ML19340E212

From kanterella
Revision as of 20:24, 15 March 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Justification for Criteria for Re-evaluation of Concrete Masonry Walls.
ML19340E212
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 10/31/1980
From:
COMPUTECH ENGINEERING SERVICES, INC.
To:
Shared Package
ML19340E202 List:
References
IEB-80-11, NUDOCS 8101060652
Download: ML19340E212 (52)


Text

n u~

Y) .

V. -

JL'STIFICATION FOR THE CRITERIA FOR T4E RE-EVALUATION OF CONCRETE MAS 0tlRY WALLS

,1 THREE MILE ISLAND NUCLEAR STATION UNIT 1 Prepared for GPU SERVICE CORPORATION Parsippany, NJ

,. r l

l l

by COMPUTECH ENGINEERItiG SERVICES, IrlC.

2150 Shattuck Ave.

Berkeley, CA October 1980

'suca os e usa epm 1

~.-

1 CONTENTS Page 1.0 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 GOVERNING CODES . . . . . . . . . . . . . . . . . . . . 1 3.0 LOADS AND LOAD COMBINATIONS . . . . . . . . . . . . . . 2 4.0 MATERIALS . . . . . . . . . . . . . . . . . . . . . . . 2 5.0 DESIGN ALLOWABLES . . . . . . . . . . . . . . . . . . . 2 6.1 ALLOWABLE STRESSES . . . . . . . . . . . . . . . . 2 5.2 DAMPING ..................... 28 6.0 ANALYSIS AND DESIGN . . . . . . . . . . . . . . . . . . 28 6.1 STRUCTURAL RESPONSE OF UNREINFORCED WALLS . . . . 28 6.2 STRUCTURAL RESPONSE OF REINFORCED MASONRY WALLS . 30 6.3 ACCELERATIONS . . . . . . . . . . . . . . . . . . 31 6.5 IN PLANE EFFECTS . . . . . . ,-, . . . . . . . . . 31 t.S EQUIPMENT .................... 37 6.7 DISTRIBUTION OF CONCENTRATED OUT OF PLANE LOADS . 37 7.0 ALTERNATIVE ACCEPTANCE CRITERIA . . . . . . . . . . . . 37 7.1 REINFORCED MASONRY . . . . . . . . . . . . . . . . 37 7.2 UNREINFORCED MASONRY . , . . . . . . . . . . . . . 38 O

O w *- y . g --v- ,- s. -y+ *

  • v

JUSTIFICATION FOR THE CRITERIA FOR THE RE-EVALUATION OF CONCRETE MASONRY WALLS 1.0 GENERAL The specification is provided to establish , design requirements and criteria for use in re-evaluating the structural adequacy of concrete block walls in nuclear power plants. Direct reference to building code criteria was not used for the following reasons:

1) The definition of the magnitude of seismic loads in building codes is different than that used in nuclear power plants. In building codes damping, ductility, site effects and framing systems are factored into the seismic design base shear force.

In nuclear power plants these factors are considered explicitly

- in the design of components.

2) Building code allowable stresses do not consider two levels of earthquake ground motion and the magnitude of the ground motion included in the building code design spectrum is not explicit.
3) Factors such as damping, analysis procedures, effect of attached equipment, two levels of allowable stresses, operability and frequency variations are not considered in building codes.

Thus the specification was developed to address the problems unique to nuclear power plants.

2.0 GOVERNING CODES As noted in Sec. I the specification covers most of the factors unique to nuclear power plants. Items not explicitly covered by the specification will be governed by the American Concrete Institute " Building Code Requirements for Concrete Masonry Structures". ACI-531(29). This code incorporates most of the recent research data available on concrete masonry.

1

e 3.0 LOADS AND LOAD COMBINATIONS These are in conformance with the plant FSAR and are in accordance with the design of all structural elements.

4.0 MATERIALS The project specifications indicate that materials used for the per-formance of the work were originally specified to meet the requirements given in this section.

5.0 DESIGN ALLOWABLES The design allowable stresses given in Tables 1 and 2 are based on fytheprismcompressivestrength,m the g mortar compressive strength or f the steel yield strength. The mortar compressive strength is based on y

the mimimun specified~ compressive strength of ASTM C-270. The concrete block unit compressive strength is based on the applicable ASTM Standard -

ASTM C-90 for hollow units, ASTM C-145 for solid units and ASTM C-129 for hi-l low non-loa": bearing units. The steel yield strength is based on the specified grade of the steel.

Theprismcompressivestrengthfyisbasedonthespecifiedvalues given in Table 4-3 of ACI 531-79. This Table provides a conservative estimateoffybasedonthemortarandconcreteblockunitcompressive '

strengths. The minimum ASTM specified values of these variables was used in determining the conservative estimate of fy.

5.1 ALLOWABLE STRESSES The justification for the allowable stresses of Tables 1 and 2 follows.

e 2 .

5.1.1 AXIAL COMPRESSION (Reinforced and Unreinforced)

The following discussion of test results has been extracted from the commentary to the N.CMA Specification for the Design and Construction of Load Bearing Concrete Masonry.

The objective was to develop reasonable and safe engineering design criteria for nonreinforced concrete masonry based on all existing data.

A review in 1967.of the compilation of all available test data on compres-sive strength of concrete masonry walls did not, according to some, provide a suitable relationship between wall strength and slenderness ratio. From a more recent analysis, it was noted in many of the 418 individual pieces of data that either the masonry units or mortar, or in some cases, both units and mortar, did not comply with the minimum strength requirements established for the materials permitted for use in " Engineered Concrete Masonry" construction. Accordingly, it was decided to re-examine the data, discarding all tests which included materials that did not comply with the following minimum requirements:

Material Comoressive Strength Solid units 1000 psi Hollow units 600 psi (gross)

Mortar 700 psi Also eliminated from the new correlation were walls with a slenderness ratio of less than 6; walls with h/t ratio less than 6 were considered to be in the category of " prisms." For evaluation of slenderness reduction criteria, only axially loaded walls were used. The data that was available consisted of tests on 159 axially loaded walls with h/t ratio ranging between 6 and 18. With this as a starting point, the data were analyzed assuming that the parabolic slenderness reductfon function, (1 - (40t} }'

is valid.

Basic equation used to evaluate the test data was:

3

, , - - - , --. - +- -

4 f[=C ff(1-(40t))

g g (I) f test = Cg x S.F. (2) fy(1-(40t))

Cg x S.F. = K (3) where f' = Assumed masonry strength, net area, based on strength of units f

test

= Net area compressive strength of panel S.F. = Safety factor C, = Strength reduction coefficient h = Height of specimen, inches t = Thickness of specimen, inches Net area used in the above fomulae is net area of the masonry, and does not distinguish between type of mortar bedding. In the evaluation, mortar strength was assumed to be constant and was not considered as a significant influence on wall strength.

It was determined that t'e h objective of reasonable and safe criteria would be met if 90% of the "X" values were greater than the K value selected and gave a minimum safety factor of 3. Accordingly, the K values were listed in ascending order and the va'lue satisfying the above conditions was K = .610 for the 159 tests as seen from Table 3.

Therefore, from equation (3):

4

, .--,mv , ,-

,, ..s

\

C,x S.F. =K Cg x3 = 0.610 l

Cg = 0. = 0.205 3

This value, 0.205, agrees very closely with the coefficient 0.20 which had been used for a number of years with reinforced masonry design.

An analysis of the safety factors present with the formula:

f,

=

0.205f; (1 - (40t) )

indicates the following:

Safety factor greater than 3 is available in 93% of the tests; greater than 4 in 51% of the tests; greater than 5 in 15% of the tests, and greater than 6 in 5% of the tests.

In ACI 531 the factor of 0.20 was increased to 0.225. The recommended value of 0.22 for unfactored loads has factors of safety comparable to those given above. Doubling this value for the factored loads was deemed reasonable and gives a factor of safety of 1.5 for 93% of all i tests performed. Although the derivation given is for unreinforced l walls the same values are recommended for reinforced walls.

I I

l I

O

  • \

w- , y - y e-y- - -

9 w- y=--9 y=

s

" Based on fornula (2), "K" factors were calculated for all of the test specimens as listed in the following-table:

. TABLE 3 ,

Concrete Masonry Units t Mortar Walls Strength, -

  • Strength, f Percent psi, net Str., psi, net n,, 4/! ,

Ref. Solid arca 'fA, psi psi Bedding h/t feest fMC) K S.F.

1 63 1160 980 1180 Full 6.0 750'.,a 978 .798 3.83.

63 1160 980 1180 Full 6.0 685 978 .701 '3.49 63 1160 980 1160, FS 6.0 670 978 .686 3.42 63 1160 980 900- FS 6.0 555 978 .568 2.83 63 1200 1000 ,

1230 Full 6.0 860 995 .863 4.30 63 1200 1000 730 Full 6.0 625 995 .627 3.12 63 1200 1000 960 FS 6.0 580 995 .582 2.89 63 1200 1000 780 FS 6.0 650 995 .652 3.25 i 63 1320 1060~ 880 Full 6.0 1110 1055 1.050 ' 5.25 l 63 1320 1060 810 Full 6.0 970 1055 .918 4.58l 63 1320 1060 S10 FS 6.0 780 1055 .738 3.69 !

63 1160

  • 980 1080 Full 6.0 800 978 .S18 4.03 l 63 1160 980 10S0 Full 6.0 670 978 .686 3.42 63 1810 1275 1270 Full ' 6.0 94 0 1270 .739 3.67{

63 1810 1275 Il270 Full  ! 6.0 940 1270 .739 3.67l 63 1505 1150 1670 Full I 6. 0' 825 1145 .719 3.60 ?

63 1505 1150 1670 Full 320 1145 .715 l 6.0 3.57{

63 1240 1020 980 Full : 6.0 1010 1015 .993 4.95 !

63 1240 1020 980 Full 6.0- 870 1015 .856 4.26 i 63 1720 1230 830 Full 6.0 1035 1225 .844 4.21 i 63 1720 1230 880 Full 6.0 940 1225 .766 3.81 i

63. 1380 1090 1730 Full I 6.0 1000 10S5 .920 4 . 5 8 '.

63 1380 1090 1730 Full 6.0 1010- 1055 .930 4.63 '

63 1780 1262 1870 Full 6.0 1450 1257 1.152 5.75 63 1780 1262 1870 Full 6.0 1570 1257 1.248 6.22 43 3300 1790 l'230 Full 86.0 1560 1782 .874 4.36 43

  • 3300 1790 1230 Full  ! 6.0 1730 1782 .969 . 4.84 :

70 1645 1208 11140 Full j 6.0 1000 1200 .830 4.15 70 -1645 1208 !1140- Full 16.0 1220 1200 1.013 5.06 1

8 63 309 450 l3140

. Full 6.0 303 455 .664 3.30

  • 63 509 458 1610 Full 6.0 295 455 .646 3.21 '

63 509 458 1060 Full i 6.0 295 455 .646 3.21 63 840 '756 3140 Full [ 6.0 5 3 753 .706 3.52 *

, 63 S40 756 {1610 Full l 6.0 540 753 .716 3.52 63 840 756 11060 505 753- .670 3.33 Full l 6.0 63 875 788 l3140 Full ; 6.0 438 785 .558 2.79 ;

6 ..

j- ._

s TABLE 3 (Continued)

Concrete Masonry Units Mortar 1 alls Strength, ,

Strength, Percent psi, net Str., psi, net arca h/t ff C K Ref. Solid fA, psi psi Bcdding feese S.F.

8 63 875 788 1610 Full 6.0 430 785 .547 2.74 j 63 875 788 1060 Full 6.0 500 785 .637 3.17 63 1080 940 3140 Full 6.0 605 936 .646 3.22 63 10SO 940 1610 Full 6.0 715 936 .763 3.81 l

63 1080 940 1060 Full 6.0 765 936 .817 4.07 63 1230 1015 3140 Full 6.0 1160 1010 1.146 5.70 63 1230 1015 1610 Full 6.0 1000 1010 .988 4.92 63 1230 1015 - 1060 Full 6.0 1110 1010 1.097 5.46 63 1410 1105 3140 Full 6.0 1140 1100 1.030 5.16 63 1410 1105 1610 Full 6.0 985 1100 .893 . 45 63 1410 1105 1060 Full 6.0 1030 1100 .935 4.66 63 1520 1157 3140 Full 6.0 660 1152 .572 2.85 63 1520 1157 1610 Full 6.0 740 1152 .642 3.20 63 1520 1157 47SO Full 6.0 830 1152 .719 3.58 63 1860 1295 3140 Full 6.0 1476 1290 1.143 5.70 63 1860 1295 1610 Full 6.0 1539 1290 1.192 5.94 63 1660 1295 1060 Full 6.0 1365 1290 1.052 5.27 63 2510 1554 31?O Full 6.0 1693 1550 1.096 5.47 63 2510 1554 1610 Full 6.0 1365 1550 .831 4.39 63 2510 1554 1060 Full 6.0 1325 1550 .856 4.27 63 3030 1710 l3140 Full 6.0 2222 1705 1.304 6.30 63 -

3030 1710 1610 Full 6.0 2222 1705 1.304 6.50 63 3030 1710 1060 Full 6> . 0 1984 C.705 1.164 5.80 63 3740 1923 3140 Full 6.0 1857 1918 .969 4.82 63 3740 1923 1610 Full 6.0 2523 1918 1.316 6.56 63 3740 1923 4780 Full 6.0 2317 1918 1.209 6.03 l 63 6640 2400 3140 Full '6.0 3587 2392 1.499 7.48 63 6640 2400 .1610 Full 6.0 3856 2392 1.612 S.04 i l 63 6640 2400 14780 Full 6.0 5031 2392 2.102 10.49 l l l }

l 12** 100 1383 1257 2562 Full 7.0 1140 1254 .910 4.13 l 100 1388 1640 3017 Full 7.0 1358 1635 .830 4.57 l 100 IS92 1853 2317 Full 7.0 1469 1846 .795 4.52 l j 100 1923 1630 2153 Full 7.0 1394 1625 .858 4.29 t

! 100 2508 2390 2427 Full 7.0 1947 2380 .817 4.56 :

100 2529 2630 2347 Full 7.0 2151 2620 .820 4.63 l 100 2545 2130 2143 Full 7.0 1930 2120 .909 4.17 100 2610 2220 3195 Full 7.0 2078 2210 .939 4.71 l 100

  • 2678 2030 :2322 Full 7.0 ,1832 2020 .905 3.99 l 100 4474 2210 l2702 Full 7.0 1310 2200 .S21 4.10 i l

100 4474 2540 !2154 Full 7.0 2157 2530 .937 4.09 l I I

    • fE values from this reference ucre determined fron pri: 2 tests in j

, - stead of assuaed value:. Test results cultiplied by f actor of 1.2 'l I  !

l .

- 7 A

4 TABLE 3 (Continued) ,

j Concrete Masonry Units Mortar Unlis l

Strength, Strcugth, Percent psi, net Str., psi, not Ref. Solid :ca fE, psi psi Bedding h/t f test fE C K S.F.

J 5 6? 2547 1556 1400 FS 9.0 1241 1540 . 807 4.05 '

62 1886 1305 1400 FS 9.0 1153 1290 . 894 4.50 62 1999 1350 1400 FS 9.0 967 1335 . 724 3.63 62 1499 1150 1400 FS 9.0 685 1135 . 603 3.02  ;

62 1934 1325 1400 Full 9.0 1354 1310 1.033 5.19 l 62 2305 1473 1400 FS 9.0 l'.96 1455 . 752 3.78 1 l 62 2136 1405 1400 FS 9.0 1;28 1390 . 812 4.07 62 1773 1260 1400 FS 9.0 1088 1245 . 873 4.38 62 1298 1049 1400 FS 9.0 854 1037 . 823 4.14  !

62 1241. 1031 1400 FS' 9.0 685 1010 . 678 3.411 62 1612 1196 1400 FS 9.0 991 11S0 . 838 4.20 62 1805 1273, 1400 FS 9.0 10S8 1260 . 864 4.33 62 1491 1146 1400 FS 9.0 854 1133 . 754 3.78 l 62 1088 944 1400 FS 9.0 629 933 . 673 ^3.38 62 1918 1318 1400 FS 9.0 1072 1302 . 822 4.12 62 1169 985 1400 'FS 9.0 605 975 . 621 3.12 45 2655 1598 1400 FS 9.0 989 1578 . 626 3.15 '

i 62 1088 944 1400 FS '9.0 564 933 . 604 2.03 62 1290 1045 1400 FS 9.0 701 1032 . 678 3.41 62 1999 1350 1400 FS 9.0 1104 1335 . 826 4.1A j 62 1862 1296 1400 Full !9.0 1378+ 1280 1.075 5.44d i9.0

~

62 a 967 870 1400 Full 758 860 . 8S1 4.42 62 1967 133S 1400 1241 1320 4.72 Full l9.0 . 93S l , i 5 57 2280 1463 1400 FS ' 9.3 1228 1450 . 849 4.27 67 1917 1318E 1400 FS 9.3 S36 1302 . 642 3.23 l 67 1380 1090i1400 FS , 9.3 724 107S . 672 3.37 l l 67 1902 1312'1400 FS ' 9.3 1223 1300 . 943 4.74 67 1246 1023 1400 FS l 9.3 739 1010 . 731 3.67 57 20S7 1386i1400 FS  : 1193 1370 . 871 4.3S

, 57 57 20S7 2385 13S6 l 830 1505l1400

, FS FS+

l 9.3 9.3 1298 719 1370 1485 948 4.76(

484 2.44 57 2385 1505 i 1400 FS l 9.3 9.3 789 14SS . 530 2.67

57 2385 1505i1400 FS  ? 9.3 1105 1485 . 743 3.74 I 57 2385 . 1505 P1400 FS l 9.3 1140 1485 . 766 3.85 1 39 1590 1187 1130 Full 9.5 SSS 1170 . 756 3.79 39 1590 1157e 1010 Full 9.5 1000 1170 . S53 4.28 l 39 1718 1238 ; 1070 Full 9.5" 949 1220 . 777 3.89 39 1718 1238l 840 Full l 9.5 I 910 1220 . 745 3.738 i I .1

-- y a y,9 ,,_.i,'T*Mw *T'rh-we'Y-- "=-sms1 --*-*g-ryet-w'- - + - - - -g e v- w'--=rw-sw w w vf . v ww -

  • we-- e - w t w v w -*v ev v'a7 rv==w-w-v--N+-y-*'-- -t -+-'"~*-t-rv'M '-

TABLE 3 (Continued)

Concrete Masonry Units l Morter Ualls Strength, Strength, Percent psi, net Str., psi, net Ref. Solid arca f', psi psi Bedding h/t f test fjC K S.F.

1 63 1159 935 1180 Full 14'.3 633 940 .726 3.62 63 1139 985 14*0 Full 14.3 690 940 .734 3.66 63 1159 985 1440 Full 14 3 738 940 .784 3.91 1 63 1159 9SS 1060 FS 14.3 532 940 .565 2.32 63 1159 985 900 FS 14.3 563 940 .599 2.98 63 1159 985 1920 FS 14.3 563 940 .599 2.98 63 1206 1020 1230 Full 14.3 738 974 .758 3.80 63 1206 1020 730 Full 14.3 683 974 .702 3.51 63 1206 1020 1130 Full 14.3 746 974 .765 3.83 63 1206 1020 960 FS 14.3 571 974 .586 2.94 63 1206 . 1020 780 FS 14.3 603 974 .619 3.10 63 1206 1020 1250 FS 14.3 595 974 .610 3.05 63 1317 1030 SSO Full 14.3 905 1030 .877 4.38 63 1317 1030' 750 Full 14.3 1063 1030 1.030. 5.14 63 1317 1080 810 Full 14.3 929 1030 .901 4.49 63 1317 10S0 1020 FS 14.3 714 1030 .692 3.45 63 1317 1080 l1020 FS 14.3 667 1030 .647 3.23 63 1159 985 1120 Full 14.3 579 940 .616 3.07 63 1159 9S5 1150 Full 14.3 635 940 .675 3.37 63 1159 985 1030 Full 14.3 635 940 .675 3.37 63 1810 1274 1270 Full 14.3 873 1218 .717 3.54 '

63 1810 1274 940 Full 14.3 881 1218 .725 3.58l 63 1810 1274 1120 Full 14.3 817 1218 .671 3.32j 63 1508 1153 1380 Full 14.3 706 1100 .641 3.17!

63 150S 1153 1380 Full 14.3 746 1100 .677 3.34!

63 1508 1153 1670 Full 14.3 643 1100 .534 2.88 ! -

63 1238 1025 l1920 Full 14.3 833 978 .851 4.24 i l

63 1238 1025 980 Full 14.3 802 978 .819 4.09{

l

! 63 1238 1025 {1280 Full 14.3 817 973 .835 4.16i

! 63 1714 1230 800 Full 14.3 1111 1172 .946 4.73!

63 1714 1230 800 Full 14.3 1127 1172 .959 63 1714 750 Full 14.3 1079 1172 .918 4.79 4.59 ;!

63 13S1 1230 1090 ,11730 Full 14.3 963 1040 .930 4.64 i 63 1381 1090 !2200 Full ,14.3 960 1040 .923 4.61{

63 1774 1245 12100 Full !14.3 1240 1190 1.043 5.21 !

63 2253 1450 il230 Full !14.3 936 1385 .675 3.42!

63 2253 1450 1270 Full 14.3 920 1385 .664 3.37 l l 14.3 507 1150 .701 3.551 l 70 1643 1206 .1180 Full 70 1643 1206 11300 Ful1~ 14.3 986 115'O .857 4.33 i 55 1273 1040 t1220 Full 14.3 727 993 .732 3.66l Full ,14.3 764 993 .770 3.S4 l 55 1273 1040 l1220 7 100 2900 1665 1475 Full ;15.0 1250 1565 .S01 3.93

- i F--"

5 65 1746 1250 !1400 Full i18.0 1108 1135 .975 4.S7f 65 1246 1015 1400 Full j18.0 765 925 .850 4.25:

65 1562 1175 {1400 Full l18.0 1203 1065 1.331 5.65 l l

9 .

^-

5.'1. 2 FLEXURAL COMPRESSION (Reinforced and Unreinforced)

It is assumed that masonry can develop 85Y,of its specified compressive strength at any section. The recomended procedure for calculating the flexural strength of a section is the working stress procedure, which assumes a triangular distribution of strain.

For normal loads an allowable stress of 0.33 f' has a factor of safety of 2.6 for the peak stress, which only exists at the extreme fibre of the unit and has been used in practice for many years. The recomended value for factored loads also only exists at the extreme fibre and is the value recommt ded in the ATC-3-06 provisions.

5.1.3 BEARING (Reinforced and Unreinforced)

These values for normal loads are taken directly from the ACI code. The value recommended for factored loads is the value recommended in the ATC-3-06 provision.

~

5.1.4 SHEAR (Reinforced) .

Two major test programs have evaluated th'e shear strength on concrete block masonry walls. The first was performed by Schneider and his test results were used as the basis for developing the UBC, NCMA and ACI code allowable stresses for reinforced masonry.

A more recent and extensive test program has been performed at l

the University of California, Berkeley and these results will be used as a comparison with the code allowables. The test results are shown in Figure 2 and lower bound values are indicated for rein-l forcement taking all the shear and masonry taking all the shear.

These are compared to the allowables recommended for unfactored and l

! ' factored loads in Table 4.

i I

e l

! 10 l .

For the unfactored loads the factor of safety varies from 2.22 to 3.0.

For the factored loads the factor of safety varies from 1.20 to 1.76.

The ductility indicator associated with stress levels for the factored loads is of the order of 3 which provides an added factor of safety.

Table 4: Comparison of Test Restuls and Code Allowables Test Tests Tests Description S U Results S U Masonry Takes Shear M/Vd = 1 0.9[ 1.5 g 2[ 2.22 1.33 M/Vd = 0 2.0 [ 3.4[ 5[ 2.50 1.47 F.einforcement Takes Shear M/Vd = 1 1.5 [ 2.5[ 3[ 2.0 1.20 M/Vd = 0 2.0[ 3.4ff' 6g 3.0 1.76 L. _

i 9

S l

11 u y -ev..y ~-,a

~

- - - -_ Lower Bound Ultimate with Horizontal Reinforcement Lower Bound Ultimate with no Horizontal Reinforcement

--- - - - Code Allowable with no upper limit. Reinforcement takes shear

- - - - - Code Allowable with no upper limit. Masonry takes shear E] No llorizontal reinfordement 9 0:37. Ilorizontal reinforcement a >,37.11orizontal reinforcement 8 'h ~

O O

a 6jE @

m  %

E s e

m N  %

.s, '

~-.

g 2

N *. -. 6

=

w 4jfm -

C -

2

. g' s ~~ (l g _ , _ _ . _ _ _ _ _ '~~.'""+- O a _ _

3

-~._..~***a-.=.

__ ._ - ._ _* _4)

? . ,,_,_

""****-a-.,_,

N w

4:

f I 9

0.5 1 0 2.0 IIF.iGitT TO WIDTil RATIO 0.25 0.5 1.0 M/vn Figure 2 12

. i 5.1.5 SHEAR (Unreinforced)

INTRODUCTION The present litere.ure on shear strength capability varies greatly on the approach ased to determine acceptable values and to some extent, the c.e tr wersey over these approaches and interpre-tation of the results. Debate, on the applicability of model or full sus tests and the effects of monotonic versus cyclic loading further seems to complicate this resolution.

Much of the effort to define a permissible in-plane shear stress ray be somewhat academic, in that the normal case for unreinforced walls being used in nuclear plant structures, the .

nature of the shear is one of being forced on the e "uctural panel as a result of being confined by the building trame and not one of depending on the panel to transmit building shear forces. This forced drift or displacement results in shear stresses and strains, but because of the complex interaction between the panel and the confining structural elements strain or displacement is a more meaningful index for qualifying the in-plane performance of the panel. The area of in-plane strains is being addressed in another comittee report.

The most extensive review on shear strength literature appears to have been done by Mayes, et al, and published in Earthquake Engineering Research Center Report EERC No. 75-15 which was done for both brick and masonry block.

This report attempts +a sumarize some of the findings that appear to be pertinent towards defining permissible shear stress values that can be used for reevaluation of the non reinforced concrete masonry. ,

SUf9ARY 2 3 The shear value of 0.9 [ provided bf the ACI-531-79 code for reinforced masonry appear ~to be reasonable basis on which to proceed with the reevaluation program. This value appears to conservatively bound the actual expected shear strength of concrete 13

block masonry. A summary of several different sources for shear stress-desian values is shown by Table 5. An increase in these allowable valuas for the re-evaluation program of 1.35[for severe loading conditions appears warranted. Any further increase at this time without further substantiation and review is not seen as advisable. .

DISCUSSION A number of tests have been identified as being the primary basis for permissible shear stress values in both National Conctete Masonry Association (NCMA) " Specification for the Design and Construction of Load-Bearing Concrete Masonry" .5 and the American Concrete Institute Standard " Building Code Requirements for Concrete Masonry Structures" (ACI-531-79). 2 2 No apparent tests are traceable to the origin of the Uniform Building Code (UBC) chapter 24 on " Masonry."'

Those tests performed to substantiate the NCMA values are primarily performed by the Netional Bureau of Standards (NBS) on full size (4 ft by 8 ft, and 8 ft by 8 ft) test panels. These tests were performed by Whittemore, et al and Fishburn!' within the period 1939 to 1961. The Whittemore tests were done, as usual in that period, utilizing a hold down detail and thereby introducing a clamping or compressive stress within the assemblage. A number of studies have shown that compressive stresses affect the shear strengtn significantly. The Fisnburn tests, utilize a racking configurcion with the testing being performed on the panel in its original laid up position. A load setting up principal tension stress causing failure is an accepted measure of shear stress determination by the American Society of Testing Qterial for brickwork.11 The test results from the above references used by NCMA are shown on Table 6.

The principal tests that seem to formulate the ACI 531 baeis are the tests performed on concrete masonry piers for Masonry Research of Los Angeles, by Schneider.12 These tests had a system for removing the compressive load on the specimen being loaded by 14

.A w g, ,-- ---, -n g

shear and were set up to vary the e/d (M/Vd) ratio and measure this effect on a parametric basis.

The two predominant failure modes of' a masonry panel under shear are diagonal tension (causing a " splitting" failure) and shear bond (causing a " joint separation" failure) or some combination of these two effects. The theory behind these were elaborated on by Yokel et al.18 The parameter of normal stress and its effects on a shear strength, which was also reviewed by Yokel 18 and Mayes 1 .1", has been demonstrated to be consequential on the determination of actual shear stress capability. This parameter is not identified, today, by any of the codes 2 ,6,s , t s,is shown in Table 5.

It is expected that under zero or small compressive loads the predominate shear failure will be by the shear bond mode of failwe.

Tests which have been done with regard to the determination of . joint separation were performed by Copeland and Saxer,17 as well as Hamid, et al.1* These tests are, by their nature, extremely sensitive to normal stress and consequently do relate the effects of normal stress on permissable shear values. This relationship is shown on Table 5.

It is of interest that there appears to be good correlation betweer.

these tests on the shear strength with zero normal stress.

The Applied Technology Council (ATC) is presently reviewing a formulation for increasing the shear stress as a function of normal stress. This formulation is developed to coincide with their present permissible shear stress of 12 psi and is consistent with the UBC's fundamental direction as a design code, forcing reinforcing for seismicly designed masonry structures.

As a practical matter, walls subject to the conditions of confinement will experience large compressive loads - although -

these are difficult to determine. Compressive loads for the most l part, imparted by boundary conditions and behavior of the building frame are ignored in the evaluation of the n,1asonry panel. If

( these normal strasses are added the shear resistance would be increased. This implies a conservatism on the allowable shear

, value when one assumes this value as chosen on the basis of zero l

l 15 9- -y - -

normal stress. On this basis, and the tests results discussed, the ,

shearvalueof0.9/f'chosenbytheACIcodeappearstobejustified and should be established as a reasonable basis by which to proceed with the re-evaluation.

Out of plane, or so called flexural shear is defined by the code as equalling 1.1 ff' . The derivation of this value is analogous to

' be permissible shear value of concrete, disregarding any reinforce-ment,of1.1[f'. Although this is somewhate different (there is no tension steel by which to determine the appropriate j distance), the actual value is a mute point since tension will be the critical value for determining out-of-plane acceptability of a flexural msnber.

Because of the nature of the stresses, however, and the various concerns with regard to the correctness of interpretation of the effects on boundary conditions as well as such conditions as: actual mortar properties; absorbtivity of the mortar; confinement or lack of it on the test specimen during test; arrangement and effect of actual load, it does not seem warranted to increase these stresses beyond a value of 1.35/f' (1.5 x 0.9 f'). This value is consistent with an adequate margin of safety for both the full panel wall test specimens referenced an' the shear bond values observed by test. Any additional increase in the shear stress values for nonreinforced masonry under extreme environmental loads is not recomended at this time.

16 .

TABLE 5

SUMMARY

- UNCROUTED MASONRY Source Date Shear Stress Remarks 2

(1) ACI-531 79 0.9ff'mgE34 M/7D Jg 1 (1) NMCA 79 34 Type M or S Motor 23 Type N Mortar Based on NBS tests (circa 1939-1961) 0 Type M or S/N Mortar (1) UBC 79 12/10*

  • 12 psi for solid units (1) ATC 3-06 15 78 12 Lightweight units limited to 85 percent shear value
  • 12 + 0.207cg; 30 *being proposed for compressive stresses between 0 and 120 psi, 10 a/1 (1) Masonry Proposed 1.0)li5ad.35 1 Society May$hincrea:edby0.20e (due to dead load) 18 Ultimate value based on Hamid, et al 79 76 + 1.070E type S mortar Copeland/Saxen 64 70 + g/2EE'(fitted) Ultimate value based on 2630 compressive mortar strength (1) Values based on inspected workmanship C7c = compressive stress.

0 17

TABLE 6 RACKING TEST DATA--NONREINFORCED CONCRETE MASr>NRY WALLS Ultimate Racking Mortar Load, psi, Net S.F.

Constraction Type Mortar Bedded Area Act./ Allow Ref.

8" Hollow Units N 66 2.87 7 N 58 2.52 7 N 57 .2.48 7 6" 3-Core Hollow N 69 3.00 8 N 62 2.70 8

, N 78 3.39 8 8" Hollow Units N 79 3.43 10 N 79 3.43 10 N 73 3.17 10 N 119 5.17 10 N 129 5.61 10

. N 169 4.74 10 S 132 3.88 10 S 139 4.09 10 S 129 3.79 10 S 159 4.68 10 S 132 3.88 .1'O S 159 4.68 10 4-2-4 Cavity Wall M 103 3.03 9 of Ecllow Units M 108 3.18 9 M 102 3.00 9 s

Avg = 3.65 Range = 2.48 - 5.61 (2) From Reference 5 L

a l

C 18 .

LIST OF REFERENCES FOR SHEAR (Unreinforced) 1 Mayes and Clough, " Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry," Earthquake Engineering Research Center, University of California, 1975.

2 ACI Standard, " Building Code Requirements for Concrete Masonry Structures,"

(ACI 531-79).

3 Commentary on " Building Code Requirements for Concrete Masonry Structures,"

(ACI 531-79).

4 " Specification for the Design and Construction of Load-Bearing Concrete Masonry" - NCMA - 1979.

5 Research Data and Discussion Relating to " Specification for the Dr ign and Construction of Load Bearing Concrete Mosonry" - NCMA - 1970.

6 Uniform Building Code, Chapter 24 " Masonry" - 1979.

7 Whittemore, Stang, and Parsons " Structural Properties of Six Hasonry Wall Con-structions," Building Materials and Structures Report No. 5., NBS - 1938.

8 Whittemore, Stang, and Parsons " Structural Properties of Two Buch-Concrete Block Constructions and a Concrete Block Wall Construction Sponsored by the National Concrete Masonry Association," Building Materials and Structures Report.

9 Whittemore, Stang, and Parsons, " Structural Properties of Concrete Block Cavity '

Wall Construction" Building Materials and Structures Report 21, NCS 1939.

10 Fishburn, "Effect of Motar Strength and Strength of Unit on the Strength of Concrete Masonry Walls," Monograph 36, NBS, 1961.

11 ASTM Standard Specification for Brick and Applicable Standard Testing Methods i

for Units and Masonry Assemblages - May 1975.

12 Schneider, " Shear in Concrete Masonry Pists," California State Polytechnic College, Pomona, California.

Yokel and Fattal " Failure Hypothesis for Masonry Shear Walls" - Journal of the Structural Division, March 1976.

14 "A State of the Art Review - Masonry Design Criteria" - Computech - 1980.

15 " Tentative Provisions for the Development of Seismic Regulations for Buildings"

- Applied Technology Council Chapter 12 A - ATC 3-06-1978.

16 The Masonry Society Standard Euilding Code Requirements for Masonry Construction, First Draft.

17 Copeland and Saxer, " Tests of Structural Bond of Masonry Mortars to Concre te Block" - Journal of the Structural Division'- November 1964.

Hamid, Drysdale, and Heidebrecht, " Shear Strength of Concrete Masonry f' Joints," Journal of the Structural Division - July 1979.

~

1

- - . - --. . .-..._..-9 - . - , . - . - _ - - . . , , . .

. 5.1.6 TENSION (Unreinforced) .

A. Normal to the Bed Joint A sumary of the. static monotonic tests performed to determine code allowable stress for tension normal to the bed joint was given in the NCMA Specifications.

Stresses for tension in flexure are related to the type of mortar and the type of unit (hollow or solid). Research used to arrive at allowable stresses for tension in flexure in the veritcal span (i.e.

tension perpendicular to the bed joints) consisted of 27 flexural tests of uniformly-loaded single-wythe walls of hollow un' cs. . These monotonic tests were made in accordance with ASTM E 72. Table 7 summarizes the test results.

From Table 7 the average, modulus of rupture for walls built with Types M and S mortar is 93 psi on net area. For Type N mortar, the value is 64 psi. Applying a safety factor of four (4) to these values results in allowable stresses for hollow units as follows:

Mortar Type Allowable Tension in Flexure M&S 23 psi N 16 psi These values are consistent with those published in the 1970 ACI Comittee 531 Report and which have been only slightly altered in ACI 531-79 Code.

Based upon these tests the minimum factors of safey for each mortar type are:

Mortar Type Factor of Safety -

M 3.87 S 2.60 N 2.81 To establish allowable tensile stresses for walls of solid units, the 8-inch composite walls in Table 8 were used. These walls, composed of 4-inch concrete brick and 4-inch hollow block, were greater than 75% solid, and thus were evaluated as solid masonry 20 1

.f' f .

f z.:

7 construction. Modulus of rupture (gross area) for these walls averaged 157 psi, giving an allowable stress of 39 psi when a safety factor of 4 is applied. The composite wall tests in Table 8 used Type S mortar. To establish allowable stresses for solid units with Type N nc-tar, the mortar influence established previously for hollow units was used:

E : E ; f = 27 psi 16 f The minimum factor of safety for these tests for Type S mortar was 2.33.

Recent dynamic tests have been performed at Berkeley and the values of tension obtained at cracking at the mid-height of the walls are as follows: 13 psi; 20 psi; 23 psi; 27 psi.

The recommended values have a factor of safety of 2.8 with respect to the lower bound of the static tests for the unfactored loads and are towards the lower limit of the initiation of cracking for the dynamic tests. An increase of.1.67 appeared reasonable for factored loaos based on the static tests.

21 ., .,

g C TABLE 7 FLEXURAL STRENGTH-SINOLE tCTRE WALLS OF HOLLOW UNITS-UNIFOEI LOAD-VERTICAL SPAN Mortar Type  !

Propor: ion Modulus of Rupture ASTM C 270 psi, Net Area Reference M 110 10 M 108 -

NOIA M 102 10 '

M 97 10 M 95 NOW s .. 94 NOa M 91 NCYA M ,89 -

NOR N 88 4 S 84 10

. S 83 NOR S 81

  • 10 S 75 NOR S 69 NOIA N 67 4 N 62 4 S 60 10 N 58 4 N 45 4 0 60 . 10 0 41 4 0 36 -

4 -

0 36 -

4 0 33 4 0 32 4 0 30 10 0 .

, 27 4 l

4 .

\i 22

--y - - - - . --.,,r ,,w-, y .- - e .,. - - - , . - , - ,e, w ,

TABLI 8 TL'IXURAL STRENGTH, VERTICAL SPAX CONCRETE MASOMRY tJALLS FROM TESTS AT NCMA LABORATORY a{

r .

flall Modulus of Ruoture Net Max. Net Mortar Nominal

  • Uniform Section Gross Bedded ASn! Mod lus Area, Area, Mortar Thickness . Load .

psi psf. in 3/ft psi B Type

  • in.

' Monowythe Ualls of Hollow Units 8 85.15 , 80.97 61.74 88.73 M 90.76 8 -

~

87.10 80.97 63.15 M 94.82 M -

8 91.00 80.97 65.97 I M 8 103.35 80.97 74.93 ! 107.69 8 62.40 80.97 45.24 1 69.47 S

S 8 72.15 80.97 52.31 I 75.18 12 183.3 164.64 57.11 ; 93.94 S

161.2 164.64 50.22 ; 82.62 S

  • 12 I composite Walls of Concrete Brick 5 Hollow CMU 222.3 103.82 161.16 180.67 S - - AB S 8 219.7 103.82 159.29 178.55 :

8 187.2 78.16 135.72 202.09 l S

S 8 228.8 103.82 165.88 185.95 i 5 8 218.4 78.16 158.34 235.77 [

l 8 223.6 78.16 162.11 ,

241.3S-I S

S 12 171.6 139.83 53.46 103.55 l .

12 150.8 139.83 46.98 91.00 i S

156.0 139.83 48.60 94.14 S 12 213.2 139.83 66.42 128.66 S 12 .. ,

Cavity Walls

! I 98.8 ,50.36 158.62 165.55 !

S 10 10 156.0

  • 50.36 250.44 261.38 i S 154.83 10 88.4 48.16 141.91 i S 200.40 i 5 10 119.6 50.36 192.01 114.4 50.36 183.66 101.63 .

S 10 ,

109.2 (S.16 175.30 191.32 '

S 8 10 243.91.!

145.6 I $0.36 233.73 ,

l

/ S 12(4-4-4) ,

50.36 233.73 243.94 i S 12(4-4-4)  ! 145.6 l 146.63 '

' 135.2 77.80 127.38-

~ v S 12(6-?-4) l 112.68 119.6 77.80 329.70{

S 12(6-2-4) I 1- '

,.w.. :,:, s u. .1. 23

  • ' M M K:Ou s

B. Tension Parallel to Bed Joints Values for allowable tension in flexure for walls supported in the horizontal span are established by doubling the allowables in the vertical span. While it is recognized that flexural tansile strength of walls spanning horizontally is more a function of unit strcngth than mortar, it is conservative to use double the vertical span values. Table 9 lists a summary of all published tests and indicates an average safety factor of 5.3 for the 43 walls containing no joint reinforcement and 5.6 for the 15 walls containing joint reinforcement.

It is important to note that the factor of safety for those walls loaded at the quarter points, Reference (6), have an average factor of safety of 2.02 with a minimum value of 1.22, while those loaded at the center had an average factor of safety of 6.08 with a minimum value of 3.59. However, it should be noted that the values tested at the k points were also tested at 15 days.

The results associated with the early date of testing and the use of quarter point loading are difficult to explain other than to state they are at variance with all other test results.

An increase in the allowable by a factor of 1.67 is recommended for factored loads. The committee believes that the recommended values could be increased because of the larger factors of safety in the test results; however the value of 1.67 was chosen to be compatible with the increase in other stresses for unreinforced masonry.

The values recommended for stack bonded construction although at variance with current building codes (which allow zero) are thought to be reasonable values for a reevaluation program. In a test program performed 1

by PCA(1) a horizontally spanning stack bonded wall had /3 the capacity of an equivalent wall laid in running bond. The recommended values are in accordance with this test data. i.e. two-thirds of the value normal to the bed joint is equivalent to 1/3 the values recommended for parallel to the bed joint.

Reference:

1) Portland Cement Association, " Load Tests of Patterened Cor. crete Masonry Walls, " Trowel Talk an aid to Masonry Industry,1963.

24

{If@MQj) 9IM ~ fd bl $].30h IMbU NInl _,

TABLE 9 FLEXURAL ST.'tEMOT!!, !!ORI20NTAL SPAN, NONREINFORCED CONCRETC MASOMRY WALLS Modulus 3 * *,

  • M'or:s Leadin: a of Rupture Construction Tvee  !, Tyce l esf i Na Are:. esi' ACE */Allou P.e f .

Monowythe 8", N Unifor= 127 12 4.13 4 Hollow, 3-Core "

N 136 141- 4.41 4' N 177 132 4.13 4 N 169 176 ,

5.50 '4 N 173 180 S.63 4 0 123 128 4.00 4 o "

153 ,

164 5.13 4 Mone fthe 8" -N 149 155 4.84 4 Hollou, Join: "

N 160 166 5.19 4 Reinf. G 16 in.cc N "

193 , 201 6.28 4 0 "

150 156 4.88 4 O "

18'6  !' 193 6.03 4

, Monovythe 8" N "

203 211 6.59 4

!! allow Join: N "

204 6.33 4

' " 196 l Reinf. G 8 in.cc 0 .

202 ~ 210 6.56 4 s o "

, 195 203 6.34 4 I

Monowfthe-S" N 1/4 p: 56 j 58 1.81 6 Hollow N "

3S 39 1.22 6 N 61 1 63 .l . 9 7.- 6  !

N 60 i 62 ,

1.94 6 N

69 I 71 2.22 6 N 93 ! 96 3.00 6 8" Monowy:he M Center 199 217 4.72 26 Hollow, 2-Core " ,

i M 176 l 192 4.17 26 l 11* 151 165 3.59 26 4-2-4 Cavity M "

111 t 210 4.57 26 Wall,. Hallow " '

M 135 255 t 5.54 26 I Units " I M 95 180 3.91 26 l 8" Monouythe M " I 159{ 173 3.76 26 i Hollow 2-Core i ' M "

159 - 173 3.76 26 l Joint Kc. G G"oc M i 191 208 4.52 26 I

4-2-4 Cavity ofi '

M "

159 : 300 6.52 2G Hollou Units Ticd M i 159 I 300  ; 6.52 26 v/ Join: Re. G S"or M  !

159 j 300  ;

6.52 26 ,

1 i l s I 3 9lm 25 .

t

  • l ~, .

TABLE 9 (Continued)

Modulus Mor:a; Leadine .

of Rupture S.F.

Construe: ion Type Type l psf l Net Ared, psi A/ Allow Ref.

4" Hollow N Cen:er 135 '365 11.41 25 Monouy:he N 157 415 12.97 25 N "

10' ?68 8.38 25 8" Hollou M "

263 202 4.39 25 Monouythe M " ,

314 237 5.15 25 M "

314 237 5.15 25 S" Hollow N "

277 210 6.56

" 25 Monowythe N 314 237

" , 7.41 25 N" 314 237 7.41 25 3" Hollou o "

259 195 6.09 25 Monov/the o 277 210 6.56 25 0 " ,

277 210 6.56 25 l' I

3" Ecllow M "

263 202 4.39

" 25 Monov/:he M 297 224 4.37 25 g M "

277 210 4.56 25 l 3" Hollou N "

277 210 6.56 25 I

" i Monowf:he N 259 195 6.09 25 N "

297  ! 224 7.00 25 3" Hollow 0 "

360 271 8.45

" , 25 Monov/the o 297 I 224 7.00 25 O 268 l 202 6.31

' 25

12" Hollow N "

352 l 142 4.44

" 25 lIonov/:he N 314

, 127 3.97 25 N " i

333
134 4.19 25
  • i I

e d

I l

26 -

k.

5.1. 7 SHEAR AND TENSILE BOND STRENGTH OF MASONRY COLLAR JOINT The collar joint shear and tensile bond strength is a major factor in the behavior of multi-wythe masonry construction, partic,ularly with resnect to weak axis bending. A widely stated position is that for composite cor.struction the collar joint must be completely filled with mortar. However, even if this joint is filled, there must be a transfer of shearing stress across this joint without significant slip in order for full composite interaction of the multiple wythes to be realized. Since the cracking strength, moment of inertia, 3rd ultimate flexural strength, of the wall cross section are significantly influenced by the interaction of multiple wythes, it is crucial to establish the collar joint shear bond strength.

The only applicable published data on the shear bond strength

' of collar joints is that determined by Bechtel on the Trojan Nuclear Power Plant. A number of 3/s" collar joints were tested and the accepted NRC allowable for the shear bond strength was 12 psi. ,

Based on'this information 12 psi is the recommended value for factored loads.

There is conflicting data available on the relationship between the shear and tensile bond strengths. In most tests performed on mortar bed joints (couplet tests) the shear bond strength was approximately twice the tensile bond strength. In a more recent method of evaluation by means of centrifugal force the shear bond strength was found to be 60% of the tensile bond strength. The authors of the report consider the test procedure to be an improve-ment over present methods since joint precompression is essentially eliminated as a result of the testing procedure.

Because of the conflict in the test data the committee recommended that the values for tensile bond strength be the same as for shear band.

Unless metal ties are used at closely spaced intervals (less than 16 inches on center) it is recommended that their contribution to shear and tensile bond strength be neglected.

e

-27

~

9

Reference:

(1) Hatzinkolas, M., Longworth, J. , and Wararuk, J. , " Evaluation of Tensile Bond and Shear Bond of Masonry by Means of Centrifugal Force," Alberta Masonry Institute, Edmonton, Alberta.

5.1.8 BOND (reinforced)

Values for bond stress are taken directly from the ACI Code. Due to the sensitivity of workmanship, degradation under cyclic load and the implications of a bond mode of failure it is recomended that these values be increased by 33 1/3% for factored loads.

5.1.9 GROUT CORE TENSILE STRESS The tensile value recomended for the grout core tensile ; tress is taken from ACI 318 for concrete with a factor of safety of three.

An increase of 1.67 was deemed reasonable for the factored loads.

5.2 DAMPING The damping values for unreinforced walls are based on judgment and include a differentiation for the OBE and SSE force levels. This is based on the premise that damping increases as the stress level increases.

The damping values for reinforced walls are based on the accepted values for reinforced concrete.

There is no test data available in the literature to validate or refute these damping values.

I 6.0 ANALYSIS AND DESIGN 6.1 STRUCTURAL RESPONSE OF UNREINFORCED WAutS .

6.1.1 OUT OF PLANE EFFECTS The steps given in this section provide a logical conservative f

evaluation methodology to detemine the stress levels in a. masonry wall

! 28

~

L

9 F subjected to out of plane forces. The first two steps provide a lower bound estimate on the frequency of the wall since it assumes the wall spans in only one direction. For a wall with two or more sf as capable of acting as boundaries the stresses resulting from one way or beam action will be conservative compared to those obtained from a more rigorous plate analysis.

If the stresses resulting from the analysis exceed the allowable stresses or the wall contains significant openings the beam analysis is not appropriate and the full effect of the actual boundary conditions must be accounted for in a plate analysis. For walls with openings it is recommended that a finite element plate analysis be performed to correctly model the effect of the opening. For walls without openings either a finite element analysis can be performea or standard test book formulae for plates may be used. If a multimode analysis is not per-formed it is recommended that the moments and stresses be increased by 1.05 to account for higher mode effects. Many parameter studies have been performed that indicate that in most cases the first mode of vibration contributes 98% or more to the total response of the wall.

Thus the 1.05 factor is considered adequate.

6.1.2 FREQUENCY VARIATIONS OUT OF PLANE This section acknowledges the fact that there will be variations in the frequency of the wall as a result of uncertainties in the mass of the wall and attached equipment, material and section properties and the modulus of elasticity of the masonry. The method selected to account for these uncertainties was a variation in the modulus of elasticity. The range of t 25% for ungrouted walls and i 20% for grouted walls is conservative when coupled with the use of a smoothed spectrum. If the frequency of a wall falls on the low frequency side of the amplified region of the response spectrum adequate provisions are included to ensure that the dete-minat, ion of the stress in the wall is conservative.

29

6.1.3 IN PLANE AND OUT OF PLANE EFFECTS The plant FSAR provides for the design of a two-direction (one horizontal and one vertical) earthquake. The provisions of this section are consistent with the FSAR. The vertical component or motion is not included in the analysis procedure because the positive effect of the dead load on bed joint stresses is not included in the evaluation criteria. It should be noted however that the effect of vertical acceleration is included in determining the pipa and equipment loads on the wall.

6.2 STRUCTURAL RESPONSE OF REINFORCED MASONRY WALLS 6.2.1 OUT OF PLANE EFFECTS The comments in Sec. 6.1.1 are applicable to the uncracked condition of a reinforecd wall. If the wall cracks in either the vertical or horizontal direction cracked section properties of the wall are used to determine the frequency of either the beam or the plate. If a plate analysis is performed an orthotropic analysis must be performed in which different section properties in the horizontal and vertical directions are used.

6.2.2 EQUIVALENT MOMENT OF INERTIA 6.2.2.1 CRACKED CONDITION The recommended value of I e is taken from ACI 318. The formula was developed for slender columns and was considered to be appropriate for the out of plane analysis of masonry walls. The formula was checked against the test results of Dickey and Mackintosh (I} and reasonable agreement was obtained, It should be noted that if this formula is used it should be used over the. total length of the wall and not over the cracked section.

The fully cracked section moment of inertia provides a lower limit and can be used over the cracked section of the wall. It is very censervative to use it over the full length of the wall.

30 1

o

.. .c

Reference:

(1)

Dickey, W. L. , and Mackintosh, A. , "Results of Variation of "b" or Effective Width in Flexure in Concrete Block Panels," Masonry Institute of America, 1971.

6.2.3 FREQUENCY VARIATIONS See Sec. 6.1.2 for comments.

6.2.4 IN PLANE AND OUT OF PLANE EFFECTS See Sec. 6.1.3 for comments.

6.3 ACCELERATIONS The masonry walls are analyzed in a manner similar to that of equipment and piping systems. It is therefore conservative to use the envelop of the floor level spectra to which the wall is attached.

If the wall is not attached at its top, forces will be induced from the floor level of the base of the wall and this should be used in the analysis.

6.5 IN PLANE EFFECTS Load bearing structural masonry walls shall be evaluated on an allowable stress basis. The shear stress on the wall is determined from seismic analysis of the building and evaluated as in conventional design.

The majority of the masonry walls are not intended to be primary structural elements and for the purposes of this specification a non-load bearing or non structural wall is defined as follows.

1. It does not carry a significant part of the building's story shear or moment. .
2. It does not significantly modify the behavior of adjacent structural elements.

31

t In other words, the expected behavior of the building must be substantially the same whether such walls are present or not.

In-plane effects may be imposed on these masonry walls by the relative displacement between floors during seismic events. However, the walls do not carry a significant part of the associated story shear, and their stiffness is extremely difficult to define. In addition, since the experimental evidence to date demonstrates that the apparent in-plane strength of masonry walls depends heavily upon the in-plane stress boundary conditions, load or stress on the walls is not a reasonable basis for an evaluation criteria.

However, examination of the test data provided by the list of references for this section indicates that the gross shear strain of walls is a reliable indicator for predicting the onset of significant cracking. A significant crack is. considered to be a crack in the central portion of the wall extending at least 10% of a wall's width or height. Cracking along the interface between a block wall and steel or concrete members does not limit the integrity of.the wall, ana is not add essed here. The gross shear strain is defined to be:

8= where: % = strain A = relative displacement between top and bottom of wall H = height of wall Test results indicate that to predict the initiation of significant cracking, masonry walls must be divided into two categories:

1. (Jnconfined Walls ,not bounded by adjacent steel or concrete l

primary structure. Significant " confining" stresses cannot be expected.

2. Confined Walls - at a minimum, bounded top and bottom or bounded on three sides. .

For unconfined concrete block masonry walls the works of Fishburn (2) and Becica (1) yield an allowable shear strain as defined above of 0.0001.

It should be noted that Fishburn's test specimens were 15 days old, on average.

32 e-

m nw r- -- g ( yy - -

s_ .. T For confined walls, the most reliable data appears to be that of Mayes et al (4). In static and dynamic tests of masonry piers (con-fined top and bottom) varying block properties, mortar properties, reinforcement, vertical load and grout conditions, significar.t cracking was initiated at strains exceeding about if= 0.001. It should be noted here that reinforcement can have no significant effect on the behavior prior to cracking. Similarly, the presence of cell grout should have no effect on stress or cracking in the mortar joints at a given strain. Both predictions are confirmed by the data in reference (4). In addition, the data shows that the onset of cracking is not sensitive to the magnitude of initial applied

- vertical load.

Klingner and Bertero (3) performed a series of cyclic tests to failure and found excellent correspondence with a non-linear analysis in which the behavior of an infilled frame prior to cracking is deter-mined by an equivalent diagonal strut. While the equivalent strut technique has been used by many investigators to study the stiffness and load-carrying mechanisms of infilled frames, Klingner and Bertero found that the quasi-compressive failcre of the strut could be used to predict the onset of significant cracking.

After some simplification of the relations in reference (3), the strength of the strut corresponds to a strain at cracking

=1+ )

10006/H in which 8 = wall width H = wall height assuming E = 1000fm In summary, the recommended value for permissible in plane strain for service loads in unconfined walls is:

X,=0.0001 and in confined walls f , = 0.001 For factored loads these strains may be increased by 1.67.

33

, , - - - - - - -n -- w --p-,- y,v w , - ,, - -

+ v

For non-load bearing walls that are subjected to both in plane shear stresses and interstory drift effects the combination equation specified limits the combined effect such that the sum of the' propor-tion of stress induced by each is less than 1. The complexity of this type of loading has not been validated by tests and the procedure reconenended is deemed reasonable. -

e O

34 gg w'- +-'r F "' '

-9 ------ ** vt ' r rw- e g-1 W r"-s't*-t 2+ ---T- p --"aee-8T --M'-e t - er .Ny3 -**' M t F*T ' ' " 8' 7W 7 "

T *'

, . ., n

_ REFERENCES

1. Becica, I.J. and H.G. Harris, " Evaluation of Techniques in the Direct Modeling of Concrete Masonry Structures, " Drexel University Structural Models Laboratory Report No. M77-1, June 1977.
2. Fishbur,, C.C. "Effect of Mortar hmperties on Strength of Masonry," National Bureau of Standards Monograph 36 U.S. Nyernment Printing Office, Nov.1961.
3. Klingner, R.E. and V.V. Bertero, "Earthqua,:e Resistance of Infilled Frames,"

Journal of the Structural Division, ASCE, Ju.,e 1978.

4. Mayes, R.L. , Clough, R.W. , et al, " Cyclic Loaoing Tests of Masonry Piers,"

3 volumes; EERC 76/8, 78/28, 79/12 Earthquake Engineering Research Center, College of Engineering University of California, Berkeley, California.

5. Benjamin, J.R. and H. A. Williams, "The Behavior of One-Story Reinforced Concrete Shear Walls,' Journal of the Structural Division, ASCE, Proceedings, Paper 1254, Vol . 83, No. ST3, May 1957, pp.1254.1-1254.39. .
6. Benjamin, J.R. and H.A. Williams, "The Behavior of One-Story Brick Shear Walls,"

Journal of the Structural Division, ASCE, Proceedings, Paper 17&3, Vol. 84, ST4, July, 1958, pp. 1723.1-1723.30. ' ,

7. Benjamin, J.R. and H. A. Williams, " Behavior of One-Story Reinforced Concrete Shear Walls Containing Openings," Journal of the American Concrete Institute, Proceedings, Vol. 30, No. 5, November,1958, pp. 605-618.
8. Holmes, M., " Steel Frames with Reickwork and Concrete Infilling," Proceedings of the Institution of Civil Engineers, Vol.19, August,1961, pp. 473-478.
9. Holmes, M. , " Combined Loading on Infilled Frames," Proceedings of the Institution of Civil Engineers, Vol. 25, May,1963, pp. 31-38.
10. Liauw, T.C., " Elastic Behavior of Infilled Frames," Proceedings of the Institution of Civil Engineers, Vol. 46, July,1970, pp. 343-349.
11. Mallick, D.V. and R.T. Svern, "The Behavior of Infilled Frames Under Static Loading," Proceedings of the Institution of Civil Engineers, Vol. 39, February, 1968, pp. 261-287.
12. Smith, B.S., " Lateral Stiffness of Infilled Frames," Journal of the Structural Division, ASCE, Vol. 88, No. ST6, fecember, 1962, pp. 183-19C
13. Smith, B.S., " Behavior of Square Infilled Frames," Journal of the Structural Division, ASCE, Vol. 91, No. ST1, February,1966, pp. 381-403.
14. Smith, B.S'. , "Model Test Results of Vertical and* Horizontal Loading in Infilled Frames," Journal of the American Concrete Institute, Proceedings, Vol. 65, No. 8, August,1968, pp. 618-623.
15. Smith, B.S. and C. Carter, "A Method of Analysis for Infilled Frames," Proceedings of the Institution of Civil Engineers, Vol. 44, September,1969, pp. 31-48.

36 e <-pw p m-w-.- - e+v-- v-- T y -mp'

. ,r..

- a .

2be.wlt3!!!t&te:ttitit- , ..

e a

g

'j

)) 5.

j $

2 k

.ky. . .i. .u u :,... .i. is uisc.-.-. .. . .. .--i!. . :.c, .u. ?-

confined ,

confined

_!,rsi~ !,v: .!r ir enre e movenwinwnnem Ib 'h,, :

/

p

. Y!

M E i 11 o 2 A w

I I $

h - -

y h 6,w;a+a.ii.aws.ws.;a..,

t+;.i,,. i. . , .;,i, w.waie~

confined confined i

l p Fi. mire F.xampics Defininn n " Confined" and,

'j " Unconfined" Kalls

?J

  • $$ a A -

@)%fil//O/lotstA.er'&.'.

i

e. &A op tmconfined 35

~

I

-, . , e 6.6 EQUIPMENT The method specified to account for the effect of equipment ,is conservative. The effect of equipment mass is included in the fre-quency calculation of the wall and thus the inertia effect of the mass of the equipment is included in the determination of the stress in the wall. This procedure by itself may not be sufficient because it does not account for any amplification of the equipment. Thus it is recommended that the fully amplified effect of the equipment be included by applying a static load and combining the resulting stresses with the stresses from the inertia loads. The combination shall be performed by the absolute sum method.

Refinement to this procedure is permitted if the frequency of the equipment is known and the SRSS method of combining stresses can be .

justified.

6.7 DISTRIBUTION OF CONCENTRATED OUT OF PLANE LOADS The criteria for distributing concentrated out of plane loads is taken from the Uniform Building Code and is applicable to both reinforced and unreinforced construction. The limitation on stresses for beam or one way action is specified to ensure that these are not lower than those obtained from plate or two way action.

The allowable stresses for block pullout are based on the shear bond strength of a block since this is the mode of failure for.uncon-fined block pullout. The discussion given in Sec.S.I.5 for the allowable values for unreinforced shear walls indicates that these values are in i

accordance with the available test data on the shear bond strength of concrete masonry.

7.0 ALTERNATIVE ACCEPTANCE CRITERIA 7.1 REINFORCED MASONRY Reinforced masonry walls which are well anchored and supported can undergo large ductile inelastic and out of plane flexural deformations (1).

An approximate analysis method of determining the out of plane inelastic 37

.es - v" - - * * ' * - ~ ' ' "

  • e _

seismic response is the " energy balance" technique. This analys's technique is, in essence, similar to Blume's (2) reserve energy technique and is analogous to Newmark's (3) inelastic seismic response spectrum technique.

References:

(1) Dickey, W.L. and Mackintosh, A., "Results of Variation in "b" the Effective Width in Flexural Concrete Block Panels,"

Masonry Institute of America,1971.

(2) Blume, J.A., Newmark, N.M. and Corning, L.H., " Design of Multistory Reinforced Concrete Buildings for Earthquake Motions," Portland Cement Association,1961.

(3) Newmark, N.M., " Current Trends in the Seismic Analysis and Design of High-Rise Structures," Chapter 16, Earthquake Engineering, Edited by R. L. Weigel, McGraw-Hill, 1970.

7.2 UNREINFORCED MASONRY An extensive test program performed by Gabrielson (1) on blast loading of masonry walls provides validation of the concept of arch action of masonry walls subjected to loads that exceed those that cause flexural cracking of an unreinforced masonry wall. An analytical procedure was developed to predict with reasonable accuracy the ultimate capacity of the unreinforced walls tested. With a factor of cafety of 1.5 the procedure is used to detennine the ultimate or collapse capacity of masonry walls.

Reference:

(1) Gabrielson, G., Wilton, C. and Kaplan, K., " Response of Arching Walls and Debris from Intericr Walls Caused by Blast Loading,"

URS Report 2030-23, URS Research ,

Co. ,1975.

38 e ~ m me ~-

-m y v w <-w , y - ow -

ENCLOSURE 4 I

1 l

l l

l l

4 . 9

  • g af- -m

% _g.h .#%

i a  ! 4- t e i e i e I e I + 1 e f e i e . , __

i a 1 I a i u I a 1 I is

n. . .

b, M .., JE1"'bh) -*,g;, -

l~

1, 7

-..n:.n_

h . +y__ ---_ ..

  • m.2 , _. l ., '1 <

. _ _ _.My?f,[, ~T g (m.I.CEi ['}

p '

.w v.--*.> _ . .

. _ _ . .._.s

, , kff g

  • - - ~ ~ ~ ~ ,t _ l ,
s. ,j M1 g  ;- --- + '-. , , _ , , ,

ac _ _ _-, e' G g ---f. ?,_L._..

, ,.,c . ,

Z ~ t-

~

,f

  1. .m .

~..

N .)f 1 ...

. i .

i h

.,.,/ ,;. A - m- h

\y -

~

.~-. ~ . wren.

'%,glE .__M=&,11 -_

I_ __ -__a-.op

= - -

_ . ,  ! g=_

c

})-

)

f f,,,,

l -

_.._.A

  • N ,. l

// ] g,w -. 3:,,,

mm..,-, MNOTE: WALL AB-14 IS LOCATED IN HIGH RADIATION AND F

//b/.\f V~ ,

-/ . ,

. 9 CONTAMINATED AREA. ACCESS To THIS WALL WAS -

c

/ t  : 3 '.,. ,fg  % ,

t.

NOT AVAILABLE DUE TO T..HESE LEVELS M RADIATION. 6_ L __

~

h...- ./ E1g T6 . .g,,/',.h ' _.,, #~*l, aA . [a> *].~w" "~

_/ / / .

,x_---__ .p ___. ,, p

$ a\'

i

l. , .c . j,,crv.f *<-" ch L

/

~

' j

  • W/*

. "*M p QQ140'*-,/ N i i (**rF/'.".

s-(:rt!E27 t <,

c- ~

__Q.p gL.gM: gJ./: ,4 ,

t-

{ i

,3 c rc- <

%p} . o t,-- ,

^.

7 3}yr m

=-, 6 ;t @ %- ~9 e 1 i '

%y h ^.tg 1- -

,.g g _. - - - -

g

-- ;g'8'p Q~'Ja -.gq --

_,-_ _ _rr . -  ; - . .

r..t...--

.s .

a p 1..,_=_ _. . _.

_. p .

. g a. .

r, . - l \

_- z

= \ cl . ._- l L J- .n%J =sm

  • l .<

e j 4 e-~- .

/

+ F, .y,g - , - ~y .. . j s f /. q

_ u _4+-  ::::m ;;-- utum., 73- y g .3 g

'~~M't?-~~*{t- -"

~ '

N  !! * ' 4 WAlI AB-lll*'

g I":/h

$ d' p ~#</

T=.'l-~~. b E e

4 2. . W^ll AB~I2I '

pal

/,, f.- .. g&? -} -f

( \{(".s', ' ] sww - J K. A;:r-.-

l 5 M~ h_l AB-1414-s i.m ' i g l  %

lWALLAB-13QJ "

% - (~ Y . ,-['.

%}e fa uy

,: [ if. . ..f; .,- a f . !,} .

  • u< ur _ . ..,  !

l .h . .. .

, i 2 . ..

__.My4g,J.s.a ,y

< ,u_ T " ~~' q ... j h

=yd , gM t- 4

..j . -

] l._. dies .lWAll AB-3 V-I[WAl _... U: .gkAt AB-7l,[%,/, . J .". -. ". .~ _ ._ _ N . _

', Y f,.:r d ]

~ e r ,. . '

t"

v. ; jr r=e f isf =
  • T . _ . i

,p ,$_ L... .m 3.. b 1 71WALLAB-4. .$ 5..;.H n., g r,%+,,, , .

...._.m

.nm.. ..

_g _. _ .., G.

m.,,v Q.. . . .

- --.,3 't....W ,I  ::txm '

]c . ,,

y p.- (m-* } (' 4  ; f

[;

gp l WALL AB-1]

d .cl -

et 9 ty' Wall AB-9 .' .  %

3

>lWAll AB-5 P 3g

,,,gg f.q- ;-~;

dA

. . . . . lWAlLAC-109 g g.-2 ,. g . - m. ,_

1' l

1.Ej =L;au_:4 M..n,WWAn AB-ywm.-.. -M---= r E i=5552 i t

a r3 1lN,p aj ~

- ~

=

84 Wall AB-81 I*'= i j ~.-.'.~.'.'"-

t y "" _ __ _ . _o _ <)__ . _ .

_p_ _._ f_t._ i -

.n : - , y ,;;

j r )

/ .' .j l 1 LI- y.- -..-?.G ._ -.

g j

> I I l ,

m--n ~=-r-mat = - _ . x \

_ _ w

() .* i

, ^

_I- _ p_- Fic. flo. 1

~

l 1

.EM~ e v q__ ,, . . h.. , .. __ J E

  • I *

=

I ' '

N t

[ ' I " i " i a i a i a ,1 " I _ . " I 't.__L ' i '

I I-----

I

N ,'---Q-.,l' ?e*. -4 ,,} W j:eliy(. ~

>. ga4 4.%n'.@- .it d%ft >

r-:.7c tq,a.-+ } },4 -jM*

--

  • gt h 4

s rYg r e ggi.-- j,w, _g. p,-; .

p,v; p' i.1.': '4 g.r 'H!'--l!

t . - - -.i r ,s- ja

. %g.Jyt. M w-' p.'c:t 77  ;.~ .o., 'si,- JT.h- -7 ; g;;hgM2%3.@IU,.@....

c 'a. g. U..',.' ty 4 . p f 3 gy iNQi;g ,.. . {;Q. M,N;, hih. J , ? . .i gSo

' /.'@' 2, M ; p ,m ph-A '

lg t l, n4 .f '

! q ... k . ~

9 e e a s . .,

g;.I I it['(

!!  :.. S l -

g 5-- e, -

Qw

, . .I r, : . ; ~.. , -, . --

..- * - I'"

', } . q . " - M I .i g ;,,f.h tj:t c  :

. f,E '". r ' '

p. ,

.[j .

QP]  ;

, u ,o . a , r. ,

e .'

Aq

. i: i 1 i

i - - - . . , , - .JJ i j ' %w ;t T j:-;  :

e-- - I  : 2--> > . ig l .

'N -'

I [:,f l G

~

1~

l j-

.i%"r** + j 5it l 191 11 * .r .  : i f *... . ,"t -

n

-]" ^ i

'-~

i_. ,

~

'f se- - -

j i hp1

-]'

/

J i'1*].

j.1 c -.*rwr=

- ~ '

.' -'-- 1 :

1 j

i ', 3 i

.+ ,;1 '

m

-l n l G,,t Ij} ,E,=-}_ ".

t , ,

. pt .

.* i '

...i- }I*

  • i T

N@-,_1.6 9I .

HU f-w I I.

'+ { .< -l4 li w ~ g' I

I _,, lp-lah - 8 l

j .

.c y ,l j j l> S.

, 2,, ,a. r s) it .

. 4- i II C I

.Z i.

.* 2 6 ,,

!!-3.___. Q (4 i r.t

)  ;:- - 1. < ; v ,, .,

-i

q

" y r' 1 sy ' Qp.i i *yT4,e,: s,,

['- r g..

i

-  :: ~3 g<jl ; .

4

r

_... 4.i % ,:.J _ ,

i

s. . ..$-9 +

%9 EII i.:ii!! i -

" $ U 9 -

2.- d _Ml V l f U ."--' $ p j'%r10!qn- --]u[3, , 1

'4 ,

5

.. w W} If

, y

.-:Ig]Q4 } g Q

[}g pmajd h $t

]

pj e,

m ym .s. ,

/p[4v ,i :0 4 It 2 - .

Y t:.t!. .EC{ v v

'*--- ..l ,1

g. -> s

-?

'. !{

lj -

i- _ . _ _ -

i p.

v t  ;

g, s;,. kg 1;9 .:-:il :I m ; I ,w . & .

,. 1 -

,===c== l' ,. .: %l *12 j; g[l ,

..-' ~ ;~. A>. ~

  • m.-

g - -

g -I n .

a

'L 1- m. m... m...---, -g

't c+- a.

:E .ia s Si i s

r.~-

rp s

}t::::::

s 2

, }

g Q' J pf l l s ' (. a Il ..bdQ E

- (

$ c'7 h i

.I t

.l l

g 3 j . _w . .tr jt s .

i  !

,.= l

,1

_s.

4 R'a, ,

s . p. f. * ,.

s I

.i- -

e. ,

a +- -- w a

. ] ,,

fi, I .In T

.jw *,

I i -

. 1,1 /'j :l. i s- . G-e I---!. ,

4 ,z _ =

U, !s ..,, -

t

,)

I i ,

se i i i

, $i -y  !. 'YT V./ ' h.! h,$

10. \i k wd ~ ~Q_ 'l ~

ihMI h' -

s~  ;

u

_W,J  ; , - -,m

,/ /

. ~

---p.\(%

lI . -.. ~ t ., g, ,

+ -

m .i i '

j , gdi _

l !Jh 11 i a=

e g! pi,g 1 e B .

3t e2

--9 m.. .--- d' a:

, d  : , .

9-~ -.- N - -  ;

! si hi! l { .

a ll -t i r ql,

.5'i j . ,E .,. ,

i N l,

. ,x.pL;',21,_j _

,,g

/- ~4- -

!,4.I , h. ,. *_.+<,2

- - . , ,i:

e c-

. . 2,..

g-_

~ ~

. ./ - ti);.

4

-a .,.:. ..:- +l-- , i .i

--' t r g 7 {n,.Pi{,e

[" D. . -, -

.M : -

i 1, '. .\.q,-#Mm~y m .

I-I. n .w...- u

z. #

'L .

y >

, y* 1 l- i g;. C Z .7- -. y. _

(* A.a I

I

!. . .i 4: p.;

O

1 O

k i

f ENCLOSURE 5 l s .

+

t i

Foc.4 I

, 7L'OfZ C T ND E wit.'.: 77//CK)ffSC

'rM z-/ 2 '- 8 "

liv ; pin g wv~

AuxiLin eY Bt/ Stains O **## E "' # ~ **

3Lcck T Y PE ryp5-y was 4. 40 F)cRyag& SOLID J8-g d o ~.;' v: " ;i v/ ' c ~t

. 0F WALL REfdKO/CB DEA"/NG 29/ '-C " FIELD SURV6Y .PWGS$ 'ES;B M E * **"f 0 stack 2D 8 STAGGEI' Pgsf.4 R SD B Y.

cosckep .S'f:

WALL FuNcnon. $tilELDiblG L** _ s '- 4_% " e t7 G-- -

t-X

( N')

E t,G E 2 m

+

.I r 3 4 ul

c Las h h A 2 ill

+ 9 i

't GYi5 L O - Leo Now no. medkr cra T CFMT FM@

LOAD Polur NO. APPLIE0 AT FME 'B' ( 3Acx Face)

BOW D AR Y C O N 0 i rt o n s.__.

h n'C*

I E()GE. 1 i Ft1ED ',a[. , t' "'2, b .' I l !7 EDGE 2. FM E # .' 4 ' : 'J.I l 9 b ~=

2 (" #ey h E DG E S: EEEg p _-.

E DG E 4 i siutty suppcerto

.,.=-..

g c.7tod A_A

's]

. +w . . vcw

'.[

~I, ' - '

~

, , . .) ( N. ' d

FoeM I

- ' *,wy

~

v'ALL TV/CZ N f:S

.p.; 3 , ,; y ,

9 ' f" 7'M Z-/

eu oaa w *i a~ yginyopaz. g i,,i;;uipcycso aux // /,43V uc. MaRTaf' fffE DL " ME w-u N 3 0 L' ' D Y A6-4 go , a gwrarion GF W A t.L RafnKP'CE DNP'INC7 g gj I- 0 ft2 LD $ AVE Y .Vil$$ 4 DEDW D'A E*****

O S r j,c.x E l> Q STA44ED PRc?AW B Y .

WAl.L functio ^f: Syggg pga c y gcu s.p 3 y ,

fY _

7'- # 2 " - _

o t 7 (D ,' t,

U j I& ~* ,

2 -v_ ,

Rut

  • E1;G Q l~ .( 2.

M ({ .  % " %, ,

l

[ 2 t f l A A

~

to 4 i o . 5 m d c ht.s IN LD tu l

A j

i * ." 8*

Ni h

! @ D.

!  %. ~

Wf \_.h EVI E 1 Ll' b.". J j

3. ./_-/__M_. q.//

l .

AT FACE ' A'(FWT NE) , . .

O - Lo!D Po!" Mo. WruED O - LOLD P01nr MO. APPUEO NT PhG 'b' (3kCK FACE)

L 60040 ARY CO N DI TION S_

1 FvED

  • I .

r &

EDGE

[' .s.. .e** ll*' ' 's' gr,

'.o r'Ia j

l

{ f l ELGE 2., FEEE i .

5, E 3G E 5: FLQ , "'O*/ j'

$6C7/oAl A- A_ W-4,3 E LG E 4: 6t-PLT supooetco l

's: ., ,.,- ,  :..b*2.NE

. .- me crw g.rar,rmann ta a

- . 2 . W &,

&h &hh00YN- a- -

MNfl0USS

I'- -

FGPM I

' Pro :c7 '.'w? ws. : niscxus::

l Yb47-I ftcc.s nWL/- 2 % . 2%"

6 u

  • C !.t 6 ' ' " * * --

g ,,i ,g j y y* g g g [] iff/d/*0.2ctZ) Z tvIps/,*ICCWED

y. .va u. N'O MORrAz 7y;oS 8 Lo ck ~T*Y l'E 4 8 ->= N SotID c 2 ~:v' Eu vs oca a F vnu. KEF6 KEN [5 Pgd ovMG 22 / '- o fled SvC/EY ,3*i4 $bESI4M DWQS-W*9 0 S TACKEP & STh% ED 7'9' " V' WALL FUNc'TIod' SHIElDW4 CAn4d bp 7pv c / af,, ,tg ,

n- v's' t' - _

  1. , 2 '-8h
  • tIG -.

t-x CH)

Ewe 2 I.

I i

7 --4 @ r-TA Av I

. C ~

! l +

ut 6 til 4 si. W W si o

e m g .

~gi-E N i b 7-SdE '

ii i f mi h i -i t

 ! : 2-sl'; e i e- s,,  !

O - t.oto Po'"r no. !itu/o w =r.cs '.A'<F m t esce) ..

O - l.0AD 90mr 90 ppuE0 W Sm T ett FKE)

.. e. e -

BOu4 D A2 Y (.out TICM S. . . - - rer .,

P/ED

! EDGE 1 ,

,, , , , n .

bi

,9 ii i i i E DG E 2- Fue f

i i ii i i

I i i i si' J

~

. T i! i i i i i .. ,

y E DG E S: FES. .

% sect A-A - <

l E DG E 4 :- SiutLT 4cF?ot 40. .

.i.;4 , G-8 '

. . 4e. . Iblifilifilf!hNif5)il@[lI)fl 14_ Il 5 7 " + ' O N M M M N N i.A 5% ')

of

,,, b b ;A+bO O O b b .. - 44 ,- -

-Ty4'[ [h y { I.'fi,) -k.7 (Ut' t -

FoeM I pg>OfE C7 NAkoE WALL T*HICANESC 2 '-E ' $ 3. '- C "

Ypp f - / ,

B U's D IN6 L'"! D j";i.t.coectD [ up45pjpggcgg

. J t!is'/n n Y /3 L' ! LDi u&

was4 40 MCR7%2 WPE BLCcK TYM

'Q if2-9 d SOLID gymy Sir vs vicu ,eEEEXFNCE Pt?'" 'N ei py 94, 2 5 / - O" fifLDl//4 CURVEY Dh'45 $ 5- a n ~ o c+

0 STACKGD & STAGGE.D fREPRED 3Y.

WAU- FuriC TlGN* CHECKED B'f, SHIGLD///G fY 3'-+){ _L c.-8" i

i

_ ue -

N t-X cs) l EurE 2 i

A A

't . d G G .

,o .

> +

tw V

d $

e "

.i m

2 'T'

gy J in

' N e d *; O 1 , ,,

o O O u 's

  • 9

'k

, , e v E)G E 1 3'-/o%"

- C'- W _

i .

O - t.cto eomt no. mud At escs T creoar race .

- LOAD Pomt Mo. Appuso AT Pace 'S' G34cK FA cs )

sounoAav EDGE conomens is Fi m h-

, - . . , , ; .y

.g..g.e . ,e :t i s

i i

[

i l

i 1

EOGE 2. FREE 'J; ?. :

I 1 I L

. r ' ,; ; ; \ l 4 -

l l 1 e) Ebsa s: Simft-Y SUFfaRTED +...

. . q., g g,,

EDGE 4: fRGE

$2cT'lott A-A l

emma o m nonnnenn ~- -

a b

FoeM I p g c ,-; z ;- wsy ws:.:. :. #:". */:sk = --

y gy p 2'- C "

g onGEinFCecED dura pin 6 v ~5 L,t EE!'JFo2:2=

A yx' t L ta2Y Bu!LDiMG MGR~Dik TYP2 6LoGk T ff'E

.)  ;-.wta AB-/O 40 N SOLID zsra w ice w w w g e or rn - .m a c ~ a cF a A u.

29 / '- C" ffE/.) SUM 5 Y .pW4? $ 96SAJ D*'6.h' ~#4 O stack &D E 57'A49ED fREfM S 3 Y:

WAu- FUNc31  : SyIet.pti14 c HeckeD .B Y:

1, W _

8 '- o " - - - _

=

t 7. G -

(/O t-X

( E ':GE  ?-

t i A A ra

_ 4 a e

~

-). y g ui di w 2 tu b; A 4

.} f f t

l 7

I

  • E3C E 1 O - Leto romt no n9uco Ar=rca'A'Creo, ira %

O - 1.0LD P0mr M0. APPUE0 AT Phe 'S' GSACK M'6)

Bou4DA2Y CONCi rion s_

EDGE. Ls Fi1EC ... , . . I i

EOG E 2. . FREE [ .'. , 'i d l l7

~

' : vol f

.w ... l p E DG E S: SIMFrf 30PPct2TED e.2-gg g ,7 l,.,

EDGE 4 : $1M?ty SupocrED gggjpg 4.,3 ;m,~44i u=.

FceM I wh o'. .'. W/c"C//EC

'p t*c f c ;~ avhjf TMT-l 2 '- 0 #

BU'4 D IN G L'WE Q U/JRE/?ifCRCED f () )(l! l A iQy' B Ull.Pl/lG 0 AT Iil*C.:'c! D ac M~y B L ock TYTE mu mRt;ngA/ryps so/ID d:rrept of W A LL- 4'EFERE!!ca D24"!"4 i~$: w r* cxtl'-O" f*t&LD SURv6R Dwqsp DES /44 P"#!""~"&

Q STACKED g STAGGE.D FREfkED Of-

"- Furim ,

5y,gg,g4 cyg a<gg y .

n' q I_ g ti ,

=

t ,

~

tze gi to "

&r) ,

E t.G 2- s!-3T"L -

1 i s A A A A 4 q Il !!

I i 01 2 b= *s '2A 24 !!

% ~

~~

!S b11 }5 h~f .

k

=EMETMTic4 g yNYN GT2o.',TlSlf @.. l r2 **j

% ;x .

s U1 T s C D

' C 4 Q.

gQ gJ M N' I s

,) i sii a iJl h OU "Y m 'i

g. ei i

~

'; a '

-' q of g b '

I ,

l>co tti @N J (D g

. m <

+.

'W t

i i V i i _

L__S '-'07f 0 -

ens. 1. -

.4. _f-2.fy.d i /Erf3 i

lp. . _ _ -

~

O - Loi.o voiar no. Mtuto Ar Face ' A' ( F2 cur FACE) 0 - LOW Pomt no. Appus AT Phm 'B'(,pcz p,ce) .

BOUNDARY CON DITICN S .

EDGE. Ls fiX8k <ls.. . ,f y , *. , y acaa 2. pae 1 EDGa *s:

i T 1

.' Si~ff Sf"g Seet,'on A -A .W L DC- E 4 ' %fy Saff ec.. ___ ~~~ ~ ~- > m

. . _;. . ..g

. - . - - ~

....,.w - ,

~

  • b a m.~na n

ENCLOSURE 6 I

e o

i

?

  • w

WW M dwj d k.= d

...b m ~e ?. . .....u

.y m,c.

i . .

s . i.

Dj

.a.

n.

g

i. .._.!._.

4.... . ,,

M. . , . . . . ...

e

,8 %. C. t J l I .2 i.

. g, . . . . . . . . . .. b---

0 . . . . . '

  • s ,s. .

, , . t

n. ., s- . \.. a. N . .

l... . . . . ~ . . _ . . . _ . .* .*') . . . .t1 .\'.

\~ .._ .

.)

, ,. 3

. . 's. \ tg~ . . . ,. .

..._.....(,.)

{ . .

. #g .zj e .g e

e. . .

- . .6. .1 . h,. ag a- g *s . . . . . . . . . ~ ... . _ . . . _..

.....r. s....__._.. d(. . g'N 4 .

. . ..g..A .

." *  ! ~

V) ....-

[,

D.,. p".) . .. . _ .

N' .

".c . I ' ' . .\C . .

2 bs t, .ty }c-

.. ..() ..... . ._-t._._.. ...

r Q

._.. 3 .. _ . .. _, . . _ . . . . . . . . . . . _ . . ,

y ) .. \ '.

. .. l J .$. 6..._._... i. . ...

.4 I

..) . ..

...,l..

,, J fs.l,l . . g v

,\

_Z l. . .... . _ . . . ..

. . n,

. ..... .-. ..<g,_r.s: ,, . _ _ ...-

i;i. . s..s

. . . ........_I...

l. ...

e . . . . . . . .

...h....

. s .

Ns .,. . -

5t. i

.( ._....g___.,,._s,., g. o,s,., .D, . ..

...J

.......N ..ss,s.,

w .. .

l . . N. a__ . . _ . . . . , . ,

. O .e . t . . .I ._i

_a3;-..

' '., iw.

) ...

%i . .;. . . . . .g..

}-- , . . - l .. . . . . . .. . . \

.u. . ,. . . g p I ._ . _.,

r  ;

...... O .. . . ; e . . . . . . . . .

s s' ....

..O* .1 . l.')

h. . . _. . .. ... .

. . .b = . *E

.

  • a.a .s . I. a. . . _. _ .. .9 . ,I .. Q. .

...._._-_..i... . .. ..; ., s.s

-+"'g',- .

-..._g.._._.__,.,._7.........._..._.I_

..T. _ _..LI.w .... .. i .

_ y,,_-. ._..

1. . . . . . . . . . . ..., . . . _ . . . . . . . .

I ._

.. . s. ...,_.i.. .._.1

. . . e - .

...1._..^_.1

.._i_8_._

..,i.

. . i.

g

.i a. . . .. , . _ . . ...

.i.......

3

., .. . _ _ .._i.._ _ . _. 1..i . . .. .

. m.

i . ... _ , .. . - . _

i. -

i . , l- t i

% . 1

- ' *. L.

4 :* . _._ .

4 \. -i r  :. .

I ; _::._:.u _:_. ..::.. m _ = =.:- _. _ -. ~

.: .s .~J i ~ Ji = : ' ;' - : r. Z "= . ._? . c;

.-:.t . .

w 9 ._:. 2...  ::i t ' ~_ K .'.-:. u+W ....

I-

._ h: o: .zi+J . =(_ _ . .

, o ._.

.. . . . _ . . . . .....__._.s.i . . . . _ . . . _ . ...

......~..i._.....

. . ...__.....,......._.....t.__ _.

.x

< c...

.i.....- ._._. ._.._..._....._.._....

. ... ............__.i.....

.. ,._... ..i.._, _. .. ...._.. __._._..... ...._..._.._...._........... .__ _. ..._. ... _

s . . . ... . ........_.

%o. .

t.__..m_.__.._.,i,_._.

-. ._ ___.....a.. .

.. . _ . _ .. -. ._ _ _ _ _ . . , _ - ._ ._-_ . a . .........t..._.. . . _ . . . . ._. . .. . _ . .. .._

__. .. . _ . . _ _ . . . -. .. _ _ . _. . . ._. .. ._ .._ .... ... ___. _.., ._..... .... _._.., .____._-_._.4._.__......_._......___ ._--

.__ w _ ._e. . _ _ .

__ _ ,_..._.._ ._. ._,..___.._L_.........._.___.......

.__.__..,______r...

_ . _ , s ....___.. _ ._..___ .. ..:.._ .. . . .

. . _ _ .. y.

. __ _.._....s.______._.i____.....__.........

'I ';

. n . a m m -- .: =_ :.._.:. = .. : _ . . ,~ - -a-: -i .d.-' ... . _ .

g-d@L__

- _ _. '-' s u. S ._;: .w =_ .-. c _-.=_. . ._.__ ._.-

_i.-2_. ...;__. .:.:.: _. . ..+.- ._ __: . . ._.. r.2_:

s

._.........__...___.... .... . _ ... . . .._..._.. .. ...=........ ...,

.. ,... ...._ . . ._... .c. . ....

._ ._ 1,.

i.._..-__-

._...a......... ..

. ,w. ,t___ . _.. .._ _ ,.a. a.

. . _. . _ _ ._ _ . .L...._..._.. . _ _ . . . . , . . . _. __. . _ . . . ..._._,_

._ . w .,_ . s. . . . _ . . _

t_...._ __ .. _.. ..__.

.. . . _-a,_. .

_..._r._-..... . .._..

. . ._ _.. _ . . ._ . _ _ .t .._ . . . _ ....._ 2 _ _._.. . _ ...... .. .._ .. _. ... .__. . ..._.

.. .. .. .s. . _. . ,._y._.....

_y._.__..

....__......____...o....,__..._._.._..,l ..

. _1. . ._ .. .

_ ..__ m .w....a......... .v . . . . .

. .::Vs. _ . .= __ _ , - 2.._;_,..

._ , ._~. .

-_____g_-.._...._..___....._,.._.__._

......__..._..._., y..A _ . . . . . . . .

t

_ g a.,_...,._.._...__.q,,..

__., s

.- h,-
1 z

w_

m_ _ w . s _...

_i_ ._y,...,___4.._..._.__t..._...t____.__...____.

_ __ B - -

- . .._ w .-- _-5 5

_ u _ t s _.... .

-_...._._i_,..

i. _-p_ . . ._ _ . -.

s t__ 1.,_.

e. . . .

. .. \__.._ {

a . . .  :  : .._.2._..

..L_ -

  • - i
  • c, 1_.J a__;.. ._1. . :-...

_;_:_:.._l _. ._ _._ _ .

. ;.. _u...:. h. . .s _t'..

, .t, -

- . i g . ; e.r . r. J m- - i_ : - :- . - _ . _ - ... . ..y 1t ..:__ n 1

n' . u. _u, , . t. ._.

..__,,g_. ,p.c r

t. _. . _

. _ n.)

z u --n ,q,...~_- n r_ .r.rJ,_ ' ' ;

n a. .. -re_. ,p- .. j .r.

_ i _'. .! . .i.!_i :. '.*s

. :..,. d ., .

I i. JJ.LL ..;.

._ _ a .l d_!.J _ __ J ' ' ' -

.it :

.- L,__.!. .y _'M .- + ,se

. . - - , r - v- _ .-. . p:

l.

?.sE 9 -i i . . .; I .u.

. L.,'~1'J. l' iiii i' . .

- - .a..

_ u. . . .

a_._

.; o . .

. . :1, m .. . h. 1_. . . :. . - __.

- - - - - _ u- ..- -_ .::. -: . -

.6 .

_- , =

.u: - a ...  :: . .  :. . s .

a _ . . . 's . -- - .t . ... ...

t

_ % g, \

T 1 -- . . . ts, cr.: .-: . . i:- : r:- - - . . - . .

...-  :.r.{...-.

. . ..--.-.,g_.- L. ._: 8 . .

s :u .

).

g

-o  : .

..I.,.. -M :g..

4 ri e :. .

s. ...

-]'

. . ..l... .........

rs _... .. . .. . . .

L. . ,. , . . . . . . .-. . . ,

I C y . ..

e.... .. ....t. ._._.._._

... . * *=..

. . . ....c-

! y_ g 4 .

...l....'.'.- . . .

...=.-..p.....- . ....

^ ~.. ..... . . .

I .. _ ,; . - * . . . .t. ..

. = . - . . . .. . ..; ..

} .. . . . .

. ....._a.......

. t: . . . .... .. . . . . ,.. , ....

l Q. } . . .. . . . ..- .. . .. .

.. i ....

  • S _..v..,_

. _ . . I. . .-_

.. . -. .e...,.. _..-.. ,. -

. o. . . . .

... .. . . . . . .s

  • g* * *
e. . ., g

/ ,4,

_..l.,..... ....t.

Q

..,.. i; .. . ..j., . . . . .

_- _. .l... .

. ..i . ......._...__%_.

. . .* . . .. I*

I g _.t ._.. _. ..

.. , . . . t. .a . . . _. . _ _ . . . .

.l....

  • I r*.l.* .

.* ... l .I .

. ... . ... .t. .. ...,..

i

. . . . . ._....... . ..*.4..* 1...... .. . ... 4

.N.

  • . 3.. ... . .. .-

..... _.__. .. l. _.. . . ..

. ... . . . . . -l. ... . . . .. .. .......

....4-,..l._._. . . .

. .. . =.%. . .

I .

. . ....es . . _ . .. ..,. .

3 .

.... . I. . .,. . . . . ... ....

..N .. ..

_...I ...

3 .. .. .., . .

.. .. , .., L ... . .

... . . . ....... . . . .. e..I ... .... . . . . . ... .. .. .

a.,. . ..., . . . g.

i I . . .

i

..s..

.. . .. a .

.l .

. . ... . _1....

li

..g.. . . ,... . ..

.... .. . . . . . i g ....... i . .

. . . . , . l .

3 . . ... _ _ _ . . . . . _ . .

i

. .. 6

. . . . . ,... ..g.....__ . . . .

..g....i L.

$,_..i.._....... . . l. .. . . .

j .

l...,

. .., . . .,I

,,l ..s ag..j....

4 . . .. . .

l . .

... i i 1

s, . ..,.,ag . . .6 l.:. . . . .

,.,.a.  ; . ,.....; , .g...

l

...a.... ,,.

l

.... , . , , . 1 ,. g

..l..,,.

...a ..

....s..l.. . . I . . .., e ,. !

. .. i

,, t. . . . . . .

...e ...I

e. .

. . . I, I... .

l., ..

...[. .

i. . . . .

[ ..; . , . a . .

...a ig. . .

... I. . 1 -

. .6 .

i. g . . .
t. . ,. . .

. .g. ' ...

.... ..s..g . ..: ..It s'i

. w. a g:s..g.Ig....

3 . ,

a.

s... * * . . . .. -. 4. ., . .... -

II,1.. . .. .

i..

r..*g i

. , . t ,

}.,..

a . t. . .... . . i. , g....., e g..,;l..ls .. . .* a- ,e_._  %.

, ...-- .!. j .i .... i g.

e. . .. ..s

... A .. ..

.a ..

...6.

. . . . 4 <L t __

._......a .... . .i._. ._.t.... w.6. .

_i .

k b * ..

i D g- _g a L.D .....h u- ta

..y a.r' .M'U m... 4l va L

,a 4m 'k! d ]k lbu W /rb

.. e , .

e a* g j .

l

.g . ...7 ,,:. i*

. .I. .i. . l* . t..

. kt .g * *

. \ . . . . .

. , , i . ,

g. . .... o ,

. e [ ,(

r,.'...... .;., . ... .. .... ...;

  • 4

. .i . . . . .

. . . , L, ,.,

1

. . . A..  : .

t , .

t s,

. . ,. : .o.. S. *. .

...z..

. . . . . , . . . . . .....1.....

. .. . . (. , I.-7. .

..i.

. ..".) CJ l ,

,. .{ - gD .

.. ,i.

gps .

4

. ij .

. . sO p j. - . . i . ,

-.b.

.s:... ..- . . _ .-. .j. . . . . . . . . . . .

.if) :.- \}

g .. -

4.... ... .. -.-.. . . . . - .

y

-..... . .- ..O. vi d.-

. .)u. u :

i

.* . i. -Q .

.'gj p,. .,.. ys ' . . ..... .

3

. ;"^

'O~.e w en

. . _. ......~. , ._......-( . h~) . . . . . .

y. Q . '. 04 l(. Q.( ..

. . . .. -' . I.

-. } I. . . . . .sJ'. . . ).s.. .gs 3

........Z.... .. ..< ,,i.. .. t g .

., .i ..  !... D . .

,._. Q . . . ..

Q , g.s1

. ..p. . .. .. .. . . . . . . . . . ...........n-.....%,.

s, ..

g s. ~ ... ..

.. ... .. t

. .. . . . l . . s . 3, ,.. . . .

.. 7 T. y ,

4.- .

.Q ,. s,. - .

y . . ..:.

. _ . . .. . . J,

.O._ . ....... .

c,g

.. %s N.gN  ;. '

. . . .. .; .. o, . . . . .

. o . s.,, _l. . . . . . . .

.....s N.- .. . . k. ... L.,,

. . . . - - , . . . . , . . . . . ...,....g,

. . . . . . . . .......t.

...6., .

q tq.

. i. .. y

.. . . ..u

__.....,,,.3..

t . . ,

..,...-....]. . .

. p. ..w.3

. . .j.. .

e._L ....~ . . (.... p .,.. _ p . . . . . . .i . . . . . .. . .

, l . , a . ..g........ ,.

. l.... ....t.,.

7.... . . . . . . . . . . . ..,...;...... ..

.. l.. .. .. ,. . . . .. . . .

9.

...e..

.6..

4.

. ..........,8...-. . .* ' . . . ... ~.t'

..i.... ..

i '. .

  • ...i. ...., .

8

  • I.
7. .

_ .....,. ... .a . . . * .....,i.

......!-6.3'.....I.

~

t

! t'I ,. .s I. e. . -.-.l... . . . . . . . ?g

, .. ) t.... . . . ! . ;' . .I . .t ... . . , . . . .. l [ .

9 .?.4. .s _(

i8. '

L

'. g a

t. .. ..

t l l .r q

'" 5 N . g o p.2:7.:.a : .

.. * " * * -_p..'!"*.**

..-  : .2 ._ . , . . . .

'e f

".'. L. : * .;;.. .* * . . h  : *~ ! . * . .. '...;.t*.

$g* .. . : *:.......3.;.*.*... . 1. .

. . . . f

~* * " * * ' " " " -

........'....'.."...%...".N*

1.-* .... . . . .

. 4' . . . .. . . . . ....a . . . . ... ... ... ...,,., . .. ... ..... . . ............

.1........ ... .

. . . ... . , .....I.. ......... . ..

1..""".""....."... ....J_ . "1 6.

. .- .. ._...I....... .. ... . , .

..-~ . ..

6 . . . . .

1... . ..

. .. . .. -....g

. .... .. ... . .. .. . . .6....

5 p...... . . . . . ... ..... . .. . ... ..

N .... . . ....._..q..... .I

.. ..  %.. t 06 . _. . .. .. ._ . ,. ....... .. . ._. 9.

......e.

.+

3..._..

A.

c

'\. _. . .. 6 N

_. ,-... ... ._.__... . .... 9. .. . . .

. . . . .) . .

q

. .. ......... .....p

...6.... -p ... - .

5 -

.s

.. e- . . .. . . ,

m.y . .

6.

. . .I'

. . .p.....s...~.... ._._9..

4 --

-...a... . , _

..-.4-.9..._....

. - .6 .

....4.......

...t........

          • '-**I"*"**""*-********b****'**y-. *8***E
2. * *4

, *l**-***

..t -a.-'.**

9 g,

r***W'**h-'******'*-*.-.*"*******M****h.. T_ : ~ i :

at

(.

    • 4..'..*. a !*". . . - l 7 ; ;; ; C . .~.~ . 4. *.'  ;.
. ._.. . ., ... .. .. ' . . ....'.Q.
  • ^* .

- '..Z..._-~;

.....!.;...:.~. *...,..*l."~._..:."..~**~.!~".~3."".~.."N. ..... ..

...i. _"".__..4;....".; . .

1 1 "; *T._.. **.1 1.. ;.".,* . _ . . . . ....

p.

..sy

  • _. 1

. 3

......_..J............_................Q....I.....I.....

... . . . . . - . . . . . . . . . . - _ . . . . _ . . ... ._- . . . . . . . . . _ . .. .. .,. .. .. . . .. _ . . ... . . . .. t . . . ....l.

. , . . . _ 5

).. .... ..

i . . . .

. . . . _ . . . . ..................,...............I,,..

. --- ., .._. g 3_.. ......_,-....

. . . . . . . .~.

1

... ..._,....J..... . . ... . . . _ . . . . ..._... . ..... . . pd.e

=__ j.... . . .... . . . . . .._. . .. . ..-.. . .

... .e.

b._.. ...... .).

... ...----_ -4... ._.

...4. .

........, _ ......... .._. ....._.. .l.

_Q__.__.,_._.. . _ . .

. . . . . . . .-1. . _ . . , . ... .

t

, J . .y . . - . .. .4.-6-..-. ---

g. . , . . . . . _ .. .. .. .. .. .. ,. . . q

_ a 6..-.......-

.{..... ...4.......

.g , . .

. . . e
  • i.*

z 2_,

_._. . .l ._i_ .- ,... .._. Q. %.

. ...t.-....._....s_._.._.,..r.......

....t..-.7._.,..g......-

ty'.

_ .. . . . e . . J. r- -' ,4 - ' .'. * . H, *

  • 3. !_n_, - i ; --* * '1- * * * - ~ - * - - . * *. - * ' * * - *-a-

.y

- . N) . ,

~ "_. .- T j a"*, . .,.. .

.'L l y . ... .;.. ,.. . . .

4._-. ..

(.s) . .

. -a

_._ i

  • ..'  :. il ' L. ; . l . ., ' .; . _;.l. .. . '. ', ...,.l...

5 .::

s. ;.

.. ... bd .. _. l . i

_..._._.l.;...._

.L.. .. '

.l. .

.: ..i

-+-.----*;* '

. : l.

.. _:.,y. 3 . .....i. ... b. .. .

... . .....i - .I- *s-.*

. . . . _l . ; . .,.i.

i .

. o.

4,aI .- .i..i. i.. -- q-'* *

.! . .......y.....

.. .........l

1. ' . ..

..! :.i_i ......t. ._ , i '.

l.I_.a.I...->

'. t..g.. ._ .. . ..

,q3. . .

_e .I.. ,

p_ . 6. 7 .. ..

( .

....,_.i.

i , i - i i  ;. i-

.c

.s.

g. s-

,yc i

.% r.--. N. _:. -.  : --- .

"=- ......-.;... - -- p .....: - .

u

.- t ~ .; .

.. . %,& . s. _ _...:-- *""

e, jjg

j. - . ,,, 9

. 7,.; T : ' - . . . . ;,. j . ,. 7

- - - 4 . ._ ;  ;

_;.a. ... .,

. : ,. ol..- , .g 'N. . a h, 2 :u. ;._.:.; _ _..

. ; . ., ; . . .,. ,,.. t._.4.. . '. a. .:. ; s., ...

..._...,gQ...-

...I.. . .,..

hs , . . . . .

I

.N .N . .

. . . . . _ . . . .-... .. ..1 .

,3

. . .. . _ ...i_

f - ... ... .l

....."\. . _ _... . . . . . . ..

....s..j l ,J 1...

g 1 >U , . . > . . . '

..-N EV

..ts . . . .- . .

v.. 8

  • s  %

t 1 y .

. n ,..I... . . .. .l.

. . \

  • l ..... , , .

..,.L.. .I...... . . .. ...

. ... _... ) ..,Q....

. . . . . . . . 6, s

l .

.. .i.. ..i .

. . . ..-.l . . ,

j

...N

. . . . . g Q . . . . 4 . . ... . s ..,

j

. .e. 6 6 .

. ,. g

. . . Q . . ........... y..

t..o ..,....p.._. . . . . . . . . .

. . .m ... . .. . . , . . 'l . . .. .

1. .

.t .. ... . . . ...

.. . . a .

. . . g .I.

1 .

.. e. .. . ..

.....6... .._.l . , .

J.

..l-..

I

. . . . ...1.... . . .

. . .. . .. N) l... I. . .

5 .

l.

I

- " . . . Q l. . . ...

l..

. . . . I. .. . . , . . . . .

.. . ... . =

.g . 9 l ,,, p .._. . . . . . . . . . ... ........ .. . ..... ,

. . . . . , . .j . . . . ., ..

l.f g . .h .

l... . . . . . ... .

g.. . .

l ....

.. ,... . .. . . . . , . . . . . g . . ... . . . .

t

..... . . .. ...l.;., g..; . .l, . . ...& g

. ... ...l..... .

..i,...

. i .

... g . .1. .......l::

........l... .

6..

i . . l. .

g.

...t.i.l i .
.
l.  ;. .: .. ....., ... . .
6. . . . . 1, ;.; ... :

. i , -

..,i. I . .

.!; }

.... .. . . 3.i.

. . 1 i .: ... .

i .:

. . . .... . . . g.. ,

y . . .

. lg g . u,.; 8. .

Q mu. Q Q

m.

< .% I ( \ l t ' ,1 :

O t

ENCLOSURE 7 t

t O

i l

l

-. ~ ., . ., _. ......'.,,. , , , ,

c . ~. , .

. GPU Servico CALC.NOO. . .

A SH EET NO' 'I '

TMI-1, Block. Wall...Analysis D AT E . . f.N' '.[.['

O O F ' ' ' '.(. .,

SUBJECT .. . .. . ... . ...- * . .

IE 80-11, Aux. Building COMP.BYlDATE./ff. ![f 'Y

.' .MM css.o. ,y,0,1,m., g. lim /h 3 7. ... . .. .... . ......... . .. .. .. .. .. .

TABLE 1 - Stress Results Stress Normal to Bed Joint in Psi FREO WALL RANGE LOAD Tension Allow. Compr.

Allow. Shear Allow.

NO. H COMB. Flexural Tension Flexural Compr. Shear z

AB-5 32-39 D+R+E 2.3 27.4 17.0 313 1.1 34 D+R+E' 12.0 45.7 25.0 808 2.1 52 1

AB-6 32-39 D+R+E 5.0 '

27.4 19.5 313 1.4 34 D+R+E' 15.0 45.7 28.0 808 2.5 52 AB-8 24-29 D+R+E 21.7 27.4 35.4 313 5.5 34 3

(J .D+R+E' 27.1 45.7 40.3 i

!! 808 6.4 52 AB-9 24-29 ',D+R+E 3.64 27.4 13.8 313 1.2 34 5D+R+E' 13.1 45.7 '

25.7 808 3.5 52 AB-10' 24-29 D+R+E 18.2 27.4 32.0 313 2.14 34 i

D+R+E' 29.0 45.7 j 41.0 808 3.0 52

} l

' 34.

AB-13 45-55 D+R+E 6.0 27.4 i 12.2 313 l.6 l

R+E' 11.4 . 45.7 16.0 808 2.4 52.

' i i

s Nota: The local pull-out stresses are insignificant for these walls.

! D - Dead loads including permanent equipment loads R - Pipe reactions E - OBE loads

< @ ~E' - SSE Loads

~' ~~

~7.

i

_ ; . _ t_ -- ],

.zw - ' -

.' i-i .i ' #11, : I .", . .' j%;

.;, j 4. pp.f.y.i i

-e .

~

7 '~~- -

...j.d.4,3:4..

l _ . _ . . . _ _ . _ . . _

, _..._m _ _ _ _

". AO00007

m.

GPU Servic3 . CALC.NO..((A/./..*.42..-MO[

SH EET NO. . . . . 0F . . . . . . . . . . .

SUBJECT . ...TMI-1 Block Wall Analysis

.. ............ . ..... .. . .. ...... ........ .. ... . . . ..... DATE.../.f.[.1-[.d.$........

COMP. BYlDATEM. (.. 8.Y([C/dk h) IE 80-11, Aux. Bldg.

. .. ... ..... ........... ... . . ... ...... .. .......... ........ ... . ... . . CHK'D. BYlDATER.6. .(f/R$/g TABLE 2 Collar Joint Shear Stress

! Collar Joint Shear I LOAD Stress in PSI WALL FREQ.

NO. RANGE COMB.

Actual Allowable H Stress z Stress D+R+E 1.7 8 9 AB-5 32-39 D+R+E' 3.2 12 l l D+R+E 2.1 8 i AB-6 32-39 __

D+R+E' 3.7 l 12 l

' 8 D+R+E 66 1

. AB-8 24-29 a i

i __D+R+E' 7,9 12 D+R+E 1.6 8 AB-9 24-29 D+R+E' l 4.7 12 l D+R+E 2.9 8 AB-10 24-29 ,

D+R+E' 4.0 12

+E 2.1 8 AB-13 45-55 l.

D+R+E' 3.2 12 l l D - Dead loads including permanent equipment loads 1

-R - Pipe reactions E - OBE loads t

E' - SSE Loads i

k .,.

A000 0018

S e

4 Ef1 CLOSURE 8 i

}

l i

n '

~ . , ,_, ,,

~ >

c- =

_.