ML20094G978
| ML20094G978 | |
| Person / Time | |
|---|---|
| Site: | Browns Ferry |
| Issue date: | 11/30/1995 |
| From: | Mehta H, Ranganath S GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML20094G974 | List: |
| References | |
| GENE-523-A120-1, GENE-523-A120-1195, NUDOCS 9511130279 | |
| Download: ML20094G978 (18) | |
Text
_ _ _ _ -
[y GE Nuclear En:rgy TECHNICAL SERVICES BUSINESS GENE-523-A120-1195 GE Nuclear Energy DRF # 137-0010-8 175 Curtner Avenue, San Jose, CA 95125 November 1995 AN EVALUATION TO DETERMINE THE LIMITING OPERATING CONDITION IN THE BFN III RPV FLAW HANDBOOK November 1995 Prepared by:
D g
H.S. Mehta, Principal Engineer Engmeering & Licensing Consulting Services Verified & Approved by:
J/5. Ranganath, Engineering Fellow Nuclear Services Department I
GE Nuclear Energy San Jose, CA PR OCK O O 296 P
... ~.. -
G *NwclearEnergy GENE-323-AI20-1I95
}
DRF 137-0010-8
+
IMPORTANT NOTICE REGARDING 1
CONTENTS OF THIS REPORT i
)
Please Read Carefully The only undertakings of the General Electric Company (GE) respecting information in this document are contained in the contract between Tennessee Valley Authority (TVA) and GE, and nothing contained in this document shall be construed as changing the contract. The use ofthis information by anyone other than TVA, orfor anypurpose other than thatfor which it is intended under such contract is not authori:ed; and with respect to any unauthori:ed use, GE make no representation or warranty, expressed or implied, and assumes no liability as to the completeness, accuracy, or usefidness of the information contained in this document, or that its use may not infringe privately owned rights.
l i
d Gb Nuclear Emergy GENE-523 Al20-1195 I)RF 137-0010-8 M
TABLE OF CONTENTS i
Page
1.0 INTRODUCTION
& HACKGitOUND 1
l 2.0 FRACTURE MECllANICS EVALUATION 2
2.1 Level A (Norinal) Condition Evaluation 2
2.2 Level B (Upset) Condition Evaluation 3
j 2.3 Level C (Einergency) Condition Evaluation 3
t 2.4 Level D (Faulted) Condition Evaluation 4
4 3.0
SUMMARY
AND CONCLUSIONS 5
4.0 REFERENCES
6 ii
GE Nuclear Energy GENE-523-Al20-1195 DRF 13'-0010-8
\\
1.0 INTRODUCTION
& BACKGROUND Reference 1 documented a structural flaw evaluation for Browns Ferry Unit til (BFN 111) in accordance with ASME Code Section XI (1986 edition) for all axial (meridional or longitudinal) and circumferential welds in the vessel shell, top head, bottom head, and flange regions. The analysis assumed the most limiting loadings for normal (Level A), Upset (Level B), Emergency (Level C) and Faulted (Level D) operation. This analysis also stated that, " Previous analyses have shown hydrotest and boltup conditions, which involve the combination oflow operating temperatures and high safety factors, to be the most limiting operating conditions for vessel welds. Hydrotest conditions and boltup conditions (flange regions) were therefore considered for fracture analysis." The objective of this report is to provide documentation supporting the preceding statement.
The approach used in this evaluation was to first determine a flaw that was allowable by the har;dbook based on hydrotest condition. This means, the applied K is i
equal to the allowable K, fbr hydrotest condition for this flaw geometry. In other words, i
the ratio of the applied K to the allowable K, for the hydrotest condition is 1.0 lbr this j
i i
The applied K and allowable K, calculations for the same flaw flaw geometry.
i i
geometry were then conducted for the Level A,B,C and D conditions and similar ratios were calculated. If this ratio is greater than 1.0 for other operating conditions, then it will clearly show that the hydrotest condition was governing in the determination of allowable flaw sizes.
A 1
~ _
l GI Nuclear Energy
_ GENE-523-A l20-1195 DRF 137-00104 2.0 FRACTURE MECHANICS EVALUATION 1
The evaluation was conducted for 1112 circumferential weld (see Figure 1). A circumferential flaw is postulated along the length of the weld. The allowable inside surface flaw sizes for this case are graphically shown in Figure 3-17 of Reference 1 l
(included here as Figure 2). The solid line for circumferentially oriented flaws per IWB-3600 evaluation is ofinterest for this case.
Now, consider a flaw with an aspect ratio of 1:6 or 0.166. This aspect ratio was chosen because this is the typical aspect ratio used in the RPV fracture mechanics evaluations. The stress intensity factor values for the limiting transients of Level C and D operating conditions for this geometry were obtained from Reference 2. The allowable flaw depth per Figure 2 is approximately 0.8 inch. Figure 3.0 shows the calculated and allowable values of stress intensity factors for various crack depths and aspect ratios. The allowable K values in the last column are based on the hydrotest temperature of 185 F.
The adjusted reference temperature (ART) varies as a function of crack depth because the variation in the fluence vabic. Thus, based on the hydrotest condition, the values are the following:
Allowable crack depth:
0.8 inch (aspect rat:0,1:6)
K applied = K allowed:
Approx. 33 ksiVin.
i i
The K applied was calculated using the hydrotest pressure value of 1100 psi which is 1.1 i
times the nominal operating pressure of 1000 psi. The safety factor used was V10 or 3.162.
2.1 Level A (Normal) Condition Evaluation For this operating condition, the additional loading is the contribution from the 100 F/ hour rate during startup and shutdown. The K from this loading is positive at the i
inside surface during shutdown. The stress intensity factor Kn was calculated using the following expression from Reference 3:
23 Kn = [(CR)/1000] t p3 where CR
= Cooling rate in F/hr t
= Vessel thickness F
= 0.690 + 3.127 (a/t) - 7.435 (a/t)2 + 3.532 (a/t)3 3
Using a cooling rate of 100 F/hr, thickness of 6.125 inches, and a=0.8 inch, gave a Kn of 9.1 ksiVin. Thus, K applied during the Level A condition is conservatively i
estimated as (33.0+9.1) or 42.1 ksiVin. This value is conservative because the internal pressure assumed in arriving at 33 ksiVin value was 1100 psi (corresponding to the hydrotest pressure versus the operating pressure of 1000 psi during Level A condition).
2
GENuclear Energy GENE-323-Al20-Il93 DRF 137-0010-8 The temperature at the start of shutdown (when the pressure is highest) is such that the K, value is 200 ksiVin. This gives an allowable K value of(200/3.162) or 63.2 i
i ksiVin. This value is considerably larger than the applied value of K. The ratio of i
allowable K, to applied K for this condition is then (63.2/42.1) or 1.5.
i i
l 2.2 Level H (Upset) Condition Evaluation i
i All of the thermal transients during the upset condition involve cooling rates less than 100 F/hr. This case was already covered in Level A condition evaluation. The only other loading is the seismic. A review of Reference 4 indicated the maximum OBE moment to be 8583 kip-ft. This gave a nominal OBE seismic bending stress of 324 psi.
A 29 psi increase in the intemal pressure would produce the same magnitude of membrane stress in % RPV, Since, the evaluation for Level A already considered a 1100 psi internal pressure versus a normal operating pressure of 1000 psi, the applied K i of 42.1 ksiVin calculated for Level A condition is also a bounding number for Level B conditions including the seismic. The allowable K, for level B conditions is the same as i
that for Level A conditions. Thus, the ratio of allowable K, to applied K for this i
i condition is also 1.5.
2.3 Level C (Emergency) Condition Evaluation The thermal cycle chart for the BFN 111 [ Reference 5] does not classify various thermal transients into Level C and D categories. Nevertheless, as was discussed in Reference 2, the Improper Start of Recirculation Loop transient is the limiting Level C transient for this plant. Figure 4 shows the pressure temperature conditions during the transient. Figure 5 shows the plot of calculated values of K for a 1:6 aspect ratio flaw.
The vessel geometry used in this evaluation was very similar to the BFN 111 vessel. Table i from Reference 2 shows the calculated values of K for various loadings as a function of crack depth. The K values in the first row of the circumferential flaw case are relevant l
for this evaluation. The K, and Ka,a are 26.5 and 2.0 ksiVin, respectively. For the pressure loading, the K value calculated for the hydrotest case (@ l100 psi) can be l
conservatively used. The applied total K for Level C condition can then be calculated as:
i i
K moi = K, + K + Ka,a i
i j
= 33.0 + 26.5 + 2.0
= 61.5 ksiVin.
1 Since the temperature during this transient is high enough, the K, value is 200 i
i ksiVin. The safety factor for the Level C condition is V2 or 1.414. Therefore, the allowable value of K, is 200/1.414 or 141.4 ksiVin.
As can be seen, this value i
i considerably exceed the applied value of 61.5 ksiVin. The ratio of allowable K, to i
i applied Kr for this condition is then (141.4/61.5) or 2.3.
i l
i 3
1
?
\\
?
f 1
i l
GE Nuclear Energy GENE-523-Al20-Il95 DRF 137-0010-8 2.4 Level D (Faulted) Condition Evaluation The transient used for Level D condition evaluation was the Loss of Coolant Accident (LOCA) Event as shown in Figure 6. Figure 7 shows the calculated values of K as a function of crack depth for a 1:6 aspect ratio flaw. Table 2 shows the calculated values of K total as a function of crack depth. The values in the first row of this table (a=0.81 inch) are relevant for this evaluation. As can be seen in this table, the dominant contribution to total K essentially comes from the thermal K. The Kmg is shown as 62.8 ksiVin.
The safety factor for the Level D condition is also V2 or 1.414. Therefore, the allowable value of K for Level D conditions is (200/1.414) or 141.4 ksiVin. Once again, ia the applied K value is significantly lower than the allowable value of K. The ratio of allowable K, to applied K for this condition is then (141.4/62.8) or 2.2.
i i
i l
4
GE Nuclear Energy GENE-523-Al20-1195 DRF 137-0010-8 3.0
SUMMARY
AND CONCLUSIONS In developing the allowable flaw sizes reported in the RPV Flaw Evaluation llandbook for BFN 111, hydrotest and boltup conditions, which involve the combination oflow operating temperatures and high safety factors, were found to be the most limiting operating conditions for vessel welds. The objective of this report is to provide j
documentation supporting the preceding statement.
For the purpose of this evaluation, a circumferentially oriented flaw with an aspect ratio of 1:6 at the weld between shell courses 1 and 2 (1112 weld) was selected.
The allowable flaw depth reported in the flaw handbook based on the hydrotest condition as limiting, was 0.8 inch. Essentially, the applied K value for this flaw geometry was i
equal to the hydrotest condition allowable K, value. The applied and allowable Kr, i
values for the same flaw geometry were then calculated and are summarized in the table below-Operating Applied Allowable K Ratio, i
Condition K
K, Allowable /
i i
(ksiVin)
(ksiVin)
App: led Ilydrotest 33.0 33.0 1.0 Level A 42.1 63.2 1.5 Level B 42.1 63.2 1.5 3
Level C 61.5 141.4 2.3 Level D 62.8 141.4 2.2 The Table above clearly shows thit the allowable flaw depth based on the hydrotest condition is governing. The applied K values for other operating conditions i
for the same flaw geometry are considerably less than the allowable values. This means, the allowable flaw depth based on other operating conditions such as Level A/B/C/D would have been higher than that based on the hydrotest condition.
5
GE Nuclear Energy GENE-523-Al20-1195 DRF 137 0010-8
4.0 REFERENCES
[1]
" Browns Ferry Unit ill Flaw Evaluation Handbook," GE Report No. GENE-523-120-0992, Rev. O, September 1992.
[2]
Mehta, II.S., T.A. Caine and S.E. Plaxton, "10CFR50 Appendix G Equivalent Margin Analysis for Low Upper Shelf Energy in BWR/2 Through /6 Vessels,"
j GE Report No. NEDO-32205-A, Class I, Rev.1, February 1994.
1
[3]
ASME Code Case N-512," Assessment of Reactor Vessels with Low Upper Shelf Charpy impact Energy Levels," Approved February 12,1993.
[4]
TVA Calculation No. CD-Q2302-894251, " Recalculation of Seismic Responses for Reactor Building Drywell and Internals of Browns ferry Nuclear power Plant Using El Centro Time History Input," August 7,1989.
[5]
GE Drawing No. 729E762, Rev. O.
i 6
GDIE-323-A1201193
- d W DRF137-00104 Table 1 Applied K and J-Integral Values for BWR/3-6 Case for Level C Limiting Transient toegeGEmet comptfl0N tytut 26 PRilSUR8(PSI)*
1050 Et FIT c0EFFICIENTS CLAD ST8ESS W$$EL Rl (!N)*
126.7 as 8.831288 VtssE4 TH (IN)s 6.19 hs 74.92595 S (KSI)s 6
CLAD THICKNES8s 0.19 cm
-107.681 a0 (IM)s 0.809 d=
63.6289 E(K51).
27700 em 14.3416 Y$ (KSI)*
69 AM1AL FLW K',cLed Etotal Japp a
F1 Kt Kp K,ciad se F1e Kte Kas 0.81 1.00 26.52 35.91 1.98 0.86 1.00 26.28 34.99 1.92 65.19 139.62 0.86 1.00 26.26 37.08 1.91 0.91 1.00 25.98 38.18 1.86 66.01 143.15 0.91 1.00 25.96 38.23 1.5 0.96 1.01 25.65 39.36 1.80 66.79 146.54 0.96 1.01 25.M 39.37 1.80 1.01 1.01 25.30 40.48 1.75 67.53 149.82 1.01 1.01 25.30 40.48 1.75 1.06 1.01 24.N 41.60 1.70 68.25 153.02 1.06 1.01 24.95 41.59 1.70 1.11 1.01 24.57 42.72 1.s 68.94 156.16 1.11 1.01 24.58 42.68 1.66 1.16 1.02 24.19 43.82 1.62 69.62 159.25 1.16 1.02 24.21 43.76 1.62 1.21 1.02 23.79 44.91 1.58 70.29 162.29 1.21 1.02 23.82 44.85 1.58 1.26 1.02 23.39 46.00 1.55 70.93 165.27 1.26 1.02 23.43 45.89 1.55 1.31 1.03 22.96 47.07 1.51 71.54 168.15 1.31 1.03 23.01 46.95 1.52 1.37 1.03 22.50 48.16 1,48 72.13 170.91 l
1.36 1.C3 22.57 48.00 1.49 1.42 1.03 22.01 49.21 1.45 72.67 173.69 1.41 1.03 22.09 49.04 1.46 1.47 1.06 21.46 50.27 1.43 73.16 175.83 1.46 1,04 21.56 50.09 1.43 1.52 1.06 20.85 51.33 1.40 73.58 177.86 1.51 1.04 20.97 51.13 1.41 1.57 1.05 20.15 52.39 1.38 73.92 179.50 1.56 1.05 20.30 52.17 1.38 1.62 1.05 19.36 53.64 1.35 74.15 180.64 1.61 1.05 19.54 53.21 1.36 1.67 1.06 18.44 54.49 1.33 74.36 181.18 1.66 1.05 18.66 54.25 1.34 1.72 1.06 17.38 55.54 1.31 76.25 181.02 1.71 1.06 17.h
$5.30 1.32 1.77 1.06 16.16 54.58 1.29 74.03 180.05 1.76 1.06 16.65 56.34 1.30 1.82 1.07 14.74 57.62 1.27 73.64 175.15 1,81 1.07 15.08 57.39 1.28 1.87 1.07 13.12 58.46 1.26 73.03 175.22 WO8K5NEIT: WA0EU$2.WK1 CIRCLSIFERENTIAL FLAW J
a F1 Kt Kp K. clad se F1' Kt' Kp' K', clad Ktotal Jage 0.81 0.92 26.52 17.33 1.98 0.83 0.92 26.40 17.60 1.95 45.95 69.36 f
0.86 0.92 26.26 17.90 1,91 0.88 0.93 26.12 18.17 1.88 46.18 70.06 0.91 0.93 25.96 18.67 1.85 0.93 0.93 25.81 18.74 1.83 46.38 70.66 0.96 0.93 25.66 19.03 1.80 0.98 0.93 25.48 19.29 1.77 46.55 71.18 1.01 0.93 25.30 19.58 1.75 1.03 0.93 25.13 19.84 1.73 46.70 71.66 4
1.06 0.93 24.95 20.12 1.70 1.08 0.96 24.77 20.38 1.65 46.83 72.04 1
1.11 0.94 24.58 20.65 1.66 1.13 0.96 24.40 20.91 1.66 46.95 72.41 1.16 0.94 24.21 21.17 1.62 1.18 0.94 24.02 21.43 1.60 47.05 72.74 l
1.21 0.94 23,82 21.69 1.58 1.23 0.95 23.63 21.95 1.57 47.14 73.02 1.26 0.95 23.43 22.21 1.55 1.28 0.95 23.22 22.46 1.53 47.22 73.24 1.31 0.95 23.01 22.72 1.52 1.33 0.95 22.79 22.97 1.50 47.26 73.39 1.36 0.95 22.57 23.22 1.49 1.38 0.95 22.33 23.47 1.47 47.28 73.63 1.41 0.96 22.09 23.72 1.46 1.43 0.96 21.83 23.97 1.45 47.25 73.34 l
1.46 0.96 21.56 24.22 4.41 1.48 0.96 21.27 24.47 1.42 47.16 73.07 l
1.51 0.96 20.97 24.72 1.41 1.53 0.96 20.65 24.96 1.39 47.00 72.58 l
1.56 0.97 20.30 25.21
'.38 1.58 G.97 19.96 25.45 1.37
- 46. 76 71.85 1
1.61 0.97 19.54 25.70 1.36 1.63 0.97 19.13 25.93 1.35 44.41 7J.75
^
1.66 0.97 10.M 26.18 1.3.
1.68 0.97 18.19 26.41 1.33 45.93 69.31 j
1.71 0.98 17.M 26.67 i.32
- 1. 73 0.98 17.11 26.89 1.31 45.31 67.44 i
1.76 0.98 16.45 27.15 1.30 1.78 0.98 15.86 27.37 1.29 44.52 65,10 1.81 0.98 15.08 27.63 1.28 1.83 0.98 14.42 27.84 1.27 43.53 62.24 7
1
GLVE-333-Al20-1193 GENuclear Energy DRF137 0010-8 Table 2 1
Applied K and J-Integral Values for BWR/3-6 Case for Level D Limiting Transient i
i' FAULTED COMOITION EVENT 27 84 ESSURE (PSI)=
20 Kt FIT 008FFIC18NT8 CLAD STRESS l
5 VESSEL El (IN)*
126.7 as 14.00964 VESSEL TM (IN}s 6.19 De 130.9087 5 (K31)=
16.5 CLAD TMitsoeSts=
0.19 c=
155.726
)
60 (lN)*
0.809 es 89.8447 EtKS!)s 27700 es 20.6397 I
YS (Ell)=
49 l
AXIAL FLAW e
Fi Kt Kp K, clad me F1' Kt*
Kp' K', clad Etetel Japp 0.81 1.00 56.72 0.68 5.44 0.85 1.00 57.20 0.70 5.28 63.19 131.17 0.86 1.00 57.26 0.71 5.26 0.90 1.00 57.67 0.73 5.11 63.51 132.53 0.91 1.00 57.72 0.73 5.10 0.95 1.01 58.08 0.75 4.96 63.79 133.67 0.M 1.01 58.12 0.75 4.95 1.00 1.01 58.42 0.77 4.82 M.02 134.63 1.01 1.01 58.45 0.77 6.81 1.05 1.01 58.72 0.79 4.69 66.20 135.42 1.06 1.01 58.76 0.79 4.68 1.10 1.01 58.97 0.81 4.58 M.35 136.M 1.11 1.01 58.99 0.81 6.57 1.16 1.02 59.17 0.83 4.47 M.67 136.53 1.16 1.02 59.18 0.83 4.66 1.21 1.02 59.32 0.85 4.36 M.54 136.83 1.21 1.02 59.33 0.85 6.36 1.26 1.02 59.42 0.87 4.27 64.56 134.93 1.26 1.02 59.42 0.87 4.26 1.31 1.03 59.45 0.89 4.18 M.53 136.78 1.31 1.03 59.45 0.89 4.17 1.36 1.03 59.&1 0.91 4.10 M.42 136.34 1.36 1.03 59.41 0.91 4.09 1.41 1.03 59.28 0.93
'.02 M.23 135.55 1.41 1.03 59.27 0.93 4.01 1.45 1.04 59.05 0.95 3.96 63.94 134.33 1.46 1.04 59.02 0.95 3.96 1.50 1.06 58.69 0.97 3.87 63.53 132.60 1,51 1.04 58.65 0.97 3.87 1.55 1.05
$8.10 0.99 3.81 62.98 130.29 1.56 1.05 58.11 0.99 3.30 1.60 1.05 57.49 1.01 3.74 62.25 127.31 1.61 1.05 57.40 1,01 3.76 1.65 1.05 56.61 1.03 3.69 61.33 123.57 1.66 1.05 56.47 1.03 3.68 1.70 1.06 55.51 1.05 3.63 60.19 119.01 m
1.71 1.06 55.30 1.05 3.62 1.75 1.06 54.15 1.07 3.58 58.79 113.56 1.76 1.06 53.E 1.07 3.54 1.80 1.07 52.51 1.09 3.52 57.12 107.19 1.81 1.07 52.05 1.09 3.51 1.84 1.07 50.55 1.11 3.68 55.14 99.87 WORKsNEET: Shet0CU52.WK1 CIRC!,MFERENTIAL FLAW e
F1 Et Kp K, clad ae F16 Kt' Kp' K', clad Ktotal Japp 0.81 0.92 56.72 0.33 5.44 0.85 0.92 57.20 0.34 5.28 62.82 129.65 0.86 0.92 57.26 0.34 5.26 0.90 0.93 57.67 0.35 5.12 63.14 130.96 0.91 0.93 57.72 0.35 5.10 0.95 0.93 58,07 0.36 4.95 63.60 132.05 0.96 0.93 58.12 0.36 4.95 1.00 0.93 58.62 0.37 4.82 63.62 132.96 1.01 0.93 58.65 0.37 4.81 1.05 0.93 58.72 0.38 4.70 63.79 133.70 1.06 0.93 58.74 0.38 4.68 1.10 0.94 58.96 0.39 4.58 63.93 134.29 1.11 0.94 58.99 0.39 4.57 1.15 0.94 59.17 0.60 6.47 M.04 13'.71 1.16 0.96 59.18 0.40 4.46 1.20 0.96 59.32 0.61 4.37 M.10 134.97 1.21 0.94 59.33 0.41 4.36 1.25 0.95 59.62 0.42 4.27 M.11 135.02 1.26 0.95 59.62 0.&2 4.26 1.30 0.95 59.45 0.43 6.18 M.07 134.86 1.31 0.95 59.45 0.43 6.17 1.35 0.95 59.61 0.64 4.10 63.95 134.36 1.36 0.05 59.61 0.46 4.0e 1.40 0.96 59.29 0.45 4.02 63.76 133.54 1.41 0.96 59.27 0.45 4.01 1.45 0.M 59.05 0.46 3.94 63.66 132.29 1.46 0.96 59.02 0.46 3.94 1.50 0.96 58.69 0.47 3.87 63.04
- 30.54 1.51 0.96 58.65 0.47 3.87 1.55 0.97 58.18 0.48 3.81 62.47 128.21 1.56 0.97 58.11 0.48 3.1,0 1.60 0.97 57.51 0.69 3.75 61.74 125.22 1.61 0.97 57.40 0.69 3.74 1.65 0.97 56.63 0.50 3.69 60.81 121.49 1.66 0.97 18.M 0.W 3.68 1.66 0.97 56.35 0.50 3.67 60.52 120.32 1.71 0.98 17.M 0.51 3.62 1.71 0.98 55.16 0.51 3.61 59.28 115.46 I
1.76 0.98 16.45 0.52 3.56 1.74 0.98 53.68 0.52 3.56 57.76 109.60 A
1.81 0.98 15.08 0.53 3.51 1.81 0.98 51.89 0.53 3.51 55.93 102.75 i
8 4
c5pg.533.gjgg.jj93 GENuclear Enegy DRF137-0010 8 MK-201 T W2 Top Head
_ y _H.7 - t -
Top Head THW1 weid.
MK-202
/
s Head Flange
. _ l_ H_ F_W I- - - _'l- -
Head Flange Weld MX-209 Vessel Flange Weld - f YII Vessel Flange MK-48 i
.7..............,
Course #5 ii naws within lo" or VTW are limited MX-60 u's i
>j by VFW analysis, u >I H45
-__y__
Course #4
>g MK-16 H34 1
T------
Non-beltline Welds l
I Course #3 gg MK-59
>g I
I H23
.___A____7_
......,...j,,.jj. ca..s..
/ /.'s5R5 ""::)(-,
jp
\\
Course #2
~
MK-58
..... '...: c):/.
Beltline Beltline
"" '.fcHIE c;f... ;gc.
Region c."
.c~t.r. g.
Welds Course #1
.I MK-57
>l I
BHW1 q -. 1 4
Bottorn Head a
I MK-2 Welds
_ 5_
.l.
s BHW2 MK-4
- -' ~ ~ ~ s "'
Bottom Head MK-1 4
}
l NOTE: Not to scale. I 1
4 i
Figure 1 Weld Regions for BFN III RPV Flaw Evaluation i
9 i
.m Flaw Acceptance Criteria j
m h
{
2.5 inside Su rface Flaw Evaluation i
a M
1/31.irnit o
2.0
?========
=======""
- ====="""
" " " = = "
a u3 c
E O
I k"
1 m
y R
1.5
- ---- IWB-3'00 Evaluation
(
o p
9-IWB-3h00 Evaluation W
=
Circurnferential o
u e
& C i.
Z e
1.0
-.t.
O
.D Ots o
Axlel g
c2-O5
-/-_ _ _._._ _._.
- - - - - - - - - - - - ~ - -
F g-
,4 o
y C:: t a
.. : ~-----
.. $lilitidin.......
n
-:i ~
~~gi:
~
~
kk 0.0
~
- ~
Ey 0
0.1 0.2 0.3 0.4 0.5 k
Flaw Aspect Hatio (a/L)
GENuclear Energy GLVE-523941201195 DRF 137-0010-8 l
l Figure 3 Applied K values for Surface Circumferential Flaw at H12 Weld f,
- BELTLINE FLAW EVALUATION ANALYSIS PROGRAM "BELTFLP.W", REVISION 0 [KPD]
DRF 137-0010-5 GE-NE-523-123-0992 i
BFN3 H12 CIRCUM SURFACE 9/22/1992 - 17:53:13 000 FLAW EVALUATION
SUMMARY
12.000 (ps)
=
=
.188 (in)
CLAD THICKNESS 6.125 (in)
LAS WALL THICKNESS
=
11.300 (ksi)
MEMBRANE STRESS
=
8.000 (ksi)
RENDING STRESS
=
24.000 (ksi)
CLAD RES. STRESS
=
47.000 (ksi)
YIELD STRENGTH
=
SERVICE TEMPERATURE =
185.000 (F) 10.000 (F)
INITIAL RTndt
=
105.600 CHEMISTRY FACTOR
=
=
3.162 FACTOR OF SAFETY Applied Stress Intensity (ksi-sqr[in])
=.
a/t a (in) a/1=0.0 0.1 0.2 0.3 0.4 0.5 ART K_IA Allow
.04
.25 28.24 26.38 23.92 21.46 19.16 17.18 62.9 100.45 31.76
.06
.38 30.33 28.12 25.36 22.71 20.27 18.16 62.0 101.41 32.07
.08
.50 33.02 30.32 27.19 24.31 21.69 19.41 61.1 102.38 32.38
.10
.63 35.84 32.54 29.00 25.89 23.07 20.64 60.3 103.35 32.68
.12
.76 38.74 34.69 30.73 27.37 24.37 21.77 59.4 104.32 32.99
.14
.88 41.71 36.77 32.36 28.75 25.55 22.82 58.5 105.28 33.29
.16 1.01 44.80 38.81 33.90 30.03 26.64 23.78 57.7 106.25 33.60
.18 1.14 48.04 40.81 35.37 31.23 27.64 24.65 56.9 107.22 33.91
.20 1.26 51.45 42.80 36.78 32.35 28.56 25.45 56.0 108.18 34.21
.22 1.39 55.07 44.81 38.15 33.40 29.40 26.18 55.2 109.15 34.51
.24 1.51 58.94 46.84 39.49 34.40 30.17 26.84 54.4 110.11 34.82
.26 1.64 63.09 48.91 40 80 35.35 30.87 27.45 53.6 111.07 35.12
.28 1.77 67.55 51.06 42.10 36.25 31.52 28.00 52.9 112.03 35.43
.30 1.89 72.37 53.28 43.40 37.11 32.11 28.50 52.1 112.98 35.73
.32 2.02 77.58 55.61 44.71 37.94 32.65 28.95 51.3 113.94 36.03
.34 2.15 83.22 58.06 46.02 38.74 33.14 29.36 50.6 114.89 36.33
.36 2.27 89.33 60.63 47.36 39.51 33.58 29.73 49.8 115.83 36.63
.38 2.40 95.96 63.36 48.72 40.26 33.98 30.05 49.1 116.78 36.93
.40 2.53 103.16 66.26 50.12 40.99 34.34 30.35 48.4 117.72 37.23
.42 2.65 110.96 69.34 51.57 41.71 34.66 30.60 47.7 118.65 37.52
.44 2.78 119.43 72.62 53.06 42.41 34.95 30.83 47.0 119.59 37.82
.46 2.90 128.62 76.13 54.60 43.11 35.21 31.02 46.3 120.52 38.11
.48 3.03 138.59 79.86 56.21 43.80 35.43 31.19 45.6 121.44 38.40
.50 3.16 149.39 83.85 57.88 44.48 35.63 31.33 45.0 122.36 38.69 11
GENuclear Energy GENE-523-A130-1195 DRF137 0010-8 EVENT 24 i
Emergency Condition 600 550 g
528 l
500 ou 3
450 g
o 400 L
E 350 ob 300 268 250 -
i
~
26 sec
- e 55 A
1100 1050 8
1050 E
1000 E
A Figure 4 Pressure and Temperature Conditions During Improper Stat of Cold Recirculation Loop Transient 12
GUE 383.Al%l193 GENucteerEwgy DRF137-0010 8 30 i
i I
i i
.t 27 5
.~.
...................................y.......................
1 I
l 8
3 2
25- ------ - :?
-- -- --i - - -- - -4
-- - - r -
?-
t in 1
1 I
f 8
3 i
i 22.5- ----'-----t--
i - --- :---- --t-
- - i--- -- ~ <
^
C e
I I
4.
..i. -.. J.....
...s.
...+t i
a 20
.~..
w 1
f 1
I I
u a
.e t
a 17.5- - - - -
r.-- - ----- r - -
- r. - - -
.r---
-- 1. -
r l
1 s
i 8
x t
I f
15-
--+8- - ~ ~ ~ + - ~ ~ ~ + - * - - * - - ~ ~ - < - - - - * ' - - - - -
I 1
1 12.5- - --- ! ---- -i--- - r, ---- i-- -
r, ----t-----
g i
10 r.
i.
e.
i 0.25 0.75 1.25 1.75 A,
in l
Figure 5 Calculated K values for Level C Transient in Figure 4 (1:6 Flaw) j l
l leh
GENuclear Em GENE-523-A120 !!95 DRF137 0010-8 EVENT 27 Faulted Condition 600 550 528 o
500 F-w 3
450 Eo 400 nl 350 300 259 250 15 sec 4 1200 1050 2
1000 m
a.
a00 E
600 5
E 400 Ew zoc 0
Figure 6 Limiting Level D Transient (LOCA) l i
i 4
14
c, E
GENucteer Eurxy GENE.523.Al20.]193 a
DRF137 0010-8
\\
70 a
.i t
i 2
1 e
60 4.
...........w:
...........u...y.._.
e r
e t
i e
I D 50 ~ ~~~~~t-~~~
-~ - -~
- t ---- -
r----
t--~
~ ~ -
I i
8 8
8 t
a
.C
.I 1
u 8
1 4
......-..~..q..........p..........
..............+........................
w
.I
~
LA e
i i
.w I
i 1
}Q.
. p....
f&...J.............s....-9.............6............<
i g
I l
8 8
8 f
a I
a 3
}m 20
..-u-s...........u......J......s.....~......,
e i
1 1
1 I.-
8 3
f 8
8 1
1 P
10
- 0. 25 0.75 L. 25 1.75 A,
in 1
Figure 7 Calculated K values for Level D Transient in Figure 6 (1.6 Flaw)
(
15
.