ML18038B929
| ML18038B929 | |
| Person / Time | |
|---|---|
| Site: | Browns Ferry |
| Issue date: | 06/30/1996 |
| From: | Dante Johnson, Loh W, Melvin S PLG, INC. (FORMERLY PICKARD, LOWE & GARRICK, INC.) |
| To: | |
| Shared Package | |
| ML18038B926 | List: |
| References | |
| PLG-1115, PLG-1115-R, PLG-1115-R00, NUDOCS 9708130383 | |
| Download: ML18038B929 (182) | |
Text
(- i PLG-1115
'I2.
9t',oc27 oo I BROWNS FERRY NUCLEARPLANTUNIT3 PROBABILISTICSAFETY ASSESSMENT WITHUNIT2 OPERATING by David H. Johnson, Sc.D.
Wee Tee Loh, Ph.D.
Stephen R. Melvin Leiming Xing, Ph.D.
'0 Prepared for TENNESSEE VALLEYAUTHORITY Decatur, Alabarria June 1996 Revision 0 a
9708i30383 970806 PDR ADOCK 05000260 P
PDR ENGINEERS APPLIED SCIENTISTS
~
MANAGEMENTCONSULTANTS
Qi
CONTENTS LIST OF TABLES AND FIGURES..
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ -
~
~
~ -
~
~
~
~
~
~
~
~
~
~ V 1
INTRODUCTION 1.1 1.2 1.3 Objective and Scope.........
~
~..
~
~
~
~
~
~
~
~
~
1.1.1 Summary of Results 1.1.2 Discussion of the Top 10 Sequences 1.1.3 Functional Failure Group Contributions to CDF 1.1.4 Initiating Event Group Contribution to CDF 1.1.5 Important Operator Actions.......... ~...
1.1.6 Important Systems....................
Process Followed to Develop Current Model.......
)MM M Matnx..............................
~
~
~
~
~
\\
~
~
~
~
~
~
1-1 1-1 1-1 1-2 1-4 1-5 1-5 1-6 1-6 1-6 2.1 2.2 2.3 Description of Plant Configuration..........................
~.
Evaluation of Impact on Shared Systems and Structures 2.2.1 Electric Power System..............
~
~. ~....
2.2.2 Control and Service Air System 2.2.3 Raw Cooling Water System 2
+ 0 D '1J' 2@4 Turblile Buildiilg a
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
2.2.5 Reactor Building Closed Cooling Water System..............
2.2.6 Reactor Building (Secondary Containment System) 2.2.7 Condenser Circulating Water System.....................
2.2.S Pumping Station intake Building)....................
~.-
2.2.9 Control Rod Drive Hydraulic System.....................
2.2.10 RHR Cross-Connection and Standby Coolant Supply System.....
2.2.11 Residual Heat Removal Service Water System...............
2.2.12 Emergency Equipment Cooling Water System...............
2.2.13 Fire Protection System............
~.
~
~ - -
~
~
~
~
~
~
~
~
~
~
~ ~-
2.2.14'eactor Building and Control Bay Ventilation and Cooling Systems System Success Cntena PLANT CONFIGURATION.............
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ -
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
\\
~
2-1 2-1 2-1 2-1 2~2 2-2 2-2 2-2 2-3 2~3 2-3 2-3 2-3 2-3 2-4 2-4 2-4 2-4 3
MODIFICATIONSMADETO PREVIOUS PSA MODELS 3-1 3.1 vent Model.................................
E 3.1.1 Electric Power Support Event Trees........
3.1.2 Electric Power Event Tree Split Fraction Symmetries 3.1.3 Recovery of Diesel Generator 3ED 3.1.4 Use of Diesel Generator C to Support Unit 3 3.1.5 RHR Crosstie....................
~
~
3.1.6 Redefinition of Initiating Events 3.1.7 Dependencies..........
~..
~
~
~
~
~
~
~ -
~ -
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
3-1 3-1 3-2 3-3 3-3 3-3 3-4 3Q
CONTENTS continued 3.2 Systems Analyses....................................
~ ~....
3-4 3.2.1 Unit 3 Electric Power System Models.................. ~....
3-4 3.2.2 Modeling of Battery Boards 1, 2, and 3......................
3-6 4
REFERENCES
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
4~1 APPENDIX A. BROWNS FERRY UNIT 3 PSA UNCERTAINTYANALYSIS.... A-1 APPENDIX B. LISTING OF TOP 100 SEQUENCES
~
~
~
~
~
~
~
~
~
~.
~
~
~
~
~
~
~
~
~ - B-1 APPENDIX C. SPLIT FRACTION IMPORTANCE MEASURES.............
C-1 APPENDIX Do P M MATIGX e
~
~
~
~
~
~
~
~
~
~
~
~
~
~ o
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ t
~
~
~ D 1
LIST OF TABLES 1-1 Contributions of Functional Failure Groups to CDF....................
1-2 Contribution to CDF by Initiating Event Group and Comparison to Unit 2 PSA Results (Reference 3)..........
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
1-3 Ten Most Important Operator Actions Failures Contributing to Core Damage 1-4 PSA Importance of Individual BFN Systems....................
~
~
~
~.
2-1 Shared Plant Systems and Structures Associated with Unit 3 and Potentially Impacted Unit 2 Being in Service....................
~
~
~
~
~
~
~ -
~
~
~.
2-2 Comparison of Equipment Status in the Different Plant Configurations.......
Summary of Potential Impact on Systems and Structures Associated with Unit 3 2-4 Success Criteria for Plant Configuration Under Consideration.............
3-1 Top Events in Tree ELECT12 as Found in the Unit 2 PSA 3-2 Top Events in Tree ELECT3 as Found in the Unit 2 PSA 3-3 Top Events in Tree ELECT3 as Used in this Study....................
3-4 Top Events in Tree ELECT12 as Used in this Study.......... ~...
~.
~
~.
3-5 Top Events in Tree ELECT3P as Used in this Study...................
3-6 Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed 1-7 1-8 1-10 1-11 2-5 2-6 2-8 2-9 3-8 3-10 3-11 3-12 3-14 for Unit 2 o
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
o
~
~
~
~
~
~
~
o 3
1 LIST OF FIGURES 1-1 Probability Distribution ofBrowns Ferry Unit 3 Core Damage Frequency......
1-12
'I
I. INTRODUCTION 1.1 OBJECTIVE AND SCOPE This report presents the results of an extension of the probabilistic safety assessments (PSA) that have been performed at Browns Ferry Nuclear Plant (BFN) to consider the operation of Unit 3 under conditions that reflect the shared mission of some components, systems, and structures at the plant.
For this analysis, Unit 1 is assumed to remain in extended layup with no fuel in its core.
Also, Unit 2 is modeled in this analysis as being in service; specifically, Unit 2 is assumed to be either operating at power or in an outage.
These assumptions reflect the current operational configuration of Browns Ferry.
This update builds on previous models that considered the operation of Unit 2 under various plant configurations.
The Individual Plant Evaluation (IPE) (Reference
- 1) examined the three unit BFN site under the assumption that only Unit 2 was initiallyat power, with Units 1
and 3 in layup.
Consequently, Units 1 and 3 equipment permitted by plant design and plant status to support Unit 2 would have no other functional requirements.
The Multi-UnitPRA (Reference 2) examined initiating events at Unit 2 with all three units initiallyat power.
More recently (Reference 3), the core damage &equency (CDF) due to events originating at power of Unit 2 was determined under the initial conditions that Unit 1 remained in layup and Unit 3 had been returned to service. 'The current model, with Unit 3 initiallyoperating and Unit 2 in service, was constructed &om the model for Unit 2 documented in Reference 3.
The Unit 2 model was altered to reflect unit-specific system configurations [e.g., the residual heat removal (RHR) crosstie capability] as well as unit-specific system dependencies.
Specific model changes are summarized in Section 3.
This quantification considers the response of Unit 3 to initiating events while it is operating at full power, considering that Unit 2 may also be at full power and remain at power, may have also been affected by the same initiating event, or has been previously shut down.
The model considers the CDF due to internal events as well as internal flooding. The systems and components available for use in bringing Unit 3 to a safe shutdown condition considers requirements of common systems to support Unit 2 under the above three circuinstances as well as potential interactions and dependencies, This report summarizes only those changes to the plant model made to reflect the specific plant configuration described above.
Details of many of the underlying models can be found in the previous PRA reports (References 1 through 4).
I.I.I
SUMMARY
OF RESULTS The overall results indicate that the mean CDF for Unit 3 for the initiating events considered in this analysis is 9.19E-06 per year. A single parameter, such as the mean value, however, does not tell the full story about the CDF. A probabilistic distribution was determined for the CDF. That distribution is given in Figure 1-1.
Besides the mean value, other characteristics of this distribution are the 5th percentile (1.22E-06 per year), the 50th percentile (3.49E-06
per year), and the 95th percentile (1.97E-05 per year).
These percentiles permit the following interpretation of the CDF:
We are as confident that "the" CDF at Unit 3 is above 3.49E-06 per year as we are that it is below 3.49E-06.
Furthermore, the 5th and 95th percentiles allow us to claim that we are 90% confident that "the" CDF is between 1.22E-06 and 1.97E-05 per year.
The overall CDF is quite small.
Based on the mean CDF, the analysis suggests that the current procedures, practices, and equipment performance at Unit 3 would result in one core damage event, on average, approximately every 109,000 years.
The interval between expected core damage events is quite large compared to the plant lifetime, indicative of a well operated plant.
Information used to calculate the CDF distribution is summarized in Appendix A.
1.1.2 DISCUSSION OF THE TOP 10 SEQUENCES The sequences that individually are the 10 most &equent core damage sequences are described in this section.
Note that the frequencies of the individual sequences are quite small, with none larger than 1.01E-07 per year.
The highest frequency sequence is anticipated to occur on the order of once every 10,000,000 years.
Perspective on these small frequencies is necessary when interpreting the sequences.
When one sees, for example in the first sequence, a reference to the failure of the operator to control low pressure injection during an anticipated transient with scram (ATWS) given a stuck-open relief valve, it is easy to miss the fact that the model also indicates that under those circuinstances, the operator willbe successful in performing the necessary actions under these stressful and unusual conditions 11 out of 12 times.
The first sequence is initiated by a turbine trip; failure ofthe control rods to insert into the core; successful'peration of the standby liquid control and initial level control by the high pressure injection systems; failure of one relief valve to reseat following initiallyliNag to limitpressure; and failure to control the injection of low pressure systems once pressure has decayed.
Core damage is assumed to occur due to the large inflowof low pressure water diluting or displacing the borated vessel inventory resulting in an unanalyzed condition that may lead to recriticality. The mean frequency of this sequence is 1.01E-07 per year.
The second and third sequences are related.
Both are initiated by a turbine trip followed by failure of the control rods to insert into the core and failure of boron to inject to control reactivity. In sequence two, boron injection failure is due to operator failure to initiate the standby liquid control system.
Sequence three is due to the standby liquid control system being unavailable due to hardware failures, or a combination of hardware failures and test or maintenance.
The mean frequencies of the second and third sequences are 7.52E-08 and 7.25E-08 per year, respectively.
Sequence four is initiated, by a loss of raw cooling water.
The normal heat removal path (i.e.,
utilizing the main condenser) is rendered unavailable due to the initiating event.
High pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) are both available initially. The sequence is complicated somewhat by a relief valve sticking open after initially lifting to relieve pressure.
A modeling assumption is in place that requires successful suppression pool cooling ifa relief valve remains open.
All four RHR pumps are unavailable as is the Unit 2 to Unit 3 RHR crosstie.
Core damage ultimately is the result of failure to remove decay heat.
The mean frequency of this'sequence is 6.89E-08 per year.
Sequence five is a blackout of Unit 3.
The sequence initiator is loss of offsite power (both the 500-kV and 161-kV grids) followed by failure of diesel generators 3EA, 3EB, 3EC, and 3ED to supply power.
The high pressure coolant injection and the reactor core isolation cooling systems are initially available to maintain vessel level control, but core damage eventually occurs since power is not recovered and no means of removing decay heat is established.
The mean frequency of this sequence is 6.82E-08 per year.
Sequence six is a transient with the loss of the ability to maintain the core covered.
'This sequence is initiated by the loss of the raw cooling water system.
The high pressure coolant injection and reactor core isolation cooling systems are unavailable to inject water into the vessel.
The initiator prevents the control rod drive hydraulic system from being operable and the operator fails to depressurize the vessel in a timely manner to allow low pressure injection systems to maintain core coverage.
The mean frequency of this sequence is 5.98E-08 per year.
The seventh sequence is quite similar to the second sequence:
a transient, this time the closure of all main steam isolation valves, followed by failure of the control rods to insert and failure to initiate the standby liquid control system.
The mean &equency of this sequence is 5.48E-08 per year.
The eighth sequence is initiated by a loss of offsite power and is characterized by the failure of diesel generators A, B, D, and 3ED. In addition, offsite power is not recovered in this sequence.
This combination of diesel generator failure results in seven of the eight RHRSW pumps being unavailable (only pump B1 is available).
The success criteria for RHRSW requires that one pump per unit (not on the same header) be available.
Core damage is assumed to occur due to failure to provide adequate decay heat.
The mean frequency of this sequence is 4.93E-08 per year.
The ninth sequence is similar to the sixth sequence.
In the ninth sequence, the sequence is initiated by the closure of all main steam isolation valves, successful scram, but failure of the high pressure injection system, the reactor core isolation cooling system, and the control rod drive hydraulic system, and failure to depressurize the vessel.
The initiator "MSIV Closure" occurs more frequently than "Loss of Raw Cooling Water;" the primary difference being how the control rod drive hydraulic system fails. In the sixth sequence, it is failed due to loss of support as a result of the initiating event, and in the ninth sequence, it is unavailable due to hardware failure or maintenance activities (both pumps 2A and 1B are required for success).
The mean frequency of this sequence is 4.84E-08 per year.
The tenth sequence is similar to the eighth sequence.
This sequence is initiated by a loss of offsite power and is. characterized by the unavailability of diesel generators A, B, C, D, and 3EC and failure to recover offsite power.
As in the eighth sequence, this combination of failures results in seven of the eight RHRSW pumps being unavailable.
In this case, only RHRSW pump Dl is available.
Core damage is assumed to occur due to failure to remove decay heat.
The mean frequency of this sequence is 4.71E-08 per year.
A comparison of these 10 sequences with the corresponding sequences for Unit 2 (Reference 3) reveals that 7 of the 10 sequences are virtually identical.
However, sequences four, eight, and ten for Unit 3 do not have an exact counterpart for Unit 2.
These three sequences represent hardware and dependency differences between the units.
The sequence for Unit 2 that would be analogous to Unit 3's fourth sequence would be of lower frequency due to the additional capability of Unit 2 to crosstie to division II Unit 1 RHR.
Sequences eight and ten reflect the stronger dependence of Unit 3 on Units 1 and 2 4-kV shutdown boards as compared to Unit 2's dependence on Unit 3 4-kV shutdown boards.
A summary description of the top 100 sequences is presented in Appendix B.
1.1.3 FUNCTIONALFAILURE GROUP CONTRIBUTIONS TO CDF Table 1-1 presents the results of recasting the core damage &equencies into seven functional categories, Consideration ofthe functional categories provides some insights into the nature of the results.
It should be noted that the functional categories are not mutually exclusive; individual sequences can be assigned to more than one functional category.
As can be seen, nearly 39% ofthe CDF is due to sequences involving failure to control reactivity'. Thirty-six percent of the CDF is &om sequences that can be characterized by the loss of the ability to remove decay heat.
Transients with the reactor vessel at high pressure represent 8.6% of the total core damage &equency.
The transients with the reactor at high pressure can be characterized typically as an initiating event involving the loss of feedwater, the unavailability of both the high pressure coolant injection and the reactor core isolation cooling systems, and the failure to manually depressurize the vessel to allow low pressure systems to maintain level control.
Transients followed by a loss of vital DC power contribute 7.5% ofthe total core damage frequency.
This group is defined as any transient followed by the loss ofbattery board 1, 2, or 3.
For Unit 3, battery boards 1 and 3 are of particular interest.
Many sequences assigned to this group involve a failure of both battery boards 1 and 3, thus disabling HPCI and RCIC.
Sequences involving failure of battery boards 1'nd 3 constitute 3.6% (3.33E-07 per year) of the total core damage frequency.
A typical sequence in this group is a transient that involves the loss of normal heat sink, such as closure of all main steam isolation valves, followed by failure of DC power resulting in the inoperability of HPCI, RCIC, and the ability to remove decay heat.
Two station blackout accident sequence groups are defined.
The first such functional category (3.0% of the total CDF) is due to the unavailability of AC power in the Unit 3 portion of the plant.
Blackout in this case is defined to be the loss of offsite power followed by failure of diesel generators 3EA, 3EB, 3EC, and 3ED. A smaller contribution (2.4% of the total CDF)
is due to total station blackout (failure of offsite power as well as all eight diesel generators at the site).
A small contribution to CDF (0.2%) can be attributed to sequences involving degraded states of the emergency equipment cooling water system.
1.1.4 INITIATINGEVENT GROUP CONTRIBUTIONTO CDF Table 1-2 summarizes the results at the initiating event group level.
The performance of a PSA begins with the identification of a comprehensive set of scenario initiators, often called initiating events or initiators.
Table 1-2 also summarizes the CDF contribution due to initiating event categories as well as the individual initiators and.provides a comparison to the Unit 2 PSA results as documented in Reference 3.
As can be seen by reviewing the results summarized in Table 1-2, the CDF due to a given initiating event is modestly higher, with one exception, for Unit 3 as compared to Unit 2.
The reasons for this difference can be found by comparing the individual core damage sequences from the two analyses.
The differences are due to unit-specific system configurations and dependencies.
The one initiating event category for which, according to the information in Table 2-1, Unit 3 has an apparent lower CDF than Unit 2 is "Flood Scenario 1 in the Reactor Building." On closer exatnination, however, this difference can be attributed to modeling differences.
The Unit 3 PSA, as documented in this report, contained an updated model for battery boards 1, 2, and 3, which resulted in a slight decrease in the calculated unavailabilities of these boards as compared to the Unit 2 model (Reference 3).
This difference, combined with the 1.0E-10 calculational truncation limitfor this initiator, are underlying reasons for the apparent anomaly.
1.1.5 IMPORTANTOPERATOR ACTIONS Table 1-3 identifies the 10 most "important" operator actions that were included in the model for the response of the plant and the operators to the entire set of initiating events.
The importance measures were derived &om the split &action importance meas'ures (the "&action importance") reported in the first numerical column in Appendix'.
Split &action importance is defined as the &action of all core damage scenarios that include failure ofthe specific split fraction.
This &action can be determined by dividing the sum of the &equencies of scenarios containing the failed split &action by the sum of the frequencies ofall core damage frequencies.
Note that 2 of the 10 entries in Table 1-3 required adjusting.
These split &actions, RVD22 and U22, contain both hardware and operator action elements.
To eliminate the hardware portion of the fractional importance for RVD22 (0.087 &om Appendix C), it was multiplied by the fraction of the split fraction value that is due to operator error (0.86).
In a similar manner, the fractional importance of U22 from Appendix C (0.022) was multiplied by 0.58.
It should be noted that the split fraction CRD4, which contains both hardware and operator
- elements, has a fractional importance from Appendix C of 0.037.
However, the portion due
0
to operator error is quite small (0.025).
Consequently, it does not appear in the list of the top 10 actions.
1.1.6 IMPORTANT SYSTEMS Table 1-4 identifies the importance of selected plant systems.
The top events that represent hardware and that comprise the mechanical support, signal, and frontline event trees were assigned to appropriate system groups.
Top events that represented operator actions were not assigned to a system group.
Two electrical groups were defined:
one for the diesel generators and one for the battery boards 1, 2, and 3.
These groups were used to determine importance measures.
The importance measures were determined from the information summarized in Appendix C by summing the importance of all split fractions (other than the one corresponding "guaranteed failure") associated with a given system.
1.2 PROCESS FOLLOWED TO DEVELOP CUIMENTMODEL The model developed in this analysis used the model for Unit 2 documented in Reference 3.
Information developed as part of the Multi-UnitPRA (Reference 2), particularly the Unit 3 dependency matrices, was utilized in the model development.
System configuration and dependency differences were noted.
Event models (event tree structure and split &action assignment rules) and, where appropriate, system models developed for Unit 2 (Reference 3) were modified to reflect the configuration and dependencies ofUnit 3.
la ~MMATIUX A convenient way to summarize the results of a PSA is to construct a table that shows how each of the initiating events map to the plant damage states considered in the analysis. Ifthe initiating events are thought of as a vector ("$"), then the plant model, event trees, and fault trees could be represented by a transformation matrix ("M")that relates the initiators to the plant damage states.
$-M would then display the relationship of the'initiators to the plant damage states.
The $-M matrix for Unit 3 is presented in Appendix D of this report.
0
Table I-I. Contributions of Functional Failure Groups to CDF ATWS Accident Sequence Group Mean CDF*
(per Year) 3.52E-06 Percentage of Total*
38.6 Loss of Residual Heat Removal Transient with Reactor Vessel at High Pressure Transient followed by Loss of Vital DC Power Blackout of Unit 3.
Station Blackout Degraded Emergency Equipment Cooling Water 3.30E-06 7.86E-07 6.85E-07 2.72E-07 2.18E-07 2.28E-08 36.1 8.6 7.5 3.0 2.4 0.2
~The mean CDF is determined by examining the dominant sequence file. The sequences in the dominant sequence file represent in excess of 99% of the total CDF and form a convenient database for risk management applications.
The accident sequence groups are defined by specifying success or failure combinations of top events or split &actions. For example, the "ATWS" accident sequence group is defined as all sequences with the Top Event "RPS" failed.
Since the dominate sequence file represents less than 100% of the total CDF, the "percentage oftotal" for each accident sequence group is determined by dividing the mean CDF for that group by the total CDF represented by the dominant sequence file. In the current model, the total CDF represented by the dominant sequence file is 9.13E-06 (per year).
For the ATWS accident sequence group, for example, the "percentage of total" is calculated as:
3.52E-06
- 9.13E-06 = 38.6%
Table 1-2 {Page 1 of 2). Contribution to CDF by Initiating Event Group and Comparison to Unit 2 PSA Results (Reference 3)
Initiating Event Group Unit 2" Unit 3**
Mean CDF (per Year)
Transients with Reactor Not Isolated Loss of Feedwater Turbine Trip Inadvertent Scram Feedwater Rampup Events Requiring the Reactor to Scram Partial Loss of Feedwater Loss of All Condensate Partial Loss of All Condensate Loss of Offsite Power Transients with Reactor Isolated Closure ofAllMain Steam Isolation Valves Loss of Condenser Vacuum Turbine Trip without Bypass Loss of the 500-kV Grid to Unit 2 Loss of the 500-kV Grid to Unit 3 Loss of the 500-kV Grid to the Station Pressure Regulator Failure - Fails Open Break Outside of Containment Support System Failure Loss of Raw Cooling Water Loss of Plant Control Air Loss ofI&C Bus 2A Loss of I&CBus 3A Loss ofI&CBus 2B Loss of I&C Bus 3B Loss ofUnit Preferred Power Loss of Reactor Building Closed Cooling Water System Failure of Lower Instrument Tap IA Failure of Lower Instrument Tap IIA Failure of Lower Instrument Tap IB Failure of Lower Instrument Tap IIB Failure of Upper Instrument Tap I Failure of Upper Instrument Tap II
- As documented in PLG-1112, Revision 1 (Reference 3).
~*Results of this analysis.
1.58E-06 2.8SE-07 6.99E-07 8.47E-OS 1.07E-07 1.15E-07 1.40E-07 5.23E-OS 9 48E-08 1.35E>>06 1.04E-06 4.75E-07 2.35E-07 2.31E-07 3.55E-08 3.48E-08 3.07E-08 1.42E-09 7.03E-07 5.38E-07 2.30E-OS 3.08E-09 3.09E-09 3.75E-08 9.04E-08 1.91E-09 1.91E-09 1.99E-09 1.91E-09 2.23E-10 2.23E-10 2.46E-06 5.19E-07 9.27E-07 1.65E-07 1.95E-07 1.45E-07 1.71E-07 1.53E-07 1.81E-07 2.11K-06 1.88E-06 8.39E-07 4.45E-07 4.11E-07 5.86E-OS 7.08E-OS 5.52E-OS 1.83E-09 1.41E-06 9.79E-07 1.83E-07 5.98E-09 6.0IE-09 5.18E-OS 1.76E-07 2.24E-09.
2.24E-09 2.32E-09 2.24E-09 2.61E-10 2.61E-10
Table 1-2 (Page 2 of 2). Contribution to CDF by Initiating Event Group and Comparison to Unit 2 PSA Results (Reference 3)
Initiating Event Group Unit 2*
Unit 3**
Mean CDF (per Year)
Loss of Coolant Accidents Small LOCA Recirculation Discharge Line Break Recirculation Suction Line Break Core Spray Line Break Other Large LOCA Medium LOCA Very Small LOCA Excessive LOCA Stuck-Open Relief Valves Inadvertent Opening of One Relief Valve Inadvertent Opening of Two Relief Valves Inadvertent Opening of Three o'r More Relief Valves Internal Floods Small Flood in the Turbine Building Large Flood in the Turbine Building Flood in the Pumping Station Flood Scenario 1 in the Reactor Building Flood Scenario 2 in the Reactor Building Flood Scenario 3C in the Reactor Building Flood Scenario 3S in the Reactor Building Interfacing Systems LOCA Total CDF
~As discussed in PLG-1112, Revision 1 (Reference 3).
~~Results ofthis analysis.
4 41E-07 7.20E-08 1.12E-07 2.66E-OS 7.77E-08 3.16E-OS 1.06E-07 5.80E-09 9.10E-09 194E-07 6.88E-OS 8.77E-09 5.65E-OS 9.29E-OS 1.93E-OS 2.22E-OS 1.15E-08 4.35E-09 3.86E-10 6.90E-10 3.45E-OS 4.63E-OS 589K,06 5.35E-07 7.30E-OS 1.33E-07 3.34E-OS 1.11E-07 4.05E-OS 1.29E-07 6.21E-09 9.09E-09 1.79E-07 1.07E-07 1.24E-OS 5.92E-08 5.6SE-07 1.59E-07 4.24E-08 6.99E-08 2.63E-09 2.03E-09 7.07E-10
'.91E-07 4.63E-OS 9.19FAHi
Table 1-3. Ten Most Important Operator Actions Failures Contributing to Core Damage Operator Action Manual Depressurization of the Reactor Vessel using the Safety Relief Valves Manual Control of Low Pressure Injection during ATWS Manual Alignment of Residual Heat Removal to Suppression Fool Cooling Manual Start of Standby Liquid Control Given ATWS and the Reactor Vessel Isolated Manual Start of Standby Liquid Control Given ATWS and the Reactor Vessel Not Isolated Alignment of Unit 2 Residual Heat Removal to Unit 3 via Crosstie Prevention of Automatic Depressurization System during ATWS Manual Start of Residual Heat Removal/Core Spray Reactor Vessel Level Control Using Residual Heat Removal/Core Spray Level Control during ATWS PSA Importance 0.075>>
0.067 0.064 0.033 0.022 0.013>>>>
0.007 0.005 0.005 0.003 Surrogate Split Fraction RVD22 OLA1 OSP1 OSL1 OSL2 U22 OAD1 ORP2 OLP1 OAL1
>>The fractional importance of 0.087 &om Appendix C has been multiplied by the fraction (0.86) of the split &action value that is due to operator action.
>>>>The &actional importance of 0.022 from Appendix C has been multipiieck hy the fraction (0.58) of the split &action value that is due to operator action.
Table 1-4.
PSA Importance of Individual BFN Systems System Reactor Protection System Residual Heat Removal System Diesel Generators Residual Heat Removal Service Water System High Pressure Coolant Injection System Reactor Core Isolation Cooling System Main Steam System Including Turbine Trip 250V DC Battery Boards Shared Actuation Instrumentation Control Rod Drive System Standby Liquid Control System RBCCW Condensate and Feedwater System Core Spray Plant Air PSA Importance*
0.39 0.36 0.21 0.16 0.13 0.09 0.08 0.07 0.05 0.05 0.04 0.01
< 0.01
< 0.01 Emergency Equipment Cooling Water System
~The fraction of CDF with sequences in which the failures occur in the indicated system.
0
U)
Lu Cl tQ cf' 0K CL 10'0'0'0" 10'REQUENCY Figure l-l. Probability Distribution of Brogans Ferry Unit 3 Core Damage Frequency
- 2. PLANT CONFIGURATION
2.1 DESCRIPTION
OF PLANT CONFIGURATION The plant configuration under consideration is one in which Unit 3 is initially at power, Unit 2 in service (i.e., it is either initially operating or shut down), and Unit 1 remaining in extended layup, An assessment of the potential for multi-unit interactions at BFN was performed in the Multi-UnitPRA to determine the impact on shared systems or structures associated with Unit 2 by the return to service of Units 1 and 3. Although the information developed in the Multi-UnitPRA was developed with the potential impact on Unit 2 in mind, that information is also a viable resource when considering the potential impact on Unit 3.
Guidelines or criteria were developed and used in that study to identify systems or structures that are potentially impacted by multi-unit interactions.
Interactions of interest are those that have the potential to (1) impact the success criteria for an individual system or group of systems, (2) change the frequency of an initiating event considered in the previous PRAs, (3) introduce an initiating event not previously considered, (4) introduce new or to alter dependencies among systems, or (S) otherwise effect the response of the plant to an initiating event.
It was determined that 14 of the shared systems and structures are potentially impacted by the return of additional units to service, and Table 2-1 shows a list of these shared systems and structures.
The review of system configurations and structures for the plant configuration under consideration utilized the results of the evaluation of all shared systems and structures performed in the Multi-UnitPRA.
The control bay HVAC system has been shown to be risk insignificant and is not considered in depth in this review (Reference 3). A comparison of the equipment/system status in the various plant configurations (the one under consideration, and those modeled in the Rev. I I.Q. ¹2 and Multi-UnitPRAs, which focused on Unit 2) is provided in Table 2-2. The equipment/system status may be the same in the various plant configurations considered, but the success criteria and plant response involving the shared systems may be different as discussed in the section below.
2.2 EVALUATIONOF IMPACT ON SHARED SYSTEMS AND STRUM'UI&S The potential impact on the shared systems and structures associated with Unit 3 when Unit 2 is in service can be characterized as changes in the system success criteria, changes in the initiating event &equency, or changes in the plant model with respect to those in adopted in the Rev. I I.O. ¹2 PRA model.
Based on the discussion of the system configurations and shared structures, and the comparison of the equipment status in the various plant configurations, the impact on the shared systems and structures is presented below and a summary of the impact is given in Table 2-3.
2.2.1 ELECTRIC POWER SYSTEM Two units in service impacts the success criteria used in the Rev. I I.O. ¹2 PRA for the analysis of the availability of individual electrical boards as loads on boards are increased.
In
addition, the availability of boards is impacted ifthey no longer are considered "dedicated" to a single unit.
These considerations will impact the actions considered as "recovery" actions in this study, as reflected in Table 2-4.
The loss of two large generating stations within a relatively small time window has the potential of increasing the frequency of the loss of the electrical grid. Two units in service therefore increases the likelihood of the induced loss of offsite power for initiating events, such as loss of raw cooling water, that involve a mechanism that potentially couples the response of the individual units.
In addition, the nature of the plant response, as compared to the Rev. l I.O. ¹2 PRA, to the loss of offsite power will change due to the role of other shared systems, such as residual heat removal service water (RHRSW) or emergency equipment cooling water (EECW).
It was concluded that the reanalysis of portions of the electric power system was required in the Unit 2 PSA (Reference 3) including the assessment of the availability of individual electrical boards as well as the impact on the frequency of the loss of offsite power.
The Unit 3 PSA took full advantage of these new analyses as documented in Reference 3.
2.2.2 CONTROL AND SERVICE AIR SYSTEM The control air and service air systems are shared among the three units. Two units in service willnot impact the system success criteria nor the frequency ofthe Loss of Plant Airinitiator, as reported in Reference 3 for Unit 2.
2.29 RAW COOLING WATER SYSTEM The raw cooling water system serves all three units.
Two units in service impacts both the system success criteria as well as the frequency of the initiator Loss of Raw Cooling Water, as compared to the models developed for Rev. I I.O. ¹2 PRA. The same models developed for the Unit 2 PSA (Reference 3) were used in the current analysis.
2.2.4 TUI&INEBUILDING The turbine building is shared among the units.
Flooding events in the turbine building were explicitly addressed in the Rev. I I.O. ¹2 PRA.
When Unit 3 is returned to service, both the frequency and plant response to such flooding events were reassessed as part of the Unit 2 PSA (Reference 3).
These updated results were also used in the current analysis.
2.2.5 REACTOR BUILDINGCLOSED COOLING WATER SYSTEM The reactor building closed cooling water system is normally unitized but there is one spare pump and heat exchanger for all units.
The model developed for the Unit 2 PSA (Reference 3) was adopted for the current analysis.
0
2.2.6 REACTOR BUILDING{SECONDARY CONTAINMENTSYSTEM)
The reactor building is shared among the three units and is divided into three reactor'zones and a common refueling zone.
When Unit 2 is in service, an indirect interaction is created if a severe incident (such as extensive core damage) were to occur in Unit 2.
In such a case, the accessibility of the Unit 3 reactor building will be affected.
2.2.7 CONDENSER CIRCULATINGWATER SYSTEM In the normal mode of operation, this system is unitized.
In,the shutdown mode, with all of the units down and with the reactors streaming to the condensers via the turbine bypass system, only a small amount of condenser circulating water (CCW) flow is required to maintain normal condenser vacuum.
"The plant design provides circulating water interties so that only one CCW pump can provide condensing water to all shutdown units.
In the
'odeled plant configuration, with Unit 3 initially at power, the CCW interties are not considered.
2.2.8 PUMPING STATION (INTAKEBUILDING)
The RHR service water pumps and the emergency equipment cooling water pumps are located in four compartments of the pumping station.
The reassessment of the frequency of and plant response to flooding of one of these compartments was evaluated in the Unit 2 PSA (Reference 3) and adopted for the current analysis.
2.2.9 CONTROL ROD DRIVE HYDRAULICSYSTEM A common control rod drive (CRD) hydraulic system pump is shared by Units I and 2. In the Rev.
1 I.O. ¹2 PRA, credit was taken for that pump as ifit were assigned solely to Unit 2. Unit 3 has two dedicated CRD pumps.
The models utilized in the Unit 2 PSA (Reference 3) were adopted for the current analysis.
2.2.10 RHR CROSS-CONNECTION AND STANDBYCOOLANT SUPPLY SYSTEM The use of the residual heat removal service water system for vessel injection via cross-connecting selected portions of the RHR systems in adjacent units is provided at the plant.
Credit for such alignments is taken in the Rev. I I.O. ¹2 PRA on a limited basis; that is, only from Unit I to Unit 2. For Unit 2, credit was also taken for the crosstie from Unit 3.
For Unit 3, only a single crosstie to Unit 2 is available.
2.2.11 RESIDUAL HEAT REMOVALSERVICE WATER SYSTEM The RHRSW system is shared between the units and is explicitly modeled in the Rev.
The same success criteria derived for the Unit 2 PSA was adopted in the current analysis.
0
2 2.12 EMERGENCY EQUIPMENT COOLING WATER SYSTEM The EECW system is shared between the units and is explicitly modeled in the Rev. I I.O. ¹2 PRA and Unit 2 PSA.
The success criteria associated with the EECW system was reviewed and determined not to change when the Unit 2 PSA was conducted; therefore, no change is required for the current analysis.
2.2.13 FIRE PROTECTION SYSTEM The fire protection system is shared among the units. Of potential interest in the PSA is the one diesel-driven fire pump that could provide flow to the vessel under station blackout conditions.
Two units in service would impact the availability of this pump to serve either unit.
However, in the current model, the use of the fire protection system to provide flow to the vessel is not considered.
2.2.14 REACTOR BUILDINGAND CONTROL BAYVENTILATIONAND COOLING SYSTEMS A discussion of the impact of failure of these systems on core damage frequency is given in the Unit 2 PSA (Reference 3).
29 SYSTEM SUCCESS CRITERIA Table 2-4 summarizes the success criteria for shared systems in the PSA model for the plant configuration being considered as well as the criteria used in the Rev.
1 I.O. ¹2 and Multi-UnitPRAs.
Table 2-1.
Shared Plant Systems and Structures Associated with Unit 3 and Potentially Impacted by Unit 2 Being in Service Electric Power System*
Control and Service Air System Raw Cooling Water System Turbine Building and Radwaste Building Reactor Building Closed Cooling Water System Reactor Building (Secondary Containment System)
Condenser Circulating Water System Pumping Station (Intake Building)
Control Rod Drive Hydraulic System RHR Cross-Connection and Standby Coolant Supply System Residual Heat Removal Service Water System Emergency Equipment Cooling Water System Fire Protection System Reactor Building and Control Bay Ventilation and Cooling Systems
~Includes offsite power system (switchyard, station service transformers, and normal auxiliary power switchboards), plant preferred and nonpreferred AC system, auxiliary DC power supply and distribution system, 250V DC power supply system, and standby AC power system.
Table 2-2 (Page 1 of 2). Comparison of Equipment Status in the Different Plant Configurations System Electric Power AC Power DC Power Diesel Generators Control and Service Air Raw Cooling Water Turbine Building and Radwaste Building Equipment Status la Unit 2 PRA Switchgcar, buses, and boards are nominally available to power all cquipmcnt associated with Units I, 2, and 3. Unit 3 boards are available to serve Unit 2 loads by crossticing thc boards.
Boards are nominally avaHable to support all equipment associated with Units I, 2, and 3.
Unit 3 boards are available to Unit 2 via crosstieing thc boards.
Alleight diesel gcncrators available.
Two compressors arc fullyloaded, with thc other two comprcssors running but unloaded or on standby.
Although interconnected, the portion ofthe system that serves Unit 3 Is Independent ofthat portion that serves Units I and 2.
Buildings shared among all three units.
Equipment Status In 51ulti-Unit PRA Switchgear, buses, and boards are nominally availablc to power all equipment associated with Units I, 2, and 3. Sclccted Unit 3 boards may be availablc to serve Unit 2 loads since thc loads on the affected Unit 3 boards arc increased and they arc no longer considcrcd "dedicated to Unit 2 service.
Similarly, selected Unit 2 boards may be available to serve Unit 3 loads.
Boards are normally available to support all equipmcnt associated with Units I, 2, and 3.
Selected battery boards may bc available to scrvc Unit 2 toads since the loads on the affected Unit 3 boards arc Increased and they are no longer considered 'dedicated'o Unit 2 service.
Alleight diesel generators available.
Two compressors are fully loaded, with the other two compressors running but unloaded or on standby.
Although interconnected, thc portion of the system that saves Unit 3 is indcpcndent ofthat portion that serves Un!ts I and 2.
Buildings shared among all three units.
Equipment Status in the Plant Contiguration with Unit I Remaining in I.ayup Switchgcar, buses. and boards arc normally availablc to power equipmcnt associated with Units 2 and 3.
Selected Unit 3 boards may bc available to serve Unit 2 loads since thc loads on the alfccted Unit 3 boards are incrcascd and they arc no longer considcrcd "dedicated to Unit 2 service.
Similarly, selected Unit 2 boards may be availablc to serve Unit 3 loads.
Boards arc normally available to support equipmcnt associated with Units 2 and 3.
Selected battery boards may bc available to icrvc Unit 2 loads since the loads on the affected Unit 3 boards are increased and they are no longer considered "dedicated" to Unit 2 scrvicc and vice versa.
Alleight dicscl generators available.
Two comprcssors arc fully loaded, with thc other two compressors running but unloaded or on standby.
The entire system is modclcd with the portion serving Unit 2 dependent on the portion serving Unit 3 and vice versa.
Buildings shared among all thre>> units.
Reactor Building Closed Cooling Unit 2 RBCCW pumps 2A and 2B are normally Water operating, and the common RBCCW pump IC Is dcdlcatcd to Unit 2.
Unit 2 RBCCW pumps arc normally operating, and the common RBCCW pump IC is available to Unit 1,2, or 3.
Units 2 and 3 RBCCW pumps arc normally operating, and thc common RBCCW pump IC is available to Unit I, 2, or 3.
Reactor Building (Secondary Containment System)
Condenser Circulating Water Pumping Station (Intake Building)
Building shared among all three units.
'fhrce Unit 2 CCW pumps arc initiallyoperating pumps from other units In standby with Interties between the units.
The pumping station contains RHRSW pumps and the EECW pumps that arc shared among the units.
Building shared among alt three units.
Allnine ofthc CCW pumps arc initiallyoperating with the Intcrties bctwecn thc units closed.
Thc pumping station contains RHRSW pumps and the EECW pumps that are shared among thc units.'uilding shared among all three units.
Thc three Unit 3 CCW pumps are initially operating and the number of Unit 2 CCW pumps operating depends on thc status ol'Unit 2. The intcrties between the units are closed.
Thc pumping station contains RIIRSW pumps and the EECW pumps that arc shared among the units.
Table 2-2 (Page 2 of 2). Comparison of Equipment Status in the Different Plant Configurations System Equipment Status ln Unit 2 PRA Equlpmcnt Status In Multi-UnitPRA Equipment Status in the Plant Conliguration with Unit I Remaining in Layup Control Rod Drive Hydraulic Unit 2 CRD pump 2A is nomtally running, and the Unit 2 CRD pump 2A is normally running, and thc common control CRD swing pump is dedicated to common control CRD swing pump is shared by Unit 2.
Units I and 2.
Unit 2 CRD pump 2A is normally running, and the common control CRD swing pump is dedicated to Unit 2. Unit 3 CRD pump 3A is normally running with standby pump 38 dedicated to Unit 3.
RHR Cross~nnection and Standby Coolant Supply Residual Heat. Removal Service Water Crossmnnectlng a selected portion of the RHR systems from Unit 2 to Unit I Is available.
Four RHRSW pumps arc designated to provide RHR function, and four RHRSW pumps are swing pumps.
Thc latter can replace designated EECW pumps when their corresponding EECW pumps are taken oA'-line.
Cross~nnectlng between Units 2 and I, and between Units 2 and 3 are available.
Four RHRSW pumps are designated to provide RHR function, and four RHRSW pumps are swing pumps.
The latter can replace designated EECW pumps when their corresponding EECW pumps are taken off-line.
Crosswonnccting between Units 2 and 3 is dependent on the status of Unit 2.
Four RIIRSW pumps are designated to provide RHR function, and four RIIRSW pumps ar>> swing pumps.
The latter can replace designated EECW pumps when their corresponding EECW pumps ar>>
taken olf-line.
Emergency Equipment Cooling Water The EECW north and south header am each The EECW north and south header are each supplied by two RHRSW pumps with one pump ln supplied by two RHRSW pumps with one pump in each header normally running.
each header normally running.
The EECW north and south header are each supplied by two RHRSW pumps with one pump in
<<ach hcadcr normally running.
Table 2-3. Summary of Potential Impact on Systems and Structures Associated with Unit 3 System or Structure Electric Power System Control and Service Air System Raw Cooling Water System Turbine Building'nd Radwaste Building Reactor Building Closed Cooling Water System Reactor Building (Secondary Containment System)"
Condenser Circulating Water System Pumping Station (Intake Building)
Control Rod Drive Hydraulic System RHR Cross-Connection and Standby Coolant Supply System Residual Heat Removal Service Water System Emergency Equipment Cooling Water System
~impacts natu'nd frequency of turbine flood.
"May impact local manual operations in reactor building.
System Success Criteria or Systems Analysis X
Initiating Event Frequency X
X X
Plant Model X
~ I ~ I C
~ '
~
~
~
~
I
~
~
~
~
~
~
I
~
~..
~
~
~ ~
I
~
~
II
~
~
~
~ !
~~
~
~
~
~
~
~
II
~
~
~
~
! ~
~
~
~ '
~
~
~
~
a~
~
~
~
II
~
II I
~
II I
~ ~
~
~
~
~
~
~
II
~ I
~
~
~
~
~
II
~
l l '
~
0
~
~
~
~
~ ~
~
~
~ ~
~ I I
~
~
~ ~
~
~
~
~
~
~
~
~ I
~
~
~
~
~
~
~
~
~
~
I
~ '
~
~ ~
I ~
~
I
~
~
~
~ '
~
~
~ '
~
~
I
~
~
I ~
~
~
~.
~
~
II'
~
~
~ I
~
~
~,
I ~,
~
~
~
~ I '
~
~
~
~
~
~
~
~
~
~
I
~
~
~
~ I
~ ~
~
~
~ I 0
~ I a I
~
~
~
0~ I
~
~
~
~
~
~
~
~
~
~
~
I
~
0~ ~
~
~
~
~ ~
~
~
~ ~
~ ~
~
~
~
~
~
~ ~.
~
s
~
~
~
~
~
~
I
~ I
~ ~
I I
I
~
~
~
~ ~
~
~
~
~
~
~
~ ~
~
~ I
~ ~
I
~, I
~
I
~ I
~
I'
~
I
~
~
I II
~
~
~
~~, II
~ ~.
I
~
- ~
I
~
~
~
~
~
~
~ ~
~
~
I
~ ~
~
~ I
~
~
~
~ ~
~
~ I
~ ~
~
~
~
~ I I e
~
~
~ ~
~ ~
~ I
~
~
~
~
~
~
~
~
~ ~.
~
~
~ ~
~
~
~
I
~
~
~
~
~
I
~
~
~
~ I
~
~
~
~
~
~
~
~
~
a
~
~
~
I
~
~ !
~
I I
~
~
I
~
~
I '
~
~
~ ~
I ~
I
f
1 t
I
~
h II h t I I I
I
~
~
~
~
~
0 II I
~
I I
~
I
~
~
0
~ ~
I
~
~
'I
~
~ ~
~
~
~
~
~ I
~
I I
~
~
~
I
~
I ~
~
~ ~
~ I
, ~
~
~,
~
~
~ I,
~
~
~
~
~
~
~
~
~
I
~
~
'I I
I I
~
~
I
~
~
I I
~
~
~
~
~
~
~
~
~
~
I I '
~
~
~
~ I
~
~
~
~
~ ~
~
I
~
~
~ I
~
~
~
~
~
I I
~
~
~
I
~ I
~
~
I
~
~
I
~
~
~
~
~
I ~
I '
~
~
~ I
~
~
I
~
~
~ I
~
~
~
\\ ~
~
I ~
~
~
~
~
~
~
~
~
~
~
~
I I I I ~
~
~
~
~
~
~
I
~
~
~
~
~
~
~
~
~
~
~
~
~
I ~
I ~ ~
~ I
~
~
I
~
~
~ I I
I.I
~
I
~
\\ ~ '
~ I I
~
~
0
~
~ ~
~
I h
~
~
~
~ '
~ I 'I ~
~
I I
~
II
~
I
~
h
~
~
~
I I
I
~
~
~
~
I e ~
~
~
~
~
~ ~ ~
~
~
~
I
~
~
~
~
~
~
~
~0
~
~
~
0 I
~
'I
~
~ '
~
~
~
~
~
~
I ~
~
~
~
~
~
~
I
~
I I ~ ~
~ I I ~
~
~
I
~
~
I
'a
System or Top Event Initiating Event Rev.
1 I.O. 02 PRA Success Criteria iVfulti-UnitPRA Success Critet ia Table 2-4 (Page 3 of 4).
Success Criteria for Plant Configuration Under Consideration Success Criteria for Units 2 and 3 with Unit 1 Remaining in Layup Impact on PSA Event iVIotPel'"
for Units 2 and 3 with Unit 1 Remaining in Layup Reactor Building (Secondary Containment)
N/A Isolate all three reactor zones and the common refueling zone.
A top event (ACM) is used to specify degraded scenarios on other unit(s) has been added representing a flag for those events that may involve reactor building entry.
II The new top event (ACM, the same as in the Unit 2 PSA) introduced in the
'ulti-Unit PRA has been implemented in the current analysis to specify when a degraded scenario occurs on Unit 2, thus impacting the ability to enter the Unit',3 reactor building.
An accident in Unit 2 may impact the habitability of the Unit 3 reactor building. This would then limit the capability of remote manual actions by operators in response to events at Unit 3.
Event tree structure, logic rules, as well as new operator assessment from Multi-UnitPRA are applicable to this plant configuration.
Pumping Station (Intake Building)
Control Rod Drive Hydraulic RHR Cross-Connection and Standby Coolant Supply FLPH1 N/A N/A N/A The control rod drive hydraulic system is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to act as a source of vessel makeup for reactor level control.
Depending on the circumstances, either pump 2A is sufficient for, makeup, or pumps 2A and 1B ("enhanced" flow) must act together.
I.
Unit 1 RHR pumps 1B and ID can be aligned to support Unit 2 suppression pool cooling.
2.
RHRSW pumps Dl and D2 are available to align to the Unit 2 RHR loop I header providing an alternate standby coolant supply.
N/A The success criteria remains the same.
The system analysis was changed to reflect possible assignment of pump IB to Unit 2..
In addition to Rev.',1 LO. 02 PRA success criteria, the following are available to support Unit 2:
1.
RHRSW pumps B1 and B2 are available to ahgn to Umt 2 RHR loop II header',providing additional
'tandby coolant supply.
2.
Unit 3 RHR pumps 3A and 3C can be aligned to support Unit 2 suppression pool cooling.
N/A The control rod drive hydrauhc system is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to act as a source of vessel makeup for reactor level control.
Depending on the circumstances, either pump 3A is sufficient for makeup, or pumps 3A and 3B ("enhanced" flow) must act together.
Instead of the two options available to support Unit 2, only the following is I available to support Unit 3:
1.
RHRSW pumps Bl and B2 are available to align to Unit 3 RHR I loop I header providing additional standby coolant supply.
2.
Unit 2 RHR pumps 2B and 2D can be aligned to support Unit 3 suppression pool cooling.
However, the availability of the Unit g RHR system is dependent on the status of Unit 2.
The plant model already considers that four different sets of pumps could be lost due to this initiator. The initiating event frequency considers the contribution by three units.
The model developed for the Rev.
1 I.O. P2 PRA is applicable.
The model takes credit for RHRSW pumps B1 and B2 for Unit 3 standby coolant supply, and RHR pumps 2B and 2D for Unit 3 suppression pool cooling and alternate injection G8'iZ~ggZ g KTVA&0048a.DOC.06/04/96
0
Table 2-4 (Page 4 of 4).
Success Criteria for Plant Configuration Under Consideration System or Top Event RHR Service Water Emergency Equipment Cooling Water Initiating Event N/A N/A Rev.
1 I.O. fQ PRA Success Criteria At least one of the four RHR heat exchangers must be supplied with cooling water from an associated RHRSW pump for shutdown cooling.
For ATWS conditions, all four RHR heat exchangers with cooling water from the associated RHRSW pump are available fer suppression pool cooling.
(The model developed requires all three RHR heat exchangers.)
Two of the four EECW pumps must operate for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
Multi-UnitPRA Success Criteria At least two RHR,purnPs suPPlying cooling water to the associated heat II exchangers (for transients only). For a other events, the m~ccess criteria is the same as the Rev. l I.O. P2 PRA.
The success crite a are effected if Units 1 and 3 re ain in operation and the diesel generators are not running.
The flow aths for three unit o eration p
p are such that thrq out of four pumps are required.
An alternate criteria is for the p,)
EECW pumps is acceptable.
model to look at Pe successful operation of RCW and ifROW is available (meets acce tance criteria then two of four Success Criteria for.Units 2 and 3 with Unit 1 Remaining in Layup I
One pump per unit (not on same header) for non-ATWS conditions.
For ATWS i
conditions, four RHR heat exchangers are required.
Two pumps not on same end of a header.
Impact on PSA Event Model for Units 2 and 3 with Unit 1 Remaining in Layup Because the trains of RHRSW are modeled separately in the support tree, the systems analysis will not change.
The event tree modeling accounts for.
the use of specific pumps by specific units (heat exchangers).
The event tree logic rules account for the RHRSW swing pumps to EECW.
Specific logic rules address the requirement for four pumps in ATWS scenarios.
With two units fueled, the availability of RHRSW pumps to replace EECW pumps that require maintenance will be limited. The system model remains the same as the trains are modeled in four separate top events.
For two-unit shutdown scenarios (e.g., those initiated by LOSP), the new system success criteria are implemented via the event tree logic'rules.
The event tree logic rules account for the RHRSW swing pumps possibly being aligned to EECW.
A,N87EC APEB7UAE',
CARD Nce Available op ApG)tQr0 CGNl
~Qg 90>
~g
~
'TVAQ40048a.DOC.06/0486 2-12
M t
I<<
- 3. MODIFICATIONSMADE TO PREVIOUS PSA MODELS The risk models in the current study were derived in large part from models developed for previous Browns Ferry risk assessments.
Specifically, the Unit 3 PSA took advantage of the Unit 2 PSA (Reference 3) as well as information developed for the Multi-UnitPRA (Reference 2).
The Unit 3 PSA started with the Unit 2 PSA models and made appropriate changes to reflect unit-specific system configurations and dependencies.
Changes made to the event model are discussed first. These changes involve changes to the electric power support event trees, changes to reflect differences in interunit RHR crosstie capability, the redefinition of selected initiating events, and changes to reflect Unit 3's dependencies on support systems.
Following the discussion of event model changes, specific system model analyses that were conducted are presented.
These system model additions include the analyses of the availability of additional Unit 3 electric boards as well as an update of the analyses of the availability of battery boards 1, 2, and 3.
3.1 EVENT MODEL 3.1.1 ELECTRIC POWER SUPPORT EVENT TREES In the Unit 2 PSA (Reference 3), the status of key electric power boards were addressed in two linked event trees ordered as follows: ELECT12 and ELECT3. The former primarily addressed boards that are nominally associated with Unit 1 or Unit 2 equipment, and the latter addressed boards nominally associated with Unit 3. The specific top events that make up these two trees are identified in Tables 3-1 and 3-2.
Given the large number of top events in the Browns Ferry risk models, it was desirable to reorder the top events for the Unit 3 electric power support event trees to facilitate the later comparison of Unit 3 sequences with those &om the Unit 2 PSA (Reference 3). Also, additional top events were necessary for the Unit 3 PSA. In the Unit 3 PSA, therefore, the status of key electric power boards are addressed in three linked event trees ordered as follows: ELECT3, ELECTI2, and ELECT3P.
The event tree ELECT3P contains the new top events of interest for the Unit 3 PSA.
'1'he specific top events that make up these three trees are identified in Tables 3-3 through 3-5.
A comparison of the two sets of trees reveals the following observations.
Top events associated with offsite power. and recovery of power at the unit boards {OG5, OG16, OUB, and ELECT30) have been moved from ELECT12 to ELECT3. The top event governing the common cause coupling of Units 1 and 2 and Unit 3 diesel generators has been relocated from ELECT12 to ELECT3. Specific top events have been added to the ELECT3 and ELECT12 models for Unit 3 to address recovery of the diesel auxiliary board associated with room cooling for diesel generators 3ED and diesel generator C, respectively.
Top
Events VB42C (the 4-kV unit board 2C) and DQ (120V I&C bus 2b) were eliminated from ELECT12.
Top Event DG (250V DC control power for 4-kV shutdown board 3EC and 480V shutdown board 3EB) was relocated from tke ELECT3 tree to the Unit 3 ELECT12 tree.
Top Events DJ, DN, RC, CPREC, and UBREC (120V AC Unit 2 preferred power, 120V I&C bus 2A, 2SOV RMOV board 2B, control power recovery, and unit board backfeed, respectively) were eliminated from ELECT3.
3.1.2 ELECTRIC POWER EVENT TREE SPLIT FRACTION SYMMETRIES In the Unit 2 PSA, the eight diesel generators were queried in the following order, given a loss of offsite power:
A
~
D
~
B
~
C
~
3EA
~
3EC
~
3EB
~
3ED The evaluation of the unavailability of each diesel generator considers the status ofall diesel generators previous queried, In other words, the split &action chosen for the top event associated with diesel generator B depends on the status of diesel generators A and D. Ifboth diesel generators A and D failed, for example, diesel generator B may have a different failure likelihood than ifdiesel generators A and D were successful, or ifonly A or D were successful.
The ordering ofthe diesel generator top events, therefore, is important in the quantitative scenario development.
In the Unit 3 PSA, the availability of the diesel generators are queried in the following order.
3EA 3EC 3EB 3ED A
D B
C Advantage was taken of the Unit 2 PSA analysis of diesel generator split fractions by assigning them in the Unit 3 PSA according to the order they are queried.
In other words, for example, in the Unit 3 PSA, split fractions assigned to diesel generator 3ED (the fourth diesel generator queried) are those developed for diesel generator C in the Unit 2 PSA.
Similar substitutions are made for the corresponding split fractions for the fuel oil transfer pumps.
Likewise, in the Unit 2 PSA (Reference 3), the three battery boards are asked in the following order:
Battery Board 1
Battery Board 2 Battery Board 3 In the Unit 3 PSA, they are asked in the following order:
Battery Board 2 Battery Board 1
Battery Board 3 In this study, the analysis performed for the Unit 2 PSA for the battery boards was utilized by assigning the split fractions previously developed for battery board 1 to battery board 2 and those developed for battery board 2 are assigned to battery board 1.
3.1.3 RECOVERY OF DIESEL GENERATOR 3ED In the Unit 2 PSA {Reference 3), the possibility of recovery of diesel generator C was considered given the failure of diesel generators A, B, and D. Diesel generators A, B, and D have the ability to power an auxiliary board that is required for cooling of the A, B, C, and D diesel rooms.
Diesel generator C therefore has a dependency on diesel generators A, B, and D. Recovery is possible ifan alternate means ofroom cooling, such as opening the room door, is accomplished in a timely manner.
A similar situation is found in the Unit 3 PSA. 'Diesel generator 3ED has a dependency on diesel generators 3EA, 3EB, and 3EC, through an auxiliary board that provides room cooling.
Allowance is made in the Unit 3 PSA for recovery of cooling to diesel generator 3ED given failure of diesel generators 3EA, 3EB, and 3EC.
3.1.4 USE OF DIESEL GENERATOR C TO SUPPORT UNIT3 Under speciQc conditions in the Unit 2 PSA (Reference 3), specifically ifat least two other Unit 3 diesel generators are available, credit is taken for diesel generator 3ED to support Unit 2. In a like manner in the Unit 3 PSA, ifat least two other Units 1 and 2 diesel generators are available, credit is taken for diesel generator C to support Unit 3.
3.1.5 RHR CROSSTIE Division II of Unit 1 RHR can crosstie to Division I of Unit 2 RHR. Likewise, Division I of Unit 3 RHR can crosstie to Division II of Unit 2 RHR. The Unit 2 PSA considered both of these possibilities.
An analysis assumption was imposed that disallowed the crosstie from Unit 3 ifthe scenario was of a multi-unit nature and Unit 3 was initiallyat power.
Since the crosstie from Unit 1 has no other function other than to support Unit 2, no multi-unit restriction is placed on the Unit 1 to Unit 2 crosstie.
From Unit 3's point of view, Division II of Unit 2 RHR can crosstie to Division I of Unit 3 RHR. This is the only RHR crosstie available to Unit 3.
In a manner similar to that employed in the Unit 2 PSA, this crosstie is disallowed by analysis assumption ifthe scenario is of multi-unit nature and Unit 2 was initially at power.
3.1.6 REDEFINITION OF INITIATINGEVENTS The same initiating events are considered for Unit 3 as were considered for Unit 2 with four minor exceptions.
These exceptions have to do with redefining the nature of two initiators.
The initiator "LSOOU2" (loss of 500-kV power to Unit 2) in the Unit 2 PSA was replaced by "L500U3" (loss of 500;kV power to Unit 3).
Likewise, impact of the initiator "LUPS" (loss of unit preferred power) was charged from the loss of Unit 2 unit preferred power to the loss of Unit 3 preferred power.
Likewise, the impact of initiators "LICA"and "LICB"were changed to the loss of I&C bus 3A and I&C bus 3B, respectively.
3.1.7 DEPENDENCIES The dependency matrices developed for the Multi-UnitPRA (Reference 2) served as the starting point for the identification of Unit 3 dependencies on support systems.
As these dependencies were being reviewed, their impact on the split &action assignment rules developed for the Unit 2 PSA were noted.
These impacts are summarized in Table 3-6, which,was utilized in the development of split fraction assignment rules for the Unit 3 PSA.
3.2 SYSTEMS ANALYSES The system analyses performed for the Unit 3 PSA includes the modeling ofthose electric power systems required to support the successful operation ofthe Unit 3 mechanical support systems and &ontline systems for accident mitigation. In addition, the availability of battery boards I, 2, and 3 were reanalyzed due to the modification of electric power systems event tree models associated with these battery boards.
The sections below discuss the new analysis.
3.2.1 UNIT3 ELECTIGC POWER SYSTEM MODELS 3.2.1.1 To Event UB43C 4-kV Unit Board 3C Top Event UB43C models 4-kV unit board 3C.
The unit board is ~xessful ifpower is available at the board for the required loads for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
3.2.1.2 To Event CBB4-kV Common Board B Top Event CBB models 4-kV common board B. The common board is successful ifpower is available at the board for the required loads for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
3.2.1.3 To Event UBX4-kV Unit/Common Board System Top Events UB42C and CBB are combined to model common cause failures.
The combined/
intermediate top event for this modeling purpose is UBX. The unit/common board system model is used to evaluate the unavailabilities of the boards.
These unavailabilities are used to quantify the conditional split fraction values for Top Events UB42C and CBB.
3.2.1.4 To Event RJ3 480V RMOV Board 3C Top Event RJ3 is used to model the 480V RMOV board 3C power systems.
Top Event RJ3 is successful if480V RMOV board 3C remains available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
3.2.1.5 To Event RK3 480V RMOV Board 3D Top Event RK3 is used to model the 480V RMOV board 3D power systems.
Top Event RK3 is successful if480V RMOV board 3D remains available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
3.2.1.6 To Event RL3480V RMOV Board 3K Top Event RL3 is used to model the 480V RMOV board 3E power systems.
Top Event RL3 is successful if480V RMOV board 3E remains available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
3.2.1.7 To Event MOVU3Common Cause Failure on 480V RMOV Boards 3D and 3E Top Events RK3 and RL3 have been combined to model common cause failures.
The combined top event is called MOVU3. The RMOV boards system model is used to evaluate the unavailabilities of the RMOV boards.
These unavailabilities are used to quantify the conditional split fraction values for Top Events RK3 and RL3.
3.2.1.8 To Event DJ3 120V AC Unit 3 Preferred Power Top Event DJ3 is used to model the Unit 3 120V AC unit preferred AC power subsystem.
The Unit 3 120V AC unit preferred power subsystem is success&1 ifit suppHes power for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
3.2.1.9 To Event UNTPFD3 120V AC Preferred Power Combined To Event Top Events DI (120V AC Unit 1 preferred power) and RJ3 have been combined to model common cause failures and Technical Specifications dependencies.
The combined or intermediate top event is called UNTPFD3.
The 120V AC preferred power system model is used to evaluate the unavailabilities of the 120V AC Unit 1 and Unit 3 preferred power.
These unavailabilities are use to quantify'he conditional split fraction values for Top Events DI and DJ3.
3.2.1.10 To Event DN3 120V AC I&C 3A Power System Top Event DN3 is used to model the 120V AC I&C 3A power system.
The 120V AC I&C 3A power system is successful ifit is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
3.2.1.11 To Event DO3 120V AC INC 3B Power S stem Top Event DO3 is used to model the 120V AC I&C 3B power system.
The 120U AC I&C 3B power system is successful ifit is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
3.2.1.12 To Event RB3 RMOV Board 3A Power S stem Top Event RB3.is used to model the 250V RMOV board 3A power system, The 250V RMOV power subsystem is successful ifit is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
The 250V RMOV board 3A is powered by 250V battery board 3.
3.2.1.13 To Event RC3 RMOV Board 3B Power S stem Top Event RC3 is used to model the 250V RMOV board 3B power system.
The 250V RMOV power subsystem is successful ifit is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
The 250V RMOV board 3B is powered by 250V battery board 1.
3.2.1.14 To Event RD3 RMOV Board 3C Power S stem Top Event RD3 is used to model the 250V RMOV board 3C power system.
The 250V RMOV power subsystem is successful ifit is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
The 250V RMOV board 3C is powered by 250V battery board 2.
'.2.2 MODELING OF BATTERYBOARDS 1, 2, AND 3 The models for the battery boards were revised to reflect the transfer of loads Born a battery board when the battery board is removed Rom service for maintenance.
In addition, the model was refined to more realistically treat combinations of maintenance and failures on separate boards.
Another change in the modeling of the battery boards is the elimination of the contribution'to the battery board unavailability due to the extended maintenance outage of a battery board during plant refueling shutdown. It was previously assumed that the battery board can be removed &om service for maintenance purpose for a duration equal to about 25% of the refueling outage time. This extended outage duration of a battery board is not permitted by the plant Technical Specifications and models were updated to reflect actual plant practices..
The availability of battery boards 1, 2, and 3 is represented in the plant model by Top Events DE, DH, and DG, respectively, found in the electric power support event tree ELECT12.
The order of the top events questioned in the event tree is DH, DE, and DG.
The reason for questioning the top events in this order is that the plant model assumes the shifting of the loads of battery board 1 (Top Event DE) or 3 (Top Event DG) to battery
board 2 (Top Event DH) whenever battery board 1 or 3 is removed from service for maintenance purposes.
To ensure a contribution from simultaneous maintenance of more than one battery board to the unavailability of two or more of the battery boards does not occur, an intermediate top event fault tree model representing all three battery boards was constructed using the existing individual battery board fault tree models.
Only top event alignments for the removal of one of the battery boards for maintenance were defined.
This top event model, therefore, determines the unavailability of two battery boards due to hardware failure of both battery boards, and hardware failure of one battery board and maintenance of the second battery board.
The model also determines the unavailability of three battery boards due to hardware failure of two of the battery boards and maintenance of the third battery board.
In addition, the intermediate top event also determines the unavailability of an individual battery board due to all causes.
The conditional split fractions for Top Events DE, DH, and DG are defined in terms of the unavailabilities or split fractions for battery boards 1, 2, and 3 evaluated from the intermediate top event model.
These split fractions are used in the plant model quantification for event sequences in which battery board 2 (Top Event DH) is determined to be unavailable.
To model the shiNng of the loads &om battery board 1 or 3 to battery board 2 when the battery board 1 or 3 is taken out of service for maintenance
- purposes, a new set of intermediate and conditional split fractions for Top Events DE and DG were defined.
The new split &actions or unavailabilities do not contain any contributions &om maintenance activities for battery boards land 3. Only contributions &om hardware failures are included in these new'split &actions.
The split fractions are used in the plant model quantification for event sequences in which battery board 2 is available.
This implies that when battery board 2 is available, battery boards 1 and 3 can only be unavailable due to hardware failures.
Maintenance of battery board 1 or 3 does not contribute to the unavailability of Top Event DE or DG for event sequences in which battery board 2 {Top Event DH) is available due to the shifting of the loads &om the battery board 1 or 3 to battery board 2. However, for event sequences in which battery board 1 is not available, then maintenance contributions to the unavailability of battery boards 2 and/or 3 are included.
Table 3-1 (Page 1 of 2). Top Events in Tree ELECT12 as Found in the Unit 2 PSA Top Event OGS OG16 500-kV Offsite Grid 161-kV Offsite Grid Description OUB UB41A UB41B UB42A UB42B SHUT1 SHUT2 FA FD GD
'B GB FC ODSB EPR30 DGC RQ RM DA DE Operator Restores Power to Unit Boards 4-kV Unit Board 1A 4-kV Unit Board 1B 4-kV Unit Board 2A 4-kV Unit Board 2B Shutdown Bus 1
Shutdown Bus 2 Fuel Oil System for Diesel Generator A Diesel Generator A Fuel Oil for Diesel Generator D Diesel Generator D
. Fuel Oil System for Diesel Generator B Diesel Generator B Fuel Oil System for Diesel Generator C Operator Aligns Power to Diesel Auxiliary Board for Diesel Generator C Diesel Generator C Recovery Offsite Power in 30 Minutes Common Cause Coupling of Units 1 and 2 and Unit 3 Diesel Generators 4-kV Shutdown Board A 480V Shutdown Board 1A 480V RMOV Board 1A Power 480V Diesel Auxiliary Board A Power 250V DC Control Power for 4-kV Shutdown Board A and 480 Shutdown Board lA Battery Board 1
Table 3-1 (Page 2 of 2). Top Events in Tree ELECT12 as Found in the Unit 2 PSA Top Event RD 250V RMOV 2C Description AB RS DC DH 4-kV Shutdown Board B 480V Shutdown Board 2A 480V RMOV Board 2A Power 250V DC Control Power for 4-kV Shutdown Board B and 480V Shutdown Board 2A Battery Board 2 UB42C 4-kV Unit Board 2C Power 250V RMOV Board 2A DI DK AC DB DL DD DO 120V AC Unit I Preferred Power 120V RPS Bus "A" 4-kV Shutdown Board C 480V Shutdown Board IB 480V RMOV Board IB Power..
250V Control Power for Shutdown Board C and 480V Shutdown Board IB 4-kV Shutdown Board D 480V Shutdown Board 2B 480V RMOV Board 2D Power 480V RMOV Board 2E Power 480V RMOV Board 2B Power 480V RMOV Board 2C Power 480V Diesel Auxiliary Board B Power 120V RPS Bus "B" 250V DC Control Power for Shutdown Board D and 480V Shutdown Board 2B 120V I&C Bus "2B"
Table 3-2. Top Events in Tree ELECT3 as Found in the Unit 2 PSA Top Event UB43A 4-kV Unit Board'3A UB43B 4-kV Unit Board 3B Description FE Fuel Oil System for,Diesel Generator 3A Diesel Generator 3A A3EA 4-kV Shutdown Board 3EA and 480V Shutdown Board 3A Power 480V Shutdown Board 3A RO DG DF DJ DN RC 480V Diesel Auxiliary Board 3EA Power Battery Board 3 250V DC Control Power for 4-kV Shutdown Board 3EB 120V AC Unit 2 Preferred Power 120V INC Bus "2A" 250V RMOV Board 2B Fuel Oil System for Diesel Generator 3C Diesel Generator 3C A3EC 4-kV Shutdown Board 3EC and 480V Shutdown Board 3B Fuel Oil System for Diesel Generator 3B GF Diesel Generator 3B A3EB 4-kV Shutdown Board 3EB RY FH GH 480V Shutdown Board 3B 480V Diesel Auxiliary Board 3EB Power Fuel Oil for Diesel Generator 3D Diesel Generator 3D A3ED 4-kV Shutdown Board 3ED SDREC Shutdown Board Recovery CPREC 250V DC Division II Control Power Recovery UBREC Backfeed "B" Unit Boards for Shutdown Boards OX Operator Recovery Actions
Table 3-3. Top Events in Tree ELECT3 as Used in this Study Top Event OG5 OG16 500-kY Offsite Power Grid 161-kY Offsite Power Grid Description OUB Operator Restores Power to Unit Boards UB43A 4-kV Unit Board 3A UB43B 4-kV Unit Board 3B FE GE FG GF FH ODSB GH Fuel Oil System for Diesel Generator 3A Diesel Generator 3A Fuel Oil System for Diesel Generator 3C Diesel Generator 3C Fuel Oil System for Diesel. Generator 3B Diesel Generator 3B Fuel Oil System for Diesel Generator 3D Operator Aligns Power to Diesel AuxiliaryBoard for Diesel Generator 3D Diesel Generator 3D EPR30 Recover Offsite Power by 30 Minutes DGC Possibility of Global Common Cause Failure of DGS A3EA 4-kV Shutdown Board 3EA and 480V Shutdown Board 3A Power 480V Shutdown Board 3A 480V Diesel AuxiliaryBoard 3EA Power DF 250V DC Control Power for 4-kV Shutdown Board 3EB A3EC 4-kV Shutdown Board 3EC and 480V Shutdown Board 3B A3EB 4-kV Shutdown Board 3EB RY 480V Shutdown Board 3B 480V Diesel Auxiliary Board 3EB Power A3ED 4-kV Shutdown Board 3ED
Table 3-4 (Page 1 of 2). Top Events in Tree ELECT12 as Used in this Study Top Event UB4IA 4-kV Unit Board IA UB41B 4-kV Unit Board 1B UB42A 4-kV Unit Board 2A UB42B 4-kV Unit Board 2B SHUTI Shutdown Bus I SHUT2 Shutdown Bus 2 Description FA GA FD GD FB GB FC Fuel Oil System for Diesel Generator A Diesel Generator A Fuel Oil for Diesel Generator D Diesel Generator D Fuel Oil System for Diesel Generator B Diesel Generator B Fuel Oil System for Diesel Generator C ODSBU3 Operators Recover Cooling to Diesel Generator Room C Diesel Generator C RQ DA DC DH DE 4-kV Shutdown Board A 480V Shutdown Board IA 480V RMOV Board IAPower 480V Diesel Auxiliary Board A Power 250V DC Control Power for 4-kV Shutdown Board A and 480 Shutdown Board IA 4-kV Shutdown Board B 480V Shutdown Board 2A 480V RMOV Board 2A Power 250V DC Control Power for 4-kV Shutdown Board B and 480V Shutdown Board 2A Battery Board 2 Battery Board I
0
Table 3-4 (Page 2 of 2). Top Events in Tree ELECT12 as Used in this Study Top Event DG RC Battery Board 3 250V RMOV Board 2B Description DI DK AC DB RT DL DD SDREC OX 250V RMOV Board 2A 250V RMOV Board 2C 120V AC Unit 1 Preferred Power 120V RPS Bus "A" 4-kV Shutdown Board C 480V Shutdown Board 1B 480V RMOV Board 1B Power 250V Control Power for Shutdown Board C and 480V Shutdown Board 1B 4-kV Shutdown Board D 480V Shutdown Board 2B 480V RMOV Board 2D Power 480V RMOV Board 2E Power 480V RMOV Board 2B Power 480V RMOV Board 2C Power 480V Diesel Auxiliary Board B Power 120V RPS Bus "B" 250V DC Control Power for Shutdown Board D and 480V Shutdown Board 2B Recovery of Power at a 4-kV Shutdown Board Operator Recovery Actions
Table 3-5. Top Events in Tree ELECT3P as Used in this Study Top Event RC3 250V RMOV Board 3A 250V RMOV Board 3B Description RD3 250V RMOV Board 3C UB42C 4-kV Unit Board 2C CBB 4-kV Common Board B UB43C 4-kV Unit Board 3C 480V RMOV Board 3C DO3 120V I&C Bus 3B DN3 120V I&C Bus 3B DJ3 120V Unit 3 Preferred Power RK3 480V RMOV Board 3D RL3 480V RMOV Board 3E
Table 3-6 (Page 1 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree HPGTET Macrosfl'op Events Macros L8FSUP HPISUP RCISUP L8HSUP L8RSUP POWER PWR4 PWR6 Top Events Replace DH RD DJ RC RD RC RB RC RD DE RB RC RD QE RB RC DB DD RB RC DB DD AB UB42A UB42B DH NOGB With DG RD3 DJ3 RC3 RD3 RC3 RX RY RB3 RC3 RD3 DH RB3 RC3 RD3 DH RB3 RC3 DA DF RB3 RC3 DA DF DJ3 UB43A UB43B DG NOGE
Table 3-6 (Page 2 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events BVR IVO IVC SL CD FWC LSF ORF Replace UB42A UB42B RH RI RB RC NOGB NOGD RH RI RB RC NOGB NOGD RS DC RT DD RC RH RI NOGB NOGD UB42A UB42B UB42C DH DJ DN DJ DN NOGB NOGD UB42A UB42B With UB43A UB43B RX RY RB3 RC3 NOGE NOGG RX RY RB3 RC3 NOGE NOGG RX DE RY DG RC3 RX.
RY NOGE NOGG UB43A UB43B UB43C DG D33 DN3 NOGE NOGG UB43A UB43B
Table 3-6 (Page 3 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events HRC EPR6 HPL RCL Replace RC RB RD GA GB GC GD GE GB GA GE With RC3 RB3 RD3 GE GF GG GH GB GE GB GA LLOCAl Maeros CSISUP CSIISUP RPDSUP RPB SUP RPCSUP RPASUP POWER LPCI DA AA DC AB RH DB AC DD AD RI AD DD AC DB AB DC AA DA DE A3EA DF A3EB RX DG A3EC DH A3ED RY A3ED DH A3EC DG A3EB OF A3EA DE RX RY
Table 3-6 (Page 4 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events HXAB HXBB HXCB DV2SUP DV2MIN LOOPIRHR Top Events RXS DV1 Replace RH NOGA RI NOGC NOGG RH NOGB NOGF DD DB DD DB U1 RB RC DB DD AB UB42A UB42B NOGB DH RH RI RC NOGB
'OGD RC RK NOGB NOGD With RX
, NOGA RY NOGC NOGG RX NOGB NOGF DF DA DF DA U2 RB3 RC3 DA DF DJ3 UB43A UB43B NOGE DG RX RY RB3 RC3
'OGE NOGG RB3 RC3 RK3 NOGE NOGG
Table 3-6 (Page 5 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events DV2 RPD HXC U3 With Replace RB RC RK NOGB NOGD RL UB42C RH RC NOGA NOGB RH RC RB NOGB RI NOGC NOGD RH RI RB RC NOGD RH RH NOGA RH NOGB RI NOGC NOGG RH NOGD NOGH Replace by U2 RB3 RC3 RK3 NOGE NOGG RL3 UB43C RX RC3 NOGE NOGF RX RC RB3 NOGF RY RB3 NOGG NOGH RX RY RB3 RC3 NOGH RX RX NOGA RX NOGB RY NOGC NOGG RY NOGD NOGH
Table 3-6 (Page 6 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Ru)es Developed for Unit 2 Event Tree Macros/Top Events OSP SP SPR LPC CS CD Replace Ul RH RC RI RB RH RC RI RB NOGB NOGD RL RK RC UB42A UB42B DH UB42C
%ith U2 RX RC3 RY RB3 RX RC3 RY RB3 NOGF NOGH RL3 RK3 RB3 RC3 UB43A UB43B DG UB43C LPGTET Yl1 Y12 Y21 Macros DA AA GA SHUT1 INIT=LSOOU2 DC AB GB SHUT1 INIT=L500U2 DB AC GC SHUT2 INIT=LSOOU2 DE A3EA GE UB43A INIT=LSOOU3 DF A3EB GF UB43A INIT=LSOOU3 DG A3EC GG UB43B INIT=LSOOU3
Table 3-6 (Page 7 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Y22 RHOK RIOK RBOK RCOK RKOK RLOK RPASUP RPBSUP Replace DD AD GD SHUT2 INIT=LSOOU2 RHOK ABOK AC RH RT RIOK ADOK RBOK RB DH RCOK RC RKOK ABOK RK RLOK ADOK RL RHOK RCOK AC A3EC DB RIOK With DH A3ED GH UB43B INIT=LSOOU3 RXOK A3EBOK A3ECOK A3EAOK RX RY RYOK A3ECOK+
A3EAOK+
A3EBOK RY RX RB3OK RB3 Delete (CPREC Not Credited)
RC3OK Delete (CPREC Not Credited)
RK3OK A3EAOK RK3 RL3OK A3ECOK RL3 RXOK RC3OK ACOK A3ECOK
~ DG RYOK
Table 3-6 (Page 8 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events RPCSUP RPDSUP CRDSUP1 CRDSUP2 Replace ABOK DC RHOK RBOK RCOK ADOK ABED DD RIOK RBOK RCOK UB42C DA With ABOK DF RXOK RB3OK RC3OK ADOK A3EDOK DH RYOK RB3OK RC3OK UB43C A3EA DE CRDSUP3 HXASUP No Changes RXOK AA INIT=LSOOU3 RHOK AA INIT=LSOOU2 HXBSUP HXCSUP LPCI RIOK AC A3EC INIT=LSOOU2 RHOK AB INIT=LSOOU2 RIOK AD A3ED INIT=LSOOU2 RKOK RLOK RYOK AC A3EC INIT=LSOOU3 RXOK AB INIT=LSOOU3 RYOK AD A3ED IMT=LSOOU3 RK3OK RL30K NPIOK NPIIOK No Changes (No Credit for CPREC)
No Changes (No Credit for CPREC)
Table 3-6 (Page 9 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree SPIISUP HS Top Events I.C JC R480 U3 Macros/Top Events GTLOOPIRHR GTLOOPIIRHR SPISUP Replace Ul U3 RHOK NOGB RIOK NOGD UB42A UB42B UB42C DH DJ DJ RJ NOGA NOGD DJ RH RI AD AB AC U3 With U2 Delete RXOK NOGF RYOK NOGG UB43A UB43B UB43C DG DJ3 DJ3 RJ3 NOGE NOGF DJ3 RX RY A3ECOK A3EAOK A3EBOK U2 U1 RY RIOK A3EA DE A3EB DF RX U3AP RYOK RIOK
'ACOK DB ADOK DD RI U2AP Delete
'Table 3-6 (Page 10 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events LPC CS SP SPR OSP SDC OLP Replace RKOK RLOK NOGB NOGD RHOK RIOK RB RC RCOK RBOK RCOK RBOK U3 U1 RHOK
'RIOK RB DH RC DG RB DH RC DG With RK3OK RL3OK NOGG NOGF RXOK RYOK RB3 RC3 RC3OK RB3OK RC3OK RB3OK Delete U2 RB3 RXOK RYOK RB3 DG RC3 DE RB3 DG RC3 DE LOCACNTiMT RR12 RR11 RR21 Macros U3 U1 U3 U1 U3 U1 U3
. U1 U2 Delete U2 Delete U2 Delete U2 Delete
Table 36 (Page 11 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree PRETREE SIGL Macros/Top Events HEAT HEATL Top Events DWS CIL SGT Macros LSTSUP Top Events MSVC ISO Top Events PX1 PX2 LV Replace U3 U1 U3 Ul RH RI NOGD NOGB DN DH DN DJ RH RI RB RC RI RC RC RC RB RC RB No Changes With U2 Delete U2 Delete RX RY NOGE
- NOGG, DN3 DG DN3 DJ3 RX RY RB3 RC3 ZY'C3 RC3 RC3 RB3 RC3 RB3
Table 3-6 (Page 12 of IS). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree MESUPT CNTMT DCA RR12 Macros RRl 1 HEAT Top Events
- DWS CIL Macros/Top Events Top Events Replace DJ DD RI RS DC RT DB RR DN DO RH RI DN DO U3 Ul U3 Ul U3 UI U3 Ul U3 Ul U3 Ul RH RI NOGD NOGB DN With DJ3 DG RY RX DE RY DB RR DN3 D03 RX RY DN3 DO3 U2 Delete U2 Delete U2 Delete U2 Delete U2 Delete U2 Delete RX RY NOGE NOGG DN3
Table 3-6 (Page 13 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree MacrosfI'op Events SGT Replace No Changes With MLOCA2 Macros HPISUP CSISUP CSIISUP RPDSUP RPB SUP RPCSUP RPASUP POWER RB RC DA AA DC AB RH DB AC DD AD RI AD DD RI RB RC AC
. DB RB AB DC RH RB'C AA DA RC RB3 RC3 DE A3EA DF A3EB RX DG A3EC DH A3ED RY A3ED DH RY RB3 RC3 A3EC DG RB3 A3EB DF RX RB3 RC3 A3EA DE RC3 PWR4 RB RC RD RB3 RC3 RD3
Table 36 (Page 14 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree MacrosfI'op Events PWR6 LPCI Replace RB RC RD With RB3 RC3 RD3 HXAB HXBB HXCB LOOPIRHR Top Events RXS IVC RH NOGA RI NOGC NOGG RH NOGB NOGF Ul RB RC DB DD AB UB42A UB42B NOGB DH RH RI RB RC NOGB NOGD UB42C RH NOGA RH NOGB RX NOGA RY NOGC NOGG RX NOGB NOGF U2 RB3 RC3 DA DF DJ3 UB43A UB43B NOGE DG RX RY RB3 RC3 NOGE NOGG UB43C RX NOGA RX NOGB
Table 3-6 (Page 15 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events HXB HXD Replace RI NOGC NOGG RI NOGD NOGH With RY NOGC NOGG RY NOGD NOGH U3 OSP SP Ul Replace by U2 U2 RX RC3 RY RB3 SPR LPC CS CD RC NOGB NOGD RL RK RB RC UB42A UB42B DH UB42C RX
'C3 RY RB3 NOGF NOGH RL3 RK3 RB3 RC3 UB43A UB43B DG UB43C
~. REFERENCES "Browns Ferry Nuclear Plant Unit 2 Probabilistic Risk Assessment Individual Plant Examination," Revision 0, Rl 1 921007838, September 1992.
2.
"Browns Ferry Multi-UnitProbabilistic Risk Assessment,"
R08 950413896, January 1995.
3.
PLG, Inc., "Browns Ferry Nuclear Plant Unit 2 Probabilistic Safety Assessment with Unit 3 Operating," prepared for Tennessee Valley Authority, PLG-1112, Revision 1, May 1996.
4.
"Browns Ferry Unit 2 Individual Plant Examination Revision 1, Interim Order No. 2,"
R92 950912800, September 1995.
PLG, Inc., "Database for Probabilistic Risk Assessment ofLight Water Nuclear Power Plants," PLG-0500, 1989 {Proprietary).
6.
Sandia National Laboratories, "Analysis of Core Damage Frequency:
Peach Bottom, Unit 2: Internal Event Appendices," Appendix D prepared for U.S. Nuclear Regulatory Commission, NUREG-CR/4550 Volume 4, Revision 1, Part 2 (SAND86-2084), 1989.
APPENDIX A. BROWNS FERRY UNIT 3 PSA UNCERTAINTYANALYSIS The Browns Ferry Unit 3 PSA uncertainty analysis was performed using the group "All" defined in the model BFNU3M. The number of sequences retained in the important sequence file, "ALL.SEQ," was 2,500.
The conditional split fractions in the important sequence files were replaced by the corresponding intermediate split fractions, as listed in Table A-I. The tuSKMAN distribution file, CSF.DRA, was updated, incorporating modifications of top events in several systems.
In addition, several database variables were developed to represent the distributions of several initiators; this is shown in Table A-2.
The total CDF for the Browns Ferry Unit 3 PSA was calculated with the following results:
Mean 5th Percentile Median 95th Percentile 9.13E-06 1.22E-06 3.49E-06 1.97E-05
Table A-1 (Page 1 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in SF Group DH, DE, DG EP System Split Fractions in SF Group
-DHl -DGA
-DH1 -DE1 -DGB
-DGJ
-DE3 - DGK
-DE3 Replace SFs in the Group With
-DXGHS
-DXGH9
-DYGH3
-DYGHS
-DHl
-ED34
-EC12
-EA2
-DXGH1
-EE19
-EE18
-EE16 EPR30, EPR6 MSC
-EPR304 (...) -EPR64
-EPR302 (...) -EPR63
-EPR303 (...) -EPR63
-EPR302 (...) -EPR62
-EPR301 (...) -EPR62
-EPR301 (...) -EPR61
-EPR301
-EPR302
-STA6H4
-STA6H3
-STA6H3
-STA6H2
-STA6H2
-STA6H1
-STA301
-EPR303
-EPR304
<<GE1 -GG2 -GF4 -GH4
-GE1 -GF2 -GH3
-GH1
-GGl -GH2
-GF1 -GH2
-GEl -GH2
-GHS
-STA303
-STA304'DG34
-DG33
-DG31
-DQ32
-DG32
-DG32
-DG31
0
Table A-I (Page 2 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in SF Group GA, GD, GB, GC EP System Split Fractions in SF Group
-GE I -FGI -GFS -GH7
-GG3 -GFS -GH7
-GEl -GG2 (-FFl) -GH7
-GG1 -GF2 -GH3
-GE1 -GG2 -GH3
-GE1 -GF2
-GGl -GF2
-GF1
-GG1 -GG2 -GF4
-GF3
-GG1
-GE1 -GG2
-GG3
-GE1
-GCI
-GA1 -GC2
-GC3
-GC6
-GB1 -GC2
-GA1 -GB2 -GC4
-GA1 -GD2 -GC4
-GD1 -GB2 -GC4
-GAl -FB1 -GCS
-GB3 -GCS
-GA1 -GC2
-GA1 -GB2 Replace SFs in the Group %'ith
-FG 1 -DG33
-DG33
-FH1 -DG33
-DG33
-DG33
-DG32
-DG32
-DG31
-DG33
-DG31
-DG31
-DG32
-DG31
-DG31
-DG1
-DG2
-DG1
-DG1
-DG2
-DG3
-DG3
-DG3
-FBl -DG2
-DG2
-DG2
-DG2
Table A-I (Page 3 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in SF Group HXA, HXC, HXB, HXD NPI, NPII PXI, PX2 System Split Fractions in SF Group
-GBI
-GA1 -GD2 -GB4
-GB3
-GD1 -GB2
-GB6
-GD3 -GBS
-GAI (-FD1) -GBS
-GDI
-GAl -GD2
-GD3
-GA1
-HXAI-HXC2 -HXBS
-HXD7
-HXAI -HXC2 -U22 -HXBS
-HXD7
-HXC3 -HXB4 -HXD6
-HXDI
-HXD9
-HXB6
-HXBI
,-HXCI
-HXC3
-HXAI
-NPII -NPII2
-PX23
-PX11 -PX22 Replace SFs in the Group With
-DGl
-DG3
-DGI
-DG2
-DG1
-DG2
(-FDI) -DG2
-DGI
-DG2
-DGI
-DGI
-HX4
-U22 -HX4
-HXI
-HXI
-HXI
-HXI
-HXI
-HXI
-HXI
-NP2
-PXI
-PXII
Table A-1 (Page 4 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in SF Group RCI, HPI RCL, HPL System RCIC/HPCI RCIC/HPCI Split Fractions in SF Group
-HFI6
-HPI1
-HPI2
-HPI4
-RCI1
-RCLl -HPL3
-HPL5
-HPL3
-RCL1 Replace SFs in the Group With
-HRSHP1
-HRSHP2
-HRSHPl
-HRSSYl
-HRSRC1
-HRXSYl
-HRXHP1
-HRXSY1
-HIUQ<C1 RPA, RPC, RPB, RPD
-RPA1 -RPC2 -RPB3 -RPD4
-RPX4
-RPA1 -RPC2 -RPD10
-RPBS -RPD9
-RPB1 -RPD2
-RPA1 -RPD9
-RPD9
-RPA1 -RPB6 -RPD10
-RPC3 -RPB6 -RPD10
'RPB6
-RPD10
-RPX3
-RPX2AC
-RPX2AC
-RPX2AC
-RPX1
-RPX3
-RPX2AC
-RPA1 -RPC2 (-HXI)-RPD3
(-HX1) -RPX3
-RPA1 -RPC2 -RPD3
-RPD1
-RPD8
-RPC1 -RPD9
-RPC1 -PRD2
-RPA1 -.RPD2
-RPX1
-RPX1
-RPX2AC
-RPX2AC
-RPX2AC
Table A-1 (Page 5 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in SF Group SW2A, SWIA, SW2C, SWIC S.W2B, SWIB, SW2D, SWID System RHRSW Split Fractions in SF Group
-RPA I -RPC2 -U22 -RPB3
-RPD4
-RPD6
-RPC I -RPB2 -RPD3
-RPB4 -RPD7
-RPA1 -RPD10
-RPA1 -RPC2 -U22 -RPD10
-RPCI -HXI -RPD2
-RPB6
-RPBI
-RPBS
-RPAI -RPC2
-RPC3
-RPCI
-RPAI
-SWICI
-SW1C7
-SW2CI
-.SWIAI
-SW2A1
-SW2BI -SWIB2 -SW2D4
-SWID6
-SWID7
-SW1D14
-SWID16
-SW1D17
-SWID11
. Replace SFs in the Group With
-U22 -RPX4
-RPXI
-RPX3
-RPX2AC
-RPX2AC
-U22 -RPX3
-HXI -RPX2AC
-RPXI
-RPX1
-RPXI
-RPX2AC
-RPXI
-RPXI
-RPXI
-NA
-NA
-SABCD
-SB
-SB
-SB
-SB
-SB
Table A-1 (Page 6 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in SF Group DJ3 Initiator System EPS EPS EPS RBCCW Split Fractions in SF Group
-SW2D1 -SW ID2
-SW1D1
-SW2D I
-SW2D6
-SW2D7
-SW2D5
-SW1B3
-SWIB1
-SW2B1 -SW1B2
-SW2B1
-DJ31
-RK33
-RL36 LRBCCW Replace SFs in the Group With
-SAC
-SB
-SA
-SA
-SA
-SA
-SB
-SB
-SAC
-SA
-PRElA
-MOV1B
-MOV1B RBCIE
Table A-2. Database Variables Representing Distribution of Initiating Events (Lognormal)
DPD Variable HS2 HS3 HS4 HS5 HS6 HS7 Mean 0,085 0.057 0.3 0.126 0.142 0.09 Range Factor 2.5 3.5 Initiating Events LOCV PLOC PLFW CIV LOFW LOPA LOSP LSOOPA
AppENMX B. I,ISTING OF TOP 100 SK UKNCES Figure B-l presents a listing of the top 100 sequences for the Unit 3 PSA model.
NODEL Naae>
BFNU)H Top.Ranklnl Ee>)uencaa Contrlbutlnl to Group
> ALL Frequency 1LL 0 QJ DAN)JJE SZLTlS EXCEPT SUCCESS 15>53:)0 20 NAY 1996 Rank No.
SeOuence Daacrlptlon Eoenta Cua rant cad Event a/Coen>ent e End Fre>)uency I'ercent State Iper year)
I
'1URBINE TRZP AQIONATIC/NLHUALREACTOR SCRAM FAILURE CONDZTIOHS RELATINO TO STUCK OPEN ERVS (0>
1>
1 ~
30 SORTS)
STATE 1 RELZEt VALVE SZQCX OPEN
- OPERATOR tAILS TO CONTROL L'tl DQRIN) A)MS 000000000$ 000$ 0000000000000000000000000 00 000000 0000 000$ 0000 000$
2 TURBINE TRIP AQIONATIC/MANUALRRACIOR SCEAN PAILUll OPERATOR tAILS 'ZQ STARt ELC 0$ ~ 00000000000I0000000000000000000000000000000000000000000000000000000 TURBINE TRIP AQIONATIC/MANUALRELCIOR SCEAJI FAILURE ETANDbY LIQUID CONIROl SYSTEM WAVAILLBLR CONDZTIONS RELLTZNO TO ETQCK OPII SRVS
)0>
1 ~
2> 30 SokVS)
STATE 0 RELIlt VALVES EIQCX OPEN eoeeoee000000000000000000000000000000000000000000000000000000000aossos IAJEE Ot RAM CODLING MATER CONDITIONS RELATZHO TQ STUCK OPEN SRVS IO I, 2, )o SORTS)
STATE 1 RlLIRt VALVl STUCK OPEN RHR PUMP A WAVAIL1BLE RHR tUNt C QNAVAILABLR RHR PIBIP $ UNAVAIQBLR RHR PWP D UNAVAIIAbLR 0000 ~ 00000 ~ 000 ~ 0000$ 00000000000000000000000000000000000000000000000000 5
TOTAL IJJSE Ot OttSITE POHER DO )A UNAVAIQBILITT DO )C UNAVAILASLE DO )$ NAVAIQBLS DO ID WAVAIQBLE
- RECOVER OttSITE POMER BT 30 NINQIRS POSSI ~ILITY OF GLOBAL COIENN CAIJSR FAILURE Ot DGS CONDITIONS REQTZ)a) TO SZQCK OPEN ERVS IO> I~
2> 30 SORVS)
STATE 0 RELIlF VALVES STUCK O'EN
- tAILUAE TO RECOVER ELRCIRIC BONER )N C HDQRS
- VESSEL INJECTION MITH CADRE WAVAILABLR RPV DEPRESSOR IEAT)OH RAN COOLIIK) MATER SZETEN WAVAIL1$LR NLZN COHDEHElR WAVAILLBLR
- 1 CND/CHD REYR PWP>
INCLQDEE SHORt CYCLE VALVR WA VREEEL INJRCZZON MITH CADRE WAVAILABLE UNIT 2 TO WIT 3 CROSS CONNECT WAVAIQBLE OPERATOR FAILS TO RET1BLIEN 'IORUE COOLING RHR LOM PRESSURE INJECTION PAIN UNAVAILABLE
~0000000000000000000000 OOOO
$00000000000
~I OOOO 500IV OttSITR POHRR 011D 141KV OttS ITS POMlR GRID OPERATOR FAILS TO RESTORE FOMER 'ZQ UNIT BOARDS ilVWIT bD )1 WAVAILLBLR 4EV UJIIT ED 3$ WAVAILABLR iKV ED SD 311 AND 410V ED BD )L POHER WAVAILABLR 410V EHQIZOMN BOARD 31 41PV DIESEL AUX BD 3R1 POH1R WAVAIQBLR
~lV ED BD )RC AND 410V ED BD 3b UNAVAILABLE 4KV ED BD )lb WLVAILLSLE
- 410V ENUIDONH BOARD )$
410V DIESEL AUX SD 3lb PONER UNAVAIQBLE
- 4KV ED BD )ED QJQVAZLABLR 4KV WIT BD ZA WAVAIlABLE 4KV UNIT BD 1$ QNAVLIQBLR 4KV WIT BD 21 WAVAIQBLE 4KV UNIT SD 2$ WAVAIQBLE SRQZDONN BUS 1 WAVAZQBLR SHQIDOMN BQS 2 WAVAILASLS DO 1 WAVAIQBLH DO D WLVAIQBLE DO $ UNAVAILABLE DO C WAVLILASLR 4KV SD ED A WLVAIZABLE 410V SHQZDOMN BOARD 11 410V RJE)V SD )A POMER UNLVAILLBLR 410V DIESEL AQX. BD A POMER QNAVAZIABLE 4KV ED BD ~ UNAVAILABLE 410V SHQIOOHN BOARD 11 410V RNOV SD )L BONER UJILVAIIABLR 120 V RPS SUS 010 WAVAZQBLR 4KV lD SD C WAVAILLBLS
~ EOV SHQIUOHH BOARD 1$
410V R)E)V SD 1$
POMER UNAV11LABLE 4KV SD bD D UNAVAIQBLR 410V EHUIDONN SCAlD 2$
410V RNOV BD )D POMER QJIAVAILABLR
~ ~ OV ENOV BD 2$ BONER WAVAILABLR 440V ENOV BD 2$ PONER WAVAIQBLE
- 410V kHOV BD )C POMER WAVAZQBLS 410V DIESEL AUX SD $ POMER UHAV1ILABLR VAILABL OIAV I.OIE.O7 I 10 NZCV
~ 0 ~
~
~
~ 0 ~
7 52$ oa PIGV 4.49E ~ Oa
.25 PIGX C. ~ 2'8
.25 Nllv 2.25$ boa
.29 Figure B-1 (Page 1 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model
HODSL Naoec BFNU)H Top-Rank(nt Sequences contr(buc(nt to Oroup c ALL trequency ALLI ALL DAN)OS CTATSC RZCSPT CQCCECC lS:53 )0 20 HAY )994 kacuc No.
Sequence Descrlpclon Ruencs
~
Ouarantea4 Svancs/Coa>>>>ance Cno Scare Frequency Percenc (per year) 120 V RPS bUS ob>> WAVAILlBLC i RV UNIT BOARD 2C 4 tv Coe(ON boARD b 4 RV WIT BOARD )C 440 V RHOV BOARD )C 120 V ISC BUC 3$
120 V 14C SUC 3$
F 40 V RHOV BOARD )D 440 V lHOV BOARD 3t RAM COOLINO MATRR SYCTSH WAVAILABLS ttCN PWP A UNAVllLABLS SCCN tUHP S UNAVAIIABLS RtCN PWP C WAVAILABLR SSCN FUHP D UHAVAZLABLR RX SUIIDINO COHPOMCNT COOL)M) NATCR CYSTRH WAVAZLABLS RRRCM PNO 12 UÃAVAILAbLR RtlCN PWt 11 (CNIla) tQNPI UNAVAILABLt RMRCM PWt b) WAVAZIABLR RNRCN FWP $1 IBM)NO PUMP) UNAVAILABLR RNRCM PWP C) WAVAIIABLC RNACM PWP Cl (CMI(a) PWPI UMAVAILABLR RMRCM PWP 02 WAVAIIABLC RNRCM PWF Dl (CMIIa) PWPI UNAVAILABLR PliÃT CONTROL AIR SICTNI WAVAIIABLS DRYMCLL CONTROL ilk SYSTNI WAVAIlABLt CONTAINKCNT ATHOCPMRRZC DILUTION OPRBAIOR PAILS TO RCCOVCR CCCN (START Su(NO PUHPI HSIVC PAIL TO RSHAIN OPSN 1 00)/CMD SSTR PWt, INCLUDSS CBORT CYCLC VALVS NIAVAILABL RCIC WAVAILlSLRLONO TRBH RPCI UÃAVAIIABLRLONO TSRH VSCCSL IN)CCTION NZTN CRUMB WAVAILABLR OPRRATOR tl)LS TO MANUALLYCTART RNR/CORC SPRAY.
tAIMRS TQ RSCOVRR ilOV RHOV BDC 2l OR 2$
RRR PWP l UNAVAILlBLt Rtl PWt C QNAVAILABLS QÃIT 2 TO UNIT 3 CROSS CONNSCT WAVAILABLR RRR PWP S WAVAILABLR RRR PWP D QÃAVAILABLt OPRRAZQR tAILS TO SCTASIZCN TORUS COOLINO RRR LON PRSCCURS
)14)SCTIOM PAIN WAVAIIABLS 00000000000000000000000000S000000000000000
~ 00 00 ~
0
~
L't AT CYCLR VALVC UNAVAILABL ILlBLt Iesesoesoaosoeosoeoeseeoooososoee00000000000000000000 0000 IS00000000000000
~
5001V OttCITR PONCR ORID
)CIRV OttS ITS POMRR OllD OPCRAIOR Fl)LS TO RSCIORC POMRR ZQ WIT BOARDS iRV UNIT BD )l WAVAZLASLS iCV WIT SD 3$ UNAVAZLABLt iIV CD SD )SD WAVAZLABLR itV QÃIT BD )A UNAVAILlBLR itV UNIT BD 1$ WAVAIIABLR itV WIT BD 1'A WAVAILABLS ilVWIT BD 2$ WAVAZIABLS CMQIQOMII RQC I UÃAVAIIABLS 0
LOCC OF kAN COOL)NO NATtk RAM COOLIN) MATCR CYCTSH WAVAZLAB CONDITIONS RSLATINO TO CIQCR OPSN CRVC (0 ~ I ~
2 ~ 3>>
CORVS)
HAIN CCBOSNCRR UklVAILlbLR STATS
~ 0 PSLltt VALVRS CZUCR OPII 1 CND/CND SCTR PWP>>
INCMQCS CMO RCIC UNAVAILABLE (C BOURS)
VSCCRL ZNICCTION Mill(CRDRC WAVA NPCI WAVAILABLSli MOORS)
Rpv pcpktcccklrATION eeesseseaaaosoaosa>>000000000000000000000a0000000000000
~ I 00 eeaa000000000000000 00000000000 00000000
~
CLOCUCS Ot ALL HCIVC HCIVS tilLTO RSNAIN OPSN AUTOMATIC/IAMLM.kSACIOR CCRAH FAZMRR RPV DttkRSCUllIATION OPCRATOA Pi(LS TO START SLC 000000aoIooso000os>>I0000000s00000I00o000000000000s0000000000000000000000000000000o0000000000000 000
~00 TOTAL LOSS OF OPFCITS POMCR DQ )U UNAVAILABLt BBCOVRR OFFCITS POMCR BY )0 HINUIRC
- DO A WAVAILABLR DO D WAVAIIABLR DO $ UNAVAZLABLS CONDITIONS lt(ATINO TQ CIQCK Oi'1Ã CRVS (0>> I ~ 2
)>> CORVC)
STATS 0 RSIISF VALVSC CTUCR OPCN FAIMas TO Bccoutk CLsclllC PONSR IN C NOQRB HIAV ST 94t-04
.SC PLFX i.9)t ~ 04
.Si HKCV S.iCC 04
.40 Figure 8-1 (Page 2 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HODCL Nenes BPMU)H Top-Ranklnt Sequence>>
Conrr)buc)nt Co Qroup s ALL trequency ALL a ALL DA)NOR CTATCS CZCttT CUCCtCS ISLS):30 10 HAT 3996 lank Ho Sequence De>>or)pc)on
--- - ----lvenra--------~------
Ouaranreed RVente/Coecnentn tnd trequency
)arcane State lper year)
CHUIDONN BU$ 2 WAVAIL1BLC D2 C WAVAIIASLH 4KV CD SD A QMAVAILASLS
~ CDV CHUIDONM BOARD IA ilOV RHOV SD IA PONCR WAVAILABLC 4IOV DICCIL AUZ. BD A PONIR UMAVAILABLI 4KV CD BD B WAVAILASLC ilOV CHUIDONM SOAlD 21
~ 10V RHOV BD 21 PONCR UMAVAILABLC I'10 V RPS BUC $A$ WAVAILABLI 4KV CD BD C WAVAILACLC ilOV CHUIDONN BOARD IB 410V tHOV BD IS PONCR UMAVAILABLI 4KV CD BD D UMAV11LACLS
~ IOV CHUIDONN BOAlD lb 4lOV R)N)V SD 1D PONCR WAVAILABLC CCOV RHOV BD 2I PONCR UNAVAILACL'I ilOV RHOV SD 1S PONtl UMAVAILABLC ilOV RHOV SD 1C PONCR UMAVAILABLC ilOV DICCCL AUZ SD b PONIR UNAVAILABLI 110 V RPS BUS 'Ba UNAVAILABLI 4 KV UNIT BOARD 2C 4 KV a>>CKW BOARD B 4 KV UNIT BOllD IC RAH COOL)MD NATIR SICTIH WAVAILABLI RICN PWP b WAVAILABLH RHRCN PtNP 11 QNAVAILASLI IHRSN PtÃP 11
)CHINO PWP)
WAVAIIABLC R)NCN PUMP bl UMAVAILABLS RHRCN PWP C2 UMAVAILABLS RHRCN PWP Cl ICNINO PWP)
WAVAILABLC RHRCM PWP Dl QNAV1ILASLC RHRCN PWP Dl ICMINO PUHP)
UNAVAILABLS
'PLANT CONIROL lllSICTIH UNAVAILABLI DRIMCLL CONIIOL AIR CICTCH UMAV1ILABLS HCIVS tAILTO RIHAIM OPIM I CND/CND SCIL POrt, INCLUDCC CHORT CYCLC VALVC UNAVAILASL RCIC WAVAILABLSLONO TSRN RPCI WAVAIIABLSIr)N) TtlOI VCCCCL IHJCCTION NITS CRDHC UMAVAIIABLt RHR SCAT IZCHA)r)CR A UNAVAILACLS RHR BIAT SZCHAN)IR C WAVAIIABLS UNIT 2 '10 UNIT 3 CROCC CONNICT UMAVAILABLt RHR PWP D WAVAILABII RHR INAT CZCHA)a)CR D UMAVAILAbLI OPIRATOR PAILS TO SCTABLICH TOADS COOLIMO OPCRATOR PAILS TO 'CCTASLICH SHUIDONN COOLING
~$ $$ $ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $$0$ $ $ $ $ $ $ $ $
~
a HCIVC PAIL TO RCHAIN Ottl RPN HARDNARS WAVAILABLC OPIIATOR tAILC TO INHIBITCLOCURC Ot HCIVS ON LSVCL
~ $ 0$ 0 ~ $ $ ~ $ ~
$ $ $ $ $ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ $ $ ~ $ $ $ $$ $ $ $ $ ~
~
$ $ $ $ ~ $ $ $ $ $$ $ $ $
CI4$URC Ot ALL HCIVC
- CONDITIONS RILATI)KITO STUCK OPIN CRVS )0 ~
CTATR 0 RILltt VALVIC STUCK O'PRN RCIC WAVAILABLIlC HOURC)
- HPCI WAVAILABLR lC HOUlt)
RPV OttltSCURIIATION VCCCCL I)r)CCTIOM NITN CADHC WAVAILABLH
$ $ $ $ ~ $ $ $ ~ $
$ $ $ $\\$ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ $ $$ $ $$ $ $ $ $ $$$ $$ $
10 TOTAL tr)$$ 0't Ottt)TI PONCR DC IC UNAV11LABLC
- RCCOVCR CPPCITC PONIR ST 30 HIMUICS DO 1 UMAVAILABLC DO D UHAVAILABLS DO b WAVAILABLI CONDITIONS RILATINO TO CIQCK OPIN SRVS lo, STATS
~ 0 ltlltt VALVCC CTQCK OPIM 1,
2g Ie CORVS)
$00IV Otttlyt PONII ORID 161KV OttCITS PONCR ORID OPIRA'IOR tAILt TQ RCCIORI PUNIC TO WIT BOARDS iKV WIT Ã3 IA WAVAIIABIH iKV UNIT BD 3$ WAVAILABLI
- iKV CD BD ltc A)O 4$ OV CD BD )B WAVAILABLI ilOV CHUIDONN BOARD IB ilOV DltCCL 1UZ BD ltt PONCR WAVAILABLC I, 2, le CORVC)
$ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $
~ $ $ $ $ $ $ $ $ $ $ $ ~ $ ~ $ ~ $
~ $ ~ $ ~
~ aa
~
a ~
HIAV PLPX i.lit~ 0$
.S)
~
~
~
a ~ a
~
4.1)C ~ Ol
. $ 1 Figure 8-1 (Page 3 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model
HODEL Mane>
SFNV3H Top-Rank(os Sequences conrriburtnc ro croup
> ALL Frequency ALL ALL DAHRDE CTXTEC EXCEPT SUCCESS IS>53>30 20 HAY 1334 Rank Ho.
sequence Descrtprlon
-- -----~------Rvents---------------
Ouaranteed Events/Co<<v<<ants End scare Frequency Percenr (per year)
~ FAILURE TO RECOVER RLECZRIC POMER IN C HOURS
~ $
~ $
$ $ ~ $
~
~
~ $
~ $
11 TOTAL LOSS Ot OttCITR PONCE CONDITIOHC RCLATIW TO STUCK OPEN CRVS (0>
1>
2>
3<<CORYC)
STATE 0 RELIEF VALVES CIVCK OPNI RCIC INAVAILABLR(C HOURS)
HPCI WAVAILABLE (C HOURS)
RPV DEPRESSINIZATION 4KV UNIT BD 1A WAVAILABLE 4KV WIT RD 1$ WAVAILABLE 4KV WIT SD 1A WAVAILRSLE 4KV UNIT BD 1$ UNAYAILAbLE CHUIDOMN bVB 1 UNAV11LABLR CHQIIOMH bUC 2 UÃAVAILABLR DO C QNAV11LABLR iKV CD BD 1 WAVAILASLE iloV NIVIUOMÃBOARD 1A 4IOV RHOV $0 31 POMER WAVAILABLE ilOV DIESEL AUK. SD 1 POMER WAYAILABE 4KV CD BD b UNAVAILABLR ilOV CHVIDOMM BOARD 1A 4IOV RHOV BD 2A POMER UNAVAILABLE 120 V RPS SQC <<A>> UNAVAILABLR
~KV CD N3 C WAVAIIABLE ilOV CHVIDONN hOARD 1$
ilOV NKIV ED Ib tONER WAVAILABLC 4KY CD BD D INAVAILABLR ilOV CHVIIONN BOARD 2$
ilOV RHOV SD 2D PONCE UNAVAIIABLE
~ lOV RHOV BD 2E KNER UNAVAILABLE ilOV RHSV BD 2b POMER UNAVAILABLE 410V RHOV BD 2C POMER WAVAILABLE
~ lOV DIESEL AVE BD b POMER UNAVAILABLE 110 V RPS BUC <> WAVAILABLR KV UNIT bOARD 2C 4 Kv ccees)M
$0ARD $
~ KV WIT BOARD IC 410 V RHOV BOARD 3C 110 V IaC bQC lb RAM COOL'tNO MATER CICTRH VNAVAIIABLE EECN PWP b INAVAILABLR RK bQIIDIW COHPONENT COOLINO MATER SYCTEH UNAVAILABLE RHRCM PINS A2 VHAYAIIABLS NICM PWP 11 (CMIIKI PWP)
INAYAILABLE RHRCN PIRO $2 UNAVAILABLR RHRCM PINP $ 1 (SNINO PWP)
WAVAILABLE.
RHRCN PINP Cl UÃAYAILABLE RHRCM PWP Cl (CMIW t(NP)
UNAVAILABLE RHRCM PWP D2 UÃAVAILASLR FIANT CONTROL AIR CICTEH WAYAILABLE DRTMRLL CCSIIROL AIR CICTNI UNAVAILABLE HSIVS FAII 'IO REMAIN OPII 1 CHD/CND SCTR PWP>
INCLUDEC SHORT CICLE VALVE UNAYAILABL RCIC INAVRILABLR LONO TERN HPCI INAYAILASLELOW TERN VECCEL INIECTION NITS CEDHC UNAYAILABL' RHR HEAT EKCHAWER A UNAV1ILASLE RHR HEAT EXCHAWER C WAVAILASLR UNIT '2 TO UNIT 3 CROSS CONNECT WAYAILABLE RHR PQHt $ WAVAILABLE OPERATOR tAILS TO EBTABLICIITORUS COOLIW OPRRAIOR tAILS TO ESTABLISH CHVIDONN COOLINO
~
~
~ $ ~ $ ~
$ 00KV OPFSITS POMER CRID lilKVOtFCITR PONER CAID OPEEAIOE FAILC TO RECIORE POMER TO WIT BOARDS 4KV UNIT hD 31 INAVAIL1BLE 4KV UNI'T BD lb WAVAIIABLR 4KV UNIT BD IA WAYAILABLR 4KV WIT BD lb UHAVAIIABLR 4KV UNIT BD 21 Ul&VAILABLE (NIT N3 2b WAVAIIABLR HIAV 4.CSE ol
.53 Figure B-1 (Page 4 of 24).'op 100 Sequences in Browns Ferry Unit 3 PSA Model
HODEL Kana>
bPNU)H Top-Rank)os Eequencae concrlbuctnE co oroup:
ALL trequency ALI 0 ILL DA)OOE STATES EXCEPT SUCCESS 35>53:30 10 lOY 399&
Rane No, Sequence Deacrtpclon
--hrance---------------
Cuaranceed Prance/Cconaenca End FrequenCy PerCent Scare fper year) 4 KV NIT MARD )C 4 KV Crea)ON BOARD b 4 Kv UNIT MARD )C RAN COOLINO HATER EYETEH UNAVAILABLE HSIVS tiILTO RDOIN Ot)N 1 CND/CND BSTR PWPe INCLUDES SHORT CYCLE VALVE UNAVAILIBL VESSEL IN)ECTION NIT)I CRDltl UNAVAILABLE
~ 00 000000000000$ 00000000000000
~ 00000000000 ~
~ 0 ~ 00
~ OOOO ~ 0 ~ 0 ~ 0 ~ 0 ~
~ ~ ~ ~ 0 ~ 0
~
~
~ ~ ~ ~
HJAE 4.&3E ~ 04
.51
~ 0 0
~ 0 ~
~
~
~
~
~
~
PLPX 4.54E ~Ol
.50 4KV UNIT SD 2$ NAVAILISLR EHUIDONN bUS 1 NAVIILlbLX EHQIDONN SUS 2 IDOVAILABIX DO C NIVIILABLX elv ED BD I NAVIIIASIX
&lov SHUIDONN MARDli 4lOV RHOV BD IA POKER tlNAVAILABLX 410V DIESEL AUX. BD A POKER WAVAILABIX
&EV SD BD 'b UNAVAIIABLX 410V EHUIDOHN MARD 2A 410V RKOV BD 21 POKER NAVAILABLX 110 V RPE SUE 010 NIVIIIIBIX
- 4KV ED BD C WAVAILASLX 4IOV EHUIDOHN MIRD I'b 4IOV RHOV BD lb POKER tBOVAIIABLR 4KV ED BD DIVIILABIX 4IOV SHUIDONN MARD 2$
410V RHOV BD )D POKER UNAVAILIBLR 410V RHOV BD )S POKER NAVAILABLX 4IOV RHOV BD 2$ PONIR NIVIILABLR
&lOV EHOV BD )C POKER NAVIILASLS 410V DIESEL AUE SD b POKER NAVAILABLX I'10 V RPS BUS <<Bo WAVIILABLR 4 KV NIT BOARD )C 4 KV CC40NN NARD b 4 KV UNIT BOARD )C RAN COOLINO NITER SYETNt WAVAIIABIX RECK ttWP S NIVIIIIBIX EECN PWP C U)OVAILABLS SECN PIWP D UNIVIILABIX RX BUIIDI)a) CCHPONENT COOLI)r) NITER EYSTEH UNAVAILkBLE
- SHEEN Ptttt 12 NIVAILIBLX NOES PIWP 11 ISNINO PIBO) UlOVAIIIBLE R)OSN PUKP $2 UNAVAIIABLE RHREN Pt)tt C) IBOVAIMILR RHRSN PIWP Cl IENINO tUKt) UNAVAILABLX RHREN PUKP D) NAVIILABLX PLANT CONIROL IIR SYETEH tWAVAILABLS DRYNELL CONTROL AIR SYSTEH NIVAILABLE HEIVS PAII TO RDOIN OPEN 1 CND/CND bEIlt PIWP, INCLUDES SHORT CYCLE VALVE UNAVAILABI, RCIC UNIVAILABLRLCWO TEAK HPCI WIVAILAbLSI/)NO TERN VESSEL INIECTICH KITH CRDHS UNAVAILABLE RHR HEAT EKCIO)a)ER A QNAVIILABLR 12 IHTERPACINO SYSTEK LOCI 000000000000000000000000000000000 000000000000000000000000000000000000000000000000
~ 00000000000000
~ 0 ~ 0 ~ 0 ~ 00000000 ~
~ 0
~
~ 0 ~
I)
TOTAL LOSS Ot OPPSITX POKER 500EV OPPEITS MNER CRID
- DO 3B UKIVAILABLS 1&IEV OPPSITS POKER ORID RECOVER OttSITS POKER bY 30 KINUISS OPERATOR PAILS TO RESTORE POKER TO tWIT bOARDS DO A UNAVAILABLS
&KV UNIT Nl 31 WAVAILIBI~
DO D NAVAILABIX 4EV UNIT BD )0 WIVIILABLR DO b UKAVAILABLS 4XV ED SD 3$$ tOOVIILISLR CONDITIONS RELATINO )O STUCK OPEN SRVS
)0 ~ ) ~
2 ~ )o EORVE) 4KV tWIT bD 11 UNAVAILABLE STATE
~ 0 RELIRt VALVES STUCK OPEN 4KV UNIT BD 1$ NAVAILABLX PAILURE TO RECOVER SLSCIRIC POKER IN 0 HOURS 4KV NIT BD 21 N1VIIIABLX Figure 8-1 (Page 5 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model
NOVEL Mane s BFNUIN Top-Ranking Sequences Contrlbutlng to Oroup s ALL Frequency ALL 0 ALL CAIQOC CTATIS IZCIPT 6VCCECS 15:$ 3'30 20 HAY 1996 Rank No.
Coquohco Doecrlptlon Events End Frequenty Percent Ouaranteed Events/Ccanaents State lpet'earl 0Lcv
.$ 0E 04
.49 RHR PWP C UNAVAILlbLS WIT 1 'IO UNIT ) CROSS CONNECT UNAVAILABLE RHR HEAT IXCHAMOER D WAVAILABLI
- OPERA)VI FAILS 'TO ESTABLISH YOAQC COOLINO OPIRATOR FAILS YQ ESTABLISH CHlllDOMN COOLlNO 00 00000 00000 ~ 00
~ 000 000000000000000000000000000000000000000
~ 000 ~ 00 0 ~ 0000000000000 0000000 ~ 00000000000 ~ 0000 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0
~ 0 ~
0 ~ 0
~
~ 0 ~ ~\\ ~ 0
~\\ ~
~ 0 ~ 0 I~
LOSS Ot RAM COOLINO MATER RAM COOLINO MATER CYCTIN UNAVAILABLI CONDITIONS RELATINO TO STUCK OPEN CRVC l0 ~ I~
2 ~ )0 CORVCI IQIN CONDEHCER WAVAILABLI STATS I RELIEF VALVE STUCK OPEN 1 CND/CMD bCTR PWP, INCLUDES SHORT CYCLE VALVE UNAVAILABI OPRRAYOR FAILS 'YO RCTABLICH TORUS COOLINO VICCEL INJECTION MIYN CkOHC VHAVAILABLR 1$
TOTAL IA3CE OF OttSITI POMER N 31 WAVAILABILITY RICOVIR OFFCITS POMER SY )0 MINUTES N A WAVAILABLI N D WAVAILABLB
- N 6 WAVAIIABLR CONDITIONS RILATINO TO STUCK OPEN CRVC l00 ) ~
STATS 0 klLIIFVALVES CTQCK OPEN FAILURE TO RECOVER SLRCIRIC POMIR IN 4 HOURI
)e CORVC3
- 500KV OttCITS POMIR ORID 16lKV OFFCITS POWER CRID OPERATOR TAILS TO RESTORE tOMIR TO UNIT BOARDS 4KV WIT BD )1 UNAVA'ILlbL'C 4KV UNIT SD )6 WAVAIIABLR 4KV CD SD )EA AND ~ COV CD BD )A POMER WAVAILABLR 410V CHQIDOHM BOARD )A 410V DICCCI AVX BD )EA POMIR WAVAILASLR 4KV UNIT BD IA IBQVAILABLE 4KV WIT BD 1$ WAVAILABLR-4KV UNIT BD 21 QNAVAILABLR 4KV UNIT SD 26 IBQVAILABLB CHVIOOHM SQC 1 WAVAIIABLB CHQIQOHM BUC 2 WAVAILABLR Do c wAYAILABLI 4KV CD BD A VMAV1ILABLR 410V CHUTDOMN BOARD 11 410V RNOV BD 11 POHIR WAVAIIABLR
~ IOV DIECIL AVX. BD A POMIR UlQVAILABLR 4KV CD bD b UNAVAILASLR 400V CHUIIOMM BOARD 21 410V RNOV BD 11 POMIR UMAVAILABLR 110 V RPC SUC OAO WAVAIIABLR 4KV CD BD C VNAVAILABLR 440V CHUINMM NARD 16 410V RNOV BD lb POMER WAVAILABLR 4KV CD BD D WAVAILASLB
~ IOV CHQIUOMM BOARD 2$
4IOV RNOV BD 2D POMIR QlQVAILABLR 410V RNOV BD 16 POMER WAVAILABLB 410V kNOV bD 1$ POMIR QlQVAIIABLS 4IOV RNOV bD )C POMIR VNAVAILABLR
~ IOV DIICILAUX bD 6 COMER UHAVAILABLR 110 V kPC BQS '60 UM1VAILAbLR 4 KV UNIT BOARD 1C 4 KV COMMON BOARD 6 4 KV UNIT BOARD )C 120 V ICC BUC 36 kAM COOLIHO MATER CYCTEH WAVAIIABLR IICN PWt 1 UNAVAILABLR SICH PQEP 6 WAVAILABLR SICH PWP D WAVAIIABLE RX BUILD)NO COMPONENT COOLIla) HAIIR SYCTEN VNAVAIIABLE RHRCM PQlt A) WAVAILABLR RHRCM PWP 11 ICHINO PWPI UMAVAILABLR RHRCM PUMP 62 UIQVAILABLB KHRCM PWP Cl WAVAIIABLI RHRCM PWP Cl (CHINO PlslPI WAVAILABLR RHkCM 'PWP D1 UlQVAILABLI PLANT COMIROL AIR CYCTEN WAVAILABLI DRYMILLCONTROL AIR EYCTEN UNAVAILABLE MB)VS tAIl TO RCIQIN OPEN I CHD/CND BCTR PWP0 INCLUOIC SHORT CYCLS VALYC WAVAILABI, PLPX 4.4%I ~ 00
.49 Figure B-1 (Page 6 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HODEL Manes BFNV)H Top-Ranking Sequences ConcrIbuclng co Oroup s 1LL frequency ALL 0 ALL DAHlOI STATES XZCEPT SUCCESS 15>5)i)0 10 HAY 1996 Rank No.
Sequence Doser)ptlon Euenrs Ouaranleed Events/Coeiaenra End Crate Prequency Percent
)per year) 0 00 0000000000000000000000000000000000000000000000000 16 fLOOD tROH THE TORUS TURBINE TRZP FAILURE CONDITIONS RELATINO TO CIQCK Otml SRVS lO ~
1 ~ 2, 3 ~ CORVSl CTATt 0 RIL St VALVES CTQCX OPEN UMZT 2 TO UllIT 3 CROSS CONNECT WAVAIIJUILI RCIC UNAVAIL1$LS ISO TIRH HPCI QNlVAIIABLRLONO TERN VISCEL IlQECTION HITH CRDNS WAVAILABLI MR tORt A VNAVAILABLR Mk NEAT EXCMAN)ER C UNAVAILlBLt UNIT 2 '10 UNIT 3 CROSS CONNECT WAVAILABLR RHR HEAT EXCNANOER D VNAVAILABLI OPERATOR flILS TO ECT1$ LISH 'IORVS COOLING OPERATOR FAILS TO RSTASLICH CNUTDOHM CODLING 0
~ 000 000000000000000000000000
~\\
SUPPRESSION POOL (TORUS) VNAVAILABL'I Rtt HAkWAM UÃAVAILABLR RCIC UNAV1IL1$LR 16 HOURS)
HPCI UNAVAILASLR 16 HOURS)
OPERATOR 'FAILS '10 DIPRISCURIZI US)NO TBV'S VISSIL INJECTION NITN CRDHS WAVAILABLE OPIRATOR FAILS TO MANUALLYCT1RT RHR/CORI SPRAY RHR PWP 1 WAVAILABLt RHR PWP C WAVAILASLS RlR PWP B UNAVAILABLt RHR tWP D UNAVAZLASLR OPIRATOR FAILS TO kSTABLICH TORUS COOL)NO OPERATOR tAILS TO tST1$ LI6H CHVIDOMN COOLINO OPERATOR FAILS TO ST1RT CS/LPCZ OR TO ESTAB TORUS VENT PJAV 6.60k F 04
.64 FJAY
).656.04
.40 CUttkISSION POOL lTORUC) WAVAILABLE RFH HARDNAM UNAV111ABLt RCZC WAVAILABLR16 HOURS)
HPCI WAVAILABLS 16 HOURS)
- OPERATOR tllLS TO DIPRISSUR11R USINO TBV'6 VESSEL IlQICTIOM HITH CRDHS WAVAILABLS
- OPERATOR tllLS TO MANUALLYSTARt RHR/CORE SPRAY RHR PWt A VNAVlIL1$16 Rlm PWP C WAVAILABLR UNIT 2 TO UNIT 3 CROCC CONNECT VÃAVAILABLE Rtk PWP b UNAVAIZABLS RHR PUMP D WAVIILABLS OttRATOR PAILS TO CSTABLZCH TORUS COOLINO OPERATOR FAILS TO ESTABL16H SNVIZOMM COOLINO OPERATOR FAILS TO CTAkT CS/LPCI OR TO ESTAB TORUS VIMT
~00000000000*000000
~
~00000 ~ 0 ~ 00 ~ 0 ~ 000 ~ 00 ~ 00 ~ 000
~
~ 0
~
~
~
~
CONDITIONS RILATINQ TO CTQCK OPEN SRVS (0. I, 2, )0 CORVS)
OIAV STATS 1 RILISP VALVE STUCK OPEN VESSEL INJECTION NITH CkDHS WAVAILABLE tLOOD FROH THE TORUS RHRSM PUMP $1 WAVAILABLR TVRBINE TRIP FAIIJJM CONDITIONS ktLATINO '10 STUCK OPEN CRVS lO I, 2 30 6ORVS)
STATE 0 RELIEF VALVIS CTQCX OPEN
~ ~
0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
).6)6-04
.eo 0 ~ 0000 ~ 0000 ~ 000000 ~ 000 ~ 000000000000000000000000000000000000000000000000 14 SHALL LOSS OF COOLANT ACCIDENT )LOCA)
AVZOHATIC/MANUALRIACIOR CCRAH FAILURE
~
0 0000000000 0000000000000000000000000000000000000000000000000000 00
~
19 fLOOD FROH THR TORUS TBVS tAIL TO RELIEVE%MAINTAINRX PRSSCUM CONDITIOHS RILATIHO TO STVCX OPEN CRVS
)0> I, 2, 30 SORVS)
STATE 0 RELIEF VALVES STUCK OPEN
- UNIT 2 TO UNIT ) CROSS CONNECT WAVAILABLR
~ 000 ~
~
~
~ 0000000000 ~ 00000000000000000000 20 INADVERTENT OPNIINO OF THREE Ok NOIR SRVS OPERATOR FAILS TO ESTABLISH TORUS COOLZNO SUPPRESSION POOL lTORUS) UNAVAILABLR ktN HARDMARI UMAVAILABLS RCZC UNAVAILABLR)6 )NURC)
RPCI WAVAILAILS(6 HOURS)
OtIRATOR tAILS TO DIPRISSURIIR USlNO TBV'S VESSEL IN)ECTION HITH CRDNS WAVAILABLR OPERATOR tAILC TO H1NUALLY CTART RNR/CORI SPRAT RHR PWP A UMAVAILABLS RHR PWP C UNAV11L1$LR R)m PWP B WAVAILABLR MR PWP D WAVAILABLR OPERATOR tllLS TO ESTABLISH TORUS COOLINO OPERATOR fRILE TO ESTABLISH SHVIDOMN COOL)NO OPERATOR FAILS TO START CS/LPCI OR TO RSTAB TORUS VENT OOOO ~ 00000000000000000000000000000000000000000
~ 0
~
~ 0 ~ 000000 ~ 0 ~ 0 ~
CONDITIONS RELATINO TO STUCK OPNl SRVS lo, I, 2, ) ~ COAVS)
ST1Tt 3 OR HOM VALVES STUCK OPEN OPERATOR FAILS TO tSTASLISR CHVZDONM COOLINO PJAV
).Sly 04
.)9 3.)SE ~ 04
.)9 F 0000
~
000 0 000000000000000000000000000000000000000000000000000000000000 0000000000000000000 Figure B-1 (Page 7 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HOOEL Nae>>e:
SPNQ)H Top-RanklnS Sequenree ContrlbutInS to Oroup
>> ALL trequenoy ALL << ALL DAHAOR STATES RECEPT SUCCESS 15:53:30 10 HAY 1996 Rank No.
Sequence Darer fprIon
Rvente.---~----------
Ouaranteed Rvenre/Coen>>cora End frequency terrene Srare lper yearl 21 TOTAL LOSS Ot OttSITS BONER PURL OIL SYSTEH POR DIESEL 3A WAVAILABLR tUEL OIL EYSTRH POR DIESEL )C WAVAILASLS PURL OIL SYETEH tOR DIESEL )B WAVAILASLR PURL OIL SYETII POR DIESEL )D UXAVAILASLS RECOVER OttSITR PONRR SY 30 HINQTRS CONDITIONS RELATIIa) TO SIQCK OPEN SRVS lo ~
1 ~
2 ~ )<<SORVS)
STATE 0 RSLISt VALVES STUCK OPEN tAILURS TO RECOVER ELECTRIC PONER IN 6 HOURS
- 500KV OttSI1$
PONER ORID 161KV OttSITS PONER ORID OPERATOR PAILS 'IQ RESTORE PONER TO UNIT BOARDS iKV WIT BD 3A WAVAILABLE iKV UNIT BD )S WAVAIIABLS DO )A WAVAILABILIIY
- DO )C UNAVAIIABLR DO )$ WAVAIIABLS DO )D UNAVAILABLS 4KV ED BD )EA AND 4 ~ OV ED BD )A PONER WAVAILABLE 4IOV ENUIDOOI BOARD )A 4IOV DIESEL AUK SD )RA PONER UNAVAILABLE 4KV ED BD )EC AND 440V ED SD )S WAVAILABLE 4KV ED BD )EB UNAVAIIASLE 4 ~ OV SNQIQONN lOARD )S 440V DIESEL AUK BD )EB PONER WAVAILABLS 4KV ED BD )ED QNAVAILASLS 4KV WIT $0 1A WAVAILABLS 4KV UNIT RD 1$ WAVAILABLS 4KV WIT SD 2A UNAVAILABLS 4KV UNIT BD 2$ WAVAILABLS ENQIDONX $0$ 1 WAVAILABLS SKQINIOl BUS 2 WAVAILABLS
~UEL OIL SYSTEH POR DIESEL A WAVAILABLE DO A UNAVAILASLS PQEL 011 POR DIESEL D WAVAILABLS DO D QNAVAILABLR tUEL OIL SYETEH FOR DIESEL B UNAVAILABI.E DO $ WAVAILABLS PURL OIL SYETEH POR DIESEL C UNAVAILABLR DO C WAVAILABLS 4KV ED BD A WAVAILABLR 4IOV ENUIDONX BOARD IA 4IOV RHOV RD )A PONER WAVAILABLE 410V DIESEL AUK. BD A PONER WAVAIIABLE
- 4KV ED $0 S WAVAILABLS 4IOV SNQIIONX BOARD )A 4EOV RHOV BD )A PONER WAVAILABLR 120 V RPS SUS <<A<<UXAVAIIABLS 4KV ED BD C WAVAILABLR 4IOV ENQIDONN BOARD 1$
~ IOV RIK)V SD 1$ PONER UNAVAILASLS 4KV ED BD D UllAVAILASLR 4IOV ENQIQOIOI BOARD '2$
ilOV RHOV SD 2D PONRR UNAVAILABLS.
4IOV RHOV BD 2$ PONER UNAVAILABLS 440V RHOV BD 2$ PONER WAVAIIABLR 410V RHOV BD )C PONER WAVAILABLE 4 ~ OV DIESEL AQI BD S PONER WAVAILABLS 120 V R'PS SUS <<B<<WAVAILABLR 4 KV UNIT BOARD 2C 4 KV CNPION BOARD S 4 KV UNIT BOARD )C 440 V RH)V BOARD )C 120 V 16C SQS 3$
110 V 16C SQE 3$
440 V RJQV BOARD )0 410 V Rae)V BOARD )R RAN COOLINO HATER SYETEH WAVAILABLS
- SECH PWP A WAVAILABLS SECH PUHP S UNAVAIIABLS REtX PWP C UXAVAILASLS SECH PWP D WAVAILABLS RK SUILDINO COHPOIIKNT COOLINO HATER SYETEH UNAVAIIABLE pl GX
) ~ 29K.oa
.36 Figure B-1 (Page 8 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
MODEL Mane>
BPNU)N Top-Rank(n$ Sequences Contr(but(nE to Oroup
> ALL trequency ALL 0 ALL DANIOE STATES RICEPT SUCCESS
)5>5):)0 20 NAY 1996 Rank No.
Sequence Descrlptlon
Events-------~-------
Guaranteed Events/Co>naents End State frequency Percent (per yearl 22 LOSS Of RAN COOL)NO MATEk CONDITIONS RSIATINO TO STUCK OPEN SRVS (0 ~ I~
2 ~
30 CORVS)
STATS 0 RELIEt VILVES STUCK OPEN RNR PWP I UNAVAIIABLE RMR PWP C UNAVAILIBLR RHR PWP $ WAVAILABLR RNR PUMP D UNAVAIIABLR OPERATOR tAZLS TO NAIÃZAINHPCI/RCIC M/0 CPC 000 ~ 00 ~ 000 00 ~ 0 ~ 00 ~ 00000000 ~ 00000000000000000000000000000000000 23 LOSS Ot PLANT MR 250 V DC CONTROL PONER fOR 6KV CD BD )SA AND 6$ 0 V CD RD 3$1 2$ 0 V DC CONIROL PONml tOR 6KV CD BD 3EC IND 6$ 0 V CD BD 3RB CONDITIONS RELAY)I) TO STUCK OPEN CRVS (0> I, 2, 3>
SORVS)
STATS 0 RRLIEt VALVES STUCK OPEN WAVAIL WAVAIL R)RCM tWt 12 UNAVAILIBLR RHRSM PWP Al (SMIMO PWP)
UNAVAILABLE RHRSN PUNt BZ WAVAILABLR RHRSN PWP $ 1 (CHINO PWP)
UNAVAIIABLS
.RHRSM PWt CZ WIVAILABLS RHRCN PWP Cl (CHINO PWP)
UNAVIIIABLE RHRCN PWP DZ WAVAILABLR RHRSN PWP Dl (CHINO PWP)
UNAVAILABLE PLANT COÃIROL AIR SYSTEM WAVAILABLS DRYNELL COÃYROL IIR SYSTNI WIVAILABLE CONTIINNEÃT ATMOSPHERIC DILUTION OPERATOR TAILS TO RECOVER SECN (START CHINO PWP)
NSIVS PAIL TO REMAIN OPEN I CHD/CND SCTR PWt>
IMCLUOES SHORT CYCLE VALVE UNAVAILABL RCIC WAVAILABLRLON) TERN HPCZ WAVAILISLE LCMK) TERN VESSEL IHIECZION Nllll CkDNS UNAVAILABLE OPERATOR PAILS TO MANUALLYSTART RHR/CORE SPRAT PAILUkk TO RECOVER 6$ 0V RNOV BOC 21 OR 2$
RHR PUMP I UMAVAZIABLR RHR PWP C UMAVIILABLE UNIT 2 TO UNIT 3 CROSS CONNECT WAVAILABLS RNR PWP B WAVAILABIH RHR PWP D DNAVAILABLR OPERATOR PAILS TO ESTABLISH TORUS COOL)NO RHR LOM PRESSURE INJCCZION PATH UNAVAILABLS 000
~
~ 0 RlM COOLINO NITER CYCTEN WAVAIIABLE HAIN CONDENSER UNAVAILABLE 1 CND/CND BCTR PWP, INCLUDES SHORT CYCLE VALVE UNAVAILABL VESSEL 1)QECTICH MITE CRDHS UNAVAILABLS UNIT 2 TO UNIT 3 CROSS CONNECT UNAVAILABLE OPERATOR tAILS TO ESTABLISH TORUS COOL))a)
RHR LON PRESCORE I)t)ECTION PATH UNAVAILABLE 250 V RNOV BD 2$ UNAVAILABLE 250 RNOV BD 2C UNAVAILABLE 250 V k)%IV BOARD 31 2$ 0 V R)K)V BOARD 3$ -
BONER SUPPLY DIVISION I UNAVA'ILABLR BONER CUPPLT DIVISION 11 WAVAILABLR VESSEL LEVEL CIONAL WAVAILIBLC DZV I VESCSI LON tkECCURE CIONAL WAVAIIABLE DIV II VRCSEL LON tkESCURR SIGNAL WAVAILABLE DIV I HI RK tkkSS EIONAL WAVAILABLR DIV 11 Hl RK tISSC CIOMIL UMAVAIIABLR RHRCM PWP Sl (CHINO PWP)
UlRVAILABLE PLIÃT CONIROL AIR SYSTEM UNAVAIIABLE DRYNSLL COMIROL Mk SYSTEM WAVAILABLR MS)VS PAIL YO REMAIN OPEN RPM HARDMARE WAVAILABLS RCIC WAVAILABLR(6 HOURS)
HPCZ UNIVAIIABLE(6 HOURS)
OPERATOR PAILS TO IMMI~IT CLOSURE Ot NSIVS ON LEVEL CTARTUP BYPASS VALVE WAVAIIABLR kHR PWP A WAVIILISLR RHR PWP C UMIVAIIASLS WIT 2 TO UNIT 3 CkOSS CONNECT UNAVAILABLE k)R PWP $ UNAVIZIASLR RHR tWP D WAVAILABLS OPERATOR FAILS TO RSTASLICN TORUS COOL))a)
RlR LOM PRESSURE INJECTION PATS R)AVAIIABLS OPERATOR tAILS TO START CS/LPCI OR 'IO ESTAB TORUS VEÃT N)GV 3.26E OS
.)6 PIPV 3.21$ ~ OS
.)5 Figure B-1 (Page 9 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HOOCL Nenes BFHU3H
~
0 Top-kenkln9 Sequences Conrrlburlnt lo Oroup s ALL trequency ALL e ALL DIOR tTlTCS EXCEPT CQCCCSC 35:5):30 20 HAY 3996 ksnk No.
sequence Descrlpclon
tvenrs--------~-----
Ouerenreed Rvenrs/cam>>nrs End Crsl@
trequency Percene Iper year)
AUIOHATIC/MANUALRRACIOR SCRAM PAILURX
- CONDITIONS ktlATIMO TO STUCK OPEN tkVS lo ~ I~
2 ~ )0 CORVS)
STATE 0 RELIEF VALVRS STUCK OPEN RNR WHP b UlQVAILABLR
~ 00000 ~ 0000000000000
~ 0000000000000000000000000 00 00 00000 000 00000 30 TURBINE TRIP HITMOUT SIPASS AUIOHATIC/MANUALREACIOR SCRAM tl'ILURS OPERA'IOR tAILS TO ST1RT SLC 000000 00000000000000000 00000000000000000000000
~
~ 0 00 31 INADVERTENT OPCMIH) Ot ONR SRV AUIOHATIC/MANUALREACIOR SCRAN tAILURR OPERATOR FAILS 10 CONIROL LPI DURINI AIMS 00000000000000000000000000000000000000000000000000000000000000000000
)1 TOTAL LOSS Ot OttSITS PONER DO )C. UHAVAILABLR RECOVER OttSITR PONII SV )0 NIMQZCS DO A WAVAIIABLR DO b UNAVAIIABLR DO C UlQVAILASLS CONDITIONS RCLATINO TO STUCK OPCM Clyt )00 I, 2> )e CORVS)
CT1TS 0 RELIRt VALVRS STUCK'OPCM
~ FAILURE TO RCCOYSR RLCCZRZC PONCE IN C HOURS
- OPCRAIOk FAILS TO OtNI33cenI US)HO TMC TBVS OPERATOR FAILS TO RCTAbLICN TORUS COOLIHO
~ 0 00 OOOO 0 00
~
0
~
0 0
~
~ 0
~ 00 ~
TSVC FAIL TO RELIEVE)NAIÃZAIHRX Pklllult RFV DEFRCCCQRZCATION HKCV 2.lit~ol
.33 OIAV 2 ~l)t~ol
.)l PLFV 2.75E ~ol
.30 CONDITIONS REIATIHO TO CIUCK OPNI CRVS Io, I, 2e 30 SOAVS)
CTATC I RELIEF VALVE STUCK OPIM VESSEL INJECTION NITH CRDHS WAVAILABLS
~ 000000000 ~ 0000000000000000 00'
~
~
~
500KV OttllTS POMtR ORID ICIKVOttCITX PONtR ORID OPERATOR TAIlS TO RESTORE Poutk TO UNIT BOARDS 4KV UNIT BD )A ISQVAILABLE 4KV WIT BD 3$ WAVAIIABLS 4KV SD bD )tC AHD 4lOV CD BD 3$ UMAVAIIABLt ilOV CMUZDOMM BOARD )$
4lOV DIRSRI AUX BD I'CS POMER UNAVAIIABLR 4KV UNIT BD 11 IBQVAILlbLR 4KV UNIT BD 1$ UMAV1ILASLR 4KV WIT SD 21, UIQVAIIABLI 4KV UNIT SD 2$ IBQVAZLABLR SMUIOOMM bQC 1 UNAVAILABLR CRUZDOMN BQS 2 UMAVAILAbLR 4IV CD BD 1 IBQVAILABLX ilOV CMUIOOMM BOARD IA 410V RHOV SD IA POMER UlIAVAILABLR ilOV DIESEL AUX. BD A POSER WAVAILABLR 4KV CD bD b UNAVAZIABLR ilOV CMUIDOMH $0110 21
~ lOV RHOV BD 2A POMXR UMAVAIIABLt 110 V RPS bUC OA'MAVAILASLR 4IV SD BD C UNAVAIL1$LR ilOV CMUIDOMH BOARD 1$
ilOV RHOV BD )b POMER UMAVAILABLS 4 KV WIT BOARD 2C 4 IY CCIPNM BOARD B 4 KV UNIT BOARD )C ilo V P)KIV BOARD )C RlM COOLIMO MATER SZCTNI UNAVAILABLS SCCM PIPIP B UMAVllL1$1$
tI BUILDINICCHPOHSMZ COOLZISI NATCR CZSTCN UIIAVAILABLR RXRCM PWP A) IBQVAILABLX RNRCM PWP Al ICMIMO PQIP)
UMAVAILABLX RNRCM PIPIF $2 WAV1ILABLt RMRSM PWP $1 ICMIMO WHP) IBQVAILABLC RHRCM PWP C2 WAVAILABL'S RMRSM PWP Cl (CMIH) PW'P)
WAVAILABLR tfANT COMIROL Alk CZCTOI UMlVAILABLR DRIMCLL COMIROL Alk CZSTCH UHAVAIIABLR HSIVS FAIL TO REMAIN OPEN I CMD/CHD bSTR PWP ~
INCLUDRC SHORT CZCLC VALVE UMAVAILABI, RCIC UMAVAILABLRLOH) TCRH RPCI QNAVAILASLS LOH) TERN VECCRL INJECTION NITH CRDNS QNAVAIIASLC.
RXR NEAT RXCHAMOCR A IBQVAILABLS RMR MEAT RIC1QISIER C WAVAILABLS UNIT 2 TO UHZT ) CROSS COMMECZ UMAVAILABLS RMR PUNt b WAVAIIABLX OPERATOR tAILS TO ESTABLISH 'IORQC COOLIHO OPERATOR 'PAILS TO ESTABLISH CNUIDcsnr COOLZIII Figure B-1 {Page 11 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model
HODEL Manes SFNV)H Top.Ranking Sequences Contrlbutinb to Croup s 1LL trequency ALL $ 1LL DAHAOE STATES RXCEtf SVCCR56 15>53:)0 20 MAY 1996 lank No.
Sequence Deecrlptlon
Evente--------------
Ouaranteed Events/Coeaaenta End State Frequency Percent Iper year) oooos ~ 0$ 00 ~ 00000000000 ~ 0$ 11000001100000
~ 0000 ~ 00000 ~ 0000000 ~ 100000100000000000000000000001 01000 ~ 00010 ~ 0 ~ 0 NSIVS tAIL TO REMAIN OPEN OPERATOR tMLS TO COOLDONN USLNO TBE TSVS VRSSRL IIQECTIOH NLIB CRDNC UNAVAIZASLE 2.146.04
.)0
~ 0 ~ ~ a
~
~
0 Sa OIAV 2.)46-09 26 VIAV
- 2. 308 Oa
. 25
~
~
~ 1
~ S
~
2.)06 06
.25 HISV 2.)06 06
~ 25
~
~ ~ ~ ~
~
~ 0 ~ ~ 0
~
~
~
~
~ ~
~
0 ~ 1 ~
~ ~ \\
~ s ~
)1 CIA)CUAR Ot ALL HEIVS AUTOMATIC/HABVALREACLOR SCRAH FAILURE CONDITIONS RELATIW 'TO CLUCK OPEN ERVS I0 ~ I~
2 y ) 1 CORVC I STATS I RELIEF VALVE CTQCX OPZN OPERATOR FAILS TO CONTROL Ltl DVRINO MNS
~0001 ~ 00$ 011001 ~0100000000W000000000S100000000000100000000 11000000000000000O000000 001001$ 01 0
$ 1
~ 0
~
0 F 1'
~ ~ ~
~
~ ~
~
~
~ 0
~ ~
~
~ ~
~
~ ~
~ 1
~ 0 34 TURSINE 'TRIP NITBOVT SZPASS TRVS tAIL TO RRLIRVCtHAINTALNRX PRESSURE MIAV 2.516.04,26 CONDITIONS RELATLNU TO CTVCX OPEN 6RVS 10y I~
2 ~ )o CORVSL RFN BARDNARR UNAVAILlbLR STATE 0 RELLEt VALVES STUCK OPEN OPERATOR fAILS TO DEPRRSSURIZS USIN0 TSV'6 RCIC UNAVAILASLS IC HOURCI
- BPCZ UNAVAILASLS ll BOVRSL RPV DEPRECCURIZATION
- VRSSRL IIQRCTION HITH CRDBS UNAV11118LR 00000000000000000000000000000000000000000000000000000000 00000$ 0000000100000100000110 oooeooswooooo 000
~
0
~
~ 0
~
)5 TQRSINR TRIP OPERATOR PAILS TO RSTASLIEB SBQIDONN COOLLW OLCV 2.426-06
.26 CONDITIONS RELATIW TO STUCK OPEN SRVS LOJ I ~
2~ I~ CORVSI STATE 3 OR HO'kR VALVES STUCK OPII OPEPATOR FAILS 'TO 86TARLISH TORVS COOLIW
~ 1 ~ 00000000000001000100000000000001000000000001001001000 00 0
~
0 0
00 ~ 010 ~\\
~ 0
~ 1 01
)6 CLOSURE Ot ALL MCIVC HELVE tAIL TO REMAIN OPEN AVIOHATZC/MANUALREACIOR CCkAH FAILURE CTANDSZ LIQUID CONLROL SZSTEH UNAVAILlbLE CONDITIONS RELATIIKITO CTQCX OPNI SRVS l0 ~
1 ~ 2y )1 SORVSI STATE 0 RELIRt VALVES STUCK OP'N.
~oosooossoo 0 ~ 0011010 1
ao 0 01 00 0 0000000000000000000 10000000000 000100 00 00 00000\\001
~
10
~
~
1
~
~
~
~ ~ ~ ~
~
)I PARTIAL LOSS OF tERDNATER VESSEL LIQECTION NITH CRDNS UNAVAICABLE AVIOMATLC/MANUALREACIOR SCRAM FAILURE CONDITIONS gELATLW 'IO STUCK OPEN SRVS Lo ~ I~
2 ~ )1 SORVSI STATS 1 REI LEF VALVE SIQCK OPEN O'PERMOR FAIL8 TO CONTROL LPI WRLW MNS 000000 ~ 00 ~ 001 ~ 0100000000 00000 00000e000000 0000000000000010000000000000000000800a000000000000001000010001010 ooaa 0 ~
~ 0 ~
~
1 Sosooeoa S ~
0
)8 TOTAL LOSS Ot PEEDNATER RPN BARDNARE QNlVAILlbLR MIBV AVIOMATLC/MANUALREACIOR SCRAM FAILURE OPERATOR FAILS TO RSTAELISN TORUS COOLING
- CONDITIONS RELATLW TO STUCK OPEN CRVS lo. I, 2. )o CORVSL STATE 0 RELIEF VALVES STUCK OPKN
- RBR PUMP D lbllVAILARLR 0 ~ 000 0 ~ 00 ~ 00$ ~ 000 ~ 00 ~ 01 ~ 00000 ~ $01000000001010000101110101101000000000000000000W1$
10$ 10100000000000$ 00000100 ~ 0 ~ 0 ~ 00 ~ 0
~ 00000 ~ 0 0 ~ 0 0 ~
~
)9 TOTlL LOSC Ot PEEDNATRR RPN BARDNARR QNAVALLASLR
~ AUIOMATLC/MANUALREACLOR SCkAH tAILURS OPERATOR FAILS TO CSTASLISN TOAV6 COOLIW CONDITIONS RECATLW TO STUCK O'PEH SRVS LO ~ )e )o )o SORVSL STATE 0 RELIEF VALVES CTQCX OPEN
- RBR PVHP 8 UNAVALLARLC 0 000000000000 ~ $ 0000 ~ 0000000010000000000010001010000$
00 ~001 00 010$ 0001 01001100011001001100 00
~\\ ~ So
~ 00 0 ~ 00001 00 000 ~ 0000
~ 0 40 INADVERTENT IOTNERI 6CRAH OPERATOR PAILS 'IO CSTASLLCH CBVLDONN COOLIW oLcv 2.2)E ~ 06
.24 CONDITIONS RELATIW TO STUCK OPEN SlVS IOy le )y )1 CORVSI STATS
~ ) 08 MORC VALVES STUCK OPEN
- OPSRATOg PAILS 'IO ECTASLLSH TORUS COOLLW s aoss ~ 101 ~ 1 ~ 10010$ 00000e0100000001101000000000000000000000000
~ 000000000000000000000000000000asssssoso
~
1 al TOTAL LOtS Of PEEDNATRR RPN BARDNARR UNAVAILASIS OIAV 2.146 ~ 04
~ 23 AVLOMATLC/MANUALREACTOR SCRAM FAILURE VESSEL IIQECCION NLTB CkDBC UNAVAILASLR CONDITIONS RELATLNO 'LO 61UCE OPEN SRVS l0 ~
1 ~
2 ~ )o CORVSl STATS I RELICt VALVE CTQCX OMI OPERMOR fllLS TO CONIROL Lpl WRLNO MNE
~ 00000oosoosoooeo00000000000110000000000000000011
~ 001100000001000 ooow00 000 00000000 00 ~ 000010110 001000 oaa00 oasaea 000
~ se
~
41 CLOSVRR Ot ALL HELVE HSIVS fAlLTO REMAIN OPEB-HIBV 2.026 06,22 AIIIOMA'1IC/IONUALRElCIOR CCRAII tAILURR OPERATOR PAILS TO COOLDONB VSLIKI TBS TSVS
- CONDITIONS gRZATIW TO STUCK O'EN SlVS Lbi I 2
)o CORVSl OPRRATOR tlILC TO EETASLISN TORUS COOLIW STATE 0 RELICt VALVES STUCK OPEN RNR PUMP 8 VNAVAILARLR RBR PUHP D VNAVAILASLC oeosso 000$ 01000000000000$ $01 ~ 000000000000000010400$
000000000000O000000000000000000000 00000000000000000110001000010
~
0 ~ 0
~
LOSS OF RAN COOLLW HATER 250 V RHOV SD 28 VNAVAILASLC PLNV 1.996.06
.22 250 V DC CollllOL PONRR FOR 4KV SD RD )RA ABD 460 V ED SD )El UNAVAIL 250 RMOV SD )C UNAVAICASLS Figure B-1 (Page 12 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model
HODEL Manes BPNV)N Top-Ranktng Cequencee ConrrtburtnC ro Oroup s ALL trequency ALI, o ALL DANAOR STATES EXCEPT SUCCESS IS:S):)0 20 HAY I994 Rank Ho.
Sequence Deacrlptlon Sventa Guaranteed Suenre/Cceroente Cnd Stare Frequency Percent (per yearl Ot PONCE POR 4KV CD LATIla) To $TUcK QPRH
~ P VALVLI STUCK OPEN
- 250 CO CTA V DC CONZR NDITIONS RS TR 0 RSII bD 3RC AHD 400 V CD BD 3$8 INAVAIL CRVS lo ~ I~
2 ~ )o CORVCl S
~ OO
~
SOO S ~ OO SOOSSSSOSOSSSOSOSSSOOSSSSOSSOOOO O
OOO 44 TOTAL LOCC Ot OPPCITR POMER DO 3C UNAVAILAbLE DO )D VHAVAJLABLE RECOVER OPPCITS POMNI SY 30 NINVZSC DO A UHAVllLASLE
- DO 8 WavAILABLS
- CONDITIONS RCLAZIHO TO CZUCX OPEN CRVS toe
)o Ro )o COlv51 STATS 0 RRLICP VALVES STUCK OPEN PAIlllRR TO RECOVER RLRCZRIC WIICR IN C HOURS 2SO V RNOV BOARD 3A 250 V Rte)V BOARD )b PONCE SUPPLY DIVISION I WAVAIL18LS PONCE SUPPLY DIVISION 11 QHAVAltABLC VCCCEL LEVEL SIONAL UNAVAILABLR DIV I VESSEL LOll PRSSCURR SIGNAL tNAVAIlASLR DIV 11 VSSCEI LON PRESSURE SIGNAL UNAVAZLABLR DIV I HI RX PRESS CICNAL INAVAILABLC DIV 11 HI RX PRESS SIOHAL UNAVAILABLR RAN COOLINO Wana CYCTEH WAVAIIABLR RNRCN PWP Bl lCNIHO PWPI UNAVAILABLE HAIN COHDRÃSER VÃAVAILABLE I CHD/CHD BCTR PWP, INCLUDES SHORT CYCLE VALVE VNAVAILABL RCIC INAVAILASLR IC HOVRCI NPCI UNAVAIL18LR tC NOURCl VSCCSL IIIZECTION NITH ClDHS WAVAILABLC RMR tUHP A VNAVAILAbLR RMR PUNt C UNAVAIIAbLR UNIT 2 TO UNIT 3 CROSS CONÃCCZ UNAVAILABLR Rill PINP b UHAVAILASLR RHR PQIP D INAVAILABLR OPERATOR PAILS TO ESTABLISH TORQC COOLIHO RNR LON PRESSURE IN)ECTION PATH UNAVAILABLC OPERATOR PAILS TO START CC/LPCI OR TO ESTAB TORUS VRHZ
~ OOOOOSSOOOOOOOOOOO ~
OSOOOOOSSOOOOO
~
OOOOO
~ S ~ S ~ OOO ~
~ O 500KV OPPSITE tONll ORID ICIKV OttCITS PONCE ORID OPERATOR tAILS TO RESTORE lONER TO UHIT BOARDS CKV VMIT BD 31 WAVAILABIE 4KV UNIT BD 3$ WAVAILASLS 4KV SD BD )RC AND 4IOV CD BD 38 INAVAILABLR 410V CNVIDONH 801RD )~
410V DIESEL AUX BD )Eb PONER WAVAILABLE
~ EV CD BD )RD UNAVAIIABLR 4KV WIT BD 11 WAVAZLABLS 4KV WIT BD 1$ WAVAILASLS 4KV UNIT BD 21 WAVAIIABLR 4KV UNIT BD 2$ UÃAVAILASLC CBVIZONN SUC 1 WAVAIIABLX CNVZUOMN SVS 2 WAVAltABLR 4KV CD bD A UNAvllL1SLS 4lqv SNVZDOMN BOARD 11 490V RHOV BD 11 PONER UHAVAJLABLS 4COV DIESEL AUX. BD 1 tOMER UNAVAZLABLR 4EV CD BD b WAVAILABLE 4IBV SNVZQOIIN BOARD 2A 400V RHOV BD 2A PONER UHAVAILABLS 120 V RPR bUS olo WAVAILABIX 4 Kv UNIT bOARD 2C 4 KV COIBKN 801RD b 4 XV WIT BOARD )C 490 V RHOV bOARD 3C RAM COOLIHO NATNI SYCTEH INAVAJLASLS RX SQILQIIKI CONPONNIT COOLIHO MATER CYCTEH UNAVAILABLE RXRCN PWP 12 UNAVAILASLS lVQCN tQIP 11 ICMIHO PWPJ tNAVAltABLR RNRCM PWP 81 lSNIHO PUMP) WAVAILABLS RIQCH PQIP C2 W1VAILABLS NQICN PINP Cl lCNIHO PUMP)
UNAVAILABLE RNRCM PQIP Dl ICNIIKI PWPl WAVAILABLB tLAÃT COHZROL AJR CYCTEN tNAVAILASLR DRYNELL CONTROL 111 CYCTNI U}IAVAIIABIS HCIVS PAIL TO RNIAIN OPJH CND/C)ID SCTR PWtr INCLUDES CHORT CYCLS VALVE UNAVAILABL PLPK 1.99$ F 09
.)2 Figure B-1 (Page 13 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HODSL Manes BFNU)H Top.Ranking Sequencee Contr)butlng to Oroup s ALI trequency ALL 0 ALL DAHAOE STATES EXCEPT SUCCESS
)S:S)r)0 20 HAY )994 Rank No.
Sequence Deacrlptlon
Evente-------------<<-
Ouaranteeo Svente/Coeiaente Snd Frequency Pertent State Iper year)
).9SE ~ 04
.21 OLFV
).9)E 04
~ 11 1.904 ~ 04
. 21
).44'4
.1)
OLFV
- l. 44E ~ 04
. 2)
- 120 V UNIT 3 PREFERRED POMCR TQ1$INR TRIP FAILURE RtN HARDIQRE QMAVAILABLR RCIC VHAVAILABLS IC HOURS)
OPERATOR FAILS TO DXPRESSURIXR VSJH2 'JBV'S
).4)S.04
.20 1.4)R ~ 04
.20 0
~
~
~
HIBV
).4)R ~ 04
.20 1.4)E.04
.20 RCIC UHAVAI!ABLE IrN42 TERM HPCI WAVAILABLCLOBO TEAM VESSEL INJECTION NETH CRDMS WAVlllABLE RBR HEAT EXCNA)43ER A WlyllLABLE RHR HEAT RXCHAIR)CR C VIQVAJLABLR UNIT 2 TO WIT 3 CROS5 CONNECT WAVAIIABLE XHR PQHP $ UNAVAILABLS RHR PNIP D WAVAELABLR OPERATOR tAILS TO ESTABLISH TORUS COOLIHO OPERATOR tAILS TO ESTABLISH CHVIDOMN COOL!NO 0 ~ 0 ~ 0 ~ 00 ~ 0 ~ 00
~ 0 ~ 0 ~ 0
~ 0 ~\\
0 ~ 100000 ~ 0000000 ~ 0000 ~ 000 ~ 00000 ~ 00 ~ 00 ~ 00000 ~ 000000000000000000 00 45 SCRAM REQUIRED
!MANUAL SCRANS)
VESSEL INJECTION NITH CXDHS VNAVAIIABLS OIAV AVICIQTIC/MANUALBEAU!OR SCRAM FAILURE CONDITIONS RELATINO TO STUCK OPXH SRVS lo, 1, 2 ~ )o SORVS)
STATS - 1 kELIEt VALVE STUCK OPEN
- OPERATOR FAILS TO CONTROL LPE DUE!NO ATMC 00000 ~ 000000 ~ 000000000000000000000000000000000000000000000
~ 00000000000000000000000000000000000000000000000 000
~
00101001 44 RCCIkC DISCHARGE LINE BREAK CROSS CONNECT TO UNIT 2 RHR CZSTSH WAVAILASLS RHR PUMP A WAVAELABLC OPERATOR FAILS TO INITIATE SP COOL!NO RHR PIBIP C UHAVAELABLR CON!A!HHXHTVOlT WAVAILASLE RHR PVHP B UHAVAILASLR RHR PIBIP D UNAVAILABLE 0
~
\\
0 0
~
00 000000000000000000000000000000000000000000000000000000000000000000 000000000000 ~ 00 ~ 0 ~ 0 ~ 0 0
~ 0 ~ 0 ~ 0 ~
~ 00
~ 00 01
~7
'!OTAL LOSS OF PESDMATSR RPV DSPRESSVRI CATION HXCV AUIOHATIC/MANUALREACTOR SCRAM tAILVRE OPERATOR FAILS TO CTAkT SLC 00 ~ 000
~
OOOO ~ 00000 0000000000 1000 0 000000 0
00000 00 000 00000 00 00 01010 00 44 LOSS OF RAM COOL!NO HATER RAN COOLIHO HATER SYSTEH WAVAILABLR PLFV CONDITIONS RXLATII)2 'TO STVCK OPEN SRVS {0, I, 2, Ja SORVS) 0 HAIN CONDENSER UÃAVAILABLC STATE I RELIC'F VALVE STUCK OPRN 1 CND/CND BSTR PVHP, INCLUDES SNORT CZCLR VALVE WAVAILABL RHR BRAT EXCHANOSR A WAVAELABLE VESSEL INJECTION NI'lll CRDHS VNAV11LABLE ItHR HEAT EXCHA)a)ER C UNAVAIL1$LR VHIT 2 TO WIT 3 CROSS COIOIECT UNAVAILABLR RIQ BRAT EXCHANGER B UIQVAILABLR 0'FERA!OR tAILS TO ESTABLISH TORUS COOLINO RNR BRAT EXCHANGER D WAVAILABLR OPERATOR fAILS TO ESTABLlSH CHVIDOIOI COOLING
~ 000
~
00 00 000 000000000r000 0000000000000 000000000000000000000000000000000000000000 0
Or 49 HEDIUH LOCA CROSS CONNECT TO UNIT 1 RHR SISTEN UHAVAILABLR RHR PVHP A UNAVAILABLE OPERATOR tAILS TO INITIATE SP COOLIH)
RIVI PQHF C WAVAEIABLH CONIAIHHXNTVENT WAVAILABLR RHR PVHP $ WAVAELASLR
- RHR PUMP D UNAVAILABLS 0 r000000000000000000000000000000000000
~ 000000000000000000 000
~
~ 00 000 000000000 ~ 0 ~ 000
~ 0 000 0 ~
~
~
~ 0
~
SO LOSS Ot WIT 2 120V PREFERRED PONER HIAV CONDITIONS RELATINO TO STUCK OPRN SRVS l0, I~ 2, Eo CURVE)
STATE - 0 kRLIRF VAIVES STUCK OPEN NPCI VNAVAILABLRIC HOURSI
- RPV DCPXSSCQRIEATIOM VESSEL JNJECJION
'NETH CRDHS WAVAILABLR 0000r010 ~ 0000
~ 0000 ~ 001 00000000000000000000000
~ 000000000 ~ 0000000000000
~ 000000000000 ~ 0 ~ 000000000 ~ 0000000000000000
~ 0 ~ 0 ~
~
~ 1 ~
~
0 ~
~
51 LOSS Ot CONDENSER VACUUM H1IM CONDENSER UNAVAILABLE HIBV AUTOMATIC/MANUALRSACEOR SCRAM FAILURE RPH HARDIQRS QHAVAILABLR
~ coHDITIQNS RELATE)a) 'To STQck QPEM CRvs
)0 ~
1 ~ 2, 30 Cokvs)
OPNQTOR FAILS TO ESTAB!ICE TORUS COOL!HO STATS 0 RRLIRt VlLVRS STUCK OPEN BHR PUMP D UNAVAILABLE 0000000OOOO000$ $ 00000000000000000000000000 0000000000000000
~00000 00000 0
0000 0 000
~
0 0
51 LOSS QF CONDENSER VACUUM IQIN CONDCNSCR UHAVAILACLC AQIVMATJC/MANUALREACEOR ECkAH FAILURE RFN IQXDMAXB UNAVAILABLE 0 CONDITIONS RSLATIIK) 'EO STUCK OPEN SRVS EO, I, 2, Jo SORTS)
OPERA!OR FAILS TO CST1$ LESH TORUS COOLIHO STATE - 0 RELIEF VlLVES CTUCK Otml kHR FUHt B WAVAELABLH 0\\00 ~ 0 1100 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000
~ 0000000000
~ 0 ~
~ 010 ~
51 CLOSURE ot ALL HSEVC MS!VS PAIL TO REMAIN OPEN HISV AVJDHlTIC/IQHVALBRAC!OX SCRAM FAILURE OPERATOR FAILS TO COOLDONN US!NO TNR TBVS CONDITIONS RELATINO TO STUCK OPEN CRVS IQs lr Sr 30 SORVS)
OPERATOR FAILS TO RSZABLISN TORUS.COOLIHO 0 RELIC~ VALVES STUCK OPEN Figure 8-1 (Page 14 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HOVEL Manes BFNV)ll Top-Rank)nt Cequencea Contrlbutlnt to Oroup s ALL trequency ALL I ALL DAHAOS STATES RECEPT SUCCESS 15<5):)0
)0 HAY 1996 Rank No.
Sequence Deecrlptlon Eventa Cuaranteed Cvente/Cceraante End State Frequency Percent
)per year) 1.4)0 04 10 PLFV 1.00C ~ 00
~ 10 1.94E.04
.19 HICV I.ISI~ 00
.19 1.11 ~ 00
.19 I~I~ 10
~
~
~I~
I ~ IOE ~ 00
.19 I 49S.04
.19 HIAV 1.44I ~ 0 ~
.10 0010$ 101 ~00000000000000I00000II0I000I000000I00000I0I000000000II00I000I0I000II00000100000000000$
RHR HEAT RICHAMOER D VNAVAILABLS I
I
~ 00
~ I ~\\
100001000000001000000000010000 0000 ~ OOOO ~ 0000000000000
~ 000 00$ 00000000 ~I 00 ~I~I~I 54 CLOSVRR Ot ALL HSIVS HS!VS tAIL 'IO RSHAIM OPEN Hlbv
- AVIONATZC/HAMVALRIACIOR SCRAM Phil)IS OPERATOR tAILS TQ COOLDOHM USZN) 'lllI TBVS cONDITZDNS REIATI)r) To czvck DPEM skvs Ioa I~ 2r 30 soRvs)
- OPERATOR tAILS TO ECTABLICll TORUS COOLINO STATS 0 RELIEF VALVES SIQCK OPEN RHR HEAT EICHANI)ER S WAVAI!ASLX eo 000000000e00000000000000000000000000000001000000000000000000000000000000100 100000 I
00 00
~ 000 55 CLOSURE OF ALL NSZVC HSIVS tAZL TO RINAZN OPEN CUPPRESSION POOL ZZORUS)
UNAVAILASLX RtN HARDNARX WAVAILABLR CONDITIONS RELATINO TO STUCK Otml SRVS IO ~ I ~
2 ~ 3$ 8ORVS)
HPCI WAVAZLAbLR 10 HOUL9)
CTATR 0 RELIEF VALVES SIQCK OPEN OPERATOR PAILS TO INHIBIT CLOSURE OF HSIVS OM LEVEL RCIC UNAVAZLABLR ZC HOURS)
- klm FWP b UÃAVAILABLS RHI PWt D WAVAILABLE
- OPERATOR tAZLS TO ESTABLISH TORUS COOLINO OPERATOR tAILS TO ECT1BLICH CHVIDOHM COOLINO OtSRATOR JAILS 'IO START CS/LPCZ OR ZQ ESTAB TORUS VENT 0001 ~ 000000$ 0000000100000000000000000000000000000000000000000000000000010010000000000 00000000000000000
~ 00 0000110000 ~ $ 0
~ 0 ~ 0
~ 01 I~ 0 ~ 0 ~
~ ~
~
SC TURBINE TRIP VI50EL ZN)ECTION NITH CIDHS UNAVAILABLS OIAV UNIT 2 MOT AT POHRR AVIONATZC/MANUALRSACIOR SCIlll FAILURE
- CONDITIONS RELATZ)a) TO STUCK OPEN CRVS 10, I~ 2, 3$
CURVE)
STATE - 1 RELIEF VALVE SZVCX OPEN
- OPERATOR FAILS 'IQ COMIROL LPI DURIMO ATNS I
~
000 IIII 0001 00000 0000000001000000H0000000000000000000 0000
~ 00
~
~
00 57 PARTIAL LOSS OP FEIDMATER RPV DEPRICCURZZATION AVIOHATIC/HAHUALREACTOR SCRAM FAILURE OPERATOR PAILS TO START CLC 0 ~I
~
~I
~ 000000 01 ~III00000000$ $00000000000000000000000000000000000000000000$
0000000000000000
~I 50 RECIRC DISCHARCR LINE BREAK
~
~ IOV DIRSEL AUK BD )IA POHIR WAVAZLABLE OLFV 400V CHVIDOMM BOARD )A RI SVIIDllklCOHPOMEHT COOLIHO MATER CYSTEH VNAVAILABII RHR PUMP B WAVAZLABLR DRYMELL COMIXOLilk SISTEN WAVAIIABLI RHR PVNP D UMAVAZLABLE RHR Plat 1 WAV111ABLX RHR PWP C WAVAILABLE CROSS CONNICf TO UNIT 2 RHR CZCTEN WAVAILABLE OPERAZOR tAILS TO IN!TIATS CP COOLIMQ CONTAZN1MT VENT WAVAILABLR 000000000 ~ 000 ~I~ 00000000010$ 1000$ 00 ~ 01000000001 ~ 0$ 0000000100000010000
~ 00111000000000001000001000000000
~ 010 ~ 0 ~
~
59 LOSS Ot CONDENSER VACVW HAIN CONDENSER WAVAILABLR 0IAV AVIOHATIC/MANUALRIAQIOR CCIAH tAILUIR ktll HlkDNARS UNAVAILABLR coNDITIQMS RILATI)03 To SIUck oPml cRvs IO, I, 2, )t soRvc)
VESSEL Zlt)EcTIDN NITN cRDHS whvhzLABLE STATS I RELIEF VALVE CIQCK OPEN
- OPERATOR tAILS TO CONTROL Ltl DURIMQ AIMS 000000000 ~ 000H0000000000001000000000110001000110000000001100000000010000000010000
~ 000000000000001
~ 00000000 ~I
~ 00
~
~
~
~
CO CORE CPRAY LINE BRCAK 000V DZIIILAVX BD )RA POHER WAVAILIBLE OIAV 4 ~ OV SHVIDOMM bOARD 31 RI SVIIDI)43 CO4NOMIMT COOLI)KI MATER SZCTIN UNAVAILABLI DRYMELL CONTROL Alk SYSTEM WAVAILABLR
,ONS CORR SPRAY IZ)OP tlILS TO IM)ICI IHR tWt 1 UNAVAILABLR RHR PVNP C WAV11LABLS CROSS CONNECT TO UNIT 2 RHR CYCTXN WAVAILABLR RHR LPCI IN)ECTION PATH WAVAILABLR CONfAINNI)rfVENT WAVAZLABLX I~ 000000000 ~ 0001000000000000000000000000000000000000000000
~ 0000000000000000001000000000000000000000000000 I
~
~ I
~
01 TURBINE TRIP VESSEL INJECTION NIZII CRDHS UHAVAILAbLR AVZONATIC/MANUALREACIOR SCRAM FAILURE OPIRATOR FAILS TO INHIBIT ADS 02 PARTIAL LOSS Ot tSEDHATSR AUTOHlTIC/MANUALkCACZOR CCIAH tAILURS STANDBY LIQUID CONZROl SZSIXN WAVAIIABLX CONDITIONS RILATINO TO STUCK OPEN SRVS lo ~ I~
2 ~
3 CORVS)
STATS 0 RELIEF VALVES STUCK OPEN e00 0010000010 000 ~ 00000100\\00000 00 ~ 000000000000I000$ 00000000000000000
~ 00000000000000000000000H0000000000
~
HIAV 1.450 04
.10 Figure B-1 (Page 15 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HOOSL Hase>
BFNU3H Top-Rank(na Sequences Conrr(burlnS Co Oroup
> ALL prequeney ALL I AL!. DAHAOS STATES RXCRPT SUCCESS 15:53:30 20 HAY 1995 Sequence Desor(pc(on
Evencs ------------
Ouaranceed Seance/Ca>saencs End Frequency Percenc Scace (per yearl 53 5 ~
55
$ 1 VAIIABL'R R UNAVAILABL TOTAL LOSS OF FREDNATu RFN NARDNARR wAYAILABLR AUTOHATIC/HANUALRRACIOR SCRAH FAILURE STANDBY LIQUID CONTROL SYSTRH WAVAILABLS CONnlTIONS RELATINO TO STUCK OtSN SRVS (0>
1 ~ 2, )o SORVSl STATR 0 RRLIEF VALVES STUCK OPEN
~I~ 111
~I~
11 IS 001
~ 1111111111110
~ 1111110 ~ ISSOISSOI 1111111110111
~ 111101$ 111111
~ 1 ~ 0
~
~ 11$ 1
~
~I
'IOZAL LOSS Ot FRRDNATER
- RFN NARDNARE QNAVAIIASLR AUZOHATIC/HANUALRRACloa SCRAll FAILURE OPRuma FAILS To ESTABLISll 'IORUS COOLINO CONDITIONS RSLATIla3 TO STUCK OPEN SRVS lo, I, 2, 3>
SORV$ 3 STATE 0 Ran)at VALVES STUCK OPEN aaR PUHP B QNAVAILASLR RNR PWP D QNAVAILASLS sssoasso 01 1011111111111111 01111101111110111 I
~ os 1 101111
~ 100
~
~
~
TQTAL Loss ot oFtSITE povu 500xv opFSITR SOBER calo
- 250 V DC CONTROL Povu Foa eav SD Bn 14 AÃD ~ $ 0 V SD SD )EA WAVAZL ICIKVOFPSITS Posu Cain
- )so v oc coNIROL poaaa poa eav Sn an )ac AND elo v sn an )EB wavall-opaaama FAILS m awoaa povu m UNIT Boaans CONDITIONS RSlATINO TO STUCK OPEN SRVS (0, I, 2 ~ ) ~ SORVSI eav UNIT SD )A UNAVAILABLE STATS - 0 RSLlat VAIVSS STUCK OPEN
~Kv UNIT BD 3S WAVAILABLR
- eav UNIT SD ll WAVAIIABLS
~Kv UNIT Bn 1$ WAVAILABLR eav UNIT BD 4 WAVAILABLS eav UNIT BD 2$ WAVAZLABLE 250 V RH)V Rn 2$ WAVAILABLE 250 RHOV BD 2C,WAVAILABLS 250 V RNOV BOARD )A 250 V RHOV BOARD )B e Kv QIIT BOARD )C s 0 xv ccstoN BOARD B e KV UNIT BOARD )C Poau SUPPLY DIVISION I WAVAILABLE tovu SUPPLY DIVISION II UÃAVAILABLR VESSEL LEVEL S ZONAL WAVAZLABLS DIV I VESSRl LON PRESSURE SIGNAL WAVAILABLE DIV 11 VESSEL IAN( PRESSURE
$ 10NAL WAVAILABLR DIV I Nl RX ta$ $$ SIONAL WAVAILABLR DIV 11 Sl RX ta$ $$ SIONAL UNAVAILABLE RAN COOLINO HATER SZSTSH UNAVAILABLS SRCN PWP 1 QIAVAILABLR RSCN FWF C UNAVAltkSLS SECH PQ(P D WAVAIIABLR RX SUILDINO CCHPONENT COOLIN) 'NATRR SYSTZH UNA
- RERSN PQO $1 (SNINO PQ(PI WAVAILABLS PLANT CONIROL AIR SYSTRH WAVAILABLS DRYÃRLL coNIRQL AIR szsTEH wAVAILABLE HSIVS tAILTo RXHAIN OPEN I CND/CND BSTR PQlt, INCLUDES SHORT CYCLS VALV RCIC WAVAILABLR(5 BOURS(
RPCI WAVAILABLE(5 NOQRSl VESSRL 13c)ECTION NITN CROXS WAVAILABLR TORUS COOLIIKI NARDNARE WAVAILABLE CS MN PRESSURE IN)ECTION WAVAZLABLR aaa LON PRESSURE INJECTION PATH WAVAILABLS
~ 0 ~ I 11 ~
~
~ OIOOOOII~ 11111111111111111011110 IS ~ 11 ~ 111101111111111111101111111101111001111111 0111 ~I
~
TURBINE TRIP NIZNOQZ BYPASS TBVS tAIL To RRLZRVS~HAINTAIN RX PRESSURE
- AQZOHATIC/HANUALR4Cma SCRAll FAILURE OtuAma tAILS To COOLDONN QSlNO TNE TBVS CONDITIONS XELATINO TO STUCK OPEN SRVS lo ~
1 ~
2 ~
31 Soaval OtuATOR tAILS TO ESTABLISN TORQS COOLINO STATR - 0 RRLISF VALVES STUCK OPEN
- RNR PUHP D UNAVAILABLS 0010000100010$ 000$ 11111111111110111111
~ 111111111111101110111111111111111111111110111
~ 1111111011111111111111
~
'TURBINE TRIP NITNOUT BYPASS TBVS FAIL TO RELISVS~HAINZAIN RX tRXSSQRS AQIOHATIC/HANUAL$4CIOR SCRAH FAILURE OtuAma PAILS To COOLDONN QSINO TllR TBVS
- coanltloas RSLATIN2 m STQca OFEN Sxva (o. I, 2, 3> Soavsl OPXRAma FAILS To ESTABLZSN TORUS COOLINO STATS 0 RRLISF VALVES STUCK OPEN RNR PUH'P B WAVAILASLR OIAV 1.61$ ~ OS 1$
HlBV I ~ SSS OS
.37 PINY I ~ 5ea os
.19 HIBV I ~ 53$
OS
.17 HIBV 3.53$ ~ 04
.17 Figure 8-1 (Page 16 of Z4). Top 100 Sequences in Brogans Ferg Unit 3 PSA Model
HODCL Mane<<BFNU)H Top.Rank)op Sequences Contrlhutln5 to Croup c ALL Frequency ALL 0 ALL DQQOS STATES EXCEPT SUCCESS 15:53:30 10 HAY 3996 Rank No.
CeUuence Descrlptlon
Events--------------
End Frequency Percent Ouaranteed Events/Coe<<<<ants State
)per year) it CLOSURE Ot ALL HSIVS AUTOMATIC/IQ)n)ALRRLCIOR SCRAM FAILURE CONDITIONS RELLTINO TO STUCK OPEN CRVS
)0<< I<<
CTATC 0 RELIRF VALVES STUCK OFEH RNR PWP A WAVAILABLS RMR PUHP C WAVAILABLS 0 ~ 0000>>00 0
0 ~ 0
~ 000
~ 00 00 0000 0000 65 LOSS Ot CONDENSER VACUW AUIOHATIC/MANUALRlACIOR SCRAM FAILU1S
- OPERATOR FAILS TO START CLC 0 F 00 '000000000000000000000$
000000000000000000000000 10 CCEAH REQUIRED IHANUALSCklHS)
- AUIOHATIC/MANUALREACTOR SCRAM FAILURE OPERATOR FAILS TO START ELC 0 ~ 00 ~ 00 ~ 00000 ~ 0000000 ~ 000000000000000000
~ 00000000000 YI TOTAL LOSS OF OFtCITR PONER DO 31 UNAVAILABILITY DO ID UNLVAILABLR RECOVER OFFSITS POMER BY 30 MINUTES
- DO D UNAVAIIABLS DO C W\\VAIIABLR CONDITIONS RELLTINO TO STUCK OPEN SAVE )0<<1 ~
STATE - 0 RELIEF VAI.VSC STUCK OPEN FAILURE TO RECOVER ELSCIRIC BONER IN 6 HOURS HCIVC FAIL IO RDQIN OPEN OPERATOR tAILS TO COOLDOMN USIH2 TNE TBVC OPERATOR tAILS 'IO ESTABLISH TORUS COOLINO 2,
3<<
SORVS)
HAIN CONDnIClR UNLV1IL1$LR RPV DEPRECCURIEATION 1PV DEPRSSCURIEATION 00000000000000000000000000000000
~ 000$ 000000000000>>00
~
500KV OttCITE tONER CRID 141KV OttSITS POMER ORID OPNQTOR tAILS TO RlS1ORR POMER TO WlT BOARDS
~ KV WIT SD 3A UMAVAILLSLC 4KV UNIT BD 3$ UNAVAILLBLS 4KV CD BD 311 AND ilOV CD BD 3L PONER UNAVAILABLS 4COV SEUIDONN BOARD IA
~ COV DIESEL LUX BD 3EA PoulR WAVAILLBLR 4KV CD BD 3ED UNLVAILABLR iKV UNIT $0 11 UNAVAILABLE
<<4KV WIT BD 1$ WAVAILLBLS 4KV UNIT BD 21 NAVAILABLE
~ KV NIT BD 2$ WAVAILLSLE
<<CNUIDOMN SUS 1 WAVAILABLR ENQIDONM SQS 2 UÃ1VAILLBLS 4KV CD BD C UNAVAILABLS 4IOV CNUIDOMN BOARD 1$
0 ilOV RHOV SD 1$
POMER WLVAILABLR
>> 4KV CD BD D U)QVAILABLS
- 410V SMUmONN BOARD 2$
>> ilOV RHOV BD 2$
PURER UNAVAILABLE 4COV RHOV SD 2C PONER WAVAIIABLE
~ ilOV DIESEL AQX SD S POMlk WAVAILABLE 120 V 1PS BQC <<1>> WLVAILABLR 4 KV NIT BOARD 1C
- 4 KV IXNse3N BOARD 1 4 KV UNIT BOARD 3C
~ RAN COOLINO HATER SYSTEM WAVAILAELE SECH PWP 1 WAVAIIABLS
- SECH WHP $ WAVAILABLE EECN WHP D NAVAILASLE RX BUILDINO COMPONENT COOLINO NATRR SYSTEM UNAVAILABLR RNRCN PQIt $1 U)QVLILABLS RNREM WNt D2 WAVAILABLS RERCM WHP Dl
)CHINO PWP)
WAVLILABLS PLANT CONTROL AIR SYCTNI U)QVAILABLE DRYMELL CONIROL AIR CYCTEH UNAVAILABLE OPERATOR FAILS TO RRCOVlR EECN ICTART CHINO WNP)
NSIVS FAIL TO REMAIN OPEN I CND/CMD BCTR PIBIP, INCLUDEE SNORT CYCLE VALVE UNAVAILABL 1CIC WLVAILABLSION) TSRH
- NPCI WAVAILABLRIea TEkH VESSEL IHICCTION NITH CLONE WAVAILLBLE OPERATOR PAILS TO HAMUALLT STARS RNR/CORE SPRAY RMR Plat A UNLVAIIABLS RNR PWP C UNAV11LLBLS UNIT 2 TO UNIT 3 CROSS CONNECT WLVLILABLS RNR WHP S WAVAILABLR 2, 3t CORVS)
H!BV HKCV HKCV P )OX I 53S.OS
.11 I ~ SIC ~ OS
~ 13 1.4SE ~ OS
.16 3.4SE.OS
.)6 Figure 8-1 (Page 17 of 24). Top 100 Sequences in Bros'ns Ferry Unit 3 PSA Model
MODEL Mae>e>
SFMVIH Top-Rankins Sequencee ContrfhutfnS to Oroup
> AI.L trequency ALL 0 ALL DANAOR STATES IXCIPT SUCCESS 15>53:10 20 HAY lSSi Rank Mo.
sequence Deecrlptfon lvente.
Ouaranteed Ivente/Coersente Rnd State Frequency Percent (per year)
S2 TOTAL LOSS OF FEIDMATIR CONDITIONS RILATllKITO STUCK OPEN IRVS lo> I~
2 ~
30 SORVS)
STATE 0 RRLIRt VALVES STUCK OPEN Vlsfll IHIRCTIOH MITE CRDHI WAVAILABLS OPERATOR tAILS 'TO ESTABLISH TORUS COOLIMO
~
~
~
~
~ 0000 00 000000000000000 000 00000000 000 00000000
'TOTAL lOSS OF OttSITE POMIR DO 31 WAVAILABILITT DO lb WAVAILABLR RECOVER OttSITS PONRR BV 30 HINVIES N b WAVAILABLS N C WAVAIIABLR COMDI'TIOMI RILATIMO TO STUCK OPEN SRVI 10 ~ I~
2 ~
3o IORVI)
STATE 0 RRLISt VALVES STUCK OPEN FAILURE 'IO RICOVER RLICIRIC POMRR IN I HOURS
\\ ~ 0000 0$ 00000000\\000$ 000$ 000000000000$ 0000000000000000$ 00000000000000000000 TURBINE TRIP NITMOVT SrtAIS AUTOMATIC/MANUALRRACIOR SCkAN t11LURS
- CONDITIONS RRLATIMO TO STUCK OPEN SRVS lo, I, 2, IO SORVS)
STATE - I RILIRt VALVE STUCK OPEN RMR PUMP D UMAVAILABL'I OPIRATOR PAILS TO RSTASl ISH TORUS COOL)NO RMR LON PRIIIVRS INJECTION PATll UHAVAILASLR
~
0 000 0
~ 0 0
000 0 ~
0 ~ 0 ~
~
RFN NARDNARS UMAVAIIABLS 500KV OttllTS PONIR ORID IilKVOFFSITS BONER ORID OPERATOR FAILS TO RESTORE POMIR TO WIT BOARDS iKV UNIT BD IA UHAVAILABLR ikv UNIT BD lb UHAVAILASLR ilv ID SD IIA AMD ilOV SD BD IA POMER UNAVAILABLI ilov IHVIUOMH bOARD 31 ilOV DIESEL AUZ SD 3$1 POMIR WAVAILABLS iKV SD SD 3ES UMAVAILABLS iKV OMIT BD 11 WAVAIIABLI ilv VNIT SD 1$ QN1VAIIABLS iKV UNIT BD IA UNAVAILABLS iKV WIT BD lb WAVAIIASLR SMQIDONM SUS I VMAVAILABLR SHVIDOMH SU$
1 WAVAILABLI iKV ID BD b WAVAIIAILR ilov EMVIIONM I01RD 21 ilOV RNOV BD IA POMIR UNAVAILABLE 110 V RPS BUS 0AO WAVAILABLR ilv ID BD C WAVAIIABLI iIOV IMVIDONN BOARD lb ilOV RHOV BD 1$ POMIR WAVAILABLE i KV UNIT $0110 2C i Kv cceeecer BQARD b i Kv WIT BOARD 3C RAN COOLIMO MATER SYSTEM UM1VAILABLR RICH tVHt 1 WAVAIIABLI RICH PWP b WAVAIIABLI EICN PWP C WAVAILABLI RX BUIIDIH2 COHPONE)lT COOLIMO MATER SVSTIH UNAVAILABLE RRRSN PWP b2 WAVAILABLR RNRSll PUMP C1 WAVAILABLI RNRSM PUHP Cl (SHIN2 PUMP) WAV1ILABLS PLANT COÃIROI, Alk SISTEN WAVAILASLR DRIMILLCONTROL Alk SYSTEM UNAVAILABLE OPERATOR tAILS 'IO RECOVER RICN )START SHING PVHP)
NSIVS FAIL TO RIHAIN OPIM I CHD/CND SITE PWP>
INCLUDES SHORT CICLR VALVE VMAVAILABL RCIC WAVAILASLELONI TERN RPCI WAV11L1bLE LCRE) TNUl VllllfINJECTION NII)f CRDNS WAVAILABLR OPERATOR tAILS TO HAMUALLTSTART RMR/CORI SPRAT RER PWF 1 QHAVAIIABLI RNR PWP C WAVAILASLE UNIT 2 TO WIT 3 CROSS CONNECT WAVAIIABLR RHR PWP b WAVAILABLS RNR PQHt D UHAV11LABLS OPERATOR PA'ILS TO SITABLISll TORUS CCOLIMO RRR LON PRISSVRR INJECTION tAIN UNAVAILABLE
~0000$ 0000000000000000 00000000000 00 Tbvl tAILTO RILIRVEKHAIHTAIHkX PRESSURE OPERATOR FAILS TO COOIDONN QIIIKI 'INR TBVS VISSRL IHIRCTION MITE CADRE WAVAILABLR
'PICX OIAV
- l. ~ SE ~ Oi li 1 ~iil.oe
.li l.illOe
.li Figure B-1 (Page 18 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
0
HOORL Nanea BtMll3H Top.Rank)os Saquencea Conrrthuttns to Croup s ALL Frequency ALL ALL DAHACS STATES RXCEtt SUCCESS 15i53>30 10 HAY 1994 Rank No.
Sequence DaacrIprlon
~
Event a cuarantae0 Eeenre/cocnaenre Snd Clare frequency percent (per year) 19 TOTAL lOSS OF OttSITS PONCE DC 31 UNAVAILABILITY
- RECOVER OttSITS PONCE bY 30 HIMVISS DG D UNAVAILABLE
- DO C WAVAILABLE RMRSN PUHP Dl lSMIMO PWP)
WAVAILABLS
- CONDITIONS RRLATI)r3 TO STUCK OPEN CRVS )0, 1, 2, Ie CORVS)
STATS - 0 RELISt VALVES NICK OPEN FAILURE TO RECOVER RLECIRIC PONCE IM I HOURS OPRRAYOR tAILS '10 COlllROL LPI DURINO AIMS 7$
TOTAL LOSS Ot FEEDNATCR AVIOHATIC/MANUALREACIOR SCRAN FAILURE CONDITIONS RSLATIMO TO STUCK OPEN CRVS )0, I, 2 ~
3o CORVS)
STATS 0 RELIEF VALVES STUCK OPSN RMR NEAT SXCNAMORR D UNAVAILABLE 0 ~ 0 0 00 00
~
0 0 000000 0000 ~
~ 0000000000$
$ 0 00000 ~ 000000 74 TOTAL LOSS Ot tEEDMATSR AUIOHATIC/HANUALRRACIOR SCRAN FAILURE CONDITIONS RELAY)HO TO CIQCK OPSÃ ClVS (0 ~ I~
2 ~
3e SORVS)
STATS 0 RRI IRF VALVES CTUCK OPEN RBR BEAT EXCMAMCRR $ WAVAILABLE 0' '00000 ~ 0
$00000000000000$ 0000000000000 00 0
00 0000000000$ 00 ~ 0 ~ 000 77 SCRAM REQUIRED
)MANUAL CCRAHS)
AUTOMATIC/HAMUALlNACIOR SCRAM FAILURE STAMDSY LIQUID COÃIROI CYSTRH VMAVAILlbLE CONDITIONS RRLATINO TO CTQCK Otmt SRVS l0 ~
1 ~
2 ~
3o SORVC)
STATS 0 RELIEF VALVES CTQCK OPEN 000 ~ 000000 ~ 0 0$ 0$ 000 ~ 00 ~
0 00 00000 ~ 000000000000000000000000000000000
~
YI LOSS Ot PLANT AIR CONDITIONS RELATIMC TO STUCK OPRN SRVS )0, 1, 2, 3o CORVS)
STATE 1 RRLISt V1LVR SIQCK OPRM CONDENSER WAVAILABLRAS NRlT SINK RMR PUMP A WAVltLABLS RMR PVHP C WAVAILABLR
- RNR PUMP b UNAVAIMLLS RMR PUMP D WAVAILABLE 0'
0'00 0 ~ 0$ $ 00000 ~ 00$ 0000000000000000$ 00 ~ 0000000000000000$ 00000000 Rill NARDNARS WAVAIL1$LR OPERATOR FAILS '10 ESTABLISH 'IORUS COOL)NO RFM MARDNARE VMAVAILABLR opsRAIOR FAILC To ESTABLISH 10AUS cooLttr)
PLAÃT CWIROt AIR CYCTSH WAVAILABLS DRYMELL CONIROL AIR CYCTKH UMAVAILABLS HSIVS fAIL10 RIHAIll OPEN RFM BARDNARR UlQVAILABLE
- OPERATOR fAILS TO COOLDONM US)NO TMC TBVC STARTQP BYPASS VALVE UNAVAIIAILE UNIT 2 '10 WIT 3 CROSS CONNECT WAVAILABLR
- OPERATOR FAILS TO ESTABLISH TORUS COOL)NO RMR t4ll PRRSSQRR l!QRCYIOM PAIll UlAVAILABLR
~ 0 F 0000 000000000000 ~ 000000
~ $000$ 000000
$ 0000
~
- SOOKV OttSITS PONSR CRID ICIKV OttCITS PONRR CRtD OPERATOR tAILS TO RESTORE PONER TO WlT BOARDS 4KV WIT $0 3A WAVAILlBLC 4KV WIT BD 3$ WAVAILABLE 4KV CD BD 3RA AMD 440V CD BD 31 PONSR WAVAILABLS 4IOV SNVIIONM BOARD 31 4IOV DICCCL AVX SD 3EA PONSR WAVAIIASLE 4KV WIT BD 11 WAVAILABLS 4KV WIT SD 1$ UlOVAILASIE 4KV WIT BD 21 WAVAILABLE 4KV UNIT BD 2$ UMlVAIIASLE Ct)VIDONM RUS 1 WAVAILABLS
- CBVIUONM BVC 2 WAVAILARLS 4KV CD BD C WAVAILASLE 4IOV CNVIDONN BOARD 1$
4IOV RHOV BD 1'b POMER UNAVAILABLE 4KV CD SD D UMlVAILASLE
- 4IOV C)tVIIONM BOARD 2b 4COV R)r)V SD 2$
PONCE UNlVAILlBLS 4IOV RHOV BD 2C PON'CR UNAVAILARLS 4IOV DIESEL AUX BD b PONCE UNAVAILABLE 120 V RPS SUS 0$ $ UMAVAILABLS 4 KV WIT BOARD 2C 4
KV CO)eeON BOARD B 4 KV UNIT BOARD 3C RAM COOLIMO MATER STITCH UMAVAlllBLR ECCH PUHt A WAVAIIABLS SECN PWP $ WAVAILABLR CSCN tWt D WAVAILABLS RX SQIIDtlKI COMPONENT COOLIMO NATRR CYCTRH UMAVAILISLS RMRIM PWP $2 WAVAILABLS RMRCM PUMP D2 WAVAIIABLR PLlÃT CONTROL AIR CYCTXH WAVAILABLE Htbv 1.43C ~ oa
.34 HIAV 1.4OE OI
.15 PISV 1.39C OI
.15 HIBV 1.4)R ~ OI
.14 Figure B-1 (Page 19-of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model
HOURI. Manes BMV)H Top-RanktnS Sequencee ContrtbuttnS to Oroup I ALL trequency ALL 0 ALL DANlQE STA'tSS IXCIPT SVCCSSS 15:53:30
)0 HAY 1995 Rank No.
Sequence Deacrtpcton
-Eventa
~ - ~
Ouaranleed Ivenle/Coecaence Snd Frequency Percent Scare (per year)
DRZMILL CONTROL AIR STSTIH UMAVAI(ABLS OPRRA'IOR FAILS TO RECOVER ICCN (START CHINO PVHP)
HSIVS tAIL10 REMAIN OPml I CND/CMD BSTR PWP, INCLUDES SNORT CVCLS VALVE UNAVAIIASL RCIC UNAVAILABLELOIK'ERN HPCZ VNAVAIL1BLELCHO TIRH VESSEL IIQICTION NITN CRDMS QMAV11LABLE OPRRATOR FAILS TO HANVALLYSTART RMR/CORE SPRAY RMX PUNt A UMlVAIIASLI RNR PWP C WAVAILABLE UNIT 2 TO UNIT ) CROSS CONNCCT UNAVAILABLE RNR PWP B WAVAILlSLR RNR PUMP D WAVAILABLR OPIÃATOR FAILS TO ESTABLISH TOKVS COOt IH)
RNR IA)M tkRSSVRS INJICTIOll PATH WAVAItABLC
~
00 0$ 0 000 000000 000 oooooss 000 oos 000 00 00 0000 000 000 000 00$
00 oa I~
tlkTZAL LOSS OF CONDIMSATS TRVS tAIL TO RELIEVE%MAINTAINkX CONDITIONS REIATI)a) TO STUCK OPEN SRVS (0, 1 ~ 2, )0 SORVS)
RFN NARDMARS QMAVAILABLS STATS
~ 0 RILIkt VALVES STUCK OPEN OPIRAIOR tAILS TO DRPRESSVRIZS RCtC UNAVAIL1BLI(4 HOURS)
NPCI UNAVAZIABLS (C HOURS)
~ RPV DSPRISSURIZATION VESSEL IHJRCTION MITH CIDNS WAVAILABLI sasasoassess ssses00000000000$
000000000000000000000000000$
assssass
~ 0000000$ 0 00 000 00 0
~
~
0
~ 5 HIDIVI tr)CA
- CO(IZAINHXMTVRMT VNAVAIIASLX OPERATOR FAILS TO INITIATE SP COOLIMO
~
S
~
0000000S000$ 00000000000000000000$
0$ 00000000000000000000000000000000000000000000
~ 0000
$ ~ 00000000 ~
40 I'CCIRC DISCNAROX LINI BREAK COMTAINNEMT VIllTUNAVAILABLS OtIRATOR FAILS TO IMZTIATS St COOLINQ 0
00
~ 00 000000000000000000000000000000$
000000000000000000000000000000000000S0000000$
0000 000 ooo 000 0$
41 LOSS OF ALL CONDIMSATR 250 kNOV BD 2C WAVAIIABLI 250 V DC CONTROL PONCE FOR 4XV CD BD )Rl AMD 440 V SD SD )Xl UMAVAIL 250 V RHOV BOARD )I POMIR SUPPLT DIVISION It UNAVAILABLE
- PONCE CVPPtI DtVZCZON I WAVAILABLS CONDITIONS RSLATllKITO STUCK OPEN SRVS (Og 1 ~
2 ~ )+ SORVS)
VESSEL LEVEL SIONAL WAVAILASLE STATE - 0 RELIEF VALVES STUCK OPEN DIV I VESSEL LOM tRSSSURS SICMlt QNAVAILABLI DIV ZI VCSCSI LON PRESSURE SIGNAI UNAVAILABLC DIV I NI RX PRISS SIGNAL QlllVAIIABLS DZV 11 HI RX PRFSS SIONAL UNAVAILABLC HllH CONDENSER QNAVAILABLR 1 CND/CND SSTR PWP, INCLVDCS SHOR'T CYCLE VALVE UNAVAILlB(
RCIC UMAVAIIABLR(4 HOURS)
NPCI UMAVAIIABLIl4 HOURS)
~
VESSEL INJECTION NITH CRDMS UMAVAILABLR RIR PVHP A WAVAILABLE CS LON PRRSSVRR INJSCtlON QNAVAILABLS kMR LOM PRESSURE INJECTION PATH WAVAILASLI 00 ~ 000000$ ~ 000 ~ 0 ~ 0000000000000
~ 0 ~ 000000000000000000000000000000
~ 00000000000000000000000000000000000
~ 0 ~ 00 0000000
~ 0 ~ s
~
~\\
~
42 TURBINE TRIP RPV DIPRRSSQRIXATION UNIT ) NOT AT tOMCR
- AUIOHATIC/MANUALRCACIOR SCRlH FAILURE OPIRAIOR tAILS TO START SLC 00 0
0 0 00000000000000000000000000000000$
~
o 00 000 000 000 000 000 000 0000 00000000000000$
00 ~ 00 ~
~
~ 0 4)
CLOSURE Ot ALL HSIVS 250 RHOV BD )C WAVAILABLR 250 V DC COHIROI POMER tok 4KV SD BD )XA AND 440 V CD SD )El WAV1IL 250 V RHOV BOARD )I CONDITIONS RSLATINQ TO STUCK OPEN SRVS l0 ~
1 ~
2 ~ )0 SORVS)
POMIk SVPtLT DIVISIOll I VMAVAILABLI STATS 0 RELIRt VALVES STUCK OPN(
DZV Z VISSIL LON tRCSSVRC SIGNAL VNAVAILABLI NPCI Ul(AVAILABLElC BOURS)
DIV I Hl RX tkISS SIONAL WAVAILABLE RPV DEPRCSSURIXATION HSIVS FAIL TO RINAIN OPEN RFM MARDMARX WAVAILABLC
- RCIC WAVAILABLE lC HOURS)
OPERATOR FAILS TO INHIBIT CLOSVlI OF HSIVS Oll LEVEL VRSSRl, INJECTION NITH CRDNS WAVAltABLR Nm PWP 1 WAVAILABLS so00
$000 ~ 00000000000000000000 000000$ 000000$ 00000 00000'0$ 0000000000000000000000000 0000000
~ 00 ~ 0000 ~ 0 ~ 00 ~ 0 ~ a ~ 0000 ~ 0
~ ~
0
~
0 ~
0 ~
PRESSURE USING TBV'I I ~ 34I-O4,35 PINY l.3)I ~ 04
.15 HKCV 1.3)I-OI
.15 HlAV 1.3)C ~ Ob
.15 OLCV 1.30E 04
.14 HIAV
- l. 30I ~ 04
. le Figure B-1 (Page 20 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HODEt, Ra>>e>
btNVIH Top-Ranktnl sequence>>
concrthuctnl co Croup
> ALf trequency ALL a 1LL DAHACS STATES EZCIPT SUCCESS IS>SI>30 20 HAY t996 Rank No.
Sequence Deacrlprton
--Event>>------- ~-'-----
Cuaranceed Event>>/Coen>ence lnd Scare Frequency Percent
)per yearl
$ 6 LOSS OF PLANT AIR SOCEV OFFSITE POMER CRID CONDITIONS RSLATINQ TO IIIXXOPEN STATS I RSLZBt VALVE SIQCE OPEN RHR PUMP A UNAVAILABLR RHR PUHP C UNAVAILABLE RHR PVHP B UNAVAILABLS RRR PUMP D UNAVAILAbLI SRVS l0, l, 2 ~ i> SORVS)
PLANT CONTROL AIR SISTER UNAVAILABLE DRIMILLCORIROL AIR SISTER URAVAZLABLR HSZVS FAIL TO RSNAIN OPER RFM BARDKARI UNAVAILABLI OPERATOR FAILS TO COOLDOKR USINQ THE TBVS STARTVP BTPASS VALVE UNAVAILABLE UNIT 2 TO UNIT i CROSS CONRICT UNAVAILABLE OPERATOR tAILS '10 ISTABLISH 'IORUS CODLING RHR LON PRRSSURE IllIICTIONPAIN UNAVAILABLE PIEV I ~ 29c 04 ate
~ I I 00000000 00 010000 I ~
I~I 000
~
~ 000 0000
~
I
~ 0 ~I
~ 0
~ ~I~ ~
~
CORTAIRHIRT VENT UNAVAILABLI 00000000 00001000000 ~ 0000 00 1000 I~I~
S9 TVRBINR TRIP tlRIT 2 HOT AT POKER AUIOHATIC/HANVALRRACIOR SCRAH FAILVRS STARDBT LIQUID CORIROL STSTSH UNAVAZLASLR CONDITIONS RILATINQ TO STQCE OPEN SRVS )0, I~
2>
3 ~ SORVS)
STATS - 0 RELIEt VALVES STUCE OPEN 01 ~ 0
~ 0000 ~ 0 ~ 00
~ 00 ~ 00000000000000000000000000000000000000000
~ 0000 ~I~ 000000000000000
~\\ ~ 000 ~ 000000 ~ ssoaos 00001 0
SS LOSS OF CONDIRSRR VACUVH HAIN CONDENSER UNAVAZLABLR AVIOHATIC/MANUALRRACIOR SCRAH FAILURE RFM HARDKARI UNAVAILABLE STARDBT LIQUID CONTROL SISTER UNAVAILABLE CONDITIONS RILATINQ TO SIVCE OPEN SRVS
)0> I~
2 ~
30 SORVS)
STATS 0 RILIEt VALVIS STVCE OPER IF 000 0000 ~I I~ 000 010010000000000
~
00
~I 00 ~
000 0000 0000000000
~ 000 0000 I~I ~
00
~
~ 0 S9 HSDIVH LOCA
- HICR PRISSVRS COOLANT INJSCF ION S'ISTEH URAVAILASLE FAILURE TO DIPRSSSURISS VIA TBS SRVS
~
10 0000 00 I 0000000000a 00000 I
I
~ 0
~
Iaaa I 00 00000 HIAV OZAV OIAV l.2al'Oa ate 1.2>>E-OS
.Ze 1.2II.O>>
.Ie 90 LOSS Ot RAN COOLINQ MATER RAM COOLIHQ NATIR SISTEH UNAVAILABLE SUPPRESSION POOL lTORVS) UNAVAILAbLE HAIN CONDENSER C)IAVAILIBLE
- CONDITIONS RRLATINQ TO STQCE OPEN SRVS )0, I~
2 ~
3>
SORVS) 1 CND/CND bSTR PVNP>
ZNCLVDIS SHORT CICLE VALVE URAVAILABL STATS 0 RRLISF VALVES STUCK OPER BPCZ UNAVAILABLS IC HDQRS)
RCIC URAVAILAILRLO)rt TERN VESSEL INIICTIONMITE CRDHS UNAVAILABLS RBR PUMP b URAVAILABLR NN Ptbtt D IWAVAILABLE OPERATOR fAlLS TO ESTABLISH TORUS COOLINQ 00 ~ 000 ~ 00000 ~ 00 ~ 001000001000000000010000001100000000000100100000000000000010000100000100000 000010000010000111000
~ 000
~I~I 00 0 ~
91 LOSS Ot CONDENSER VACUUM HAIN CONDENSER URAVAILABLI
- AVIOHATIC/HANUALRRACIOR SCRAH FAILURE RFN RARDMARS VNAV11LABLI
- CONDITIONS RILATZNQ TO EIUCX OPER SRVS )0, I, 2, io SORVS)
OPERATOR tAILS TO ESTABLISH TORUS COOLINQ STATE 0 RELIlt VALVES SZQCE OPEN
- RRR PVHP B UNAVAZLABLI RHR Ptb)P D URAVAIIABLI
~ 000 ~I~ 100001 ~ 01000 00 ~ 0000000000 ~ 000 ~ 000100 ~ 00000000000 ~ 0000000000000000000000000
~
~I
~
~
~
~ 0 92 CLOSURE Ot AZL HSZVS HSIVS FAIL TO RSHAIN OPEN AVIOHATZC/HANVALREACIOR SCRAN tAILURS OPERATOR FAILS TO COOLDOKR USINQ THI TBVS CONDITIONS RRLATZNQ TO STQCE OPNI SRVS lb, I>
2 ~
3> SORVS)
OPIRATOR FAILS 'ZO ISTAbLISH 'TORUS COOLINQ STATS - 0 RELIEF VALVES STQCI OPER RHR PUMP C URAVAILASLB RNR PWP 0 UNAVAILABII
~0000 ~ 0100 ~ 0 ~I~ saaasaaaaaaaaaaseesaea@0000100000000000011@0000000000000000000000000000000000
~ 0000 ~I~I~ 000000 ~ I~I~ 0'0 '
0' 93 CLOSURE Ot ALL HSIVS HSZVS tAIL TO RINAIN OPEN AVIOHATIC/HAHUALRRACIOR SCRAH FAILURE OPERATOR tAILS TO COOLDOMR USINQ THE TBVS CONDITIONS 11L1TINQ TO STVCI OPEN SRVS )0, I, 2, io SORVS)
OPRRATOR FAILI '1O 'RSTABLISH TORUS COOLINQ STATE 0 RILIlt VALVIS STVCI OPER RRR PUMP A URAVAILABZB RHR PWP D UNAVAILABLE 00 ~ 1000000 ~ 00 ~ 000000000000000
~ 000000000000000000000000000000000000000 0000001000 00000000000000
~ 0000 ~ 0 ~
~ 00 ~I~I
~ 001000
~I
~I
~I~ 0 ~ 0 Pe TURBINE TRIP NITNOVT BttASS TBVI FAIL TO RILIRVEKHAZNIAINRX PRESSURE AVIOHATZC/HANVALRIACIOR SCRAH tAILURS
- STANDBY LIQUID COHTROI SZSTSH UNAVAILABLE CONDITIONS RRLLTINQ TO STUCl OPEN SRVS
)0>
I>
2 ~ io SORVS)
STATS 0 Rlltlt V1LVSS STVCE OPER 0000 ~ 000000000000000000000000IIIIIS00000000 O0000000000000000000000000000000000000000000000000000
~
~
~I
~
PLFV 1.27I Oa
.Ie HIBV 3.2IE.OS
.Ze HIBV I 22s Oa li
~I~ ~
~
~ 0 ~
~
~ ~ ~
~I~ s HIBV 1.22R ~ Oa
.13
~
\\ ~ 0 ~
~ ~
~ ~ ~ S ~
OIAV l.22E ~ Oe
.13 Figure B-1 (Page 21 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model
HODCL Naaei BPNU)H Top-Ranking Sequences Contrlbutlnb to Oroup:
ALL trequency ALL e 1LL DAHAOC CTATCC RICRPT CVCCXIC 15:5)s)0 10 HAY 1996 Rank No.
Sequence Descrlptlon
Rvents---------------
Guaranteed Rvents/Coaeents fnd State
=
frequency Percent
)per year) 95 TOTAI LOSS Of OffSITS POMCR DO 31 UNAVAILABILITY DO )C UNAVAILABLR DO )B UNAVAILABLB DO )D VNAVAILABLS
- RCCOVCR OftSITR POMCR bY )0 HINVTEC pocclBILITYof VLDBAL cGapsOH clvs$ pAILURSOt Dos
- UNIT 2 IIT AT POMRR CONDITIONS RCLATINO 'IO STUCK OPCH CkVC (0, 1, 2, )a CORVC)
STATS 0 RRLIRP VALVCC CTVCK OPKN PAILVRR TO RRCOVRR RLRCIRIC POMCR IH 6 HOURC 500KV OPPCITS POMRR GRID 16IKV OPPCITS POMCR CRIO OPCRATOR TAILS 'TO RCCIORR POMCR TO UNIT bOARDS 4KV UNIT BD )1 UNAVAILABLR 4KV WIT SD )S NAVA!LABLR 4KV CD BD 3RA AND 490V CD bD )l POMCR IWAVAILABLC 450V SHVIDOMN bOARD )A 410V DIRCCL AUX BD )RA POMCR NAVAILABLR
- 4KV CD BD 3RC AND ~ COV CD bD )b WAVAILABLR 4KV CD BD )RS VNAVAZLABLS 410V CNUIDOMN BOARD )B 450V DICCRL 1VX BD )RB POMRR WAVAILABLR 4KV CD BD )KO VNAVAIIABLR 4KV UNIT BD IA UNAVAILABLR 4KV UNIT BD Ib UNAVAILABLR 4KV UNIT BD )A WAVAILABLR 4KV UNIT BD 1$ UNAVAILABL~
CRVIDOMN SVC I UNAVAILABLR CHVIDOMN 'SUC 1 UIQVAILABLC DO A WAVAZLABLX DO D NAVAILABLR DO \\ WAVAILASLR
- DO C VN1VAILABLR 4KV CD BD 1 WlVAZL1BLR 410V CNVIDOMN BOARD 11 4COV RHOV SD IA tOMRR NAVAILABLR 410V DICCRL AUX. BD 1 POMRR UNAVAILABLR 4KV CD BD S WAVAZIARLR 450V CHVIDOMH BOARD 21 iiOV RHOV BD 2A POMRR NAVAILABLR 310 V RPC BUS alv WAVAILABIX
, - 4KV CD BD C UNAVAILABLR 410V SMVIDOOI SCAlD lb 410V SHOV BD I~ POMRR NAVAIIABLS 4KV CD BD D NAVAZLABLR 410V CNVIDOMN BOARD )b ilOV k)9)V BD 1D POMCR IWAVAILABLR 410V RHOV BD 2$ POMRR QHAVAILABLR 490V RHOV BD '2$
POMRR IWAVAILABLR 410V RHOV BD 2C tOMRk IBQVAILABLR 4COV DIRSRL AUX BD B POMRR WAVAIIABLR 120 V RPC SVC abv IWAVAZLABIX 4 KV WIT WARD 2C 4 KV CXBSKW BOARD b 4 KV UNIT BOARD )C 410 V RHOV BOARD )C 120 V 16C BUS )b 120 V 16C BUC )B 410 V RHOV BOARD )D 410 V RHOV BOARD )C
- XAM COOLINO Wana CYCTCH WAVAILABLR SRCN PWP 1 UlQVAILlbLR XRCN PWP S UNlVAIIABLR RCCN PWP C NAVAILABLR RCCN PWP D NAVAILABLS RX bQIIDINO COHPONRNT COOLIN) MATSR CYCTRH UNAVAILABLR RHRCH PWt 12 IWAVAILABLX RHRCM PUHt Al )CHINO tWP) QNlVAILASLC RHRCM PWP S) UHAVAILABLR RHRCM PWP Sl
)CHINO PIWP)
UNAVAILABLR RHRCM PUHt C) QNAVAILASLS RHRCM PWP Cl )CHINO PWP)
UNAVAILlbLR RHRCM tWP D1 IWAVAZLABLR RHRCM PWP Dl )CHINO PWP)
UMAVAILABLC PIVX l.)OC oa
~13 Figure 8-1 (Page 22 of 24). Top 1DD Sequences in Brogans Ferry Unit 3 PSA Model
HODCL Naeei BPNV)H Top-Rank)nc Sequences Contrlbutlnc to oroup J ALL trequency ALI 0 ALL DAHAOR STATES EXCEPT SUCCSSS 15:S)s)0 20 HAY )996 Rank No.
Sequence Description
Events----- ~----- - ~-
Ouaranteed Events/Conoents End State trequency Percent (per year)
~
~ 0000000000 ~\\
~ 000000000000000000000000000000000000 9C TOTAL LOSS Ot PXEDMATSR AUTOMATIC/HANVALREACTOR SCRAH fAILVRR
- CONDITIONS RRIATIW TO STVCK OPEN ERVS 10, 1, 2, )e CORVS)
STATE - 0 RRLIRt VALVES SIQCK OPEN RHR PUMP A UlQVAILABLC RHR PWP C QNAVAILABLR 0 ~ 0 ~ 00 00 ~
~ 000 ~ 0 ~ 00000 ~ 000 ~ 000 ~ 00000000$
000 ~ 000000000000
~
00000 9)
TVRBINC TRIP AVIOHATIC/HANUALREACTOR BCRAH tAILVRS CONDITiONS RRiATIW TO SIQCK OPEN SRVS (0~ I~
2 ~ )e SORVS)
STATS 1 RRLIRP VALVE SIVCK OPEN OPERATOR tAILS TO CONTROL LPI DURIW AIllS 0
~
~
0 0
000 ~ 0000000000000000 0 000000000000000000 000 9l TOTAL LOSS Ot OPPSITC POMER DC 31 IJNAVAILASILITY RECOVER OttSITR POMER BY 30 HINVTRS DO B UNAVAILABLS CONDITIONS RRIATINO TO STUCK OPEN SRVS
)0 ~
1 ~
2 ~ )e CORVC)
STATS - 0 RRLIRt VALVES STUCK OPEN tAILQRS TO RECOVER ELECTRIC PONCE IN C HOURS RHR PUHP B UNAVAIIABLC
- RHR PWP D WAVAIIABLS
- PIANT CONTROI AIR SYSTEH WAVAIIABLC DRYMELL CONTROL AIR CYCTTH WAVAILABLR CONTAINHXNT Ai)eOS PHRRIC DILUTION OPERATOR PAILS TO RECOVER RECM )START SNIHG PUMP)
HRIVS tAILIO RXHAIN OPEN 1 CND/CND BSTR
- PUMP, INCLUDES SHORT CYCLE VALVE WAVAILABL RCIC WAVAILABLRLONO TERN HPCI WAVAIIABLELOW TERN VESSEL INJCCI'ION MITH CRDNS UNAVAILABLC OPERATOR tAILC TO HAHUALLYSTART RMR/CORE SPRAY PAILURE TO RECOVER 4IOV RHOV BDS 2A OR 20 RHR PUMP A WAVAILABLR RHR PWP C WAVAIlABLS UNIT 2 TO UNIT 3 CROSS CONNECT WAVAI)ABLE RHR PVHt B UNAVAIIABLR RNR PQHP D UNAVAILABL'E OPERATOR tAILS TO ESTABLISH TORUS COOLIW RHR LON PRCSSURE IlQRCTION PATll UNAVAILABLE 0 00
~ 000
~ 0000 000 0000 RPN HARDMARR WAVAILABLC OPERATOR tAILS TO ESTABLISH TORUS COOLIW VESSEL INJECTION NIIH CRDHS WAVAILABLS 500KV OttSITX POMCR ORID IC1KV OttSITS PURER ORID OPERATOR PAILS TO RESTORE POMER TO JJNIT BOARDS 4KV WIT BD )A WAVAILABLC WIT BD )S UNAVAILASLR 4KV CD BD )RA AND 4lOV SD BD )A POMRR UNAVAIIABLS 4IOV SHVIDOMH BOARD )A
~ lOV DIESEL AQX BD )RA POMRR VNAVAIJABLR 4KV WIT BD 11 UNAVAILABLR 4KV WIT BD 1$ VNAVAILABLS 4KV WIT BD 21 WAVAIIABLR 4KV UNIT BD 2$ UNAVAILABLC SHVIDJNOJ BUS 1 WAVAIIASLC SHVIDOMH SQS 2 UNAVAILABLS 4XV SD BD B WAVAIIABLC 4 ~ OV SHVIOOMN BOARD 2A 410V RNOV BD 2A PONCE UNAVAIIABL' 110 V RPS SUS OAO UlQVAIIABIC 4 XV UNIT BOARD 2C 4 KV CcaeeON BOARD B 4 KV UNIT BOARD )C RAN COOLINO MAIXR SYSTEN WAVAILABLS RXCN PWP 1, QNAVAILABLS RHRC'N PJBJP C2 UNAVAILABLC RHREM PWP Cl {SMIW PWP)
Ul&VAILABLC PLIHT CONTROL 11R SYSTRH UNAVA'IlABLR DRYNRLL CONTROL AIR SYSTEH UNAVAILABLC HSIVS fAILTO REMAIN OPEN 1 CND/CND BSTR PUMP ~
INCLVDES SHOAT CYCLE VALVE WAVAILABL RCIC QNAVAILABLRLOW TXRH HPCI WAVAILASLRLOW TECH VESSEL IJQCCTION MITS CRDHS WAVAIIABLR HIBV I ~ 19R OS
~ll OIAR
~
~ 0 ~
1.14R 0~,I)
PLPV 1.14R.Ol
.12 Figure B-1 (Page 23 of 24). Top,100 Sequences in Browns Ferry Unit 3 PSA Model
HODEL Naeei SFNUIN Top-Ranking Sequences ConrrlbuclnS to Croup i ALI. Frequency ALL I ALL DAHAQS STATES RECEPT SUCCESS 19 r 91 s 10 20 NAY 1996 Rank No.
Sequence DescrlpClon
Evenr ~--------------
ouaranreea Evencs/coeraencs Ena Stare Frequency Percenr (per year)
RHR PUNP A UNAVAILASLR RHR HEAT EKCHAHUER C UNAVAILASLS UNIT 2 TO UNIT 3 CROSS CONNECT UNAVAILASLR
- OPERATOR tAILS TO ESTASLZSH TORUS COOLINC OPERATOR tAILS TO SSTASLISN SHUIDOWN COOLING 00
~ I~I
~
~I~I
~
~
HAIN CONDENSER UNAVAILASLR RFH HARDHARS UNAVAILASLR OPERATOR tAILS TO ESTASLISH iORUS CODLING
~ 000000 ~ 00 I~ 00 ~I
~ 00 ~ 000000 00000 ~ 000000 ~ 00000 00 99 LOSS OF CONDENSER VACUA AUIOHATIC/HANUALREACZOR SCRAN FAILURE CONDITIONS RRLATINO TO STUCK OPEN SRVS (0, I, 2, l0 SORVSI STATS 0 RELIEF VALVES STUCK OPEN RHR HEAT EXCHANCER D UNAVAILASLS
~ 00000 ~ 00 000000 000 00000000000000000000000000000000000000000000000000000000 00
~
~
~I
~
~
100 LOSS Ot CONDENSER VACUUN HAIN CONDENSER UNAVAILASLR AUIONATIC/HAHUALREACZOR SCRAN FAILURE RFH HARDHARS UNAVAZLARLS CONDITIONS RRLATINO TO STUCK OPEN SRVS lo, I, 2 ~ la SORVSI OPERATOR tAILS TO SSTASLIEH 'lORUS COOLINQ STATE 0 RELIEF VALVES STUCK OPEN RHR HEAT SKCHAHOER S UHAVAZLASLR KIEV 1.1)E oa
~ 12 HIRV 1.13E ~ Oa
.12
~ ~I~
~
~
~ ~I~
~
~I
~
~
00000000 0000000000000000000000000000000000000000000000000000000000000000000000000
~ 0000000000 00000000000 00 ~
I~ 0
~\\ ~ 0 ~
~ 0 ~ 00
~ 0
~I~
0
~
Figure B-1 (Page 24 of 24), 'fop 100 Sequences in Browns Ferry Unit 3 PSA Model
APPENDIX C. SPLIT FRACTION IMPORTANCE MEASURES MODEL Name:
BFNU3M Split Fraction Importance Zor Group Sorted by Fraction Importance Group Frequency 9.1335E-06 16:25:08 20 MAY 1996 Page SF Name...
Fraction...
Fussel-vesely.
Birnbaum...
Achievement.
Reduction...
SF Value..
Importance Importance Importance Morth Worth Frequency.
l.
2.
3.
5.
6.
1.
8 ~
9.
10.
11.
12.
13.
14.
15.
16.
17.
lb.
19.
20.
21.
22
'3.
24.
25.
26.
27 ~
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
42.
43.
44.
45, 46.
47.
48 49.
50.
51.
52.
53.
54.
55.
56.'7.
58.
59.
60.
61, 62.
63.
64.
65.
66.
67.
68.
69.
70.
11.
72.
13, 14.
F IMTRF MELTF NCDP SDRRCF OXF DWF FWAF INAF HSF CDAP OSPF ZNBF ZNCF INDP CRDF INEF INFP HRLF DWSP WRTP ZVOF RVCO NAF RXS1 CDP U2F INGP LPRESP RCMP INHP OAZP
~
HR6P NRVP DCAP JAF JHF FWHP LPCP 005P U841AP U843BF U843CP U842AP UB42CP CBBP U8418P U843AP U842BP OUBP 001 CF KCP KPP KHP RPBP PCAF RPDP RBCP RPAP Rvci MCDF OSDP SHUTZP SHT2F RPCF RCLF LECF HPLP SM2CP SW1CF RSF DKP RHF ABF HUMF 4.96jjEtao 3.81988~01
-1.65768+00 9.9493E-Oj 9.94938-01 9 '493E-01 9.'7257E-01 9.7257E-01 9.2955E 01 8.2951E-01 7 ~ 38408 01 7 ~ 0237E-al 6 '0058 01 5.86078-01 5.42'76E-01
- 5. 42518-01 5.36848-01 5.15938 01 4.96078 01 4.74798 01 4.37558 01
.16568 01 4
OOSCE Ol 3.92738 01 3.89798 01 3 ~ 84418 01 3.8199$ -01 3.77098 01
- 3. 56138-0 I 3 ~ 49708 01
3.4950E-01 3.44168 01 3 17948 01 3 11258 01 2.94378-01 2 ~ 915DE 01 2.8900H 01 2.86058-01 2 ~ 8605H 01,
- 2. 8D19H-01 2.50638 01 2.44998-01 2.32338 01 2.32338-01 2e32338 01 2 '2338-01 2e32338 01 2 32338 01 2.32338-01 2 '2338-01 2 '2338 01 2 '0878 01 2.30838 01 2.30118 01 2 '8498-01 2.28388-01 2.26868-01 2.23148 01 2.21888 01 2.2068H-01 2.13948 01 2.09278-01
- 2. 02338 01 1.99808 01 1.98048 01:
- 1. 98D48 01 1.93288 01 1.6831$
01 1.64918 01 1.6208E 01 1.57688 01 1.5768$
01 1.57228 01 1.57228-01 1 ~ 57228 01 1 ~ 5121E 01 1 ~ 5651E oj 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1,0000$ +00 1.00008+00 1;00008+00 1.00008+00 1.00008+00 1.0000E+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1 ~ 00008+00 1.00008+00 6.3861R-01 1 ~ 00008+00 la77308+04 1.00008+00 1 ~ 00008+00 1.00008+00 1 ~ 00008+00 1.00008+00 1.00008+00 1 00008+00 1.00008+00 1.00008+00 1.00008+00 1 ~ 00008+00 1 ~ 00008+00 1 00008+00 1.00008+00 1.000DB+00 1 ~ 00008+00 1.00008iaa 1 ~ 0000E+00 1.00008+00 1..00008+00 1.00008+00 1 ~ 00008+00 1.00008+00 1.00008+00 1.00008+00 1 ~ OOOOH+00 1.00008+00 1 00008+00 1.00008+00 1.000DE+DD 1.00008+00 1 ~ 00008+00 1.00008+00 1.00008+00 8 ~ 14198-01
'1.00008+00 1,00008+00 1.00008+00 1.00008+Do 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.0000E+00 1 ~ OOOOE+00 1.0000$ +00 1.00008+00 1.0000$ ioo 1.00008+00 5 ~ 96118+00 6.18028 01 2.65768~00 1 ~ 0000$ ioo 1 ~ 00008+00 1.0000$ ioo 1.00008+00 1.00008+00 1.00008+00 1 00008+00 1.0000E+00 1.00008+OD 1 ~ 00008+00 1.00008+00 1.00008ioo 1.00008iOO 1.00008+00 1 ~ 0000$ +00 1.0000$ +00 1.0000E+00 1.00008+00 1.00008+00 1 ~ 0000$ +00 1 ~ 00008+00 9,3210801 1 0000$ +00 2ej5708 05 1 00008+00 1.00008+00 1.00008+00 1.00008+00 1 00008+00 1 00008+00 1 ~ 00008+00 1 ~ 0000E+00 1.,00008+00 1.00008+00 1,00008+00 1 ~ 0000$ +00 1,00008+00 1,00008+00 1.00008+00 1.00008too 1 00008+00 1 00008+00 1.00008+00 1.00008+00 I 00008+00 1
OODOH+00 Z.aoaoE+oo 1 00008+00 1.00008+00 1.00008+00 1.00008+00 1.0000E+00 1.0000$ +00 1 00008400 1.0000$ +00 1.00008+00 1.00008+00 1.00008+00 8.99'20$
01 1.00008oao 1,00008+OD 1.00008+00 1 00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.DOOOE+00 1.00008+00 1.00008+00 1.00008+00 Z.OOOOE+00 1.00008+00
- 9. 0812E-06 9.08128 06 9.0872$
06 8.88308 06 8.8830E 06 8.49008-06 1.5764E 06 6.7442E 06 6.4151E 06 5.75468 06 5.35298 06 4.9573E 06 4.955OE 06 4.90328 06 4.7122E 06 4.530SE 06 4.33658 06 3.99648 06 3.8046E 06 3.66138 06 3.5870H 06 3.56018 06 3.51108 06 3.48898-06 3.44428 06 3.25278-06 3.1940$
06 3.19228 06
'.1433$
06 2.9039E 06 2.89768 06 2.68878 06 2.66248 06 2.6395$
06 2.6126R 06
- 2. 61268-06 2.55918 06 2 28928 06 2.23768 OC 2 12208 06 2.12208 OC 2.1220$
OC
'2. 12208-OC 2 32208 06 2.32208-06 2.12208-06 2 12208 06 2.12208 06
- 2. Zoe18-oC 2.10828-06 2 1017$
06 2.08698 06 2 08598 OC 2 07218 06 2.03808 06 0266E 06 2.01558 06 1.95408 06 1.9114$
06 1.84808 06 1.82498 OC I.eoee8-06 1.80888 06 1.7653$
06 1.53738 06 1.50628 06 1.48038 06 1.44028 06 1.44028 06 1.43608 06 1.4360E 06 1.4360E 06 1 ~ 43598 06 1.4295E 06
NODEL Name:
BFNU3H Split Fraction Importance I'or Group Sorted by Fraction Importance Group Frequency 9.1335$ -06 16:25:08 20 HAY 1996 Page 2
SF Name...
Fraction...
Fussel-Vesely.
Importance Imporrance Sirnbaum...
Importance Achievement.
~ Morrh Reduction...
SF Value..
North Frequency.
75.
76.
77.
78.
79.
SD.
8'2.
83
'4e 85.
86.
81 ~
BS ~
S9.
90, 91'2.
93.
94.
95.
96.
97.
98.
99
'00.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112 ~
113.
114.
115.
116.
117.
118.
119
~
120 121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
13'1.
138.
139 140.
141.
142.
ll3.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
SM2BF EBF RRF RFF ACF OBCF SGTOPF SM1AF SM?AF REF RQF RNF AAF ROF EAF SM2DF SGTF RJF RIP DLF RNF RTF ADF RPA1 RVC1 EPR301 RXP RCI1 SM18F A3HAP RPC2 RCIP RLP REF RPP RJ3P HPZF BPR61 OSVP U2AP1 GCP GA1 EDF RYP QRPF GE1 HXCP
$81DF A3ECP A3$DP RVD22 RVCS HXAP HPI4 ECF A3$8P RPB3 RPD4 RBISOP RRZ2 DLPP OEEP QBDP OLAI DSP1 BVRF GD2 RVD4 5 NPIP NH1F HXDP RPB1 PX1F RC3F RDP NH2F NPZIF G84 DN3F DE3 RK3F 1.5631$
01 1.5560$ -01 1.5539E 01 1 '539$
01 1.5534$ -01 4567E 01
- 1. 4536$ -01 1 ~ 4329E 01 1.4329$
01 1 ~ 3513E 01 1.3513$.01 1.3513$
01 1.3508$
01 1.3412$
01 1 ~ 3280$
01 1
~ 3082$
01 1.3051$
01 1 ~ 3032$ ol 1.3032$
01 1.3032$
01 1.3032$
01 1.3032E 01 1.30288 01 1.29578 01 1.2956$
01 1 ~ 20078 01 1 ~ 1802$
01 1 1707$
01 1 ~ 0957$
01 1.09428 01 1 ~ 0880$
01 1 ~ 06748 01 1.06668 01 1.0666$
01 1 ~ 04178 01 1.0411$
01 1.0413$
01 1 02758 01 1 ~ 01648-01 1 ~ 01648 01 1.0101$
01 9.97498 02 9.95918 02 9,5724$
02 9 ~ 51898 02 9.20698-02 9 '024$
02 8 '4628-02 8 90588 02 8.70718 02 8 '6368-02 8 64178 02 S.S9068-02 8 '404$
02 8,20348 02 8 '3938 02 7.78818 02 7.75478-02 7.21288 02 1.21288-02 7 1SSSE 02 7 '6728 02 7.0884$
02 6.6849$
02 6.35658-02 6a3010$
02 6 ~ 15498 02 5.97988-02 5a9263$
02 5.92638-02 So8520$
02
- 5. 1981802 5 e 134 9E-02 Se51008 02
- 5. 5100E-02 5.5D20$
02 5.5420E 02 5.4186$
02 5.40128~02 5.2560E 02 5.1861E 02 1 ~ 2010$
01 1 ~ 2106$
01 1 ~lsiiE 01 8.0375H 02 9 '727B 02 1.02118 01
-5 60028 02 9 04838 02 1.99048 02 8 ~ 64148 02 1.759SR 02 7e98128-02 7.7019$ -02
'1.73438 02 3 23128 02 6.2302H-02 6.35558-42 5.8285E 02 5 ~ 1273$
02 5.37058-02 5.1826$
02 1,0000E+00 1.0000E+00 1.0000E+00 1.0000$ +00 1.00008+00 1.00008+00 1.00008+00 1 ~ OOOOE+00 1.00008+00 1.00008+00 1.00008+00 1.0000E+00 1.0000E+00 1,00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1 00008+00 1.00008too 1,0000$ too 1.00008+00
- 9. 26108+ 00 2.84628+00 1.39858+00 1.00008+00 2.132SB+00 1.00048+00 1.00008+00 1 143SB+00 1.00008+00 1.00008+00 1.00008+00 1 00008+00 1 04008+00 1 00008+00 1 75578+00 1.00008+00 6.82658 01 1 00008+00 1 61488+00 1.00008+00 1.00008+00 1 00008+00 1 81208+00 1.00008+04 1.00008too 1
OODOB+00 1.00048+00 1.09268+02 1.76048+00 1,00008+04 1 64648+00 1 00008+00 1.00008+00 3.48438+00 1 ~ 04168+00 1.00008+00 1.14508 01 1.00008+00 1.00008+04 1.0000$ tao 1.7352$ +00 8.13978+02 1.00008+04 1.58548+00 1.00008+00 1.00008+04 1.0000E+00 1.00008+00 4.62958+00 1.0000$ too 1.0000$ too 1.00008+00 1.00008+00 1 ~ 00008too 1.30278+00 1.DDDOB+00 5 ~ 69168+01 1.00008+00 8.7990$
01 8,7894$
01 8.8156$
01 9.1963$
01
- 9. 0127E-01 8 '7838 01 1.0560B+00 9 09528 01 9.20108 01 9 13598 01 9.22408 01 9.24198-01 9.2298$
01 9.22668 01 1.03238+00 9.37708 01 9.36458 01 9.4172$
01 9.48138-01 9.4629$
01 9.4817E 01 1.0000$ ioo 1 ~ OOODE+00 1.0000$ too 1.0000E+00 1.0000E+00 1 ~ 0000Et00 1.0000$ too 1.0000E+00 1.0000$ +00 1.00008too 1.0000E+00 1.0000$ too 1.0000Et00 1.0000$ too 1.0000Etoo 1 ~ DOOOE+00 1 ~ 0000$ ioo 1.00008+00 1.0000E+00 1 ~ 0000$ +00 1.00008+00
'1 00008+00 1.00008+00 1.43308-02 6.15lOB 02 2.29108-01 1.00008too 6 '2508 02 1,0000$ too, 1,DOOOBtoo 4 ~ 07008-01 1.04008too 1,00008+00 1.00008too 1,00008+00 1 ~ 00008+00 1.00008+00 1.1910$
01 1 ~ 04008+00 1.50008 01 1 00008too 1.28308 01 1.00008+00 1.00008+00 1 04008+00 8.95908-02 1.04008+00 1 00008+00 1 00008+00 1 ~ 0000$ +00 1.97608 04 9 26008 02 1.00008+00 1 09948 01 1.0000$ too 1 04048+00 3.04748 02 6.19008 01 1.00048too 1.01678 01 1'00008+00 I.aoooE+oo 1.00008+04 1.81208 02 1.817OH 05 l.ooaos+00 9.0550$
02 1.00008+04 1.0000Etoo 1.00008+00 1.00008+00 1.39308-02 1.04008+00 1.00008+00 1.00008+04 1 ~ 0000$ too 1.00008+00 1.50708 01 1.4000E+04 9.2600E 04 1.0000E+00 1.4276E 06 1.4212$
06 1.4192E 06 I. 4192E-06 1.41SBE 06 1.3305$ -06
- 1. 3217E-06 1.3087E 06 1.3087E 06 1 '342E 06 1.2342E 06 1.2342E-06 1.2338$
06 1.2250E 06 1.21308 06 1.194SE 06
- 1. 19208 06
- 1. 1903E 06
- 1. 1903$
06 1.1903$
06" 1.1903$
06 1.1903$
06 1.18998 06 1.18358 06 1.18338 06 1.09668 06 1.07808 06 1.06938 06 1.00088~06 9.95148 07 9.93708 01 9.749].B 47 9.74198 07 9 ~ 74198 07 9.5147$
01
- 9. 5147807 9.5107E 07 9.38488 07 9.28318 01 9.28308 07 9.22628 07 9.11068 07 9.0962$
07 8.1430$
07 8.6941$
07 8.40918 07 8.22248 07 8.17108 07 8 13418-07 7.95268 07 7.91298 07 7.89298 07 7.S462$
07
'7.52648 07 7.49268 07
'1.34278-07 7.11328 07 7.0828$
07 6.58788 D7 6 '8788 07 6.56598 07 6.5462$
07 6.47428-07 6.1057$
07 S.SOS78-07 5.7551$
07
- 5. 6215B-01 5 ~ 46178 07 5.41288 07
- 5. 412 88-D1 5.3449$
07 5.2962$
41
- 5. 2379E-01 5.0326$
07 5.0326$
07 5 '252$
07 5 ~ 0252$ 07 4.94918 07 4.93328 07 4.S006$ -41 4
~ 13618 01
MODEL Name:
BFNU3M Split Fraction Imporrance Zor Group Sorted by Fraction Importance Group Frequency
- 9. 1335E-06 16:25:08 20 MAY 1996 Page 3
ALL SF Name...
Fraction...
Fussel-Vesely.
Importance Importance Sirnbaum...
Importance Achievement.
Morth Reduction...
SF Value..
North Frequency.
156.
151.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
113.
174.
175.
176.
171.
178.
179.
180.
181.
182.
183.
184.
185.
186.
181.
188.
189.
190.
191.
192.
193.
194.
195.
196 197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222
'23.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
RL3F DO3F CSF AZF VNTF RPD2 LVF PX2F RB3F RCF SL1 EPR62 CG1 EPR302 OZVF SM281 GBF CRD4 GAP CB2 GDP DCX RPD1 OSL1 TORP R480P GC2 HPI2 EPR304 GD1
~
SPP EPR64 NZEP RVC9 CADP TB1 CF4 SMRD1 GCR GP1 OSL2 U22 NRUP RPB6 RPD10 CH1 GH2 HXhl GH4 MCD1 HXB1 HXD1 TOR2 LCP HXC2 OG52 RVC3 HXD1 HX85 DGC1 HPZ6 Gci BVR1 S'MRC1 F$ 1 CEF GB1 SMRhl GF2 RX1 RBP RD3F U21 DHl SMlcl CGP GHF RPC1 GFF RVC2 OHR1 5 ~ 18618 02 5.16908 02 5 ~ 14078 02 4.97498-02 4 '749E-02 4.8S02E 02 4.7801$
02 4.6050$
02 4.3210E 02 4
~ 32108 02 4.2609E 02 4.2231E 02 4
~ 11408-02 4.05778 02 3.92438-02 3 '460E 02 3.7180E 02 3.1004$
02 3.5335$
02 3.5203E 02 3.4605E 02 3.3916$
02 3.3349E-02 3.26198 02 3.18958 02
- 3. 15118-02 3.14558-02 2.98768 02 2.9S018-02 2.8705$
02 2.8327E 02 2.19968 02 2.76218 02 2 ~ 71928-02 2 61398 02 2.51198 02 2.41568-02 2 37828 02 2.3446E 02 2 2341$ -02 2.20608-02 2.172'1E 02 2 13828 02 2.1314$
02 2.1227$
02 2
1'RROB 02 2.04658 02 1.98538-02 1.95748 02 1 95028 02 9445$
02 1.92928 02 1.9203$
02 1.$ 6788 02 l.81658-02 1.78598-0R lo7$588 02 1.78518-02 1.18408-02 1 '6878-02 1.76868-02 1.75288 02 1.7310$
02 1.7056H-02 1 ~ 695'28 02 1 ~ 69528 02 1.66958-02 l.65618 02 1.63468-02
- 1. 6103$ -02 1.58868 02 1.5886E 02 1.57958 02 1.5662E 02 1.5257$
02 1.5102E 02 1.5089E 02 1.46198 02 1.3899E 02
- 1. 3717E 02 1.36808 02 2.4034E 02 4.09108 02 4.1754E-02 3.35738 02 4.02868 02 3 '068E 03 3 ~ 3919802 3 ~ 3150E 02 3.3941E-02 2 '911E 02 3 ~ 14168-02 2.5641$
02
-1.45078 02 2 '7968 02 2 38768 02 2.7991$
02 1.60018 02 2+2882$
02 1.08438 02 2 '363H 02 1.7205$ -02 2 07858 02 1.99778 02
'1 80428 02 2 '0948-02 1,S4498 02 1.35228 02 1 ~ 68428-02 1 ~ 68538-02 9 '0388 03 1.72948-02 1 75048 02 1 ~ 92028-02 1.81'218 02 1.5382$ -03 1.78508 02 1.78518 02 1.77838 02 1 ~ 39418 02 1.4535$
02 1 50738-02 Zo43238 02
-1. 52968-02 1.33938-02 1.4546$
02 Ii5416$ 02 9.00518 03 1 ~ 5561$
02 1 ~ 56138 02 l.3218$ -02 5 '7278-04 9.42288 03 1 3718E 02
'1 ~ 3494E 02 1.00008i00 1 ~ 0000$ +00 1.0000$ t00 1.0000Etoo 1.00008+00 1.03458+00 1.0000E+00 1.0000E+00 1,0000E+00 1.00008+00
- 8. 01308+00 1.3074Et00
- 1. 3412E+00 1 ~ 1646E+00 1 ~ 0000Et00 1.08RSEt00 1.00008+00 1 ~ 8355E+00 1.0000$ t00 1 ~ 35$ 8E+00 1 ~ 00008+00 1 ~ 9165E+01 4 '6308t00 6 ~ 8619E+00 1.00008+00 1.0000E+00 1.26058+00 S 4387$
01 1 08138+00 l.15448+00 1.00008t00 1 20728+00 1 ~ 0000$ t00 9 '2818-01 1 ~ 00008+00 1.97088+00 1 i11688+00 7 ~ 73338-01 1 25128+00 1 ~ 17338+00 2 ~ 71858+00 1 ~ 68018+00 1.00008t00 1.02638+00 1 ~ 03118+00
- 1. 18348+00 1 15728+00 4 ~ 05208+00 1 ~ 02508+00 1 30368+00 4,26438+00 4o3442$ t00 1 4806$ t04 1.00008+00 1.58S98+00 1 01318+00 4 ~ 15328+01
- 1. 01248+00 1.03758+00 1.04518+00 1 15328+00 l.11588+00 2.025$ $t00 6 ~ 31368 01 1 811$ 8t00 1 ~ 00008t00 1.0883Et00
- 5. 9742$
01
- 1. 10048+00 2.57368+01 1.00008+00 1.00008+00 1.2760E+00 5.44648+00 1,"00718+00 1.00008+00 1,00008+00 2 ~ 0835$ t00 1.0000E+00 4 ~ 2111E+00 1.4030Et00 9.7591E 01 9.59038-01 9.5825E-01 9.6643E 01 9.5971E 01 9.9639E 01 9.66088 01 9.6685$
01 9 '6068-01 9.70098-01 9 ~ 68528-01 9 '4358-01 1 ~ 01458+00 9 ~ 70ROB 01 9 '6128-01 9 ~ 72018 01 9.8400H 01
- 9. 77128 01
- 1. 01088t00 9 '7648-01 9.82798 01 9.79228 01 9 ~ 8002801 9.8196$
01 9.79918 01 9.81558 01 9.86488 01
- 9. 83168-01 9.83158 01 9.90108 01 9.82718 01 9.82508 01 9;$ 0808 01 9.81888 01 9.98468-01 9.82158 01
- 9. 82158 01 9.8222E 01 9.8606$
01 9.85468 01 9.8493$
01 9.8568$
01
- 1. 01538t00 9.$ 661H 01 9.8545E 01
- 1. 01548+00 9.90998 01 9.84448-01 9.84398-01 9.86788-01 9.99458-01 9.9058$
01 9.86288 01
- 9. 8651E 01 1.0000Et00 1.0000Etoo 1.00008t00 1.00008t00 1 ~ 00008+00 4.1070E 01 1
~ 00008t00 1.0000E+00 1.00008+00 1 ~ OOOOE+00 5.7591E 03
- 1. 1960E-01 8 '590E 02
- 1. 9660$ -01 1.00008+00 4.17408 02 1 ~ 0000$ t00 3 '011E 02 1.00008+00 8.4570$
02 00008+00 1.86508 03 8.32508 03 5 ~ 3410$
03 1 00008+00 1.00008+00 8 '6208 02 8.50208 02 2 '8308 01 1 33908 01 1 ~ 00008+00 1 19008 Ol 00008t00 1 ~ 00008+00 1.00008+00 1.62168 02 1 63808 01 4 56508 02 8 '7408 02 9.03108 02 1 19508 02 2 '5378 02 1.00008+00 4 07008 01 3 '2208-01 9 ~ 14108 02 7.92008 02 5.48808 03 4.02408 01 3 1590$
02 5,27008 03 5.20708-03 1.2970H-06 1 00008+00 2.98508 02 1.05008 01 4,40ROB 04 So8920$ -01 3,2150$
01 2 3600$
01 8 ~ 6610$ -02
- 1. 1520801
'1.3'1708 02 3.9840$
02 1.6230$ -02 1 00008t00 1.41508 01 3.68808 02 S.2320$
02 6.2$ 70E 04 1.00008+00 1.0000Et00 5.3539$ -02 2.96408-03 7.1180E 02 1.0000$ t00 1.0000$ t00 8 6220E 03 1 OOOOEt00 4.2540E 03 3.2400E 02 4.1361E 01 4.72118 07 4.6952E 0'.5438801 4.5438E 01 4.45738 07 4.36598 07 4.20608 01 3.9466E 07 3.94668 07 3.8911E 07 3.85778-07 3.7575E 07 3.70618 07 3.5842E 07 3.51288 07
- 3. 3958E-01 3.3797$ -07 3 ~ 2273$
01 3 ~ 21538-07 3 16068 07 3 ~ 1032807 3.04608 07 2.984SE 07 2 '1318-07 2 ~ S781$
01 2.87298 07 2 72878-07 2 ~ 72188-07
- 2. 62178 07 2 '8738-07 2.5570$
07 2 '2288 07 2.48368-07 2 38748-07 Ro2998$
07 2.20638 07 2.17218 07
- 2. 1415807 2 04058 07 2 '1488 0'1 1.98448 07 1 95298 07 1 946'18 07 1.93878 07 1.93818 07 1 ~ 86918 07 1 ~ 81338-07 1 ~ 78788 01 1 ~ 78128 07 1 ~ 71608 07 1 16208 07.
1.75398 07 1 70598 07 1 ~ 6591$
01 1 63118 07 1 63108 07 1.63048 07 62958 01 1.61548 07 1 61538 07 lo60098-07 1.58108 07 1 ~ 55788 07 1.54838 01 1.54838 07 1 ~ 52498 01 1 ~ 51268-01 1.49'29$
01 1.47078 07 1.4510$
01 I 45108 07 1.4427$
07 1.43058 07 1.39358 07 1 37948 07 1 ~ 3782E-07 1 '3538-07 1.2695E 07 1.2584E 01 1.2494E 07
MODEL Name:
SFNU)H Split Fraccion Importance Zor Group Sorted by Fraction Importance Croup Frequency 9.l)358-06 16:25:08 20 NAY 1996 Page 4
ALL SF Name...
Fraction...
Fuseel-Vesely.
Importance Importance Sirnbaum...
Importance Achievement.
'Morch Reduccion...
SF Value...
Morch Frequency.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
- 247, 248.
249.
250.
251.
252.
253
'54.
255.
256.
- 257, 258.
259.
260.
261 e
262+
263.
- 264, 265.
- 266, 267.
268.
269.
270.
211.
272.
273.
274.
275.
276.
217.
278.
219.
280.
281.
282.
283.
284.
285.
286.
2$ '1.
28$.
289.
290.
291.
292.
293.
294.
295.
296 297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
FA1 SM1D17 EPR63 HXSF FS1 SM1A1 CSS A3EA1 TSF SM18 1 FD1 SM1D1 RPD3 RPD9 SDC2 FG2 RPS5 FF)
FAP FDF FSP FCF FHl RBCQ EPR303 OADl SW1B3 PX23 FG1 CSl CCl FH1 RPC3 DCJ CRD1 RVC6 A3$C1 SPRF NPZ1 HS7 FC1 NPZZ2 FP1 DJ3F CRD5 GH3 CD3 ORP2 ODWS2 HS5 OLP1 HXS6 DP1 CS3 DL1 DK1 RX)
S'M182 HRC1 OAL1 GC3 RYl GCS GHS VNT1 HR1 RB31 RXS4 RCL1 HPZ1 TS2 HXD9 DE1 DCB LPC2 FD2 LC1 RC31 315.
OHS3 3 16.
RVD14 317 ~
GF3 L.16478 02 1.1647E 02 1.09768 02 1.0664E 02 1.03728 02 9 '763E 03 9.2962E 03
$.95578-03 8.82528 03 8.62968 03 8.6081E 03 8.60478 03 8.54058 03 8.35208 03 8.0826$
03 8.02768-03 8.0178E 03 1.98158 03
'7.98158 03 7.98158 03 7.98158 03 1.98158 03
- 7. 98158 03 7
~ 76498 03 7.59438 03
- 1. 3114$
03
'7.1426$
03 1.08108-03 7.07498 03 6.981OE-O)
- 6. 88148-03 6.69878 03 6.6174$
03 6.48848 03 6.4604$ -03 6.35508 03 6.29088-03 6.23288 03 5 91D18 D3 5.90448 03 5.81538 03 5.80698 03 5.69788 03 5.66858 03 5.63258 03 5.47398 03 5.41928 03 5.26688 03
- 5. 00108-03 4.85458 03 4.18918 03 4 24368 03 1437$
03 4.05218 03 3 74338 03 3,74268 03 3 59688 03 3.5785$ -03 3.56488 03 3.49288 03 3.30258-03 3.10578 03 3.06578-03 2.93348 03 2.92068 03 2.8831H 03 2.8400H 03 2.7654E 03 2.12188-03 2.65528-03 2.56888 03
- 2. 56518-03 2.5401E 03 2 ~ 3910$
03 2.3571$
03 2.30868 03 2.2994$
03 2.2487$
03
- 2. 13228-03 2.08098 03 2.03268 03 8.7032E 03 9 '780E 03 1.0976E 02 7.7520E-03 7 ~ 5450E 03 9 ~ 26108-03 8.75158 03 5.2101E 03 5 ~ 8173E 03
-l.79408 03 2.66148 03 8 '8238 03 7 ~ 24718 03 7.8425E 03 7.14578 03 7 ~ 96858 03 1 ~ 98158 03 4 ~ 42028-04 7.5820R-03 6.98188 03 8.2742$
04 7.07208 03 3.64838-03 6.65618 03 5.84518 03 3.41598 03 6.02438-03 5.83268 03 6.20358 03 6.29338-03 6 08828 03 5.64468 03 5.90448 03 3.29058 03 5.80698 03 2.36218 03 5.60918 03 3.21898-03 4.8673R 03
-3 '7918 03
-5.5275$ 0)
- 4. 85458 03 4 78798 03 3.80538-03 1 39688 03 3.6659E 03 7 00568 03 6 '2688 03 3.5509$ -03
)e0951$
03 3.29048 03 2 26198 05 3.21098 03 2.58878 03 2.58568-03
- 1. 86158-03 1 4D168 03 2.85908 03 2.7212$
03 2.76508 03 1.1219H 03 1.73768 03 6.22768 Ol
- 1. 70178-03
- 2. 51718-03 2.39058 03 1.75598 03
- 2. 11508-03 8.89588 04 2.1381E 03
- 9. 13778 04 2.0782E 03 9.4161E 04 1.5275E+00
- 1. 1180Etoo 1.0810$ too 1.0000Etoo
- 1. 41178t00 8.914)E 01 1.0930E+00 3.3285$ tol 1.0000E+00 9 ~ 31808 01 1.3539E+00 9 ~ 4391E 01 1.00$ 2Etoo 1.01188+00 1.2153E+00
- 1. 3781Etoo 1.50008+00 1,02828+00 1.0000E+00 1.00008+00 1.0000$ +00 1.00008too 1.00058t00 1.03448too 1.0298$ too
- 5. 61978too
- 1. 01128+00 9.89418too 1 22208too
- 1. 18018+00 1.03288+00 1.21158too
- 1. 41448+00
- 7. 27128 too 5.69598+00 1-64818+00 2 ~ 34518tol 1 00008too 2 ~ 0712$ tol 1 05978too 1 20028+00 1 08868+00 l.1438E+00 le0000$ too 1 08118+00 1 02438+00 1 ~ 03318+00 8 F 55988 01 8 00058 01
- 1. 03318too 2 '4948+02 1 ~ 68968+00 1 ~ 43568+00 1 ~ 02378tOD 5 0696$
01 5.0644H 01 6.55608+00 1 19148+00 6.6848E+00 9 ~ 98608 01 1.01958+00 5.04S68+00 1.02808too 1.01888too 1 ~ 29948+00 1 ~ 3148E+00 2 ~ 27188+01
- 1. 34448+02 9 ~ 39548 01 1.01868+00 1.00978+00 1.05538+00 2 '3428+00 1.64398+00 la2152$ too 1 ~ 10208+00 1*1498$too 1.91308+01 la17298too 3 '4348+00 1 '0968~00 9 ~ 91308 01 9 ~ 9072E Ol 9 '902E 01 9.9225E 01 1.0075Et00 9.9074E 01 9.9125E 01 1.0052Etoo 9 ~ 9418E 01 1.00488+00 9 ~ 9734E 01 9 ~ 9192$
01
- 9. 9215E 01 9 ~ 9216E 01 9.9285E 01 9.920)E 01 9.92028 Dl 9.99568 01 9.92428 01 9.9301$
01
- 9. 99178 01
- 9. 92938 01 9.96358 01 9.9334$
01 9 ~ 94158 01 9.9652$
01 9.93988 01 9 ~ 94178 Ol 9.9380$
01 9.93718 01 9.93918 01 9.94368 01 9.94108 01
- 9. 96118 01 9 94198 01 9.97648 01 9 '4398 01 9.96788>>01
- 9. 95138-01 1.0037Etoo 1 00558too 9.95158 01 9 ~ 95218 01 9 96198 01 9.98608 01 9.96338-01 1.00708+00 1.00698+00 9.96458-01 9 '6908 01
- 9. 96718-01 1.00008+00 9.96'798 01 9 ~ 97418-01 9 ~ 9741$
01 9.9813E 01 9.98608-01
- 9. 9714$ -01 9.97288-01 9.9724$
01 l.00118+00 9 '8268-01
- 9. 9938E 01 9 '830E-Ol 9.97488-01 9 ~ 9761$ -01 9 '8248 01 9 '7898 01 9 '9118-01 9.9786E-01 9 ~ 9909E 01 9 ~ 9192E-Ol 9 '9068 01 1.62308 02 1.2920E 02 1 ~ 1940E 01 1.0000Et00 1.6170E 02 6.4980E 02 9.0550E 02 2.7100E 04 1.0000E+00 1.0980E 02 1 ~ 6170E 02 7.S740E 02 2.4590$
01 4.07508 01 3 '5698 02 2.0320E 02 1.40908 02 2 ~ 20508 01 1.00008too 1.0000E+00 1 ~ 00008too 1.00008+00 9.42808 01 1.26958 02 2.02908 01 1.4910$
03 6.$ 6808 02 7 ~ 94508 04 1 61708 02 3 '6398 02 1 ~ 51408 01
- 1. 61708-02 1 '3308 02 9 '9208 04 1.3193803 9 ~ 61708 03 2.713.08 04 1.00008too 2.8540H 04 F 00008 02 1 61708 02 6 1540802 1.61108 02 1.00008+00 6.05328 02 1.17008 01 1 F 28308 01 2.4910$ -02 2.69008 02 1 26008 01 1 $1408 05 5 '8808 03 3 1963$
03 1 33908 01 1.40108 02 1.3840$
02 6.38'108 04 1.59108-02 5.18468 04 1.59108-02 1 ~ 41508 01 6 ~ 39008 04 8.45708-02 9 03108 02 4.6587$
03 9 ~ OOOOH 03 1 25288 Ol 2.07208 05 1.82208 02 8.56008 02 6.0OSSB-O2 2.9SSOB 02 1.75208-03 3 '9908 03 8 09448 03 2 '3208 02 5 '0208 03 1 ~ 1792$
Ol 5.25708 03 8 ~ 16408 04 8.95908-02 1.06378 07 1.0638$ -07 1.0025E 01 9.7401E 08 9.4131E-OS 8.9292E 08 8.49078 08
- 8. 1797$ -08 8.0605E 08 7 '8198-08 7 '6228-08 7.8591E 08 7.8004E 08 7.62838-08 7.38228-08 7.33208 08 7 '231E 08 1.2899E-08 7 ~ 2899E 08 7.28998 08 7.2899$
08 1.28998 08 7.28998 08 7 ~ 0921E-OS 6.9363E-08 6.67798 08 6.5237E 08 6.4675$ -08 6 46188 08 6.3761$
08 6.28528 08 6.11838 08 6 04408-08, 5 '2628 08 5.9006E 08 5 ~ 80448 08 5.74578 OS 5.69278-08 5 39808 0$
5 39288-08 5 ~ 3114$ -08 5 '037E-08 5.20418 08 5 ~ 17748-08 5 ~ 14448 08 4.99968-08 4 9496$
08 4a81048 08 4 '6778 0$
iii)388 08 4 ~ 31468 08 3 '7598 08 3I78478-0$
3 70108 08 3.41898-08 3.41838-08 3.28528-08
)o2684$ -08
)i2559$
08 3 ~ 19028-08 3,0164$
08 2 '3668-08 2e80008-0$
2 192$
08 2.66758 08 2.63338 08 2.59408-08 2.52588 08 2.48608 08 2.42528 08 2.34628 08
- 2. 34348-08 2.3200E 08 2.1838E 08
- 2. 15298-08 2.10868 0$
2.1002E 08 2.0538$
08 1.9474E 08 1.90068 08 1.8565$
08
HODEL Name.
BFNU)H Split Fraction Importance for Group Sorred by Fraction Importance Group Frequency
~ 9. 1335$ -06 16:25:0$
20 MAY 1996 Page 5
SF Name...
Fraction...
Fussel Vesely.
Imporrance Importance Birnbaum...
Importance Achievement.
North Reduction...
North SF Value...
Frequency.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
34.'7.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
315.
376.
317.
378.
379.
3$ 0.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
)92.
393.
394.
395.
396.
397.
398.
DCAl SW2DI PX1 1 CS2 CS5 SN1D6 OADZ SW1D16 RYZ F83 PX22 FC4 SP21 GF5 OHRF OBDI GH7 PWHI HS6 CD5 A3$D5 OVBZ HXC1 SW1DZ SW1D7 PB2 OALZ GG3 Jcl OLC1 ODWS1 CS1 HPL1 SW1D11 RPDS HS2 CD1 DJ31 OJC1 BA2 HS3 RVC1 HSI HPI 3 D81 OF4 SW1D14 OG51 SWZDS RBCT OLP3 RPB2 PCAA VHT2 HXC3 RVD21 HXBI GH6 SW1C7 RPBI HPLS RXS2 RK33 OHL1 G86 CZSI HXDC SW2D6 RPD7
'A1 DD1 FWH2 RXS10 OHCI SW2D7 DC1 E85 HRC6 RL36 OSN1 CRD3 1.9628E-03 1.9321$
03 I. 9145E-03 1.8912$ -03 1.8790$
03 1.8485E 03 1.778$ E 03 I ~ 7551$
03 1.1468E-03 1.7133$
03 1 '625E 03
- 1. 6614E-03 1 ~ 6316$
03 1.5880$
03 1 ~ 5670E 03 1.5433$
03 1 '327E 03 1 ~ 5254E 03 1 ~ 5169$
03 1.5117E 03 1.4902E 03 1.4568E 03 1.4272E 03 1.4172$
03 1.4065$
03 1.4059E 03 1 ~ 3862$
03 1.3603$
03 1.3550$
03 1 ~ 3362K 03 1.32548 03 1.28298 03 1.2117$
03
- 1. 2I.I9$ 03 1.2059E-03 1.19768 03 1.1197B 03 1 o 1793B 03 1,09078 03 1.0377$ -03 9.97208 04 9 5564$
04 9.2381H 04 9.2323$
04 9.2004$
04 9,0745$
04 9.0455$
04 9 ~ 0271E-OI 8.5750$
04 Se5669$
04 So2644$
04 So0251$
04 7 8281E 04 7.8273$
04 7, 12608" 04 6.9077$
04 C,7982$
04 Ce6819$
04 6.6637$
04 6.5542$ -04 6.3672B 04 6.3637$
04 5.98798 04 5 97'788 04 5.9532$
04 5.9238E OI 5 ~ 4811$
04 5.4728$
04 5 '848$
04 5.0145$
04 4.9762B 04 4.7777$
04 4.'7376E-OI 4.6978E-OI 4.65288 Oi 4.6222$ -04 4.4950E-OI 4.4763$ -04 4.3134E 04 I.2161$
04 4.1515$
04 1.3398$
03 I.5306$ -03
- 1. 1705$ -03 1.8517$
03 1.7982E 03 1.7642$ -03 1.6262$ -03 3.9091$
04 1.7455$
03 1.5449$
03 1.6623$ -03 8.0542$ -04 1.4444$
03 1.4S24$
03>>
- 9. 4918$ -04 1 ~ 3843$ -03 1.29088-03 1.5169$
03 1.4522$
03 2.8336$ -04 1 ~ 29$ 2$ 03 1 ~ 3061E 03 1.1349$
03 4.5471B 04 1.1343$
03 4 '76)E 04 6 ~ 1599$ -04 l.3446$ -03 1.3109B 03
~4.1632$ -03 9 '465B-04 2.0284$ 0)
'7 ~ 1049$
04 6.3982$ -05 1.1976$
03 5.3666B 04 6 ~ 8871B 04 4.3058B 04 4.8356$
Oi 9.9720$ -04 9.5341$
04 9.2381B 04 8 1009$
04 8 0198B Oi 2.7270$
04 1.337$ B-OI 6 '035$
04 7.8465B-OI 1.1525H-03 4.1917B 04 2.5143B 04 1 ~ 4612$
03 4 ~ 3184$
04 Se2056$
Oi 5.6495B 04 6.7982B-04 2.6722B 04
-3. 1950B-04 5 ~ 8340B-04 1.42678-04'
-1.29388-03 2.5134$
04 5.9532$ -04 3 ~ 6163$
03 5.4811$
04 5.8606$
05 I ~ 9928B 04
-1.2958$ -O)
-I ~ 2463$ -03
- 2. 3468$ -04 4.7304$
04 1 ~ 8872E 03
-2.1348B-04 1.2549B 03 4.48SSE Oi 4 '380$
04 7.7047E-04 2.1322E 04 5 '880E-04 7 ~ 1512$ -01 I ~ 0062$ ~00 2 '721$ +00 1.8695$ t00 2 '949$ +00
- 1. 0010$ tOO 2 ~ 1046$ ~00 1.0053$ ~00 I ~ 4 539E+01 1.0055E+00 1.4266Et00 1.0000E+00 9.1417E 01
- 1. 0151$ +00 1 ~ 0000$ +00 1.0063E+00 1 ~ 0071$ +00 1 ~ 4095E+00 1 ~ 0092E+00
- 1. 5186E+00 1 ~ 00318+00 1.25738+00 7.57328-01 1.0947E+00 1.0056B+00 1 ~ 0691$ +00 9.77748-01 1 ~ 00638+00 1.02688too 3 4554B+00 5e2456$
01 1 0360E+00 8 ~ $129$ Dl 9 ~ 91068-01 1.00458+00 1 0129B+00
- 1. 4271$ +0 0 2.3867B+00 1 0130$ +00 1 ~ 1250B+00
- 1. 01658+00 1.4075$ +00 1.0022B+00 1 0089B+00 6 ~ 0944H 01 1 ~ 034$ B+OD 9.9825B 01
- 2. 7081$ too 9.$
252E-01'.4139$
01 9 '245$ -01
- 1. 0126$ too 5 0246$
01 9 ~ 2891B 01 1.0943$ too
- 1. 1523B+00 1-0221Btoo 1.0030$ +00 9 9540B 01 1 ~ 0401B+00 1.0078E+00 3.0733B+01 9.4417$
01 1.1703$ +00 1.0040$ too 1.4562$
01
- 1. 0012B+ 00 9.9873$
01 1.0007$ +00 3.8046$
01 3 ~ 8246$
01 1.0093E+00 1.5493$ +02 8 ~ 1955E 01 9 '510E 01
'). 8813$
Ol 1.013$ $+00 1.0530$ +00 9 ~ 6674E 01 7.1679E 01
- 9. 8511E 01
- 1. 0013$ too
- 9. 9841$
01 9.9883E 01 9.9815E 01 9.9820E 01 9.9824E 01 9.9837E 01
- 9. 9961E 01 9.9825E-OI 9.9846$ -01 9.98348 01 9.9919$
01
- 1. 0014 $too 9 '8528-01 9.9905E 01 9.9862$
01
- 9. 9871$ -01 9 ~ 98488 01 9.9855$ -01 9.9972$
01 9.98708 01 1.00138too 9.98878 01 9.99558 01 9.98878 01 1.00048+00 9.9938$
01 9.98668-01 9.98698 01 1.00488+00 9.99028-01 1 00208+00 1.00078+00 9.9994$
01 9.98808 01 9.99468 01
- 9. 9931$
01 9.9957$
01 9 9952E 01 9.99008 01 9 9905$
01 9.9908B-01 9.9919B 01 1.0008$ too 9.9973B 01 1.00018+00 9.9933$
01 1 00088+00
- 1. 0012$ +00 1.0004Btoo 9 9975$
01
- 1. 0015B+00 1.0004B+00 9.9948B 01 9.9944$ -01 9.9932H-01
- 9. 9973$
01 1.0003Btoo 9.9942B-01 9.9986$
01 9.9936$
01
- 1. 0013B+00 9.9975B 01 9.9940$
01 1.0036B+00 9.9945B 01 1.0001$ +00 9.9950B-01
- 1. 0013B+00 1.0012$ +00 9 ~ 9971$ -01 9 '953$ -01
- 1. 0019$ +00 1.00028+00 1 ~ 0013$ +00 9 '955$
01 9 ~ 9957$ -01 1.0008$ +OD 1.0002$ +00 1.0006E+00 4.6908E 03 1.9800E 01 7.9450E 04 2.1252E 03 9.0058E Oi 6 '610E 01 1.4100E-03 6.8680$
02 1.289OE-OI 2.2050E 01 3.8810E-03 9.4280E 01 1.6550E 02 8 '620$
02 1.0000$ too 1.31208 01 1 ~ 6380$ -01 3.1422$
03 1.4200$
01 2.7922E 03 8.3940$
02 5 02008 03 5.35308 03 1.18408 02 7 '6908 02 1 ~ 61608 02 1 88508 02 8.9590$
02 I ~ 7190$
02 5.33608 04 9 ~ 91908 03
- 2. 6615B-02 1 ~ 6800$
02 7.35908 02 1 39308 D2 8.50008 02 1 ~ 2550B 0)
I 96408 04 3 '040$
02 3
$540$
03 5 '000E 02 2 ~ 3340B 03 3 00008 01 8 ~ 3410B-02 2 0492$
03 7.7170B 03 7.09808 02 3.9230$
04 4.2910B 02 1.9284H 02
- 6. 1670B-03 1 9580E 02 2.92838-03 6 03778 03 5.4880H 0) 3.6950$
03 2.9850B 02 8 '320B 02 6 49808 02 1.4330$
02 1 8020$
02 2 ~ 14008-05
'650S 02 1.4740$
03 1 '830B 01 i."2148B-03 3 ~ 2150$
01 I ~ 4100$
02 4.0700B 01 2.08728 03 2 ~ 0141$ 0) 2.46128 02 3 '730E 06 1 ~ 0350$
02 4.1740$
02 2.04678 03 3.1580E 02 8.1246$
03 2.2640$
02 7.5230$ -04 3 ~ 8661$
02 1.7928E-0$
I ~ 7652E 08 1 ~ 1486$
08 1.7328E 08 1.7162E-08 1.6883$ -08 1 '246$
08 1.6030E-08 1.5954E 08
'1.5649E 08 1.5185E 08 1.5174E 08 I ~ 4902E 08 1.4504$
08 1.4312E 08 1.4096E 08 1 ~ 3999$
08 1 ~ 3932$
08 1 ~ 3855$
08 1.3807E 08 1.3611E 08 1.3305$
08 1.3035$
08 1 ~ 2944$
08 1.2$ 46$ -08 1.2841$
08 1 ~ 2661E 08 1.2424$
OS 1 ~ 23768 08 1 2204B 08 1.21058 08
- 1. 1717B 08 1 ~ 11228 08 1.1096E 08 1 ~ 10148 08 lo0939$
08 1 D775B 0$
1 ~ 0711B 08 9 9624$
09 9.4776$
09 9 ~ 1079$
09 So7284$
09 Sei)76$
09 8.4324$
09 8.4032E 09 8.28828 09 8.2617$
09
$.2449$ -09
'7.8319$
09 7 8246$
09 7 ~ 5483B 09 7'297$
09 7 1498B 09 7m)49)$
09 6,5086$
09 6.3092$
09 6 ~ 2091E 09 Colo)98 09 6.0863$
09 5,9863E-09 5.8155$
09
- 5. 8123B-09 5.4691$
09 5.4598$
09 5 '374$
09 5.4105$
09 5.0062B 09 4.9986$
09 4.6442$
09 4.5SOOE 09 4.5450$ -09 I.)637S 09 4.3270E 09 4.2907$ -09 4.2496$
09 4.2217$
09 4.1055$
09 4.0884$ -09 3.9)96$
09 3.9055E 09 3 7918E 09
MODEL Name:
SFNU3H Split Fraction XeLportance Cor Group Sorted by Fraction
?eporcance Group Frequency 9 1335E-06 16:25:08 20 HAY 1996 Page 6
SF Wane...
Fracrion...
Fussel-Vesely.
Xnportance Ieportance 8irnbaum...
Importance Achieveeent.
worth Reductxon...
SF Value...
worch Frequency.
399.
400.
401.
402.
403.
404.
405.
406.
401.
40$.
409.
410.
411.
412.
413.
414.
415.
416
~
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429
'30.
431.
432.
433.
434.
435.
436.
437.
438
'39.
440.
441.
442.
443.
444
'45.
446.
447.
448.
449.
450.
451 ~
452.
453.
454.
ISS.
456.
457.
458.
459
'60.
461.
462.
463.
- 464, 465.
466.
467.
468.
469.
470.
I'7l.
472.
473.
474.
475.
476.
417.
418
~
479.
RPD6
$86 ECX0 FH2 ED29 HXD3 OSP2 A3EDX U843CX FC2 RK3 A3EC2 EC12 EAX U843AX SP12 A3$82 DV2F NHlI NH2 1 SP11 SGT2 DGA SWXA2 ED34 HX82 PX21 DH2 FF2
$82 DV21 SL2 SW2CI SMXC6 NBOCF D'M82 QDCF DP2 EDS HC2 CD6 NPII3 U84381 OSV1 RVL3 RPTX SP13 SW2CS CRD2 LPC1 DK2 ECI DL6 RL6 SPR17 EDIO
$81 GC6 GH9 DLI OSP3 RBCA 8'M2D9 EC9 CSTF A3$81 HRC3 A3$84 ORP3 SM2D3 DGO SGTX DV11 AA2 IVC1 8'M1D13 HXD10 SM1DS DGL A3EA2 OG161 4.1350$
04 3.9176E-O4 3.90588-04
- 3. 7891E-Ol 3.7620E 04 3.6689E Oi 3.64028 04 3.5214$
Oi 3 '430E 04 3 '7998 04 3.31798 04 3 '0698 04 3 ~ 15968-04 3 ~ 1488$ -04 3 ~ 1125E 04 2 '9938 04 2.9756$
04 2.9033$
04 2.8236$
04 2.8230$
Oi 2 ~ 81818-04 2 '883E 04 2 '3368 04 2.48338 04 2 '5608 04 2 '360B 04 2.25868-04 2.24338 04 2 '9838-04 2.11558 04
- 2. 11898-04 2 ~ 11148 04 2.08098 04 2 '8098 04 2 '0848 04 2.00578-04 1 ~ 99658 04 1.97528 04 1 ~ 97148 04 1.9'7148 04 1.9582$
04 1.88028 04 1.82048 04 1.66758 04 1 ~ 51948 04 1.51698 04 1.48418 04 1.33048 OI 1 ~ 21098 04 1 2639$ -04 1.23958 04 1 ~ 16458 04 1 '2888 04 1 ~ 11558 04 1.08438 04 I ~ 01118 04 9 '815H-05 9e8365$
05 9 16848 05
~
8.9489H 05 8.18068 05 8 F 40438 05 8.22138 05 7.58938-05 1.16948-05 7.05398 05 6 '5398 05 6.4184$
05 6.1232$
05 6.0234$ -05 5.5668$ -05 5.37348-05 5.3210$
05
- 5. 0418$ -05 4.90338-05 4.89898 05 4 '6448-05 I ~ 8181$
05 4.59958 05 4
~ 5811$
05 I ~ 51438 05 3.2645E-O4 2 '6058-04 3.5977$
04 3.23668-05 3.7620E-OI
-9 '236E 06
-7.0699E Oi 1.9333E 04 2.5958$ -04 9.8512E 05
-9.1860E 04 3.X979E 04 1.5159$ -04
-3.6650E 04 1.411OE 04 2.1976E-O4
-3.4543E 04
-2 '445E 03
-2 '8738-03
- 2. 0512$ -04 9 ~ 7774E 04 2.3139E 04
-1 ~ 13608 05 2.)690$
Oi 1 '9648 04
-5 '0058-04
-1.57158 04 3.9347$
05 2 ~ 1632$ -04 1 '8938-04 1 ~ 07348-04 2.0485$
04 2 08098 04 6 3048$
04
-1.5)168-04 1 ~ 97148 04
- 1. 97148-04 3 '8958 OS 1.$ 480$
04 4 26738 06 3.16558 04 1.51608 04 1.0829H 04 1 '249H 04 I ~ 41668 04 1.2501$
04 7 59138 05 6e92438-04 6.58328 05 4,46658 04 74618 04 9 '2058 05 1.0111$
04 5 '52'78 04 8.0237$
05 9.16848 05 4.6707$
04 8.50658 05 2.7585$
05 6 1242$ -06 1 ~ 6293$
04 1 ~ 17IIE 04 5.3242E 05 3 6857E 05 2.5215E 04 2.57498 04 5.5627$
05
-1. 2083$ -03 5.0122E 05 2.3771$
06 4.64408 05 4 '3318-05 3.8733E 05 4.8187E 05 2.9634$ -05 6 '753E 05 4.0743$
04 1.0228Etoo 1.0694E+00 1.0004E+00 X.OO)OEtOO 1.00018too 9 '9488 01 8 '826E 01 1 '088E+00 3 '3568+00 9 '4008 Ol 9 ~ 6310$ -01 4 '5408+00 1.03938+00 6 ~ 14048 01 1 63218+00
- 1. 0164E+OO 9.9554$ -01 1.00008+00 1.5805$
01 1.6670$
01 1.23368+00 9.6281$
01
- 1. 13218+00
- 9. 99298 01 1.0633$ too 1.00898+00 3.56508 01 9.35338 01
- 9. 97608 01
- 1. 01708+00 1.04388+00 1.00388+00 1 00078+00 I 00018+00 1 00008+00 9.67248 01 1.00008+00 9.41518 01 1.00058+00 1.01698+00 1.003$ H+00 1.64738too
- 1. 01838+00 8 ~ 6463H 01
- 1. 18828too 1 93698+00 9 '5728 01
- 9. 8841801
- 1. 01488too 1.23998toO 9.3757$
01 1.00018+00 9.59738 01 9.80948 01 1.08728too 1.00028+00 3.8558H-01 1.00058+00 1.00098+00 9.58128 01 2.1792E+00 1 00038+00 9.99688 01 9.56498 01 1.0000Btoo 5.3341$
01 1.1864$ too 9.9991$ -01 9.9435$
01 9.158)B 01 1.06708+00 2.1809E 01
- 1. 01038+00
- 1. 0031$ too
- 1. 60218+00 1.00018+00 1.00708+00 X.OOOIE+00
- 9. 6815E-OX 9.2906$
01 3.1216E 01 9.9967E 01 9.9973$ -01 9.9964$
01 9.9997$
01 9.9962$
01 1.0000E+00 1 ~ 0007Etoo 9.9981$
01 9.9974$
01 1.00018+00 1.00098+00 9.99688 01 9 '9858-01 1.00048too 9 ~ 99868 01
- 9. 9918$
01 1.00038+00 1.00258too 1.00258+00 9 '9798-01 1 ~ 00108+00
- 9. 99718 01 1.00008too 9.99768 01 9.99818 01 1.00058too 1.00028too 1.00008+00 9.997$ E 01 9.99808 01 9.99898 01 9 99808 01 9 ~ 99798 01 1 00068+00 1 00028+00 9.99808 01 9.99808 01 9 ~ 9997801 9.99828 01 1,00008+00 1.00038+00 9.99858 01 9.99898 01 1.00028+00 1.00048+00 9.99878 01 9.9992$
01 1.00078too 9.99938 01 1 00048too 1.00058+00 9 '990H,OI 9.99908 Ol 1.00068+00 9.99928 01 9.99918 01 1.00058+00 9.9991$
01 9.99978 01 1.00008+00 1 '0028+00 1.00018too 9.99958 01 1.0000H+00 1.00038+00 X.ooo)Btoo 9.99948 01 1.00128+00 9.9995$
01 1.00008+00 9.99958 01 9.9996E 01 9.9996$
01
- 9. 99958 01 1.00008+00 1.00018+00 1.00048+00 1.4090E-02 3.81'708 03 S. 0110E-01 1 ~ 6160E 02 7.8590$
01 1.7170E 02 5.774OE 03 2.1270E 04 1.1113$
04 1 ~ 6160E-02 2.4290$
02 1.0470E-04 3.8390E 03 9.4870$
04 2.2316$
04 1.3190$ -02 7.1900$
02 1.00008+00 3.0130H 03 2 '760E-03 8.7750$ -04 2 5619$
02 1.7490$
03 1.56708 02 3 '7310H 03 2.08708 02 7.92008 04 2.42408 03 1.61608 02 1.25308-02 4.52008 03 2.7449$ -02 2.16908 01 6.59908 01 1.00008+00 1.88838 02 1 00008+00 2 e 6116$ -03 2.92508-01 1 1550$ -02 8.78478-03 2 '5408 04 2.33118 04 2.33308-03 8.0480$
Oi 1.15578 04 I 3300B 02 3.68808 02 8 '9448-03 3.16308 04 1.09708 02 3.33608-01 1 0970B 02 2.4290$ -02 1.09008 03 3 45608 01 9 67908-04 1.33908-01 8 96208 02 l.1030$ -02 7.21308 05 9.03728 02 1.85708 02 3.73108 03 1 ~ 00008+00 2 ~ 51608 04 2.85588-04 2.8260$ -01 4.2740$
02 1.05408-02 8.2930$
04 1.54'298 03 I.8650$ -03 7.6310E 04 1.'7044$
05 2 3300$
01 5.48808 03 1.1050E 01 9.2970$
04 8 '970E 04 919$ E 04 3.7767$ -09 3.57818 09 3.5673E 09 3.4608E-09 3.4360E-O9 3 ~ 3510E-09 3.32488-09 3.2163$
09
- 3. 1441E 09 3.0870E-09 3.03048 09 2.9290$
09 2.8$ 58E 09 2.87598 09 2.84288 09 2.7394E 09 2.7177E 09 2.6517$
09 2.5789E 09 2.5784$
09 2.5740$
09 2 4554E 09 2.31418 09 2.26828 09 2.24328-09
'2.'22498 09 2.06298 09 2.04898 09 2.0078H 09 1.98708 09 1.93538 09 1.9284$ -.09 1.90068-09 1.90068 09 1.8344$
09
- l. 8319$
09 1.82358 09 1 8040$
09 1 '0068 09 1.80068 09 1.78868 09 1 ~ 71738 09 1.6626$
09 1.5230E-09 1.38778 09 1.3855$
09 1.)5558 09 1.21518 09 1.16088 09 1.15448 09 1 ~ 1321$ -09 1.06368 09 1.03108 09 1.0188$
09 9 90)98-10 9.23I6$
10 9 '1668 10 8.98428 10 8.37398 10 8.1735$
10 8 ~ 01988 10
- 7. 67618 10
'7.50898 10 6 ~ 931'7$
10 6 ~ 5482$ -10 6.4427$
10 S.8947$
10 5 '6238 10 5.5926$
10 5 ~ 5014$
10 5.08458 10 4.9078E 10 4.8600E 10 4 '0498 lo 4.4785$
10 4.47448 10 4.4429E 10 4 ~ 4012E 10 4.20098 10 4 ~ 1841E 10 4.1231E 10
HODEL Name:
BFND3H Split Fraction Importance for Group Sorred by Fraction Importance Group Frequency
~ 9.1335E-06 16:25:08 20 HAY 1996 Page 7
SF Name...
Fraction...
Fussel-Vesely.
Imporrance Importance Hirnbaum...
Importance Achievement.
North Reduction...
SF Value..
North Frequency.
480
~
481
~
482.
483.
<84.
485.
486.
487.
488.
489.
490.
<91.
492.
493.
494.
495.
496.
497.
498.
499.
500
'01 m
502.
503.
504
~
505.
506.
507.
508.
509.
510.
511
~
512.
513.
514.
515.
516.
517 518 ~
519.
520.
521.
522.
523 ~
524.
525.
526.
527.
528 529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542,.
543".
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
55<.
555.
556.
557.
558.
559
'60.
HRCS EC11 PCA<
A3ED23 A3$CS R4801 OSDI RJ31 SM1D15 GF6 SPR11 ODSB1 HXD2 A38$21 ED32 SM1D12 SM2D8 RBCK CAD1 RK31 RL31 RRCV AD23 AC<
RVO2 A3$C8 PCAH SLP 8$ 4 AD32 LV2 SMID18 RBCL ED28 AC18 Lvl SM2D2 DMSI ED30 ED31 Spl SPRI LSHI ODSB31 RBCN AH2 Acli SMIC1 SMICS SM1C3 DA2 DD2 DB2 DC2 HX$3 AD27 SPR18 RTI" RS1 RT3 A3$C3 AD34 ACHI A3ED27 A3ED4 A38D35 A38$11 SMIANN SPRS AD1 ACH3 A3ED3 ACH2 SM2C2 SM2C3 SHUT13 A3$B25 TH3 AD4 A3EC10 A3ED32 4
~ 4942E 05 4.2020E-OS 3.99078 05 3 '143E 05 3.5852E-OS 3 '455E 05 3.4033E 05 3 '5668-05 3.2659$ -05 3 '567E 05 3 ~ 0051E 05 2 '906E 05 2.9853E 05 2.9198E 05 2.86478 05 2.7836$
05 2.666<8 05
- 2. 64178-05 2.58568 05 2.46588 05 2.46588 05 2.3977$
05 2.33028 05 2.32998 05 2.02788 05 1.953'78 05 1.9037$
05 1.8901$
05 I 8721$
05 1.7966$
05 1.76368-05 1.73698 05 1.7077$ -05 1.63538 05 1 ~ 61288 05 1.56198 05 1 48198 05 I ~45298-05 I ~ 4176$
05 I ~ 38308 05 1.26758 05 1.26758 05 1.23938 05 1.20348 05 1.1809805 I 17788 05 1 ~ I'7748 DS 1.17178 05 1.1651$
05 1.16208 05 1.15818 05 I 15198 05
- 1. 135<E-05 1.12658 05 2.92588-06 0.00008+00 0 ~ 00008+00 Oo0000$ too 0.00008+00 0,0000H+00 0 00008+00 0,00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008too 0 ~ 00008too 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.0000E+00 0 ~ 0000$ +00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008too 0.00008 F 00 0.00008+00 3.11268 05 2.4871E 05 1.3465E-O<
.3.457<8-05 3.57908 05
-1.1338E 04 3.77538 06
-1.01698 04 2.80558-05 2.90408 05 2.9919E 05 1.2015E 05 2.9983E 0<
-1. 0435E-05 1.4589$
05
-2.5<53E-OS 1,3764E 05 6.30188 05 1.1144$
0<
8.7896E 05 8 ~ 78918 05 1.6165E-O<
1.11018 05 1.83608 05 1.50068 05 4,23178 05 2.3352$
05 2.58588 0<
3.33848 06
-3. 123<$ 405 1.3850$
05 1.30308 04 1.63538 05 I ~ 39338 06 4.9181$
05 5.29148 05 6e80878 04 0 0000$ too I 36508 05 9.11658-06 1.26758-05 1.01698 04 1.2537$
04 5 '9148 05
-loI683$ 0$
6 '3508 07 2.32328 04
- 9. 81928 06 7.19268 05 1.98128 04 le8978$
04 2,25048 04 2,26048 04 3 2136$
04
- 1. 8725806
-2.42928 06 9.37088 05
-9. 64318-05 5.81008 06 1.29158 08
-3.04418-O6 4.34748 05
-2.1646$
06
-2.D7738-05 I ~ 1763$
06
-3. 83<58-08
'-3. 11588-06
-1.12858-04 1.0526$
06
-1.19908 08 7.48<58 06
-6.58138-05 1.8958$
04 5.09578 06 6.60878-06 1.7064$
05
-3.7385E-06 5.79328-05 1.7440$
05 1.09408too 1.00088too 9.9479E 01 9.55428 01 1.13208+00 8
~ 95138 01 I ~ 00358+00 3 ~ 2870E 01
- 1. 0017Etoo 1.0003E+00 1.05698+00 9.9255$
01 9.43418 01 9.8704$
01 1.00008too 9.98068 01 9.9915E 01
- 9. 8712$
01 9.56668 01 3.68658 01 3 '868E 01 9 '538E 01 I ~ 0166E+00 I 0275Et00 2 '9388+00 9 ~ 47448 01 9 '958E 01 1.00008+00 9.30568 01 9.95228 01 9.9269$ iol 9 98798 01 9.9050$ iol l.00018+00 I ~ 00188+00 2.95368 01 9.93308 01 4.8240E 01 1.00008+00 1.00088+00 I 01978+00 I ~ 02918+00 9.96458 01 9.2226801 9 99088 01 9.83278 01 1.00098too 9.79668 01 1.00078+00
- 9. 92448 01 8.72348 01 8.77168 01 8.52098 01 8 ~ 5025$
01 9.40298 01 9.99968 01
- 9. 9<80801 1.85958 01 lo6229$
01 9.49448 01 9.99958 01 9.9997E-OI 7 '267E-01
- 9. 99948-01 9.7245$
01 9.95208 01 9.99958 01 9.9377E 01 2.03118 01 4.7372E-01 9.9995E 01 8 '0328-01 9.9096E-01 9.83928 01
- 9. 65718-01
- 9. 9241E 01 9.9974$
01
- 9. 9419E-01 9 ~ 3345$
01 9.7834$
01 9.99978 01 9.9998E-01 1.00028too 1.0000E+00 9.99968-01
- l. 0001E+00 1.0000E+00
- 1. 0001E+00
- 9. 9997E 01 9 ~ 9997E-01
- 9. 9997$
01 1.0000$ +00 1.00038too 1.0000Etoo
- 9. 99998 01 1.00008+00 1.0000E+00 l.0001E+00
- 1. 0001E+00 1.00018+00 I ~ 00018+00
- 1. 00018+00 9.99998 01 9 ~ 99988 01 9 ~ 99988 01 1.00008+00 1.00008too 1.00038+00 1.00008+00 1 ~ 00008too 1.00008+00
- 1. 00018too 9.99988 01 1.00008+00 1.00008+00
- 1. 00018+00 1.00078+00 I ~ 00008+00 9 ~ 9999$ -01 9.9999$ -01 9.99998-01 I 00018+00 l.00018+00
- 1. 00018toO 1.00008+00 1.0000E+00 I 00028+00 9.99998 01
- 1. 00018+00 1.00028+00 1.00028+00 1.00028+00 1.00028+00 I 00038+00 1 00008+00 1.00008+00 l.0001$ too 1.00018+00 1.00008+00 1.00008+00 1.00008too 1.00008+00 1.00008+00 1.00008+00 1,00008+00 1.00008+00 1.00008+00 I ~ 00008+00 l.00018+00 1.0000E+00 1.00008+00 1.00008+00
- 1. 00018+00 1 ~ 0002$ +00 1.00008too 1.00008+00 1.0000Etoo 1.0000E+00
- 1. 00018+00 1.00008+00
- 3. 3091E 04 3
~ 1690E-02 4.3080E.02 7.1500E 04 2.71008 0<
1.0800E 03 1.063OE 03 1.52958-04 1.5910E-02 8.9590E 02 5.2530E-O<
1 ~ 61008 03 5 '700E 03 8.04<OR-O<
- 5. 11508-01 1.2940E 02 1 ~ 5910E 02 4.8676E 03 2.5645E-03 1 ~ 3920E 04 1.3920E 04 4.64748 03 6.6700E 04 6 6'700E-04 I ~ 37208 05 8 '4408 0<
5.257'78 02 1.0000E+00 3.7100$
03 6.97908 04 I ~ 25208-03 1.12908 02 1.35288 02
- 2. 16408 01
- 7. 63108 04 6.9791$
05 7.83008 03 I ~ 31378-03 5.01808 01 1 59008 02 I ~ 6180$
04 4.34808 04 2.78728 02 1.61008 03 5 '4708-02 6.97908 04 6 '7908-04 1.11908 02 1.4870$
02 9 <230$
03 1.54958 03 1.5<258 03 I 5191E 03 1.50728 03 5 35308 03
<.48608 02 4.66508 04 1.15108 04 1 ~ 1510E 04 1.1510E 04 2.71108 04 8.6230$
02 2 00008 04 3.73308 02 7.53508 04 8.69708-04 8.0<508 04 0 ~ 00008too 5.00208-04 1.4160E 04 2.00008 06
- 2. 51708-04 5.00008 05 7.23108 03
- 1. 16508-02 1.<860$
04 8.6970$
04 6.07948 02 6.4360E 0<
8.69708-04 8.0440$
04 4 '0488 10 3 '379E 10 3.6<498 10 3.30118 10 3.27<SE-10 3 '3828-10 3 '084E 10 3 '657E 10 2 '8298 10 2.79188 lo 2 '447E 10 2.7315E-10 2.7266E-10 2.66688 )0 2.6165E 10 2.542<E-10 2.43538-10 2.4128E 10 2 ~ 3616$
10,
- 2. 2 521 E-10 2.2521E 10
- 2. 18998-10
- 2. 11838-10 2.12808 10 1 ~ 85118-10 1 ~ 78448 10 1.73888 10 1.7264$
10 1 71008 10 1.6410$
10 I ~ 61088 10 1.58648 10 1.55988 10 1.49368 10 1.47318 10 1.4166$
10 1 ~35358-10 1.32708 10 1.29478 10 1.26328 10
- 1. 15778 10 1 15778-10
- 1. 13198-10 1 ~ 09918 10 1.07868 10 1.07578-10 1.07548-10 1.0'702E 10 1 ~ 06<28 10 1 0613$
10 1+05788-10 I 0530$
10 1.0370H 10 1 02898 10 2 67238 11 0 ~ 00008+00 0.00008too 0 ~ 00008400 0.0000H+00 0.00008+00 0.00008+00 0.00008+00 0,00008+00 0.00008too 0 ~ 00008+00 0.0000E+00 0.00008+00 0.00008+00 0.0000E+00 0.00008+00 0.00008+00 0
OOOOE+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.0000Etoo 0.0000Et00 0.00008+00 0.0000$ too 0.00008ioo
MODEI Name:
BFNU3M Split Fraction Importance for Oroup Sorted by Fraction Importance Group Frequency
- 9. 1335E-06 16:25:0$
20 MAY 1996 Page S
ALL ly.
8imba um...
Importance SF Name...
Fraction...
Fussel-Vese Importance Importance Achievement
'Worth Reduction...
SF Value..
worth Frequency.
561
~
RPT2 562
~
RPT5
,563
~
A3E810 564.
SPR13 565.
CAD1 566
~
A3EB15 561
~
TBO 56$.
RR3 569
~
AD35 5'/0.
A3EB3 571.
SP2 512.
RQ1 573.
SPR16 574.
RR1 515.
TBB 516.
RPTS 511.
SP3 51$.
SPR15 519.
SPR14 5$ 0.
RPT9 5$ 1.
U841A1 5$ 2 ~
SWlci 5$ 3.
SW1D3 5$ 4
~
SW1D4 5$ 5.
RXSO 586
~
UB42A1 5$ 7.
A3$81$
5$ $.
RXSS 5$ 9.
RVOB 590.
SHT21 591 ~
AB5 592
~
SCTOPS 593
~
AC1 594.
WRTS 595.
SDRBC1 596.
A3ED22 597.
U2NN 59$.
A3$89 599.
SW1CNN 600.
A81 601.
RXS7 602.
A3$D6 603
~
A3$819 604.
A38D21 605
~
UB4 181 606.
AA1 607.
A38816 60$.
RVD1$
609.
A3EC9 610.
SHT22 611.
RVD17 612.
AC16 613.
A3BD11 614.
SN1DNN 615.
SHUF12 616
~
SHUT11 617.
A3$823 61$.
RVD13 619.
A3$D25 620.
SHT213 621.
SW1D9 622.
RV01 623..
A3881'1 624.
U84281 625.
SW1DS 626.
RVD3$
627.
RVLO 62$.
UB42C1 629.
RVL1 630.
S'W1BNN 631.
A3ED17 632.
PEB 633.
JAS 634.
DW1 635.
JC2 636.
IVC3 637.
IV01 63$.
IVC2 639.
KFS 640.
DV27 641.
DV28 O.OOOOE+00 O.OOOOEiOO 0.0000EtOO O.OOOOE+00 0.0000$ tOO 0.00008+00 O.OOOOE+OO O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+OO 0.00008+00 0.0000E+00 0.00008+00 0.0000E+00 0.0000$ +00 0.0000E+00 0.0000$ +00 0.00008+00 0.0000$ +00 0.00008+00 0.0000$ +00 0.0000$ +00 0.00008too 0.0000$ +00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0 ~ 0000$ +00 0 ~ 00008+00 0.00008+00 0.00008+00 0 ~ 0000$ +00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008too 0.0000$ too 0.0000$ too 0.0000$ too 0.00008too 0.0000Etoo 0.00008+00 0.00008+00 0.00008+00 0.0000$ too 0.00008+00 0.00008+00 0.00008too 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.0000H+00 0 00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.0000$ +00 0.0000$ too 0.0000E+00
,0.0000$ +00 0.00008+00 0.0000E+00 0.0000$ +00 0.0000$ +00 0.0000$ +00 0.0000E+00 0.00008+00 0.0000E+00 0.00008+00 O.OOOOE+00 0.00008+00 0.00008+00 0.00008+00
-1.0149$
07
-2.14$ 0E 05
- 2. 9162E-06
-$.6100E OS
$.0323E-06 1.1$ 1$ E 01
-$.1/91$ -06
-9.9119E 06 4.1266E-07 1.0$ 33E 05
- 2. 9510$ -04
-6.7666E 0$
2.$ 694E-ol
-1.6176$
06 3.2$ 15$
05 6.5791$
0$
1 '022E 07 2 ~ 1011$
06 1.7796$
04 1.36$ 1$
06 7.45148 05 1.991$ $ 05 1.7'/96$
04 6.4402$
07 2.31748 10 S 98728 05 5.51908 06
- 1. 12858-04 7.0961E 05 5.15348 0$
-3.63418 0$
1.12$ 5E 04
-5.04698 07 2 ~ 18588 0$
-7.5760$
01 1.25718 07 1.7796$
04 1.12858 04 2,32868 0$
$.9390$
06 3.75788 06 3.$ 627$
OC 2.10288 OC 3.23568 06 1,9116$
07 7.6393H-05 8 '8728 05
-3.49558-05 1.42198 07 2.'77788 06 5.0992E 06
-3.12488-06
- 6. 9471E-06 4.0060E 05
-1 7796$
04 1 35688 05 1.46098 07
-1.$ 673E-04
-2.62208-11 1.2417E 05
,-3.56788-06 4.98628 06 1.0201$
0$
-3.367$ $ 15
$.17$ 1$ 0$
2.0335$
01 9.99138 01
- 9. 973$ E-01 9.99968-01 9 '99$ $ -01 7.$ $ 60E 01 9.99808 01 9.7673$ -01 9.$ 694E 01
- 9. 9371E 01 9.9$ 77E-01 1.4021$
01 9.99948 01 1 ~ $3738-01 9.94$ 5E-01 9 '620E 01 9 '9$ $ $ OI 9 '9708 01 9 '9$ 5E 01 2.3740$ -01 9.99998 01
- 9. 9153$
01 9.99818 01 2 37408 01 9.999$ E 01
- 9. 99998 01 2.68838 01 9 92718 01 2 03118 01 9.77648 01 9.99808 01 9 ~ 99868 01 2 03118 01 9,7502$
01 9 99968 01 9.99988 01 9 '9868 01 2.37408 01 2.0311$
01 9.99968 01 9.$ 8198 01 9.99958-01 9 68578 01 9.98208 01 9.99978 01 9 99458 01 9.68578 01 2 ~ 68838 01 9.56588 01 9.99$ 2H 01 9 9996E-01 9 6571$
01 9.9976$ -01 4.7451$
01 9.4$ 35$
01 2.3740$
01 9.98578 01 9 '9828-01 2.3740$ -01 9 ~ 98718 01
- 9. 9994E 01 9.3649E 01 9 ~ $ 162$ -01 9.9$ 62$ -01 4 '392$
01 9.9$ 51$ 01 9.9996$
01 1.00008+00 1
~ OOOOEioo 1.0000$ iOO 1.0000E000 1.0000E+00 1.0000$ too 1.000OE+00 1.00008+00 1.0000E+Oo 1.0000$ too 1.0000E+00 1.0003$ too 1.0000Etoo 1.00038+00 1.00008+00 1.0000E+00 1.0000E+00 1.0000$ t00 1.0000E+00 1.0000$ +00 1.0002Etoo 1.0000E+00 1 ~ 00018+00 1.00008+00 1.00008400 1.00028too 1.0000$ +00 1.00008+00 1 ~ 00008too 1 ~ 0001E+00 1.00008too 1.00008too
- 1. 00018+00 1.00008+00 1.00018+00 1.0000E+00 1.00008+00 1.00008+00 1.00008too
- 1. 00018+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.0002Etoo 1.00018+00 1.00008+00 1.00008+00 1.00008+00 1 0000$ +00 1.00008+00 1 ~ 00008+00 1.00008+00 1.00008+00 1.00018+00 1 ~ 00018+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.0000$ too 1.00008+00 1.00028+00 1.00008+00 1.0000E+00 1.0000E+00 1 ~ 00028+00 1.00008+00 1.00008+00 1.00008+00 1.0000$ too 1 ~ 0000E+00 1.0000$ too 1.00008+00 1.00008+00 1.00008+00 1.00008too 1.00008+00 1
OOOOE+00 1.00008+00 1.1631E 04
$.13$ 6E 03 1.1920E 02 3.4730E 03
- 3. 19958 05
$.6910$
04 O.OOOOE+OO 3.514OE 04
- 7. 6310E 04 1.5130E-05
$.7310E 03 3.4310E 04 1.0660E 03 3.5140E-04 0.0000$ too
- 3. 1400E-04
$.5690$
03 5.32308 04 5.0060E Oi 1.4041$ -02 2 3330$ -04 1.0450E 01
$.72908 03 9.62308-02 0.00008too 2.33308 04 3.73308 02 2.1000$
05 0 ~ 0000$ +00 1.22908 04 7.63108 04 0.00008+00 1.4160$
04 0.00008+00 3.16388-03 2.51'108 04 0.0000H+00
- 2. 51608-04 0.00008too 1 ~ 41608 04 2 '200E-05 F 80508 Ol 3.7330$
02
$.69808 04 2 33308 04 1.41608 04 6.4910E 04 7.56308 04 7.58108-02 1,22908 04 1 16408 03
$.62308-02 3 '4908 Ol 0 ~ OOOOHtoo 2.42508 03 le22908 04
$.04408 04 ST 04808 04 7 ~ 1910$
02 1.4$ 70E Ol 1.28808 02 1.32208-05 7 '5008-04 2.33308 04 9.41408 03
$.16408 04 0.00008+00 2.44808 04 2.03408 0$
0.0000$ +00 1.62108 01 0.00008too 0.0000E+00 5.6170E 05 2.1120$
04 5.08538-05 6.5257$
15 5 '966E 05 0.0000$ +00 5 '8208 03 0.0000E+00 0 ~ 0000$ ioo O.OOOOE+00 0.0000E+00 0 ~ 0000$ ioo 0.0000$ +Oo O.OOOOE+OO O.OOOOEtOO 0.0000E+00 0.0000$ ioO 0
OOOOE+00 0.0000E+00 0 00008ioO 0.0000E+00 0 ~ 00008+00 0.0000E+00 0.0000EtOO 0.0000$ ioo 0.00008+00 0.0000$ tOO 0 ~ OOOOE+00 0.0000$ ioo 0 ~ 0000$ +00 0.0000$ +00 0.0000$ +00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0 00008+00 0.00008+00 0 ~ 00008+00 0 ~ 0000$ +00 0.0000$ too 0 ~ 00008+00 0.00008+00 0 ~ 0000$ +00 0.0000$ too 0 ~ 00008too 0.0000$ too 0 ~ 00008+00 0.00008+00 0 ~ 00008+00 0.0000E+00 0.00008too 0.00008+00 0 ~ 0000$ +00 0 ~ 00008+00 0 ~ 00008+00 0 ~ 00008+OO 0.00008+00 0.00008+00 Oo0000$ too 0.0000$ +00
. 0.00008+00 0.0000E+00 0.0000$ +00 0.00008+00 0.00008+00 0
OOOOE+00 0.00008+00 0.00008+00 0.0000E+00 0.00008+00 0.00008+00 0.0000$ +00 0.0000Et00 0.00008+00 0.0000E+00 0.00008+00 0 ~ OOOOE+00 0.0000E+00 0.0000$ +00 0.0000E+00 0.0000$ +00 0.0000$ +00 0 00008+00 0 ~ OOOOEtoo 0 ~ 00008ioo 0.00008too 0 ~ 0000$ too 0 ~ OOOOEtoo
0
MODEL Name BFNU3M Split Fraction Importance tor Group Sorred by Fraction Importance Group Frequency
- 9. 1335$ -06 16i25:08 20 MAY 1996 Page 9
ALL SF Name...
Fraction...
Fussel-vesely.
Birnbaum...
Achievement.
Reduction...
sF value..
Importance Importance Importance worth
'Worth Frequency.
642 643 644 645 646 647 648 649 650 651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661
~
662 663
'64.
665.
666.
667.
668.
669.
670.
671.
672.
673.
674 675
'76.
67'7 678.
679.'80 681
~
682.
683
'84.
685.
686.
687.
688.
689.
690.
691 692.
693 694 ~
695.
696.
697 698 699 700.
701
~
702.
703.
704 705 706 707 708 709 710
'711 712.
713.
714.
715.
116.
717 718 719 720 721 722 DV29 KCS DV22 INES INDS INFS INBS INCS IS01 INHS DW2 O'WP1 INCS INAS D032 D033 MSVC1 LVP1 DT1 1 DT21 DN32 DN33 NAO D031 NBOCB KHS DV18 LSTRl LECS LOH2 L883 LV3 LPRESS DV12 LFS LM1 NH22 PAB GDB BPR68 FBB CCB CBB CPB RD9 GEB RPR308 EDNN ED36 FHB PH3 PWA1 FPB FGB FC3 FCB CAB FDB FWC1 883 HUM2 HUM1 HUM3 ECNN HSO HRLO HXD8 HXD5 EC8 EC3 HXD4 RD35 CHB CH8 ED27 CGB ED33 HR60 RD11'PL6 ED26 0.00008+00 0.0000Etoo 0.0000E+00 0.0000E+00 0.0000E+00 0.00008+00 0.0000Etoo D.oooostoo D.OOODE+00 0.0000E+00 0.000OE+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00008+00 0.00008+00 0.0000Etoo 0 ~ 0000$ too 0.0000$ too 0.00008+00 0.00008+00 0.00008+00 0.00008too 0.0000E+00 0.00008too 0.00008+00 0.00008+00 0.00008+00 0.0000$ too 0.00008+00 0 00008+00 0.00008+00 0 ~ 00008too 0.00008+00 0.00008+00 0 ~ 00008+00 0.00008too 0.00008too 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.0000E+00 0.00008+00 0.00008too 0.00008+00 0.00008+00 0.00008+00 0.00008+00 O.ODOOB+00 0 00008too 0.00008+00 0.00008+00 O.OOOOE+00 0.00008too 0.00008+00 0 00008+00 0.00008+00 0.00008+00 0 00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.0000E+00 0.00008+00 0.0000E+00 0.00008too 0.00008+00 0.00008too 0.0000$ too 0.0000E+00 0.00008+00 0.0000E+00 0.0000E+00 0.0000$ too 0.0000$ too 0.00008+00 0.0000Etoo
-2.27618 06 3 '6438 06 4.4633E 08 9.3797$
06 2.79918 05 I ~ 77108 05
-5 '0048 05 4.65268 07 2 '3498-05 4 '424E 06 4.01168 06
-3 16458 05 1.00898 05 1 ~ 19408 04 I ~ 14978-05 6 ~ 19448 06
-1 ~ 10028-06 3 '4728 05
-5 ~ 8422$ -07
-io69668-05
-4 ~ 31458 06 1.76588-06
-6.19588-05 37058 06
-3.28928-05 1 87038 0'1 1.30418 05 2 98748-06 5.48218 04 3 '2038-05
-1. 1344$ -04 8 '3548-05 6.26638-07
-I ~ 8120$
05
-1 ~ 32078-06 9 ~ 22128-06 1.71458 05 2.31968 05 1 ~ 1861E 05
-2.847 IE-05 4 ~ 16348 06 1 ~ 7524E-07
- 9. 9959E 01 9.9995$
01 9.99808 01
- 9. 98148-01 5.0738$ -03 9.2103E 01 9.47188-01 9.93968 01 5.07388 03 5.0738E 03 5.0738E-03 9.1955E 01 9 ~ 1854E-01 1.8855E 01 9.93968-01
- 9. 99468 01 9.9994E 01
- 9. 9278E 01 9.99938 01 5.07388 03 9.99728 01
- 9. 99538-01 9.8391$
01 9.99738 01 9.98008 01
- 9. 97848-01 9.8669$
01 9.9274$
01 2.41988-01 9.26878 01 9i78928 01
- 9. 9963E 01 9.9996E 01
- 9. 8721$
01 9 9994$
01 9.99728 01
- 9. 9983E-01 9.9380$ -01 9 ~ 9964E 01
- 9. 9988E 01
- 9. 9996E 01 9.9999E 01 1.00008+00 I.oooosioo 1.0000'0 1.0000Etoo 1.0000E+00 1.0000E+00 1.0000Etoo 1.0000E+00 1.00008+00 1.0000E+00 1.00008+00 1.0000E+00 1 ~ OOOOEtoo 1.0000E+00 1.00008+00
- 1. 0001E+00 1.0000Etoo 1.00008+00 1.0000E+00 1.00008+00 1.00008+00 1.00018+00 1.00008t00
- 1. 0001E+00 1.00008+00 1.00008too 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008too 1.00008+00 1.00008+00 1.00008too 1.00008+00 1.00008+00 1.00008+00 1
ODOOBtOD 1,00008too 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.0000E+00 1.00008+00 1.00008+00 1.00008+00 1.00018+00 1.0000$ too 1.0000H+00 1.00008too 1.00008+00 1.0000$ too 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.0000E+00 1.00008+00 1.0005E+00 1.00008+00 1.00008+00 1.0000H+00 1.00008+00
- 1. 00018+00
- 1. 00018+00 1.00008+00 1.00008too 1.00008+00 1.0000E+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.0000E+00 1.0000Etoo 1.00008+00 1.00008+00 5.55508 03 0.0000E+00 6.6070E 02 0.00008+00 0
~ 0000Etoo 0.00008+00 0.0000E+00 0.0000Et00 2.2218E-OI 0.0000Etoo 5.00868-03 2 '133E 05 0.0000E+00 0.0000Etoo 2.24228-04
- 1. 0591E-03 7.7040$
05 2 '4938 05 4.06308-06 4.03208 06 l.6I71$ 04 8.59678 04 0.00008+00
- 1. 4712$ -04 0.00008too 0.00008+00 0.00008+00 6.82508 03 0.00008+00 1 14318 02 1 ~ 67618 02 4.2033R 03 0.00008+00 8.40208-03 0.00008+00 4,1203$
05 1.50508-02 0 00008+00 0.00008too 0.00008+00 0 00008+00 0.00008too 0.00008too 0.00008+00 3.'71008-03 0.00008+00 0 00008+00 0.00008+00 3 83708 03 0
OOODB+00
- 1. 61708-02 0.00008too 0.00008too 0 ~ 00008too 1 61708 02 0.00008too 0.00008+00 0.00008too 8.64808 05 9.78908 Ol 4.11408 04 7.2277R 04 4.81158 04 0.00008+00 0.00008+00 0.00008+00 5.35308-03 1.94708 01 1.63808-02 3.76708 03 2.08708 02
- 3. 13608-02 0.00008+00 8.95908-02 3.'72908 03 0.00008+00 3.16408 02 0.00008+00 1.9650$
01 8.80308-02 1.5550E 02 0.00008+00 0.00008+00 0.00008+00 0 ~ 00008+00 0.00008+00 0.00008+00 0.0000Etoo 0 ~ OOOOE+00 0.0000E+00 0.00008+00 O.OOOOE+OO 0.0000$ too 0.00008+00 0.00008+00 0 ~ 00008+00 0.00008+00 0 ~ Oooostoo 0.00008too 0.0000$ too 0.00008too 0 ~ 00008too 0.00008+00 0.00008+00 0.00008too 0 ~ 00008too 0 ~ 00008+00 0 ~ 00008+00 0 ~ 00008+00 0.00008+00 0 ~ 00008+00 0.00008+OD 0.00008+00 0 ~ Oooostoo 0 ~ 00008+00 0.00008+00 0 ~ 0000$ +00 0 00008+00 0 ~ 00008+00 0.00008too 0 ~ 00008+00 0 00008too 0 00008+00 0 ~ 00008+00 0 ~ 00008+00 0 ~ 00008+00 0.0000$ too 0,00008too 0 ~ 00008+00 0 00008+00 0 00008+00 0.00008+00 0.00008+00 0 ~ 00008too 0.00008+00 0.0000H+00 0.00008+00 0 00008+00 0 ~ 00008+00 0.00008+00 0 ~ 0000$ +00 0 00008+00 0.00008+00 0.00008+00 0.0000$ too 0 ~ 00008+00 0.000OE+00 0 ~ OOOOEtoo 0.00008+00 0.00008too 0 ~ 0000$ +00 0.00008+00 0.0000Etoo 0.0000E+00 o.oooos+oo O.OOOOE+OO 0.00008+00 0.00008too 0.0000E+00 O.OOOOStOO 0 ~ 00008+00 0.0000Etoo
HODEL Name:
SFNU3H Split Fraction Importance Lor Group Sorred by Fraction Importance Croup Frequency
~ 9.1335E-06 16:25:08 20 HAY 1996 page Lo ALL SF Name...
Fraction...
Fussel-Vesely.
Importance Zmporrance Biznbaum...
Importance Achievement.
worth Reduction...
SF Value...
Worth Frequency.
723.
724.
725.
126.
- 727, 728.
129.
730
~
731.
732.
733.
- 734, 735.
736.
737.
738.
739
'40.
741.
742.
743.
144.
145.
746.
747.
748.
749.
750.
751.
- 752, 153 ~
754.
755.
756.
757.
758.
759.
760.
761.
762.
763.
764.
165.
166.
767.
768.
769.
170.
711.
772.
773.
774.
77S.
776.
777.
778.
779.
780.
781.
782.
783.
784.
785..
786.
7$ 7 788.
789.
790.
791.
192.
793.
194.
795.
796.
797.
798 ~
799.
800.
801.
802.
803.
HPL2 CBBL RD31 RD1 REl RCML RCIILA RCL2 CS6 RZl RFL CSTL RHl RJl RBCZ DELL RSCH RBCC RBCD DCA2 RC1 RBISOS RBCS RSCU DE21 RP1 Rol CZL2 RH1 RN1 CS13 CD2 CD3 CZL1 CDA1 CDl RK1 RL1 CS16 RL32 RK2 RK32 RLS RL4 CS15 RL34 RL35 NH23 Opl DJ34 OPT1 0881 OEEB ODSBB OHC3 OHC2 DJ33 DZ3 OHC1 OHL2 NPII1 DLS NRUB DN3 1 NIEB ODSB38 OBD2 OBC1 DL2 NRVD RB1 OS LINN DGCS DGCA DCE1 DGE DCH1 DEl R480$
OUSNN OXL 0.0000E<<00 0.00008<<DD 0.00008<<00 0.0000E<<00 D.DOOOE+00 0.0000E<<00 0
~ 00008<<00 0.0000E+00 0.00008<<00 0.0000E<<00 0.0000E<<00 0
~ OOODE<<00 0.00008+00 0.00008+00 0.0000E+00 0.00008<<00 O.OOOOE+00 0.0000E+00 0.0000E+00 O.OOOOE+00 0.00008+00 0.00008+00 0.00008+00 0
~ OODOE+00 0.00008<<00 0 ~ 00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0 ~ 00008+00 0.00008<<00 0.00008+00 0.0000E<<00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0 ~ 00008t00 0.00008+00 0.00008<<00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008<<00 0 00008+00 0.00008<<00 0 ~ 00008<<00 0.00008+00 0 ~ 00008+00 0 ~ 00008+00 0.00008+00 0.00008t00 0.00008+00 0.00008<<00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.0000E+00 0.00008<<00 0.00008<<00 0.0000E+00 0.00008+00 0.00008<<00 0.00008<<00 0.00008+00 0
~ 00008+00 0.00008<<00 0.00008+00 0.0000E<<00 0.00008+00 0.0000E+00 0 ~ OOOOE<<00 0.0000E<<DD 0.0000E<<00 0 ~ 00008+00 0.00008+00 0.0000E+00
-3.8226E-OS
-1.8673E-04
. 1. 12 95E -04 1.3554E 04 2.33098-04
-1 '5828 0'1
-3.5016E 06
-5.1121E 05 8
~ 95018-07 1.39608 04 2.2760E 04 2.9466E 06 1.3525E 04 1.3960E 04 4.1726E 06
.1 ~ 69068 08 1 ~ 4875E 06
-6.2661E 01 1.0320E 06 7 ~ 45668 05
-1.37268 04 1 ~ 03298 04 1 ~ 19058 DS 1 ~ 86398 07 2.286lE 04 2.333'1E 04
-1 ~ 25588 Ol 2 '5058 04 2 ~ 96718 04
-2 F 12428-OS 4.32958 07
-6.96948 07 2 '2118 06 3 84658 D7 1.09838 04 1 ~ 09838-04
-7. 1293$ -01 3.82508 09
-2.40608-05 5 '8368 05 3e24818 07 5.11338 05 6 '4588 07 So08398 05 6.20998 07 3.46408 OS 8,16018 07 1.35378 06 3.93648 06 2.3630$
05
-Ia8883$ -05 2 '4588 05
-1.22088 07
-5.70738-06 3 06038 04 2<12028 06 2*47248 04
-5.26448 07
-8 7478 05 1 ~ 2120E 08
-1.55988-0S 7.1958E 06 1 ~ 41208 Ol
-2i07218 07 5.3399$
08 3.9274$
07
-3.51538 08 7.27158 05
- 3. 51408-05 9 '9578 01 2.37408 01 2 '9608 02 6.0L148 02 1
~ 4021E-OL 9 '3038-01 3 '6208-01 9.9957E-OI 9 '9108 01 1.3539E 01 1.60468 01 5 ~ 14558 03 1.62298 01 1.35398 01 9.99968-01
- 9. 99958 01 9.9989E Dl 9.99958 01 9.9993E-01 9.96798-01 4.82848 02 9.77528 01
- 9. 99478 01 9.99838 01
- 1. 09258 01 1.39208 01 7.75688 01 1.40218-01 1.35398 01 9 ~ 99988 01 9 '9668 01 9 ~ 9974E 01 2 '9398 01 9.99828 01 lo85958 01 1.$ 5958 01 9 ~ 99928 01 9e99988 01
- 9. 76348 01 9 4169E 01 9 ~ 99678 01 9 '9778 01 9o99928 Ol 9.1833$
01 9 ~ 99408 01 9 ~ 885lE 01 9 '7888 01 9 9994E 01
- 9. 9784$ -01 9 '4598 01 9.74368 01 9.7228E 01 9.99748 01 9.99788 01
- 7. 11888-01 9.99538 01 1.73638 02 9.9991E-01 2.21008 01 9.9998E 01 9.8036E-01 9.9626$
01 2.0960E-02 9.9986E 01 9.99958 01 9.99678 01 9.99978 01 8.65048-01 9.77648 01 1.0000E+00 l.00028<<00 1.00018+00 1. 00018+00 1.0002E+00 1.0000E<<00 1.0000E+00 1.0001E F 00 1.00008+00
- 1. 0001E+00 1.00028+00 1.00008+00
- 1. 0001E<<00 1.0001E<<00 1.00008+00 1.00008+00 1.0000E+00 1.00008+00 1.00008+00 1.00018<<00
- 1. 00018+00 1.00008<<00 l.00018+00 1.0DDOB<<OD 1.00008+00 1.00028+00 1.00028+00 1.00018+00 1.00038+00 1.00038+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.00008+00 1.0000E+00 l.00018+00
- 1. 00018+00 1.00008+00 1 00008+00 1.00008+00 1 00018+00 1.00008+00
- 1. 00018+00 1.00008+00
- 1. 00018+00 1.00008+00 1.00008+00 1.00008<<00 1.00008+00 1.0000$ <<00 1.00008+00 1.00008+00 1.0000$ <<00 1.00008+00 1.00008+00 1.00008+00 1 00008+00 1.00038+00 1.0000E+00 1,00028+00 1.00008+00 1.00008+00
- 1. 00018<<00 1.00008+00 1.00008+00 1.0000E+00 1.0000E<<00 1.00008+00 1.0000E+00
- 1. 00018+00 1.00008+00 1.00008+00 1.0000E+00 1.0000E+00 1.0000E+00 1.00008+00
- l. 00018+00 1.00008+00 1.0000E<<00 L.ODODE<<00 8 '23OE 02 2.4480E 04 1 ~ 1535E 04 1 ~ 4420E-Oi 2 ~ 7103E-Ol 2.5213E 05 5.439DE 06 1.0'700E 01 9.93808 Ol 1 ~ 6143E 04 2.71038 04 2 ~ 96188 06 1 ~ 6143E 04 1 ~ 6143E 04 8 '5378 02 1 ~ 53608 03 1 '683E 02 1.34008-02 1 ~ 3613$
02 2.27228 02 1.44208 04 0.00008+00 4.57368 03 2.2039$
02 1 ~ 06808 03 2 '6628-04 2.7103E 04 5.59528 04 3.43058-04 3.43058 04 1 ~ 12268 03 1.25598-03 2.63678 03 3.66098-06 0 ~ 00008+00 2 10868 03 1.34908-04 1.34908-04 8.75568-03 1 ~ 55108 04 1 01608 03 9.89908-04 9.78008 04
- 1. 01708 03 7.66518-03 9 '8908 D4 1 ~ 03608 03 3.01308 03 3.84108 04 2.37408-02 1.81708 03 5.2010$
04 0 00008<<00 0 00008+00 7.3590$
04
- 9. 17508 04 4.63208-04 2 ~ 48108-02
- 1. 0610803 4.49308-03 2.67908 04 5.85008 03 0.00008+00 1.06218 04 0.00008+00 0.00008+00 7.95888 04 1.93388 04
- 1. 91908 03 0 ~ 00008+00 1.44208 04 0 ~ 0000$ +00 0.00008+00 1.46308 03 1 ~ 0670R 03 1.19708 03 1.06'108 03 5.3850E-04 0 ~ 00008+00 0.00008<<00 1.59608 03 0.00008<<00 O.OOOOE+00 0.00008<<00 D.OOODE<<00 0.00008<<00 0.0000E<<00 D.ODODE<<00 0.0000E<<00 0.00008+00 0.0000E<<DO 0.0000E+00 0.0000E<<00 0.0000E+00 0.00008<<00
~
0.00008<<00 0.0000E<<00 0.00008+00 0.0000E<<00 0.0000Et00 D.OOODE<<00" 0.00008+00 D.OOOOE+00 0.0000E<<00 0.00008<<00 0.00008<<00 0 ~ 00008+00 0 ~ 00008<<00 0.00008<<00 0 00008+00 0 ~ 0000$ +00 0.00008+00 0.0000E+00 0.00008<<00 0.00008+00 0.0000E+00 0.00008<<00 0.00008+00 0.00008+00 0,00008<<00 0 ~ 00008<<00 0.00008+00 0 ~ 00008+00 0 ~ 00008+00 0 ~ 00008+00 0 ~ 00008too 0.00008+00 0.00008+00 0.00008+00 0 ~ 00008+00 0,00008+00 0.00008<<00 0 ~ 00008<<00 0.0000R+00 0 00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0.00008+00 0 00008+00 0 OOODR+00 0.0000R+00 0.00008+00 0.00008+00 0.00008+00 0 ~ DDOOE<<00 0 ~ 00008+00 0.00008+00 0.00008+00 0.00008+00 0 ~ OOOOE<<00 0.00008<<00 0.00008<<00 0.00008<<00 0.00008+00 0 ~ OOOOE+00 0.00008<<00 0 ~ OOOOE<<00 0.00008<<00
NOBEL Name:
BFNU3N Split Fraction Importance Ior Croup Sorted by Fraction Importance Croup Frequency
~ 9.1335E-06 16:25:08 20 NAY 1996 Page 11 ALL SF Name...
Fraction Fussel-vesely.
Birnbaum...
Achievement.
Reduction...
SF Value..
Importance Importance Importance North North Frequency.
804
~
DI1 805.
~
OLC2 808 'HS1 809
~
OHS2 810 'SD2 811
~
DCN 812 'RP1 813:
CLP2 814.
OPTRI 0.0000E+00 0 ~ OOOOE+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E000 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.9451E 04
-2,8874E-05
].7187E-04 1 ~ 3584E 04
-1.1920E 04
- 4. 0991E-04 6,6026E 06 4.3046E 05 4.8536E 05 1.2195E-05 4.0596$
05 5.2982E 03 9.4636E 01 9 ~ 2389E 01 7.8903E 01 9.8598E 01 4.7969E 01 9.9533E 01 9.2003E 01 5.1254E 01 6.7254E 01 9.7862E 01 1.000SE~OO 1
~ OOOOE+00 1
~ 0002E+00 I.OOOIE+00
- 1. 0001E+00 1.0004E+00 1.0000E+00 1.0000E+00 1 ~ OOOOE+00 1.0000E+00 1 ~ OOOOE+00 4.9690E 04 5.3800E 04 2.2530E 03 6.4350E 04 8.4290E 03 7.8720E 04 1.4130E 03 5.3800E 04 9.9560E 05 3 '240E 05 1.8950E 03 O.OOOOE~OO 0.0000E+00 0.0000E~OO 0 ~ 0000Ei00 0 ~ OOOOE ~ 00 O.OOOOE~OO 0.0000E~OO 0.0000E~OO 0 ~ OOOOE+00 0 ~ OOOOE+00 0 ~ OOOOE~OO
APPENDIX D.
-M MATRIX Table D-l presents the $-M matrix for the Browns Ferry Unit 3 PSA.
Table D-1 (Page 1 of3). Phi-M LMatrixfor Browns Ferry Unit 3 PSA f~14 FlsRU LOFA
~Sai(LA(ofe oe v LDSP 7
1 00 4.HK 01 9.$ )C.GS L.itt 01 S ~ )Qt 02 Z.WOOL 1.$. F(Rat~Indy 2.72C OL
).51'4.01
) ~ )SC 02
).22$ 01 FFZ 2 ~ 1'ig 01 1 ((C.OT X.iig.o'1 C.O 1 ig I 47E Qe T)g L.ooc.o) 7.4)c-oe S.eic-oe S.ooc:oe o.ocg.oo
.Set-0$
S.iet-io Ct Q.
1.17K OT
) ~4'it 04
(.Nt 0$
5 ~Iig'0$
C.OC(eoo 1 21E 0$
' )Ig 0$
NXIV X.LOE.OI 1).4 1 ~4(t OI 41AV
)K.GC 4.75K.OI 25.9 I ~ iTK OI NXAV I~ 07 1.)7C 47
)4.4 L.ift 07
'geoo O.oggeog O.ggaeOO O.OCC.OO O.aOS.OO G.OQC.OO Redo 0
~
0 0 ~ DOReao 0.0
~
Q.ooge00 T.dds 04
- 4. ~
g 07 I.TOC 01 4).9 0 ~ Ooaegg 0.00
.0(g 0 0$ 00 X.ISK-OI 0.0(geog 1.02t.at L.eet.ge 9.5)c.of 0.0(g.oo S.izc-ot 2.))c.ot 4.44Z-OI O.C(gedg 1.25C 0$
7.22t.lo 2.ISC.OI 0.0(gedo 1 ~ 54E 0$
1 ~)Ct 10.
0 gdgegg 0 QOKeoo 0 004 00 0 dgteoo
~ '-.-
O.ggtegg.
Z.OIC OI
'9.11$ gf O.aostgo PXCZ Q.ggttgo O.gdgegd 5.4(g ~ 07 K
0
10 LZC'OI 50.)
0 ~ Oocego'
~ OOCego 0 ~ OOEego Z.tgs 09 1 3)C of O.ootegg 5.41S 09
~.7)g.af 1.$ )C-OI 5.))R 01 54.1 Sjg-7 ~
).5)C OI
$.4IC 09
' )(C QI 1.)5$,09
).$)t 4'9 Aha Avn!lab!0 c ApBrtUre Card DLcv i.fft 01 Tt-gl f.iec.gt S.dgg 00
).IXC.49 X.ifg 04 e.9$ t 4$
O.dogeog 5.32$
20 I 44C ~ ie'9 2
OLC 0$
0 oogtog e ILC Xo
).1)$ 09 1.05$ -0$
2.3$ C ~ 04 1.5(C.OI 5.4! g ZI 2.00$
Oeo 1.)tt 07 41 ~ 5 NKCV 4.5(R.QT 2.4)$.0'9 2.40$
Ce O.aat 00 2.4'7l-OI'.44C-OI
~
).2)$ OI 9.17$
0$
4.29E ots 2.10C 10:
.3 K.QT 2.0SI 09 1.)(soot 44.5 QXSV 4.3 I L.S'fc 0 ~
O.ogtegg 1.<<$ OI 4.49C 0$
T.gtt OI g ~ 47
'7 1 ~ 1 2.41C ~ 09 O.gocedg
).1$ $ 09 O.ddloog O.ooseoo O.OOCeda 2.21$ 10 c.g(g.oo o.ooa oo O.OOCeoa:
0 ~ Ooseda g.
OCedo O.doceaa PXCV Q.odtegg K.ld g.gdteoo 1.)IC 01s 2 ~ 11$ 07 3.7('K.OT 3 ' t 07 Z.ITI 07 2 ~ SXE 01.
75.2 1.00$ -10 O.OCCeoo 5 ~Tic 0$
- 5. ~ 1$ 4 4.52C-ota T.o)a-oe 1.40$ -09 1-5!g Oe 1.)OE 09 3.5IK.OS 5.1(E Ot O.ogsegg'Tg 0 ~
osgotego.
1 ~ 21$.09
.01$ 09 0 ~ Ogceoo O.gdtegg 2.414 07 O.goseog O.Doctor O.gosego' OOCedo 0 Ooceoo 0 Dgle01s 0 Qggeoa O.aaceoo O.ogcego PJAV 0 00K+00 I
0 0.Oat+00!
$ 1.1 O.OOEeoo Q.aoseog O.oategg O.gateoo
~ Aaa ia o.oi ~ oa 3.)ZC 10 o.oas.oo
$.3$ K 20 O.OORego I.TLC lal S.jjg 09 2.31$ 4$
2.22g 20 X.i)t 0'fs S.ZSC 09 O.oot+oo.
L.(4$.09 5.40$ 0$ 1 O.dgceao 7.19E 0$
Ii.s T.est 0$
o.oos oo 0
O.ogteoo 0.4(logo O.oocego 4.3 O.agseoal o.oos.oo-O.adgeog O.OgteOO O.aotedo d.oocego.
O.ggtego CEego O.OOCeagl O.odseog O.ooseag X.CSK-OT Ic.)'.oosego Q.ooa.oa 1.)LI-04 1.0)t ge
$.09$
1
$$ QI o.oct.oo 1.11S 0 ~ I 4.NS 09
$.24E.O'll 2 ~ 17$ OIs 2.1$ C Oto PXFV i.alt 09
=.feg-09 0 Oasegai 1 )1$
09'.4)C-OT'
~ Ogsego
$1. e.
O.oostgg S.CSC 10 O.goteog o.aostoo 1.2)c OI 0 ~
4 '5E 09 0
0 ~0(logo S.3CC 09 1 ~4(I 0$ 1 4 a 1'04 O.gasega!
1.94$
OI'.40I 041 2 ~ 51$
101 NXSZ 1.37t.gt
) ~tsr.ot O.aottgo'.a)S-OTs 1 ~ OZI 01 ~
$.)4$ 10:
1 ~ 49$ 0$ -
O.aotego 0 ~ Ooseoa O.ogseooI'.ggseg O.aoteo 0 Ooctga
~
O.d(leOO o.ooseao 4
edo-'.OOcega O.ggsego!
o.oos.oo NXCV v.ogj>>go 1.09$ OII 0 ~ Oggegg
$.47$.0$
O.gastOOa
$0.1 O.agsedos O.ooaedg O.aaseag 4.)tc ofs 5.1)s 0$ 1 2 ~ 2$ $ Ot 4.0 0 ~oateaai 1.74$ -OSC O.D(logos D.dogegai 4 ~ Cfs Oti 9.9IS Ots S.ISR-OSI 1.29K 09 t.'!St-0$ :
.OTE 0$
5.$ 9$.ot
).94$ 09
'tl.1 ~
1.44$ 09!
3'5$ -09 1 ~ 5$ $ 09 1 Zlsati 1.25C 0 Oseoaa S-49$ 10!
1.41$ -091 0 ~Oiledo
).441 20s 1.32$ -09 O.oggtgos
).)9$ Ots S.ICC 20 7.24$ Oli 4.42$ id O.doctor 9.)OK.OI:
7.0)c 09!
92.1 X ~7)C 101 O.odsegg O.agstoa 5 24$ 0'fs 7.50$ 10.
9.24$ Lai 4.3)$
091 O.geg.dg 2.)0$ Oti 1.$ 41 09!
1,1'fg LQ!
2.2)S 09!
1.14S Ole 2.>>t.gt 1.1)$ OII 2.71t Ot
".415 0$
1.)TS 0$
'.44C.aea
$).1!
S.ets Lgs 2.34S 09 O.aastoa O.ogctgg" O.oatega O.ooseda Q.DCEogg
'0 ~ ooceoo:
0 ~ 00$ +00
0.0 0(ego
) Sig 10 O.dgtegg 4.tot 0' O.gggeoo'.goteod PXCZ O.ggte00.
4 ITK ce 4.)SC-OI geog 1.$ 4$ 0$
'Sl. I 0.00$ +Ogs o.oot+oo O.oaseod Q.OOCegd'.galeda O.gdceaa 0.0(gogo O.gdctoa O.dosead.
0.004 Oo O.dgce00 g ~ Ogloog O.ggteoa:
OXAZ O.agtedg 4.24S OI:
O.ogseoo
$4.5'ec W
O.OOReoo O.odsegg
~
O.aogegg O.dgseog 0 ~
Oasedg'.00'
+goo O.aasego 0 ~dilego
- 0. Ogcego
~
o.oos.oo.
O.aogegol O.ootego 0 ~ 00$+04'.ogtedo O.gotegol O.ggsego'.oateoal 1."Oceoa'.4)t-ge'.<<t 0 ~:
O.ogsegg O.oglegDI o.oos.oo 0 ~Ogttog 4.40$ 09!
1.05$ 09'
~ Oostoo
~
2.01$ 09!
- e. $7$ -101 O.dig too 2.4)c 09!
0.00$ +Oos O.galedai X.ift Ot 9.24$ Ots 2.))C-09 2.4)s 101 SS.S'(I OI X.ltsjoa 1.)($ 10!
l.t)c 09 O.odseoo 1.25$ 10:
7.44$ 14' OQEtaa!
O.C!ittgas 2 40$ 10!
'T.)3$ 101 2.0)R Ofi QLC(
1.4)t-ot 4.244 Ofs 1.49$ loi 1.)1$
09C I TIR 101 T ~ 50$ 10 ~
1 ~ 1$ $ OI:
~.$)t 09 4.0)a Oel
$5 ti 1.97t 10 S.ZI$ 10 1.7$ C 09 O.oaceoas 9.74$
09s 0.0 00 1.0$ $ Loi O.ool+Doi 2.14$ 10!
O.gigeda 2.5)s.oe!
4 ~5>> 14:
O.OOteOO I.i)R~ 10 1.)SS Xa!
3.29$ 10!
).SIR Oes
).)4$ 0$ !
1.0)'I Ots 0 Oateoal I.11C 10 SC.)
O.agseggl o.ooc.oo O.aoseoa O.oottdo'.oos.ooi O.adseoo.
0.04Ctga O,aggegga 7,27g 10 O.ggtego'.SSK ld
).XII 10'.gdstgg'.OCI OSI 2 ~ISI Ols gjegg SC 7 O.got+00!
O.ooteog O.ooteao 4 ~ 44$ 10i Q.dgsegal 2 ~IIS 09s
).Sfc gf Q.aigeog 4.74C Ots X.tit 09s NXDV 4.4IS 101 9.))t Ota X.ZTs.dt Z.OXC 09a Q.ggg\\QQ
).3)C.OI'.0(c 10:
7.4(c 10 ~
97 ~ 1:
S.oejt.at 0 ~agseog:
5.51$
10 O.agcegg 0.00'Ctgo'.03$
10 Z.ais.09'.C) ~ 09
) ~ )SR 10 01st 0 ~Qlttoa
).12$ Ofs O.aalegg'.OOS.OO 2 'ZE.LO i.tic 49:
O.odseogl 2.44K 04!
O.OOEedo'.39$
09 ~
97'!
L.get ot 1.05$ 10
'9.9)t 10 O.odsega O.aosedo'.
5.15$
09'.40$
10 2.40$ 10!
1 ~ 05$ 10 PXEZ O.gigeod O.ogsegos 1 ~ XOI.09
).17K 09 ~
4.$ 4S 49 1 ~ 4)c 10" O.aoteooi O.adceog.
35t.oe'1.4 O.OgteOO.
3.43$ 09 1.17$ 10'.75$
10 O.aoceao 0 Ogstgda O.ogceoas O.OOCegoi O.oat+00!
0 Ogstags 2.2!t.oe O.aoseoo!
O.goceool O.ggcegd a.ooloagi a.gase40i IcOI'.oot oo:
o.ooceoa 97 I!
O.ogseao
.GOEego O.aoseagi O.QOCegg 0.Oat+00 O.oasegoi 1.tts Oti
).)4$ 10!
O.aoseaol 1.44$
101
- 0. CNtogo 4.13 ~-iol 1.0)t 09 O.ogl+001 0 ~Oostggl 1.794 091 5.)9$ 091
$ $ ~j!
2.22I Oel 2.79R 10!
).41E 09 O.oaseooi O.agseoDI 2.)4$ 10 O.aaseoo 0 Oastoo:
1.00$ los O.ogctoal a.oos+ool O.agsegai 0.004+00'XNZ I
4.)OR 091 O.ogleoal
'9 ~ )I O.OOCego 3.31>jgl L.SIS Oti 1.22$
101 2.04$ OII C.ZLE-OS!
0.00'Cega'.5'ft 10 T.lit Oti O.oaseoo.
0 ~ Oaseoa 2 74$ gti D.galtoo
~.Qtc oft O.gigeag'.45$
091 Z.SXI 0$ 4 IXIV C.S(t 10 SI ~ SI 4.15E 091 O.aoseaol O.adleaal Q.oastoal a.ooceao:
2.00$ OII 4.0$ C 09 O.aastdol O.oatego o.oas.ool O.ogttga 0.Oat+00 0 00$+00'.agleoo!
O.ggtegos O.adltooi O.agseogi O.oiledo'.ggseool O.gottoo
$.40$
10
$ $.11 Q.OOEtooi O.oaltaol L.ats lol Z.SS'$-0$
1 1 ~ SLC 0$ !
O.oosedos 1 )1$ OII O.dggtgo 4.CSS-LOI O.agseoo
~
O.ggstgo O.ooseoo O.odsego!
O.OOseOOi o.ooa+ool O.agseool
- 0. 00lego O'XFV O.oogeool O.gdteooi D.gotega 0.004+001 O.OOCegoi O.OOR+00 Se.'
I O.OQCeoo
~
d.agtego a.ooa.ooi O.gote04 I O.ogctgo'.))S 09 O.OOEtdao 4 Odt+OQI Q.adctdd!
O.oileod'.aotego'.OOC+Odl 0 ~ OOReogi Q.aastao!
O.ggttdo 1.40$ 0$ !
2.15E 101 O.OOCedas 1.$ 1$ lai Q.dgltgai O.gateadl SaBC 10 O.aottoai O.agtegg'
~ ))S 09
) Sja 10!
t7g 10 O.aattgo 0.00geoo!
1.41I ota I 41$
101 C.T2$ 10 4 ~ '99$ la Sf.tl 7.$ 1$ 10!
0 ~ OOReoo 1'9$ -0$ 1
).2($ 091 0 ~ Ogstgai
).$ 4$ 09 0 0<<ego!
O Ogc+OO O.oottogl 4.44$ 10.
o.oostoo 0.00$ +001 0 Ooseao
~
o.oos+ooi O.oigeoo'.aoseooi 0 DOS+gal O.OOReool St.ll O.ogtegg O.aoctdgl O.gdct00!
1.2$ $-0$ 1 0 ~ooteogi O.ggceoal 0 ~ Oaseoos O.oogegg O.gdteaai O.aoseodi 0 ~ Ogsego 4,13$ 09 0 aos+dol 4.34$ lai
).42$ -)0 7.)(telo!
O.OTttgd!
XoW$ 091 4.24$
201 Z.ITC XO
'7.49Cela; 2 ~0(I 091 1 2$ $ Oei 0 oaltoo
<<47tdal o goc.ool 1.0$ $ 10!
4.)5$ 09 St.4 1.51celal 5 ~ 3$ S 10.
O.aal tag 4.22$
091 0 Oaseoal 3.29$
101
~ $2$ 101 T.NS 101 O.dgteool
'99.4s 0 ~ Ogseogl 0.0)geoo.
2.49S 10 L.lot 0$ 1 1.91$
091 3.4S4-101 1.)3$ loi O.oostOOo 0 ~ OOIegos 5.4(c 10 o.ooreooi O.ogsegg O.aasegQ o.oos+ool O.OOIeool O.agteaai 0 ODXeggl 0'!Keooi NX(XZ I
o.oostool 0 ~ Odcegol 0 ~ ooteOOs 0 ~Ogstool 2.5$I 10 4 24'I 09 0 ggttool 1.1)s 0$ 1
$ 9 ~ 4 O.aolegd O.adstaoi O.agsego O.OOSeOOI O.aosegoo 0 00$ +00 0 dostaa'.agstdd 4.dog+001 0 Oactdgl
- 0. 00ctaoi O.QOC+001 Q.aottoa!
D.dgtegd s
4.44$ Otl Q.ddt+go!
O.gattgai
.O.aastadl O,agctgdl O.got+001 99 1 o.aos+ooi O.oolego O.ddsega!
O.aoceoo:
O.oaseoo 0 Ooseooi O.aaseod o.ooc+ool OXPZ O.agstgol O.gateog!
O.OXCedg O.aastool O.ogleog 3.41E 0$ !
O.dgleaos O.oastgo O.ggseDOI
$971 0 Ogstdgi O.ogltoal 0.00$ +00!
O.got+00 o.ooteooi O.aaseoo.
1 Ios 09 0.00$ +00!
0 ~ 00$ +00 7.$ $$ 10 O.OOCe041 0.00atoo 2.3)$ 091 O.aostgol O.dgtegg
~
) 1)$ Otl St.el O.oose001 0 ~ Oosego 0 ~ OgseDOI O.OOR+001 4 Daltogi O.agseao O.ogle go O.adst04s O.oaleoo 0 Ooseoo X.ZIS 141 1 ~ S)R 10 0 dastdol 2 44$ 10!
Z.NE-LOI O.g)toga O.agltdd'.44t 10
'2 CIS Ot!
1.24$ 091 0 Ooseool g.got+dot O.ooaedgi Q.dgstggi 0 gal+00:
$ $.4 d.agceaa
~
0 Oattoa'.aoreoo.
O.oottao O.ooctoo!
O.OOseOO.
O.00K+001 O.aaseaol 0.Oat+00'.01$
09o O.DOC+04
'.gdsegal 2.02$ -0'91 O.oastoal O.agstaas O.ooctgo 0 oottgoi O.aaleoal O.gosegol 99.4 O.aglega O.agcegp; O.OOXtoo!
0 Oostog O.aoseoa O.aglegoI 0 0 dg!
O.adc+001 0.00 0.00$ +001 O.ogteog O.agstoal 0.0)aeaoI 0.00$ +001 O.ddt+001 O.agstgal 1.$ 0$ 091 O.aottgol O.ogstgoi O.agseooi 1.IO'R 091 O.agltgo O.OOS+OOI O.aastooi 0 ~Oastaa 0 OastDoa NLtZ I
Ctoai 0 aoteoo:
O.oglego'.gdtt401 1.79$ -0$ 1 o.oostgal Q.odgtdDI Q.odctga!
O.adtedal St.tl O.OOCeao O.gdcegdl O.gdceagi 1.79$ Oti 0.00$.00 O.odtedoi o.aoceoos O.oactao O.ooseooi I
1.2($ 101 o.oos+oo O.ggttoos 2.$ $$ 1DI 2.55$
10 O.agtego O.agseoo O.ogstdal 1.49$ 091 T.NS 10 O.oattoo O.ogstddl O.agstgg,'.21C 10 99.$
O.OOReooi O.ooa+oo!
O.oolego
~
0 00$ +00 o.oostoo:
O.ggstoo O.gdstODI O.agceda'.
O.ggltgas O.OOCtgg ~
O.OOS+OOI O.OQC+Ooi 0.got+00(
1eCLS 091 1.21S 10 Z.TOR 101 99.$
0 ~ Ooltgol O.ogttoai O.gdstgg o.oos.ooi O.aosedoi O.aoseoo 5 44$ )g 4 Dostggs o.aostool d.ogtegg'.dgcedgl
- 0. Oat tool O.dgttooi 0.00$ +OOI O.ooceaol O.DOX+ads O.oaseaa O.adit(a X.ats 091 O.OOC+00!
1.)IC 10.
) ~ 91$ 101 0 ~ Ogstg41 O.aaleaO!
o.oat+00 O.OOI+OOi O.oastoo'
~oolegol O.gologa:
O.ggttoo!
O.ggttool O.ggleog 0XIV O,agstoD!
O.dgteool 9.24C 101 O.aoseogl O.00K+001 O.agledoi O.odctggl O.ggseoos D.OOCeoo 9$.9 O.ogseool O.odstgg O.OOReaa O.OOseOO:
0 Ooltoo O.agltgo O.got+00'.COI+Oai 4,00stooi accg 0.oat+001 O.aaseaol O.OOEtagi I.42$ 101 0 OORtoo O.got+001 0 ~ 004+ggl 0 ~ooctoal O.ogceoo.
O.OOReaoi 0 ~Oostogl 0 ~ Oostggs 4.11$
10 D OgstaDa 0 DOS+40 O.oostgD 0 dgcega" O.dgltdal 0 Dos+00 O.ggcedo!
o.aaatool D.ggr+gai
$.34s-lgl o.dgctoa O.aattoal Q.dagedol
.I.WI XOI O.OOCeag Q.ggttda o.dgttaot O.odttddo O.oat+ad O.OOseOOI 0 Oasego.
0 ~oaleoo O.agstaol O.gassoo'.gastool 0 Ogstaol 7 tlc 101 PIFZ I
0 ~Ogctool O.agseool 4 Ogseggi O.oaltggj 1.NI 101 O.adsegg.
0 ~ OORtoa 0 Ogstoo O.aoseaaj O.agstdgs O,OORtgo O.odstgaI'.04Etgol 4 ~ Doseoo O.aastogl 0 F 04'Ceoai O.agsedg 0 Cgctoo!
4.Dos+00 O.odloaoi 4.55$
10 2 1(s 10 0 Ooseoo 0 ~Ooltogi 3-Tfs 10 100 0-00'$+001 O.agteoal 0 ~ OgseOOI O.agt+00!
O.aoseog O.aostdoi D.ogtega 4 aasegg 0-DDI+Odi
- g. (Ql eda'.dotegd Q.gal+00 O.ggteggi Oltt
- 0. Dot+44!
Q.oateaal 5.)SS Xa:
Q.ggttdoi
- 0. Qgle Qd I
- 0. Oat+001 Q.agteco 0.0OI+Ogl O.adttddi Q.ogctdo O.ooc.oa O.ooltoo:
o.ooseoo O.daseoo.
- 0. Iocega O.ooseogl O.OORoda 0 ~Ogttggi O.agseggi 4.Oat+401 OItV a
4 ~ 17$ 101
- 0. 001+001 0 Ogseag O.got+00 O.agstga!
O.goseoo 104 0 OoseoQI O.age+001 O.ogttoo
- 2. 31$ -10 O.ooteaal o.ooa+ooi 0 Doceoo O.aostagl
- 0. (Oleoo O.ogsega O.OOReoos O.gdctoo PZDZ TS'g 101 o.oos+oo!
O.ooteoo 1.14I Xo 1.59I 101 O.oogtgdl O.ogse00!
100 0 Oat 0
) ~ 14$ 10 o.ooa t
Oa
+001 O.agseoo O.OOCeao 1.) 4$
-14,'.adcegD O.doteaal O.golego.
O.goledg.
D.ogc+QOI O.dostgai O.ool+ODI 1.43C 21 D.ddctgoi 4 olit-101 0 agteggj 1.)1$ XOI 104 O.adttoai O.ogtedd O.dateooi O.OOCtadl O.OOCtaa 0 ~ Oostaa 0 Cdlego O.goceoo!
O.goseoo O.ogttoo:
0 ~ 00$ +Ooa O.oogoaoi O.agstggl O.OOseOO!
O.odcegdl 4.27$
101 4.21R loi O.ogstaal 100 0.00'Stgos O.ooteoo O.odceool O.ooteooi O.ooseggl O.aoseoo 0:OOX+001 O.ogseoo O.dal+00 O.(QEoog.
O.ootegg
~
4 Ogsegdl 0 ~ Ogcoao
~
O.ogct401 O.agcegol 4.24$
101 0 ~ Oogegd 0 Ogseaal O.oostoo Z.NR 101 100 O.aosedo 0 ~ Ogsego 1 )2$ las O.ogtegoi 0 ~Oastod D.gal+00'.OOstaOI D.aosego O.DglegD.
O.ogltgo j 0,(dttdai O.gostoai O.aactddl Q.dgltgoI 2.04$ lol 0 galtll1 0 ~ OQCegoi
- 3. S St-101 T.iet 11 O.ggttagl 1.12C 10 104 O.dgleddi O.dgcego!
d.ogseaa 0 ~ Oostoal O.ogttoal
- 0. C4logo s O.aoseaai O.aacego 0 ~ QOReodi 0 ogstool 4.00ttoo I O.OOteOO 0.00'Stool Pits I
1001 0 ~ ooteodl 0 ~ Oasego
) ~ Cts lai O.OORtaoi O.agteoa O.OOReoo 4.00$ tool 0 ~ Ogsega'
~Oostao o.oosto 00 D.oose00'1 0 ogctooi 0 OORego.
O.ags+00!
I 0 (Ossggi
).4)$ 101 0 Ogseool Q.ooteoal O.oosegol 3.4)$
101 0 ~Ogstoal 0 ~ Ogsego 0 got+00 O.oateOO!
0 ~ gaseog!
100 D.ooaego O.OOReooi 0 ~ Odsegol O.ogcegos O.ogseoo Q.dgtedol O.ggledg O.ggleog O.ogsedal 0,(aleggi 104 I O.agctddl O.got+001 O.dal+adl Q.ddtedD!
3 Cls 10!
Q.dgteaal C)XDZ Q.ddttaol O.ddlead 0.ddt+001 O.dgtega.
Q.OOC+gd 0.0 001 0.00t O
o.oos oo tg O.odledg'.gdleooi 0 Cdltog I 47l ill 0.00'Ctoal O.ggteagl 4 ogsegoi NZCZ s
0 ~ Ogseoal
'2.01I 101 O.gggtogl O.ogseggi 100 1 1(t 10" O.ooteooi O.OD'Stoa!
O.doledg.
O.gdteog o.oaa.oo O.ooceooi 0.00'gogo!
o.ooseool 5 ~ Lgc 111 Q.ooseooi 1001 O.ogledo O.COCegg'.ggseogi Q.agseooi 1 t4t 10!
O.ooceoo ogsoggi 0 ~ gategol 1 4)$ 10 OXCV 0 ~Ootegol 0.00$ +001 0 ~ Ooaego O.ogteoo O.OORedo o.oottoos 0 Oasega 00
- 4. gal+001 I
0 OOK+gd'.dgseoos D.dgttgai 0 'gsegg 1 ~)Ir 10!
Q.agcegal O.dal+ODI 0-ODteda1 O.ogteoa.
4 Ddseooi 1 ~)Ic 10!
O.oot+ooi o oos+ool 100 Q.OOCe40 O.adst00!
O.gated'.OQCead O.OORegg.
0 ~ Qott 0 ~ggseoai 0 00'CedoI 0.(ggeogi D.doceggi
~ Ootoogs 0.00'geQOI 5 ~ ))$ -111 5 ~ )3$ 111 O.adse40 100 O.ooseaQI NXCZ 0 Ool'tool 0 ~ Oogego 0 ~ Ogseogs O.ogsegg.
O.ogteog
- 0. Ogleoo.
l.
O.agsegos 0 Oale00 OT O.dal+ooi Q.ggtega 4 gogegas O.Cgstdg'
~ 14$ 111 O.OOS+OOI O.agteogl 0 ~ Ooceool Oggogg O.OOEegdi 140 0 F 00'Cegol O.OOReaol O.ogsegg.
O.agsegol O.ooseoo 0 ~ Ogsegg 1.1(l 01:
1.95$ -
L.TXS-OT; 5 19$ 071 4.45S.071
~.Xls 011 Z.flc 07 2 ~ 11S Olj
$)s 01!
01 9.19$ 011 X.lla 011 1.00E 101 1.5)$ 07!
1.45$ 07l 2.))$-07 X.OOS 1 l,goc 10 X.dgt 10!
1.00$
101 L.gas 10!
S.oos 111
- 5. (Ql-10 1.00R 10!
1.00$
101 1 ~ OOR 201 1.004
'LQI T(!SSSCACXOO FCCCI S 1 ~ 00$ 10' 00$ los 1 00$ 101 1.00$ 10:
1 Ogs 10'
~ 00 ~-10 3.)
ZSE OSs
).79$ 05 lti l 4.2($ 05 247.I 2.))C.OS WZ.)
4 ~
131. ~ I 4.25C OS!
7.(gt 07 5 TZE 051 4.1OE OSI ITS(I.OSI 2 ~2(c 051 9.2$ c-oi!
).07$.051 I.NCF 05 XR-051 1$2 4!
3.))c 051 Uoaccc Fee@
1.19$ -041 1.>>s 05!
3.93$ 05 4.95$
01 110. Zi 95.41
)I.Ss 99.7!
lgdi UOACCC Fret( ii~
94.4 52(I 142.3
)41 54.)I 1X).~
2719'.2 15.1:
- 77. 1:
19 IO.9
- 41. ~.
54 Sa 01.7'4.4 51'.Is 4).7
)3.4!
0 CUNU!ATXVE 22.9!
Ie. 1
$7.4
- 49. 1 51VALN0048$.XLS.614/96 LRSCC!C 1LfV
!SCRAN ~(
f!7$2 LQAC ICRANR LLD i ~ oi a
a
~.oi i iia.a i ~'all
.ai i itoi i
a.oi i iia 0 4.9)I.OI 5 GOC.OI:.)9$ ~ 0$
oja<<'Oo S.fjg-gf L.e)c-OI 0.)et.gt O.OOE.O0 2.4SI 0$
L.T t I 4
SOE ~ 0$
1 5)K 07 5.5(g Ot 2 ~ ZTC '0$
) ~ 49C Cif Z.LCE 0$
2.$ 4$ -04
":.=4K.OI
).SSr.de).1)g 00 L..it.gt 7.79t-df Z.tig-CI O.coa.oo O.oocega Q.gcgegd O.ggltgg O.ddg'Oo7 O.DQK 00 Q.ggseog'.ggjecg O.agtegg
-t
Table D-I (Page 2 of3). Phi-M Matrixfor Browns Ferry Unit 3 PSA alas<
I ass a.l
~
aa L ]CA F
3 ~ 5 I 0)
).Sll ~0)
].07$ 04 KLOCA S cie 0) 9
)SC 04
>>3 0 oce.oo o.ooe OO 4
CCS',44
- 6. ~ Se-cs i.ioe-os S.o I cs O.CCK 00 CCC 00 O.C 0 Coeedo C.
Cteoo 0
OCC 04 O.coc'00 0.00K<40 o.dce'ci Cfidd 1.2)R 10 O.odeooo
)e.as c.sce-lo o.ooe oo C.COCido O.OOCiod O.OOC+CC 0.)0K<00 2.]SI 09 O.OCK<CC 0 ~ CCCido 0 ~ Cot<Co O.dde<CC O.COeiod 1 ~ 'TTK 09 O.doti)0 LUPS LSLOCA F
4.44C 02 9.08C 0) i.cit 0 ~
lssa aae a.s. sm
. e
<.aaa.a L7$
LLO 2 ~ 20$.0)-.
S LOCA L
).69C 02 4.01$ 0)
LOOV 4.)TE 45 SCOFA FLPML
).59C 02
].22E 02
'.971 04 2 ~ Lce.ol 5
.X 0'9 0-COK 00 LSCCUl FRto S.ccl.di.
4.47$
02 a.a a
a.a as ~
<.aas.
a
.aas i
.<LII~ aa
~. >>ss a ~
O.OCR<00 O.OOCioo 0.00$ ido 1.)OC 09'.49$
09
.11$ 04>>
1.53$
O'9
~ 00$<00'.3)S 09'.00'Ciod'.)4$
-09 0.00$ <00
$.65$
-09'.67$
0$'
~ 64S 10 O.OCR<00!
0.00$ ioo ~
O.oottod!
],01'C 10' Cot<00' 00$ <00'
~ Oot<001 O.COSioos 0.00$ <001 1.74$ 09!
0.00'Cooo!
1.97S ]0!
O.oot<001 5.51$ los O.odt<001 2.05$ loi 0 CCRtdo 5 ~ 51R 101 O.odtiods 2 ~ )4$-10!
O.Col<00 0.00$ <00!
0 ~ 00$ <00<
0 ~ 00$ <00!
0.00etdol 2 7$ $ 101 4.46$
09<
O.OOE<001 O.OOI+OO O ~ OOI<OOI O.COCido.
O.OOS<OOI 0.00$ <00!
0 00$ <00!
0.00'Ciddi O.OOStooa 4.00'Itdo!
0 OOStdoi O.OOIiOO!
O.OOCiOO!
O.dottool O.OOC<001 0 ~ dot<001 0 ~ OOEtool 0.00$ <001 0 OCR+001 O.OOS+OOI O.OOI+OOI 0.00$ too!
0 ~ 00$ +00 0 OCR+001 0 ~ 00$ 400I o.oosiool O.oos+ool O.OOE<001 0.00$ todl 0.00$ tdoi 0.00$ too 0 00$ <001 0 00$tool
- 0. Odltooi O,oolooo I 0.00$ ue!
O.OOIiOOI 0.00$ <00 0 00$oool O.OOI+OOI O.OOIiOO 0.04$ iool O.OCStoo 0 00$ <00!
0.00$ tool 0 COE+Ooi 0 00$ <401 0.00'toool 0.OCR+Col O.ool<001 0 OCItdo 0 ~ 00$ <001 7'0$ -10I 0.00$ <001 0 ~ OOE+00 O,ootoool 0.00$ tdol 0.00$ <00!
O.dottdd 0.00$ <001 0.00$ <00 o.ooI+ooi o.ooIioo I O.ool<001 O.OCR<00 O.oottdol 0 ~ 00$ <OOI 0.00$ <001 0.00'C<00
~
0.00$ tddl 0 00$ <001
-0.00$ <001 O.OCE<001 0.40$ <ooa 0.00$ tdol O.oot<001 0.OCR+00 0.00$ <041 O.OOCtod O.dot<001 2.11$
101 0.OCR+001 O.OOC<001 0.Cot+001 0.00$ <001 O.ootoddl 0.00$ <001 0.00$ <OOI 0 ~ 00$ tdoi 0 ~ Ootoooi 0 ~ OOEtooi 0.00$ <00<
0.00$ <001
- 0. Oot<001
- 0. Odto 001 5 ~ 46$ CSI 5 ~ 52$
04'.00$
Lol
].ict OSI 41'9. 9!
SC.S'.dotidd O.doeiOO
.14C 09 7.)OI 09
..SSC 09 O.OCCioo C.COIiOO O.ddti00 ~
O.dot<04 E 09 1,69C 09" C.lo 6.4)e ~ 10 C 10
]ie ~ 10 C ~Cdtioo E.OO O.OOe.oo C-14 4.)SC-]0 I-]0 4.Sce-]o C ]0 C.LTI-LO I 10 Redo
$ ]0 5 Sic lo I<00 O.ootioo Eioo 0 COC<00 I<00 I 10 I 10<
PCS s NLSV 4.00'Cido 0LAv 4.97K pcs N!Av o.cce 00 9 FX O.Cot<00 O.OCE<00 i'll]ei09 2.94tiic O.CCEooo O.ooeioo O.OCCido O.OCCiod O.CCCido L.TC
.4)K-CS 6.44
\\.a s.aa a
a.aaa aa a.aa O.Col<00 0 ~ 00 O.doe<00 4.40
).64C ]0.
4.54 a.aaa a ~
s.a
.a aa a.
1 O.dot<00 0.00
].0]e ]0 5.66 C.odl<00'.04 0 OOCidd 0 00 0 ~ OCC+00 0.00
- 0. OCC< Col
- 1. )1 O.dottdo:
1.40 0.00'C<00<
1.7)S lds O.OOI.OO!
1.24$ 10!
O.Col<00'.00$
<00 O.OOC<00:
1.24E 101 0.00$ <001 O.OCR<04:.
O.OOE<041 O.ootiod'.Col+001 0.00$ <00.
0.00$ <00 O.oot<401 0 ~ 00$ <001 O.OCR+001 0 ~dottdol 0.00$ <001 0 OOE<001 O.OOR+Ooi O.OOI+OOi O.CC I+00 0 ~ OCE+001 O.OCR+001 0 ~ Odt<001 O.OCRioo!
O.oolioo 0 ~ OOR<001 0.00$ <001 0 Oottdo O.ootodoi O.OOC<001 0 ~ Oot<OOI O.dot<40 0.00$ <001 4 ~ 00$ <001 0 ~ 00$ <001 0.00$ <00 0 Ootoooi O.OCR<Col 0 ~ Oot<OOI 0 ~ 00$ <00!
0 ~ 00$ <001 0.00$ oool 0.00'E<00 0 ~ Cot+00 i O.OCE<001
~
O.OCC<00 0 ~ Cotodoi 0 ~ COR<001 0 ~Oottdoi 0 ~ Ooj<001 0 ~Cottdol 0 ~ 00$ <00 6.21'C 0$ 1
'L ~ COI loa 1'6$ -051 171) <
99.7<
2.0)e 04 e.)SE 49 S.Tle 09 C.OCC<00 O.dot<do
.<ss a ~
s.
a aa
.>>a a
a.
a ~ a 0.04$ <00 O.odeedd C.Cot<00 0.4CC<00 1.7)C 09 O.OOC<00 5.44$
Csee
'sl 10 2.)6$ 09 2.])C-]4 2.))C.OS 2.43t 0$
O.ootido
~
C.CCCido 1.44E 04 C.COE<00 0,00$ <00 ~
O.COC<04 C.oot<00
~
O.Cot<CO 0.00$ tod.
C.Cot<do 4 77$
101 0 ~Cotioo 0.00$ edd:
0.00$ <00 0 OCR<00 '.OOCioo 0 ode ~ 40 S.cle ~ 04 0 Coe 00 o.cceiod
.Cceioo
.Cot<00
.0)K 09 O.ooe<00 O.dotioo C.ooeioo FZKV O.dot<Co O.CCE<00 O.OOI.OO O.OOC<00.
S.CSC 09'.ootioo!
0.00$ iod O.dolioo ~
0 00$ too O.odtoodi
) 9)I 09'.06t 09!
0 00$<00'.00$ <00<
0.00$ F 00 O.Cot<00:
0 ~Oolidd O.odtooos 0 ~ Odtioa)
O.OOE<00 0 OOCido O.OCCioo<
0.00$ <00 O.ddt<00!
1.7)$ 09!
).SSS 101 O.OOCood O.OOE<001 O.OCR<00 0.00$ <00!
0.00'K<04'.Cot<40'.
00$ <00:
O.OCR<00!
O.ode<00'.OOC<oos 0 OOXiod 0.00$ iod!
O.OOI<00 ~
O.OOS<001 0.00$ <ooi O.OOStool 0 ~ OOCtod!
O.odl<001 O.OOC<001 0.00$ tdoi 1 29$ 091 S.C)E 09!
61$ 0$'.4)$
101 0.00$ <40!
O.odtoool
).09$ 09<
5.61'I 101 0 00$ <00!
O.OOI<001 0.00$ <00<
0 ~ OOStool 0.00$ tdoI'0.00$ <00!
- 2. 50$ Osl S. 4)S 10!
1 CTE 091 O.OCR+001 0 00$iool 0.00$ idda 0 00$ oooi 0.00$ <001 0.00$ tddi O.odtoool O.dot<001 0.00$ <001 0.00$ <001 O.OOEtooi O.odliool 0.00$ <00!
0.00$ <001 0.00$ <001 0 00$ <001 0 00$ tool s
O.OOE<001 0.OCR+001 4 ~4)$ 101 O.OOEiooi O.OOE<001 0.00$ <001 0 Ootido O.OCR<00 O.OOIiOOI O.OOIiOOI 0.00$ iool 5.35$
101 2.46$
101 O.ooltool 0.00'Ctooi 0.00$ tool 0.00$ tool O.CCS<OOI 0.00$ tdoi 0.00$ <001 4 ~ doetdol O.OOS<001 2.40I 101 0.00$ <001 0 00$ <001 0.00$ ioo!
O.OOIiOOI O.OOS.OOi 0.00$ iddl 0.00$ tddl O.OCR+Col O.oot<001 0 OOE<001 0.00$ <001 1.29$
071
].11C.OTI 2.04I Loi
).doe
~ 'LO!
8.59$
47<
3 TCC 07!
C.'ll
).4<
90.5!
91.7'
.-Tc.cs 1.1'!I-]0 O.ooteod O.OOCido C.OCR<00
).40$ 09 C.cit 09 0 )de 00 4 ~ Ooei04 0 ~ Ool<00
.i ~
a
.aaa aa a.a ass O.doe<00 FZCX O.dot<00 0
PLFV O.ootioo 0
OLCV 1.9)C-CS 4
- 0. Cdliod a.aaa aa'
~ '
4)e 09 4 6 4 ~4)I 09 1.10$ 09
].3)e 49
) ~ 94C 09 0.00$ <00 O.OCR<00 C.ooeiod O.OOCido O.OOC<00 2.47K ~ 09 1.24K 09 7.23I 09
].lce.os S.SSC-09 4.)TC-]0 L.sse 10 5
~ 2]'I 09 4 92K ]0 0
0 ~ 00$ioo ~
0.00$ <00 O.Col<00 O.oottod NXCV O.Cot<do OZSV O.ddt<00 PLUV O.dotiod
).)9K 09 O.ooeidd
.)Lf 09 1.5]C ~ 04 4.)se 09 C.dec<co 0.00$ <00 1.06$ 08:
4.00K<)C O.dClico O.ootilo O.ootioo 2.4)C 10 C.ooe oo O.OCC<04 C.ddt<00 O.odeioo 0 ~Ootiod L.S]e 04 0 ~ Odtood
- ..<s.aa
~.<aa aa
'aa aa a.aas a
<.aas.aa O.doe<00 O.ode<00<
O.doe<00 O.OOC<00.
- 1. Cie-49 O.Cot<00!
5.)7$ 10:
1 ~sot 10 6.5)I los O.OCR<00 O.COS<00 O.Cot<00 C.clt 10 0.00$ <00.
- 1. oie;09 O. 00'Cido 0.00$ 000 O.dos<40 a.asses a.aas.aa.
0.00$ <00 2 ~ 29$ ]0 0 ~Oottod 4 ~ OCC<odi O.dot<Co<
).OT$-09!
0 ~ 00$ tooi 0.00$ iddl 0 ~ OCEido I 4.ill OS!
0 ~ 00$ <00!
1.46R 101 4.67$
101 0.00$ too.
O.odtido ~
0.00$ <00 2.24$.04' 00$ <00:
PJAV 0 ~ OOE<00 PZMV 0.00$ <04 QLTV 4 ~ 10$.04 PZFV O.OOCidd O.ooeioo
- 0. Cdeido
.Cot<00 eotiod o.doe oo 1.)dl 10 0,04$ <DO O.ootioda O.Cot<04 ~
4.$ 6$
]0'.OCR+00 O.OOC<00:
C.Cot<00.
4.29$
10'.
Cot<04 O.OOC.OO 0.00'C<00 O.doe<00.
L.ioe 10 4.00$ <00 4.54E 11 1.6)C 11 5.56R 11 C.OOC<00 O.OOE<00 4.00$ 000 4.94C 11 2.40$
11
).24$ 11 0 ~ OOE<00 4.) ~I 11 0.00$ <00
).CSC 11 O.dolidd O.OCR<00<
0.00$
ioo'.doltoo!
0.00$ <00!
O.Cot<00!
0.00$
<00'.00$<00!
0.00$ <00<
O.OCR<00!
5.1$ E 101 1.0)C 09
].STt 09 Z.sst 09
].3)C 09 0.00$
ioo'.59Clli 2.63E 11.
5.54$ lls 0.00$ ioo<
O.ddtioo 0.00$ ioo>>
4.96$ 11.
2.4]S 11'.29R11!
0.00$ <00:
i.idt 11:
0.OCR+00<
3.CTR 11!
O.Cot<Co<
).6)I ill O.00K+001
].2)R ill O.odl<401 0.OCR+00!
0.00$ <00!
1.21$
111 O.ddttooi O.OCR<00 O.OORtoo 0.00$ <001 0.00$ <001 0.00$ iodl O.OCR+00 0.00$ oodl O.Cot<Col O.OOI<OO 0.00$ <001 0.00$ <00 O.dottooi O.ddt<001 O.OOE<001 0.00$ <00 0.00$ <001 0.00$ <001 0.00$ <OOI 0 ~ OOE<00!
O.CCR<001 0.00$ <00 0.00!<00!
O.OCR<00 O.odtodo
- 0. 00$ <00 I 0.00$ tdo O.OCS+001 O.Cot<Col O.OOC+001 O.ddtsoo!
O.OOC<001 O.odttool 0.00$ oooi 6.01$.091 1.00$.11!
].66$
.06'T6.2 99.4!
O.OCR<00
- 0. OCR<40 0.00$
<00'ZSZ NLUV OZAZ PLFZ NZAZ PLGZ OLAX NJAZ NXCZ OLCZ NLCV NLtV NZDV 01ST PlEX PJAR NltV PZEZ MZRV MZXV OZFV OXCV MXFV OLFZ PZDV PZPZ NICZ OZDV OZFZ NLCZ NZCF NJAV PZEZ NLFZ O.ode+00 O.ddt<00'.00$
<40 0.00'Cioo o.ooa.oo 4.55$ -0$ 1 0
OCR<00'.00$ <00:
0.04$ idd ~
0.00$ <00 0.00$ ioo<
2 12$ 10.'
51$
101 0.00$ iod!
0 Ooltoo!
0.00$ ioo!
].43$ 09<
1.07$ 0$ ~
C.OOE<00<
6.1]S 09.
O.OCRioo 0.00$ <00 O.OCR<00 0.40$ <CC 0.00$ <00 0.00$ ido O.ootido 0.00'C<00 O.OCC<00 O.dotidd O.OCR<00 0.00$ <44 0.00$ too 0.00$ ido 0.00$
<00'.OCR+00 0 00$ <00 7.20'I 10 1.54E 10 O.OOC<00'.OOCidd 0.00$ <00!
- 0. 00$ooo 0.00$
<00'.14E09.
0 ~
OOR<00'.OOI<00 0 00$ <00<
0.00$ <00<
O.oot<001 O.OOI<00.
0.00$ <00!
O.odt<00!
0 00$ <00' 26$ 10'
~ 00$ tdo 0 00'C<00 0.00$ too:
0 00$ ioo:
O.oottoo.
0.00$ <00 ~
0.00$ <04 0.04$ <00<
4.00jtoo.'.dot<00!
0.00$ tdo<
0.00$ <00.
O.OOC<00 ~
1.14E 10.
O.dot<00.
C.OCR<00 O.OCR<00'.00$
ood O.OCR<00'.30I 04 1 Odt 10 4.0)EEOC 55.3 9).C
).)se 10 3.60S 10 2 29$ -10 1.6)C 10
.Cot<40 C.OCR<00 I.CTI 10
-O.OOI<OO O.OOCiod
.44$
10 O.OCR+00
~.Cot<00
.0)$ 09 0.00$ <00 5.2$ $ 10 0.00$ 040 O.OCR<00 0.00$ tdo C.OO'Ctoo
.00$ <04 O.OOCioo 0.00'I<00 O.OOC<40
].84$ 10
- 0. OOI<00!
O.ootioo 0.00$ <00 O.OCR<00 O.OOI+00'.ddt<00 0.00$ <00 O.COStdo O.OCR<00 4.96$ 10 0 00$ too 0.00$ <00!
0 Cot<00 O.OCR+40 O.OCR<00 0 OOCtoo O.ooltoo
- 0. OCI<00 O.Cot<00 0.00$ <00' OCR<00 0.00$ <00<
0.00$ tod 1.59C 10'.OCR<00 0.00$ ido 0.40$ <00 O.COEioo C.OOC<00 ~
C.dotooo O.OCC<00 7.04C 44 L.CCR
]0'.Sdt
~
05'34.)
94.4 0 ~ Oot<00 T ~sst-10 O.dot<00 O.OCR<00 C.Col<00 O.ool<00 ~
O.OCI<00 0.00$ <00 O.doeidd
).29$
10 O.OC!<00 4.4]C 10 4.'9)t 10 0 ~ OOIioo.
'2.)SC-10.
O.OCR<00:
2.)SI 10<
0 ~ OOC<ddl O.ddt<00' ooc+oo.
0.OCR+00<
O.OOC+00]
O.OCR<00!
O.oot<001 O.OCR<00:
O.Cot<00!
O.odl+00 ~
O.OCR<00!
O,odttdd ~
O.Col<Col 0 ~ Odloool
- 0. OCR<00!
O.OOC<00'.00$ tool 0 00$ oool O.OOC<001 O.OORiOOi 0.00$ <001 0.00$ <001 O,oottoo!
O.OOE<00!
- 0. 00$ oodl O.odloooi 0.00$ <00!
- 0. OCR+00!
- 0. Cot+00<
0.OCR+041 0.00$ todi O.OOI<001 O.dotooo!
- 0. Cot+00'.
- 0. Cot<00:
0.00$ <00!
O.Cot<40<
O.OOC<ods 6.99$
08
].00$ 10 1.)sl Csa 198.5 95.2 7 ~ 65$ '10 2 ~ 5SI-09 O.COC<00 O.odtioo 0 ~ OOR<00.
0.00$ <00 C.odtido 0 ~ OOIiod!
O.doeioi 5.34$ -101 O.OOR+00 ~
O.dolidd'.OCeioo
=-
O.oolido 0 ~ OOEidd 0.00$ <00 0 ~ 00$
<00'.doe<OIL 1.]4$ 1]
- 0. 00$ <dis 0 ~ CORioo O.oosidd O.ddtido 4.6)C-OS 0 ~ OOEido 0.00$ <00 0 ~ 00$ 000 0.00$
<00'.OOC+00 0.00$
<00'.ddt<00'.OOI+OO!
0.00$ <001
).51$ -101 4.00$ tdoi 1.15$ -0$ 1 0.00$ <001 1 ~)TI 10 O.doc<00'.dot<00 0 ~ Ode<00
~
- 0. 40 Cadi a 4.45R 10 0.Cot+00 O.ddt<40 0 ~ Ooeiod O.OOC+001 0 ~ 00$ <00>>
O.dot<Co<
0.00$<00'.
00$ <04<
- 0. Col ioi
~
O,Cot<04:
- 0. Ootidl.
0 ~ Ooeido O.doe+00 O.ooliod 0.00$
000'.00'8<00 1.15$
10 O.Col<00'.00K<00
~
0.00$ <00!
- 0. Ool<001
- 0. OOI<001 0 OCR<00!
O.Cot<00'.
0 0I+00 s
- 1. 42$
101 O.OCR<00<
O.OCCtoo<
0 ~ Odt+00!
O.OOC<001
- 0. Oolido O.OCE<00
~
0 ~ OOCooo:
0.00'I<00 0.00$ <001 0 ~ 00$ <40a
- 0. OOI<00!
0 Oot<001 0 ~ 00$ <001 0.00$ <001 O.OOE<001 1 ~ 47K ]0'
~ Odetdd O.OOS<001 0.00$ <dds O.Cot<00!
O.OOE<001 0.00$
ioo'.OCR+00!
O.OCStodl
- 4. OCR<do O.ootioo 4 ~ ooe<00'
~ Col<00
- 0. Oolioo.
O.odc<04 O.dotido 4.00$ toos 0 Col<00 0.00$ <001 l.55$ -10 O.oolioo
).C)C lla
- 0. 001<40 0 ~ Col<00 0 F 00'I+00 ~
O.dolodd:
0.00$
<00'.OCR<00 0 Odtioo 0 00$ <00 O.ootooo 0.00$
ioo'.OOI<00 ~
C.odl<001 0.00$ <00 ~
0.00K<CO C.doltdo, 0.Cot+001 0.OCR+001 0 ~ 00$ oodl 0.OCR+001 O.OCR<00!
1.20$
101 0.00$ <ddi 0.00$ odo!
9.22$
101
- 0. 00 I+001 0.04$ idol 0.00$ too O.odtido 4 ~ Cot+04<
1 ~ 22$
11:-
0.00$ <40<
0 ~ 04$ <00.
0.00$ toos 1.21$ 11.
0 00$ <00 0 ~ OCR+00 0.00$ ioda O.Col<00!
O.OOS<00 0 OCR<00:
O.OCRido<
0.00$ <00!
0 ~ OOI<00'
~ 00$ tdoi 0 ~Ootioo ~
0.00$ <00.
0 ~ 04$ <001 0.00$ <001 0.40$ ooo!
O.oottdol O.OCR+00<
- 0. 00$ tool 0.00$
<00.'.doltdol O.dot too; 0-00$ <00<
0.00$ <001 O.OCEioda O.oottoo!
0.00$ <001 0.00$ <ooi 0.OCR+00!
O.dotiod.
0.00$ <00 ~
O.OOEtdd
~
0 ~ OOItoo:
0 ~ 00$ <00, O.ooe<00!
5.94$
09<
1.00K-]1.
].6CC 0'77.6
~
99.8:
0.00tioo!
O.ddtiooa 4.45R 10 L.OSI 09 ~
O.OCR<00!
O.Col<441 0.00K<00:
2.66til'L.
0 Odlood!
0 Ootiooi 4.00$ <00<
2.47E-101 0 00$ <00 1.01$ 0$
0 00$ <001 6.$ 5$ 101 1.49C 0$ <
O.ool<001 1 45'C 0$ 1
- 0. 00 1+00!
0.00)<00!
O.OCR+00 O.ootiool O.do]<00.
0 do]<do:
O.OCR<00
'.2)t 091 O.OCRioo O.OCR<00 0 ~ 00$ todl O.OCR<00' 00$ <00 0.OCR+00 0.00'Ctoo O.odtidii O.OCR<OS'.Col<Cd<
0.008<001 O.OCR<00!
O.OCR<00!
O.COC<001 0.00$ iod' 00$ <001 0.OCR+001 0.00$ <001 O.OOE<001 1 05$ 101 O.OOI<OOI
- 0. Cot+00 si
- 0. OOE<04!
- 0. Ool<001 O.Col<00<
0.04$ todl 2.52$
10 0.00$ todi
- 0. Oolioo O.OOCtoo'.ddtioo 0.00)ood O.ootoool 0.041<00!
0.00)oodi O.OC)ood
~ 00$ +001 0.OCR+00 O.odtooo!
0.00$ oddl O.COEtdo O.OCR<00 O.ooatool 0.00$ oodl O.OOEoodl 0 OOE<OOI O.ooloddi O.OCSooo O.OCR<00'.ddeooo!
0 00$ oodl 0 Ootiodl 9.)sti]L!
- 0. Ool<041 0.00$ +OOI 0 OCR<00!
O.OOI<00'.odtioo 0.OCR+00 0 ~ OOE<00 O.CCI<00.
0.00$ <00-'
~ OOS+00!
0 Ool<001
- 0. OOK<001 0.00$ <00
- 0. Cot+001 0.00$ <001 O.odttool 0 Ool<00 0 00$ <00 O,OORtdd O.ootioo O.OCR<00 O.OOCood O.OCRioo O.OOCioo O.dol+OO<
0.00$ tdo 0.00$ <00 0.00$ <00 O.OOC<001 0.00$ <00 O.doltdo ~
O.OOI OO!
0 ~ COI<001 0 OOI<001 O.OOXooo!
O.ooetdd O.Oct<00'.CCC<00
~
O.OCC+00 0: OCI<40!
O.OCEtdoi O.ootoodi 0 00$ <001 0 00'C<40!
O.dotsooi O.OCR<00'.dot<00!
0 ~
Ooltdo'.OOX<00!
O.dottoo<
- 0. 00K<04!
0 008iodi 0 ~ OCR<Col
- o. ooaioo!
O.ooti001 0 ~ 00$ <001 0 ~00$ <001 0 ~ OOC<001 O.CCRoool 0 ~ OOE<001 MZDZ acz Mits OZEV OXUZ MZEZ PXFZ MXPZ 0ZFZ OltV O.OORioo I O.ddt<001
- 0. 00$ <00 O.OCR+00 0.00$ <001 0.Cot+00 o.oosiool O.OOX<doi 0 00$ tdo!
0.OCR+001 O.oot<001 0.00$ <001 2.4CC.]ls 0.00$ <001 O.OOEtoo'.OOEtdoi 0.00$ idd O.OOXiod 0.0(I<00 0.0!I<00<
0 OCXtdd 0.00$ <00 0 00$ <001 0.00$ tool O.OOI+OO O.OCR<Col O.OCR+00 0.00$ ood O.OOEoooi O.OCR<00 0 00$ too 0 00$ tdd 0.00$ <OOI O.OOI+OO 0.00$ <OOI 0.00$ <00 0.OCR+001 0 ~ OOR+001 0.00'Etodi 0.00$ oool O. Cot ioil O.ooltool 0 Odltodl O.olt+00 ~
0.0!I<00:
O.oil<00, 0.01$
<00'.
OII<00 O.OII+OO
- d. 41$ <00 O.OIE<00 O.OIE+00.
0.4)I<00 0.0!I<00 0.00$ ooo 0.00$ <00 O.OOC<001 0.00$ <001 O.ooetodi O.ooetoo
~
O.ootioo:
O.doltdd:
O.OOI,OO<
O.ddlioii 0-Odlido'
~ Ooeioi<
0.00$ too 0 00$ <00 O.OCR<00 O.dot<00 O.ootioo O.OOC<00
- 0. 00$ <00 0 OOI<001 0.00$ <00<
O.OotiOO!
O,ddttdos O.Cot<00!
0.00$ <001 O.OCR+001 O.ddtidol
- 0. Col+001 O.OCR<00 0.00$ +OO O.OCR<00 O.Col<00:
0.00$ <00 0.00$ <00<
0.00$ <001 PZDZ 0.00$ tool PXPV 0 OOR<001 PX)LZ
.0 ~ dot<001 O.oolidi!
0.00$ <COI 0.00$ <00 0.00$ <00 O.ddt<001 0.00$ <001 O.OOS<OOI 0 ~ OOEtdo 0.00$ <00 0.00$ <00 O.CCSioo 0 ~ OOK+04 O.dotidd O.OOCido O.OCR<00!
0.OCR+40:
0:OCR+00 O.ootidd 0.00$ <00 0 ~ 00$ tool
- 0. 00$ido ~
- 0. Ooeadil O.OCC<0)l O.OOI<dii 0 00'C<00 ~
0.OCR+001 0.00'C<001 0.00$ <00!
O.OCR+00<
- 0. COC<041 4 ~ Cdlioil O. Ooeaooi C.
STK'll'.Cot<00<
0.00$ <00!
O.OOF<04.
O.OOC<00'XRV
.0)00$ <001 NZAZ s
.O.doe<001 PltZ O.OOEioo 0 00$ tdoi 0.OCR+001 0.00$ <00 0 ~ 00$ <001 0.0)I<00 0.0!C<00-
- 0. OC R<00 O.CCSodd.
O.OCR<00 O.Cot<40 O.dot<00 5.14$ 04 l.Coe ~ 10
- 6. L)e 06 ~
1]18.2 I 97.6 O.oottOOI 0.00$ t00<
0.00$ <001 O.OCC<001 O.ootidoi O.ddeodo!
Mitt OZDZ NXCZ 0]CV an NZCZ FJn TOTAL CDF'I Tc<<<lc4c1 co Fcc Udicct t 4>>L<
UOSCCC t74<L N
'Le!CAT Vt 0.00$ tool C.oot<001 0.00'Cido 0 00$ ido O.OOCedo 0.00$ iooi 0 ~ 00K<401 4.00$ <00<
0.00$ tooi O.oolioo'-
O,dolioo!
- 0. Odesdo<
0.00 I'OO 0.40$ <04 0.OCR+001 O.dos<00 0.OCR+00 0.00$ <001 0 ~ OCR+001 O.OOCo001 O.OOE+00!
O.ootoodl O.OOR<001 0.40$ tdoi o.ooeioo 0.00$ <00 0.04$ <00 4.6)S 04 L.ooe 10 5.4)e 11 0
94.1 0 OCR<Col 0.00$ <001 O.ddttddl 4.0SE 041
').COE 101
).97$
071
$.41
'99 ~
O.ooe<OOI 0.00$ <40'
~ OCC 44'.OOStodl
'L.24R 041 1.00E 101
~.49E OCI
)62 4'9;Ss O.OOSiOO!
3.)it Cca 2.00$
14
).CSI 47 11!
99.4
- 0. 004<041 9 ~ oseiosi L.COI<]2'
~ 948'1)'
4:
St.c
- o. 00$ i001 4.24$ 0 ~ I 1.04$
101 7.34$
061
]74.1 94.61 0 ~ Cdl<001 5.91C 441 2.00$ 10!
1.9]$ 06!
32.)i SS.S'.OTE 071
'L.OOE 10!
1.2)$
OSI 114. ~ !
92.4<
L.oos loa 1 ~ CLR 05!
291.9'7.1.
LRS 1 1 ~
CK 02 o.ode.no 9.)5E-L S.oie 1
0 doe<Cd O.doe<Co O.CCC<00 1 9]e-]0 C.s'!C 10 O.OCC<CO C.dotodo 0 Cot<00 o.ooe.oo C.OCC<00 0 ~ OOC ~ 00 O.OOC<00 0 ~ Cot<do 0.00$ <00 0 ~ OCE<00 0.00$ <04 0 ~ Col<00 0 ~ Ode<00 0 ~ Odt<04 0 ~ ooe<00 0 ~ Oot<00 O.Col+00 0 ~ Ootood O.ddt<00 O.OOI<00 O.ooeodo 0 ~ 00$ <00 0 Col<00 O.Cot<00 O.Col<00 O.odeidd 0 OCR<00 O.Cot<44 0 ~ Odl<00 0 ~ Cdl<00 0 ~Col<00 0.00$ <00 0 ~ 00$ <00 0 ~ 00$ <00 0.00$ <OO 0 ~ OCE<00 0 ~ OCR<Co 0 00$ <00 0 ~ OOE<00 0.00$ <00 O.Col<00 0 ~ OOR<00 0 ~ 00$ <00 0 ~ OOI<00 0.00$ <00 0 ~ OOI<00 0.00$ <00 d rool<00 O.ddtidd 0 ~ OOC<00 O.OCR<00 0 00$ <00 O.OOC<00 O.OOC<oo 0.00$ <dd 0.00$ <04 O.OOE<04 0 ~ddttod 0 ~Odttdo C.oottoo O.CCC<40 O.odlido 0.00'Itdo O.doe<00 2.6)C-09 1 ~ OOC 14 9.2SE F 06
)5]9 7
- 99. ~
AMSTEjt.
KPEB7URE CARO STVAQ40048$.XLS.6/686
)
~ )
I
!0 Table D-I (Page 3 of3). Phi-M Matrixfor Brow ns Ferry Unit3 PSA iB]tliiacr LZB I.C. Fttejoiocy PCS>>
NIBV 5.'Tent.0]
) ~ $ 46 11
'IZA 5.74C 0)
].$4I 11 ~
LjZB
$.746 0)
).Sil 11 LIA S ~Tit-0)
).$ 4'I 11 ~
2.05I OC O.OOCtoC C.CTC 04'.ODCodd FIAB]C UI 1.2)C 04 0 Oottoo 6.$ 5C 04 4.026 12 UZZ C.Sit 04 4.0)C-]2 OZAV C.SZE ]0 6.5jt 10 6.516 10'
~5]t 10 0.006>>DC O.oolt01 1.)16 11 7.7)6 11 7.7]l 11 NIAV
$.976 10 S.1SR lo 5 ~ 1$ 6-10 5.1st 10 0.006.04 4.)OE Gt
$.92C 10'.SCI 11 S.SCR 11 FLFX PICK CLCV O.ODC>>04 O.CDK>>00 O.OGKtoo 1.256 10 o.oottoo O.ddttao 0.006.00 1 2SE 10 O.dattode O.OCEtdo 0.006tdd' 216 10'.oaltdo
~
O.ODCtoa 0 Oaftdo 1 lit 10 O.ddltoo 0 OoctdG C )76 11 0 OOttdc C.ddttoo 0 Oaltaa 4 11E 10 0 Cdltdo O.daftoo.
0 oottaa' oactao' 3$ 6-12 O.dacooO 0 Oattaa 0 oattoo I 4]t 11 0.01lt00 O.daltoa O.oottoa I ~ 45I 1]
- 4. ~ 46 'ID i.iit 10 4.446-]0 4 446 11' OattoC 0 OOEtoa 1.526-1'2
$.)DE ]1 5.)at 11 OIBV 2.3)6 10
- 2. ))R. 10.
2.336.10 2 )]K.la 1 5]t 12 0 OOEtoo 3 iit]2')~ C$ 6 11 2.65C 11 P ICY PIRV PJAY PIIIV 9IFV NIIZ NICV OZAZ NIAZ tICZ OZAX O.aac 04 5.]CE 11 O.dalt00 I F 256 jj O.oaf>>04 0.00'Ctod C.OCC>>00 O.oat>>do 4.6]R 11 0.006>>04 0 ~ Caltod 0 Caftao O.aattoa
).446 11 C.oactad 1.166-11:
O.aottoo.
O.odttad!
0.04'Ctaoi O.oott00>>
O.oottdoe 4.C)R ll!
0 dottdoe
).))E 11>>
O.Cotton O.oolt00 o.oottooi 3.44R 11>>
0 ~ Odttdd!
1 ~ ]CE ll 0.006.00>>
I 246 ll!
o.oot.oo; 0.006+00 0 odttoo.
O.oottoo'.6]R 11'.oottoo'.)26 11'.
O.oactod'.oottod'.dott00>>
0 OCCtaa 5 ]CE ll C.oactdD 1.256-]j=
C. OaltdD ~
O.daltdD'.OCCodo
~
U.oattoo 4.626-1]
0.04$ tdo O.dattoo O.ODC>>DO O.oattao
~
).446 11 I 906 10 9 tat ~ 10 0 ooctac 0 Oottdo O.ooc.oo 6.0$ 6-]C 0.00lo00 O.OOCtad 0 OOC.OO 6 ]46-]2 o.oot.oo 1.)CC 11 0 dOttdd 0 Oattaa O.Dott00 0.00Ctdd 4 Oattoo a,aocoao 0.01$.00 O.oottoo O.dottoo 0.006tdo 0 Oottoa 0 00'Coop 0 Oottoo lt'256 10 O.OOEtad 0 ODtodo 0 Oattdo 0.00ttoo O.odttdo' 176 12 0 OottdD.
O.adltod'.OOCtod O.aottdo'.odttod'.odttdo'.19I 1)
O.OOEtDO>>
5.3)C 11 0.10ttdo' Dottdo O.oottode 7
CTC 1)'.oatt00 9 276 12 0.04'Ctoo I 4CE 12 C.daltao 1.026 12 O.OGI+00 "0.006+00 5.24R 12 C.oact40
).TTI 12 O.odttad O.Dottao o.oot.ao 3 9]C 12 C.ooctda 9.)TE 12 O.oattdo 1.4CC 12 O.ooltaa 1.0]t-ll 0.04ttdo 0.01ltaa S.24E-]2 0.04ttdD
) TTR 1'2 O.DOC+04 O.dot>>Ca O.datt00 3.tlt 12 1.)CI 12 AH87EC APERTURE CARQ Aim Aval!ahh on Aperture Card 1 ~lit ]1
.1.11$ -11I O.COEtdd O.ooltdd O.dattode 1.)CC 12 NIDV OIBZ PZCZ NIFV PINE NINV 0IFV OKCV PIPE OIDV OIFX NICV NJAV PINK NZCX 0ZCV OIFZ CZFV PIDZ PCIX PIFX NICK OZDZ 0ICY NICZ O.dot>>ad 0 F 00'Ktaa 0.00$ 000 O.odltdo 0 ~00ttoa 0 OdltOD O.dot>>ad 0>>dattoa 0 ~Odftoa O,oottaO 0,00looo O.oattoo O.OOCtao O.ddltdo:
1.1)R 11 O.oactdo
~
O.ooftdo.
O.ddttdo!
O.oat>>Cd>>
0 Odttod!
O.OORtoo'.dattao!
C.ddttdo!
0 Odttoo 0 dot>>do, O.dattooe O.ooltdd'.dattdo o,ooctdot O.odttao!
O.dojtao'.CCRtOO O.oactdd O.OORtod
~
0 ODR>>00.
~
0 daltoo 0.00'Ctao.
0 00'lt00.
O.oattdo 0 Col>>00 O.dattoo 0.00ttad O.CCC>>OC O.oat>>Co o.ooc.oo O.ddftdo O.COK.OO 0.00ttod!
O.Cot+00 D.oot+OOI 0.00ttdo O.OOEtddl O.oottdo o.oottooi O.odttdol O.adttdo 0 ~Oottdd ~
O.oottooi O.odttdd!
O.odttdoi O.aostool 1.1)C ill 0 Cot+00 O.doltod O.oottdo 0 ~ddttdd O.dottod 0 Odttod O.Cot+00 O.dos+00 0 Odttoo O.opt+op!
O.dottod o.oot+oo D.dottod O.odttdo 0 ~Oottdo 0 ~Oottod O.dottdo O.oottda O.dottdo O.dattool 0.006+001 0 ~ Odttdo>>
O.Cotton 0 odttodl d,oottdo!
0,00ttdo!
O.dottdo:
C.dottdo!
O.ooltooi O.aottdo!
0,00tt00'.oottoo:
O.dottoo>>
0 OdttDO!
0 OottDO!
0 Odttoo!
0.006+00!
O.adttdd!
0 ~Oottdo:
o.oot.oo>>
0'ottad!
o.oot.oo!
C.oca oo:
O.aottoo',
0 oottoo!
O.OOC+00>>
].j)R 11 0 ~ Dattdo!
O,oolt00 0 Odttddl 0 ~ oaltdo O.dottod O.odltdo 0 Dottod O.oottooi O.OOEtdd!
O.oattdo 0 Odjtdo'
~ Oottoo!
O.ddttdol O.dojtodi 0 OOEtddl 0 ~ Odttod!
O.odttdol 0 ~ 046+00!
O.oottdd!
O.oottddi 0 ~ OOR+Odi 0 ~ 006+Odl 0 ~Odttool 0 ~ Odttdol O.odttoo'.aottdol O,dottod-0 ~ 00ttdo!
O,oajood!
0 OOCtaoi D.dajtdd O.docoad O.ODCtod 0.00ttda
~
datt04>>
0 ~ datt00>>
0 oottooi O.oattod!
0 ~dottdO 0 Oat>>op.
0.01'Ctdd O.ddt+00'.ddttdo>>
- 0. 006too
~
o.ooa.oo.
0 006tdoi O.dot+00>>
O.OCI+dol O.ddttadi O.daatad.
0 Odttode O.dattod!
o.oot.oo!
- 0. 04$ tod:
O.oattaa
~
O.oat+00 O.oat+00'.oot.oo!
o.oot+oo 0 Odltoo!
O.dot+Col O.adttdd>>
O.oattoO.
O.aaltao O.ddttdo:
C.aaltdo.
O.aattdoe O.ddttdde O.odttaa 0 ~Oottoa:
C.odtt00 O.doltdo O.OOC+00 C.ddttOO'.ddltoa:
0 ~00ftoo O.oottoo C.OOCoad'.ODI.OC O.odttoo D.Cotton D Odtt00 t.SCR 11 D.dattao O.dottda C,dattao
- 0. Oatt01 O.dojtaD O.dottOO O.dottdo O.oattOD O.odttdo:
O.oattaD 4.SSR 11.
O.dottod O.Cotton O.dattod O.DDttdd:
0.00'ttoo!
O.OOCtoo!
0 dottod!
O.oato01 D.dattdd O.oottoo.
O.dattoo 0 ~Oatt00.
0-Oattoo>>
0 Cotton O.ddttdd'.ddttaO 0.00ttdd C.Cotton O.ddttoo.
1.CCE 12!
o.cottoo'.dot+00>>
O.Cotta'.ddttoo:
O.OOCtoo-O.daitCD C.dotodo O.odltao C.oot+ao O.ODltdo 1.1SE 12 0.00tt00
~
C.dactdd:
O.ODR>>00 ~
0 OORtoo'.Col>>do:
O.oottaoe O.dalt00'.doltoo.
0.046.00:
0.01\\t00:
C.aatt40.
O.ooltod ~
O.ODRtddt O.ddcooo'.ooctoo>>
O.oo!.00.
O.oott00!
C.oot 00!
O.ooc+oo 0 00'Ctdol 0 OdjtdOI O.dottdol O.dattoal O.dattoa!
O.ODC+00!
O.ddctdo!
0 ~ OOCtoo:
O.dottdai 0 ~ddtt00!
D.datt44l C.oat+04!
o.oot.oo.
C.octtda D.ddttdo ~
O.odatdo!
O.ODC>>00!
4.0ottaa!
C.oattooi o.ooatoa.
D.dattod'.dajtdo:
C.ODCt04
- 0. Odt odd"
O.ODEtdo'.ODE>>00:
O.ODlt01>>
C.doc>>Co'.65C 11 5 CSI 12!
).OCE 1'2I 0 Oattdd!
0 dott00!
0 dol+OOI O.dattoo:
O.aottdoi S.S]t 1)!
O.oottdo!
O.dottoo!
O.oottdo!
0 ~dottdol O.odttddl O.OOCtdo'.oottdoi O,odttdol O,odttdd O.odtt00.
1 4)R 12I 0 Cotton 0 Ooltddl O.OORtdol 0 OORtddl O,dott44>>
0 OORtdoe 0 ~oottoai O.dottool C,ODRtCO; O.odltdoi O.OORtool O.dottoo!
O.Col+00:
O.dot+001 O.OCR+00:
0.01'Ctadl D.ODtt00l D.oottdal O.oottoo!
0 Odttdo ~
O.odt.oo!
D.aoltdo O.Cotton 0.00ttdo' Cotton O.Cotton 0.00tooo O.OaltOO C.oojt01 O.OOCt00 0.00'Coop.
O.oat+00'.oot+00
~
0 Ddt+00:
C.Cot+Co O.ODCtod O.oattdo
- 0. ODRtod' Oottode O.oottoo:
0 Oojtdo!
1.25E 1'2'
~ Oaj+00 ~
O.daltdae O.OCR+00'.ddCtdd' Odttoa.'.daltodi 0 OOCtdol 0 ddttooi C.oat+14' 00ttdo O.oottoo' Oat>>ad:
0,00jtOOi O.daltdd!
O,ddltdol 0,00jtoo'0.00ttdo'.ddttoo
- 0. Oajtoo:
O.oott00:
O.dottadl O.odttdd'.odttdd!
0.00ttdo 0.00'Etdo 0.00ltoa.
0 ddttdo O.oattao O.ddttod C.ddttOO C.oottdd 0.04tt00 O.daltoa O.daftod O.dottaa O.dottdd O.ddt+00
- 0. Oajtoa o.oattca O.ODE+40 O.dattoa 0.00ttoo O.oottao O.OOI+OO C.oat+00 o.oot+oo 1.25t 12 O.oattad o.oojtao O.oattad O.odjt04 O.odltod O.OOI+OO O.oat+00 D.oattoa 0 ~oattoa O.odftdo 0 ~dottaa O.aaltod
- 0. Dottdo O.odttoo O.ddt+00 0 OCR+00 O.ddltoo C.oattdo O.dot+04 C.oattda O.dajtdd 0 ~oactoa 0 00'Coda O.ddt+00 o.oottoa 0 ~Oaltoa 0.00todd O.oaltoo O,ddtood 0.00ttda 0.00'Kt00 O.odtt00 e
~
't~
TOTAL CDF'S ICOOC45]OO f24 QOOCCG U!!4CCC Fleq H
'MACAW ZVK 2.)26.09 1.046.11 1,7TC 06 99.9 2.24R-09!
I.dal 11'.77R06!
792.6 2,246 09
- 1. 00$ -11.
1 77E-06 ~
792.7 99.9 2 ~ 24'C 09
] F 016 11'
~ TTC 06 et].C 2.0)t ~ 09 1.016 12 7.)6E 09
).6 40 1.5)t 09 1.006 10'.57606 jdjc.t 110 7.07$ 10.
5.006 1]'.12K.d~
65 1
]00 2.CIE 10 1.04R 12.
2.07C 07'9).2 101 2.61$
10 1.00C 1'I 2.0TR 07 100 D-4 LTVAW004 8 a. XLS.6!486
I S