ML20086U101
ML20086U101 | |
Person / Time | |
---|---|
Site: | Point Beach |
Issue date: | 10/31/1974 |
From: | Katanics G, Eric Kim, Pfeifer B BECHTEL POWER CORP. |
To: | |
Shared Package | |
ML20086U063 | List: |
References | |
NUDOCS 9201070207 | |
Download: ML20086U101 (26) | |
Text
J GrLY . . _mw s i'
1
- ], ;
i
?
I (O
]
Ti i- I 6
e bl
- WISCO!JSIll ELECTRIC POWER
[f COMPANY (r:
e
.h j WISCOtlSIN MICilIGAN POWER COMPANY POIllT BEACH NUCLEAR POWEP PLANT UNIT NO. 2 i
s r
v h CONTAINMENT BUILDING POST-TENSIONING SYSTEM TilREE-YJAR SURVEILLANCE
)
By M k.
m E. Y. Kim
'N, ;
Reviewed By I c- .u.'. pi b~ =
d b W. I ifer i Decht.el Power Corporation San Francisco, California N' m4 l Approved By _VG. Katanica 8 October 1974
. s.b l O7Y['O7 91 ! !'[; ]
w -
P nn -- prir( ,- , g.,(.v >
t
...,,; .g . , . .w.,
. +f h*[T9' , . f j t,L .
s%istll':7-%{Qg}4Q: p ,i, ~, , ,
s I
}
1 i
g.s TABLE OF CONTENTS !
i t
Section Paqc l 1.n INTRODUCTION 1-1 I j
- i 2.0
SUMMARY
AND CONCLUSIONS 1-1 i f 2.1 Summary 1-1 I 2.2 Conclusions 2-1 3 l t
f 1. 0 GENERAL 3-1 1
i 4.0 TENDON FILLER AND END AC110 RAGE ASSEMDLY 4-1 4.1 Sheathing Piller 4-1 4
4.2 End Achorage Assembly 4-1 5.0 DETENSIONING AND WIRE REMOVAL 5-1 5.1 Lift-Off Forces 5-1 5.2 Wire Inspection 5-2 a.) Discontinuous Wires 5-2 6.0 o WIRE TESTING 6-1
'/; 6.1 Specimen Selection and Preparation 6-1 '
pj '
6.2 Test Equipment 6-1 '
6.3 Test Equipment Calibration 6-2
- 6.g Wire Test Procedure - Long Samples 6-2 g 6.5 Test Results 6-3 g 6.5.1 Percent Elongation at Ultimate Strength 6-3 3 6.5.2 Yield Strength 6-3 6.5.3 Ultimate Strength 6-3 6.5.4 Comparison With Original Acceptance Test Data 6-3 6.5.5 Fracture Characteristics 6-4 6.5.6 Specimens with Surface Defects 6-4 7.0 RI
- TENSIONING AND FILLER INSTALLATION 7-1 t
k 4
^ %;
i w
); y*; , -
u
+w
. [07 Y.k,(il
.. - x
('
I I I i
i l
LIST Ol' l'IGUltES O
1 i l' i.,<t u r e---
Tit 1e l 2
i 1- 1 Location and Identification of
~
Surveillance Tendone
's - 1 Averago Normalized Wire Force vs.
Time - 1toop Tendons i
.-2 N(>rmalized Wiro Force v3 Titre -
- Vertical Tendons 6- 1 Average Nortaalized Wire Force vs.
p ,
- j. Time - Dorte Tendons
')
>- 61 Wire Test Machine Assembly
- f D-1 theu D-9 Wire Inspection Data Sheetr.
,, 1:- l t br u 1:-9 Tendon End Anchorage Sketches 8g9.
y n V
.I
- g
- l.
l I
2 r
a
/
P A
y zs "9
Ph 9
O 54
'l lii k
hy -
,,~ - -
p... .. . - . . . - .at
g,___ .....-._....%4 . _ _ . _ . . . . . _
- N LIST OF TABLES Table Title l 4-1 Sheathing Filler and Anchorage Assembly Surveillance Data
, 's - 1 Detensioning and Wire Removal Data l "-2 1
Normallred Lift-Off Forces for Three-Year r,urveillance 1
} 6-1 Test Results - 100-Inch Gage Length
, Wire Specimens 6-2 Acceptance Test Data on Wire Used in Fabricating Tendons
- 7-1 Retensioning and Sheathing riller
{ Installation Data
- c-1 Laboratory Analysis of Sheathing riller W: ,,
\ ;o
)
[yl' a
t ~s
) $"
! i Fi l 'i -
f:1
- e-a ,,
,g-N IP L
o-iv M***"' "' ~ ,
f '
n, + e.
u s u.a w . --
i s
1 1.0 I NTlqET IM 1he Teotion Surveillance Program is a systematic means of cs-
=ensing th 'ontinued quality of the post-tensioning system.
The nutvet nee consists of periodic inspection of a mini- 1 .
rum of nine pre-selected surveillance tendons (three hoop, three vertical and three dome) for physical condition. This provides a measure of confidence in the condition and func- j j
t lonal capability of the system and an opportunity for timely I corrective measures should adversu conditions (such as severe l'
tendon wire corrosion, where the reduction in the cross-sec- t tional area due to corrosion is so substantial, that the citi- f mate tendon wire strength falls below the required minimum '
ultimate strength) be detected.
This report covers the three-year tendon surveillance fer Point Beach Nuclear Power Plant Unit No. 2 as specified by Plant rsAR, section 15, paragraph VII, Tendon Stress surveil-lance. This report was prepared under the continued Technical j Service Agreement designated under Purchase Order No. 10447.
SUMMARY
AND CONCLUSIONS
) 2.0
{Il 2.1 Summary 1
d i Lift-off forces in all tendonc exceeded the minimum effective design puestrers force, which considers -
I
- j. losses due to ent. crete creep and shrinkage and steel relaxation. f '
( f:nd anchorage assembliet were found to be in accept-I able condition with r.o sign of development of adverse conditions surh as progressive cortosion. Some mill-scale and a minor amount of corrosion were present on <
p shima and bearing plates this is presumed to have
- - been present at the tipo of installation.
The tendon wires were found to contain minor scratches, g
die marks, heat treating discolcration and some minor
'ocalized corrosion sparsely distributed along the length of the wire. This was also observed during the one-year surveillance and is presumed to have been present at the time of installation. All tendon wires inspected woru continuous.
a 1-1 0 = -
i i
i e
' Mechanical tests of specimens, with and without sur- l t
faen irnperfections, indicated the physical properties (yield strength, ultimate strength and percent alonga- l t ion) of the wire exceed initial neceptance require- l ments.
No abnormal discoloration was observed in sheathing
?
Iiller sampics. Laboratory analysis of samples from I f each tendon sheath showed the amount of deleterious constituents to be well within established acceptanco l11 levels. >
- i ;
2.2 conclusions
' 11ased on the tests and investigation described herein, and on comparison of data contained in this report with data contained in the one-year tendon surveil-lance report, it is concluded that the post-tensioning
- system in the Containment Duilding for Point Beach Nu- *%
clear Power Plant, Unit 11o. 2 shows no evidence of 4
l progressive adverse 'ilslerioration.
O
.(
vp 1
-ta <
v ;
d 1
h i
(\
a a
- p a
L
+
2-1 7
) ~ ~ - - - - - --
(* , _ . , .
c .,
T( 4c '
idi&h ,. 1; % g
7
" ---- .. , ,_ _g
1 i
- 1. o cl.H r,RAL I
The three-year surveillance of point Deach Unit No. 2 Contain-tunt Du11 ding Post-Tensioning System began in July, 1974 ap-prcximately three years after completion of the containment >
ntructural integrity test performed in March, 1971. !
t This surveillance was conducted in accordance with " Surveil- {
lance Procedure for Containment Building Post-Tensioning Sys- !
tem", Revision 4, and modifications thereto, now incorporated into itevision 5, included in Appendix A.
I t
The identification and location of surveillance tendons are shown in rigure 3-1.
i 4
s,,
r ,"
l?
4 i
b Y
- s*
i 3-1
_ _ = .
3
+] ,OII.I f . _
,N, ,
- - - - - - - - - - _ - _ - - - - - - _ _ - _ _ _ _ - _ - _ _ ______-_______-___________________L___ __
i G H J K L M A 350' 2%' 250' 17 0* 11 0 ' 50' I i MH54 '
- EL.105'. O' i E L70'-3'
- 4 HK22 4 EL,40'-l" l
i e i I .-
Top of tose slob
' E L . 6 '- 6 '
HOOP TENDONS DEVELOPED ELEVATION ii 3 0*;,-y. 278 N q
V
,,! o h3 ( GMW 3 s <
\
3 k 2 '
Dl-223
- 'N
/ - w V-339
/ '
N. .
~ 225
[ , GROUP l
2 V 226 0 227 0
a>; ; . GROUP 2 PLAN-VERT TENDONS _ PLAN- DOME TENDONS _
9[TQ hl P2GURE 3-1 LOCATIO!! AND IDENTIFICATION OF SURVLILLANCE TENDONS M
h m.[a?m?..f' ' ,.
f .
a p. _
9;;r?
I ( h ._, -
.t #
i 1
4.0 TtNDON TILLER AND ANCHORAGE ASSEMBLY l
The results of field inspection of the tendon sheathing filler
! I and the end anchorage assembly are shown in Table 4-1 and Appendix E, t
4.1 Sheathing Filler I b
sampics of filler were removed from each end of the tendon sheaths and visually examined. All samples were dark brown, f' I indicating no discoloration caused by excessive amounts of foreign ma*ter such as water.
Laboratory examination (see Appendix C) revealed that de-loterious product content of all samples tested was within established acceptance limits.
The sheathing filler coverage of the anchorheads, bush-ings and shims of the tendon end anchorage inspected was found acceptable.
4.2 End Anchorage Assembly ;
1 The end-anchorage assemblies were found to be in acceptabic condition. Two very small buttonhead splits were found at ;
, the field-end of dome tendon D3-225 which were n"t recorded d during the one-year surveillance. The difference in off- l
, size buttonheads recorded during the ors-year and three-year 1 4 (~
surveillance is not appreciable and results most likely f rom !
the use of dif ferent, c6:ibrated "Go, No-Go" gages. j
\
N i
i A
f I
w.
k i
& W I 4-1 t
/2?
,cox w i
, i
e l
l i
w y ? t t t t t t t t t l
8 ,e i .... .: g 64 ** .
da it 6 6i t i t 6 t k t t i 4 ; ; a s s a ; ;
\
p%
C C 0 $
f- . ~*"i c s a r d. : zi a ses a s tr e r 8
{* i 9
- e s se
,Ium .....,t a_ .e. _t _ _s _ _
s _e c_ _c l ,
g i
g i. -
r -
h M
C
.,na3 3 . . . . . . . . . . . . . . . . .
}s ,
O til 1 '.l 4 a a a a a a a a a a a a a a aa a a W i .. y .. i . .u . , g n
'E l
k.
et g .,.,, . . . . . . . . . . . . . . . . . .
. $.3;, f.
i ....> ...... ,
.. a a a a a a . a . a . . aa a a
.c
, Y &
, s i. ' -,
_g a
. . . . . . . . . ,m i
, . j l ,. e p' { , . . . , , . . . . _ . . . a . a . . . _ . . . . . . ; ..
. b
- p. dr
- 1. 'I,'
2 . 1, .
! ...., . . . . . . . . . . . . . . . . . . j g j
- c l ,..., ....., . _ _ - a a _ _ _ _ a - - . a _ _
pgggg g
.s t s llo '*p e * * * * * $ * * * * * * * *
- 0 *
- 3 111.t_ &
e
. . . ,.. . .. ;. . . . . . .ni i t i . l!.y c 1L.
- a a a a a
- - _ a - -
. . . a a a _
,. . !. j { { {p*
i . ., i . .u. , a _ -
lJy99I j W
$ 4VVV - '
.r. . *e i . re .. a C 3 t C : 0 t t 1 1 & t & L t t I a
, . . i
.J 4 si 4 4 . 4 pp . - - - . - - - - > > > > > - > > >
g a .m g (C*
5
. a ,4 . . p. .. , * - - - - - - - - - - - . .> > h 2
p' g ..... - - - - - - - - - - - - - - - . . . 1, y
. . . . , - . . . . . . . . . . . . . . . . . . ja, a,.
(g g p. ..wy . - - - > - . - - - - > > - - - - > > g 3j i
S
- - - - - - - - - - - - - - - - . . 3,f y).
. . . , , , , , a w
11 c . . . .. - - - - - - - - - - - - - - - - >
$$s l+ .
.2
,...,,,,....4, a . . . - . . . - . . . . . . ..
hr '"
,I m
. . . . . , .. . . .. . .. d . au . .
i
' hi e a I
.....,...a yI ? en E L 9 ja
- f. 3 E 9 ;
'r.; E E ;e e vis : s ..
l t e
- l E r PJ ..
l l
0 a
l _. .
j 7 >*3
m .
8 Im uium i N h h&iar' muh asia 9
l l
\
4 i
5.0 DETENSIONING AND WIRE REMOVAL h s
es .
The data and observations obtainod during dotcasioning and wire removal are shown in Table 5-1.
5.1 Lift-off Forces Tendon lift-off forces obtained during the one-yor..
t and three-year surveillances are listed in Table 5-1 ;
(columns 3 and 5). To provide a common basis for com- l parison, tendon lift-off force is converted to lift-i 1
i off force per wire and normalized to account for the following effects:
a) Structural deformations (a function of the post-tensioning sequence).
- b) Initial lift-off force deviation from seven-tenths of minimum ultimate tendon wire stedngth, j c) changes in lift-off force resulting from doten-i sioning and retensioning of the tendon during the wurveillance.
d) Removal of wires during the surveillance.
s jg Normalized lift-off force in obtained by multiplying ga 4 measured lif t-off force by the normalizing f actor (see 74 formulae in Appendix D). These factors are listed in 0 Table 5-2 along with the normalized lift-off force per G wire for each tendon.
- t; ror double-end-stressed hoop and deme 6endons, an av-3 erage of the lift-off force at each end is used. The normalized lift-off forces are plotted on the Force vs.
s Time charts (Figure 5-1 through 5-3) which provide a direct comparison of measured versus predicted loss trends.
The predicted loss trend is based on a stress loss of l g
27.3 Asi over a period of 40 years (for hoop, dome and '
s vertical tendons - from plant FSAR, Fection 5), assum-
/ ing lossen diminish expot.entially with time and 70%
i, of the losses occur in the first year.
i
" With an average stress icve? at installation of 0.7 fpu
! (8.25 k/ wire), the predicted average forces after one year and at the end of 40 years are 7.31, and 6.91 kips
,* per wire respectively. (See expected loss curve - Figures T 5-1 through 5-3.)
q j (-
r f
e 5-1 ,
m
,.i
f' 1
N -i t
i 5
i 1
\
\ The trend of prestress losses, based on average values O f or each tendon group for the or.3-year and three-year l wrveillances, indicate that the actual prostress loss- 1 g[ , < es correlate closely with the predicted prestress loss- l
+ es. 1 3 r P
ky , The normalized lift-off forces for all nine tendons a f ", exceeded minimum effective design prestress.
N N 5.2 q
f .,
Wire Inspection, 3 The results of inspection of each tendon wire removed a for surveillance are shown in Appendix D.
f a; ,
I soma minor surface imperfections (abrasions, die marks, and discoloration) were found on all wires removed.
l
' corrosion level for all wires wac classified in cate-l' gory 3 or less (pitting less than 3 mille in depth). 4
/
F The results of a microscopic examination of pitted Jy/, wire are shown in Appendix F. Examination of the pit-l/ ted wire showed no evidence of strees corrosion. hydro-
'5 gen embrittlement or cracking.* Since the reduction in wire cross-sectional area was not significant and no J cracking or embrittlement was observed, no significant
?
decrea a " ta=i2a "rasth dua to laa or a"*2 wou2d b
'i .
C' be expected.
), 5.3 Discontinous Wires No discontinous wires wer6 found during this surveil-f>
j@
a m lance. , i
(
4
- l s'
,, n b .?E jC
- a i kJ
,! e l Iv y q j- ,
l f_,[
9 y.
l 5-2 T[
,. [M JL ' . ,; -41 (y -
, !.. T& ~ e v . .
4
i l al *
- 2 f f f f f I [{-
.p ~~"":::; n ;4 4 c 4 4 1 4.'- -
I 4 ?. .-
3
,i a .
1 j a eg i
n '
'I 13 j . ~. ..
i 1 ,
y
.......n,,3 a i <
j 1 , , , ,
. ,I i r* u , ~. . ..., a i 1r
& I . P e a l i
<. .e ,. :
- y 3 3. 3 -4 ,
' let fl r -
-. s a 2 . c , ir -- ,
I *'l M 5
g @;
- ls!);
I g
'. i r
in~..'.".;t
! A i e
- 2 i ;
8 E 3
'"t} ~~
m g
i ,,
e s s i i 5 s s [!. a -
i .;
[
- : : s c :
,,,,,,,..,1 ;. 0
,...,o,i 2.
f K. O. :. E. t. t. g ~
l 1
i m e ......o....:
.... : t ; e t t t t t r c
- t .
p! v' 6 i iI, " :t!: ; :
- ==
c .
s s 22
- s i18 8 : 8
, ,gy 3 ;
ey .....,
c
- . I
, ' q{ . u .. c : :s tit : a t s aa s t e.)}:
3
- l 1rer I g
.o o ! !)10' !!'u n 1 1 11 1 ! l -
1 1 -
!!Hit < ] .j .i. j :
3.VVV si
$- ?.n
- . s -: .: ::. :
- x:::
3)u-st :s '
h
- , <"*~".
-""~n s p :
t h
5.-. , '. 2 -
. . o.
w i ! ':2:1 - 1 1 1 111 1 ! -
1 ! ! EC 1 1 g
+'
M) rq * &- b o tieo ae i
i R 3 2R n u n R R R a
I , R a
Cl '
I
....~o..' 2n n e s - . .
- : 4 p
g
".i .", ,. ; ;. ;-
. :. . s- s
. !s..g
! ". 88 3 5
-,2 e . -
i l ab.3 I; e tan P 9 0 2 9 [ 3: . , c re rS 9 -
"" ' ; : s I0s s ::2 d4. : - 1 . s . s.:
- L. ;i i ,
I 1
.... . . n.u.'
.., i 8 42 .es b. e .
- r. . g g- e. s_ _R e.g i !
r i,
. ,31 i >
Ii ; 2b i.
k L i .,,,,,,_ . .. . .'. '. - . . to i
,27- ;
l[ pI -
l i i
i
~
- , , , .i i-e :) a :
e j ii L2 ie k. ,1 F- f :s e
I s L33lE eE iI .. di
- .w , , _ _ _ . . . . . -_. _ - _ -
j . . . . , - f , ' " t h 4q ?-
! ?AO:s; ; - %, Lid;.:dnudf $' N($QN.Y&%$. *
/
l
') \ O' TAliLE 5-2 NORMALIEED LIFT -OFF FORCES FOR TilIZE-YEAR SUP.VEILLANCE t4 .
je k I 'd Tendon Shop or Normalizing Nppalt red Litt-Of f Force Per WlEd
~
l No. Field End Factor Each End (KIPS) Average (KIPS) _ k 11K- 12 S 0.958 7.20 7.28 F 0.961 7.35
.r e. .I ME-39 5 0.965 7.31 7.23 I. F 0.940 7.15 i f ., - ?
N Mll- 5 4 S 0.918 7.13 7.31 P P 0.977 7.48 k
. . _ . k *l V-226 S 0.932 7.13 7.13 4 F
[ l V-J'8 ' S 0.974 6.97 6.97 F - !
'( ' (~ * % -. .__. d ,
i 4
$ V-339 S 0.992 7.42 7.42 r - - I/ <
l
- 1 '
01-223 S 0.943 7.09 y7.08 F 0.938 7.06 . _ D2-227 S 0.915 7.27 7.34 F 0.921 7.40
,- D3 225 S 0.966 7.07 6.98 (y l F 0.961 6.89 D,,
k
?~'
( !
.5 0 <
1 I a m..=- k.)gy.
*\ * ?. ?;,
- 1
- j. 3, , 3:T7
-+s -_,g, - '.- Y, *' *"w )_
s.9 g
- --- m M
l . l l l h L) l 4 A , i l4 4 I f y;a' ; T 9' I i - a k
** 1 e .-j e
y o
~ h , . u. e / _4, mg ,
mi
>. 4 g ? N gg 4 m V
N
- I d
% ! :n i
t M E q* tsbe gg 6 I m e o e # .g ; r g e j {c Qo gr
? ..
n a
= , \ ,
o -
. \ / U b a
p 5.e e m
-g .
I (O i
- - e i 2
i A
~
W. eJ l
)
t 5 8 u 4 m I 9 - 4a r s B e k' I t
; O& -
( __ i _ - c 2 e m e. -
- ss e e
e e
,f (S 11X) 3HIM E3d 3310J E. '4 ? t 'g' f x, , !
gw we +- * * **
- f * "" ,,.w+
. ~ , , h p,ac-. i , ,, i , g
i
, , ,
- 6 v c4 I
4 i i O
- n. ,
i 1 . a o m 8 10
' H , r:
i i o 2 t e h4 g l n m h I @ CO m Ul S. S. "b d
>i i "3 , ! a.
4 C 3
- g. -
$ b N h h .d ." -13 'N a 3,.! +
l lq L go o
- 7
,i g > s w
$ l b Y . U 1 o oc fy i % / !7, 2 2-6 * - H W O
~ lfi .
~
Y l I E g a
,a W = .J s ..t-s 4
l j @Id v O 30 ho
- = ; a'i i N
it
} Y -!') d-4 . N 2.- .-26 y , . t.
s. 1 4 (w O h, a.. i i A 9 M k
, h o e
e a o a e o 9 l Lv (SdIX) 2Hiti 13d 23E01 y l[ g l1 a 4. N
- l. ,
t .--. . k gay ep.4=. 4 -
- w'*** * ' ' _ . . { .. p
, ('yj$$,ld -n. , - ;' ifj(hA;p%Pi$v"d' d$ddf//,T. ,,
p%O a N Q At 4;ary;. . 4,f,w..%tTw _ ; v M :A ce , _~ y -T > raf ~+, ; fg w g ,;. a y. l t 9.0 I b DI-223 f - - - - - 8.5 - - - - - - - hD2-227 G D3-225 8.0 i i 7.5 n m p. tif D- U .. _ a w y-DCPECTED . LOSS - - . -
--g - / WW }
h55 El B :\* pt. - y 7.0 6 --
=
4 w 4~P1 m kC
-9 *^ f4 ., M **
K% ~ MIN. Er eu,IIVE 1
#3 + J'.. ?. u W* DESIGN FRESTFE S -t . .-h. . p ,,
j 6.5 ;
, i l I l * * @ 1 . 4 I
6.0 2G 30 40 #J
$ 10 g
TIME AFTER INITI'l. TENSIONING (YEARS) FIGURE 5-3 NOK!iALIZED LIFT - OFT FORCE *... ilyI Fes ? M IENDONS t s
*-~ . m m~s ~
l.~~ . - - . . . . _.__ - ~ __ . . _ _ _ _.__-_%_.,,., %4 _ , _ . _ _ , , _ _ , , _ __ __
1 I 6.0 WIRE TESTING to
\
j 6.1 specimen selection and Prepatation I Appendix D identifies the specimens selected for testing. A typical section of wire (approximately 10'-0" long) was cut from each end and from the middle portion of cach wire. The specimens were trimmed to a length of i 101 inches, fitted with stressing washers and button-headed to provide a gage length of approximately 100
, inches (clear distance between buttonhchds) . As j specimens were removed from the wire, they were tagged l
with the following information: 0 (1) Tendon identification number. I (2) Sample number indicating location of r.peciinen.
-3
- These tags remained with the specimens through compic-tion of testing.
6,2 Test Equipment 6{ , The test assembly used for testing nominal 100 inch
$ gage length wires is shown in Figure 6-1. ,k: <[-
t Q A tensile force was applied to the wire through the
'k stressing washers inserted in the pulling adaptors, t l- one adaptor was screwed onto a threaded 1-1/8" diam-4 P eter rod anchored to the end of the reaction frame.
The other pulling adaptor was screwed onto the threao l 4f j ed portion of tne ram plunger. The 10"-stroke two-o way ram was bolted to the pulling end of the reaction
] iO frame. Tension was applied to the wire by pressuris-i t'i ing the " pull" side of the two-way ram with a hydrau-PV lic pump. The force applied to the wire was obtained from calibrated pressure gage readings. ,j l
o l
+ ,sO i
rx c;4 r , 6-1 , ti -- s - p,.
?)Q -
N e . . . . . _ . . i i l 4 4 Displacement to one percent elongation was measured uti- } ( liring one dial extensometer (having a two-inch travel
- and lowest diviuion of 0.001 inches) mounted as shown in rigure 6-1. The dial mounting bar was anchored rigidly to the reaction frame at its midpoint. The extensometer was positioned on the mounting bar to 1
; measure the displacement of the index rod attached to I the pulling adaptor. This, after proloading to s'est i
, buttonheads into pulling washers, enabled measurement of wire elongation. The elongation under load at failure (ultimate strength) was obtained utilizing a rulo attached to the gage mounting bar at the ram-end to measure the relative displacement between the index rod and the dial mount- - ing bar. Measurements were read to the nearest 1/64 , i inch. h.3 Test Equipment Calibration g The pulling assembly (gage and ram) was calibrated in a testing macnine accurate to +0.55% and -0.11% of load reading prior to tho testing of specimens. f 6.4 Wire Test Procedure - Long Samples Q The test procedure used rurallels that of ASTM Speci-fication A 421-65 with the exception of gage length.
! A nominal 100 inch gage length (instead of 10") was ! chosen to obtain a longer sample more representative of the actual in-place strength of the wire. The 100 ;
inch gage length specimens may indicate a lower ulti-mato strength and less ductility (elongation) than 10 ' inch specimens, since failure will occur at the weak-est point in the wire (equivalent to the lowest value ! that would be obtained from ten 10 inch specimens). Elongation ander load at failure will also tend to be less due to distribution of elongation at the neck-down area over a length of wire ten times that of the nomi-nal 10 inch gage length specimen. D i b r , I ($/ , 6-2
1
]
s ti
, e .. ,- ., y ~ . s .. o ,4 . . }
l i
\ 6.5 Test Results i /~1 The resulta of tests on 100-inch gage length samples are shown in Table 6-1.
6.5.1 Percent Elongation at Ultimate Strength 1 Due to the effecta discussed in paragtaph 6.4, wire t tested using 100-inch gage length specimens is ex-pected to exhibit less elongation at failure than { 1 l identical wire tested using 10-inch gage length speci-I mens. Based on other test data (1), a wire exhibit- , ing a 4% ultimate elongation by 10-inch gage length ! tests is expected to exhib't a 3% ultimate elongation l by 100-inch gege length tests. All wires from the ntne tendons exhibited elongation > i exceeding 4.0 percent. {
*[
sg G.5.2 Yield Strength \{ The yield strength of all wire specitiens tested ex-g
! ceeded the specified minimum yield strength of 192 ksi j ,
at it elongation.
;p 6.5.3 Ultimate Strength >d The ultimate strength of all wire specimens tested * ? exceeded the specified minimum ultimate strength of I; 240 kei.
E y 6.5.4 comparison With Original Acceptance Test Date i, The range of ultimate strength of the samples toeted i compares well with that obtained in acceptance testa j p (see Table 6-2). i u
) (1) The test results comparing elongation at failure of 10-inch and 100-inch specimens are reported g
in Consumers power Company, containment Building F post-Tensioning System One-Year Surveillance,
- Falisades plant unit 1, Docket No. 50-255.
b e
- a.
Nsl 6-3 9
, ~ - . . . . _ . . . {
\ b l
l f
' s i \
l
-- 6.5.5 Fracture Characteristics !
All breaks indicated a necked down cup-and cone " % fracture area. The ultimate stress of all tested j wire samples with breaks at the buttonheads -xceeded f:
" tne minimum specified ultimate strength of 240 hsi. ;
Approximately 50% of all breaks occurred at tho !
,i buttonheads and the majority of these breaks revealed 4 typical fracture characteristics resulting from com-p(? bined ficxural and axial stresses. The flexural ; -' I stresses are resulting from a night eccentricity of the buttonhead,
(!{ p 6.5.6 Specimenn With Surf ace Defects p< E A comparison of wire test results for 100-inch spe-cimens with and without surface defects indicates that there is no detectable decrease in strength and physical properties of wire specimens with % surface defects. f k '.
.r, s
j c 4 Ii i 0 o s n 3 s
?* ,, O 4
y 6-4 1i .. - - y
- .- - - - ~ - - - -
_______ 3 D y g i .4 , l
)
i g , i O TADLC 6-1 TEST RESULTS FOR 100" GAGE LI:NGTil WIRE SPECIMENS I h ' l':y 1 Q tenden Sample 17. Yield Stres dlUmate Stress Percent Location oI , No. flo.(1) (KST) {KSI) Elongation Pailure (2), ' f ur-22 1 201 253 5.3 M ! ! a 2 205 255 5.8 M 3- 3 212 255 J 5.9 M My-39 1 199 247 4.3 n11 N. 2 203 251 5.7 M ,/ 3 210 252 5.4 M hNt-b 1 205 253 4.9 M ' [
+
2 208 251 4.0 Bil 3 208 253 4.8 Bit g
/, v-226 204 1 250 4.2 Bit 2 203 248 5.6 M
[u - 3 201 248 5.5 H v-278 1 208 255 5.5 M
- h 2 204 251 5.7 M 11 3 210 253 6.3 g,, O V-339 M
1 205 251 5.1 Bli 2 203 249 4.4 j 3 203 251 4.6 Bil Bil
'A D1-223 207 1 250 4.6 Bil 4
2 208 253 5.1 Bil
, 3 203 2:0 5.0 B}l t
- D2-227 1 205 264 4.0 M 2 218 263 4.6 Bil 3 218 263 4.3 M a-D3-225 1 208 254 5.5 M
[/,' 2 201 200 251 5.4 M 3 253 4.6 Bil jd [ NOTI:S p p( (1) See Appendix D for sample location on wire. 11, (2) 0 11 - Failure within 1" of buttonhead.
- J M - Failure within r. , adle portion of wire.
b y , lp /
'l f
V y- - - -- e w
6 _,. . . _ _ _ . , _ _ _ _ i t : i - . , N 4 i l I l TADLE 6-2 ACCEPTANCE TEST DATA ON WIRE USED IN FABRICATING TENDONS , l O I TJ Elon Ultimate St::ength (ksi) Yield i hark coil No. Heat No. sample A sample D Strength (KSI), n HK22 281 40320 255 256 215 ; 1 291 40320 254 263 215 E, 755 28459 251 248 214 , i
. y MK39 176 16858 253 258 219 ' '1 187 16858 249 251 219 3 731 40319 251 254 210 MuS4 362 40066 255 247 222 370 40066 254 249 222 470 40066 252 252 222 v-226 468 15493 247 251 213 t 469 15493 240 249 213 8 470 19493 242 252 213 V-278 250 15493 247 254 212 , 257 15493 244 251 212 i i .e V339 704 27503 248 252 2 f7 '
709 27533 240 255 217
+ { 722 27583 246 251 217 '
737 27583 251 y 249 217 {t i D1-223 696 15492 247' ' 245 211 713 15492 249- 251 211 720 15492 247 . i251 211 D2-227 761 15492- =247M h 6248 211 763 15492 257 4 i p ~fv 261 21' 872 34158 253~ 247 23' D3-225 46 34155 251 253 215 j 150 15401 252 253 215 165 15401 251 255 215 i
.j NOTES:
! w D
] 1) The minimum ultimate strength is 240 kai. .? 2) The minimum yield strength is 192 kai at in clongation.
- 3) Samples A&B are the results of the two tests to deterr.8 ne ultimate O- strength of each coil d.uring tendon fabrication.
1 1 l 3 4) The yield strength is determined for each heat during wire s manufacture, h, 4 g .___ .. _ __ _. N =Y' '$E fN'
e n n - m c;y: m : n = n _ . -. . . - . I {' r O 3 7 0 h i [ - h 7 Dial Gage j
,r E Mounting Bar Indicator Needle , '- s Rule Anchor End g/ Threaded Rod - Stressing Washer >st Frame 2-way Ram
- f p' Index Tab Pulling Adaptor l
4 t Index* Rod Test Specimen
< / . ) +
Pulling Adaptor f y Stressing Washer
! ! l'
- l l I
- Pressure Gage [
g , Adjustable Eypass Valve Hydraulic Electric Pump
'7 , )
FIGURE 6-1 Wire Test etachine Assembly
^ ~ ~~ - - -^^
m*--,
- s' * ** * ' " " ' ' - +
, *~w o - _
- e vs~ - . . , . . -
1
' . . . s sI ! : -- i }
- v. . .,n . ,~w,.
s .- *, , ,1 i,0s ;,ffeJO /;.Q .'d * ; %
- b '
1 i g i 5 7.0 RETENSIONING AND FILI.ER INSTALLATION 5, O.
~~
The data obtained during retensioning and filler install-I ation are shown in Table 7-1. i i 1 e The tendons were retensioned to approxit*;.ly the same stress level indicated by lift-off1 force data ottsined during this surveillance. Additional elongation stas mcarured as indicated by data. ' { The volume of shecthing filler removed and replaced was recorded. l The retensioning information provides input data for use in the next scheduled surveillance. k 4 .O b w N
=d; U;'
b O 7-1 u W'~ s
,5 ~9gl fgg ,1 . ~ ~ ;, . .u.%e,4NQ ? +'0-
e g
. , m .. 7 7 g 7. A ...
ll , 1 l l { . o**) ... , .e. , a. . C a d' H id 8 I I I
! u s * * * * *
- d l 1
*
- R d,, ,
i 4, =.a 4.N '" n 'a f ' 32 2 0, 3.. . . R P. I
,t e
( 4. H P. s. dt e s 164 . *
- I N a i d J
* * ~a a *
- R 2 '
- 2 l i . i m.. . wA :- R .
'k 'a #
jf ' E 3 Yl t .* . 2 . . . 2 2 - i, ~
=. I' - a -. ; *, 9 a a : : ** l o d ' * * ?? ;* ? ? ? ? )
g i I qs n! . , . . .. , e - ~~ - - - - - - 4 ,I
'l *[ ' " ' ' ' ' .- t l:
2 2; 0 t t 2 ". t : ! : I..tj c 4
?!
j' ? ,1 g 3. c
; >, s en $l o L, j ; ....u. ; a : : s s s e zj -
e a e o o o o
- j{i j
, , t o n a.t d ie: !, -- - a ss : : : z : :: : = :
m .: a.:. s a - - . . - . - - w
$ h d ~ ~ ~
lE c' w ( '. o 23 22 +22. 2 2 5 * - * *
- a I:* C a f,. -
g 4 o.d ..4-ia) . 3 3: 3 3 O. I,~ -. g Dj .
.c s
fi t' ow) - ~ g} 8 g r g a g r R3 g 8 9 m j .**2 .. -1 4 3 . : : . : 3 . 3 : 0
- .c -ne < u , M i _ , , ,, . .n, .,3 - _y 4 -. 8 . . & os nian e o e o o o e o o C 7 ? % *
- c 23 3:
~
a 3 " " -
- a S
- 4 * .
- 3 3 : : : :
r a . . . . - - s4 4 4 . . .4 a E, $. c , L c O l j g y R 2 R 2 3 2. ". . :. R. }, o.*u'. 8 ) . . . 2 3. .: . . '$, t - hj v i' i I' I
"'a = 1 1 11 1 1 i i i l ilil l t m . i -oa-o. : : : : : : e : s -
E h N~ ? I i i ? Y ? i
- d '
-E I)., ~.- ; :2 2 :: o r e :o ; ;- -; ;- - . .3 - - . . . . F. - - - - 2 a , e l" '"J'l - :: : : : : : : : ::::: i I 4 ,' - e . "a). , - a.s. y g a.g g a 8 g g es g gg 1 k i 3
3 i r
?; :. > t > ~ a ,..o ! 5 i E E i i i E E - jr i 5
t le 2 4 4 2 2 2 1 2 2 1 i i. S- j !! by e,
,......n...a.
4 4_ 4 4, p 4'l j 4 4 4 2I
, l 3
i
~, 'I ) . ,f 1 ..m m n . . - : : : : !: : :l : i' *t r i ! - - s l
L G3 g i . .. m - . . ... . . ..- .-. . ..,. is . l
- I
- 4. ; a i pr ..* deg 'j' .
?
g g . n t 3:* na v n.o - 1 i
- ' pl ?g
- ?g : ph .
s i e t
&k -
p %m p.a a
' ; 4 ,- ,,Ib GJ - ' Nd,j@3 a a ,Tn s[M/ . p.mL --
_ __ _ _ _ _ _ _ _ _ _ _ _ __ _-_ ____ t}}