ML20039D582

From kanterella
Revision as of 20:26, 14 March 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Advises of Dynamic Soil Properties Review to Define Curves of Soil Shear Modulus Values for Seismic Soil Structure Interaction Analysis.Estimated Values of Poisson Ratio in FSAR Considered Too Low.Revised Tables Encl
ML20039D582
Person / Time
Site: Clinton Constellation icon.png
Issue date: 12/31/1981
From: Greier J
ILLINOIS POWER CO.
To: John Miller
Office of Nuclear Reactor Regulation
References
U-0348, U-348, NUDOCS 8201050231
Download: ML20039D582 (8)


Text

4 .

/LLINDIS POWER COMPANY ~q

) 3 z32_33y_g 500 SOUTH 27TH STREET, DECATUR, ILLINOIS 62525 December 31, 1981 on 9

Mr. James R. Miller, Chief Standardization & Special Projects Branch (

Division of Licensing RECEIVED Office of Nuclear Reactor Regulation '

U. S. Nuclear Regulatory Commission 93 JAN 4 1982> I2 -

Washington, D. C. 20555 ( ugemny

% nn 1

Dear Mr. Miller:

4 9 W

Clinton Power Station Unit 1 Docket No. 50-461 In the course of developing responses to NRC's request for information on seismic soil-structure interaction analysis, including soil properties variation, a review of the dynamic soil properties was undertaken. The goal of the review was to define the upper and lower bound curves of soil shear modulus values. At the same time it was decided to develop site specific response spectra for Clinton site. For this purpose an estimate of shear wave velocities for soils present below the foundation mat was required. A review of the shear wave velocities given in FSAR figures 2.5-369 thru 2.5-371 suggested that in light of the knowledge gained from recent geophysical tests conducted at various sites of comparable soil deposits, the shear wave velocities given in these figures were too high. The shear wave velocities given in the FSAR were computed from the measured compressional wave velocities and estimated Poisson's ratio. In view of the current knowledge the estimated values of Poisson's ratio are considered too low.

Based on the above, a thorough review of the shear wave velocities and the low-strain soil moduli, was started by Dames & Moore. In order not to delay the work on site-specific response spectra, an estimated value of 2500 ft/sec for the Illinoian till layer and 1000 ft/sec for the structural fill layer was given to Weston Geophysical, with the understanding that for the Illinoian till layer the velocity could range between 2000-2500 ft/sec and a variation in this range will not have any significant impact on the site specific response spectra.

E201050231 011231 hE PDR ADOCK 05000461 gI A PDR

Mr. James R. Miller U-0348 Dames & Moore has completed its review of the shear wave velocities and the low strain soil moduli values. Re-sults of this review are documented in the attached revised FSAR figures 2.5-369 thru 2.5-371, and tables 2.5-46 and 2.5-48.

We have evaluated the effect of the above changes on the plant design and determined that there is no impact on the design. We believe that these changes have only a conservative effect on the site specific response spectra, if any. Weston Geophysical has been informed of the latest revision in the shear wave velocity of the Illinoian till layer (from 2500 ft/sec to 2100 ft/sec) and they are proceeding to incorporate the effect of this, if any, in their work of site specific response spectra development.

The revised FSAR tables and figures included here will be docketed in the next amendment of the FSAR.

Sincerely,

!.h f 'Fw J. D. Geier Manager Nuclear Station Engineering HBP /lt Attachments cc: J. H. Williams, NRC Clinton Project Manager H. H. Livermore, NRC Resident !aspector R. Jackson, NRC Chief Geosciene.es Branch G. Giese-Koch, NRC Geosciences Branch B. Jagennath, NRC HGEB

3

$H b 060 $O g@d o UNIT

. GR APHIC DESCRIPTION UNIT $3( O- <J y;

WEIGHT (pef)

COLUMN gy[ $Q aw 0% w k 2> 1 >  ;

8% y DRY l WET LCESS, scattered; Ca,erloin by crQCntC

.i 10Dl3tt 0.37

- *~

  • WI SCON SIN AN 2000 900 11 0 13 0 a* ,' ,

GLACIAL TILL, weathered to brown,

. moest

_:~g.{ ::0: T' WISCONSIN AN 39 .W. 3yi. '

. GL ACI AL TILL . ,

~. unweathered

?!.:; ,

ij 5700 0.48 110 0 11'5 135 -

W: *. , .

I'

+ hI l'!'{l INTERGLACLAL

~12Il ZONL; tocol U

w

....'lf'll' '

9 s

ALLUVI AL DEPOSITS

" m To

  • T zGJ O *;o#o,'.9
  • 0 O*Co*OY 5

'O c "C.O ' c '

30.o0 - o1 o> ILLINOIAN

  • h< *; GLAC. AL TILL; Z

u*

o 333 (C.'

oC 0 8

.e a *.

ICCCI OUTWASH ANO Ew [,0f 5Io*j.0 '; L ACUSTRIN E

"@ H*.?o3 =c0c DEPOSITS w- ?hJCf 0p,$0? ,

5 kc$28?

$ i L ACU S T R INE  :.

'500 0.46 2!O0 13 5 147

  • DEPOSIT 10 [

I .i (Yormouthion)

-..; ' .~.... , = : ). 0

'.[jf":'3*4f PRE-ILLINOl AN

. ,i }. 7(d.6- GLActAL TILL

. '.'.N. di lo otty undertain by 6"" "~ # '"/,' . . <

PRE-ILL!N OI AN d;. , L ACUSTRINE OEPOSIT

,s . . . _

5' - , LIMESTONE

_ . . ..._x I - $"# 10,500 0.29 5700 155 160 g

1. - 1
  • _  ; ; .. SILTSTCN E

_ ___. =_. . _ _ _. _ .- , - - cr.r-CLINTON POWER STATION FIN AL S AFETY AN ALYSIS REPORT FIGURE 2.5-369

-w

./,~,; e, : . ..  :. . .: TYPICAL GEOLOGIC PROFILE SH0'.ilNG

- m.iu2 u .i ., nc, nem.o. - ..-. .u n.n, n.n.., . 3. :. r.

GEOPHYSICAL PROPERTIES - STATION SITE

5U b NUw $ U e8o UNIT UNIT 3U C -- 'tJ$ WEIGHT GR APHIC COLUMN DESCRIPTION '$

y y[ NQ $Q (pcf)

. aw oc a

w' 5> >

0 ** 5 DRY WET oB >

' '// , -__

10

/ /A SALT CREEK

'E'N NNolNlor;:nie 2M 0 37 900 iOO 822 re:.e:l.:. tor. i j si: .e : .e : .e:

  • * ** *[ : ! ** ! [-

TcM 2c #

c O 0 C * *9 3 *. f O o $.E

' C ko of.f.,

?C% M. cO

>O do 6 0~* *0(J- 3 ILLINOl AN GLACI AL TILL; y % 0;%

- - V c %*~ql Icect 112 <,0 bgi3,, OUTWASH AND T *' p i c D,,' LACUSTRlHE 0 OEPOSITS 3

,: <. %.s C 0,6 $...w. c.9=

p e w :O'ct fO~d @

U c S z- .?$2}g,W.Oh o o e ., C 0 e n % 4 g, "

m

- j -

m< _- o .

Qf 7300 0.46 2000 135 14 5 z /% 'i i @'(! PRC-ILLINOI AN g <., . ij:l. I

.:,.i

.V L ACUSTRIN E AND GL ACI AL TILL

20 I pg , 72d.?ff.l.'.< t .
EPOSITS present locally l z , :En -'t v v;g.

p a

E W . ..

4 ... *.* .

  • 't-BEDROCK VALLEY '

OUTY ASH DEPOSIT (Pre-Illinoion 5800 0.45 1750 109 127 I 14 0 . 'I . Monemet volley Ceposit ) e

. . . . I i Sj -l LIMESTONE 5

iO(k555=$-25 2 _- E z- 4 o SHALE 5 I0,500 0.29 5700 155 160

-Z-I-;W g

_ = :-i a j

_j~_ SILT STO N E

_ _ _ . . l - - -

CLINTON POWER STATION I FIN AL S AFETY AN ALYSIS REPORT i l

FIGURE 2.5-370

"' TYPICAL GEOLOGIC PROFILE SHO'.ii'iG GE0?HfSICAL PROPERTIES - DAM SITE

.m...>.i,..>ne,r...,,=,,.,:.,.,,,

r .c..u: 2.a m .a ..s c, .

. , -,_, -- - - - - - . ~ . . . , , . - - - , - . - - - . - - -

m

~

Q

~w>- b-

bO'S U Uo U Nii" GilAPHIC ' UNIT $30 6U- ~3$

E WEIGliT I COLU.'.tN < DESCRIPTION yy[ $Q Ij p g (pef)

c. u M >g CA A

"w. >

ta 8h y CRY l WET

-._ .. , s. _ -

V L:

.f.. ~.  : ::::in by crqsolc 2000 0.37 SCO 105 125 f

7 t ,:,y f:.,. f:., ,I tc;:cil 1:'.;: f.,  : y;.U .;;1. '.A

[O*C ngeho%;5q 'd o

le gyo Or c.Aj A 19,3 o,.

'b eo* .-4 .

81 t./'gd'.h<t ILLINOIAH GLACI AL TILL

" *'c*G[c g# 1 lcest CUTWASH AND h c. = oO

's*,v,A -';(j

. LACUSTRINE e oo P. o . c fap c s DEPOSIT 3

.w P

e..O.o a fo.C' o

.w s :p,.g,U c .;<

. q .

w O., co'0W d O

' *bO

. p d; o ? o6,j o ES ((M$9Ohlb M

wm

  • 5 10' h> DEPOLIT h ,,,,,,.%.-

l (LACUSTRINE Yorracuthlon) 7500 0.46 2I00 132 14 5 Ew EWQWq]

N hM.M ** .l PRE-ILLINOI AN CLACIAL TILL; N 65[ Q g:'

< r.91Wi ' , ' .l1 local CUTWASH E p?,:' fQ.pyj DEPOSITS N [Sr!:[9 i* ter S.5[d[f III ~dm'lj PRE- lLL INO! AN I  ? CUTWASH Atto 25E!$

is f 'l } ALLUVIAL CEPOSIT i:et. .. . -;7. .. :. .] 4 BEDROCK VALLEY l h:'. * * * .*;!.1  : . . . ?-M CUTWASH OEPOSIT IIC{..t!!., .. :,.. (if (Pre-Illinoian 6000 0.45 1800 IOS 124 l et. *- . ./; Mononst volley g t);. *:.l .

  • 1.Q G1 posit )

' :

  • V. -  :
  • 3, , l

__ _ :_- _2

?_._ T_ . : ~~ J 20 r-r_ ._ i SILTSTONE r_ -^-.i y

_. -- ___ _- 1 o 0.28 5300 g__ _. _ __ _l ej lopOO TO TO 155 I60

.=_=_:--_---u O.30 5500 tiZ C _ SHALE 30 c=Z ==--f4--9 .r-z+ c)

Ce

~r=h , COAL

}ET.J'Ife-t~ =C=  !

CLINTON POWER STATION FIN AL S AFETY ANALYSIS REPORT FIGURE 2.5-371

-e s. TYPICAL GE0 LOGIC PROFILE SHOWING GEOPHYSICAL PROPERTIES - SECT'ON E-E'

.....<m....,..:.,..>.

o.u mr.. :. . .m... ALOiG i;0RTH FORK OF SALT CREEK

MISC-9-A10 .

~

TABLE 2.5-46 FIELD SHEAR WAVE VELOCITY TABULAT' ION ESTIMATED DEPTil VELOCITY (ft/sec) SOURCE MATERIAL TYPE (feet)_ ,

900* Geophysical P-14 ,

Low-velocity surface layer 0-16 ,

1100 Geophysical P-14 Wisconsinan till, 16-47 2100 Geophysical P-14 Illinoian glacial till 47-237 Geophysical' P-14 Top of bedrock 237+

5700 Geophysical D-Ik Salt Creek alluvium 0-18 900*

Geophysical D-11 Illinoian glacial till 18-150

- 2000-2100 Geophysical D-11 Bedrock valley odtwash deposit 150-290-1800 Geophysical D-11 Top of bedrock 290t 5700 Geophysical D-31 Salt Creek alluvium 0-14 900*

Geophysical D-31 Illinoian glacial till 14-195 2100 1800 Geophysical D-31 Bedrock valley 195-305 Geophysical D-31 Top of bedrock - 305+

5300-5500

  • Measured.

l 4

9 OO I

O ,

._m-

( MISC-9 A6/A7 l TAOLE 2.5-48 i PARAMETERS FOR ANALYSIS OF ROCK.50!L-STRUCTURE INTERACTION COHE510NLE55 l SOIL CCHE51VE 50!L5 RECOMPAC H D RECOMFACHD WI5C0h5thAN WISC0h5 t hAN GLACIAL TILL GLACIAL TILL OF WEDRON FORMATION OF h!DRON FORMATION WISCONSINAN COMPACTED TVPE A PATERIAL TYPE A PATERI AL GLACI AL TILL t hTER GLACI AL SlHUCTURAL FILL (AS COMPACTED) (SATL1t ATED) LOESS OF WEDRON FORMATION DEP05fi5 CENSITY (pcf): Dry density 123 127 128 101 118  !!5 Wet density 132 141 144 120 137 131 P015.t0N'S RATIO: Dynamic 0.40 0.40 0.40 0.37 0.48 0.48 Static 0.30 0.40 0.40 0.40 0.40 0.40 STATIC MODULUS OF ELASTICITY (Es)

In-sttu modulus (psf) -- 6.0 x 105 2.0 x 105 2.0 x 105 13,3 , 305 15.1 x 105 Increase with surcharge des /do' (psf / psf) 350 0 0 0 0 0 DYNAMIC MODULUS OF ELASTICITY (psf)

Single amplitude Shear strain = 1.0% 1/2  !! x 105 3 x 105 3 x 105 12 x 105 22.000( I 9 x 105

= 0.11 90.000 39 x 105 8 x 105 8 x 105 36 x 105 33 x 105

= 0.01% 207.000 I/ 98 x 105 34 x 105 31 x 105 80 x 105 80 x 105

= 0.001% 1/2 148 x 105 76 x 105 74 x 105 130 x 105 130 x 105 271.000

= 0.00011 1/2 162 x 105 95 x 105 93 x 105 160 x 105 280.000( 150 x 105 STATIC MODULUS OF RIGIDITY (Gs)

In sttu modulus (psf) -- 3.0 x 105 0.7 x 105 0.7 x 105 4,7 , 305 5.4 x 105 Increase with surcharge aG5/do' (psf / psf) 135 0 0 0 0 0 DVhAMIC MODULUS OF R!GIO!IV (psf)

Single amplitude 1/2 Shear strain = 1.0% 8.000(o 4 x 105 1 x 105 1 x 105 4 , g05 3 , 335

= 0.11 32,000( 1/2 14 x 105 3 x 105 3 x 105 12 x 105 gg , gas

= 0.01%

1/2 35 x 105 12 x 105 12 x 105 27 x 105  ?? x 105 74.000( II#

= 0.001% 97.000 53 x 105 27 x 105 27 x 105 44 , 305 44 , gos

= 0.00011 1/2 58 x 105 34 x 105 34 x 105 54 x 105 54 x 105 100.000 CAMPING Percent of critical damping Single amplitude shear strain = 1.0% 16 20 20 20 20 20

= 0.1% 14 9 15 15 9 9

= 0.011 6 5 10 10 5 5

= 0.0011 2 3 6 6 3 3

= 0.0001% 1 2.5 4 4 2.5 2.5

~ '

r 7a $" );, l l',' ,

9 h .'

db.. ) ' {f '(

  • 1 f . yII' .t h'$ s i s. 4, ' , ':.r~ I . .

+<

. t. li<' s4 i

l *o

=

e O

e8' -

O b.ce b- O

e. O e

M M M N y

.c. ==  %'.~.**-

ev y y ad to On On Ch tp ED t#b O e e L' en en NN e O eO e O eO O o 3 }

O e* e*

  • M Pan a= M ea du OO* e, a, O O O O ** b e.

en ee ** se et D h

e 90 M W z c O

e e es e

. Mo O es E ==

5 6

2 NNNNN NNNNN to= em 4A =C Nw%%% g en "* eft we me ce ce we 40  % %.e ee e s%

e se % se

% V

- tae O to O -==e-me== O ---=w=,.= ep ==CFe

-* af ** ** = E- E- E= E+ E ** *EaE=E=E E ee JE *J-e== Ne O o oe N

. e-woo o., o .>

O e-=.J an ON .O atO ~u O w=.o.w=-=.o sC m ow o en, e '-. _ , -

    • O 4 Ca MM me ce OO e m O

me O PD O OO OOMN*e & >

Q O, O OO Neo g c ene

enJ s.k =* O , Oe OO ==

I hag O ce e e o e e e o e e ge 8 cm th 80 ett et CD CD as On s== e o e=1 ee N N D =F es M to N e%eg tD en - e-3

.a.t K

=

3 V ed E Oe MsWWJ 4

== to to ett ett to art to ett en to to en g C

gn.

r OM O OOOOO O OOOOO 6

, e=- O et,t *% en en ,,g $

se

.a O

== CL a

a=e ce

.a OO o e W

x O =====

  • e e e to N

= 0 Pm

===

10 @ *% aft O N ee e

o m re. et aus g

-ha g ,

J, p.-

t ees n e N e% N m ==

  • me N . . ae en e . -w -

i had 63 N 4%if M er en en ee C . e em mm- ,

3 * **

4 ~ O O w=* .w W h

., e, . = . . .

.a .

2 .

  • ===*Fe=w

~

  • O 2 en O OOOOO O OOOOO en e4= = * = es ce se we ** ee == ee me me s=e ** C **

d oc = M er N en . nA ett g en aa>= M NM . f*) M O u u m a at M O xwwww e o

,e,e

  • t.D {dt O eseo e e p Og er M N g
    • 5 , CL QO 96 N en n.> gas e er eO e eD N.

NNNme N. e 80 NNm

@ N en.e O en  %

nadog Q gy NM= On es e=0 g 4.

I =a N A O

-O . es

    • % U y e.

D e b

$4 e, e O 3

C EJ.e eD O

nft eft 46 en en '

OOOO ep O

to t#t eD te en OOOOO e=

e

. es n A e

+

e--

e aC.. -

-O OO e en

- Oe e e.e e e

. - ce - - es .=

  • 3 u

==

en O e.e ,

w to e.e .

O zu me ,r a = O ===== = . O = ==== e . .-c

- e.

u -c s-CO e e

.. - M .-*

. ~ ee M c., u 2.e. C . . .

su - E N ic , <0ROO ON

. o e,t _ .e,>_

= .*e.ev to

- .c -

.se R: e., 3 to

.=

e me ce 1 .O.

.C,..u.

=.

f_

40 a d E b eso .

m.e e en. - w%

N M

O n=a. en en R ggW.

NNNNN NNNNN ce 3 m* a gg*#'*"-

468 a

J **

.c -  %%.

e. e. %. e%..% - e. ee - O -3 .u e. O .

. >=

y -m -

->e.

e..a M I.?.OO e O~

OO O

@ -'PV V.OOO E .2 .

m On

  • VVVR *.'

-w Om.-O

. . ' c ,-., O ..:* .

O O ***"o *

  • N O OOO O N *e o en eE O -m en OO O OOO OOO O se e O em em 2 ,

O N en O O r == m es - to en ' .E z e eOOO e e e e * *

  • O* t= O - e9-b e .

en ee,4 s-et N N ee e s-s esa gO gb

    • 40 N 05O N N f'l '

O L

u == E 3 as b

u e@ e4 gg ==

'.s *" '-

2 9 O -Vb$

  • D 6 -

s O. N CP 3 . e. e s

en .

N.N

-%- N,.~ - % NNNN.N

%-  %- % O e. . U ,

V C e, b a.a.s z .a.d, r see.****e==, ~ * -e -.--

me e-o me e.=.e . E =- O 8 y02 ". O.

ON NO . O en T~PFPE .

. 3

  • PPPPo" - -OM-O 5 *; ~., . 5 '

. .e C

.O.J

.e - m.e OO e

.-s OOOOO O

O O

N- e O

e . - - O U.

.=,J e.OOOO OOOO -

    • % % $=
  • =**

art O,'

6 3ee.O**

e a e e E%e e.ee of N en a-o er e en me-eOo e aO

  • P to 06
  • e ** N e

ee m usee

eA Ch u

  • Gr 9-

& *ws C em V **

  • 19e== *

'e- *

  • *) oO  %= GF

& em 4* CL e4 9 9 em e4 3 op & em 6 a=% @* 9D& h 9 g= c k &V == ep Cb === e2 =

m est sw == ea e4 en gg ta= 4 e4 ** w D 0 e# *-

w., e== em 6 O O e == ** O eae .se en g to 49 e4 e4 et p 4" *" '

2+

h O 't.=* G e4 h 14 C@ GP ur D 3= ee w C w= 3OEE 4 48 gg >= e 3- b ** *= u O O a= b

,e.s ,es one . g,,3 ye tus -

e= 44 ==Ch D4 O u3 4A te

  • Ch-

= u g 44 s-* >= ep ==e H ** E D4 * *  %= ts V W Ch go == -o O.

e gg =.=.

e ge e.e O e gg O se ce e e4 -4 O h OrCC U C C E=** e= 6 e#9 ha 94 ** O O O *== 6 e-= 34 e4

  • o O V .e4 we e+ 0 O V h E **
  • au 9 C es es e es ao *."a n as aC O ee O O O e-== g O O
  • *-e o o* O-OOO - 48 4*
  • gg ce og en g c% wJ e e e o a*0 en g ===

--e * * * * * *

  • Uh-~O O es a

g ea Dg **

Q e/D

.J Ch u en-nas w L em end *eOOOOe CL u ==

CE w L em cC re O O O O **e e == O O O O uV

-e c == 0 C D e *a ==g c.=ce o D@

6 _%P 3 Ch Lam 48 G G S S S 3 Ch . 4.a. W9 8 9 9 9 38

==,e.8 5 8 E E 47 4 C *= s.= e= E OA La, OV th e4 e4 an=  % CV e 9 E ** O = == t as g 3 e4 en g%.

O en

- m ese 3g ett ea =

g 3

e. g en en ea 3 C- =se gn= C e..=*=

A g a em ** ** 8

  • e4 **

8 na e e

  • #8 84 e=

ee t#l 3 ea Ch t/> *= # LJ 9 m.e

    • "E c'& bOwkE

& b P" g

, -. e pV-w 3 .==. 64

.J 9"5- +8 Ek D.J . == b b ee Sh 4= *( .J O 3 D CL e4 3.J O E D t'k ** 9" ** #

44 u

CL CE DE O eo

=E O E ta Oe

.aE es o eE E em 9

O Ge

    • 3 CO w t#9 E L 3 ea V b d-b * * * " "O

, og O.

3 *3

  • ea se V N ee em g % e as C ag am g a 3= .Z == Sp em U s=- ea = ed e4 O*@ O es C W gf6 ko O U en s. Las se Oe r - U en % 0 ** O 2 kb *= G **
    • 4= to f U

$ om e#t E

eh e#t

==

me euU e-cc T ,c e/l of 2 a#3 es p-eoD aC e=a se cc - .C.

e#9

. CL er CL E e4 et er W

+8 ett - af e-o ==

>= **

==,

K g.a O

O b

e-t#4 O

>= e-t#9 O O-p c

J A

-)'

,, . t :. ' *

- _ _ - _~