ML20058F656
| ML20058F656 | |
| Person / Time | |
|---|---|
| Site: | Crane |
| Issue date: | 07/31/1992 |
| From: | Akers D, Jensen S, Schuetz B EG&G, INC., IDAHO NATIONAL ENGINEERING & ENVIRONMENTAL LABORATORY |
| To: | |
| Shared Package | |
| ML20058F640 | List: |
| References | |
| TMI-V(92)EG10, NUDOCS 9312080217 | |
| Download: ML20058F656 (100) | |
Text
.
g TMI V(92)EG10 l
/*M OECD-NEA-TMI-2 W
Vessel Investigation Projeet s
E
! ^n
-?S g
4:4
$:{
l I
o 1
i
? k;b cN k
- c Companion Sample l-o o o o
" [-
Examinations D. W. Akers S.M.Jensen 3
_w B. K. Schuetz July 1992 3.
NOTICE l
This report is for the benefit of OECD TMI participants and their designees only This report has been prepared pursuant to OECD agreements on the TMI 2 Yessel investigation Project. It is the policy that the information contained in this report be used only for the bent 41t of the participants and the participants designees.
The contents of this report should not be disdoned to others or reproduced wholly or partially unless authorfred in accordance wfth the laws, regulations, pollctes, or written permission of the appropriate project participant.
9312000217 931126 PDR ADOCK 0500 0
P
'] ~, l } i 8 ( '; } /
-~
l The contents of this report were developed as part of the Three MileThis Island Unit 2 Vessel Investigation Project.
by eleven countries under the auspices of the Nuclear Energy Agency of th l
The eleven sponsoring Organisation for Economic Cooperation and Development.
organisations are:
The Centre d' Etudes d'Energie Nuclsaires of Belgium, The Suteilyturvakeskus cf Finland, The commissariat a l'Energie Atomique of Frarce, The Gesellschaft for Reaktorsicherheit mbH of Germany, The Comitato Nazionale per La Ricerca e per to Sviluppo Dell' Energia Nucleare e Delle Energie Alternative of Italy, The Japan Atomic Energy Research Institute, The Consejo de Seguridad Nuclear of Spain, The Statens Kurnkraftinspektion of Sweden, The Office Fsdsral de l'Energie of Switzerland, AEA Technology of the United Kingdom and The United States Nuclear Regulatory Commission.
The primary objectives of the Nuclear Energy Agency (NEA) are to promo cooperation between its Member governments on the safety and regulatory f nuclear aspects of nuclear development, and on assessing the future role o energy as a contributor to economic progress.
This is achieved by:
d
- encouraging harmonisation of governments' regulatory policies an practices in the nuclear field, with particular reference to the safety of nuclear installations, protection of man against ionising radiation and preservation of the environment, radioactive waste management, and nuclear third party liability and insurance; i tics of
- keeping under review the technical and economic character s nuclear power growth and of the nuclear fuel cycle, an and the potential future contribution of nuclear power to overall energy demand;
- developing exchanges of scientific and technical inform d
- setting up international research and development programmes an undertakings jointly organised and operated by OECD countries.
In these and related tasks, NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has concluded Cooperation Agreement, as well as with other international organisations the nuclear field.
.i The contents of this report were developed as part of the Three Mile Island Unit 2 Vessel Investigation Project.
This project is jointly sponsored by eleven countries under the auspices of the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development. The eleven sponsoring organisations are:
The Centre d' Etudes d'Energie Nucidaires of Belgium, The S5teilyturvakeskus of Finland, The commissariat A l'Energie Atomique of France, The Gesellschaft for Reaktorsicherheit mbH of Germany, The Comitato Nazionale per la Ricerca e per lo Sviluppo Dell' Energia Nucleare e Delle Energie Alternative of Italy, The Japan Atomic Energy Research Institute, The Consejo de Seguridad Nuclear of Spain, The Statens K#rnkraftinspektion of Sweden, The Office Esddral de l'Energie of Switzerland, AEA Technology of the United Kingdom and l
The United States Nuclear Regulatory Commission.
f t
d The primary objectives of the Nuclear Energy Agency (NEA) are to promote i
cooperation between its Member governments on the safety and regulatory j
aspects of nuclear development, and on assessing the future role of nuclear energy as a contributor to economic progress.
This is achieved by:
- encouraging harmonisation of governments' regulatory policies and practices in the nuclear field, with particular reference to the safety of nuclear installations, protection of man against ionising radiation and preservation of the environment, radioactive waste management, and nuclear third party liability and insurance;
- keeping under review the technical and economic characteristics of nuclear power growth and of the nuclear fuel cycle, and assessing demand and supply for the different phases of the nuclear fuel cycle and the potential future contribution of nuclear powtr to overall energy demand;
- developing exchanges of scientific and technical information on nuclear energy, particularly through participation in common services;
- setting up international research and development programmes and undertakings jointly organised and operated by OECD countries.
In these and related tasks, NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has concluded a Cooperation Agreement, as well as with other international organisations in the nuclear field.
o
A ti i
TMI V(92)EG10
)
Vessel Investigation Project i
I t-T h
I Companion Sample l 92
~
Examinations
(
~-
D. W. Akers S.M.Jensen
-=
3}-
B. K. Schuetz
_- 2
- =c July 1992 1
NOTICE This report is for the benefit of OECD TM1 participants and their designees only o the MI.
e el In es (g ti n j
i he c) that the infortnation contained in this report be used only for th e
con ents of t i e rt shou d o be di clo to others or "L"',">"lT.':" ",'L""""'"1";"
' 'lse". s","*2' the.,,,,o,.,.
e,,o,em,.,,,c,,.nt.
- u2ons!? Zi!!jjp
-M y iu 'c
- /
The contents of this report were developed as part of the Three Mile Island Unit 2 Vessel Investigation Project.
This project is jointly sponsored by eleven countries under the auspices of the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development. The eleven sponsoring organisations are:
The Centre d' Etudes d'Energie Nuclsaires of Belgium, l
The Suteilyturvakeskus of Finland, The commissariat h l'Energie Atomique of France, The Gesellschaft for Reaktorsicherheit mbH of Germany, The Comitato Nazionale per La Ricerca e per lo Sviluppo Dell'
)
Energia Nucleare e Delle Energie Alternative of Italy, I
The Japan Atomic Energy Research Institute, l
The Consejo de Seguridad Nuclear of Spain, The Statens Ksrnkraftinspektion of Sweden, The Office Fsdsral de l'Energie of Switzerland, AEA Technology of the United Kingdom and The United States Nuclear Regulatory Commission.
1 i
i The primary objectives of the Nuclear Energy Agency (NEA) are to promote cooperation between its Member governments on the safety and regulatory aspects of nuclear development, and on assessing the future role of nuclear energy as a contributor to economic progress.
This is achieved by:
- encouraging harmonisation of governments' regulatory policies and practices in the nuclear field, with particular reference to the safety of nuclear installations, protection of man against ionising radiation and preservation of the environment, radioactive waste management, and nuclear third party liability and insurance;
- keeping under review the technical and economic characteristics of nuclear power growth and of the nuclear fuel cycle, and assessing demand and supply for the different phases of the nuclear fuel cycle and the potential future contribution of nuclear power to overall energy demand;
- developing exchanges of scientific and technical information on nuclear energy, particularly through participation in common services;
- setting up international research and development programmes and undertakings jointly organised and operated by CECD countries.
In these and related tasks, NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has concluded a Cooperation Agreement, as well as with other international organisations in the nuclear field.
TMI V(92)EG10 OECD-NEA-TMI-2 Vessel Investigation Project Companion Sample Examinations D. W. Akers S. M. Jensen B. K. Schuetz Published July 1992 Idaho National Engineering Laboratory EG&G Idaho, Inc.
I
)
l Prepared for the OECD-NEA-TMI-2 Vessel Investigation Project Under DOE idaho Field Office
.1 Contract DE-AC07-761D01570
j i
i ABSTRACT As part of the Three Mile Island Unit 2 (TMI-2) Vessel Investigation Project, funded by the Organization for Economic Cooperation and Development, physical, metallurgical, and radiochemical examinations were performed on samples of previously molten material that had relocated to the lower plenum of the TMI-2 reactor during the accident of 28 March 1979. This
[
report presents the results of those examinations and some limited analysis of these results as required for the interpretation of the data. Principal conclusions of the examinations are that the bulk lower head debris is homogeneous and composed primarily of (U,Zr)0. This molten 2
material reached temperatures greater than 2,60(FC and probably reached the lower head as a liquid or slurry at temperatures below the peak temperature. A debris bed was formed, which was composed of particulate debris above a monolithic melt that solidified on the lower head.
I i
k I
V iii
t 1
EXECUTIVE
SUMMARY
i As part of the Three Mile Island Unit 2 (TMI-2) Vessel Investigation Project (VIP),
examinations of samples of fuel debris from near the lower head of the reactor vessel have been i
'i performed to (a) assess the physical, metallurgical, and radiochemical properties of the materials j
that were in contact with the lower vessel head (i.e., companion samples), (b) assess the potential for interactions between the molten core material and the lower head, and (c) provide j
information needed to develop models to assess the margin to failure of the lower head. A complete analysis and interpretation of the companion sample examination results will be reported in the VIP integration report.
Nondestructive examinations of the companion samples included visual examination,
[
I photography, sample weight, bulk sample density, and individual particle density. Bulk sample 3
densities were similar and ranged from 8.2 to 9.4 g/cm. The measured porosities were quite variab!c for individual samples (5.7-32Tc), but the average porosity was 18 Ilfc. Comparisons between the bulk composition and theoretical densities indicate that a relatively accurate, accurate porosity value was obtained.
l t
All samples consisted primarily of previously molten (U,Zr)O. The pores in some samples
[
2 formed in stratified layers and were surrounded by microporosity and two-phase structures consisting of (U,Zr)O; and (Zr.U)O. It has been suggested that the stratified layers were
{
2 actually gas bubbles (steam or metal vapors) that froze in place as the bubbles rose through the
[
cooling core material.
Le presence of two-phase (U.Zr)O and (Zr,U)O structures indicates that these samples i
2 2
were not rapidly quenched, but underwent a gradual cooldown. The propensity for these two-I phase regions to exist around pores is also an indication that these were the last areas to solidify and that the single-phase regions solidified first. The microstructure is indicative of a solidified (U,Zr)O ceramic melt, which had an overall composition rich in uranium. Also, the examinations 2
indicate that the companion samples were fully oxidized, which suggests the presence of sufficient steam to oxidize all available zirconium.
The bulk elemental composition data for the companion samples indicate that the debris bed is homogeneous and that it is composed primarily of fuel element components with relatively V
l t
small amounts of other structural components. The elemental analysis results indicate that the.
j debris was composed of about 70 wt% U,13.75 wt% 7r, and 13 wt% 0. This composition
! accounts for about 97 wt% of the debris. The elemental constituents of the stainless steel and i
inconel core components make up the remaining 3 wt1 i
B The radiochemical examinations indicate that much of the volatile radionuclide content of l
I the debris (noble gases, cesium, and iodine) had volatilized out of the molten fuel, leaving the medium-and low-volatile radionuclides in the debris bed. Decay heat calculations were i
performed to determine the amount of available heat present in the debris bed during the i
relocation event (224 minutes after reactor shutdown) and at 600 minutes. These calculations indicate that the available heat was about 0.13 watts /g of debris at 224 minutes and 0.096 watts /g of debris at 600 minutes. These data indicate a relatively constant source of heat available to maintain the debris bed in a molten condition.
j l
t Comparisons with examinations of the loose debris layer (DOE Accident Evaluation Program) above the companion samples indicate that the loose debris layet has a shghtly lower average uranium content (-65 wt%), is more porous, and contains higher concentrations of iron, chromium, and other constituents of stainless steel and inconel than do the companion samples.
I The examination results presented in this report will be subjected to further analysis and I
.- t interpretation in the VIP integration report.
j i
i I
i s
I h
i
. l I
I i
l 1
Y1
. - _. _.. -.. -..._..., -.-._ -,-,,..._,2
k i
CONTENTS 1
ABSTRACT.................
.....................................iii EX ECUTIVE SU M M A RY................................................. v i
1.
INTRODUCTION
.........................1 2.
SAMPLE ACQUISITION............
................................3
[
- 3. NONDESTRUCTIVE EXAMINATIONS...............
.....................4 i
t 4.
DESTRUCTIVE EXAMINATIONS
........................................8 l
l 4.1 Metallurgical Examinations..
.......................................8
-)
i 4.2 Sample Examinations by Quadrant
....................................9 i
4.2.1 Samples from the Southeast Quadrant (Samp!e 1-9).
................ 9 4.2.2 Samples from the Southwest Quadrant (Sample 1 11).................. -10 4.2.3 Samples from the Northeast Quadrant (Sample 112) 10 4.3 Scanning Electron Microscopy Analysis 10 4.4 Radiochemical Analyses.
11 4.4.1 Radionuclide Examinations........
.......................... 12 1
4.4.2 Comparisons with ORIGEN2.
17 4.4.3 Low Volatiles 19 4.4.4 Medium Volatiles..........
19 4.4.5 High Volatiles 21 5.
COMPARISONS WITH DOE LOOSE DEBRIS ANALYSES................. 22 I'
6.
DATA REQUIRED FOR MODEL DEVELOPMENT......................... 24 i
7.
SU MM ARY AND CONCLUSIONS.................................... 27 I
8.
REFERENCES.
29 Appendix A.-SEM Examination Results.........................
..........A-1 Appendix B--Results from the Radiochemical Analysis of Samples...
.............. B.1 f
Appendix C--TMI-2 Decay Heat at Short Times After the Accident.................... C-1
FIGURES
- 1. I.oose debris distribution and location....
31
- 2. Hard debris distribution and location.....
32
- 3. Locations of companion samples..
.............................. 33.
- 4. Sample collected from the southeast quadrant (sample 1-9)...................... 34
--l
- 5. Sample collected from the northwest quadrant (sample 1-10)..................... 34
- 6. Sample collected from the southwest quadrant (sample 1-11)...................... 35
- 7. Sample collected from the northeast quadrant (sample 1-12).....
35 3
- 8. TMI-2 lower plenum sample 1-9-F 36
- 9. TMI-2 lower plenum sample 19-G..
36 1
- 10. BU-2 lower plenum sample 1-11-C 37 j
- 11. TMI-2 lower plenum sample 1 11-D..
37
.i i
- 12. TM I-2 lower plenum sample 1 C..................................... 38 1
i
- 13. TMI.2 lower plenum sample 1-12-D.....................................
38
- 14. First epoxicd and polished metallographic mount....
39
- 15. Sample 1-9-A.....
'40 i
- 16. Samples 1-9.B1 and 19-B2...
40 i
- 17. Sa m ple 1 C...................
41 i
i
- 18. Sample 1-11-L..
....................................41 i
- 19. Sample 1-11-T........
42
{
- 20. Sample 1 12..
42
- 21. Second epoxied and polished metallographic mount...........................
43 I
- 22. Sample 1-9-F.......
43 i
- 23. Sample 19-G 44 1
- 24. Sample 1-11-C.........
44 J
k Vill l
- 25. S a m ple 1 - 1 1. D - A................................................... 45
- 26. Sa m ple 1 - 1 1. D-B....................................................... 45
- 27. Sample 1 C.................
46
- 28. Sample 1-12-D......
46
- 29. Typical microstructure of 1-9-A.
47
- 30. Typical microstructure of 1 9-B 1........................................... 48
- 31. Typical microstructure of 19-B2..............
49
- 32. Typical microstruct ure of 1 C........................................... 50
- 33. Typical microstructure of 1-9-F....
51
- 34. Typical microstructure of 19-G.
52
- 35. Details of typical microstructure in ceramic melt 53
- 36. Iecation of scanning electron microscope backscattered image (1-9-A, Arc 12)........ 54
- 37. SEhi backscattered electron image of two phase region (1-9-A, Area 2)............. 54
- 38. location of SEM backscattered electron image (1-9-A, Area 5)....................- 55
- 39. SEM backscattered electron image of single phase region (19-A. Area 5).
55
- 40. Elemental dot map for uranium (1-9-A, Area 5)............................... 56
- 41. Elemental dot map for zirconium (1-9-A, Area 5)............................ 56
- 42. Elemental dot map for oxygen (1-9-A, Area 5)............................... 57
- 43. Molt en edge of sample 1-9-B1............................................ 58
- 44. UO -ZrO pseudobinary phase diagram...
2 2
59
- 45. Typical microstructure in 1-11-L 60
- 46. Typical microstructure in 1-11-T.
61
- 47. Typical microstruct u re in 1-11 -C........................................ 62
- 48. Typical microstruct ure in 1 -11 D-A...................................... 63 I
- 49. Typical microstructure in 1-11D-B..
64
- 50. Metallic ingots in ceramic (U,Zr)O matrix 2
65 ix
h 1
1 1
- 51. Typical microstruct ure of 1 12............................................ 66
- 52. - Typical microstruct ure of 1 12.C.......................................... - 67
- 53. Typical microstruct ure of 1-12-D.......................................... 68 i
TABLES
~
- 1. TMI-2 bulk sample weights and densities 5
- 2. TMI.2 lower plenum individual sample weights and densities.......................
5
- 3. TMI-2 lower plenum sample porosities.....................
7 l
- 4. TMI-2 reactor core composition
...................... 13
- 5. Average debris composition by quadrant..
............................. 14
- 6. Radionuclide volatility groups..
................................15
- 7. ORIGEN2 predicted radionuclide concentrations...
.......................... 18
- 8. Radionuclide retention in the debris bed................................. 20
. i.
I h
6 L
h is i
i r
X
.,-o a--a.-
j
'I OECD TMI-2 Vessel investigation Project 1
Companion Sample Examinations t
- 1. INTRODUCTION The accident at the Three Mile Island Unit 2 (TMI-2) reactor resulted in the relocation of j
about 19,000 kg of molten core material to the lower head of the reactor vessel. This relocation j
occurred at about 224 minutes after the reactor scrammed and lasted for about 2 minutes.
3 Extensive video examinations of the lower plenum were conducted in 1985 and again during the i
core bore operations in 1986 to assess the extent of damage to the lower head. However, before f
2 core boring was begun, samples of fuel debris were removed from the surface of the debris on the t
lower head.3 These debris samples, which had not been contaminated with debris from the upper l
e part of the reactor core, were examined under the auspices of the U.S. Department of Energy (DOE) Accident Evaluation Program, sponsored by the General Public Utilities Nuclear j
Corporation (owner / operator of TMI), the Electric Power Research Institute, and the U.S.
[
Nuclear Regulatory Commission (NRC). At the conclusion of this program, the Organization for Economic Cooperation and Development (OECD) TMI-2 Vessel Investigation Project (VIP) was i
begun to assess the damage to the lower head of the reactor vessel and to develop an understanding of the potential for failure of the lower head. Lower head sample examinations were focused on two areas: companion debris samples from locations adjacent to the lower head, and nozzle and guide tube samples from the vessel and the flow distributor, respectively.
)
i i
As part of the VIP, examinations of companion samples were performed to (a) assess the
)
physical, metallurgical, and radiochemical properties of the debris adjacent to the lower vessel head, (b) assess the potential for interactions between the molten core materials and the lower 1
head, and (c) provide information needed to develop models to assess the margin to failure of the 1
lower head of the TMI-2 reactor vessel.
i
~
This report presents results of the physical, metallurgical, and radiochemical examinations performed on the companion samples and limited analysis of these results as required for the interpretation of the data. Additional examinations of companion samples that may provide information on the composition and behavior of the debris on the lower head are being performed by the commissariat a l'Energie Atomique of France as part of the VIP and as part of 1
i 1
m,
,.I
e 4
a separate program sponsored by the Japanese Atomic Energy Research Institute (JAERI).
l Three samples from the surface of the lower debris bed and ten particles from the companion -
i samples were shipped to Japan. Although initial examinations have begun, no results are included in this report. Available results from the French examinations will be included in the final integration report; however, much of the JAERI examination program will not completed before l
the VIP integration report is completed.
i, Section 2 of thit report describes how the companion samples were acquired from the l
lower head of the reactor vessel, their approximate locations in the debris bed, and sample designations. The results of the nondestructive companion sa:nple examinations (visual examinations, photo-documentation, density, and porosit'j) are presented in Section 3, and the l
results of the destructive examinations [ optical tactallc graphy, scanning electron microscopy i
(SEM), and radiochemical analyses] are presented m Section 4. Section 5 presents comparisons with the DOE lower head debris analyses, Section 6 discusses the specifie data requirements for the lower head failure analysis, and the summary and conclusions of this vurk are presented in Section 7.
I i
I h
i e
[
I
)
t f
k 1
2
'1
- 2. SAMPLE ACQUISITION From initial probing examinations performed on 15 February 1989,4 the distribution of loose debris on the k)wer head was determined (see Figure 1). Following these probing examinations, core boring of the upper core was performed. This activity deposited additional loose debris on the lower head. All loose debris was then removed from the lower head, revealing a variable topography of solidified debris (the companion material) on the lower head, with depths ranging from less than 5 cm up to 45 cm in the southwest quadrant (see Figure 2).
The locations with the greatest depth (i.e., ~45 cm) were H9, H10,19, and 110 in the central part of the lower head, as indicated by General Public Utilities defueling data. Outside of this central region (75-85 cm from the periphery of the core), the solidified debris was up to 26 cm deep.
Consequently, the companion samples came from within 30 cm of the lower head for all samples and may have come from within 15 cm if obtained from near the periphery of the molten pool.
The solidified layer was broken up by a 300-Ib (136-kg) slide hammer, which was dropped from an elevation of 20 ft (6.1 m). The resulting debris appeared to be homogeneous; no obvious metallic layer was present.
Bulk companion samples were acquired from the southeast, southwest, and northeast quadrants of the reactor vessel (see Figure 3). Most examination work has focused on these samples, which appear to be representative of the debris bed. Almost no debris was obtained, however, from the northwest quadrant of the reactor vessel because once the loose debris was removed from this part of the lower head, little attached debris remained. In fact, defueling equipment (a large clamshell) was able to recover only very small amounts of debris. Because the northwest sample is small and may not be representative of the debris bed, observations based on this sample are questionable.
3
[
J
- 3. NONDESTRUCTIVE EXAMINATIONS Nondestructive examinations of the lower plenum samples included visual examinations, photography, sample weights, bulk density, and individual particle density. Figures 4 through 7 show the bulk companion samples from which individual particles were selected for examination.
. }
i All companion samples were composed of large pieces of broken-up debris except companion s
sample 1-10 from tl4e northwest quadrant. This sample was composed of fine particulate debris and was not considered to be representative of the companion sample material. It was probably a mixture of loose debris and material that was deposited on the lower head during the core boring l
operations discussed in Section 2.
I i
Density measurements were performed on both companion samples and individual particles
[
t using the standard immersion method. Table 1 lists the location, the total weight, and the density of each companion sample. The companion sample with the highest density (9.4 g/cm ) was from 3
the southeast quadrant. The low density of the sample taken from the northwest quadrant was
{
3 excluded from the average density (8.7 g'em ) of the debris bed due to the small sample size. 'Ihe densities of the two remaining companion samples were 8.2 and 8.6 g/cm. Examination of the
. {
3 elemental analysis results, to be discussed, indicates that the composition of all samples is similar.
This indicates that the differences in density are primarily due to differences in the porosity of the
. j i
debris bed.
l I
Representative photographs of selected individual particle samples are shown in Figures 8 through 13. Visual examinations indicate that the rocks were composed primarily of previously j
molten ceramic material, and possibly included small amounts of metallic material (as suggested by j
the bright areas in the photographs). The samples were generally dull grey in appearance, i
1 although some areas were yellow (lighter areas in photographs).
Table 2 shows the weight and density of each individual particle sample. Densities ranged 3
i from 7.45 to 9.40 g/cm, which is consistent with samples composed primarily of (U,Zr)O with a 2
large proportion of UO and varying amounts of porosity. The densities ofintact UO pellets and
~ !
2 2
3 ZrO are about 10.4 and 5.6 g/cm, respectively. The average density of the debris bed is assessed 2
in Section 6.
t l
t i
t i
4 l
f a
1 1
i Table 1. TMI-2 bulk sample weights and densities.
j
. Location Weight Density 3
Sample Number (quadrant)
(g)
(g/cm )
1-9 Southeast
'2436 9.4
)
1-10 Northwest -
0.50 6.9 1-11 Southwest 1214 8.6 1 12 Northeast 2700 8.2 Table 2 TMI-2 lower plenum individual sample weights and densities.
1 Weight Density -
3 Sample (g)
(g/cm )
1-9 51.81 9.40 1-9-F 14 %
7.45 1-9-G 12.10 8.07 1-11 52.23 8.62 1-11-C 49.50 8.39 1-11-D 76.40 8.30
.l 1-12 47.16 8.18 i
1-12-C 45.50 9.29 1-12-D 15.20 7.60 f-I I
1 i
1 5
_~
F Table 3 lists porosity data for individual particle samples from the three quadrants of the j.
lower head where most of the debris was obtained. The porosity was determined using optical 1
methods on polished metallographic specimens. The approximate average porosities of samples i
. from the southeast (sam;% 19), southwest (sample 1-11), and northeast (sample 1-12) quadrants f_
are 20.8 7 %,18 14%, and 17 9%, respectively. Ilowever, these data can be quite i
f misleading and biased due to several high values and the range of porosities observed. The i
overall porosity of all samples is 18 11%, which suggests a very broad range of porosities in the j
debris. Additional samples would have to be analyzed to improve this estimate. Further analysis
[
i of the average porosity of the debris bed and the effect on the density of the bulk debris is j
presented in Section 5. Also, these results are compared with the porosity and density results for i
p the samples obtained from the surface of the debris bed that were acquired as part of the DOE j
i Accident Evaluation Program.
j i
I t
- l
. i o
1 i
i f
1
{
t i
i l
6 i
u.
i Tabic 3. TMI-2 lower plenum sample porosities.
I Porosity Sample Figure Namber (7c)
Remarks i
1-9-A Figure 29 29.2 lioles/ cracks 1-9-B1 Figure 30 10.8 IIoles/ cracks t
1-9-B2 Figure 31 19.5 IIoles/ cracks i
1-9-F Figure 33 27.0 IIoles/ halftone" j
1-9-G Figure 34 17.3 Original macro f
1-11-C Figure 47 7.6 11 oles / halftone 1-11-D-A Figure 48 20.5 Original photo l
f 1-11-L Figure 45 21 Fine holes not resched 1
i 4
1-11-T Figure 19 7.0 Iow magnification (halftone) j 1-11-T Figure 46 5.7 Large holes only i
t 1-11-D-B Figure 49 47.5 Mottled stringers not included 1-12 Figure 20 9.5 Low magnification (halftone) f i
1-12 Figure 51 19.8 IIalftone j
]-
1-12 Figurc 51 22.0 Original photo l
1-12-C Figure 52 5.7 S: ringers
[
1-12-D Figure 53 31.7 Original photo i
i i
- a. IIalftones are report-quality photographs that may not contain the level of dctail of the original photographs. Some smaller porosity may not be apparent from the optical analysis.
Comparisons indicate that the difference in porosity between halftones and originals is 1-2E l
-f I
.l f
I 1
l I
r I
i i
i 7
l t
l
.., ~, _.. _ -.
+
- 4. DESTRUCTIVE EXAMINATIONS i
Eleven individual particle samples from the lower plenum were selected for destructive examinations. The examinations that were performed included optical metallography, SEM (scanning electron microscopy) analysis with EDX (energy dispersive x-ray) and WDS (wavelength I
dispersive x-rT, malysis, bulk elemental analysis, and radionuclide content. 'Ihe companion
, f samples were sectioned so that specific faces could be examined. Also, some samples were j
broken into pieces during handling in the hot cells. Consequently, a total of 14 surfaces were l
actually examined. The samples were placed into two large mounts (12.5 cm in diameter), epoxy i
i was added, and the sampics were polished for metallographic examination. Five of the 11 samples s
were from the primary relocation pathway in the southeast quadrant of the reactor (samples i
1-9-A,1-9.B,1-9-C,1-9-F, and 1-9-G). Three samples were from the principal damage region in t
the southwest quadrant of the reactor (samples 1-11,1-11-C, and 1-11-D), and the remaining 3
three samples were from the northeast quadrant of the reactoc vessel head (samples 1-12, 1 C, and 1-12-D). These sampics were sectioned and prepared for metallographic examination, after i
which representative samples were obtained for SEM/microprobe examinations and radiochemical 4
i analysis.
s 3
4.1 Metallurgical Examinations r
Figure 14 shows the first epoxied and polished mount. Sample 1-9-B was broken in half during handling, and the two pieces were subsequently designated 1-9-B1 and 1-9-B2.
l l
Sampic 1-11 was sectioned to provide longitudinal and transverse cross-sectional views through the rock, and these were designated 1-11-L and 1-11-T. Ifigher magnification photographs of each of the polished sample surfaces are shown in Figures 15 through 20. Figures 18 and 19 show
{
J two views of sampic 1-11 In Figure 18, there is evidence of striation or interconnected porosity in the debris, whereas in Figure 19, the porosity is circular and more uniform. Interconnected
{
e porosity is present in most samples (e.g., Figure 20) and may be due to bubbling of steam or l
t structural material vapors through the molten pool.* The presence of this interconnected j
t 1
porosity in the companiori samples suggests that the debris was liquid while on the lower head and
' i, that it remained liquid for a sufficient period of time to allow bubble formation.
i I
- a. D. W. Akers, private communication with L A. Niemark, May 13,1992.
l s
i
?
-m
l I
Figure 21 shows the second epoxicd and polished mount. Sample 1-11-D-A was broken into two pieces after sectioning. liigher magnification photographs of each of the polished -
sample surfaces are shown in Figures 22 through 28. He metallic objects in the mount were used i
simply to assist in identifying samples and for orientation during metallographic examinations-
}
}
1 Based on the initial metallographic examinations, all sampics appear to consist primarily of l
previously molten (U,Zr)O. Droplets of metallic melt were found only in samples 1-11-L, j
2 1-11-T, and 1-11-D-A. The pmes in some of the samples were formed in stratified layers and were surrounded by micropoiosity and two-phase structures consisting of (U,Zr)O and (Zr,U)O -
{
2 2
This two-phase morph'hgy suggests that these samples were gradually cooled and not quenched.
j Details of sample examinations are described below in Section 4.2.
l 4.2 Sample Examinations by Quadrant t
4.2.1 Samples from the Southeast Quadrant (Sampic 1-9) t Figures 29 through 34 are photocomposites of the typical microstructures through samples 1-9A 1-9-B1,1-9-B2,1-9-C,1-9-F, and 1-9-G. Figure 35 is a higher magnification photograph j
i that shows the typical microstructure in the light and dark areas in the photomosaics. It shows that the darker areas in the photomosaics are composed of microporosity and a secondary phase (grey areas), which are different from the clear single-phase regions (white areas). Stratified f
layers of pores surrounded by microporosity and the secondary phase material were present in samples 1-9-A,1-9-B1, and 1-9-B2. The morpnology of the material surrounding the pores was discernable only on the scanning electron microscope, and Figures 36 and 37 show that this l
material was actually composed of two phases, a light, uranium-rich (U,Zr)O phase and a dark, 2
zirconium-rich (Zr,U)O phase. Away from the porous regions, the single-phase regions consisted j
2 i
of uranium-rich (U,Zr)O as shown in Figures 38 through 42. Sample 1-9-C was primarily the j
2 single-phase (U,Zr)O structure with only minor amounts of two-phase material along some of the -
2 cracks and some of the pores. Regions of very porous melt structure were present in some of these samples, as shown in greater detail in Figure 43.
I
^
he presence of two-phase (U,Zr)O and (Zr,U)O; structures indicates that these samples j
2 r
were not rapidly quenched, but underwent a gradual cooldown. As shown in the UO -ZrO 2
2 9
pseudobinary phase diagram in Figure 44, these two-phase structures could have formed only if the samples were c(x> led slowly through the two-phase region shown on the phase diagram.
l I
4.2.2 Samples from the Southwest Quadrant (Sampic 1-11) j i
Figures 45 through 49 are photocomposites of the typical microstructures observed in the samples from the southwest quadrant. These samples were composed primarily of previously j
molten (U,7r)O, and the basic microstructures were very similar to those found in other regions l
2 of the lower plenum; however, small differences were found. Small amounts of metallic melt were f
found in samples 1-11-L,1-11-T, and 1-11-D-A: no metallic melts were found in any of the other
[
samples. These metallic melts and the surrounding microstructure are shown in more detail in Figure 50. SEM/microprobe examinations indicate that these melts are silver and indium. A secondary ceramic phase was also present within the (U,Zr)O matrix of san ple 1-11-T (see 2
Figure 46). SEM/microprobe examinations of this ceramic phase indicate that it was composed primarily of Cr-oxide.
4.23 Samples from the Northeast Quadrant (Sampic 1-12) 1 J
Figures 51 through 53 are photocomposites of typical microstructures in samples from the northeast quadrant. They all show predominantly single-phase (U,Zr)O with relatively small amounts of two-phase material and associated microporosity. The overall porosity in these samples varied from little porosity (sampic 1-12-C) to medium porosity (sample 1-12) to high porosity (sampic 1-12-D).
4.3 Scanning Electron Microscopy Analysis In-depth SEM anuyses were performed to characterize the composition of companion samples 1-11-T,1-9-A, and 19-B, which appeared to be representative of the debris bed. EDX analyses were performed and WDX dot maps were developed to assess the composition of specific phases within the samples. Dot maps were generated for the following core constituents:
~
U, O, Zr, Ag. Al. Cd Cr, Fe, In, Mg, Mn, Mo, Nb, Ni, Sn and some fission products. Appendix A presents a discussion of the regions examined and shows dot maps of the elements for which significant results were obtained.
1 10
q j
1 Regions of interest that were examined include the edge of large pores, metallic inclusions, secondary phases, and pores without secondary phases. As previously discussed, each sample is composed of a homogeneous (U,Zr)O matrix with relatively low concentrations of A1, Mg, Sb, l
2 l
and Sn and a zirconium-rich secondary phase around pores and at grain boundaries. In addition.
l the dot maps in Appendix A indicate the presence of oxidized Fe and Cr inclusions in each matrix. Dese results suggest that the Fe and Cr are probably the remains of nozzle and other f
I vessel components that were melted during the relocation event.
l t
The metallic inclusions in the 1-11 samples are composed primarily of metallic silver with trace amounts of Zr and other metals. The other constituents of the control rods (In and Cd) are not present, which suggests that the control rod material had been heated sufficiently to volatilize the more volatile In and Cd from the Ag.
l i
Examination of the secondary phases around pores and in the matrix of the debris indicates j
that the secondary phases are composed primarily of (Zr,U)O with greater amounts of Fe and Cr 2
present. The fact that there was time during the cooling process for the lower temperaturc (Zr,U)O phase to form, as discussed in the previous section, suggests that the molten pool 2
remained at a relatively high temperature for a period of time. Ilowever, the presence of the f
localized concentrations of li: and Cr, probably from the nozzle and guide tube rc terial, suggests
(
that there was not a great deal of mixing after the material was deposited on the lower head. He l
period of time that the melt remained at high temperatures and the extent of mixing is discussed in Section 6. Also, information from the nozzle and guide tube examinations should provide more l
information on the period of time that the debris stayed at high temperatures.
-l l
4.4 Radiochemical Analyses i
i l
Radiochemical analyses were performed on the companion samples to assess bulk
-l composition and radionuclide content. Prior to the destructive analysis, the intact samples were j
analyzed via gamma spectroscopy to provide an initial estimate of the gamma-emitting '
radionuclide content. Then, the samples were dissolved using a pyrosulfate fusion technique in'a l
closed system. Iodine-129 tracer was added to the intact sample before dissolution, and "Sr was f
added after dissolution. His technique was used to allow measurement of the 32'I ccmtent of the l
i sampics to be performed. A description of the analysis methods used for the companion sample j
examinations is presented in Reference 5.
f 11 J
I
Elemental analyses were performed on dissolved samples using inductively coupled plasma t
spectroscopy techniques. Analyses were performed for 15 elements that constitute the principal l
components of the TMI-2 core. For comparison purposes, Table 4 lists the elemental I
composition of each of the core constituents (see Reference 5) and the average composition of l
the TMI.2 core if the core was homogeneously mixed (including end fittings). These data include the oxygen content of the uranium but exclude the oxygen that might be present due to the
- 1 '
oxidation of zircaloy and structural materials.
t Table 5 lists the average compositions of the companion samples from the three quadrants of the lower head for which examinations were performed. The individual particle enmination l
results on which these averages are based are listed in Appendix B. Comparison of the individual examination results indicates that composition of the companion sample materialis similar f
throughout and suggests that the molten pool was well mixed before the debris was solidified.
This mixing probably occurred in the molten pool before the debris relocated to the lower head and before a small amount of additional Fe and Cr was added during the relocation process.
The total amount of material accounted for in this analysis is between 84 and 88 wt% of i
the total sample weight. Within the uncertainties of the analysis, the remaining materialis accounted for by the oxidation of the uranium and zirconium present in the samples.
Comparisr of the analysis results with Table 4 indicates that the fuel melt is composed almost entirely of the constituents of a fuel rod and that little contamination of the pool by other structural constituents occurred. A comparison of the companion sample results with the loose debris sample analysis results is discussed in Section 5.
i 4.4.1 Radionuclide Examinations f
r The radionuclide content of the lower head debris samples was measured for the samples l
discussed in the presious section. Results of the radiochemical analysis of the individual particle samples are listed in Appendix B. To provide information on the characteristic behavior of fission products, they have been categorized by the volatility of the chemical group and element as shown in Table 6.5 Possible chemical compounds have been identified, and the radionuclides for which l
analyses were performed are indicated in the table.
i 12
.P
Tabic 4. TMI-2 reactor core composition.
Average Core Composition Material Weight Composition (weight)
Elements Percent Element (weight percent)
UO U-235' 2.265 U
65.8 2
(94,029 kg)"
U 238' 85.882 Zr 18.0 (531.9 kg)b 0
11.853 0
8.5 Fe 3.0 Zircaloy-4 Zr' 97.907 Ag 1.8 (23,177 kg)*
Sn*
1.60 Cr 1.0 (125kg)b Fe' Om Ni 0.9 Cr' O.125 In 0.3 0
0.095 Sn 0.3 Al 0.2-Type-304 stainless steel Fe*
68.635 B
0.1 (676 kg) and unidentified Cr*
19.000 Cd 0.1 stainless steel (3960 kg)
Ni' 9.(XX)
Mn 0.8 (16.8 kg)b M n' 2.(KX)
Nb 0.04 Si' 1.000 N
0.130 C
0.080 Co 0.080 Inconel-718 Ni' 51.900 (1211 k )
Cr*
19.0(X)
(6.8 kg)p' Fe' 18.(XX)
Nb' 5.553 e
Mo' 3,000
{
Ti 0.800 i
Al" 0.600 j
Co 0.470 l
Si' O.200 i
Mn' O.200 i
N 0.130 l
Cu 0.100 1
I Ag-In-Cd Ag" 80.0 (2749 kg)b In" 15.0 (43.5 kg)
Cd' 5.0 B C-A1 0 Al' 34.33' 4
23 (626 kg)
O 30.53' (0kg)b B"
27.50'
)
C 7.64' Gd OyUO:
Gd" 10.27' 2
(131.5 kg)
U' 77.72*
(O kg)b O
12.01'
- a. Elements for which ICP (inductively coupled plasma) analysis was performed.
- b. Weight of material in a control rod fuel assembly.
13
{
i t
I a
l Table 5. Average debris composition by quadrant" (wt%).
Element Southeast (1-9)
Southwest (1-11)
Northeast (1-12) i U
723 70.8-68.2 I
Zr -
14.1 12.0
' 15.2 Sn
-6
-b Ag r
d d
In 0.28 0.26
-b t
t Al
-b
-b
-b Cr 033 0.26 0.52
[
t' Fe 0.74 0.53 0.93 Alg b
_b
..b l
hin 0.030 0.026 0.028 hio
..b b
b l
Nb
-b
--b
-b t
Ni 0.099 0.081 0.10 d
Totai 87.8 84 3 85.1 I
P
- a. This table presents the average of the examination results obtained from the companion samples; however, due to the small number of samples examined, these data must be used with caution.
- b. Not detected. The average composition is calculated using only real values and is averaged without zero values.
l
- c. Due to the analysis method used, some loss of Ag may have occurred during the analysis.
- d. Total of measurable constituents. Oxygen content was not measured.
j I
I t
i
{
t i
t 14 v----,,,
n
.-av n-x
~
1 i
Table (t Radionuclide volatility groups.
VASH-1400 Boiling Boiling 6roup Temperature
- Temperature
- Analysis 8tumber Chemic91 Group flement (K)
Volat ilit y Possible Compounds (K)
Volatility
)
b 1
Noble gases Kr 120 High b
Xe 166 High 11 Halogels Br 332 High CsBr 1573 High b
1 458 High Csi 1553 High f
I HI 238 High 1
457 High
.i 2
b-3 111 Alkali metals Rb 973 High Rb 1573 High' l
s Rb 0 High 2
Rb 0 1284 High 22 b
b Cs 963 High Csl 1553 High 0H Cs
~1350*
High -
Cs 0 High 2
Cs 0 923 High
)
22 b
CS tl0 2 4 b
IV.a Heavy chalcogens Se 958 High Se0 453 High
)
3 Se0
~~
~~
2 D
le 1663 High Te0
~~
2 Te 0 2p silver-telluride iron-telluride zircontum telluride --
~
tin-telluride-nickel telluride
~
chrome telluride b
IV.b Group VA metals Sb 1653 Hedium Sb 0 1823 Hedium 23 b
V Alkaline earths Sr 1639 Hedium Sr0
-3100 Low Ba 1600 Medium bah
-1673 Hedium 2
b Ba0
-2273
-Hedium Ba0 1073 High 7
Ba(OH)2 1053 High j'
15
r Table 6. (ccmtinued).
a WASH-1400 Boiling Boiling Group Temperature" Temperature Analysis i
8 Number Chemteal Group f lemen,1 (k)
Volat ilit y Possible Compounds IK)
Volat ilit y b
{
v1 Rare earths Eu Medium Eu 0 23 D
Sm 2173 Medium Sm 0 23 Pm 34 lid Low Pm
~~
2f i
Actinides Am 2673 Medium Am0
+
2 hoble metals Pd 2473 Low Pd0 f
Rh 6173 Low Rh0 f
2 (est)
Rh 0 t
23 Ru 4423 8 ow Ru0 2
rug 125 High 4
b Mo 4780 Low Mo0
{
2 M 0
~~
23 Mo0 3
Tc Low b
VII Rare earths Y
3260 tow Y0 23 La 3743 Low La0 Medium-Htgh b
La 0 4473 gg,
, {
23 Ce 2690 tow Ce0.
I b
Ce 0 23 Pr 3400 tow Pr0
}
j
-+
Pr 0 23 Ad 3300 Low Nd 0 2
l Actinsdes Np Low Np02 b
Pu 3508 Low Pu0 2b Cm Low Cm0 1
2 Tetravalents Zr*
>3173 Low 2r0
+5273 Low 2
Early trarsition Nb
-3573 Low NbO l"
2 sb,03 i
- a. Boiling temperature at 1 atm., data primarily from CRC Handbook of Chemistry and Physics, j
56th Edition.
1 i
- b. Probable chemical form of the fission product within the fuel.
i
- c. Zirconium is both a fission product and a structural material
]
o I
i e
f
}
I 16 r
The high-volatility fission product groups (I, II, III, and IV.a) are the noble gases, halogens, alkali metals, and heavy chalcogens. Hey are characterized by boiling points less than 1600 K for the elemental forms as well as for the listed oxide compounds. From this group, measurements were made for 12'I and 137Cs.
The medium. volatility fission products are characterized by boiling points less than 3100 K (UO melting). Rese fission products are fro n the Group VA metals, alkaline earths, some of 2
the rare carths, and actinides. However, it should be noted that the volatility of these fission products is strongly dependent on the chemical form of the fission product. For example, ruthenium has two highly volatile oxides (i.e., RuO and RuO ) that either decompose or boil at 2
4 125 less than 400 K. Radionuclides from these groups for which measurements were made are Sb, "Sr, 3"Eu, and "Ru.
The low-volatility fission products include elements from the noble metals, the remaining rare carths and actinides, tetravalents, and early transition elements. Generally, the oxides of these elements have low volatilitics; however, some (such as lao or CcO) have lower boiling points than do the elements. The only radionuclide from this group that was measurable during the lower vessel examination program was cerium / praseodymium.
4.4.2 Comparisons with ORIGEN2 The measured radionuclide concentrations in the debris were compared with concentrations predicted by the ORIGEN2 code in order to assess the retention of radionuclides in the debris bed and to calculate the decay heat associated with the debris bed at and after the relocation 5
event. The ORIGEN2 analysis model used for the TMI.2 core contained 1,239 core nodes.
235 Analyses were performed for ranges of burnup for each of the three U enrichments present (i.e.,1.98%,2.64%, and 2.98%). Table 7 lists the ORIGEN2 values used for comparison with the debris data. The original core average radionuclide concentrations were adjusted because the peripheral (2.98% enriched) assemblies did not participate in the accident. A later ORIGEN2 5
verification study that was performed for the TMI-2 corc indicated core-specific differences in radionuclide inventories. These changes were minor and were not included in the calculations so that direct comparisons could be made with the loose debris examination results reported in Reference 3. The indicated correction factors are listed in Table 7.
17
t Table 7. ORIGEN2 predicted radionuclide concentrations (in microcuries/g U on April 1,1986).
Adjusted
[
Central Core Verification Radionuclide r
f b
Radionuclide Core Average' Assemblics Correction
- Concentration "Sr 7740 1.08 0.988 8330
"'R u 357 1.16 0 961 413-125Sb 273 1.13 0.432 308 l
129I 0.00281 1.11 0.867 0.00311
[
137Cs 8900 1.09 1.021 9680
[
t
4Ce 569 1.08 1.069 617 154Eu 660 1.21 0.626 80 1
I t
- a. Core average concentration as listed in Reference 5.
r
- b. Correction to the core average value to account for the fact that the peripheral 2.98%
enriched fuel assemblics did not participate in the accident.
1
- c. Correction for the measured variations from the predicted code values as defined and
{
explained in Reference 5. This correction was not included for comparison purposes with i
previously analyzed k>ose debris samples.
r t
i i
f i
i i
l l
i i
^!
t i
^
}
i
.l d
18 i
s
~-,-m.,-
,w.
~
t l
I The method used to estimate retention is
-[
Radionuclide i
concentration (pCi/g) 100
. U normalized
{
235 fission product (1)
=
Uranium content ORIGEN2 predicted (retention in %)
(gU/g sample) radionuclide concentration j
(microcuries/g uranium).
l The radionuclide concentrations and uranium concentrations used were from Appendix B.
The results of these calculations, normalized fission product retentions, are listed in Table 8. A wide range of retentions is indicated for most radionuclides, including the relatively stable low-volatile radionuclides. The following sections contain discussions of the radionuclide retentions for the low, medium, and high. volatility fission products.
i i
i 4.43 Iow Volatiles l
l
'25d The low volatiles for which radionuclide comparisons were performed are "Ce and Eu.
Table 8 lists the normalized retentions for the companion samples. It should be noted that within the uncertainties of the analysis, complete retention or some small losses of Eu occurred.-
154 15d Uncertainties in the production of Eu account for the low values and suggest that no loss of 154Eu occurred.
l 1
4.4.4 Medium Volatiles 1
25 The fission products that are expected to have a medium volatility are "Sr and Sb.
Strontium.90 is the Icast volatile and is expected to be retained by the fuel to the greatest extent.
The *Sr data shown in Tabic 8 indicate a range of retentions from 48 to %% and suggests some 125 release of this fission product. The medium-volatile radionuclide Sb exhibits a greater range of -
retentions because it is expected to remain in a metahic state due to the high oxidation potentials required for the oxidation of this element, and would be expected to be more mobile. In previous 125 core examinatiores, an increase in metallic content generally correlated with increases in Sb-content for metallic samples in the upper core region.
l
)
i I
-i 19
-l 2
=
l Table 8. Radionuclide retention in the debris bed."
Radionuclide Retention (%)
i Radionuclide Southeast (1-9)
Southwest (1-11)
Northeast (1-12)
"Sr 48 47 96 izsSb 1.9 1.l 5.6 b
b b
"Cs 3.6 1.3 18 "d Ce 91 85 97
[
b i
154Eu 83 84 80 129g
,,c
,,c
_c j
i l
- a. Retention is ' calculated based on the uranium content of the sample material as determined from the elemental analysis results in Appendix B.
- b. A radionuclide concentration was not detectable. Only nonzero values are represented in l
the average.
- c. h> dine-129 values are not included due to reactor shutdowns at the INEL Results will be included in the final VIP report, if possible.
5
,f l
I f
i r
h l
J I
I i
{
t t
i h
. ~..
l
l i
i 4.4.5 IIigh Volatiles -
137 The high-volatile radionuclide for which analyses were performed is Cs. The volatile t
37 Cs was measurable in all samples at retentions substantially lower than those found in intact fuel material; however, there were higher retentions in the northeast quadrant (18%). Why -
higher levels of this rad:anuclide and both medium-and low-volatile radionuclide concentrations j
were found in this region is not known.
Decay heat calculations were performed for the radionuclide retentions measured as part of l
this examination program (see Appendix C). Specific decay heats were calculated for 224 minutes after shutdown, the beginning of the relocation of debris to the lower head, and at 600 minutes for the later cooldown period. Some principal radionuclides were removed from the decay heat calculations. Dey were the noble gases (primarily Xe and Kr) and the high volatiles (all cesiums j
and iodines). These radionuclides were removed from the calculation because they would not be -
t expected to be present in the melt as they would have volatilized and been released from the fuel '
l before the molten material relocated to the lower head. The decay heat produced from the selected radionuclide list is 0.13 watts /g of debris at 224 minutes and 0.096 watts /g of debris at 600 minutes after the accident. These data indicate a slow reduction in the decay heat available to keep the lower head debris in a liquid state or as a partially solidified slurry. Much of the decay j
heat would be expected to be retained in the central mass and protected from cooling by a protective ceramic layer. A further assessment of these data will be presented in the final VIP l
report.
t f
I t
l i
]
a i
i i
21 i
l
- 5. COMPARISONS WITH DOE LOOSE DEBRIS ANALYSES l
i Examinations of loose debris samples obtained as part of the DOE program were performed during 1987 (see Reference 3) to determine physical properties such as density and porosity, metallurgical properties, composition, and radionuclide content. These samples were f
~
obtained before drilling operations began in the upper core region. Consequently, they would be expected to be representative of the composition of the debris material that relocated to the l
t lower head 224 minutes after shutdown.
"Ihe average density of the loose debris samples is lower than the average density of the i
3 companion samples. The densities of the loose debris samples ranged from 6.57 to 8.25 g/cm,
3 and the average density of these samples was about 7.1 g/cm. In contrast, the densities of the l
companion samples had a higher range (7.45 to 9.4 g/cm ), and the average density of the f
3 individual companion sample particles was 8.4 0.6 g/cm. It should be noted that the average f
3 I
density of the individual partic!cs is statistically the same as the density of the companion samples 3
(8.7 g/cm ).
l The measured porosities of the loose debris samples ranged between 9 and 31%, and the i
average porosity was about 27%. In contrast, the porosities of the companion sample debris j
ranged from 5% to 41%, and the average porosity was 18 11%. These data suggest that at
~
least part of the difference in the densities between the loose debris samples and the companion j
samples is due to the lower average porosity of the companion samples. In addition to differences 1
in the porosity, there are differences in the composition of the loose debris as compared to the l
companion samples.
l i
The loose debris had a uranium content that ranged from 62 to 73 wt7c, with an average uranium content of 65 wtFc. This is lower than the average uranium content of the companion samples, which was about 70 wt%. However, the average Zr content of the k>ose debris samples t
(12.6 wt%) is similar to the average Zr content of the companion samples (13.8 wt%).
j
?
In the loose debris samples, the Fe content ranged from 1.8 to 3.7 wt% with an average of 2.4 wtc'. In contrast, the average Fe content of the companion samples was about 0.7 wt%. In i
c addition, the concentrations of Cr, Ni, Mn, and Mo were higher in the loose debris than in the t
companion samples. It is unclear why the loose debris had slightly higher concentrations of 22
1 structural materials than the companion samples. In general, these data suggest that the entire --
debris bed (loose debris and companion debris) is relatively homogeneous.
l Comparisons of radionuclide retention were performed between the loose debris and the i
companion samples, and it was determined that the radionuclide retention was similar in both k> cations.
t
]
l
[
i I
l i
,i l
!i i
l 1
4
- D i
23
i l
i
- 6. DATA REQUIRED FOR MODEL DEVELOPMENT l
4 4
The data required to develop the margin-to-failure analysis for the TMI-2 reactor vessel are j
the physical, metallurgical, and radiochemical characteristics of the debris. The physical property
[
data required are the bulk density of the debris, the porosity, and the particle size distribution.
]
The data needed from the metallurgical examinations are the initial debris bed temperature and melting point, the extent of oxidation of the debris by element, and the cooling rate of the debris bed. From the radiochemical examinations, the information needed is the composition of the i
j debris bed the fission product retention, and the decay heat available during and after the i
]-
relocation event. Additional information such as the height of the companion layer and the f
distribution will be provided as part of the lower head mapping task being performed for the i
3 l
The measured physical properties (density and porosity) of the companion samples were f
discussed in previous sections. The average density of the individual particle samples was
[
}
determined to be 8.4 0.6 g/cm This compares well with the average density of the companion i
3 3
3 samples (8.7 g/cm ) and suggests that a density of 8.7 g/cm should be used for calculational i
purposes. For comparison purposes, a calculation was performed to determine the theoretical density of the debris based on the density of UO (10.9 g'cm ) and the density of 7rO (5.6
~ I 3
2 2
3 j
g'cm ). Based on a weighted average of the densities of these two primary constituents, the F
average density without porosity would be 10.4 g/cm, llowever, if this density is adjusted for a 3
]
porosity of 18G, the theoretical density would be about 8.8 g/cm, which is similar to the
}
3 r
measured average densities of the debris.
1 The porosities of the individual particle samples ranged from 57c to 41Fc, and the average porosities of the individual particles from each quadrant ranged from 17 to 21Fc, with an average
[
companion sample porosity of 18 11%. A comparison of these results with the average porosity of the loose debris (27Fc), as discussed in the previous section, suggests that an appropriate porosity for calculational purposes would be 187c, and that a porosity of about 27%
should be used for loose debris calculations.
Information was requested on the particle size distribution for the companion samples.
110 wever, defueling information indicates that the companion material was a monolithic mass and suggests thai the companion layer should be assessed as an intact block of material. In the case 24 4
l I
i of the loose debris, photographic examinations of the debris bed indicated that the debris bed was j
a consolidated mass with relatively small particulate debris (powder) present around large pieces j
(30-40 cm in diameter) of debris. The distribution of loose debris over the companion debris is l
being obtained from the lower head mapping task.
The sp:cific data needed from the metallurgical examinations are the initial debris bed temperature and melting point, the extent of oxidation of the debris, and the cooling rt the debris bed. Although specific measurements of these properties were not made as part of this project, information on these characteristics can be obtained from the metallurgical results. Also, the relative homogeneity of the debris bed and the presence of few constituents other than U, Zr, and O allows some information to be deduced from the available data.
i 6
Hofmann addressed the range of temperatures that might be expected in a severe reactor
[
accident and has shown that the lowest temperatures that might be expected in the dissolution of uranium by zirconium are on the order of 1,760 C, about 1,000'C below the melting point of UO2
(~2,850"C). However, the companion samples have compositions that are principally (U,Zr)O2
~
(i.e., about 78 wtrc UO and 17 wt% ZrO ) with some secondary (Zr,U)O phases. Hofmann 2
2 2
also indicates that a well-mixed (U,Zr)O solid solution, as shown by the metallography and SEM 2
results, would be expected to be found in a peak temperature range between 2,600 C and 2,850*C. Consequently, without further experimental validation, it is suggested that the peak temperature of the melt that relocated to the lower head was probably greater than 2,60(fC.
l t
Based on the metallography and SEM examination results, the extent of the oxidation of i
the companion samples can be considered to be almost complete with little or no unoxidized material present other than materials such as silver. Dot maps with other constituents such as Fe and Cr were found to have similar oxygen concentrations to the (U,Zr)O melts, and would be 2
expected to be fully oxidized. These data suggest that the companion debris was fully oxidized l
with little metallic material present.
f
\\
The cooling rate of the debris bed has been discussed in previous sections; however, the
{
most important point that addresses the cooling rate is the formation of secondary phases around l
pores and in the matrix material. These secondary phases contain apparent (7.r,U)O phases with l
2 the presence of Fe and Cr. The formation of 'hese phases would require a long cooldown period f
7 to allow the phase separation to occur between the (U.Zr)O and (Zr,U)O phases. Bart has 2
2 25
)
i
?
l J
suggested that the cooling time should be between 3 and 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> to cause this type of phase f
I separation. This is consistent with a molten mass of material that is thermally isolated from the j
cooling water above the debris bed. A further analysis of the amount of time at temperature will be based on decay heat calculations for the companica debris as part of the VIP integration report.
I From the radiochemical examinations, the information required for the margin to failure l
analysis is the composition of the debris bed, fission product retention, and the decay heat I
available during and after the relocation event. As previously discussed, the composition of the debris bed is similar for all samples with an average composition of about 70 wt% U, l
13.75 wt% Zr, and 13 wt% 0. This composition accounts for about 97 wt% of the debris.
l k
The fission produe: retention in the debris was discussed in Section 4. Of particular i
interest to the margin-to-failure analysis is the decay heat present in the debris bed during the relocation event and during the cooldown period. The decay heat at 224 minutes after shutdown
~
is 0.18 watts /g of U, and at 600 minutes, it is 0.14 watts /g of U. After conversion of these data to j
the known debris composition, the decay heat present is 0.13 watts /g of debris at 244 minutes, and at 600 minutes, it is 0.096 watts /g of debris.
- i i
ii i
l I
I h
i e
I e
k
'I
+
r
[
26
, * - - = - -
- 7.
SUMMARY
AND CONCLUSIONS Examinations were performed on companion samples from three quadrants of the lower head. These examinations indicate that the debris bed is relatively homogeneous with relatively small variations in composition and density. The companion samples consisted primarily of previously molten (U,Zr)O ceramic melt. Small amounts of metallic melt (< 0.5%) were found 2
only in samples from the southwest quadrant. The pores in some of the samples were aligned in stratified layers and were surrounded by microporosity and two-phase structures consisting of uranium-rich (U,Zr)O and zirconium-rich (Zr,U)O. As previously discussed, it has been 2
2 suggested that these stratified layers are indicators of the percolation of gases through the melt and indicate relatively low cooling.
All the samples examined from the northeast quadrant were predominantly single-phase ceramic melt with widely varying amounts of porosity. The lack of segregated (U,Zr)O and 2
(Zr,U)O phases may suggest more rapid debris cooling in this quadrant of the lower head.
l 2
The presence of two-phase (U,Zr)O and (Zr,U)O structures on some quadrants indicates 2
2 that samples with this morphology were not rapidly quenched, but underwent a gradual cooldown.
The microstructure is indicative of an overall composition that was uranium-rich (U,Zr)O -
2 Radiochemical analyses of the debris indicate that the debris was composed of about 70 wt% U,13.75 wt% Zr, and 13 wt% 0. This composition accounts for about 97 wt% of the debris. The remaining constituents are the elemental constituents of stainless steel and inconel 1
core components that were probably melted during the relocation of debris to the lower head.
I Further, the examinations indicate that much of the higkvolatile radionuclide content had volatilized out of the debris, leaving prirnarily medium.md low-volatile components in the debris bed. Decay heat analyses were performed to determine the amount of heat present in the debris 1
bed during the relocation event and at 600 minutes. These calculations indicate that the retained heat in the lower debris bed was about 0.13 watts /g of debris at 244 minutes and 0.096 watts /g of debris at 600 minutes. These data indicate a significant reduction in the heat available to maintain the debris bed in a molten condition.
Comparisons of the companion sample data with :he kiose debris data indicate that the loose debris layer has a slightly lower uranium content, is more porous, and contains higher 27 1
~
.]
s 1
.e i
concentrations of iron, chromium, and other constituents of stainless steel and inconel than do the i
companion samples. The information required for the margin-to-failure analysis that can bc l
obtained from the companion sample analyses has been acquired. 'Re relative homogeneity of the debris bed, as determined from the companion sample examinations, should make the margin-to-failure analysis more accurate and reduce uncertainties in the final assessment.
l l
I f
t s
h i
t t
l l
.i i
r
-=
l
- 8. REFERENCES 1.
J. P. Adams et al., TAff-2 Lower />lenum Video Data Summary, EGG-TMI-7429, EG&G Idaho, Inc., July 1987.
2.
E. Tolman et al., TAff-2 Core Bore Acquisition Summary Repan, EGG TMI-7385 (Revision 1), EG&G Idaho, Inc., February 1987.
l 3.
C. S. Olsen, D. W. Akers, and R. K. McCardell, & amination of Debrisfrom the Lower # cad of the TAfl.2 Reactor, GEND-INF-084. EG&G Idaho, Inc., January 1988.
4.
GPU TMI-2 Technical Bulletin, TB-89 02 February 27,1989.
5.
D. W. Akers et al., TAfl.2 Core Bore naminations, GEND.INF-092, January 1990.
l 6.
P. Ilofmann et al.,
- Reactor Core Materials Interactions at Very fligh Temperatures,"
Nuclear Technology, Vol. 87. August 1989.
7.
G. Ilart, B11-2 Core Sampic Evaluation at Paul Scherrer Institute," TAff-2 Examination Results from the OECD-CSNIItogram - l'olume 2 (draft), EGG-OECD-9168, August 1990.
e W
l f
t i
i i
i 29
-i l
l
1 h
l N
l 15 l
l, 14 13 g'
{
[.g~..(
t
, e 12 6 s'(,gggey ffg N sy h l
[f '$$' @
(['4j@ h 11
/ss x-10 dx fx /
%gj, -)
9 i sSbSS/
i M %'f
_ g$3 D
8
\\~ bh W
h f, iffb 'h $
l I
/
6
\\ & Q($&/f'ff') {y'{ f R Qhf? lj lf,/ $ll y W' 5
4 N ) M8 L E3 3
2 i
1 3
l 0
l t
A B C D E F G H K
L M N O P R
~
I W92 0097
{
8 <3"
>6" I
Figure 1. Imose debris distribution and location.
i o
31
,,,,n.n,..
-,r---
t t
i F
l 0
15 14 13 I
x y
kN 12 4
/
^ Rtx 10
/
/
\\ \\
/
/
m
\\
s
\\
l
}
8 0
\\
a l
)
O f
(
]
7 V
y 6
( \\\\
[-c-
\\
/ / I 5
\\
J
~
4 NQ %s 3
\\#
^ '
2 1
i D
A B C D E F G H K L M N O P R
i t
W92 0095 Figure 2. Ilard debris distribution and location. (Contour lines are in 6.in. increments with the outside line equal to 0 in. and the inside equal to 18 in.)
l I
e 4
~
t 32 i
l l
1
?
D 15 14 13 12 i
11 NW NE 10 (1 10)
(1-12) 9 8
0 0
{1 11)
(19) 5 4
3 2
1 B
A B C D E
F G H K
L M N O P R
W92 0096 ligure 3. Iocations of companion samples.
4 i
33
f,[
$ );%g
,i 'd t'
,)
' "y
.v @n :g)'
.a s
c p.
' ' ' _ 7,,r; TX; f.....
L 2
D$$
l Y fik, yr Q.??$iR$ D fg/lQ?Q.
k &%.
. fs f W 4,*
f& 13My 7:y > + LW r e.
s 1
j gs 4 G.* \\; %;Q;;r e 1%
L.,.
1,g, l3 r.,,by,.,.
+4
,v.;
vn R
(~
%*pla
- i. np Y<t
+ - y,..:
- m v=
p pg g', * -
.g j f"g{,
.j +<.,y...,
y-te a,ca, s.m o 'v e ::p, y,a,.a- ?y :, r y ; g.s. m 4>
y m
...oA
- 4*e
. ;,4, n.
W42
% &f, ll "
, ;/ -Q j.j,(
,a o
Qgt, f
- +& y x QQ,fa ??.ff Ji. "
> ;p y[. /
4
. m_.gp 33 9
- s g($.s w.. w -
w yy
!%Q v.;;g A :g3
,_ f l, LyQq
.s
. r H t:g.
,q
,o,+ 4 si 5;,.
,.f
. at^
A Figure 4. Sample collected from the southeast quadrant (sample 1-9).
s.,.,
sm, -y g" p
...A
,,e q-4
...xiv'*5 ptF.4,
Q y'n
. -. e.r -
Q mj.h%f.J Mh ~
Ep 5E '
.f CQ 4
< ;:c a
- e -; n,-
e
+,
. a.:
,, ~
a 3-
-g
.a, p *ry; w :p"g 3 w a 1,., aR
,3 g
, L',w.ye 3.py'.
ji.?" '.' q,. m
?
,.t
- p. Ah. n
. D '. w r:..,
N i:,. 8,f l}Q ?m,.n}#}yl"f} xA,."5fOfR 4
c 3
4<.- m,..eg m
e w,
(, xy.. a, n:; '..?. uy
,x w,.g;.np Am 9
- ; s. % s%, ', i." : i W V '*
'._,<~.*P W w: 4
. j', g.
.W;. pi M
- t*- " y p <3. ;,;;
Qf ~
s
,. Oxe.;. %
,e.
- + sq gg
_ s.,:
9:, &
4 Y,., / fg, a 3
+
,.o_
% { $,
M A gg., p;'Y,' q(l"[/ / ;
A w SJrg ; l 'h 3
p d'. ;' v..
~'
14:
, '# o.. %,N9 )
- . 8M -
i *-Q
, n ', i.
, ',,. 9 ( y' 4
- vn_n, w w %. a y&,:
Y..Q....nr. g-m,'?')a tr ;
k 'f, g 4,..
4{. Ap:
n,,g a u
v.* ~
_ qd.
"' [ p
.r...
+
E a
', ' o,...._-, ', 4,y s
W..
. s. n<.%..
. e
't ~-
4 J
n-M
~
t'b
-4'
.*X.y
.w*
,.., R ' ; y 4,y, ~
s j,.
,.4 w,
'd ',,. y"-j p,p.g_a "u
p M
' y**..'g
-- *-7,,
3,
- m' ' ;
4[* mp V
v.y :q,<
+"y s
s,g-
.,xr.
u.
gg m-
.~
7 e.
4 5
<t
~
t Figure 5. Sample co!!ected from the northwest quadrant (sample 1-10).
34
jh ]#
1
,g y yW, f-
- ffi '
'a g #%,.
- Q y/$
I*D g.
le+
, xc$# y g:',
- k,,i 'i ek_;;. I n. ?.r '.
-)
w I
g' g-i~ 'a 1 - ' - Q Al
' emi a.
Q ph
. k-5AMy f f-f)nfW K p,,U M ae#
o
._M y 4 Figure 6. Sample collected from the southwest quadrant (sample 1-11).
l
~~
+ " 9 's ;yVl v
ja,
. ' ?
l y&m;;:
gg
- L yx
,tp n,f y;,g
.:ht :q iW 3R '
gj t
^ ;
.,g m
h, f;ykbryFi l,D,.
.g j
' :u* gif I
~b 1
s s,,
y
- 8,
.y a
5 qq 47
.y,
~
> pC ' t j
4
'-G
,;f:l
.c
(
. ? ~%,,
45:
bhY Figure 7. Sample collected from the northeast quadrant (sample 1-12).
35
i Q,,, yt%t4% id*' ^"
1 7
dag;qqR
\\ s.en?&xh_,, -
- ~#
sd
~
FW g.u., y $ p p% k p _ g g & g: q 4
g s
f W77
' % w[%7,q;5;v
&s.
ea s
.A,qhg:4:y,.
O4 g
, 7..ay
,. ' r;, ;.
-.::,97 -
Meta?lographic --
~
cxamina: ion of
- h. Q ':.
flat surface
$N I
90m372 Figure 8. TMI 2 lower plenum sample 1-9-F.
i I., h f.
z
~,
,','*y, p%r:
' J e; Sectioning
- Q, fh,j![fg?(-
3-.rg 1
-p ~
location for metallogmphic f f A8MI] J '
ftp g,
examm af 9, d:g;'(,
- g 7 3<
in
- YQ.q l:fIf ~
Q h;; k i^;S-?;;V'Teh 2:n@5si ab y
... w. 9
'=\\
q*;p~ s,.;-
+ 39, ;O!;' (.} &.l&Y ~ \\ \\ r \\i'\\
w.
+<
8:
' ' '
- d.i i
5
,, ;~gw qwa..n. A 1
~k
. Y ' S i t, \\kt I y;I
}
y k
I
'S
)
t I
\\
9 5
\\ (\\ ' i i
\\,. s s
\\
\\
t 9
\\ \\
i 90m373 Figure 9. TMI-2 lower plenum sample 1-9-G.
t 36
qw n p b '" y...r~
t
. n.g.
I s..-
,m.
f*
]QQ t
c a
am mh w;;_
Q 1
' j'.. _{. k --- _$#
.pd da.
k t
%c; w
n W),?
i%
m l
.?.
.a. -
y.
,g.a 9
w, r
,p9 Sectioning
$d.,(.bg-. Ih
@M 9L p%s7 location for Mf metallographic S,3, W.f ?[gp g
'.h*
examination si M."# '
sp3W; 1j: yff -
ye* -
y 4A
,g J 4? g
_ %g
~j t
__. T j,
.,'y.
Q 7
ga
, h U
?^(
.A a %%i 90m376 Figure 10. TMI-210wer plenum sample 1-11-C.
..a
,t' -@
G _.
y,m.:.- WbN g
eb1 e.. a.
~
\\ \\.8 K T' l% -;
" ~ ~ f {$i:
b
. n. 4;p: -
- &, t. ~
- (y _.
~
c v:
"r..
/
- +..
m
. y'l'{. [fx _.
d'
< J Sectioning
~\\
.:N
+
f.l' '
s f g[([hh-f ' bNN Y,
'NI Sectoning h 4fh[ h g h.
tocation for 4
meta:iegraphic h(
lucation 1or h%1 9-Jj kl 4"Q's %
metallographic
' N, k ' ' ',4.,
b :.. kr;d[b.._ M a c-A examination M$
-; gh 1p 3. t WS exam:naton 9?
[n M f 3 ; h 'c. is ' t.'i 3{Q> 4' ' '
(1 11 D-B)
(1-11-D A)
A' c
&s W
' :i-f k.Q
$Nfg
- f. r{
+9]k'58 f.fn y JQg 74
/
p'
, [ M;g %. glE l
.-, J.,9,\\,V, m,L, '.
~,fs,gb e '-
,f M,
1
,9 ~f.U6 lW:%
.,\\
T iT '
4
' \\., jf. ',
,r J\\
[ '.,j3x dd f-
! s* y%p-r"
\\VA4 m.
./
.+a-e
\\
+#
P k;
" Mh.s A
.. \\ r m> p" w.... 'pgt 9., -'
- q\\g; n
g.tg ; 4,,7, ;-
.yj'
%_ b
.. aw se :, w; <:~.s.
\\
90m377 Figure 11. TMI-2 lower plenum sample 1-11-D.
37
I 3
I f-l]}l
.l
-f
.e e mt.h, o
c y
7 5pg
[
,L
. ::k.u - >ka.]~f,.
j e
s e
w, w=
w;w v.
u ay
%.g., a, e g% 'z,Q;a$ g ?(x;>g_,,
Y 1.i
- Qh';bsf?'
- :5
> hj g ; ::p ;Jn i
c,
.:q.
o8 e c.
~ :. v Tj h yA:u3. ?.
4 a
_.\\. \\; ;.,w,?s@ MUMv: ? L U0, y%~;%p r wgym : %
- y. a. neagg 4 ;s y
u-;.
\\,.
, m 4 y $e,.W
- y ym. pp yp y
n
-,3.1: a :,%qg.? !.s,m, A;wri.
n M, y Sectioning 4
j
- g
- n u:n.z p >/ g, gg g q g; n
Mt9Cn,y ',
location for 4
1 g is; g[ h@t:g d @h $ #
N
%$3 metallographic
@Vg22; d Nf y;;ygg$ o f%.M ~;
examination s
M4 wcM2' c
..s v;$,vb:;;g Qijm 4c.,;,., <y ygggw %.
.. e,,v;;
W ',*c! a;g? y$@%3
" @$f 'af6N,;f[ i:idM ;
' = M;}t MP,rj ^ * + W, z,Y;l
' I
%M,
?
w
$;j.:M#
- r g J24,. iag-
.t
-:Q.QR.JM% ;,e' h
,s.s3 men;g,a.
~-
+
F
.zp:: ;%
'\\
Q: y
'\\
)
I 90m380 i
~
Figure 12. TMI-2 lower plenum sample 1-12-C.
i i
P
. Nk~
\\
.N
?f 4 9f?$:i!%"f%
a g%
.$Q@; ' 3 O-Sectioning I
.j ( kl fh.
location for j
,,J.w i.
. aMV + '
s.g metallographic p
3 examination r
%( %.
ta
~;D 3
Q&,4g n
l.^
TG ;f.
Q;;y_f:$ " g, n
p wy;u
' y..m.:1 v;1
.g%pq
_N ms.
z-..
y
.. n 24 ;,
a :.,..:y w
y yb
%p
~%Q
[
p,gg n gg;yjf 3
.,;gg
(
i L
90m371 r
Figure 13. TMI-2 lower plenum samt 4 J 12-D.
I i
i 38 5
I t
V
i'l I
t l
l t
i s
l i
t I
I
\\
y g
g
. D> -
\\
y "Lb.p>W>
,, [*N y
y :p
\\
"31. %, % ;
r,
,q 1, $
p,.
b.
\\
.i.
s A. Cgg
> b";;3:,9:%.:
qg,g...'
J u,
i s.
~
\\
g.931
.t; s'
+-
\\
y,b s
~
a g.9g -
\\
y[
, J.g p
'p4,,l p z
.;t
%,g.b s.
~
m 4
,pd
~
6 s'
4" l
y 3.,
3(qf.
o' : p*..
-,' '~S 9% g,gg s
3
.g.
g
,, U
- r.,
,4f. -
,.j' O
t
- g. gab
~
$y:' > + ;$Y
.e At 1,.
t: Ms-S;u;1%.
m ggv';'
g
$Y*g t
x g
c
.; v
- flY:gn g
u
,'m s
~-
Qsd v.
y 3
v
[*',;
f3-m ' v,;f ][( N.rt:.U"~
< 1 a; ms.
(
g.\\ Y%
s
~
\\
90m140 Figure 14. First epoxied and po!ished metallographic mount.
I h
i a
i 39 l
EL +y.
r-.
'-,.g
..-e.,..
y.
- a.,.,. ;, y 3 97 779....
+,..
y :-
y, T
'Q,'....,
,7,'*.. a q '+. _ ' : ye. ga ~< ; 'Q, t ^:4.. jh,.{.l.Nf. % jj '.3 U '
.? O fnef...,WYS,fdn4 Q.?
&< d,
^^ $${. :i..h. ? ' ~~ 'IN t h 49. 3:q:.k a.+fp.g.e f
, G, glA 2.'-
n.1 h-
. ;u,3 4
.L n.q:J-w L
t; m;;.&ftgenwMk, w 1
+
c me w&m n1.w
.l c,.
- a.. w,w#
.?
r cm ~ a n
>. - +
~ c g;t.m-n,
r
.a.. Q
.c,.
1 W
rg M ug IQ.' p,y. ;yym
-aM y1hr'.d,
,.r-, ),. w n.
w >5,.
1, '...
m.
a
., m,
. &q a ~ y M ;p 'h v;
. s u
- m,,
' ' 9 4 - [ 4*,yqng,.;7 p~f41 3
_ rs
,..r.:
, )
f;..: > > ' s Q,1 Q_
m, Q:ii M
..l f.y
, g.
pw Q
f q q:{: f n,
~
x Q'?.
8
- i y,
r
)
r ^ %
p
_ ~...- f_ "f.e. 3. <
- $ w nsp_
4 :c ,
x w
~.,
m',.
+. -
+4. -
y:y s.
w
_3
}%3 r
a w 2%y44tWaf..
r lvi w*"
. l%;g9.,A t
.+o w
4 p:
.t-k,:
,1, y gg ..
m:..
qh :,ps' 3
n.
n e.
7 r.
r-4'k '
.~
y
- 3.s2_k,.
w.
"~
p w,
., g%s;j ;-.';.
s
- a.,,
.. x..
. ;p
&Q. L __ ;.
D
&G.: ;au:i G:as Ghw;;, a18 :: %.: m, 90m143 X2 3 Figure 15 Sample 1 A.
^
py
- "..v y
" - -(
- f: 1 p.; "..
.g I
Gyy ?
~
e.py[m%:g r v eg p c.
Sy m
c.
c o. %.'..
N.
_ ;; s
.. ;.3:
m n
- s
, ; F.,:
WS!$ OT '
.[y y n.};f,,
t pp% y.
-q : 4
- }.f
- w. s w4 j
....,J.
f.M,s.
'.,,-4_c-
< g ;m. s &
4;.
@ ' j.).iy '
- h. *;.y 3 n-n.
g g
- y l
t
..., s
_ ]-9 &
y.. :
~ ^.
{
. A y'
3_
y _-
_ l-A;;.y _q q
-;Q l
j., :-
..g, g
p.
'.. g..g,:'
- .j.
Y:,.' -.-
/
);)# 4' p: ~-
x.
. l..'-
.. ;, ' f h : [3 :.
.v;.
v 3 3,...9_.
y l.'i['.-
e**'
a s
J 4
n; t,-
~
- 4..
^
y l.
0-J v
1 -9 81 -M,,y i '..
g.d "
9~
~
f t
. _ - :l r :
. ;; : _,. ; 1 r69.
j T~;
,...';3 ;f %
- ~
-+
m G 7l..
,:y:.y.
r c.g g;
.p g
' '.: ?.,
.c,, %. x
- i. e.
l - '
7..,..
I i
90m144 X3.0 l
Figure 16. Samples 19.B1 and 19 B2.
l 40
5 (IN.
s...
. e. : a.
on: -
'hf
- y.,j u
- -4 ;g,
~
.. ny.
(.;
1
. t.p.,&.. E.&.s q,
,m, y..n, :: %h. i g, s.-
1
?
4-O
- 4v
,W3,,.
W*%
if.,4: (g,,
.. -+
.f ;;e c**
=
v
.g w@ a.n.W, [c..
. %...gfy, '
a p.
w n
F.,.
.. ;~%.,&,;m[,}s ON. >
,A e v
. M ' :. - 'k i.', Ni l
sY.jhth ':S'M N ' 4 h"' [E.J N t f i ~ 6..[.
Mj Qdl D if 8
F e
- mij, 1
f f.
A '.M,(.4
?i2.$ i * %d W G,%y.. %'
+
.t
- e. 9,
- $g..~ m_. Q Wy &; y
~
&:a e.
l
.,. 4:;f p. ~.
j) 3
- e, y
- u. w e.,., g 4..
wpa y
.W~
'v
+
a: :,q wr' r
,g y-
,.a.
.g
.v q'.qu.
' V',q
.',y'k.,.
i 9
. ' (g *i,
- ',g :s # (s,i T
g
.,i N, a
~c
+.
r
'.jp; QWll ' ', -
- > m <lWa:f n-. :. :
M:
O-.
m ? NW'4h"' '
!'N j[hg
,..w +p.9.g 4.:q;:zw w :
-Ah.
g; o.gyw %p; -... ;p p:m..
l A.4. 't f".f< g 3..f. 4 vg..,o.
.rp-fg
.e
- y~..;o~.,.,,. ;p R. s g b 7..;4 p a.
z-i 4v. v
..s, q s.....
y..
g ;
i q Q y.,< %,c
%.:q. yag-w -
[..
. 7 1
s
.u. ~
4 1,s
-a
. s.,
yo m~
. me,..
. m
. j.;$4....
w-a s gp a.
,,..t,;.,.,.
o l
z.,.,
,/..... '...
,l; ;
..u
.'l
_ n; b.,
f; J g x.u J..g' e_ J i
90m145 X3.9 i
Figure 17. Sample 1-9-C.
i i
f i
m.+.~yn m m.m... y:
e, x..,
t
&e-.
g,'
m, m
,, s t,4 i
yn
.g:
r; me,i u
w.
. : 4 f, _ e,.
.s 2
k [,r;
~~ h };Ijj-( h/:
,-1 s.
=ra,
' mN 4.;H.
my +
m
... se.,..
< a )> t o
.s.
- p : % ;y p,y, a
.x r
i
. +,
,.., e.
..i._.-i s
1,1..
,7 %,'3. <. _
g-wp a..a i
c o
M,..
)
,' f ( ~@l,p
' 3 y% r 1
4 l
y.
e
.+:
- n J..?.4, ~.4 ye
< n ;.
,1 A 9 v%e A v %A y + f.W.9ltc ii
- $.f g%..-)j@,jgw%]$gg4;1;
'l R
.ay +.#
T:,:
- . p% y.
- 3.y.
a. ic Q; = 3 p4q(lN 4,,,
.P.
( g s,. g. 4 :.,
.o, 9:.-
Ns p,
~
p.:
e
,.~v.s;, W
- p:w -:
m e.
m
.e-i.
ri g W..... m.
c.
z?
h~
O ga," p W QC:pw:
_ G
. m Mw l @ l Q;j %C^W V
w.m..y
?,
v iFn;n m'.f..
an v.
a 4;t.. ' g R:g. ;.4 Q+p p it a m i.
2, c.u.. qw.;;
.l 1
i L',
90m141 X2.9 Figure 18 Sample 1-11 L.
l 1
1 41 1
I r
=rwww*mv9m"g..
W.. e.%.
m o
j 4
7 w ' :.
m f7 l
Ja m g-
.y3%4
~
~ q s
m, a
. n. :.
u_,
- p:d.. <
. 'u.o 7+
L A
..p i:,f %.n.M $. c e'qQ' j..N l._m s
.'.fg..
l 1
,, a o[i
,.c,s:t.
='
- N r g;,. y
- yi; X7. j q.g %,, i
- 'M
. 's l T..* }
?
.y a
,.g esu n k r
'g:iq 3; qq
- g. ::,ey ;%pteqqcx &gg.m, w pgg ' n AM.g; 4
^ g _ :y w, sv.
w c., g &~ Q y g g ow g(wg af-s M,,
A
> m, y
... y.p-.i,,
.,,y s. 4 g<%w, dp
.(3 4
y m, _.
ag W >l-ly,p.-- M *'
.X NM
, W h.:
~a+
>..s.
cw w
nw y,.g N j ?,5.
.Nf Q
- f,
- *1; *, *,.. w r: 3 %,
-v
.,l _ f y'~n &,,* f V *( ? g y y -
t l
wl a L.
(t 3_ $ y e
.4 ~..g* om,'
I Et s. -
-s,*.An
.gn M ' ; s.s 9
u'
,'s' re p.-f47
,gl pw
,s c.;,y.Y i : k.; <.,gs t;.+ r. ~ 3^
.;z
, 9,
+-
., a.. s n g.e lw s
+s -
u,e r
~ p.3
%g
- D
~: c~,.
'1 F p.
p,, - p j p.
^
U,% ' ;*[' :e% l '."N0 % -
.' *
- W 4 l l lo.
- z.
~,,
~ w,
w,*,
a
.*r3 g.
4
, m %e"^g(z,1 g
a.
ww y:-
.- m g'
gr
,y
, w-%
,r_
w%n.
.11 F
='
i c.T p"
.. m '
i GifN acGNer.nmmmmmmmmma 90m142 X2.8 Figure 19. Sample 1-11-T.
.'*','S
$tytfl$*F"g*"4liern'7"*?Y-lAW.f TK..fy.If,[t7pyy,M. r s.
9 v
' g, c
, o,
'g e
u.
% > 9;;f..r -
.s.
iK
(
r q
.-J
' e '..g y
% <.. x. 4,
...xwer
- ' r m
, f.
l W -g ;'. 'A_y".
- J]e' lr +
y. 'q
- 4_
yn q
r 4
&g.-
a -,
i-e
.k,
- 4. '.
Le., #t-
-4' 4ea s
.;g,
- e,.s w, m
g
. %ga en,'.
, A.
C p-
'r;,
.M
-4i ' ; gciNe%, 4 y
4
-. e 84- ;
c"-
, Q,Q,._ i x yc :4;W: y q d,-
.;y
-("[3 5.,%g t
- g-4 -, 4tu.
Xl ;
.i
- t%
2n ; q 1
h 9
-.jf y,9;?c.,
,q%lu},n g.. g' 2(4
-j./o* ;;?M.;}ij W.:i
'n T.
h l,
-Tnsggp - ly.,,g;
' QT,,
a.
- g g
- !9 4'M, 9 9
W j
, g.. a g;
y, J.; ~,
3
._ e R
__ ; jf.,[ #...J gg i i
- g
-m x.
~
.' -Q.2 10
.p ~ ; ; <j. ',3 :.. - n +,) KL ;.a
.w.
9,
l=f-h j.-
g =/ A
./s
,t
- .qgr j
rY Q'".
l' }:'
s h,
--y g
?
u 1
u; o
-- ~
.x was:1 wm 90m146 X2.4 Figute 20. Sample 1 12.
42
=-
-i e
i l
1-12-C 1-11-D-B
~h
- n. &: s.
-u
. ^
h%_9
-{
- A
\\
t Q - -- --
3.j p.D 1 D-A
+
hj ' # ~ 9 ~
~
y x.m, s
', jj;,
1-9-F i
4.,
4
~
7
}
s,
l
~
k.
[~_
I-9 ^ O 1-11 -C] -
gg%g 9.e,k
+g 9;) y
. p*p p+a.y.
q"a-r-
+
+ ws0qq:f'
. = Lv;:
._.,t w
o..,
T* %- fN..
90m405 j
Figure 21. Second epoxied and polished metallographic mount, l
i Q ':'e ~ ' y!gGC~jd$:?ygff
@Uf < j%y4.;.. f;M.9 % sg Ab,e j#gy$g aPit;
- k i
e
.,q0;4e y
~'
w. t m
9b._~.. < ~ sng,. % g g y,,
a
'- y4
-$f 3,
M:.
E' ::.y9 -
,G h gj ((gv.,.-x,'{>f; {ja t r. +,{+}'%
',{.
[
m n ;y
' j.;'yM.
'N j
q~+
. s,..
prp -
a e p 'u TJ? 4 &w w?hr.
m
.r P
.. n..! $ 1 1 q *go g;;?;
i
,n <:.
ec
- st qa%w:
q, e
.y
,4
't
=n
'M
\\
- 3.,..Q-:n;p '* JlO: n
<.0, QW> > '
T,.
l M4 b
Mig M;
-x;^
la 4l.:)- -
jjje K,a m '.,
Q ass &..,.&m ; #wgdyt 4n,a 4 r s
n
., f.:X$
1 m'
~Lh.
W T
r3 +.
p g /{w +I,. ' i;( * *
- .gr-fig M1 y M:2.. - "
~ +
7
- f7M2 */
jy e O! > N;%
, {; ;
'f s
i
&e..:
Uudygn.
6;c y;W.A::.
iAp w,
ct-.w+g.qwpd
,,g%:
y 3::...
,.ng w &,
p
, a sq
..,e ' a. - -.w m y-o-
+
m ge,..
y f ygm_ '
g, wh?l
]
.Q:.
L
}}$ff.jpfjj gilr[fyy,g < ; b,Q lp;gy y * - ppy.;;
j
' M, f:Q.
N
. 5
~ u :.~;sq7 c
- s m-n. x,:
,7+
g v;
- awR' ma gM s s.
wgn}y.~ c 4
,.3
.i1
+.'
te
%yN yC:. Q ]p Q..z c
o ),,.Q, & Q{'
anbsM & Mt m aw; ateN2#6 M h E.iiMdf t
l 90m406 X2.4 i
Figure 22. Sample 1-9-F.
i e
1 43
,4 f
,4, m-m.7
,7.mp 2
n4 j.-.
q/g O v.
~
jI
- ad-Qa%
/
a-f G-M.w;p '...,
-s 1.s m
%uy <
gy p'
l f
(%
,4 1
%.3 '
gq %b:k w
n
- a.3 f
e q
%h L
QQ.
);
"N,' (
af,.
m
?
j7'
,%q
' ?/
f-9f.b
- p.$
1
's M g
h'# $.'f s:
V h';
.r
..._1i
\\
,g-'i-g_ '. '
fi s
b,.
- %[ ' M 4'
.. q,, s
'g' i
- Qy'7' h,c
> ]-
P 8 "
L 4,
4
_. t,
4 f3 '
"v s iN
i I
io 1
..,,1 tg(%
~%
6 9, %
.w-sN c..'.'t-s -
NIMdbMN65/S.I, CS Nud I
t 90m407 X2. 7 Figure 23. Sample 1-9-G.
9:l9'puR;%em7' m-; w# n9mpmmgpy..
3 4
. j-y
.:7 c gg;;v :y;,y'g'm
+
e en
,. s m
- q 3;
~ ypg n
,s_
a s4 7
+
< w gir;gs.,,%'
y7 3% d
,.1,.
' fl ! t
.: g> h.T r
y>
- w.,
. cfi
' YMQ(
- 7 w
.,c.+
w
+
s 1;ig-1:_
c
,ca
%e
- p; g
-. ::,. o '
- ;;}.jiT'"
.,,..'s
' & ;')s
- 1;'
- .
e y e;.. f
, [
.o
-19 ns na h, ' % AQh$ %){.
y. MX i '
w4 fI b ~ eF' f:~e
- 6:).l l, '
hk v
er p-Q--
Kw.P,W 3%
g
- f. ]g,. L
+ 9. ;
r f. q?s.F, ' "- u e
c n:u.
a ' g:.
' j: 4 c
- a.- e.
,c j
..; s,
, &[
. ~;,.
p
.f m
j.
.e e,
.n
- ;9
._g a s,
.x 7,
+
h,A. h,-
t;l>,...d,. f;g '
4 g.
'n.
3*j j
,y
- e
- - l
.lJ
. a AgC
- }
.b E?
f
,#[,.
pt; p.
.j6].
y
,s 90m408 X2.9 Figure 24. Sample 1-11-C.
44
,.g.'
.y s
f l
l 1
l i
90m409 X2.8 Figure 25. Sample 1-11 D-A.
e
.4
. h;I, h
.1.. ;
k -da p-
.. gg,.. #.;J pty, :.. A; g g ;,.^
,u
. 8.m.-
..L: -
W..
"y i
~..
e ; % :0 e;'
.;g..
...7-
- ., Q' %.
d t,
-s,,
y.
g..,
jg
'1
',1f l * '
4,
~ e, ;
.+w sy
- ls i f' h,h '. '. -
t?
e s [. ~ p,s. g'>. -
m.,
q%g.,...-........
,... $1.,. y,3 #j x x
. ~ }@-
17-h A
l-
.,4 ny -
?m y
s.
- , y,,.." " '" 'g g
a M-S
.Y
. f
. q;
.,..i,...
m>
n.,
.. '...l. ? bb,M'??s, g~,l'h,_'..
r.' -.y sl.
e a,
..b-hN Yh
' ?h
^,
^
T- @gK $ 6/^;;&.?nMkd Q;?";'.'Y
<
- d;- SR,. enW gnimjQ3c.d h2i c
r,
?'
O
!etaffi$d!AS$20i/Eiki31d
~
90m410 X2.6 Figure 26. Sample 1-11-D-B.
45 l
1 l
l l
,,;N78[;7f(&f@T 7 -s.c.
G. s :
'; ' ',: Ll,f.).
' 4..: p t
- ly-tj:;j; fll@L. g n,yJfqu,(p a.:4
..l:
.gp +:q
,:.. -...", g v
.f.. ~.
'.,-a c.. : ~.y _
...t..
c.
$(g,.y;.e
~
.i y,
~ i.;, 7
'.i,,j: $e,
- e., o f.h M..'..!: e N
6
,i
^
- w. J
, py 9v Q;lg:V1.
- ?nl.i.,
4'k-N N;
'Y
< : i.?
A e.
?
6 o...:. v.r:z,8
}
. W :j. p.t..') -
f...lgn,hjf
?*' '
^
4
- tGlfh-l,..bh
- '.j.f
~
l *, <
':v y % p:%
- L.,1 a
1
[.
7#
e p
j l *:.
I
- .a.
y@p m4
()/ ' ' '3 y p
y.
.2
.. Mf?Nh 'ry?pg g.
f g.
'M
,.A
. ~
90m411 X2.5 Figure 27. Sample 1-12-C.
' f4't L,,
( j f:
Y, rn..
- ; y *- =,
{l' -
h h.N.4
% ($
$g 2
4 eq< r n_
v2 m n:: q W;ilQT &.,g ;-. -
,Q
.l
~
y, n
.*. y*
g
.ykh,.'
' N' i "It Y. SM{5 h:. f ;
- g
' fY
- cy, '-] g3r y-m )A 1.4-gw 4
- m. 3
+>
J':fdQ
' jf,
p ',;yo;^y {' + 4 [,, ' V; 7 y GV 1
x
^
~
,r Nr %
,A H gg#k?d;%d%bai ;.a;;d-
. Mas.
90m412 X2.5 Figure 28. Sample 1-12-D.
46
~- ~.
e k
i i
Single Phase (U,Zr)02
\\-
- wp gptagypy
-q;f. g
.g 3.,
r.
.n.
... 4,R ~ '
'f
' "g,
,,.ll
- h d. %h$fh, s;Q' Y ^
2 # i.
/
e r
/
u
'Mr;g;;fy.
j_.
,3,
s s
.w, 8
)
it,'4
%sa ' r
,,, Y.Y :z, e kQ 7
\\ ',
4 sqf %)&~, -
,,,, ??W
'A i
',u
.w sw a
,<-., R3; y,...
- s. 'g-.
,L, td;,;.;/g c
, ; p.
e-ml
.4
, 1
'sc ;. p@# "' y
~
$ P; a p{ g WA %,*
b..sha%a. m, ;y $$a " >:-
y' -pI}~.'
't *h y
Sc% -
s 4
w *r n,,
^
%i;h s
.,f? ml v nQ;L.e l '
(:o - ?,$$ %E r.
9 g
s
.,t $.)
%yd r
, gr y
m m:
.c
.g%::dy %.4,Rw%., ;.,
w P, n.
-ts.=
r,-.m
- o. au '
y3
. es.~,em%%A#dm u 'd cA 3G,'
~\\
s 4 i, s
90m181-188, as pokshed Figure 29. Typical microstructure of 1-9-A.
f L
3 i
V
.t h
i e n.
h
t h
l t
i r
T
(
Ceramic two-phase region j
_ k__
&T?
}
e...,,
- :Y ',Q'
,c-
,l; lI.d
,oe.,
, w":M:y. %m n;-
-i
A.
s h,,
.j*'
Ngwpn
. 1~%j.'.
r' K 4 6 f M.M!"i t
g$V A
en
.'M" M
~y V j@ '
f % % )$: %,; g,g f ba,
.A
- Q h m
. di
- ];.
y,
) t h.
f 3.zw g i,
(/., ~, ' ' '
.. _.. *
- n; ?w$%)4 -
. ;fj! -
^ p'1..~
4 p
3,,
- -!,k. s.,4w 4. "*,
..pl-Ng
- 9
+
- ..,.fr,
q q q *-,.
.,+ p ; -
+Q, t
'y h,.
e,.,
.;m. tv.,;,;,p
,y, y. 3., ;t i,,
';j
- p 4.-
, -ji
- ?
41.;h.,
, ej,
h 04y (p ?? ~
,q@., ;ps;gl
+
w-
. Aq 24 h: l3; 3 : e ',
e u: :..;
n',,,
sk
. qh 18,<{,' 4 f (C. e ;igjn*
w9 a
a
- g]%;.
eagw y
4 f
- i: f ^
I
+
fg
'- a '
7 y,
~
1 yyy iN&L
.}b$f.
_ g.h a:
+
pp, H
200pm SI v
n t*
o l.n.... I v pus p., 9 n.,
u
! f)f) rd 47
,,m__,
9312 0 8 0 217._ of
Porous me!! on edge of sample
/
p; w n -,
ympn y py7,>,, y,- 7.~ nm.g e.,n y h,,ayr;.
m.m w s, 3
y ax 4
~
- o
, sf.
4( Ai,
g - 4> 7,7
,_ ?
I
- ty,
- e. sg.
'.v,.
a
}.
{_
_. $ %n.
e%.
44'-
>nb.e
,q i n
"9 i
A%, ;.4
?
J J
P3 q y; 7.Y.:{4'f,7;a fr...s t
.y;.. g; l.
Q,".,,
g j
. y.g. g;.
,y g
k p
a r m
.,y:.,4 %,x.
%.. f* W_W %&,,1. 4@.%l
?.7 un w.
ws
+
L-r w.,-..
n.
t; p'.+J; 4 - 5
' :n tl Y Gw"+NV'*
M;^
~
- ^
- p
i u
' kz Ns%36 -8 2 w :,,;p?
Q m,6 %m r m:';n&%X
-..n w
wrd +,. + s F
4' M.; w,. & # 7 1
,N t
k w~in g.y, v:p'.
~
y4.-
. %_4s. darWs mW
.c ny -
s:.
a.
a p.
s.
ux e x
w.s
@u,g, <;;me n.
. y.M.,. ~? c f,. p?,,, c",-
. r s
w gu.A v., *eT
~u v.z,:,'.M~, <: p-s.
i:hll(n i
_),
as.
: %$g s :.c
+,
(
\\<
, rQ
' n ;~w,,.
y-s
'\\
r y;
- ni ;.,
e
- . z g
~ c;.
f...x.a.
-r
/
\\
y s,
.i
,1 u%,
s.
w
~.. a." h ".. ',
t a
'j) tjr 2'
- e r
..y
'.Mf..'
J "# m
/-
9 gy
_,/
f l
2
. c'6 p
- s
/ o o
I-t g.rit,p*p'
. m : ; :s:;
'y
/
jd,, i?
>=
4
(, ;
Q 'f.,'. $ ', _.4.g, Q "..
i y.
/./
. : i,4
' r-
\\., W..
e s,,.,.o n.**.,.
s
.x s.T ) ' *. ~,,, f, ^. e,
t a/.
ii w
, /'
.-y p.[J;.4* '
4
't
- M.-r t 7 >,
- .c-..
-M n 4
b+ 'x-W
\\
eM a.,.,.
pypl%pp. y
. s x ~ s..
w.; ~;;w w*
y{4 e
.gw
~;.3;. 4.- m., seg, ' s -
\\
k ' '
3.
.:a e e'
-y s
.r.g;#.
%v 1q;,..
M/
,v-
.~g y
x y.
- g)
- .
7,,;rjW -
- $d ;;i z
.N d, y s ;gfQ,LR, tz 7, 4J?
90m168-172, as po! shed Figure 30. Typical microstructure of 1-9-B1.
4
t l
r
?
1 i
.t 4
i l
1 4
i
.Y t
.f f,
p
,j
.?
/
y r
...s.
p sw..
g; 7 4.yx e,r,,.
(m.
.c -....
s u
g e
g<
l i
g':vu m
i e
G.n.L-Z 4
,m%>n w, ~..... s,.
i a
- ly
. n. - -
-.e N..
p 1
.m. m s.,,,
e s.
- $ W ' ~'.
.r m
W^>!l'};1,,k f fl:T;f lf ^ h Q )'
-1 r[
pM W
.A y
.~
3,7 a, v., :h m),wy; s
\\.
.'g
);./
. A s
sd
- 4 av
+
m.. m f.q, m../ q.c m
t,m;g; 3 w
- g w.m g.a A.s,/,.: s.f4.. g,"@ w% f c,..
g
- ~
7nQzjY f.hk[(?
J c f.,,
/
T j $ y w 3%" #( L f ;
"O I
- #p
..y n, ;. u...dqw,;;
A o.;
y
. wa
,,,. a;Q, y C m.,e h,.
g 9 % :j.,, & m,W+Tn'yp, :.,..
_m
- %.;.g.% @ r a p a/ w.,.,.- e..a:
m w
n n.
n mn c
y :6 y L.q. 4;, 4 z.p.
- .g:,.y.
w ya swwq em tm,n+a,..:ve,w dw aesw w mv ca x:.,
- w ~ c_. m%.n ~e..t,y;, p..< w,aw.? d w 37 4,t;h;7. w z qfe t.
w~eme.w-n.,w
., g.,n
+ > - 5.n.
m.
a4+4...a%y-m n :w;m..mg 7
g j'"wg Q V. M ama n,
~a mew ;
n,,.g A. w s
...w mn m yn.yL M g33u "
a
.., a.,,xy4 ss
.s g
n n
w w** 1 -
a en18@e..
M r n
n".;rq"h wh; 9.-y -
-" y s m.ummwg ; %,.55 '* W 3 9.#,m.cw%g %'y;M4 % k..
7 JT ~
, g #,g d,..e 6.;.
=
V.4 T,
n.,.jg.m s
n ty p.
> 4 p. p
__.s
.%mww+ w' aL W; a&s, \\ s x a.,%. 6.uw&, y;y:,g m -n
%7 m pan; es,- q~ms
,v7 nw we..s'y p ar y%g k
&w,;.9 w
s-
..w e
y;k[gdg$hf,x.?!WW.GN Q&YlD>%k&??eu'lY.U%%&&W RQWNMQNQ6%wd yf ey e+m+n er waz%e.Mw www:w-mM.n memwtanywu cchw w
r KW,p:mwmmyr a
i Wwy nn;maymn wwwr<: f
,%m, _%_.unm...~; %:%m__.,%.. m1w.,e,_'m_m_.%, ~%cwtygza, w,;,m,
( m,,...... #., w,, n-._& #i %..., W w @<. %m q M, y,W. M Mwxw w
m
_ 4_
,y mo c a+.
.e.,
..a
..,a.s e,m,
m
, y.. r b : -
_m c,f cywr c r n 7.%w y, %p.yr{m.w m u
. ~~ -e....T..*2.'C..;yNm.,3.%Mm y Z Q:+mh..+a..Q3:;6:L;n.%q gwc-y v.
Q.2 1, Q -.t +p C'MJ;f?yM
'. ;2-y 5Q;4.ff-ql4W22,,;*,.L:.; C at;dQ 1Q dy erm:f p m ~e' n.:.n%7,:
?h
. 'n'W %.
7 m
s1 n.,
nm*
n
.. s
.~
e4tj11 n,rn n..
yk. A ma ca 1 A-e+e a v?
-p
- e>y>,
a.m m %~n <+
%,.w..ej 3 e vp% %._s qt m e n, %,me.sy sywei m m m y=ex:.aw sss wg*y:,.gw ;;n w:
c.
ms w
x p%
p
?6Ed%idLGTOUL%cwmm%m w* = " " 'wpA M *g * * * * *
- l wyew w-MEk.h_&%.. J%
k%
_._,.e,..,
e i
l l
~)
9;~
200 m L
SI APERTURE CARD M,.o M.. h,,% h O n l
.ft g,WM(; CMil I
48 9312 0 8 0 217 v 1
i
?
i Singe Phase (U,Zr)02
\\
1 er
/
i mm, m, mem.,>p
,, L
,s
+ana u:s g,.m,
a n.
y.
~.
I a
i c;
.g sj.
4 4 a %,,,. % =. y,p-r r. 4:,~,4%. --n.
s 1
kc
. w, - s..
L,
- x
- u.
e, ~..4 4'd '
- p;^*us[4%
/
w 2.
~ '"
b; N <
g:fjy. i
- pi.
s %.h Ll iQ :.Q A.
- .i
. %<a'R,. jQ4g ppn
.~.
- hy4%si:ha a,.
w; =
lb.
g pf,3g.
j
. < w<.sy,p<! D.
- (3' h
"yeew t.
j).
%we,.,
_. r a.
~
,~
e.
4 ca
\\,3:f%.
- p. ; ly %.
(
t*.y s
2 c-l, s.,
- ky 'J>4 f; 03!
.t
~
.,~
gy p f-A
,,, 45 +
_s, f}. L
.m
. :p.
,4, es z
j_
.. n ex g_
pa x
q ',,
c n..,
j i.
e y-i g.
ssm.
[
Y
~N
~ 4% -
0 g u s e s m.! 4p >.
h5 (fA 7'
a,
[E "
$3)$
%i,,,. '
jI%
" jfg
\\
7 b[i 1
- %. b e &
w.e,
.,sy.,
.as
%w
.A L:m hi J,s ~~M.
k%L&%, w&a.aa n
ww a+
90m160-165, as polished i
Figure 31. Typical mictostructure of 1-9-B2.
E i
t f
se* &~**
i
n_
Ceramic two-phase region ii,
%;J1'-
' (I \\/ :. '. J "., '7 k' * ' y
' g, 3pgir
._ g,;;; g y 7 % P ! 3 a"
e n
- w 7.
I'
'~
j.
sA
' _' A
,r sy.
+; 4
?
[
j _-
p'
^ ' '
L.
? :7 C
'"g
~*,
3
... o f f!
.t W
.37;,: #
- .+
hy, nmme.e %s,,g.,,,
m-- 4:n ~
3 1
-,.,,y
.,4 1,z.,,
r 5 =b. ~
4y_\\
. ; R.hj p ;,
- D,Q y
,. _ ]Q e
],,,.s w
,,p %j. --
++w y g.
9g_
e
- - gy s j_
p ' ~DVh -g. c4 N.yp e.N@;k,,ge M,,,-r u.? a. ; Pdd
-r
. ;J
-4
.,jp
- P 'i J
t
. e 3. qg jp @~.,
, y.
y
.y..p
,y., ~
~},
- (:
p
- QQ[fjjfQQ lt L(
' _ j-QQ m%.
, u,,.:sg> m(( i s s f y%.s jjf
.. lx%. ' l*g f
u1
- /
."L I #7 4 ;,7 y. ~. -.
% ~je
- _~ +y w z.. s
.5 qY =
._)
i s
.4 _; \\ f.,,s /. c.
..f. " 4 - - ' - '
Il
_ l
- 4
' ~,.~ r =
r_ _ $4..
.2 g.,
- L.[esu/4,2#7'-/\\'4,
_ e,..
[. S '
l_
M, ahG;-%au'!p
.s 4
4 falf h,
?
s r ; 4*.
!'1 9
W
'M w.
W
-.: M 200pm i
1
.G. ;
t !?<
- %9
- ' hyr 'k
$. i$)
(
h
=4 49 I
9312 0 8 0 217. - d_3
. ~,.
I i
i i
!T'.mW agwmsmwm sf3dr:;w <%ish {\\
v e, v.
ih
/
o e
6.
p' y
j/
+. _, -
. i.. l
,n.. : m,#<* '
w.
,,);
t y
2 4
.,, ' p' f,,.'
rp4..-
.e
% _,.- ~ r* *f ~,L.f
, y,;
y q
g A.
,3*
+~.
s p.7
- -(,,, a; a.
- p.
- l,
. w y,,,m,.gg,[3
- i
.my w 1
.., jy ;
y y
wq:. -
,4
, A.
w e m
,m.
y+_r, 4,j o
~.+
- y;
.n n
wn.n :L a, 41 p,
.,.,v-
- r. t::
n u
W. - p.,,:
i.
,, b,....,
a u c y:.
y..s:.
_r. g n..
o.
.,x ;M,.y s'
p.
- m, y s,,m~
r F.f;.f.:.j~?<.j g 'gg 5 ' s ;.-
Q.J
- . 9*9 r
[p T.~.W[ j.s Q, mW %%g' d
- s. s c
.WJ '.y
' [' ', :,t.v ', u%'E,. ~,b r-
- , - ti (-p '
- 6. -
k.l.u -g M;,#
e a+
y a
hg,EM,,:mers, ;;,.. f %, A;;f:w;y: hip y.,wg y
a;;p g pt.cV:,::v=: W n,
- g. s$p %
~<
&g. g wg np y
7g w.y e p.
s.
..;a,=w y.?. :. n i k m,,. A.:.:.r..,v -. 8 :
M W:.W: 1:g m_ s.
K e
- 7.
ye a
.. w w> wa.s 4** %a. :.:Mqv3;mst
$5.=m.f d.gm.g:aun& Mt:
1s lay3p p
m. g N; c ca;S n a:f~ R ag: h a. g G d h M,.n;yy ; u,wm ; y k,,..
,9 ~,.n.. +.
s t;s A,c rl ge P,.-
s c.
n,.
wm e~ w. w.>;;, 4..,,
n m.;.g - ww..., >u e~,n.7n.
..-..n,,...nm.g, r...0$g%fM4C D ~ r1,E.
w
.v 4,y
.,ga.
y
.nv W W WE~ n'."l.M Yilka?-f,MII@h & M 954.7,,4 fi n
.e
~.
ga..yy,s '
Y n60;5,$@q@y$u$ ' z%,'
JW my-95r.h i
pen i
_ w.g%.kaph Wgpn.47,n: y g_ry 4
Waq:
p c:.gs.
yu
.x em n,v
- pMt14;g
@g,gpugg j,; ppg 9 m.m,;m;;;ug;a.;;gc* cdcW.r% &y m n Qy.V_
sgg..um.+J j..- we.w vn.y.ec,e.6,;,yg.g;w...v.~%d,#Ae s...
2, me;;p seWh dy;a-m mamaxm
,,-w ggg u
y 90m175-180, as polished Figure 32. Typical microstructure of 1-9-C.
i l
l l
i i
,=
.. ~
..r i
t t
i i
i, 1
1 f
i t
7
' ((E6 N
(}'
y
[
~
4
?
+
a
/i. -
/
i;6 ~. s ;".-fg -
i
/.-
.".o,
.le
'i
- y.-
s
- Qs>
1,..,,
s,
~}
., p J
4 2-
.,.,.,t.,,
t e..
1
,~
k.:... :,.
9,5g;
./,
.).
,;..,., n.,, '
- S.
y 1
~ !h hb,+.
[
(s N
't w -
t-
.c.,
,;. 3 j..:..
. -, > - e l.1:, y F
.-p
[.'l
,i n
.k s.,
y.b,::f,1 p',
y
~ fa
.. ~..,....
- n
, ;. s...
t
.r.
m,,
.. 'i ' t h.'
.L
[
- .gl
,. vg
(
.. - q m. / ;. '
r
'( ;,. g.
- e,
4 i
t t
4 e
i 200pm i
I I
6 L
Y l
j d*
4 a
/ -
.i 4y.
.....t.
s 50 9312 0 8 0 217 - BY
E 6
','T *)
'j4=
d' W..LP t '+44A
" t - k' zy.,g _ " *
't W"}#
'Y' Er'*'
,s IA sawwa fFQp;;;'Q pjy#w gg%3[ w:
p T JQ,% ~$
Uj 4 g % :.g 4 1 M G4 $a%us
/.h S*s
, "19 4y
- Q
. K' #
E V4 R'j45 $ A g1 L"d W*-
f:#
l sMMSbfihl$$hMhM4[d2p g,3c g,e, s$4gg en,p q.c y
p$ff{l5h'.*m%g h; ese K %.
nsa
^.. #
g.
- i - -
+
j
+
.x..,
n N
- 4 'g
+fp m g ;y.
ac.. @3 s
?
l d dsA J JA a t.
. :/. k[..
h I'
-, n.*: >:g,A n::$b@,f%A&ge
~
4A egy y.:cy s
w,1%gr4Pc %:. g /: 4 v
( ?
f ty *4P I
u - ;p qu ~
e 2
(
$s!
I'
,,. _ifQf%-
&p4,..f.s B
i v
a I
N$
.,,;A p1.p'; F.. _,7 1 kg
~@
- c. 4; a..$.
.M
.ta w
=
+
a u
m*g.'ag#
~
'. 3 m
eO
.,3 3
'?'
-; fhUj ' O,
,1
- f
$ b_ YO Nabdikkk.kKUibliasdki$d5&D S
h l
51
e 4
.e F 4
'{
" f y '-,. [ *-
e
.+ _
. 3. *: j p j _ E j^
,ygn
.. v
.g s y.
,5
. m g t. w -R g.~~ h "l,
. y-1
,g o
ff n
+1
"'&., Q L M. * *fn9 '~R
'w f.
1 O
y; p.s or y
N s
+ ^
h.
[4j ;_
g
- w r a W, y G
+;b Qf
,f L,
.i l-y ; & g g h. p$ gf (f.
4gs o3.+ 1 1
w h..
%,2 s t -
Q:.w.
- ll'
- 6 er
, u im
. g 4
%, N i 7, 94,g/%g '-,
g m
g.
aj
- -lf i?
- f al f
l
.e s
g 4, pty a
s a
-s# ( ^
et ee4Wl
? P'*s
- qWh.l., i'kW Y ? CN
- ( A [ 9ff'?
'g L.'4'#
g y... as a ".
'M jg g % 5 8 SR,;ym 4[#.;w%c,2pm%
3
- gj[ e t
sw a
.a f}
ts ;
r g w @n.p M,.;g
.a 4 n /o;. g -,%%. 9 - Wp~
A 4, q
.Qw.
4 b-
~ g n, p
%'y
~ %
%s.gn g ' N'k
- m?.j/ 'p'*. ' # [hp. ;*-,' O:
t "5-g :y ry
.r w-te snW+
- 6?;gfn "
r v
~
~
346>
,0 g
od'q%g ]%. 0, sm A. g
- .49 1 Pe.,
(,
a
-,G[ yu
.y]l
- f
^
f.
w-a..oe w.. des,.
w% ;<^ v p..,
p4 Y., -
P.4 -?
4M
.M 8
Y C V e.
gyPgg)c h,'^.gQ [,,,q g&*(dv -
- ',. R(,h;l
..?
w TY j;- ; g'A.~.:y-}']
\\;.Q u
' ~.
..'y. ?
fIi t, 3
.c
~1 w
n, - ' g, d, g%
am:
[]g A t h.
- ,.c.
r; W + +y u ! M?fM ' dM Qg%
nt i
l
' M5'
- sL u.p p ;L A p@Vgf
,w e
., a
,=y,;;&. f',yj, W_
p&g%g,
_ m ar -s e,
..+.,
e,.
r w(.4,,y J.~
w k
1
~% w
,. o
' 6 t*f
+ " ' : p Qs
?l, M
i MK%gg...g% D;,.r.Q;, W " ?,.:k,
}/ R. o.h j
<,.f 9b]G..
%Q Tjk N d.N '
. Q' Q
- g./,lp%) i
-if "
ii;3
$, 9 Q""QO}Mhk
~*
- f;r Mb
,p ay fi.+}Wg gj / "" m, V)--
- r 3.
y h:h$N Q (fk l
. v n n;lg# f^ %w." 7 $%e,p m %e. m.
+
g s
)kO&jyy;f.YlQ.k Skfd
- t
~
y s
m gh QY Y
t
?
" W Sp Y% Qg ug
,ts:; p < L 7,;%p%pQ; GQ[&%gp e &.ms..A
., a
.4
_..# : xy
- S:.
w Ys nQ\\;&g[Q N 2y#7 /n s
- )
yr x
,p
- ' Q_
g
- 9 -, gy 3
,f m ;;#1 %n k
u,%g,y; ",
L 9
y'T. *gp(q p+4 x Q. pp vg}>Qw a.;g. n e
, w my V j l4 p-w.&yl Ah.; !,n%,p.
4y; g
m T:
?
w, h
M[
~
- x,,) e.: xb n
WQcFlj~
<m, r
e n. =ey'.:
.a o
dc $ ei fm%,
p%+T.j AW y ; c.
g m u
.ms f ;', y%x,
- y9<2 q Op 4:gg s 4W 3
n
, := Q v 4 r+Qpip;L;
.g f y
., g ek
=
<W,_ _
gg76%p p 'Qng@c g
l
~
~
w a m
%g,3
, m
~E 4
%p.
,Q*w.rx 7,
=o%. e w
m w
a"g +j,4 %' y; km[_F.
u.
u 4
a rVs a. '4
.'3?
.y W
.g pg 27pp g, =g s
w x'u u
.ss s.
2.
v,
.ny f
Y[ -
g J;. -4 m:.;
qm a
4pw;f
/
m s
- x cm$% j.,.fR? }Ahgh'i G
g <, ;, & l.
. A.
,~
m mwm.
, h W l;:iv y a;;;p,,
- Q%g.? . % '
~f' g
. {
g.g fg,'pW.d 0.PK y (D a
' < r%
4.
~
N 4 $x." -.
Y y
)4 - {. ' - -
p.
gp '*p hp,
h (9
p Q.h N 1
j~
V.
g '.y.
M c
g j,
[ yA.
. f.
g'
%g gg,g ?& f gg &w.V % N1, O B
i s
eE vQ yk
.s Aym e
n 3
2s L %xw5%d%egkiG&am iz i
J N
i 52 I
i f
i
- - - - - - - ' ~ - ~ ~ " ^ " ~ !
1 t
f
?
8 1
$N
~'p' (q
-r
});cmm$
3 fj ?.
+
z w~a g
,e
,.en.., %,.i x 5
,g. E. No m %,m
.-4
$?.;;*
-,3
.Ay f.h w
4 e,.%-
s-j
- cgn,
.3
,7
- -% g..
, n.,,
e'
.4 s yau ^yy.n >
. W:p p
.+.
... ~
4
, y '7 c e: O,.a
'. : +-
ApN
.m 7... 3, gN s
..,h%. 4' 9.0
% g'*
,<a.
s.e,..
m'i4 ih
,s
.a
.m.
6g P
. eg.e.u,,r,z,;;; y%, vy.
y.+
[-
',.a
.->..,=.r...
s 1
q..
._y, gp w,
}.,
+.
4 n $ pQ,: 4 k
- n W; e,h f *
.m-
.s y
,..y N b {,
.<g".ps% y
.,y 9;~re J+v t.'.
.+kg,. W, -
e
?
s n
5
- y;yjyy'g n.
'*<M',
9,
- p Q_ a
- p n, g %-%g i c,
g.
M_ icroporosity
= _g; "
33pg
- W L T 6 ;5 and segregagng y
~
. s[e;\\
(U,Zr)02 &
, v,
' A y' y, %m y+%g p*qp ' S 4; 1
4 4'
(Zr,U)0 phases,
.6 m
.3-2
-s
\\
a.
y j
. 5, g
Singe phase s
/
i gg (U,Zr)O2 c
g.
- w
, f.,..
a
- a fyv.,d J, r,,
w ro 9'
. 0
,,4 o
c-
~
1
( ^,v.., ' t -> ?-
r.-;:y.
.1
.e Pore
- s?w&
v.
/
p', '
x 1.,a+,, r.
T v-gg,
T "*
c' yr vf y a
- g,
i s
u
. c.
- - uu...
a.x,,.;;; ;y, y - t n ahr,, g,.
g~..,,
)
90m418. as polishea I
50pm Figure 35. Details of typical microstructure in ceramic melt.
53
t e
e i
1 4
1 l
^ ' A/ J,
...}[(. I'.~
n g:,d. py,:p:f w[N' s
[
M :;; A%
. u.
% p u,w.o,. my I
>m.&
j me.t.,
s.;
...,,,7,.,..
44 -.a. 4 Q:n% '
.:A %w 1-
..,...s e g,w :p :: 1%
x:
. n.-
' ?'f. p&y?:f, ;}y da
- y
- .;,g;ll'%e$gfh n
. 9 r. dt a L jg L
g'; '
g@ q,ty g.t.W:;, ;
.:]a..l.9$Y
- ; *p4; j pgj',c 3.?qq a.
- y sh;,s 4.Q' i ^ %ig.h j. Mly fghtyg@
Singe phase s
... %$ '.. '.. c... s j
c QJg.gi p yMpObil. f.:
(U,Zr)O2 u m s.n
. w-u:.
f Q +w% " fQ
- yp@epp' G..
7
%y gQ ta
\\
$y.2)
Qilf g.
+f j
dtt : #.
.....yw,: r.h,
- p., W L_
\\q a
w,a M $pl, 3
.c y.3 3 jy,
. +,'. ~ wu w. wa ' f (: c'b_T.a,ao g. ;,y _Q;s 9., q ' w ';g :,,* \\
m r;
- y. -
a 9-
,y
.w w;mn s4i d-ons
& wq ppgig;w w " "
Two-phase m - p.
,.nu Tegion A m v%.; :g.p<a, ug-Q
., & g,29:.4 w
cc Ag3 1807 30KV X37 las R039 -
Figure 36. Location of scanning electron rnicroscope backscattered image (14A, Area 2).
m'.h j&ywT w,,f N.v,y y"?
-, v&
,, y. +
+
f f, s~ %y p' x g f :; r
. of er n
=
)>
.4 y?.:
$(m@Nl4 4,M,Nnl%* -
s.
. S 4
%{j$$lMbKUO n.,fa,k%
&gg <$na;y Av.
Q Q$rW p & m m,w 1-.
A ; w$
x:
F v.3.9; t qjf* g m x!
p p
r Ar%g WN h
%g%g' 9,,n>h,3;;:)g y n r) 2
.s
$$;m$$eA Ng:%t e>ta,47;p%c&n,$rh,Yd.m'A+p.
n g
, g, i
n o.n :%.
.m e
s, y
&p= %wb%.g 3
- r g$
+
I \\yg
~
e
+
N b
Upq~ i ?g&^ (,,,/
M N%
p j - g (Zr,U) O rW'&g%:
(,4 w $m;.. =
g.
W.v.
- .J 2
b
~
hi W M M M i W & %yg,g y=; M, y x g l+i s s ? p W ' *_
w V,h A X &yl W; M w,n www-ygg, jy n y n pywy x.. SG i
R traig xicf&.Qy.Mf s*M fygns dv - i,
.m my my Figure 37. SEM backscattered electron irnage of two phase region (19-A Area 2).
54 e
~
l
. _ ;,y...; (.. 3 y ; c q q q.) ; ty. gq1.,.;._ y.y q:5 s,.
~
l.
..l;.if.,j I { j:f.,f'..,; 3 y
_j
.s c,
. ; y 4 ;. ;.;., _.
..-......a.
d p
% $ ' }.*
. ~. ;; f. f..[ '..'...lj,. j [ S ngle
)
7 { Q,'. ;.. '_.'.--. Q (U,Zr)O2 i
. g[h phase a
v-
.-.. ;..x
? ';.
L :. ' c :.g
- 6.y
- 1., c
.o
.ia g $ph
. ;.v :ry.. nQ
.a
,' y -*
g '. ', =.
l v.,. #g;g@q l
y xx 1
101.0 30KU X37 lem WD39 i
m..
1 n
i Figure 38. Location of SEM backscattered electron image (1-9-A, Area 5),
i e,,,
v.,u 1,
, 4 s
, wg M
y i
. 'ly, m
d 5
. I,. '
~k "7%
~
.==,.
-- Crack u.
< m
~s:.,-
y::-
-s A,w.,_
f.;
!'-$N
' n. c.
31 e
'(i-rY_. _ x QY a
s
- -t?(y?d.u_
t.
(U,Zr)O2 t oe
-~
i
' r f
t g
~
+
1 f?.
I y
.i
['~
.~,\\~~.
s
<.s y /...
5 Figure 39. SEM backscattered electron image of single phase region (1-9-A, Area 5).
55 i
l
,l i.
\\
]-
l 4
1 i
e j
I
'27W8.m%q;tm&. ml;i!:
0 Q @ @ f T fG 7l% v%^ c pn%s %e n% F 7 "8?,T 9 R 3 Oj M M -]
76@^Tf i
ww
.uw i, T,ny\\7 - hy vej * :;e.
a wp A
m.s).
>d 9
- 1 $ *;fid ",rJ Q.
. Qg * *
.~ c w? >..y ++ t t*.w}m.x,n.. o., q,,%. ' W.,Y a
,'y e a g
-Qy3
\\
u..
a., +, ~* tll%;,.w%. cm w w w.,WK},n..,.J g.
u m:
n 1'
' m-e n
t T'.o-i^
\\
r w,k w,.
/3
+ - n w w.g.%%%@ MMMM.a;anu@f%.;m?;ugM Mdgagg n
+ * ^?,; l(-W,n. m%.*-
. s
,^^a.w ~.n? *,*
..... ~.f.n,, p':^.bVg'@, u.%') b. b I ' e@,h4 ;, N'e {t"[' m6 e*v' ; i.
A w p' A'.* iW A C.
[^*' %5 *[
6?6 % 3-f d F-6*
e
-1 si i
'bf dh f 5-*
s' ' w'h.
h' s
- maw,' h tyt'e'y ;')s.M t h.'} Y Y s92,a fa 4;Mm[ pM.l:.t,;fe,,I. ;I.dge%j
- I D y/> ?.
W l
Pl 8 _9;w [a s/ ( w..--fl h,';Tf? hc M p m.
d b C497Q L
p i
ega 7[;
}
- m
.: eym
%+, $%yW 6KU B
%.py @%;hi2 M @W,~@g @An @b.s @Y1%
vm g
pwqsM W W g.%m. f g.q,;%m, A wa s.~.
y : e.., g1 rg3., gg,_N*t*h$
o-g
$r$g$n$NfS<WlN'T UR'%g$c,,
i t 4 -t
,mif,v g
.,yr mplq(x,%0h~ g p.,.w.& R: hhh&h NI
\\
-% m,m% Q,di @p yp//62,+T N
m eg
- fD WQr N. v.Qla:#fQ.ip[.g.4. s.j>Q4@k. s0 Mit V.O.% v@ Q
=
-3;$r!@s.b.Q4d.1J I,
hm QW
- f p
6dibggn~qw &gn6Sigggid;w Q-j.'6@v y.
n ff 0.N Q Q W Ld @. qlj& m:
8
- i,g, ge,w. q,,%. w% s(v, s, r'NMw tgdq;;2 4
&r.,Q e-48 r:
i yfD? $p/.sa.k'/q9(Mt'.
gi we m&g q q q.a @p % J, W @wi g %p y j
9.s 4
y
.a % uf fe ing M
i i
0- x4g,W. ~g,,fGWQ,Ql l
1 g,,gt P
, _.yaywgm@,(p[,
Q NC
~
m.
e i
e I
i
- t,
+
8 Figure 40. Elemental dot map for uranium (19-A, Area 5).
}
,.1 J
i l.
T l
i e
j
'I t
4 j
/
i 4
t
?
a i
i 1
4 i
.t l
1018 30KV M850 10Pm WD39 i:
j Figure 41. Elemental dot map for zirconium (1-9-A, Area 5).
~ i
?
i
?
e e
6 6
4 N
i SG 1 '
I a
f i
~
-.f
. - - _. -. -.. ~.. - - _. - _
4.
P i
4 i
1 1
N 1
i i
i l
i
)
~ e 1
a 1
O e
i
'd n
1 1
\\
it l
J I
i l
l I
l 1920 30KV X850 10% WD39 4
Figure 42. Elemental dot map for oxygen (1-9-A, Arca 5).
57
-t
,j f
f
)
n h
I 1
t n
h'l.
W i%
sI l
- ^
k lN l
~
i
,b
<=#
w+
t
+
3 v.
g 71 l
e
. ? C.lQ
' f:*Q%ty Q l
3 "A,w
_kk%*llgQ;Q r%
Q@
. J'g'f
~
h k Q Q' i
Y i
i
'flf1.,.
?
~"
h eq...
g oy
%p 7.~~g
. e%e m.
- a n k p,, V,
b,%.n,;M F
Mn b-t4 pr em
~
gx y# %ps$ ! < bg " ;.,@%;
45 6:u+4aq AAsa t
$%*gp Ab> g
[gi%ypi/O*gh?yft i
t.j:MC%%W '..
~
Qeit:
w By g
- ad
, d{ b.,jh1Tfd 7 C
- M gj aMg eg%:yaN%wLCp;g.:,s
-s ef:i?U Wh&yyy'%%
1 g';
Ox _
, s.I, i
- C#.d St%W1, %9*',? ( <
p%,gd'3%j@(if y,.
^ l.
l
- Q N
- : '";,.,
., J< ;..., _
' TQ -
e
- y, sA y
' 7.?;:", <,
j
-+
r
. ',,- f,.
t
. q.
7.
.,$s ~
J, s
- n
,<1-
.[
< g 9; ga,
y
?!
+'
_ sg '
, ; ;us ;
(
)
1
,.?
'9 4
L.
.,F lb
.}
3, y 8
r
- /'
y,
..' e.
i 90m173-174, as pohshed 5
5 50pm i
i Figure 43. Molten edge of sample 1-9-B1 t
r h
't 58 j
a e
l o
3400 L'
4 i
i i
1 i
3200 L
i 2
3000 7
i
._Y__._._
~
l 2800 7
N 7
L2+ cubic L2+ cub.ic 2600 U i
/~
t cubic solid,
/-
M. 2400 1
(U,Zr)o2
~
e u
3 i
em 2200 E5
/
a E
[-
tetragonal l
2000 s
7 /,/-
1800 7
l cubic (U,Zr)O2 1600 J
+
tetragonal (U,Zr)O 2 tetragonal
~
+
1400 2_
monocim..ic_'d r
2 1200 u cubic (U,Zr)O
+
)
monoclinic (U,Zr)O monoclinic -6 2
l"
' ' * "J 1000
^
0.0 0.2 0.4 0.6 0.8 1.0 Uo.33Oo.e7 Atomic fraction Zr.33Oo.o7 Zr.33o :e7 i
o o
o P929-WHT-589-24 Figure 44. UOp-Zr0p pseudobinary phase diagram.
59
v b
3d.5W, er,y'[
\\,
7 3
~ vg k.
d-
. ~,,.
__4
,.a a>
a
,4y;m_-
- zym,'.,
c f3 A [.
7"'
.p'9-,
M
$<Y g
'h
~ ' Ip,
- ?:
@y p %.g.
f.
h
- y%,
p
- p?-.%
t 3
i-a -i yg g; "
g%
g
'gg 4d '
- h qg_,
g
' ~ j,,
g,(?c t2 Jy
- p. y.:;
W{h ^ -gg,,
,,3 %pwn,e, g
.g-9p.
.-%m
-9 e%g p:? -
SFN
- jO *
- p'
~
Vii.
lg %
V,i._.
}f i.W..:h
^..
s ISS -
4 : :-
r t, r. Ay Ll4.
%'g '%g
-g 5 ; 3 : '
[,-
u
- =7 g
"Q_
- y-
.9 Q
aqhgg f
,s,..
33Q
,y p.
g.. sv.e h
t fqq tt:
t.?.~h4 N P A
~
4 y g.N
,G qyg~ ~pW e','+s
, +
s.
-%7., M.
,p.1
'+
?
k g
w,g.'..
3_
w-y,p w;
pop 3
, qss-
_4 y
N.
y k[g 4 -
-U g%lq$ygg' s' ',
Weg gM cC,.
uf y,,, s.,,
.y 3
Q i
- :[A*:.gQh-A $ fp:
(ps
%d #
p%:
m
^
d O'; f '
...a ' ' " '
D 6,;
g o
4 j,,
y 3 a,g. y gA-
,4
- c. ~p
, 0. %.
y p
[$u$d; e,~ w }% 4k h ' &%(( g? Wv
..e p
w
.7l4 -n: m%;p-
. N, x-e vs w.
g-;
ile iO ymL,
3'%~
~ ' R+. rhl
%,n m:[> g.Ayi l
.p e_
$a s
.ws g
ym n,,
Y f%r D,
t.f Q $& '.f *.y.y
- 3. g.
.m w
V-
'l'
. ~. ;' s r
Ph y
I h
k "h f'
u_g.q:.y$QL.
x +,
g y
.s
.a
- g. ' s y.
m;.4'... m ek
- pm%. -
m.;T,6.$..e%c.:y;
.. ~
m 0
r
.d' h6h-- n;g4l[$p$ 4 dnjIb['hg
- h~ M,..
c
'h N *
'N V;/[ ?.N -
w s...
90m190-192, as polished i
200pm Figure 45. Typical microstructure in 1-11-L.
1 t
t i
S g
g 4
9
., g y e c-. -e. 3se-, y w i m.#
-y,.e-w,wv,.3-.e.i.
.,,wws,-,..+w.<-.vv
-v..-,-,,,.-,.-,-,.e----,,--.,.+e.-.=,,.,,
,,-,,-,,,-,..,,,,v-,,-,,.r,-e-..--,.-rw,.,,-c..-,,.,... -..
,, - - - - --,i--
,,...e.e v.w.---==e.--e.-e-
+ - - - *.
4 Ceramic Metalkc ingots two-phase Pore region (U.Zr)02 g? nrm)'T -
p
.y
- ^"
k' f-w
~2 y
re:
p;
<a w h If,p -
- + st
]h k
b
[m.t N.~ -
ii
~
3,2 ts s
n 4-L ar g4 d
'\\.
. L g; :s --'
~
i r.
hN
\\'
.4 U,gg
. ad; as g
N
~ !h' Th m;
S.e
+
5 67 b;;.
e p*.,
5 MA.,
PA e
s
% %$p
. - V;Q,. t. e,_
3 2,.
i
~
' 's 0W
^
yr
- peg o y>.
.dy v. -
e
- eQ,.,.,,
- n
+
my
.g.
chijk e.a sus
%hae '
Yk '"' y' 90m193-195. as polished 200pm Figure 46. Typical microstructure in 1-11-T.
6 gb.~ M E M fW Yf~
. ? f ?f h
Qf u m@gid,.NIf%dM.k.fh'Wy.hhC['% _
.A 9
- wme -
ymg.a su
.y;p sh; m y
- %Y $$a ; g] 'm,M ?;,
n i '
y ; g ; wn cu# @M- @A]i 7lQ _ n.
- /**3 a
F
+wm x.
.., c. xy
- g 6
- . ; 3 ; f $
'j #..:
-t Q Q : Q M J-4 2
> =,.. J g
. g.y w-.
.,g A-
- _.
- 4 4 +-
.;g^'
N-w
- .m
^4
%.[j.
ta.
o mA q% y? w y
m.t
' ' - Ay: ~.,p M:7 Q
- 4., _-aml ' ;f 'j.. %
{
__ l l
Vs g*-
f* -
a er
- ., 3 by -
n
,t 4
-w.
en k.
g,+[gw A
- '=c--.
'Y
'. 4
,f er
'_ f '. 4.
.],
. y.94'.'-
4.,4 n
f
? s.
' 'sSO'_
f.
. ? '*
kE
.yg
.$.3 t
w
., : y,
4 4-
- f.<.
+
fr_
C u
- k
.w w
- * " ye,g. : y.
4 J..
g^ps
~
c
,..r
-S4 s
w
9 ai ~
,y,%,_
., k) ', 4
- 2 h.
n W
p-s 4,{, & *r g g
~'
' i w
.4 y
sa a,
(
y 4
. g.:
, Neg,9f 4-~
. *,.
- 3' f htkgg., ~ \\
N u-(,
% % Fw--.
y%.
r;p p;p:A d; O
~%
y.
n 4 oWF -
n, M;7 [4 Wm[.,9hk.
Y$qy g
4.
jN
'f S
?
-WlMl%phg l : 3(
4 f. 4%.
3
, 'f_$_b.,,.s F
%V y;$?$ ^ l m
~^
- t y
',"Q
.<W. bl fl?
,a i _ g - yf: +
y 94 m
p$
1
. m ee
~
q.
i 1
+
e w
e -
N h
g'
!=
3, 4
w
, + '
[g '@;f y
...e 7
)
.,+
y
^g
" wy -
},a{ctN 6f)
,9
-a...
4g,
.f w
- ?,+]
y s
'T*
2 A
T*
j.~
gy
- u-y y
t% a, c)
.-, a
~
z.
Y bh.\\
b
.m-e,,
. ta:w t;
.-ib h{ k-kg*
A i
l'
(
[g [f y
- h-'
M J
o is y_i;y:x$%@$$q%#
i 2-4, Y$$a-AQ-y (%.$_81r b.
9 j-
-p m
y q,, -
dt!W)y/ -, q:x %,.%=
E G, " *.. V;_Q%9Q.
a' 4
eo
- g w q,.
.c..
= -
p -
3 e ' o-p e g %j.. gym e
y
.~
.'...-q, H l,W Q 1 f&: _. T Q
'" W.
, [%
n.h C
- ,g k - g sw
-%Qo-5 17 p m.y, q.. A.
f9%ft y
4
.s p
- 2 a..,
N
,, ' w{%f y _.,. n%: * -.,,
@4 4
=
.'o g.
N f sfc...
- if y.
- - sy
.p m.
t-7'; s s e. u m e f;.' l Y t.lkEl.kN
_ [Y % %
p f s
~
4
.. y C) o y p, g <g * :
E E
~
g r. y
-.m r $4 u.
+a-
. f 3
o
.c3
-e f
~ h:5.h.$$.n;&a:/,,44k %,
~
g L,L l '. l e '
1 J
62
.A e
a
'h,
} -{f.,"}-} V
-*.-a7+g g ;,
- w l
T'
' * + s Ny. ". ;. r ' _ ;9 7'.
% sd
- y% }
[
Ibz
.g
-c
, w I,
?~
g;y gaig [g i
y; t
.x.m:3 w~1 +.w Aw%
.~
- %n n
N*
rFN b
) ~, c ITA j[ 'ff$ !9ib y 97 g 4 p &.,j h mC-~ K y%,y R..Q%"? gjf M ;
19 n jafmq.
Q 9%f a,m,, u mu w
1 x ;y,
w.
l ;g%.;Mb;;%[F.
,n ui'a 4
t'wf-
'Ve g: %q$T -
F M Q.S
?
l
] Q
- y Q w y Q) Q @ y Q ){l
, - ' q^ %1J. Q9
- nyy 3
g_m e ?< A
.,;.a y*
a.
D
,;;. &qns 3w w%- n m es&~W A:
?,f yp&n ;gh, i as
-, ~
s p
gh:
8 (a w m.,. w w,,. e--.. w y.
mg y - u
.3%
-m y mm x
~W lm.
- x. ws.
- m. +..
ww#n 9:n..a c
n f
- (-
~ 3. t e49 wg w.,,,s,za:gw%e,, n.
w n
49L
. m >e,
R'f N f ~;L
% w& & N;;.'k,,j h t ; &. n, L
w q% Q l%f., %m%&+Lzu:f;, %g$Qj;A N
-w w n am m.
cyme e
em e
f*
"hy na.
a 5
s m'lyl
~sf?N
.$l
& v?,
- g.,n q i
4,:.g.;f-EhAd,ldAM2N;%$%gj)y%
[*
ggy zgggy
.[;
a n
a r.w& nu Wty w' t
19&9
- a..
c 1 4?--
'W e
%;Dw:%:.?. e r
h p ?^ Y.i,N b k. % e,y{. h
'n vjffMfk; b. ~
3
~
fg-
%y:*.4 &,e? gi%DfQ[ d.
4
.b4h hkhhf fREN
$5>~ e$<.=h*X 6
n-aw n,n F w:MA+%.a%g:gh4WyM&v cA Mx W
~% ina,- 4.s g. ye k.
ja g
a
.TQ 9f?
tr~ + y -
.e y
g;.
4
.s 4
x,.1, &+q.a.gJ%m.
c.
s.,
g; a kopnmagL W :y 7
-.. - ge
~
}
. +.g".
r,R +., &
- Q&,%y m
mek v
TR yi
/~ e f
c) o
,' g n,g i_f
+%A. -
g:p 12 g
n y
a e y-W
- s-
}
Sy"}'
y
>~4.
.?
a h
I
,j M.1 an f
m a
- y.hy.
. ab x.
n
-- e.,
v+
(')
p.-
RM g m
'],jq y
m 9
J..- t '
~
M NJ N
l h
V WN 4
.y kk
, d,1,
' 24 4 c2 k%m, P
g
~W %
S
>lw%n$.
o m.
% y a
g t
63 f
f
88E'..
b 9
y B
)
i A,..e! '$ h.
An
! J,
~ wm; 1
,)
9 6
_ ~. s
, h -.
a Mr
'-. Oxf' f, y[.*: Y LR,?
pg 3 g: E'.h,
'x;..s /;
l ' y '
,g E
h{A $ y% q$y:.,S je~*f'D )/h. W,k'jfff9 Y
g A
mW[h,a of,f-
__8 ms n,..
hm p m
w.w g :p;had 1_
i v
Qh. g q*xRnse'A.
M aft Q: e n )~;, ?y$,"; m.
fN ig #
j
\\.1 j
z fjf)p)Af g # y)e, ' "g'n, '
. +
. f i
- QC hur yr a
f % :(.
,r' Q
f -ft 4 r_$. s.;#1R* Na.p... D]h -
'+ * -
1%
s ic pgh f O
w.
we
- c. a x % -
. *r
+
)
.. a(
at p& / g.3.
, [.v..';'f;f.,-n l y4-g h.
w m.,%_&n,g g {',W h_:.u s y e b, (~
vs t y"'%g,_
de
,g,
m
.-&_R 7
{
e
~s r 4
l?O, t#eh4%%5
?
n e b %; p p o + 4 e w w & yw /
GWh
\\
pp}mchgSA'td
- w..ws
'pGd6D T)eng tg94%WW"79
{?e R W g
' 4 l
l
~'$ ?"4p D_Q)"W o%4.#
l<
,' 'f uw tv#. 4
, M,.j.. k '. b V *%,9j'
'4g
' E.,q.a
. ?-)
d
. A d@%f@N&pj=M@Mi{y N
r% Q d
ggh!
hhi i
n$$M,kk am]Nm,r9 j y# % L % %[. p*'s !.yh jO "A i
\\
q' '.. w.
1 Lg*
.E if k~
j 3
n4*$v n9e
,, w e p
[g4 #cg b yI
. op4j n
o
]@MO i
h;
$"E0
- Y 'I8 E
J p-
??
kh f
is s
c t..
d d E : =$
D,f 5 y
fw -
E w' ',s.
p Phg [w#
L; g
o
.g T -' co E
3 thw$e,.
J,3. A od y
i i
-<#b
- M;" ;j+y,,,j f N
o Q':f v k_Q._,
p' W 4 rv 5 y s
% 'c Q$$ > n m
~^ m n
x$ e(d!5$e.m, r aw;j:Mb m Y
9
- cy a ::
a!k:i; J M'. e, m[<qn.#,:2.
y:
o a
p
'y.
t
.V a
m O
4T$[. Sh{.
hbAW-5 4
64 k'
l
,A y. g gerpwp q-}.
gyg g z.m.5 q&qqgy+.~,7,7. g; p
.g
~
~. m> ~ y$;i 0 M Wr.g w.
a r-e v
w
-- ~
- -y
<.-r an : y x.?lw,,
m u
n n
. NN W#.:.-%
h k.j['[4((9
?* I' '
yin 1N
_.fy'
$p$$ff ' f %Ni q$"WN$E f.7,;.[M A~ R. %&, m,M& fi$[9f$'N [MW V.
i iW les is)&% e }Qph!yc 3. n m,m m, keR.Q. 6 ?-i. ' a g_.,X%
g# n >
m.
r-e_...,1
- n...
m,,
3 JYE t
s a
6,,-
V y ;n-4 p %a s-m.g;,gw g y 9.m pfL
.. 3, 3:m ; y*w.p. 4y%a y,,3
(-
gw y,n, > g' s#
o
. ug.f 4
..9 N, +5(-9,9 o.trg.,,j q. 3.- po n;
. w -n p a.g -, %. =
.agy*ysy4{.y#gg;g., gg< ;fg. !M3
.-. ~ p,-
3 4
y
(('
%w 4 a c
UI w.
v pve t w - - <
jg
-o Meta!!ic ingots y
y,jp ;}q.g 4 p.n ~yg.gf g g yj n4, f f,
ng D,p e w w [ g$ ( f ij M, pi p q 7
'a n 9
~
.y
, n p
.m n x.
QM MVM3 dhi*
j p A [7p. u.(c.
y
- %. p; wsq m
c y - m%%@hik ?ff hSO?h$Ohhlg;W
, s s gu.s.&%,7 ;.,
y.
.V,.e t
sin ww
. M,. Q; NKng;g p%g -
gg.
p LT. h.q.yp P
3 h
Y W
5j 0,..,m$w.s 9 g 4_/u"%:x,. AWES ay-m
.., & #. e s
% ME y D...
i ;QQ ~ st
%. C Vb&@, a.p&&; b%:;l6, L fe%> > N;:
p 2(.A w %:r"4 y u m s:s e m c ua fp w
f Mp v~
lw;. F,y wb.;wy r
,e - A gkQ
.. W wn x,y Q J4
(
u,..nmy. 4 uw e./e.,:tyw(py,3 'l ;..
1, r, +4,:,
y... f _W,,,.'
yQ+
j., 4 t *- '
.i',
6-u z
r.
w m n :.e,m,y a;.
.~c v
.c' n
p ep y.., m,3,.... ~
,, g.,m.. -
t w..
..n L"-' f.,
,. z.:v < /.
Lgr.. tL.
4y_m.
3 :.
r t
+ L4 AdskbM"LS%th Wf W A 45y %M&D#R h+T. A c r ~ h 9L :$x "f
-; ~#
r s
n.
.A N
90m424. as polished i
i i
I 50pm Figure 50. Metalkc ingots in ceramic (U, Zr)0 matrix.
2 1
]
i I
65 I
1 l
O t
r f
(
Q$17 ?p4??"WJjy y.(_ $
i
+e Jm f ' '.L s,..d
+
% .t{g.$
\\.,
p[;
~- E i
'Q,
1 o
- n 3 :, 4 Q
1j :.
j
+
.. N 3,m..,
No-> - ;4. *
(_ + 1;..,
u
,5
.-c.
[ ' ;.-h id;,.
. MrIkE6Q.
j(7@iedE5$3 f
3 pas
$4: T+#%
j 4
su A i
e s
sg', m*-
e:e.
+
~5 yt \\Q
- e Q....
^t i,, p-wx; i,,
e a
y
[, : wl W ? g%,
g in.n 4
e jh
'r m.
Q%
.y :'
p h}ha Q '
h
{',
Qg b, d [.i-6 tY
$n 1*
g g
l Qi%
~
~[..'
id.:
1, h
h7Fg [!,..f YQ* 4, l
(5 N.
Y mod 46 gY((.Q, ()p,9 '
e
.-i,,-
aw
.d
-,pF'79e; 4Q
( ':
~ ~ * * -
. +, ?:M%
~~ ~ 4 ' ~
w
.:, ' o z, n.c
/[ ' y.#.
'j
..i r
- 4.,, g@
p
-- 4M A
1g n
' g'N h
- -f:ffyfj ck Qhfh$
h
- S+;,3
{tdifg jj)k Q) n_
fc,, e f s
- [
h.
Qy p-A, g n
s 9
w pu;Q m
g C:}
i W
pi ;
'* g' l:4 s
i
- f -
%,;ib,_
%j;g3
=
e f
4 e%
'f '.
n, 5 c,2 f
f n
a wr,
J-
+
M,.,
-g
'h lg' p.f f
e
,p
?
h ' M9
~ g p
r x p%y.
?
i 3,p "
,,f_
f w g. y
{.8 u[
{
4u.
- ,Aw i
4 Q*' %y
).
w y g't v:P, N
O 4
,t w
~
N-t* M 'T a
33 O
?.?
N 2
F e.
p)r s
%<2 Od y
4 _ww
="
^F A,
)
1 t
/
m 1
V io e N ;~> D t
e, v %,,
2s O
y s
^
O-i 3
k
~.
-m, l
gwW h wyt c 4 g
ygw g
!ue o
o i
A
?
,. j
$Qu Q$> $
h g
+
r2 y :::e q
nCb -.
_Q
$$(r $5.a
%mM g
4 i
A
.ig Vr n
.'"mS.
nl; H
- n..vs d.- M[a# -
.!g?
4
[
w y'.
..d p3 "
,.5>
n g
IhD
<,p ((sy~..kNnfig.. sag 4 ->
m 4
, u:i
, n--
y
'4
-g. o O
i e
i g M. '.W
~
"2
.ae u
.+
.,.y,m
-W 3
.,f E
o c
et
, g.1..
4
,t h
8 66 m
h%
' %T g.
n
.+. :,:
y.r.
, ya
_ pr gy
~*
- c
~ warm
-s
~.,.
- f 8"
h,'
& ? -A m.
L f'y.
h l *Qg.
ih 9 ~,jy.
i_.
49 p
- m,p-
~
..QJ.
..(
. Qg e
m
.y
. y
?y
=
f
. $? a,,n+u
.x.
^ ' *
.s a
- b
' {& -
,,h.-.
R
.};
.i O
{
g f
g y
g
\\
w f
- ,.: -e. )
..3
_,4 m.
-x-
..4 :. -
3 4
g%
ff M
kj[.
, ~;;
~i
^*-
.3 90m428-429, as polished I
l I
I 200pm Figure 52. Typical microstructure of 1-12-C.
'9 0
A.
N,
, i "
g y, ^ *
- f 7. "
- 44;g9;hhkh2gb'~~h gp h:k I.,
,,,g,.,.U,<pp<
-=
y,3 us
~ - ;
w-q a
hY W'.%hsh se bWs w %p f e%wAgg+%uro 3
bg T.jb s.
F#~
ef 7w;,gI,e ua w
n
'5%
k h
'O y,:Th y
Net 4[i%QNs;
.we,4p s,.,
V Mp e
n % Wrtp ifa m#?,%
h ki I
o e
w bes sA,
$adLu@nnh, bE k$ fClP,ef}h
- m%pg -
ec:dlk.{[Q:
o%$&nder h
eea e.
be O w@L j M,%g km;;,
4Ja,..,#,, G fe 4
~
dW' 9%$ A5 ygM
=
h.66R.. Vl?eL'*:h e h
36 8
to f y r1 4
i
,;e 4
. 3 e
pV+[Q Q. qp 4.h g.j% y Q g <y j j
l 6
Fp 7
A: g l
eg. cg%,,; ;
h O a
y t;; x+ ;>
.,8
,e y
E o
wa tIbbd3mw f
da i -
I
- h es it t
68 r
t l
+
Appendix A SEM Examination Results m
S e
A-1
p FIGURES I
A-1. Sample 1-11-T whole sample secondary electron image (#2577).................. A-7
)
A-2. Sample 1-11-T whole sample topographical (#2576)........................... A-7 A-3. Sample 1 11-T whole normal alignment (area of interest) secondary electron image
(# 2579)
...........................................................A-8 A-4. Sample 1-11-T whole normal alignment (area of interest) compositional (#2581)..... A-8 l
A-5. Sample 1-11.T ROI #1 (reduced area of interest) compositional (#2584)........... A-9 A-6. Sample 1-11-T ROI #1 secondary electron image (#2585)...................... A-9 A-7. Sample 1-11-T ROI #1 (reduced area of interest) secondary electron image (#2588). A-10 l
A-8. Sample 1-11-T ROI #1 compositional (#2589).............................. A-10 A-9. Sample 1-11-T ROI #1 dot map of U (#2606)............................. A-11 i
A-10. Sample 1-11-T ROI # 1 dot map of O (#2598)............................. A-11 l
A-11. Sample 1-11.T ROI #1 dot map of Zr (#2592)............................. A-12 A-12. Sample 1-11-T ROI #1 dot map of Al (#2594)............................ A-12 A-13. Sample 1-11-T ROI #1 dot map of Cr (#2601)............................. A-13 A-14. Sample 1 11-T ROI #1 dot map of Fe (#2599)........................... A-13 A-15. Sample 1-11-T ROI #1 dot map of Mg (#2595)..... 4..................... A-14 A-16. Sample 1-11-T ROI #1 dot map of Sb (#2603)............................ A-14 A-17. Sample 1-11-T ROI # 1 dot map of Sn (#2604)............................. A-15 i
A-18. Sample 1-11-T ROI #2 topographical (#2610).............................. A-15 A-19. Sample 1-11-T ROI #2 compositional (#2611)............................. A-16 l
A-20. Sample 1-11-T ROI #2 dot map of U (#2633)............................ A-16 _
A-21. Sample 1-11-T ROI #2 dot map of Zr (#2622)............................. A-17 A-22. Sample 1 11-T ROI #2 dot map of Ag (#2634)........................... A-17 A-23. Sample 1-11-T ROI #2 dot map of Al (#2624)............................. A-18 l
A.24. Sample 1-11-T ROI #2 dot map of Cr (#2630)............................. A-18 i
A-25. Sample 1-11-T ROI #2 dot map of Fe (#2629)............................. A-19 A-26. Sample 1-11-T ROI #2 dot map of Mg (#2625)............................ A-19 A-27. Sample 1-11-T ROI #2 dot map of Nb (#2620)........................... A-20
(
A-28. Sample 1-11-T ROI #2 dot map of Ni (#2626)............................. A-20 A-29. Sample 1-11-T ROI #3 secondary electron image (#2612).................... A-21 A-30. Sample 1-11-T ROI #3 compositional (#2614)............................ A-21 A-31. Sample 1-11-T ROI #3 dot map of U (#2649)............................ A-22 A-32. Sample 1-11-T ROI #3 dot map of O (#2643)............................. A-22 l
A-33. Sample 1-11-T ROI #3 dot map of Zr (#2637)............................. A-23 A-34. Sample 1-11-T ROI #3 dot map of Cr (#2645)............................. A-23 A-35. Sample 1-11-T ROI #3 dot map of Fe (#2644)............................. A-24 l
A-36. Sample 1-11-T ROI #3 dot map of K (#2647)............................ A-24 l
A-37. Sample 1-11-T ROI #3 dot map of Mg (#2640)............................ A-25 A-31 Sample 1-11-T ROI #3 dot map of Nb (#2636)......................... A-25 l
A-L. Sample 1-11-T ROI #3 dot map of Sn (#2646).......................... A-26 i
~
A-40. Sample 1-11-T ROI #4 secondary electron image (#2615)...............
... A-26 l
A-41. Sample 1-11-T ROI #4 compositional (#2617)............................ A-27 A-42 Sample 1-11-T ROI #4 dot map of U (32663).............................. A-27 A-43. Sample 1-11.T ROI #4 dot map or 2.r (#2652)............................ A-28 i
A-44. Sample 1-11-T ROI #4 dot map of Al (#2653)............................ A-26 i
A-45. Sampic 1-11.T ROI #4 dot map of Cr (#2659)...................
. A-29 A-46. Sample 1-11-T ROI #4 dot map of Fe (#2658).
................ A-29 A-30 jl A-47. Sample 1-11-T ROI #4 dot map of Nb (#2651) l A-3 i
i
i a
1 i
j I
j A-48. Sampic 1-11-T ROI #5 secondary electron image (#2618)................... A-30 l
A-49. Sample 1-11-T ROI #5 topographical (#2619)..........
..... A-31 A-50. Sample 1-11-T ROI #5 compositional (#2620)...
....... A-31 A-51. Sample 1-11-T ROI #5 dot map of U (#2677)..........
................. A-3 2 3
A.52. Sample 1 11-T ROI #5 dot map of O (#2672)..........
...... A-32 1
A-53. Sampic 1-11-T ROI #5 dot map of Al (#2668).............
....... A.33
}
A-54. Sample 1-11-T ROI #5 dot map of Cr (#2674)...................
....... A-33 A.55. Sample 1 11-T ROI #5 dot map of Fe (#2673)......
................... A-3 4 A-56. Sample 1-11-T ROI #5 dot map of In (#2676)...........
A.34
^
A-57. Sample 1-11-T ROI #5 dot map of Sn (#2675)............................. A.35 j
A-58. Sample 1-9-A ROI #1 (area of interest) secondary electron image (#2678)....... A.35
(
A.59. Sample 1-9-A ROI #1 (reduced area of interest) secondary electron image (#2679). A-36 L
A-60. Sample 1-9-A ROI # I (further reduced area of interest) sewndary electron image
(#2680)
................ A -36 A-61. Sample 1 9-A ROI # 1 topographical (#2681)............................. A-37 A-62. Sample 1-9-A ROI #1 compositional (#2682)
......... A-3 7 A-63. Samp!c 1-9-A ROI #1 dot map of Zr (#2684)......
..... A-3 8 A-64. Sample 1-9-A ROI #1 dot map of Al (#2685)..
..... A-38 A-65. Sample 1-9-A ROI #1 dot map of Cr (#2691).
... A-39 l
A-66. Sampic 1-9-A ROI #1 dot map of Fe (#2690)......................... A-3 9 l
A-67. Sample 1-9-A ROI #1 dot map of Mo (#2696).
......... A-40 f
A-68. Sample 1-9-A ROI #1 dot map of Nb (#2683)...
.... A-40 A-69. Sample 1-9-A ROI #2 (area of interest) secondary electron image (#2697)
A-41 4
A-70. Sample 1-9-A ROI #2 secondary electron image (#2698)............
.... A-41 A-71. Sample 1-9-A ROI #2 topographical (#2699)........................
... A-42 A.72. Sample 1-9-A ROI #2 compositional (#2700).
........................A-42 A-73. Sample 1-9 A ROI #2 (reduced area of interest) secondary electron image (#2701). A-43 A-74. Sample 1-9-A ROI #2 dot map of U (#2712)...
............... A-4 3 A.75. Sample 1-9.A ROI #2 dot map of O (#2707)......
... A-44 A.76. Sample 1-9-A ROI #2 dot map of Zr (#2703).
...........................A-44 i
j A-77. Sample 19.A ROI #2 dot map of Ni (#2705).......................... A-4 5 L
A-78. Sample 1-9-B ROI #1 (area of interest) secondary electron image (#2715)...... A-45
(
A-79. Sample 1-9-B ROI #1 (reduced area ofinterest) secondary electron image (#2716). A.46 l
A-80. Sample 1-9-B ROI #1 (further reduced area of interest) secondary electron image j
j
(#.2717)..
............ A-46
{
l A-81. Sample 19-B ROI #1 topographical (#2718)..............
........ A-4 7 A-82. Sample 1-9-B ROI # 1 compositional (#2719).......................... A-47 A-83. Sample 1-9-B ROI #1 dot map of U (#.2734)......
.... A-48 A-84. Sample 19-B ROI #1 dot map of O (#2726)..
............. A-48 i
A-85. Sample 1-9-B ROI #1 dot map of Zr (#2721)
A-49 i
A-86. Sample 1-9-B ROI # 1 dot map of Ag (#2736)......................
..... A-49 i
A-87. Sample 1-9-B ROI #1 dot map of Cd (#2735)
.. A-50 l
A-88. Sample 1-9-B ROI # 1 dot map of Cr (#2729)............................ A-50 A So Sample 1-9-B ROI #1 dot map of Fe (#2727)..
.................... A-51
, j A.90. kmp!c 1-9-B ROI #1 dot map of Mn (#2728).....
.......... A.51 l
A-91. Sample 1-9-B ROI #1 dot map of Nb (#2720)..........
.. A-52 i
A-92. Sample 1-9-B ROI #1 dot map of Ru (#2737)..
.............. A-52 i
I i
A-4 i
v
4 4
I Appendix A SEM Examination Results l
Examination of Figure A-1 for sample 1-11-T indicates that five regions ofinterest were examined. They include the edge of a large pore, a small pore with a metallic inclusion, a mottled secondary phase, an apparent inclusion in the melt, and a pore without any secondary phase i
present. Examination of the dot maps of the large pore, region of interest (ROI) #1, indicates that the sample is composed of (U,Zr)O with the presence of some Al, Mg, Sb, and Sn in the f
2 matrix. In addition, Figure A-8 and the ROI #1 dot maps (Figures A-9 through A-17) indicate the presence of oxidized F,: and Cr inclusions in the matrix. These results suggest that the Fe and Cr are probably the remains of nozzle material that did not have sufficient time to be distributed evenly in the melt. However, as discussed in Section 4.4, constituents other than U and Zr are present at only trace concentrations in the melt.
i Figures A-18 through A-28 show ROI #2 from sample 1-11-T. The composition of the matrix of this sample is similar to ROI #1. The primary difference is the metallic inclusion in the center of the sample. This metallic inclusion is composed of silver with trace amounts of Zr and i
other metals present. However, the other constituents of the control rods (In and Cd) are not present. These data suggest that the control rod material had been heated sufficiently to remove l
the more volatile In and Cd from the Ag.
1 Figures A-29 through A-39 show ROI #3, a mottled secondary phase at the edge of a pore.
f Based upon the dot maps for this material,it is composed of a (U,Zr)O phase that is rich in l
2 l
oxidized Fe and Cr. This phase probably formed during the relatively slow cooldown of the bulk debris bed. Figures A-40 through A-47 show ROI #4, which is a pore with a secondary phase that appears to contain relatively lesser amounts of U. However, both cases are apparent evidence for the relatively slow cooldown of the debris bed that allows the lower melting point l
materials to segregate near pores and the probable formation of lower melting temperature j
eutectics near these pores.
ROI #5 of sample 1-11-T (Figures A-48 through A-57) is a pore that is not surrounded by an apparent secondary phase. However, the dot maps for this sample indicate the presence of Fe,
{
~
A-5 i
l l
i Cr, and Ag around the periphery of the pore, and the oxygen analysis results suggest that the Ag is oxidized; however, further confirmation is required to indicate that the oxidation potentials t
. were sufGeiently high to oxidize Ag during the accident.
Figure A-58 shows sample 1-9-A, and Figure A-59 shows the first region ofinterest czamined, which is a mottled region containing both high and low atomic number material. The dot maps of this region (Figures A-63 through A-68) indicate that the mottling is again due to the j
presence of Fe, Cr, and some other metals. Again, the presence of these metals is probably due j
i to the melting of structural materials during the relocation event.
The second region of sample 1-9-A that was examined (Figures A-69 through A-77)is a relatively homogeneous phase containing U and Zr with possibly a small amount Ni present.
i J
r i
Figure A-78 shows sample 1-9-B, and Figure A-79 shows the edge of a pore in this sample.
The dot maps for this region (Figures A-83 through 92) again show a relatively homogeneous t
(U.Zr)O2 phase with the presence of some Fe and Cr. These data again indicate the presence of a relatively homogeneous matrix that may have some Fe and Cr in the matrix or some localized
. l l
4 i
accumulations of this material.
4 L
i I
l i
l 1
t 1
4 1
4 f
l d
i ij A-6
+
i I
(
p l
Region of interest (ROI) #1
.. +
- g # f ;;-
- ,..
3
.f,
,. q; 9 '?is~tz-zb
~th;4.y*f,' 4 0"
4ki
.,,,. :, f* b-
-g..(
..~4 m
pgg,3 A
NI<
ROI #5 f
p.,4; 31::)>,
.: 4 a.t ;
edg s
,4 t#
e s
'p?hk+ 0l'io
- 0,'pl' l
N*d$$EM YI'f #.2@' 4 ~- [V' ' " '
ry i
s;Q n l 6.y;-
M..k,'
ROf #2 _ _
s.,
/ nh:a ;
~.
m
..,b[pl..
pA;%.
f ROI #4 l
., h.khMih)/5h[g:f*" WE a.7 - gg. 9E d%
FR w 4.
., p_,O i
Figure A-1. Sample 1-11-T whole sample secondary electron image (#2577).
i i
'.+. s.
- .s T
.n: -
...,,:(
{'
k
.t
'O
.J A
i h
.?;pcpp,97Fg:.;;; 4 h
pyy ng*.f.
pyy ggghy4#siip gyy ppy +*M Jhf t -
Figure A-2. Sample 1 11-T whole sample topographical (#2576).
A-7
=
i l
l ra*"wwwda,2? : n :
.,.- g..
e4 i
m*.
r t r-
=
l 4.
g j
g w
+
1 1E a
~, -
e 4
- l
.e c'
i 4
e L ;4 6 c (8:. _
e;y&f.sj y:
hk.
t a
..@ 4 gy m,
~ vig] 5.. %;jtf-
+
y i
9-a t
j 4 * -.
- ~
t t
ft:
-1 p.y 9
f_
4..
s*
e w.
7,14 :
-e _
s,
1 th. p?PMt y g j
3 5
- l3 p.
. f.i
.?.~%. %.n g, f y:, :?:t.yt.
w.
f.
- y p
~~~c. j%j~.
$Q 4
n Figure A-3. Sampic 1-11-T whole normal alignment (area of interest) secondary electron image l
l
(#2579).
t j
i 1
e
[
L i
.l s*
i l
sf7V3 '
- 1 i
1 3 e 2
c e
e e'
,x 4
kp
?
t a.
"o e
se i
l A5 3,
L 1
l 4
g r
@..r M.
. I
.Y
~
- l n
Figure A-4. Sample 1-11-T whole normal alignment (area of interest) compositional (#2581).
i t
?
A-8
1 I
)
\\
?&.?r}
,a
\\
$3%q~
w
\\
S
?
g:.
- r p
,. g y,
s ;.. "s.
.~
,L p i,
.s.
4
~
3
,,N i
., y '.-
l
' A' q t
r Q 't
- b f
a7
\\
(
\\
3 t
l' i
- fx
/-
Figure A-5. Sample 1-11-T ROI #1 (reduced area of interest) compositional (#2584).
i i
L e
i -
]Qq g
- [ g. q q:z. y.
,t,.
j l
.c.,
o A
.. ~. 3 +gg.1c vsa p.:
J
(
5 4
.j s.gghw[4 g: -
en
.:.$L
- v ',.
@e4
. g r
- p*
s
+ w q+ -
<n.
s
,3*
bm fr 4
i
.A I
,n
,i
. k '.
.?-
- i.
.. - >, - a -
gw'
... u..
- .u. [e%,,'-
D.;, 2,.,-
.. re-g 8
c a.vt.*y '
=.
,y_
- 1,ny.
g
.s.
h *,*k. +
v,' ? s 4-w
[
,f, #7 % s* n y3. h, h v.
kyhpth k,..,N -
o e.
r N
c-b
- g c
w..y-ynde
.f.
.c
>?
y
,y,
_y
- z
"'0
.t,
s g1 A,
+
,... _ ' ~ 4.-,
.e
,i.
,; ; ;r a?
J i[hh,
- <-.-r_
F
^
7;
.b d K.
y
+
. a-
,.m j
Figure A-6. Sample 1-11-T ROI #1 secondary electron image (#2585).
i A-9 4
r
~
i
\\
s a
.r
- .f u
'. 4-l
.y
...: 6.
.~
- 7
/'
Void 1inmg ___
___._____._.___.j..
..\\' -.
My,
Y
,A. Tj '
.y S['4 e
g; I
t' Y
V Q ( Q g $p' &,4 4 %l g *?
h qn.[' [1 24
?
.N 9
A p#@St$f"A..ccee%4 i
W-
~. jk.t ' p f,,.g.f j f. f f,. if * ?
y ;r pm L Jif;isiipds$,. y&tdhA$,1Sa w
.s-N J
l'igure A-7. Sample 1-11-T ROI #1 (reduced area ofinterest) secondary electron image (#2588).
1
.r e D, j
'4i i,. ? '3 =; d.
+
[;,",
Al, Mg i
. ! $ f :gl p *y ',.n m
- ~
l 4
.m
]
- ' ';. A f / y,r i
J4 I
q j
i s
i S
<, p =;, J, _ ;
..s i
s
,, en e.
e" j
.e
=
3 re, cr
~
j e,
r 1
.i i
e 49 Figure A-R Sample 1-11-T ROI #1 compositional (#2589).
i A-10 i
i l
\\'.a RY ' '
.s; W;h?
O
-.Qfj{.
) k'f 9.t,;',5h s;
y e.. e.
v,
,?
I2'
- .iu;P M f[6 %l9 }y% 9 H Sfs 4
... ~
- 5+,,. a :,;ikt%
gb : l, : L ?,y p* ?y 4:.';%?D%$. &. m 7lyjQQpf%y&
.8 m. n. w w w
- u. 4 su +:
wqc~ca a
.. r-r
-, ag a '.n.
c.
k.;...xf7.,/:)..
. wu r,s v z.
.f r.(,y.
lj 'y r g p,; w,g;yf,'?g[J*pg.m,.c w c_.;,#!n;.
7'u -
.=jf 'y ;- ;
-., s.
29 j-m,a;gpg,.qqegggy;s.l*t"Q, n.
- q n
,. ui...o,y c i,N n~
- .t
( *!. i%fpyi Q;Qp?,g
, ' x, ;;_:
_. fr s
4 n.se
?
,. ~:;yu
%s.t:
.n t,,
. s
.:._ : ~s
. e,-
w
..-a c.:.,, - :+% A:,:'
.4
~
Figure A-9. Sample 1-11-T ROI #1 dot map of U (#2606).
l J
W i
1 i.
e I
i 1
j--
1 I
i l
4 I
l 2591l 2MV
'X500 1!Na tin 9 i
t l
Figure A-10. Sample 1-11-T ROI #1 dot map of O (#2598).
1 1
4 A-11
4 q
M/h wy )%lw.c:
y p.M,gtM,j.T M JG j
,4 mm
,--'eb p c Q,
'?; '
+?
f m.
. rs e.y w%.m,r :w,u. - :p m r
&,? m.y, n+ w*mn.. ; a a
.p,...?.,
r
.m 9. w c
~fv ".. n. ;; n a m m
my m
vo C fn,R.-, w o ).,m, ~e.s. n.
u
+. 43a, >.,.
u y a s.yog evt n#
Q.Y*ks. Y 5&y s s;,m.,
~
up 7 ^l. u.a w
g&. G. -
. ; 'W -s V, ~ %;.
W,f
^]
C1 t.,, T. P 1,.*A, 4,+..'..y; gf#r,c. :M,- #, ~.h.,gz M
.n,a +n <
%. a.,
.,e.
e.
g g-ag.
a.
~-
e, w.A. a. p
,.,e,m,. 4.I r. K,v;4-. ~~3 e
gy, +
- h. v-.
4.
,.2 s
- y vi
[
.;,h w,-
^
- h..
[
n c.m.4ws w', p
- ' a, e< o,:,,y:v> - ; w" n,t -
J^
re -
. d,.y; 9 :v"r - (.:
.n m> > r.o,
,\\ <.
- v. m-c-7 >..e
.p s
.-4 ap
+ + 4 r,, m fy) p,wy e
2 u.
u
, ag mww' 5m s(,.:p,/. wg& W%gWy w,nAvp 3 g
3
.. g
. n e m a,.h.: pg ; _ynwmgy phA
-D ; W W M ;,,.w a..c a a?%s. g$".squj n.
w ; b g~.. M Me RU s w,~ 2N:
w rAe M
a.4+4 >
-a e; $;. d ef '." % - N@u v,
- v. y 1
. A.,
%)?S e ~.q,,
ua g1 gf;"n./. L '
,.>.s.
o-
- g. n. 5, p* 9.~. q ;
^
.+
3 p{r A
o # w w%',j,% w&,.%*h@ NN % $n1M o#l f; g.,.fM.
.Y 4
- W s,, q m
g MrMw.
g.
N.}a & p..m%lO.f.w. &.p.
q owa m
- w o
- &. nE*, s<., Q T;QsQ LWW
- bW^*
aW., -
N m,s w4:..
w.v. -
v n ?+ s A / ~n.O.. wm _
MX ap b Q %'% Ph>, rit v
b
~* e -. :
' e- ~,
W & h S :y 'l'Q'" q. N')g$Np 1 m a, p:A Ql h.h( w.,
- v 'u :
s
~v c
n m p. w w. y y1,a m..a 4,..,J W W' Y"WlY if M
\\
in -x
fk %
Q&'v. 6 L 5;;m<lyl4.i K
6.-
' f;*.
' wly$w
- Uf w
.M.;v
?v@y.an H o ~Vg^,a ?.,.-.s.'.,,m,,~.4. in,, a, m f,,m,&,. % mg e
p s.
. m
..- ~Q ' g :.. u,,. f,)w=f+.e f L 'wq c.:, ".,,.s /..-
s.
.h. ~
~ - e 'l* j
- U<>bbeM -' c'u. O W
^
e) /- d.)-ok h4 kMDe ky pn.a#14 i ww e 4 Ash J6 h~.= Ni N b'd./.NI %#4JON d 4 e
4
.r
's ie Figure A-11. Sampic 1-11-T ROI #1 det map of Zr (#2592).
m.mq,. -
9-ry
- y. :y pyy}w.eg m,y ft L,5, j
-4 n
,, u m @g r.s-g
.j.. j j~.
p.9*
Q...-
c-
_,. K.. Q
- y..
m~
. ~
a.
.c -: - n. u.m.,q,;2,,~gw; - ys t
..; ;.1s ~ s.n.:;7,w.yem, 7
. sa
?
. - s m;, - a 3at,
,.,& :,, C4 9 e%y'W.. r J.,, )
4 Q
3,3 h,..'
i 4
. "g A
.w &
.b c: 2.NQ
'h,.c. - ;.
. A :* r ". ^
.. :s, y.%. g wy;d,.ltb,,, a y 3;.w, %&#$ a DR t
g,..'.
"c-r., $y
&&m ya e
h..,,
n
.%pg' DMV4,m, f ^
np 3 WA. f
&~
!! (
p e.f.
g
.e f ).
-Q,g Q qQ 9 3u s
3.M, ;........ <
- n. v,,,n%a.a m,Ay:m.. ;s w,...>
w
. x
.g n y(..
y v
ng }pg)+@j kijgQj o
.Q p..
%.x V.y y, ;
a,,
w y y ps4 :3 ;pc; x,.yagw@gn%@)4.@uwsm 4
o*g.
g-g m
g@&c wqs eg p
n < m.w.a q g, + n.m~,~mvm ;yyg:t a
em M.&apw u.
y a
.&, > v.&'{ &. s "*.&u n > <* W c, + r.w;** #
y+.Tr'r$mn.. J. % c.
a
. w vn > n+.,
m-a.'.[eq N&
v),y..
- w. w m~,.&._OA5
- a s4
.. %. j' a- _ v ay y 48
+
7, s r #. 1 w e n a m, n m q.# m. h m -w A g,.' w 4. fr W ~f (
' 'O
- L 4
?
. 1. d,,w, h,e &m L.n'.. V_A[ ltA.~ g, r%'{^'
Y (P Q
,+;s-.=h n
.s m: Mr i.
v A+ cS 4
ig e
m.--
W t>
eqwM, m.w;gy#n,,Y;y va q 4
mmp o
Ny g M ygw
- dWm.sm gp %w%y%39.Qbi %w.g;,,.,,W,y(Q%+m^QA;+w/@
j%g '.y. 4.e%, ~t q e.sR k k
.a 9
w w-
-c pw@ Z g
M...t mwe + 3 C y w.g W M W $w ~.~ w m x@ y~ @-a ;
rm
~.
W Zb3 MMM w.xp.w y M w ngm.n,
.g p g %g p_m*s n
cw c-m a awn-Q fe* w m w 3,;.m p;; -WQ. g.'9 n,y f* Y..*4 ;w",5'i. ~_7.k./ h-?
.. v.
( m'.);'.Ne)(p}. r ?y;::$o., D Q
$$ ~
.,, e_g. n >w. ~.m
- 6 e.
',* c
-v.,
c,.
.2, o f <L - w>,.... %.n.
y.
9u
>c r
wg,s1-p -.sa
,3 av:
a e
M 0 $ $$hy e, h~e.4, D M h,t$ d A M U Mw m
w,A MW, h5)s*W.
F. 4 e
MEALM
.n,,
y.
Figure A-12. Sample 1-11-T ROI #1 dot map of Al (#2594).
A.p
]
I; 3",
L 1
i s
+4 5
=
?
g-
[
s d
M.
l 26&1.?JKV X5M 10Pa H39 i
Figure A-13. Sample 111-T ROI #1 dot map of Cr (#2601).
i.
j t
4 i
1
. R y*.
' A M.?iad
%d a
1 M
,.? '. %%
<m
- 3 V t.
]
(; yre% 5;$
e.
k
~'s 4
.;g;A.;' {...;,1
v M.*
1 1. c Pc 4..
's
.:; gf fg 3
I fF N../[i)G[:wrv%f'f-
- M Wii -.. M *'k 's.
Wh,
.k
- w aw
-m +2p,3.r-, 9.$;
m-x 4,
ae#
r ' %f.,,. {9 m p m...g./ a g<j ;uqq; p
t,1.y&..
. b ggg'.71,.jQ -4: r,<,
.nh v gg,.o% py, op,
.~
n
~
. w.
, X..
I
. s{T-@:n 4 -t :,,
.s f:1,,
j iikg's ny -i w W.
e 3
.p fs:Mun=..
p%g Ap Y.rp, :
asM;jd%q%:<.n au vpp
-w' i
.py BM r M.,;.-
%ea4(tyRg,e#
g-
. M,.v:. 93 t.:
i h
~*WA m.MN u,1"yMn., >, a 4 - a 4.m@w. s Mc%-y fp%q %fG4:gg;y &p@;fg&.; y %%Qgpfp.
o6*
i v
"2 f De DgiAlf _<
og i
?;r* -
r e.h.%w~we,p -.
A.e-
,t e s. fee.c ugp
.c w y
e s
c A
p-n...c4 _, 5 lv s
s-..
t s
(@5%w#&[mgg 8 R M.n'{e[dh v. pgw a., ng a$,Q{$$hls _;!Afk p'Q$l ?. _.. wm
? * &NN ?
- $;f l
- l 1*..
Zj' 4
h. w,[ p, 4
py_
gh hg;&:x w 4 p
m x*
a N1 h4 C
jhh 44 f
- Q fd??N }yi, l
i k
~
i
)
Figure A-14. Sample 1-11-T ROI #1 dot map of Fe (#2599).
i 1
a j
A-13 4
e
- . ' 7.r- - '
p w
..-p
>. f.y
. ;;t p-
, min
- f.
e-l' s.g' ',f% E
}...t s' h f, n,;
y
+
p y:[
~-
z;'a;
?..
. ta si.
_L.
?
',f st a
.e ; >...
- g.. p.
4
.. t'.fa 4 ", h?% .W,3 r.
- .~ & l
.g'
^
nt. _.
>: e p ' p+
..:s' y u-5
- kf;;l.
- ~
(V;
. % ';.>klF%
.[.f t t '. '
.(*
kh
.c ;
(
hgh D '7 h:h.,
b3 kkf ohm sf%h hff b bN
.i w.iwIb !&E btb Figure A-15. Sample 1-11-T ROI #1 dot map of Mg (#2595).
l f, yW?.
". } ;; ':
'^
' ' ' ' '.' Tg-Q. _
- ny 3.'
, ; y. ~ _.
?RW e-
~
w; ' s pq hk:,.
.. ~.... V:sf.# ? m: f
~
- 4 y $.1,.
.' - bl@g
]
L
ph:q.
- tyg3;
,g 79
.wp
.. g u
$v ng,t., - [...
n
. ; ~ f.:
.. y; -z :t.
.. 7. - cy.
yy
.h+y.g,I p'h,,'Ef+ :,. ~l l
^
.I _ _I :l';':l '
. I.: _ q 5$
pfk'g&_'y;.:
?'
1.
x.,q');..;g.y yg,..;.l:y. f".4gg", 'm ?... Q
'V-
+
g
-) ?, ' f f 72 Tl:s.
fY gg j
w (c$h ' kh$$f ' S
%${W"h:gg$y.%Q'j:. bits /w
[ bbl.$ :,S O A M / ig t
..~+,V
??
C *:
9 C
N i$$
s.
~
Figure A-16. Sampic 1-11-T ROI #1 dot map of Sb (#2603).
i A-14 l
~-
i i
4 d
I,
)
i, t
i
)
A t
i
(
i
[
=
' EIt4 2(I N ltS!f1 i!we L M i
i
,i i
Figure A-17. Sample 1-11-T ROI #1 dot map of Sn (#2604).
4
[
l
,$ g y;7pr..y g7 p -s sa.
m
, t..
.,y.
. 4 : b, a t
- ..,j, - 3 ss
,3 :.
- J.,F. ; 4{ r5 [,($)$ %. $ Q F. ~4 *?
.'d.
.., l r.
r'-
i-e y
- p'._&-
a,
.l.,
- ,}-
_- g j
e
~
s 9 i 4*'
o,
.e
- u-
,7 y
> M, : Y )WQja,6 6' A' 4-
-/
,.e
'g<
g e n '. (&
,=
Nb, Zr. Al, Mr. Ni. U, and O i
//rkr$w;M} @$j7 Hip (yN - -
a '
.1 7
i f&
%% ^
. ylk l %,. p l
3,- 3':_pj;:y: f p[ _ $..
t
.c
' y y v%. f
. hp. '
g@ 't
.: n y
o, qg i g. n-
.y.
w
. - s f5 f h
.s t.., yfgf7.
3; }2
^
Ag
=
!= n ss
-ty/ad;m;ss[u.
e g
.c i
m? / g, ',._;%$ydp_ [9 klyR.ly%' ~/p TC, CT
.i Q9%4 ' ~4
'On ;
.v,-
,1M
- f.,..
j.
+n-
.%e
~
t 1
m c
3.
4 7'e N 3,g f;;"% ',4:4. e..f,e s 7 m i." '
.f
-- 4 5
.s
- 1 v.
2m t
e
'f r j
l e
h i
i 4
Figure A-18. Sampic 1-11-T ROI #2 topographical (#2610).
i I
i A-la j
+
[
}]'p'~W lW lA '
M,}c-%ffa s
b;t
@' k N$Un
~
~
Y.{f 7
?.g kg-9 x *.M
~
%! 's e.
9-f.32 py:
A-4 A
?
L:.
?
ft' YW455&
idqisAMWM Figure A-19. Sample 1-11-T ROI #2 compositional (#2611).
ggg. --. ~'; -.
g yg-]..
wcy p.s gg.[
... [
- '.i, pi.
n w.
s 7N-ej
. p;y&n.:p' pis, q
.7
. g.j
- 4 n.&
re
- g? y, a cg'R = %
^
,.D
~.
Sh.
i ~ L 1;?$Q o
- j 1
h1 -
-.y 4:...,.
x-e eg<p-;... g..
s p%p.
+7. ;g.y %;g '. m-n,,,q -
~
q '-
q ;t..
..,. y
?
h]& 4[..
..:- e Q' J E R ;
Af f$$
Y 3
0$%.%#Q6;%; m6?Mf$$d.e!k%%4,.y.ff..s+4(#W4fgfsp f
7 N03T4 p? g I q @t/ c d @ 9 V % M v 5 F W ? 2 % 2
?
$,fnqu 26:y :s%gagMay%;:W;;e:t,.waQ.a,.x.i W:..QQ N :v
.n.M%>F
--MT,1,.y v, - )m d,y"v.. n _ v^:er - b an y, e,q c
6.it?
. JL.w Ar 1$1N ett U.~
J 20 *-%;..l JbLLA,//u.ae.3.d n I r
Figure A-20. Sampic 1-11-T ROI #2 dot map of U (#2633).
A-16
.=
t l
l l
. - -. - ---. p l
L ::-
~
\\
.. _ ;s.,
I
,m 1
LT t
2w
'M i
p f
b-f y
[x. '
l i
1 i
a i
F
$', g.r.q y p
..ec
' ;3
- ;6 r.
h-t..
1 y
i 4
i q
J622 20H X400 10pm W039 Figure A-21. Sampic 1-11-T ROI #2 dot map of Zr (#2622).
j l
i
)
i c.
J 2634 20KU X400 10Pa WD39 Figure A-22. Sample 1-11-T ROI #2 dot map of Ag (#2634).
A-17 i
1
l 4
i l-1 i
b l
I I
l l
l 26f4 20KV X+00 10pm WD39 l
l Figure A-23. Sample 1-11-T ROI #2 dot map of Al (#2624).
i
~
i
~
~
l
, p.
l l
f wi~
i j
i l
f -
4 I
I i
I' 4
j Q,' c i
1 j
(
4 b
ey h
'2630 2g0
- (.A 10Fa WD39 j
Figure A-24. Sampie 1-11-T ROI #2 dot map of Cr (#2630).
i l
A-18 l
\\
- ~1D v~
- Q&ryEhmqsy w
V:y
- e
.g Q:neq f[.:
[
JUS yhk t
. :gw.W;%cp..
m
':.g: Q.'y4Ysg. :,+%g
+
&7a3
$&,jm.;, g[ a&.~4 n
b,.q:>, &
, NC*>,
... ;%w' ' e..
.a (W
6%.i 1
l 0:uM g ;;p/
...,,ify?^Nmk,Q l g-p 3
3.
f.'-
. h. ',..
kpp
- m 1,.,
y.w.: P s
g s.a%- p r,a# -;n.L
,t s
.. :.a tw
~
Ir.U.
O A
,s A>
a'T[Q:gt:
g 7
.e u.,,
c:
- .- u.
L Figure A-25. Sample 1-11-T ROI #2 dot map of Fe (#2629).
"'"IL.
'"*'i '
n p. -
.g.
. 9 p-
.Mk. 7 '. '..
- p m.w
^
3 - -.'
- ffj c./
- :... s.
,,.. ?
" '3 j
g.
t
..'. g f
f.'..l ;. l, _
fl
.'i
^
hac rg.
}.p..ifl.'. q c e
~ M fG [ :. g f -7 p '.d. _ '.--
. ; '. g
~ y.p')f. ;3 3,f y,f&.
e.
.. ~ 3: q
.y
.. p :
7j. k _
.'.} '. ' ";lO Yh)...U l ;l.Q l [:5l.p v
- ',. e 4> y.g x f p.,.y w m. 5. ;.: - -
p:):..
t.
f _;..
. c g. /..._
_... n,.,......;
.,..p^.
.p, 3
_.g ;'
,; r...
t y,
, f_ s,. 'p, * :
a'
_4'
'}
QK; 3..::.'_.
3' p s
v
[.
47: n,n wr.;.......
. g
~.
g
.,q.
_o.
Q.
1 t.,
'I,..
.sa Y'625.28KV
- a.
B8:110Pio WD39 1 s
62
'. wat
.l
^
., M-
. \\
a :..
Figure A-26. Sample 1-11-T ROI #2 dot map of Mg (#2625).
A-19
'i I
1 1
{ ;. ~'-
,.].;
[ J-y.<.'
,T 4
" -Q ca s
.% W4 J
m
$$ $g l:-[h.
,ff.
~
s f,$k ab 4h
)
y*:n Bf?@ggp
_ ; j%..[~(pW;;?l;4 Lx y c,y,*yn.x.,.> %
9 7
.y y*
..m
- a
- s.;! w; 3' m,tQ$.,,
v"
- lir'y.'..p,.
y *V-
+S I
y,.z
\\
4
.( :w i
..'.' f i g Q,j.g3.hn.i.. g. 79; y gvp :
~
i.
~
n 8
.g.,4 *y. a.w..... _,.., f;3,
. J.- j 77.,-.:
.. +. _ _4;., y <[..
I y..' s
~l y,
~.
h... :... ' SOU La. - '
f,..,:, y..o.W-.,,....s
<f :t e
t,.,
x t
Figure A-27. Sample 1-11-T ROI #2 dot map of Nb (#2620).
i
)
I i
I i
1 t
1 aangh a
s2626 28KU Xei@
1We i 139 ligure A-2R. Sample 1 11-T ROI #2 dot map of Ni (#2626).
i y
i A-20
-~,-.
l
' '. %sk
^
g3 n'
g 5
g.
'\\ *, "
j*k e
(y; a
p 4,,
3, %.
g y
-[-f,'
[
h
.s
..A 6 - -
' Of
'g b,
v, re, xd
._ T _.
f,;
':g e.
.A r
g-y%Q /
.g _ q o
KU ~ 2 "
k 5*
39-i Figure A-29. Sample 1-11-T ROI #3 secondary electron i.nage (#2612).
4 1,
l 7.'
i
. Q
dk~.%~,.
{
y y,. +
- s
.,y...
.Q I
i 4
[, s/m,.
9%
,k,>+.,
g w
.l
/> h..
.f..
7c W
.s
)
jk'... (,)Q'
~' t._ '
' w n*,
[
,a.
,i,.,.
a w.
't;9
.'gW
,Gy g-p*
- /
?-
,yW t
,&f
, Y,.,- '.
?
~ 's;g*~i;,.
. g',L, -
i A p :;
v
_a J
ca
}
l 7b:
. ~...n.
1 s
s
.y%.,, $;.i-9108
- i 4
c 26: 4 I
t i
Figure A-30. Sampic 1-11-T ROI #3 compositional (#2614).
j I
A-21
<d6 4
- p ".,
[ 3 Ag W
w ::.,
s?
x
.i.'
?.s3 Nj
{@,>
"2.h m * ' -
g w
q-exr;hy$
- gy<irw~,:;.ge;
.,. g o q
3t
.,e t
94
.o hiff;;
a;e '.,,4;2*R.
n.;f; f Q y q,'
< y $;.J
.h.,.
.f4
- n m.
pg Qv$$,.Nf.' gisQ@4@;kh.N'
'h,,&t I
., g % u,, h $
h, zk{p!5 '
b 3:4 V
a m~ *.
C Qg.,
xw R.;t s.y,b s
.;;/' %;,g
^t 39 nss '
.y,7,;&;;.
w :}
's -
% y" 4 -
- p ;;,:,
a s
a..
.,f an s. w, &,?
- e a...:
qg,
.t.
e<
,.:L m.,.-
t g.
..a ma Figure A-31. Sample 1-11 T ROI #3 dot map of U (#2649).
t V j. Q if.r:,',, W;4>.y,l ? } [ ;,;:_W.) Y. y Q T ^',l T ? %.~
g.
t?.... s.
8
,,..L;..'
,8.
1_
q_
w]y-s, a..
,u
, ; ;;,.;... '.,.,..)
frg;&~f[ n.,F:'".(; Q3..
...,.' f ll,r;;; ~;...
f 3.
y
..3..
W,y
,m.s.m,
/. :
n.
.. :. % ~
s
. %. :s,
~ /..,.
- n k.
bi l
M
... f- 'l v%qaw%xy)N"' # % Mb5: ~ T. }J;f.L 7/Wi;C?.4
+
w., nyk. m D 2.v w..
9
. > ;.4. ((Qg,y;,;}
yq.h; ?:' dik;,:Y g p}H #)g%D: g: y.g;
%:Qjl.[
- .,, 2: ;
- I pe
.. ).n
- :qf jw.0.jp yn
.pg. i 3:
,.,.; p m ; y A a
3 @;W :n:%::M
.M.. : :A g.?
. A,, p ^
s 4;
- + % y mW(::;. ydHM.
. 7:
.o d
. '. : r 7
> p f.
L vv g.w W'V' %c;.ww b
.V: f : 4 M
Mg ys
. L,W ~..
h ar%h~ <,. :.!:,:k. [,, h.. w hj$. :'v,,.
b bN ca e
8 1..,
%' Jgs. L..ng n...
w T pl :<g y m.
v.
ph:m.,k T t;} ;-
p%;g,.;.. ', ~:
T.
ym e y,...., _,.
r
,,s
...,., 4- :. l l ? w;,, % '[*w. 4.&.n. 7 g.;...
y~ 4c. r w -.. ' ;r u
.,. : j.z
=.. -
3 m.g c
Qa. 3,j.f; \\'? E' :
m.
} :. '
p[g
- .p.
.[yg.Q k
I'igure A-32. Sample 1-11-T ROI #3 dat map of O (#2643).
A-22 l
l
i 1
l i
L-5' -
k f, -
?
fit h1NN{h%i {:[J
.jh.
4h&W:.Y h
.,,l.
^
~
.{
vg yy
- gqg-s.
n.
4w n..
..p _. ;.
. vy. ;
- g...
3); -
Ak
- _ 3.,
,.'[g
-g),
.g 3
u
.fh'
<.,)
4*
i
~ '.
e af '.' :.!g_
?
..,y t,
', j,. Q t
". j :.h.
. :...4 gM ' Q,. k'ytfi l'
.i s
sj;}b c
....JpF %,
~
f{
j
.; f...
,GjQ %,.'.Dl I;
~. - -
.? '
gr n F y..V % Ml;lg3l:
E i
h y
.7 4:
M,y v
- m. :.
,..,, 3( '., c.
. -..s i.
ncn.
a
- ([, '-
f l'
\\. i ;'
,O ? -
c./
(#?* h' b ' 3
.Q f
- h. ':.
- ?
- .h u p >,~,J.;
- n gi,n ;;. u. c,_
I'igure A-33. Sample 1-11-T ROI #3 dot map of Zr (#2637).
i mygpgy,
'ghQ qdy,.
hshdhhhh$$
.g gp 3e s
g-q _,
gj
.s G
r' i
- m.9. s + 3g, ysyg a
gy
?b,a;w
- [<-
.h
- k, m
u n-
.c y
av v.g.:
(h ' ;
n.
sir
, :.h b&
l~.q w%:
%:O
.S i
JQif:
~
1.:s.
e
.. p._ >w.
p g g h puli
'N J ~
J.?.
6, gg
- SR a-Jg Mk,
$m.
AhM}
, [
-- (f l
w r.
~w m
- n...
l
$?{g '  99$,,l.
gh.
3 Figure A-34. Sample 1-11-T ROI #3 dot map of Cr (#2645).
A-23
t i
t i
. y.gv -.s 7 197-===
t:. x.
f-1 9
try -g n
1
.I kD-k
=
3 "4-),dy}
gy
' " ~ >
gl-c,.
-.-, i; I! "d i
4; 4
dgq
- n
- h..
v i
sh.t.m_
1 -
e i
d ab ;g
.+
i FMAj i
e ju -
c..,
.1
=...
s G..
. g, Ll.,
- 3. nl'. -
> 43+8
'67 q
..r.
1
.m f;k g:.#'M$,.
,j:
7 x
I ;s 2
.m
't.,9..?, s.
1 i
v g.
/-
f r
se h
L, y e a_
_9 v:-
pry
'n%
c g,.,,,
)
N:. w.
2.u;ag.7 J3,.v
's,i M;.
- m.',
gv
?
-?q i
Figure A-35. Sample 1-11-T ROI #3 dot map of Fe (#2644).
i i
b T
i
?
i 4
f y.
i T
z f' '
a Ns q :,i '
Y$
?
g_
?
'~ ^^
.f;//
V
$?)2i'~
Q p,
7:
W:.%
i tg
.n.
2..
y
- e ~y, ut l%$dh t
e
-"p e :@r. 6
'J q
~ :
i
,'; e g*, ; q ?yJ. ". -- *;y
_p A s % f,j. ' },-:
Y;
.g 2
+M. k. )c.'".t.J.f. ;Q >;',..'; ;e.e, QQ. * ^:.r%1. Ri' a ' f r
A s" -t 3
<w-TV4; : p' n
n x
- a. :s. e,s;6,
. t..e. '.
t u
+g 3:,. w er, y~!, ;$ m :
1
' /
e-W.
!gy[m a, si W
p.c
+
{
q*qvww x p@br. NN; pg? C JcR;g$'kk; 1 4
.o t
2 1
4 2K.tbk iff 5
[.f$ j% hp,h
- [
(:ge a
i
[h Figure A-36. Sampic 1-11-T ROI #3 dot map of K (#2647).
i'
.i t
k A-24 t
i i
l w gy
.. r
_r,.-,.-
- . y. ; a;.c. m..
- ,y,y
,s
- * ' I;
(. h,..
A,'.i_',
"y
,'* [ y,.
', :'. ',c,e. :s..'
vf:
$n
.' a :. -.... -..
y,
.c.
w, 1,......
.. h
/. "
af,
.... e's4
, y3 n.
..n...
p+.i' :,,,. '.
.%.y... $$ '..
'N W
- ]sWXUk y ;,,'. ge, p...,
?.
. w; 2,.
K s.
f '
.,.c h~
4
._(,.,'
(
L.
pm w g:,c%
y'
%m :..,?n
.g;;,a,' T.... txM
,.,.w t
ft;.
ff i
M y[.
- k-Y
. g,,
y b:. _..
4.
?
.b;,.)J:y.,.jf%Ehi.f',$3 h,
L..
g
%.z - 4.. ;
- 43 c -. w ;. ;.c3,. 4. ve n
.ne G. p.,
- 4. 3 ;
y:.1,f.;'.if.Qkl%jQ, QQ.4 5
p.
9 v*-
yp3 V'
h W&
- .Uh
. pg,,; Q4 g 4, t.
- yp L, ; _
n n
- ::i.e M6..
g sg_
. p* tvr s.f_y
~.
y p /
.3.
- s47...
y$ y.
e.. #;.:,Q
,c' f e l.... ;,,. z,
' 'l $ t -lhs T??.lg.%W O?i' -
A
.m_r y $YQ.
.;f) ~
A,g
~
e,%)
Yb
?
5 Figure A-37. Sample 1-11-T ROI #3 dot map of Mg (#2640).
i M
q,EK : =.
?
e.y.W9
.,s.e@.s
.a e
w$.$.
.}Y$$$@h 49 r
,r
{'g.: :
g,y;.,.# yi 3,
$$hg;j{hh!
~
.e WA b
pMeh?k bj$fhf[G:y?.,&2ph.;sw63esu.
h y
gQ5RQ. sg. w w:v s m Q
m.3,f;.ypM+f*w.5 GAM; y?e.Yyggypi g74 % - }
a T
Ct A$
hh
$fh&hhhh fh.ff[GhlSWNfW; ag: pg;;>
nW d!W Fjd
$,,. n'P:q%N > w:wfg;.
V gg.
&gg.m ma
~
9 y
bn::
c 9 %:s p?Q $h$5 S D $ m? f 0 ngylp [ns u;;;f.c,
,;y 5go O te Mg c
f.u;.,;h::, #f f
/
g n we.p s y n g 7 y Mr;x ; 3' :g A n ;; m )
yr.
i g
- g. h.t.;pgrN,Rs.S :mym c
e yw
..e c
,w %g:.pt c-3:g;5 9,qtr. a 1 g
.t
.n.
n. ;x.
w d.J 7y[4 ;p 24 4 A; W %. w:T A,,
WWlt re 3
N s-m?
GW bpn% mM31/$y2 f%
.Z d lf h itG d 5 Q,Ag& g?w w @.g %
g;[,y%
e
.v r@. u&nM
~
t u
a3:n9; Q%wy; vt i
t%+
~ f, *.
W M. fig D.c:,q;.WAj
.e
- NJ :
d
.v 6.e.
. re,,
p
=p,nws;,aby
.s jaanq 4
e a
p Figure A-38. Sample 1-11-T ROI #3 dot map of Nb (#2636).
A-25
i
[
~
a d
M l
i
.6
+
- 2646 28KU,
X269 160pm WD39
]
Figure A-39. Sample 1-11-T ROI #3 dot map of Sn (#2646).
i i
1
)
i Y
- '4.
- 37sfA'- grg ;4 Rp'y..% MQ)?3ts C
A "c
9...
Lx - %.y,--
l
+
p,y
- y. Aie w; w.e e,4!
,y+..
- 'p.
,u,
' l PS s,e w
i
&,; A"%a.e q
p
.y. r :
b
~
p 44
- .w, p *. QO fis g;9 '-T U d ! W J l
1 s
t 4
4 v....-f g-g.j l
e
, ?.,.,
wq.
g,", A' s L..
Q l
wy-,..:n a b p rs.
., e,,,
k.-
.4*
4 4
.g._
- e 4 v
ys 6.(p -
.,7,3 y y. s tn s's74.'
~.
s v.....
.s...
<o x
e g /.
l h 5 ;g n y,<;u. k ). w i %. % m d, m g. m a s 1
g y,.,
.. 2
%,~
..,. 5.e
- s 9 e e; 2 Y-i y.. m.c~ * ;
Mr y. ' _~
. % < x. f,4m;
,;, n Y, Y., g?~k'b M _;; l;lg.5 N : b,c? &,c ; S T l f N b '. <
- e N
m.
p 5:~m ; y-
-Ow;p p 4
e,:n, w'i y
w 5-
- ^
(,
.a x.x--r, h, 4 :j~:h a w.~ V.- : %..,', f..u$,'.'..,, '.jd ' '
. ' ', : >,a I
+Dx W ~ I a '*A A:
i t
l i
Figure A40. Sample 1-11-T ROI #4 secondary electron image (#2615).
i f
I e
i I
A-26 t
i i
i
i 7
- b ?.W '
'b:;~??.
- 4.. '
I*
4
- A # cN e;
ey. '>;,f,.4
%s #4-
[} h.i
- J q
.a g
9 f;l,,$
N..
'i 4p' s
x jW-
- A
..s k
~
g 9,
3p
%f
'LW~T ef$~.ud c4^
7 g.,$* i v.hb,.~ Gy;
. -fft M'
- Ef $ 5 / % # i c g %.A&fi i
~
. f
.L I d $ i M.T d m Ms.lli At'
'$ d5.'-tf 4KDb i
l 1
Figure A-41. Sample 1-11-T ROI #4 compositional (#2617).
i i
I
^
i Q:M f. ' ! ',
l a
c.....
- v
^
j
- pq p
i
. s, l
W.7'
$5&Y.
l p;>
..;+
Q ;:. : "..
,Y
=~
-, m'
, 'y 3 s ' :.
yt.
W o
' 9, 'I Wi%,sk y.fi ~ as l
4
,e 1-3 v4 r., d.t,
..r;W tt ec:
- % $W. Ql@_;.,;;;,;.;*;.pt;4 ;;fp$'
s.
^ y x c >;.
e.:
- ,.My%$t OU
- ;,&y *.
]
ik}
l,
.l
, g:
.qyg i
< J,. :
. ~ 3 % T'
%y..., f3 s
l l
+
~
" '.p is.v.
c..
.e-
- p.
+-
{Y.
T 7 e s;g j.N, ,
..y 2:,p
?
._z_
ro ';
e
, S,. m.- :.
~;,;
, e.
e 4.,
9
b
.j
- ~v
- 6: w ): g z,:.'. ~
,'. -G-;
- a. nr ua, s :
\\
Figure A-42. Sample 1-11-T ROI #4 dat map of U (#2663).
A-27 i
+
y
he^k.4;&. O hf'%g OW...
L W
WD.*!.$&.
q g...
%w
.. w' S.
,L WW f R4'WJ]ll
." f: 0.iy"y;.t,
' w'..
'gn.%y'}fQ,
y 3,
.j
- f. ;
gafNn-l.
w vh 5"Qh,.% gl..m% [ '), -
f..'e n. hf,hMkkkjh,p.m.hCh,+
^
m p
-~
[.,y.,g..'g[ee Q&(p,'
E Q y p( y f y y[}
Gq. :yy%
L _
g
- fy 8_.y
.. N.;to:3 3_34.,s:
v sg.
- r. Kyxm?&q,
zg;gpQ
_g f.
' ' y y%q '. " y' v.gs&y$yA,igeN Qy ;f: -
- ,y af pm
. yr-
.-',e-r x; J
w f
rs 4
n<
ge. -
'. 79%[$.lj. - p f,.N i >
dQ w
g.,<-
3 x,...
wogw %
e
.: y-
+ q.47.....ey
+.,
m.ag ug
.v.
W.:O; QL (/:f.%gp.q:&qn g.y99;p,a s
a 4
g>
J:
%g+s.
M ;.n
%n.a. 1
.,e w
3
- .7. R.,f...nGCya a:f g,Up:gk.m.
... MjE4. T ;.
.ja WfE{C :'" g. ngsy m[ph n :n, W:
MPf n'
Esk 6 %.
3,9 f..Q@Bhjffkf?Wf4-
.' f l
QV h,; M ;N g ' hk N #amm m@M pjM $sma$u!NIiIdd
.p MR
@ug@iNEMD.#wMe%.$$acsaa:
u mw pwn pQ hMM#jM??$yhyd[flMIVE
% W @kh r
$m$tL&
E R N M :1 M,k %z u 4 0 5. a wMIMNd aaw & h me Figure A-43. Sample 1-11-T ROI #4 dot map of Zr (#2652).
l 7 m:ym o 3.v m. y : -.
,e 4:/
%i;s&w:g{;h,s- 'y y&' gN:
. x.
7..
, 'f.g$ rs.
y-
- z
- w y'"y '...
~%
N... btf x.
. gp %q k[:. J
- M. f.
4
.:~.. e. a --
4:,...
7
..n.
';.. A g,*
....e.
,,7 1
- e s.,
7
. ' 'h
.Q, '.
- ' fl k.
rpwA./
cu.
~
. : :.9e
)
M iN:.. ~
1 B?ylv.r.
.q pt-.
,,..g *f kpp g% Q:l0e
..?
i 4acy
.4
.x w
re
$J 4 *$n
- r..:
.t.%ry%.T.
ppm @
-< 's..
l'v v.jg L
. :. ( *3'. ;.
>r a.;
s:
i A}yywly;s s -
~
. a ' *5 ; a :
2W h6
,A -
2.F y ; -
np p* ~
-v
- 4. Mi' '
/t ( . ; r
- . 44 i
.y
- u.i 1:$c,g ",; o... f. ' -
n
.. f.,...4
?
- g.,, :... ?J. ; y%gs. (9 gf&:q
.:.y.,
'-- 37 ^. _
- .4
.,. m,,. y..
}_3.._
~
g
,r.w
.c,.
.y.. ;
c..
v:, y.
. r
., g.
k i.-
'L..,,
9 b
h, h ~ l h $ g h $.," h.. ):
elillWWutlWeluegI8 U [
l
..Mh[}
8 v[-.e+.$' s
,n -'
.p.,..
...N gi, % 1.5
'... -.s'.
).
, e d M., h.:'
T
.+8
'I'5 );,.
.i (;
l Figure A-44. Sample 1-11-T ROI #4 dot map of Al (#2653).
A-28
l
+
1
.w..
.y '-
^
g..
4 N59 23KV X170 100Pm WD39' l 2
e Figure A45. Sample 1-11-T ROI #4 dot map of Cr (#2659).
t t
^
y, y ;f, f 7 g$f -
s
%, g,g;r J-1
~.
g-L c.,
/-; '
t.
4: %<
(M %dhjl...
.3 f
I,g.,, [
.;pk.
E",i%g e,gos
. y,p-.7-1,.7 y
w :9 i
' r:,N;,
N ga0.s
.s.,
+
-. A:
sc e
1 c,
. s
=
n
,,. - _. spa y n
t.
fN f S, l l
'?
t;.
3
@;p. 4 11$
3
.,ffiy'
...J w <..
,gklg*?f gg l
i Figure A.46. Sample 1-11-T RO1 #4 dot map of Fe (#2658).
j i
I A-29 i
.(
i i
e k('((/)[jh[
-$.p$hN$m.%+d i
j7Why 3,}
f p%p:4[2 424 rd cm n
- tw m
-h
'"?gg. %g% qWlp[tlRpf
, l gen rq y Qp.
. wp g" 6
7- '
r y # ;;y f q gv W M
@ b JM4 eye 7 y/d66
+ g. u i;f',pt a V.. y t'9N. h >.C s l4p&gff."
hk ia i
ygyn i, ey m
! y-f
~
t r
' I?b$. f/'%p$.
1:1 ;
i n e g3 3
i
' g._
,....,.,t t
I n,,
a m,y4Q1,p.nis 36% 4 a+p,.,. m % m m
zi e g w %f%wy y; v a %-
V&
. sv is@;w9) N.t*&p{f($g-17j ##2$@!!bl$ik$y$$
a g
E23N
$se, gps 6;%gy.$;4*wr - 96%qi$l ggn %
MdLR g
W M!
T w
l Figure A-47. Sampic 1-11-T ROI #4 dot map of Nb (#2651).
1 i
i t
- \\
i bM;97W,2 *q; 5%N &;**+9 2:ry Timvy q w m; B *i U:
- %nff c M:
1 jp%
f Skap up OS,h Y,;; :?,:;n c, ff h
f tr: Mf 5
?.
c
-me n.;
yn t.4 *:
4
- c. *
,*g N4 A,4 -Qti
- J mys Wl
.. q a c, gM.
?- f W.s 'L:
9
?
pa,.,*+4 ivr 4
- 3 t
r.,
ne o<
5.q 3
.,h ff %j f
(*
$9
' ~.;
.4 ayz y
- 4n p-v z;
+ :m% :
+
k*g ;+; M 2 wp O i
iD*e 'lj p ~!Wy%x%
a e
i;a ~:$V..
kW % j i
glfi i
l ?e,,
p 9:;vi @GM
,hd.b5[M bee p:,a.u) %.
lt d
j em ag.e ?M*pugrupg Q py:,0.v;
- gy WQf guaywW l
t gh:yg&gjT;ikpi[fg;g5.
??
V f
(
idy y j;9;Gg;p% ~j..
Nfg ji w s,p,jj v;,.;p. y. [3[g* 3xp rm,s.q,gtM ygpyg 3
s -, gg - -
g i
-.;.- A g,,rf e-
+:g..
pj-n fs g e 37-9,
W&WAW n?&uiWN%y gJX%n,C;%%!Z:w%gya@J g
i a k a p"r.%vM:
,m a T
I Figure A-48. Sample 1-11-T ROI #5 secondary electron image (#2618).
l i
4 i
4 A-30
i p
A-Fe,Cr h.
1m j
Q 3
h:,1
\\
h
~
R
- g W +:
,f cM -
Qyog&s0! _?
Q 5h,cdispQ*hS%
.}..
)
, :.' hhi,[dD cenerat ricids of x, a.c,yw.
%[.k:rg@E@%Mi
!@p paa$$IM.
. re t i C{k u Al. 0, Sn. In. and l
Ef:
es,q,yh I
t%Q
- antn
}Gdk:#$h"OYiGm 4%vkkDht#;
t bb b.
i f
Figure A-49. Sample 1-11-T ROI #5 topographical (#2619).
j i
e' es w e, v-
[' h
,1g. 'g
~
s, a be'*
M%
'g n 4
_,c g g
<?+
H
~, ;s;.. %..
y6 s.
l'l 1,{ s e RC. ? ' g. _
..#) 4~..
'; yt *.,
'97 t
.y.
' M*L'r,..& th, f-t
.s.,.
- [ Qu. '.
f'
.,. * ' s,)a
. q.p a
y^ f.45-Q Q t,,
% s er p
}
.w IV
. J w,a ;g,. v 9y
- A c
e.. -
?
'f p.
,y yx
.rp'y ax
=2
. c.< ; ;,.
.g
,'w
.r 4
- - +
..g, g+
l e,
.t
.(
- p sg....a a u4 m.,.w &,F 4-A 6
Figure A-50. Sample 1-11-T ROI #5 compositional (#2620).
f k
I l
A-31 i
I u-
t 1
s 1
L
?a! g
'liiM w. 6=
i.
c.::f,:.
- +,.l,.V, '
r
'$.} g'
%3..+
1 4
r w.
- g) 4 1
. r,.
i tr
- j s -- -
J W. nU.m y
$..,:W~,W:FF 2e%d!
r M i
.4
"* ; c?.
N4ep i
- +CjQQyy; j
.o,;
~. _ ' g;;b g; '
em s,
M g.;-
ge*..'
l
.w.
. t.-
.,.1.
- g. ' -
+ ", /J!f[.
t
.4 6-
,i
?
a
'N k %j
,[g, f
j Hgure A-51. Sample 1-11-T ROI #5 dot map of U (#2677).
' f i
)
i l
i
)
4 i
i I
i t.
I i
l 1
l
'2672 2MV 42 M W e ii m 1
Hgure A-52. Sampic 1-11-T ROI #5 dot map of O (#2672).
I p
C A-32
1
.[_
he+$" ~ s' alf' f&gS{}gN'?f f${
...~
{.?
- 3. @
N:[d 3
%f:.
. r,;
+m y
%...>;)kA y; 9.,.'.
..,C.-
- 2..
k y..~.u
'$s i ' 8,,. >Gg 144-ic%l,...,4".
u h 9[?.: -
YN.
- q
,. j, _
m g;.,,,.
.ys,
(W :y
. 4;, L
- a '
...,,..n
. ?l 4:a55?
k
~
br Figure A-53. Sampic 1-11-T ROI #5 dot map of Al (#2668).
i I
5 i
y,. : : s y.,.-,
.. ;... r. - -
7.,.
- l. -
w v&...
y
. h. c.. -
( f.
p;:>dgl.'R
~....,.'.yg g
c e...
5,-u,e>
\\
. ;Y <' " 'y '
^
f:1f G.. -
-. K 4 j' ~
. ;* [0..'.1f:Mg.g:g.gg.
3)..
~
,r w2.
.,.3..
l-:
k~
D%Q:..
i
- w,, %.
- 15 n
J'.,uG:%:.%,..;.J.; [m %;%&$
itec y.' '
i
~
g:4
' l
.[.
'iT. v. f lI w
fil
- k....;;. '{ o.. -
-l f.
'- n y; -:
_pam e-
.. :.a.,.
a;.a s.,;
>?
1,;.
t - :....>
?~
h y ',. ;. _
,p; y ;p-Q[$7
.c.f,,(.jh;
. d$;$
2674.j g f i g g Q g [$} 245,q
~
7%
j l
Figure A-54. Sample 1-11-T ROI #5 dot map of Cr (#2674).
i A-33 1
l 1
e
...ug y$z:9l' ;m"' : wegg;gp m
' 'A
+
- L 5 %sx' Wsk 'WN, NE d;.&g,.,;
- ' F-QBfM,;E?
m
- ij J
7 y;
w
,W;>: e,f
, cy 4 y>i..
s..,
- v. e ug g egg g.
ma is.
Y
%q.
- .y q3
,s p; t n.
,/
g
.s O
{%d o%.
-, vg
.m Idh b' N.'n_
_, y %g @ : -
i 2.,...
QW' W
r
'y :
g sj y' y
<. - j
. - 1 m%@q?:n...<..n.s,.
yNg w
w::d, m. r:
p'
-~
w j(lqh p..}.t ' y.;
3 a
.g.y a o,=
1 wgEst;gk-a w;
,;ne d4t y8MNjyf v WM:m ;;
e
, b-c.
p...
D '$$b; $ x '.,.; y;y;p o w.
M.W:$ w
~
ft Y'.N 1,m wqC8{N'WW.b N'~MixW. g.
p' it;hg,..
%G.
%w.w y
V N;.$i d $IUJ $ $ 1I N;; M $ q Q g 5gk M h $,b v v kMUEn %ygg s.1 Figure A-55. Sampic 1-11-T ROI #5 dot map of Fe (#2673).
' a w;.;. c 7. - :.v. m..,.;r..w( w..f 2 s.g'1' '? _ I,.' Y *.1 h w..
- n.wy,
.~:
s
.. $,y-
,t
^l}.
- e. f 3,:,'
n 5..
- ?
p;f. :'py%; ' i. 'T
, V f. ? : Y :p ;,, -l h,. ? D1;
.., [ t J [ %Qf.::,Y. *[;n,'- ;I )f. 5 A$. f...'..'.O Q*$:l c _
L-@,,i ph Q ;,.
/
M^
f*f
- w. gv. :: v 3J;F.Y;.&Q p%
v.
-o
..,ge-f $w?$Kfti;
., k.
' 0 a, u;,; Y h y;<}%D; ' '
y;s 9 1
G. a"Th" R... ~. W t (,p.,
f i.
,l,..
e:...
3 ;;"A 4
i
~'T.3.. ;9
-9, s p. v....; f..l -
.'..s...2..
1 3
., y...L i : ~ 's.
y *..h.
h(ig. 5'g:
. JA '-
{
e nw a q k@ h o;: h; q (( w:): M.3.: b "' ; I O > N l-A ?xg b.lw.hd&v Q.
ng
- . p. n$yg, pp
$95Eb h
. g-'k Yh p$>sn%%%;; ;:'O ;.'..,
- 4~Q.W _ r %p h h %gQ:_9,q;[ O [:; ~ ~
f% t y.:.
NW..
fj i
'.; : - -p
.%%+ k 4M,f ~.yr.Th
- _ ;. 7 4;,"m.\\,
y;>.
un g%.$y 3..y st.. u
- , u,
"W4 C
4 t
y:3 r.:
>+
$$$' hd.kM Mb3BXfS GA
,?
Figure A-56. Sample 1-11-T ROI #5 dot map of In (#2676).
l l
A-34
?
i l
i i
I I
l 7
I
.i i
267.5. EHV..AXtB9488Pe il039
. L-
.m Mgure A-57. Sample 1-11-T ROI #5 dot map of Sn (#2675).
1 I
m::
t w.
F -i,.
.v.
- ., c w:7 ' ~
, c z.3.g sq ? pf 4 g..
c' v n y
_ p!!
,z: 4 s_
u._w,n.. \\. ?
'R*.
j%,>.~....,'. gi',',, L as.
g,,.
- = -
.mr
- $7
. S"w'e-j-
Mfa:6 a:- n Yi :
s-9n-x mgewmawn '.
m gy y ' 3;
~
i qw :
c.
....w_.
- ,;. a..
r gy-w..g.
.~v w pp -
y'
-- iguuy-3- '.. ~
y; I'
h$
h~
i 1 -
j i.
Figure A-58. Sample 1-9-A M - #1 (area of interest) secondary electron image (#2678).
i i
l a
i f
e A-35 l
l
>y a W- -.w.e-Q\\
.J t;-
J, y :{ ',) $ g'* f -
"*id Q
3: _, e
- )! ' m-
.:?
,y in.
.,, /<.
+
.y...
,)
k'
,..-./>
y N
-.:~
,' m.,.v w-e q J'
'"I
- ::!%,w ?;; #e v wNy, e '
c
~
a
- / /
}4}zu V Y'j! ' l t
1 l,f^ :,; _ y l_,.jbff*' Q :n,
- ms
- a IO.isz%.kT.. vcc ijpw *;k;%%g'."bh7lg n
N.i W
\\
p u
e nn.,pg
~
d G@ w w?, y~*)
d
^9) 1 WQ,, O.:.
s
~.s n.
_u ~y%
g,;f % y-: w.
a
- '.*;;,u..g n'.hy ',p p,
f a
A m,q:W *n.
~;p
%%mC ;v.,. -aqq N
- y g.y %+, s 4
's v :y
., c u :5 gy. 3 i,,
s g{$'$
fp Y':. S;..
jhn n
i g
.x
.*^
g.d.
t
- h py> y
-~ yg;6... n ; n.....R,,,-. $, :3 "5V
$}. ~,vg l
yK:
. ~ ~
g.,o.%y',
m y y y,. cy -
s 2.-,-
3 1
m; 4g
<t s.1.
m '~ *,
y;$..% +N'?
, r '#' ',,,i A :
{ *. f J. '+ a
- e'i/
t Figure A-59. Sample 1-9-A ROI #1 (reduced area of interest) secondary electron image (#2679).
Y.e,alm&.,,fI.&,. Y. 4g[.. fy1.c.E '
? - i$ n b.5
&p 4p
+v i 4 p..
qs p/,.99 ^ e 1 ??.1,,M (,';.<p o
. W ;t; %... w. b. f~ %,
-q p :zq
.j p et
- m 4 %
,.W.. - <. m
. u'
, R*f. : 9 ' A.4 @6,..
% g%r &,g(;%3,Q.d s; '
QW4 9 2.9..
-t l
/
f r74
. ti.
x v.p' {.? lpl.. v "
- y f0$ ^ Qf
.p..
n s
cl s.1 4,s :y e+
4'.,
~
++
g-kl U.
S. &
^ D f'gr h < i.
N. h h i; (f, f;%,f. * * '
- . j. k. 8,'. J. +Nlji Y,. w:.&. &
d
- m n
v f. g A/%-'. w*;r s,>-.
GeneralIicids of Nh,
%rt
.v~
- h i'" R nli , M. D (S p M 4
-e..
i
., 4 ),4hs-p
'Y
'.*/%5%M4] &g
~
zr, Ai, and Mo 6%M
\\
- m;M3g%y (?)W WNffR x 3
1 A '<h A -W L
187 ~ qd 4./ p ft
.~Kf=M c.
k:,7 rv nw n
i w.i. m. ks-u.' D N,$h..
Mkhlf hh
^
f
=.s : pq;y ng gg
.m
.w-
- w gg m.-e Figure A40. Sample 1-9-A ROI #1 (further reduced area of interest) secondary electron image
(#2680).
i i
A-36 L
u.
l i
s g
N -.
i f :%, ;M A
(
W
!.4f
?*
6h f jh g/t u t*J A.'w. M ;lc; n M m
- uf
~'
Qlh
- .y
(($,4
.~,
.~nnxn s.;
n
..o h
r*,, e. p-xm q
. Op; ;q-Gfi,-:;, ;
n
- e iee c
-r 3+
^w
, *&,T
-.a w a:
hag ~ ^ l3 E
g
'p,s,Q,;Q;;'$
w
&. 4:
. -?)
- ',,;h>
a er, S
.ig.m,cM +y; 7
(
%j&fh }f 4%
fg z :
,l
(, L:s
_ W.i...l '^'_
ty4
},
m a mu
- ,.v y,.;n.,.y' x.
i
,w
.m
._q
?',;,g/,v t,e ga$r '&
.a y
h' j.
e t.
A:
hfk 4
eg.: # 5 6
A
.Ak ik Il
'..n.Y h
f b,yg r
1 - %ET,$h?;;& t$ $.so
..)
tim Figure A41. Sample 1-9.A ROI -#1 topographical (#2681).
Y
~
e;; asde +Sm
'.?
ph.
' M. ' I
^
t y
.a.
Y Y.^
4-w%
y i
R,f,
..> v> ? ',. %.
.. $. f.
- < ;~
i
'e
.ty
'sf-3.
_j.
4
~
m
--,. uig Rfy wzr Y.
v<
$,..G
?,,w y',w;i-g y a > 'e
.....,a. > y.
(; A cm Hgure A42. Sample 1-9-A ROI #1 compositional (#2682).
A-37 i
...._._.3 t,
I s
1 4
p~[6%{KN M ?tW W.ty$I N R.~g-f:@ %,V [w%v,n, l MfWP1 mig;UQkWT&&!??!%Q O h~h M!h.w@p?N-@hne4. A;T NM W
MMC kne. QWJ n
mJ e
W@is92)$;WGfh$5.hp$gid.%.4NvMgl. s ;%Cc TF%
,g ?yW pda.:y 4:,L u Sy _ rw
[
ngEg%q y(dhry#e2NRuNs%%R$MQ@i&)$5ENll@
e byf jh?
i W7h6=$&d??%Wh$
?e i
BS Qh bh?.:!?gM%{MkWt53 u$u$
!$$,4[%@NI[h@JLQ@ydfN{
M C
+pskrik%
)
S M M;.s y p uMy$MDiMhl($%,34 f:
w h#
MO ptyn pg? wa:itgigefhng?s%..e:3ng,. M5r%gh.e /
wf -
s n
h.T yy%
m%:g@l% m.%nCy
&R.Vf26M i'
ifu%d W
%WCW::4 +.f ;? Q Q h; 9< )h.p w e y w% g %
% Af; h(j%hjkQ(p((Yg q,M u
.?.
m 1:y;p %g$$s g
.g;p g
nEq igQ i
k i
2.-.w.gd. M.7y y 4.mp w
hii hbkM$fjh[h+kb[l#u.~ =M..m,h:Id$k!lk m.a >-
gM' a:c N n.,4 s*w R...d~Q ~ /.r
, c; g ;.n.c.n.e x, 4. a5 e,, q-y,..
p-a~j..,,.a n.... w,.,e y.cp i n $. e.a t
. gr
- m.._,o..wmgw. g%;}l,Qd o
y se D d!) & p @$ Qp o..
c.? Q @G ja d;:s;;4,*1. h.:.VJ. M !Y M O d d i$ n M y
m w.
,g k?%f&G 8n t
hCAM;.f,ffG@,? x; df p.xbyW fu hC h
i 2 Nf
.wN 1.
1
{
isisiikW i
Figure A-63. Sample 1-9-A ROI #1 dot map of Zr (#2684).
8 F
r
)
I l
1' I
i i
- [
.B i
i i
1 I
1 I
t t
i f
i i
t t
l t
L s
t
.. memet u i un a m===
a 2%5 5XV 12 he 34 t 2 3
w.
1 i
l Figure AIA. Sample 1-9-A ROI #1 dot map of Al (#2685).
t I
i J
I
(
t I
I l
A-38 i
I-4 i
b
=
~. ;
4 4
~.
.2691
.20KV 1200 100Pm WO39 ',
Figure A45. Sample 1-9-A ROI #1 dot map of Cr (#2691).
~
- ; @ y + p ' F [i.: f 6/v' f -
++
- f.p13 '
i.
ea ygy.-
n..:,. m
-m ik[%p:y p
.. n s
}ag:,f &..;
llQh:.
f:
. ft r,. w.. '.4.
. q:.,
t myky.4;w.,1 p
- f.. -
g 7
- 2 f7ts eiy, c x
.s T;
.. ~ ! ;.
75 6
$ W'tM,p..h hk
,4 r-
+,
'.r.
'. f.% <.,
'; :P
'Y
,i
, ;y-~,- :., 4
.,, '. i 4; *V7/ y.. ps ; y j,f -
g
.f; 1:
. ][
h
+
c,. w.7
., f.
~
a, _.
.c.
. i ;..
2690 20KV X200 100Pa WB'3% ~k
~
s.
ligure A46. Sample 1-9-A ROI #1 dot map of Fe (#2690).
A-39
- u. _. _ _ _ _. _
l L
1 5
i t
s-
.. i i.
~
~!
?
2696-2B N Kt90 ft Ps 18039 i
Isgure A-67. Sampic 1-9-A ROI #1 dot map of Mo (#2696).
l 1
l l
1
$a$m$e$nae 1881 saww'94tx%<m&hr%e%mands qdT d.j j avM ybet 9?O s
g41 0%gkkIk r[.ra. AiIEk %2}[$q?k)fhIdc g"g$gk'5 91kkff% ' %MWi} Y $1 3 YkI} ~
fy yhaag.C#,2Sid5; bytn[V, iqAy$ph'ik }17h 9'4;$ N W #qlb 4 dsp}.-w op g-95:?C p y n,1 p %g%)
- W?c rAyp &
3Q G
ua x#
r4 tin c, % % E&WEMEbb %htfi&antA 4. L gg y.w.
C M % Rhi %
%2 Isgure A43. Sample 19-A ROI #1 dot map of Nb (#2683).
A-40
i o mm* &,'QlU. '.lim a
n ?
s#
y?l;&;Q;' Ml""-(rhe
- 41*
- .. - l-lj~.^..
.s' Y 1
zy;
. uyyy-v 7
.a
,y-
+ ' -
3,
, &m.-
w' tM'.'
i r
l y gy 3
m i b.
j
.e o
n; w, y :;,,
n.
V i -..
Y,l'.Y.:,ih.,.
s f';'c3 r
c w k-'.
1 e,s e-
. e D
K16
. las 14039
^ y P'S f p@
M
__,f y
.....w Figure A-69. Sample 1-9-A ROI #2 (area of interest) secondary electron image (#2697).
t F
e Sum.v., nm ew>ni.,$. (n.mv. ;-
.c wv.:,'..,nw :q;.,
wem r.
'* m!im,
- ;g '
?[h '
- ...~ m"
?.,
r
.N Yh Y' Q:* V
,, hqf i,
^h yl YEfl' f" l]'kW?-',
' W k'.;r_;&
'!{%lhk__I
.t
) f N
s Tl k
{-
?
'N?.eny4 y ; m ; m.4 jd
, A[
h ] n.^Y-- ';} 't:
I!'
7
,%Y -lw n' N,
n
~a.
%, q&:uj] g n tp[, -l7-Qy,h.l%w.';W -'?
y_ t
- fc +
-h d Wv,. aj
. C
..~3%/,7 3 s 4{y; ~ 2 yL.
,c -g;;-
- e.,
n
\\ q," ?
i
+
7p fcf.
l j
, D'j.L l'
% :. 4 si j M 9 d,"? M9 % 1'vt i
dyrt.e p? f.):htl ~ y J[eq w!{:{\\'h e
- k ;
^$ l '. q ^}
wa.
, SQ;n;;3g.',., awn [.
1 a-i, P ;;
t es;.
- ygg e
~...
' +
. k i
^
m flQ.s ;p yw'.' y,,, ~ Y
>*;. :c
- b.,. y
^
%: g>m.
w d...i
' g$,:;.,
3 - ~g~ s myc 3,s t
J
~gg a.
y' x-i 1[(cf.: y
=
y.,'l 4.g. 's-a s
1 yM,,
- , A..
yr. ;.
- Af>
a
. g _4;,,
a
%y ly,
- s
.. n c.n
.x -
[
.s r
x,.n..
Figure A-70. Sample 1-9-A ROI #2 secondary electron image (#2698).
i i
A-41 1
+
/
,s
=,
3 NJ. a ' '.,.,, ~y. '_;
+:l?;'l$
}. _.
- a i
r
~
.c
?:.
J';s
,,y 5
pm j
m.~
\\.
~
\\
\\
,i Figure A-71. Sampic 1-9-A ROI +.2 topographical (#2699).
4
,,-N,/
N
.; 4 s
l f
[
4
,1 K
.,i N., (
.,,s z
'" y MS., f..,y. g l
O_ f
'.2;;
e
...s s l
. :#[ -
,/
N W
p..
s..
j
\\
(,.2 s
Figure A-72. Sample 1-9-A ROI #2 compositional (#2700).
1 A-42
- 1
l t
7 m.
\\
1 i
m General Fields of I
Zr, Ni, O, and U i
^d
- .g a
i gs
/
3
/
i
' ~ ~ _,;
/
Figure AE. Sample 1-9-A ROI #2 (reduced area of interest) secondary electron image (#2701).
e t
g9.3m;9 A 47 7
f f*5 biNf hk" ff i
wgky%gggh?%yR;QQPQ%b)y l{n Q["W'J:
bfDf&;!;llj
?, ?s T 5g Gk tu!
ef!q igwwQimg 5 n&.',
19f fhhhfhNbbNhhibkhhIbIfkh fhNsd eses %graa%ggMjdps@ Wa a
k e
a g 19 E@@ndi pg anke p
L
/
ds 1
kllkc'28lfMEQMg%@'T[@FnlNW1 W.
fptN4Ml Q
Wdy%g E
,p g. -
c m4 g #e w %p{k f %wl e n 4 4 % s.x
~
i e
c t
Sevy% AdYl
. Mp2ft:K
~
~
G. hs
-
- w Figure A-74. Sampic 1-9-A ROI #2 dot map of U (#2712).
A-43
o l
pg.v. 4.m, -
.f'; x;,
' g..;
?^'
^
yl '))t;>
.,.}l.',
'o f.
f
,;,_ [,GN
. h[
y{y;j f'il:..
s,;
k 7,
.: ?'
, j !.l I.( l-f -f
" _.. ~..' ^
- ..:.4' g
p _: -.
7 m.(. y. :* :
y l
lf'-jl;. %.
- .J. ' -.~.
- . '[
's i-r, r
'[
'.I n$.... ~[
~
- ,s 4 -
w'..
.)
p j; c.u
(.. i-
[. " s a
9 f
i,.
r,.
j
- l l
- .l; s.
.. 4...;
R z
l.
f l.
.;.:l ligure A-75. Sample 1-9-A ROI #2 dot map of O (#2707).
1 J
l bhhbifhffh k hbih Ehl~ n+fWNr?w%
J v.,.W,w.w%as.a.ws%pe nq.a@.if h4%p%s V
4y gr sw 6
.u my n
,.y m me % rwh# a
. +eW.h w s 9
p;&ggglT@wa%@%gt:;g '
wQ 4y A k'f/ dg b.'Il&%rqMg'fw h
- e d M
@3@M.
$$%k h@
>y, i
N i?
sl..,.u.
o.m.,;w., ahw. r.,4,Q, o m...Nt..,n. ;w
- x.,.
n n n.
M
- _m.
Q..
y>;n n &..
a.
p,7
, w uf... p Q.?n M' hy y?hf ; Y N YlY.N !
&[ $I *q fh&dYrL$.ighk?w u47shh ^"'
MiP%yc:%Q+$dO$ItQ&#hsfQTh
% M 9 K Q h % 4 5sq m.-
yNGEORWV N
@M6kM&y%&$%QdQMl$N!NN%$$p 'N
$No4N,N$$i#MP M M, S,
- o gs+aq m n&gg,hce %ws;#yhpv 4y H4 (r.w n
A
.n qyvM yw%_g y.s.+'
M i&.g-g8pwhw%.r : Mym y '.
m -..
MW z
a a.
. e ~, e +#u, ga t w g,.a.m.g'#RC D i:g>M P %;'
4 rp E
4r huys fg t.n 7 2 em.a,. g.
.g
- g ug..
WMA
- MEfCp; y Vdg.
- 20&*HRRE22A&k2GNMitrd?4$s1M,jgDFA'MstM b$$2 ligure A-76. Sample 1-9-A ROI #2 dot map of Zr (#2703).
A-44
' ~ ' '
- lt" p -:.'i.,'"f. l ^.,. '
)
E 'rM ]}k. ;,rff?";p..y R i h)$..
. - j.,4 3...-
w o u.,v h
.s +>,,.
p&..,.,. g; - 4 p ' p n "s
L 9.,. % 4g.: + x,,
. n,;,. n%g yw,y...y;9g:f;. ;(..;m'p?.
ey c',,.. ;;,,....
1 n
' %, y..r
..:.g:-
4:> o
'm k7:f!k.[, {,' ( h";f[fhfl+$Y.L~ k.'._ ' x
- . y{ ;,J. e s.
,:~...~
- j" _, e e
.i [.;.i...j,'s
_'/
-X.
g
_2 p
l1 g(dd[NYlNQ M Mhng,[Xh'[M 5d[) -($j 4;-l"5 d
[
Ij((,',') h.. y.
ffh 1.',
~
y A'O y 1%g.t &. lh,$f...; ':
WT;' 4.;,y y:
t y
o ~.
- r.,
, v
.p3
..;%: m.ig..
hg-lf.
jb q., 3y g
.h1,'*
~
y Qp q 3 %
9,?
Q Jf rf \\
Y h.
j0 b_h h
lh.,.&fh':4[, Y
$Yi I.')
$ Y^ :
h i,
e Figure A-77. Sample 1-9-A ROI #2 dat map of Ni (#2705).
~..
,m,my-e.
Q a
+
E O
.q'u' s
+e y ge
- ,wmv
-my g
1 n
-+
Y
'n, 04
- N.
1, San
- p
~
p 4
Figure A-78. Sample 1-9-B ROI #1 (arca of interest) secondary electron image (#2715).
i j
A-45
e
.t
}
F i
t i
4 p
i
[
t
- q. '
l v1 c
Sud u
- T( Q y,R ;^K%%';pglgggypy')}j;?&y; j
Wuw w w*csL L
- s. ;.
u
. % ! * ['
y4 x;g i
.w
['. *
'd
-j 3:
.8 c
as.
pgem fi g & m:nw,/ t'i #
. f.!, '
?
ck e; a;.
yh ' J
- z.. _
tJ?r>
I, i..,
n 62hw 1*'
L i
Figure A-79. Sampic 1-9-B ROI #1 (reduced area ofinterest) secondary electron image (#2716).
l i
j i
.. s.;iy L.
g(ff g
p ag&&ia$3
- K x
5 d
1M% - M4
- @.h' HE %hhlkkh M4 6 h
y tw(#unbkNf kk?%#$
. M;p %gg tC-g @ g([$y $
s l
h"N l
%F }
^
<pp;wra - t g
Wha Figure A-80. Sample 1-9-B ROI #1 (further reduced area of interest) secondary electron image
(#2717).
A-46
i er
)*
l i
i
)
i 2
f h
+
I Jgt:)[hTig }
28 7
are., g+%s.n NPAeV->c j; d p e m w: w,y j,
wg 3
W oc xwt;g; x w.n:m., n y
pt _x.. '
h ;r 6>+f @?g@yw g r EQh:
m io..
f M 2::::hksinM;p$n; mct a
QTill.' -
m M
d-W S
.Gb 8
45%F< : ;?
i
. ::NN
- z a :
[n?";y::M D.a?a.
b g$._N'?Y.y.,,k k 1
1 z-w
./
N A
- .k,hi' e.~
c "hl.b j_
pu' A}jOQQ(;W.qlrllM;g,;k;4T*h?Y
,.R %j
,, s&
i h
i dhf5',c. ?. A a' i.,,'llg3:" "3,g%
.ufy,9;:
N l
i.
bi Mfa%,hin?
c0&CnkhM3&i% e:.
- Shd, i
1 Figure A41. Sampic 1-9-B ROI #1 topographical (#2718).
i i
j i
i 1"f.o g..
l 1
i, I
b 84 0 '-
f l
j./
e
Cr
]
F 1
i
'X
' v " %. p%\\ %
'v.
Q.
i MMD$y k,k.C '$<..x3;4e.,1%f' g.
gq,s# q$R;4(Js#h+!(
4
.h
. Nam.2 i
'af-9gy,$)*W,?!
u*t WL'x#
{.
fff
- } * ! ^ - }-p
- Tc 4WQ;i:
y[f -
~
d :-(
. Ocncral Fields of
't f
.//
7f Nh, Zr,0, Mn, U, Cd, Ag, Ro,
+
,s[.,..
7 3-pC and a majority of U
, y.gN.
4 ; -
j 2
l Figure A-82. Sample 1-9-B ROI #1 compositional (#2719).
t i
i
t e
i
~ '._ *
i 8
. o $?v..' ' h>-
~
$1&$ti&lTfk' '.
.,...$M
' e -
r W
-.w, w;w.r w%..
r
~
i e
p+.'.1.'.i.i,Jf.[v )g [p f, y..;. '.,.
gv -
h" f.,3,vb t,,
W
^ ^
p gg&QCM n~gyd" c +.
%gp,hg#[y=lWMkq%. C,)
e
~ k9')?g
%& Sk
. :'% J i)j;n.. 6.
B
, ; w 3 4. g g;.
g,ff h,p p & % t
% 3Q, j
%;Q..
n..n.:.c.q.g.,qq,,g :n,p.-
qm gy q
g
., m 8
r.
m
-n 3.z.u.-y:-am
~
.) j;b. WQ. fl@c, p, j -
i g k Q.
m.
- v.. m3,...
%f,'!h'.fif,
, a m.
- .
- .G. l3.Q
....w Figure A4G. Sample 1-9-B ROI #1 dot map of U (#2734).
i i
m p w v.3-49:.
p
%' y;
,w f '.
x.
.:. 9,,..
> g.. : 3.,.
..: : y ;
-.s r
- y[,q'l;c..,'.
- .. 3 gb.
',.l
. ' '... -.. (.; l, y.,p.._
.'...... ; :s
- j.,
gp.. r;.'. :a, ' <.
'i
%p w.... ~.
l, s
w :. m P;
c e.y.py., ;
,. ;j,
.Q'g
- % @}.yw y;.,, '
+.
.? " 3 g-N.u?.
7:
3 9.+.
g y{,;
- t A
m y
.: %,,. ~..
nk
- r x
.,.' : 2 -
. w, p,
p.,:,.,)A..,..; s..,
,c....
.. ;x:.-.
... y. $]i n J, %v...
..a.
g u
+-
.....w.,.,
- r. 4 s
4 s.
p
- 9. -,a. y -
T. sy..~.,.
- 4,,,..
1.. (
4.*'
?'
-.. g.; g '... ' ' /. ~ - ',..'k v
- s
.,,e > __
~
, i rydi
. ~ {>6 -. ',. ',
'., % p ; '.,.
g
^ -
.. '..... []
n '.,.,,' 4
- ,s.
3
.~
- c. m. + w,.a.';.v u < a %4
.L.,
l
. w :r.. - nu 4
Isgure A41. Sample 1-9-B RO: #1 dot map of O (#2726).
i A-48 i
~
g..
_a'.
+
- ,, 9,
%$ MS
[7h 2
~
. ::,x # W S 1 -/ (: mja 3.-
e 93, ; p g., ( '.
e.
.l. [..R.
. i..',h.. 0.
s h f,.,d..: g,
- y..
n, l,...
,...f
, t ' 3. 7
..y g
.. ~
.. m g;
'..j'"g
$;,W,,..W Msh.5 [st.e.,q @ h pY M> *g e_ & g g y-l [ (k k vy[,[.
+ r.m w + y ;
Ii I d.MN gI g ;
K. *..:MN' E
%.g4g v
y': A...<-.
p.4v ;.
j..-
4
- Q:.
"sg%[ ^
l
%n.s.fr y?,5 Qj g_
.49:rg 4 9;${,.fkw :q,,.y ~ z,,
g%g_ -
>f}. q a yg.y..; 9 Y
hffhhf f
W &' la$q$${8Ak,gv5{5' )h[sh_?.
(+,d Y$l
&~, #p~
fh\\ fW w?
N2 TW i
?;
pL.<e i
whe%
% a& #.,
krl:c z-2 54 w
vs Figure A45. Sample 1-9-B ROI #1 dot map of Zr (#2721).
1 pyj p. o.;.g.,.
ya tit.
m:; ~
' [4Q..
$yl'f V [.f
'( _ '.
~.' :$
_ n, O ' d ' '.j, i ;6. :. l7 ^
^
Me m:
-: w Qq ty, ;.
n
'W.j+G::.8.:i.Wp~A9J~)~:+S.-
A vg %Nl?w G j i. ~,.
. %:w
-r
? i,...
\\
p.. h.qi.f y.
. f T
.: - e...
r
.y. & <. e,'.
q
. c;_. '.. ;.q
~
. :.,.. :s ~ n a Ly.,ag. A. e.
< -1 ; 4s Y'.
?$:
f".
.~.
. ^ : ;;
c-v;
%ygy.- m ?%.~.;>[T::+.p Q ',.._ _ ; i; '.
- _ ;fA{n g?.m
" y..f y?
.. w...,f 3; 3
. e
.r v->
- gg h -.o n LA j.4 f ; x.
- .c : %,a
/1. -
'-..,,., y ~.3
.,r;y,.
y
- p[y
- m t
- ;';:
4y bij%[.
ef; n y: ?g+ i;j # f..].7.:~ { ] q
~
f s ;~ '
v
.a
+q yx a.,,v
>.....cw m.,n w,:~ w s w.; w w.;
ligure A46. Sample 1-9-B ROI #1 Cot map of Ag (#2736).
j A-49
4 e
J
\\
s s
Y l'
,=
6
~
R$...,, emmenneeinnum.68.16tFt EU39 i
6(735
- $$2
~
+
Figure A47. Sample 1-9-B ROI #1 dot map of Cd (#2735).
l
- i, t
.t s
7 I
k
)
t i
I
~d;.
k.
'. 33,.. w. ' -
h$
l s,.,
s k ~QMt,'- 7%l$J '...; -
i k
.b'lyy p h &,,,
- o
. 4 ::.
>u. : g - ~.
- , ?y.
(.
a.n
,e...,,,.
a..
gpg
- p
../ m :rg :n., :,,
> w
- w n
..,?
E$e@$k&re$&y@WVg$wa6 hk?$ A$k bb STh h
lif 'I9t
':e6 W@M @j$pdi 4M 1
0$$
?
kr 6r.
1 2a d S % d d 5 N s! A!NM O $ r p $* e B ' 8 1
~l skhs Figure A-88. Sampic 1-9-B ROI #1 dot map of Cr (#2729).
-i I
i-I.
I
[
A-50 i
1
i f
n 4
i i
i t
i i
j
~
l 1
as J
tv f a, >w M in n y p m, am
/, *4y ;m,ed.7,,.ln.'lm/
l d
jiAM racy,~.s.,.+
em, j;s?
w
[ $'$TNa%q.fy:."?p45r9 b
W4W 4
p?ryjtu 1
MK
~r s 7N' %'fr's g*s;MR,Q ^ l a
i i
VC1:dO:4 kj&:
v.,h,, hIk)hbb'h*[d'd'4...
w.,,,o l
OK b,, n ; bif. Q J.w..i n;,.c,;t.r -;y$g}s...
wmn.; a,x:.. u.
g
)....x, m'
- q..,.
- r 2
. :-Q GC[ *g%,.,TQAp
- :n ',h-)f Jh I,.., h; phh,hh,df$ ((kB rd [bp, h;{l$
{(;p; Ly y,y H.f., g.
1
,,... u..,. g gn3 8
r p
h k
Figure A*9. Sample 1-9-B ROI #1 dot map of Fe (#2' 27).
1 l
~
j I
l l
/
(.
WW.m
??r.
W+4 w.y +...v. e, r. :.s.v a.
i igN i
C}. h Yb kkSJi4Mhg.$}!)$fh&d(& i ^f9 $ $N.'s. J.
N?,.
NOiCRGQnff
..&: W : %.E.l. % e." <
\\
$iN$d $Whf$ $ k&;& ?! Y h hki?)B %tM ? h.N? fad $hd tM:QQQ TM U!hi$ akQdSf610D
'A$n.p}h$p)?[J@%:
3%
.wny;+f@w~w ra;g.vy:P@i%$h 44.
/yq o.d M..
r%%a e
w 1,
- m. yu,g.. y+ n >. m.rn...a.
. o+ w p :
y4 sw mety;a,%p'wkn;x%p;a%s&c.-I v5.4:,>;4.JJ.. ; w a.? y aa-aa:.y,.y @
se +, e
- q. >v
+s1 u..
rv 4 l:.
- 3. A 2.u.
wc. s -
. Au-L mC e ity-WVe v
v..-
i Figure A-90. Sample 1-9-B ROI #1 dot map of Mn (#2728).
A-51 4
\\
s e
a e
i t
't.
t
..: ?
.,". m A:. N.
_ 9. s..
1
,-3.
~.
- e 1
......, 5 l; ~
t.,g.e.
-. y..;
?.,
,]l,...
r.
3 c'.;
,x&:;-
[,:L j'@y g
. '. j j$J1,[
.y
[A':g J
4 il
'.l I,.,?V e? L$k$ $9%AikiihhTh cj r..:..
v4fpMy s !,vy:*- :. 'y. $t * [6lG$jfGMlgfynQV!
.?
y -
j'
. : 'y,j j '
t
' g ypp4yg.qv "
y:.,.
9 '..fsyl.g7'-
n a. :,,
=.
' 'M.f *,
[i g; gj;gg g i p f*gg-Q,p :gy)r gggy J
D E A.q dl/[ d e t [ Y ['3 [ [ d h M gg h,
$h2$6 h
~
Figure A-91. Sample 1-9-B ROI #1 dot map of Nb (#2720).
i t
I I
1 I
}
/
I r
(f i
i l
l i
s I
i f
t 4
========o=.
I 2737..
35KV.
X288 199Fs 18039 A
i Figure A-92. Sample 1-9-B ROI #1 dot map of Ru (#2737).
l I
i I
i A-52 l
.l 1
1 l
k I
.i l
4 4
9 h
i Appendix B Results from the Radiochemical Analysis of Samples 6
i f
?
i
- t
)
i 1
a 1
13-1 i
=
I
e Tabic B-1. Average elemental concentration for cach h Jonal companion sample (wt?c).
Southeast Quadrant Northwest Ouadrant Northeast Quadrant Core Component / Element 1-9-A 1-9-8 1-11-A 1-11 9 1-ti-c 1-12-A 1-12-c 1-12-D Fuel 0
7.32 E+01 7.14 E+01 6.51 E+01 7.32 E*01 7.42 E+01 7.36 E+01 6.66 E+01 6.44 E+01 Zr 1.43 E+01 1.40 E*01 1.10 E+01 1.30 E+01 1.31 E*01 1.39 E+01 1.64 E+31 1.53 E+01 sn
--a
--a
--a
--a
--a
-a
--a
--s control Rod gg
..a
--a
--a
--a
--a
--a
-a In 2.83 E-01b
--a 1.78 E-Olb
--a 3.48 E-Olb
-a
--a
-a cd
--a
--a 2.9 E-02b
--a
--a 8.1 E-02b 1.56 E-01b 1.57 E-01b Burnable Poison Rod At a
..a
--a
-a
-*a
--a
--a
--a B
--d
--d
--d
--d
-d
--d
--d
--d Gd
-d
--d
-d
-d
--d
-d
--d
--d C5 da Structural Material tu
--d
--d
--d
-J
--d
-d
--d
--d cr 3.29 E-01c 3.25 E-01c 2.16 E 01c 3.48 '-01c 2.16 E 01c 4.64 E-Ole 9.25 E-01c 1.84 E-01c Fe 7.51 E-01 7.23 E-01 4.44 E-01 7.39 f. 01 4.20 E*01 5.62 E-01 1.22 E+00 1.02 E+00 pg
.a
--a
-a
--a
--a
--a-
--a Mn 3.4 E-02b 2.7 E-02b 2.4 E 02b 3.1 E-02b 2.2 E-02b 2.2 E-02b 3.5 E 02b
--a Ho
+a
--a
--a
--e
--a
-a
--a
--a kb
--a
--a
--a
--a
--a
--a
--a
--a l
Ni 1.05 E-Olb 9.4 E 02b 5.9 E 02b 1.07 E-01b 7.8 E-02b 8.1 E-02b 1.18 E-01b 1.13 E-Olb
$1
--d
- d
--d
-d
--d
-d
-d
-d Total wt% of sample 89.0 86.6 77.0 87.4 B3.4 58.7 85.5 81.2 a.
Below detectable concentrations.
b.
The concentration is below the mininsi reporting limit, but above the instrtrent detection limit.
c.
Interelement Interference correction factors were applied to corpensate for uranitsu spectral interferences.
I I
d.
No analyses were performed for these elements.
l i
i
.2..
.-___m em m.
t 2
a 8
g b
i V
r e
i t
I i
e
'I e
,f t
e a
e o
I e
o e
e a
e e
e e
e e
e e
e e e
-e
-e e
- C e
e O OO O-O*C e
e o
C 0 0 00 0 D 0 0 e
e C 0 0 0 0 00 0 Q e
6 e
a e
e e
o e
e e
e e
e + + + + *
- e
+
e e
wwwwwwwww e
e
=ww w
www e
e e
N M O & M e mmO e
e Fe yN N
M er e
e e o ogm@ qO @ M O e
e m M wamo mod e
- M Ww N N w@ mmOe e
e m W N N m O w e, @ O e
e o e e
e e
e e
e e
a e e e
e e
e o
e e
o e
o e Ne e ** mmmO e
e 3
@ e w e e pe @ Oe e
e e
e e
e e
o L,e e
e a
e o e e o
e e
e w e
e e
e e
o e
e e
e e
e m
%%% %% NN N N e M NNN NNNN%%
e e
e m
+ + + + + + + + +
e e @
4 4 + + + + + + +
e e
e e
e e
o O-O coe e e o
e w e e e e e e e e
r[
e e
C 0 0 0 0 0 00 e
e D 0 00 000 0,
e e
e
+ + + + + + + +
e e
+ + + + + + +
e e
a ww wwwww W O e
o wwww ww w wo e
'a s
e M omA 4 M gN 2 e
e NN M W M@
a e
% N e N N w k o
e e M e
%mN eN 2 e
o e
e M e N
e 4 4
- O
- 4e
= *
- W* mMe O e
a D O Ne mewe &
s y e e
e 2 e e Nk@ mme e w NNN O *
@ k @
e e.
8
- e
- e e w e e
e > e e 4 e e
a 4 e e
e w n Ce Ce O QQO O e
- > e C0 0 0 0 0 0 0 0 e - e w e e e e e c e o e
00 00 0 00 0, 0 e
a w e e * + + + + + + +
e w e e
o e
e e
e e
+
e e o e uJ W www wwww e o o www wW ww w as e
e a,
O N O N (3 O 4 N O e
e N O N e @ N c N O e
e n m
O @ ON O Oe @ O e O s 4 M
@ M 4 O N N O e
e e a e N O N OeO OM C Q
- e o e e
O @o O NOe Oe NOe e w e m O we Mo e kM4
%. O, e
e q e e e
e e
o e
o e 4
.e e
e e
e e
e e c M MNN N mMMO e
e M e D C
e a e 3 e,
e w e
M e
a e
o e
a e
e e
a <
- w e
e e
e e
e e
e e
.-7*
e e e e w i m e
e M e m
+ + + + + + + + +
e M e @
+ + + + + + + + +
=
e e
e e
e C
O O
w e e e e e e e e e e
e e e e
e O
O D O e
e C 0 0 00 00 0 e
-O
=
- e
- * * * * + + +
e e s e O w O wC O w wo e N e www wwwwwo e
- e +
- 7 0 2 4 2 2 N O 2 e + e comm6N N M 3 e
3 e e
m e
e g
e e-m@ @ p N N e
- e m o N
e N e e o e eme @ e @
.e N, O
g e o
e M
e e e *
- 4 4* 4 d @W d d e
e e
e e
, % e e - o e
e e
4 g a s
e e
a e~oe e
o e
o e
e e
o
- x a
e e N N N e e e O e a e e e e e ee cOm
+
OO O O OOO C 0 e -
6 0 0 00 OO O O O e
oe o
e e
e e
e a
e e
- 6 e
+ + + + + + + + +
e e > e eas w wwwwwww e > e w w uJ W www ww a
- e h e S eW O & %e n eO e e e e p & C O M O p o e
C e = e O O O Q J &e e O s = a d e ee QN N O O O e
e h e O e N e
@. N O.
e e e e
w e &NCe M d- &e O e w e a
M4 NN NCOOO e
= > e o
@ N. 4we Q c. O. O* O e
a
- e o
e e
e e
- e e e
e e *
- e u e o
e a G
e e
( e u e
a e
a
'4 e
e e
o e 4 e u a
o e
e e e e o e a
y" e
i N
- e
- N
+ + + + +- % % %%
e
- O N % % % % % % %%
e 4
+ + + +
e e e
+ + + + + + + + +
%e w a
. w e o
e O e C0 0 0 0 00 0 e
O e NNN N NN e
e n e OO O OO O C O e m o O O O O O O e
M e J e
+ + + + + + + +
e J e
+ + + + + +
e Me U n wwwww wwwo a U e wW wW wW O O O e
e a P e
@ @ @ e*N M@ 2 e D e e mP e e 2 2 2 e
U e o
e N mmW O w M e 2 e M meNN e
N @ g e, m S
-a
,e
-O e
e@e M @ M 4 oo e - e N N e o e
- e. N. e e @ w e
e o
e e
e e
e e
e e
e e
e O e MwM wMw e
C e d e e 4 e e
a g o e s e g
e e
e a
e e
y e
e O O C e Oe O DO e
o e Ce w e OO O
e O 0 0 0 0 0 0 0 0 e
e O 0 0 0000 O
e g
,e e
+ + + + + + e + +
e e
e
+
e a
e + + + +
e C
e a
wwww www ww e
e W w wwwww ww
- C e
e O O O O ON O O O e A P G N O e V N C O e
e e
O O OmO @ O O O e
e C e O O @ Oe & O e
e e N O
- e e
e M q
be e m
- Q O* Me O. Me O O. O.
N O. N 4 NM m m, o 2
e e e e
e e
e e
e e
O O OM O N D O O e
e e
mM NW N @ m@ ce o
e e
e o e
e e
e e
, u e
e a
e e
e s
e e
e e u e
e e
e a
e o
e a
e b o e A e
e m
% 'N NN N%%% %
e Q
e N
+ e + + + + +
9 e
t e m
+ + + + + + + + +
e e
e e
e e
N e
e M
M
=
e NNe e N NM M e
o e
e O
O e
o O O D O O O O O e
W e
+
e e
+ + + + + + + +
e w e e
O O O W O W O O O e
a ww W W W ww W O e
e a
2 M aN 2 > 2 2 2 e
e N NmM N M cN J e
e N
e a
@ e Mmme O e
o e
N.
s 6
mm M O vwN e
e o
e e
e o
e e
e e
e e
o e
e e
N N
e e
e M 4 We nee e
e e
e e
e w a.
e m o e
e O e s O e e
e m
e e
e m e e
e o
e d
e e
a w
a w e e
e e
y e w e e
e( mu( O O e
a d ee a U. 4 W D.
e e
e e
e QOe e e NN N z e
e e
W e
4 m a a s y p e w e NN N 2 e a e
e e a o e
e c r e w e e g e a e e
a w e e e e e d e
Q e, K e w e e
e e
e e
e a e K e w e e e
e e
e e a e
w e e e e e e* w m e < e e e v e e e e e
e M e a M e a
d a
U B-4 1
4 m
m,.
~..
4 Tabic B-3. TMI-2 companion sample strontium.90 analysis results of dissolution liquids.
SAMPLE ID#
LAB ID#
ACTIVITY +/- 1 STANDARD DEVIATION 1-9-A T5
( 3.22 +/- 0.18 ) E+03 uC1/g 1-9-B T6
( 2.57 +/- 0.15 ) E+03 uC1/g 1-11-A T1
( 2.29 +/- 0.13 ) E+03 uCi/g i
1-11-A T1R
( 2.28 +/-'O.13 ) E+03 uCi/g 1-11-B T4
( 4.0
+/- 0.2
) E+03 uC1/g 1-11-B T4R
( 3.9
+/- 0.2
) E+03 uCi/g 1-11-C T7
( 2.07 +/- 0.13 ) E+03 uCi/g i
to 1-12-A T2
( 5.9
+/- 0.3
) E+03 uCi/g G
1-12-C T8
( 1.89 +/- 0.11 ) E+03 uCi/g 1-12-D T3
( 8.4
+/- 0.5
) E+03 uCi/g CONTROL STD.
MEASURED ACTIVITY KNOWN ACTIVITY
% RATIO (D/S/G)
(D/S/G)
DAILY STD. 111-04.4 84.2 JGO.2%
DAILY STD. 115' 80.5 84.2 95.6%
CHEMICAL STD.
81.6 84.2 96.9%
I 3
f P
L e
m
..-.-,.omaa.
-,....-- - -. ~. - -. - -,. -.... -...,
...-.......~...-,.---s_
--._,-m-.~.
. -, ---.-.m m.- mm
,..., _ _. ~ - _ _
_m_..~
.m_ _ _
m
__m_
_m
_<a
.m._
m.--
_..7 I
+
t F
I
-- e D O e e O e e O w O O e e e e oo C 0 0 e0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
+ + + + + + + +
+ + + + + + + + + +
cu w w w w w w w w w
^
w w w w w w w w w w
@ M O N G N N M 4 4 O
N e O CJ M M 4 O N N
(
e C N N 4 M m m @ @ @
E N N m & O N M 4 mm L
O.
Q
- e. v. e. m. O.
O. m. m.
M.
O.
O.
4 e.
D.
N.
N.
w uw e e e N e N e M C M M re M e mN e e N N e e m
D D 9
Y N 4
2 %
s,
- m N N N N N N N N N N w m N N N N N N N N N N I
3 6
+ + + + + + + + + +
O O
+ + + + + + + + + +
I L m k O
~u M M M M M M M M N N O O O O O O O O O O U
M M M M M M M M N N 6
K O O O O O O O O O.
O.
J
= e
+ + + + + + + +
O e
+ + + + + + + + + +
u w w w w w w w w w w w I w w w w w w w w w w w m& O O C 4 N M M m A C O O t.
N N O W M e{
& W @ N @
4 M O to N m M M M @ @ N C O e
N.
N. *. 4 e.
M M N M N 4.
N.
C.
O.
O.
N. e.
- m. M.
N. 4 4 0 4+
4 w
@ e w e N 4 e N M 4 @ M mm v v v v v v v v v v v v N e e e e ++ N e N N e w N N N N e e e N e v e N N N e w e e0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r
+ + + + + + + + + +
+ + + + + + + + + +
J W w w w w w w w w w w w w w w w w w w u w w w w w w ww w w 4 m 4 C.)
M O an 4 & N n'.
N M & N ** *~
N to 63 N N 4 EO
- O EO N mo O @
so 6 O su to c) @ m3 O 4 m
N e
e N W 4 C N N O & M m N O an N N
^
N. m. m.
- m. m.
. e. e.
N.
N.
1 e.
N.
M.
C.
M.
C.
C.
N.
N.
e.
O. e.
e.
N.
M. 4.
4 w
Q V
w U ^
@ @ o m A N mmN e a
w e @ D e e N M N N a
N e 4 9 me e N e e i
w m g m m
N s
s e
i.
J K m N N N N N N N N N N
- N 6
n N v
..... e..
m N N N N N N N N N N C m N N N N N N N N N N g
D
+ + + + + + + + + +
M O
+ + + + + + + + + +
M C
+ + + + + + + + + +
L w L w 6 l
r u
(
-u N N e N N e N N O e 2 -
4 4 4 4 4 4 4 m M M u
4 4 4 4 4 4 4 4 M M Q 0 0 0 0 0 0 0 0 0 d
0 0 0 0 0 0 0 0 0 0 2 -
0 0 0 0 0 0 0 0 0 O E
+ + + + + + + + + +
- ' E
+ + + + + + + + + +
~
E
+ + + + + + + + + +
w w w w w w w w ww w w E w w w w ww w w w w w w w w w w w w w w w w w 0 0 M O N e W O N m C O M O N 4 N o w eO b e W M & 4 4 O O W M C w C 4 0 0 0 e O N C e m m N N N N A N 4 N N O.
C.
N.
e.
- m. m. N.
N.
4 e.
- e. m. Q e.
N.
N.
e.
M.
N.
- m. e. e.
M.
M.
?
e N N e N W e e C M M m e N 4 m W e @ @
N M e e N M m N 4 4 v v v v v
v v v v v v v V V v
v v v V V y v v v v I
1
- e w w e oo O w e O e w O C e e O O O O O O O O w e b
C 0 0 0 e e0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ + + + + + + + + +
+
+
+ +
+ + + + + + + +
w w W w w w w w w w w w w w w w w w w w w w w w w w ww w w i
~
M N r-
& O O N @ @ @
e N N m O m e N U M M M N N @ O W N @ @ @
3 a
O e e O m e O M 4 4 C
N M O O @ M me N N G e e O m e O M 4 4
{
.[
~
@ w w a N
m.
M.
N.
4 4 M.
M.
M.
I e.
N.
O. e.
N. e.
4 4 @
C. e.
- m. M.
N. 4 4 m.
M.
M.
4
. 4 e N M 4 @ m em a
e M N w A N e 4 N N ma N 4 e N M 4 4 mme w
C m
m m 4 m r
r s w N w N
.g D m N N N N N N N N N N w m N N N N N N N N N N m
N N N N N N N N N N 2 O
+ + + + + + + + + +
2 D
+ + + + + + + + + +
E Q
+ + + + * + + + + +
w
~ 6
(
b w
6 g
T U
D
-U M 4 M M M 4 4 4 M M D -
N N N N N N N M e w
-U N M N N N M M M N N
~
O O O O O O O O O O 2
O O O O O O O O O O J
O O O O O O O O O O s
,n y
a E
+ + + + + + + + + +
< E
- + + + + + + + + +
- E
+ + + + + + + + * +
p q v w w w w w w w w w w E w w w w w w w w w w w m w w w w w w w w w w w
.a e @ W w o & 0 0-2 0 0
-O O m O O B O M O O e @ @ m C o cc O O o & @ O e e 6 0 0 Q
W 4 & & 4 M 4 N N N C o p -
C.
M.
4 M 4 N N N t
w N.
- m. &.
m.
M.
W. N.
M.
Q w
- e. m. m. e. e.
- e. N. m.
e C e 4 @ F e e N e w M N N M N N M e C @
M e 4 4 O w e N e e v
v v v v
v v v v v v v v v v v v v v v v v v i
p e e e e e e e e M M e w e e e e e e e O w e oO w e e e O O p
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-A
+ + + + + + + +
e
+
+ + + + + + + + + +
d w w w w w w w w w w w w w w w w w w w w w
- u. w w w w w w w w C
a
& O n e e O M o oJ o om 4 D N 4 4 m O C N M O N 4 e O N om
+
o O m N N 4 d e e O O N m 4 4 mm m e m N N e e N m 4 $C N N 8
e" N.
M. c.
N.
O.
O.
N W
4 M.
4 4 M.
O.
O.
M.
O.
N.
N.
M.
w
@. N.
N.
N c
e e e e e e N e w e a
N N e N e e 4 M @ N z ^
e e @
M.
C.
^
L w
o t
e " N M N N w
r a m w m c
3 m N N
N N N N N N N N N N w p N N N N N N N N N N 7 m N N N N N N N N N N U
- ^
+ + + + + + + + + +
w 0
+ + + + + + + + + +
J O
+ + + + + + + + + +
Z
= b v
b
{
Q m L
U N N N N N N N N N D O 2
-u M M M M M M 4 4 N N m -u M M M M M M M 4 N N U
N E
0 O
O 0 0 0 0 0 0 0 0 0
- E
+ + + + + + + + + +
0 0 0 0 0 0 0 0 0 O
O 0 0 0 0 0 0 0 0 0 4
-N w
w w w
+ + + + + + + + +
- E
+ + + + + + + + + +
J U
M O & & e N M m O O Q m M 4 N M N O W O
-W W W W w w w W W W DMw w w w w w e w w w w w w w w w W w 2 w
)
e O m N m @ M @ v 4 0 0
& 4 M m e O N 4 & O N N e O O & e e O N M e m m
~C 4 4 O.
N.
M.
M. c. e.
M.
M.
m.
N.
4 M. N.
e e e e e e e e e e e N k 4 k w m.
N.
O. e.
- w. e. &.
G. e. m. o. e.
N.
N.
9 e e N @
M m e N 4 m C e @ 4 I
q C
v v v
v v v W-v v v v v v i
O i
Jl e - e e e e e - N N 0 - O r e C
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - e N O C C 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ + + + + +
+ + +
+ + + + + + + + + +
C w Y U-3 w
-C 4 ew w w w w w w w w w w w
-w w w w w w w w w w w w w w N
o c e m 4 m M M
@ @ 4 c & O N 4 4 W oe M e m
e M M c N O N m @ @
M N C N 4 W N m N N N & m M N 0 4 4 @
O e.
. e. e.
N.
N.
M.
C.
M.
M.
M.
C.
C. N. e. N.
O. N. e. m.
W O. O. m. m.
6 N. O.
C.
a D
D O M & O & W W N N
-C e
& m mM e @ O e N N
= ^
M M e M N N M M e e v
m 2 m w N w N F
N N N N N N N N N N m
N N N N N N N N N N m
N N N N N N N N N N wU J ^
+ + + + + + + + + +
r O
+ + + + + + * + + +
a O
+ + + + + + + + + +
)
m B
N.
- N N N N N N N N N e w
- b w L 2
i W m 0 0 0 0 0 0 0 0 0 0 O -u M 4 M M M 4 4 4 M M w
-U M N N M N N M M N N O 0 0 0 0 0 0 0 0 0 U
0 0 0 0 0 0 0 0 0 0 l
et h,
- * + + + + + + + +
2 E
- + + + + + +
w w 2e E
+ + + + + + + + + +
w'* * +
w w w w w w w w w w w R v w w w w w w w w w w e v w w wwww w
[
O m e 4 > 4 e 4 O O
& O N 4 O N S M W 66 M gM e M W M 4 O O f
e d e N e @ @ 4 & &
N @ N e O G o @ O S m w w N e N O M 4 4 6
F M. e.
- m. M.
4 M.
4 4
- m. m.
C.
N. N.
O.
. Q. N. N.
N.
N.
O.
M.
D.
M.
O.
. e. N. N.
W w
b b @ b b b @ @ e e N e e h M e N M N N e S m e N C e e M M l
p
- 3 v v v
v v v v v v v v w
w w
e 2 e 2 e 2
-t 4
- m. 4.
U.
C.
U.
C.
4 2 4
- m. W 4 U.
O.
W 4
4 2 4
- m. 0 4 0 0 4
}
i O.
w a w a wa W
w e e N N N 2 m
> > w e e N N N 2 m O.
w e e N N N 2 m s
f 4
e.
=
e.
e.
- e. e.
e.
e.
- e. r.
e.
g w
e
(
w e.
- e. c. e.
q r
g e e s g e e a q e e s q Q
w e e e r e m s w e e e v e a w w e e e e e a w U
U U
\\
?
o h
4 l
4 i
1 B-6 i
?
c-L
6 Appendix C TMI-2 Decay Heat at Short Times After the Accident 9
4' o
C-1
I Appendix C TMI-2 Decay Heat at Short Times After the Accident
]
l i
Date:
April 17, 1992 f
To:
D. W. Akers i
E.11. Ottewitte, MS 2114 j@
From:
Subject:
TMI-2 DECAY llEAT AT Sil0RT TIMES AFTER Tile ACCIDENT - Ell 0-07-92 i
Reference:
(a)
B. G. Schnitzler and J. B. Briggs, TMI-21sotopic Inventory Calculations, EGG-PBS-6798 (no date given).
(b)
E. Browne and R. B. Firestone, Table of Radioactive Isotopes, John Wiley, New York, 1986, pp. D D-26.
(c)
T. R. England and W. B. Wilson, TMI-2 Decay Power: LASL
- i fission Product and Actinide Decay Power Calculations for the President's Commission at Three Mile Island, tA-8041-i MS, October 1979.
Per your request I have calculated the subject information at times of 224 and
)
600 minutes after shutdown from the accident. The basis of this work was the reference (a) calculation of the core-averaged isotopic inventory (in moles) l at shutdown, minus the contributions f rom highly-volatile noble gases, I and Cs.
The reference (a) values were first placed into Word Perfect fonnat with the help of an optical scanner. For each isotope we then added half-lives and the average energy release by decay mode from reference (b). These 4000-5000 entries were then manually checked, followed by pattern checks for inconsistencies.
l A final physics check judged which missing data were important. For four isotopes it was necessary to evaluate their decay-energy release ad hoc. Table 1 tabulates these values. Attachment A presents the resulting set in Word Perfect format.
Tjble1. Ad hoc evaluated data for pertinent isotopes Isotope t,
Moles
<E,>(MeV)
<E,>(MeV) j
"'Pd 21.04h 0.011 0.0185 0.11
"'La 3.9h 0.16 0.03 1.0
'"Sm 9.4h 0.0027 0.06 0.3 15h 0.003 0.4 0.3-Eu C-3 l
F o
D. W. Akers April 20, 1992 Efl0-07-91 Page P The next step was to transfer the Word Perfect files into a LOTUS 1-2-3 spreadsheet, liere the inventories were adjusted for the two decay times and multiplied by appropriate conversion factors as follows:
[ moles] x [6.02x10" atoms / mole] x [1.602x10'" Ws/MeV] x [A dis / atom s]
x [MeV/ dis] / [8.16x10' g U]
where X = decay constant for each isotope 8.16x10' g U = the mass associated with 7673 moles 50, 335,100 Moles 2"U, and 216 moles 2"U MeV/ dis = the isotopic decay heat values obtained from reference (b).
The total results of the 1-2-3 calculations are rather voluminous. They I
include the breakdown in heating by gamma (non-local) release as well as by local deposition. Table 2 summarizes the contributions from all isotopes. The total result of 0.16 at 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> af ter shutdown compares f avorably with a value of 0.21 watts per gram U calculated at LANL (c) with the CINDER code.
To remove the contributions from volatiles, Attachment B compiles the percentage contribution of each isotope to one decimal place for easier viewing. Table 3 tabulates the pertinent results and calculates the non-volatile percentages to be 80.3 and 85.6 at 224 minutes and 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> after shutdown, respectively.
Table 2.
Summary results of 1-2-3 calculations Decay Mode Post Shutdown Heating Rate (W/g U) after 224 minutes after 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> non-local gamma release 0.12 0.083 local release 0.11 0.079 total 0.23 0.16 non-volatile total 0.18 0.14 t
L i
C-4 t-
t e.
t D. W. Akers April 17, 1992 j
Pa e 3 h
I Table 3.
Volatile isotope contributions to the total decay heat
[
l Category l
Isotope l
% at 224 min l
% at le hours f
Actinides Np-239 19.2 25.3 l
Total Actinides 19.2 25.3 Volatile FP Kr-85m 0.2 0.1
~j Kr-87 0.4 9.
Kr-88 2.1 0.6 I-131 1.2 1.7 I-132 2.9 0.6 j
I-133 4.3 4.9 Xe-133 0.8 1.2 I-134 0.9 I-135 6.1 4.5 Xe-135 0.4 0.4 t
Cs-136 6.
0.1 Cs-138 0.1 8.
r Tota l Vol. FP 19.4 14.1 Other FP Sr-89 1.1 -
1.6 i
Sr-91 4.7 4.3 Y-91 1.4 1.9 f
Y-91m 0.1 i
Sr-92 2.2 0.6 Y-92 3.1 1.3 Y-93 4.0 3.8 Zr-95 2.1 3.0
{
f Nb-95 1.3 1.9 Zr-97 5.5 6.1 j
Nb-97 0.5 i
Nb-98m 0.7 i
f Wo-99 2.8 3.7 Tc-99m 0.3 0.2 i
t Ru-103 1.1 1.6 l
l Ru-105 0.9-0.5 Rh-105-0.3 0.3 i
5 Pd-209 0.1 0.1 Sn-127 0.1 l
4 l
Sb-127 0.2 0.2 1
Sb-128 0.1 0.1 Tc-131m 0.4 0.5 Tc-132 1.0 1.4 Tc-133m 0.3 0.
Tc-134 0.1 Ba-139 0.7 C.5
a i
- 0. W. Akers April 17, 1992 EH0-07-91 Page 4 en l
Ba-140
,1_. 9 2.7 e
La-140 10.6 13.5 La-141 2.2 1.0 Ce-141 0.8 1.1 La-142 2.5 0.2 Ce-143 2.6 3.2 Pr-143 1.1 1.6 Se-144 0.1 0.1 Pr-145 1.2 0.8 Nd-147 0.6 0.9 Pm-148 0.2 0.3 Nd-149 0.2 Pm-149 0.3 0.4 Pm-151 0.2 0.3 Sm-153 0.1 0.1 Eu-156 0.1 c.
Total Other FP 59.8 59.3 Crand Total 98.4 98.7 Norma l i zed r4cn-Vo l ati le *'
80.3 85.7
~
1 Attachments:
As Stated cc: Central Files, MS 3108 E. H. Ottewitte file i
)
L e
i
\\
r C-6 e
.