2 TDS LEVEL 18.8 7/24/77 8/19/77 11/14/77 2/11/78 5/12/78 8/11/78 11/8/78 2Q77 3Q77 CQ77 1Q78 2Q78 3Qre CQ7e 4.1 12.4 27.1 11.5 176 174 162 110 21C 350 180 58 59.25 59.33 58 57.6 52 54 1.3 9.9 9.5 49.4 6.6 0.8 496 414 210 356 7.83 6.83

. 6.67 29 265.8 329.2 257 293.8 255 598 694 320 716 9.25 4.25 9.25 8.5 7.8 32.3 304.5 283.1 307.8 332 265 570 548 618 640 17.75 12.25 17.75 15 16.8 3.3 12 3/6/79 3/26/79 6/25/79 8/4/79 1079(l) 1Q70(2) 3Q79 134 244 59 53 144 608.24 176 605.74 I.e 408 246 608.7 608.2 247 151 216 600 556 462 604.97 428 606.17 257 169 624 452 C78 18 12 595.78 596.95 12/4/79 3/4/80 6/2/80 8/3/80 12/2/80 3/3/81 6/2/81 4Q79 1080 2QBO 3QBO 4QBD 1Q81 2081 20 35 234 616.74 220 604.66 170 604.74 308 602.24 94 568.74 186 604.54 612.6 570 21 29 370 608.2 608.2 312 608.37 608.7 602 598.37 358 608.58 398 609.47 229 248 310 279 333 285 205 718 602.8 786 602.85 606 583.14 700 601.85 660 602.18 750 602.97 694 602.64 163 301 312 82.5 236 494 654 698 296 596.95 592.15 599.68 593.95 594.1C 596.53 596.36 8/3/81 3Q81 98.2 292 609.1 364 608.72 176 410 603.73 112 422 599.23 12/10/81 3/4/82 6/2/82 7/7/82 4Q81 1Q82 2082(1) 2Q82(2) 117 28.8 170 609.6 605.6 298 81 398 610.77 31 24 71 3C2 608.72 C12 610.72 670 609.3 334 609.81 157 190.9 170 390 602.43 456 602.6 414 599.85 174 221.3 152 C50 434 342 598.03 599.53 596.11 8/31/82 12/7/82 3/8/83 3082 CQ82 1Q83 151 202.5 420 320 456 611.6 605.6 606.1 13 18.1 272 609.47 514 608.72 780 609.7 12'I 221.4 228 444 602.93 594 601.26 546 599.43 158 216.5 45C 410 595.53 595.53 597.53

. 6/9/83 9/6/83 12/6/83 3/6/84 6/18/84 9/4/84 12/4/84 2Q83 3083 4Q83 1Q84 2084 3Q84 10 149 269 383 139 421 386 605.68 268

.605.5 464 604.77 604 606.1 760 606.52 620 604.93 900 606.C3 17.3 16 200 10 25 350 454 607.3 608.3 438 6'10.53 566 607.95 406 607.22 518 609.9C 480 609.22 242 345 234 209 370 242 243 538 601.93 422 601.68 694 599 43 842 599.93 599.85 1018 599.93 1088 598.51 118.5 225 239 398 159 244 410 504 525 744 760 1008 596.03 597.78 593.78 595.53 593.66 593.86 593.61 3/7>es IQBS 2QBS 6/14/85 3Qes 9/3/85 CQBS 12/5/85 370 256.7 125 1044 606.93 576 607.97 396

. '07.1 652 608.43 16 32 510 610.47 340 609.3 476 607.72 546 609.55 405 294 316 3C9 1174 599.56 1052 601.35 762 600.'18 690 600.35 290 364.5 446 1150 698 594.2 593.7 594.28 594.45 3/10/86 6/2/86 9/3/86 1086 2Q86 3Q86 419 537 210 607.6 607.6 524 609.52 90 43 19 438 609.22 700 '09.14 ce6 60e.SS 444 410 280 726 600.18 876 600.35 768 601.6 362 462 250 700 594.95 594.03 595.45

DONALD C.

COOK NUCLEAR PLANT 0 TER DTSCHARGE HONTTORlNG Table No. 4 continued SAMPLE DATE QUAR'lER MELL 1A SULFATE TDS LEVEL MELL 8 SULFATE TDS LEVEL MELL 11 SULFATE TDS LEVEL NELL 12 SULFATE TDS LEVEL 12/10/M 4086 1/10/87 1087 5/13/87 2087 8/27/87 3087 11/23/87 4087 2/24/M 1Q88 6/1/88 20M 320 440 360 360 380 3CO 633 640 620 606 606.1 601.6 606.7 60S.6 604.6 35 49 13 33 29 430 387 370 609.61 603.82 595.52 607.42 608.62 614.91 609.62 370 440 400 78 1100 365 601.23 SC1 596.C3 71C 601.01 280 599.23 715 601.23 2250 598.53 1140 5M.83 390 350 340 1100 400 594.93 763 592.23 721 594.78 658 593.23 738 594.23 2260 598.23 700 593.53 9/1/88 3088 12/6/88 408S 2/16/89 1089 4/20/S9 2089 98 29 18 220 601.7 602.6 290 630.3 182 603.93 31 38 16 182 32 382 609.92 603.92 607.92 607.72 200 520 SOO C39 598.63 722 598.63 941 598.03 856 596.93 710 190 300 580 982 594.93 361 593.03 658 592.53 922 589.86 8/1/89 3Q89 10/3/89 4089 1/8/90 1Q90 4/16/90 2090 7/10/90 3090 10/24/90 4Q90 140 420 480 450 230 274 58 780 740 750 605.7 605 605 '

607.5 607.7 609.6 74 15 13 26 33 13 CC5 470 490 370 609.97 608.55 609.32 609.7 609.61 609.92 410 520 470 460 420 270 764 600.43 1030 588.51 950 598.53 770 599.41 790 602.38 540 604.03 530 450 390 510 260 962 594.73 593.86 850 593.73 970 594.93 880 595.95 530 598.58 Page 2

Table No.

5 Static Water levels (measured October 26, 1990)

Well No.

Top of Casing El.

(Ft.

NGVD)

Static Depth Water To SWL Level (Ft.) 'Ft.

NGVD)

RP 1

RP 2

RP 3

RP 4

RP 5

RP 6

RP 7

EW 1A EW 11 EW 12 SGR 1

SGR 2

SGR 4

SGR 5

659.39 627.74 615 72 596.73 596.99

'596.84 677.06 661.60

'608.43 610.45 618.18 617.32 616'1 624.36 70'8 30'3 5'3 8 42 10.42 7'6 76.00 50.25 4.42 12.25 7 ~ 92-7.42 7 25

14. 66 588.81 596.91 609.89 588 '1 586.48 589.18 601.06 611.35 604.01 598 '0 610.26 609 '0 608 '6 609.70 RP Radiological Protection Monitoring EW Environmental Monitoring Well SGR Steam Generator Storage Monitoring Well Well

Table No.

6 CONCENTRATIONS OF Na

& SO4 ALONG THE COOK PLANT SITE'S SOUTHERN BORDER ENVIRONMENTAL WELLS 13 14 15 16 STAT1C ELEV.

(FT NGVD) 599.62 603.23 605.31 610 '3 TDS (PPM) 312 308 162 440 NA CONC.

(PPM) 20 28 9.2 67.5 SO4 CONC.

(PPM) 89 54 31 51

TABLE NO.

7 CUT gl:

CONCENTRATIONS OF Na

& SO4 ALONG HP's 3

2I 37 13 14

& 26 SAMPLE HORIZONTAL DIST ALONG CUT g1 (FT)

GROUNDWATER STATIC ELEV

.(FT NGVD)

SAMPLE ELEVATION (FT NGVD)

NA CONC.

(PPM) 804 CONC.

(PPM)

HP 3

HP 3

HP 3

HP 2

HP 2

HP 17 HP 17 HP 17 HP 17 HP 17 HP 13 HP 13 HP 13 HP 13 HP 13 HP 14 HP 14 HP 14 HP 14 HP 14 HP 26 HP 26 HP 26 HP. 26 0

0 0

162 234 162.234 540 '72 540.872 540 '72 540.872 540 '72 1263 '9 1263.59 1263 '9 1263 '9 1263 '9 1690.57 1690 '7 1690.57 1690.57 1690.57 2209 '2 2209 '2 2209 '2 2209.12 608.66 608.66 608.66 607 '5 607.55 601.19 601.19 601.19 601.19 601.19 601.3 601.3 601.3 601.3 601 '

600.66 600.66 600.66 600.66 600.66 597.14 597.14 597.14 597.14 605 96 595.96 585 '6 587 F 05 577.05 594.09 584.09 574.09 564.09 554.09 595.1 585.1 575 F 1 565.1 555.1 595 '6 585.76 575.76 565.76 555.76 590 54 580.54 570.54 560.54 131 164 186 176 87 '

133.5 104.6 98 '

17 '

5 64 '

23 '

18 23 as 23 23 21 '

29 66 84 51 407 336 339 511 210 400 270 280 400 31 36 44 33 24 5.3 29 41 37 25 al

TABLE NO.

8 CUT 42:

CONCENTRATIONS OF Na

& S04 ALONG HP's 18-23; EW 1; HP 24

& 25 SAMPLE HORIZONTAL DIST ALONG CUT g2 (FT)

GROUNDWATER STATIC ELEV (FT NGVD)

SAMPLE ELEVATION (FT NGVD)

NA CONC.

(PPM)

SO4 CONC.

(PPM)

(i HP 18 HP 18 HP 18 HP 18 HP 19 HP 19 HP 19 HP 19

'P 20 HP 20 HP 20 HP 20 HP 20 HP 21 HP 21 HP 21 HP 21 HP 21 HP 22 HP 22 HP 22 HP 22 HP 22 HP 23 HP 23 HP 23 HP 23 EW 1

HP 24 HP 24 HP 24 HP 24 HP 2'4.

HP 25 HP 25 HP 25 HP 25 0

0 0

0 437.116 437.116 437.116 437.116 642.483 642.483 642 '83 642 '83 642.483 811.29 811.29 811.29 811.29 811.29 930.109 930 '09 930 '09 930 '09 930 '09 1156.53 1156.53 1156.53 1156.53 1335.36 1631.53 1631.53 1631.53 1631.53 1631".53 1951.41 1951.41 1951 '1 1951.41 607.08 607.08 607.08 607.08 609.07 609.07 609.07 609.07 610.16 610 '6 610.16 610.16 610.16 605 '5 605 '5 605.95 605 '5 605.95 606'8 606.98 606.98 606.98 606.98 596.83 596.83 596.83 596.83 610.77 604.51 604.51 604.51 604.51 604.51, 611.31 611.31 611.31 611.31 597.18 587.18 577.18 567 '8 597.67 587.67 577.67 567.67 604.76 594.76 584.76 574.76 564 '6 600.25 590'5 580.25 570.25 560.25 598.78 588.78 578 '78 568.78 558.78 592 93 582.93 572.93 562.93 610.77 597.01 587.01 577.01 567.01 557.01 596.41 584.41 574.41 564.41 33.6 27 '

7.3 23 49 73 39 21 42 94 60 45 30 35 158 36 298 277 '"

98 79 41 160.4 143 '

224.1 110 121

~ 2 123.2 102.3 71.5

~

~

10 '

4'5. 4 28

~ 3 31 ~ 7 34 36 75 32 22 48 42 45 28 39 47 28 41 24 25 365 127 0

289 113 215 30 40 206 321 698 23 420 318 15a 509 166 47 8.3 334 114 8.7

TABLE NO.

CUT g3:

CONCENTRATIONS OF Na

& SO4 ALONG EW 16'P

> 15i 16t 4f sp 5,

6, 9-14, SAMPLE EW 16 HP 15 HP 15 HP,15 HP 16 HP 16 HP 16 HP 4

HP 4

HP 8

HP 8

HP 8

HP 8

HP 5

HP 6

HP 9

HP 9

HP 9

HP 9

HP 10 HP 10 HP 10 HP 10 HP 11 HP 11 HP 11

~ HP 11 HP 12 HP 12 HP 12 HP 12 HP 12 HP 13 HP 13 HP 13 HP 13 HP 13 HP 14 HP 14 HP 14 HP 14 HP 14 HP 26 HP 26 HP 26 HP 26 HORIZONTAL DIST ALONG CUT ga (FT) 0 756.307 756 '07 756 307 1352 '7 1352.67 1352.67 1655.85 a655.s5 1662.79 1662.79 1662.79 1662.79 2102.2 2105.85 2108 '3 2108.73 2108 '3 2108.73 2528 '9 2528.39 2528.39 2528.39 2956.68 2956.68 2956.68 2956.68 3325.64 3325 '4 3325.64 3325.64 3325.64 3592 '9 3592.89 3592.89 3592.89 3592 '9 4019 '7 4019 '7 4019 F 87 4019 '7 4019 '7 4538.43 4538.43 4538.43 4538.43 GROUNDWATER STATIC ELEV (FT NGVD) 610.33 608 '5 608.25 608.25 606.14 606.14 606. 14 610. 1 610. 1 609.55 609.55 609.55 609.55 604 603.62 606.25 606.25 606.25 606.25 603.75 603.'75 603.75 603 '5 602.17 602.17 602.17 602.17 603 '1 603.61 603 '1 603.61 603.61 601.3 601.3 601 '

601 '

601 '

600.66 600.66 600.66 600.66 600.66 597.14 597.14 597.14 597.14 SAMPLE ELEVATION (FT NGVD) 610.33 601'5 591.35 581.35 600.54 590 '4 580.54 596 7

576.7 601.65 591.65 581.65 571.65 596 '7 589.42 599.45 589.45 579.45 569.45 594.15 584 '5 574.15 564.15 595.97 585.97 575'7 565.97 596'1 586. 21 576 '1 566'1 556 '1 595.1 585.1 575.1 565.1 555.1 595 '6 585.76 575.76 565.76 555.76 590 '4 580.54 570.54 560.54 NA CONC.

(PPM) 67.5 71 '

23 69

-" 26'5 58 ~ 5" lsd' 316.6 16 '

24 '

56 31 11 F 9 15 '6.5 18 '

37.5 10 '

14 '

30 19 9

21 10 '

138..-

8

13. 5'9 25.5 26 5

64 '

23 '

as 23 18 23 23 21.5 29 66

.84 51

(

~

S04 CONC.

(PPM) 51 12 11 22 18 11 5.5 25 10 28 150 18 NW 23 37 9.4 14 20 32 120 19 40 30 36 29 29 31 31 36 33 24 5.3 29

DATE S102 Ca M9 Na.

f.

HONZTORI A

POTABLE SUPPLY WELL NO.

2 (mg/1)

TABLE NO.

10 HCO SO4 Cl F

NO TDS.

Hard Cac03 PH Sp.

Cond.

A 25oC 3/21/72 1/31/76 8/3/76 1/31/77 3/16/77 8/1/78 1/5/79 8/2/79 2/13/80 8/5/80 2/3/81 8/3/81 12/17/81 2/1/82 5/3/82 8/3/82

11. 2 67 21.4 '0
3. 2 249 8.0 7.4 57 16.4 8.6
2. 1 202 63
16. 4
13. 0
1. 7 233 5.4 60 16.6 12 2.3 7.3 7.8 57
15. 9
10. 4
2. 6 198 65 16.9 13 2.5 199 7.0 66 16.5 12
3. 3 239 8.7 3.6 8.3 8.2 7.9 8.3 58 18 74 57 16 56 60 14 83 62 14.6 171 54 15.5 105 2.1 190 2.4 203 2.9 147 5.0

',139

\\

1.5 142 7.5 62 16.1 80 3.3 187 5.7 52 14.2 115 2.0 9.0 45

12. 9 115 2.5 145 82 18.3 76 4.1 199 27.6 '3.7 0.29 0.8 383 31.3 25.2 0.1 0.8 298 25.4 22.4 0.14 0.07 326 29 0.36 0.07 293 30 195 200 130 240 460 305 185 320 260 20.6 0.2 18.7 0.4
17. 5
0. 36
14. 9
0. 34
19. 4
0. 32 40 0.1 14.6 0.1 18.8
0. 1
17. 9
0. 13 18
0. 11
0. 0 337
5. 6 604 1.3 566 6.0 476 1.6 578 0.18 881 0.37 627 0.01 539 0.03 666 0.17 608 29 22 0 4 2 4 300 50 25 0.34 0.0 392 255 210 228 218 207 232 232 280 218.

208 207 215 7.68 7.4 7.1 6.8 7.1 7.3 7.4 7.1 7.5 7.2 7.0 7.5 5.9 6.6 6.4 570 491 447 386 491 370 747 625 573 743 779 695 555 753 610

10 CONTINUED CONTINUED Hard Sp.

Cond.

DATE S102 Ca Mg Na K

HCO3 SO4 Cl F

NO3 TDS CaCO>

pH

9. 25 C

2/8/83 8'.8 5/2/83 8.9 8/2/83 8.1 11/11/83 7.8 2/7/84 9.4 5/1/84 8.3 8/1/84 7.1 51 14

69. 1
1. 3 149 195
14. 82 55 17
93. 9
2. 6 184 205
23. 93 0'. 17
0. 15
0. 10 504
7. 3 453 0.17 579 205.6 7.1 481 59 17 44.9
0. 1 208 142
22. 27 ND 54 17 79.3 2.6 191.4 248 19.02 ND 54 17 77.1 1.5 220 201 17.3 ND
0. 14 460 216 574 205 0.08 571 204 72 19
73. 1
3. 1 2)39 180
17. 0
0. 20
0. 01 574 258 7.4 375 7.7 661 7.2 652 7.8 780 44 13 75 5

1.4 156 180 13.82 0.14 0.06 424 163 '

7 '

412

  • Hone Detected 40.1 mg/1 Fl Hone Detected

~0.1 mg/1 NO

HONITORI A

POTABLE SUPPLY WELL NO.

1 (mg/1)

'ABLE NO. ll OATE SiO Ca Hg Na K

HCO3 SO Cl P

NO TDS 3

CaCO 3 PH Sp. Cond.

A 25oC 3/21/72 1/31/76 8/3/76 1/31/77 3/le/77 1/31/78 8/1/78 1/6/79 8/1/79 2/2/80 8/4/80 2/11/81 8/3/81 8.0 8.0 6.7 3.7 8.2 10 10 7.5 7.2 7.1 5.6 9.1 8.2 56 15.6 11.5 2.1 199.4 28.6 22 0.14 0.07 305 204 7.4 67 18 8 12 5 2

1 26 0.4

0. 07 308 244
18. 5
14. 3 2.7 243. 5 24 61 19 16 2.9 236
22. 5 30.3.

0.64

. 0.02 32

0. 32 0.0 350 241 334 230 7.0 7.1 63.5 15.8 12.1 2.3.

232.3 48 78 14.9 17.5

3. 3 204.2 70
17. 9 42
3. 2 226. 8 114. 0 54.

18 13 1.7 242.6 42 23.2 0.32 36.4 0.2 17.4 0.38 15.3 0.28 0.0 0.0 5.8 1.6 344 361 457 378 223 221 268.5 209 7.4 7.2 7.1 65 17.4 62 2.5 198.5 135 60 17 19 236

67. 5 15.2 0.34 15.4 0.32 3.6 490 416 233 219 7.5 7.0 61 15.6 28.5 2.4 238 55 55 0.1
0. 15 389 217 7.0 73
22. 4 10 4

257. 3

27. 6
49. 5
0. 29 0.7 398 274. 5 7 55 70.2 18.2 8.5 1.7 253 2

44.7 19.9 0;1 1.8 344 250 7.3 597 563 397 465 385 392

~

584 564 495

'29 12/17/81 11 59 17 3

18 '

0 8 232 67.5 20

~ -

0.1

0. 29 354 415 2/2/82 5/4/82 8/2/82 8.1 4.9 9.9 68 16.8 17.9

. 3.2 234 18.3 19.3 2.5 227 68 18.7 64 2.2 313 30 70 80 23

0. 1
0. 04 430 28
0. 1
0. 01 410 19
0. 1
0. 17 512 6.5 6.5 6.6 373 475 5Q6

TABLE HO. 11 CONTINUED CONTINUED Date Si02 Ca Mg Na K

HCO3 SO4 Cl Hand Sp. pond.

NO3 TDS CaCO>

PH Q 25 C 2/7/83 9.8 5/2/83 7.4 8/2/83

9. 5 11/11/83 9.8 44 13.7 77. 5
l. 6 252 28 29.23 ND*

0.04 33&

110 51 14.2 68.7 1.3 149.

205 16.42 0.19 0.05 527 73

18. 5 23.0
l. 3 229 68 28-23 'D 0-14 426 258 60 16.7
29. 2 1 ~ 4 219 92 23.23 ND 0.13 406 217 2/6/84
10. 9 59
14. 9 20. 9 2.1 233 10
26. 83 ND 0.2&

325 207 4/30/84 9.5 50 15.8 20.4

l. 1 234 23

.35- 0 ND ND 348 190 7/30/84 9.4 71 15.7 16.2 22 236 "17 33.7 0.20 0.03 382 241 7.5

3. 00 7.1 451 6.9 358 7.4 324 7.5 428
7. 0 376 7.7 520 ND None Detected

< 0. 1 mg/1 Fl

Appendix 5

Figures C

h h

1

)u

~

~

'9, ~~JS"'1>>

'I

~ \\

~ (.',"g ~:

v-C 4+

y A

'I

(

II f

rt 4

14

~

~

e','i,':g t;- ~ W<gig+jiglr~",',I~A+~$.',i~C> '& 'Pf 'Cjt.u~Nf~+4~'+gggP~Py, y1+~A

>"~$

p I

"'v I

C r

P

- ~ I iI II 1

I

~ D

"'r.r

LAIIC IICI<CkI<

In

. ~

~

I

'~ i

'>IP

.~ ~~P-. A~

I sa< ~

/

IIl

~

P"

.~:-

eP ss

<a

~O >

-g p

~

~

I

(~rI

/g O< ~

A

~ 4

~

~

~

~

Figure No. i PLAN a Is<,

~ II'j

~II<

i

Strut SANO AooNO Sv1rAcc cvcTACIO OVNC SANO

~ cAOM ocrosl ~

L SIT S40

$20 CS

~< ZOO t~)k I

1 I. \\

't I

kh vAAc ocrost

~ 5 fC 4-I g Q I

AP OI.ACi'AV T<<< ~~rt TTS LPNV

~

~ Cor010 SNALC SECTION h-h 6JO flO CIT SC JSO 0

OVNC

'SANO

~ OVNO SVATACC CVCVATION~

~wwwwWWIWWWWWWwWWWIWNINWIOI SA 'VNO AAIC+

CTCN Lx $70

~OIITTIIlolISI" IISIISStt.4htclhtilt ICAL htltt P CIt a~l6%iii St,'5 sc.'.P-",".-'-'~~gth'Oli".NC~)P@P/IJJ)'i AAc o~croSI I

'4 ~4<'Ai';,at+<~ r'd)1'+s Qwg)ak]g gab N

'Li%

'V.'ECTION B-B K)AIZONtAN 5CAVC IN rttt O

SOO COOO NOCCT Figure No.

2.

GEOLOGIC CROSS-SECTIONS SVOSVArACC CONOI TIOHS IVVVSCNACCO ASOVI. ACAt OOAAIHto 4 ~

~ VTCAAOI.ATION 4CTACCN 401INOS ~

CON5COVCNTVT~

TAA~ ACIOH5 ANION A1C VOT INOICA C) ST CNC C10$ $ SCCTION OAN hc csrcccco sctAccv 401INO I, CACION5 ~

OAMNS 8 MODRR

5 J) UUA

~

Ilfl'hV: Alrl0'la'jB Colcll At j~.VillQA }~+

1IIncor

~I SAIL

~LAIS non DOC 1 DQ D 'L nn nn

, nnn0 o 4 ono 0

D C

~

h n o Z Ilr D IAz I

ocr OPC A 4 8-

nn 0?V n IIl D 1 0 0

c 1 no Z I

~ n A ~

~

h n 700 eeo 620 OVIIt SAIIO O1VVHO SUAAACI tLLVAII C0 AOVOO SUAt*Ct tLCVAIIOII 0

OD 1

n I

n0 Z D

~I nP

~ I 0 0

~s r II

~

0

~

o rtH 0Z L

~g 600 4.

a seo L

4 660 640

~II U

n

.Ir~irrlicl

1) ALIIII Lt VIVVI 1

~I IVIVI

'V;$O;I;;h lllr otros OA~O AA<<A Lt" 44Ig,rItLVA i [If')

j(I'I j)jltrlit.I 520 coo

,I!

kj

<eo 460 SECTION C-C HQDItldsIAL I Alt

~ rl Ittl 0

SOO IOOO Figure No.

3 I

O CJ GEOLOGIC CROSS-SECTION

I gj 660 COV<<O SVATACC CLCV*TIOH 4

O

~ r r

set 54 IIIT f 660

~$60 660 ISO 'l, C0C ovwf strso O

'IO 4fAcss oftos I T 5!

CO CAO 40 AAIC

~ CVCI OVWC SA<<O l,5 jls L,'I ILSIC~I>uIjjLtMujjj'IjIjjll'Ijj P

ig[ISIIIP iAAC oftoss I5+@

I' I isis'

~sSOssssssslslsc Crss<<S<<<<l<<

L++IAW<i'71I4%~II tIP!'gll ZQg V

I j 600 460

'I';. Sj j(jib"jsliitjlls'"

)I I

j silt I

M 4'IS ssrv.l ai'

~

,lllhjllillllll'S LACI AL T I L

""I O

~

'Ipg II jj."g tF:."IBIIIISjls

'4'40 TOtOAO 5

~ '

SECT1ON ~-n ssCAs

'SV A

5 s

5 4 tff 0

500 1000 4 C

~ C:

1VSSVttACC C <<OI I~"

vVS >Aff stGVC (sf '4'As<<CO rr

~ ts rsr s ~,

~f sf'f<<

40' s4lis C I ITCVT r ~

svlrsl

~ 5 sv sv ~

5 s4OICAff) r C '

55

'SC CA<< Sc cts fc fo Ac Arr~

secs<<o L, All.,V.

GEOLOGIC CROSS-SECTION

~~~<<~

No-4 DAMES 8 MOCSROS

PrI;URE g GENERALIZED PRECONSTRUCTION GQOVlfDWATER TMLE 0

) ~ ENYiroNHCNYAL Hodrroewcj vecLa 10P4HE5 $ MOOR,E OOK,I+

l$0

~15 (~gQ~c O

x.v 0

Cg 0

4og Q

0I.

e s0 0'r vnteI Obs. Wells 2, 3, 6, and 7

were discontinued after August, 1978.

Figuxe 6

Mass Balance of Baseline'ater Quality POTABL E NELL NO.l POTABL E V/ELL NO.2 SOg SOq CI CI HCO>

HCO~

Total percentage of the ions is based on the. March, 1972 analysis

DONALD C.

COOK NUCLEAR PLNT GROUNDWATER DISCHARGE HONITORING Pigure No. 7 sm T

A T 6i5 I

C 6io A

605 T

E 8 6te le ii ISA li

~I'LLQ L

.E 5ss V

E

" 5so m6 iav 3av 4am ia7s ass sass era iavs ia7s aa7s

@vs 4am iaso aio 3NN 4mo O>

N

Picture No.

7 (Continued)

DONALD C.

COOK NUCLEAR PLANT GROUNOMATER DISCHARGE HONITORING 6

620 T

A 6i5 I

C 6io

~RL iA X

A 605 T

E A

600

%LL ii

~~ i2 L

E sss V

E

" sao I'LL i2 iQBi.2Ni 3Ni 4$i iQ82 2N2 2N2 3Q82 4N2 iN3 2N3 3Q83 4Q83 iN4 2984 34 4N4 iQ85 2Q85 3085 4Q85 ti)

S TDK SY NAfiTER

Picture No.

7

((:ontinued)

OONALO C.

COOK NUCLEAR KANT GROUHDWATEfl DISCHARGE MONITORING 6

T 615 T

I C

610 II A

605 T

E A 600 L'5 V

E L

IHL fA r~

i6 2Q86 3086 4N6 1087 2987 3mI7 457 iNB 2Q88 38 4N8 iQ89 2Q89 3QN 4N9 iQ90 2Q90 3990 450 TBK BY QNAlEA ISA Q

%Ll 8 IHl. ii

~ I'LL i2

FIGURE NO.

8 OONALO C.

COOK NUCLEAR PLANT GROUNDMATER DISCHARGE HONITORING T

P 8OO T

L.

700 MELL 12 p

600 I

S soo S

400 0

V 300 p

200 S

L 100 I

p 0

NELL 1A 4Q7$

iQ77 2Q77 3077 4077 iQ78 2078 3078 4078 1079 1079 2Q79 3079 4079 1080 2080 3080 XQ80 (0

8 TINE BY QUAATER

MELL 1A

NELL ii

MELL 12

FIGURE NO.

8 DONALD C.

COOK NUCLEAR PLANT GRQUNDMATER DISCHARGE HONITORING T

'2OO T

A L

iooo NELL ii p

BM S

S 0

Mo V

E 400

/

NELL i2 S

0 200 L

I p

0 S

iJ NELL iA i08i 208i 308i 408i i082 2082 2082 3082 4082 i083 2083 3083 4083 i084 2084 3084 4M4 i085 2085 3085 4085 li) t2)

TINE BY GUAATER

FIGURE NO.

8 DONALD C.

COOK NJCLEAB PLANT 6ROVNDlfATER DISCHARGE MONITORING T

2500 T

A L

2000 D

I S

i500 0

E iMO D

NELL ii NELL i2

NELL iA

NELL 8

NELL ii

NELL 12 5oo 0

L I

D

~ NELL iA i086 2086 3086 4086 i087 2087 308l 4087 i088 2088 3088 4088 i089 2089 3089 4089 iQ90 2090 3090 4mm

~ i'i TINE BY QUARTER

FIGVRE NO.

9 DONALD C.

COOK HUCLEAB PLAN 6BOUNDlfATEB DISCHARGE HONITOBINB 300 S

L F

iSO T

E

~

///

NELL 1f~

NELL i2 NELL ii

NELL i2 fA 4076 i077 2077 3Q77 4077 i078 2078 3078 4078 i079 iQ79 2079 3079 4079 i080 2080 3080 4080 I

(il (2)

\\

TINE BY QUARTEA

FIGURE NO.

9 CONTINUED DONALD C.

COOK NUCLEAR PLANT 6ROlNDMATEB DISCHARGE HONITORIHG S

300 U

L 250 F

A 200

-T E

1M NELL 12 NELL ii NELL fA NELL ii

NELL 12 100 1081 2081 3081 4081 1082 2082 2082 3082 4082 1083 2083 3083 4083 1084 2084 3084 4084 1085 2085 3085 4085 (0

(2) -.

TAHE BY 0UARTER

FIGURE N0..9 CONTINUED DONALD C.

COOK NUCLEAR PLANT GROUNOHATER DISCHARGE HONITORING i200 i000 800 U

L F

600 A

T 400 MELL ii

MELL 1A

MELL ii

MELL i2 200 NELL 8 V

iG86 2086 3086 4Q86 iG87 2087 3087 4Q87 iQBB 2QBB 3088 4088 iG89 2089 3089 4089 iQ90 2090 3090 4090 TINE BY QUARTER

FIGURE No ORAL~ QR ~ETRQMETER ROO UPPER CHECK VALVE

~ SAMPLE OISCHAROE PORT

~ f:: 6 AOAPTQR TQ ORCJJHQ QR PEHETRQMETER ROOS I

I t I SAMPLE CHAMBER 4

4 4

4 4

4 4

4 4

LOWER CHECK VALVE L,

P SLiOE ASSEMBLY SAMPLE %TAKE TVSE SQN.

4I 0 I I

4

~

4f 4s 4I 0 I 4 I ORQQHOWA TER FLOW PATH Q RtKl ORNE CQHE Overview of the Hydropunch Components and Their Functions O

4 zz~ ~ racer Aom thceQI dI4 ~4 lllbt COd '4K4~ ~H 4h44I~.

FIGURE NO.

11 Plan View Wells & HP Environ. Well 8 HydroPunch Location (Plan View)

~ HP 29 3000 2000 WELL 11:

~ WELL lJ pp 11P 5r

rHP 14 rHP 13 rHP 12

~ HP 11

.....:............'....;. )g. m... 3vCLL.Ga..

r HP 5.8r%

CBg HP 16g 1000 V/ELL 1 ~Q 22 HP 2Os HP 20r

.'LL 13r HP 1Q'iVIA/s5+Oh/

RD

~ HP 18 HP '1

~

WELL 18 1000 2000 4000

FIGURE NO.

12

<<1 S04 SO@ Concentration thru Cut 4I 610 600 t '

~

590

~ ~

~ ~ }~

..... ~.

o 580

~ ~ Q

~

~ ~

~

~ ~

~

~.

~ ~ ~ ~ }~ ~ ~ ~ ~ ~ ~--

670

~ ~ ~l 560

~l ~

550 a

600 1000 1500 2000 2500 DSTANCE

FIGURE NO.

13 tl Na Na Concentration thru Cut. 4 I

600

~ ~ '

~ ~

~ ~

5 ~ ~ ~

~ ~

~ ~ ~ ~ ~

~t '

~ ~

~ ~ ~

590

~

~

~

~ ~

~ ~

}

~ ~

~ ~ ~

o 580 570

~ ~ 4

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ l

~

~ ~ ~ ~ ~

~ ~ ~

~ ~

O CV 560

~ ~

~ ~

~ J

~ ~

~

~ ~

~ ~

~

~ ~

~ ~ ~

r

'tr 550 500

.1000

'l500 2000 2500 DSTANCE

FIGURE NO.

14 02 S04 SO@ Concentration thru Cut 4(2 620 610 r ~ ~

~

~ ~

~ ~

~

~

. ~ -- ~ ~ ~----r"~.-.- ~ ---k ---

~r

~ ~ 6

~ ~

O

~ 590

< 580

~ ~ ~ ~ ~ ~ ~

~ ~ '4 ~ ~ ~

- ~ -

~ ~ ~ ~.--I-- ~

~.5

~ ~ ~ -

~ ~ - ~ ~

~.g

- ~

a70 ~ ~

~.

~

8 550 0

500 t 000 1500 2000 DISTANCE

'a:IGURE NO.

15 82 NA Na Concentration thru Cut 42 620 610 600

~ ~

~

~

~

~ ~ V

~ 590 e

580

~ ~ ~ ~

~

~

'4 ~

~

~

~ ~

~

~

~ ~ ~

~

570

~

~

~ ~

4 ~

560 550 0

600 1000

. OISTANCE 2000

FIGURE NO.

16 P3 SO~

tl 804 Concentration thru Cut 43 620 6io

'\\

~

~

1 0 600

~ 4 ~ ~

S e

LLj a90 CL

< 580 5

~......

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~

x

~ ~

4

~

~.....

570

~ ~

~ ~ ~ ~ ~ ~ ~

A

~ ~

~ ~ ~ ~ ~

560 550 0

i000 2000 3000 4000 5000 DISTANCE

FIGURE NO.

17 8'3 'Na Na Concentration thru Cut 43 620 610 t

~ ~ ~

~

P ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~

590

< 580 G9

~ ~ ~J~

a............

~........... ~.....

~

Qg

~ ~ ~ ~

l

~

e 570

~

~

~

A

~ ~ ~

~ ~

~ 1 ~

~ ~

... ~.

560

~

~

550 0

1000 2000 3000 4000 5000 DlSTANCE

FIGURE NO.

18 Na Concentration

@ 600'plan View) 4000 3000

~ ~ ~

~

~ ~ ~ ~

p

~ ~ ~ ~

~ ~

~

~ ~

~ --.- ~ 1000

~

~

~ ~ ~

~

~

0 0

1000 Qi 2060 SQOQ 4000

FIGURE NO.

19 Na Concentration Q 590'Plan View) 4000 3000

~ )

~ ~ ~

~

o-2000 0

a o

~ ~~

gG,:Qg~o 1000

~

~

~ ~ ~

~ ~ ~ ~

4

~ ~

~

~

~

0 0

Qs I 000.

2000 4000

FIGURE NO. 20 Na Concentration Q 580'plan View) 400O 3000 o-2000

'C'

~

~ 4 1000

'4

~

0 2000 3000

4000,

FIGURE NO. 21 Na Concentration

@ 570'Plan View) 4000 3000 2000 a

~

~

1000

~

~ ~

~ ~ ~ ~ pg I

~

Qr l OOO 0"

2000 4000

FIGURE NO. 22 I

Na Concentration Q 560'Plan View)

Qr

~ ~ ~

~ ~

~

Qa o-2000 1000

~ ~ ~ ~

~

~ ~ ~

~ ~ ~ ~ ~

~

~ ~

~

I 0

0 1 000 2000 3000

FIGURE NO.

23 804 Concentration

@ 600'Plan View}

3000 2000 g's

~ ~ ~ ~

~

~ ~ ~ ~ ~ ~ ~ ~ ) ~

3

~ ~ ~

~ ~ ~

~

~

~

~

CS
  • ~

~

~

e

'g F60

~ -.---" ~ --- ~ ---.--".--~

8 1

8 0

0 1 000 2000 3000 4000

~

I FIGURE NO. 24 804 Concentration Q 590'Plan View)

~J'a o

~ ~ ~ ~

~ ~

~

~ ~ ~

~

o-2000

~

~

1000 1

~ ~ ~ ~ ~ ~

l a

~ ~ ~ '

0 0

1000 2000 X

4000

FIGURE NO. 25 804 Concentration

@ 580'Plan View) 3000

~g 2000 A

~

~

1000

~ 5 8

1 000.

2000 3000

'000

a v'IGURE NO.

26 804 Concentration Q 570'Plan View)

) ~

~

~ * ~

~ ~

~

~ ~

~ ~

~ ~ ~

o-2000

~

~

1000

~i l000 Qr~

2000 S000 4000

FIGURE NO.

27 804 Concentration

@ 560'Plan View) 3000 o-20QQ

~ ?

1000

~ ~ ~

~ ~

~

~ ~ ~

~ ~

~ ~

~

~

~

1 000 2000 3000

Pigur, 28 Former L'otable ply Well No.

2 ConocntraOan ot Na. ca. Ns. HGo>,. st c cL POTABLE MELL 0 2

'0 LEGEND PV2CA

~

CALClLN PV2NA

~

SOOlLN titRNG

~

lLAQ4$lLN PI2S04

~

QLfA'H tlt2HCOB,.~ 9lCARSOHATE PII2CL

~ ~lllDE 1Q78

~

1477 N

1478 g

1Q7Q g

1088 I

108L p

1082 g

1083 I

1084 g

1Q85

~4 T THE IN HONTHS

Figure No. 29 Former Potable Supply Mell No. l

~ncentc4L104 of gg gg, ggr QQQ

~

QQ$

POTABLE MELL 8 1

LEGEND PV1Ch

~

CALClM

\\

PV1N

~

SOOlili PVLCC

~

HAQ4f$ 1[ii PV1SOi

~

SULFA'M PVlHCOS ~ BlCARSONATf PV1CL

~

CHLORlOf 1077 n

1070 g

1070

~

1000 tVlCL PVlSOi 100' 10M.

g 1084 g

1005