ML17334B450

From kanterella
Jump to navigation Jump to search
Hydrogeologic Evaluation of Cook Nuclear Plant,Bridgman, Mi.
ML17334B450
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/31/1991
From:
AMERICAN ELECTRIC POWER SERVICE CORP.
To:
Shared Package
ML17334B449 List:
References
NUDOCS 9210150310
Download: ML17334B450 (140)


Text

HYDROGEOLOGIC EVALUATION OF THE COOK NUCLEAR PLANT g BRIDGMANg MICHIGAN

(

Prepared for Indiana Michigan Power Company Prepared by American Electric Power Service Corporation December 1991 9210150310 '721008 PDR ADOCK 05000315 i }

)

PDR

~1<

HYDROGEOLOGIC EVALUATION OF COOK NUCLEAR PLANT, BRIDGMAN, MICHIGAN TABLE OF CONTENTS Page No.

Introduction 1 Topography Geology Hydrogeology Groundwater Quality Baseline Conditions Groundwater Monitoring Program Groundwater Quality Operational Monitoring Program Hydropunch' Data and New Monitoring Wells 13 Potable Supply Wells 17 Conclusions 18 Appendix 1 Aquifer Pump Test Data Appendix 2 Well Logs of Observation Wells Appendix 3~

Hydropunch' Data Appendix 4 Tables Appendix 5 Figures Plate 1 - Well Construction Details Plate 2 Time Dependent Plots of PPT, S04 &

SWL Well 1A, TRS Discharge Hydrogeologic Site Investigation Work Plan Dwg. CE-SK 3/25/91-2

  • -Trade Mark

0 Introduction A hydrogeologic study has been prepared to evaluate the potential impacts resulting from the discharge of the turbine room sump (TRS) effluent to the plant's TRS absorption pond. This report defines the aerial and vertical extent of the aquifer based upon a review of previous hydrologic studies. The baseline groundwater quality is derived from a review of the previous Dames &

Moore hydrogeologic study and the upgradient observation well of the current NPDES monitoring program.

The NPDES groundwater monitoring program does indicate an increase in total dissolved solids, sulfate and sodium concentrations above baseline quality concentrations downgradient of the absorption pond. These parameters are used as key indicator. parameters to determine the areal extent of influence upon the shallow aquifer resulting from the discharge to the TRS pond. "

An additional hydrogeologic investigation was implemented in May 1991 to address concerns raised by the Michigan DNR that seepage from the TRS absorption pond to the underlying aquifer may have migrated off-site and potentially degraded

groundwater resources beneath ad)acent properties. The investigation included the drilling of four new monitoring wells along Livingston Road (the plant's southern property boundary). The migration of the TRS effluent plume and subsecpxent attenuation was also evaluated by analyzing a number of groundwater samples collected by the Hydropunch sampling method. The results of this investigation indicate that the TRS plume has dispersed and/or attenuated to acceptable concentrations along Livingston Road.

4 Topography The site is located within a local physiographic area known as the Grand Marais Embayment. This area, 16 miles long and with an average width of about 1 mile, lies adjacent and parallel to the shoreline of Lake Michigan in western Berrien County. The area adjacent to the beach is

.characterized by high sand dunes of Pleistocene and Recent origin. The area is bounded on the east by a glacial moraine which parallels the shoreline and is known as Covert Ridge. The area east of Covert Ridge is a glacial plain, with morainic ridges. (Figure No. 1).

Topographic relief within the dune area ranges from 580 ft.

NGVD which is the elevation of Lake Michigan, to a high of slightly more than 800 ft. NGVD. In the southern part of the embayment, the area of high dunes extends from the lake shore to the crest of Covert Ridge. To the north, however, the belt of high dunes is separated from Covert Ridge by Thornton Valley and the Grand Marais Lakes. The higher sand dunes extend inland about 3,000 feet from the beach. The eastern portion of the site is characterized by scattered lower dunes with broader intervening flat lowlands or basins, some of which contain small shallow ponds. The crest lines of the dune ridges and the floors of the enclosed basins are essentially horizontal.

Geology The site geology consists of a sequence of deposits comprised of a surface deposit of dune sand which overlies older beach sand which in turn is underlain by glacial lake clays, glacial till and shale bedrock. In the eastern half of the property, the beach sands are absent and the dunes I

rest directly on glacial lake deposits.

The dune sands are light brown to tan, poorly graded, fine to medium sands that commonly are loose at and near the surface and grade to moderately compact at depth. In the

eastern half of the site (Borings 12 and 18) the dune sands directly overlie glacial lake sediments. In this area, the upper 10 to 20 feet of lake sediments are often silty and sandy. Figure No. 1 depicts boring locations.

In the western portion of the site, the dune sands overlie beach sands which are generally coarser grained and not as uniformly graded. In places, the beach deposits contain a small percentage'of fine gravel. The beach sands may be a bar-type of deposit, probably related to an old shoreline of Lake Michigan. The maximum thickness of the beach sand is about 52 feet in the southern portion of the site. In the west-central portion of the property near the lake, the beach sands generally range from about 25 to 35 feet in thickness.

Underlying the beach sands and/or the dune sands is a thick sequence of glacial lake sediments. These glacio-lacustrine deposits, which are approximately 80 to 90 feet thick, consist generally of gray silty clay and sandy clay with occasional sand and silt partings. Varve-type bedding is not typical but does occasionally occur in places. The deposits exhibit considerable variation in detailed characteristics between borings and comprise an irregularly interbedded series of sediments.

II top few inches of the lake secpxence often is marked by a I,

The

'considerable amount of organic material which in place is concentrated in peaty layers one or two inches in thickness.

The layer immediately beneath the organic soil generally

'I contains an abundance of gastropod shells. Throughout most of the site, the upper five to ten feet of lake deposits consists of silty or sandy soil with varying amounts of dispersed organic material and decayed vegetation. At greater depth, the lake deposits consists of silty clay with occasional lenses containing coarse sand and fine gravel.

Lenses of silty sand and sandy silt are also common. The ..

deepest part of the lake secpxence is commonly a clayey silt deposit.

A compact glacial till of silt and gravel with cobbles was encountered 'at a depth of about 118 feet in Boring 19. This stratum, is about, 22 feet, is probably continuous across the site and fills in any depressions in the underlying bedrock.

Boring 19 was advanced 12 1/2 feet into the underlying bedrock. The rock was encountered at a depth of 140 feet and consists of gray, thin-bedded to fissile, calcareous shale containing thin interbeds of impure, shaley limestone.

The shale is horizontally bedded and is cut by two sets of

cemented points. One set of points is vertical and the other set is inclined 60 degrees from the horizontal. The rock appears to correlate with the Berea-Bedford shale, a lower Mississippian formation.

Hydrogeology Covert Ridge is a groundwater barrier as well as a watershed boundary between the glacial plain to the east and the Grand Marais Embayment to the west. Static water levels east of the ridge are generally at an elevation of 650 ft. NGVD. Zn contrast, static water levels west of the ridge occur generally at elevations of 580 to 610 ft. NGVD.

Test borings and water level measurements at the site indicate that the aquifer is unconfined. The aquifer is comprised of the dune sands and beach sands. This unconfined aquifer oyerlies low permeable,glaciolacustrine clays and silts that extend to a stratum of glacial till overlying shale bedrock. The base of the shallow aquifer is delineated as the stratigraphic contact between the sandy beach deposits and the lacustine clay deposits.

The surface of the lake clays slopes upward gradually from elevations of about 555 to 560 ft. NGVD along the beach to about an elevation of 589 ft. NGVD at the location of Boring 14 in the southeast corner of the site (Figures 2, 3 and 4).

Groundwater is recharged by the infiltration of precipitation through the permeable, sandy surficial soils.

The average annual precipitation for Benton Harbor Airport located approximately 12 miles from the plant, is 36.04 inches/year (Table No. 1). Surface runoff is limited to minor quantities and is restricted to the northeast and east portion of the site. Basins of interior drainage and closed depressions characterize most of the site.

Initial site investigation observed static water levels ranging from 582 to 609 ft. NGVD inside perforated plastic pipe installed in the 19 test borings (Table No. 2). A generalized potentiometric map which characterizes baseline conditions is depicted in Figure No. 5. The groundwater elevations reflect to some extent the irregular topography of the dunes and basins. The direction of groundwater flow is toward the west to Lake Michigan. Of significance; *is the preferred direction of groundwater .flow towards the control area of the plant site (i.e. RP Well Nos. 4, 5 and

6) indicating a discharge area from the shallow aquifer into Lake Michigan.

Short duration pumping tests were performed to determine values of permeability across the site. These pumping tests indicated that permeability values would range from 115 to

.196 ft/day (4.06 x 10 to 6.91 x 10 cm/sec) assuming an aquifer thickness of 30 feet. This pump test data is referenced in Appendix No. 1.

Groundwater Quality Baseline Conditions The baseline groundwater quality reflects the solubility of minerals present in the aquifer and the residence time of the water in contact with various minerals. An analysis of the plant's two drinking water wells in March 1972 yielded a calcium bicarbonate type water with an average total

~

dissolved solids concentration of 390 mg/1. Chloride and sulfate concentrations of the plant's former potable supply wells are also presented in Table No. 3 and reflect concentrations similar to baseline conditions reported by the previous Dames & Moore site investigation. lt is reasonable to extrapolate the analysis of the potable supply wells to establish the concentration of the dominant cations and anions (Ca, Mg, NA, HCO3, SO4 & Cl) in the groundwater quality baseline. Figure 6 illustrates the relationship between the. dominant cations and anions for the March 1972 analysis.

The water quality of the upgradient Well No. 8 provides a contrast .in water quality between groundwater upgradient of the TRS pond and groundwater that is downgradient and has been influenced by seepage from the the TRS pond.

Groundwater Monitoring Program Two separate groundwater monitoring programs are active at the plant,. The radiological protection program is comprised of 7 monitoring wells for the plant and 4 monitoring wells for the temporary steam generator storage facility. These wells are used to monitor the shallow aquifer for radiological parameters.

The NPDES groundwater monitoring program is composed of eight wells at four sites. Two wells are located at each site where one well is equipped'with a submersible pump to obtain water samples and the other well to be used static water levels. Four additional monitoring to'bserve wells were drilled as part of this site investigation'o supplement the NPDES monitoring program. Plate No. 1 lists the specifications for both the radiological protection (RP) and environmental monitoring wells.'ell logs are contained in Appendix No. 2. Drawing No. CE-SK-3/25/91-2 depicts the location of the observation wells with respect to the plant's absorption pond, sanitary ponds and the plant's former potable supply wells.

The absorption pond creates a groundwater mound and superimposes,a radial flow pattern from the pond center on the regional flow regime. The monthly average discharge to the absorption pond is 0.46 MGD and ranges from 0.13 MGD to 0.84 MGD (Table No. 4). Table No. 4 also lists the static water levels, TDS and S04 concentrations for the period of record from November 1976 to October 1990.

Drawing No. CE-SK-3/25/91-2 depicts a water= table map based on static water level measurements observed on October 30, 1990 (Table No. 5). The water table map is also, in part, inferred from the ponded dune swales. The configuration of the water table is also reflective of the static water levels measured in the hollow stem augers during the Hydropunch' sampling program for May-August, 1991.

The direction of groundwater flow was also indirectly modified by the installation of sheet piling in 1973-74 along Lake Michigan to control beach erosion. This piling was driven into the low permeable lacustrine deposits'and created a barrier to ground-water flow. Ponding occurred behind this barrier and eventually spilled over the piling and flowed again to Lake Michigan. Several drains were cut in the piling in order to alleviate the ponding of groundwater.

10

Well hydrographs for observation wells Nos. 1A, 8, 11, and 12 are depicted in Figure No. 7. The well hydrographs depict fluctuating water levels in response to a non-uniform discharge rate, seasonal evapotranspiration, and precipitation etc. For example, field data recorded in 1983 depicts a decline in water levels and is probably due to a precipitation deficit of nearly 7 inches. A similar decline is noted for the 1988 drought.

Groundwater Quality Operational Monitoring Program Significant variations occur between upgradient and downgradient wells for the parameters pH, COD, TDS, Na', Cl, SO4 and Hardness. Downgradient wells reflect a water quality similar to the water quality of the effluent discharged to the Absorption Pond.

Time dependent graphs of sulfate (SO4) and total dissolved solids (TDS) concentrations demonstrate the influence of the absorption pond on the. aquifer system. The monthly average TDS concentration of the wastewater has varied from 300 mg/1 to 1100 mg/1 over the period of record. Similar concentrations of total dissolved solids are observed in the downgradient observation wells Nos. 11 and 12 (Figure No.

8) . The average monthly sulfate (SO ) concentration of the wastewater has generally ranged from 100 to 330 mg/1.

Similar concentrations and time dependent trends are observed in downgradient observation well Nos. 11 and 12 (Figure No 9).

Sulfate concentrations for observation well No. 8 are generally less than 50 mg/1 and show no significant departure from baseline groundwater quality conditions.

Sulfate concentrations reported for baseline 'conditions in the Dames & Moore study ranged from 22 to 38 mg/1 SO In 1983, there was an operational change to improve the steam generation water quality by more frequent flushing and increasing the volume of makeup water; A result of this operation is a significant increase in the number of regenerations of the demineralizers. The anion beds are recharged with a caustic solution (NaOH) and the cation beds are recharged with an acidic solution '(H2SO4). This operational change is reflected in the monitoring program by the increase in TDS, and sulfate concentrations.

The water quality of observation Well No. 1A from July, 1977 to March 1982 is very similar to baseline quality due to its location and screened interval. After March 1982, Observation Well 1A is influenced by the overflow from the 12

absorption pond into the remaining portion of the dune swale. This is indicated by a steady increase in sulfate concentrations (Plate No. 2). By comparison concentrations at the upgradient observation Well No. 8 have ranged from less than detection to 200 mg/1 and have averaged 22.3 mg/l.

Hydropunch' Data & New Monitoring Wells Groundwater samples were collected via a special sampling device referred to as Hydropunch and from four new monitoring wells drilled along Livingston Road. The Hydropunch sampler is a stainless steel and Teflon' sampling tool that is capable of collecting a representative ground water sample (approximately 500 ml) without requiring the installation of a ground water monitoring well. The Hydropunch sampler was connected to AW drill rods and driven to the desired sampling depth using a 140 lb hammer. As the tool is advanced, it remains in the closed position, which I

prevents soil or water from entering the Hydropunch sampling chamber (Figure No. 10).

Once the desired qampling depth is obtained, the tool is; opened to the aquifer by pulling up the drill rods approximately 1.5 feet (0.46m). ln the open position, ground water can flow freely into the sample chamber of the 13

tool (under in>>situ hydrostatic pressure). When the sample chamber is full, the Hydropunch is pulled to the surface.

As the tool is retracted, check valves close and trap the ground water in the sample chamber.

At the surface the sample was transferred from the Hydropunch sampler to a polyethylene sample container. The Hydropunch samples were taken at various depths (up to five discrete sample depths) across the project site to allow vertical profiling of the aquifer. The Hydropunch sampling and drilling started on May 4, 1991 and was completed on August 26, 1991. The location of the sampling sites was restricted to existing access roads and thus precluded any disturbance of the sand dunes.

Groundwater samples collected by this method were analyzed for field parameters of pH, temperature and specific conductivity by the AEP drilling crew. Select samples were analyzed for major indicator water quality parameters (TDS, sulfate & sodium). The data is contained in Appendix No. 3.

Three cross-sections were prepared to illustrate the dispersion and attenuation of the TRS absorption pond effluent. The monitoring wells were sampled for TDS, sodium and sulfate (Table No. 6) and were also included in the 14

evaluation of the Hydropunch data. (Figure No. 11). The minimum detection value was used as the concentration value where the data was reported as such.

The cross-sections illustrating the vertical distribution of.

sodium and sulfate concentrations were developed using SYSTAT/SYGRAPH 5.0, a data management and graphic computer software package. This software package was also used to illustrate the spatial distribution of sodium and sulfate concentration in plan view at various depths within the aquifer. The isopleth contours were generated using a distance weighted least squares smoothing subroutine for the cross-sections and an inverse squared distance smoothing subroutine for the plan view.

. Cross-section number 1, identified as Cut gl in Figures No.

12 and No. 13 includes HP (Hydropunch) Nos. 3, 2, 17, 13, 14 and 26 (Table No. 7). The cross-section, ordinate begins at HP No. 3 (located at the TRS pond) and continues northeast away from the absorption pond approximately 2,500 feet.

Figure No. 12 shows that the sulfate concentrations diminish to within drinking water standards within 800 feet of the 1 absorption pond (sulfate standard is currently 250 mg/1).

Figure No. 13 supports this finding for sodium concentrations.

15

Cross-section number 2, identified as Cut 52 in Figures No.

14 and No. 15 includes HP Nos. 18, 19, 20, 21, 22, 23, well Nos. 1A, HP 24 and 25 (Table No. 8). The cross-section ordinate begins at HP No. 18 (an upgradient site) and continues northwest to monitoring well 1A, then southwest to HP No. 25 (approximately 2000 feet). Figure No.- 14 shows that the sulfate concentrations are within the drinking water standards within 1000 feet downgradient of monitoring well 1A. Figure No. 15 supports this finding.

Cross-section number 3, identified as Cut g3 in Figures No.

15 and No. 17 includes environmental monitoring well number 16 and HP Nos. 15, 16, 4, 8, 5, 6, 9, 10, ll, 12, 13, 14, and 26 (Table No. 9). The cross-section ordinate begins at environmental monitoring well No. 16 (an,upgradient well site) and continues northwest approximately 5000 feet.

Figure No. 16 shows all the sulfate concentrations to be within drinking water standards.'igures No. 16 and No. 17.

do indicate, however, anomalous'sources of sodium and sulfate in the vicinity of HP Nos. 4 and 8 and HP 12 upgradient of the absorption pond. However, we know, of no company operations in these areas that would contribute to sodium and sulfate.

Environmental monitoring wells installed along Livingston Road, the plant boundary, show that sulfate and TDS are within drinking water standards. (Table No. 6). Therefore, 16

we conclude that there is no negative impact to off-site groundwater resources as a result of TRS absorption pond discharges from the Cook Nuclear Plant. Figures No. 18 through No. 27, which are plan views of the sodium and sulfate concentrations at various descending elevations, support this conclusion. The x, y (o,o) ordinate cartesian grid corresponds to the State plane coordinates of E 1,392,560 & N 178,500, without any rotation of the axis.:

Potable Supply Wells Potable supply wells are located approximately 1,400 feet north of the absorption pond. These wells serve as a source of drinking water for plant personnel and the visitor center from 1970 to 1987. (The plant is now served by municipal water from Lake Township.) Potable Well No. 2 is located downgradient of the Absorption- Pond based upon the existing flow regime. Potable Well No. 1 is located about 300 feet further inland and is located near a large sand dune which may exert local groundwater mounding.

The wells were sampled two to three times a year for'everal parameters (Table No. 10 and No. 11). Figures No. 28 and No. 29 depict time dependent graphs of Ca, Mg, Na, HC03, and Cl expressed in milliecpxivalents per liter (meq/1). A calcium bicarbonate type water characteristic of baseline conditions is exhibited by both wells from 1976 to early 17

1979. In August 1979, potable Well No. 2 experienced a change in'water quality to a sodium sulfate type water (Figure No. 28) and reflects the influence of the absorption ponder Potable Well No. 1 experienced a marginal shift in water quality (Figure No. 29) and is affected by the absorption pond to a lesser degree than Well No. 2. Sulfate concentrations for Well No. 2 have occasionally exceeded the drinking water limits of 250 mg/1 and consistently exceeds the total dissolved solids limit of 500 mg/1. Well No. 1, however, does not exceed either of these limits.

Conclusions The Cook Nuclear Plant is sited within a groundwater basin bounded by Lake Michigan to the west and Covert Ridge (a terminal end moraine) to the east. The aquifer is unconfined and is composed of beach sands overlain by sand dunes and underlain by low permeable lacustrine clays.

Construction of the sheet piling and the Absorption Pond has modified existing ground-water flow directions.

Discharge to absorption pond has created a groundwater mound which superimposed a radial flow pattern on the regional flow towards Lake Michigan. A significant departure from baseline conditions has been observed in the 18

upgradient observation Well No. 8 and is attributed to an anomalous increase in chloride 'concentration. The Hydropunch sampling program also detected an anomalous concentration of sodium and sulfate upgradient of the TRS pond e Total dissolved solids and sulfate concentrations have increased above baseline conditions downgradient of the absorption pond as a result of the effluent discharge.

Similar water quality changes were observed in the plant's former potable Well No. 2 and marginal changes were observed in the former potable Well No. 1. The northern areal extent of the TRS effluent is bracketed between the plants former potable supply wells and. R. P. Wells No. 1 and No. 2.

The downgradient observation Wells Nos. 11 and 12 and former potable supply Well No. 2 detect the influence of the TRS pond as groundwater flows into Lake Michigan.

The southern areal extent of the TRS pond effluent appears to be bracketed by observation Wells 1A and the recently installed monitoring wells drilled along Livingston Road.

The concentration of key indicator parameters (TDS, S04 &

Na) does indicate that the TRS pond effluent plume has migrated to Livingston Road. The plume, however, has dispersed and/or att'enuated to acceptable levels based on the first round of sampling and the Hydropunch data.

19

~ t I'I 4

  • Appendix No. 1 Aquifer Pump Test Data V )* ( g ~

f 4 L (

(- 1

$ )( j( + (,Lpga)~~] t j+(((4 (j $@(;P~~(( (m((( L L ~

( ,(( ( ((,'Lj(j((" (". j 'g f

~ (j( Q~>(P(~rjfmk&"';i . ~ .

(

  • , II jL1 L '( L(+,

~ iraq-~ ~ i ~ ~ ~i<A~p iX.-'i+gpg ' 4 'g '~'EH)'t<'>~a

.,;<i~ .4;" >"):!. >~~~.>> 4)gg ~~-gk.)':$e,~..'.,< .g~~~

p E

C'

.r*.

~,

P

~

pter" .q,A >p,,

V.'. 4~A'$94'>4k%t, l&PN4 .4%

I lQ qy%p y<Wg~+~ Q> ~g p ~" $ 5+

~ E LI t 't 'I l

'l w ~

A A

h *I V 1 I

1 I

I J

I,'

  • I

Summary of Aquifer Pump Test Data OBS 0 r k S Analytical WELL (gpm) (ft) (gpd/f t) ( ft/day) Nethod No+

8 10 10 58,666 196 l. 22x10 Jacob lA 25 10 31,428 140 3 14x10 Jacob ll 25 9.5 36g666 163 5.07x10 Jacob 12 25 10 25g882 115 3. 50x10 Jacob 38 p 160 153 5 Notes: 1. The drawdown for each production well is plotted'on semi-logarithmic paper for comparison with the drawdown observed in the respective observation veil.

2. The permeability is derived from the transmissivity, T, divided by the aquifer thicknesses. The aquifer thickness at observation veil No. 8 is estimated =o be 40 ft. and 30 ft. for the remaining observation veils.
3. Data Source: Donald C. Cook Nuclear Plant. Annual Environmental Operating Report, 1981.

SEMI LOGARITHMIC 5 CYCLES X 70 DIVISIONS i'EUFFQ. 46 6210 4 CSSER CO. SSOOO SO 4OO

...P ~

K 4 v assai s4 ao 4 'h v %soak

/p s4 a4 ~ so 4 g os so so I I sssssl so I

I s4 I

I I

I ao I

I I

I I

I I

I II I I

I I

I I

I I

I .. III I I I I I I I I I I I I

~

ao

~

4 v aaOI

~ ~ ~ ~

s I I

~

I

~

I

~

I s s I I III s I I

I I

I I

I I I I I I I

I I I

I I I

I I

I I I I I I

I I

I I

I I .I I I 'I I I II Iii is ll I s

~E SEMI LOGhRITIIMICS CYCLES X 70 DIVISIONS KtuFSCL a ESSDl CO. lllol ncaa

' /0 46 6210 4 a 4sP l4 144

(..

'j4 S eo

/y sI 4 la o a III usj4I I I I I II III I

I I I

I u a vcej4II

~4 I

I l4 I

I IA Pl I I

'4 I I sal II I

I I

l l I

I I

I I

I III I I II I

I I

I I I I I I I I II II I

I I

I I

I I

I I

1 I

I I

I I Iij 4

3

'3 ii kI

s s

SEMI.LOGARITIILllCS CYCLES X 10 QI VISIONS 46 6210 Se KCUFFEL a ESSES CO. ssssca ~ LL 3 Q s o>>ssee lO SB u a paso>> I s>>s I I I a

I gaLP I I ll I

I I I I I.I I a a a>>sa>>o

>>s I ssl I I I I II III I I I I I I I I I I' IIII I I I I I II s

Ql ~ s I s I III s

~ 4 O>>>>s CO s

>>OI s s s I I s s I

s I

~ s I I f I I

,I I I I I I I I I I I I I

~ ~ ~ >> ~ I I I I I I I I I I I I I I I I I hl p

s

ce SEMI.LOOARITHMICS CYCLES X 70 OIVISIONS KKUFFEL 4 sssEA co. saaceelk

' 46 6210 M u a vows

/p 4 a I0 ssl I I I I I I I II

~

a 0

~ ~

'4 ss4e

~ ~ ~

M I

I l4 I

4 s

I a a paso

~

I

~

I s

I

~ s I I I I I

I I

I I

I I

s I

I I III I I II I

I I

I I

I I I

I I

I I

I I

I I I I I I I I I II s

I I

sI s

s 3

~'

4t

Appendix No. 2 Well Logs

~," Cr 0

e ~

J e

~, 'r h

I e,

r' e

,rk;e

b~ '4 "-'; S<VI>r4~ C'S".t iSXW)k~),r):-+~g+@4))S ")~ t'ttg'"

IL

  • 4S IS, It v

4 I

  • l v

ar St

'~as)) ~ rg )~~~+bkwlta) Qf~ ~(444) Q,i~it ) gv ~f t t

\

Ir p "v) 5 * ~

~ I h

) 'I

)4' v

  • 4 4 4

~ I . 4,$ )I),v "p b +"'C" Vb

+ S'", t '4 4"4 " ii'ra'- '4V ~

4

.,:, .;v,",.4;.)4 ".:"rl ta'!II Akttt (~va)$6444," kb)'Wv", hAv)tt4)t;,3 f4; kP@~84a'A4t rtvttat rr,t C'

INDIANA NlCHIG4N POWER Oate Parch 13, 1991 Lake Township Monitoring Well $ 95 F)pm J. ED Oetken Tp J. T. Massev-Norton The following information pertains to the Lake Township monitorinct well:

Well depth: .12 feet (approximate)

Screen length: 3.5 feet Casing diameter: 2 inches c Casing tvpe:

Install. ation method:

Galvanized Driven Sealing method-: Bentonite Backfill: Hone The gxound and casing elevations have not been determined.

If vou recruire anv additional information incorporate this well ifi order to into vour hydrogeologic study, feel free to call me at X1326.

c: D. M. Fitzgerald tntra-System

T.

PIFZOMETER INSTALLATION REPORT Project o 5Tea e Jt gL Piez. Type Dept h. Riser Desc, <

" yc Mat'l a Tip Sample g 8Q'lllg Oia ~

Method ar lnstall~tion Type cf Grnd Protection Grnd El ev. Riser Elev. Piez Tip Eiev.

filter Material Ef Ca~ t Kl Seal Material from Bev' to Bev.

f no to lied By Date installed Date Tested Method of'esting Plez.

Time B~pscd, Depth Time Elapsed Depth Time Elapsed Depth

"~ to to to Time Tirn e iater Time Nater 0/ster RKh'ARKS 0+1clmy 6n.ou T'/9C - CI/So Wa T'c w F lcv'agio w - Octa. $ 0 Q-z- 83 el to-i- Gl Scebcew s l~

I C

~ 0 G

~0

~ e I ~

a ~ w1

~

'ep$ ~

'f tC ~'

.~ e ~ ~

~ ~ ~

~ ~

~ ~

r

~ ~ ~

o ~

~ ~ ~

~ .

~ ~ ~

PIEZQMETER INSTALLATION REPORT Project bt-Piez. Type Depth. d,a Riser Dcsc.

Mat'l Tip Sample/ BGrIflg Did-Method t;f lnstat4fion Sir Type O'rnd Protection Grnd Kiev. Rrt rEI Picz Tip Kiev.

Filter Material ~ from Kiev. 4~C to Kiev.

Seal Material TC r R .REREAD I Et . ~E installed By Date installed ElapsedDate Tested Method of Testing Piez. p Depth Depth T)me Ebpscd..

Time " VVater to Time TiA10 to vlztcr Tirlle. Elapsed Tirtle Depth to Mater

e ~ e

' ) )! j (fgZ)I~A'C:rlICPIr.hu': POw.tR.': C,OMPAfd'f .';: I j

XIOM, ' 'O'Q>C. h)U C L. A.>.. Pl A~

((!.;,(I:) )

(:fl) iI ..'<~WQHA~ ~ ~ ~ I I '

/

C.

I e ~ ~ ~ I> l f MIC~T<A '

e I ~

. ~ ~ ~

~.'., l ~, I ) I

~ I

'., I }:, l

~ ~ )

)

I ~

'L%

~

~ f ~ ~ ~ e fa I ~ l ~ I asf ~ f I ~ ~ ~ ~ ~ ~ ~

l f t I ~ ~ ~

4f ~ i i:. I

'I

~

at seI ~ I

~ ~

~ ~ s t ( oog Late t l ~ ~ ~ ~ ~ ~ ~' ~ ~ ~ ~ e ~ i t f

. WAT'E)fj; WQ'kQZTO KIh'Ct

~ ~ ~ ~

I

@WOUK'

~ ~ ~ ~

~ ~ ~ ~

I

~ I ~

~

~ ~ ~

-',t:

-l I '

~

~

~

~ ~

~

~ ~ I ~ e ~ I ~

~ ~ ~ ~ ~

1

~~ I

~

~ ~ I ~ ~ ~ ~ ~

f o~~ e

'h <<,Wpt~ryopj.t+C. ut)=t.t .':XR, ';;. Q J OScEWVATIO)> ~ yVgLg A gA f too <<oA ah I << f e ~ ~

~ o ~ O ~

OC.'.~Viahi:. : SI)O.':I:SOUTH: ',Or- '.! .:;:

I~

~

~ ~

~

~

~

~

~II LO.ChXLOQ,": 'X,O'. '&V..Of- ~ ~ ~ ~ ~

)

),'(((' ',;;Z.ufI)'.Z~TXOV..SaSX,~

I~

~I

~4+6'4R:Kt4+:Ql&Ll

~

I I~

I~~

I~ I~~

!~II

~

I~III IIII~~

~

I~

~

~~

~

~~IIII It!~I

~~~

~~I

~~III~

IIIIo

) ., (, j f . }

I~

~

II ~

'OIKLL,T,jfP 'LEVATLOQ-'65~ l+ ': .:

I 54 '

~ ~

~

I~

~II

~I

~

II~

~ . EI.LI TOP? ELEVATM'Q: 6SI.

} I ~ ~ I ~

( e ~ I I ~ ~ ~ i

) ) ) ( )

qaovO:- .-

a L+ VWViou'..; 658.P': h~aX CjWOVQQ 'LPVKTI.OQl 60,'5 APPFCX.

oet ~ ~ I ~

) I ~ ~ ~ I ~ ~ ~ I I if

)

~ ~ ~

if. 'T'LE. ~ ~

l f ! I t I ~

I i

WATER. '

E'L~VATZOt>S i t I l. e: I... ~ ~ ~ ~

lP...., ..SO+.O'T. t

~ ~

! ~ ~

., f (.O'Q

~ ~ ~

e I 6,-,L9.- ~

f I ~ ~ ~ ~

l ~

I i

j': .:0 f>>I oe e I w;-'z.s-.;vs.:,::

t f o

)

I ) o.

)

I

~

~

~

i't e ps:..'.'Co '.:sob;wS'n-.a--

i i l

'"f I l

).;! ;1;ol

~

o e l

l I i f i f I ' l I i I ' le' ' f I

'OS I

~ ~ ~ ~ ~ ~ ~

I

~ i

~ ~

f ~ I ~

,.Of.>, fqb 0LO.QI C,L ..f-O~AVZ.CrA (:. 'I' I

I 1)

~ ~ ~ ~ ~ ~ ~ e ~

((

~

f

)

I ' f}

flic

~

D 6 5 C WZ PfT IO A .;,I

.':THICK@)655'

);!,: l .':: ':,: SO> T'eW DE%'TH,TG ~ ~

I

',., '55

~ I ~ ~ ~ ~ ~ ~

~ ~

i i

~

~

I~

~ ~

' I Ll QB.'Ahl> ~ .

~

~

...'..: ~ e4 0 O~ ~ e ~ ~

f

~

.;'I o

i

~ ~ o l ~ ~ I I WA'T&K 1hLA~MQ 'SAND  : 3 5 ': ':..'

~

t I ~ I I

~

~

~

~ ~

~

o

., i I I I, ~

i e

~

I I ~

~ I

~ ' ~ ll I ~ ~ ~

e e(etc e ~

I

I'

1

~ ~

I ) I

.i.'I.f i

~ ~

I f ~ ~ ~ f ~

~

)

~

~ ~ ~ 1 I f "l

~ ~ I ~

~

I l e I I ~ I I ~ I oe ~

l:; Ii lo. >>ll. 0 ee

~ ~ ~ ~

~ ~

t

~ I o ~ ~

~ i' ~

(

~ ~ ~ ~ ~

)!' if:

II. ((I' ie't I;'

I ~ r ~ ~ ~ I i I ~ I ~ ~

I ~

('!

o ~ ~ ~ ~

o f )

I ~ ~ ~

I

~ ~ ~ ~ ~

I ~ ~

) ~ f ~

I ~

.il

~ ~ ~ ~ t' ~ ~ ~

I I!

f ~

t

~

ft, I

o I ~ ~

~

~

o

~

~

I

~

~

~

~ ~

~

~ ~ f>>i!o

~

I

~

I i ~ I f ~ ~

~ ):-'-.i.t-f.4 ~ I

<<o

~ ~

~

~

~

o ~

l...; f I)i':, ~ I I f)li ~ ~ ~

I

~ l i  :'I i l i '.;

.ll.

I ~

~

~

~ ~

'(I: ~ ~

I I ~

';:! I, I

',.: ()'-. I

~

(.

~

I

)(((;:

I, l I f

~ i elfI)

I

~

~

f ~

lit ~ ~ ~, I ~ ~ ~

l) I )

I I I i ~ ~

f

) l) ( ( f I

i)l o

~

t ~ ~ I I o

, a I I t I r I I r; ~ ~ e ~ e ~ >> e e e e e e

I' o ~ ~ ~ ~ ~ I ~ ~ ~

~

.>>l

' I I

~

~

~ I '

I I '. I I I f *

! ~

I ~,

t '

~

~ ~

~

I I

~

i I

~

~

o

~

(If>>

~

(

I oelfle '

~

~ ~

~ I I ~ ~

~

~

~

e

~

~ 1 I o I i  ; I I o

~ ~

I ~ ~ ~ o I o e o ~

o f

I

~

~

o

~

~

~

j i I O e ~ ~ ~ ~ ~

i I 4 o ~

r>> o ~ a ~

f<<I,';;. ~

~

~

~ . ~ l. (

.'t49X~A'e: H IC4X(: t D; )

'P'O~,E'~i C,OWPAM'f

~ l ' ~ >> '. ~

XiOMb LD;: C I CO&<<<WICKET,@Ah:;,: . h)UCL.B.AR, : PLA)~, ',

~ ~ ~

.'I<< <j i.",(<<

( (

~

'mD,C>l.lAA iI:. }" I I

~

' y

~ ~

~,

~

( I

~

~ ~

< ~ < ( << ~ ~ ~ ~ ' <, ~ <>> ~ ., ~

I I <

I a

~ ~

I

~ I

}It<I}to Cq R,OUTED  : WWT'Se; '0'~arTO~ZI~Cp'..'.; <<

~ ~

I. ~ ~ ~

~

)j. <( (l

~

~ jt a

~

~

~

~ <( o Oh$ 1TOR.TMQ &ElL '  ::: 7.'~ 085BWVATXOt> 9lEL L + 6

~

~

><<

~ ~

QQ'("A IOI'3'-( .:2440 ! ST . 4F ..' I I LO.Cat zov:,: Lo'. 5.m..'or-

'! l'; I <: e!:'Z<<j:tat<<<aTI<<<j: (<<<Sf<<;'. l'.

o<<!'

I j

< HO t4ZTORXN 4 'g BLL '.

'WgLL: TO<<; RLavATr.ow:. GXS.? 4.",::: VlELLl:TO 'p:. ELEVATOR, . <<<(<3.5 t((6

~ ~ ~ I ~ ~

~

a

~

( I .).< ~ ~ ,.I <<

qgOueD"f: ~L'CURAT OQ ~,; %14:- h7PEOX: /WOLD MQ 'ELEVKTIQ M:::, 'Sl+.S hPPR,0X.

~ ' I '< ~ l ~ .. ~ ~ ~ ~

'} i t: I I I.' ~o ~ ~

')

T'E 'l. &VAiTIO<<'bs'

~ ~

.I I .

~

(:

~ >> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

( t

~ o ~

~ ~

,:I :I:(

I:.<<

<.:I

~

~ ~

VI((<T&W .

~ < ~ ~ ~ < << I ~ ~

I '('it I I <<.'

j.(I. ~:. e'.

I

~ ~ ~ ~ ~

..:,,6b5

~ ~

a )

elt; Sh I)l 1t ~j f e :e(

~ ~ ~

~ t . ( I I . ~ . ( I ~

.~ ~ 0 ee 5;6o'.. i

~ ~ ~

7 i I ~ ~ ~

.':::.so ~ o I ~ ~

a

~ ~ ~

j.!i !;,:! ~ ~

} ~ ~

I

'@'O (7.'43 ~ ~ I ~

e i!i::e. - ' ' . i I

'j}:-'.<< .:;..

~ ~ ~ ~

I Ilt

~

I << ~ I <.}  : III:.

'; I

~ ~ ~ ~ ~ ~ '

~

..0 Q: '.;0

~

' e

<>> << ~ a 0

'(

WH

>>1

F- ~ OLO./ICAL,I.:.";F-OR&~V.'OA.::: ';.:.: .<<t.' e I,': I ~

965 C.<<'..LPTX,O>>. ' '.

}'7+TCKAESS', 'BERTH <TO '. ~

.<<l

~ ~

);:.:i. }:'; [;:,aoTwow: <<'.;

~ ~ I I.. ~ ~ ~ ~

o

~ o t r

~ ~ ~

.:: (V'Oi::.SorL.:.': ',"...' a

.e(.~

~

~

~

.,I) <,

~ ~ ~

D((t<R.K. ALLO'(M 5AQb:

< I:. ~ o I

t>><!:. ': ' '18 ':. '.

~

I;:. ,'I, .<< ': I TIGHT: sANxl.

, }

3R.!

~ ~ ~ a ~

~

t I

<< << i R~~~ p~~~~4:5>>~:

} t

': I:: '32;$

i':e'il...,

I w 3.~y.'.!

~ e e ~ ~ ~ j  !

~

(i<( k

~ ~

~

'QL'QP<<< 1.' '

(

ggg

~

I ~

~

~

~ o ~  :.: ~

I iti'},. <<ji<if I,i ,:i <)Ii <,:(( <o:,(;I

.t'I;'I I:'i o ~ ~ ~ ~

<<(<

}

Iji: ',:

~ ~ ~ e ~ ~

~

~ ~ ~ ~ j ~ ~ ~ ~

I ~ o ~ ~ >>

!<!!.;jjj :ij}i'(i I ~ ~ (

~

~

!<I(<<

~

a

' .Ii} ~

~ ~

.} Iii j<<

~ ~ ~

j ~

~e', ~

e o

t .

a L f"'< i I la(l 4

~

}. ~ ~

I,:. ~ ~

rll<!,.<( (ie<< ;i a

<<.;.', <I::

~ ~

o I

~

~

~

}I Ill'.j) il'I

I i<< I I

.,(I.

~

I i Ii t(;I i:

~ ~

I I ~

I j( I o

"}I ~

<" r'j-( r ~

"'l":;P fiP ' e, a a ~ ~

'I 'l l I'.ll:';}'.

~

i <<'"

~

~

I ( ~ ~ ~ ~ ~

~ ~

<I} I. (

I .

I,' o (

I

~

.<<(I<

~

. I e

I I

I I .'

li}jl

~ r

i

< o

~ ~

I I:<<} ,I I

i }i'

~ ~

< e ::: ~

i'(

~

I ':.

~

~

~ ~

~

~

(

I a

oa << ~

~ e ~ ~ ~

j'<<9! l:'.:X!49ZI9QA 't MIO' Ig'f IO POWER. 'COMPPIO9I

+4+4 L+: C C +++ ~~ L+++ l'

'QQN Ci MAIS HI C HTQhO ., ~

~

'; ':~,

~ ~, ~

'; ',: I: ~ ~

~

t  ! ~ 6

~ I 6

f fo) t KOUh:D .'AT &8, NOl4ZTOKIACt lll t't t ~ ~

6 ~ ~ ~ ~

~

t o>>

j~.t.f~..'- ~ t e fI ~ I f ~ ~, l ~

I ~ ~ l ~ I ~ ~~ ~ ~ ~ ~

I t ~

~

~ ~ ~ ~ I e ~ ' ~ ~

~ 6

~

~ ~

~

I t

~ ~ e ~ I

~

o

~ ~

1

~ o

~ ~

~

~ ~

~ ~ 5

~

ll

~ 5 ~ ~

6 ~.HeaaTOa~ht m~t t + 2, + . 0$ !ERVATIof4 %EL,L ~ 1>

e>><<<< ~ L~~ ~ e '

~

XO'&ST Or-

~

gyCATIOlQ: . 400'OW. OF:..: ' '

t.Ol:aTGSO:

it i I j! i','.':XIOFItT~TEOIO 'S.ASZIO:  :.::,

e o ~

',; I ..;)",HOQIT4RXMcl WEI L'

~ ) ~ o ~ ~ ~, ~ ~

~

jjrggt 'TOP: FLEYAt'IOQ- f 05 41 ...:. %&LL TOP EL EVCTZOM 4 .609 S7 MJlQD.: ELKVATIOhl~"60'9 '5 APl)R,QX QROVMQ '. RL.QVKYIOh%: e60 f RS APPROX. ~ 6 ~ ~ ~ ~

~

'T'E L&VPT'ZOtQS 1, ' '

L

~ ~

~,

~

~

~

a~

~ ~

o ~ ~ ~ ~

t I f f ~ ~ ~ ~ ~ ~

6 f ~ I 5

~ l~

1 ~ o.f I I l ~ ~

it I ~ ~ ~ ~ ~

~- i

~

~

~

TkR, ~

~

~

~ ~ ~

~

1.'.6.- 9.-'l5 !.,6'll, 5:

~ ~

l

~

~ I o' ~ ~ ~ ~ I i>>>>

5: -*.% ..5 I '1*'.-

~ ~ ~ QI ~ e ~

~

.l).ft-e,f ~ tI e t 6 ~

~

e

~

e>>fJ

~ e

~

~ ~ ~

~ ~ ~ e ~ o

~ ~

6 i:-: :'.6: 6 ~ 'le.::I: 5'9 6': ~ '9 t 4f

~

~

I>>

I

~ ~

~

~

6

~ ~

~

I

~

1'~ ~

o61 l ~ ~ f t fe

~

~

I I ~ e ~ ~ ~ ~ ~

~

~

~ . "-

~

~

) fA lot" l f.e,,f,'.

~

6]

'It I

~

I '

~ ~ ~

.,r ~

~

~

e t f ~

I

~

~

~

~ I GQ.

~ ~

't

~ 5 ~ ~ ~ ~ ~ 6 ~ ~

.qf.aVOQTCAt ';XO~PTZ,OA

~

1

~ ~ o e ~ ~

I I 1 ~ ~ 6 ~ ~ *

.. ~ e

~ ~

~

~ 5

~

0l

~

t t

~ ~ ~

o

~ ~

~ o, o o

~

~ e

~

~

j. ffflt DE~H 'O 1 ~ ~ ~

PESC R IPTI4Q rHIctft:%&$ 5'

't"-,

~ ~ ~ ~ ~

t '

~

I

~

j t f ~ ~

.BoTT'cH

~

I I

~

~

~

It'

~

~

o

~

5

~

~

~

~

~ ~

~

~

~

~

~

~

'XKVhlE': 5AQD

~ ~

t

~

~

~

9 9

~

'IIE' '

1 f

~ 1 ~ ~ ~ ~ e ~ ~  : VCAT9lt, Q&hiGNQ 5AQD

~ ~ ' ~ ~ C ~ ~ \ I e r ~ ~ ~ 6 ~ ~ ~

~ ~ o 6 ~ I ~ ~ ~ ~

' ~ t l ~ ~

~ ~ ~

~ ~ ~

I ~ o I ~ ~ ~ I ~ I 6f ~ ~

i

~ ~ 6 6 ~ ~ ~ ~ ~ ~ ~ ~ e f ~ ~ ~ ~ ~

)o gJ. I i fee I I t 'I I I

~ ~

~ fee>>

1

~

I f

~ ~

1 e

~

I I~

lfo

~

t t

~

~ 5 1 I f

~

~ -6+~ e ~

~

~

~

~

~ e

~ ~

~ ~ ~ <<o I

~ ~ ~

6t ~ ~ ~ ~

~

~,

~ 6 I

f~

~ ~

~ e

~ ~ ~

5

~

~

>>~

~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ e t ~ f e ~ ~ ~

~ I ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~

~

~

~

~ ~

~.~

~ ~

~

~ ~

~

~

I

~ f 6 I o e ~ ~ ~ o ~ ~ ~ ~

t f '. ~ 1 t '

f I')lg

~

t ~ o ~ ~ ~ ~ o o ~ ~ ~ 1 ~ ~

6

~

e

~ ~

I~ ~)

I

~

~

'I ~

~ ~ I ~ ~ ~

~

~

~

~

~

~

~ ~

e e

~ ~ 6 ~

off).r

~ ~ ~ ~

I ~ ~ ~ ~ ~

~

~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

  • I f ~ ~ ~ g ~ ~ ~ e ~

~ e tlof ledpt

~

I o ~

~ ~

t o I off ~ ~ ~ l

~ ~

I~ ~ ~

~ I

~ 6

~ f i tg

~

~

o>>

~

~ o ~

~ ~

~ ~ ~

~ ~ ~

~

~

e

~

~

~

~

~

~ ~

i.i'i t< i~o ~ ~ ~

l t>>

I I ~ ~ ~

~ ~ ~ ~ ~ ~ ~ I ~ ~ 91 O ~ ~ ~ ~ ~ ~ ~

r t+ j oe t'.+' Ie 5

~ ~

f I>>e.

o ~ ~ ~

.l

~ e ~ 6 i:Ittttf .il '.t f pt Ie L e~ tA]

6 eo

~

I I '~

~ ~ t

~

~

~

~

f

~

~

~

~ ~ ~ ~ o 5 ~ ~

t f-'e

~

~

f pe ~ t

~ ~ ~

~

~ ~

~

I l'. f' ~

~

~ ~

~

~

~

~ ~ ~

~ ~ I

~

6 I ~

~ ~ ~ ~

~ ~ ~ f I ~ ~ I I y>> ~ ~

f e ~ ~

I ~ $ ~ ~ o ~ ~ ~ ~ ~ ~

~

I

~ ~ ~ , f I I ~ ~ ~

~

.f).:.:

~ ~ ~ ~

I

~ ~ tll ji't<<eot' ~ ~

I I

~ ~

I

~ ~ ~ I ~ 6 lIf1.1 ceo'e>>>> I I

~ ~ ~ 1 ~

) I

~ ~ ~ ~ ~ ~

~

e ~ I ~,. I l tI Itl. I 6 ~ ~ ~ ~ ~ ~ ~ ~ ~

fI ~ ~ 5 ~ 6 ~

~ ff 1 ~ ~ ') ~ ~ ~ I ~ ~ ~ e ~ I .1 ~ ~

o ~ f ~ ~ I ~ ~

t I ~ ~ ~ ~ ~ ~ ~ ~ ~

6

~ ~

ill

~

~ ' I ~ ~

~

t t \ 9f i

.I:6

~ ~ ~ ~ ~ ~ 1 ~ o ~ ~ ~ o ~ 5 ~ ~ ~ ~

~

I ~ I e ~ l ~ io 1 6 I e ~ ~

t ~ 6 ~ ~

~ ~

e t 1 ~ ' t ~ ~

~

~ ~

'O ' ~ ~ ~ ~

I ~ ~ ~ ~ ~ ~ ~, I ~ ~ .K.

I .s<<" ~ 5 ~

<<<<6 ~ ~~

IANNA C;QT{"WQQh Q Po~'5R'. l CCl'"(76%',f,'. f! 'I i 0 KLD; j 5 '

C,QQ)C.: h)UCf.&'A~<<; Pl A>~7;;.'; ':; I

~

j

~

), ~ . ~ If{),l  !

ff8tfl'~~>II'i't~'alt~~'~:Ii ii'j iiiii'I..ii!...,

)I!);)

IIi'i'i'I af I ~ I ) ~ I l

mal

~,

gaea

~ ~

) f ~ I ~

j j j %ATOP' OMXTOXI i i i i i: l:

j QP,OUSTED; j Ilf I

f flf) l,".l',1.'. j):::I jl tfft,."I;l..te!

I '. i '.

)) I;) ll..

~

t i ~

) ~ feft ittttt i!l ~

j I

)

)

.4 " laputa aWi) ')'eic:~> m l ';:, ',:

~ I

+'TOOM:I; 'I:TOO I

~ ~ '

~

!MASSY::QE.

~

~ I I ~ ~

LO,t KTLOQ:.:;!IO.'i 'SOUT'6 'F-'. '. i:

I'l{

iTDR: fII.LVlloT'taII;i'.I)lb 'f 5'!! .'i NELL, '.70 p ! aiaV~V t aO..

e Sza.eq

~ ~

It>i !>I.ll

'!'E'LL I((:'I.'.I;li ~ ~

C E,lR'VWT bQ 5~PP~ FLRQbTX,g W..GXC.O.

~ e A~t. O..'eI

..ill'5jROQU~

o

> lt}O. QWOU AX) '

l l I I I I I I

'.'I)i!')j'T f ) ) I f

'I'ltt jl;

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~

~ ~ ~ f f ~ ~

~ ~ ~ ~

~ ~ I

~

I:'.

~ ~

5L.E E-'l. E'UC'VXO) AS'::: . ~ ~ ~ j ~

I

'45'.':! ~ee

~

I I

~

j

~

oui .';

~ ~

t!:OQ .6.-,.'L'9:-:'75;::: .59 ':

~ ~ ~ ~ ~

~

o~ o ~ ~

~ ~

4~

'II'I e

~ ~e 0 ~ ~ ~ 0 oe ~ ~ ~ I f ee ~ I j I

I ~ o ~ ~ ~

~ ~ ~

I ~

jl!-;;Dv i I j'.

~

~

)~

~

I~

~

~

l I

~ ~

~ ~ I, . ~ ~ :j ~

I"}ltf). if j .:

~

~

~

I I (

~

~

. ~ I ~

~ ~ te f I III }I)f lI I II I f I l i fI )I l } I I I III ef If

~ ~

! ~ a I

~ ~ ) ~ o

~

e ) ~ ~

~

~ o I

~

~

~ ~

j I I

~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I

) 4 ~ lory ~

o

~ oe

~

~0 0 'nS .,':aF-! qa:aaO.(ZV 4';FOaWW Z.O!v,

~~

I

~

j

~

e..'t.

I Da =~r.WP'X,OP.;',:.

.Il):"

}

'.)l '

I  ! THZt'K)4&S5', '<V H j70::; I 0 H..

I) II BOTT.

1

~ ~ ~

~

I t ~ ~ ~

~

I ~

o ~

~

.. RAVEL; I.:,.; ',' .4 J. i

a lj)'
j'))a ~

)

I ~ ~

f 0

', 0

~ ~ 0 Ej; ~ ee ~ a ~

~

'j': ',

~ ~ ~

I ( ~ ~ ~ ~

o

~

~ ~ o I I I

.Vl 4a QAIQ3)

! '.'.', lii',Ill I'I:)!. ~ ~

~ I

~ ~

' g$ I

~

j B&~b; PRAT .SAQD ) 'I' 'f')) of oil/6;'.o i

'll

~ ~ ~ ~

I f I

'l QK

~ ~ ~

Ci 8 I'o~i. I ."Y(~ 5AtoIt} i '.!

I ', ~

~

I ~ I ~ l

~ ~ a ~ ~ I

~/ GRAVE;L,

' 'WNQ

~ ~ ~

) f ~

j .::'52.'.:

~ ~

}lit

~

f

~, I

)lf.t

~

I ) I ~ o I ~ ~

~

~

~

I ~

)llj

~ ~ ~ ~ ~

I ~

l

~ ~

~

'::.'.iij':, ij ) j':j I::.;

I

', I;; a

~

I I

~

I I a.

ftl

~

~ I I

~

--:,'! I r--,t

~ ~ ~

I \4 ~

f

~ a f

ili!ll i

I l!! I

~ ~

I I

~

I:lei Ij{,'jjo

~e ~

f

~

j l

I,

~ ~ ~

I j j ~ ~ I l i I

!i! lji

~ 1 I

): i )f)

I

~

I I e l,.; ll.

~ ~

I I I tli)i'.'I !{)'I

) ! I t I e

~ I ) I ) I

))f.

~

~

~

I

~ ~ ~ ~

) I I f ~ f I ~ ~

I o

~ ~

~ ~

~ fw foaf ~ ~ ~ ~

],1 e ~

~

e I

~ ~

o

~:

I ~

t)')

~

to

~

I

~ ~

i! .}ijit> Itf.;
)
'l I ~

f I o I e ~ ~ I I I

(

~ e ~ f I I I ~

~ ~

I a I )

I

~

~

~

o j) I  ::I ~ ~ ~

~

~ ~

~

~

I ~I I ~ o I

I

, cg

WATER WELL RECORD MICHIGAN OEPAImilENT ACT 994 PA OF WBLIC HEALTH 1905'r LOCATION OF WELL Tawhshlcl N schon Soctlah Numa<< town Nurhaer Range N A/tj/~~; ~

9 C C~aS.

orstsnce And olrection tram Road Int<<sections S'troat sddtoss g 'City of Well Location Lacer ~ wl I sh section so low Sketch Mso! 4 WELL OEPTH: I omolecedl Oats ot omsietran I I I R4 .. }<

JI I I 5 Q Csb( ~ cooi Ilotsty Oriven Oug I I Q Hollow rod Jotted Q Eared Q 5 MSEI QOomestic Q Public Suooly' Industry Q Irrigation Q Alt Candltionihg C cisl Test Well 7 CASINQI 0 ism.

Welde4 Q Height: Abave/agan IS f tg,

'THICONC55 OF OC)TN To SOTTOM OF Alhe \0 tt, Oeoth I Wsiaht Ibsatc.

STRATUM 5TRATUM In. to tt Oeoth Orive Shoe? Yes No 8 SCREEN:

Type; ~+ Ol~

7 ~I~ 'lttlnget 9 STATIC WATEII LEVEL 5 I tt. below lsn4 surface

'lg PcIM NQ LEVEL bei lsh4 s sco

+s.o<<

g.o.m.

11 wATER QIJALITY in P<<ts P<<Million:

Iron IFOI Chlorides (Cli Hstdhoss Othet 1 WELI. HEAO COMPLETION Ih Aoorav 4 pit Pltleee Adept<< IS" Abave Grade IS Well Qrouced) Q Yee No Q Nest CofMht Q Sohtohite Q OOOcht Fram tt. to 14 N St Source ot oossibl ~ Con nenon Tyoe Well di ~ intectod uoon C<<rsrietian Yes No 15 PLIMP:

Not installed Manufacturer's N<<he Model N <<tarot HP Volts l.ength of Orao pipe tc. csoocity GNJs.

Typot Q Suom<<sibl ~

Q Jet Q Reciptocsting use A coa s<<sst I'ccoca Tog g f~ ~~

15 Remarks. elevation. Source of data. etc 17 WATER WELL CONTRACTOR'S CERTIFICATION:

Cu~ z, This to t II wss drIII+uhoot mv Iutisdiction snd this ost ot hIY gdgo d ~ lot, roo<<t Is true j

SUSIIIC55 OAMC sfsl5TSArloh OO, O'I<'-'I im Addros II<<AI IF ~7 IOOM (Rov, 'IS ea)

O<< I II, 7 Signed IIORI CO IICFII II ATIYC Oste IMIIORTANTE Rl ~ wBII daecL WELL OWNER COPY,.~j.',:.";

GCOLOGICAI. SUIIVSY SAMPLE No.

WATER WEt.L RECORD NCHIGAN OEPARTMENT ACT 2S4 PA ISSS OF FUBLIC HEALTH I.OCATION OF WELL I To'whs N Fraction Section Numeer Town N~r nance Numoer CJO

~~~@I w

-grkM; I

< es.

oistance And oirection tram liood Intersections Adaess P~~Qo .

Street address SI City of Well Location Locate wiin in aeclloii slow Sketch SMOI 4 wSU OCPTHI Iconiol ecl Oats ol Conoietion 5

ft. 1 Q Cabl ~ cool Q iiotaly Q Q Q Hollow rod Jetted Q~ Ofiven Ouc I I I 6 USSI QOomestic Q Public Suooiy 0 industry I I I Q Irrioation Q Air conditionino Q conynercial Teat Well TIIICKSCSS OF OCFTII

~ OTTCM OF td 7 CASING; Threa4ed Oi am.

I ~lt Welde4 ONlill Q

ii l

He I Oil'l; 8

weioht

~II.

  • boveIISei<<w Ibs Jft.

FORMATION sTNATOM ST14'tvM In. to ft, Oeoth Orive Shoe) Yes o 9 STATIC WATII LSVSL ft, below land swface 10 Pu ING LYSI. below I~ surl ~

ceo+el Il. III I 0 I "I o,o.m.

'I 1 wATGI QUAI.ITY in Pans Per Milliont Iron ifel Chlorides ICII Hardness Other WSLL HSAO COMPLSTIONI Q ln Aooroved pit Pltless Adaoter 12 Above Grade 19 Well Groutedf Q Yes No Q Neet Cement Q Sentonite Q OOOtht from ft. to 14 Hearse wce of ooaaibl ~ contamination 0 IObJII on Well 4i ~ infscte4 uoori canoletion Yes No I6 PUMP: Not installed Manufactwer'5 Name Model Number HP Volts Lenoth of oroo Floe It. caoscitv Gp Ja Tyoe: Q Submersibl ~

Q Jet vie << 1<<o $ <<ccr it <<ccoco 17 WATER WELL CONTRACTOR'S CERTIFICATION:

This II was drilled <<der my luri ction and this reoon i ~ true b lilt.

tO th t Ot my k il clstca

~

avsliicss <<<<Mc

~

PO

~

z./9 acgista<<rio<<<<o, A44ress F Iurg gtp- CJri//

5 loned Oats iitev. I2 SS

<<oalt 0 il sc<<A ivc IMPORTANTS File Willt tfeed Wii I nlWT:O' nod -.R~.':.".'r. -'-.;

CCOLOOICAL $ VlLVCT5AMPLC Nei WATER WELL RECbRO mcoocrrom l(ICHICAN OEFANMQ4T ACT 554 PA 1544 OF LOCATION OF WELL FLIN.IC CHEALTH fIecuon Section Nuanoor t4wn irunaoer nonce Nuitwor Ol stones An4 Oirectlon from h444 Intersections A ~4 .1 4 4P . CD M'w.

5treoc oddrese o C(tv ot Wo(l Loose(on Loco(4 wite In section ~ ow 4 WSLL OtpTHI (comoiecedl octo ol c I I . I I

+G 7 JI I C~(e cooi hotsnr Oriven Ouo I Q Hollow rod Q Jecto4 Q Oored Q

~W I

I J

I I J'a rr Llp Qoomeet(4 C3(ri(oet(on Test Well 7 cA5INC'tueoded Q

Pueilc 5uoolv Air cond(t(on(ne wei444

(

Q Q

indus~

conw rclel Hei Ont: AOOvotoesew TNICCNCSS Ot O'CPTII TO OOTT0 M OP lee 4'<

FORMATION STOSTOM STOSTIIM In. Ie Orivo yeef Yee 8 5Ch55NI Tvoe: Oi<<t

/ PI 51 or/Cteeee L r

'fitt(neet g II~~

9 5TATI TC(t LCVCL below I end sultoco IO IK LcvcL oelow lend sur(eco QQ a. aaaa2~>>. aaaa~ ~<-I a.aaa a I a ~ aaa "a Oaoain 11 WATT(t aUALITY in Pons Por Milliont lion IP4 Ciiloridaee (Cll Herdneoe Ol nor 1 WE'LL HCAO COMPLlTIONI Q (n A~~'Pit Pit(see A4iotor I 5" Asove Credo

~ well Clouted) Yeo No Q N ~C~c jf~(co Q Oootrv. from ~ rc. co 14 Nosiest Soiece ol ooseiol ~ conteitunecion Tvoe

'Well die(elected uo4n conwlenon Yes I(o PUMP, 1

Q Not Instilled Menu(securer 1 Nome WN I Lenin Ol Oroo PIOe Qj SusitwrsIOI ~

Q gec lt. COOeeiCV Q

Q )C ~

heCIOIOCSCIIIO u.P.M.

I'voe:

i uSC S See I CV I ~ aICCOCO 16 Rernerttoa

/I "~C,:

elevetlan, saurae at d&o. Otc.

P~

(q f".."-I- - 17 WATER WFLL CQNTRACTQRaS CERTIFICATION:

TIIIS to t It Wso on(led st ol uaader 44 Iur(edidti ti~ I ~

In<1 Ieaen

~

ao MM nue eCCISZC euSiuCSS IIC eCSIStoara u <4, I ji'~.;j (~ gP A441es Md /I'ST4 IOOM (neua IZa((8(

5(oned utaaoei 0 AC Cn s Ivc Oice

...~, ~

ILlIShN'AVW, CH a

WATER WEt.L RECORO mcaoazoco~ MICHIGAN Oa ARTMENT ACT 104 tA 1555 OF I 'TION OF WELL Townanio Name Fraction Section umoer PueuC HEALTH Iovtn Numoer Rance Nunclat Co irAk&~ ms. F

+ %'W.

Ion rrom Intersections Distance And o lr W'fcfg~w~+c~ g

~ig~sn Q Cd' Locate wn In sec'cion Sketch Maot WELL OEFTHI ICOmpletedl Oats Of Ccnelatian I

I cab l ~ cool ~

Q Rotary Q Driven Q Ouo I Hollow rod Q Jetted Qsed Q I

C 6 vsE-'ooneatlc P tubllc suooiy P Ind tty I I Q lnlcation Q Air Condiclonino Qj~. Conrnatclai Teat Well I AC I SIILC FORMATION '

Tiilccacss ot octtn to

~ OTTOM Oisin.

In. to Threaded

~&ff SR M Wel4e4 Depth Q

~

~

Hei ohtl Surface Weioht

~

gg Deva/ low tt.

Ibad'tc.

~

$ TRATIIM OF'TSATVM In. to tt Depth Otive Sheet ves No 8 SCREENI Type: Oi ~ .

.r Sec betweetLEg '7+ and ~C.'~tt Fitti I I' f'/

9 ATIC WATER LEcfEL

~

I tVLPt NQ LEVEL below land surface

~l4n~Cthf It hh rwoi o o,o.m.

11 wATER OUAUTY in tens ter Million:

Iten Ital Chi<<14es ICII Other WEU HEAD COMtLETIONI Q In *ootove4 Ht

~ Itless Adaoter 12" Above Grade 1~ weii Grouchier Yes No QN atC~ 05 onite Q Dept!it tt. Io 14 ar urea of posaibl ~ corn Ion CPM Type Wall dl ~ Infected lawn coneletion es o tUMH Not I elle4

~ v Manufacturer'a N ale Model NICIOet Lencch ot Droo tlpe~tt. Caoacicv~GJ'.M.

/ /f/

~

Type: gQ Submara ibl ~

Jet Q Raciptocatino

'usc A sile Ducat It uccscs

/

16 RematkS. OIOVOtiotl~ SOIXCO Of ddtoo OtCe 4ocr~da, ld~-.

17 WATER WELL CONTRACTOR'S CERTIFICATION:

Thl ~ well as dtills4 under my Iurladlction and thi ~ repen la clue to tne I ol mv c'~ ad en4 bei acaistca ausiiicss IIAIAC ~ ilcsis'laAf!cu lloyd Cr..r< a'o~ /RIctaci<!

fA-~ E~- ( gd/u~~)

100M IRev, IRAQI Address ~~

Si,~ -".6 AII IIOIII5

~ '

-/ - '

./6

,4

'tcaetnrse an'ct .IAI.

GE~OG(CAL SURVEY SAMPt,E Ho. LLILLl LLLLILLjQI3.

~T.=

1 LOCATION OF wELL ACT 2'A I 9(SS PUBLIC HEALTH Co(rn~ ~ To(p. Prectlen Sect(en He. Taws Re>>4o X IA /S.

3 OWHER OP WELL~ g v

'9'rDK M

~ et ~ ross c

I ty of We Location c A AJ*e so 4

POR(JATIOfl TNICCNCSS Of OCTET>> TO

~ oTToM or i wEI.I.DEPTH( e ~ leteJ) 'ete of Cygyplef(~

STII AT VIS ST>>ATOSI ft.

5 Cch ~ tool Retery Driven Doc Q Hel(ee roJ Q Je Q BoroJ Q 6 IISEIQ 0~st( ~ chile Solely Q I>>Jsfry Q Irr(set(on Q Air Cen Jltlenl>>4 Q C~~( ~ (

QTostwell Q ASIHGI 7 Three JeJ ~ I JeJ Q (He(yhtt A4vo/Boiovr I s(rrfoco

+ ft, (KK~a.rr 8 SCREEN(

~. D th Orl Sh yY sKH4oCl Ole.

4-g" ~4@

9 TATIP WAgR LEVEL ft. 4(ow ImJ swfece r,.~

10 PUMPING LEVEL 44vr Io>>J swfoco 2:7 11 WATER OUALITY (n Perte Per M(ll(e>>I (r I rK(<<ii (c((

KN(

12 wELt. HEAD DMPLETIDHI I>> AisreveJ Pit P(t4ss AJeotor Q 12" Ahove GreJe 13 GROUTIHGI Well Gro(rtoJ? Q Yes Cc ~

Motwlclt Q Hect Ce(sent Q Dootht Frere~. ta 14 SANITARYI Well JlslnfecreJ uoon ce(os(et(en C3 Yes Q Ho 15 PUMP(

Men(r fectwor' New Mole( Num P Le>>+ of Dr (F>>~4ft. esses(ty~~.P JJ.

Tyoet Sub(oorslhle Q Q J.t Q Rec(orecst n 16 Riess ~ I ~ vetion, E P~

sowce of Jete, etc. 17 wATER wELt. coHTRAcTDR's cERTIF(cAT(oHI Thl ~ well ms *llloJ vn Jer (sy Iwls J let(en e>>J thl ~ resort Js to ~ 4st of sy hnewleJ(( ~ ~

~ (sfcaco sus(ness 4(lof.

tr(re oaaec ccs( Tosflse Ke AJ Jres t(r 4 Sl Dote OfneOISCO S 1CSC>>TATIVC ~ ~ . + ~ >> v~

I OOIS lMPORTANT: Fife wltb deed WELL OWNER COPY dE./

AMERICAN Welf Detail Summary Amerfcan Efectrfc Power ENVIRONMENTAL O.C. Cook Nuclear Plant Brfdgeman, Mlchfgan SERVICES CO., INC. AE-964 - 7/7/89

+0'4 Opening for manhole 0 t0 e Ground Surface

$ >> I ~u~F~.$ .:g '<<e~>>; ..

Concrete Manway 4 I8 ~

~( j~p~AQ~Q Sand Backfill 8 Sched. 40 PVC Screen 4~ .010 Slot

<<qrggp$

30'0 Bottom Plug, Bottom of Borehole 48 Diameter Boring Note: Drawing Not to Scale.

AMERICAN Well Detail Summary American Bectrfo Power ENVIRONMENTAL D.C. Cook Nuclear Plant Brfdgeman, Michigan SERVICES CO., INC. AE-ge4 - 8l6/89 QÃ~k popO Ground Surface 2 l ocking Well Plug E E Roadway Box Clean Native Send t t5 ~

Bentonite Pellet Seal (hydrated 2'0 prior to backfilling) 2 PVC Riser Pipe 3E00 Pea Gravel Backfill 2 Threaded Flush Joint 0.020 PVC Weft Screen 13'0 Bottom Plug t 4'0 Bottom of Borehole 20 Diameter Boring Note: Drawing Not to Scale.

MERICAN Well Oetall Summary American Efectrfc Power ENVIRONMENTAL O.C. Cook Nuclear Plant c Brfdgeman, Michigan SERVICES CO., INC. AE-964 - 6/6/89 0c0 ~ Ground Surface Xvj 2 Locking Well Plug rc v>

Roadway Box c gee, Chan Natfve Sand 1'0 m4:a Bentonite Seal (hydrated prior to backfilling) 2c0 ~

2 PVC Riser Pipe Clean Native Sand Backfill 13'0'g~%Q'~pc'@ 2 Threaded Flush Joint 0.020 PVC Well Screen Cotton Cheesecloth Wrapping

':?ji>g'<<j4c'g4, 18'0 Bottom Plug, Bottom of Borehole 4 Diameter Borfng Note: Orawfng Not to Scale.

4

~ ~

~ ~

~:

~ ~

0 ~ 0 0"~ 0 0 0

~ 0 0

~ ~ 0' ass-0 0 0 0

~

0 0 0' ~

0 0 00

~

0 0 ~ ~ 0 ~

~

I 0 0 0 0

~ 0 ~ ~

~

~ 0 ~ ~ 0 1 0 0 0 0 0 00' ~ ~ 0 0

~ 0 ~ 0 0 0 s

0 0 0 0 0 ~ ~ ~ ~

vs 0 0

~ 0 0I

~

~ 0 0 0

~

~ 0 0 I

~ '

~ ~ ~ ~ ~

~ ~ ~ e ~ ~ t s I ~

o ~ ~

~: I: I ~ ~

WELL CONSTRUCTION JOI S4

SUMMARY

ELEVATIONS CoiltNIT (tt NQYD)

PaoIRct C c~~i t' WELC Na Cooaoiwavcs S DATC TIDC GRADE R. ENTONIT Vo l e l&P'"

TOP OF BENTONITE SEAL ~~

Vl'OP

3. SCREEN P'VC OF GRAVEL PACK

( l TOP OF SCREEN BOTTOM OF SCREEN 7 7Z BOTTOM OF BLANK SECTION BOTTOIN OF GRAVEI. PACK BOTTOM OF BOREHOLE GEOTECHNlCAL. ENGlNKERlNG SKCTlON REVISION OSSf RVAT10N CIVlL OESIGN STANDARD APPROVED Nf LL

WKLL CONSTRUCT(ON 4oi Ho.

SUMMARY

KLEVATlOHS (CC, lleVO)

Col tlNY Pa~ ccrc IT WELL m COOhOIIIATCS z.v9 RKF. DATUM PT.

Oazz Tzac R. NT HIT TOP OF eKW'ONITK SEAL ~~

5. SCRKEN g, PQQ
4. G RAV PA TOP OF GRAVKL PACK

" I'zz z TOP OF SCRKKN 8OT TOM OF SCRKEN bOTTOM OF 8LAHK SECTION 8OT TOM OF GRAVKL PACK SOT TOll OF 8ORKHOLK GEOTECHNlCAL KNGINKE:RlNG SKCTlON REVISto N 08 SERVATION ClVlL OESlGN 'TANDARO WELL APPROVED AMERtCAN ELECTRIC POWKR SVC. CORP. CDS -04 SH.

WELL CONSTRUCTlON Joe No

SUMMARY

ELEVATlONS (ra. NaVO)

CoMtNIY PawtcY maP WELL No COO%0)IIAS js ~ 0. V7 DAI~ Tlsa OL NT NIT

  • II I TOP OF BENTONITE SEAL ~~
3. SCREEN Z Pfc TOP OF GRAVEL PACK
8. R IS ER PI 2 PlC TOP OF SCREEN BOTTOM OF SCREEN BOTTOM OF 8LANK SECTION ~ ~

BOTTOM OF GRAVEL PACK BOTTOM OF BOREHOLE gq GEOTEGHNIGAl ENGINEERING SATION REVl SIO N OB SKRVATIOH GIVIL OF. SIGN STANDARD WK.L L APPROVED

WKLI. CONSTRUCT ION elOl HO+

SUMMARY

KLKVATIONS

.C0staar . {a,Novo)

WKLL Na C00NOINAri0

~ J 3 Ief'Z. RKF. OATUM PT.

Oars Tira 3.

NT SCREEN NT di

~ I i

p Qe TOP OF SKNTONITE SEAL ~

TOP OF GRAYEL PACK TOP OF SCREKN BOTTOM OF SCRKEN BOTTOM OF Bt.ANK SECTtON BOTTOM OF GRAVEL PACK ~ ~4 ~

BOTTOM GEOTECHNICAL KNGINEERING SECTION REVISION 0 B SKR VATI {',.

CIVIL DESIGN STANDARD NK lL APPROVKO AMKRICAN KLKCTRIC POW KR SVC. CORP. CDS-04 -

SH.

WELL CONSTRUCTION Joi No.

SUMMARY

KLEVATlONS CoQfiNY t tLsova)

Paletot WELL Na RKF. OATUM PT.

CoogolN1'tel well Cove~ will be Deva T<sa

2. EN T SCRK'E N NIT A J < ~ <*<

08 TOP OF 88NTONITK 88AL ~

TOP'OF GRAVEL PACK TOP OF SCREEN r

BOTTOM OF BI.ANK SECTION 570'C BOTTOM OF

,2L BOTTOM OF SOReHOI.Z GEOTFGHNIGAL ENGINEERING SECTION REVISiON OB SKRVATIOH CIVIL OESIGN STANOARO WK LL APPROVED

year

'.-'; Appendix:3 . r

=

4 4 4 ~

Hydropunch' .Data r 4

~

4 1 ~ 4-

I

~ 9'. >99,l9 '9 9

t r, 99 9

\

1 9

9

~." ~k~ .:".'-9(~ <<8 i~49'm7~a<'9", ""

/

r 999,4'q19 H 9rj9~, 99i'gA i 4't999)>r 9i ~ J ~ ",

99',"0f tp,,"~1mVJP'.'c%9$ 99~Yg99999t9>>199~1~iff Ji~999 '.9 .'9'Ir f 'g.t

~ '.99'99rg4+"/~9999'iJ~99V j 99:999 r 9 ',9

~ ~ 9

+

\

~ W 9

DEPIH 'IO STATIC WATER LEVEL 43.0 FEET STATIC WATER ELEVATION 607.55 FEET NGVD

(

BCjIGNG NO HP-2 QXNDINATES:

E 1393878.22 N 180417.58 GRADE EL'50.55 FEET NGVD IRTE OF RQKY E SAMPLE SAMPLE SAMPLE DEPHi ELEVATION %)IlHE TEMPER'ZURE TDS SODHM SULFATE COLLKCI'ION TIME FEET FP NGVD ml su F C mg/1 ag/1 mg/1 1 4.MAY.91 53.5 NO 10:00 AM 63.5 587.05 ~ 350 9.05 57.0 13.9 1, 180 644 NA, 339 11:07 AM 73.5 577.05 500 8.86 51. 0 1; 180 676 176 511 83.5 NO REXXMKY

DEPHI 'IO STATIC HATER LEVEL 10.3 FEET STATIC NATIR ELEVA'I'ION 608.66 FEEP NGVD BORING NO HP-3 COORDINATES:

E 1393744.33 N 180326.01 GRADE Ef. 618.96 FEEP NGVD DATE OF SAMPLE SAMPLE SAMPLE SAMPLE DEPIH ELM'ION VOIlNE pH TB6'ERA'IURE CGLLECI'ION TIME FEET FP NGVD ml . su F C umho/an ng/1 mp/1 ag/1 1 4.MAY.91 4:30 M 13.0 605.96 425 8.04 60.0 15.6 1, 130 711 131 407 5'05 PH 23.0 595.96 250 7.38 62.0 16.7 1,330 NA 164 NA 3 14.MAY.91 11:45 AM 33.0 585.96 '50 8.82 59.0 15.0 1,110 616 186 '36 43.0 575.96 NO RHCOVFRY 53.0 565.96 NO BHOCIVERY N.A. NO ANALYSIS

BORING NO ~4 SI'ATIC WATER ELEVATION '10.

DEPIH 'IO SI'ATIC RLTER LEVEL 4~6 FEET 1 FEET NGVD COORDINATES:

E 1396126.89 N 180207.62 GRADE EL. 614.7 FEEY NGVD DATE OF SAMPLE SAMPLE SAMPLE SAMPLE DEPIH IKZVATIONVOIlNE p8 TEMPHQXURE BODHH SOLVE CDLLECI'ION TIME FEET FZ NGVD ml su F C mg/1 ng/1 mg/1 1 15.MAY.91 10:05 AM 18 0 596.70 '00 7.20 58.0 14.4 410 213 18.7 5.5 28.0 586.70 NO RECOVERY 1:35 B4 38.0 576.70 5 74.0 23.3 2:35 Rf 48.0 566.70 NO REKX3VERY N.A. = NO ANALYSIS

DEPIH 'IO STATIC HKHK ILWEL 13.8 HATER ELEVATION 604 FEEI'GVD FEEI'IATIC BCSGNG NO COORDINATES:

E 1395709.18 N 180319.65 GRADE EL. 617 FEEI'GVD DATE OF SAMPLE SAf PLE SAMPLE SAMPLE DEPIH ELEVATION VOllHE pH T&PHQTURE 'IDS SODGH SULFATE COLUKTION TIME PEEP FT NGVD ml su F C mg/1 mg/1 mp/1 1 16.MAY.91 9:35 AM 21.3 596.17 " 525 6.68 52.0 11.1 600 342 11.9 18 26.3 591. 17 NO RHCOVHIY

36. 3 581. 17 NO RECOVERY

DEPIH 10 SI'ATIC WATER 13.8 FEET STATIC WATER ELEVATION 603.62 FEET NGVD BORING NO HP-6 COORDINATES:

E 1395705.71 N 180320.74 GRADE EL. 617..42 FEET NGVD IRTE OF SAR'LE SAMPIZ SAMPLE SAMPLE DEPIH ELEVATION %Mid pH TEMPBQXURE COLL1XI'ION TIME FEET FZ NGVD . ml su F C ng/1 mp/1 ng/1 1 16.MAY.91 18.0 599.42 RKOVKRY

'25 HO 2:57 PH 28.0 38.0 589.42 579.42 'O 7.06 RKOVERY 58.0 14.4 440 N.A. 15.8 N A.

48.0 569.42 N.A, = NO ANALYSIS

DEPIH 'IO STATIC WATER LEVEL 5.1 FEET SI'ATIC HATER ELEVATION 609.55 FEET NGVD BOIGNG NO COORDINATES:

E 1396133.69 N 180206.18 GRADE EL. 614.65 FEET NGVD DATE OF SAMPLE SAMPLE SAMPLE SAMPLE DEPIH ELEVATION VOUS p8 T&PEBAXURE COLAKTION TIME FEET Fl'GVD ml su F C ng/1 mg/1 ug/1 1 29.MAY.91 6:30 B4 13.0 601.65 500 6.85 62.0 16.7 370 261 16.5 25 8 OOPH 23.0 591.65 525 7.22 58.0 14.4 384 178 24.5 10 8:00 AM 33.0 581.65 550 7.37 61.0 16.1'50 677 331 56. 0 28 43.0 571.65 9.19 64.0 17.8 8,170 620 31.0 150

DEPIH 'IO STATIC WATER 1-2 FEET SI'ATIC WATER ELEVATION 6;25 FEET NGVD KHGNG NO HP-9 COORDINATES:

E 1395702.9 N 180321.4 GRADE EL. 617.45 FEET NGVD DATE OF SAMPLE COLUK7ION TIME ~

SAMPLE DEPIH FEET SAMPLE ET NGVD ~

SAMPLE ELEVATION VOIlNE ml pH su F, TEMPERAXtHK C

TDS mp/1 SODIlM SULFLTE ag/1 mg/l 1 30.MAY.91 1:10 B4 18.0 599.45 500 7.21 60.Q 15.6 671 314 6.5 L.D.

2:00 M 28.0 589.45 3Q N.A. N.A. N.A. N.A. 236 18.5 L.D.

2 45 W 38.0 579.45 ~ '50 7.08 69.0 20.6 928, 413 37.5 L.D.

3:50 PH 48.0 569.45 530 7.57 6&.0 20.0 398 160 10.5 30 N.A. = NO ANALYSIS L.D. = LESS IHAN DEHXTION LIMI'I,'F 5.0 ag/1

DEPIH 'IO 8PATIC WATER LEVEL 8.2 FEET SI'ATIC WATER ELEVATION 603 75 FEET NGVD BORING NO COORDINATES' 1395302. 59 N 180447.4 GRADE EL. 611.95 FEET NGVD DATE OF SMtPLH SAMPLE . SAMPLE SAMPLE DEPIH ELEVATION VOIIHE pH TEMPERA'IURE 'IDS SODHH SULFATE CDLLHCrION TIME FEET FZ NGVD ml su F C mg/1 mg/1 ag/1 1 31.MAY.91 8:45 AM 17.8 594.15 475 7.16 58.0 14.4 471 233 14.5 25 27.8 584.15 530 6.94 60.0 15.6 N.A. 275 30.0 33 10 15 AM 37.8 574.15 '00 7.06 66.0 18.9 N.A. 246 19.0 23 47.8 564.15 400 7..>3 68.0 20.0 N.A. 231 9.0 37 N.A. = NO ANALYSIS

' C g

D 'IO SI'ATIC WATER LEVEL 7. 1 FEET SIATIC WATER ELEVATION 602.17 FEET NGVD BORING NO fP-11 COORDINATES:

E 1394899.08 N 1&0591-01 GRADE EL. 609.27 FEET NGVD DATE OF SAMPLE SAMPLE SAMPLE F;

~

DEPIH EUMQYOH VOILHE TEMPERAIURE SODHH SVIZ'ATE SAMPLE CDLUXTICN TIME FEEI'P NGVD - ml pH su C 1QS ng/1 ag/1 ag/1 1 31.MAY.91 2:30 PM 13.3 595.97. '30 6.71 64.0 17.8 N.A. 218 21.0 9.4 3:10 PH 23.3 585.97 400 6.&8 64.0 17.8 N.A. 293 10.5 14.0 3 50' 33.3 575.97 450 6;78 65.0 1&.3 N.A. 214 13.0 20.0 00Pf 43.3 565.97 475 7.15 64.0 17.8 N.A. 216 8.0 32.0 N.A. = NO ANALYSIS

DEPIH 'I0 ~TIC HATER UMK 25.7 FEET SPATIC WATER EU;VATION 603.61 FEET NGVD BORING NO HP=12 CXGBDINATES:

E 1394776.78 N 180939.06 GRADE EL. 629.31 FEET NGVD DATE OF SAMPLE SAMPLE ~ SAMPLE SAMPLE DEPIH EUWATION VOUS - pH TEMPHNItHK KS SODHH SOIZtQR COIL.'FION TIME FEET FI'GVD. ml su F C ng/1 mp/1 mg/1 1 1.JUN.91 10:15 AM 596.21 300 6.89 58.0 14.4 N.A. 382 8.0 120 11'00 43.1 586.21 7.49 61.0 16.1 N.A. 13.5 55'3.1 AM 53.1 576.21 '75252 7.30 63.0 17.2 N.A.

237 353 29.0 19 40 1:50 B4 63.1 566.21 425 7.75 63.0 17.2 N.A. 238 25.5 30 2 73.1 556.21 500 8.17 '6.0 18.9 N.A. 356 26.0 36 N.A. = ANALYSIS

DEPIH IO STATIC MATER LIBEL 26.8 FEET STATIC NATER EMTATION 601.30 FEEP NGVD KSGNG NO HP=13 OXNDINATES:

E 1394668.88 N 181183.64 GRADE EL. 628.10 FEET NGUD DATE OF RSPLH SAMPLE SAMPLE SAMPLE DEPIH ELEVATION lRIIHE pH TPPBVQURE CDLUX'PION TIME FEEP FP NGVD ml su F ~ C mg/1 mg/1 mg/1 1 1.JUN.91 5:40 PM 33.0 595.10 500 7.54 58.0 14.4'00 N.A. 260 5.0 29 6:15 B4 43.0 585.10 7.26 63.0 17.2 N.A. 265 64.5 29 3 2.JVN.91 7.00 AM 53.0 575.10 500 7.67 62.0 16.7 N.A. 312 23.5 31

'9:30 AM 63.0 565. 10 . 325 7.61 N.A. N.A. 309 234 18.0 31 10:20 AM 73.0 555.10 250 8.07 70.0 21.1 383 276 23.0 36 N.A. = ANALYSIS

DEPIH IO SI'ATIC HATER LEVEL 28.2 FEET STATIC HATER ELEVATION 600.66 FEET NGVD BORING NO HfP-14 CGCHKIINATES:

E 1394557.88 N 181595.94 628.86 FEEI'GVD

'l GRADE EL.

DATE OF SAMPLE SAMPLE SAMPLE SAMPLE DEPIH ELEVATION VOIlÃE pB TEMPERATURE COLUXTION TIME FEET Fl'GVD su F C umho/an mg/1 ng/1 mg/1 1 2.JUN.91 1:35 PH 33.1 595.76 '75 7.48 65.0 18.3 726 L.D. 18.0 44 2:40 PM 43.1 585.76 475 7.32 60.0 15.6 456 280 23.0 33 3.10 PM 53.1 575.76 525 7.18 64.0 17.8 604 355 23.0 24 4:15 Rf 63-1 565.76 500 7.39 64.0 17.8 527 268 21.5 53 5 10 PN 73.1 555.76 250 8.23 66.0 18.9 380 214 N.A. - 29 N.A. = NO ANALYSIS L.D. = LESS 'IHAN DETHCZION LIMIT OF 1.0 ag/1

' c >>

DEPIH IO STATIC WATER LEVEL 6.3 FEEP STATIC HATER ELEVATION . 608.25 FEET NGVD REHUNG NO HP-15 QXBDINATES:

E 1396470.33 N 179438 ~ 09 GRADE EL. 614.55 FEET NGVD

~ 'I DATE OF SAMPU" SAMPLE SM%%Z DEPIH EUMKX(N VOIlME 'IOS SAMPLE FEEI'Z pH TEMPERATURE SODDED SULFATE COLLKTION TINE NGVD . ml su F C mg(l ag(1 ag(1 1 3.JUN.91 10:10 AM 13.2 601.35 '.. 510 7.19 72.0 22.2 849 425 71. 5 12 10 50 AM 23.2 591.35 500 7.10 65.0 18.3 994 575 23.0 12 11:35 AM 33.2 581.35 . 100 7.88 70.0 21.1 386 N.A. 69.0 N.A.

43.2 571.35 NO R1XOVERY N.A. = NO ANALYSIS

DEPIH 10 SIATIC WM'ER LEVEL 17.4 FEET SI'ATIC HATER ELEVATION 606. 14 FEET NGVD BORING NO HP-16 QXNDINATES:

E 1396369.61 N 180025.93 GRADE EL. 623.54 FEET NGVD DATE OF SAMPLE SAMPLE .SAMPLE SAK'LE DEPIH KZVATION VOIIME pH TEMPHNIURE COLLECrION TIME FEET FP NGVD ml su F C ng/1 mg/1 mg/1

'l 1 3.JUN.91 3:00 H4 23.0 600.54 510 6.80 60.0 15.6 401 272 26.5 22 3:35 Bf 33.0 590.54 525 6.82 64.0 17.8 732 428 58.5 18 4:20 PH 43.0 580.54 150 7.13 65.0 18.3 575 364 N.A.

DEPIH 'IO STATIC WRY IZVEL 6.& FEET STATIC WATER ELEVATION 601. 19 FEET NGVD BCSGNG NO HP=17 CDORDIWQ'ES:

E 1394139.42 N 180691.70 GRADE EL. 607.99 FEET NGVD lRTE OF SAMPLE SAMPLE . SdQ%'LE SAMPLE DEPTH ELEVATION VOIIHE pH ' TEMPERATURE COLLECTION TIME FEET Fl'GVD. ml su C mg/1 ag/1 mg/1 1 11.JUN.91 9:05 AM 13.9 594.09 l 500 7-70 64.0 17. & 880 474 87.7 210 9 55 AM 23.9 584.09 510 7.62 65.0 18. 3 1, 160 759 133.5 400 10:35 AM 33.9 574.09 =500 7.87 64.0 17.8 910 587 104.6 270 11:30 AM 43.9 564.09 500 7.45 64.0 17.8 970 642 98.4 280 1 45 BC 53.9 554.09 425 7.69 66.0 18.9 503 250 17 4 400

DEPHI TO SIATIC HATHI L1VEL 8.1 FEET STATIC HATER ELhVATION 607. 08 FEET NGVD BOURG NO GXNDINATES:

~18 E 1394602.17 N 178806.54 GRADE EL. 615.18 FEET NGVD DATE OF SAMPLE SAMPLE SAMKZ SAMPLE DEPIH EUVATION M)IlME pH TEMPHaZORE COLLECFION TIME FEEI'l'GVD ml su F C mg/1 ng/1 mg/1 1 12.JUN.91 4:00 W 18.0 597.18 400 6.93 58.0 14.4 510 309 33.6 34 4 45 PH 28.0 587.18 450 6.10 60.0 15.6 536 245 27.6 36 5:15 M 38.0 577.18 525 6.6& 60.0 15.6 926 374 N.A. 75 6 00 PH 48.0 567.18 525 7.47 62.0 16.7 385 142 7.3 32

DEPT TO STATIC WATER LEVEL 31.9 FEET Sl'ATIC WATER ELEVATION 609.07 'FEET NGVD REHUNG NO HP-19 GXSDINATES:

E 1394479.65 N 179226.10 GRADE Ef. 640.97 FEET NGVD DATE OF SAMPLE RQ4PU" SUPPLE SAMPLE DEPIH ELEVATION MIlNE pH TEMPERAIURE 'IDS SODHH SULFA COLUM'ION TIME FEET FZ NGVD el su F C mg/1 mg/1 ag/1 1 21.At@.91 2:30 PH 43.3 597.67 . 525 8.14 58.0 14.4 226 356 23 22 3:10 FH 53.3 587.67 425 6.97 62.0 16.7 482 288 49 48 4 15PH 63.3 577.67 525 6.89 63.0 17.2 805 374 73 42 5:15 PH 73.3 567.67 325 8.27 64.0 17.8 390 358

DEPIH 'IO SZKTIC HATER LEVEL 17..6 FEET STATIC WATER ELEVATION 610.16 FEET NGVD KKUNG NO HP-20 QXBDINATES:

E 1394389.28 N 179410.49 GRADE Ef. 627.76 FEEI'GVD DATE OF SAMPLE SAMPLE SAMPLE SAMPLE DEPIH ELEVATION %OIIHE pB TBPEKQVRE COLLECI'ION TIME FEET FI'GVD. ml su F C ag/1 mg/1 mg/1 1 24.AU .91 4:00 PM 23 ' 604.76 . 450 8.27 57.0 13.9 268 126 21 28 4 30PH 33.0 594.76 >> 475 7.42 63.0 17.2 390 268 42 39 9:30 AM 43.0 584.76K. 525 8.10 60.0 15.6 662 352 94 47 4 25.At@.91 10:15 AM 53.0 574.76 "

525 7.87 62.0 16.7 502 255 60 28 5 ll:10 AM 63.0 564.76"'50 8.27 64.0 17.8 352 254 45 41

DEPIH 'Io ANTIC HATER LEVEL 12.3 FEET STATIC HATER ELEVATION - 605.95 FEET NGVD BORING NO COCK@)INATES:

~21 E 1394233.26 N 179474.88 GRADE EL. 618.25 FEET NGVD DATE OF SAMPLE SAMPLE SAMPLE SAMPLE DEPIH ELEVATION VOEIKE pH TEMPERA'IUBE 'IDS SODHH SULEXPE (DLLIRI'ION TIME FEET Fr NGVD. ml su F C axy/1 ag/1 ng/1 1 24.AtE.91 9:30 AM 18.0 600;25 500 8. 31 60. 0 15. 6 211 99 30 24 10:30 AM 28.0 590.25 525 7. 35 61. 0 16. 1 290 221 35 L.D.M.

11:30 AM 38.0 580.25 500 7.50 61.0 16.1 1,048 651 158 365 1 00 PM 48.0 570.25 200 7.57 66.0 18.9 658 350 N.A. 127 1:45 PM 58.0 560.25 30 7.55 70.0 21.1 415 N.A. 36 N.A.

N.A. = NO ANALYSIS I .D.M. = LESS %QN DETECrION LIMIT OF 25.0 ng/1 DUE lQ M~GX

DZVm m VATIC ~ATIm LEVEL 4.8 FEZr SI'ATIC HATER ELEVATION 606.98 FEEI'GVD BORING NO HP-22 COORDINATES:

E 1394130.47 N 179534.51 GRADE EL. 611.78 FEEI'GVD DATE OF QQ&LE SAMPLE . SAHPIZ SAMPLE DEPIH ELEVATION V0IlÃE pH TRPERAIUIK KS KOIlM SULFATE COLUKI'ION TIME FEEI' Fl'GVD. ml . su F C -mg/1 ng/1 ng/1 1 23.AIR.91 1:30 B4 13. 0 i 525 6.63 70.0 21.1 974 653 298 289 23.0'98.78 '0.0 2:15 B4 588.78 525 6.82 68.0 549 457 277 113 3 OOBf 4:30 E8 4:40 PH 33.0 43.0 53.0 578.78 568.78 558.78 525 525 500 7.79 7.25 7.76 66.0 66.0 66.0 18.9 18.9 18.9 764 518 350 439 258 199 98 79 41

'0215 40

DEPIH 'IO SIATXC WAT1% LEVEL 24.2 FEET SI'ATIC RATER EUWATION 596. &3 FEEI'GVD RXUNG NO HP-23 OXNDINATES:

E 1393904.27 N 179523.80 GRADE EL. 621.03 FEET .NGVD DATE OF SAMPLE SAMPLE SAMPLE SAMPLE DEPIH ELEVATION UOIIME pH TBPEBATURE KS SODIUM SULPXIE CQLLBCTXCN TIME FEET FI.'GVD ml su F C m/1 m/1 m/1 1 11.AU .91 1:50 PH 28.1 592.93 525 6.87 58.0 14.4 460 528 160.4 206 3 3084 38.1 582.93 525 7.96 . 64.0 17.8 750 685 143.9 321 4:00 R 48.1 572.93 525 7.95 64.0 17.8 1294 1280 224.1 698 5:00 N 58.1 562.93 8.00 66.0 18.9 291 288 N.A. 23

DEPIH 10 SZATIC WATER L1WEE 35.8 FEET SZATIC HATER IX&ATION 604.51 FEET NGVD BCjEGHG NO OXNDINATES:

~2 E 1393647.95 N 197466.93 GRADE EL'40.31 FEET NGVD DATE OF SAMPLE SAME~ SAME~

DEPIH ELEVATION VOUS TBPERKURE 'IOS SODHH SUIZ'ATE SAMPLE COLLHCFION TIME FEEI'Z NGVD ml pH su F C mg/1 ag/1 mg/1 4

1 10.AU .91 2:30 M 43.3 597.01 . ~ 500 8.34 60.0 15.6 767 716 121.2 318 4 OOBf 53.3 587.01 525 '8.19 64.0 17.8 505 424 123.2 151 5:15 PM 63.3 577.01 530 8.19 64.0 17.8 998 889 102.3 509 4 11.AU .91 8:50 AM 73.3 567.01 500 '.44 62.0 16.7 547 492 71.5 166 5 10'00 AM 83.3 557.01 250 7.90 64.0 17.8 268 322 N.A. 47

DEPIH %) SZKTIC WATER LEVIK 36.1 FEET STATIC WATER IKKVATION .611.31 FEET NGVD KKUNQ NO HP-25 COOL)INA'.IES:

E 1393349.43 N 179352.10 GRADE EL. 647.41 FEET NGVD

')

DATE OF SAMPLE SAMPLE SAMPIZ SAMPLE DEPIH ELEVATION VOIIHE pH TEMPERAKVRE SODHH SUCS'ATE COLLBCFION TIME FEET FT NGVD ml su F C ag/1 ng/1 mg/1 1 9.AM.91 43.0 604.41 '. KXOVERY 5:25 M 51. 0 596.41 500 7.70 66.0 18.9. 628 304 10.4 8.3 3 10.AM.91 9:00 AM 63.0 584.41 525 7.51 61.0 16.1 754 706 45.4 334.0 4 10 00 AM 73.0 574.41 525 7.87 62.0 16.7 384 334 28.3 114.0 5 11 00 AM 83.0 564 '1 500 7.17 61.0 16.1 330 283 31.7 8.7-

KRING NO ~26 DEPIH I SHOD HATER LEVEL 21.4 FEET STATIC WATER ELEVATION 597.14 FEET NGVD GMBDINATES:

E 1394671.98 N 182101.75 GRADE EL. 61&.54 FEET NGVD DATE OF SAMPLE SAMPLE SAK~

SAMPLE ~ DEPIH EU'.VATION VOIlHE p8 TKHPRRAXUBE KDS SODHH SULFATE COLLHCFION TIME FEEP FZ NGVD ml ~ su F', C mg/1 ag/1 mg/1 1 25.AIR.91 2:25 PH 28.0 590.54 -'50 7.57 65.0 18.3 448 354 29 41 3:00 K8 38.0 580.54 500 7.22 72.0 22.2 853 443 66 37 3:45 M 48.0 570.54 500 7.20 70.0 21.1 765 414 84 25 4:30 PM 58.0 560.54 450 7.45 71.0 21.7 631 360 51 11

/

l Appendix 4 I

~ d P 1

'I Tables, f ~

I I

I 1

I I I I

-' I h

I I'

~-

1,

."~r hah Z'"the 1'hh~,"-"~~(~-""1~/AD"',"',g>>';>"."

~ - ~ go, ', "'" ><) 'g7.

I

'gII y -PZ 0',ahh 11, 8'1I fh 4 I

g ~ -y g"lP'IINh Qh rl g jh . $g 1P N~P, 1 Q9)+) b I'

\ *'. ~, ~

II I

I

'I ,- ~ '. 'I I

h

~-

1 f <<NeAr" ~

P 4

'pv II Pl vv

'I

" "5 ~ '

g

' 'F

'ABLE NO. 1 PRECIPITATION DATA BENTON HARBOR AIRPORT, MICHIGAN (inches) 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 JAN 2.43 2.04 5.34 3.73 2.61 2.33 3.32 N/A 0.42 ~ 48 N/A ~ 89 . 64 FEB 2.14 .85 1.37 2.70 3.48 1.96 0.84 N/A 0.91 3.55 N/A 1.01 , 1.40 MAR 3. 57 2. 57 5. 22 2. 29 4. 23 3. 17 l. 27 N/A 1.78 1.48 8/A 2.42 1.17 APR 3.57 4-18 4.49 5 '6 5.01 2.72 3.73 3 '9 2 '1 4-23 .23 4.42 3.91 HAY l. 96 4 ~ 43 5 ~ 39 3. 94 4. 25 0. 92 2. 58 1. 55 2. 88 4.64 6.24 3.91 6.14 gUN 3.77 4.89 3 ~ 79 4.56 3.26 4.02 4.32 3.34 3.85 4 68 1 74 1 38 1 54 JUL 2. 68 4." 59 .89 2.34 3. 06 l. 54 3. 93 2. 56 3. 36 2. 01 3;60 l. 33 3. 46 AUG 3-33 1.65 1.79 6.21 0.61 5.11 3.35 2.18 7 ~ 10 2.40 1.81 1.67 2. 44 I

5EP 7. 00 3.41 3.4 & l. 56 1'. 74 6. 88 6. 91 N/A 5. 81 5. 08 3. 36 4. 46 8.44 OCT 3. 27 4. 04 2. 29 1.19 1.78 3.47, 2.69 N/A 2.71 2.8& 0.98 1 92 2. 92 NOV 2 67 24& 3 72 3.7& 2.36 2.58 1.48 N/A 1.41 2.28 5.15 2.68 2.46 DEC 6.04 4.82 2 ~ 27 3-64 1.4S 2. &S 2.83 2. 98 1. 64 2. 37 5. 90 2. 98 2. 37 ANNUAL 41. 93 39. 95 40. 04 41. 74 33. 84 37. 55 37. 25 N/A 34. 58 36. 08 N/A 29. 07 36. 89 DEPART.

FROM 5-&9 3.91 4.00 2>>20 1-51 1.21 N/A -1.46 .04 N/A 6.97 0 48 NORMAL N/A = Not Available

TABLE NO. 1 CONTINUED PRECXPITATION DATA BENTON HARBOR AIRPORTS MICHIGAN (Inches) 1985 1986 1987 1988 1989 1990 1991 JAN 2 '1 1 ~ 28 1 ~ 28 1 ~ 54 0 ~ 63 1 ~ 28 1.12 FEB 2 '4 2'9 0 0 0 '7 0 ~ 67 2 70 0.48 MAR 5 '1 1 ~ 23 0 93 - 2 ~ 64 2 ~ 39 F 51 4.27 AP 2 '1 2 '7 1 ~ 59 4 '2 2 '9 3 '7 5.35 2 '2 4 '6 2 46 1 ~ 67 2 '0 F 84 3.67 JUN 2.59 4 F 88 2.46 0 ~ 15 4 73 2.17 JUL 3.84 4 '7 3 22 0 '9 6 ~ 94 2 '4 AUG 3.40 2 '4 8 '9 2 '1 5 '6 5 '6 1.89 9.92 2.55 F 84 3 '2 5.74 OCT 4 '9 3 '3 2 ~73 5 '4 1.27 2.94 NOV F 15 1 ~ 21 1.80 5.92 '. 2 16 5.16 2 '6 0.95 2 42 1 ~ 44 . 1 ~ 85 5.74 ANNUAL 41~ 31 40 ~ 53 29 ~ 63 30 ~ 13 34 ~ 1 1 N/A DEPART.

FROM NORMAL 4 '0 N.A. -6 78 -6 '8 2 '0 N/A

TABLE No. 2 BASELINE WATER TABLE ELEVATIONS (National Geodetic Vertical Datum 1929)

SURFACE GROUND WATER BORING NO. ELEVATION GROUND WATER DEPTH DATE, ELEVATION (feet) (feet) (feet) 601.4 ll. 0 7-21-66 590 '

664.4 62.0 7-.28-66 602.4 641.6 53 3 11'-23-66 588. 3 621. 8 37. 3 11-23-66 584.5 605. 2 18. 2 11-23-66 587-. 0 584. 3 1.5 11-23-66 582. 8

~ 583. 5 2.2 7-23-66 581. 3 605. 8 9.8  ?-23-66 596.0 596. 8 8.7 11-23-66 588. 1 10 600. X, 9 2 11-23-6 6 590.9 625. 4 23. 11-23-66 602.4 0'4.

12 625. 5 5 7-25-66 601.0 13 605. 6 3. 5 11-23-66 602.1 616. 7 7.9 11-23-66 608.8 603. 8 7.2 11 66 596. 6 16 658. 4 51. 5 7-23<<66 606.9 17 588. 5 6.0 11-23-66 582 ~ 5 18 613. 0 6.2 11-23-66 606.8 592. 7 10. 0 8-4-66 582.?

SASEIJNE WATER QUALITY (mq/1)

OANES S NOORE SANPXZ SORVET 810 ga Ng Na K g(30 50 4 Cl F q0 Total Total 2 3 3 Nard. Solids 9 Wells (40-60 Ft. Oeep) 12 24 10 245 306 17 Wells (60-160 Ft. Deep) 13 38 20 256 327 0.9 10 Wells

( 160 Ft. Deep) 13 25 17 262 307 C. 5 30 16 255 3).6 0.-6 O.C Cook' PotabLe Mell No. 1 Harch 21, 1972 8 73 22 10 4.0 257 28 50 0 29 0 7 275 398 ft Mell flu'ch No. 2 21, 1972 11. 2 67 21 10 3.2 249 28 44 0 29 0.8 255 '83 Upqradient Observation Well No. S 9.5 76 3 ~ 2'19 ~ 5 '436

/Otal Values for observation dwell No. 8 are aedian values for period of oonitorinq froa Suly 1, 1977 to Oecember 31, 19S4

TABLE NO. 4 DISCHARGE TO THE TRS PQQ (AVERAGE DAlLY DISCHARGE PER ICRITH)

QJT FALL 374 FLM NCQ 1976 1977 1978 1979 1980 1981 1982 1983'984 1985 1986 1987 1988 1989 1990 1991 0.33 0.56 0.44 0.36 - 0.51 0.50 0.47 0.51 0.44 0 55 0.39 0.34 a.45 o.82 FEB 0.31 0A2 0.43 0.50 0.61 0.33 0.48 0.49 0.38 0.51 0.64 0.36 0.35 0.38 0.84 0.36 0A4 OA2 OA8 0.61 0.55 0.5'I 0.54 0.40 OA'I 0.58 0.37 0.49 OA5 0 . 53 0.38 0A2 0.25 0.48 0.59 0.49 0.63 0.39 0.62 0.44 0.72 0.38 0.35 0.39 0.68 IWY 0 19 0.36 OA6 0.53 0.59 0.50 0.67 0.35 0.63 OA1 0.26 o.24 0.28 0.36 0. 78 0.33 0A5 0 51 0.37 0.53 a.58 . 0.68 0.39 OA3 0.68 0.25 0.14 0.50 0.61 0. 75 0.40 0A4 0.63 0.81 0.37. 0.50 0.39 0.61 0A4 0.34 0.68 0.39 0 13 0.47 0.58 0.51 0.47 0.39 0.54 0.84 0.47 0.40 0A2 0.33 0.35 DAO 0.59 0.39 0.31 0A2 0.51 I

0.44 0.35 0.68 0.48 0.44 0.50 0.53 0.33 0.39 0.35 0.61 0.45 0.29 0.34 0.64 0.42 0.33 0.62 0.45 OA4 0.42 OA8 0.40 0.38 0.42 0 57 0 60 0.28 0.27 0.71 0.34 0.48 0.58 0.44 0.27 OA2 0A6 0A1 0A9 0.50 0.49 0.60 0.33 0.39 0.75 DEC 0.39 OA7 0.70 0 40 0.30 0.53 0 37 OA2 0A7 0.49 OA4 OA8 0.30 0.39 0.62

DONALD C. COOK NUCLEAR PLANT CRmWDMATER DISCHARQE NNITORING Table No. 4 continued SAHPLE MELL 1A MELL 8 MELL 11 MELL 12 DATE QUARTER SULFATE TDS LEVEL SULFATE TDS LEVEL SULFATE TDS LEVEL SULFATE TDS LEVEL 11/29/76 200 52.5 4.9 422 7;66 169.5 634 9.5 2/25/77 74.9 150 60.8 42.7 5CB 241.6 598 11.2 244.2 18.8 7/24/77 2Q77 176 58 1.3 496 29 9.25 32.3 17.75 8/19/77 3Q77 4.1 174 59.25 9.9 7.83 265.8 4.25 304.5 12.25 11/14/77 CQ77 162 59.33 9.5 6.83 329.2 598 9.25 283.1 570 17.75 2/11/78 1Q78 110 58 49.4 414 . 6.67 257 694 8.5 548 15 5/12/78 2Q78 12.4 21C 57.6 210 293.8 7.8 307.8 618 16.8 8/11/78 3Qre 27.1 350 52 6.6 255 320 332 640 3.3 11/8/78 CQ7e 11.5 180 54 0.8 356 716 265 12 3/6/79 1079(l) 134 59 247 600 257 624 18 3/26/79 1Q70(2) 244 53 408 556 12 6/25/79 144 608.24 I.e 246 608.7 151 462 604.97 169 452 595.78 8/4/79 3Q79 176 605.74 608.2 216 428 606.17 C78 596.95 12/4/79 4Q79 20 234 616.74 21 370 608.2 229 750 602.97 163 494 596.95 3/4/80 1080 220 604.66 608.2 248 694 602.64 301 592.15 6/2/80 2QBO 170 604.74 29 312 608.37 310 718 602.8 654 599.68 8/3/80 3QBO 308 602.24 608.7 279 786 602.85 312 698 593.95 12/2/80 4QBD 94 568.74 602 598.37 333 606 583.14 82.5 296 594.1C 3/3/81 1Q81 186 604.54 358 608.58 285 700 601.85 596.53 6/2/81 2081 35 570 612.6 398 609.47 205 660 602.18 236 596.36 8/3/81 3Q81 98.2 292 609.1 364 608.72 176 410 603.73 112 422 599.23 12/10/81 4Q81 117 298 609.6 3C2 608.72 157 390 602.43 174 C50 598.03 3/4/82 1Q82 28.8 81 605.6 31 C12 610.72 190.9 456 602.6 221.3 434 599.53 6/2/82 2082(1) 170 398 610.77 24 670 609.3 170 414 599.85 152 342 596.11 7/7/82 2Q82(2) 71 334 609.81 8/31/82 3082 420 611.6 13 272 609.47 12'I 444 602.93 158 45C 595.53 12/7/82 CQ82 151 320 605.6 514 608.72 221.4 594 601.26 410 595.53 3/8/83 1Q83 202.5 456 606.1 18.1 780 609.7 228 546 599.43 216.5 597.53

. 6/9/83 2Q83 386 605.68 17.3 438 6'10.53 242 538 601.93 118.5 410 596.03 9/6/83 3083 10 268 .605.5 566 607.95 345 422 601.68 225 504 597.78 12/6/83 4Q83 149 464 604.77 16 406 607.22 234 694 599 43 525 593.78 3/6/84 1Q84 269 604 606.1 200 518 609.9C 209 842 599.93 239 595.53 6/18/84 2084 383 760 606.52 10 480 609.22 370 599.85 398 744 593.66 9/4/84 3Q84 139 620 604.93 25 350 607.3 242 1018 599.93 159 760 593.86 12/4/84 421 900 606.C3 454 608.3 243 1088 598.51 244 1008 593.61 3/7>es IQBS 370 1044 606.93 510 610.47 405 1174 599.56 290 1150 594.2 6/14/85 2QBS 256.7 576 607.97 340 609.3 294 1052 601.35 364.5 593.7 9/3/85 3Qes 125 396 . '07.1 16 476 607.72 316 762 600.'18 446 594.28 12/5/85 CQBS 652 608.43 32 546 609.55 3C9 690 600.35 698 594.45 3/10/86 1086 419 607.6 90 438 609.22 444 726 600.18 362 700 594.95 6/2/86 2Q86 537 607.6 43 700 '09.14 410 876 600.35 462 594.03 9/3/86 3Q86 210 524 609.52 19 ce6 60e.SS 280 768 601.6 250 595.45

DONALD C. COOK NUCLEAR PLANT 0 Table No. 4 continued TER DTSCHARGE HONTTORlNG SAMPLE MELL 1A MELL 8 MELL 11 NELL 12 DATE QUAR'lER SULFATE TDS LEVEL SULFATE TDS LEVEL SULFATE TDS LEVEL SULFATE TDS LEVEL 12/10/M 4086 320 633 606 35 609.61 370 365 601.23 594.93 1/10/87 1087 440 606.1 49 603.82 440 SC1 596.C3 390 763 592.23 5/13/87 2087 595.52 400 71C 601.01 350 721 594.78 8/27/87 3087 360 601.6 13 430 607.42 78 280 599.23 340 658 593.23 11/23/87 4087 360 606.7 33 387 608.62 715 601.23 738 594.23 2/24/M 1Q88 380 640 60S.6 370 614.91 1100 2250 598.53 1100 2260 598.23 6/1/88 20M 3CO 620 604.6 29 609.62 1140 5M.83 400 700 593.53 9/1/88 3088 98 220 601.7 31 182 609.92 200 C39 598.63 710 982 594.93 12/6/88 408S 29 602.6 38 603.92 520 722 598.63 190 361 593.03 2/16/89 1089 290 630.3 32 607.92 941 598.03 300 658 592.53 4/20/S9 2089 18 182 603.93 16 382 607.72 SOO 856 596.93 580 922 589.86 8/1/89 3Q89 274 605.7 74 609.97 410 764 600.43 530 962 594.73 10/3/89 4089 140 58 605 15 CC5 608.55 520 1030 588.51 450 593.86 1/8/90 1Q90 420 780 605 ' 13 470 609.32 470 950 598.53 390 850 593.73 4/16/90 2090 480 740 607.5 26 490 609.7 460 770 599.41 970 594.93 7/10/90 3090 450 750 607.7 33 609.61 420 790 602.38 510 880 595.95 10/24/90 4Q90 230 609.6 13 370 609.92 270 540 604.03 260 530 598.58 Page 2

Table No. 5 Static Water levels (measured October 26, 1990)

Top of Static Casing Depth Water (Ft.) 'Ft.

Well El. To SWL Level No. (Ft. NGVD) NGVD)

RP RP 1

2 659.39 627.74 70 30

'8

'3 588.81 596.91 RP 615 72 5 '3 609.89 RP RP 4

5 3

596.73 596.99 8 42 10.42 588 '1 586.48 RP 6 '596.84 7 '6 589.18 RP 7 677.06 76.00 601.06 EW 1A 661.60 50.25 611.35 11 '608.43 4.42 604.01 EW EW SGR 12 1

610.45 618.18 12.25 7 92-598 '0 610.26 609 '0

~

SGR 2 617.32 7.42 SGR SGR 5 4 616 '1 624.36 7 25

14. 66 608 '6 609.70 RP Radiological Protection Monitoring Well EW Environmental Monitoring Well SGR Steam Generator Storage Monitoring Well

Table No. 6 CONCENTRATIONS OF Na & SO4 ALONG THE COOK PLANT SITE'S SOUTHERN BORDER ENVIRONMENTAL STAT1C ELEV. TDS NA CONC. SO4 CONC.

WELLS (FT NGVD) (PPM) (PPM) (PPM) 13 599.62 312 20 89 14 603.23 308 28 54 15 605.31 162 9.2 31 16 610 '3 440 67.5 51

TABLE NO. 7 CUT gl: CONCENTRATIONS OF Na & SO4 ALONG HP's 3 2I 37 13 14 & 26 SAMPLE HORIZONTAL GROUNDWATER SAMPLE NA 804 DIST ALONG STATIC ELEV ELEVATION CONC. CONC.

CUT g1 (FT) .(FT NGVD) (FT NGVD) (PPM) (PPM)

HP 3 0 608.66 605 96 131 407 HP 3 0 608.66 595.96 164 HP 3 0 608.66 585 '6 186 336 HP 2 162 234 607 '5 587 F 05 339 HP 2 162.234 607.55 577.05 176 511 HP 17 540 '72 601.19 594.09 87 ' 210 HP 17 540.872 601.19 584.09 133.5 400 HP 17 540 '72 601.19 574.09 104.6 270 HP 17 540.872 601.19 564.09 98 ' 280 HP 17 540 '72 601.19 554.09 17 ' 400 HP 13 1263 '9 601.3 595.1 5 HP 13 1263.59 601.3 585.1 64 '

HP 13 1263 '9 601.3 575 1 23 '

1263 '9 F

HP 13 601.3 565.1 18 31 HP 13 1263 '9 601 ' 555.1 23 36 HP 14 1690.57 600.66 595 '6 as 44 HP 14 1690 '7 600.66 585.76 23 33 HP 14 1690.57 600.66 575.76 23 24 HP 14 1690.57 600.66 565.76 21 ' 5.3 HP 14 1690.57 600.66 555.76 29 HP 26 2209 '2 597.14 590 54 29 41 HP 26 2209 '2 597.14 580.54 66 37 HP 26 2209 '2 597.14 570.54 84 25 HP. 26 2209.12 597.14 560.54 51 al

, TABLE NO. 8 CUT 42: CONCENTRATIONS OF Na & S04 ALONG HP's 18-23; EW 1; HP 24 & 25 SAMPLE HORIZONTAL GROUNDWATER SAMPLE NA SO4 DIST ALONG STATIC ELEV ELEVATION CONC. CONC.

CUT g2 (FT) (FT NGVD) (FT NGVD) (PPM) (PPM)

HP 18 0 607.08 597.18 33.6 34 HP 18 0 607.08 587.18 27 ' 36 HP 18 0 607.08 577.18 75 HP 18 437.116 0 607.08 567 '8 7.3 32 HP 19 609.07 597.67 23 22 HP 19 437.116 609.07 587.67 49 48 HP 19 437.116 609.07 577.67 73 42 HP 19 437.116 609.07 567.67

'P 20 642.483 610.16 604.76 39 21 45 28 HP 20 642.483 610 '6 594.76 42 39 HP 20 642 '83 610.16 584.76 94 47 HP 20 642 '83 610.16 574.76 60 28 HP 20 642.483 610.16 564 '6 45 41 (i HP 21 811.29 605 '5 600.25 30 24 HP 21 811.29 811.29 605 '5 590 '5 35 25 HP 21 605.95 580.25 158 365 HP 21 811.29 605 '5 570.25 127 HP 21 811.29 605.95 560.25 36 606 '8 0

HP 22 930.109 598.78 298 289 HP 22 930 '09 606.98 588.78 277 '" 113 HP 22 930 '09 606.98 578 '78 98 215 HP 22 930 '09 606.98 568.78 79 30 HP 22 930 '09 606.98 558.78 41 40 HP 23 1156.53 596.83 592 93 160.4 206 HP 23 1156.53 596.83 582.93 143 ' 321 HP 23 1156.53 596.83 572.93 224.1 698 HP 23 1156.53 596.83 562.93 23 EW 1 1335.36 610.77 610.77 110 420 HP 24 1631.53 604.51 597.01 121 2 ~ 318 HP 24 1631.53 604.51 587.01 123.2 15a HP 24 1631.53 604.51 577.01 102.3 509 HP 24 1631.53 604.51 567.01 71.5 166 HP 2'4 . 1631".53 604.51, 557.01 ~ ~ 47 HP 25 1951.41 611.31 596.41 10 ' 8.3 HP 25 1951.41 611.31 584.41 4'5. 4 334 HP 25 1951 '1 611.31 574.41 28 3 ~ 114 HP 25 1951.41 611.31 564.41 31 7 ~ 8.7

TABLE NO.

CUT g3: CONCENTRATIONS OF Na & SO4 ALONG EW 16'P > 15i 16t 4f sp 5, 6, 9-14, &

SAMPLE HORIZONTAL GROUNDWATER SAMPLE NA S04 DIST ALONG STATIC ELEV ELEVATION CONC. CONC.

CUT ga (FT) (FT NGVD) (FT NGVD) (PPM) (PPM) 16 0 610.33 610.33 67.5 51 EW HP 15 HP 15 756.307 756 '07 608 '5 608.25 601 '5 591.35 lsd

71 23 12 11 HP,15 756 307 608.25 581.35 69 HP HP 16 16 1352 '7 1352.67 606.14 606.14 600.54 590 '4

-" 26'55" 58 ~ ( ~

22 18 HP 16 1352.67 606. 14 580.54 11 HP 4 1655.85 610. 1 596 7 5.5 HP 4 a655.s5 610. 1 576.7 316.6 HP 8 1662.79 609.55 601.65 16 ' 25 HP 8 1662.79 609.55 591.65 24 ' 10 HP 8 1662.79 609.55 581.65 56 28 HP 8 1662.79 609.55 571.65 31 150 HP HP 5

6 2102.2 2105.85 604 603.62 596 '7 589.42 11 9 15 '

F 18 HP HP 9

9 2108 '3 2108.73 606.25 606.25 599.45 589.45 18 6.5 HP 9 2108 '3 606.25 579.45 37.5 HP 9 2108.73 606.25 569.45 10 '

HP 10 2528 '9 603.75 594.15 14 '

HP HP 10 10 2528.39 2528.39 603.'75 603.75 584 '5 574.15 30 19 NW 23 HP HP 10 11 2528.39 2956.68 603 '5 602.17 564.15 595.97 21 9 37 9.4 HP 11 2956.68 602.17 585.97 10 ' 14 HP HP 11 11 2956.68 2956.68 602.17 602.17 575 '7 565.97 13 8..-

20 32

~

HP 12 3325.64

'4 603 '1 596 '1 8 120 HP HP 12 12 3325 3325.64 603.61 603 '1 586. 21 576 '1 '9

13. 5 19 40 HP 12 3325.64 603.61 566 '1 25.5 30 HP 12 3325.64 603.61 556 '1 26 36 HP HP 13 13 3592 '9 3592.89 601.3 601.3 595.1 585.1 64 '

5 29 29 HP 13 3592.89 601 ' 575.1 23 ' 31 HP 13 3592.89 601 ' 565.1 as 31 HP HP 13 14 3592 4019

'9

'7 601 '

600.66 555.1 595 '6 23 18 36 HP HP 14 14 4019 '7 4019 87 600.66 600.66 585.76 575.76 23 23 33 24 HP HP 14 14 4019 4019

'7 F

'7 600.66 600.66 565.76 555.76 21.5 5.3 29 HP HP 26 26 4538.43 4538.43 597.14 597.14 590 '4 580.54 29 66 HP 26 4538.43 597.14 570.54 .84 HP 26 4538.43 597.14 560.54 51

f.

HONZTORI A POTABLE SUPPLY WELL NO. 2 (mg/1)

TABLE NO. 10 Na. Cl Hard Sp. Cond.

DATE S102 Ca M9 HCO SO4 F NO TDS . PH Cac03 A 25oC 3/21/72 11. 2 67 21.4 '0 3. 2 249 27.6 '3.7 0.29 0.8 383 255 7.68 570 1/31/76 8.0 57 16.4 8.6 2. 1 202 31.3 25.2 0.1 0.8 298 210 7.4 491 8/3/76 7.4 63 16. 4 13. 0 1. 7 233 25.4 22.4 0.14 0.07 326 228 7.1 447 1/31/77 5.4 60 16.6 12 2.3 29 0.36 0.07 293 218 3/16/77 7.3 57 15. 9 10. 4 2. 6 198 29 22 0 4 2 4 300 207 6.8 386 8/1/78 7.8 65 16.9 13 2.5 199 50 25 0.34 0.0 392 232 7.1 491 1/5/79 7.0 66 16.5 12 3. 3 239 30 20.6 0.2 0. 0 337 232 7.3 370 8/2/79 8.7 82 18.3 76 4.1 199 195 18.7 0.4 5. 6 604 280 7.4 747 2/13/80 3.6 58 18 74 2.1 190 200 17. 5 0. 36 1.3 566 218. 7.1 625 8/5/80 8.3 57 16 56 2.4 203 130 14. 9 0. 34 6.0 476 208 7.5 573 2/3/81 8.2 60 14 83 2.9 147 240 19. 4 0. 32 1.6 578 207 7.2 743 8/3/81 7.9 62 14.6 171 5.0 ',139 460 40 0.1 0.18 881 215 7.0 779

\

12/17/81 8.3 54 15.5 105 1.5 142 305 14.6 0.1 0.37 627 7.5 695 2/1/82 7.5 62 16.1 80 3.3 187 185 18.8 0. 1 0.01 539 5.9 555 5/3/82 5.7 . 52 14.2 115 2.0 320 17. 9 0. 13 0.03 666 6.6 753 8/3/82 9.0 45 12. 9 115 2.5 145 260 18 0. 11 0.17 608 6.4 610

10 CONTINUED CONTINUED Hard Sp. Cond.

DATE S102 Ca Mg Na K HCO3 SO4 Cl F NO3 . TDS CaCO> pH 9. 25 C 2/8/83 8'.8 44 13 75 5 1.4 156 180 13.82 0.14 0.06 424 163 ' 7 ' 412 5/2/83 8.9 51 14 69. 1 1. 3 149 195 14. 82 0'. 17 0. 10 504 7. 3 453 8/2/83 8.1 55 17 93. 9 2. 6 184 205 23. 93 0. 15 0.17 579 205.6 7.1 481 11/11/83 7.8 59 17 44.9 0. 1 208 142 22. 27 ND 0. 14 460 216 7.4 375 2/7/84 9.4 54 17 79.3 2.6 191.4 248 19.02 ND 574 205 7.7 661 5/1/84 8.3 54 17 77.1 1.5 220 201 17.3 ND 0.08 571 204 7.2 652 8/1/84 7.1 72 19 73. 1 3. 1 2)39 180 17. 0 0. 20 0. 01 574 258 7.8 780

  • Hone Detected 40.1 mg/1 Fl Hone Detected ~0.1 mg/1 NO

HON ITORI A POTABLE SUPPLY WELL NO. 1 (mg/1)

NO. 'ABLE ll OATE SiO Ca Hg Na K SO Cl P NO TDS PH Sp. Cond.

HCO3 3 CaCO A 25oC 3

3/21/72 8.0 73 22. 4 10 4 257. 3 27. 6 49. 5 0. 29 0.7 398 274. 5 7 55 597 1/31/76 8.0 70.2 18.2 8.5 1.7 253 2 44.7 19.9 0;1 1.8 344 250 7.3 563 8/3/76 6.7 56 15.6 11.5 2.1 199.4 28.6 22 0.14 0.07 305 204 7.4 397 1/31/77 3.7 67 18 8 12 5 2 1 26 0.4 0. 07 308 244 3/le/77 8.2 18. 5 14. 3 2.7 243. 5 24 30.3. 0.64 . 0.02 350 241 7.0 1/31/78 10 61 19 16 2.9 236 22. 5 32 0. 32 0.0 334 230 7.1 465 8/1/78 10 63.5 15.8 12.1 2.3. 232.3 48 23.2 0.32 0.0 344 223 7.4 385 1/6/79 7.5 14.9 17.5 3. 3 204.2 70 36.4 0.2 0.0 361 221 392 8/1/79 7.2 78 17. 9 42 3. 2 226. 8 114. 0 17.4 0.38 5.8 457 268.5 7.2 ~ 584 2/2/80 7.1 54. 18 13 1.7 242.6 42 15.3 0.28 1.6 378 209 7.1 8/4/80 5.6 65 17.4 62 2.5 198.5 135 15.2 0.34 490 233 7.5 564 2/11/81 9.1 60 17 19 236 67. 5 15.4 0.32 3.6 416 219 7.0 495 8/3/81 8.2 61 15.6 28.5 2.4 238 55 55 0.1 0. 15 389 217 7.0 '29 12/17/81 11 59 17 3 18 ' 0 8 232 67.5 20 ~ - 0.1 0. 29 354 415 2/2/82 8.1 68 16.8 17.9 . 3.2 234 30 23 0. 1 0. 04 430 6.5 373 5/4/82 4.9 18.3 19.3 2.5 227 70 28 0. 1 0. 01 410 6.5 475 8/2/82 9.9 68 18.7 64 2.2 313 80 19 0. 1 0. 17 512 6.6 5Q6

TABLE HO. 11 CONTINUED CONTINUED Hand Sp. pond.

Date Si02 Ca Mg Na K HCO3 SO4 Cl NO3 TDS CaCO> PH Q 25 C 2/7/83 9.8 44 13.7 77. 5 l. 6 252 28 29.23 ND* 0.04 33& 110

  • 7.5 3. 00 5/2/83 7.4 51 14.2 68.7 1.3 149. 205 16.42 0.19 0.05 527 7.1 451 8/2/83 9. 5 73 18. 5 23.0 l. 3 229 68 28- 23 'D 0-14 426 258 6.9 358 11/11/83 9.8 60 16.7 29. 2 1~4 219 92 23.23 ND 0.13 406 217 7.4 324 2/6/84 10. 9 59 14. 9 20. 9 2.1 233 10 26. 83 ND 0.2& 325 207 7.5 428 4/30/84 9.5 50 15.8 20.4 l. 1 234 23 .35- 0 ND ND 348 190 7. 0 376 7/30/84 9.4 71 15.7 16.2 22 236 "17 33.7 0.20 0.03 382 241 7.7 520 ND None Detected < 0. 1 mg/1 Fl

Appendix 5 Figures C - h h

1

)u

~ >> ~

'9, ~~JS"'1>>

4 14

~ \ ~ ~

'I

'(.',"g

~ '

~: v-C rt 4+

y A 'I

(

e','i,':g t;- ~ W<gig+jiglr~",',I~A+~$ .',i~C> '& 'Pf 'Cjt .u~Nf~+4~'+gggP~Py, y1+~A >"~$

II I

1 II f

p I

"'v I

C P

r

-~ I iI

"'r .r

~ D

LAIIC IICI<Ck I<

I .~

n

~ I '~ i '>I P .~ ~~P-. A~

I sa<

/ IIl

~ ~

P" . ~:- eP ss

<a

~O >

~ I

-g p ~

(~rI

/g O< ~

~ 4 A Figure No. i

~ ~ ~ ~

a Is<, ~ II'j ~ I I<

PLAN

i AooNO Sv1rAcc cvcTACIO Strut SANO OVNC SANO

~ cAOM ocrosl ~

L SIT S40 t~)k kh I 1 vAAc ocrost fC 4- I g

Q I AP I. \ ~ 5

$20 CS

~< ZOO

't I OI.ACi'AV T<<< ~~rt TTS LPNV ~

~ Cor010 SNALC SECTION h-h 6JO

~ OVNO SVATACC CVCVATION~

0 flO WWwWWWIWNINWIOI

~

wwwwWWIWWWW AAIC+ CTCN CIT SA 'VNO OVNC 'SANO SC JSO L ~ OIITTIIlolISI" IISIISSt t. 4htclhtilt ICAL htltt a~l6%iii St,'5 .

sc.'.P-",".-'-'~~gth'Oli".NC~)P@P/IJJ)'i x $70 P CIt AAc o~croSI I '4 ~4<'Ai';,at+<~ r'd)1'+s Qwg)ak]g N

gab 'Li%

'V.'ECTION B-B K)AIZONtAN 5CAVC IN rttt O SOO COOO Figure No. 2.

NOCCT GEOLOGIC CROSS-SECTIONS .

SVOSVArACC CONOI TIOHS IVVVSCNACCO ASOVI. ACAt OOAAIHto 4 ~ ~ VTCAAOI.ATION 4CTACCN 401INOS ~ CON5COVCNTVT ~ TAA~ ACIOH5 ANION A1C VOT INOICA C) ST CNC C10$ $ SCCTION OAMNS 8 MODRR OAN hc csrcccco sctAccv 401INO I, CACION5 ~

5 J) UUA 1 I Incor I lfl'hV: Alrl 0'la'jB I

~

Colcll At j~ .VillQA }~+

~

~LAIS SAIL non 700 DOC 1 D Q

D 'L n

nn n eeo nnn 4 0 oono 0

hD nC ~ O1VVHO SUAAACI tLLVAII o Z Ilr D IA z I ocr OPC A 4 8-

nn n0?V C

II 0 l1 D0 AOVOO SUAt*Ct tLCVAIIOII 01 c noZ 620

~ nI 0

~ hA n~

OVIIt SAIIO OD L

~g 600

~ II OA~O AA<<A Lt" 1

II Lt

4. U VIVVI1) 1ALII n I IVIVI n ~

n I .Ir~irrlicl 0 Z D

~ I a seo 44Ig,rItLVA L

nP  ;; 'V;$O;I;;h i

~ I 0~ s 0 r 4 660

[If')

II 0o rt ~

~ lllr otros H

0 Z

640 j(I'I j)jltrlit .I 520

,I!

coo kj

<eo SECTION C-C HQDItldsIAL I Alt ~ rl Ittl Figure No. 3 0 SOO IOOO 460 O

I GEOLOGIC CROSS-SECTION CJ

I gj 660 4

O COV<<O SVATACC CLCV*TIOH ovwf strso C O O C ~sSOssssssslslsc Crss<<S<<<<l<<

0C

~ r CVCI 40 AAIC

~

CAO OVW C SA<<O 54 IIIT setr f 660 f

'IO 4 Acss ofto s I T 5!

ILSIC~I>uIjjLtMujjj'IjIjjll'Ijj L++IAW<i'71I4%~II

~$ 60 ISO 'l, P

ig[ISIII iAAC P oftoss I5+@ l,5 tIP!'gll I' I isis' ' jls L,'I 660 O

~

'Ipg II jj."g tF:."IBIIIISjls

'I';. Sj j(jib"jsliitjlls ZQg V 600

)I I

j silt '4'40

I j I M 4'IS ssrv.l ai' ~

""I

,lllhjllillllll'S LACI AL TI L 460 SECT1ON ~-n ssCAs 'SV A 5 s 5 4 t ff TOtOAO 5 ~' 0 500 1000 4 C ~ C:

1VSSVttACC C <<OI I ~" vVS >Aff stGVC (sf '4'As<<CO rr ~ ts rsr s

~, ~ f sf'f<<

40' s4lis C I ITCVT r ~ svlrsl ~ 5 sv sv ~ 5 s4OICAff) r C 55 'SC CA<< Sc cts fc fo Ac Arr secs<<o

~ L, All.,V.

GEOLOGIC CROSS-SECTION ~~~<<~ No- 4 DAMES 8 MOCSROS

PrI;URE g GENERALIZED PRECONSTRUCTION GQOVlfDWATER TMLE

)~ ENYiroNHCNYAL Hodrroewcj vecLa 10P4HE5 $ MOOR,E OOK,I+

0 l$

0 ~15 (~gQ~c O 0 x.v Cg 0

4og e s0 Q

0I.

0'r vnteI Obs. Wells 2, 3, 6, and 7 were discontinued after August, 1978.

Figuxe 6 Mass Balance of Quality Baseline'ater POTABL E POTABL E NELL NO.l V/ELL NO.2 SOg SOq CI CI HCO> HCO~

Total percentage of the ions is based on the. March, 1972 analysis

DONALD C. COOK NUCLEAR PLNT GROUNDWATER DISCHARGE HONITORING Pigure No. 7 sm T

A T 6i5 I

C 6io A 605 T ISA li E

8 6te le ii ~I'LL Q L

.E 5ss V

E

" 5so m6 iav 3av 4am ia7s ass sass era iavs ia7s aa7s @vs 4am iaso aio 3NN 4mo O> N

Picture No. 7 (Continued)

DONALD C. COOK NUCLEAR PLANT GROUNOMATER DISCHARGE HONITORING 6 620 T

A 6i5 I

C 6io

~RL iA X

A 605 T %LL ii E

A 600 ~~ i2 L I'LL i2 E sss V

E

" sao iQBi.2Ni 3Ni 4$ i iQ82 2N2 2N2 3Q82 4N2 iN3 2N3 3Q83 4Q83 iN4 2984 34 4N4 iQ85 2Q85 3085 4Q85 ti) S TDK SY NAfiTER

Picture No. 7

((:ontinued)

OONALO C. COOK NUCLEAR KANT GROUHDWATEfl DISCHARGE MONITORING 6

T 615 T

I C

610 ISA Q II %Ll 8 A 605 T IHL fA IHl. ii E

A 600

~ I'LL i2

'5 L

V E

L i6 2Q86 r~

3086 4N6 1087 2987 3mI7 457 iNB 2Q88 38 4N8 iQ89 2Q89 3QN 4N9 iQ90 2Q90 3990 450 TBK BY QNAlEA

FIGURE NO. 8 OONALO C. COOK NUCLEAR PLANT GROUNDMATER DISCHARGE HONITORING T

P 8OO T

MELL 12 L.700 p 600 I

S soo MELL 1A S

0 400 V

ii NELL 300 MELL 12 p

200 S

100 L NELL 1A I

p 0 4Q7$ iQ77 2Q77 3077 4077 iQ78 2078 3078 4078 1079 1079 2Q79 3079 4079 1080 2080 3080 XQ80 (0 8 TINE BY QUAATER

FIGURE NO. 8 DONALD C. COOK NUCLEAR PLANT GRQUNDMATER DISCHARGE HONITORING T

'2OO T

A L iooo NELL ii p

BM S

S 0 NELL i2 Mo V

E 400

/

S 0 200 L

I iJ NELL iA p 0 S i08i 208i 308i 408i i082 2082 2082 3082 4082 i083 2083 3083 4083 i084 2084 3084 4M4 i085 2085 3085 4085 li) t2)

TINE BY GUAATER

FIGURE NO. 8 DONALD C. COOK NJCLEAB PLANT 6ROVNDlfATER DISCHARGE MONITORING T

2500 T

A L

2000 D

I NELL ii iA NELL i500 S

0 NELL i2 8 NELL ii NELL iMO E NELL 12 D

5oo 0

L I

D

~ NELL iA i086 2086 3086 4086 i087 2087 308l 4087 i088 2088 3088 4088 i089 2089 3089 4089 iQ90 2090 3090 4mm

~ i

'i TINE BY QUARTER

FIGVRE NO. 9 DONALD C. COOK HUCLEAB PLAN 6BOUNDlfATEB DISCHARGE HONITOBINB 300 S

~

//

NELL 1f

~

/

L F

" iSO ii NELL T

E i2 NELL NELL i2 fA 4076 i077 2077 3Q77 4077 i078 2078 3078 4078 i079 iQ79 2079 3079 4079 i080 2080 3080 4080 I (il (2) \

TINE BY QUARTEA

FIGURE NO. 9 CONTINUED DONALD C. COOK NUCLEAR PLANT 6ROlNDMATEB DISCHARGE HONITORIHG S 300 NELL 12 NELL ii U

L 250 F

A 200 ii NELL

-T E 1M NELL fA NELL 12 100 1081 2081 3081 4081 1082 2082 2082 3082 4082 1083 2083 3083 4083 1084 2084 3084 4084 1085 2085 3085 4085 (0 (2) -.

TAHE BY 0UARTER

FIGURE N0..9 CONTINUED DONALD C. COOK NUCLEAR PLANT GROUNOHATER DISCHARGE HONITORING i200 i000 MELL ii 800 MELL 1A U

L F

A 600 ii MELL T

i2 MELL 400 200 V NELL 8 iG86 2086 3086 4Q86 iG87 2087 3087 4Q87 iQBB 2QBB 3088 4088 iG89 2089 3089 4089 iQ90 2090 3090 4090 TINE BY QUARTER

FIGURE No

~

ORAL~ QR ~ETRQMETER ROO UPPER CHECK VALVE

~ f:: 6 SAMPLE OISCHAROE PORT AOAPTQR TQ ORCJJHQ PEHETRQMETER ROOS QR I

I t

I SAMPLE CHAMBER LOWER CHECK VALVE L,

P SLiOE ASSEMBLY SQN. 4I 4 0I I

4 4 ~

4 4

4 SAMPLE %TAKE TVSE 4

4f 4 4s ORQQHOWA TER 4 4I FLOW PATH 4 0 I 4 I Q RtKl ORNE CQHE Overview of the Hydropunch Components and Their Functions O 4 zz~

lllbt COd '4K4

~

~ ~H racer Aom thceQI dI4 4h44I~.

~4

FIGURE NO. 11 Plan View Wells & HP Environ. Well 8 HydroPunch Location (Plan View)

~ HP 29

rHP 14 3000 rHP 13 rHP 12 WELL 11:

~ WELL lJ pp

~ HP 11 2000 .....:............'....;. )g. m... 3vCLL.G a..

11P 5r r HP 5.8r%

CBg HP 16g V/ELL 1 ~

1000 Q 22 HP '1 ~

HP 2Os HP 20r 13r HP 1Q'iVIA/s5+Oh/

.'LL RD

~ HP 18 WELL 18 1000 2000 4000

FIGURE NO. 12

<<1 S04 SO@ Concentration thru Cut 4I 610 600 t ' ~

590 ~~ ~ ~ }~ ..... ~ .

o 580 ~~

Q ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~

}~ ~ ~~~ ~ ~--

670 ~~ ~ l 560 ~ l ~

550 a 600 1000 1500 2000 2500 DSTANCE

FIGURE NO. 13 tl Na Na Concentration thru Cut. 4 I 600 ~~ ' ~~ '

~ ~ 5 ~~~ ~~ ~~ ~~~ ~ t ' ~~ ~~~

590 ~ ~ ~ ~~ ~~

} ~ ~ ~ ~~

o 580 ~~ 4 O

CV 570 ~ ~ ~~ ~ ~ ~ ~~~~ l ~ ~~ ~ ~~ ~~~ ~~

560 ~ ~ ~ ~ ~ J ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ r

'tr 550 500 .1000 'l500 2000 2500 DSTANCE

FIGURE NO. 14 02 S04 SO@ Concentration thru Cut 4(2 620 610 r ~~ ~ ~~ ~~ ~ ~

. ~ -- ~ ~ ~ ----r" .-.- ---k --- r

~ ~ ~ ~~ 6 ~~

O

~ 590 ~~~ ~~~~ -~- ~ ~ ~ ~ .-- I-- ~

5

~ .

< 580 ~ ~ '4 ~ ~~ ~ ~ ~ - ~ ~ -~ ~ ~

.g -~

a70 ~ ~

8

~

~

550 0 500 t 000 1500 2000 DISTANCE

'a:IGURE NO. 15 82 NA Na Concentration thru Cut 42 620 610 600 ~~ ~ ~ ~ ~ ~ V

~ 590 e 580 ~ ~~~ ~ ~ '4 ~ ~ ~ ~~ ~ ~ ~~~ ~

570 ~ ~ ~~ 4~

560 550 0 600 1000 2000

. OISTANCE

FIGURE NO. 16 P3 SO~

tl 804 Concentration thru Cut 43 620 1 0 6io '\ ~ ~

S 600 e

~ 4 ~ ~

~...... 5 ~.....

LLj a90 ~~ ~~~~ ~ ~ ~~~

x CL

< 580 ~~

4 ~

570 ~ ~ ~ ~ ~~ ~~~ A ~ ~ ~ ~~~ ~

560 550 0 i000 2000 3000 4000 5000 DISTANCE

FIGURE NO. 17 8'3 'Na Na Concentration thru Cut 43 620 610 t ~~~ ~ P ~~~

~~~ ~~~~ ~~ ~ ~

590 ~~~

J~ a............ ........... ~.....

~

~

Qg

< 580 G9

~~ ~~ l

~ e 570 ~ ~ ~ A ~~ ~ ~~ ~1~ ~~ ... ~ .

560

~ ~

550 0 1000 2000 3000 4000 5000 DlSTANCE

FIGURE NO. 18 Na Concentration @ 600'plan View) 4000 3000 ~~~ ~ ~~~ ~ p ~~~ ~ ~~ ~

~~ ~ --.- ~ 1000 ~ ~ ~~~ ~ ~

Qi 0

0 1000 2060 SQOQ 4000

FIGURE NO. 19 Na Concentration Q 590'Plan View) 4000

~

3000 ~ ) ~~~

o- 2000 ~ G, a o 0

~~

g

Qg~o 1000 ~ ~ ~~~ ~ ~ ~~ 4 ~ ~ ~ ~ ~

Qs 0

0 I 000. 2000 4000

FIGURE NO. 20 Na Concentration Q 580'plan View) 400O 3000 o- 2000 'C' ~ ~ 4 1000 '4 ~

0 2000 3000 4000,

FIGURE NO. 21 Na Concentration @ 570'Plan View) 4000 3000 2000 ~

~

a 1000 ~ ~ ~ ~~ ~ ~

pg I ~

Qr 0"

l OOO 2000 4000

FIGURE NO. 22 I

Na Concentration Q 560'Plan View)

Qr

~~~ ~~ ~

Qa o- 2000 1000 ~ ~ ~~ ~ ~~ ~ ~~~~ ~ ~ ~ ~ ~ I 0

0 1 000 2000 3000

FIGURE NO. 23 804 Concentration @ 600'Plan View}

3000 ~~ ~ ~~~ ~ ~ ~ ~

g's  :

CS 2000 ~ ~~ ~

3

~ ~~~ ~~~~ ~ ) ~ *~ ~ ~ e 'g F60

~ -.---" --- ---.--".--

~ ~ ~

8 1

8 0

0 1 000 2000 3000 4000

~ I FIGURE NO. 24 804 Concentration Q 590'Plan View)

~ J'a~ ~~~ ~~ ~ ~~~ ~

o o- 2000 ~ ~

1000 1 ~~~ ~ ~ ~ la ~~~ ' ' ' '

0 0 1000 2000 4000 X

FIGURE NO. 25 804 Concentration @ 580'Plan View)

~

g 3000 A

2000

~

~

1000

~ 5 8 1 000. 2000 3000 '000

a v'IGURE NO. 26 804 Concentration Q 570'Plan View)

~ ~ *~ ~~ ~ ~~ ~ ~ ~~~

) ~

o- 2000

~

~

1000 ~ i Qr~

l 000 2000 S000 4000

FIGURE NO. 27 804 Concentration @ 560'Plan View) 3000 o- 20QQ ~ ?

1000 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~

1 000 2000 3000

Pigur, Former L'otable ConocntraOan

. 28 ply Well No.

ot 2

'0 Na. ca. Ns. HGo>,. st c cL POTABLE MELL 0 2 LEGEND PV2CA ~ CALClLN PV2NA ~ SOOlLN titRNG ~ lLAQ4$lLN PI2S04 ~ QLfA'H tlt2HCOB,.~ 9lCARSOHATE PII2CL ~ ~lllDE 1Q78 ~ 1477 N 1478 g 1Q7Q g 1088 I 108L p 1082 g 1083 I 1084 g 1Q85

~4 T THE IN HONTHS

Figure No. 29 Former Potable Supply Mell No.

~ncentc4L104 of l

gg gg, ggr QQQ ~ QQ$

POTABLE MELL 8 1 LEGEND PV1Ch ~ CALClM

\

PV1N ~ SOOlili P VLCC ~ HAQ4f$ 1 [ii PV1SOi ~ SULFA'M PVlHCOS ~ BlCARSONATf PV1CL ~ CHLORlOf tVlCL PVlSOi 1077 1070 1070 1000 100' 10M. g 1084 g 1005 n g ~