ML021420403
| ML021420403 | |
| Person / Time | |
|---|---|
| Site: | Summer |
| Issue date: | 05/17/2002 |
| From: | Byrne S South Carolina Electric & Gas Co |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| Download: ML021420403 (34) | |
Text
Stephen A. Byrne Senior Vice President, Nuclear Operations 803.345.4622 May 17, 2002 A SCANA COMPANY U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 Gentlemen:
Subject:
VIRGIL C. SUMMER NUCLEAR STATION DOCKET NO. 50-395 OPERATING LICENSE NO. NPF-12 CORE OPERATING LIMITS REPORT (COLR)
FOR CYCLE 14 In accordance with Section 6.9.1.11 of the Virgil C. Summer Nuclear Station Technical Specifications, South Carolina Electric & Gas Company (SCE&G) hereby submits the Cycle 14 Core Operating Limits Report (COLR).
Should you have any questions, please call Mr. Jeffrey W. Pease at (803) 345-4124.
Very truly yours, Stephen A. Byrne JWP/SAB Attachment NOTE: Attachment is on file in NL&OE c:
Without Attachment unless noted N. 0. Lorick N. S. Cams T. G. Eppink R. J. White L. A. Reyes (w/atta K. R. Cotton (w/atta NRC Resident Inspector (w/atta K. M. Sutton NSRC RTS (0-L-99-0150)
File (818.23-1, RR 5000)
DMS (RC-02-0095)
.chment)
.chment) chment)
SCE&G I Virgil C. Summer Nuclear Station
- P. 0. Box 88
- Jenkinsville, South Carolina 29065 ° T (803) 345.5209
- www.scana.com
SOUTH CAROLINA ELECTRIC & GAS COMPANY VIRGIL C. SUMMER NUCLEAR STATION CORE OPERATING LIMITS REPORT FOR CYCLE 14 REVISION 0 APRIL 2002
LIST OF EFFECTIVE PAGES PAGE REVISION 0
ii 0
iii 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 0
25 0
26 0
27 0
28 0
Table of Contents Section Page 1.0 Core Operating Limits Report..........................................................................
1 2.0 Operating Limits...............................................................................................
2 2.1 Moderator Temperature Coefficient (Specification 3.1.1.3)................. 2 2.2 Shutdown Rod Insertion Limits (Specification 3.1.3.5).........................
2 2.3 Control Rod Insertion Limits (Specification 3.1.3.6)............................ 2 2.4 Axial Flux Difference (Specification 3.2.1)..............................................
2 2.5 Heat Flux Hot Channel Factor - FQ(z) (Specification 3.2.2)................. 3 2.6 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel Factor - (Specification 3.2.3)..................................................
3 2.7 Power Distribution Measurement Uncertainty (Specifications 3.2.2 and 3.2.3).................................................................
4 3.0 References......................................................................................................
5 Revision 0
List of Tables Table Pge Table 1.
RAOC W(z) at 150 MWDIMTU V. C. Summer - Cycle 14............................................................................
11 Table 2.
RAOC W(z) at 3000 MWD/MTU V. C. Summer - Cycle 14............................................................................
13 Table 3.
RAOC W(z) at 10000 MWD/MTU V. C. Summer - Cycle 14............................................................................
15 Table 4.
RAOC W(z) at 20000 MWD/MTU V. C. Summer - Cycle 14............................................................................
17 Table 5.
RAOC FQ Margin Decrease in Excess of 2% Per 31 EFPD.......................................................................
18 Table 6.
Baseload W(z) at 150 MWD/MTU V. C. Summer - Cycle 14............................................................................
20 Table 7.
Baseload W(z) at 3000 MWD/MTU V. C. Summer - Cycle 14............................................................................
22 Table 8.
Baseload W(z) at 10000 MWD/MTU V. C. Summer - Cycle 14............................................................................
24 Table 9.
Baseload W(z) at 20000 MWD/MTU V. C. Summer - Cycle 14............................................................................
26 Table 10.
BASE LOAD FQ Margin Decrease in Excess of 2% Per 31 EFPD.......................................................................
27 Revision 0
List of Figures Figure Page Figure 1.
Moderator Temperature Coefficient Versus Power Level V.C. Summer - Cycle 14..............................................................................
6 Figure 2.
Rod Group Insertion Limits Versus Thermal Power for Three Loop Operation V. C. Summer - Cycle 14.............................................................
7 Figure 3.
Axial Flux Difference Limits as a Function of Rated Thermal Power V. C. Summer - Cycle 14..............................................................................
8 Figure 4.
K(z) - Normalized FQ(z) as a Function of Core Height V. C. Summer - Cycle 14..............................................................................
9 Figure 5.
RAOC W(z) at 150 MWD/MTU V. C. Summer - Cycle 14............................................................................
10 Figure 6.
RAOC W(z) at 3000 MWD/MTU V. C. Summer - Cycle 14............................................................................
12 Figure 7.
RAOC W(z) at 10000 MWD/MTU V. C. Summer - Cycle 14............................................................................
14 Figure 8.
RAOC W(z) at 20000 MWD/MTU V. C. Summer - Cycle 14............................................................................
16 Figure 9.
Baseload W(z) at 150 MWD/MTU V. C. Summer - Cycle 14............................................................................
19 Figure 10. Baseload W(z) at 3000 M)WD/MTU V. C. Summer - Cycle 14............................................................................
21 Figure 11. Baseload W(z) at 10000 MWD/MTU V. C. Summer - Cycle 14............................................................................
23 Figure 12. Baseload W(z) at 20000 MWD/MTU V. C. Summer - Cycle 14............................................................................
25 Figure 13. RCS Total Flowrate Versus R for Three Loop Operation V. C. Summer - Cycle 14............................................................................
28 iii Revision 0
1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) for V. C. Summer Station Cycle 14 has been prepared in accordance with the requirements of Technical Specification 6.9.1.11.
The Technical Specifications affected by this report are listed below:
3.1.1.3 Moderator Temperature Coefficient 3.1.3.5 Shutdown Rod Insertion Limits 3.1.3.6 Control Rod Insertion Limits 3.2.1 Axial Flux Difference 3.2.2 Heat Flux Hot Channel Factor 3.2.3 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel Factor 3.3.3.11 Power Distribution Measurement Uncertainty Revision 0 April 2002 V. C. Summer Cycle 14
2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the subsections which follow. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.11.
2.1 Moderator Temperature Coefficient (Specification 3.1.1.3):
2.1.1 The Moderator Temperature Coefficient (MTC) limits are:
The BOL/ARO-MTC shall be less positive than the limits shown in Figure 1.
The EOL/ARO/RTP-MTC shall be less negative than -5x10-4 Ak/k/F.
2.1.2 The MTC Surveillance limit is:
The 300 ppm/ARO/RTP-MTC should be less negative than or equal to -4.lx10-4 Akfk/°F where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out RTP stands for RATED THERMAL POWER EOL stands for End of Cycle Life 2.2 Shutdown Rod Insertion Limits (Specification 3.1.3.5):
The shutdown rods shall be withdrawn to at least 228 steps.
2.3 Control Rod Insertion Limits (Specification 3.1.3.6):
The Control Bank Insertion Limits are specified by Figure 2.
2.4 Axial Flux Difference (Specification 3.2.1):
2.4.1 The Axial Flux Difference (AFD) Limits for RAOC operation for Cycle 14 are shown in Figure 3.
2.4.2 The Axial Flux Difference (AFD) target band during base load operations for Cycle 14 is:
BOL - EOL (0 - 22,250 MWD/MTU): +/-5% about a measured target value.
2.4.3 The minimum allowable power level for base load operation, APLND, is 85% of RATED THERMAL POWER.
2 Revision 0 April 2002 V. C. Summer Cycle 14
2.5 Heat Flux Hot Channel Factor - FQ(z) (Specification 3.2.2):
FRTP FQ(z)*Q x K(z) for P > 0.5 FRTP Q
Thermal Power FQ(z) 0 6 x K(z) for P *< 0.5 where: P =
5 Rated Thermal Power
_RTP 2.5.1 FQ
= 2.40 2.5.2 K(z) is provided in Figure 4 2.5.3 Elevation dependent W(z) values for RAOC operation at 150, 3000, 10000, and 20000 MWD/MTU are shown in Figures 5 through 8 and Tables 1 through 4, respectively.
This information is sufficient to determine W(z) versus core height in the range of 0 MWD/MTU to EOL burnup through the use of three point interpolation.
Table 5 shows FQ margin decreases for RAOC operation that are greater than 2% per 31 Effective Full Power Days (EFPD). These values shall be used to increase FQM(z) as per Surveillance Requirement 4.2.2.2e. A 2% penalty factor shall be used at all burnups that are outside the range of Table 5.
2.5.4 Elevation dependent W(Z)BL values for base load operation between 85 and 100% of rated thermal power with the item 2.4.2 specified target band about a measured target value at 150, 3000, 10000, and 20000 MWD/MTU are shown in Figures 9 through 12 and Tables 6 through 9, respectively. This information is sufficient to determine W(Z)BL versus core height for bumups in the range of 0 MWD/MTU to EOL burnup through the use of three point interpolation.
Table 10 shows FQ margin decreases for base load operation that are greater than 2% per 31 Effective Full Power Days (EFPD). These values shall be used to increase FQM(z) as per Surveillance Requirement 4.2.2.4e. A 2% penalty factor shall be used at all burnups that are outside the range of Table 10.
2.6 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel Factor - FN (Specification 3.2.3):
AH F N AH Thermal Power R =
where: P =
RTP x(
+PFN x(1-P))
Rated Thermal Power FiH ionAH0 3
Revision 0 April 2002 V. C. Summer Cycle 14
V. C. Summer Cycle 14 April 2002 RTP 2.6.1 FAH
= 1.62 2.6.1 PFAH = 0.3 2.6.3 The Acceptable Operation Region from the combination of Reactor Coolant System total flow and R is provided in Figure 13.
2.7 Power Distribution Measurement Uncertainty (Specifications 3.2.2 and 3.2.3):
If the Power Distribution Monitoring System is OPERABLE, as defined in Technical Specification 3.3.3.11, the uncertainty, UFA-H, to be applied to the Nuclear Enthalpy Rise Hot Channel Factor FNAH shall be calculated by the following formula UFAH 0+ UAH UFAH =-.
100.0 where: UAH = Uncertainty for enthalpy rise as defined in equation (5-19) in Reference 1.
If the Power Distribution Monitoring System is OPERABLE, as defined in Technical Specification 3.3.3.11, the uncertainty, UFQ, to be applied to the Heat Flux Hot Channel Factor FQ(Z) shall be calculated by the following formula U
UFQ =
1"0+ TO-O.0) " Ue where:
UQ = Uncertainty for power peaking factor as defined in equation (5-19) in Reference 1.
Ue = Engineering uncertainty factor.
= 1.03 If the Power Distribution Monitoring System is INOPERABLE, as defined in Technical Specification 3.3.3.11, the uncertainty, UFAHI, to be applied to the Nuclear Enthalpy Rise Hot Channel Factor FNAI shall be calculated by the following formula UFAH = UFAHm where:
UFAHm
= Base FAH measurement uncertainty.
= 1.04 4
Revision 0
V. C. Summer Cycle 14 April 2002 If the Power Distribution Monitoring System is INOPERABLE, as defined in Technical Specification 3.3.3.11, the uncertainty, UFQ, to be applied to the Heat Flux Hot Channel Factor FQ(z) shall be calculated by the following formula UFQ = Uqu
- Ue where: Uqu
= Base FQ measurement uncertainty.
= 1.05 Ue
= Engineering uncertainty factor.
= 1.03 References
- 1) WCAP-12473-A (Non-Proprietary), "BEACON Core Monitoring and Operations Support System", August, 1994.
5 Revision 0 3.0 April 2002 V. C. Summer Cycle 14
V. C. Summer Cycle 14 April 2002 Figure 1. Moderator Temperature Coefficient Versus Power Level V.C. Summer - Cycle 14 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 80 90 100 6
Revision 0 1.00 0.90 0.80 LL 0
Cc E
'I 0
-W 0
a_
I-0 10 20 30 40 50 60 70 Percent of Rated Thermal Power April 2002 V. C. Sumimer Cycle 14
V. C. Summer Cycle 14 April 2002 Figure 2. Rod Group Insertion Limits Versus Thermal Power for Three Loop Operation V. C. Summer - Cycle 14 230 1
220 (0.54, 228) 210 (1.0, 194) 200 190 180 170 BANK C 160 150
.2 140 "o 130 CL w 120 118) o110 o 100 V
BANK D "o
90 80 70 60 50 40 30 20 1
10 (0.048,O)
- 0) 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction Of Rated Thermal Power 7
Revision 0
Figure 3. Axial Flux Difference Limits as a Function of Rated Thermal Power V. C. Summer - Cycle 14 120 100
-30
-20
-10 0
10 Axial Flux Difference (% Al) 20 30 40 8
Revision 0 S(-8, 100)
(+8, 100)
I Unacceptable Unacceptable ZAcceptable
(-22, 50)
(+20,50)
- a.
I "0
a)
(5
'0 0l 80 60 40 20 Al
-40 April 2002 V. C. Summner Cycle 14
V. C. Summer Cycle 14 April 2002 1.10 1.00 0.90 0.80
"- 0.70 I-l L. 0.60 N
0.50 0
oz
-N
"- 0.40 0.30 0.20 0.10 0.00 2
4 6
Core Height (Feet) 9 8
10 12 Top Revision 0 Figure 4. K(z) - Normalized FQ(Z) as a Function of Core Height V. C. Summer - Cycle 14 (0.0, 1.0)
(6.0,1.0)
(12.,
0.925
)-
a a
a a
a a
a a
a :
a.....-
a a
a a
a a
a I
a a
a a
a a
a a
a a
a a
a a
a a
a a
a
,a a
l a
a a
a a
a a
a ai,
a a
a a
a a
a a
a a
a l*
a s
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
i a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a i
a a
i a
a I
a a
a a
a a
a a
a a
a a
,i
,i a
a a
a a
I I
I I
I 4
6 a
a a
a a
a a
a
,a a
a
£ a
0 Bottom
V. C. Summer Cycle 14 April 2002 Figure 5. RAOC W(z) at 150 MWD/MTU V. C. Summer - Cycle 14 1.50 1.45 1.40 1.35 1.30 1.20 1.15 1.10 1.05 1.00 0 Bottom 2
4 6
8 10 12 Core Height (Feet) 10 Revision 0 I
a I
I a
a a
a a
a a
a a
a a
a I
a a
-, I
-i - '-..
H S
a a
a a
a a
a a
a a
I a
a a
a a
a a
a a
a a
a a
a a
i i
I S
ai
......~~ ~ ~~
~~ ~
I - --
a a
t
£ a
a aI t
I t i a
a
" " 7 " ","
u r
~~~~
-i
-P I-----------------
"' '* - ',' ' ',~~
~ ~ ~~
~ ~~ ~~
a i
a t
t t
I t"
a a
a S.
.a.
,a
,tt,*
a a~
~~~~~
a asa L
I.
I t
a a
a a
a a
a a
a a
I a
a a
a a
a a
a:
I r
i r
a a
a a
a a ~
a I
I e
t a
a t
a a
a a
-~~~~~
a a
a a
a a
a at a
p a
a a
ail
- l..
- I*OT
-+
I I - -. - - -.,_
. J.
t_
.t a
t a,
- a.
L
.4"*
r T
.u a
a a
a a
a a
a t
a t
a t
a a
a a
S....
.a- -
i.---
--t a -
"1 "a-
-° a
a a
a
.. a, a
a a
a a
a a
a a
_1_
_.u
_1_
J--
n.--
'a' t
a t
Top
V. C. Summer Cycle 14 April 2002 Table 1. RAOC W(z) at 150 MWD/MTU V. C. Summer - Cycle 14 Core Height Core Height (ft)
W(z)
(ft)
W(z) 0.00 1.4076 6.08 1.1141 0.16 1.4073 6.24 1.1197 0.32 1.4139 6.40 1.1234 0.48 1.4269 6.56 1.1258 0.64 1.4376 6.72 1.1277 0.80 1.4348 6.88 1.1293 0.96 1.4267 7.04 1.1303 1.12 1.4173 7.20 1.1305 1.28 1.4052 7.36 1.1299 1.44 1.3909 7.52 1.1287 1.60 1.3751 7.68 1.1267 1.76 1.3581 7.84 1.1239 1.92 1.3400 8.00 1.1204 2.08 1.3212 8.16 1.1163 2.24 1.3018 8.32 1.1115 2.40 1.2821 8.48 1.1054 2.56 1.2624 8.64 1.0975 2.72 1.2418 8.80 1.0901 2.88 1.2223 8.96 1.0882 3.04 1.2083 9.12 1.0887 3.20 1.1988 9.28 1.0915 3.36 1.1923 9.44 1.0967 3.52 1.1869 9.60 1.1010 3.68 1.1811 9.76 1.1037 3.84 1.1745 9.92 1.1067 4.00 1.1672 10.08 1.1135 4.16 1.1596 10.24 1.1217 4.32 1.1531 10.40 1.1287 4.48 1.1490 10.56 1.1350 4.64 1.1462 10.72 1.1408 4.80 1.1429 10.88 1.1456 4.96 1.1387 11.04 1.1487 5.12 1.1341 11.20 1.1510 5.28 1.1295 11.36 1.1514 5.44 1.1240 11.52 1.1435 5.60 1.1170 11.68 1.1275 5.76 1.1108 11.84 1.1139 5.92 1.1097 12.00 1.1019 Il Revision 0 V. C. Sumrmer Cycle 14 April 2002
V. C. Summer Cycle 14 April 2002 Figure 6. RAOC W(z) at 3000 MWD/MTU V. C. Summer - Cycle 14 i
-- -a-.--- ---
1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.05 1.00 4
6 Core Height (Feet) 8 10 12 Top 12 Revision 0 V
I a
a a
a a
B B
I B
B B
B B
a a
a
-,°
~~...
-- l T
- -- a------ - --,--.-,---,-
a a
a a a a--
a.....
a a
a a-a a-a a
a a
"7 t
-1
-t
-1 L-----
J--
I a
a a
a a
a a
a a
a a
a S...-
a a
a B
a aa B
B B
B a
a B41 B
B I4 a...
.a.B aa.
.a a.a a..
.a a
a..
a, a
7-
'--,.F--
L -
-a-a..
- a...
a a1 a a..
. -a $ -
- a a
- a
- a.
- a....
a: a
-- :a
- -L-a....
Bil i
B
,W
' a ai a..
.. a- -...
a r-a-;
a...
I, II..
I, I a
B B
a a
a a
a a
a a
a a
a a
B B
B A. -,
i a
a a
B a
a l I
a a
a a
a a
I I
I
- a..
- a.
- a.
- a.
- a.
- a.
- a..
- a.
a.
. a a.
.a
.a
.a a.a.
.a...
a a............-
.a..
a a...
a a.aa
- a.
a a
a a,
2 Bottom I
r J
L o
V. C. Summer Cycle 14 April 2002 Table 2. RAOC W(z) at 3000 MWD/MTU V. C. Summer - Cycle 14 Core Height Core Height (ft)
W(z)
(ft)
W(z) 0.00 1.3671 6.08 1.1073 0.16 1.3663 6.24 1.1141 0.32 1.3715 6.40 1.1194 0.48 1.3822 6.56 1.1237 0.64 1.3906 6.72 1.1274 0.80 1.3867 6.88 1.1308 0.96 1.3781 7.04 1.1335 1.12 1.3683 7.20 1.1355 1.28 1.3557 7.36 1.1368 1.44 1.3407 7.52 1.1373 1.60 1.3245 7.68 1.1371 1.76 1.3071 7.84 1.1360 1.92 1.2887 8.00 1.1342 2.08 1.2697 8.16 1.1319 2.24 1.2501 8.32 1.1288 2.40 1.2305 8.48 1.1243 2.56 1.2112 8.64 1.1177 2.72 1.1908 8.80 1.1118 2.88 1.1721 8.96 1.1108 3.04 1.1613 9.12 1.1155 3.20 1.1554 9.28 1.1242 3.36 1.1500 9.44 1.1347 3.52 1.1443 9.60 1.1446 3.68 1.1378 9.76 1.1542 3.84 1.1315 9.92 1.1635 4.00 1.1273 10.08 1.1722 4.16 1.1262 10.24 1.1801 4.32 1.1260 10.40 1.1871 4.48 1.1250 10.56 1.1929 4.64 1.1232 10.72 1.1973 4.80 1.1210 10.88 1.1999 4.96 1.1186 11.04 1.2006 5.12 1.1159 11.20 1.1976 5.28 1.1130 11.36 1.1883 5.44 1.1094 11.52 1.1686 5.60 1.1046 11.68 1.1559 5.76 1.1008 11.84 1.1466 5.92 1.1015 12.00 1.1292 13 Revision 0 April 2002 V. C. Summner Cycle 14
V. C. Summer Cycle 14 April 2002 Figure 7. RAOC W(z) at 10000 MWD/MTU V. C. Summer - Cycle 14 1.50 1.45 1.40 1.35 1.30 S1.25 1.20 1.15 1.10 1.05 1.00 2
4 6
Core Height (Feet) 8 10 12 Top Bottom 14 Revision 0 I
i i
i I
i a
a I
i i
s a
i m l i
i i
~~~~~~~~~~~
a a
a a
i a
a i
m ai m
a a
i a
i aa a
ii i
I a
a a
a a
a i
a a
i i
i j
a i
a i
a i
a a
a a
a i
a I------
S.......
r i,
i i
i i
i a
i iii a
.1 i
i i
a i
a i
m a
£.J S
i S
i i
i i
a i
i a
- *1 Si I
i i
I a
-I I
I a
i a
a a..
i g
4 a
a i
a a
, aa"a',
a a
i aa.
I
- -i -- -
7
"--a---
-4,--------
i i
i iaa i
a i,
'i a
i i
a i
-I m
0
V. C. Summer Cycle 14 April 2002 Table 3. RAOC W(z) at 10000 MWD/MTU V. C. Summer - Cycle 14 Core Height Core Height (ft)
W(z)
(fit)
W(z) 0.00 1.1815 6.08 1.1407 0.16 1.1808 6.24 1.1517 0.32 1.1866 6.40 1.1624 0.48 1.1987 6.56 1.1724 0.64 1.2092 6.72 1.1817 0.80 1.2083 6.88 1.1900 0.96 1.2038 7.04 1.1973 1.12 1.1981 7.20 1.2037 1.28 1.1898 7.36 1.2090 1.44 1.1796 7.52 1.2132 1.60 1.1687 7.68 1.2163 1.76 1.1571 7.84 1.2180 1.92 1.1447 8.00 1.2185 2.08 1.1320 8.16 1.2182 2.24 1.1192 8.32 1.2167 2.40 1.1061 8.48 1.2130 2.56 1.0931 8.64 1.2063 2.72 1.0816 8.80 1.2006 2.88 1.0732 8.96 1.2015 3.04 1.0696 9.12 1.2085 3.20 1.0686 9.28 1.2166 3.36 1.0682 9.44 1.2234 3.52 1.0678 9.60 1.2291 3.68 1.0675 9.76 1.2352 3.84 1.0672 9.92 1.2432 4.00 1.0668 10.08 1.2533 4.16 1.0668 10.24 1.2638 4.32 1.0668 10.40 1.2729 4.48 1.0696 10.56 1.2811 4.64 1.0740 10.72 1.2885 4.80 1.0785 10.88 1.2947 4.96 1.0823 11.04 1.2984 5.12 1.0850 11.20 1.3007 5.28 1.0869 11.36 1.3013 5.44 1.0911 11.52 1.2940 5.60 1.1012 11.68 1.2784 5.76 1.1151 11.84 1.2648 5.92 1.1288 12.00 1.2519 15 Revision 0 April 2002 V. C. Summer Cycle 14
V. C. Summer Cycle 14 April 2002 Figure 8. RAOC W(z) at 20000 MWD/MTU V. C. Sununer - Cycle 14 r -
I r
I S
I a
I 3
i I
--I'-
I--------- -
I--
S I
I I
I, I
I I
I I
3 I
l S-I I
I 3
i i
I f
i ii ii I
iI I
I I
i I
3 I
i 7
I I
I 4------
-J-1.50 1.45 1.40 1.35 1.30
-1.25 1.20 1.15 1.10 1.05 1.00 A------
--:----11:11
-a:-
S.
7 3
" -3 I
I 3
3 I,
,I i
+
- ------- - I--,-
4j I
SI*
3 I
3 I
I 3
I 3
3 I
I£,
,3
.3 I,.
d _
I I
3 I
I I
3 II I
I 2
4 6
8 10 12 Core Height (Feet) 16 Top Revision 0
"#1"??"
0 Bottom I -
V. C. Summer Cycle 14 April 2002 Table 4. RAOC W(z) at 20000 MWD/MTU V. C. Summer - Cycle 14 Core Height Core Height (ft)
W(z)
(ft)
W(z) 0.00 1.1634 6.08 1.1862 0.16 1.1610 6.24 1.1979 0.32 1.1668 6.40 1.2078 0.48 1.1805 6.56 1.2161 0.64 1.1935 6.72 1.2235 0.80 1.1936 6.88 1.2298 0.96 1.1904 7.04 1.2350 1.12 1.1857 7.20 1.2388 1.28 1.1780 7.36 1.2413 1.44 1.1686 7.52 1.2423 1.60 1.1589 7.68 1.2421 1.76 1.1486 7.84 1.2407 1.92 1.1377 8.00 1.2378 2.08 1.1264 8.16 1.2326 2.24 1.1150 8.32 1.2253 2.40 1.1033 8.48 1.2195 2.56 1.0916 8.64 1.2196 2.72 1.0812 8.80 1.2200 2.88 1.0737 8.96 1.2203 3.04 1.0727 9.12 1.2193 3.20 1.0721 9.28 1.2168 3.36 1.0782 9.44 1.2131 3.52 1.0870 9.60 1.2114 3.68 1.0958 9.76 1.2134 3.84 1.1039 9.92 1.2235 4.00 1.1116 10.08 1.2324 4.16 1.1191 10.24 1.2399 4.32 1.1262 10.40 1.2471 4.48 1.1327 10.56 1.2535 4.64 1.1386 10.72 1.2591 4.80 1.1439 10.88 1.2639 4.96 1.1485 11.04 1.2660 5.12 1.1522 11.20 1.2662 5.28 1.1549 11.36 1.2649 5.44 1.1574 11.52 1.2548 5.60 1.1608 11.68 1.2359 5.76 1.1660 11.84 1.2204 5.92 1.1746 12.00 1.2069 17 Revision 0 April 2002 V. C. Summer Cycle 14
V. C. Summer Cycle 14 April 2002 Table 5. RAOC FQ Margin Decrease in Excess of 2% Per 31 EFPD Cycle Burnup (MVWD/
MAX % Decrease in FQ MTU)
Margin 1525 2.00 1697 2.02 1869 2.07 2041 2.00 Note:
All cycle burnups outside the range of this table shall use a 2% decrease in margin for compliance with Specifica tion 4.2.2.2e. Linear interpolation is adequate for inter mediate cycle bumups.
18 Revision 0 V. C. Summer Cycle 14 April 2002
V. C. Summer Cycle 14 April 2002 Figure 9. Baseload W(z) at 150 MWD/MTU V. C. Summer - Cycle 14 1.20 1.15 N
S1.10 1.05 a-
- 7%
L a
a ai atha A.
a a -9a 0
2 4
6 Bottom Core Height (Feet)
...1.4-:.-.
I 1---
8 10 12 Top 19 Revision 0 7
j r
r-i
- -i T
i I.
I
--i--I, I- --
-i L -
I i j.
I L - -
I i
i V
S l--
I I
I w*
I I
m
V. C. Summer Cycle 14 April 2002 Table 6. Baseload W(z) at 150 MWD/MTU V. C. Summer - Cycle 14 Core Height Core Height (ft)
W(z)
(ft)
W(z) 0.00 1.1015 6.08 1.0615 0.16 1.1024 6.24 1.0603 0.32 1.1034 6.40 1.0587 0.48 1.1049 6.56 1.0570 0.64 1.1062 6.72 1.0550 0.80 1.1066 6.88 1.0530 0.96 1.1067 7.04 1.0508 1.12 1.1066 7.20 1.0489 1.28 1.1065 7.36 1.0482 1.44 1.1062 7.52 1.0499 1.60 1.1057 7.68 1.0527 1.76 1.1051 7.84 1.0552 1.92 1.1044 8.00 1.0573 2.08 1.1035 8.16 1.0593 2.24 1.1024 8.32 1.0613 2.40 1.1012 8.48 1.0634 2.56 1.0999 8.64 1.0653 2.72 1.0983 8.80 1.0671 2.88 1.0967 8.96 1.0689 3.04 1.0949 9.12 1.0706 3.20 1.0930 9.28 1.0722 3.36 1.0909 9.44 1.0738 3.52 1.0887 9.60 1.0753 3.68 1.0866 9.76 1.0767 3.84 1.0846 9.92 1.0781 4.00 1.0830 10.08 1.0794 4.16 1.0817 10.24 1.0806 4.32 1.0806 10.40 1.0817 4.48 1.0793 10.56 1.0827 4.64 1.0778 10.72 1.0837 4.80 1.0762 10.88 1.0846 4.96 1.0746 11.04 1.0854 5.12 1.0728 11.20 1.0861 5.28 1.0710 11.36 1.0868 5.44 1.0690 11.52 1.0870 5.60 1.0668 11.68 1.0869 5.76 1.0646 11.84 1.0869 5.92 1.0628 12.00 1.0872 20 Revision 0 April 2002 V. C. Summer Cycle 14
V. C. Summer Cycle 14 April 2002 Figure 10. Baseload W(z) at 3000 MWD/MTU V. C. Summer - Cycle 14 1.20 1.15 1.10 1.05 1.00 r
b a a
a
-i -
r' i4 -
1 a -
4 6
8 Core Height (Feet)
I--*--I "a.*a 11 10 12 Top 21 Revision 0 2
0 Bottom V. C. Summer Cycle 14
-i -
I - -
7 -
S I 1.. i I
I 1
1 -
1 S..
.. J L
I J
i i
i V
7 L
A- -
i Ap--tril 2002 I
I I
I 1
I I
I I
I I
I 1
1 I
T i
I I
V. C. Summer Cycle 14 April 2002 Table 7. Baseload W(z) at 3000 MWD/MTU V. C. Summer - Cycle 14 Core Height Core Height (ft)
W(z)
(ft)
W(z) 0.00 1.0972 6.08 1.0618 0.16 1.0982 6.24 1.0601 0.32 1.0991 6.40 1.0582 0.48 1.1006 6.56 1.0562 0.64 1.1020 6.72 1.0537 0.80 1.1025 6.88 1.0512 0.96 1.1028 7.04 1.0492 1.12 1.1029 7.20 1.0488 1.28 1.1030 7.36 1.0481 1.44 1.1029 7.52 1.0499 1.60 1.1026 7.68 1.0525 1.76 1.1022 7.84 1.0549 1.92 1.1017 8.00 1.0570 2.08 1.1010 8.16 1.0589 2.24 1.1002 8.32 1.0609 2.40 1.0992 8.48 1.0629 2.56 1.0980 8.64 1.0648 2.72 1.0966 8.80 1.0666 2.88 1.0952 8.96 1.0683 3.04 1.0935 9.12 1.0700 3.20 1.0918 9.28 1.0716 3.36 1.0898 9.44 1.0731 3.52 1.0877 9.60 1.0746 3.68 1.0856 9.76 1.0760 3.84 1.0837 9.92 1.0774 4.00 1.0821 10.08 1.0787 4.16 1.0808 10.24 1.0799 4.32 1.0795 10.40 1.0811 4.48 1.0781 10.56 1.0822 4.64 1.0766 10.72 1.0833 4.80 1.0749 10.88 1.0843 4.96 1.0732 11.04 1.0852 5.12 1.0713 11.20 1.0861 5.28 1.0693 11.36 1.0869 5.44 1.0675 11.52 1.0872 5.60 1.0660 11.68 1.0871 5.76 1.0648 11.84 1.0872 5.92 1.0634 12.00 1.0875 22 Revision 0 April 2002 V. C. Summner Cycle 14
V. C. Summer Cycle 14 April 2002 Figure 11. Baseload W(z) at 10000 MWD/MTU V. C. Summer - Cycle 14 4_
1.20 1.15 J
J L
j
--- J-l-------
i-
- -i A
t 2
0 23 Revision 0 S1.10 1.05 1.00 4
6 8
10 12 Core Height (Feet)
Top Bottom I
I i
I I
]
I I
I I
I I
I I
I I
[
I I
I
. l
V. C. Summer Cycle 14 April 2002 Table 8. Baseload W(z) at 10000 MWD/MTU V. C. Summer - Cycle 14 Core Height Core Height (ft)
W(z)
(ft)
W(z) 0.00 1.1124 6.08 1.0586 0.16 1.1133 6.24 1.0568 0.32 1.1141 6.40 1.0546 0.48 1.1154 6.56 1.0529 0.64 1.1165 6.72 1.0530 0.80 1.1167 6.88 1.0547 0.96 1.1166 7.04 1.0569 1.12 1.1164 7.20 1.0592 1.28 1.1158 7.36 1.0614 1.44 1.1150 7.52 1.0635 1.60 1.1139 7.68 1.0655 1.76 1.1126 7.84 1.0673 1.92 1.1111 8.00 1.0691 2.08 1.1092 8.16 1.0707 2.24 1.1071 8.32 1.0722 2.40 1.1048 8.48 1.0737 2.56 1.1022 8.64 1.0750 2.72 1.0993 8.80 1.0762 2.88 1.0963 8.96 1.0774 3.04 1.0931 9.12 1.0784 3.20 1.0896 9.28 1.0794 3.36 1.0859 9.44 1.0804 3.52 1.0824 9.60 1.0812 3.68 1.0800 9.76 1.0821 3.84 1.0785 9.92 1.0828 4.00 1.0772 10.08 1.0835 4.16 1.0756 10.24 1.0842 4.32 1.0740 10.40 1.0849 4.48 1.0723 10.56 1.0856 4.64 1.0706 10.72 1.0863 4.80 1.0686 10.88 1.0870 4.96 1.0665 11.04 1.0876 5.12 1.0648 11.20 1.0882 5.28 1.0639 11.36 1.0888 5.44 1.0632 11.52 1.0890 5.60 1.0623 11.68 1.0889 5.76 1.0611 11.84 1.0890 5.92 1.0599 12.00 1.0892 24 Revision 0 V. C. Summer Cycle 14 April 2002
V. C. Summer Cycle 14 April 2002 Figure 12. Baseload W(z) at 20000 MWD/MTU V. C. Summer - Cycle 14 1.20 1.15
- 1.10 1.05 1.00 0
A 4
2 Bottom 7
- a a
a a..
a..
a a,,
T
- j
-° T
4 -
4 L
J -
__dL..---
25 Revision 0 4
6 8
10 12 Core Height (Feet)
Top i i I
II II I
I.
V. C. Summer Cycle 14 April 2002 Table 9. Baseload W(z) at 20000 MWD/MTU V. C. Summer - Cycle 14 Core Height Core Height (ft)
W(z)
(ft)
W(z) 0.00 1.1479 6.08 1.0621 0.16 1.1484 6.24 1.0651 0.32 1.1489 6.40 1.0677 0.48 1.1497 6.56 1.0700 0.64 1.1502 6.72 1.0720 0.80 1.1493 6.88 1.0739 0.96 1.1481 7.04 1:0755 1.12 1.1465 7.20 1.0769 1.28 1.1443 7.36 1.0781 1.44 1.1415 7.52 1.0790 1.60 1.1384 7.68 1.0798 1.76 1.1348 7.84 1.0804 1.92 1.1307 8.00 1.0808 2.08 1.1262 8.16 1.0812 2.24 1.1212 8.32 1.0814 2.40 1.1159 8.48 1.0813 2.56 1.1101 8.64 1.0811 2.72 1.1043 8.80 1.0809 2.88 1.0982 8.96 1.0820 3.04 1.0915 9.12 1.0854 3.20 1.0855 9.28 1.0893 3.36 1.0821 9.44 1.0932 3.52 1.0803 9.60 1.0968 3.68 1.0788 9.76 1.1002 3.84 1.0772 9.92 1.1034 4.00 1.0755 10.08 1.1062 4.16 1.0737 10.24 1.1088 4.32 1.0719 10.40 1.1111 4.48 1.0701 10.56 1.1129 4.64 1.0681 10.72 1.1145 4.80 1.0658 10.88 1.1158 4.96 1.0634 11.04 1.1165 5.12 1.0617 11.20 1.1170 5.28 1.0610 11.36 1.1172 5.44 1.0605 11.52 1.1167 5.60 1.0595 11.68 1.1154 5.76 1.0593 11.84 1.1145 5.92 1.0596 12.00 1.1140 26 Revision 0 April 2002 V. C. Summer Cycle 14
V. C. Summer Cycle 14 April 2002 Table 10. BASE LOAD FQ Margin Decrease in Excess of 2% Per 31 EFPD Cycle Burnup MAX % Decrease in FQ (MWD/MTU)
Margin 1525 2.00 1697 2.45 1869 3.03 2041 3.58 2212 3.21 2384 2.93 2556 2.71 2728 2.52 2900 2.37 3072 2.21 3244 2.05 3415 2.00 Note:
All cycle bumups outside the range of this table shall use a 2% decrease in margin for compliance with Specification 4.2.2.4e. Linear interpolation is adequate for intermediate cycle bumups.
27 Revision 0 V. C. Summer Cycle 14 April 2002
V. C. Summer Cycle 14 April 2002 Fi[gure 13. RCS Total Flowrate Versus R for Three Loop Operation V. C. Summer - Cycle 14 28.90 28.70 28.50 W
3 0
28.10 27.90 27.700.90
.L jAcceptable Operation Region 0
T Unacceptable Operation Region%[
(1.00,28.36) i T
V W
I I
a a
0.95 1.00 1.05 1.10 R = FNAH/1.6211.0 + 0.3(1.0 - P)]
Measurement Uncertainty of 2.1% for Flow (includes 0.1% for feedwater venturi fouling) is included in this figure.
28 Revision 0 I
L J
T T
?
T
?
?
T V. C. Summer Cycle 14 April 2002 2-i I -
I
i L
j
°-- -
l-
- -I - - - - - - -