ML20082E892
ML20082E892 | |
Person / Time | |
---|---|
Site: | Browns Ferry |
Issue date: | 10/25/1983 |
From: | Burrow J, Jun Lee TENNESSEE VALLEY AUTHORITY |
To: | |
Shared Package | |
ML20082E885 | List: |
References | |
EAS-138, NUDOCS 8311280360 | |
Download: ML20082E892 (26) | |
Text
{{#Wiki_filter:. EAS-138 October 25, 1983 Validation of COMETHE III-J for Gap Conductance Calculations Tennessee Valley Authority Division of Fuels Chattanooga, Tennessee J. K. Lee J. F. Burrow l 8311280360 831121 i PDR ADOCK 05000259 P PDR
Table of Contents I. Introduction II. TVA ColGmIE III-J Experience III. C0lGmIE Model of the IFA-432 Experleent IV. Leading Rod Analysis for Browns Ferry Fuel Types V. Gap Conductance for RETRAN Plant Transient Evaluations VI. Conclusions VII. References t t
I. Introduction The February 8, 1983 letter from D. G. Eisenhut, Director of Licensing, NRC, to operating reactor licensees (reference 1) requests that each licenses who intends to use a computer code to support licensing actions demonstrate proficiency in the.use of the code. The COMETHE III-J Fuel Performance Code is used by TVA to estimate the fuel pellet to fuel rod cladding gap conductance as input to RETRAN transient evaluations of reload core designs. The purpose of this report is to document evidence of TVA's expertise relative to the proper application of COMETHE and proper interpretation of results for calculations of fuel temperatures and pellet / clad gap conductances. The COMETHE III-J computer code is made available to membe'r utilities through the EPRI code center; however, neither EPRI nor TVA intends to maintain and update the code's capabilities in the long term. TVA is actively participating with industry groups in the development of a new fuel performance code for use in reload licensing safety evaluations. The COMETHE code will be used in the lateria for fuel temperature and gap conductance calculations only. TVA does not intend to use COMETHE for licensing of fuel thermal limits, mechanical design limits, creep collapse input, etc. The code is used for in-house audits of fuel vendor calculations, but all fuel related thermal and mechanical safety , limits are provided by the fuel vendor. TVA does not intend to sponsor an in-depth licensing review of COMETHE. The intent of this report is to provide the information necessary to . demonstrate TVA's proficiency in the use of the code and analysis results sufficient'to demonstrate the adequacy of the code to provide fuel temperatures to the BWR simulator code (reference 2) and gap conductance to the RETRAN model (reference 3) for transient evaluations of reload core designs. Specifically, the following information is included in this report:
- 1. Code verification analyses of rods 1, 2, and 3 of the Halden IFA-432 test.
- 2. ' Leading' or ' hot' fuel rod analyses of the current Browns Ferry fuel types.
- 3. Results of sensitivity studies and gap conductance values used in RETRAN transient evaluations of reload core designs.
"II. TVA COMETHE III-J Experience TVA has had access to prerelease versions of COMETHE since 1977. The code has been used extensively for evaluations of new fuel designs, in-house audits of vendor fuel design calculations, and preparation and evaluation of fuel bid specifications. To assure that the TVA version of COMETHE III-J was identical to the official EPRI release version, the code and related documentation was reordered from the code center in September 1981. The new load module was installed on the TVA computer. system in December 1981. Af ter qualification testing and QA review, a double precision version was released for use in March 1982. ,_ ._ _ _, . _ . _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ . ~ _ . . _ _ . . . . _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _
e - i The current TVA code version is identical to the version offered by EPRI as RP 397-4 COMETHE III-J and documented in Belgonucleaire R3 port BN7609 (reference 4) . The 00NETHE III-J code was originally evaluated by EPRI under project RP-397 and was selected from available deterministic fuel rod modeling codes for further investigatica and development. The S. M. Stoller Corporation (SNSC) was assigned by EPRI to conduct code verification studies on both COMETHE III-J and a modified III-J developed by N. Hoppe of Belgonucleaire under project 1452. One objective of this project was to involve utilities in the benchmarking esercise to f amiliarize the end users with the code and its application to fuel performance evaluations. TVA was one of 15 utilities participating ir. the project. Primary areas of responsibility included the interpretation of test measurements and results and the determination of modeling parameters such as the Booth's sphere radius and zircaloy creep characteristics. The results of the original EPRI statistical validation of COMETHE III-J are documented in Final Report NP-369 (reference 5). The results of the SMSC validation of COMETHE III-J modified are documented in EPRI Final Report NP-2911 (reference 6). It was concluded that the modified version of the code exhibited no clear improvements to the III-J version. The current EPRI release version is COMETHE III-J without the SMSC and Hoppe modifications. i
- ~ _ . _ , - . - _ _ _ _, , _ , , _ . . . . . . _ , - , _ . _ _ _ _ . _ _ _ , . . _ , . _ , , , , _ , . _ , . , , _ . , _ . . . . - , , . _ . , , , , , ____,,.,,_..-m._.,__.,-,.. . . . . _ , - , , _ _ . , .
3 III. CONE 1BE Nodel of the IFA-432 Experiment TVA has performed independent verification analyses of COMETHE III-J temperature predictions (and inferred gap conductance) by modeling fuel rods 1, 2, and 3 of the Halden IFA-432 experiment documented in BNWL-1988 (reference 7) and PNL-2673 (reference 8). These test scds were approximately two feet in length (22.5 in. active fuel length) with a cladding outside diameter of 0.5035 in. Rods 1, 2, and 3 had cold diametral fuel to cladding gaps of 9,15 and,3 mils, respectively, and all were backfilled with 1 ATM helium. The test racility was the Halden 12 NW boiling water reactor which operates at approximately 500 psi. Power and fuel centerline temperature measurements were made at both the upper and lower ends of the rods. TVA modeled the fuel environment and behavior from the start of the experiment in December 1975 to January 1978. Complete descriptions of the rods, test facility, instrumentation, and fuel precharacterization are included in the referenced documents and are not repeated in this report. The IFA-432 documentation contained strip charts for the power history and centerline temperature data. Because of the difficulty in accurately reading such data, TVA requested that Pacific Northwest Laboratories (PNL) provide digitized experimental data for the rods of l interest if such data were readily available. PNL responded with simplified digitized listings for the power and temperature of rods 1 ( and 3 as a function of elapsed-time-at power (reference 9). Digitized temperatures corrected for thermocouple decalibration were also included. For rod 2, TVA constructed similar power history and teaserature data from the strip charts included in reference 8. Because of the uncertainties associated with reading the charts, temperature corrections to account for thermocouple decalibration were considered superfluous and were omitted. The 00METHE model for each fuel rod contained five axial nodes. Three nodes were included to model the solid pellet center region of each rod and additional upper and lower annular pellet nodes were included to model the drilled pellets containing the thermocouples. Linear interpolation between the power measurements at each end of the rod was used to determine modal power histories. Some discrepancies were noted in the reference 8 drawings relating exact thermocouple locations. For simplicity, it was decided to model each rod exactiv the same with changes only to the fuel-to-cladding gap size, minor adjustments in plenum length (volume), and the power history data. Table I gives the COMETHE options selected and model input parameters l for the IFA-432 fuel rods. In the definition of physical models such l as relocation, cr.cking, swelling, fission gas release, creep, etc., i the options selected were the ' user recommended options' documented in Part 2, (User Notes) of the COMETHE III-J BN7609 Manual (reference 4). l Tables II, III, and IV depict COMETHE input power history data, the calendar date the data was taken, rod upper and lower measured powers, rod apper and lower measured and corrected thermocouple data, and upper and lower CONETHE temperature results for each of the three rods. As
4 discussed previously, all rod 2 data was taken from strip charts and no temperature corrections were applied. Blank columns indicate thermocouple failures or data not available. Figures 1 through 5 are data point plots of the test results versus COMETHE results for each thermocouple. . Table V presents a statistical summary of the COMEIBE results as compared to the IFA7 432 test data. The results for all three rods are quite good with the greatest accuracy obtained for rod 1 with the 9 all gap. 11e largest standard deviation was obtained for rod 2 which is most likely due to the lack of. digital power and temperature data. 4 In addition to the direct model of the IFA-432 test, a COMETHE run was made for each test rod using a constant power level of 300 W/cm at. the
- apper thermocouple and 225 W/cm at the lower thermocouple to a barnap
( of approximately 5000 mwd /MTM. The COMETHE results for these runs are shown in figures 6, 7, and 8. With the exception of the COMETHE I results, these figures are direct copies from the GAPCON-Thermal 3 I Verification Report, PNL-2435 (reference 10). TVA did not collect or analyze the experimental data indicated in the figures and the COMETHE results are presented with no further comments. IV. Leading Rod Analysis for Browns Ferry Fuel Types Figures 9, 10, and 11 show the ' leading' or ' hot' rod COMETHE gap conductance results as a function of exposure for the 8x8, 8x8R, and P8x8R fuel types currently in the Browns Ferry reactors. The power history assumed for this analysis had the peak node at 13.4 kW/f t to an exposure of approximately 19 GFD/TOI and then decreased linearly to 11.4 kW/ft at approximately 35 GWD/TOI. A 1.4 chopped cosine axist i power shape was used. The results shown in each of the figures 9, 10, and 11 represents the gap conductance at various axial locations and power levelt within the same fuci e cd. ! The physical model options selected for the leading rod analysis were l the ' user recommended options' documented in part 2 (User Notes) of l the COMETHE III-J BN7609 Manual (reference 4). Fuel rod input parameters were taken from table 2-1 of the ' General Electric Standard Application for Reactor Fuel,' NEDE-24011-P-A-6 (reference 11). Slallar ' leading' rod analyses have been performed by the current fuel vendor and are documented in reports available to the NRC staff. V. Gap Conductance for RETRAN Plant Transient Evaluations I The TVA RETRAN transient analysis model and its application to reload core safety evaluations is documented in the RETRAN Topical Report (reference 3). Fuel pellet-to-cladding gap conductance is a necessary input to the REIRAN model, and TVA currently uses the COMETEE III-J l computer code to estimate both core-wide and ' hot' channel gap l conductances for reload core designs. I _ . . - . _ , . _ _ . _ _ _ _ . _ _ _ _ _ , ~ . _ . . _ _ _ _ _ _ _ _ _ _ - - - -
F 5 The ' hot' channel say conductance is calculated for each fuel type by running COMETHE with a power history that is continuously at the maximan-average planer-linear-heat generation-rate (MAPLEG1.) allowed by the plant technical specifications and defined by the fuel vendor. The value of ' hot' channel gao .naductance used in RETRAN for reload applicaticas is a fixed uadoer for each fuel type and represents the highest axially averaged gap conductance calculated by 00METHE at any point over the maximum allowable assembly szposure range. The GE P8x8R fuel type is the predominant type of fuel currently used at Browns Ferry and the ' hot' channel gap conductance applicable to this futi is 1287 Btu /hr-f t8 *F. The core-wide gap conductance is calculated for each fuel type by ranning COMETHE with a power history that is more representative of a typical fuel assembly. Tables of fuel gap conductance versus power and exposure are generated for each fuel type. The tables are used in conjunction with nodal powers and exposures f rom the 3-D BWR simulator code (reference 2) to determine nodal gap conductance values. The core-wide effective gap conductance value used in RETRAN is calculated from the nodal data for the specific reload core design and state point analyzed. Figure 12 depicts typical ranges of P8x8R gap conductance values which are used in RETRAN evaluations of reload core designs. The figure also shows the sensitivity of core-wide gap conductance to fresh fuel batch size and core average exposure. I VI. Conclusions TVA has more than six years experience using the COMETHE III-J fuel po'rformance code. The code has been used extensively for evaluations of new fuel designs, in-house audits of vendor fuel design calculations and evaluations of fuel bid specifications. 00METHE benchmark and l verification analyses have been performed by the code developer, various industry groups, and independently by TVA. The code gives reasonable and consistent results when compared to in-reactor data and other approved fuel performance codes. This report documents TVA's proficiency in the use of COMETHE III-J and demonstrates the adequacy of the code to provide fuel-to-cladding gap conductance data for use in REIRAN transient system analyses. 1
6 i VII. References
- 1. Memorandum from Darrell G. Eisenhut, Director, NRC Division of Licensing to all Operating Reactor Licensees, ' Licensee Qualification for Performing Safety Analyses in Support of Licensing Actions,' Generic letter No. 83-11, February 8, 1983.
- 2. S. L. Forkner, G. H. Meriwether, and T. D. Ben, 'Three-Dimensional LWR Core Simulation Methods, ' IVA-TR78-03A,19781
- 3. S. L. Forkner, et. al., 'BWR Transient Analysis Nodel Utilizing the RETRAN Program, ' IVA-1181-01-A, 1981.
- 4. N. Hoppe, et. al., 'COME1BE III-J - A Computer Code for Predicting Nechanical and Thermal Behavior of a Fuel Pin,' Belgonucleaire S.
A., BN7609.
- 5. EPRI Final Report, ' Light Water Reactor Fuel Rod Modeling Code Evaluation,' NP-369, March 1977.
- 6. EPRI Final Report, ' Evaluation and Modification of CONE 1EE III-J,'
N1'2911, March 1983. {
- 7. Battelle Report, ' Test Design, Precharacterization, and Fuel Assembly Fabrication for Instrumented Fuel Assemblies IFA-431 and IFA-432,' NUREG/CR-0332, ENWL-1988, November 1977.
i
- 8. Battelle Report, ' Data Report for the NRC/PNL Halden Assembly IFA-432 ' NUREG/CR-0560, PNL-2673, August 1978.
9.' Letter from D. Lanning, Nuclear Fuels Section, PNL to J. F. Burrow, Nuclear Fuel Branch, IVA, 'IFA-432 Digitized Data for Rods 1 and 3,' July 6, 1983.
- 10. Battelle Report, 'GAPCON - Thermal 3 Verification and Comparison to In-Reactor Data,' NUREG/CR-0218 PNL-2435, September 197d.
11.~ General Electric Topical Report, ' General Electric Standard Application for Reactor Fuel,' NEDE-24011-P-A-6. i l l l
TABLE I COMETHE III-J OeTIONS SELhCTED FOR IFA-432
.t NPU T REF. VALUE SELECTED NO. ROD 1 ROD 2 ROD 3 UNIT DEFINITION OR DESCRIPTION ~ ~
81 1.0 COOLANT = WATER 2 3.0 COOLANT INLET TEMPERATURE = CONSTANT
- 3. 3.0 ANNULAR CELL 4 3.0 FUEL INDEX FOR BLANKETS -
UO2 CONDUCTIVITY BASED ON GEAP 5591 5 3.0 FUEL INDEX FOR CORE - UQ2 CONDUCTIVITY BASED ON GEAP 5591 6 1.0 CLAD MATERIAL = ZIRCALOY 2 7 2.0 CLAD SWELLING OR GROWTH - ANISOTROPIC 8 0.0 THERMAL NEUTRON FLUX ENERGY 9 1.0 PRINTING AT THE TIMES OF CALCULATION SPECIFIED BY G1 CARDS 10 1.0 CLAD SLICE RESULTS PRINTING 11 1. 0 NUMBER OF SLICES IN THE LOW-ER THERMUCOUPLE REGION (LT) 12 3.0 NUMBER uf SLICES IN THE NON THERMOCOUPLE REGION (OT) 13 1.0 NUM8ER OF SLICES IN THE UP-PER THERMOCOUPLE REGION (UT 21 1.0 FILLING GAS - HELIUM CONSID-ERED 27 2.0 FLUX DEPRESSION - BESSEL FUNCTION 50 1.0 NORTON CREEP LAW' 52 2.0 STRAIN HARDENING , 56 1. 0 CREEP CORnECTION FACTOR DE-PENDS ON THE TIME 60 35.15 KG/CM2 COOLANT PRESSURE 61 2 37. 0 DEG. C COOLANT INLEI TEMPERATURE 63 2.410 CM PIN PITCH 64 .54545 CM CLAD INNER RAD,IUS 65 .63945 CM CLAD OUTER RADIUS 66 114.5 190.5
- 38.0 pH INITIAL RADIAL COLD GAP IN LTR 67 114.5 190.5 38.0 pH INITIAL RADIAL COLD GAP IN l OTR
! 68 114.5 190.5 38.0 pH INITIAL RADIAL COLD GAP IN UTP 71 .0876 CM PELLETS INNER RADIUS IN LTR 73 .0876 CM PELLETS INNER RADIUS IN UTR 76 .05 PELLET INITIAL POROSITY IN LTR NOTE - ALL VALUES FOR RODS 1, 2 ANO 3 ARE IDENTICAL TO THE VALUE INDI-CATED FOR ROD 1 UNLESS SHowN OTHERWISE. TABLE I CONTINUE 0 UN NEXT PAGE. _ __- __.__ ____ __~_..________ _ ___. _.___ _ ___.___ ____._ ...___ _ __ _ _ _ ___.._ __ *
~
TABLE I (CONTINUE 03 COMETHE Ill-J OPTIONS SELECTED FOR IFA-432 INPUT REF. VALUE SELECTED NO. ROD 1 ROD 2 - ROD 3 UNIT DEFINITION OR DESCRIPTION
~ ~
8 77 .05 PELLET INITIAL POROSITY IN OTR 78 .05 PELLET IN111 AL POROSL fY IN UTR 81 6 350 CM TOTAL FUEL LENGTH IN LTR 62 40.64 CM TOTAL FUEL LENGTH IN OTR 83 10.16 CM TOTAL FUEL LENGTH IN UTR 96 1 270 CM PELLET HEIGHT IN LTR 97 1.270 CM PELLET HEIGHT IN OTk 98 1.270 CM PELLET HEIGHT IN UTR 104 .5630 FRACTION OF POROSITY WHICH ACCOMODATES SOLIO SWELLING 111 1.03340 KG/CM2 PRESSURIZATION 117 2.32230 2.60350 2.uS9 CM LtNGTH OF THE UPPER FISSION GAS PLENUM 118 0.0 VOLUME FRACTION OF STRUCTUR-i AL MATERIAL IN PLENUM 120 0.015 FRACTION OF HEAT GENERATION IN CLAD 121 0.0 BESSEL CONSTANT OF FLUX DE-PRESSION IN LTR C UTR 125 1.820 SESSEL CONSTANI 0F FLUX OE-PRESSION Ili OTR 141 0.0,29 CM RA0105 0F BOOTH OIFFUSION SPHERG 160 10.96 G/CM3 THEORETICAL OENSITY OF FUEL IN E ACH REGION 161 10.96 G/CH3 162 10.96 G/CM3 175 1.06680 pH ARITHMETIC MEAN TOTAL ROUGM-NESS OF FUEL AND CLAD SUR- ' FACES 179 0.5 THERMAL CREEP CORRECTION FACTOR FOR ZIRCALOY 192 0.060 UNSTABLE POROSITY FRACTION 193 0.5 IRRADIATION CREEP CORREC-l TION FACTOR FOR CREEP 202 65.0 pH FUEL GRAIN SIZE H 50.0 G/CM25 INITIAL MASS FLOW RATE I PilYSICAL MODELS - OPTIO::SL "L" Option No. 1 2 3 4 5 6 7 8 9 to 11 12 13 14 Llue Selected 1 2 2 1 0 2 2 1 1 2 1 0 0 0 e, - t
TABLE II HALDEN IFA-432 - ROD 1 N- DAY OATE 0-U T-U T-UC TVA-U 0-L T-L T-L C TVA-L 1 7 12/24/75 451 1522 1522 1534 334 1135 1135 1216 2 18 01/10/76 444 1492 1501 1514 320 1118 1123 1188
'3 20 01/17/76 436 1477 1487 1493 314 1110 1115 1173 4 23 01/20/76 446 1500 1511 1519 324 1125 1132 1208 5 27 01/28/76 424 1440 1454 1465 304 1075 1083 1153 6 31 02/04/76 444 1508 1525 1518 311 108C 1089 1181 7 37 06/09/76 284 1105 1120 10 71 200 86G 868 843 B' 41 06/19/76 427 1475 1998 1478 286 1040 1051 1112 , 9 46 06/26/76 362 120C 1221 1305 242 930 911 982 ,
10 63 07/14/76 460 1530 1560 1552 314 1110 1126' 1234 11 77 08/03/76 420 1445 1981 1469 295 1990 1106 1201 12 91 09/14/76 452 1530 1574 1545 304 1175 1199 1262 13 94 09/21/76 423 1500 1545 1978- 292 1125 1149 1199 14 98 09/27/76 372 1445 1491 1353 245 1050 1074 1G86 15 104 10/11/76 458 1575 1627 1556 320 1205 1233 1333 16 113 10/21/76 440 1505 1555 1521 305 1190 1221 1312 17 119 10/29/76 395 1340 1392 1424 288' 1160 1192 1273 18 129 01/04/77 426 1505 1569 1504 314 1255 1294 1376 19 135 01/13/77 350 1310 1367 1330 283 1150 1186 1291
'20 139 01/20/77 420 152C 1588 1499 306 1255 1295 1370 21 154 02/10/77 426 1495 1570 1518 310 1275 1321 1417 22 156 03/28/77 342 279 120G 1245 1328 23 159 04/02/77 332 270 1175 1219 1305 24 170 04/14/77 "400 308 1300 1350 1443 25 177 04/22/77 426 322 1355 1409 1490 26 186 05/03/77 435 332 1410 1968 1520 27 203 06/29/77 425 320 1390 1950 ISOC 28 206 07/10/77 357 280 1325 1382 1392 29 208 07/12/77 390 250 1210 1264 1304 30 228 08/02/77 440 303 1340 1905 1476 31 233 G8/10/77 372 259 1267 1330 1356 32 238 08/15/77 447 30C 1358 1426 1975 33 245 08/22/77 437 298 1353 1422 1473 l
34 247 08/25/77 443 301 1360 1931 1482 l' 35 261 10/30/77 374 269 1310 1383 1904 l 36 264 11/03/77 355 248 1262 1333 1345 37 283 C1/02/78 343 248 1270 1346 1356 DAY. ... . .EL APSE D CUMUL AT IVE D AYS AT THE END OF THE STEP DATE..... CALENDAR DATE AT THE END OF THE STEP Q-U...... LINEAR POWER AT UPPER THERMOCOUPLE TIP LOCATION (W/CM) 0-L...... LINEAR POWER AT LOWER THERMOCOUPLE TIP LOC ATION (W/CM) T-U . . . . . . UP P E R THERM 0CCUPLE READING (DEGREES C) T-L...... LOWER THERMCCCUPLE RE ADING (DEGREES C) T-UC... .. UPPER TC RE ADIN G CORRECTED FOR TC DECALIBRATION (DEGREES C) T-LC. . . . . LO WER TC RE ADING CORRECTED FOR TC DECALIBRATION (DEGREES C) TVA-U.... UPPER CENTERLINE TEMPER ATURE PREDICTED BY COMETHE (OEGREES C) TVA-L....LOJER CE NTERLINE TEMPER ATURE PREDICTED BY CCMETHE ( DEG REES C)
-,.--,,..-___-.e - - -
TABLE III H ALDEN IF A-432 - ROD 2 s OAY DATE Q-U T-U T-UC TVA-U Q-L T-L TVA-L 1 7 12/24/75 433 321 1320 1427 1 18 01/10/76 426 307 1400 1411 3 20 01/17/76 419 301 1400 1399 4 23 01/20/76 426 311 1420 1447 5 27 01/28/76 407 292 1390 1393 6 31 02/04/76 426 299 1420 1436 7 37 06/09 /76 273 145 84u 839 8 41 06/19/76 410 275 1380 1368 9 46 06/26/76 348 232 1280 1217 10 63 07/14/76 442 301 1500 1553 11 77 08/03/76 403 283 1490 1547 12 91 09/14/76 434 292 1470 1626 13 94 09/21/76 406 271 1450 1565 14 98 09/27/76 300 200 1300 1289 15 104 10/11/76 405 285 1490 1635 16 113 10/21/76 415 280 152u 1633 17 119 10/29/76 340 240 1480 1498 18 129 01/04/77 350 270 1490 1617 19 135 01/13/77 310 240 1350 1516 20 139 01/20/77 330 250 1500 1560 21 154 02/10/77 380 275 1520 1644 22 156 03/28/77 310 250 1400 1558 23 IL#%,04/02/77 250 200 1150 1368 24 1M 04/14/77 320 260 1400 1599 25 177 04/22/77 390 300 158u 1712 4 26 186 05/03/77 360 280 1570 1640 27 403 06/29/77 345 260 1420 1581 28 206 07/10/77 330 235 1310 1499 29 208 07/12/77 345 220 1440 1448 30 228 1 08/02/77 345 240 1400 1541 31 233 08/10/77 334 260 1450 1605 32 238 08/15/77 355 275 1490 1645 33 245 08/22/77 380 275 1410 1634 34 247 08/25/77 380 275 1410 1632 35 261 10/30/77 350 250 1400 1562 36 264 11/03/77 340 238 1526
- 37 283 01/02/78 329 238 1390 1539 OAY......ELAP SED CUMULATIVE DAYS AT THE END OF THE STEP DATE..... CALENDAR DATE AT THE END OF THE STEP Q-U...... LINEAR POWER AT UPPER lHERM0 COUPLE TIP LOCATION (W/CM)
Q-L...... LINEAR POWER AT LOWER THERMOCOUPLE TIP LOCATION (w/CM) T-U...... UPPER THERMOCOUPLE RE ADING (DEGREE S C) . T-L .... . . LOWER THERMOCOUP LE RE ADING ( DEGREE S C ) T-UC.... . UPPER TC READING CORRECTED FOR TC DECALIBRATION (DEGREES C) T-LC.~.... LOWER TC READING CORRECTED FOR TC DECALIBRATION (DEGREES C) TVA-U.... UPPER CENTERLINE TEMPERATURE PREDICTED BY LOMETHE (DEGREES C) TVA-L.... LOWER CENTERLINE TEMPERATURE PREDICTED BY COMETHE (DEGREES C) l
T AB LE IV HALDEN IF A-432 - ROD 3
# DAY DATE Q-U T-U T-UC TVA-U Q-L T-L T-LC TVA-L 1 7 12/24/75 474 1270 1270 1190 356 930 930 946 2 18 01/10/76 472 1260 1267 1185 350 925 930 938 3 20 01/17/76 415 1169 1169 1073 307 870 876 850 4 23 01/20/76 465 1270 1281 1172 353 950 957 945 5 27 01/28/76- 440 1220 1232 1124 332 920 927 903 6 31 02 /04/76 450 1260 1276 1145 338 930 938 916 7 37 06/09/76 385 1110 112 5 1017 280 815 823 797 8 41 06/19/76 440 1230 1248 1127 315 890 900 870 9 46 06/26/76 370 1030 1049 987 204 760 770 765 10 63 07/14/76 475 1320 1347 1194 340 930 945 925 11 77 08/03/76 433 1220 1250 1113 314 890 906 872 12 91 09/14/76 467 1310 1349 1175 332 910 929 910 13 94 09/21/76 430 1230 1269 1194 303 855 873 851 14 98 09/27/76 396 1110 1147 1037 274 790 807 791 15 1 04 10/11/76 465 1330 137b 1169 340 940 963 927 16 113 10/21/76 457 1295 1343 1151 328 910 934 902 17'119 10/29/76 402 1160 1205 1045 305 870 894 855 18 129 01/04/77 415 1200 1252 106u 317 910 938 879 19 135 01/13/77 300 1065 1112 959 285 840 866 813 20 139 01/20/77 403 1170 1224 1042 306 890 920 856 21 154 02/10/77 414 L190 1249 1058 311 900 932 865 22 156 03/2G/77 355 444 287 840 870 816 23 159 04/02/77 336 906 270 820 850 751 24 170 04/14/77 399 1180 1243 1025 313 920 95* 867 25 177 04/22/77 422 1250 1320 1067 328 960 1000 89 7 26 186 05/03/77 430 1280 1355 1078 335 980 1022 909 27 203 06/29/77 422 1250 1325 1058 326 960 1001 889 28 206 07/10/77 354 1080 1146 928 290 865 903 817 29 208 07/12/77 346 1060 1125 912 232 750 784 700 30 228 08/Q2 /77 395 1180 1256 997 284 860 900 802 31 233 08/10/77 346 1060 1131 904 245 780 819 723 32 238 08/15/77 410 1210 1294 1029 285 860 903 802 33 245 08/22/77 395 1170 1254 991 280 845 889 792 ? S 247 08/25/77 403 1190 1276 1011 285 860 905 801 i 35 261 10/30/77 327 1000 1077 859 250 780 823 730 l
3o 204 11/03/77 334 1020 1101 872 255 795 o39 740 l 37 283 01/02/78 3*4 1050 113b 884 260 800 847 747 DAY...... ELAPSED CUMULATIVE DAYS AT THE END OF THE STEP DATE..... CALENDAR DATd AT THE END OF THE ST EP Q-U. . . .. .L INE AR POWER AT UPPER THE KNOCOUPLE TIP LOC ATION (W/CM) Q-L. .. . ..LINE AR POWER AT LOWER THE RMOCOUPLE TIP LOC AT ION (W/CM) T-U...... UPPER THERMOCOUPLE RE ADING (DEGREE S C) T-L . .. .. . LOWER THERMOCOUPLE RE ADING ( DEGREE S C )
-T-UC. ... . UPPER TC READING CORRECTED FOR TC DEC ALIBR ATIDN (DEGREES C)
T-LC..... LOWER TC READING CORRECTE D FOR TC DEC ALIBRATION (DEGREES Cl TVA-U.... UPPER CENTERLINE TEMPERATLRE PREDICTED BY COMETHE (DEGREES C) TVA-L.... LOWER CENTERLINE TEMPERATURE PREDICTED BY COMETHE (DEGREES C)
k Table V l' Summary of IFA-432 COMETHE Results Measured Number
- Rod Thermocouple Temperature of Time h Location Correction Points Max lATl l Tl o l A'fl 432-1 Upper Corrected 21 138. 40.2 35.0 432-3 Upper Corrected 35 277. 180.8 63.4 432-1 Lower Corrected 37 108. 63.3 28.6 432-2 Lower Uncorrected 36 224. 103.6 72.3 432-3 Lower Corrected 35 113. 57.5 35.9 h e symbolic quantities used in table V are:
l3 1 = mean of the absolute difference between the calculated and measured temperature, 'C MAX lATI = maximum of absolute difference between the calculated and measured temperatures, 'C erlATl = calculated standard deviation of the absolute difference between the and measured temperatures, 'C , *Columb 4 refers to the number of times the calculated temperatures were i compared with the measured temperatures. i I i
. - . - - , . - - . . - . . - - - - - . , _ _ . - - - - - - - , - = . - , . , - - - = - . . . ...- .- . - . . . . - .
FIGURE 1 HALDEN IFR-432 - ROD 1 1700 1600 -
. X X 1500 - NX X . X 1400 - #
D 5l
$ E y
E x 1300 - X 1200 - Rod i Upper Thermocouple - C l 1100 - X 1000 Test Data 1000 1100 IN00 IN00 IIDO IN00 IN00 1700 T-UC
- ,_ . , _ , _ . - - _ . , . . - - ._,,-4 ...--..,--.__,--,,--._._._,_,,...y--,. . , _ , . _ _ _ . , _ . - . . , , , .,--.-,__..---__..s_
/'
FIGURE 2 - HRLDEN IFR-432 - R001 1600 X 1500 - X h X - X 1400 - M
>k 1300 - MX J ! h t b1200- E l g g X g X 8 X 1100 -
1000 - Rod 1 Lower Thermocouple - C 900 - l X 800 , , , "'S" , , , 800 900 1000 1100 1200 1300 1400 1500 1600 T-LC l l
L FIGURE 3 HRLDEN IFR-432 - ROD 2 1800 X X ' MX 1600 - Xg - X X X X 1400 - 3 X T' 3 e a H W s 1200 - g X m. l , Rod 2 Lower Thermocouple - C l X *** 800 800 1000 1200 1dOO IdOO 1800 T-L
FIGURE 4 HRLDEN IFR-432 -- R003 s 1400 1300 - t Rod 3 Upper Thermocouple OC 1200 - X XX 3 X X o 3 E 1100- a w X{X H X X E
!i!
x
^
v
'X 8 X XX X X X X
1000 - g X X l m- Y X l X X T**' 800 , ,
,"^'" , ,
800 900 1000 1100 1200 1300 1400 T-UC 1 l
FIGURE 5
. HRLDEN IFR-432 -
R003 1100 n 1000 - - Rod 3 Lower Thermocouple - C 900 -
. *X J $ $
E j X X ['
- X C ~
800 - l8 XX g [x X N l 700 - X l Test Data l 600 700 800 900 1000 1100 T-LC l t
OCOMETIIE
, GAPCON-3 (NO RLLOCAll0NI ~
E'- TO MC AT 4000MMM a CAPCON-3 IwlRELOCATIONI
, e IFA-432 DATA (ROD ll . o_ - 0 ,C
_. + 1100' a . E E E
'E UPPER THERMOCOUPLE. ~
300 W/cm (9.1 kW/ft)
~
g .< E TO REC ATmiAWdNTM . U - h ,00 L ,,
~ -s '300 (DWER THERMOCOUPLE TO 720'C ATeMWdNTM !'" * !")
f f I f f IMID 21D0 3000 ,, 4000 SG)0 FUEL AVERAGE BURNUP. htWdIMTM l FIGURE : 6. Centerline Temperature at Fixed Power versus Burnup for Rod 1 (9 mil Gap, He Fill) from Halden Test IFA-432 - 1 l l t i I
~ *COMETHE IO W ATeq N
eP
.-7 ' /. J 5* ( *W RCD 2 CDffERList TEMP i LouER IMERMCCOUPLI-g 225 wtm 3 e lfk4320ATA N# a GAPCON-)
so4EOC.I
- CAPCON-3 tes0 ELOCATNINI
^
g . . ^ ^^ , IED BID II0 *IO AVERAW SURNUP, MuutNIM FIGURE . h. Centerline Temperature at Fixed Power versus Burnup for Rod 2 (15 mil Gap, He Fill) from Halden Test IFA-432 , l l 4 i
f O COMETilE UPPER THERMOCOUPLE 900 .
- : 300 Wkm (9.1 kWm) o*
~
E 'A 2 :
-4 .a _ .a a 4a--e'--e 4,,,0 3
- E 800 -
CENTERLINE TEMPERATURE h R00#3 E e IFA-432 DATA
# a GAPCON-3 E
c
$a s. - ~ .A ,e'4A = s ~~a~s l -
a-a-..a .a- 4 a LOWER THERMOCOUPLE
, 225 W4m 16.9 kWm) l , ,
1000 2000 .3G30 - 4 00 MOD FLEL ROD AVERAGE BURNUP, MWdNTM FIGURE 8 . Centerline Temperature at ' Fixed Power versus Burnup for. Rod 3 (He F111, 31 nil Gap) Halden Test IFA-432 l l
. - - ., , . . - - - - . , , - - - , . - - - , , - - . - . - - - - - - - - - - - ~ ~ . - - - - - - , - - - - - - - - - - ~ - ~ - - - - .
FIGURE 9 Leading Rod Gap Conductance vs. Exposure 8x8 Fuel Type 10'
..s. . . . . . . . , . .a . . . . $ g1 r ... . j . . . . .- . . ; .. . q . .,.. '. ..;.
- a. n. . . . . . . . . . ..
6 . . . . . . . . _ , . .t..... ' 1 ._ .
.=_. .. . .._._t. . . . ..t , . . ,I . l. . .[. . . . . .. . . _. _n _r._-, .,. -.;,... .i . . . t. .,.. .. . .
1, ... . . . #. , - .u, - . . . .
- 4. . . . . : .. ......u,.-. _ . .
t - . . .
..a. u. 4- 3' ...k: : ? . .
2 ._...tg .. : - .. l s n ge. . . ) . 4-. .. 4 ..
.s . . .
g ,,
._;.. J .. .....t...-. . , . .
t* o
- ? : ,
, l - . .: .* r; .
m
. . . _ .. . . . ... . . ..._ . . . ..:. . r. _.
- a. .
84 jo3 I... uI . gg*e r*. . .
.. n - 'ig e X
t.) .. . . _ . o $_ . . II.6-. ,.. . g-. . ,-.... c,I M 6 - +
. 7 =,
33 u
- =
1 l3 - - - - . ;- . . * - - -- .
- T -,
g* h"!
~~~ ~ s - - - - -- ~
t
~~ m-w -
1 N 4 .
.. 4 4. . . ,j !
- r 1 d.t.
..'y. .. _1. .
3
} . p. . . . .l .. ... ,.. 4.
et ..~...$_.,a..._ ..;. .
...a .z. f.3._. . . . s. ..t. g... . .
0
- - ..e u .- ' s... . .k.,, z.sa,
_ : I
. . - i.. . ... . t C . .;&. . .'. . . ; e . . . . . 4s . * .;. .
- 4. t .g..
.t . s .; . h.
80 e.E 2
~
i .: * .. .d I
- i.' *
-u - ; .. . . . . : : :, -.
- .... }'... } ..
. :: .~;.. I. s:
- s - g t.. .
.o . . _ . ._ ., _:: . .t. -
g ,. . 6 io2 1. it:1. l:st: i-
- l" - . .-!n:
g :. . . . .. . I;
- o. 8 ~ - I 1 ( f - -
' ^
1
-. -- ~ 1 . . . j.' .- ;. .[ - ---- - - 4 . .~. . j .. ! I'L.
1
; ,--b ~; .:.3 6 . A. 4.%. .q..4q5- -
_. e i e . : l _ -- . . . . . - - -- _i _. : i y.'. . .g . . . 5. . , _. - ._ . .l . .: { :- 2 4t . 4
...I.. ..... ,.l. . . . . . - . .
L.-. .'
- r. .
a t.
. ..& .- . _ . . .. .. . .....J .
s
.. . , : .1 1 I+ii e t i1 =
g.: .e. : _1.u :. l' _
. . t.. .c . . . . . . .
1 l . .
- _. .. . . . t.. -.y .
\ . -, t 8- -I.. I..- 0 $ 10 15 20 25 30 3? Exposure - CWD/TOX r t
. FIGURE 10 Leading Rod Cap Conductance vs. Exposure 8x8R Fuel Type t o.'
y . . ; ,. . _..'. t, . .. g. ;. :. . .,.i. . . . . . . a.._ y . t.. .. . . . 1'. .
. g. . . . . . . .1 ... . . . . . . . . . . _ ... . 3 .. . ...3' _ . . . . . , _.7.. .. . u, -.. ...r.._......i..
e . ,.... T' .. .. p g .. :: .. . .,
.g
_ie
.9 . . .. l . 4...t g . - .,. p ,
71 ,. .. . l,1. ... . . . .) !,; ;
. . . 1.. .. . . . . ...:--8:
- i. si
.f m 2- .;- : s . .t.- ' .o, .4- . -2_.- 1 :-
t....
. 1] ! .:: L. . . n 6 . :g. , 12.7 . : ,; f l . _ . . .. . ,
_. 1 g -
, ..i. . . 1. ..- g.
o 33 .
, -- . : u.g g 4 n
g s_ ... p.. . . . 4 ..
.l., ~
g U W ..* L, _L ..
...u . ..f -
_L.. . . . .
.p . .L 2 ;. % a. .' 1 g*. 4- .- . . . . S .' . ;
t . 3'.. . - . . . . .. l.... ,c
'* .+
_.... . .. j
*B s- . ? .. . -
- s. n .. .s- ,
_.y 4 A.-
.. . .t _
s' _ . .j . _ L.,.
.I g ..,. . .. y -{_.. . .. . . . . . . . - * +-
U . , _ . . _ .9.5 kW/f t : * --. . - - . . . ._a.... . _. s 'u --. C f 1 3 ', - *
- . . - _ ^
g 4 j u * ' .. ., . . .. -- .f.J .h 2- ' l .:...
- -..' 7 -. ; .e..
U .- f 3 p 42. ,. l..-.. -l . t . -.~ : l --. - ~. ~ - - - - - -
.l'l l. .o : ..
C ..,.
- _. . _. : 17.10 - . , .. . . . . ' .l .* .:... .., -t. .. -; .
o .- O * . i; . . l
- s. .5 . . . .
i n. . ,l.
. . . .I.. - . ..
4
.J4 O. .
ea ..
. .i . . ;.. m . , . . . . q. . .
j.. . 6 4.35 s l l
! .. . ._ ---.s... . . . .!.l. . . .. .~. I . . .,.~..I .
- i. .. . . . . . . . . . . .. _. l .. _- ,
4- a._ . - . . . ., . r ' . - - --
.i .. ..J-a . . . 4 . _ .: , d,.y , s.
p...
~
t i
. Z' . Jt : :', . . . . . .s.' '
e . .e ! . .! . y'l. .I 2_ . \.:_. . . . . . . : .. .. .. a . !. .
,. :: +
- n
\ . . .j .-l .. . . . .. ,.,. . . . . , p.. ..
s
.-1 e .} .ig. .;;. ,..t; . .
l- . .S.. . ..
.,I 9 ... .
6.8l . 4... 0 5 10 15 20 25 30 33 Exposure - CWD/T0X
Figure 11 Leading Rod Cap Conductance vs. Exposure P8x8R Fuel Type io'
.. i_ _ ....p.._c_....._._..... - .[..+.... ... p e . .. . . .. ._.
e p . . 2i .. .... ,.. _. 41. a .. l
,1 . _ .
8 1... 1.
.. T..
6- . . . . .. . E.
...t-..... . .t . :. -
3 L .. .- .: -
.a . . .. . . . ... . >. .-
- - .i .i . ji 4_ y.
i e 81
...} .. j j . i. .g. .L'.'....7..
11
....j.. , .. p -... .., . .., ...i ...i ., , .., y .. . .. . . .
i . - _e y .e... 4 .; .. -.t.L _ . _
...l_..,..
- . ;e. ,L. d .a
~~l . 94.2/ft.1 g - p j . .-j 2 -
4.
.I I..
4 u- ..i . . . a ! t m :. f- -
- t. .! r.1.: . . i. d.._
- 2. . .e . -
.o ::-
4: > . :. [.f,i .. .l....
- M, . t .:.
, ,,3 . ; t t. :.
l
- l . . ~p%. . n 1. . g.7
,. .g. ... . . . .. .
g g_ .a.. ,.... . . . . . . .. j . . . g . . .; .-..J... . .. . . .. . . o ..,' . . . . . . . . - 3 . . .. ....L....._J._.. n 6% h4 _ .i. .. . _ ' . l .. l.3. ..
.,4, ;+
_.L.
.Y 5 -i . .' . ...a -4 t- l: g j .g;. .;.
U %...- . .. .. . J _.. .- - .. . . . ; :. . ;.. .
=.
3 4 .:.. - ..; 4-..L,.,. ..
.i. , . . _
e.
....s.. .., e ..t......"._..
f p . 4
...t.
t"..; T . p . q4 3 9.5 1 .
.3- - J3.L -- -.L .g.. - .. + . . . 4,. ! i- . ,.. .i e4 L,
0 u
- I'- -L:i
=%..f: -- .t . :!! ? +.19 = - - - ..~*s- .:! 3 '- . . f') .
- i 'i j
.- . ;.r u' j r. 4 l '. .3 . r.
c og 2- . .
. t .. . - - _ - .4..
sa . '. 8 1.. . .- .f- . e
.t .;
1.: .;. /. . u 1 .. . . . !. . I 7,1. . D .. .- . . .. .. 4
.4 *O s*I, ,. .a 3 .t -.. . .. ,- ~.
C _ t o2 g ,t1 .e . . I
.-[ j j i. . . . l .. . .- l . t . '. l : . " . . . ... *. * . a-* . 4a ..}..-* t<-
g
- - - - h -- - . .. - . . ' . .'. ~ - f ... . . , ' . .~
e e,
- .: .; . .. .. }' --. 4,a5 - k---..- .. . .i.
t .L.q 6 6_ .
.8
- 8. *
.g ..' :
- ..t:
;: 6: ,. .. _a
_..i.- ..!i . .
.. - . . . . . . . . k. . . .... .. 1 . , . . 4.. . *. :- .
[. . . . 3 6..., 4 - .. t - . . . . L. ., :.4 . . . . . . . . . . . . f--
. . . .1. - , . , - . t. +.I . , . . . .3. , ,. ..w . . . . . . . . . ,6: i+'t _ .i .i. . . . . . _ . . . . -: . . 3.: . .. . . . . l :. . ...: . . . . '.g.:. .
i t-
- i 2_ _.( 4.1;;
l, . . . t. _.?.... . . .
.n .. . .. _ _. . . . z . .u .. .. ... . - . ..
l .
..4 ...
I . ,,
- .]. l .i.. . .
o 5 to is to 25 30 35 Exposure - CWD/TOX i I
~ - - -- . - . . - --- ,. - --, ,. -. - . . , - - - . . , , , .
s . FIGURE 12 Representative Values of Cap Conductance Used in RETRAN for P8x8R Fuel 1400 g Hot Channel Cap Conductance n 8 Fixed Value Used for all Exposures g 1300 A R - 3 1200 ca 1 3 1100 - J~1000 1 l h 900 - t 3 - y 800
- 0 YS*
< 700 -
Core Effective 8 Cap Conductance
. Fresh Fuel Batch Size h 600 u
8 124 = $ l . 180 = A h 500 248 = 5 g 304 = X l 400 -
- Expected DOR _,
l Range I 1 a i e e t i I i 13 14 15 16 17 18 19 20 21 22 l Core Average Exposure %WD/MTU 4
. _ . __. _. . . . - _ _ ..}}