ML051440207

From kanterella
Revision as of 13:01, 9 December 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Core Operating Limits Report (COLR) for Cycle 16
ML051440207
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 05/19/2005
From: Archie J
South Carolina Electric & Gas Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML051440207 (37)


Text

Jeffrey B. Archie Vice President, Nuclear Operations 803.345.4214 A SCANA COMPANY May 19, 2005 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 Gentlemen:

Subject:

VIRGIL C. SUMMER NUCLEAR STATION DOCKET NO. 50-395 OPERATING LICENSE NO. NPF-12 CORE OPERATING LIMITS REPORT (COLR)

FOR CYCLE 16 In accordance with Section 6.9.1.11 of the Virgil C. Summer Nuclear Station Technical Specifications, South Carolina Electric & Gas Company (SCE&G) hereby submits the Cycle 16 Core Operating Limits Report (COLR).

Should you have any questions, please call Mrs. Susan B. Reese at (803) 345-4591.

Very truly yo rs, tSD14fC.4.

Jeffrey B. Archie SBRIJBA/sr Attachment NOTE: Attachment is on file in NL c: Without Attachment unless noted N. 0. Lorick S. A. Byrne N. S. Carns T. G. Eppink R. J. White W. D. Travers (w/attachment)

R. E. Martin (w/attachment)

NRC Resident Inspector (w/attachment)

Winston & Strawn NSRC RTS (L-99-01 50)

File (818.23-1, RR 5000)

DMS (RC-05-0078)

SCE&G I Virgil C.Summer Nuclear Station

  • P.0.Box 88

SOUTH CAROLINA ELECTRIC & GAS COMPANY VIRGIL C. SUMMER NUCLEAR STATION CORE OPERATING LIMITS REPORT FOR CYCLE 16 REVISION 0 APRIL 2005

LIST OF EFFECTIVE PAGES PAGE REVISION i 0 ii 0 0

111 0

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0

Table of Contents Section Page 1.0 Core Operating Limits Report 1 2.0 Operating Limits 2 2.1 Moderator Temperature Coefficient (Specification 3.1.1.3) 2 2.2 Shutdown Rod Insertion Limits (Specification 3.1.35) 2 2.3 Control Rod Insertion Limits (Specification 3.1.3.6) 2 2.4 Axial Flux Difference (Specification 3.2.1) 3 2.5 Heat Flux Hot Channel Factor - FQ(z) (Specification 3.2.2) 3 2.6 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel Factor - F[,N, (Specification 3.2.3) 4 2.7 Power Distribution Measurement Uncertainty (Specifications 3.2.2 and 3.2.3) 4 3.0 References 6 Revision 0

List of Tables Table Page Table 1. RAOC W(z) at 150 MWD/MTU V. C. Summer - Cycle 16 12 Table 2. RAOC W(z) at 3000 MWD/MTU V. C. Summer - Cycle 16 14 Table 3. RAOC W(z) at 10000 MWDIMTU V. C. Summer - Cycle 16 16 Table 4. RAOC W(z) at 20000 MWD/MTU V. C. Summer - Cycle 16 18 Table 5. RAOC FQ Margin Decreases in Excess of 2% Per 31 EFPD 19 Table 6. Baseload W(z) at 150 MWDIMTU V. C. Summer - Cycle 16 21 Table 7. Baseload W(z) at 1300 MWD/MTU V. C. Summer - Cycle 16 23 Table 8. Baseload W(z) at 3000 MWD/MTU V. C. Summer - Cycle 16 25 Table 9. Baseload W(z) at 10000 MWD/MTU V. C. Summer - Cycle 16 27 Table 10. Baseload W(z) at 20000 MWD/MTU V. C. Summer - Cycle 16 29 Table 11. Baseload FQ Margin Decreases in Excess of 2% Per 31 EFPD 30 ii Revision 0

List of Figures Figure Page Figure 1. Moderator Temperature Coefficient Versus Power Lcvel V. C. Summer - Cycle 16 7 Figure 2. Rod Group Insertion Limits Versus Thermal Power for Three Loop Operation V. C. Summer - Cycle 16 8 Figure 3. Axial Flux Difference Limits as a Function of Rated Thermal Power V. C. Summer - Cycle 16 9 Figure 4. K(z) - Normalized FQ(z) as a Function of Core Height V. C. Summer - Cycle 16 10 Figure 5. RAOC W(z) at 150 MWD/MTU V. C. Summer - Cycle 16 11 Figure 6. RAOC W(z) at 3000 MWD/MTU V. C. Summer - Cycle 16 13 Figure 7. RAOC W(z) at 10000 MWD/MTU V. C. Summer - Cycle 16 15 Figure 8. RAOC W(z) at 20000 MWD/MTU V. C. Summer- Cycle 16 17 Figure 9. Baseload W(z) at 150 MWD/MTU V. C. Summer - Cycle 16 20 Figure 10. Baseload W(z) at 1300 MWD/MTU V. C. Summer - Cycle 16 22 Figure 11. Baseload W(z) at 3000 MWD/MTU V. C. Summer - Cycle 16 24 Figure 12. Baseload W(z) at 10000 MWDIMTU V. C. Summer - Cycle 16 26 Figure 13. Baseload W(z) at 20000 MWDIMTU V. C. Summer - Cycle 16 28 Figure 14. RCS Total Flowrate vs. R for Three Loop Operation V. C. Summer - Cycle 16 31 iii Revision 0

V. C. Summer Cycle 16 April 2005 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) for V. C. Summer Station Cycle 16 has been prepared in accordance with the requirements of Technical Specification 6.9.1.1 1.

The Technical Specifications affected by this report are listed below:

3.1.1.3 Moderator Temperature Coefficient 3.1.3.5 Shutdown Rod Insertion Limits 3.1.3.6 Control Rod Insertion Limits 3.2.1 Axial Flux Difference 3.2.2 Heat Flux Hot Channel Factor 3.2.3 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel Factor 3.3.3.11 Power Distribution Measurement Uncertainty Revision 0

V. C. Summer Cycle 16 April 2005 V. C. Summer Cycle 16 April 2005 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the subsections which follow. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.11.

2.1 Moderator Temperature Coefficient (Specification 3.1.13):

2.1.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOUARO-MTC shall be less positive than the limits shown in Figure 1.

The EOLARO/RTP-MTC shall be less negative than -5x 104 Ak/k/0 F.

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out RTP stands for RATED THERMAL POWER EOL stands for End of Cycle Life 2.1.2 The MTC Surveillance limit is:

The 300 ppn/ARO/RTP-MTC should be less negative than or equal to -4.1 x I 04 Ak/k/ 0 F 2.1.3 The Revised Predicted near-EOL 300 ppm MTC shall be calculated using the following algorithm from Reference 2:

Revised Predicted MTC = Predicted MTC + AFD Correction*+ Predictive Correction**

  • AFD Correction is 0.05 pcmn/ 0 F/%AAFD.
    • Predictive Correction is -3 pcrn/0 F.

If the Revised Predicted MTC is less negative than the SR 4.1.1.3b limit of

-4.1x I04 Ak/k/ 0F, and all of the benchmark data contained in the surveillance procedure are met, then an MTC measurement in accordance with SR 4.1.1.3b is not required.

2.2 Shutdown Rod Insertion Limits (Specification 3.1.3.5):

The shutdown rods shall be withdrawn to at least 230 steps.

2.3 Control Rod Insertion Limits (Specification 3.13.6):

Control Bank A and B rods shall be withdrawn to at least 230 steps. Control Bank C and D Insertion Limits are specified by Figure 2. Control rod overlap is 102 steps.

2 Revision 0

V. C. Summer Cycle 16 April 2005 2.4 Axial Flux Difference (Specification 3.2.1):

2.4.1 The Axial Flux Difference (AFD) Limits for RAOC operation for Cyclc 16 are shown in Figure 3.

2.4.2 The Axial Flux Difference (AFD) target band during base load operations for Cycle 16 is:

BOL - EOL (0- 22,800 MWDJMTU): +/-5% about a measured target value.

2.4.3 The minimum allowable power level for base load operation, APLND, is 75% of RATED THERMAL POWER.

2.5 Heat Flux Hot Channel Factor - FQ(z) (Specification 3.2.2):

FRTP FQ (Z) < X K(Z) for P > 0.5 FQ (Z) < FQR x K(Z) for PS 0.5 where: Thermal Power 0.5 Rated Thermal Power 2.5.1 FQRTP =2.40 2.5.2 K(z) is provided in Figure 4.

2.5.3 Elevation dependent W(z) values for RAOC operation at 150, 3000, 10000, and 20000 MWDJMTU are shown in Figures 5 through 8 and Tables I through 4, respectively. This information is sufficient to determine W(z) versus core height in the range of 0 MWD/MTU to EOL bumup through the use of three point interpolation.

Table 5 shows FQ margin decreases for RAOC operation that are greater than 2% per 31 Effective Full Power Days (EFPD). These values shall be used to increase FQM'(z) as per Surveillance Requirement 4.2.2.2e. A 2% penalty factor shall be used at all burnups that are outside the range of Table 5.

2.5.4 Elevation dependent W(Z)BL values for base load operation between 75 and 100% of rated thermal power with the item 2.4.2 specified target band about a measured target value at 150, 1300, 3000, 10000, and 20000 MWD/MTU are shown in Figures 9 through 13 and Tables 6 through 10, respectively. This information is sufficient to determine W(Z)BL versus core height for burnups in the range of 0 MWD/MTU to EOL burnup through the use of three point interpolation. Table 11 shows FQ margin decreases for base load operation that are greater than 2% per 31 Effective Full Power Days (EFPD). These 3

Revision 0

V. C. Summer Cycle 16 April 2005 values shall be used to increase FQb'(z) as per Surveillance Requirement 4.2.2.4e. A 2%

penalty factor shall be used at all burnups that are outside the range of Table 11.

2.6 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel Factor - Fu1 (Specification 3.23):

FN Thermal Power where: P =

R=FRTP x (I +PF'I, X (I-) Rated Thermal Power 2.6.1 FR'n` = 1.62 2.6.2 PFMI = 0.3 2.6.3 The Acceptable Operation Region from the combination of Reactor Coolant System total flow and R is provided in Figure 14.

2.7 Power Distribution Measurement Uncertainty (Specifications 3.2.2 and 3.2.3):

If the Power Distribution Monitoring System is OPERABLE, as defined in Technical Specification 3.3.3.1 1, the uncertainty, UFm1 , to be applied to the Nuclear Enthalpy Rise Hot Channel Factor FNIM shall be calculated by the following formula:

UFMI = 1.0 + UI0I I 00.0 where: UMI = Uncertainty for enthalpy rise as defined in equation (5-19) in Reference 1.

4 Revision 0

V. C. Summer Cycle 16 April 2005 If the Power Distribution Monitoring System is OPERABLE, as defined in Technical Specification 3.3.3.11, the uncertainty, UrQ, to be applied to the Heat Flux Hot Channel Factor FQ(z) shall be calculated by the following formula:

UFQ =(O+ 10 C where: UQ = Uncertainty for power peaking factor as defined in equation (5-19) in Reference 1.

U. = Engineering uncertainty factor.

= 1.03 If the Power Distribution Monitoring System is INOPERABLE, as defined in Technical Specification 3.3.3.11, the uncertainty, UFAIl, to be applied to the Nuclear Enthalpy Rise Hot Channel Factor FN~l shall be calculated by the following formula:

'UFA1II = UFAI~m where: UFmIm = Base F., measurement uncertainty.

=1.04 If the Power Distribution Monitoring System is INOPERABLE, as defined in Technical Specification 3.3.3.11, the uncertainty, UrQ, to be applied to the Heat Flux Hot Channel Factor FQ(z) shall be calculated by the following formula:

UFQ = Uq e where: Uqu = Base FQ measurement uncertainty.

= 1.05 Ue = Engineering uncertainty factor.

= 1.03 5

Revision 0

V. C. Summer Cycle 16 April 2005 3.0 References

1) WCAP-12473-A (Non-Proprietary), "BEACON Core Monitoring and Operations Support System," August 1994.
2) WCAP-13749-P-A, "Safety Evaluation Supporting the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement," March 1997 (Westinghouse Proprietary).

6 Revision 0

V. C. Summer Cycle 16 April 2005 Figure 1. Moderator Temperature Coefficient Versus Power Level V.C. Summer - Cycle 16 1.00 0.90 0.80 U.

0 0.70 0

C 0.60 0

a) 0

-

0.50

._

co 0.

am E 0.40 C)

AL C) 0.30 0

0.20 -

0.10 -

0.00 -

0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power 7

Revision 0

V. C. Summer Cycle 16 April 2005 Figure 2. Rod Group Insertion Limits Versus Thermal Power for Three Loop Operation V. C. Summer- Cycle 16 230 1 . 1 . , . IIIII IIIIIIIIII 220 in -x;-:; qnm

. 1 1 1 1 111 1 1 1 l i l l I I, - II IIII I II I I I I III I I I I I I I I 11 210 lilt

---z 190 WUUs

[ h-IH,- H,, -I I T Mh-b

. ' a .

, - I-'I+k -H~--+

I I iii I iiIt 170 - Ill BANK C I Tf Ill II 160 l II I 11 ll LillIL IL I 1111 liltL lll~

160 150 1ilIll IllI111 1 1 17[ 1 11 III r I IIl r IT IT C 140

.2 191 I'dH ttIt~ Ilt 1 IIlill Ill; (H Milli Il 0 13 o0 1 l al I I I1I I I I Il i il I L I I I I I Q120 YITTTI11 lT1Ill [TmT TI1TlI T ITi l-r 0L 1108 fit T Il I l lll I-1 - Il l l t

-) loo f f I cI r j lllllll T rl X TT I 80 oI I I I l I I I 50 60 . ITII I ~ r 1 1 1 V Il I II I TrT II 40OH I I I I I-I 11 -H Il l il t - 1 I li 1111 1 1 11 li l t 1 1 1 11 I l l 20 Ill I Ill I - II I 44-P-1 4-4+1 ' L I

.1 I I 1 4.1 1 ILI I I-+ - II I OVERLAP= 1102st 10 77-TT- II

0. H 1111111 -H J I 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Percent of Rated Thermal Power 8

Revision 0

V. C. Summer Cycle 16 April 2005 Figure 3. Axial Flux Difference Limits as a Function of Rated Thermal Power V. C. Summer - Cycle 16 120 100 IUnacceptable /uacceptabI ¶ 1a 0 80 0

IL E

--I7Acceptable la 0

60 V

0 co I-C +20, 50) 0 (-22, 50) - -

U IL.

40 20 0 L..

-40 -30 -20 -10 0 10 20 30 40 Axial Flux Difference (%AI) 9 Revision 0

V. C. Summer Cycle 16 April 2005 Figure 4. K(z) - Normalized FQ(z) as a Function of Core Height V. C. Summer - Cycle 16 1.10 (0.0 1.0 _ __ _- ,1.0r--_

1.00 if E(12.0,0.925) 71-1~

0.90 0.80 100=1 0.70 0:

a

,L

.-

0.60 10 N

E 0.50 0

z Y 0.40 0.30 0.20 0.10 0.00 0 2 4 6 8 10 12 Bottom Core Height (Feet) Top 10 Revision 0

V. C. Summer Cycle 16 April 2005 V. C. Summer Cycle 16 April 2005 Figure 5. RAOC W(z) at 150 MWD/MTU V. C. Summer - Cycle 16 1.40 1.35 1.30 1.25 - -a - -- - - - - -

- --- 3 - -

q U _ _

a N 1.20 1.15 -

1.10 1.05 1.00 0 2 4 6 8 10 12 Core Height (Feet) 11 Revision 0

V. C. Summer Cycle 16 April 2005 V. C. Summer Cycle 16 April 2005 Table 1. RAOC W(z) at 150 MWD/MTU V C. Summer- Cvcle 16 Core Height W(z) Core Height W(z) 0.00 1.199 6.14 1.146 0.14 1.198 6.28 1.153 0.28 1.203 6.42 1.160 0.42 1.215 6.56 1.166 0.56 1.231 6.70 1.172 0.70 1.238 6.84 1.177 0.84 1.234 6.98 1.182 0.98 1.230 7.12 1.186 1.12 1.225 7.26 1.189 1.26 1.217 7.40 1.192 1.40 1.208 7.54 1.194 1.54 1.199 7.67 1.195 1.67 1.189 7.81 1.195 1.81 1.178 7.95 1.195 1.95 1.167 8.09 1.194 2.09 1.156 8.23 1.192 2.23 1.145 8.37 1.189 2.37 1.133 8.51 1.185 2.51 1.122 8.65 1.178 2.65 1.110 8.79 1.173 2.79 1.099 8.93 1.172 2.93 1.089 9.07 1.176 3.07 1.083 9.21 1.180 3.21 1.081 9.35 1.187 3.35 1.081 9.49 1.195 3.49 1.082 9.63 1.202 3.63 1.084 9.77 1.208 3.77 1.087 9.91 1.214 3.91 1.091 10.05 1.220 4.05 1.095 10.19 1.225 4.19 1.098 10.33 1.229 4.33 1.101 10.46 1.232 4.46 1.104 10.61 1.234 4.61 1.107 10.74 1.237 4.74 1.109 10.88 1.241 4.88 1.111 11.02 1.244 5.02 1.113 11.16 1.245 5.16 1.114 11.30 1.247 5.30 1.114 11.44 1.244 5.44 1.115 11.58 1.230 5.58 1.119 11.72 1.213 5.72 1.124 11.86 1.200 5.86 1.130 12.00 1.189 6.00 1.138 12 Revision 0

V. C. Summer Cycle 16 April 2005 Figure 6. RAOC W(z) at 3000 MWD/MTU V. C. Summer - Cycle 16 1.40 1.35 1.30 I- -

U 1.25 N 1.20

- - - L.......

S U

1.15 U

1.10 -----. 3-----

1.05 1.00 -- C- - - -

0 2 4 6 8 10 12 Core Height (Feet) 13 Revision 0

V. C. Summer Cycle 16 April 2005 Table 2. RAOC W(z) at 3000 NMD/MTU V. C. Summer- Cycle 16 Core Height W(z) Core Height W(z) 0.00 1.289 6.14 1.123 0.14 1.288 6.28 1.132 0.28 1.291 6.42 1.140 0.42 1.298 6.56 1.147 0.56 1.309 6.70 1.155 0.70 1.311 6.84 1.161 0.84 1.304 6.98 1.168 0.98 1.296 7.12 1.173 1.12 1.287 7.26 1.179 1.26 1.275 7.40 1.183 1.40 1.262 7.54 1.187 1.54 1.247 7.67 1.190 1.67 1.232 7.81 1.192 1.81 1.216 7.95 1.194 1.95 1.200 8.09 1.195 2.09 1.183 8.23 1.195 2.23 1.166 8.37 1.195 2.37 1.149 8.51 1.193 2.51 1.133 8.65 1.189 2.65 1.116 8.79 1.186 2.79 1.099 8.93 1.186 2.93 1.086 9.07 1.191 3.07 1.079 9.21 1.199 3.21 1.076 9.35 1.209 3.35 1.076 9.49 1.219 3.49 1.077 9.63 1.230 3.63 1.077 9.77 1.241 3.77 1.078 9.91 1.251 3.91 1.079 10.05 1.260 4.05 1.080 10.19 1.269 4.19 1.082 10.33 1.277 4.33 1.083 10.46 1.284 4.46 1.085 10.61 1.290 4.61 1.086 10.74 1.294 4.74 1.087 10.88 1.297 4.88 1.088 11.02 1.299 5.02 1.089 11.16 1.299 5.16 1.090 11.30 1.297 5.30 1.091 11.44 1.291 5.44 1.093 11.58 1.281 5.58 1.095 11.72 1.268 5.72 1.099 11.86 1.257 5.86 1.105 12.00 1.246 6.00 1.113 14 Revision 0

V. C. Summer Cycle 16 April 2005 Figure 7. RAOC W(z) at 10000 MWDIMTU V. C. Summer - Cycle 16

. ,

1.40 _ _

_q _ ___

_ _ I I I I It IIII I 1= II III I I I I I I

_ L -1 I, I I I I I .

I I I I I I I I I I I I 1.

1..25 __

.20=-

N1. __ _

1.-

_0_

1.

.nn ======L=

1..vv 0 2 4 6 8 10 12 Core Height (Feet) 15 Revision 0

V. C. Summer Cycle 16 April 2005 Table 3. RAOC W(z) at 10000 MWD/MTU V. C. Summer - Cycle 16 Core Height W(z) Core Height W(z) 0.00 1.287 6.14 1.118 0.14 1.285 6.28 1.127 0.28 1.288 6.42 1.135 0.42 1.295 6.56 1.142 0.56 1.306 6.70 1.148 0.70 1.308 6.84 1.155 0.84 1.303 6.98 1.160 0.98 1.296 7.12 1.166 1.12 1.288 7.26 1.170 1.26 1.278 7.40 1.174 1.40 1.265 7.54 1.177 1.54 1.252 7.67 1.180 1.67 1.238 7.81 1.181 1.81 1.224 7.95 1.182 1.95 1.208 8.09 1.183 2.09 1.193 8.23 1.182 2.23 1.177 8.37 1.181 2.37 1.161 8.51 1.179 2.51 1.145 8.65 1.175 2.65 1.130 8.79 1.171 2.79 1.114 8.93 1.171 2.93 1.100 9.07 1.174 3.07 1.090 9.21 1.177 3.21 1.084 9.35 1.186 3.35 1.083 9.49 1.196 3.49 1.082 9.63 1.206 3.63 1.081 9.77 1.214 3.77 1.080 9.91 1.223 3.91 1.079 10.05 1.231 4.05 1.077 10.19 1.238 4.19 1.076 10.33 1.244 4.33 1.075 10.46 1.250 4.46 1.077 10.61 1.255 4.61 1.079 10.74 1.258 4.74 1.081 10.88 1.260 4.88 1.083 11.02 1.260 5.02 1.085 11.16 1.259 5.16 1.086 11.30 1.255 5.30 1.086 11.44 1.247 5.44 1.088 11.58 1.234 5.58 1.091 11.72 1.221 5.72 1.095 11.86 1.210 5.86 1.101 12.00 1.199 6.00 1.109 16 Revision 0

V. C. Summer Cycle 16 April 2005 Figure 8. RAOC W(z) at 20000 MWD/MTU V. C. Summer - Cycle 16 1.40 1.35 1.30 1.25 J8, %6 10 i 1.20 1.15

-00 1.10 1.05 1.00 0 2 4 6 8 10 12 Core Height (Feet) 17 Revision 0

V. C. Summer Cycle 16 April 2005 Table 4. RAOC W(z) at 20000 MWD/MTU V. C. Summer - Cycle 16 Core Height W(z) Core Height W(z) 0.00 1.221 6.14 1.185 0.14 1.218 6.28 1.192 0.28 1.222 6.42 1.198 0.42 1.232 6.56 1.204 0.56 1.247 . 6.70 1.208 0.70 1.252 6.84 1.212 0.84 1.251 6.98 1.215 0.98 1.248 7.12 1.217 1.12 1.243 7.26 1.217 1.26 1.236 7.40 1.217 1.40 1.227 7.54 1.216 1.54 1.218 7.67 1.215 1.67 1.208 7.81 1.212 1.81 1.197 7.95 1.208 1.95 1.187 8.09 1.203 2.09 1.175 8.23 1.197 2.23 1.164 8.37 1.190 2.37 1.152 8.51 1.185 2.51 1.140 8.65 1.185 2.65 1.128 8.79 1.184 2.79 1.115 8.93 1.184 2.93 1.105 9.07 1.183 3.07 1.101 9.21 1.183 3.21 1.100 9.35 1.180 3.35 1.101 9.49 1.178 3.49 1.104 9.63 1.178 3.63 1.107 9.77 1.180 3.77 1.110 9.91 1.185 _

3.91 1.114 10.05 1.188 4.05 1.118 10.19 1.192 4.19 1.121 10.33 1.196 4.33 1.125 10.46 1.201 4.46 1.127 10.61 1.207 4.61 1.129 10.74 1.212 4.74 1.132 10.88 1.216 4.88 1.136 11.02 1.219 5.02 1.141 11.16 1.220 5.16 1.145 11.30 1.219 5.30 1.147 11.44 1.210 5.44 1.151 11.58 1.197 5.58 1.155 11.72 1.181 5.72 1.161 11.86 1.168 5.86 1.168 12.00 1.156 6.00 1.176 _

18 Revision 0

V. C. Summer Cycle 16 April 2005 V. C. Summer Cycle 16 April 2005 Table 5. RAOC FQ Margin Decreases in Excess of 2% Per 31 EFPD Maximum Cycle Burnup Decrease (MWDIMTU) in Fa Margin 2554 1.0200 2725 1.0207 2897 1.0228 3069 1.0238 3240 1.0238 3412 1.0227 3584 1.0211 3756 1.0200 Note: All cycle bumups outside the range of this table shall use a 1.020 decrease in margin for compliance with Specification 4.2.2.2e. Linear Interpolation is adequate for Intermediate cycle bumups.

19 Revision 0

V. C. Summer Cycle 16 April 2005 Figure 9. Baseload W(z) at 150 MWD/MTU V. C. Summer - Cycle 16 1.

N 1.10 0 2 4- 6 8 10 12 Core Height (Feet) 20 Revision 0

V. C. Summer Cycle 16 April 2005 Table 6. Baseload W(z) at 150 MWD/MTU V. C. Summer - Cvrle 6I Core Height W(z) Core Height W(z) 0.00 1.120 6.14 1.063 0.14 1.121 6.28 1.061 0.28 1.122 6.42 1.058 0.42 1.123 6.56 1.057 0.56 1.124 6.70 1.057 0.70 1.125 6.84 1.059 0.84 1.124 6.98 1.062 0.98 1.123 7.12 1.064 1.12 1.122 7.26 1.066 1.26 1.121 7.40 1.067 1.40 1.120 7.54 1.069 1.54 1.118 7.67 1.071 1.67 1.116 7.81 1.072 1.81 1.114 7.95 1.074 1.95 1.112 8.09 1.075 2.09 1.109 8.23 1.077 2.23 1.106 8.37 1.078 2.37 1.104 8.51 1.079 2.51 1.101 8.65 1.080 2.65 1.098 8.79 1.082 2.79 1.095 8.93 1.083 2.93 1.091 9.07 1.084 3.07 1.088 9.21 1.085 3.21 1.084 9.35 1.086 3.35 1.082 9.49 1.086 3.49 1.080 9.63 1.087 3.63 1.079 9.77 1.088 3.77 1.077 9.91 1.089 3.91 1.076 10.05 1.090 4.05 1.075 10.19 1.090 4.19 1.075 10.33 1.091 4.33 1.074 10.46 1.092 4.46 1.074 10.61 1.092 4.61 1.073 10.74 1.093 4.74 1.073 10.88 1.094 4.88 1.072 11.02 1.094 5.02 1.072 11.16 1.094 5.16 1.071 11.30 1.095 5.30 1.070 11.44 1.095 5.44 1.069 11.58 1.095 5.58 1.068 11.72 1.094 5.72 1.067 11.86 1.094 5.86 1.066 12.00 1.094 6.00 1.064 21 Revision 0

V. C. Summer Cycle 16 April 2005 V. C. Summer Cycle 16 April 2005 Figure 10. Baseload W(z) at 1300 MWD/MTU V. C. Summer - Cycle 16 1.20 VIT11TVITVVFITVITITITflT

_.. .. .m

. ... .. .

1.15 IN E IIIIII

_~

~ HG11111

~~~~~e 1 man

_ __

< II I II I II, t 1.10 1.05 1.00 0 2 4 6 8 10 12 Core Height (Feet) 22 Revision 0

V. C. Summer Cycle 16 April 2005 Table 7. Baseload W(z) at 1300 MWD/MTU V. C. Summer - Cycle 16 Core Height W(z) Core Height W(z)

_ _ _ _ _ _ _ _ _ft _ _ _ _ _ _

0.00 1.116 6.14 1.064 0.14 1.117 6.28 1.063 0.28 1.117 6.42 1.061 0.42 1.119 6.56 1.059 0.56 1.120 6.70 1.059 0.70 1.121 6.84 1.059 0.84 1.120 6.98 1.060 0.98 1.120 7.12 1.062 1.12 1.119 7.26 1.064 1.26 1.119 7.40 1.066 1.40 1.118 7.54 1.068 1.54 1.117 7.67 1.070 1.67 1.115 7.81 1.072 1.81 1.114 7.95 1.074 1.95 1.112 8.09 1.075 2.09 1.110 8.23 1.077 2.23 1.108 8.37 1.078 2.37 1.106 8.51 1.080 2.51 1.104 8.65 1.081 2.65 1.101 8.79 1.082 2.79 1.099 8.93 1.084 2.93 1.096 9.07 1.085 3.07 1.093 9.21 1.086 3.21 1.090 9.35 1.087 3.35 1.088 9.49 1.089 3.49 1.086 9.63 1.090 3.63 1.084 9.77 1.091 3.77 1.083 9.91 1.092 3.91 1.082 10.05 1.093 4.05 1.081 10.19 1.094 4.19 1.080 10.33 1.095 4.33 1.079 10.46 1.096 4.46 1.078 10.61 1.096 4.61 1.077 10.74 1.097 4.74 1.076 10.88 1.098 4.88 1.075 11.02 1.099 5.02 1.074 11.16 1.099 5.16 1.073 11.30 1.100 5.30 1.072 11.44 1.100 5.44 1.071 11.58 1.100 5.58 1.069 11.72 1.100 5.72 1.068 11.86 1.100 5.86 1.067 12.00 1.100 6.00 1.066 23 Revision 0

V. C. Summer Cycle 16 April 2005 Figure 11. Baseload W(z) at 3000 MWD/MTU V. C. Summer - Cycle 16 1.20 L 11'1111 I1-11 11 II T T IT1 I I TI-I T I1 J e

I I .1 -- - - - - - - - - -

N 1.10

--lx---- - T7 _

1.05 1.00 0 2 4 6 8 10 12 Core Height (Feet) 24 Revision 0

V. C. Summer Cycle 16 April 2005 Table 8. Baseload W(z) at 3000 MWD/MTU V C. Suimmer- Cvele 16 Core Height W(z) Core Height W(z) 0.00 1.112 6.14 1.070 0.14 1.113 6.28 1.068 0.28 1.114 6.42 1.067 0.42 1.115 6.56 1.065 0.56 1.117 6.70 1.064 0.70 1.118 6.84 1.062 0.84 1.118 6.98 1.061 0.98 1.118 7.12 1.063 1.12 1.118 7.26 1.065 1.26 1.118 7.40 1.068 1.40 1.118 7.54 1.070 1.54 1.117 7.67 1.072 1.67 1.117 7.81 1.074 1.81 1.116 7.95 1.076 1.95 1.115 8.09 1.078 2.09 1.114 8.23 1.079 2.23 1.113 8.37 1.081 2.37 1.112 8.51 1.083 2.51 1.111 8.65 1.085 2.65 1.109 8.79 1.086 2.79 1.108 8.93 1.088 2.93 1.106 9.07 1.090 3.07 1.104 9.21 1.091 3.21 1.102 9.35 1.093 3.35 1.100 9.49 1.094 3.49 1.098 9.63 1.096 3.63 1.096 9.77 1.097 3.77 1.094 9.91 1.099 3.91 1.093 10.05 1.100 4.05 1.091 10.19 1.101 4.19 1.090 10.33 1.103 4.33 1.089 10.46 1.104 4.46 1.088 10.61 1.105 4.61 1.086 10.74 1.106 4.74 1.085 10.88 1.107 4.88 1.083 11.02 1.108 5.02 1.081 11.16 1.109 5.16 1.079 11.30 1.110 5.30 1.077 11.44 1.111 5.44 1.076 11.58 1.111 5.58 1.074 11.72 1.110 5.72 1.073 11.86 1.111 5.86 1.072 12.00 1.111 6.00 1.071 25 Revision 0

V. C. Summer Cycle l16 April 2005 V. C. Summer Cycle 16 April 2005 Figure 12. Baseload W(z) at 10000 MWD/MTU V. C. Summer - Cycle 16 1.20

____ IIII 1 II -11I 1

- 1II 111I I 1.15

____1 IT1TITLI 11 I>. IrI N 1.10

___ I I I I<_Ir_

1.05 _ _ _ _ . . . . . . _.

LfEu I-u

_ _ _ _ _ _ _ _

W111 1f II

_ _ _T711 1 _ I _ I 1.00 0 2 4 6 8 10 12 Core Height (Feet) 26 Revision 0

V. C. Summer Cycle 16 April 2005 Table 9. Baseload W(z) at 10000 MWD/MTU V. C. Summer - Cycle 16 Core Height W(z) Core Height W(z) 0.00 1.109 6.14 1.060 0.14 1.109 6.28 1.058 0.28 1.110 6.42 1.056 0.42 1.112 6.56 1.054 0.56 1.113 6.70 1.053 0.70 1.114 6.84 1.053 0.84 1.114 6.98 1.052 0.98 1.114 7.12 1.054 1.12 1.114 7.26 1.056 1.26 1.114 7.40 1.058 1.40 1.114 7.54 1.060 1.54 1.113 7.67 1.062 1.67 1.112 7.81 1.063 1.81 1.111 7.95 1.065 1.95 1.110 8.09 1.067 2.09 1.109 8.23 1.068 2.23 1.107 8.37 1.069 2.37 1.105 8.51 1.071 2.51 1.104 8.65 1.072 2.65 1.101 8.79 1.073 2.79 1.099 8.93 1.074 2.93 1.097 9.07 1.076 3.07 1.094 9.21 1.077 3.21 1.091 9.35 1.078 3.35 1.088 9.49 1.079 3.49 1.085 9.63 1.080 3.63 1.083 9.77 1.080 3.77 1.081 9.91 1.081 3.91 1.080 10.05 1.082 4.05 1.079 10.19 1.083 4.19 1.077 10.33 1.084 4.33 1.076 10.46 1.085 4.46 1.075 10.61 1.086 4.61 1.075 10.74 1.087 4.74 1.074 10.88 1.088 4.88 1.073 11.02 1.088 5.02 1.071 11.16 1.089 5.16 1.070 11.30 1.090 5.30 1.069 11.44 1.090 5.44 1.068 11.58 1.090 5.58 1.066 11.72 1.090 5.72 1.065 11.86 1.090 5.86 1.063 12.00 1.090 6.00 1.062 27 Revision 0

V. C. Summer Cycle l16 April 2005 V. C. Summer Cycle 16 April 2005 Figure 13. Baseload W(z) at 20000 MWD/MTU V. C. Summer - Cycle 16 1.20-1.15

  • _

N 1.10_____ _____________ !___

1.00-0 2 4 6 8 10 12 Core Height (Feet) 28 Revision 0

V. C. Summer Cycle l16 April 2005 Table 10. Baseload W(z) at 20000 MWD/MTU V. C. Summer - Cycle 16 Core Height W(z) Core Height W(z) 0.00 1.145 6.14 1.063 0.14 1.146 6.28 1.064 0.28 1.146 6.42 1.066 0.42 1.147 6.56 1.068 0.56 1.149 6.70 1.070 0.70 1.149 6.84 1.071 0.84 1.148 6.98 1.073 0.98 1.147 7.12 1.074 1.12 1.146 7.26 1.075 1.26 1.144 7.40 1.076 1.40 1.142 7.54 1.076 1.54 1.140 7.67 1.077 1.67 1.137 7.81 1.077 1.81 1.134 7.95 1.078 1.95 1.130 8.09 1.078 2.09 1.127 8.23 1.078 2.23 1.122 8.37 1.078 2.37 1.118 8.51 1.080 2.51 1.113 8.65 1.083 2.65 1.108 8.79 1.087 2.79 1.103 8.93 1.090 2.93 1.097 9.07 1.094 3.07 1.092 9.21 1.097 3.21 1.087 9.35 1.100 3.35 1.084 9.49 1.103 3.49 1.082 9.63 1.105 3.63 1.080 9.77 1.108 3.77 1.079 9.91 1.110 3.91 1.077 10.05 1.112 4.05 1.076 10.19 1.114 4.19 1.074 10.33 1.116 4.33 1.072 10.46 1.117 4.46 1.071 10.61 1.118 4.61 1.070 10.74 1.119 4.74 1.069 10.88 1.120 4.88 1.069 11.02 1.120 5.02 1.068 11.16 1.120 5.16 1.067 11.30 1.120 5.30 1.066 11.44 1.120 5.44 1.065 11.58 1.119 5.58 1.064 11.72 1.117 5.72 1.062 11.86 1.116 5.86 1.061 12.00 1.116 6.00 1.062 29 Revision 0

V. C. Summer Cycle 16 April 2005 Table 11. Baseload FQ Margin Decreases in Excess of 2% Per 31 EFPD

. Maximum Cycle Burnup Decrease (MWD/MTU) in FO Margin 1008 1.0200 1180 1.0226 1352 1.0242 1524 1.0228 1695 1.0205 1867 1.0200 2039 1.0200 2210 1.0217 2382 1.0245 2554 1.0276 2725 1.0303 2897 1.0323 3069 1.0330 3240 1.0324 3412 1.0308 3584 1.0283 3756 1.0252 3927 1.0218 4099 1.0200 Note: All cycle bumups outside the range of this table shall use a 1.020 decrease in margin for compliance with Specification 4.2.2.4e. Linear Interpolation is adequate for Intermediate cycle bumups.

30 Revision 0

V. C. Summer Cycle 16 April 2005 Figure 14. RCS Total Flowrate vs. R for Three Loop Operation V. C. Summer - Cycle 16 30.0

--- ---- --- I - - --- --- I-- --- r--

_-- _ W__4 - - - - - - - - _1 _1 - _I-; - - - ___4___1 - - - - - - _ I- - - J___

' -- I

_ _ ___ I __L___ I___ ___I _ I I_ _ _

  • _ _ I 29.8 - , . ,J,.,..+/-. I ,.,. .

r- , --

- -j- ~r- - -- - - -- - - - - - -- - - - - - - - , -- - - - -- r ,- r~

-

i- -- r n-- - -- ------ -- - ~-

~--r- -~ - - ----- - - ---- - - -- - -- - 4 -- - -r-29.6 29.4 - I I I I I I I I I I I I I I I I r - T [ I II I TI I T r- I r

-- I------- I I RegII-ion I --- I---

OI29.4 -- n---r--n---r----- ~ r-~-~ ~ ~ ~~ I - - - - ----- r- - ----- -;- L J- -r- -..

EC _- - _- - -; _-

- - - - - ;____ 1 -; - - - --- - - - 1 4___W__4___

R------ _ - - - - - I - - --- - -

°- ------ - - ---- -- - -- - --- - -- - -- --- -- --- ._- f- - -- -I--- r -- --

- - -II IT I- - - - - - 4 - - -

'- 1 - -~-~ r-l-


n--- - -----

o, 282.6 - I cetbeOprto I I . . I .I .I. I I I I Uncepal I I I I I

- 44- - --- - - -

i- - - - - - -

_ -- J -- -- ---L Rei.-- __L__I__L__I__ . -- l--l__l__l_----------_ Ope ,_----rationegio --._L_ 4-e-1---

I I I I I I I 28.48--

28.2 I

____S___s_

I

I I

__I_.J__,_.

I

;

I I I

_.

. 1a.

I- a IU - v X 4

.

I

'I __--4_W_^___

4 I I I 1'

-f---J-L- -L-l-s-l-<__-- _eL____

o I I I I I I I r 282- , - --,r-- - -- --- --- -- -- I r- -- - r-I.ll l -- lr - ~-- - - --- r- -r I- , -- , - - 4 [ - - - - - - - r - I-29.0 . c .r , a - I 28.6 - ~----- -'--

I I

-~ -.--- r---l--

I r~l~

I I 4-- _- -a-l-5--

---

I I I I 4--

I I-

-r-I


r--'----


r---r- -----.-- t...L --- l---T-------a-------

--I...-.L.. --..- ----

-r r--n---r----

r-L n_ I I I I I !I m 28.4 r rvr - - -

0.90 0.95 1.00 1.05 1.10 R = FN-delta-H/1.62[1.0 + 0.3(1.0 - P)J Measurement Uncertainty of 2.1% for Flow (includes 0.1% for feedwater venturi fouling) is included in this figure.

31 Revision 0