ML19317F753

From kanterella
Revision as of 00:48, 12 December 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Determination of Total Reactor Coolant Flowrate & Its Accuracy for Facility. Statement Addressing Foreign Matl & Deposits in Secondary Sys Encl
ML19317F753
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 05/25/1978
From: Winks R
BABCOCK & WILCOX CO.
To:
Shared Package
ML19317F750 List:
References
NUDOCS 8001230657
Download: ML19317F753 (28)


Text

--

., , -

-

,

m ,.

,

. .

.

Attachment 1 to Toledo Edison Company letter Dated May 26, 1978; Serial No; 436 DETERMINATION OF TOTAL RC FLOWRATE AND IT,S ACCURACY FOR DAVIS-BESSE 1

-

s

,

BY ROBERT W. WINKS PRINCIPAL ENGI? LEER

'

BABC0CK & WILC0X COMPANY LYNCHfiURG, VIRGINI A l *

!

MAY 25, 1978' j D**% '

i . o o 11 m ~

O '9'T

. v JU . s .A _a d

e 3

f

,

- -

. ._ . . . _ ,-_---_ - _ - __

- *

,

.

m , - .

. . .

,  ;

.

'

.

.

~

.

DETERMINATION OF TOTAL RC FLOWRATE -

AND ITS ACCURACY FOR DAVIS-BESSE 1

.

TABLE OF CONTENTS ,

,

PAGE NUMBER

.

Introduction 1 Sumary 1 Sensor A'ccuracy 2 Heat Balance Data '5 dalculatedTotalRCFlowrate 11

. - r Error Analysis 15

.

9

.

e d

.

>

.

e 4

-

.

s .

' '

. . .

l

, .

i DETERMINATION OF TOTAL RC FLOWRATE AND

-

ITS ACCURACY FOR DAVIS-BESSE 1 AT 100%

POWER LEVEL INTRODUCTION In a B&W nuclear power plant, Gentile flowmeters are used to measure ' Loop 1 and 2 reactor coolant flowrates. These primary loop flowmeters are not calibrated prior to installation. Loop 1 and 2 feedwater flowrates are measured with calibrated flow meters and B&W utilizes a plant heat balance to set the calibration of the primary loop flowmeters.

An error analysis on the equations used to determine the total reactor core flowrate (Loop 1 plus Looo 2) has revealed that the errors in reactor coolant temperatures and feedwater flowmeter differential pressure are the most significant terms in calculating accurate values of total reactor core finwrata

.

SLM!ARY The calculated RC flowrate for Davis-Besse 1 at 100% power is 113.2% times the design flowrate of 352,000 gpm. The accuracy is 2.2%. This was determined with RC temperature instrument string errors equal to 10.79F and feedwater flowmeter AP errors equal to 21.25% and steam temperature erros equal toi4.2F.

~

Reactor coolant system temperatures are measured with + 1/4% accurate pre-calibrated RTD's over a range of 520 to 620F. SimilarTy, the Bailey Meter Company differqntial pressure transmitters are calibrated to + 1/2% at time of installation. The tuo feedwater flowmeters,are calibrated to + 1/2% prior to installation. .<

For normal everyday conditions in the instrumentation area of the plant, B&W has determined the accuracy of all' input measurements used in this error analysis. (Refer to page 4.)

.

D

'

.

-

.

4

- -

- - - _

'

. m ,

1

. .

~

.

I ACCURACY 0F MAJOR INSTRUMENTATION USED FOR PLANT HEAT BALANCE CALCULATIONS

..

. . _ _ .._ . . _ _ . . . . ._

._ _ _ _

,

,

O @ '

' D

'

G e .

,

y. ze ,

LOON LOOPi OT3G <

f CORE }  ; OTS6

%  ?, '

e

'

o/ l J  :

T D I r3 R*e o c

-

i

_. __

.._ l 0

The follcwing RTD's, each calibrated to + 1/4 F,and ,

tables prepared and sent with the sensor, were used for plant heat balance data for calculating total RC flowrate: ,

o .

N_o Descriotion 1 Loop 1 hot leg temp. Narrow Range, .520' to 620F. .

3 . _ Loop 1 hot leg temp. Narrow Range, 520 to 620F 7 Loop 2 hot leg temp. Narrow Range, 520 to 620F 9 Loop 2 Hot leg temp. Narrow Range, 520 to 620F .

l

! 5 Loop 1 cold leg temp. Narrow Range, 520 to 620 F

l. 11 6 Loop 1 cold leg temo. Narrow Range, 520 to 620 F Loop 2 cold leg temo. Narrow Range, 520 to 620 F j

i 12 Loop 2 cold leg temp. Narrow Range, 520 to 620 F l

RTD's 13,14,15 and 16 are wide range (50 to 650 F) sensors and were not used.

RTD's 2,4,8 and 10 are inputs to the RPS and were not used for heat balance.

>

-

.

.

.

q n '

.

. .

4 FEEDWATER FLOWRATE MEASUREMENT ACCURACY

>

.

LOOPg LoGP E STEAM STEAM GENERATOR GENERATOR O O Nd N(

a

'

-, -

Q '

LDCP l FLOWMETER

- L LOCP a FLOWMETER m

Jb

= FROM FEED WATER HEATERS LOOPl LOOP E

.

pw 7gMpERATURE FW TEMPERATURE Each feedwater flowmeter is calibrated with 455 F water (rated flow) and the flow coefficient for each set of taps (two on each flowmeter) is supplied by the vendor.

.

The required accuracy is i 1/2%.

'

Each aP transmitter is calibrated to the range specified by the measured flow coefficient within an accuracy of i 0.25%.

The accuracies for the different. parameters are shown in the Table on the next page. The accuracy for each parameter was conservatively calculated by summing the string errors. The environmental errors from changes in temperature and the errors from the poraputer were included in the values shown in the Table.

l

>

l .

-

!

.

!

,

.

.

m '

' .

.

ACCURACY OF PRIMARY AND SECONDARY SIDE MEASUREMENTS USED FOR CALCULATION OF TOTAL RC FLOWRATE

. .

MEASUREMENT ACCURACY PARAMETER ACCURACY  % SPAN UNITS RC hot leg temp. 1 0.79 520 to 620F 10.79 F

,

RC cold leg temp. 1 0.79 ,

520 to 620F +0.79 F Steam temp. 1 0.60 0 to 700F 14.2 F Feedwater temp. -s i 1.13 O to 600F 16.8 F Feedwater pressure 11.0% 0 to 1500 psig 1 15 psi Steam pressure 11.89% 0 to 1200 psig i 23 psi RC pressure 1 0.77% 0 to 2500 psig i 19 psi Feedwater Flow * -+ 1.25% 0 to 960 inches + 12. inches (Std. H20)

' '

RC Flowrate + 1.046

- ^

.

O to 910 inches -

+ 9.5 inches

. < (Std. H 2O)

.

O e

d 3

  • 4 ,

. .

,' m ,

-

.

COMPARISON OF' HOT LEG TEMPERATURES (Tg)

-

FOR DAVIS-BESSE 1 AT 100% POWER ON t .

APRIL 5, 1978

'

LOOP 1 LOOP LOOP 1 LOOP 1 l TIME T 720 ({F) T721 ( F)

T 719 (OF) T722 (oF)

! '14:39 605.6 605.8 605.9 606.1

'

14:44 606.0- 606.1 506.2 606.1 It 50 606.0 606.2 606.1 606.2 1<. 24 605.9 . 606.1 606.4 606.4 14.59 605.6 606.1 605.9 605.9 15:04 605.8 606.1 606.1 606.1 15:09 605.9 605.9 605.9 606.0 15:14 605.9 606.1 606.2 606.4

.

Midpoint 605.8 606.0 606.15 606.15 Span + 0.2 + 0.2 + 0.25 + 0.25 (during 35 s -

_

minutes)

Average Ta = 606.03 F

.

LOOP 2 LOOP 2 LOOP 2 LOOP 2 TIME T729 ( F) T730 (oF) T728 ( F) T731 ( F) 14:39 604.9 605.1 604.3 604.9 14:44 605.3 605.3 604.8' 605.0 14:50 , 605.4 605.4 604.9. 605.2 14:54 605.1 605.3 ^

.

604.4 605.2 14:59 605.1 605.0< 604.6 604.8 15:04 605.1 605.1 604.4 604.8 15:09 605.0 604.9 604.6 604.7 15:14 605.2 605.4 604.7 605.2

.

Midpoinc 605.15 605.15 604.6 604.95 Span 1 0.25 1 0.25 + 0.3 1 0.25 (during 2 minutes) l' Average TH = 604.96 F d

s 5

'

o

-

5- ,

.

.

L

.

-

, -

.

. .

-

.

.

=

COMPARISON OF COLD LEG TEMPERATURES (Tc) FOR DAVIS-BESSE I AT 100% F0WER ON APRIL 5, 1978

..

TIME RCP l-1 TEMP ( F) RCP l-2 TEMP ( F) 14:39 559.2 558.6 14:44 559.1 558.4 14:50 558.9 558.3 14:54 558.9 558.3 14:59 558.8 558.1 15:04 559.0 558.4 15:09 558.9 558.3 15:14 559.2 558.4 Midpoint 559.0 -

558.35 Span + 0.2 f; 0. 25 (during 35 minutes s L 60 p 1 Avg. Tc = 558.7 F TIME RCP 2-1 TEMP ( F) RCP 2-2 TEMP (otn 14:39 559.2 559.1 14:44 558.7 559.4 14:50 558.7 559.3 14:54 '

558.7 558.7 14:59 558.7

<

558.6 15:04 558.3 558.8 15:09' 558.4 558.8 15:14 559.1 558.9 Midpoint 558.75 559.'0 Span + 0.45 + 0.40 (during 35 mi'nutes)

L o o p 2 Avg. Tc = 558.9 F d

,

,

e

-

, -

l. ,

.

1

. .

.

_ - - - .. - - _ _ - _ .

.

,

3 . -

.

.

COMPARISON OF STEAM TEMPERATURES (Ts) AND JRESSURES (Ps)

FOR DAVIS-BESSE 1 AT 100% POWER ON APRIL 5, 1978 LOOP 1 . LOOP 2 TIME STEAM TEMP ( F) STEAM TEMP ( F) 14:39 595.6 596.2 14:44 595.6 596.7 14:50 595.5 596.7 14:54 595.5 596.4 14:59 595.4 596.6 15:04 595.5 596.4 15:09 595.5 596.4 15:14 595.6 596.4 Midpoint 595.5 596.45 Span + 0.1 + 0.25 (during 35 minutes)

-

s LOOP 1 LOOP 2 TIME STEAM PRESS (osid STEAM PRESS. Cosie) 14:39 905.8 881.2 14:44 907.8 879.4 14:50 905.2 882.0 14:54 . 905.4 881.1 14:59 906.1 885.9 15:04 905.1 .,e 881.1

-

15:09 903.7 879.9 15:14 905.1 884.7 Midpoint 905.75 882.65 Span + 2.05 + 3.25 (during 35 minutes)

.

e 1

>

4

. ,

4 J

. _ _ . . . _ . . . . .

.

-

,

.S s

.

COMPARISON OF FEEDWATER TEMPERA 1URES (T F ) AND PRESSURES (PF ) FOR DAVIS-BESSE 1 AT 100% POWER ON APRIL 5,1978 LOOP 1 FEEDWATER LOOP 2 FEEDWATER TIME TEMP ( F) ,

TEMP ( F) 14:39 459.8 459.8 14:44 459.9 459.9

'

1.:50 460.1 460.2 14:54 459.8 460.1 14:59 460.2 460.2 15:04 459.9 459.9 15:09 460.0 459.9 15:14 459.9 460.0 Midpoint 460.0 460.0

,

Span 0.2 10.2 (during 35 minutes)

Tg = 460.0 F for Loops 1 an4 2 LOOP 1 FEEDWATER LOOP 2 FEEDWATER TIME PRESSURE (psig) PRESSURE (psig) 14:39 . 942.4 955.9 14:44 942.8 956.1 14:50 944.6 957.2 14:54

'

943.2 956.7 14:59 944.9 958.8 15:04 943.2 956.1 15:09 943.2 956.7 '

15
14 943.2 957.0 Midpoint 943.65 957.35 l

Span 21.25 21.45 (during 35 minutes)

.

d

.

b

e 4

. - _- . ..

__

.

-

_

'

5 ,

.

.

.

COMPARISON OF MEASURED FEEDWATER FLOWRATES (WF )

FOR DAVIf-BESSE 1 AT 100% POWER ON APRIL 5, 1978

.

LOOP l FEEDWATER FLOWRATE LOOP 2 FEEDWATER FLOWRATE TIME __

(MP P H ) (MPPH) 14:39 5.806 5.784 14: 44 5.787 5.753 14:50 5.841 5.811 14:54 5.812 5.780 14:59 5.808 5.787 15:04 5.820 5.814 15:09 5.798 -

5.762 15:14 5.822 5.785

'

Average value: 5.812

,, ,

'

5.785 Midpoint: 5.814 5.784 Span: + 0.027 + 0.030 (during 35 minutes)

>

.

d

.m V

.

.

.

8 e

i

.

.

b

  • !

4

.

'

,

l l

. _ . . . _ , _ .__ _ - . - - . . . .

-

..- _

.s

,

PRIMARY SIDE ENTHALPY CALCULATION:

NOMENCLATURE f

H H = Reactor Coolant hot leg enthalpy H C = Reactor Coolant cold leg enthal

!

i HS = Enthalpy of steam at steam geu 4 tor outlet HF = Enthalpy of feedwater to the steam generator

! dh H = Change in enthalpy, an added subscript: 'pri' or 'sec' implies the

'

primary and secondary loops respectively.

LOOP 1:

HH @ 606.0 F and 2159 psia = 622.41 Btu /lb HC @ 558.7 F and 2220 psia = 558.14 Btu /lb J8Hpri = 64.27 Btu /lb

.

LOOP 2:

H H @ 605.0 F and 2159 psia = 620.94 Btu /,1b HC @ 558.9 F and 2220 psia = 558.39 Beu/lb 4H pri = 62.55 Btu /lb SECONDARY SIDE ENTHALPY CALCULATION:

LOOP 1:

HS @ 595.5 F and 920 psia = 1254.63 Btu /lb HF @ 460 F and 958 psia = 441.73 Btu /lb AHsec = 812.90 Btu /lb LOOP 2:

HS @ 596.5 F and 897 psia = 1258.03 Btu /lb HF @ 460 F and 972 psia = 441.74 Beu/lb

'

i AHaec = 816.29 Btu /lb d

.

g e

4

-

10 -

. . _ ,

__ _

( - - -

, ) .~ ~

CALcU LATED TOTAL RC FLO10 RATE

__

. _ _ . . _ . _ _ _ _ _ ._.

c r R LNCAll8 RATED PRIMARY LOOP PRE.%(URE FLOWMETE R

!

'

>

O( 3 C c MOT LE6 TEMP.

LocP2 . > Loop 1

.

D aa t J c

,

i

,, ,, coLo LEG TEMP.

!

.

PRI. MARY tooP~ ccMFifwRATION

- . - . - - .

,

For +.he, .enii re- :rrimag - sec.cndog system ,

the, M ' h gg- ,

(NR ei(bHj) PRIMARY +Wc2.Nd R 4-Qn'- iq PS PE MARY

kSC + QqAgrAT.Iop LOS.S E.S
    • Wge i = R-co.cor- cAvt FM Rate-p foop (

NWRt 2. = Reen - N6t Fbo Rec tc. p y 2

.

Q ggg = Hext. %t h h (w.C eu Pg.s

.

  • ~/5-3 y lo B m h v' .

'

.

. ._.

. .. ..

- , --

__- ,__ ,_. .. . _ _

.

.

- . _ _ ._

(

, ,----

,_______'u__, i I

LOOP 1

OTSG 0 tore .

l l

~

!___.-__q'_j I

I l

I

> i-._ __ _

.----

,

'

.

.

'

SECOND ARY L oop . CON FIG U R.ATION '

- .

Qss ::(lAlp A H sec )g9p +(W i = Misec) LocP 2 6

RADIATECW . .

O 54 xio BM M Lo sses SLtb sh'h. aim ARE oJbOut- bh 3d gM Wgeg (M I) pplM ARy+W Rc'2, h2)PplM ARy 475-3%I0 Bht

  • c kbNsec)gpgb bH F 3cc) 7z + o 54 Xlo L wWRd Ibh)emg t + Wp(bHz) -(V Fhhsic) coon

. . 4(We A 0 toer, -14 uxiO'sk -

.

'

4 4

\1

~

. .

._ __ - _ - - .

- ,

'

~ ,

6 RE1 i FRutAny F Oxc tooPi 2.

t N N Rc2. PRIMARY =F V 5")tooe2 ~1 2_ b

,

Solvine; Arv W g4 % A/ge2. l  :

6- 8*' b

= (WF b h S <c)toopi - 37 3& Xio (A)pg.g

(/1HT I / PRIMAgy

.

CLNL 6 Wg bF hHec),p 3 _373yx(039 k (AH2 >i PRIM A R-y F>ctru oo_cc io

(

hN)fRII

"'

b4'27 BUR Ib

,

1 O (bWsec)%p i = B12 30 Sh11b (6Hoecj t.coe 2. = 8161s BNib Mc b.',tu.Ti Ard. cocot% va. % w n.o rt, 4 N 6

NF t_ cop 1 = f.'sl 2. X to IblW we ap2_ = 5 785 Xto6  % W l

.

. )

IS .

n. - - - _ . - -

-

,

.

=

6

,

gJ RU (5'8lulo )(9)a 9o ) - 3 7 38 Xio' aml6 (64 a7)

= 6 l 93 X10 lb Iw

-

N Re2 _ (5 785Xlo')(816 '29) --- 37 '3F XIO'b BE (sa ss)

=

74 90 xto' 16 w l +-t h L R e 7

6 % = Nge 7. = b%cMRc_2

=

[47'83 Xto 6

\b W A , thea ne aA gm c. q u w n u

.__

-

NRCT Nl hv)

WRETQFm) 60 3-Qos X ?w %

'

C

'

y =- 4 6 46 Ab l -t3 at Sgg , 3 . p a

.2220 psia

'"

WRtTQ=)= 3.9 89 Xlo' f m q, ygpx neq+- = sxerooog g- =. 3 5 2, 0 00 ""'

b

%

fs M % D oua~ j pa e : li"o o l' '

-

=\\3af 14 l

L )

,

,s .-s

~

.- -

t ERROR ANALYSIS OF CALCULATED RC FLOWRATE The basic equation for Loop 1 or 2 RC flowrate is:

wRC .wF.AM -

C

- y-sec.

where C = Q b "p ,Np, )- Qrad. losses = 74.76 x 106 Btu /hr Ifoneassumesanextremecaseofa10%ergorinC,thenCwouldbeequalto 8.2236 x 107 Beu/hr rather than 74.76 x 10 Btu /hr.

Then total RC Flowrate would become:

W pet =- 5 311xlo6 gg;q. so - 3T32 xio'sklW_- y.goG G4 27 Ib 14w (Afg1 = 59 85 xlo' X 816 22 - 3 I'37Xlo Bhlk c 6Qss =Fi'(RXIO Ml4w h R e p w =.141 7 xto s .u, & a~t a Change in total RC flowrate is 0.08%.

For this small change we shall assume C is a constant and is 74.76 x 106 Btu /hr.

If it is in error, its influence on the final value is insignificant.

.

e e

O d

1 3

e

- i

'

.

m -

'

.

,

.

.

m ,

.

-

.

,

ERROR ANALYSIS OF CALCULATED RC FLOWS

.

,

'

For either Loop A or B the eouation for RC flow is:

Wgc = WF (H.-ggl 3 i

Note: Introducing. a con-

-

- Stent in the ex-( QH H e-) , oression will not T '

change the follow-p ( T.3, 3 )- p T=, p gj T

.

og

.

= c) -

i ing worw.

'

. . . f Nu, Pn)-p(Tc., Pm)}

{NRe, "NRc, + Whc Determinetheexpressionfortheerrorinb R for a normal distribution of sma11' errors in each of the beasured parameters.

.

' ~ ~ " ' ~

I Where[isafunctionofT and p P,; and b.f

,.,

~ ~ ' ' "

-- --

E = {g/ "

. ....

C, the flow coefficient is assumea to be a constant.

.. d W g = D wg i (- Yz j

---._dp_6@)h,aP

. . .

o --

T.-

~ ~

. (A g .j AP j

..

-

x

. .

. . . .

~"

.

?"

..

9 t= d Te + J Pp hdP;gs.;Le.h- g DP y

) We ,

c_

AP' ,

D V]p _~ e g

'

_ , h_*  ? h?

.

E AP .

f

.

~

~ 16

.

me--= <

_ c -

m m .,

.

The value for each enthalpy in the first equation given on the previous page was determined from temperature and pressure measurements. The value of W wasobtainedfromthefeedwatertemperature,andfromfeedwaterdifferenti$1 pressure measurements.

In the first equation given on the previous page, the onif parameters that depend on a common measurement are pH and Wp . Specifically, F and W both depend on F

T.p Consequently, in the error analysis, a corrolatica term 15 developed to account

, ,_

for the dependence of Hp and Wp on T p.

The coriclation term is: -

l

-dd IdecYJ M/F [d tec~- djg('_~{jg2- '

,=D. W . hd-. =Te:) 2 g,,.y;G}g--?

H -H

'

. .. Ie--)

_- - - - -. - . d--. h)q. - . . . .. Hs- Mp'. \

-Q 10, ---- N, ye )

~~

2 Wr ; {d. Wr Y d.frd

-

.' c~ A P 'fd 9
-

&Tr y J fkD4r~)

9 ' t~)zD 'T,)-

-

8C _ ,, g' _

-

y es-se (

.

My-Mc SS ~ _ . _

YJ~ E .$, .. / )f

,

NH ~ WC = NM~ No I =

__ -

-d-T, 2-Hr)y-).Te__) yW_ g'L. _d .Tf )

,

The correlation tota becomes:

.

2.fMs ~HiYc s e Y )~P h (~p % ~t W D He ? . d 7,~."_.

~

c)p'q.- '),

. . -.

-_.-i .Mu ..He f. h . C .n, .Q..!e)q.... . He-Ne.jq.

_

2 Te.)

.

~ '

. _ . . . . . . . . ..

.t_....._.~_~..'._....._..

.. .. m..c %..f.. _.(Hs-H.f.)(dPhdN\..}Tp F- . . . - - - . . . .

. --.. ... .. .. . .. _ . (pg---.

-- -

ye a y -.9 7,.. ,,u>_ Te.. ..J - -.- .-- - _ - . =

.

.

- - - - - -

, - 17 -

.

e

.

- -- - - - -

.

.

m ,,

1

-

.

,1 l

For the Bailey Meter Company - supplied feedwater flowmeters which are calibrated prior to shipment to the site., we have the following typical equation:

~

v

  • N--* --

d*sl [ = _ k ... d W a. _ Q [ a

-

- -

$C $a. dhdj _ AY A = conversion factor C = approach factor (deoendent on the beta ratio)

. Fa = effect of thermal expansion of flowmeter throat di3 meter d = measured throat diamter - inches o

and C d is the flow coefficient derived from the calibration

_ , ,_

data for each set of pressure taps.

oy 1 Yp ^

0.f Ah + 02 .

A.k

'

..

,

.

-

2

  • b , 4l, + Cd l A?.N 2

=

o u Typically d 0

= 9.121 inches measured to + 0.001 inches thus 6do/do g 0.0ll%,wiiich is negligible

.

Also, at or near full power flow, the test data values of C are d 0.9909, 0.9916, 0.9928 and 0.9878. The uncertainty it) the above values is negligible as compared to other uncertainties.

Based on the above description, C will be assumed to be constant for this error analysis.

'Ihe expressio,n fordWymay then be written as: . ,, r s e j { Yi / L2

_ ? h ,P ?

2.

{-----

~

  • j Q~P; Z -

AP j

-- .: -- -

,......-- ---

...:

-

-y

.. ....

_

  • y .-l_c:-sP-)p-gh.._= L

- g-f S .g.: ' ;;spY yt.---

-

F z y g y;- ,

2- M -- - -- y Since T F determines feedwater enthalpy as well as feedwater flowrate, an error in T p can result in non-independent errors in H p a n d -Wp,

&

s

-

18 - ,

-

. ,

. . , . . . .

, ,

.

,. ..

,

-

,

3 e

.

.

C on ti n ui n g w i t h .t h e d e v e_1.o o me n t o f d_W RC i

-

Yx = f- .lx ,. x. - _

'"' #

dJt, = 1:E0A_ d.d'lO16_sp -

'-_

D Tx > b p.pe o , ._

-

  • YBC

~

WF -[IS. F a general expression is

( gg//e_] developed for the accuracy of either Loop 1 or 2 RC 'flowrate

. - - - - . ]gc-= . Ac_ j ac --.

- - -

) Up , -) - 9 H.s y- . fcb2 102q..Jll }-

-

--

.

L yz.--- p //p2.-

0AC . .4 Al_ } -

_.

. p H, . .

. ) ..... g .ye .-. .. [- ~

g-

-2AE-.(//;-//p-)~~..e1~f d 17p' g.T,?--

(-Hg-Hi)'- XT, D Tr.-) 3 Calculate coefficient C for the feedwater flowmeter:

5 5 'kW

  • l AA lHN -

From Bailey Meter Co. Calibration sheets .l c_ 7 0 xto' tbs /hr # '

-

0.3154 x /0 .

'\, 51. 4 *)

  • 95G.5 -

3

/)F at 455 F and 1065 osia - 51.49 lbs/ft and AP (full scale) = 956.5 inches of standard water.

Calcu. late typical value of AP at full power:

'o.0336 0' ).N 3

gat 460Fand1050 psia =51.26lbs/ft

,

  • e

.

_- _ . . _ _

.

-

.

. ,a -

.

'

.

Calculate Hg -Hp:

(HHNC I Use Loop 2 values to obtain 816.29 = 0.2086.

-

(62.55)2 Evaluate 39 for variation around 460 F:

3T p p at 457.4 F = 51.335 lbs/ft 3 g at 462.2 F = 51.099 lbs/ft 3

,

_3f_ = 0.236 = - 0.0492 1h BT p -4.8 ft"-F Evaluate 3 He for variation around 460 F:

STp '

hp at 462F = 443.99 Btu /lb hp at 458F = 439.48 Btu /lb 3H p =

1.128 BTU /lb-F

-

.

ST p

__

Using the above values, the complete correlation tem (P) may be calculated as: ,

'- 8 3 I P = -(3.154)' x 10 x 0.662 x 10 x 0.2086 x (-4.92 x 10-2) l (dT ) (1.12})

f i

Or P = 7.624 x 10' x (dTf) 1

- l

,

.

d

.

,

. - 20 -

.

G

. , _ - _ -

.

.

. .,-

,

. .

' '

.  !

.

1 Evaluate the following terms:

AN RC ,

IW RC ,

IW RC ,

A RC ,

I RC 3W p 2H 3 2H p 2H N C

H l

3W RC ,

A N F (H g - Hp )' , Hg-HF -

A 3W p SW p i- H H-- H C HH-NC i

- , .

2W RC I N F

N S

-

N F

Hp9 Wp

-

, , B 3H g 3H 3 , HH-NC - NH~NC

.

'

2W RC 3 NF Hg-Wp Hg - Wp _

, _ ,

2H p 2H p ,

HgsHC -

NH ~ "C 3W RC , 3 NF (Hg-H) p ,

-W p (H g -H} E =

~N RC 2 -

0

'

3H g 3H H INH-NC) J (H H ~N) C N

H

-N C 3W RC 3 NF (Hg-H) p +W RC

, , ED 3H C I"C . (NH-N) C ,< N H ~ "C

.

.

  1. 9

.

3 e

a

.

w

-rm -

. .

,, .,

,.

.

-

.

A = 812.90 + 816.29 64.27 62.55 = 12.85 2

2 B = 5.'812 X 106 + 5.785 X 100 = 9.146 X 10 4 lb 64.27 62.55 BTU-hr 2

D = 73.18 X 106 = 75.16 X 106 1.170 X 10 0 lb 2

64.27 62.55 BTU-br

.

'

Rewriting the expression for d W RC 2 2 2

'b dW RC c A2 (d Wp )2+B (dH3 )2+B (dH p )2+D (dH H ) +D (dH c )

+P oA dW RC " dT p +A 2 daP p

+B 2 2

'

gg 2 '+ B2 f 2H 3 +B [3H- 2+B2[3H-dT dP dP BT 3 gp S F F 3 (3Tp (3P

+D [3H H dT + D2 [ gg 2 H dP +D 2 /3H C dT +D 2 gg C dP +F.

I NyH H I H l qQ C ,

'

)

C

- NgPH )

Where P is the correlation term developed on Page 16.

i

. <

l

.

.

l l

1

-

!

l

'

. ,

  • / l 3

8

- - _ _ _ _. _ _ _ _ _ _ _

'

-

. m .

-

.

l

~

.

,

Evaluate all the remaining coefficients:

b XI 1

_f =. '

662 x (- 0 02492.) '

/ )Tp 2. si. 2.6

= - 27 8g tbs /gr, _ .g s 15770 = g 3 gg Ibs/r.-indes sM mhr SH S (around596Fand,910osia) = 0.835 Beu/lb - F ST g 592F to 600F

.

IN S (around 596F and 910 psia) = -0.112 Btu /lb - F 2P 890 to 930 psia 3

3H F (around 460F and 960 psia) = 1.126 Beu/lb - F ST p 453 to 467 F ,

.

IN F (around 460F and 960 psia) = - 0.00042 Btu /lb - psi 2P p 900 to 1020 psia 2N H (around 605.5F and 2160 psia) = 1.47 Btu /lb - F BT H

604.5 to 606.5F

,

2N H (around605.5Fand2160 psia)= ' b.0 56 Btu /lb - psi

-

2P g 2140 to 2180 psia

.

3H (around 558.8F and 2220 psia) = 1.260 Beu/lb - F C

ST C 557.8 to 559.8 F 2N (around 558.8F and 2220 psia) = - 0.0020 ~ Bru/lb - psi C

3P 2200 to 2240 psia C

Substituting each of the calculated coefficients into the equation for d WRC we obtain:

5 23 ~*

.

c

.. , -

.

- .

.

.

dWRC = (12.85)2 (-2788)2 (dTp)2 + (12.85)2 (4388)2 (daP)2 ,

(91460)2 (0.835)2 (dT3 )2 + (91460)2 (-0.112)2 (dPs)2

+ (91460)2 (1.126)2 (dTp)2 + (91460)2(.00042)2 (dPF) 6 6

+ (1.170X10 )2 (),47)2(dT,;) + (1.170X10 )2(-0.0056)2(dPH )

6 6

+ (1.170.X10 )2(1.26)2(dTC ) +(1.170X10 )2(-0.0020)2(dP C )

h

+ 7.624 X 109 (dTp)2

~

dW 3.179 X 109 (daP)2 + 2.958 X 1012 (dT RC " _ H ) + 2.173 X 1012 (dTC )

+ 1.952 X 1010 (dTp )2 + 0.764 X 1010 (dT3)2 + 0. 429 X 108 (dPH) b

+ 0.055 X 108(dP) C + 1.049 X 108 (dP 3)2 + .148 X 104 (dPp )2 (daP)2 = ( 12.) = 144.

(d Tg)2 = (0.79)2 = 0.62 s

-

(d TC ) = (0.79)2 = 0.62 (d Tp )2 = (6.8)2 = 46.

(d T3 )2 = (4.2)2 = 18.

(dP)H = (19) = 361 ,

(d PC ) = (19) = 361

'

(d P3 )2 = (23)2 = 529  ;

(dP)2 p = (15 )2 = 225

, .

,

dWRC = 4.578 X 10II + b for (daP) '

I 1.834 X 1012 + gar (d Tg ),

1.347 X 1012 + for(d TC) 0.898 X 1012 + go,(d Tp) 0.138 X 1012 + for(d T3) 1.549 X 1010'+ or (d Pg ) l 9

1.986 X 10 + for(d PC) 0.555 X 10II +, for(d P3) 0.333 X 106 -

for(d Pp) s e > j

,

-

1

- 24 ,

'

!

. -

, r.

%

dk RC = 474.8 x 10 =j-2.18 x 10 lbs/ hour or 1.2.95% for either loop.

Since the flowrates for the two RC loops were calculated from measurements taken with two completely different sets of sensors, the total RC flowrate percentage error from the heat balance measurements is:

2-0.707 (2.95) = 12.09%

As shown on p.4, the RC flowrate string error for the Centile flowrates is 1.046%.

After the RC flowmeterA P transmitters are calibrated against the results obtained from the heat balance determination, then the total fractional error in each loop flowrate will be:

m (.0295) + (.01046)2

= .000980 or =- 3.1 %

The total RC flowrate is simply the sum- of both loop flowrates,but the extremes of erroneous signals will not occur simultaneously; therefore, we can say: that the percentage error in the total RC flowrate from the Centile flowrate measurements, as calibrated by the heat balance results,.is ( 3.1%) = 2.2%.

h ,

.

.

t

.

d a

e t

4

- . --

,a ~

  • -s ...

, , ATTACHMENT 2 TO

'

TOLEDO EDISON COMPANY LETTER .

  • DATED May 26, 1978; Serial No. 436 SfATEMENT ADDRESSING FOREIGN MATERIAL AND DEPOSITS IN SECONDARY SYSTEM

.

The OTSG Feedwater Chemistry control is designed to minimize the ingress of contaminants to the units. These contaminants include both suspended and dissolved solids. Chemistry control utilizes the all-valatile chemicals' ammonia and hydrazine which will not deposit or form insoluble solids which could deposit on critical surfaces.' The use of'these chemicals is designed to minimize the corrosion of feedwater train materials and thus the input of corrosion product oxides into the steam generators.

Water purity is further maintained through the use of full flow condensate polishers (powdered resin) which, in addition to re-

' moving disso'1ved solids, also provide s excellent filters. These filters are located such that the) process all the water coming .

from the condenser. As a result, damage to orifices in the feed-

,

water train is highly improbable due to the aforementioned feed-water chemistry and purity control. .

l Shot blasting for the feedwater piping was done in the shop before installation of the piping. Thus, no shot blasting was done with the feedwater flow elements I

installed.

l l

-

c

,

.

.

I