ML20086U104
ML20086U104 | |
Person / Time | |
---|---|
Site: | Point Beach |
Issue date: | 09/30/1979 |
From: | Dunesia Clark, Tsing W, Tuholski N BECHTEL NATIONAL, INC. |
To: | |
Shared Package | |
ML20086U063 | List: |
References | |
NUDOCS 9201070208 | |
Download: ML20086U104 (41) | |
Text
{{#Wiki_filter:1
}
g l' i j - i -$. . < t h '* w i l
..L_ . _ . , - - -
e t < 4 1 , I i
,: 1 i L i e
I . 4 4
, t t '
i i , i WISCONSIN ELECTRIC POWER i ' COMPANY t 1 t POINT BEACH NUCLEAR POWER B 5 PLANT UNITS NO. I and 2 -
- s
,g i 'l s
CONTAINMENT BUILDING k s ( POST-TENSIONING STSTEM EICHT-YEA". SURVEILLANCE ?
] , ..
t L. .
;a . .
f. v.
, , .R - . is.::x./ ' . ;?.'M.g,?iHf434: . e m, ., ~
i !.
,4 &
P'
! By: / M
{ N. J T ski < { 5echtel National. Inc. Reviewed Bys_ , . I. tM
, San Francisco, California 'W. ,'
September 1979 8.Cadng/
- Approved ' By *
- D. H. Clar i
Approved By:
' K. P. Buchert
- 9 0107(M:13 ? l l .~ 2 3
%R L,
(OGC.K 05000266 4 7 r PDR
-- _ _ f . ,p . ,,2; 4ac%:2 A P & c. u w,. . s , M q,
- g. -.
~ ~
9 j TABLE OF CONTENTS Section g 10 INTRODUCTION 1-1 a - 2.0
SUMMARY
AtID CONCLUSIONS 2-1 2.1 Summary 2-1 22 Conclusions 2-1 3.0 CENERAL 3-1 4.0 UNIT ONE SURVEILLANCE 4-1 4.1 Tendon Filler and End Anchorage Assembly 4-1 4.1.1 Shesthing Filler 4-1 4.1.2 End Anchorage Assembly 4-1 4.2 Detensioning and Wire Removal 4-1 4.2 1 Lift-Off Forces 4-1 4.2.2 Wire Inspection 4-3
} 4.2.3 Discont;inuous Wires 4-3 4.3 Wire Testing 4-3 ' 4. 3.1, Specimen Selection and Freparation 4-3 4.3.2 Test Equipment 4-4 4.3.3 Test Equipment Calibration 4-4 @* 4.3.4 Wire Test Procedure - Long samples 4-5 4.3 5 Test Results 4-5 4.4 Retensioning and Filler Installation 4-6 5.0 UNIT TWO SURVEILLANCE 5-1 51 Tendon Filler and End Anchorage Assembly 5-1 511 Sheathing Filler
- 5-1 5.1.2 End Anchorage Assembly 5-1 '
5.2 i Detensioning and Wire Removal ~. 5-1 5.2.1 Lift-Off Forces 5-1 522 Wire Inspection 5-2 5 2.3 Discontinuous Wires 5-3 I 5.3 Wire Testing 5-3 5 3.1 Specimen Selection and Freparation 5-3 5.3.2 Test Equipment - 5-3 5.3.3 Test Equipment Calibratica ) 5-3 ; 5.3.4 Wire Test Procedure - Iong Samples 5-3 ' 5.3 5 Test Resvits 5-3 5.4 Retensioning and Filler Installation
- M4 w
6.0 REFERENCES
6-1 l 1 i i
..4 k 1 _.
s i LIST OF FIGURES i
. I h Figure .Ti -- .t.l.e. pen l 3-1 Unit 1 - location and Identification of 3-2
- Surveillsace Tendons l! '
<11 3-2 Unit 2 - location and Identificatios of 3-3 Surveillance Tendons ; , {
l' l 4-1 Unit 1 - Hoop Tendon Average Normalized Wire 4-8 { Force vs. Time _j 4-2 Unit 1 - Vertical Tendon Normalized Wire 4-9 { Force vs. Time l i 4-3 Unit 1 - Dome Tendon Average Normalized Wite 4-10 - Force vs. Time 4-4 Wire Test Machine Assembly 4 11 ; 6-5 Unit 1 - Uleimate Strength Test Results for ' 4-12 Tendon BF-23
~
5-1 Unit 2 - Hoop Tendon Average Normalized Wire 5-5 Force vs. Time j tj g 5-2 Unit 2 - Vertical Tendon Normalized Wire Torce vs. Time > 5-6 5-3 Unit 2 - Dome Tendon Average Normalized Wire 5-7 > l Force vs. Time .. i
, p I , e u .
a a f . 0 i l 9 se 1 i +> 111 '. i ., 6 i- i ng ye * * * * " " *
*X gs 3 $ ^, s c e = - am .m.nn. . '. ('* . [ %. 3 N. . , . . ~ . . . . .. ), t a f_ ! I ,f * *, *
- i I
{ LIST OF TAB 1,ES [ C Table Title g i' 4-1 Unit 1 - Shaathing Filler and Anchorage 4-13 Assembly Surveillance Data ,
,; i 4-2 Unit 1 - Datensioning and Wire Removal Data 4-14 .,
I , 4-3 Unit 1 - Normalized Lift-off Forces for 4-15 'l Eight-Tear Surveillance , 4-4 Unit 1 - Test Results For 100 Inch Cage 4-16 langth Wire Specimens 4-5 Unit 1 - Summary of Ultimate Strength Test 4-17 i Results for Ten 4on BF-23 1 4-6 Unit 1 - Ratensioning and Sheathing Filler 4-18 { installation Data ' l 4-7 Unit 1 - 14boratory Analysis of Sheathing 4-19
' Filler 5-1 Unit 2 - Sheathing Filler and Anchorage 5-0 Assembly Surveillance Data 1 D 5-2 Unit 2 - Detensioning and Wire Removal Data 5-9 5-3 Unit 2 - Normalized Lift-Off Forces for 5-10 , F.ight-Tear Surveillance , , M G ." . - l 5-4 Unit 2 - Test Results for:100! Inch Cage" S-11 Iangth Vire Specisensi*,g' --
na , 5-5 Unit 2 - Retensioning and Sheathing Filler 5-12 " 1 Installation Data 5-6 Unit 2 - Laboratory Ana ysis of Sheathing 5-13 _
>* Filler - ?
l . . p . 1
, s $ 'O l @ -
iv
~
c' hV' ', . y ?s, 'qE. ~ , ' '
} 'M , .[ ,~ .
g y i' $2..__.l.. . _ _. _.a.SisM4 MiW 6 W
l.O INTRODUCTION C The Tendon Survaillance Program is a systematic means of assassing the continued quality of the post-tensioning system. The surveillance consists of periodic inspection of a minimum of niae pre-selected surveillance tendone on each containment (three hoop, i three vertical and three done) for physical, condition. This !- provides a measure of confidence in the condition and functional capability of the systen and an opportunity for timely corrective j measures should adverse conditions (such as progressive corrosion) ; be detected. , t This report covers the eight-year tendon surveillance for Point nesch Nuclear Power Plant Units No.1 and No. 2 as specified by t Plant FSAR, Section 15. Paragraph VII, Tendon Stress Surveillanes.
- i A
C
, *'e.r N *f , '59- } .W A . . , vm4 $c.m:k a+
A#n ;,w[ts ~ a l I j , .( -}{[* + t]
,4 4 ,y. , . y , .9:
r
's e p g, 'h - g 4 e* *O h > 1-1 i
e
,.w.,yd; ~ 7:p sl mpA. . ,
y , .
-- -.- . .- L a b?- .
N- '-
$*b)j . .
D il l/ 2.0 SUMKARY AND CDNCLUSIONS ' O' 2.1 3ummary 1.if t-off forces in all tendons exceeded the minimum effective design prestress force, which considers losses due to concrete creep and shrinkage and stati relaxation. End anchorage assemblies were found to be in acespeaMe ; condition with no sign of development of adverse conditions ' such as progressive corrosion. Sou millscale and a minor g amount of corrosion were present on shins and bearing 1 platest this is presumed to have been prasant at the time ; of installation, and not a sigtl of progressive corrosion. The tendon wires were found to contain minor scratches, die marks, heat treating discoloration and some minor localized corrosion sparsely distributed along the length of the wire.
, This was also observed during the one-year and three-year ; surveillances, thus is not an indication of progressive I
corrosion, and is presumed to have been present at the time of install 2 tion. All tendon wires it.spected were continuous. t 1, Hechanical tests of specimens indicated the physical properties (yield strength, ultimate strength and percent j p elongation) of the wire exceed initial acceptance require-V ments with the exception of the ultimate strength of ons wire from Unit No.1 tendon BF-23. This low ultimate i strength test result for this tendon ic consistant with the results of the one-year surveillance and does not indicate a continuing degradation of the wire material. 4 No abnormal discoloration was observed in sheathing filler samples. Laboratory analysis lof, samples from each tendon sheath showed tha amount of deletarious constituents to be ! well within established acceptance levels. , t Stressing equipment failure resultad in dama'ge to tendon D3-225 of Unit No. 2. This tendon was replaced and another ; i tendon has been designated as a urveillance tendon ic lieu ; of the damaged and replaced tendon.
- 2. 2 conclusions Basid on the tests and investigation described herein, end on comparison of data contained in this report with data I contained in the one-year and three ye.ar tendon surveillance i reports, it is concluded ti.at the post-tensioning system in i i
the Containment Buildings for Point Beach Nuclear Power i Plant, Units No. I and 2 show no evidence of progressive l deterioration. C 2-1
. - . . - - ;. ~ . 1 -- . .. _. l ,J . . ' b- .i . '
g 4
-__________m___--.-_----.-- - 'O " ^
_ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - -- ---- -----------~ - ~ ~ ~ ~ ~ j / 3.0 CENEltAL ! O The eight-year surveillance of Point Beach Units No.1 and 2 Containment Building Post-Tensioning Systems began in June,1979, approximately nine years af ter the Unit 1 structural integrity test performed in June,1970, and eight years af ter the Unit 2 j structu 4 intestity test performed in March,1971. This surveillance consisted of the followings (1) visual and laboratory examination of sheathing fillar. (2) Inspection of anchor assembly for Seletarious conditions, ' such as corrosion, cracks, missing ' wires and off-site buttonheads. . (3) Measuring shin dimensions and anchor head bushing pro-jaction to determine lif t-off elon;;stion (clear distance , between bearing plate and anchor head). (4) Measuring lif t-of f loads. (5) Measuring elongation at 0.8fpu (80% of atninua ultimate strength of tendon wire) (6) Detensioning tendons and checking wire continuity by pulling each wire and observing its movement at the opposite end. p Q (7)
'c Removal of a minimum of one wire'from each tendon for i examination and testing. 4b . u b,%X ,
(8) Retensioning tendons to lift-off force measured in ites (4) above, less the effect of any wires removLd and measuri'ng
, corresponding tendon elongation.s ;" ; l. +
w;,Tgr a . , ' l < (9) Visual inspecton of wires removed;from tendons.
*i -di:XQ:b:&
(10) Testing of wires removed from tendone for yield attength, - ultimate strength, and percent elongation. . (11) Evaluation of test and inspection results to assess tne general condition of the post-tensioning system and to evaluate time dependent facters, such as prestress losses and corrosion. . i This work was conducted,in accordance with " Surveillance Procedure for Containment Building Post-Tensioning System", Revision 6. The identification ans Jocation of surveillance tendons are shown in Figures 3-1 and 3-2. i C I 3-1
, 4 9 ' ,}-. 4.., , D/047.Y 1 % ,> +eQ . -A, .%;f;W M yi . .....1 MU'C" - "*i'D'**t a ^ -
d 1 1
/,
l l A B C D E r Q 250' '90' 4 l 130' 70' 10' 310' DT-54 o Elev. ' :.06'-2 5/:,6" I i ! BD-39 ^ I aElev. 7, '-10 11/16" a BT-23 l Elev. 49'-1 11/16" I l- = I I El v'. 6 ' - 6 "- t t --h
\ Top of base slab i
HOOP TENDONS i DEVELOPED ELEVATION > 4 f 10*
)
O - hv-3 ' Group 2 310' N
\ ; I / D2-23 I . 70' V-120 \ g # D1-25 (
Group g
. ,_ 1 3 f . (.
250' $3'-S"
\. g ' _ y a .,
D3-2 'i
.g,7^ .p .' ,,
4 Group 1 j l y' 130' .
. 190* .
VERTICAL. TENDONS DOME TENDONS PLAN pm C Figure 3-1 Unit 1- In:ation ard I&mtificaticn of Surveillance 'IWdcra 3-2
" ~ * " ' * ' " * ~ .. 1 e ;- } .. =4 ,
d ' 4 .
~* .. Yhb? "$%1ENN,h $r, c , .. i -)1
} /1 i,
O
' o H J K L M i 350' 290' 230' 170* l!O' 50* i i
r e i t i $ ll \ MH54 '
,- l ; EL.KS'- O' ;I ! MK39 .
EL78k i,- . HK22 .g ,, g. j l
- 3 . i i I
2 k%p of t'ase glob EL,6t6" HOOP TENDONS DEVELOPED ELEVATION 1 C 3 O' y-278
. ,, \
O' g enoup3 l
, i
, 2 223 j i l,
.se i ,. , _. l s I d, .ag sb% %;M.. P w, .- , + , ,K 4 & /W9;e 1 05 n - %,y;225 < -
j p V-339 fGROUP i 2 V-226 0 227
. GROUP 2 PLAN-VERT. TENDONS PLAN- DOME TENDONS l
O rig.tre 3-2 Unit 2- Im.atim ani Identification of Surveillan:a Terdens , f 3-3 4
1 l lI l
) 4 i
\' j' l[
- 4. 0 pHIT ONE SURVE!LLANCE p 4.I Tendon Filler and Anchorage Assembly
~
The results of the tendon sheathing filler and the end anchorage assembly field visual inspections are shown in Table 4-1 and Appendix D. l 4, 4.1.1 Sheathina Filler Samples of illier were removed from each of the tendon l
' ' sheaths and visually examined. Samples from tendon V-3 j
1 were light brown, indicating discoloration caused by 's impuri ties. Af ter setting for twenty-four hours this sample was dark brown in color, indicating the discolor- , ! ation was caused by entrained air.. ) l Laboratory examination of all samples tested was within ' n, i established acceptance limits. The laboratory test results are shown in Table 4-7 and Appendix C.'- l
%i Trapped air was found inside some of the inspected sheath-ing filler caps. Portions of the anchor head and shims in " proximity to these air pockets showed no detectable change t
in t.orrosion level. I ! 4.1.2 End Anchorage Assembly a ( The end anchorage assemblies were found to be in acceptable condition. M111 scale and minor corrosion were noted on the original a111 stock surfaces of shima and bearing platest
!i il surfaces cut for final fabrication showed slight spotty i
discoloration. These cocditions are similar to those generally found prior to sheathing filler ~1nstallation and thus, do not indicate subsequent corrosion. 4 A tendency for increased cracked buttonheads was observed i in the data for the three surveillances completed. Since
,i the number of observed cracks-is well below that allowed 4.'
by the construction specificationEn(sdegradation of the
'j' ;
structural integrity of.tho' post-tensioning' system is evident at this time.
~
i # #NtMW 4.2 Detensioning and Wire Removal 'i i The data and observations obtained de: ring detensioning and ,
, wire removal are shown in Table 4-2 and Appendix D.
4.2.1 Lift-off Forces Tendon lift-off forces obtained during the eight-year
- surveillance are listed in Table 4-2. To provide e common basis for comparison, tendon lif toff . force is i.onverted to l O lift-off force per wire and normalized to account for the following effects: ,
4-1 4 4 I gegne w e z .5m m . . .epe i4We k~essu* A
^
i l >
' l a) Structural deformations (a function of the post-tensionin8 sequence).
b) Initial lift-off force deviation from seven-tenths of l ainimum ultimate tendon wire strength. c) Changes in lif t-off force resulting from detensioning and retensioning of the tendon during previous surveillances. d) Removal of wires during previous surveillances. _ Normalized lif t-off force is obtained by multiplying measured lift-off force by the normalizing factor (see I > formulae in Appendix A). These factors are listed in lable , l 4-3 along with the normalized lift-off force per wire for '
.I ;' each tendon.
- For double-end-stressed hoop and dome tendons, an average of the lif t-off force at each end is used for comparison with predicted values. The normalized lift-off forces are plotted on the Force vs. Timc charts (Figures 4-1 through 4-3) which provide a direct comparison of measured versus predicted loss trends. The predicted lose trend is based f on a stress loss of 27.3 kai over a period of 40 years (for hoop, dome and vertical tendons - from plant FTwUt, Section i 5), assuming losses diminish exponentially with time and j Q 70% of the losses occur in the first year. With an average stress level at installation of 0 7 f predicted average forces af ter one yaE,r a(nd at the end of8.23 k/vire), the 40 years are 7.29, and 6.89 kips per wire respectively.
The trend of prestress losses, based on average valuer - for each tendon group for the one-year, three-year, and eight year surveillances, indicate that the actual prestresses losses correlate closely with the predicted prestress losses. -In general, the average normalised measured forces per wire are above the predicted values. The trend of the measured force loss is nearly identical to that predicted for the hoop tendons, and Issa than that predicted for the vertical and dome tendons. t considering a 1.0% p:estress loss between the three-year
! and eight-year surveillances and an estinated measurement
- error of +2 0% per surveillance, the eight-year wire force level should be within +3.0% and -5.0% of the three-year surve111snee normalized lift-off wire force. Values ob-tained during the eight-year surveillance fall within this ra nge.
h 4-2 j> p , _ . .
...- - ~ ..
i 4 [i 3 y , e
/ i 4
The calibration data for the two rams used is given in Appendix B. Ram 5-12-21 was used to determine the lift- l t C of f force for tendon V-3, the first l tendon surveyed. A calibration error was indicated after the tendon was I' detensioned and the lift-off data was compared to the i predicted value. The ram was recalibrated and the ; calibration error was confirmed. The recalibration data l was used for the remaindar of the surveillance. The initial erroneous calibration data was used to calculate the 80% ultimate strength ram pressure during detensioning o : of tendon V-3. It was determined that tendon V-3 was
; over-stressed. The tendon was stressed to within 0.25% ! of the mean yield strecath test results of wire samples l tested during the one, three and eight-year surveys. This stress level is not deleterious to the design in-service r
L f unction of the tendon. Wire by wire continuity inspection ! revealed no broken wires subsequent to the over-stressing f force. j y 4.2.2 Wire Inspection
.i t ,
The results of inspections of each tendon wire removed for the surveillance are shown in Appendix D and Table 4-2. Some minor surface imperfections (abrasions, die narks, and discoloration) were fcund on some wires removed. These imperfections were shown not to be degrading to the strength of the wires by the results of the ultimate strength wire tests. Comparision to previous surveys shows that the {' corrosion levels are not increas'.ng and no degradation of the material is occuring.
/
4.2.3 Discontinuous Wires No discontinuous wires ware found during the post-tension-ing system servaillance of Unit 1. 4.3 Wire Testing 4.3.1 Specimer. Selection and Preparation Appendix D identifics the speciaans selected for testieg. A typical section of wits (approximately 9'-0* long) vre t cut from each end and from the middle portion of each wire. j' The specimene =are trimmed to a leegth of 101 inches, fitted
- with stressing washers and button-headed to provide a gage length of approxioately 100 inches (clear distance between f Iuttonheads). As specimens were removed from the wire, j they were tagged with the following informationt ,
1 O I 4-3 4 I
;p - - ,%~ , \
f i
/ }
a) Tendon identification number. h b) Sample number indicating location of specimen. These tags remained with the specimens through completion of testing. 4.3.2 Test Equipment ( z s The test assembly used for testing noni al 100 inch gage i length wires is shown in Figure 4-4. { f A ten 11e force was applied to the wire through the stress-ing washers inserted in the pulling adapters. One adapter . was screwed onto a threaded 1-1/8" diameter rod anchored to l' the end of the reaction frame. The other pulling adapter was screwed onto the threaded portion of the ran. The 10"- stroke two-way ram was bolted to the pulling end of the reaction frame. Tension was applied to the wire by pressurising the " pull" side of the two-way ram with a hydraulic pump. The force applied to the wire was obtairad j from calibrated pressure gage readings. t Displacement to one percent elongation was measured utili-zing a dial extensometer (having a two-inch travel and lowest division of 0.001 inches) mounted as shown in Figure 4-4. The dial mounting bar was anchored rigidly to the reaction frame. The extensometer was positioned on the { mounting bar to measure the change in distance of the index rod attached to the pulling adaptor. This, after preload-ing the seat button-heads into pulling washers, enabled measurement of wire elongation. i , The elongation under load at failure (ultimate strength) was obtained utilizing a rule attached to the sage mounting bar at the ram-end to measure the relative displacement between the index rod and the dial mour. ting i bar. Measurements were read to;the nearest 1/64 inch. j
,A A & & .,. 1 j 4.3.3 Test Equipment Calibration yrnd MM*
- t ..
.a ; i v mnp%W '
lY The pulling assembly (gsga and. ram)ivas calibrated in a testing machine accurate to + 0.12% and -0.000% of load reading prior to the testing of specimens.
- v.
I g l 1O 4-4 i
~4L , d.
b . . .,_ . ~ n .. . s-
! c 4.3.4 Wire Test Procedure - Long Samples b Thetestprocedureusedpara11eldthatofASTNSpecif1-4 cation A 421-65 with the exception of sage length. A nominal 100 inch sage length (instead of-10") was chosen p' to obtain a longer sample more representative of the actual - in-place strength et the wire. The 100 inch sage length specimens may indicate a lower ultimate strength and less ductility (elongation) than 10 inch specimens, since fatture will occur at the weakest point in the wire (equivalent to the lowest value that would be obtained from ten 10 inch j specimens). ~ Eloegation under load at failure will also tend to be less due to distribution of elongation at the
, , neck-down area over a length of wire ten times that of the a )- nominal 10 inch gege length specimen.
! l 4.3.5 Test Results
- The results of tests on 100-inch gage length saeples are shown in Table 4-4.
L! Due to the effects discussed in paragraph 4.3.4 "tre tested )- using 100-inch gage length specimens is expected to exhibit
. lass elongation at failure than identical wire tested using ; 10-inch gage length specimens. Based on ocher test data >
) (1), a wire exhibiting a 4% ultimate elongation by 10-inch gage length testa is expected to 2xhibit a 3% ultimate C elongation by 100-inch sage length tests. All wires from the nine tendons exhibited elongation tmder load at failure greater than 3%. . The miniasm and maximum i measured yield stress' of t198 kai and-225 kai for the one i year tendon surve111anceFand!!91?ksifand 117 kai measured i. for the three yest surveillarc'endompare wall with 193 kit and 215 kei measur,ed forithe eight-year survuillance. The j yield strength of all wire specimens; tested during the eight year surveillance exceeded the minimum yield streuth of 192 kai at 1% elongation.g ~ >I ' ' The ultimate strent,th of all of the wire specinans teeted exceeded the specified minimum ultimate stre agth of 240 kai with the exception of sample num*vr 1 from tendan RF-23. All failures indicated a necked down cun-and-cone fracture , area. Approximately 50% of all fractures occurred at the button-heads and the majority revealci test characteristies due to eccentric reading of the buttenhead. The ultimate y stress of all tested wire samples irith breaks at the button-heads exceeded the minimum specified ultimate strength of l. 240 kai. (1) The tes t results comparing elongation at failure of 10-inch and '100-inch specimens are reported in Consumers Power C:apany, Containmant Q Building Post-Tensioning System One-Year Surveillance. Palisades Plant Usit 1, Dockat No. 50-255.
, 4-5 i I
l " 4 3',. ... i
.. Wah,r~,h i.-. :
_ _ .3
6m . ..-,e.r amahamnaamaudmater j 4
. . _ _ . . . . . .. . _ . _ . _ . .. .. < j i
3- ' l
. 1 3 o j 1 1 ; l ,i )
( ]i IJ1timate strength tests on material from tendon BF-23 ' duriug the one year surveillance and this surveillance did
! O not exceed the 240 kai minimum required strength. This low .i indicated ultimate strength could be the result of errors ;
inherent in field testing as given by any one or a combin- i ation of the following (i
-l a) Cage not properly adjusted to zero at beginning of test; l -l b) Misreading the gage at time of failure; i i !! 'j L c) Temporary malfunction of test equipment (such as foreign .
['; material in the hydraulic system causing spurious gage readings). - 1 l ' Twenty-eight ultimate strength tests have been made on 3 material from tendon BF-23. The results of thess tests are summarized in Table 4-5. A histogras of these results is shown in Figure 4-5. rvamination of the failure surfaces of the specimens which failed belov 240 kai showed a neckad t , 4 down cup-and-cone ductile type failure indicating that the ! c* failures were not initiated by stress corrosion or hydrogen '
# embrittlement. The corrosion observed on these specimens e vas typical of that observed on other specimens whose y strengths exceeded the specified_ minimus untimate strength.
o w:,.Wh:0!ygw l* r . k The conclusion dravnffrom the histogram of Figure 4-5 is f Q that although the acceptance testajindicated an ultimate strength greater than 240 kai~for al1~materist used in the fabrication of tendon' BF-23, a statistically significant
=
fraction of the material strength did not exceed 240 kai. (: Although the fraction of the material balow 240 kai is , statistically significant, the strength of the remaining , 9 material maintains more than an adequate amount of reserve strength above 240 kai to, insure design requirements for
- 240 kai are axceeded. Therefore, the structural capacity C of the tendon exceeds the ultimate strength requirements and indicates no degradation of the post-tensioning system.
4.4 Ratensioning and Filler Insta11stion j The data obtained during retensioning and filler install- f ation are shown in Table 4-6. f The tendons were retensioned to from -0% to +5% of the same stress level. indicated by lift-off force data obtained during this surveillance. Additional elongation was measured as indicated by the data given in Appendix D sud Table 4-6. ' f 4-6 i ( ae. m
1
. . . . - - -- .--....- ' " ' ~ "
g,% 4
,g -*,
g ,, g
^
m___ .~. - 1 I
'l t :
The volume of sheathing filler removed was recorded. The 'q volume of the sheathing filler lostalled exceeded that lost Q during the surveillance. The retensioning information provides input data for use in , .. the next scheduled surveillance. '
, 8 y' -y ,
N i 1 1 i
'w'i S.5 8 4 # pt 4( 4 g
- - s A
,i n.
t O b I 9 f . j,
- i
#^
yw. = -M. f ,
'y, 9 ' ,;f .s ' * . ;,~; w$j <%. . -- Y i ' = *-*+gj < ' .".[, f- e[,- .'
M jhy ,d : ,
, t^jEpsd{$$hfij4@fdtp;;q%w^
- I L' ' C. W$,.$w$. . s ..
./
i
~ n ?id.jdf;Qp e e M.h, . ,.m$A--UT>\.
v-5g i
=w.
u.
' .W ' ' % ,'t y
8 s... Ni a , a b A' z
., 9 . , . ~ .. . .;g y,p : . . -
_'f- - $y' l ; 4 - > 4et y,g z * .x
,- , , ' . -isyp - ,. ,y~
Q . x .
. dj ',0, g,k D k.( . I t
4-7 .. i p p _n .. . . - - p
* -*m.,.3 h $6,g j
- f n' '5 %(* QQy 9+ W_ '.Au.
M
9 o
+
) r o (* . i o
,i
- t. ,,
f C Terden ID-38 h"IbndonF-23 b 'Ibnkm T-54 8.0 _. . y - - L'
*>e > * . .- .. .-
p a n_ __ _ . *. . . _ . - - t 7.5 A. 8 ^_ 8 .
- A g xpected E Ioss Curve ,' .-
! e
% e- -gw f
- a y 7.0 ~ w ,- !
<h .,
g ,_ . _ . . . _ . . j
..c.- . . .
Minimo Effective _ _ g g _ __
- i e - . ,
- tusign Prestress - . - t l
g" 6.5 'f g4 l n a ; f3 p-.a> .
.a_ rp um .a.,
w . _.. .. . . ~ . . _ _ . _ . __ j
.sg ., ., c. -
5 W ~, . .. . ,.- ;- - -- .
- e '
Ifi J i 6.0 r S 7 10 20 30 40 1 2 -3, ? g!. . Timo Atter Initial 'Ibnsioning (Years) J
-. e l .)
FIgers 4-1 gait 1 - Ik:cp Terubn Aver.vpr temm2112cd Wire Force vs. Time j i y.
?
t-wy -
.- ,~..-
_ ~ ~ _ - y
*) ~
l $ I. i-8
)
i
. O Wrukn V-3 h Wrv3cn V-58 V-120 8.0 .-
j l -g .__g y
-~ -y _ f, --- .g_ _ -80 d n '- ~ ?+
7.5 hm A 9
$ch U - -
7 i n . 3 p Expected loss Curve
-/ .% ^ ~. ^
{ p %_ f
'A'.f' s d, w 7.0 . 3 in A y - .f.
4: (tunimtra Effective __. . 3 '* D2sion PresPress d,6.5 3
- 8
, Jf , .m ); &g;Al e - -;ve M
LEh .y 6.0 40 5 7 10 29 30
]E A 9: L. ' 1 2 3 , 2* ? - Time After Initial wnsioning (Years) ,9- ./ Doit 1 - Wrtical hndon tbrwolimd Wire Force w. Time
- t Figure 4-2 j
i
?
i
& N. ."%g_ .
,v . . . + - _ _ . _ _ __
va -. _ Tpi $ - 1 O O O-
- 1. (*
i ' .t .. . O Terxin D1-25 j h n:ndon D2-23 C Terrlon 03-25 8.0 e-
- i. .
l s. , y y .- _ _ . ._ pE p. .- . p . . _ _
}' ,
s- __n __ g 7.5 . r . r s , W- ; e
, 1 (4
l5 g
;vE g - _ v' M
WfWW Ims ouve i e; O. y, ~
>yv .
8 ~ > ( p :s % L Q;N* .. . Y 7.0 -
- we ~
pg g g L g as
~
s.
'E \h hfectim . -
- N - Design Prestress .-
L ~ ' y A; s., ___ __ ._ __
.y sasn .- .6.5 -n: -
, ,n
~ - e.r .. . .. _ __ -p :< h_; 1. .. ... ,'y' a ___
4 c> 2n 4 _ _. ___. F30,5f; ;. . . . . - - _ _ . _ _ - m - . . .. . . p :w:.h,4 - 6.0 l[gw 2 3 5 7 10 20 30 40 U;I , 1 Tise After Initial ibnslordrg (Years)
'M Figure 4-3 Unit 1 -Dcue 1brxfon Averag 7tximalized Wire Force vs. Time i
- t. .
t P
,M ,
~ ' ? '\ O .
O O t ' l l 4 Dial Cage teounting sar v.W l
! a ' J P S
I Rule '
'J ,- Anchor End I; ~ / Threaded Aod eff g ,,
Test Frame J Stressing Washer 2 way Ram *
. ,, ; , Index Tab Pulling Adaptor ,I .
Index Rod Test specimen tT, - Id s.a. .ndt _. .de: N .jp j -
- ,,1 .d.. r jd-
- z. _ _ .
7'l',.~-[-;FressureCage p... . . a.z- - -
. . N. 'y .:{ ^ 4x 4,, . Wydraulle heap with 4-way valve 6
L Check %1ve Figtzre 4-4 Wire Test 8tachine Asstuddy [
\ - .. -- . - ~
A%%wk
)
i l g
- . . - , I / i i
7-9 . l i u i
' {
h to - l i I g. i 1 l ( 8- , I l - 4 a _MEAN VALUE 2411 nst ! STANDAft0 0EVIATION 4.84 Ksl W s' 8- - k g. g ., it w
. ~y g. - r-. }
3
, a f. f p s
e~"i"y:xs:Ry > , 2~ - _ 1- - _
= ' =
p ,,,,, _ i 2M 'h 'h'' ' ' ' ' y** ' ULTIMATE STRENGTH (KStl L Figurs 4 5 UNIT 1 - ULTIMATE STRENGTH TEST RESULTS FOR TENDON BF 23 ! V 4 I ! 4 3 l r 4-12
9 , .p n -_ _
= '- ~ -
a__.---...... 1.* u -
~
e 3 t* rett ER COAreso retirn OsuTToseasAos Q smess MyY DaTE Ytssooss
- l -
j I & E E* - 8< i s> i $ ** g -
. J 5 3 o o "
y ) 7 5 , 5 I 5
- E s
t o r et s j i c o 2 o 5 t g 8 g s
,a sa e s
a e s a i s c e g a 5 [ 0 9 $ 6 t i! E h E E U 2 U N U E
- 0 o
8a 9 > u E a y
< sa i e
san 8" g 9-8 u k g au 4 o 8 u a o y u& 8 u i ) C C N Y 88 3 0 1 N 1 2 2 N 2 N 82975 8038 8 $ N C C C 1 N Y $4 0 0 N - 2 N 2 N 7-2-79 (1) 0 F C C C - C C 1 1 - N M Y 88 19 0 1 N 1 N 2 N 3 N S 28 79 8 BF 23 8 5 N C C N C 1 N 82879
@ F F C C C - C C N Y $3 g i 10 $ 1 N - - 2 N 2 C C N Y 88 1 2 0 t N 1 N 2 N 2 N 7-10-79 ) DF-54 F S C C C C C C N Y 88 1 2 0 t u - -
2 N 3 N 7-1479 j -- D F C C C - C C N Y SS 1 14 8 1 N 1 N 3 N 3 N 5-t3-79 V-3 T S N C C C C C N Y 88 1 5 8 2 N - - 3 N 3 N S-13-79 s 8 F C C C - b C C N Y 87 1 2 8 N 1 N 2 N 2 N G 21-73 V48 Y $ N C C C i Y 0 0 2 N 2 N 2 N 5-21 79 k f* 8 F C C C - C C N 87 1 -
" > C C N Y 87 E O 1 N 1 N 2 N 2 N 5 19-75 V120 T S N C C C 1 51979 C C N Y $1 1 0 0 1 N - -
2 N 2 N 8 F C C C - L, V s. N m N 2 N 7 4-13 D1-25 A S C C C C C C N Y 88 1 1 8 1 1 i N'Y 88 2 0 N - 2 N 2 N 7479
.Y9k 1 -
D F C C C - C C 1
" C C N Y 88 1 8 8 1 N 1 N 2 N 2 N 3-22-79 J'$ D2-23 8 8 C C C C I
I &4
. yd f C33 E
F F S C C C C C C C C C C C N M Y Y 88 SE 1 1 1 1 0 9 1 i N N 1 N 2 1 N N 2 2 N 4 S-2273 7-12-79 2 N 2 N 7 12-73
% S7 j C F C C C - C Cl 'N' Y 88 1 8 e 1 N - - ) p'.t pe0TES TEN 0088 Esso LOCATOst F81LSA COATEMG CORRnwiss LEVELE ' b" l Y.Tep ee nttient osadas C.Commed f. artsms snoed. *ede- .=mc
- 1. Touten eD3B to densened erowns r 4 taen M' . ii s . sme== ce m une=
A as P .caneens an.oress e. w .n. tw s.c 2.naamain.- cos .
- 3. Aos-<partimesnipahC mar-
- s. Aar<,=*e < ms- 2.run. %
r s_ ea {
=d.e e= ]P* ~l .
- s. me-<e=*e is.,m < mr
, n.d n, -
- am as Immus a e. E anerme basesamme
./ .
c e . .e oas w ==. =ma. e
- 3. T - -. en esamen susbury
,,%g
- 4. To used ear W hade spesus ene
% e.sechop Gm d med shrum i
T;Me 41 UNIT 1 - KHEATHlhG FILLZR AND ANCHORAGE ASSE*ist.Y J DATA 4 i.......,~_,_.:. . __m._ g
t j i . l. I C i i I (ed)1VNW81X9 ANirtNiv1NO3 R A ,1 M R R %8 %' R* NRRREE !
, n n n n n ., a n g , annoisuaise alvo ain s
e . 4
- t 4
4 a a 4 2 4 a 4 hg 3DNY1118 Abint SIMA . . . N = . .- =
! $ ' y ; Q "n* n n n - n n n - -
ir i <
. i,......,An o~, . . . . . . . . . g E
O E
- n ei nious, ins ,vum a
g 3 ~ g 3 R a ,z, q c e ( i N
~ ~ % % % U ~ C f ,
3
,,,;,T,';;t,i,o.g a a a a a a aiaiai 3 j -
t
=
a:
- P**dtl h044VoNO13 hh hf ff fI f f hI hh hh hf j o
15 __ Sh r iwizados R2 E2 E 5'18 38 52SCEE k l l8 0 C
<* * * *vo 55355!" EiS'Ei 35 55 55 g g - > -uve-,. g5 55 5s gg ,5 g3 55 a5 ga s I -- as as se eis.a' as as as i 3 -
hh h! hh h'! ! hh hl hh I
' *'1800VD _
b 5 , 5
-9 auvo=u 55 55 55 55 55 55 SS 55 S5 - - -
i
~
4 5 (* Ml83W0d $$ a5 $$ 3'E'6' 3I 60 $I g twisonvo y .h h n n -g g3 gig'l' gg h g 3, -3
=
oklNOtSN113 W 3* H SS EB BB B E E SE a5 55
! wouvoo, . . . . ...-.n. <o...o I h1 g' N 6a 'N wouviuosio . E. @
3 o o Jt 5 a 8 dooH 1voi1WBA 3:400 et-14
.. w. .. . k,'O < ;kiiNSV l))( #au. ,
{ 9 ....-..... .. - m.. i
. _ .. ... . . . . . - . ._.- _ j _.
j l. I i
. j-f :
LOCATION ElGHT.YEAM NORMAltZt0 FORCE PER WIRE TENDON NORMAllZING LirT.0FP EAM rtNDON AVERAGE SVTTRtl8 SHOPIFitLD FACTOM END (Klpal gg 3D 38 8 8 OJ88 822 7.074 ! O F 0.570 822 7.088 i t 8F 23 - 8 8 0.287 833 7,1H ! F F 0.357- 821 7.0H { 0 F.54 F 8 CAM 838 7.287
+ 0 F DJ27 608 SJ18 V4 T 8 0.830 834 7.248 j i
V 68 T 8 0393 854 7.659 i L C v u0 T 8 ua su ui : .
,f : 0125 A 8 0.815 . 862 7.410 .
D F DJ38 818 7.034 0223 8 8 CJH . 878 7.880
- E F Q.933 F- C28 7.131 03-25 F 8 , 0J85 5 .. 7.283 h*- )P 847 $41 f C F- DJS8 . :- 7.578 i i NOTE: T -Too of vertbcef tesean A 10 F = esorts1 tp.ittrees 10 end Of landen 2 Table 4-3 UNIT 1 - NORMALIZED LIFT OFF FORCES FOR EIGHT YEAR SURVEILLANCE ,
I 4 f
^
4 15 ', o
'O> _ _ _ _ _ _ _ _ _ . _l_~ --- .
lt, , . . - . . . , , . . I i r
, , u b; . j- w . ......m.. _ ,
k j a l I l h 1 TENDON SAMPLE 1% YlELD ULTIMATE PERCENT LOCATION OP j NO. NO. til ETRESS (K5il STRESS (B MI ELONGAtt0N F ALLURE (2) 80 34 1 2C2 241 (4 M ; 2 204 247 4.5 M < t 3 2'1 252 4.8 M I BF 23 1 183 233 LO M {' 2 201 246 L1 BH 3 205 244 4.0 SH I 4 201 243 4.7 N ' , 8 137 240 4.1 BH I 188 242 L2 M l DF 54 1 215 255 E.0 M l 2 210 262 5.2 BH , 3 214 254 4J BH V3 1 til 247 4.1 BH i 4 2 208 248 to BH l 3 211 251 L2 BH V 58 1 tot 244 4.3 M 2 205 244 LO M 3 2 05 247 41 BH lt C V.120 1 208 248 L1 BH i 2- 205 244 3.7 SH 3 208 247 3.0 BH 4 203 247 4.0 BH I 203 248 L1 M i 0125 1 til 257 L3 T.H
- 2 tw8 258 La~ M 3 207 251 L5 N 02 23 1 209 252 L8 M 2 207 254 4J M
- l 3 215 257 L1 M D3-25 1 209 251 L2 M 2 207 - 243 .LO BH 3 210 251 <t3 M l
l Noirs. til s Ape.<en a eor i.moh io tion on win. (2) P.uur. i.socated utnin r of avtwan a towl er wein usiks. cu1 Porta.a es are. Tebte 4 4 UNIT 1 - TEST RESULTS FOR 100" GAGE LENGTH WIRE S'PECIMENS 1 l l b l O 4-16 y - ------ - ~ - - -
E j . . . - , . . . . . . . . - . - - . - I
. /
3L i 1 O
' u sTgog tt:t saurt.: soawrincAvice l $$'o"tw" tiaJ l w.m I FABRICAT:0m ktAT NO.13MS COILit? CAMPLE A 10 242 '. ACCEP1AhC9 WEAT NO.13Nl C0ll1171AurLE E 10 243 !
Tim HEATWQ.24488 ColLMB SAMPLE A 10 247 ! [ HEAT NO.2640s CellWI SAMPLE 8 10 348 l 8 WLATNO.2408 C0tL487 $AMPLt A 10 144 i i HEAT h0.2M88 C0llM7 SAkPLE B 10 til , 01st.vtAR 4F.23 tr4r 100 23?
$VRVtlLLANCE 0F43 Or.M' 100 234 BF43 11F 120' 100 237 1 ARuto tPECIMEN A 15 242 ARMC00PECWEh 9 10 241 l
i ARMC0 SPECINEk C 18 142 ARNCO $PttlWEN D - 10 til ARECD 8PE*! MEN E 10 242 ARMCO RPECIMEN F 10 240 PITT*. Bud 0 TLtTING LAS 0 10 244 I to 344
) PIT 18URO TISTING LAR H mTseuROTmlw0 usi 10 344 PITTSBUR1TLITING LAS J 10 242 >
THRtt. YEAR $F.23 1 AMPLE j 100 2$4 suRVilLLANCE BF-23 SAMPLt 2 10L 260 BF43 & AMPLE 3 100 24l t:CHT.YEAlt BF43 8AMPLt1 100 233
$URVitLLANCE CF43 LAMPLt2 100 348 BF4J SAMPLE 3 100 M4 SF43 LAMPLt 4 100 243 IF-23 & AMPLE & 100 340 ' 0F43 CAMPLE 4 100 242 l
Table C 6 UNIT 1 - BUMMARY OF ULTIMATE STRENGTH TEST RESilLTS FOR TENDON DF 23 4 17 1l
' ~ ' ~ ' ~ ~
h' - ._. -.
/
i
; ~., .tre,u: a n an na a .n a na nn an n Ruzn~=
o ,,,,,,,,. 43 - a ca na is is in 3 2R R R RR R R R RR 42 RR d o' "'882'o de c4 cy 'e'd'c 4 4 de 44 44 44 cd cd y 44 na 4. 4 n n n n n nw
.. w . . . . . . . E. U. w. .. . . .
3 8
.. . s. , s. i s. i s.a.n.g; . . . 5 c:
s 5 Q $ 6 n,o8. doi.,
. - gj - e v v I3v E @3vv q 3-_l +
E
- l. 0"' **"' m a5 HS 55 55 $5 55 BS 55 55 a j g
**aa EH EB EE EiEi5i 55 El ER _ $
i 5
= i-i .~o siin 85 !c!'s' 08 sagt 3 '. I !I$ "n*300s ... . . .. .9. 9 m
5 s p-9 i 5 a o"> * *"> = 55 55 55 85 35 55 55 55 55 g [< j hL a ~ #~ es es as sinini ss sa ns s
^ **** IIIIII I'E'Ei IIIIII iAf .S S Td E ii n 49i 4.1 i i i
i p -- 55 en s5 sisias saanan : ,
~
I ;5 l k i*$ nm i ss su as aiat ui s u' s n a s 3
< * * *
- E! BS Es Bi Ei Ei 55 E3 55 Ii
. b um s .
s so ..mii .x Rs ss R E 5 58 8 - S l osoi inu nivo 2 i $. i : 5. :: :: 2 SE ~ l inu w se 4o o" 2 u u a a a u= ti g
.o... - - - - - .
c, [ oum, . . . . , ,
- ouoio ge5
- = = =
a e S eon8 o B 1 8 spooH 7V3t1WBA snoo I ! 4 10 I w.. - . . . , .
) .-.. . .
A. .
i
)
4 l l l n , ' qII
?$ !1 i -
1
+4 iF WAllR SOLUBLES NEUTRAll. 8 ilNDG '40 - 2ATION NO.
CMLORIDLS- NITRATES SULFIDES 3 (swgKOH/pl (psvn) (ppm) (mm) CO mi . BF 23 a07 01 a3 < al < at 8038 0.11 at a2 < a1 < al JF DF f>4 23.31 L2 2.7 eft < al < at h . V3 0.35 052 0.1 % 4 < 0.1 < a1
-- g 1
[ V t,8 a37 R8 0.7 P T 1' . .
< 0.1 < 0.1 'j h V 120 a34 a7 0.74 < a1 (L1 l, ') Dt.26 0.11 < 0.1 0.2 < 0.1 40.1 .
{ D2 23 0,10 0.4 0.3 < 0.1 4 0.1 D3 26 1.10 a5 0.4 < 0.1 l < 0.1 9 DAHRf L 2 11.65 0.1 a1 < a1 < 0,1 ,i BARREL 4 0.12 < 0.1 E9 8 < 0.1 1 e < 0.1 ;
, B ARREL 6 < 0 01 < 0.1 < 0.1 40,1 < R1 ' ; DARRE;e < a01 * ~ ~ ~~ < a1 0.8' < 41 < at MAxiubW~ 4 5 > I fg, ,t T.
E NO. 5PER to < 10 ,.;. I,10 *
, c . , NO. CPCC. ,. )' * # Y)-$$(f[, # * #.h $ . 6,* y. p%-{ .
- i
) Note: Barrels 2, 4,'5, and 6 refer to tests of grease !
in Wisconsin Electric Power Co. stock.
- 0 ,
\
s
- i
-)
y
. 4 4 Tela 4 7 UNIT 1. LADOR ATORY ANALYSIS OF SHEATillNG FILLER {
i, 4-19 +
<t =,
(.. L,:L ::r~"r* =_'h,' ,!hu j _ E .5 1
. . s. . 4 -s ._- -_ r -- - ~ ~'
/ ,
50 UNIT 'NO SURVE!!1ANCE h 5.1 Tendon Filler and Anchorage Assembly the results of the tendon sheathing filler and the end anchorage assembly field inspections are shown in Table 5-1 and Appenaf x E. 5.1 1 _ Sheathing Filler _ i Samples of filler were removed from each of the tendon sheaths and visually examined. No discolored filler vse { observed in the samples or within the tendon system. Laboratory examination of all aanples tested was within established acceptance limits. The laboratory test results are shown in Table 5-6 and Appendix C. Trapped air was found inside some of the inspected sheath-ing filler caps. portions of the anchor head and shiss in the proximity of these air pockets showed no detectable change in corrosion level. 5.1.2 End Anchorste Assembly , t The end anchorage assemblias were found to be in acceptable i condition. M111 scale and minor, corrosion were noted on the ! original millstock surfaces'of shima and bearing plates. I; l
' Some surfaces cut for final fabrication showed slight ) spotty discoloration. These conditions are similar to ,
those generally found prior to sheathing filler install- ' ation and thus, do not indicate subsequent corrosion. 5.2 Detensioning and Wire F.emoval The data and observations obtained during detensioning and wire removal are shown in Table 5-2 and Appendix E. 5.2.1 1.ift-off Forces Tendon lif t-off forces obtained during the eight year surveillance are listed.iniTele 5-2. To provide a common . basis for comparison, te"ndon'11f t-off force is converted to lif t-off force per wire and norunlised to account for the effecta described in Section 4.2 1. The normalising factors
- ere listed in Table 5-3 along with the normalised lif t-off force per wire for each tendon.
p . l . . i k (i 5-1 i
,, n ..... - _ _. .
- N$k, h p *4 j
4 y
! q t / 4 1 1 ([ For doub1S-end-stressed hoop and done tendons, an average , of the lift-off force at each end is used for comparison with predicted va h es. The normalized lift-off forces are f plotted on the Force vs. Time charts (Figures $~1 through js 5-3) which provide a direct comparison of measured versus l
,1 predicted loss trends. The predicted lors trend is based on a stress loss of 27.3 kei over a period of 40 years (f or hoop, done and vertical tendons - from plant F5AR, Section 5), assuming losses diminish exponentially with time and 70% of the IJsses occur in the first year. Vith an average stress letal at instaliation of 0.7 f (8.23 t/ wire), the, predictedaverageforcesafteEuone year and at the cod of 40 years are 7.31, and 6.91 kips per wire respectively (see expected lose curves - Figures 5-1 through 5-3).
The trend of prestress losses, based on average values for each tendon group for the one-year, three year, and eight-year surveillances, indicate that the actual prestresc losses correlate closely with the predicted prestress losses. In general, the average normalised measured forces per wire are on or above the predicted values. The trend of the measured force loss for all groups is nearly identical , to the predicted slope. , I e Considering a 1.0% prestress loss between the three ys,ar 1 L and eight-year surveillances and an estimated measurement j error of 12.0% per surveillance,,the eight-year wire force leval should be within +3.0% and 750% of the three-year surve111snee normalized lif t-off wire force. Valu9s ob-tained duri'ag the eight-year surveillance fall within this range except tendon V-278. Developing a maan curve through the three-year data shows it to be consistently low. Possible
, sources of lift-off massurement error affecting this data ares a) Systematic and random ran calibration errors.
b) Errors in reading ram pressura during lift-off, c) Technique in determining lift-off. 5.2.2 Wire Inspection The results of inspections of each tendon hire removed for the surveillance are shown in Appendix E and Table 5-2 Some minor surface imperfections (abrasions, die marks, and discoloration) were found on some wires removed. These ieperfections were shown not to be degrading to the strength of the wires by the results of the ultimate strength wire tests. Comparison to previous surveys shows that the corrosion levels are not increasing and no degradation of C the material is occurJug. 5-2
._ _ _ _ , , l g7 7 y . . ,> . . ._-.. .l.J Y - )'.
i b i
/
Ii 5.2 3 _ Discontinuous Wires t n f 4 (' No discontiuuous vires were found during the post-tensioning system surveillance of Unit 2. l t 53 Vire Teeting S. 3.1 Specimen gelection and Preparation , Appendix E identifies the specimens selected for testing. Each selected specimen was cot, trissed and j marked as described in section 4 31. 5 3.2 Test Equipment The test equipment and its operation is identical j to Unit I as described in Section 4 3.2. , a 5 3.3 Test Equipment calibration
! n e testing of wires was a continuation of the vorh i <'tomplished during the surveillance of Unit 1. The " test ran calibration which preceeded Unit 1 fulfilled the calibration requirements of Unit 2.
1 5.3.4 Vire Test Procedure - tes samples l'
^ The wire test procedure us'ad for Unit 2 was identical Ii' to Unit I as described in Section 4.3.4. , a '
335 Test Results ' " , '.s
+ , ,, / c :q ,.
1
, The results of tests on 100-inch ~sege length samples a're 4 shown in Table 5-4. All wires,from the nine tendons exhibited alongation under load at failure greater than 31.
c ne yield strength of all wire specimens tested exceeded the minimus yield strength of 192 kai at 11 alongation.
-A JA .4 . -
ne ultimate strength of:all of t.he wire specimens ttsted _ exceeded the specified minimum, ultimate strength of 240 kai. All breaks indicated a' necked down cup-and-cone
/
fracture ersa. Approximataly,25%'of all fractures occurred at the buttonheads and the majority revealed test character-istics due to eccentric loading of the buttenhead. The , ultimate stress of all tested wire samples with breaks et the buttonheads, exceeded the minimum specified ultimate strength of 240 kai. m (- _h 5-3
.. . t +- . . . - . . ~ . . . .. - / i 1
5.4 Rotensioning and Filler Installation 4 i i ; ne data obtained during retensioning and filler install-ation are shown in Table 5-5. , f . .i ne tendons were retensioned from -01 to +58 of the sans stress level indicated by lift-off force data obtained-during this surveillance. Additional elongation was messured as indicated by the data tiven in Appendix E and , Figut e 5-5. Tendon D3-225 was severly damaged by a stress- l' ing ram equipment failure duties retensioning. This tendon was replaced. Appendix F describts the tendon replacement. l Another tendon. D3-221, has been selected as a surveillance i tendon in lieu of tendon D3-225 for future surveillances. ne volume of sheathing filler removed from all tendons was , recorded. The sheathing filler volume installed in each l[ tendon exceeded that lost during the surveillance. ne retensioning information provides input data for use in , the next acheduled surve111snee. i
.r a w
- s ,.> } t <. _
g qq r -
. L h t. i il #
D e j .. l l < j k' . 5-4 1 6 8f . i,, 3 , . .g '
^' "*dh g u$* ' . y;l . '. &
L o, a
l l e
- e*-- . .+ e.
{ . - w,. . s4 ,, ,, ,, D i
' l '
i 3
- g. '
- t. I NR% I I
ggg 'I I 3l 1 l
'j i e s e 1 ; } } . 'll 000 -
I [,' g 3 l 3 l' l f 3' . m C' 3, E
.. .= .
3D D E
,~ .~ u g I
i
- E* h. ,
2 i - _. o
- \ l _i '
l
. ..i . .m j i - = l $l\ # (wc.1/ ..
f c , # ; . a, :
.t., 9, t
o ,
- i. ..
4 y < i n'; , (T"[: R( 8
, lt, a , .. I ', , _
g
> t 6 , , ,
F ' aval ( 3 a ,
. t .
0
. 6 l w d
l i ; g g t . . avsA 1 gg! ' i l
# lI !l ;
L 9 9, 9 9 9 m r r e e (edT1) esTM 382 83202 5-5 c I
~ *~ w --- ... w. 4 ' f : ,? . t l, ?t p n 4 r. 4 a
1 .
-+. - -~. ~ - . . .. . _ .. . ,_ , _ i l
l
.. 4 i
p' l ; , , -- S t i l l 2*A n n , R ! n. I i e ( i
,k >>
H 6 H O O00 : (n j ft g 4 e , 9 s r3 e i !
,~ ! e * :
S w ! 4 h' f _ - - o D w
.!i E
g w il
, 2"19 m Gi O l $ $ f i s / t p I :
w
!a 5 ! -
l 1 C .
. j 8 -
I> v: u i l ;l . / i, I H l 6 1 > t 1
l ' j ,9
~
j
.[li,j j');/3 ry M
[ ,, ) -( i i1 ;13 (gigs,<W 3 9 wf .g.,.pgl:;%*(;- byp;s g . i.; '
. . . 6 . i j . i .
b I -
. . i' i .
n
'il t
l1 , a 4 l 3 - ,. . i I i i k 28'A 1 $ ;
$ jj l
l 1 ' l l 1 i I
- l i 1 , l
- o. e, oe ee oe n o n n e e U (edra) osin .ted esaog 5-6 M . , ' m : - * ~ ~ *. e.s ,g <
, j .
.g. - . ,: ,.w q, tam,7- .,,
La , .
... .... -.._.4n 4 +
i.?.,., _ ,4
.A ^k.k.a. ~Ne~..k.hh i
e
- h. - el . .. .M'. g Mn
. .A .d. 3, I
I'
* i I ...m.,w ... ..
f
/
1 l l D II-ll Ii 3 4 1 i , i i e j l OZOn *
~ ! i
- n. n. R 1
.5%a 4 j
o I i e e H -
' , " p '
g 000 .. :i . i l - s 2 G
.Ia2. g : 4 ; } 31 6 g i
5" d6 = - 8 i y10 o .1 11 , g g (. y y
, ) ***A9 ();\ (j)Jg _j g l\E I' ,
g I ' l > 0 $ t
$ 1 C .
1 i a n r ] j .
) t in . **e. <
s , 1 i i l I M 4' ( " i ) i I
'" g H f
- 91 90 ly, 3 j
- t. ,
I li . 1- , b, gph+ f.
, .o N ') 'f' d,,. * ((ifN 'I 'i h ; . i ;
i .
/ ' ll '
li m
'"^' i l l d OO' O . lll l . I e ' i , ,. ; r.
i i iII i E I t i ' . I t l i I n
. ~ ~ . e g , (ed n) esin and esaca ?
t 5-7 y
, . , = . . . .m~ .= +.+. + . - - ..e. -+ y -+ . j
-~ -- - - ~ ~ ~ - -
1
.' A +
i [. f' . ?) i ttssoose artten coatwoo r etta a oi.frTommermos T " ss+ emes T,7 cart
$ l = ~ ? ? - ,
I - I' - J 5 ~ U 1 O $ 3 Y U 3 3 3 1 r "_ < .", 5 < > 1 1 . r 1 s o * ',
~
o :* = 9 E o t o t o t 3 f g I r g 5 0 3 0 8 C 3 5 7 8 : i c 5 6 y E 5 ., s g 5 2 l" - ?
- - : : : : : : : s x ;; g 3 .
a a ! a- . E a a 8 s # $ 2 1 8 s 8 s 8 s 8 a s N Y 88 3 9 ' 1 N 1 N 2 N 2 N 725 F3 HK-22 H S C C C C C C 1 C C N Y 88 1 2 2 1 N - - 2 N 2 5 725 3 E F N C C - N N Y 88 1 1 8 1 N 1 N 2 N 2 m 7 5 F3 NK33 K N C N N C g S W C N N C N Y 88 1 1 4 1 N - - 2 N 2 m 7 M 73 2 M F - C N Y 88 1 2 8 1 N 1 N 2 N 2 N 74173 NH 54 H $ N C C C C C N Y SS 1 0 38 1 N - - 2 N 2 N 72573 le F C C C - C Y $$ 0 e N 1 N 2 N 2 N 7 !8 73 V 228 T S N C C C C C N 1 1 N Y 88 1 9
- 1 N - - - - 1 N 73813 s 8 F C C C - - C Y S N 1 N 2 N 2 N 3-8813 b V478 T 5 N C 4: C C C N 87 1 S 1
- C N Y 87 1 S 8 1 N - - - - 1 N 7-13-73
! v' E 8 F C C C - -
N N 3-1843
+ es > N Y 88 1 1 0 1 N 1 N 2 2 V 333 T $ N C C C C C 1
N Y 88 1 8 8 1 N - - - - 1 N 7 5 73 8 F C C C - - C g i Y 8 8 N 1 N 2 N . 2 N 34 33 I' c1-222 x s N C C C C C C C N N Y 88 88 1 1 9 9 1 1 N - - 2 N 2 N 7 33-75 C l' F N C -
; L I
- C C h Y SS 1 2 S 1 N 1 N 2 N 2 N 7373 D2427 G 8 C C C C
?
[I f 03-225 K J F s C C C 8: C C C
- C C
C C N N Y Y BS 88 1 1 1 s 13 a 1 1 N N 1 N 2 2 N N 2 2 K N 7 3 73 8-143 Y 2 e 1 N - - 2 N 2 N
- 1 73 F W C C - C C N SS 1 I .
as ; l-
~
tr=oom e=o toc 4Tio= riu zN eoa1Neo co=Nosin= trvrts = orts
- 1. CAsPe e=isest,as usuado amm 1. F mer emmeg and casaamen ereof i TfTapof eerdesiassumme C-f suured ases=e se === sewesense er grosse se -Base se= ares 2. fiaddwisur esser. m. sang
- 3 Seesssaof sweed ammusum 3. D0t*<.ettageussaieG A03- case A so F .Nsursag twee=am es laessest
- 4. A32"<partenedispeh*C Ang-omsfofsenese 2. T==eareswe en emesma geomry S. S38"*Cyarvano denen eG sto-
- r- se mouf ae em a ene,g haammente" 8 . 1 Tw w m w mw Cosweesme Ge estaus of Olds tause men museruspearise l as Wie same of tasessureme t
TsNe 51 UNIT 2 - SHEATHING F1LLER AND ANCHORAGE ASSEn1BLY DATA i N
.---+.n "w*A - + . .
ow, -- .- -
~._
l 1 1 l l 1
, /c
- o l
test ivNWlata ANBnNiv&NO3 CMRS2C Qt Mi R6 33QERR
. = = = = n e e , ,
j c- g c NoitNIAsos4vo P. m $ Q 3 s l - 2.- i.
. .i, ,. e .# 83Nv1148 AWOS SIM1 . m u u ,, n I " 2 " " " " 2 i 33NewsAWr!["N1'!El 0 2 i ,i i-, - ~ua, oN, . . . . . . . . ; '
- O k 2 d U R D Q R D $
g g livi nioN 1 AnoivtAtNi g
- d-QH 3
g g g g 4
! : W$7AtN(([a M E C 3 3 3 3 5 3 5 ,l e i . tein wo AvoNoi: RRMRER saJasu ! -{
E t-M" HE . :: 0 s~03 K Q 2 mMa t. nwws E p l l WOd Q ". S S " 3 Q R$3$3Q k l Io g
~ **>'*a** !! 28 58 9'E'Hi C 55 EH H5 g 5 i--ii - 55 55 55 555553 - -
0.55555 E I g
'am i '=d 55 55 65 5'5'B' B5 EE B5 i 1 J u l
l (*wisonvo 33
- - -$3 - 3i Rs eR hh ah e R Sh t-g i g '" * ' a'Avo~o'n 55 55 55 55 @5 D5 S59555- ~
a 3 is
~
r ! '* ** *
- 23 EE SE E'E'E' SE SE 55
., 8 80.1vD dgyhhh hI hI i hh j hh ,
oNINolSNiitW W 8 ! !$ $$ h$ hI hihI hh h$ $h miioo, = = . . . . . - . . - . . Q. ,,
, - 1. - ,e e5 E N 5
2 naa
>>> 9a9 Q Q u ePDOH SY311W3A 37604 I C
e I
i i
. ~ .. ... .. ..._ - --. _ ...- . _.. ..
I: M 5 LOCATION slowt.YEAn Hon AALitt0 90RC8FIAW198 NORMAL 121NG LtPTCPP EACH T[tlD0h AV($Agt TfNDON sVTintas SHOP / FIELD FACTOR ENO tKiral g -_
,, i H $ 8.(87 824 7A82 HK-22 '
K F OJ57 827 f.1N I W K.39 K 8 Ul4 874 f.IOS f.182 ; M F 0 48 828 i uM44 H 8 OJtf $25 TJ88 W F 8.878 881 7.688 j M37 817 7Att I V.228 T $ i 0 88 428 , 7.148 { V 278 V438 T T 8 B 8.H2 1 048 7.300 - 01-223 H 8 8.83) 828
- 7.131 L F M32 818 7228 02 227 0 $ U12 828 7.282 ,
K F U24 F74 7.378 . 03 225 J 8 OJG8 822 7.888 - M F 8354 888 H2O l 1 Nota : T . t o. .# ,ww i.naan A to P . rmerest twetrous to eful ef levulen i Table 53 UNIT 2 - NORMAllZED LIF10FF FCRCES FOR EIGNT. YEAR SURVEILt.ANCE ; 1 O 510 . (p, - . . . - . . ~~ ._ ,_.. _ ,,
a'* , _ , , , , v,,,, _ _ _ _ _ _ _ _ _%e , , , , , 1 ll i 4 O v I I TINDON SAnePLE tt YttLO ULTilAATE PtRCENT LOCAfl0N OP N O. NC.(4 STRESS (K$0 $TRLES LK531 ELONGATION PAILUMB (M t HK 22 1 205 248 4.8 M
-. 2 208 252 L2 M 9 i 3 205 243 4J M W K 13 1 205 247 L1 M 2 201 244 L1 M r 3 20$ 17 241 GH l 1A 202 240 2.8 SH l 38 202 240 LO SH I }
t . WH54 1 202 243 4.1 M '
', 2 203 til IJ SH 3 205 247 L4 W V.228 1 Ill 241 L7 M I 154 241 L4 M ,
185 ' l[ 3 241 Ll M V 278 1 200 242 L4 M 2 199 241 L4 M , ,
,. 3 187 til LI M V.329 1 203 243 L1 M . I 202 244 L7 M 4
l 3 Ill 242 - L2 BH 01422 1 207 244 t. . . LS ' q 4 BH I, 2 104 244 . d. +j" . BH { 3 20$ 243 L 4 AN;I(8el3L3
- M t 4 i
' c: 227 1 208 25: L4 - M i
2 206 247 L8 M 3 20$ 247 L4 M D3-226 1 202 243 (4 W ,, 2 206 246 L1 M . 3 207 247 L2 M l NOT ES-in til l.ee..Appone
- s F for .eerwie $ . r.. -lo.cetloa i.m on were. .u .c j
T.ble E4 UNIT 2 - TEST RESULTS FOR 100" GAGE LENGTH WIRE SPECIMENS l . 3 1 0 i O 4 i
+ ;!
511 j 4 1 a
- - _ --: - =~ = == == -
t 9
-~~...~-m .. . , . . . , _ , _ !
t
/ ! .b IWSAVWldn W3 1 hk kk kk Ih6 h Ik kk hh 8 I CB11TitNi tn 10 ' E 'N 'U N N .
I e mm e e if E en eg e ce i e g 0811td RAVO e e#e e. . n 4 e n n n n n n l
' O l hE s
I p E 'ON 1113W l gQ I 2
. h. h. . Q. Q. . .e.i .. .. 5 -
A ; R DNINOttN1190 g ** g p' n ** W roOWdNOIAYDN019 TVA01NI3DNVH3
"$ + ,g 4 cf 3+ Y II 4
f DNINot$N31A- 5 555 55 55 55 55 55 ii
! E ~ >>= od 59 E5 53 s'E'E' EE Es ' ' 3 i
- )= e M IDOYD 53 3 w 3 i
4
"'~
5
*~'2' ~r 8 - -
a ~ A Sv40 N Y C 5 5 l
!' oa * ****'= 555555 55 55 55 53 35 ii g . .t g ~> = od 55 55 Es nisisi as In ii g 8 = - > = V. !!i!!! I' i' I' EE Hi ' '
ONINotSN1110 n m . g r 9 ,a { f40WdHOIAVONO13 N w w 3 a ti U
- lVAQ1 Nf 3ONVH3 T T T T g e - ~1- si ca se 55s555 Sa 5s -
I mi >=d a a un :: , s.n, na , i 1 5 5 {
! ! - ooV. se as ss e, si si sa 6s i . 2 p w,=: ee=== . . . . , ,
Ii
- e e e e e e e .
g CIN018N313 W 31YO g d , g g g g g I e ,
*
- 4 6 6 e m . .
SaulC dd5WO'ON 2 3 Q 3 3 Q Q $ Q N= Vx, . . . . . . - . - . - . l . ., o ,8 ,, o N ,,,,,,,,,, n s s
? 3 k
nan s a n l ,},
, OOH ,Vouwia 3,ioa 512 t
p omo~~~.s -- . . . _
- I t i! +
- s g .. ,ue $(,5, _Q[ ~ A S%dit. , j
-www_ __ _ , , , , _ . ,
j
/ 'N i
I
. I t
5 i WATER $0LUDLES TE NDON NO. NEUTRAL CHLORlDES NITRATES $ULPHIDE8 WAftR lZATION NO. (ppm) (ppml j (ppm) CONTENT
- (mgKOH/pt) i
(%), ; HK.22 0.05 < 0,1 < 0,1 I
, < a1 < 0.1 MK 39 0.05 < 0,1 < a1 < 0.1 < OL 1 '
MH$4 0.05 < at 1.2 < R1 < al ' v.226 a20 at as < al < 0,1
, y.275 0,10 < Q,1 s'* - 0.1 ! <al at V 339 0.05 < R1
= 0.2 , 40,1 < Q,1
t 01,223 0.31 0.1 a6M t ret al ) (~ 02227 0.05 < CL1 at ! ' 0.1 . < 0,1 <a1 D1225 0,11 < a1 at tal <Rt i BARREL ) 1.06 < 0,1 1.5 < a1 <Q1
- BARREL 2 < Q.01 < a1 i
1.2 <a1 <at DARRE L 3 < act < a1 1.2 < 0,1 <at ' DARRtt 4 < a01 < a1 <a1 <at <al MAXIMUM 1 C" ,
,, ASMEttCT. NO.$PEC. 10 10 > tu. 0tv. 2 10 NO. $PEC, l'
1 Note: Barrels 1, 2, 3, and 4 refer to tests of grease in Wisconsin Electric Power Cc. stock. Table 66 UNIT 2. LABORATORY ANALYSIS OF SHEATHING FILLER i g ) Ci '. ' 5 13 i i
.,s>**'** * , + , . . . ., 6 4 4 -
e *h* .. . . . . . _ . . _ _ . . _',_ d .
- i 4}}