ML18038B929

From kanterella
Jump to navigation Jump to search
Rev 0 of Plant,Unit 3:Probabilistic Safety Assessment W/ Unit 2 Operating.
ML18038B929
Person / Time
Site: Browns Ferry  Tennessee Valley Authority icon.png
Issue date: 06/30/1996
From: Dante Johnson, Loh W, Melvin S
PLG, INC. (FORMERLY PICKARD, LOWE & GARRICK, INC.)
To:
Shared Package
ML18038B926 List:
References
PLG-1115, PLG-1115-R, PLG-1115-R00, NUDOCS 9708130383
Download: ML18038B929 (182)


Text

(- i PLG-1115

'I2. 9t',oc27 oo I BROWNS FERRY NUCLEAR PLANT UNIT 3 PROBABILISTIC SAFETY ASSESSMENT WITH UNIT 2 OPERATING by David H. Johnson, Sc.D.

Wee Tee Loh, Ph.D.

Stephen R. Melvin Leiming Xing, Ph.D.

'0 Prepared for TENNESSEE VALLEYAUTHORITY Decatur, Alabarria June 1996 Revision 0 a 9708i30383 970806 PDR P

ADOCK 05000260 PDR ENGINEERS < APPLIED SCIENTISTS ~ MANAGEMENTCONSULTANTS

Qi CONTENTS LIST OF TABLES AND FIGURES .. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ V 1 INTRODUCTION 1-1 1.1 Objective and Scope......... ~ ~ .. ~ ~ ~ ~ ~ ~ ~ ~ ~ 1-1 1.1.1 Summary of Results 1-1 1.1.2 Discussion of the Top 10 Sequences 1-2 1.1.3 Functional Failure Group Contributions to CDF 1-4 1.1.4 Initiating Event Group Contribution to CDF ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ 1-5 1.1.5 Important Operator Actions.......... ~... 1-5 1.1.6 Important Systems.................... 1-6 1.2 Process Followed to Develop Current Model ....... 1-6 1.3 )MM M Matnx.............................. 1-6 PLANT CONFIGURATION ............. - 2-1

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

2.1 Description of Plant Configuration ~ . ~ ~ 2-1 2.2 Evaluation of Impact on Shared Systems and Structures ~ ~ 2-1 2.2.1 Electric Power System.............. ~ ~ . ~.... ~ ~ 2-1 2.2.2 Control and Service Air System ~ ~ 2~2 2.2.3 Raw Cooling Water System ~ ~ 2-2

+

2 2@4 Turblile 0

D '1J' Buildiilg a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2-2 2.2.5 Reactor Building Closed Cooling Water System.............. ~ ~ 2-2 2.2.6 Reactor Building (Secondary Containment System) 2-3

~ ~

2.2.7 Condenser Circulating Water System ~ ~ 2~3 2.2.S Pumping Station intake Building).................... .- 2-3

~ ~ ~

2.2.9 Control Rod Drive Hydraulic System ~ ~ 2-3 2.2.10 RHR Cross-Connection and Standby Coolant Supply System..... ~ ~ 2-3 2.2.11 Residual Heat Removal Service Water System............... ~ ~ 2-3 2.2.12 Emergency Equipment Cooling Water System............... ~ ~ 2-4 2.2.13 Fire Protection System............ ~ . ~ ~ - - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~- ~ ~ 2-4 2.2.14'eactor Building and Control Bay Ventilation and Cooling Systems ~ ~ 2-4 2.3 S ystem Success Cntena \ ~ 2-4 3 MODIFICATIONS MADE TO PREVIOUS PSA MODELS 3-1 3.1 E vent Model ................................. ~ ~ ~ 3-1 3.1.1 Electric Power Support Event Trees........ ~ ~ ~ 3-1 3.1.2 Electric Power Event Tree Split Fraction Symmetries ~ ~ 3-2 3.1.3 Recovery of Diesel Generator 3ED ~ ~ ~ 3-3 3.1.4 Use of Diesel Generator C to Support Unit 3 3-3 3.1.5 RHR Crosstie .................... ~ ~ . 3-3 3-4 3.1.6 Redefinition of Initiating Events ~ ~ ~

3 .1.7 Dependencies .......... ~ .. ~ ~ ~ ~ ~ ~ ~ - -~ ~ ~ ~ ~ ~ ~ ~ 3Q

CONTENTS continued 3.2 Systems Analyses .................................... ~.... 3-4

.................. ~....

~

3.2.1 Unit 3 Electric Power System Models 3-4 3.2.2 Modeling of Battery Boards 1, 2, and 3 ...................... 3-6 4 REFERENCES ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4~1 APPENDIX A. BROWNS FERRY UNIT 3 PSA UNCERTAINTY ANALYSIS.... A-1 APPENDIX B. LISTING OF TOP 100 SEQUENCES . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ - B-1 APPENDIX C. SPLIT FRACTION IMPORTANCE MEASURES ............. C-1 APPENDIX Do P M MATIGX e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ D 1

LIST OF TABLES 1-1 Contributions of Functional Failure Groups to CDF.................... 1-7 1-2 Contribution to CDF by Initiating Event Group and Comparison to Unit 2 PSA 1-3 Results (Reference 3) .......... - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1-8 Ten Most Important Operator Actions Failures Contributing to Core Damage 1-10 1-4 PSA Importance of Individual BFN Systems.................... ~ ~ ~ ~ . 1-11 2-1 Shared Plant Systems and Structures Associated with Unit 3 and Potentially Impacted Unit 2 Being in Service .................... ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ . 2-5 2-2 Comparison of Equipment Status in the Different Plant Configurations....... 2-6 Summary of Potential Impact on Systems and Structures Associated with Unit 3 2-8 2-4 3-1 Success Criteria for Plant Configuration Under Consideration ............. 2-9 Top Events in Tree ELECT12 as Found in the Unit 2 PSA 3-8 3-2 Top Events in Tree ELECT3 as Found in the Unit 2 PSA 3-10 3-3 Top Events in Tree ELECT3 as Used in this Study .................... 3-11 3-4 Top Events in Tree ELECT12 as Used in this Study .......... ~... . . 3-12

~ ~ ~

3-5 Top Events in Tree ELECT3P as Used in this Study 3-14 3-6 Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ o 3 1 LIST OF FIGURES 1-1 Probability Distribution of Browns Ferry Unit 3 Core Damage Frequency...... 1-12

'I

I. INTRODUCTION 1.1 OBJECTIVE AND SCOPE This report presents the results of an extension of the probabilistic safety assessments (PSA) that have been performed at Browns Ferry Nuclear Plant (BFN) to consider the operation of Unit 3 under conditions that reflect the shared mission of some components, systems, and structures at the plant. For this analysis, Unit 1 is assumed to remain in extended layup with no fuel in its core. Also, Unit 2 is modeled in this analysis as being in service; specifically, Unit 2 is assumed to be either operating at power or in an outage. These assumptions reflect the current operational configuration of Browns Ferry.

This update builds on previous models that considered the operation of Unit 2 under various plant configurations. The Individual Plant Evaluation (IPE) (Reference 1) examined the three unit BFN site under the assumption that only Unit 2 was initially at power, with Units 1 and 3 in layup. Consequently, Units 1 and 3 equipment permitted by plant design and plant status to support Unit 2 would have no other functional requirements. The Multi-Unit PRA (Reference 2) examined initiating events at Unit 2 with all three units initially at power.

More recently (Reference 3), the core damage &equency (CDF) due to events originating at power of Unit 2 was determined under the initial conditions that Unit 1 remained in layup and Unit 3 had been returned to service. 'The current model, with Unit 3 initially operating and Unit 2 in service, was constructed &om the model for Unit 2 documented in Reference 3.

The Unit 2 model was altered to reflect unit-specific system configurations [e.g., the residual heat removal (RHR) crosstie capability] as well as unit-specific system dependencies.

Specific model changes are summarized in Section 3.

This quantification considers the response of Unit 3 to initiating events while it is operating at full power, considering that Unit 2 may also be at full power and remain at power, may have also been affected by the same initiating event, or has been previously shut down. The model considers the CDF due to internal events as well as internal flooding. The systems and components available for use in bringing Unit 3 to a safe shutdown condition considers requirements of common systems to support Unit 2 under the above three circuinstances as well as potential interactions and dependencies, This report summarizes only those changes to the plant model made to reflect the specific plant configuration described above. Details of many of the underlying models can be found in the previous PRA reports (References 1 through 4).

I.I.I

SUMMARY

OF RESULTS The overall results indicate that the mean CDF for Unit 3 for the initiating events considered in this analysis is 9.19E-06 per year. A single parameter, such as the mean value, however, does not tell the full story about the CDF. A probabilistic distribution was determined for the CDF. That distribution is given in Figure 1-1. Besides the mean value, other characteristics of this distribution are the 5th percentile (1.22E-06 per year), the 50th percentile (3.49E-06

per year), and the 95th percentile (1.97E-05 per year). These percentiles permit the following interpretation of the CDF:

We are as confident that "the" CDF at Unit 3 is above 3.49E-06 per year as we are that it is below 3.49E-06. Furthermore, the 5th and 95th percentiles allow us to claim that we are 90% confident that "the" CDF is between 1.22E-06 and 1.97E-05 per year.

The overall CDF is quite small. Based on the mean CDF, the analysis suggests that the current procedures, practices, and equipment performance at Unit 3 would result in one core damage event, on average, approximately every 109,000 years. The interval between expected core damage events is quite large compared to the plant lifetime, indicative of a well operated plant.

Information used to calculate the CDF distribution is summarized in Appendix A.

1.1.2 DISCUSSION OF THE TOP 10 SEQUENCES The sequences that individually are the 10 most &equent core damage sequences are described in this section. Note that the frequencies of the individual sequences are quite small, with none larger than 1.01E-07 per year. The highest frequency sequence is anticipated to occur on the order of once every 10,000,000 years. Perspective on these small frequencies is necessary when interpreting the sequences. When one sees, for example in the first sequence, a reference to the failure of the operator to control low pressure injection during an anticipated transient with scram (ATWS) given a stuck-open relief valve, it is easy to miss the fact that the model also indicates that under those circuinstances, the operator will be successful in performing the necessary actions under these stressful and unusual conditions 11 out of 12 times.

The first sequence is initiated by a turbine trip; failure of the control rods to insert into the core; successful'peration of the standby liquid control and initial level control by the high pressure injection systems; failure of one relief valve to reseat following initially liNag to limit pressure; and failure to control the injection of low pressure systems once pressure has decayed. Core damage is assumed to occur due to the large inflow of low pressure water diluting or displacing the borated vessel inventory resulting in an unanalyzed condition that may lead to recriticality. The mean frequency of this sequence is 1.01E-07 per year.

The second and third sequences are related. Both are initiated by a turbine trip followed by failure of the control rods to insert into the core and failure of boron to inject to control reactivity. In sequence two, boron injection failure is due to operator failure to initiate the standby liquid control system. Sequence three is due to the standby liquid control system being unavailable due to hardware failures, or a combination of hardware failures and test or maintenance. The mean frequencies of the second and third sequences are 7.52E-08 and 7.25E-08 per year, respectively.

Sequence four is initiated, by a loss of raw cooling water. The normal heat removal path (i.e.,

utilizing the main condenser) is rendered unavailable due to the initiating event. High pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) are both available initially. The sequence is complicated somewhat by a relief valve sticking open after initially lifting to relieve pressure. A modeling assumption is in place that requires successful if suppression pool cooling a relief valve remains open. All four RHR pumps are unavailable as is the Unit 2 to Unit 3 RHR crosstie. Core damage ultimately is the result of failure to remove decay heat. The mean frequency of this'sequence is 6.89E-08 per year.

Sequence five is a blackout of Unit 3. The sequence initiator is loss of offsite power (both the 500-kV and 161-kV grids) followed by failure of diesel generators 3EA, 3EB, 3EC, and 3ED to supply power. The high pressure coolant injection and the reactor core isolation cooling systems are initially available to maintain vessel level control, but core damage eventually occurs since power is not recovered and no means of removing decay heat is established. The mean frequency of this sequence is 6.82E-08 per year.

Sequence six is a transient with the loss of the ability to maintain the core covered. 'This sequence is initiated by the loss of the raw cooling water system. The high pressure coolant injection and reactor core isolation cooling systems are unavailable to inject water into the vessel. The initiator prevents the control rod drive hydraulic system from being operable and the operator fails to depressurize the vessel in a timely manner to allow low pressure injection systems to maintain core coverage. The mean frequency of this sequence is 5.98E-08 per year.

The seventh sequence is quite similar to the second sequence: a transient, this time the closure of all main steam isolation valves, followed by failure of the control rods to insert and failure to initiate the standby liquid control system. The mean &equency of this sequence is 5.48E-08 per year.

The eighth sequence is initiated by a loss of offsite power and is characterized by the failure of diesel generators A, B, D, and 3ED. In addition, offsite power is not recovered in this sequence. This combination of diesel generator failure results in seven of the eight RHRSW pumps being unavailable (only pump B1 is available). The success criteria for RHRSW requires that one pump per unit (not on the same header) be available. Core damage is assumed to occur due to failure to provide adequate decay heat. The mean frequency of this sequence is 4.93E-08 per year.

The ninth sequence is similar to the sixth sequence. In the ninth sequence, the sequence is initiated by the closure of all main steam isolation valves, successful scram, but failure of the high pressure injection system, the reactor core isolation cooling system, and the control rod drive hydraulic system, and failure to depressurize the vessel. The initiator "MSIV Closure" occurs more frequently than "Loss of Raw Cooling Water;" the primary difference being how the control rod drive hydraulic system fails. In the sixth sequence, it is failed due to loss of support as a result of the initiating event, and in the ninth sequence, it is unavailable due to hardware failure or maintenance activities (both pumps 2A and 1B are required for success).

The mean frequency of this sequence is 4.84E-08 per year.

The tenth sequence is similar to the eighth sequence. This sequence is initiated by a loss of offsite power and is. characterized by the unavailability of diesel generators A, B, C, D, and 3EC and failure to recover offsite power. As in the eighth sequence, this combination of failures results in seven of the eight RHRSW pumps being unavailable. In this case, only RHRSW pump Dl is available. Core damage is assumed to occur due to failure to remove decay heat. The mean frequency of this sequence is 4.71E-08 per year.

A comparison of these 10 sequences with the corresponding sequences for Unit 2 (Reference 3) reveals that 7 of the 10 sequences are virtually identical. However, sequences four, eight, and ten for Unit 3 do not have an exact counterpart for Unit 2. These three sequences represent hardware and dependency differences between the units. The sequence for Unit 2 that would be analogous to Unit 3's fourth sequence would be of lower frequency due to the additional capability of Unit 2 to crosstie to division II Unit 1 RHR. Sequences eight and ten reflect the stronger dependence of Unit 3 on Units 1 and 2 4-kV shutdown boards as compared to Unit 2's dependence on Unit 3 4-kV shutdown boards.

A summary description of the top 100 sequences is presented in Appendix B.

1.1.3 FUNCTIONAL FAILURE GROUP CONTRIBUTIONS TO CDF Table 1-1 presents the results of recasting the core damage &equencies into seven functional categories, Consideration of the functional categories provides some insights into the nature of the results. It should be noted that the functional categories are not mutually exclusive; individual sequences can be assigned to more than one functional category. As can be seen, nearly 39% of the CDF is due to sequences involving failure to control reactivity'. Thirty-six percent of the CDF is &om sequences that can be characterized by the loss of the ability to remove decay heat. Transients with the reactor vessel at high pressure represent 8.6% of the total core damage &equency. The transients with the reactor at high pressure can be characterized typically as an initiating event involving the loss of feedwater, the unavailability of both the high pressure coolant injection and the reactor core isolation cooling systems, and the failure to manually depressurize the vessel to allow low pressure systems to maintain level control. Transients followed by a loss of vital DC power contribute 7.5% of the total core damage frequency. This group is defined as any transient followed by the loss of battery board 1, 2, or 3. For Unit 3, battery boards 1 and 3 are of particular interest. Many sequences assigned to this group involve a failure of both battery boards 1 and 3, thus disabling HPCI and RCIC. Sequences involving failure of battery boards 1'nd 3 constitute 3.6% (3.33E-07 per year) of the total core damage frequency. A typical sequence in this group is a transient that involves the loss of normal heat sink, such as closure of all main steam isolation valves, followed by failure of DC power resulting in the inoperability of HPCI, RCIC, and the ability to remove decay heat.

Two station blackout accident sequence groups are defined. The first such functional category (3.0% of the total CDF) is due to the unavailability of AC power in the Unit 3 portion of the plant. Blackout in this case is defined to be the loss of offsite power followed by failure of diesel generators 3EA, 3EB, 3EC, and 3ED. A smaller contribution (2.4% of the total CDF)

is due to total station blackout (failure of offsite power as well as all eight diesel generators at the site).

A small contribution to CDF (0.2%) can be attributed to sequences involving degraded states of the emergency equipment cooling water system.

1.1.4 INITIATINGEVENT GROUP CONTRIBUTION TO CDF Table 1-2 summarizes the results at the initiating event group level. The performance of a PSA begins with the identification of a comprehensive set of scenario initiators, often called initiating events or initiators. Table 1-2 also summarizes the CDF contribution due to initiating event categories as well as the individual initiators and.provides a comparison to the Unit 2 PSA results as documented in Reference 3.

As can be seen by reviewing the results summarized in Table 1-2, the CDF due to a given initiating event is modestly higher, with one exception, for Unit 3 as compared to Unit 2.

The reasons for this difference can be found by comparing the individual core damage sequences from the two analyses. The differences are due to unit-specific system configurations and dependencies. The one initiating event category for which, according to the information in Table 2-1, Unit 3 has an apparent lower CDF than Unit 2 is "Flood Scenario 1 in the Reactor Building." On closer exatnination, however, this difference can be attributed to modeling differences. The Unit 3 PSA, as documented in this report, contained an updated model for battery boards 1, 2, and 3, which resulted in a slight decrease in the calculated unavailabilities of these boards as compared to the Unit 2 model (Reference 3).

This difference, combined with the 1.0E-10 calculational truncation limit for this initiator, are underlying reasons for the apparent anomaly.

1.1.5 IMPORTANT OPERATOR ACTIONS Table 1-3 identifies the 10 most "important" operator actions that were included in the model for the response of the plant and the operators to the entire set of initiating events. The importance measures were derived &om the split &action importance meas'ures (the "&action importance") reported in the first numerical column in Appendix'. Split &action importance is defined as the &action of all core damage scenarios that include failure of the specific split fraction. This &action can be determined by dividing the sum of the &equencies of scenarios containing the failed split &action by the sum of the frequencies of all core damage frequencies.

Note that 2 of the 10 entries in Table 1-3 required adjusting. These split &actions, RVD22 and U22, contain both hardware and operator action elements. To eliminate the hardware portion of the fractional importance for RVD22 (0.087 &om Appendix C), it was multiplied by the fraction of the split fraction value that is due to operator error (0.86). In a similar manner, the fractional importance of U22 from Appendix C (0.022) was multiplied by 0.58.

It should be noted that the split fraction CRD4, which contains both hardware and operator elements, has a fractional importance from Appendix C of 0.037. However, the portion due

0 to operator error is quite small (0.025). Consequently, it does not appear in the list of the top 10 actions.

1.1.6 IMPORTANT SYSTEMS Table 1-4 identifies the importance of selected plant systems. The top events that represent hardware and that comprise the mechanical support, signal, and frontline event trees were assigned to appropriate system groups. Top events that represented operator actions were not assigned to a system group. Two electrical groups were defined: one for the diesel generators and one for the battery boards 1, 2, and 3. These groups were used to determine importance measures.

The importance measures were determined from the information summarized in Appendix C by summing the importance of all split fractions (other than the one corresponding "guaranteed failure") associated with a given system.

1.2 PROCESS FOLLOWED TO DEVELOP CUIMENT MODEL The model developed in this analysis used the model for Unit 2 documented in Reference 3.

Information developed as part of the Multi-UnitPRA (Reference 2), particularly the Unit 3 dependency matrices, was utilized in the model development. System configuration and dependency differences were noted. Event models (event tree structure and split &action assignment rules) and, where appropriate, system models developed for Unit 2 (Reference 3) were modified to reflect the configuration and dependencies of Unit 3.

la ~MMATIUX A convenient way to summarize the results of a PSA is to construct a table that shows how each of the initiating events map to the plant damage states considered in the analysis. Ifthe initiating events are thought of as a vector ("$"), then the plant model, event trees, and fault trees could be represented by a transformation matrix ("M") that relates the initiators to the plant damage states. $ -M would then display the relationship of the'initiators to the plant damage states. The $ -M matrix for Unit 3 is presented in Appendix D of this report.

0 Table I-I. Contributions of Functional Failure Groups to CDF Mean CDF* Percentage of Accident Sequence Group (per Year) Total*

ATWS 3.52E-06 38.6 Loss of Residual Heat Removal 3.30E-06 36.1 Transient with Reactor Vessel at High Pressure 7.86E-07 8.6 Transient followed by Loss of Vital DC Power 6.85E-07 7.5 Blackout of Unit 3. 2.72E-07 3.0 Station Blackout 2.18E-07 2.4 Degraded Emergency Equipment Cooling Water 2.28E-08 0.2

~The mean CDF is determined by examining the dominant sequence file. The sequences in the dominant sequence file represent in excess of 99% of the total CDF and form a convenient database for risk management applications. The accident sequence groups are defined by specifying success or failure combinations of top events or split &actions. For example, the "ATWS" accident sequence group is defined as all sequences with the Top Event "RPS" failed. Since the dominate sequence file represents less than 100% of the total CDF, the "percentage of total" for each accident sequence group is determined by dividing the mean CDF for that group by the total CDF represented by the dominant sequence file. In the current model, the total CDF represented by the dominant sequence file is 9.13E-06 (per year). For the ATWS accident sequence group, for example, the "percentage of total" is calculated as:

3.52E-06  : 9.13E-06 = 38.6%

Table 1-2 {Page 1 of 2). Contribution to CDF by Initiating Event Group and Comparison to Unit 2 PSA Results (Reference 3)

Mean CDF (per Year)

Initiating Event Group Unit 2" Unit 3**

Transients with Reactor Not Isolated 1.58E-06 2.46E-06 Loss of Feedwater 2.8SE-07 5.19E-07 Turbine Trip 6.99E-07 9.27E-07 Inadvertent Scram 8.47E-OS 1.65E-07 Feedwater Rampup 1.07E-07 1.95E-07 Events Requiring the Reactor to Scram 1.15E-07 1.45E-07 Partial Loss of Feedwater 1.40E-07 1.71E-07 Loss of All Condensate 5.23E-OS 1.53E-07 Partial Loss of All Condensate 9 48E-08 1.81E-07 Loss of Offsite Power 1.35E>>06 2.11K-06 Transients with Reactor Isolated 1.04E-06 1.88E-06 Closure of All Main Steam Isolation Valves 4.75E-07 8.39E-07 Loss of Condenser Vacuum 2.35E-07 4.45E-07 Turbine Trip without Bypass 2.31E-07 4.11E-07 Loss of the 500-kV Grid to Unit 2 3.55E-08 Loss of the 500-kV Grid to Unit 3 5.86E-OS Loss of the 500-kV Grid to the Station 3.48E-08 7.08E-OS Pressure Regulator Failure - Fails Open 3.07E-08 5.52E-OS Break Outside of Containment 1.42E-09 1.83E-09 Support System Failure 7.03E-07 1.41E-06 Loss of Raw Cooling Water 5.38E-07 9.79E-07 Loss of Plant Control Air 2.30E-OS 1.83E-07 Loss of I&C Bus 2A 3.08E-09 Loss of I&C Bus 3A 5.98E-09 Loss of I&C Bus 2B 3.09E-09 Loss of I&C Bus 3B 6.0IE-09 Loss of Unit Preferred Power 3.75E-08 5.18E-OS Loss of Reactor Building Closed Cooling Water System 9.04E-08 1.76E-07 Failure of Lower Instrument Tap IA 1.91E-09 2.24E-09.

Failure of Lower Instrument Tap IIA 1.91E-09 2.24E-09 Failure of Lower Instrument Tap IB 1.99E-09 2.32E-09 Failure of Lower Instrument Tap IIB 1.91E-09 2.24E-09 Failure of Upper Instrument Tap I 2.23E-10 2.61E-10 Failure of Upper Instrument Tap II 2.23E-10 2.61E-10

  • As documented in PLG-1112, Revision 1 (Reference 3).

~*Results of this analysis.

Table 1-2 (Page 2 of 2). Contribution to CDF by Initiating Event Group and Comparison to Unit 2 PSA Results (Reference 3)

Mean CDF (per Year)

Initiating Event Group Unit 2* Unit 3**

Loss of Coolant Accidents 4 41E-07 5.35E-07 Small LOCA 7.20E-08 7.30E-OS Recirculation Discharge Line Break 1.12E-07 1.33E-07 Recirculation Suction Line Break 2.66E-OS 3.34E-OS Core Spray Line Break 7.77E-08 1.11E-07 Other Large LOCA 3.16E-OS 4.05E-OS Medium LOCA 1.06E-07 1.29E-07 Very Small LOCA 5.80E-09 6.21E-09 Excessive LOCA 9.10E-09 9.09E-09 Stuck-Open Relief Valves 194 E-07 1.79E-07 Inadvertent Opening of One Relief Valve 6.88E-OS 1.07E-07 Inadvertent Opening of Two Relief Valves 8.77E-09 1.24E-OS Inadvertent Opening of Three o'r More Relief 5.65E-OS 5.92E-08 Valves Internal Floods 9.29E-OS 5.6SE-07 Small Flood in the Turbine Building 1.93E-OS 1.59E-07 Large Flood in the Turbine Building 2.22E-OS 4.24E-08 Flood in the Pumping Station 1.15E-08 6.99E-08 Flood Scenario 1 in the Reactor Building 4.35E-09 2.63E-09 Flood Scenario 2 in the Reactor Building 3.86E-10 2.03E-09 Flood Scenario 3C in the Reactor Building 6.90E-10 7.07E-10 Flood Scenario 3S in the Reactor Building 3.45E-OS '.91E-07 Interfacing Systems LOCA 4.63E-OS 4.63E-OS Total CDF 589K,06 9.19FAHi

~As discussed in PLG-1112, Revision 1 (Reference 3).

~~Results of this analysis.

Table 1-3. Ten Most Important Operator Actions Failures Contributing to Core Damage PSA Surrogate Operator Action Importance Split Fraction Manual Depressurization of the Reactor Vessel using 0.075>> RVD22 the Safety Relief Valves Manual Control of Low Pressure Injection during 0.067 OLA1 ATWS Manual Alignment of Residual Heat Removal to 0.064 OSP1 Suppression Fool Cooling Manual Start of Standby Liquid Control Given ATWS 0.033 OSL1 and the Reactor Vessel Isolated Manual Start of Standby Liquid Control Given ATWS 0.022 OSL2 and the Reactor Vessel Not Isolated Alignment of Unit 2 Residual Heat Removal to Unit 3 0.013>>>> U22 via Crosstie Prevention of Automatic Depressurization System 0.007 OAD1 during ATWS Manual Start of Residual Heat Removal/Core Spray 0.005 ORP2 Reactor Vessel Level Control Using Residual Heat 0.005 OLP1 Removal/Core Spray Level Control during ATWS 0.003 OAL1

>>The fractional importance of 0.087 &om Appendix C has been multiplied by the fraction (0.86) of the split &action value that is due to operator action.

>>>>The &actional importance of 0.022 from Appendix C has been multipiieck hy the fraction (0.58) of the split &action value that is due to operator action.

Table 1-4. PSA Importance of Individual BFN Systems PSA System Importance*

Reactor Protection System 0.39 Residual Heat Removal System 0.36 Diesel Generators 0.21 Residual Heat Removal Service Water System 0.16 High Pressure Coolant Injection System 0.13 Reactor Core Isolation Cooling System 0.09 Main Steam System Including Turbine Trip 0.08 250V DC Battery Boards 0.07 Shared Actuation Instrumentation 0.05 Control Rod Drive System 0.05 Standby Liquid Control System 0.04 RBCCW 0.01 Condensate and Feedwater System Core Spray < 0.01 Plant Air < 0.01 Emergency Equipment Cooling Water System

~The fraction of CDF with sequences in which the failures occur in the indicated system.

0 U)

Lu Cl tQ cf' 0

K CL 10'0'0'0" 10'REQUENCY Figure l-l. Probability Distribution of Brogans Ferry Unit 3 Core Damage Frequency

2. PLANT CONFIGURATION

2.1 DESCRIPTION

OF PLANT CONFIGURATION The plant configuration under consideration is one in which Unit 3 is initially at power, Unit 2 in service (i.e., it is either initially operating or shut down), and Unit 1 remaining in extended layup, An assessment of the potential for multi-unit interactions at BFN was performed in the Multi-Unit PRA to determine the impact on shared systems or structures associated with Unit 2 by the return to service of Units 1 and 3. Although the information developed in the Multi-Unit PRA was developed with the potential impact on Unit 2 in mind, that information is also a viable resource when considering the potential impact on Unit 3.

Guidelines or criteria were developed and used in that study to identify systems or structures that are potentially impacted by multi-unit interactions. Interactions of interest are those that have the potential to (1) impact the success criteria for an individual system or group of systems, (2) change the frequency of an initiating event considered in the previous PRAs, (3) introduce an initiating event not previously considered, (4) introduce new or to alter dependencies among systems, or (S) otherwise effect the response of the plant to an initiating event. It was determined that 14 of the shared systems and structures are potentially impacted by the return of additional units to service, and Table 2-1 shows a list of these shared systems and structures.

The review of system configurations and structures for the plant configuration under consideration utilized the results of the evaluation of all shared systems and structures performed in the Multi-Unit PRA. The control bay HVAC system has been shown to be risk insignificant and is not considered in depth in this review (Reference 3). A comparison of the equipment/system status in the various plant configurations (the one under consideration, and those modeled in the Rev. I I.Q. ¹2 and Multi-UnitPRAs, which focused on Unit 2) is provided in Table 2-2. The equipment/system status may be the same in the various plant configurations considered, but the success criteria and plant response involving the shared systems may be different as discussed in the section below.

2.2 EVALUATIONOF IMPACT ON SHARED SYSTEMS AND STRUM'UI&S The potential impact on the shared systems and structures associated with Unit 3 when Unit 2 is in service can be characterized as changes in the system success criteria, changes in the initiating event &equency, or changes in the plant model with respect to those in adopted in the Rev. I I.O. ¹2 PRA model. Based on the discussion of the system configurations and shared structures, and the comparison of the equipment status in the various plant configurations, the impact on the shared systems and structures is presented below and a summary of the impact is given in Table 2-3.

2.2.1 ELECTRIC POWER SYSTEM Two units in service impacts the success criteria used in the Rev. I I.O. ¹2 PRA for the analysis of the availability of individual electrical boards as loads on boards are increased. In

addition, the availability of boards is impacted if they no longer are considered "dedicated" to a single unit. These considerations will impact the actions considered as "recovery" actions in this study, as reflected in Table 2-4.

The loss of two large generating stations within a relatively small time window has the potential of increasing the frequency of the loss of the electrical grid. Two units in service therefore increases the likelihood of the induced loss of offsite power for initiating events, such as loss of raw cooling water, that involve a mechanism that potentially couples the response of the individual units. In addition, the nature of the plant response, as compared to the Rev. l I.O. ¹2 PRA, to the loss of offsite power will change due to the role of other shared systems, such as residual heat removal service water (RHRSW) or emergency equipment cooling water (EECW).

It was concluded that the reanalysis of portions of the electric power system was required in the Unit 2 PSA (Reference 3) including the assessment of the availability of individual electrical boards as well as the impact on the frequency of the loss of offsite power. The Unit 3 PSA took full advantage of these new analyses as documented in Reference 3.

2.2.2 CONTROL AND SERVICE AIR SYSTEM The control air and service air systems are shared among the three units. Two units in service will not impact the system success criteria nor the frequency of the Loss of Plant Air initiator, as reported in Reference 3 for Unit 2.

2.29 RAW COOLING WATER SYSTEM The raw cooling water system serves all three units. Two units in service impacts both the system success criteria as well as the frequency of the initiator Loss of Raw Cooling Water, as compared to the models developed for Rev. I I.O. ¹2 PRA. The same models developed for the Unit 2 PSA (Reference 3) were used in the current analysis.

2.2.4 TUI&INEBUILDING The turbine building is shared among the units. Flooding events in the turbine building were explicitly addressed in the Rev. I I.O. ¹2 PRA. When Unit 3 is returned to service, both the frequency and plant response to such flooding events were reassessed as part of the Unit 2 PSA (Reference 3). These updated results were also used in the current analysis.

2.2.5 REACTOR BUILDING CLOSED COOLING WATER SYSTEM The reactor building closed cooling water system is normally unitized but there is one spare pump and heat exchanger for all units. The model developed for the Unit 2 PSA (Reference 3) was adopted for the current analysis.

0 2.2.6 REACTOR BUILDING {SECONDARY CONTAINMENT SYSTEM)

The reactor building is shared among the three units and is divided into three reactor'zones and a common refueling zone. When Unit 2 is in service, an indirect interaction is created if a severe incident (such as extensive core damage) were to occur in Unit 2. In such a case, the accessibility of the Unit 3 reactor building will be affected.

2.2.7 CONDENSER CIRCULATING WATER SYSTEM In the normal mode of operation, this system is unitized. In, the shutdown mode, with all of the units down and with the reactors streaming to the condensers via the turbine bypass system, only a small amount of condenser circulating water (CCW) flow is required to maintain normal condenser vacuum. "The plant design provides circulating water interties so that only one CCW pump can provide condensing water to all shutdown units. In the plant configuration, with Unit 3 initially at power, the CCW interties are not 'odeled considered.

2.2.8 PUMPING STATION (INTAKE BUILDING)

The RHR service water pumps and the emergency equipment cooling water pumps are located in four compartments of the pumping station. The reassessment of the frequency of and plant response to flooding of one of these compartments was evaluated in the Unit 2 PSA (Reference 3) and adopted for the current analysis.

2.2.9 CONTROL ROD DRIVE HYDRAULICSYSTEM A common control rod drive (CRD) hydraulic system pump is shared by Units I and 2. In the Rev. 1 I.O. ¹2 PRA, credit was taken for that pump as if it were assigned solely to Unit 2. Unit 3 has two dedicated CRD pumps. The models utilized in the Unit 2 PSA (Reference 3) were adopted for the current analysis.

2.2.10 RHR CROSS-CONNECTION AND STANDBY COOLANT SUPPLY SYSTEM The use of the residual heat removal service water system for vessel injection via cross-connecting selected portions of the RHR systems in adjacent units is provided at the plant. Credit for such alignments is taken in the Rev. I I.O. ¹2 PRA on a limited basis; that is, only from Unit I to Unit 2. For Unit 2, credit was also taken for the crosstie from Unit 3.

For Unit 3, only a single crosstie to Unit 2 is available.

2.2.11 RESIDUAL HEAT REMOVAL SERVICE WATER SYSTEM The RHRSW system is shared between the units and is explicitly modeled in the Rev. 1 I.O..¹2 PRA and Unit 2 PSA. The same success criteria derived for the Unit 2 PSA was adopted in the current analysis.

0 2 2.12 EMERGENCY EQUIPMENT COOLING WATER SYSTEM The EECW system is shared between the units and is explicitly modeled in the Rev. I I.O. ¹2 PRA and Unit 2 PSA. The success criteria associated with the EECW system was reviewed and determined not to change when the Unit 2 PSA was conducted; therefore, no change is required for the current analysis.

2.2.13 FIRE PROTECTION SYSTEM The fire protection system is shared among the units. Of potential interest in the PSA is the one diesel-driven fire pump that could provide flow to the vessel under station blackout conditions. Two units in service would impact the availability of this pump to serve either unit. However, in the current model, the use of the fire protection system to provide flow to the vessel is not considered.

2.2.14 REACTOR BUILDING AND CONTROL BAY VENTILATIONAND COOLING SYSTEMS A discussion of the impact of failure of these systems on core damage frequency is given in the Unit 2 PSA (Reference 3).

29 SYSTEM SUCCESS CRITERIA Table 2-4 summarizes the success criteria for shared systems in the PSA model for the plant configuration being considered as well as the criteria used in the Rev. 1 I.O. ¹2 and Multi-UnitPRAs.

Table 2-1. Shared Plant Systems and Structures Associated with Unit 3 and Potentially Impacted by Unit 2 Being in Service Electric Power System*

Control and Service Air System Raw Cooling Water System Turbine Building and Radwaste Building Reactor Building Closed Cooling Water System Reactor Building (Secondary Containment System)

Condenser Circulating Water System Pumping Station (Intake Building)

Control Rod Drive Hydraulic System RHR Cross-Connection and Standby Coolant Supply System Residual Heat Removal Service Water System Emergency Equipment Cooling Water System Fire Protection System Reactor Building and Control Bay Ventilation and Cooling Systems

~Includes offsite power system (switchyard, station service transformers, and normal auxiliary power switchboards), plant preferred and nonpreferred AC system, auxiliary DC power supply and distribution system, 250V DC power supply system, and standby AC power system.

Table 2-2 (Page 1 of 2). Comparison of Equipment Status in the Different Plant Configurations Equipment Status in the Plant Contiguration System Equipment Status la Unit 2 PRA Equipment Status In 51ulti-Unit PRA with Unit I Remaining in I.ayup Electric Power AC Power Switchgcar, buses, and boards are nominally Switchgear, buses, and boards are nominally Switchgcar, buses. and boards arc normally available to power all cquipmcnt associated with availablc to power all equipment associated with availablc to power equipmcnt associated with Units I, 2, and 3. Unit 3 boards are available to Units I, 2, and 3. Sclccted Unit 3 boards may be Units 2 and 3. Selected Unit 3 boards may bc serve Unit 2 loads by crossticing thc boards. availablc to serve Unit 2 loads since thc loads on available to serve Unit 2 loads since thc loads on the affected Unit 3 boards arc increased and they the alfccted Unit 3 boards are incrcascd and they arc no longer considcrcd "dedicated to Unit 2 arc no longer considcrcd "dedicated to Unit 2 service. Similarly, selected Unit 2 boards may be service. Similarly, selected Unit 2 boards may be available to serve Unit 3 loads. availablc to serve Unit 3 loads.

DC Power Boards are nominally avaHable to support all Boards are normally available to support all Boards arc normally available to support equipment associated with Units I, 2, and 3. equipmcnt associated with Units I, 2, and 3. equipmcnt associated with Units 2 and 3. Selected Unit 3 boards are available to Unit 2 via Selected battery boards may bc available to scrvc battery boards may bc available to icrvc Unit 2 crosstieing thc boards. Unit 2 toads since the loads on the affected Unit 3 loads since the loads on the affected Unit 3 boards boards arc Increased and they are no longer are increased and they are no longer considered considered 'dedicated'o Unit 2 service. "dedicated" to Unit 2 scrvicc and vice versa.

Diesel Generators All eight diesel gcncrators available. All eight diesel generators available. All eight dicscl generators available.

Control and Service Air Two compressors arc fully loaded, with thc other Two compressors are fully loaded, with the other Two comprcssors arc fully loaded, with thc other two comprcssors running but unloaded or on two compressors running but unloaded or on two compressors running but unloaded or on standby. standby. standby.

Raw Cooling Water Although interconnected, the portion of the system Although interconnected, thc portion of the system The entire system is modclcd with the portion that serves Unit 3 Is Independent of that portion that saves Unit 3 is indcpcndent of that portion serving Unit 2 dependent on the portion serving that serves Units I and 2. that serves Un! ts I and 2. Unit 3 and vice versa.

Turbine Building and Radwaste Buildings shared among all three units. Buildings shared among all three units. Buildings shared among all thre>> units.

Building Reactor Building Closed Cooling Unit 2 RBCCW pumps 2A and 2B are normally Unit 2 RBCCW pumps arc normally operating, Units 2 and 3 RBCCW pumps arc normally Water operating, and the common RBCCW pump IC Is and the common RBCCW pump IC is available to operating, and thc common RBCCW pump IC is dcdlcatcd to Unit 2. Unit 1,2, or 3. available to Unit I, 2, or 3.

Reactor Building (Secondary Building shared among all three units. Building shared among alt three units. shared among all three units.

Containment System)

Condenser Circulating Water 'fhrce Unit 2 CCW pumps arc initially operating All nine of thc CCW pumps arc initially operating Thc three Unit 3 CCW pumps are initially pumps from other units In standby with Interties with the Intcrties bctwecn thc units closed. operating and the number of Unit 2 CCW pumps units.'uilding between the units. operating depends on thc status ol'Unit 2. The intcrties between the units are closed.

Pumping Station (Intake The pumping station contains RHRSW pumps and Thc pumping station contains RHRSW pumps and Thc pumping station contains RIIRSW pumps and Building) the EECW pumps that arc shared among the units. the EECW pumps that are shared among thc the EECW pumps that arc shared among the units.

Table 2-2 (Page 2 of 2). Comparison of Equipment Status in the Different Plant Configurations System Equipment Status ln Unit 2 PRA Equipment Status in the Plant Conliguration Equlpmcnt Status In Multi-Unit PRA with Unit I Remaining in Layup Control Rod Drive Hydraulic Unit 2 CRD pump 2A is nomtally running, and the Unit 2 CRD pump 2A is normally running, and thc Unit 2 CRD pump 2A is normally running, and the common control CRD swing pump is dedicated to common control CRD swing pump is shared by common control CRD swing pump is dedicated to Unit 2. Units I and 2. Unit 2. Unit 3 CRD pump 3A is normally running with standby pump 38 dedicated to Unit 3.

RHR Cross~nnection and Crossmnnectlng a selected portion of the RHR Cross~nnectlng between Units 2 and I, and Crosswonnccting between Units 2 and 3 is Standby Coolant Supply systems from Unit 2 to Unit I Is available. between Units 2 and 3 are available. dependent on the status of Unit 2.

Residual Heat. Removal Service Four RHRSW pumps arc designated to provide Four RHRSW pumps are designated to provide Four RIIRSW pumps are designated to provide Water RHR function, and four RHRSW pumps are swing RHR function, and four RHRSW pumps are swing RHR function, and four RIIRSW pumps ar>> swing pumps. Thc latter can replace designated EECW pumps. The latter can replace designated EECW pumps. The latter can replace designated EECW pumps when their corresponding EECW pumps are pumps when their corresponding EECW pumps are pumps when their corresponding EECW pumps ar>>

taken oA'-line. taken off-line. taken olf-line.

Emergency Equipment Cooling The EECW north and south header am each The EECW north and south header are each The EECW north and south header are each Water supplied by two RHRSW pumps with one pump ln supplied by two RHRSW pumps with one pump in supplied by two RHRSW pumps with one pump in each header normally running. each header normally running. <<ach hcadcr normally running.

Table 2-3. Summary of Potential Impact on Systems and Structures Associated with Unit 3 System Success Initiating Plant System or Structure Criteria or Event Model Systems Analysis Frequency Electric Power System Control and Service Air System X Raw Cooling Water System Turbine Building'nd Radwaste Building Reactor Building Closed Cooling Water System X Reactor Building (Secondary Containment System)"

Condenser Circulating Water System X Pumping Station (Intake Building)

Control Rod Drive Hydraulic System RHR Cross-Connection and Standby Coolant Supply System X Residual Heat Removal Service Water System Emergency Equipment Cooling Water System X

~impacts natu'nd frequency of turbine flood.

"May impact local manual operations in reactor building.

C

~ I ~ I

~ '

I ~

! ~ ~ ~

~

~ ~

~ ~ I ~ ~  ! ~

~ ~ ~ ~ ~ ~ a

~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~

' ~ ~ ~ ~ ~ II ~ ~  ! ~ ~ ~ ~ II ~

II I ~

~ ~ I ~ ~ II ~ ~ ~ ~ ~ ~

II I

~ ~ II

~ I ~ ~ ~ ~

~ ll '

~ II

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ I ~ '

0 - ' ~ ~ ~ ~ ~ I I ~

~ ~ ~ ~ ~ ~ ~ ~ ~

! ~ ~ ~ ~ ~ ~ ~ ~ I~ ~ I ~ ~

~ ~

' ~ ~, I ~, ~

~ ~ ~ ~ I ~ ~ I ~

~ I ~ ~

~ ~ ~

~ ~

II'

~

~

~ ~ ~ I ~ ~ ~ ~ ~ ~

~ ~ ~ ~ I ~ ~

~

~ I ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~ I ~

~ ~ ~ ~

~ I 0

~ I a I ~

~

~

0

~ I ~

~ ~ ~ ~ ~ ~ I ~ I ~ ~ I I I ~ I ~ ~ I ~, I ~ ~ . I . ~ . -

~

0

. . ~ . I

~, II

~ ~ ~ ~ ~ ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ I ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ I' ~ I ~

' ~ I II ~ ~ ~

~

~ ~

' ~ ~  ! ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~

' ~ ~ ~ . ~ ~ ~ ~

I ~ ~ ~ ~ ~ ~ ~ ~ I I e ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~

~ ~ ~ I ~ ~ ~ ~ I ' ~

~ ~

~ ~ I ~ ~ ~ ~ ~ ~

~ ~ ~

a ~ ~ ~ I ~ ~ I ~ ~ I ' ~ ~

I ~

~ ! ~ I

~ ~ I ~ I '

f 1 t *

~

I h

II h t I I I I ~

II I ~ I I ~

~ ~ ~ 0

~

I ~ ~ 'I ~ ~ ~ ~ ~ I~ ~

~ ~ ~ I , , ~

0 '

~ ~ ~ I ~ I

~ ~, ~

~ I

~ ~ ~

~ ~ I, ~ ~

~ ~ I ~ I ~

~ ~ ~ ~ ~ ~ ~ I ~ ~ I ~ ~ ~ I '

~ ~

~ ~ 'I I II ~ II ~ ~ ~ ~

~ ~ ~ ~ I ~ ~ I

~ ~ ~ ~ ~ ~ ~

I ~

~ ~ I ~

~ ~ ~ ~

I ~ ~ I ~ ~ ~

I I ~

~ ~ ~ ~

~ ~ I I ~

I ~ ~

~ I ~ ~

I ' ~ I ~ ~ ~

~ ~

~ I

\ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ I ~

~

I ~ ~ ~ ~ ~ ~ I I I I ~ ~ I ~ ~ ~

I ~

~ ~ ~ ~ ~ ~ ~ ~ ~

I ~ ~

' \ '

I ~ I ~ I '

~ ~ 0 ~

~ ~

~ ~

~ Ih I

~

I .I

~

~

I

~

~

~ I I

~ I

~

'I I

~

~

~

II ~ I h ~ ~

~

~ I I I

~ ~ ~ ~ I e~ ~

~

' ~

~ ~ ~ ~ ~

~ ~ I ~

~ ~

0 ~

' 0

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ I I ~ 'I I~ ~ ~ ~ I I~ ~ ~ ~

I

~ ~

' ~ ~ ~ ~ I

'a Table 2-4 (Page 3 of 4). Success Criteria for Plant Configuration Under Consideration System or Top Success Criteria for Units 2 and 3 Impact on PSA Event iVIotPel'"

Initiating Event Rev. 1 I.O. 02 PRA Success Criteria iVfulti-UnitPRA Success Critet ia for Units 2 and 3 with Unit 1 Event with Unit 1 Remaining in Layup Remaining in Layup II Reactor Building N/A Isolate all three reactor zones and the A top event (ACM) is used to specify The new top event (ACM, the same as An accident in Unit 2 may impact the (Secondary common refueling zone. degraded scenarios on other unit(s) has in the Unit 2 PSA) introduced in the habitability of the Unit 3 reactor Containment) been added representing a flag for those PRA has been implemented 'ulti-Unit building. This would then limit the events that may involve reactor building in the current analysis to specify when a capability of remote manual actions by entry. degraded scenario occurs on Unit 2, thus operators in response to events at impacting the ability to enter the Unit',3 Unit 3. Event tree structure, logic rules, reactor building. as well as new operator assessment from

! Multi-Unit PRA are applicable to this plant configuration.

Pumping Station FLPH1 N/A N/A N/A The plant model already considers that (Intake Building) four different sets of pumps could be lost due to this initiator. The initiating event frequency considers the contribution by three units.

Control Rod Drive N/A The control rod drive hydraulic system The success criteria remains the same. The control rod drive hydrauhc system The model developed for the Rev. 1 Hydraulic is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to act as a The system analysis was changed to is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to act as a I.O. P2 PRA is applicable.

source of vessel makeup for reactor reflect possible assignment of pump IB source of vessel makeup for reactor level control. Depending on the to Unit 2.. level control. Depending on the circumstances, either pump 2A is circumstances, either pump 3A is sufficient for, makeup, or pumps 2A sufficient for makeup, or pumps 3A and 1B ("enhanced" flow) must act and 3B ("enhanced" flow) must act together. together.

RHR Cross- N/A I. Unit 1 RHR pumps 1B and ID can In addition to Rev.',1 LO. 02 PRA Instead of the two options available to The model takes credit for RHRSW Connection and be aligned to support Unit 2 success criteria, the following are support Unit 2, only the following is I pumps B1 and B2 for Unit 3 standby Standby Coolant suppression pool cooling. available to support Unit 2: available to support Unit 3: coolant supply, and RHR pumps 2B Supply 2. RHRSW pumps Dl and D2 are 1. RHRSW pumps B1 and B2 are 1. RHRSW pumps Bl and B2 are and 2D for Unit 3 suppression pool available to align to the Unit 2 RHR available to ahgn to Umt 2 RHR available to align to Unit 3 RHR cooling and alternate injection I

loop I header providing an alternate loop II header',providing additional loop I header providing additional standby coolant supply. 'tandby coolant supply. standby coolant supply.

2. Unit 3 RHR pumps 3A and 3C can 2. Unit 2 RHR pumps 2B and 2D can be aligned to support Unit 2 be aligned to support Unit 3 suppression pool cooling. suppression pool cooling.

However, the availability of the Unit g RHR system is dependent on the status of Unit 2.

G8'iZ~ggZ g KTVA&0048a.DOC.06/04/96

0 Table 2-4 (Page 4 of 4). Success Criteria for Plant Configuration Under Consideration Impact on PSA Event Model Success Criteria for. Units 2 and 3 System or Top Multi-Unit PRA Success Criteria for Units 2 and 3 with Unit 1 Initiating Event Rev. 1 I.O. fQ PRA Success Criteria with Unit 1 Remaining in Layup Event Remaining in Layup I

At least two RHR,purnPs suPPlying One pump per unit (not on same header) Because the trains of RHRSW are RHR Service N/A At least one of the four RHR heat exchangers must be supplied with cooling water to the associated heat for non-ATWS conditions. For ATWS modeled separately in the support tree, Water i exchangers (for transients only). For a II conditions, four RHR heat exchangers the systems analysis will not change.

cooling water from an associated RHRSW pump for shutdown cooling. other events, the m~ccess criteria is the are required. The event tree modeling accounts for.

same as the Rev. l I.O. P2 PRA. the use of specific pumps by specific For ATWS conditions, all four RHR units (heat exchangers). The event tree heat exchangers with cooling water from the associated RHRSW pump are logic rules account for the RHRSW available fer suppression pool cooling. swing pumps to EECW. Specific logic rules address the requirement for four (The model developed requires all three RHR heat exchangers.) pumps in ATWS scenarios.

Emergency N/A Two of the four EECW pumps must The success crite a are effected if Two pumps not on same end of a With two units fueled, the availability of Units 1 and 3 re ain in operation and header. RHRSW pumps to replace EECW Equipment operate for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

the diesel generators are not running. pumps that require maintenance will be Cooling Water The flow p aths for three unit o p eration limited. The system model remains the are such that thrq out of four pumps are same as the trains are modeled in four required. An alternate criteria is for the separate top events. For two-unit p,)

model to look at Pe successful operation shutdown scenarios (e.g., those initiated of RCW and if ROW is available (meets by LOSP), the new system success acce tance criteria then two of four criteria are implemented via the event EECW pumps is acceptable. tree logic'rules. The event tree logic rules account for the RHRSW swing pumps possibly being aligned to EECW.

A,N87EC APEB7UAE',

CARD Nce Available op ApG) tQr0 CGNl

~Qg 90>

2-12

'TVAQ40048a.DOC.06/0486

~g ~

M t

I<<

3. MODIFICATIONS MADE TO PREVIOUS PSA MODELS The risk models in the current study were derived in large part from models developed for previous Browns Ferry risk assessments. Specifically, the Unit 3 PSA took advantage of the Unit 2 PSA (Reference 3) as well as information developed for the Multi-Unit PRA (Reference 2). The Unit 3 PSA started with the Unit 2 PSA models and made appropriate changes to reflect unit-specific system configurations and dependencies.

Changes made to the event model are discussed first. These changes involve changes to the electric power support event trees, changes to reflect differences in interunit RHR crosstie capability, the redefinition of selected initiating events, and changes to reflect Unit 3's dependencies on support systems.

Following the discussion of event model changes, specific system model analyses that were conducted are presented. These system model additions include the analyses of the availability of additional Unit 3 electric boards as well as an update of the analyses of the availability of battery boards 1, 2, and 3.

3.1 EVENT MODEL 3.1.1 ELECTRIC POWER SUPPORT EVENT TREES In the Unit 2 PSA (Reference 3), the status of key electric power boards were addressed in two linked event trees ordered as follows: ELECT12 and ELECT3. The former primarily addressed boards that are nominally associated with Unit 1 or Unit 2 equipment, and the latter addressed boards nominally associated with Unit 3. The specific top events that make up these two trees are identified in Tables 3-1 and 3-2.

Given the large number of top events in the Browns Ferry risk models, it was desirable to reorder the top events for the Unit 3 electric power support event trees to facilitate the later comparison of Unit 3 sequences with those &om the Unit 2 PSA (Reference 3). Also, additional top events were necessary for the Unit 3 PSA. In the Unit 3 PSA, therefore, the status of key electric power boards are addressed in three linked event trees ordered as follows: ELECT3, ELECTI2, and ELECT3P. The event tree ELECT3P contains the new .

top events of interest for the Unit 3 PSA. '1'he specific top events that make up these three trees are identified in Tables 3-3 through 3-5.

A comparison of the two sets of trees reveals the following observations. Top events associated with offsite power. and recovery of power at the unit boards {OG5, OG16, OUB, and ELECT30) have been moved from ELECT12 to ELECT3. The top event governing the common cause coupling of Units 1 and 2 and Unit 3 diesel generators has been relocated from ELECT12 to ELECT3. Specific top events have been added to the ELECT3 and ELECT12 models for Unit 3 to address recovery of the diesel auxiliary board associated with room cooling for diesel generators 3ED and diesel generator C, respectively. Top

Events VB42C (the 4-kV unit board 2C) and DQ (120V I&C bus 2b) were eliminated from ELECT12.

Top Event DG (250V DC control power for 4-kV shutdown board 3EC and 480V shutdown board 3EB) was relocated from tke ELECT3 tree to the Unit 3 ELECT12 tree. Top Events DJ, DN, RC, CPREC, and UBREC (120V AC Unit 2 preferred power, 120V I&C bus 2A, 2SOV RMOV board 2B, control power recovery, and unit board backfeed, respectively) were eliminated from ELECT3.

3.1.2 ELECTRIC POWER EVENT TREE SPLIT FRACTION SYMMETRIES In the Unit 2 PSA, the eight diesel generators were queried in the following order, given a loss of offsite power:

A

~ D

~ B

~

C

~

3EA

~ 3EC

~ 3EB

~ 3ED The evaluation of the unavailability of each diesel generator considers the status of all diesel generators previous queried, In other words, the split &action chosen for the top event associated with diesel generator B depends on the status of diesel generators A and D. Ifboth diesel generators A and D failed, for example, diesel generator B may have a different failure likelihood than if diesel generators A and D were successful, or ifonly A or D were successful. The ordering of the diesel generator top events, therefore, is important in the quantitative scenario development. In the Unit 3 PSA, the availability of the diesel generators are queried in the following order.

3EA 3EC 3EB 3ED A

D B

C Advantage was taken of the Unit 2 PSA analysis of diesel generator split fractions by assigning them in the Unit 3 PSA according to the order they are queried. In other words, for example, in the Unit 3 PSA, split fractions assigned to diesel generator 3ED (the fourth diesel generator queried) are those developed for diesel generator C in the Unit 2 PSA. Similar substitutions are made for the corresponding split fractions for the fuel oil transfer pumps.

Likewise, in the Unit 2 PSA (Reference 3), the three battery boards are asked in the following order:

Battery Board 1 Battery Board 2 Battery Board 3 In the Unit 3 PSA, they are asked in the following order:

Battery Board 2 Battery Board 1 Battery Board 3 In this study, the analysis performed for the Unit 2 PSA for the battery boards was utilized by assigning the split fractions previously developed for battery board 1 to battery board 2 and those developed for battery board 2 are assigned to battery board 1.

3.1.3 RECOVERY OF DIESEL GENERATOR 3ED In the Unit 2 PSA {Reference 3), the possibility of recovery of diesel generator C was considered given the failure of diesel generators A, B, and D. Diesel generators A, B, and D have the ability to power an auxiliary board that is required for cooling of the A, B, C, and D diesel rooms. Diesel generator C therefore has a dependency on diesel generators A, B, and D. Recovery is possible if an alternate means of room cooling, such as opening the room door, is accomplished in a timely manner.

A similar situation is found in the Unit 3 PSA. 'Diesel generator 3ED has a dependency on diesel generators 3EA, 3EB, and 3EC, through an auxiliary board that provides room cooling.

Allowance is made in the Unit 3 PSA for recovery of cooling to diesel generator 3ED given failure of diesel generators 3EA, 3EB, and 3EC.

3.1.4 USE OF DIESEL GENERATOR C TO SUPPORT UNIT 3 if Under speciQc conditions in the Unit 2 PSA (Reference 3), specifically at least two other Unit 3 diesel generators are available, credit is taken for diesel generator 3ED to support Unit 2. In a like manner in the Unit 3 PSA, if at least two other Units 1 and 2 diesel generators are available, credit is taken for diesel generator C to support Unit 3.

3.1.5 RHR CROSSTIE Division II of Unit 1 RHR can crosstie to Division I of Unit 2 RHR. Likewise, Division I of Unit 3 RHR can crosstie to Division II of Unit 2 RHR. The Unit 2 PSA considered both of these possibilities. An analysis assumption was imposed that disallowed the crosstie from Unit 3 if the scenario was of a multi-unit nature and Unit 3 was initially at power. Since the crosstie from Unit 1 has no other function other than to support Unit 2, no multi-unit restriction is placed on the Unit 1 to Unit 2 crosstie.

From Unit 3's point of view, Division II of Unit 2 RHR can crosstie to Division I of Unit 3 RHR. This is the only RHR crosstie available to Unit 3. In a manner similar to that employed in the Unit 2 PSA, this crosstie is disallowed by analysis assumption if the scenario is of multi-unit nature and Unit 2 was initially at power.

3.1.6 REDEFINITION OF INITIATINGEVENTS The same initiating events are considered for Unit 3 as were considered for Unit 2 with four minor exceptions. These exceptions have to do with redefining the nature of two initiators.

The initiator "LSOOU2" (loss of 500-kV power to Unit 2) in the Unit 2 PSA was replaced by "L500U3" (loss of 500;kV power to Unit 3). Likewise, impact of the initiator "LUPS" (loss of unit preferred power) was charged from the loss of Unit 2 unit preferred power to the loss of Unit 3 preferred power. Likewise, the impact of initiators "LICA"and "LICB" were changed to the loss of I&C bus 3A and I&C bus 3B, respectively.

3.1.7 DEPENDENCIES The dependency matrices developed for the Multi-UnitPRA (Reference 2) served as the starting point for the identification of Unit 3 dependencies on support systems. As these dependencies were being reviewed, their impact on the split &action assignment rules developed for the Unit 2 PSA were noted. These impacts are summarized in Table 3-6, which,was utilized in the development of split fraction assignment rules for the Unit 3 PSA.

3.2 SYSTEMS ANALYSES The system analyses performed for the Unit 3 PSA includes the modeling of those electric power systems required to support the successful operation of the Unit 3 mechanical support systems and &ontline systems for accident mitigation. In addition, the availability of battery boards I, 2, and 3 were reanalyzed due to the modification of electric power systems event tree models associated with these battery boards. The sections below discuss the new analysis.

3.2.1 UNIT 3 ELECTIGC POWER SYSTEM MODELS 3.2.1.1 To Event UB43C 4-kV Unit Board 3C Top Event UB43C models 4-kV unit board 3C. The unit board is ~xessful ifpower is available at the board for the required loads for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3.2.1.2 To Event CBB 4-kV Common Board B Top Event CBB models 4-kV common board B. The common board is successful ifpower is available at the board for the required loads for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3.2.1.3 To Event UBX 4-kV Unit/Common Board System Top Events UB42C and CBB are combined to model common cause failures. The combined/

intermediate top event for this modeling purpose is UBX. The unit/common board system model is used to evaluate the unavailabilities of the boards. These unavailabilities are used to quantify the conditional split fraction values for Top Events UB42C and CBB.

3.2.1.4 To Event RJ3 480V RMOV Board 3C Top Event RJ3 is used to model the 480V RMOV board 3C power systems. Top Event RJ3 is successful if 480V RMOV board 3C remains available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3.2.1.5 To Event RK3 480V RMOV Board 3D Top Event RK3 is used to model the 480V RMOV board 3D power systems. Top Event RK3 is successful if 480V RMOV board 3D remains available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3.2.1.6 To Event RL3 480V RMOV Board 3K Top Event RL3 is used to model the 480V RMOV board 3E power systems. Top Event RL3 is successful if480V RMOV board 3E remains available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3.2.1.7 To Event MOVU3 Common Cause Failure on 480V RMOV Boards 3D and 3E Top Events RK3 and RL3 have been combined to model common cause failures. The combined top event is called MOVU3. The RMOV boards system model is used to evaluate the unavailabilities of the RMOV boards. These unavailabilities are used to quantify the conditional split fraction values for Top Events RK3 and RL3.

3.2.1.8 To Event DJ3 120V AC Unit 3 Preferred Power Top Event DJ3 is used to model the Unit 3 120V AC unit preferred AC power subsystem.

The Unit 3 120V AC unit preferred power subsystem is success&1 if it suppHes power for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3.2.1.9 To Event UNTPFD3 120V AC Preferred Power Combined To Event Top Events DI (120V AC Unit 1 preferred power) and RJ3 have been combined to model common cause failures and Technical Specifications dependencies. The combined or intermediate top event is called UNTPFD3. The 120V AC preferred power system model is used to evaluate the unavailabilities of the 120V AC Unit 1 and Unit 3 preferred power.

These unavailabilities are use to quantify'he conditional split fraction values for Top Events DI and DJ3.

3.2.1.10 To Event DN3 120V AC I&C 3A Power System Top Event DN3 is used to model the 120V AC I&C 3A power system. The 120V AC I&C 3A power system is successful if it is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3.2.1.11 To Event DO3 120V AC INC 3B Power S stem Top Event DO3 is used to model the 120V AC I&C 3B power system. The 120U AC I&C 3B power system is successful if it is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3.2.1.12 To Event RB3 RMOV Board 3A Power S stem Top Event RB3.is used to model the 250V RMOV board 3A power system, The 250V RMOV power subsystem is successful if it is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The 250V RMOV board 3A is powered by 250V battery board 3.

3.2.1.13 To Event RC3 RMOV Board 3B Power S stem Top Event RC3 is used to model the 250V RMOV board 3B power system. The 250V RMOV power subsystem is successful if it is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The 250V RMOV board 3B is powered by 250V battery board 1.

3.2.1.14 To Event RD3 RMOV Board 3C Power S stem Top Event RD3 is used to model the 250V RMOV board 3C power system. The 250V RMOV power subsystem is successful ifit is available for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The 250V RMOV board 3C is powered by 250V battery board 2.

MODELING OF BATTERY BOARDS AND 3

'.2.2 1, 2, The models for the battery boards were revised to reflect the transfer of loads Born a battery board when the battery board is removed Rom service for maintenance. In addition, the model was refined to more realistically treat combinations of maintenance and failures on separate boards. Another change in the modeling of the battery boards is the elimination of the contribution'to the battery board unavailability due to the extended maintenance outage of a battery board during plant refueling shutdown. It was previously assumed that the battery board can be removed &om service for maintenance purpose for a duration equal to about 25% of the refueling outage time. This extended outage duration of a battery board is not permitted by the plant Technical Specifications and models were updated to reflect actual plant practices..

The availability of battery boards 1, 2, and 3 is represented in the plant model by Top Events DE, DH, and DG, respectively, found in the electric power support event tree ELECT12. The order of the top events questioned in the event tree is DH, DE, and DG.

The reason for questioning the top events in this order is that the plant model assumes the shifting of the loads of battery board 1 (Top Event DE) or 3 (Top Event DG) to battery

board 2 (Top Event DH) whenever battery board 1 or 3 is removed from service for maintenance purposes.

To ensure a contribution from simultaneous maintenance of more than one battery board to the unavailability of two or more of the battery boards does not occur, an intermediate top event fault tree model representing all three battery boards was constructed using the existing individual battery board fault tree models. Only top event alignments for the removal of one of the battery boards for maintenance were defined. This top event model, therefore, determines the unavailability of two battery boards due to hardware failure of both battery boards, and hardware failure of one battery board and maintenance of the second battery board. The model also determines the unavailability of three battery boards due to hardware failure of two of the battery boards and maintenance of the third battery board. In addition, the intermediate top event also determines the unavailability of an individual battery board due to all causes. The conditional split fractions for Top Events DE, DH, and DG are defined in terms of the unavailabilities or split fractions for battery boards 1, 2, and 3 evaluated from the intermediate top event model. These split fractions are used in the plant model quantification for event sequences in which battery board 2 (Top Event DH) is determined to be unavailable.

To model the shiNng of the loads &om battery board 1 or 3 to battery board 2 when the battery board 1 or 3 is taken out of service for maintenance purposes, a new set of intermediate and conditional split fractions for Top Events DE and DG were defined. The new split &actions or unavailabilities do not contain any contributions &om maintenance activities for battery boards land 3. Only contributions &om hardware failures are included in these new'split &actions. The split fractions are used in the plant model quantification for event sequences in which battery board 2 is available. This implies that when battery board 2 is available, battery boards 1 and 3 can only be unavailable due to hardware failures.

Maintenance of battery board 1 or 3 does not contribute to the unavailability of Top Event DE or DG for event sequences in which battery board 2 {Top Event DH) is available due to the shifting of the loads &om the battery board 1 or 3 to battery board 2. However, for event sequences in which battery board 1 is not available, then maintenance contributions to the unavailability of battery boards 2 and/or 3 are included.

Table 3-1 (Page 1 of 2). Top Events in Tree ELECT12 as Found in the Unit 2 PSA Top Event Description OGS 500-kV Offsite Grid OG16 161-kV Offsite Grid OUB Operator Restores Power to Unit Boards UB41A 4-kV Unit Board 1A UB41B 4-kV Unit Board 1B UB42A 4-kV Unit Board 2A UB42B 4-kV Unit Board 2B SHUT1 Shutdown Bus 1 SHUT2 Shutdown Bus 2 FA Fuel Oil System for Diesel Generator A Diesel Generator A FD Fuel Oil for Diesel Generator D GD Diesel Generator D

'B

. Fuel Oil System for Diesel Generator B GB Diesel Generator B FC Fuel Oil System for Diesel Generator C ODSB Operator Aligns Power to Diesel Auxiliary Board for Diesel Generator C Diesel Generator C EPR30 Recovery Offsite Power in 30 Minutes DGC Common Cause Coupling of Units 1 and 2 and Unit 3 Diesel Generators 4-kV Shutdown Board A RQ 480V Shutdown Board 1A 480V RMOV Board 1A Power RM 480V Diesel Auxiliary Board A Power DA 250V DC Control Power for 4-kV Shutdown Board A and 480 Shutdown Board lA DE Battery Board 1

Table 3-1 (Page 2 of 2). Top Events in Tree ELECT12 as Found in the Unit 2 PSA Top Event Description RD 250V RMOV 2C AB 4-kV Shutdown Board B RS 480V Shutdown Board 2A 480V RMOV Board 2A Power DC 250V DC Control Power for 4-kV Shutdown Board B and 480V Shutdown Board 2A DH Battery Board 2 UB42C 4-kV Unit Board 2C Power 250V RMOV Board 2A DI 120V AC Unit I Preferred Power DK 120V RPS Bus "A" AC 4-kV Shutdown Board C 480V Shutdown Board IB 480V RMOV Board IB Power..

DB 250V Control Power for Shutdown Board C and 480V Shutdown Board IB 4-kV Shutdown Board D 480V Shutdown Board 2B 480V RMOV Board 2D Power 480V RMOV Board 2E Power 480V RMOV Board 2B Power 480V RMOV Board 2C Power 480V Diesel Auxiliary Board B Power DL 120V RPS Bus "B" DD 250V DC Control Power for Shutdown Board D and 480V Shutdown Board 2B DO 120V I&C Bus "2B"

Table 3-2. Top Events in Tree ELECT3 as Found in the Unit 2 PSA Top Event Description UB43A 4-kV Unit Board'3A UB43B 4-kV Unit Board 3B FE Fuel Oil System for, Diesel Generator 3A Diesel Generator 3A A3EA 4-kV Shutdown Board 3EA and 480V Shutdown Board 3A Power 480V Shutdown Board 3A RO 480V Diesel Auxiliary Board 3EA Power DG Battery Board 3 DF 250V DC Control Power for 4-kV Shutdown Board 3EB DJ 120V AC Unit 2 Preferred Power DN 120V INC Bus "2A" RC 250V RMOV Board 2B Fuel Oil System for Diesel Generator 3C Diesel Generator 3C A3EC 4-kV Shutdown Board 3EC and 480V Shutdown Board 3B Fuel Oil System for Diesel Generator 3B GF Diesel Generator 3B A3EB 4-kV Shutdown Board 3EB RY 480V Shutdown Board 3B 480V Diesel Auxiliary Board 3EB Power FH Fuel Oil for Diesel Generator 3D GH Diesel Generator 3D A3ED 4-kV Shutdown Board 3ED SDREC Shutdown Board Recovery CPREC 250V DC Division II Control Power Recovery UBREC Backfeed "B" Unit Boards for Shutdown Boards OX Operator Recovery Actions

Table 3-3. Top Events in Tree ELECT3 as Used in this Study Top Event Description OG5 500-kY Offsite Power Grid OG16 161-kY Offsite Power Grid OUB Operator Restores Power to Unit Boards UB43A 4-kV Unit Board 3A UB43B 4-kV Unit Board 3B FE Fuel Oil System for Diesel Generator 3A GE Diesel Generator 3A FG Fuel Oil System for Diesel Generator 3C Diesel Generator 3C Fuel Oil System for Diesel. Generator 3B GF Diesel Generator 3B FH Fuel Oil System for Diesel Generator 3D ODSB Operator Aligns Power to Diesel Auxiliary Board for Diesel Generator 3D GH Diesel Generator 3D EPR30 Recover Offsite Power by 30 Minutes DGC Possibility of Global Common Cause Failure of DGS A3EA 4-kV Shutdown Board 3EA and 480V Shutdown Board 3A Power 480V Shutdown Board 3A 480V Diesel Auxiliary Board 3EA Power DF 250V DC Control Power for 4-kV Shutdown Board 3EB A3EC 4-kV Shutdown Board 3EC and 480V Shutdown Board 3B A3EB 4-kV Shutdown Board 3EB RY 480V Shutdown Board 3B 480V Diesel Auxiliary Board 3EB Power A3ED 4-kV Shutdown Board 3ED

Table 3-4 (Page 1 of 2). Top Events in Tree ELECT12 as Used in this Study Top Event Description UB4IA 4-kV Unit Board IA UB41B 4-kV Unit Board 1B UB42A 4-kV Unit Board 2A UB42B 4-kV Unit Board 2B SHUTI Shutdown Bus I SHUT2 Shutdown Bus 2 FA Fuel Oil System for Diesel Generator A GA Diesel Generator A FD Fuel Oil for Diesel Generator D GD Diesel Generator D FB Fuel Oil System for Diesel Generator B GB Diesel Generator B FC Fuel Oil System for Diesel Generator C ODSBU3 Operators Recover Cooling to Diesel Generator Room C Diesel Generator C 4-kV Shutdown Board A RQ 480V Shutdown Board IA 480V RMOV Board IA Power 480V Diesel Auxiliary Board A Power DA 250V DC Control Power for 4-kV Shutdown Board A and 480 Shutdown Board IA 4-kV Shutdown Board B 480V Shutdown Board 2A 480V RMOV Board 2A Power DC 250V DC Control Power for 4-kV Shutdown Board B and 480V Shutdown Board 2A DH Battery Board 2 DE Battery Board I

0 Table 3-4 (Page 2 of 2). Top Events in Tree ELECT12 as Used in this Study Top Event Description DG Battery Board 3 RC 250V RMOV Board 2B 250V RMOV Board 2A 250V RMOV Board 2C DI 120V AC Unit 1 Preferred Power DK 120V RPS Bus "A" AC 4-kV Shutdown Board C 480V Shutdown Board 1B 480V RMOV Board 1B Power DB 250V Control Power for Shutdown Board C and 480V Shutdown Board 1B 4-kV Shutdown Board D RT 480V Shutdown Board 2B 480V RMOV Board 2D Power 480V RMOV Board 2E Power 480V RMOV Board 2B Power 480V RMOV Board 2C Power 480V Diesel Auxiliary Board B Power DL 120V RPS Bus "B" DD 250V DC Control Power for Shutdown Board D and 480V Shutdown Board 2B SDREC Recovery of Power at a 4-kV Shutdown Board OX Operator Recovery Actions

Table 3-5. Top Events in Tree ELECT3P as Used in this Study Top Event Description 250V RMOV Board 3A RC3 250V RMOV Board 3B RD3 250V RMOV Board 3C UB42C 4-kV Unit Board 2C CBB 4-kV Common Board B UB43C 4-kV Unit Board 3C 480V RMOV Board 3C DO3 120V I&C Bus 3B DN3 120V I&C Bus 3B DJ3 120V Unit 3 Preferred Power RK3 480V RMOV Board 3D RL3 480V RMOV Board 3E

Table 3-6 (Page 1 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macrosfl'op Events Replace With HPGTET Macros L8FSUP DH DG HPISUP RCISUP RD RD3 DJ DJ3 RC RC3 L8HSUP L8RSUP RD RD3 RC RC3 POWER RX RY PWR4 RB RB3 RC RC3 RD RD3 DE DH PWR6 RB RB3 RC RC3 RD RD3 QE DH Top Events RB RB3 RC RC3 DB DA DD DF RB RB3 RC RC3 DB DA DD DF AB DJ3 UB42A UB43A UB42B UB43B DH DG NOGB NOGE

Table 3-6 (Page 2 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With BVR UB42A UB43A UB42B UB43B IVO RH RX RI RY RB RB3 RC RC3 NOGB NOGE NOGD NOGG IVC RH RX RI RY RB RB3 RC RC3 NOGB NOGE NOGD NOGG SL RS RX DC DE RT RY DD DG RC RC3 RH RX.

RI RY NOGB NOGE NOGD NOGG CD UB42A UB43A UB42B UB43B UB42C UB43C DH DG DJ DN FWC DJ D33 DN DN3 LSF NOGB NOGE NOGD NOGG ORF UB42A UB43A UB42B UB43B

Table 3-6 (Page 3 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With HRC RC RC3 RB RB3 RD RD3 EPR6 GA GE GB GF GC GG GD GH HPL GE GB GB GE RCL GA GB GE GA LLOCAl Ma eros CSISUP DA DE AA A3EA DC DF AB A3EB RH RX CSIISUP DB DG AC A3EC DD DH AD A3ED RI RY RPDSUP AD A3ED DD DH RPB SUP AC A3EC DB DG RPCSUP AB A3EB DC OF RPASUP AA A3EA DA DE POWER RX RY LPCI

Table 3-6 (Page 4 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With HXAB RH RX NOGA ,

NOGA HXBB RI RY NOGC NOGC NOGG NOGG HXCB RH RX NOGB NOGB NOGF NOGF DV2SUP DD DF DB DA DV2MIN DD DF DB DA LOOPIRHR U1 U2 Top Events RXS RB RB3 RC RC3 DB DA DD DF AB DJ3 UB42A UB43A UB42B UB43B NOGB NOGE DH DG RH RX RI RY RB3 RC RC3 NOGB 'OGE

'OGD NOGG DV1 RB3 RC RC3 RK RK3 NOGB NOGE NOGD NOGG

Table 3-6 (Page 5 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With DV2 RB RB3 RC RC3 RK RK3 NOGB NOGE NOGD NOGG RL RL3 UB42C UB43C RH RX RC RC3 NOGA NOGE NOGB NOGF RH RX RC RC RB RB3 NOGB NOGF RI RY RB3 NOGC NOGG NOGD NOGH RH RX RPD RI RY RB RB3 RC RC3 NOGD NOGH RH RX RH RX NOGA NOGA HXC RH RX NOGB NOGB RI RY NOGC NOGC NOGG NOGG RH RY NOGD NOGD NOGH NOGH U3 Replace by U2

Table 3-6 (Page 6 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Ru)es Developed for Unit 2 Event Tree Macros/Top Events Replace %ith OSP Ul U2 SP RH RX RC RC3 RI RY RB RB3 SPR RH RX RC RC3 RI RY RB RB3 LPC NOGB NOGF NOGD NOGH RL RL3 RK RK3 CS RB3 RC RC3 CD UB42A UB43A UB42B UB43B DH DG UB42C UB43C LPGTET Macros Yl1 DA DE AA A3EA GA GE SHUT1 UB43A INIT=LSOOU2 INIT=LSOOU3 Y12 DC DF AB A3EB GB GF SHUT1 UB43A INIT=L500U2 INIT=LSOOU3 Y21 DB DG AC A3EC GC GG SHUT2 UB43B INIT=LSOOU2 INIT=LSOOU3

Table 3-6 (Page 7 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With Y22 DD DH AD A3ED GD GH SHUT2 UB43B INIT=LSOOU2 INIT=LSOOU3 RHOK RHOK RXOK ABOK A3EBOK AC A3ECOK A3EAOK RH RX RT RY RIOK RIOK RYOK ADOK A3ECOK+

A3EAOK+

A3EBOK RY RX RBOK RBOK RB3OK RB RB3 DH Delete (CPREC Not Credited)

RCOK RCOK RC3OK RC Delete (CPREC Not Credited)

RKOK RKOK RK3OK ABOK A3EAOK RK RK3 RLOK RLOK RL3OK ADOK A3ECOK RL RL3 RPASUP RHOK RXOK RCOK RC3OK RPBSUP AC ACOK A3EC A3ECOK DB ~

DG RIOK RYOK

Table 3-6 (Page 8 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With RPCSUP ABOK ABOK DC DF RHOK RXOK RBOK RB3OK RCOK RC3OK RPDSUP ADOK ADOK ABED A3EDOK DD DH RIOK RYOK RBOK RB3OK RCOK RC3OK CRDSUP1 UB42C UB43C CRDSUP2 A3EA DA DE CRDSUP3 No Changes HXASUP RHOK RXOK AA AA INIT=LSOOU2 INIT=LSOOU3 HXBSUP RIOK RYOK AC AC A3EC A3EC INIT=LSOOU2 INIT=LSOOU3 HXCSUP RHOK RXOK AB AB INIT=LSOOU2 INIT=LSOOU3 RIOK RYOK AD AD A3ED A3ED INIT=LSOOU2 IMT=LSOOU3 LPCI RKOK RK3OK RLOK RL30K NPIOK No Changes (No Credit for CPREC)

NPIIOK No Changes (No Credit for CPREC)

Table 3-6 (Page 9 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With GTLOOPIRHR Ul U2 GTLOOPIIRHR U3 Delete SPISUP RHOK RXOK NOGB NOGF SPIISUP RIOK RYOK NOGD NOGG Top Events HS UB42A UB43A UB42B UB43B UB42C UB43C DH DG I.C DJ DJ3 JC DJ DJ3 RJ RJ3 NOGA NOGE NOGD NOGF DJ DJ3 R480 RH RX RI RY AD A3ECOK AB A3EAOK AC A3EBOK U3 U3 U2 RY RYOK RIOK RIOK A3EA 'ACOK DE DB A3EB ADOK DF DD RX RI U3AP U2AP U1 Delete

'Table 3-6 (Page 10 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With LPC RKOK RK3OK RLOK RL3OK NOGB NOGG NOGD NOGF CS RHOK RXOK RIOK RYOK RB RB3 RC RC3 SP RCOK RC3OK RBOK RB3OK SPR RCOK RC3OK RBOK RB3OK OSP U3 Delete U1 U2 SDC RB3 RHOK RXOK

'RIOK RYOK OLP RB RB3 DH DG RC RC3 DG DE RB RB3 DH DG RC RC3 DG DE LOCACNTiMT Macros RR12 U3 U2 U1 Delete RR11 U3 U2 U1 Delete U3 U2 U1 Delete RR21 U3 U2

. U1 Delete

Table 36 (Page 11 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With HEAT U3 U2 U1 Delete HEATL U3 U2 Ul Delete Top Events DWS RH RX RI RY NOGD NOGE NOGB NOGG, CIL DN DN3 SGT No Changes PRETREE Macros LSTSUP DH DG DN DN3 DJ DJ3 Top Events MSVC RH RX RI RY RB RB3 RC RC3 ISO RI ZY'C3 RC SIGL Top Events PX1 RC RC3 PX2 RC RC3 RB RB3 LV RC RC3 RB RB3

Table 3-6 (Page 12 of IS). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With MESUPT Top Events DJ DJ3 DD DG RI RY RS RX DC DE RT RY DB DB RR RR DCA DN DN3 DO D03 RH RX RI RY DN DN3 DO DO3 CNTMT Mac ros RR12 U3 U2 Ul Delete RRl 1 U3 U2 Ul Delete U3 U2 UI Delete U3 U2 Ul Delete HEAT U3 U2 Ul Delete U3 U2 Ul Delete Top Events DWS RH RX RI RY NOGD NOGE NOGB NOGG CIL DN DN3

Table 3-6 (Page 13 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree MacrosfI'op Events Replace With SGT No Changes MLOCA2 Macros HPISUP RB RB3 RC RC3 CSISUP DA DE AA A3EA DC DF AB A3EB RH RX CSIISUP DB DG AC A3EC DD DH AD A3ED RI RY RPDSUP AD A3ED DD DH RI RY RB RB3 RC RC3 RPB SUP AC A3EC

. DB DG RB RB3 RPCSUP AB A3EB DC DF RH RX RB'C RB3 RC3 RPASUP AA A3EA DA DE RC RC3 POWER PWR4 RB RB3 RC RC3 RD RD3

Table 36 (Page 14 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree MacrosfI'op Events Replace With PWR6 RB RB3 RC RC3 RD RD3 LPCI HXAB RH RX NOGA NOGA HXBB RI RY NOGC NOGC NOGG NOGG HXCB RH RX NOGB NOGB NOGF NOGF LOOPIRHR Ul U2 Top Events RXS RB RB3 RC RC3 DB DA DD DF AB DJ3 UB42A UB43A UB42B UB43B NOGB NOGE DH DG IVC RH RX RI RY RB RB3 RC RC3 NOGB NOGE NOGD NOGG UB42C UB43C RH RX NOGA NOGA RH RX NOGB NOGB

Table 3-6 (Page 15 of 15). Impact of Unit 3 Dependencies on Split Fraction Assignment Rules Developed for Unit 2 Event Tree Macros/Top Events Replace With HXB RI RY NOGC NOGC NOGG NOGG HXD RI RY NOGD NOGD NOGH NOGH U3 Replace by U2 OSP Ul U2 SP RX RC3 RY RB3 SPR RX RC 'C3 RY RB3 LPC NOGB NOGF NOGD NOGH RL RL3 RK RK3 CS RB RB3 RC RC3 CD UB42A UB43A UB42B UB43B DH DG UB42C UB43C

~. REFERENCES "Browns Ferry Nuclear Plant Unit 2 Probabilistic Risk Assessment Individual Plant Examination," Revision 0, Rl 1 921007838, September 1992.

2. "Browns Ferry Multi-Unit Probabilistic Risk Assessment," R08 950413896, January 1995.
3. PLG, Inc., "Browns Ferry Nuclear Plant Unit 2 Probabilistic Safety Assessment with Unit 3 Operating," prepared for Tennessee Valley Authority, PLG-1112, Revision 1, May 1996.
4. "Browns Ferry Unit 2 Individual Plant Examination Revision 1, Interim Order No. 2,"

R92 950912800, September 1995.

PLG, Inc., "Database for Probabilistic Risk Assessment of Light Water Nuclear Power Plants," PLG-0500, 1989 {Proprietary).

6. Sandia National Laboratories, "Analysis of Core Damage Frequency: Peach Bottom, Unit 2: Internal Event Appendices," Appendix D prepared for U.S. Nuclear Regulatory Commission, NUREG-CR/4550 Volume 4, Revision 1, Part 2 (SAND86-2084), 1989.

APPENDIX A. BROWNS FERRY UNIT 3 PSA UNCERTAINTYANALYSIS The Browns Ferry Unit 3 PSA uncertainty analysis was performed using the group "All" defined in the model BFNU3M. The number of sequences retained in the important sequence file, "ALL.SEQ," was 2,500. The conditional split fractions in the important sequence files were replaced by the corresponding intermediate split fractions, as listed in Table A-I. The tuSKMAN distribution file, CSF.DRA, was updated, incorporating modifications of top events in several systems. In addition, several database variables were developed to represent the distributions of several initiators; this is shown in Table A-2.

The total CDF for the Browns Ferry Unit 3 PSA was calculated with the following results:

Mean 9.13E-06 5th Percentile 1.22E-06 Median 3.49E-06 95th Percentile 1.97E-05

Table A-1 (Page 1 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in Replace SFs in System Split Fractions in SF Group SF Group the Group With DH, DE, DG EP -DHl -DGA -DXGHS

-DH1 -DE1 -DGB -DXGH9

-DGJ -DYGH3

-DE3 - DGK -DYGHS

-DE3 -DYGH1

-DHl -DXGH1 EA, EB, EC, ED EECW -ED34 -EE19

-EC12 -EE18

-EA2 -EE16 EPR30, EPR6 MSC -EPR304 (...) -EPR64 -STA6H4

-EPR302 (...) -EPR63 -STA6H3

-EPR303 (...) -EPR63 -STA6H3

-EPR302 (...) -EPR62 -STA6H2

-EPR301 (...) -EPR62 -STA6H2

-EPR301 (...) -EPR61 -STA6H1

-EPR301 -STA301

-EPR302 -STA302

-EPR303 -STA303

-EPR304

-STA304'DG34 GE, GG, GF, GH EP <<GE1 -GG2 -GF4 -GH4

-GE1 -GF2 -GH3 -DG33

-GH1 -DG31

-GGl -GH2 -DQ32

-GF1 -GH2 -DG32

-GEl -GH2 -DG32

-GHS -DG31

0 Table A-I (Page 2 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in Replace SFs in SF Group System Split Fractions in SF Group the Group %'ith

-GE I -FGI -GFS -GH7 -FG 1 -DG33

-GG3 -GFS -GH7 -DG33

-GEl -GG2 (-FFl) -GH7 *

-FH1 -DG33

-GG1 -GF2 -GH3 -DG33

-GE1 -GG2 -GH3 -DG33

-GE1 -GF2 -DG32

-GGl -GF2 -DG32

-GF1 -DG31

-GG1 -GG2 -GF4 -DG33

-GF3 -DG31

-GG1 -DG31

-GE1 -GG2 -DG32

-GG3 -DG31

-GE1 -DG31 GA, GD, GB, GC EP -GCI -DG1

-GA1 -GC2 -DG2

-GC3 -DG1

-GC6 -DG1

-GB1 -GC2 -DG2

-GA1 -GB2 -GC4 -DG3

-GA1 -GD2 -GC4 -DG3

-GD1 -GB2 -GC4 -DG3

-GAl -FB1 -GCS -FBl -DG2

-GB3 -GCS -DG2

-GA1 -GC2 -DG2

-GA1 -GB2 -DG2

Table A-I (Page 3 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in Replace SFs in SF Group System Split Fractions in SF Group the Group With

-GBI -DGl

-GA1 -GD2 -GB4 -DG3

-GB3 -DGI

-GD1 -GB2 -DG2

-GB6 -DG1

-GD3 -GBS -DG2

-GAI (-FD1) -GBS (-FD I) -DG2

-GDI -DGI

-GAl -GD2 -DG2

-GD3 -DGI

-GA1 -DGI HXA, HXC, HXB, -HXAI -HXC2 -HXBS -HX4 HXD -HXD7

-HXAI -HXC2 -U22 -HXBS -U22 -HX4

-HXD7

-HXC3 -HXB4 -HXD6

-HXDI -HXI

-HXD9 -HXI

-HXB6 -HXI

-HXBI -HXI

,-HXCI -HXI

-HXC3 -HXI

-HXAI -HXI NPI, NPII -NPI I -NPII2 -NP2 PXI, PX2 -PX23 -PXI

-PX11 -PX22 -PXII

Table A-1 (Page 4 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in Replace SFs in SF Group System Split Fractions in SF Group the Group With RCI, HPI RCIC/HPCI -HFI6 -HRSHP1

-HPI1 -HRSHP2

-HPI2 -HRSHPl

-HPI4 -HRSSYl

-RCI1 -HRSRC1 RCL, HPL RCIC/HPCI -RCLl -HPL3 -HRXSYl

-HPL5 -HRXHP1

-HPL3 -HRXSY1

-RCL1 -HIUQ<C1 RPA, RPC, RPB, -RPA1 -RPC2 -RPB3 -RPD4 -RPX4 RPD

-RPA1 -RPC2 -RPD10 -RPX3

-RPBS -RPD9 -RPX2AC

-RPB1 -RPD2 -RPX2AC

-RPA1 -RPD9 -RPX2AC

-RPD9 -RPX1

-RPA1 -RPB6 -RPD10 -RPX3

-RPC3 -RPB6 -RPD10

-RPD10 'RPB6

-RPX2AC

-RPA1 -RPC2 (-HXI) -RPD3 (-HX1) -RPX3

-RPA1 -RPC2 -RPD3

-RPD1 -RPX1

-RPD8 -RPX1

-RPC1 -RPD9 -RPX2AC

-RPC1 -PRD2 -RPX2AC

-RPA1 -.RPD2 -RPX2AC

Table A-1 (Page 5 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in . Replace SFs in SF Group System Split Fractions in SF Group the Group With

-RPA I -RPC2 -U22 -RPB3 -U22 -RPX4

-RPD4

-RPD6 -RPXI

-RPC I -RPB2 -RPD3 -RPX3

-RPB4 -RPD7 -RPX2AC

-RPA1 -RPD10 -RPX2AC

-RPA1 -RPC2 -U22 -RPD10 -U22 -RPX3

-RPCI -HXI -RPD2 -HXI -RPX2AC

-RPB6 -RPXI

-RPBI -RPX1

-RPBS -RPXI

-RPAI -RPC2 -RPX2AC

-RPC3 -RPXI

-RPCI -RPXI

-RPAI -RPXI SW2A, SWIA, -SWI CI SW2C, SWIC

-SW1C7

-SW2CI -NA

-.SWIAI

-SW2A1 -NA S.W2B, SWIB, RHRSW -SW2BI -SWIB2 -SW2D4 -SABCD SW2D, SWID -SWID6

-SWID7 -SB

-SW1D14 -SB

-SWID16 -SB

-SW1D17 -SB

-SWID11 -SB

Table A-1 (Page 6 of 6). Split Fraction (SF) Substitutions to Support Core Damage Uncertainty Calculation for Unit 3 PSA Top Events in Replace SFs in SF Group System Split Fractions in SF Group the Group With

-SW2D1 -SW I D2 -SAC

-SW1D1 -SB

-SW2D I -SA

-SW2D6 -SA

-SW2D7 -SA

-SW2D5 -SA

-SW1B3 -SB

-SWIB1 -SB

-SW2B1 -SW1B2 -SAC

-SW2B1 -SA DJ3 EPS -DJ31 -PRElA EPS -RK33 -MOV1B EPS -RL36 -MOV1B Initiator RBCCW LRBCCW RBCIE

Table A-2. Database Variables Representing Distribution of Initiating Events (Lognormal)

DPD Variable Mean Range Factor Initiating Events HS2 0,085 LOCV PLOC PLFW HS3 0.057 CIV HS4 0.3 2.5 LOFW HS5 0.126 LOPA HS6 0.142 3.5 HS7 0.09 LOSP LSOOPA

AppENMX B. I,ISTING OF TOP 100 SK UKNCES Figure B-l presents a listing of the top 100 sequences for the Unit 3 PSA model.

NODEL Naae> BFNU)H Top.Ranklnl Ee>)uencaa Contrlbutlnl to Group > ALL Frequency 15>53:)0 20 NAY 1996 1LL 0 QJ DAN)JJE SZLTlS EXCEPT SUCCESS Rank Eoenta End Fre>)uency I'ercent No. SeOuence Daacrlptlon Cua rant cad Event a/Coen>ent e State Iper year)

I '1URBINE TRZP - VESSEL INJECTION MITH CADRE WAVAILABLR OIAV I.OIE.O7 I 10 AQIONATIC/NLHUALREACTOR SCRAM FAILURE CONDZTIOHS RELATINO TO STUCK OPEN ERVS (0> 1> 1 ~ 30 SORTS)

STATE 1 RELZEt VALVE SZQCX OPEN

- OPERATOR tAILS TO CONTROL L'tl DQRIN) A)MS 000000000$ 000$ 0000000000000000000000000 00 000000 0000 000$ 0000 000$ ~0~ ~ ~ ~0 ~

2 TURBINE TRIP RPV DEPRESSOR IEAT)OH NZCV 7 52$ oa AQIONATIC/MANUALRRACIOR SCEAN PAILUll OPERATOR tAILS 'ZQ STARt ELC 0$ ~ 00000000000I0000000000000000000000000000000000000000000000000000000 TURBINE TRIP Nllv 2.25$ boa .29 AQIONATIC/MANUALRELCIOR SCEAJI FAILURE ETANDbY LIQUID CONIROl SYSTEM WAVAILLBLR CONDZTIONS RELLTZNO TO ETQCK OPII SRVS )0> 1 ~ 2> 30 SokVS)

STATE 0 RELIlt VALVES EIQCX OPEN eoeeoee000000000000000000000000000000000000000000000000000000000aossos IAJEE Ot RAM CODLING MATER RAN COOLIIK) MATER SZETEN WAVAIL1$LR PIGV 4.49E ~ Oa .25 CONDITIONS RELATZHO TQ STUCK OPEN SRVS IO I, 2, )o SORTS)

NLZN COHDEHElR WAVAILLBLR STATE 1 RlLIRt VALVl STUCK OPEN 1 CND/CHD REYR PWP> INCLQDEE SHORt CYCLE VALVR WAVAILABL RHR PUMP A WAVAIL1BLE VREEEL INJRCZZON MITH CADRE WAVAILABLE RHR tUNt C QNAVAILABLR UNIT 2 TO WIT 3 CROSS CONNECT WAVAIQBLE

- RHR PIBIP $ UNAVAIQBLR OPERATOR FAILS TO RET1BLIEN 'IORUE COOLING RHR PWP D UNAVAIIAbLR RHR LOM PRESSURE INJECTION PAIN UNAVAILABLE 0000 ~ 00000 ~ 000 ~ 0000$ 00000000000000000000000000000000000000000000000000 ~ 0000000000000000000000 OOOO $ 00000000000 ~ I OOOO 5 TOTAL IJJSE Ot OttSITE POHER 500IV OttSITR POHRR 011D PIGX C. ~ 2'8 .25 DO )A UNAVAIQBI LITT 141KV OttS ITS POMlR GRID

- DO )C UNAVAILASLE OPERATOR FAILS TO RESTORE FOMER 'ZQ UNIT BOARDS DO )$ NAVAIQBLS ilV WIT bD )1 WAVAILLBLR DO ID WAVAIQBLE 4EV UJIIT ED 3$ WAVAILABLR

- RECOVER OttSITE POMER BT 30 NINQIRS iKV ED SD 311 AND 410V ED BD )L POHER WAVAILABLR POSSI ~ ILITY OF GLOBAL COIENN CAIJSR FAILURE Ot DGS 410V EHQIZOMN BOARD 31 I

CONDITIONS REQTZ)a) TO SZQCK OPEN ERVS IO> ~ 2> 30 SORVS) 41PV DIESEL AUX BD 3R1 POH1R WAVAIQBLR

~ lV ED BD )RC AND 410V ED BD 3b UNAVAILABLE STATE 0 RELIlF VALVES STUCK O'EN

- tAILUAE TO RECOVER ELRCIRIC BONER )N C HDQRS 4KV ED BD )lb WLVAILLSLE

- 410V ENUIDONH BOARD )$

410V DIESEL AUX SD 3lb PONER UNAVAIQBLE

- 4KV ED BD )ED QJQVAZLABLR 4KV WIT BD ZA WAVAIlABLE 4KV UNIT BD 1$ QNAVLIQBLR 4KV WIT BD 21 WAVAIQBLE 4KV UNIT SD 2$ WAVAIQBLE SRQZDONN BUS 1 WAVAZQBLR SHQIDOMN BQS 2 WAVAILASLS DO 1 WAVAIQBLH DO D WLVAIQBLE DO $ UNAVAILABLE DO C WAVLILASLR 4KV SD ED A WLVAIZABLE 410V SHQZDOMN BOARD 11 410V RJE)V SD )A POMER UNLVAILLBLR 410V DIESEL AQX. BD A POMER QNAVAZIABLE 4KV ED BD ~ UNAVAILABLE 410V SHQIOOHN BOARD 11 410V RNOV SD )L BONER UJILVAIIABLR 120 V RPS SUS 010 WAVAZQBLR 4KV lD SD C WAVAILLBLS

~ EOV SHQIUOHH BOARD 1$

410V R)E)V SD 1$ POMER UNAV11LABLE 4KV SD bD D UNAVAIQBLR 410V EHUIDONN SCAlD 2$

410V RNOV BD )D POMER QJIAVAILABLR

~ ~ OV ENOV BD 2$ BONER WAVAILABLR 440V ENOV BD 2$ PONER WAVAIQBLE

- 410V kHOV BD )C POMER WAVAZQBLS 410V DIESEL AUX SD $ POMER UHAV1ILABLR Figure B-1 (Page 1 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model

HODSL Naoec BFNU)H Top-Rank(nt Sequences contr(buc(nt to Oroup ALL trequency lS:53 )0 20 HAY )994 ALL I ALL DAN)OS CTATSC RZCSPT CQCCECC c

kacuc Ruencs ~ Cno Frequency Percenc No. Sequence Descrlpclon Ouarantea4 Svancs/Coa>>>>ance Scare (per year)

RPS bUS ob>> WAVAILlBLC i120tvVCoe(ON 4

RV UNIT BOARD 2C boARD b 4 RV WIT BOARD )C 440 V RHOV BOARD )C 120 V ISC BUC 3$

120 V 14C SUC 3$

F 40 V RHOV BOARD )D 440 V lHOV BOARD 3t RAM COOLINO MATRR SYCTSH WAVAILABLS ttCN PWP A UNAVllLABLS SCCN tUHP S UNAVAIIABLS RtCN PWP C WAVAILABLR SSCN FUHP D UHAVAZLABLR RX SUIIDINO COHPOMCNT COOL)M) NATCR CYSTRH WAVAZLABLS RRRCM PNO 12 UÃAVAILAbLR RtlCN PWt 11 (CNIla) tQNPI UNAVAILABLt RMRCM PWt b) WAVAZIABLR RNRCN FWP $ 1 IBM)NO PUMP) UNAVAILABLR RNRCM PWP C) WAVAIIABLC RNACM PWP Cl (CMI(a) PWPI UMAVAILABLR RMRCM PWP 02 WAVAIIABLC RNRCM PWF Dl (CMIIa) PWPI UNAVAILABLR PliÃT CONTROL AIR SICTNI WAVAIIABLS DRYMCLL CONTROL ilk SYSTNI WAVAIlABLt CONTAINKCNT ATHOCPMRRZC DILUTION OPRBAIOR PAILS TO RCCOVCR CCCN (START Su(NO PUHPI HSIVC PAIL TO RSHAIN OPSN 1 00)/CMD SSTR PWt, INCLUDSS CBORT CYCLC VALVS NIAVAILABL RCIC WAVAILlSLR LONO TRBH RPCI UÃAVAIIABLRLONO TSRH VSCCSL IN)CCTION NZTN CRUMB WAVAILABLR OPRRATOR tl)LS TO MANUALLY CTART RNR/CORC SPRAY.

RRR PWP Rtl PWt l

tAIMRS TQ RSCOVRR ilOV RHOV BDC UNAVAILlBLt C QNAVAILABLS 2l OR 2$

IT 2 TO UNIT 3 CROSS CONNSCT WAVAILABLR RRR PWP S WAVAILABLR RRR PWP D QÃAVAILABLt OPRRAZQR tAILS TO SCTASIZCN TORUS COOLINO RRR LON PRSCCURS )14)SCTIOM PAIN WAVAIIABLS Iesesoesoaosoeosoeoeseeoooososoee00000000000000000000 0000 IS00000000000000 ~ 00000000000000000000000000S000000000000000 ~ 00 00 ~ 0 ~

0 LOCC OF kAN COOL)NO NATtk RAM COOLIN) MATCR CYCTSH WAVAZLABL't HIAV ST 94t-04 .SC CONDITIONS RSLATINO TO CIQCR OPSN CRVC (0 ~ I ~ 2~ 3>> CORVS) HAIN CCBOSNCRR UklVAILlbLR STATS ~ 0 PSLltt VALVRS CZUCR OPII 1 CND/CND SCTR PWP>> INCMQCS CMO AT CYCLR VALVC UNAVAILABL RCIC UNAVAILABLE (C BOURS) VSCCRL ZNICCTION Mill( CRDRC WAVAILlBLt NPCI WAVAILABLS li Rpv pcpktcccklrATION MOORS) eeesseseaaaosoaosa>>000000000000000000000a0000000000000 ~ I 00 eeaa000000000000000 00000000000 00000000 ~

CLOCUCS Ot ALL HCIVC HCIVS tilL TO RSNAIN OPSN HKCV S.iCC 04 .40 AUTOMATIC/IAMLM.kSACIOR CCRAH FAZMRR RPV DttkRSCUllIATION OPCRATOA Pi(LS TO START SLC 000000aoIooso000os>>I0000000s00000I00o000000000000s0000000000000000000000000000000o0000000000000 000 ~ 00 TOTAL LOSS OF OPFCITS POMCR 5001V OttCITR

)CIRV OttS ITS PONCR ORID OllD PLFX i.9)t ~ 04 .Si DQ )U UNAVAILABLt POMRR

)0 HINUIRC OPCRAIOR Fl)LS TO RSCIORC POMRR ZQ WIT BOARDS BBCOVRR OFFCITS POMCR BY DO A WAVAILABLR iRV UNIT BD )l WAVAZLASLS iCV WIT SD 3$ UNAVAZLABLt DO D WAVAIIABLR DO $ UNAVAZLABLS iIV CD SD )SD WAVAZLABLR CONDITIONS lt(ATINO TQ CIQCK Oi'1Ã CRVS (0>> I ~ 2 )>> CORVC) itV QÃIT BD )A UNAVAILlBLR STATS 0 RSIISF VALVSC CTUCR OPCN itV UNIT BD 1$ WAVAIIABLR FAIMas TO Bccoutk CLsclllC PONSR IN C NOQRB itV WIT BD 1'A WAVAILABLS ilV WIT BD 2$ WAVAZIABLS CMQIQOMII RQC I UÃAVAIIABLS Figure 8-1 (Page 2 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

HODCL Nenes BPMU)H Top-Ranklnt Sequence>> Conrr)buc)nt Co Qroup s ALL trequency ISLS):30 10 HAT 3996 ALL a ALL DA)NOR CTATCS CZCttT CUCCtCS lank --- - ----lvenra-------- ~------ tnd trequency )arcane Ho Sequence De>>or)pc)on Ouaranreed RVente/Coecnentn State lper year)

CHUIDONN BU$ 2 WAVAIL1BLC D2 C WAVAIIASLH 4KV CD SD A QMAVAILASLS

~ CDV CHUIDONM BOARD IA ilOV RHOV SD IA PONCR WAVAILABLC 4IOV DICCIL AUZ. BD A PONIR UMAVAILABLI 4KV CD BD B WAVAILASLC ilOV CHUIDONM SOAlD 21

~ 10V RHOV BD 21 PONCR UMAVAILABLC I'10 V RPS BUC $ A$ WAVAILABLI 4KV CD BD C WAVAILACLC ilOV CHUIDONN BOARD IB 410V tHOV BD IS PONCR UMAVAILABLI 4KV CD BD D UMAV11LACLS

~ IOV CHUIDONN BOAlD lb 4lOV R)N)V SD 1D PONCR WAVAILABLC CCOV RHOV BD 2I PONCR UNAVAILACL'I ilOV RHOV SD 1S PONtl UMAVAILABLC ilOV RHOV SD 1C PONCR UMAVAILABLC ilOV DICCCL AUZ SD b PONIR UNAVAILABLI 110 V RPS BUS 'Ba UNAVAILABLI

  • 4 KV UNIT BOARD 2C 4 KV a>>CKW BOARD B 4 KV UNIT BOllD IC RAH COOL)MD NATIR SICTIH WAVAILABLI RICN PWP b WAVAILABLH RHRCN PtNP 11 QNAVAILASLI IHRSN PtÃP 11 )CHINO PWP) WAVAIIABLC R)NCN PUMP bl UMAVAILABLS RHRCN PWP C2 UMAVAILABLS RHRCN PWP Cl ICNINO PWP) WAVAILABLC RHRCM PWP Dl QNAV1ILASLC

'PLANT CONIROL lll RHRCN PWP Dl ICMINO PUHP) UNAVAILABLS SICTIH UNAVAILABLI DRIMCLL CONIIOL AIR CICTCH UMAV1ILABLS HCIVS tAIL TO RIHAIM OPIM I CND/CND SCIL POrt, INCLUDCC CHORT CYCLC VALVC UNAVAILASL RCIC WAVAILABLSLONO TSRN RPCI WAVAIIABLSIr)N) TtlOI VCCCCL IHJCCTION NITS CRDHC UMAVAIIABLt RHR SCAT IZCHA)r)CR A UNAVAILACLS RHR BIAT SZCHAN)IR C WAVAIIABLS UNIT 2 '10 UNIT 3 CROCC CONNICT UMAVAILABLt RHR PWP D WAVAILABII RHR INAT CZCHA)a)CR D UMAVAILAbLI OPIRATOR PAILS TO SCTABLICH TOADS COOLIMO OPCRATOR PAILS TO 'CCTASLICH SHUIDONN COOLING

~ $ 0$ 0 ~ $ $ ~ $ ~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ ~ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 0$ $ $ $ $ $ $ $ $ ~ $ a CI4$ URC Ot ALL HCIVC

- CONDITIONS RILATI)KITO STUCK OPIN CRVS )0 ~ 1, 2g Ie CORVS)

HCIVC PAIL TO RCHAIN Ottl RPN HARDNARS WAVAILABLC HIAV i.lit 0$

~ .S)

CTATR 0 RILltt VALVIC STUCK O'PRN OPIIATOR tAILC TO INHIBIT CLOCURC Ot HCIVS ON LSVCL RCIC WAVAILABLIlC HOURC)

- HPCI WAVAILABLR lC HOUlt)

RPV OttltSCURIIATION VCCCCL I)r)CCTIOM NITN CADHC WAVAILABLH

$ $ $ $ ~ $ $ $ ~ $ $ $ $ $ \$ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ ~ $ $ $ $ $ $ $ $ $ $ $ ~ $ ~ $ ~ $ ~ $ ~ $ ~ $ $ $ ~ aa ~ a~ ~ ~ ~ a ~a ~

10 TOTAL tr)$ $ 0't Ottt)TI PONCR $ 00IV Otttlyt PONII ORID PLPX 4.1)C ~ Ol . $1 DC IC UNAV11LABLC 161KV OttCITS PONCR ORID

- RCCOVCR CPPCITC PONIR ST 30 HIMUICS OPIRA'IOR tAILt TQ RCCIORI PUNIC TO WIT BOARDS DO 1 UMAVAILABLC iKV WIT Ã3 IA WAVAIIABIH DO D UHAVAILABLS iKV UNIT BD 3$ WAVAILABLI

- DO b WAVAILABLI - iKV CD BD ltc A)O 4$ OV CD BD )B WAVAILABLI CONDITIONS RILATINO TO CIQCK OPIN SRVS lo, I, 2, le CORVC) ilOV CHUIDONN BOARD IB ltt STATS ~ 0 ltl ltt VALVCC CTQCK OPIM ilOV DltCCL 1UZ BD PONCR WAVAILABLC Figure 8-1 (Page 3 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model

HODEL Mane> SFNV3H Top-Rank(os Sequences conrriburtnc ro croup > ALL Frequency IS>53>30 20 HAY 1334 ALL ALL DAHRDE CTXTEC EXCEPT SUCCESS Rank -- ----- ~ ------Rvents--------------- End Frequency Percenr Ho. sequence Descrtprlon Ouaranteed Events/Co<<v<<ants scare (per year)

~ FAILURE TO RECOVER RLECZRIC POMER IN C HOURS 4KV UNIT BD 1A WAVAILABLE 4KV WIT RD 1$ WAVAILABLE 4KV WIT SD 1A WAVAILRSLE 4KV UNIT BD 1$ UNAYAILAbLE CHUIDOMN bVB 1 UNAV11LABLR CHQIIOMH bUC 2 UÃAVAILABLR DO C QNAV11LABLR iKV CD BD 1 WAVAILASLE iloV NIVIUOMÃ BOARD 1A 4IOV RHOV $0 31 POMER WAVAILABLE ilOV DIESEL AUK. SD 1 POMER WAYAILAB E 4KV CD BD b UNAVAILABLR ilOV CHVIDOMM BOARD 1A 4IOV RHOV BD 2A POMER UNAVAILABLE 120 V RPS SQC <<A>> UNAVAILABLR

~ KV CD N3 C WAVAIIABLE ilOV CHVIDONN hOARD 1$

ilOV NKIV ED Ib tONER WAVAILABLC 4KY CD BD D INAVAILABLR ilOV CHVIIONN BOARD 2$

ilOV RHOV SD 2D PONCE UNAVAIIABLE

~ lOV RHOV BD 2E KNER UNAVAILABLE ilOV RHSV BD 2b POMER UNAVAILABLE 410V RHOV BD 2C POMER WAVAILABLE

~ lOV DIESEL AVE BD b POMER UNAVAILABLE 110 V RPS BUC <> WAVAILABLR KV UNIT bOARD 2C 4 Kv ccees)M $ 0ARD $

~ KV WIT BOARD IC 410 V RHOV BOARD 3C 110 V IaC bQC lb RAM COOL'tNO MATER CICTRH VNAVAIIABLE EECN PWP b INAVAILABLR RK bQIIDIW COHPONENT COOLINO MATER SYCTEH UNAVAILABLE RHRCM PINS A2 VHAYAIIABLS NICM PWP 11 (CMIIKI PWP) INAYAILABLE RHRCN PIRO $ 2 UNAVAILABLR RHRCM PINP $ 1 (SNINO PWP) WAVAILABLE.

RHRCN PINP Cl UÃAYAILABLE RHRCM PWP Cl (CMIW t(NP) UNAVAILABLE RHRCM PWP D2 UÃAVAILASLR FIANT CONTROL AIR CICTEH WAYAILABLE DRTMRLL CCSIIROL AIR CICTNI UNAVAILABLE HSIVS FAII 'IO REMAIN OPII 1 CHD/CND SCTR PWP> INCLUDEC SHORT CICLE VALVE UNAYAILABL RCIC INAVRILABLR LONO TERN HPCI INAYAILASLELOW TERN VECCEL INIECTION NITS CEDHC UNAYAILABL' RHR HEAT EKCHAWER A UNAV1ILASLE RHR HEAT EXCHAWER C WAVAILASLR UNIT '2 TO UNIT 3 CROSS CONNECT WAYAILABLE RHR PQHt $ WAVAILABLE OPERATOR tAILS TO EBTABLICII TORUS COOLIW OPRRAIOR tAILS TO ESTABLISH CHVIDONN COOLINO

~$ $$~$ ~ ~ ~$ ~$ $ ~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ >>>>>>>>>>>>>><<<<>><<>> $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ >>>>>><<>>>> $ $ $ ~ $ $ $ ~ $$ $$$ ~ $~$~ $ $$

11 TOTAL LOSS Ot OttCITR PONCE $ 00KV OPFSITS POMER CRID HIAV 4.CSE ol .53 CONDITIOHC RCLATIW TO STUCK OPEN CRVS (0> 1> 2> 3<<CORYC) lilKVOtFCITR PONER CAID STATE 0 RELIEF VALVES CIVCK OPNI OPEEAIOE FAILC TO RECIORE POMER TO WIT BOARDS RCIC INAVAILABLR (C HOURS) 4KV UNIT hD 31 INAVAIL1BLE HPCI WAVAILABLE (C HOURS) 4KV UNI'T BD lb WAVAIIABLR RPV DEPRESSINIZATION 4KV UNIT BD IA WAYAILABLR 4KV WIT BD lb UHAVAIIABLR 4KV UNIT BD 21 Ul&VAILABLE (NIT N3 2b WAVAIIABLR Figure B-1 (Page 4 of 24).'op 100 Sequences in Browns Ferry Unit 3 PSA Model

HODEL Kana> bPNU)H Top-Rank)os Eequencae concrlbuctnE co oroup: ALL trequency 35>53:30 10 lOY 399&

ALI 0 ILL DA)OOE STATES EXCEPT SUCCESS Rane ------------ --hrance--------------- End FrequenCy PerCent No, Sequence Deacrtpclon Cuaranceed Prance/Cconaenca Scare fper year) 4 KV NIT MARD )C 4 KV Crea)ON BOARD b 4 Kv UNIT MARD )C RAN COOLINO HATER EYETEH UNAVAILABLE HSIVS tiIL TO RDOIN Ot)N 1 CND/CND BSTR PWPe INCLUDES SHORT CYCLE VALVE UNAVAILIBL VESSEL IN)ECTION NIT)I CRDltl UNAVAILABLE

~ 00 000000000000$ 00000000000000 ~ 00000000000 ~ ~ 0 ~ 00 ~ OOOO ~ 0 ~ 0 ~ 0 ~ 0 ~ ~~~~0~0 ~ ~ ~~~~

12 IHTERPACINO SYSTEK LOCI HJAE 4.&3E ~ 04 .51 000000000000000000000000000000000 000000000000000000000000000000000000000000000000 ~ 00000000000000 ~ 0 ~ 0 ~ 0 ~ 00000000 ~ ~0 ~ ~0~ ~0 0 ~0~ ~ ~ ~ ~ ~ ~

I) TOTAL LOSS Ot OPPSITX POKER

- DO 3B UKIVAILABLS 500EV OPPEITS MNER CRID PLPX 4.54E ~ Ol .50 1&IEV OPPSITS POKER ORID RECOVER OttSITS POKER bY 30 KINUISS OPERATOR PAILS TO RESTORE POKER TO tWIT bOARDS DO A UNAVAILABLS &KV UNIT Nl 31 WAVAILIBI~

DO D NAVAILABIX 4EV UNIT BD )0 WIVIILABLR DO b UKAVAILABLS 4XV ED SD 3$ $ tOOVIILISLR CONDITIONS RELATINO )O STUCK OPEN SRVS )0 ~ ) ~ 2 ~ )o EORVE) 4KV tWIT bD 11 UNAVAILABLE STATE ~ 0 RELIRt VALVES STUCK OPEN 4KV UNIT BD 1$ NAVAILABLX PAILURE TO RECOVER SLSCIRIC POKER IN 0 HOURS 4KV NIT BD 21 N1VIIIABLX 4KV UNIT SD 2$ NAVAILISLR EHUIDONN bUS 1 NAVIILlbLX EHQIDONN SUS 2 IDOVAILABIX DO C NIVIILABLX I

elv ED BD NAVIIIASIX

&lov SHUIDONN MARD li 4lOV RHOV BD IA POKER tlNAVAILABLX 410V DIESEL AUX. BD A POKER WAVAILABIX

&EV SD BD 'b UNAVAIIABLX 410V EHUIDOHN MARD 2A 410V RKOV BD 21 POKER NAVAILABLX 110 V RPE SUE 010 NIVIIIIBIX 4IOV RHOV BD 4KV ED BD D I 4KV ED BD C WAVAILASLX 4IOV EHUIDOHN MIRD I'b lb POKER tBOVAIIABLR VIILABIX 4IOV SHUIDONN MARD 2$

410V RHOV BD )D POKER UNAVAILIBLR 410V RHOV BD )S POKER NAVAILABLX 4IOV RHOV BD 2$ PONIR NIVIILABLR

&lOV EHOV BD )C POKER NAVIILASLS 410V DIESEL AUE SD b POKER NAVAILABLX I'10 V RPS BUS <<Bo WAVIILABLR 4 KV NIT BOARD )C 4 KV CC40NN NARD b 4 KV UNIT BOARD )C RAN COOLINO NITER SYETNt WAVAIIABIX RECK ttWP S NIVIIIIBIX EECN PWP C U)OVAILABLS SECN PIWP D UNIVIILABIX RX BUIIDI)a) CCHPONENT COOLI)r) NITER EYSTEH UNAVAILkBLE

- SHEEN Ptttt 12 NIVAILIBLX NOES PIWP 11 ISNINO PIBO) UlOVAIIIBLE R)OSN PUKP $ 2 UNAVAIIABLE RHREN Pt)tt C) IBOVAIMILR RHRSN PIWP Cl IENINO tUKt) UNAVAILABLX RHREN PUKP D) NAVIILABLX PLANT CONIROL IIR SYETEH tWAVAILABLS DRYNELL CONTROL AIR SYSTEH NIVAILABLE HEIVS PAII TO RDOIN OPEN 1 CND/CND bEIlt PIWP, INCLUDES SHORT CYCLE VALVE UNAVAILABI, RCIC UNIVAILABLRLCWO TEAK HPCI WIVAILAbLS I/)NO TERN VESSEL INIECTICH KITH CRDHS UNAVAILABLE RHR HEAT EKCIO)a)ER A QNAVIILABLR Figure 8-1 (Page 5 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model

NOVEL Mane s BFNUIN Top-Ranking Sequences Contrlbutlng to Oroup s ALL Frequency 15:$ 3'30 20 HAY 1996 ALL 0 ALL CAIQOC CTATIS IZCIPT 6VCCECS Rank Events End Frequenty Percent No. Coquohco Doecrlptlon Ouaranteed Events/Ccanaents State lpet'earl RHR PWP C UNAVAILlbLS WIT 1 )

'IO UNIT CROSS CONNECT UNAVAILABLE RHR HEAT IXCHAMOER D WAVAILABLI

- OPERA)VI FAILS 'TO ESTABLISH YOAQC COOLINO OPIRATOR FAILS YQ ESTABLISH CHlllDOMN COOLlNO 00 00000 00000 ~ 00 ~ 000 000000000000000000000000000000000000000 ~ 000 ~ 00 0 ~ 0000000000000 0000000 ~ 00000000000 ~ 0000 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~0~ 0~0 ~ \

~0~~ ~0 ~ \ ~ ~ 0' ~ 0 I~ LOSS Ot RAM COOLINO MATER RAM COOLINO MATER CYCTIN UNAVAILABLI 0Lcv .$ 0E 04 .49 CONDITIONS RELATINO TO STUCK OPEN CRVC l0 ~ I ~ 2~ )0 CORVCI IQIN CONDEHCER WAVAILABLI STATS I RELIEF VALVE STUCK OPEN 1 CND/CMD bCTR PWP, INCLUDES SHORT CYCLE VALVE UNAVAILABI OPRRAYOR FAILS 'YO RCTABLICH TORUS COOLINO VICCEL INJECTION MIYN CkOHC VHAVAILABLR 1$ TOTAL IA3CE OF OttSITI POMER - 500KV OttCITS POMIR ORID PLPX 4.4%I ~ 00 .49 N 31 WAVAILABILITY 16lKV OFFCITS POWER CRID RICOVIR OFFCITS POMER SY )0 MINUTES OPERATOR TAILS TO RESTORE tOMIR TO UNIT BOARDS N A WAVAILABLI 4KV WIT BD )1 UNAVA'ILlbL'C N D WAVAILABLB 4KV UNIT SD )6 WAVAIIABLR

- N 6 WAVAIIABLR 4KV CD SD )EA AND ~ COV CD BD )A POMER WAVAILABLR CONDITIONS RILATINO TO STUCK OPEN CRVC l00 ) ~ )e CORVC3 410V CHQIDOHM BOARD )A STATS 0 klLIIF VALVES CTQCK OPEN 410V DICCCI AVX BD )EA POMIR WAVAILASLR FAILURE TO RECOVER SLRCIRIC POMIR IN 4 HOURI 4KV UNIT BD IA IBQVAILABLE 4KV WIT BD 1$ WAVAILABLR-4KV UNIT BD 21 QNAVAILABLR 4KV UNIT SD 26 IBQVAILABLB CHVIOOHM SQC 1 WAVAIIABLB CHQIQOHM BUC 2 WAVAILABLR Do c wAYAILABLI 4KV CD BD A VMAV1ILABLR 410V CHUTDOMN BOARD 11 410V RNOV BD 11 POHIR WAVAIIABLR

~ IOV DIECIL AVX. BD A POMIR UlQVAILABLR 4KV CD bD b UNAVAILASLR 400V CHUIIOMM BOARD 21 410V RNOV BD 11 POMIR UMAVAILABLR 110 V RPC SUC OAO WAVAIIABLR 4KV CD BD C VNAVAILABLR 440V CHUINMM NARD 16 410V RNOV BD lb POMER WAVAILABLR 4KV CD BD D WAVAILASLB

~ IOV CHQIUOMM BOARD 2$

4IOV RNOV BD 2D POMIR QlQVAILABLR 410V RNOV BD 16 POMER WAVAILABLB 410V kNOV bD 1$ POMIR QlQVAIIABLS 4IOV RNOV bD )C POMIR VNAVAILABLR

~ IOV DIICIL AUX bD 6 COMER UHAVAILABLR 110 V kPC BQS '60 UM1VAILAbLR 4 KV UNIT BOARD 1C 4 KV COMMON BOARD 6 4 KV UNIT BOARD )C 120 V ICC BUC 36 kAM COOLIHO MATER CYCTEH WAVAIIABLR IICN PWt 1 UNAVAILABLR SICH PQEP 6 WAVAILABLR SICH PWP D WAVAIIABLE RX BUILD)NO COMPONENT COOLIla) HAIIR SYCTEN VNAVAIIABLE RHRCM PQlt A) WAVAILABLR RHRCM PWP 11 I CHINO PWPI UMAVAILABLR RHRCM PUMP 62 UIQVAILABLB KHRCM PWP Cl WAVAIIABLI RHRCM PWP Cl (CHINO PlslPI WAVAILABLR RHkCM 'PWP D1 UlQVAILABLI PLANT COMIROL AIR CYCTEN WAVAILABLI DRYMILL CONTROL AIR EYCTEN UNAVAILABLE MB)VS tAIl TO RCIQIN OPEN I CHD/CND BCTR PWP0 INCLUOIC SHORT CYCLS VALYC WAVAILABI, Figure B-1 (Page 6 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

HODEL Manes BFNV)H Top-Ranking Sequences ConcrIbuclng co Oroup s 1LL frequency 15>5)i)0 10 HAY 1996 ALL 0 ALL DAHlOI STATES XZCEPT SUCCESS Rank Euenrs End Prequency Percent No. Sequence Doser)ptlon Ouaranleed Events/Coeiaenra Crate )per year)

RCIC UNAVAIL1$LS ISO TIRH HPCI QNlVAIIABLRLONO TERN VISCEL IlQECTION HITH CRDNS WAVAILABLI MR tORt A VNAVAILABLR Mk NEAT EXCMAN)ER C UNAVAILlBLt UNIT 2 '10 UNIT 3 CROSS CONNECT WAVAILABLR RHR HEAT EXCNANOER D VNAVAILABLI OPERATOR flILS TO ECT1$ LISH 'IORVS COOLING OPERATOR FAILS TO RSTASLICH CNUTDOHM CODLING 0 00 0000000000000000000000000000000000000000000000000 0 ~ 000 000000000000000000000000 ~ \

16 fLOOD tROH THE TORUS SUPPRESSION POOL (TORUS) VNAVAILABL'I PJAV 6.60k 04 F

.64 TURBINE TRZP FAILURE Rtt HAkWAM UÃAVAILABLR CONDITIONS RELATINO TO CIQCK Otml SRVS lO ~ 1 ~ 2, 3 ~ CORVSl RCIC UNAV1IL1$LR 16 HOURS)

CTATt 0 RIL St VALVES CTQCX OPEN HPCI UNAVAILASLR 16 HOURS)

UMZT 2 TO UllIT 3 CROSS CONNECT WAVAIIJUILI OPERATOR 'FAILS '10 DIPRISCURIZI US)NO TBV'S VISSIL INJECTION NITN CRDHS WAVAILABLE OPIRATOR FAILS TO MANUALLY CT1RT RHR/CORI SPRAY RHR PWP 1 WAVAILABLt RHR PWP C WAVAILASLS RlR PWP B UNAVAILABLt RHR tWP D UNAVAZLASLR OPIRATOR FAILS TO kSTABLICH TORUS COOL)NO OPERATOR tAILS TO tST1$ LI6H CHVIDOMN COOLINO OPERATOR FAILS TO ST1RT CS/LPCZ OR TO ESTAB TORUS VENT

~ 0 0000000000 0000000000000000000000000000000000000000000000000000 00 ~

tLOOD FROH THE TORUS CUttkISSION POOL lTORUC) WAVAILABLE FJAY ).656.04 .40 RHRSM PUMP $ 1 WAVAILABLR RFH HARDNAM UNAV111ABLt TVRBINE TRIP FAIIJJM RCZC WAVAILABLR 16 HOURS)

CONDITIONS ktLATINO '10 STUCK OPEN CRVS lO I, 2 30 6ORVS)

HPCI WAVAILABLS 16 HOURS)

OPERATOR tllLS TO DIPRISSUR11R USINO TBV'6 STATE 0 RELIEF VALVIS CTQCX OPEN VESSEL IlQICTIOM HITH CRDHS WAVAILABLS

- OPERATOR tllLS TO MANUALLY STARt RHR/CORE SPRAY RHR PWt A VNAVlIL1$16 Rlm PWP C WAVAILABLR UNIT 2 TO UNIT 3 CROCC CONNECT VÃAVAILABLE Rtk PWP b UNAVAIZABLS RHR PUMP D WAVIILABLS OttRATOR PAILS TO CSTABLZCH TORUS COOLINO OPERATOR FAILS TO ESTABL16H SNVIZOMM COOLINO OPERATOR FAILS TO CTAkT CS/LPCI OR TO ESTAB TORUS VIMT 0 ~ 0000 ~ 0000 ~ 000000 ~ 000 ~ 000000000000000000000000000000000000000000000000 ~ 00000000000*000000 ~ ~ 00000 ~ 0 ~ 00 ~ 0 ~ 000 ~ 00 ~ 00 ~ 000 ~ ~ 0 ~ ~ ~ ~ ~~ 0~~~~~~~~~~~ ~~~~~~

14 SHALL LOSS OF COOLANT ACCIDENT )LOCA) CONDITIONS RILATINQ TO CTQCK OPEN SRVS (0. I, 2, )0 CORVS) OIAV ).6)6-04 .eo AVZOHATIC/MANUALRIACIOR CCRAH FAILURE STATS 1 RILISP VALVE STUCK OPEN VESSEL INJECTION NITH CkDHS WAVAILABLE 19 fLOOD FROH THR TORUS SUPPRESSION POOL lTORUS) UNAVAILABLR PJAV ).Sly 04 .)9 TBVS tAIL TO RELIEVE%MAINTAINRX PRSSCUM ktN HARDMARI UMAVAILABLS CONDITIOHS RILATIHO TO STVCX OPEN CRVS )0> I, 2, 30 SORVS) RCZC UNAVAILABLR )6 )NURC)

RPCI WAVAILAILS (6 HOURS)

STATE 0 RELIEF VALVES STUCK OPEN

- UNIT 2 TO UNIT ) CROSS CONNECT WAVAILABLR OtIRATOR tAILS TO DIPRISSURIIR USlNO TBV'S VESSEL IN)ECTION HITH CRDNS WAVAILABLR OPERATOR tAILC TO H1NUALLY CTART RNR/CORI SPRAT RHR PWP A UMAVAILABLS RHR PWP C UNAV11L1$LR R)m PWP B WAVAILABLR MR PWP D WAVAILABLR OPERATOR tllLS TO ESTABLISH TORUS COOLINO OPERATOR fFAILS TO START CS/LPCI OPERATOR RILE TO ESTABLISH SHVIDOMN COOL)NO OR TO RSTAB TORUS VENT

~ 0000000000 ~ 00000000000000000000 OOOO ~ 00000000000000000000000000000000000000000 ~0 ~ ~ 0 ~ 000000 ~ 0 ~ 0 ~

~ 000 ~ ~ ~

20 INADVERTENT OPNIINO OF THREE Ok NOIR SRVS CONDITIONS RELATINO TO STUCK OPNl SRVS lo, I, )

2, ~ COAVS) 3.)SE ~ 04 .)9 OPERATOR FAILS TO ESTABLISH TORUS COOLZNO ST1Tt 3 OR HOM VALVES STUCK OPEN OPERATOR FAILS TO tSTASLISR CHVZDONM COOLINO F 0000 ~ 000 0 000000000000000000000000000000000000000000000000000000000000 0000000000000000000 Figure B-1 (Page 7 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

Top-RanklnS Sequenree ContrlbutInS to Oroup >> ALL trequenoy 15:53:30 10 HAY 1996 HOOEL Nae>>e: SPNQ)H ALL << ALL DAHAOR STATES RECEPT SUCCESS Rank --------------Rvente.--- ~---------- End frequency terrene No. Sequence Darer fprIon Ouaranteed Rvenre/Coen>>cora Srare lper yearl TOTAL LOSS Ot OttSITS BONER - 500KV OttSI1$ PONER ORID pl GX ) 29K.oa

~ .36 21 PURL OIL SYSTEH POR DIESEL 3A WAVAILABLR 161KV OttSITS PONER ORID tUEL OIL EYSTRH POR DIESEL )C WAVAILASLS OPERATOR PAILS 'IQ RESTORE PONER TO UNIT BOARDS PURL OIL SYETEH tOR DIESEL )B WAVAILASLR iKV WIT BD 3A WAVAILABLE PURL OIL SYETII POR DIESEL )D UXAVAILASLS iKV UNIT BD )S WAVAIIABLS RECOVER OttSITR PONRR SY 30 HINQTRS DO )A WAVAILABILIIY CONDITIONS RELATIIa) TO SIQCK OPEN SRVS lo ~ 1 ~ 2 ~ )<<SORVS) - DO )C UNAVAIIABLR STATE 0 RSLISt VALVES STUCK OPEN DO )$ WAVAIIABLS tAILURS TO RECOVER ELECTRIC PONER IN 6 HOURS DO )D UNAVAILABLS 4KV ED BD )EA AND 4 ~ OV ED BD )A PONER WAVAILABLE 4IOV ENUIDOOI BOARD )A 4IOV DIESEL AUK SD )RA PONER UNAVAILABLE 4KV ED BD )EC AND 440V ED SD )S WAVAILABLE 4KV ED BD )EB UNAVAIIASLE 4 ~ OV SNQIQONN lOARD )S 440V DIESEL AUK BD )EB PONER WAVAILABLS 4KV ED BD )ED QNAVAILASLS 4KV WIT $ 0 1A WAVAILABLS 4KV UNIT RD 1$ WAVAILABLS 4KV WIT SD 2A UNAVAILABLS 4KV UNIT BD 2$ WAVAILABLS ENQIDONX $0$ 1 WAVAILABLS SKQINIOl BUS 2 WAVAILABLS

~ UEL OIL SYSTEH POR DIESEL A WAVAILABLE DO A UNAVAILASLS PQEL 011 POR DIESEL D WAVAILABLS DO D QNAVAILABLR tUEL OIL SYETEH FOR DIESEL B UNAVAILABI.E DO $ WAVAILABLS PURL OIL SYETEH POR DIESEL C UNAVAILABLR DO C WAVAILABLS 4KV ED BD A WAVAILABLR 4IOV ENUIDONX BOARD IA 4IOV RHOV RD )A PONER WAVAILABLE 410V DIESEL AUK. BD A PONER WAVAIIABLE

- 4KV ED $ 0 S WAVAILABLS 4IOV SNQIIONX BOARD )A 4EOV RHOV BD )A PONER WAVAILABLR 120 V RPS SUS <<A<<UXAVAIIABLS 4KV ED BD C WAVAILABLR 4IOV ENQIDONN BOARD 1$

~ IOV RIK)V SD 1$ PONER UNAVAILASLS 4KV ED BD D UllAVAILASLR 4IOV ENQIQOIOI BOARD '2$

ilOV RHOV SD 2D PONRR UNAVAILABLS.

4IOV RHOV BD 2$ PONER UNAVAILABLS 440V RHOV BD 2$ PONER WAVAIIABLR 410V RHOV BD )C PONER WAVAILABLE 4 ~ OV DIESEL AQI BD S PONER WAVAILABLS 120 V R'PS SUS <<B<<WAVAILABLR 4 KV UNIT BOARD 2C 4 KV CNPION BOARD S 4 KV UNIT BOARD )C 440 V RH)V BOARD )C 120 V 16C SQS 3$

110 V 16C SQE 3$

440 V RJQV BOARD )0 410 V Rae)V BOARD )R RAN COOLINO HATER SYETEH WAVAILABLS

- SECH PWP A WAVAILABLS SECH PUHP S UNAVAIIABLS REtX PWP C UXAVAILASLS SECH PWP D WAVAILABLS RK SUILDINO COHPOIIKNT COOLINO HATER SYETEH UNAVAIIABLE Figure B-1 (Page 8 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

MODEL Mane> BPNU)N Top-Rank(n$ Sequences Contr(but(nE to Oroup > ALL trequency )5>5):)0 20 NAY 1996 ALL 0 ALL DANIOE STATES RICEPT SUCCESS Rank ---------------Events------- ~------- End frequency Percent No. Sequence Descrlptlon Guaranteed Events/Co>naents State (per yearl R)RCM tWt 12 UNAVAILIBLR RHRSM PWP Al (SMIMO PWP) UNAVAILABLE RHRSN PUNt BZ WAVAILABLR RHRSN PWP $ 1 (CHINO PWP) UNAVAIIABLS

.RHRSM PWt CZ WIVAILABLS RHRCN PWP Cl (CHINO PWP) UNAVIIIABLE RHRCN PWP DZ WAVAILABLR RHRSN PWP Dl (CHINO PWP) UNAVAILABLE PLANT COÃIROL AIR SYSTEM WAVAILABLS DRYNELL COÃYROL IIR SYSTNI WIVAILABLE CONTIINNEÃT ATMOSPHERIC DILUTION OPERATOR TAILS TO RECOVER SECN (START CHINO PWP)

NSIVS PAIL TO REMAIN OPEN I CHD/CND SCTR PWt> IMCLUOES SHORT CYCLE VALVE UNAVAILABL RCIC WAVAILABLRLON) TERN HPCZ WAVAILISLE LCMK) TERN VESSEL IHIECZION Nllll CkDNS UNAVAILABLE OPERATOR PAILS TO MANUALLY START RHR/CORE SPRAT PAILUkk TO RECOVER 6$ 0V RNOV BOC 21 OR 2$

RHR PUMP I UMAVAZIABLR RHR PWP C UMAVIILABLE UNIT 2 TO UNIT 3 CROSS CONNECT WAVAILABLS RNR PWP B WAVAILABIH RHR PWP D DNAVAILABLR OPERATOR PAILS TO ESTABLISH TORUS COOL)NO RHR LOM PRESSURE INJCCZION PATH UNAVAILABLS 000 ~ ~0 22 LOSS Of RAN COOL)NO MATEk RlM COOLINO NITER CYCTEN WAVAIIABLE N)GV 3.26E OS .)6 CONDITIONS RSIATINO TO STUCK OPEN SRVS (0 ~ I ~ 2 ~ 30 CORVS) HAIN CONDENSER UNAVAILABLE 0 RELIEt VILVES STUCK OPEN 1 CND/CND BCTR PWP, INCLUDES SHORT CYCLE VALVE UNAVAILABL STATS RNR PWP I UNAVAIIABLE RMR PWP C UNAVAILIBLR VESSEL 1)QECTICH MITE CRDHS UNAVAILABLS UNIT 2 TO UNIT 3 CROSS CONNECT UNAVAILABLE RHR PWP $ WAVAILABLR OPERATOR tAILS TO ESTABLISH TORUS COOL))a)

RNR PUMP D UNAVAIIABLR RHR LON PRESCORE I)t)ECTION PATH UNAVAILABLE OPERATOR tAZLS TO NAIÃZAIN HPCI/RCIC M/0 CPC 000 ~ 00 ~ 000 00 ~ 0 ~ 00 ~ 00000000 ~ 00000000000000000000000000000000000 23 LOSS Ot PLANT MR 250 V RNOV BD 2$ UNAVAILABLE PIPV 3.21$ ~ OS .)5 250 V DC CONTROL PONER fOR 6KV CD BD )SA AND 6$ 0 V CD RD 3$1 WAVAIL 250 RNOV BD 2C UNAVAILABLE 2$ 0 V DC CONIROL PONml tOR 6KV CD BD 3EC IND 6$ 0 V CD BD 3RB WAVAIL 250 V k)%IV BOARD 31 CONDITIONS RELAY)I) TO STUCK OPEN CRVS (0> I, 2, 3> SORVS) 2$ 0 V R)K)V BOARD 3$ -

BONER SUPPLY DIVISION I UNAVA'ILABLR STATS 0 RRLIEt VALVES STUCK OPEN BONER CUPPLT DIVISION 11 WAVAILABLR VESSEL LEVEL CIONAL WAVAILIBLC DZV I VESCSI LON tkECCURE CIONAL WAVAIIABLE DIV II VRCSEL LON tkESCURR SIGNAL WAVAILABLE I

DIV HI RK tkkSS EIONAL WAVAILABLR DIV 11 Hl RK tISSC CIOMIL UMAVAIIABLR RHRCM PWP Sl (CHINO PWP) UlRVAILABLE PLIÃT CONIROL AIR SYSTEM UNAVAIIABLE DRYNSLL COMIROL Mk SYSTEM WAVAILABLR MS)VS PAIL YO REMAIN OPEN RPM HARDMARE WAVAILABLS RCIC WAVAILABLR (6 HOURS)

HPCZ UNIVAIIABLE (6 HOURS)

OPERATOR PAILS TO IMMI~ IT CLOSURE Ot NSIVS ON LEVEL CTARTUP BYPASS VALVE WAVAIIABLR kHR PWP A WAVIILISLR RHR PWP C UMIVAIIASLS WIT 2 TO UNIT 3 CkOSS CONNECT UNAVAILABLE k)R PWP $ UNAVIZIASLR RHR tWP D WAVAILABLS OPERATOR FAILS TO RSTASLICN TORUS COOL))a)

RlR LOM PRESSURE INJECTION PATS R)AVAIIABLS OPERATOR tAILS TO START CS/LPCI OR 'IO ESTAB TORUS VEÃT Figure B-1 (Page 9 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

HOOCL Nenes BFHU3H Top-kenkln9 Sequences Conrrlburlnt lo Oroup s ALL trequency 35:5):30 20 HAY 3996 ALL e ALL DIOR tTlTCS EXCEPT CQCCCSC

~ 0 ksnk ---------------tvenrs--------~ ----- End trequency Percene No. sequence Descrlpclon Ouerenreed Rvenrs/cam>>nrs Crsl@ Iper year)

AUIOHATIC/MANUALRRACIOR SCRAM PAILURX - OPCRAIOk FAILS TO OtNI33cenI US)HO TMC TBVS

- CONDITIONS ktlATIMO TO STUCK OPEN tkVS lo ~ I ~ 2~ )0 CORVS) OPERATOR FAILS TO RCTAbLICN TORUS COOLIHO STATE 0 RELIEF VALVRS STUCK OPEN RNR WHP b UlQVAILABLR

~ 00000 ~ 0000000000000 ~ 0000000000000000000000000 00 00 00000 000 00000 ~0 00 OOOO 0 00 ~ 0 ~ 0 0 ~ ~0 ~ 00 ~

30 TURBINE TRIP HITMOUT SIPASS AUIOHATIC/MANUALREACIOR SCRAM tl'ILURS TSVC FAIL TO RELIEVE)NAIÃZAIHRX RFV DEFRCCCQRZCATION Pklllult HKCV 2.lit ol

~ .33 OPERA'IOR tAILS TO ST1RT SLC 000000 00000000000000000 00000000000000000000000 ~ ~0 00 31 INADVERTENT OPCMIH) Ot ONR SRV AUIOHATIC/MANUALREACIOR SCRAN tAILURR CONDITIONS REIATIHO TO CIUCK OPNI CRVS Io, CTATC I RELIEF VALVE STUCK OPIM I, 2e 30 SOAVS) OIAV 2 ~ l)t ol

~ .)l OPERATOR FAILS 10 CONIROL LPI DURINI AIMS VESSEL INJECTION NITH CRDHS WAVAILABLS 00000000000000000000000000000000000000000000000000000000000000000000

)1 TOTAL LOSS Ot OttSITS PONER

~ 000000000 ~ 0000000000000000 500KV OttllTS POMtR ORID 00 ' ~ ~ ~

PLFV 2.75E ~ ol .30 DO )C. UHAVAILABLR ICIKV OttCITX PONtR ORID RECOVER OttSITR PONII SV )0 NIMQZCS OPERATOR TAIlS TO RESTORE Poutk TO UNIT BOARDS DO A WAVAIIABLR 4KV UNIT BD )A ISQVAILABLE DO b UNAVAIIABLR 4KV WIT BD 3$ WAVAIIABLS DO C UlQVAILASLS 4KV SD bD )tC AHD 4lOV CD BD 3$ UMAVAIIABLt CONDITIONS RCLATINO TO STUCK OPCM Clyt )00 I, 2> )e CORVS) ilOV CMUZDOMM BOARD )$

4lOV DIRSRI AUX BD I'CS POMER UNAVAIIABLR CT1TS 0 RELIRt VALVRS STUCK'OPCM

~ FAILURE TO RCCOYSR RLCCZRZC PONCE IN C HOURS 4KV UNIT BD 11 IBQVAILlbLR 4KV UNIT BD 1$ UMAV1ILASLR 4KV WIT SD 21, UIQVAIIABLI 4KV UNIT SD 2$ IBQVAZLABLR SMUIOOMM bQC 1 UNAVAILABLR CRUZDOMN BQS 2 UMAVAILAbLR 4IV CD BD 1 IBQVAILABLX ilOV CMUIOOMM BOARD IA 410V RHOV SD IA POMER UlIAVAILABLR ilOV DIESEL AUX. BD A POSER WAVAILABLR 4KV CD bD b UNAVAZIABLR ilOV CMUIDOMH $ 0110 21

~ lOV RHOV BD 2A POMXR UMAVAIIABLt 110 V RPS bUC OA'MAVAILASLR 4IV SD BD C UNAVAIL1$LR ilOV CMUIDOMH BOARD 1$

ilOV RHOV BD )b POMER UMAVAILABLS 4 KV WIT BOARD 2C 4 IY CCIPNM BOARD B 4 KV UNIT BOARD )C ilo V P)KIV BOARD )C RlM COOLIMO MATER SZCTNI UNAVAILABLS SCCM PIPIP B UMAVllL1$1$

tI BUILDINI CCHPOHSMZ COOLZISI NATCR CZSTCN UIIAVAILABLR RXRCM PWP A) IBQVAILABLX RNRCM PWP Al ICMIMO PQIP) UMAVAILABLX RNRCM PIPIF $ 2 WAV1ILABLt RMRSM PWP $ 1 ICMIMO WHP) IBQVAILABLC RHRCM PWP C2 WAVAILABL'S RMRSM PWP Cl (CMIH) PW'P) WAVAILABLR tfANT COMIROL Alk CZCTOI UMlVAILABLR DRIMCLL COMIROL Alk CZSTCH UHAVAIIABLR HSIVS FAIL TO REMAIN OPEN I CMD/CHD bSTR PWP ~ INCLUDRC SHORT CZCLC VALVE UMAVAILABI, RCIC UMAVAILABLRLOH) TCRH RPCI QNAVAILASLS LOH) TERN VECCRL INJECTION NITH CRDNS QNAVAIIASLC.

RXR NEAT RXCHAMOCR A IBQVAILABLS RMR MEAT RIC1QISIER C WAVAILABLS UNIT 2 TO UHZT ) CROSS COMMECZ UMAVAILABLS RMR PUNt b WAVAIIABLX OPERATOR tAILS TO ESTABLISH 'IORQC COOLIHO OPERATOR 'PAILS TO ESTABLISH CNUIDcsnr COOLZIII Figure B-1 {Page 11 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model

HODEL Manes SFNV)H Top.Ranking Sequences Contrlbutinb to Croup s 1LL trequency 15>53:)0 20 MAY 1996 ALL $ 1LL DAHAOE STATES RXCEtf SVCCR56 lank ---------------Evente-------------- End Frequency Percent No. Sequence Deecrlptlon Ouaranteed Events/Coeaaenta State Iper year) oooos ~ 0$ 00 ~ 00000000000 ~ 0$ 11000001100000 ~ 0000 ~ 00000 ~ 0000000 ~ 100000100000000000000000000001 01000 ~ 00010 ~ 0 ~ 0

)1 CIA)CUAR Ot ALL HEIVS NSIVS tAIL TO REMAIN OPEN 2.146.04 .)0 AUTOMATIC/HABVALREACLOR SCRAH FAILURE OPERATOR tMLS TO COOLDONN USLNO TBE TSVS CONDITIONS RELATIW 'TO CLUCK OPEN ERVS I 0 ~ I ~ 2y ) 1 CORVC I VRSSRL IIQECTIOH N LIB CRDNC UNAVAIZASLE STATS I RELIEF VALVE CTQCX OPZN OPERATOR FAILS TO CONTROL Ltl DVRINO MNS

~ 0001 ~ 00$ 011001 ~ 0100000000W000000000S100000000000100000000 34 TURSINE 'TRIP NITBOVT SZPASS 11000000000000000O000000 001001$ 01 0 $ 1 ~ 0 ~ 0 TRVS tAIL TO RRLIRVCtHAINTALNRX PRESSURE F1 ' ~~~ ~ ~~ ~ ~

MIAV

~0 ~~ ~ ~~

2.516.04,26

~ ~~ ~1 ~0 CONDITIONS RELATLNU TO CTVCX OPEN 6RVS 10y I ~ 2 ~ )o CORVSL RFN BARDNARR UNAVAILlbLR STATE 0 RELLEt VALVES STUCK OPEN OPERATOR fAILS TO DEPRRSSURIZS USIN0 TSV'6 RCIC UNAVAILASLS IC HOURCI

- BPCZ UNAVAILASLS RPV DEPRECCURIZATION ll BOVRSL

- VRSSRL IIQRCTION HITH CRDBS UNAV11118LR 00000000000000000000000000000000000000000000000000000000 00000$ 0000000100000100000110 oooeooswooooo 000 ~ 0 ~ ~0 ~ ~0 ~~a ~

)5 TQRSINR TRIP OPERATOR PAILS TO RSTASLIEB SBQIDONN COOLLW OLCV 2.426-06 .26 CONDITIONS RELATIW TO STUCK OPEN SRVS LOJ I ~ 2~ I ~ CORVSI STATE 3 OR HO'kR VALVES STUCK OPII OPEPATOR FAILS 'TO 86TARLISH TORVS COOLIW

~ 1 ~ 00000000000001000100000000000001000000000001001001000 ~ 0 Sa 00 0 ~ 0 0 \

00 ~ 010 ~ ~ 0 ~ 1 01

)6 CLOSURE Ot ALL MCIVC HELVE tAIL TO REMAIN OPEN OIAV 2.)46-09 26 AVIOHATZC/MANUALREACIOR CCkAH FAILURE CTANDSZ LIQUID CONLROL SZSTEH UNAVAILlbLE CONDITIONS RELATIIKI TO CTQCX OPNI SRVS l0 ~ 1 ~ 2y )1 SORVSI STATE 0 RELIRt VALVES STUCK OP'N.

~ oosooossoo 0 ~ 0011010 1 ao 0 01 00 0 0000000000000000000 10000000000 000100 00 00 00000\001 ~ 10 ~ ~ 1 ~ ~ ~ ~~~~ ~

)I PARTIAL LOSS OF tERDNATER VESSEL LIQECTION NITH CRDNS UNAVAICABLE VIAV 2. 308 Oa . 25 AVIOMATLC/MANUALREACIOR SCRAM FAILURE CONDITIONS gELATLW 'IO STUCK OPEN SRVS Lo ~ I ~ 2 ~ )1 SORVSI STATS 1 REI LEF VALVE SIQCK OPEN O'PERMOR FAIL8 TO CONTROL LPI WRLW MNS 000000 ~ 00 ~ 001 ~ 0100000000 00000 00000e000000 0000000000000010000000000000000000800a000000000000001000010001010 ooaa 0~ ~0~ ~ 1 Sosooeoa S~ 0 ~ ~ ~1 ~S ~

)8 TOTAL LOSS Ot PEEDNATER RPN BARDNARE QNlVAILlbLR MIBV 2.)06 06 .25 AVIOMATLC/MANUALREACIOR SCRAM FAILURE OPERATOR FAILS TO RSTAELISN TORUS COOLING

- CONDITIONS RELATLW TO STUCK OPEN CRVS lo. I, 2. )o CORVSL STATE 0 RELIEF VALVES STUCK OPKN

- RBR PUMP D lbllVAILARLR 0 ~ 000 0 ~ 00 ~ 00$ ~ 000 ~ 00 ~ 01 ~ 00000 ~ $ 01000000001010000101110101101000000000000000000W1$ 10$ 10100000000000$ 00000100 ~ 0 ~ 0 ~ 00 ~ 0 ~ 00000 ~ 0 0 ~ 0 0 ~ ~

)9 TOTlL LOSC Ot PEEDNATRR RPN BARDNARR QNAVALLASLR HISV 2.)06 06 ~ 25

~ AUIOMATLC/MANUALREACLOR SCkAH tAILURS OPERATOR FAILS TO CSTASLISN TOAV6 COOLIW CONDITIONS RECATLW TO STUCK O'PEH SRVS LO ~ )e )o )o SORVSL STATE 0 RELIEF VALVES CTQCX OPEN

- RBR PVHP 8 UNAVALLARLC 0 000000000000 ~ $ 0000 ~ 0000000010000000000010001010000$ 00 ~ 001 00 010$ 0001 01001100011001001100 00 ~ \ ~ So ~ 00 0 ~ 00001 00 000 ~ 0000 ~0 40 INADVERTENT IOTNERI 6CRAH OPERATOR PAILS 'IO CSTASLLCH CBVLDONN COOLIW oLcv 2.2)E ~ 06 .24 CONDITIONS RELATIW TO STUCK OPEN SlVS IOy le )y )1 CORVSI STATS ~ ) 08 MORC VALVES STUCK OPEN

- OPSRATOg PAILS 'IO ECTASLLSH TORUS COOLLW s aoss ~ 101 ~ 1 ~ 10010$ 00000e0100000001101000000000000000000000000 ~ 000000000000000000000000000000asssssoso ~ 1 ~ ~~~~ ~ ~0~~0 al TOTAL LOtS Of PEEDNATRR RPN BARDNARR UNAVAILASIS OIAV 2.146 ~ 04 ~ 23 AVLOMATLC/MANUALREACTOR SCRAM FAILURE VESSEL IIQECCION NLTB CkDBC UNAVAILASLR CONDITIONS RELATLNO 'LO 61UCE OPEN SRVS l0 ~ 1 ~ 2 ~ )o CORVSl STATS I RELICt VALVE CTQCX OMI OPERMOR fllLS TO CONIROL Lpl WRLNO MNE

~ 00000oosoosoooeo00000000000110000000000000000011 ~ 001100000001000 ooow00 000 00000000 00 ~ 000010110 001000 oaa00 oasaea 000 ~ se ~ ~ ~ ~ ~ ~~ ~ 0~1~

41 CLOSVRR Ot ALL HELVE AIIIOMA'1IC/IONUALRElCIOR CCRAII tAILURR HSIVS fAlLTO REMAIN OPEB-OPERATOR PAILS TO COOLDONB VSLIKI TBS TSVS HIBV 2.026 06,22

- CONDITIONS gRZATIW TO STUCK O'EN SlVS Lbi I 2 )o CORVSl OPRRATOR tlILC TO EETASLISN TORUS COOLIW STATE 0 RELICt VALVES STUCK OPEN RNR PUMP 8 VNAVAILARLR RBR PUHP D VNAVAILASLC oeosso 000$ 01000000000000$ $ 01 ~ 000000000000000010400$ 000000000000O000000000000000000000 00000000000000000110001000010 ~ 0 ~ 0 ~ ~~ \ ~s ~

LOSS OF RAN COOLLW HATER 250 V RHOV SD 28 VNAVAILASLC PLNV 1.996.06 .22 250 V DC CollllOL PONRR FOR 4KV SD RD )RA ABD 460 V ED SD )El UNAVAIL 250 RMOV SD )C UNAVAICASLS Figure B-1 (Page 12 of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model

HODEL Manes BPNV)N Top-Ranktng Cequencee ConrrtburtnC ro Oroup s ALL trequency IS:S):)0 20 HAY I994 ALI, o ALL DANAOR STATES EXCEPT SUCCESS Rank Sventa Cnd Frequency Percent Ho. Sequence Deacrlptlon Guaranteed Suenre/Cceroente Stare (per yearl

- 250 V DC CONZR Ot PONCE POR 4KV CD bD 3RC AHD 400 V CD BD 3$ 8 INAVAIL 2SO V RNOV BOARD 3A CO NDITIONS RS LATIla) To $ TUcK QPRH CRVS lo ~ I ~ 2~ )o CORVCl 250 V Rte)V BOARD )b CTATR 0 RSII ~ P VALVLI STUCK OPEN PONCE SUPPLY DIVISION I WAVAIL18LS PONCE SUPPLY DIVISION 11 QHAVAltABLC VCCCEL LEVEL SIONAL UNAVAILABLR DIV I VESSEL LOll PRSSCURR SIGNAL tNAVAIlASLR DIV 11 VSSCEI LON PRESSURE SIGNAL UNAVAZLABLR DIV I HI RX PRESS CICNAL INAVAILABLC DIV 11 HI RX PRESS SIOHAL UNAVAILABLR RAN COOLINO Wana CYCTEH WAVAIIABLR RNRCN PWP Bl lCNIHO PWPI UNAVAILABLE HAIN COHDRÃSER VÃAVAILABLE I CHD/CHD BCTR PWP, INCLUDES SHORT CYCLE VALVE VNAVAILABL RCIC INAVAILASLR IC HOVRCI NPCI UNAVAIL18LR tC NOURCl VSCCSL IIIZECTION NITH ClDHS WAVAILABLC RMR tUHP A VNAVAILAbLR RMR PUNt C UNAVAIIAbLR UNIT 2 TO UNIT 3 CROSS CONÃCCZ UNAVAILABLR Rill PINP b UHAVAILASLR RHR PQIP D INAVAILABLR OPERATOR PAILS TO ESTABLISH TORQC COOLIHO RNR LON PRESSURE IN)ECTION PATH UNAVAILABLC OPERATOR PAILS TO START CC/LPCI OR TO ESTAB TORUS VRHZ S ~ OO ~ SOO S ~ OO SOOSSSSOSOSSSOSOSSSOOSSSSOSSOOOO O OOO ~ OOOOOSSOOOOOOOOOOO ~ OSOOOOOSSOOOOO ~ OOOOO ~ S ~ S ~ OOO ~ ~O 44 TOTAL LOCC Ot OPPCITR POMER 500KV OPPSITE tONll ORID PLPK 1.99$ 09 F .)2 DO 3C UNAVAILAbLE ICIKV OttCITS PONCE ORID

- DO )D VHAVAJLABLE OPERATOR tAILS TO RESTORE lONER TO UHIT BOARDS RECOVER OPPCITS POMNI SY 30 NINVZSC CKV VMIT BD 31 WAVAILABIE DO A UHAVllLASLE 4KV UNIT BD 3$ WAVAILASLS

- DO 8 WavAILABLS 4KV SD BD )RC AND 4IOV CD BD 38 INAVAILABLR

- CONDITIONS RCLAZIHO TO CZUCX OPEN CRVS toe )o Ro )o COlv51 410V CNVIDONH 801RD ) ~

STATS 0 RRLICP VALVES STUCK OPEN 410V DIESEL AUX BD )Eb PONER WAVAILABLE PAIlllRR TO RECOVER RLRCZRIC WIICR IN C HOURS ~ EV CD BD )RD UNAVAIIABLR 4KV WIT BD 11 WAVAZLABLS 4KV WIT BD 1$ WAVAILASLS 4KV UNIT BD 21 WAVAIIABLR 4KV UNIT BD 2$ UÃAVAILASLC CBVIZONN SUC 1 WAVAIIABLX CNVZUOMN SVS 2 WAVAltABLR 4KV CD bD A UNAvllL1SLS 4lqv SNVZDOMN BOARD 11 490V RHOV BD 11 PONER UHAVAJLABLS 4COV DIESEL AUX. BD 1 tOMER UNAVAZLABLR 4EV CD BD b WAVAILABLE 4IBV SNVZQOIIN BOARD 2A 400V RHOV BD 2A PONER UHAVAILABLS 120 V RPR bUS olo WAVAILABIX 4 Kv UNIT bOARD 2C 4 KV COIBKN 801RD b 4 XV WIT BOARD )C 490 V RHOV bOARD 3C RAM COOLIHO NATNI SYCTEH INAVAJLASLS RX SQILQIIKI CONPONNIT COOLIHO MATER CYCTEH UNAVAILABLE RXRCN PWP 12 UNAVAILASLS lVQCN tQIP 11 ICMIHO PWPJ tNAVAltABLR RNRCM PWP 81 lSNIHO PUMP) WAVAILABLS RIQCH PQIP C2 W1VAILABLS NQICN PINP Cl lCNIHO PUMP) UNAVAILABLE RNRCM PQIP Dl ICNIIKI PWPl WAVAILABLB tLAÃT COHZROL AJR CYCTEN tNAVAILASLR DRYNELL CONTROL 111 CYCTNI U}IAVAIIABIS HCIVS PAIL TO RNIAIN OPJH CND/C)ID SCTR PWtr INCLUDES CHORT CYCLS VALVE UNAVAILABL Figure B-1 (Page 13 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

HODSL Manes BFNU)H Top.Ranking Sequencee Contr)butlng to Oroup s ALI trequency )S:S)r)0 20 HAY )994 ALL 0 ALL DAHAOE STATES EXCEPT SUCCESS Rank ---------------Evente-------------<<- Snd Frequency Pertent No. Sequence Deacrlptlon Ouaranteeo Svente/Coeiaente State Iper year)

RCIC UHAVAI!ABLE IrN42 TERM HPCI WAVAILABLCLOBO TEAM VESSEL INJECTION NETH CRDMS WAVlllABLE RBR HEAT EXCNA)43ER A WlyllLABLE RHR HEAT RXCHAIR)CR C VIQVAJLABLR UNIT 2 TO WIT 3 CROS5 CONNECT WAVAIIABLE XHR PQHP $ UNAVAILABLS RHR PNIP D WAVAELABLR OPERATOR tAILS TO ESTABLISH TORUS COOLIHO OPERATOR tAILS TO ESTABLISH CHVIDOMN COOL!NO 0 ~ 0 ~ 0 ~ 00 ~ 0 ~ 00 ~ 0 ~ 0 ~ 0 ~ 0 ~ \ 0 ~ 100000 ~ 0000000 ~ 0000 ~ 000 ~ 00000 ~ 00 ~ 00 ~ 00000 ~ 000000000000000000 00 45 SCRAM REQUIRED !MANUAL SCRANS) VESSEL INJECTION NITH CXDHS VNAVAIIABLS OIAV ).9SE ~ 04 .21 AVICIQTIC/MANUALBEAU!OR SCRAM FAILURE CONDITIONS RELATINO TO STUCK OPXH SRVS lo, 1, 2 ~ )o SORVS)

STATS - 1 kELIEt VALVE STUCK OPEN

- OPERATOR FAILS TO CONTROL LPE DUE!NO ATMC 00000 ~ 000000 ~ 000000000000000000000000000000000000000000000 ~ 00000000000000000000000000000000000000000000000 000 ~ 00101001 44 RCCIkC DISCHARGE LINE BREAK CROSS CONNECT TO UNIT 2 RHR CZSTSH WAVAILASLS OLFV ).9)E 04 ~ 11 RHR PUMP A WAVAELABLC OPERATOR FAILS TO INITIATE SP COOL!NO RHR PIBIP C UHAVAELABLR CON!A!HHXHT VOlT WAVAILASLE RHR PVHP B UHAVAILASLR RHR PIBIP D UNAVAILABLE 0 ~ \ 0 0 ~ 00 000000000000000000000000000000000000000000000000000000000000000000 000000000000 ~ 00 ~ 0 ~ 0 ~ 0 0 ~ 0 ~ 0 ~ 0 ~ ~ 00 ~ 00 01

~7 '!OTAL LOSS OF PESDMATSR RPV DSPRESSVRI CATION HXCV 1.904 ~ 04 . 21 AUIOHATIC/MANUALREACTOR SCRAM tAILVRE OPERATOR FAILS TO CTAkT SLC 00 ~ 000 ~ OOOO ~ 00000 0000000000 1000 0 000000 0 00000 00 000 00000 00 00 01010 00 44 LOSS OF RAM COOL!NO HATER RAN COOLIHO HATER SYSTEH WAVAILABLR PLFV ).44'4 .1)

CONDITIONS RXLATII)2 'TO STVCK OPEN SRVS {0, I, 2, Ja SORVS) 0 HAIN CONDENSER UÃAVAILABLC STATE I RELIC'F VALVE STUCK OPRN 1 CND/CND BSTR PVHP, INCLUDES SNORT VESSEL INJECTION NI'lll CRDHS VNAV11LABLE CZCLR VALVE WAVAILABL RHR BRAT EXCHANOSR A WAVAELABLE ItHR HEAT EXCHA)a)ER C UNAVAIL1$LR VHIT 2 TO WIT 3 CROSS COIOIECT UNAVAILABLR RIQ BRAT EXCHANGER B UIQVAILABLR 0'FERA!OR tAILS TO ESTABLISH TORUS COOLINO RNR BRAT EXCHANGER D WAVAILABLR OPERATOR fAILS TO ESTABLlSH CHVIDOIOI COOLING

~ 000 ~ 00 00 000 000000000r000 0000000000000 000000000000000000000000000000000000000000 0 Or 49 HEDIUH LOCA CROSS CONNECT TO UNIT 1 RHR SISTEN UHAVAILABLR OPERATOR tAILS TO INITIATE SP COOLIH)

OLFV l. 44E ~ 04 . 2)

RHR PVHP A UNAVAILABLE RIVI PQHF C WAVAEIABLH CONIAIHHXNT VENT WAVAILABLR RHR PVHP $ WAVAELASLR

- RHR PUMP D UNAVAILABLS 0 r000000000000000000000000000000000000 ~ 000000000000000000 000 ~ ~ 00 000 000000000 ~ 0 ~ 000 ~0 000 0~ ~ ~ ~0 ~

SO LOSS Ot WIT 2 120V PREFERRED PONER - 120 V UNIT 3 PREFERRED POMCR HIAV ).4)S.04 .20 CONDITIONS RELATINO TO STUCK OPRN SRVS l0, ~ 2, Eo CURVE) I TQ1$ INR TRIP FAILURE STATE - 0 kRLIRF VAIVES STUCK OPEN RtN HARDIQRE QMAVAILABLR NPCI VNAVAILABLR IC HOURSI RCIC VHAVAILABLS IC HOURS)

- RPV DCPXSSCQRIEATIOM OPERATOR FAILS TO DXPRESSURIXR VSJH2 'JBV'S VESSEL JNJECJION 'NETH CRDHS WAVAILABLR 0000r010 ~ 0000 ~ 0000 ~ 001 00000000000000000000000 ~ 000000000 ~ 0000000000000 ~ 000000000000 ~ 0 ~ 000000000 ~ 0000000000000000 ~ 0 ~ 0 ~ ~ ~ 1 ~ ~ 0~ ~

51 LOSS Ot CONDENSER VACUUM H1IM CONDENSER UNAVAILABLE HIBV 1.4)R ~ 04 .20 AUTOMATIC/MANUAL RSACEOR SCRAM FAILURE RPH HARDIQRS QHAVAI LABLR

~ coHDITIQNS RELATE)a) 'To STQck QPEM CRvs )0 ~ 1 ~ 2, 30 Cokvs) OPNQTOR FAILS TO ESTAB!ICE TORUS COOL!HO STATS 0 RRLIRt VlLVRS STUCK OPEN BHR PUMP D UNAVAILABLE 0000000OOOO000$ $ 00000000000000000000000000 0000000000000000 ~ 00000 00000 0 0000 0 000 ~ 0 0 0 ~ ~ ~

51 LOSS QF CONDENSER VACUUM IQIN CONDCNSCR UHAVAILACLC HIBV ).4)R ~ 04 .20 AQIVMATJC/MANUALREACEOR ECkAH FAILURE RFN IQXDMAXB UNAVAILABLE 0 CONDITIONS RSLATIIK) 'EO STUCK OPEN SRVS EO, I, 2, Jo SORTS) OPERA!OR FAILS TO CST1$ LESH TORUS COOLIHO STATE - 0 RELIEF VlLVES CTUCK Otml kHR FUHt B WAVAELABLH 0\00 ~ 0 1100 00000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000 000000000 ~ 0000000000 ~0~ ~ 010 ~

51 CLOSURE ot ALL HSEVC MS!VS PAIL TO REMAIN OPEN HISV 1.4)E.04 .20 AVJDHlTIC/IQHVALBRAC!OX SCRAM FAILURE OPERATOR FAILS TO COOLDONN US!NO TNR TBVS CONDITIONS RELATINO TO STUCK OPEN CRVS IQs lr Sr 30 SORVS) OPERATOR FAILS TO RSZABLISN TORUS.COOLIHO 0 RELIC ~ VALVES STUCK OPEN Figure 8-1 (Page 14 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

HOVEL Manes BFNV)ll Top-Rank)nt Cequencea Contrlbutlnt to Oroup ALL trequency 15<5):)0 )0 HAY 1996 ALL I ALL DAHAOS STATES s RECEPT SUCCESS Rank Eventa End Frequency Percent No. Sequence Deecrlptlon Cuaranteed Cvente/Cceraante State )per year)

RHR HEAT RICHAMOER D VNAVAILABLS I I ~ 00 ~ I \

~ 100001000000001000000000010000 0000 ~ OOOO ~ 0000000000000 ~ 000 00$ 00000000 ~ I III 00 ~ ~ ~

54 CLOSVRR Ot ALL HSIVS HS!VS tAIL 'IO RSHAIM OPEN Hlbv 1.4)0 04 10

- AVIONATZC/HAMVALRIACIOR SCRAM Phil)IS OPERATOR tAILS TQ COOLDOHM USZN) 'lllI TBVS cONDITZDNS REIATI)r) To czvck DPEM skvs Ioa I ~ 2r 30 soRvs) - OPERATOR tAILS TO ECTABLICll TORUS COOLINO STATS 0 RELIEF VALVES SIQCK OPEN RHR HEAT EICHANI)ER S WAVAI!ASLX eo 000000000e00000000000000000000000000000001000000000000000000000000000000100 100000 I 00 00 ~ 000 55 CLOSURE OF ALL NSZVC HSIVS tAZL TO RINAZN OPEN PLFV 1.00C ~ 00 ~ 10 CUPPRESSION POOL ZZORUS) UNAVAILASLX RtN HARDNARX WAVAILABLR CONDITIONS RELATINO TO STUCK Otml SRVS IO ~ I ~ 2 ~ 3$ 8ORVS) HPCI WAVAZLAbLR 10 HOUL9)

CTATR 0 RELIEF VALVES SIQCK OPEN OPERATOR PAILS TO INHIBIT CLOSURE OF HSIVS OM LEVEL RCIC UNAVAZLABLR ZC HOURS) - klm FWP b UÃAVAILABLS RHI PWt D WAVAILABLE

- OPERATOR tAZLS TO ESTABLISH TORUS COOLINO OPERATOR tAILS TO ECT1BLICH CHVIDOHM COOLINO OtSRATOR JAILS 'IO START CS/LPCZ OR ZQ ESTAB TORUS VENT 0001 ~ 000000$ 0000000100000000000000000000000000000000000000000000000000010010000000000 00000000000000000 ~ 00 0000110000 ~ $ 0 ~ 0 ~ 0 ~ 01 I~ 0 ~ 0 ~ ~~ ~

SC TURBINE TRIP VI50EL ZN)ECTION NITH CIDHS UNAVAILABLS OIAV 1.94E.04 .19 UNIT 2 MOT AT POHRR AVIONATZC/MANUALRSACIOR SCIlll FAILURE I

- CONDITIONS RELATZ)a) TO STUCK OPEN CRVS 10, ~ 2, 3$ CURVE)

STATE - 1 RELIEF VALVE SZVCX OPEN

- OPERATOR FAILS 'IQ COMIROL LPI DURIMO ATNS I ~ 000 IIII 0001 00000 0000000001000000H0000000000000000000 0000 ~ 00 ~ ~ 00 57 PARTIAL LOSS OP FEIDMATER RPV DEPRICCURZZATION HICV I.ISI 00~ .19 AVIOHATIC/HAHUALREACTOR SCRAM FAILURE OPERATOR PAILS TO START CLC 0~ I ~ ~I ~ 000000 01 ~ III00000000$ $ 00000000000000000000000000000000000000000000$ 0000000000000000 ~I 50 RECIRC DISCHARCR LINE BREAK ~ ~ IOV DIRSEL AUK BD )IA POHIR WAVAZLABLE OLFV 1.11 ~ 00 .19 400V CHVIDOMM BOARD )A RI SVIIDllkl COHPOMEHT COOLIHO MATER CYSTEH VNAVAILABI DRYMELL COMIXOL ilk SISTEN WAVAIIABLI I

RHR PUMP B WAVAZLABLR RHR PVNP D UMAVAZLABLE RHR Plat 1 WAV111ABLX RHR PWP C WAVAILABLE CROSS CONNICf TO UNIT 2 RHR CZCTEN WAVAILABLE OPERAZOR tAILS TO IN!TIATS CP COOLIMQ CONTAZN1MT VENT WAVAILABLR 000000000 ~ 000 ~ I ~ 00000000010$ 1000$ 00 ~ 01000000001 ~ 0$ 0000000100000010000 ~ 00111000000000001000001000000000 ~ 010 ~ 0 ~ ~ I~ I~ 10 ~ ~ I

~ ~

59 LOSS Ot CONDENSER VACVW HAIN CONDENSER WAVAILABLR 0 IAV I ~ IOE ~ 00 .19 AVIOHATIC/MANUALRIAQIOR CCIAH tAILUIR ktll HlkDNARS UNAVAILABLR coNDITIQMS RILATI)03 To SIUck oPml cRvs IO, I, 2, )t soRvc) VESSEL Zlt)EcTIDN NITN cRDHS whvhzLABLE STATS I RELIEF VALVE CIQCK OPEN

- OPERATOR tAILS TO CONTROL Ltl DURIMQ AIMS ~ 000000000000001 ~ 00000000 ~ I 000000000 ~ 000H0000000000001000000000110001000110000000001100000000010000000010000 ~ 00 ~ ~ ~ ~

CO CORE CPRAY LINE BRCAK 000V DZIIIL AVX BD )RA POHER WAVAILIBLE OIAV I 49S.04 .19 4 ~ OV SHVIDOMM bOARD 31 RI SVIIDI)43 CO4NOMIMT COOLI)KI MATER SZCTIN UNAVAILABLI DRYMELL CONTROL Alk SYSTEM WAVAILABLR

,ONS CORR SPRAY IZ)OP tlILS TO IM)ICI IHR tWt 1 UNAVAILABLR RHR PVNP C WAV11LABLS CROSS CONNECT TO UNIT 2 RHR CYCTXN WAVAILABLR RHR LPCI IN)ECTION PATH WAVAILABLR CONfAINNI)rfVENT WAVAZLABLX I~ 000000000 ~ 0001000000000000000000000000000000000000000000 ~ 0000000000000000001000000000000000000000000000 I ~ ~ I ~

01 TURBINE TRIP VESSEL INJECTION NIZII CRDHS UHAVAILAbLR HIAV 1.44I ~ 0 ~ .10 AVZONATIC/MANUALREACIOR SCRAM FAILURE OPIRATOR FAILS TO INHIBIT ADS 0010$ 101 ~ 00000000000000I00000II0I000I000000I00000I0I000000000II00I000I0I000II00000100000000000$

02 PARTIAL LOSS Ot tSEDHATSR HIAV 1.450 04 .10 AUTOHlTIC/MANUALkCACZOR CCIAH tAILURS STANDBY LIQUID CONZROl SZSIXN WAVAIIABLX I

CONDITIONS RILATINO TO STUCK OPEN SRVS lo ~ ~ 2 ~ 3 CORVS)

STATS 0 RELIEF VALVES STUCK OPEN e00 0010000010 000 ~ 00000100\00000 00 ~ 000000000000I000$ 00000000000000000 ~ 00000000000000000000000H0000000000 ~

Figure B-1 (Page 15 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

HOOSL Hase> BFNU3H Top-Rank(na Sequences Conrr(burlnS Co Oroup ALL prequeney 15:53:30 20 HAY 1995 ALL I AL!. DAHAOS >

STATES RXCRPT SUCCESS


Evencs ------------ End Frequency Percenc Sequence Desor(pc(on Ouaranceed Seance/Ca>saencs Scace (per yearl 53 TOTAL LOSS OF FREDNATu RFN NARDNARR wAYAILABLR OIAV 1.61$ ~ OS 1$

AUTOHATIC/HANUALRRACIOR SCRAH FAILURE STANDBY LIQUID CONTROL SYSTRH WAVAILABLS CONnlTIONS RELATINO TO STUCK OtSN SRVS (0> 1 ~ 2, )o SORVSl STATR 0 RRLIEF VALVES STUCK OPEN I

~ ~ 111 ~ I~ 11 IS 001 ~ 1111111111110 ~ 1111110 ~ ISSOISSOI 1111111110111 ~ 111101$ 111111 ~ 1 ~ 0 ~ ~ 11$ 1

- RFN NARDNARE QNAVAIIASLR

~ ~I 5~ 'IOZAL LOSS Ot FRRDNATER Hl BV I ~ SSS OS .37 AUZOHATIC/HANUALRRACloa SCRAll FAILURE OPRuma FAILS To ESTABLISll 'IORUS COOLINO CONDITIONS RSLATIla3 TO STUCK OPEN SRVS lo, I, 2, 3> SORV$ 3 STATE 0 Ran)at VALVES STUCK OPEN aaR PUHP B QNAVAILASLR RNR PWP D QNAVAILASLS sssoasso 01 1011111111111111 01111101111110111 I ~ os 1 101111 ~ 100 ~ ~ ~

55 TQTAL Loss ot oFtSITE povu 500xv opFSITR SOBER calo PINY I ~ 5ea os .19

- 250 V DC CONTROL Povu Foa eav SD Bn 14 AÃD ~ $ 0 V SD SD )EA WAVAZL ICIKV OFPSITS Posu Cain

- )so v oc coNIROL poaaa poa eav Sn an )ac AND elo v sn an )EB wavall- opaaama FAILS m awoaa povu m UNIT Boaans CONDITIONS RSlATINO TO STUCK OPEN SRVS (0, I, 2 ~ ) ~ SORVSI eav UNIT SD )A UNAVAILABLE STATS - 0 RSLlat VAIVSS STUCK OPEN ~ Kv UNIT BD 3S WAVAILABLR

- eav UNIT SD

~ Kv ll WAVAIIABLS UNIT Bn 1$ WAVAILABLR eav UNIT BD 4 WAVAILABLS eav UNIT BD 2$ WAVAZLABLE 250 V RH)V Rn 2$ WAVAILABLE 250 RHOV BD 2C,WAVAILABLS 250 V RNOV BOARD )A 250 V RHOV BOARD )B e Kv QIIT BOARD )C s 0 xv ccstoN BOARD B e KV UNIT BOARD )C I

Poau SUPPLY DIVISION WAVAILABLE tovu SUPPLY DIVISION II UÃAVAILABLR VESSEL LEVEL S ZONAL WAVAZLABLS I

DIV VESSRl LON PRESSURE SIGNAL WAVAILABLE DIV 11 VESSEL IAN( PRESSURE $ 10NAL WAVAILABLR I

DIV Nl RX ta$ $ $ SIONAL WAVAILABLR DIV 11 Sl RX ta$ $ $ SIONAL UNAVAILABLE RAN COOLINO HATER SZSTSH UNAVAILABLS SRCN PWP 1 QIAVAILABLR RSCN FWF C UNAVAltkSLS SECH PQ(P D WAVAIIABLR RX SUILDINO CCHPONENT COOLIN) 'NATRR SYSTZH UNAVAIIABL'R

- RERSN PQO $ 1 (SNINO PQ(PI WAVAILABLS PLANT CONIROL AIR SYSTRH WAVAILABLS DRYÃRLL coNIRQL AIR szsTEH wAVAILABLE HSIVS tAIL To RXHAIN OPEN I CND/CND BSTR PQlt, INCLUDES SHORT CYCLS VALVR UNAVAILABL RCIC WAVAILABLR (5 BOURS(

RPCI WAVAILABLE (5 NOQRSl VESSRL 13c)ECTION NITN CROXS WAVAILABLR TORUS COOLIIKI NARDNARE WAVAILABLE CS MN PRESSURE IN)ECTION WAVAZLABLR aaa LON PRESSURE INJECTION PATH WAVAILABLS

~0 ~ I 11 ~ ~ ~ OIOOOOII ~ 11111111111111111011110 IS ~ 11 ~ 111101111111111111101111111101111001111111 0111 ~ I ~

$$ TURBINE TRIP NIZNOQZ BYPASS TBVS tAIL To RRLZRVS~HAINTAIN RX PRESSURE HIBV 3.53$ ~ 04 .17

- AQZOHATIC/HANUALR4Cma SCRAll FAILURE OtuAma tAILS To COOLDONN QSlNO TNE TBVS CONDITIONS XELATINO TO STUCK OPEN SRVS lo ~ 1 ~ 2 ~ 31 Soaval OtuATOR tAILS TO ESTABLISN TORQS COOLINO STATR - 0 RRLISF VALVES STUCK OPEN

- RNR PUHP D UNAVAILABLS 0010000100010$ 000$ 11111111111110111111 ~ 111111111111101110111111111111111111111110111 ~ 1111111011111111111111 ~

$1 'TURBINE TRIP NITNOUT BYPASS TBVS FAIL TO RELISVS~HAINZAIN RX tRXSSQRS HIBV I ~ 53$ OS .17 AQIOHATIC/HANUAL$ 4CIOR SCRAH FAILURE OtuAma PAILS To COOLDONN QSINO TllR TBVS

- coanltloas RSLATIN2 m STQca OFEN Sxva (o. I, 2, 3> Soavsl OPXRAma FAILS To ESTABLZSN TORUS COOLINO STATS 0 RRLISF VALVES STUCK OPEN RNR PUH'P B WAVAILASLR Figure 8-1 (Page 16 of Z4). Top 100 Sequences in Brogans Ferg Unit 3 PSA Model

HODCL Mane<<BFNU)H Top.Rank)op Sequences Contrlhutln5 to Croup c ALL Frequency 15:53:30 10 HAY 3996 ALL 0 ALL DQQOS STATES EXCEPT SUCCESS Rank ---------------Events-------------- End Frequency Percent No. CeUuence Descrlptlon Ouaranteed Events/Coe<<<<ants State )per year) it CLOSURE Ot ALL HSIVS AUTOMATIC/IQ)n)ALRRLCIOR SCRAM FAILURE HCIVC FAIL IO RDQIN OPEN OPERATOR tAILS TO COOLDOMN USIH2 TNE TBVC H!BV I 53S.OS .11 CONDITIONS RELLTINO TO STUCK OPEN CRVS )0<< I<< 2, 3<< SORVS) OPERATOR tAILS 'IO ESTABLISH TORUS COOLINO CTATC 0 RELIRF VALVES STUCK OFEH RNR PWP A WAVAILABLS RMR PUHP C WAVAILABLS 0 ~ 0000>>00 0 0~ 0 ~ 000 ~ 00 00 0000 0000 65 LOSS Ot CONDENSER VACUW HAIN CONDnIClR UNLV1IL1$LR HKCV I ~ SIC ~ OS ~ 13 AUIOHATIC/MANUALRlACIOR SCRAM FAILU1S RPV DEPRECCURIEATION

- OPERATOR FAILS TO START CLC 0 F 00 '000000000000000000000$ 000000000000000000000000 10 CCEAH REQUIRED IHANUAL SCklHS) 1PV DEPRSSCURIEATION HKCV 1.4SE ~ OS .16

- AUIOHATIC/MANUALREACTOR SCRAM FAILURE OPERATOR FAILS TO START ELC 0 ~ 00 ~ 00 ~ 00000 ~ 0000000 ~ 000000000000000000 ~ 00000000000 00000000000000000000000000000000 ~ 000$ 000000000000>>00 ~

YI TOTAL LOSS OF OFtCITR PONER 500KV OttCITE tONER CRID P )OX 3.4SE.OS .)6 DO 31 UNAVAILABILITY 141KV OttSITS POMER ORID DO ID UNLVAILABLR OPNQTOR tAILS TO RlS1ORR POMER TO WlT BOARDS RECOVER OFFSITS POMER BY 30 MINUTES ~ KV WIT SD 3A UMAVAILLSLC

- DO D UNAVAIIABLS 4KV UNIT BD 3$ UNAVAILLBLS DO C W\VAIIABLR 4KV CD BD 311 AND ilOV CD BD 3L PONER UNAVAILABLS CONDITIONS RELLTINO TO STUCK OPEN SAVE )0<<1 ~ 2, 3t CORVS) 4COV SEUIDONN BOARD IA STATE - 0 RELIEF VAI.VSC STUCK OPEN ~ COV DIESEL LUX BD 3EA PoulR WAVAILLBLR FAILURE TO RECOVER ELSCIRIC BONER IN 6 HOURS 4KV CD BD 3ED UNLVAILABLR iKV UNIT $ 0 11 UNAVAILABLE

<<4KV WIT BD 1$ WAVAILLBLS 4KV UNIT BD 21 NAVAILABLE

~ KV NIT BD 2$ WAVAILLSLE

<<CNUIDOMN SUS 1 WAVAILABLR ENQIDONM SQS 2 UÃ1VAILLBLS 4KV CD BD C UNAVAILABLS 4IOV CNUIDOMN BOARD 1$

0 ilOV RHOV SD 1$ POMER WLVAILABLR

>> 4KV CD BD D U)QVAILABLS

- 410V SMUmONN BOARD 2$

>> ilOV RHOV BD 2$ PURER UNAVAILABLE 4COV RHOV SD 2C PONER WAVAIIABLE

~ ilOV DIESEL AQX SD S POMlk WAVAILABLE 120 V 1PS BQC <<1>> WLVAILABLR 4 KV NIT BOARD 1C

- 4 KV IXNse3N BOARD 1 4 KV UNIT BOARD 3C

~ RAN COOLINO HATER SYSTEM WAVAILAELE SECH PWP 1 WAVAIIABLS

- SECH WHP $ WAVAILABLE EECN WHP D NAVAILASLE RX BUILDINO COMPONENT COOLINO NATRR SYSTEM UNAVAILABLR RNRCN PQIt $ 1 U)QVLILABLS RNREM WNt D2 WAVAILABLS RERCM WHP Dl )CHINO PWP) WAVLILABLS PLANT CONTROL AIR SYCTNI U)QVAILABLE DRYMELL CONIROL AIR CYCTEH UNAVAILABLE OPERATOR FAILS TO RRCOVlR EECN ICTART CHINO WNP)

NSIVS FAIL TO REMAIN OPEN I CND/CMD BCTR PIBIP, INCLUDEE SNORT CYCLE VALVE UNAVAILABL 1CIC WLVAILABLSION) TSRH

- NPCI WAVAILABLRIea TEkH VESSEL IHICCTION NITH CLONE WAVAILLBLE OPERATOR PAILS TO HAMUALLT STARS RNR/CORE SPRAY RMR Plat A UNLVAIIABLS RNR PWP C UNAV11LLBLS UNIT 2 TO UNIT 3 CROSS CONNECT WLVLILABLS RNR WHP S WAVAILABLR Figure 8-1 (Page 17 of 24). Top 100 Sequences in Bros'ns Ferry Unit 3 PSA Model

MODEL Mae>e> SFMVIH Top-Rankins Sequencee ContrfhutfnS to Oroup > AI.L trequency 15>53:10 20 HAY lSSi ALL 0 ALL DANAOR STATES IXCIPT SUCCESS Rank lvente. Rnd Frequency Percent Mo. sequence Deecrlptfon Ouaranteed Ivente/Coersente State (per year)

RMR PUMP D UMAVAILABL'I OPIRATOR PAILS TO RSTASl ISH TORUS COOL)NO RMR LON PRIIIVRS INJECTION PATll UHAVAILASLR

~ 0 000 0 ~0 0 000 0~ 0~0~ ~

S2 TOTAL LOSS OF FEIDMATIR I

CONDITIONS RILATllKITO STUCK OPEN IRVS lo> ~ 2 ~ 30 SORVS)

RFN NARDNARS UMAVAIIABLS l. ~ SE ~ Oi li STATE 0 RRLIRt VALVES STUCK OPEN Vlsfll IHIRCTIOH MITE CRDHI WAVAILABLS OPERATOR tAILS 'TO ESTABLISH TORUS COOLIMO

~ ~ ~ ~ ~ 0000 00 000000000000000 000 00000000 000 00000000

'TOTAL lOSS OF OttSITE POMIR DO 31 WAVAILABILITT 500KV OttllTS IilKVOFFSITS PONIR ORID BONER ORID

'PICX 1 ~ iil.oe .li DO lb WAVAILABLR OPERATOR FAILS TO RESTORE POMIR TO WIT BOARDS RECOVER OttSITS PONRR BV 30 HINVIES iKV UNIT BD IA UHAVAILABLR Nb WAVAILABLS ikv UNIT BD lb UHAVAILASLR NC WAVAIIABLR ilv ID SD IIA AMD ilOV SD BD IA POMER UNAVAILABLI COMDI'TIOMI RILATIMO TO STUCK OPEN SRVI 10 ~ I ~ 2 ~ 3o IORVI) ilov IHVIUOMH bOARD ilOV DIESEL 31 STATE 0 RRLISt VALVES STUCK OPEN AUZ SD 3$ 1 POMIR WAVAILABLS FAILURE 'IO RICOVER RLICIRIC POMRR IN I HOURS iKV SD SD 3ES UMAVAILABLS iKV OMIT BD 11 WAVAIIABLI ilv VNIT SD 1$ QN1VAIIABLS iKV UNIT BD IA UNAVAILABLS iKV WIT BD lb WAVAIIASLR SMQIDONM SUS I VMAVAILABLR SHVIDOMH SU$ 1 WAVAILABLI iKV ID BD b WAVAIIAILR ilov EMVIIONM I01RD 21 ilOV RNOV BD IA POMIR UNAVAILABLE 110 V RPS BUS 0AO WAVAILABLR ilv ID BD C WAVAIIABLI lb iIOV IMVIDONN BOARD ilOV RHOV BD 1$ POMIR WAVAILABLE ii Kv UNIT $0110 KV 2C cceeecer BQARD b i Kv WIT BOARD 3C RAN COOLIMO MATER SYSTEM UM1VAILABLR RICH tVHt 1 WAVAIIABLI RICH PWP b WAVAIIABLI EICN PWP C WAVAILABLI RX BUIIDIH2 COHPONE)lT COOLIMO MATER SVSTIH UNAVAILABLE RRRSN PWP b2 WAVAILABLR RNRSll PUMP C1 WAVAILABLI RNRSM PUHP Cl (SHIN2 PUMP) WAV1ILABLS PLANT COÃIROI, Alk SISTEN WAVAILASLR DRIMILL CONTROL Alk SYSTEM UNAVAILABLE OPERATOR tAILS 'IO RECOVER RICN )START SHING PVHP)

NSIVS FAIL TO RIHAIN OPIM I CHD/CND SITE PWP> INCLUDES SHORT CICLR VALVE VMAVAILABL RCIC WAVAILASLE LONI TERN RPCI WAV11L1bLE LCRE) TNUl Vllllf INJECTION NII)f CRDNS WAVAILABLR OPERATOR tAILS TO HAMUALLT START RMR/CORI SPRAT RER PWF 1 QHAVAIIABLI RNR PWP C WAVAILASLE UNIT 2 TO WIT 3 CROSS CONNECT WAVAIIABLR RHR PWP b WAVAILABLS RNR PQHt D UHAV11LABLS OPERATOR PA'ILS TO SITABLISll TORUS CCOLIMO RRR LON PRISSVRR INJECTION tAIN UNAVAILABLE

\ ~ 0000 0$ 00000000\000$ 000$ 000000000000$ 0000000000000000$ 00000000000000000000 ~ 0000$ 0000000000000000 00000000000 Tbvl tAIL TO RILIRVEKHAIHTAIHkX PRESSURE 00 l.ill .li TURBINE TRIP NITMOVT SrtAIS OIAV Oe AUTOMATIC/MANUAL RRACIOR SCkAN t11LURS OPERATOR FAILS TO COOIDONN QIIIKI 'INR TBVS

- CONDITIONS RRLATIMO TO STUCK OPEN SRVS lo, I, 2, IO SORVS) VISSRL IHIRCTION MITE CADRE WAVAILABLR STATE - I RILIRt VALVE STUCK OPEN Figure B-1 (Page 18 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

0 HOORL Nanea BtMll3H Top.Rank)os Saquencea Conrrthuttns to Croup s ALL Frequency 15i53>30 10 HAY 1994 ALL ALL DAHACS STATES RXCEtt SUCCESS Rank ~ Event a Snd frequency percent No. Sequence DaacrIprlon cuarantae0 Eeenre/cocnaenre Clare (per year)

OPRRAYOR tAILS '10 COlllROL LPI DURINO AIMS 7$ TOTAL LOSS Ot FEEDNATCR Rill NARDNARS WAVAIL1$LR Htbv 1.43C ~ oa .34 AVIOHATIC/MANUALREACIOR SCRAN FAILURE OPERATOR FAILS '10 ESTABLISH 'IORUS COOL)NO CONDITIONS RSLATIMO TO STUCK OPEN CRVS )0, I, 2 ~ 3o CORVS)

STATS 0 RELIEF VALVES STUCK OPSN RMR NEAT SXCNAMORR D UNAVAILABLE 0~0 0 00 00 ~ 0 0 000000 0000 ~ ~ 0000000000$ $ 0 00000 ~ 000000 74 TOTAL LOSS Ot tEEDMATSR RFM MARDNARE VMAVAILABLR HIBV 1.4)R ~ OI .14 AUIOHATIC/HANUALRRACIOR SCRAN FAILURE opsRAIOR FAILC To ESTABLISH 10AUS cooLttr)

CONDITIONS RELAY)HO TO CIQCK OPSÃ ClVS (0 ~ I ~ 2 ~ 3e SORVS)

STATS 0 RRI IRF VALVES CTUCK OPEN

$ WAVAILABLE 0

77

' RBR BEAT EXCMAMCRR

'00000 ~ 0 $ 00000000000000$ 0000000000000 00 0 00 0000000000$ 00 ~ 0 ~ 000 SCRAM REQUIRED )MANUAL CCRAHS) HIAV 1.4OE OI .15 AUTOMATIC/HAMUALlNACIOR SCRAM FAILURE STAMDSY LIQUID COÃIROI CYSTRH VMAVAILlbLE CONDITIONS RRLATINO TO CTQCK Otmt SRVS l0 ~ 1 ~ 2 ~ 3o SORVC)

STATS 0 RELIEF VALVES CTQCK OPEN 000 ~ 000000 ~ 0 0$ 0$ 000 ~ 00 ~ 0 00 00000 ~ 000000000000000000000000000000000 ~

YI LOSS Ot PLANT AIR PLAÃT CWIROt AIR CYCTSH WAVAILABLS PISV 1.39C OI ~ 15 CONDITIONS RELATIMC TO STUCK OPRN SRVS )0, 1, 2, 3o CORVS) DRYMELL CONIROL AIR CYCTKH UMAVAILABLS STATE 1 RRLISt V1LVR SIQCK OPRM HSIVS fAIL 10 RIHAIll OPEN CONDENSER WAVAILABLRAS NRlT SINK RFM BARDNARR UlQVAILABLE

- RMR PUMP A WAVltLABLS - OPERATOR fAILS TO COOLDONM US)NO TMC TBVC RMR PVHP C WAVAILABLR STARTQP BYPASS VALVE UNAVAIIAILE

- RNR PUMP b UNAVAIMLLS UNIT 2 '10 WIT 3 CROSS CONNECT WAVAILABLR RMR PUMP D WAVAILABLE - OPERATOR FAILS TO ESTABLISH TORUS COOL)NO RMR t4ll PRRSSQRR l!QRCYIOM PAIll UlAVAILABLR 0'

19 0 '00 0 ~ 0$ $ 00000 ~ 00$ 0000000000000000$ 00 ~ 0000000000000000$ 00000000 TOTAL lOSS OF OttSITS PONCE -

~ 0 F 0000 000000000000 ~ 000000 ~ $ 000$ 000000 SOOKV OttSITS PONSR CRID

$ 0000 ~

PICX 1.)SS OI .15 DC 31 UNAVAILABILITY ICIKV OttCITS PONRR CRtD

- RECOVER OttSITS PONCE bY 30 HIMVISS OPERATOR tAILS TO RESTORE PONER TO WlT BOARDS DG D UNAVAILABLE 4KV WIT $ 0 3A WAVAILlBLC

- DO C WAVAILABLE 4KV WIT BD 3$ WAVAILABLE RMRSN PUHP Dl lSMIMO PWP) WAVAILABLS 4KV CD BD 3RA AMD 440V CD BD 31 PONSR WAVAILABLS

- CONDITIONS RRLATI)r3 TO STUCK OPEN CRVS )0, 1, 2, Ie CORVS) 4IOV SNVIIONM BOARD 31 STATS - 0 RELISt VALVES NICK OPEN 4IOV DICCCL AVX SD 3EA PONSR WAVAIIASLE FAILURE TO RECOVER RLECIRIC PONCE IM I HOURS 4KV WIT BD 11 WAVAILABLS 4KV WIT SD 1$ UlOVAILASIE 4KV WIT BD 21 WAVAILABLE 4KV UNIT BD 2$ UMlVAIIASLE Ct)VIDONM RUS 1 WAVAILABLS

- CBVIUONM BVC 2 WAVAILARLS 4KV CD BD C WAVAILASLE 4IOV CNVIDONN BOARD 1$

4IOV RHOV BD 1'b POMER UNAVAILABLE 4KV CD SD D UMlVAILASLE

- 4IOV C)tVIIONM BOARD 2b 4COV R)r)V SD 2$ PONCE UNlVAILlBLS 4IOV RHOV BD 2C PON'CR UNAVAILARLS 4IOV DIESEL AUX BD b PONCE UNAVAILABLE 120 V RPS SUS 0$ $ UMAVAILABLS 4 KV WIT BOARD 2C 4 KV CO)eeON BOARD B 4 KV UNIT BOARD 3C RAM COOLIMO MATER STITCH UMAVAlllBLR ECCH PUHt A WAVAIIABLS SECN PWP $ WAVAILABLR CSCN tWt D WAVAILABLS RX SQIIDtlKI COMPONENT COOLIMO NATRR CYCTRH UMAVAILISLS RMRIM PWP $ 2 WAVAILABLS RMRCM PUMP D2 WAVAIIABLR PLlÃT CONTROL AIR CYCTXH WAVAILABLE Figure B-1 (Page 19-of 24). Top 100 Sequences in Brogans Ferry Unit 3 PSA Model

HOURI. Manes BMV)H Top-RanktnS Sequencee ContrtbuttnS to Oroup I ALL trequency 15:53:30 )0 HAY 1995 ALL 0 ALL DANlQE STA'tSS IXCIPT SVCCSSS Rank -Eventa - - ~ -~ Snd Frequency Percent No. Sequence Deacrtpcton Ouaranleed Ivenle/Coecaence Scare (per year)

DRZMILL CONTROL AIR STSTIH UMAVAI(ABLS OPRRA'IOR FAILS TO RECOVER ICCN (START CHINO PVHP)

HSIVS tAIL 10 REMAIN OPml I CND/CMD BSTR PWP, INCLUDES SNORT CVCLS VALVE UNAVAIIASL RCIC UNAVAILABLELOIK'ERN HPCZ VNAVAIL1BLE LCHO TIRH VESSEL IIQICTION NITN CRDMS QMAV11LABLE OPRRATOR FAILS TO HANVALLY START RMR/CORE SPRAY RMX PUNt A UMlVAIIASLI RNR PWP C WAVAILABLE UNIT 2 TO UNIT ) CROSS CONNCCT UNAVAILABLE RNR PWP B WAVAILlSLR RNR PUMP D WAVAILABLR OPIÃATOR FAILS TO ESTABLISH TOKVS COOt IH)

RNR IA)M tkRSSVRS INJICTIOll PATH WAVAItABLC

~ 00 0$ 0 000 000000 000 oooooss 000 oos 000 00 00 0000 000 000 000 00$ 00 oa 40 I'CCIRC DISCNAROX LINI BREAK COMTAINNEMT VIllT UNAVAILABLS I 34I-O4,35

~

OtIRATOR FAILS TO IMZTIATS St COOLINQ 0 00 ~ 00 000000000000000000000000000000$ 000000000000000000000000000000000000S0000000$ 0000 000 ooo 000 0$

41 LOSS OF ALL CONDIMSATR 250 V DC CONTROL PONCE FOR 4XV CD BD )Rl AMD 440 V SD SD )Xl UMAVAIL 250 kNOV BD 2C WAVAIIABLI 250 V RHOV BOARD )I PINY l. 3)I 04

~ .15 POMIR SUPPLT DIVISION It UNAVAILABLE CONDITIONS RSLATllKI TO STUCK OPEN SRVS (Og 1 ~ 2 ~ )+ SORVS)

- PONCE CVPPt I DtVZCZON I WAVAILABLS VESSEL LEVEL SIONAL WAVAILASLE STATE - 0 RELIEF VALVES STUCK OPEN I DIV VESSEL LOM tRSSSURS SICMlt QNAVAILABLI DIV ZI VCSCSI LON PRESSURE SIGNAI UNAVAILABLC DIV I NI RX PRISS SIGNAL QlllVAIIABLS DZV 11 HI RX PRFSS SIONAL UNAVAILABLC HllH CONDENSER QNAVAILABLR 1 CND/CND SSTR PWP, INCLVDCS SHOR'T CYCLE VALVE UNAVAILlB(

RCIC UMAVAIIABLR (4 HOURS)

NPCI UMAVAIIABLIl4 HOURS)

~ VESSEL INJECTION NITH CRDMS UMAVAILABLR RIR PVHP A WAVAILABLE CS LON PRRSSVRR INJSCtlON QNAVAILABLS kMR LOM PRESSURE INJECTION PATH WAVAILASLI 00 ~ 000000$ ~ 000 ~ 0 ~ 0000000000000 ~ 0 ~ 000000000000000000000000000000 ~ 00000000000000000000000000000000000 ~ 0 ~ 00 0000000 ~ 0 ~ s ~ ~\ ~

42 TURBINE TRIP RPV DIPRRSSQRIXATION HKCV 1.3)I-OI .15 UNIT ) NOT AT tOMCR

- AUIOHATIC/MANUALRCACIOR SCRlH FAILURE OPIRAIOR tAILS TO START SLC 00 0 0 0 00000000000000000000000000000000$ ~ o 00 000 000 000 000 000 000 0000 00000000000000$ 00 ~ 00 ~ ~ ~0

4) CLOSURE Ot ALL HSIVS 250 RHOV BD )C WAVAILABLR HlAV 1.3)C ~ Ob .15 250 V DC COHIROI POMER tok 4KV SD BD )XA AND 440 V CD SD )El WAV1IL 250 V RHOV BOARD )I CONDITIONS RSLATINQ TO STUCK OPEN SRVS l0 ~ 1 ~ 2 ~ )0 SORVS) I POMIk SVPtLT DIVISIOll VMAVAILABLI STATS 0 RELIRt VALVES STUCK OPN( DZV Z VISSIL LON tRCSSVRC SIGNAL VNAVAILABLI NPCI Ul(AVAILABLE lC BOURS) I DIV Hl RX tkISS SIONAL WAVAILABLE RPV DEPRCSSURIXATION HSIVS FAIL TO RINAIN OPEN RFM MARDMARX WAVAILABLC

- RCIC WAVAILABLE lC HOURS)

OPERATOR FAILS TO INHIBIT CLOSVlI OF HSIVS Oll LEVEL VRSSRl, INJECTION NITH CRDNS WAVAltABLR Nm PWP 1 WAVAILABLS so00 $ 000 ~ 00000000000000000000 000000$ 000000$ 00000 00000 '0$ 0000000000000000000000000 0000000 ~ 00 ~ 0000 ~ 0 ~ 00 ~ 0 ~ a ~ 0000 ~ 0 ~~ 0 ~ 0~ 0~

I~ tlkTZAL LOSS OF CONDIMSATS TRVS tAIL TO RELIEVE%MAINTAIN kX PRESSURE HIAV l. 30I ~ 04 . le CONDITIONS REIATI)a) TO STUCK OPEN SRVS (0, 1 ~ 2, )0 SORVS) RFN NARDMARS QMAVAILABLS STATS ~ 0 RILIkt VALVES STUCK OPEN OPIRAIOR tAILS TO DRPRESSVRIZS USING TBV'I RCtC UNAVAIL1BLI (4 HOURS)

NPCI UNAVAZIABLS (C HOURS)

~ RPV DSPRISSURIZATION VESSEL IHJRCTION MITH CIDNS WAVAILABLI sasasoassess ssses00000000000$ 000000000000000000000000000$ assssass ~ 0000000$ 0 00 000 00 0 ~ ~ 0

~5 HIDIVI tr)CA - CO(IZAINHXMTVRMT VNAVAIIASLX OLCV 1.30E 04 .14 OPERATOR FAILS TO INITIATE SP COOLIMO

~ S ~ 0000000S000$ 00000000000000000000$ 0$ 00000000000000000000000000000000000000000000 ~ 0000 $ ~ 00000000 ~

Figure B-1 (Page 20 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

HODEt, Ra>>e> btNVIH Top-Ranktnl sequence>> concrthuctnl co Croup > ALf trequency IS>SI>30 20 HAY t996 ALL a 1LL DAHACS STATES EZCIPT SUCCESS Rank ------------ --Event>>------- -'-----~ lnd Frequency Percent No. Sequence Deacrlprton Cuaranceed Event>>/Coen>ence Scare )per yearl

$6 LOSS OF PLANT AIR PLANT CONTROL AIR SISTER UNAVAILABLE PIEV I 29c

~ 04 ate SOCEV OFFSITE POMER CRID DRIMILL CORIROL AIR SISTER URAVAZLABLR CONDITIONS RSLATINQ TO IIIXXOPEN SRVS STATS I RSLZBt VALVE SIQCE OPEN l0, l, 2~ i> SORVS) HSZVS FAIL TO RSNAIN OPER RFM BARDKARI UNAVAILABLI RHR PUMP A UNAVAILABLR OPERATOR FAILS TO COOLDOKR USINQ THE TBVS RHR PUHP C UNAVAILABLE STARTVP BTPASS VALVE UNAVAILABLE RHR PVHP B UNAVAILABLS RRR PUMP D UNAVAILAbLI i

UNIT 2 TO UNIT CROSS CONRICT UNAVAILABLE OPERATOR tAILS '10 ISTABLISH 'IORUS CODLING RHR LON PRRSSURE IllIICTION PAIN UNAVAILABLE

~ II 00000000

  • 010000 I ~ II~ 000 00 ~ ~ 000 0000 ~ I ~0~ I ~0 ~~ I~ ~ ~

S9 TVRBINR TRIP HIAV l.2al'Oa ate tlRIT 2 HOT AT POKER AUIOHATIC/HANVALRRACIOR SCRAH FAILVRS STARDBT LIQUID CORIROL STSTSH UNAVAZLASLR CONDITIONS RILATINQ TO STQCE OPEN SRVS )0, I ~ 2> 3 ~ SORVS)

STATS - 0 RELIEt VALVES STUCE OPEN 01 ~ 0 ~ 0000 ~ 0 ~ 00 ~ 00 ~ 00000000000000000000000000000000000000000 I

~ 0000 ~ ~ 000000000000000 ~ \ ~ 000 ~ 000000 ~ ssoaos 00001 0 SS LOSS OF CONDIRSRR VACUVH HAIN CONDENSER UNAVAZLABLR OZAV 1.2>>E-OS .Ze AVIOHATIC/MANUALRRACIOR SCRAH FAILURE RFM HARDKARI UNAVAILABLE STARDBT LIQUID CONTROL SISTER UNAVAILABLE CONDITIONS RILATINQ TO SIVCE OPEN SRVS )0> I ~ 2 ~ 30 SORVS)

STATS 0 RILIEt VALVIS STVCE OPER I F 000 0000 ~ II ~ 000 010010000000000 ~ 00 ~ I 00 ~ 000 0000 0000000000 ~ 000 0000 II

~ ~ 00 ~ ~ 0 S9 HSDIVH LOCA CORTAIRHIRT VENT UNAVAILABLI OIAV 1.2II.O>> .Ie

- HICR PRISSVRS COOLANT INJSCF ION S'ISTEH URAVAILASLE FAILURE TO DIPRSSSURISS VIA TBS SRVS

~ 10 0000 00 I 0000000000a 00000 I I ~0 ~ Iaaa I 00 00000 00000000 00001000000 ~ 0000 00 1000 I ~ I~

90 LOSS Ot RAN COOLINQ MATER RAM COOLIHQ NATIR SISTEH UNAVAILABLE PLFV 1.27I Oa .Ie SUPPRESSION POOL lTORVS) UNAVAILAbLE HAIN CONDENSER C)IAVAILIBLE

- CONDITIONS RRLATINQ TO STQCE OPEN SRVS )0, I ~ 2 ~ 3> SORVS) 1 CND/CND bSTR PVNP> ZNCLVDIS SHORT CICLE VALVE URAVAILABL STATS 0 RRLISF VALVES STUCK OPER BPCZ UNAVAILABLS IC HDQRS)

RCIC URAVAILAILRLO)rt TERN VESSEL INIICTION MITE CRDHS UNAVAILABLS RBR PUMP b URAVAILABLR NN Ptbtt D IWAVAILABLE OPERATOR fAlLS TO ESTABLISH TORUS COOLINQ 00 ~ 000 ~ 00000 ~ 00 ~ 001000001000000000010000001100000000000100100000000000000010000100000100000 000010000010000111000 ~ 000 II

~ ~ 00 0~

91 LOSS Ot CONDENSER VACUUM HAIN CONDENSER URAVAILABLI HIBV 3.2IE.OS .Ze

- AVIOHATIC/HANUALRRACIOR SCRAH FAILURE RFN RARDMARS VNAV11LABLI

- CONDITIONS RILATZNQ TO EIUCX OPER SRVS )0, I, 2, io SORVS) OPERATOR tAILS TO ESTABLISH TORUS COOLINQ STATE 0 RELIlt VALVES SZQCE OPEN

- RRR PVHP B UNAVAZLABLI RHR Ptb)P D URAVAIIABLI I

~ 000 ~ ~ 100001 ~ 01000 00 ~ 0000000000 ~ 000 ~ 000100 ~ 00000000000 ~ 0000000000000000000000000 ~ ~ I ~ ~ ~ ~0 92 CLOSURE Ot AZL HSZVS AVIOHATZC/HANVALREACIOR SCRAN tAILURS HSIVS FAIL TO RSHAIN OPEN OPERATOR FAILS TO COOLDOKR USINQ THI TBVS HIBV I 22s Oa li CONDITIONS RRLATZNQ TO STQCE OPNI SRVS lb, I> 2 ~ 3> SORVS) OPIRATOR FAILS 'ZO ISTAbLISH 'TORUS COOLINQ STATS - 0 RELIEF VALVES STQCI OPER RHR PUMP C URAVAILASLB RNR PWP 0 UNAVAILABII

~ 0000 ~ 0100 ~ 0 ~ I ~ saaasaaaaaaaaaaseesaea@0000100000000000011@0000000000000000000000000000000000 ~ 0000 ~ I ~ I ~ 000000 ~ I ~ I ~

HSZVS tAIL TO RINAIN OPEN 0'0 ' 0 ' ~

HIBV I~ ~ ~ ~0~ ~ ~~~ ~ I~ s 93 CLOSURE Ot ALL HSIVS 1.22R ~ Oa .13 AVIOHATIC/HAHUALRRACIOR SCRAH FAILURE OPERATOR tAILS TO COOLDOMR USINQ THE TBVS CONDITIONS 11L1TINQ TO STVCI OPEN SRVS )0, I, 2, io SORVS) OPRRATOR FAILI '1O 'RSTABLISH TORUS COOLINQ STATE 0 RILIlt VALVIS STVCI OPER RRR PUMP A URAVAILABZB RHR PWP D UNAVAILABLE 00 ~ 1000000 ~ 00 ~ 000000000000000 ~ 000000000000000000000000000000000000000 0000001000 00000000000000 ~ 0000 ~ 0 ~ ~ 00 ~ I ~ I ~ 001000 ~ I ~I I

~ ~0~0 ~ \~0 ~ ~~ ~~~S~

Pe TURBINE TRIP NITNOVT BttASS TBVI FAIL TO RILIRVEKHAZNIAINRX PRESSURE OIAV l.22E ~ Oe .13 AVIOHATZC/HANVALRIACIOR SCRAH tAILURS

- STANDBY LIQUID COHTROI SZSTSH UNAVAILABLE CONDITIONS RRLLTINQ TO STUCl OPEN SRVS )0> I> 2 ~ io SORVS)

STATS 0 Rlltlt V1LVSS STVCE OPER O0000000000000000000000000000000000000000000000000000 I 0000 ~ 000000000000000000000000IIIIIS00000000 ~ ~ ~ ~

Figure B-1 (Page 21 of 24). Top 100 Sequences in Browns Ferry Unit 3 PSA Model

HODCL Naaei BPNU)H Top-Ranking Sequences Contrlbutlnb to Oroup: ALL trequency 15:5)s)0 10 HAY 1996 ALL e 1LL DAHAOC CTATCC RICRPT CVCCXIC Rank ---------------Rvents--------------- fnd frequency Percent No. Sequence Descrlptlon Guaranteed Rvents/Coaeents State =

)per year) 95 TOTAI LOSS Of OffSITS POMCR 500KV OPPCITS POMRR GRID PIVX l.)OC oa ~13

- DO 31 UNAVAILABILITY 16IKV OPPCITS POMCR CRIO DO )C UNAVAILABLR OPCRATOR TAILS 'TO RCCIORR POMCR TO UNIT bOARDS DO )B UNAVAILABLB 4KV UNIT BD )1 UNAVAILABLR DO )D VNAVAILABLS 4KV WIT SD )S NAVA!LABLR

- RCCOVCR OftSITR POMCR bY )0 HINVTEC pocclBILITY of VLDBAL cGapsOH clvs$ pAILURSOt Dos 4KV CD BD 3RA AND 490V CD bD 450V SHVIDOMN bOARD )A

)l POMCR IWAVAILABLC

- UNIT 2 IIT AT POMRR 410V DIRCCL AUX BD )RA POMCR NAVAILABLR CONDITIONS RCLATINO 'IO STUCK OPCH CkVC (0, 1, 2, )a CORVC) 4KV CD BD 3RC AND ~ COV CD bD )b WAVAILABLR STATS 0 RRLIRP VALVCC CTVCK OPKN 4KV CD BD )RS VNAVAZLABLS PAILVRR TO RRCOVRR RLRCIRIC POMCR IH 6 HOURC 410V CNUIDOMN BOARD )B 450V DICCRL 1VX BD )RB POMRR WAVAILABLR 4KV CD BD )KO VNAVAIIABLR 4KV UNIT BD IA UNAVAILABLR 4KV UNIT BD Ib UNAVAILABLR 4KV UNIT BD )A WAVAILABLR 4KV UNIT BD 1$ UNAVAILABL ~

CRVIDOMN SVC I UNAVAILABLR CHVIDOMN 'SUC 1 UIQVAILABLC DO A WAVAZLABLX DO D NAVAILABLR

- DO \ WAVAILASLR DO C VN1VAILABLR 4KV CD BD 1 WlVAZL1BLR 410V CNVIDOMN BOARD 11 4COV RHOV SD IA tOMRR NAVAILABLR 410V DICCRL AUX. BD 1 POMRR UNAVAILABLR 4KV CD BD S WAVAZIARLR 450V CHVIDOMH BOARD 21 iiOV RHOV BD 2A POMRR NAVAILABLR 310 V RPC BUS alv WAVAILABIX

, - 4KV CD BD C UNAVAILABLR 410V SMVIDOOI SCAlD lb I

410V SHOV BD ~ POMRR NAVAIIABLS 4KV CD BD D NAVAZLABLR 410V CNVIDOMN BOARD )b ilOV k)9)V BD 1D POMCR IWAVAILABLR 410V RHOV BD 2$ POMRR QHAVAILABLR 490V RHOV BD '2$ POMRR IWAVAILABLR 410V RHOV BD 2C tOMRk IBQVAILABLR 4COV DIRSRL AUX BD B POMRR WAVAIIABLR 120 V RPC SVC abv IWAVAZLABIX 4 KV WIT WARD 2C 4 KV CXBSKW BOARD b 4 KV UNIT BOARD )C 410 V RHOV BOARD )C 120 V 16C BUS )b 120 V 16C BUC )B 410 V RHOV BOARD )D 410 V RHOV BOARD )C

- XAM COOLINO Wana CYCTCH WAVAILABLR SRCN PWP 1 UlQVAILlbLR XRCN PWP S UNlVAIIABLR RCCN PWP C NAVAILABLR RCCN PWP D NAVAILABLS RX bQIIDINO COHPONRNT COOLIN) MATSR CYCTRH UNAVAILABLR RHRCH PWt 12 IWAVAILABLX RHRCM PUHt Al )CHINO tWP) QNlVAILASLC RHRCM PWP S) UHAVAILABLR RHRCM PWP Sl )CHINO PIWP) UNAVAILABLR RHRCM PUHt C) QNAVAILASLS RHRCM PWP Cl )CHINO PWP) UNAVAILlbLR RHRCM tWP D1 IWAVAZLABLR RHRCM PWP Dl )CHINO PWP) UMAVAILABLC Figure 8-1 (Page 22 of 24). Top 1DD Sequences in Brogans Ferry Unit 3 PSA Model

HODCL Naeei BPNV)H Top-Rank)nc Sequences Contrlbutlnc to oroup J ALL trequency 15:S)s)0 20 HAY )996 ALI 0 ALL DAHAOR STATES EXCEPT SUCCSSS Rank ---------------Events----- -----

~ - ~- End trequency Percent No. Sequence Description Ouaranteed Events/Conoents State (per year)

- PIANT CONTROI AIR SYSTEH WAVAIIABLC DRYMELL CONTROL AIR CYCTTH WAVAILABLR CONTAINHXNT Ai)eOS PHRRIC DILUTION OPERATOR PAILS TO RECOVER RECM )START SNIHG PUMP)

HRIVS tAIL IO RXHAIN OPEN 1 CND/CND BSTR PUMP, INCLUDES SHORT CYCLE VALVE WAVAILABL RCIC WAVAILABLRLONO TERN HPCI WAVAIIABLELOW TERN VESSEL INJCCI'ION MITH CRDNS UNAVAILABLC OPERATOR tAILC TO HAHUALLY START RMR/CORE SPRAY PAILURE TO RECOVER 4IOV RHOV BDS 2A OR 20 RHR PUMP A WAVAILABLR RHR PWP C WAVAIlABLS UNIT 2 TO UNIT 3 CROSS CONNECT WAVAI)ABLE RHR PVHt B UNAVAIIABLR RNR PQHP D UNAVAILABL'E OPERATOR tAILS TO ESTABLISH TORUS COOLIW RHR LON PRCSSURE IlQRCTION PATll UNAVAILABLE

~ ~ 0000000000 ~ \ ~ 000000000000000000000000000000000000 0 00 ~ 000 ~ 0000 000 0000 9C TOTAL LOSS Ot PXEDMATSR AUTOMATIC/HANVALREACTOR SCRAH fAILVRR RPN HARDMARR WAVAILABLC OPERATOR tAILS TO ESTABLISH TORUS COOLIW HIBV I ~ 19R OS ~ ll

- CONDITIONS RRIATIW TO STVCK OPEN ERVS 10, 1, 2, )e CORVS)

STATE - 0 RRLIRt VALVES SIQCK OPEN RHR PUMP A UlQVAILABLC RHR PWP C QNAVAILABLR 0 ~ 0 ~ 00 00 ~ ~ 000 ~ 0 ~ 00000 ~ 000 ~ 000 ~ 00000000$ 000 ~ 000000000000 ~

9) TVRB INC TRIP AVIOHATIC/HANUALREACTOR BCRAH tAILVRS 00000 VESSEL INJECTION NIIH CRDHS WAVAILABLS OIAR 1.14R 0

~

~,I) ~0~

CONDITiONS RRiATIW TO SIQCK OPEN SRVS (0~ I ~ 2 ~ )e SORVS)

STATS 1 RRLIRP VALVE SIVCK OPEN OPERATOR tAILS TO CONTROL LPI DURIW AIllS 0 ~ ~ 0 0 000 ~ 0000000000000000 0 000000000000000000 000 9l TOTAL LOSS Ot OPPSITC POMER 500KV OttSITX POMCR ORID PLPV 1.14R.Ol .12 DC 31 IJNAVAILASILITY IC1KV OttSITS PURER ORID RECOVER OttSITR POMER BY 30 HINVTRS OPERATOR PAILS TO RESTORE POMER TO JJNIT BOARDS DO B UNAVAILABLS 4KV WIT BD )A WAVAILABLC CONDITIONS RRIATINO TO STUCK OPEN SRVS )0 ~ 1 ~ 2 ~ )e CORVC) WIT BD )S UNAVAILASLR STATS - 0 RRLIRt VALVES STUCK OPEN 4KV CD BD )RA AND 4lOV SD BD )A POMRR UNAVAIIABLS tAILQRS TO RECOVER ELECTRIC PONCE IN C HOURS 4IOV SHVIDOMH BOARD )A RHR PUHP B UNAVAIIABLC ~ lOV DIESEL AQX BD )RA POMRR VNAVAIJABLR

- RHR PWP D WAVAIIABLS 4KV WIT BD 11 UNAVAILABLR 4KV WIT BD 1$ VNAVAILABLS 4KV WIT BD 21 WAVAIIABLR 4KV UNIT BD 2$ UNAVAILABLC SHVIDJNOJ BUS 1 WAVAIIASLC SHVIDOMH SQS 2 UNAVAILABLS 4XV SD BD B WAVAIIABLC 4 ~ OV SHVIOOMN BOARD 2A 410V RNOV BD 2A PONCE UNAVAIIABL' 110 V RPS SUS OAO UlQVAIIABIC 4 XV UNIT BOARD 2C 4 KV CcaeeON BOARD B 4 KV UNIT BOARD )C RAN COOLINO MAIXR SYSTEN WAVAILABLS RXCN PWP 1, QNAVAILABLS RHRC'N PJBJP C2 UNAVAILABLC RHREM PWP Cl {SMIW PWP) Ul&VAILABLC PLIHT CONTROL 11R SYSTRH UNAVA'IlABLR DRYNRLL CONTROL AIR SYSTEH UNAVAILABLC HSIVS fAIL TO REMAIN OPEN 1 CND/CND BSTR PUMP ~ INCLVDES SHOAT CYCLE VALVE WAVAILABL RCIC QNAVAILABLRLOW TXRH HPCI WAVAILASLR LOW TECH VESSEL IJQCCTION MITS CRDHS WAVAIIABLR Figure B-1 (Page 23 of 24). Top,100 Sequences in Browns Ferry Unit 3 PSA Model

HODEL Naeei SFNUIN Top-Ranking Sequences ConrrlbuclnS to Croup i ALI. Frequency 19 r 91 s 10 20 NAY 1996 ALL I ALL DAHAQS STATES RECEPT SUCCESS Rank ---------------Evenr ~ -------------- Ena Frequency Percenr No. Sequence DescrlpClon ouaranreea Evencs/coeraencs Stare (per year)

RHR PUNP A UNAVAILASLR RHR HEAT EKCHAHUER C UNAVAILASLS UNIT 2 TO UNIT 3 CROSS CONNECT UNAVAILASLR

- OPERATOR tAILS TO ESTASLZSH TORUS COOLINC OPERATOR tAILS TO SSTASLISN SHUIDOWN COOLING

~ 000000 ~ 00 I~ 00 ~ I ~ 00 ~ 000000 00000 ~ 000000 ~ 00000 00 00 ~ II

~ ~ II

~ ~ ~ ~ ~~ I~ ~ ~ ~~ I~ ~ ~ I ~ ~

99 LOSS OF CONDENSER VACUA HAIN CONDENSER UNAVAILASLR KIEV 1.1)E oa ~ 12 AUIOHATIC/HANUALREACZOR SCRAN FAILURE RFH HARDHARS UNAVAILASLR CONDITIONS RRLATINO TO STUCK OPEN SRVS (0, I, 2, l0 SORVSI OPERATOR tAILS TO ESTASLISH iORUS CODLING STATS 0 RELIEF VALVES STUCK OPEN RHR HEAT EXCHANCER D UNAVAILASLS

~ 00000 ~ 00 000000 000 00000000000000000000000000000000000000000000000000000000 00 ~ ~ ~ I ~ ~

100 LOSS Ot CONDENSER VACUUN HAIN CONDENSER UNAVAILASLR HIRV 1.13E ~ Oa .12 AUIONATIC/HAHUALREACZOR SCRAN FAILURE RFH HARDHARS UNAVAZLARLS CONDITIONS RRLATINO TO STUCK OPEN SRVS lo, I, 2~ la SORVSI OPERATOR tAILS TO SSTASLIEH 'lORUS COOLINQ STATE 0 RELIEF VALVES STUCK OPEN RHR HEAT SKCHAHOER S UHAVAZLASLR 00000000 0000000000000000000000000000000000000000000000000000000000000000000000000 ~ 0000000000 00000000000 00 ~ I~ 0 ~ \ ~ 0 ~ ~ 0 ~ 00 ~0 I

~ ~ 0 ~

Figure B-1 (Page 24 of 24), 'fop 100 Sequences in Browns Ferry Unit 3 PSA Model

APPENDIX C. SPLIT FRACTION IMPORTANCE MEASURES MODEL Name: BFNU3M Split Fraction Importance Zor Group Sorted by Fraction Importance Group Frequency 9.1335E-06 16:25:08 20 MAY 1996 Page SF Name... Fraction... Fussel-vesely. Birnbaum... Achievement. Reduction... SF Value.. Frequency.

Importance Importance Importance Morth Worth l.

2.

F IMTRF 9.9493E-Oj 1.00008+00 1 ~ 0000$ ioo 9. 0812E-06 MELTF 9.94938-01 1.00008+00 1 ~ 00008+00 9.08128 06

3. NCDP 9 '493E-01 1.00008+00 1.0000$ ioo 9.0872$ 06 SDRRCF 9.'7257E-01 1.00008+00 1.00008+00 8.88308 06
5. OXF 9.7257E-01 1.00008+00 1.00008+00 8.8830E 06
6. DWF 9.2955E 01 1.00008+00 1.00008+00 8.49008-06
1. FWAF 8.2951E-01 1,0000$ +00 1 00008+00 1.5764E 06 8 ~ INAF 7 ~ 38408 01 1.00008+00 1.0000E+00 6.7442E 06
9. HSF 7 ~ 0237E-al 1;00008+00 1.00008+OD 6.4151E 06
10. CDAP 6 '0058 01 1.00008+00 1 00008+00

~ 5.75468 06

11. OSPF 5.86078-01 1.00008+00 1.00008+00 5.35298 06
12. ZNBF 5.42'76E-01 1.0000E+00 1.00008ioo 4.9573E 06
13. ZNCF 5. 42518-01 1.00008+00 1.00008iOO 4.955OE 06
14. INDP 5.36848-01 1.00008+00 1.00008+00 4.90328 06
15. CRDF 5.15938 01 1.00008+00 1 ~ 0000$ +00 4.7122E 06
16. INEF 4.96078 01 1.00008+00 1.0000$ +00 4.530SE 06
17. INFP 4.74798 01 1.00008+00 1.0000E+00 4.33658 06 lb. HRLF 4.37558 01 1.00008+00 1.00008+00 3.99648 06
19. DWSP .16568 01 1.00008+00 1.00008+00 3.8046E 06
20. WRTP 4 OOSCE Ol 1 ~ 00008+00 1 ~ 0000$ +00 3.66138 06
21. ZVOF 3.92738 01 1.00008+00 1 ~ 00008+00 3.5870H 06 22 RVCO 3.89798 01 4.96jjEtao 6.3861R-01 5 ~ 96118+00 9,3210801 3.56018 06

'3.

NAF 3 ~ 84418 01 1 ~ 00008+00 1 0000$ +00 3.51108 06

24. RXS1 3.8199$ -01 3.81988~01 la77308+04 6.18028 01 2ej5708 05 3.48898-06
25. CDP 3.77098 01 1.00008+00 1 00008+00 3.44428 06
26. U2F 3. 56138-0 I 1 ~ 00008+00 1.00008+00 3.25278-06 27 ~ INGP 3 ~ 49708 01 1.00008+00 1.00008+00 3.1940$ 06
28. LPRESP 3.4950E-01 1 ~ 00008+00 1.00008+00 3.19228 06
29. RCMP 3.44168 01 1.00008+00 1 00008+00 06 '.1433$
30. INHP 3 17948 01 1.00008+00 1 00008+00 2.9039E 06
31. OAZP ~ 3 11258 01 1 00008+00 1 ~ 00008+00 2.89768 06
32. HR6P 2.94378-01 1.00008+00 1 ~ 0000E+00 2.68878 06
33. NRVP 2 ~ 915DE 01 1.00008+00 1.,00008+00 2.66248 06
34. DCAP 2.8900H 01 1.00008+00 1.00008+00 2.6395$ 06
35. JAF 2.86058-01 1 ~ 00008+00 1,00008+00 2.6126R 06
36. JHF 2 ~ 8605H 01, 1 00008+00

~ 1 ~ 0000$ +00 2. 61268-06

37. FWHP 2. 8D19H-01 1 00008+00 1,00008+00 2.55918 06
38. LPCP 2.50638 01 1.00008+00 1,00008+00 2 28928 06
39. 005P 2.44998-01 1.000DB+00 1.00008+00 2.23768 OC
40. U841AP 2.32338 01 1 00008+00

~ 1.00008too 2 12208 06 U843BF 2.32338-01 1.00008iaa 1 00008+00 2.12208 OC

42. U843CP 2e32338 01 1 ~ 0000E+00 1 00008+00 2.1220$ OC
43. U842AP 2 '2338-01 1.00008+00 1.00008+00 '2. 12208-OC
44. UB42CP 2e32338 01 1..00008+00 1.00008+00 2 32208 06 45, CBBP 2 32338 01 1.00008+00 I 00008+00 2.32208-06
46. U8418P 2.32338-01 1 ~ 00008+00 1 OODOH+00 2.12208-06
47. U843AP 2 '2338-01 1.00008+00 Z.aoaoE+oo 2 12208 06 48 U842BP 2 '2338 01 1.00008+00 1 00008+00 2.12208 06
49. OUBP 2 '0878 01 1.00008+00 1.00008+00 2. Zoe18-oC
50. 001 CF 2.30838 01 1 ~ OOOOH+00 1.00008+00 2.10828-06
51. KCP 2.30118 01 1.00008+00 1.00008+00 2 1017$ 06
52. KPP 2 '8498-01 1 00008+00 1.0000E+00 2.08698 06
53. KHP 2.28388-01 1.00008+00 1.0000$ +00 2 08598 OC
54. RPBP 2.26868-01 1.000DE+DD 1 00008400 2 07218 06
55. PCAF 2.23148 01 1.00008+00 1.0000$ +00 2.03808 06 56.'7. RPDP 2.21888 01 1 00008+00

~ 1.00008+00 0266E 06 RBCP 2.2068H-01 1.00008+00 1.00008+00 2.01558 06

58. RPAP 2.13948 01 1.00008+00 1.00008+00 1.95408 06
59. Rvci 2.09278-01 -1.65768+00 8 14198-01

~ 2.65768~00 8.99'20$ 01 1.9114$ 06

60. MCDF 2. 02338 01 '1.00008+00 1.00008oao 1.84808 06 61, OSDP 1.99808 01 1,00008+00 1,00008+OD 1.82498 OC
62. SHUTZP 1.98048 01: 1.00008+00 1.00008+00 I.eoee8-06
63. SHT2F 1. 98D48 01 1.00008+Do 1 00008+00 1.80888 06
64. RPCF 1.93288 01 1.00008+00 1.00008+00 1.7653$ 06
65. RCLF 1.6831$ 01 1.00008+00 1.00008+00 1.53738 06
66. LECF 1.64918 01 1.00008+00 1.00008+00 1.50628 06
67. HPLP 1.6208E 01 1.00008+00 1.00008+00 1.48038 06
68. SM2CP 1.57688 01 1.00008+00 1.00008+00 1.44028 06
69. SW1CF 1.5768$ 01 1.0000E+00 1.DOOOE+00 1.44028 06
70. RSF 1.57228 01 1 ~ OOOOE+00 1.00008+00 1.43608 06
11. DKP 1.57228-01 1.0000$ +00 1.00008+00 1.4360E 06
72. RHF 1 ~ 57228 01 1.00008+00 1.00008+00 1.4360E 06 13, ABF 1 ~ 5121E 01 1.0000$ ioo Z.OOOOE+00 1 ~ 43598 06
14. HUMF 1 ~ 5651E oj 1.00008+00 1.00008+00 1.4295E 06

NODEL Name: BFNU3H Split Fraction Importance I'or Group  :

Sorted by Fraction Importance Group Frequency 9.1335$ -06 16:25:08 20 HAY 1996 Page 2 SF Name... Fraction... Fussel-Vesely. Sirnbaum... Achievement. Reduction... SF Value.. Frequency.

Importance Imporrance Importance ~

Morrh North

75. SM2BF 1.5631$ 01 1,0000E+00 1.0000$ ioo 1.4276E 06
76. EBF 1.5560$ -01 1.0000E+00 1 ~ OOODE+00 1.4212$ 06
77. RRF 1.5539E 01 1.0000E+00 1.0000$ too 1.4192E 06
78. RFF 1 '539$ 01 1.0000$ +00 1.0000E+00 I . 4192E-06
79. ACF 1.5534$ -01 1.00008+00 1.0000E+00 1.41SBE 06 SD. OBCF 4567E 01 1.00008+00 1 0000Et00

~ 1.3305$ -06 8'2. SGTOPF 1. 4536$ -01 1.00008+00 1.0000$ too 1. 3217E-06 SM1AF 1 ~ 4329E 01 1 ~ OOOOE+00 1.0000E+00 1.3087E 06 83 SM?AF 1.4329$ 01 1.00008+00 1.0000$ +00 1.3087E 06

'4e REF 1 ~ 3513E 01 1.00008+00 1.00008too 1 '342E 06

85. RQF 1.3513$ .01 1.00008+00 1.0000E+00 1.2342E 06
86. RNF 1.3513$ 01 1.0000E+00 1.0000$ too 1.2342E-06 81 ~ AAF 1.3508$ 01 1.0000E+00 1.0000Et00 1.2338$ 06 BS ~ ROF 1.3412$ 01 1,00008+00 1.0000$ too 1.2250E 06 S9. EAF 1 ~ 3280$ 01 1.00008+00 1.0000Etoo 1.21308 06 90, SM2DF 1 ~ 3082$ 01 1.00008+00 1 ~ DOOOE+00 1.194SE 06 91'2. SGTF 1.3051$ 01 1.00008+00 1 ~ 0000$ ioo 1. 19208 06 RJF 1 ~ 3032$ ol 1.00008+00 1.00008+00 1. 1903E 06
93. RIP 1.3032$ 01 1.00008+00 1.0000E+00 1. 1903$ 06
94. DLF 1.3032$ 01 1 00008+00 1 ~ 0000$ +00 1.1903$ 06"
95. RNF 1.3032$ 01 1.00008too 1.00008+00 1.1903$ 06
96. RTF 1.3032E 01 1,0000$ too '1 00008+00 1.1903$ 06
97. ADF 1.30288 01 1.00008+00 1.00008+00 1.18998 06
98. RPA1 1.29578 01 1 ~ 2010$ 01 9. 26108+ 00 8.7990$ 01 1.43308-02 1.18358 06 99 RVC1 1.2956$ 01 1 ~ 2106$ 01 2.84628+00 8,7894$ 01 6.15lOB 02 1.18338 06

'00.

EPR301 1 ~ 20078 01 1 ~ lsiiE 01 1.39858+00 8.8156$ 01 2.29108-01 1.09668 06 101. RXP 1 ~ 1802$ 01 1.00008+00 1.00008too 1.07808 06 102. RCI1 1 1707$ 01 8.0375H 02 2.132SB+00 9.1963$ 01 6 '2508 02 1.06938 06 103. SM18F 1 ~ 0957$ 01 1.00048+00 1,0000$ too, 1.00088~06 104. A3 HAP 1.09428 01 1.00008+00 1,DOOOBtoo 9.95148 07 105. RPC2 1 ~ 0880$ 01 9 '727B 02 1 143SB+00 9. 0127E-01 4 ~ 07008-01 9.93708 01 106. RCIP 1 ~ 06748 01 1.00008+00 1.04008too 9.749].B 47 107. RLP 1.06668 01 1.00008+00 1,00008+00 9.74198 07 108. REF 1.0666$ 01 1.00008+00 1.00008too 9 74198 07

~

109. RPP 1 ~ 04178 01 1 00008+00 1,00008+00 9.5147$ 01 110. RJ3P 1.0411$ 01 1 04008+00 1 ~ 00008+00 9. 5147807 111. HPZF 1.0413$ 01 1 00008+00 1.00008+00 9.5107E 07 112 ~ BPR61 1 02758 01 1.02118 01 1 75578+00 8 '7838 01 1.1910$ 01 9.38488 07 113. OSVP 1 ~ 01648-01 1.00008+00 1 ~ 04008+00 9.28318 01 114 . U2AP1 1 ~ 01648 01 -5 60028 02 6.82658 01 1.0560B+00 1.50008 01 9.28308 07 115. GCP 1.0101$ 01 1 00008+00 1 00008too 9.22628 07 116. GA1 9.97498 02 9 04838 02 1 61488+00 9 09528 01 1.28308 01 9.11068 07 117. EDF 9.95918 02 1.00008+00 1.00008+00 9.0962$ 07 118. RYP 9,5724$ 02 1.00008+00 1.00008+00 8.1430$ 07 119 ~ QRPF 9 ~ 51898 02 1 00008+00 1 04008+00 8.6941$ 07 120 GE1 9.20698-02 1.99048 02 1 81208+00 9.20108 01 8.95908-02 8.40918 07 121. HXCP 9 '024$ 02 1.00008+04 1.04008+00 8.22248 07 122. $ 81DF 8 '4628-02 1.00008too 1 00008+00 8.17108 07 123. A3ECP 8 90588 02 1 OODOB+00 1 00008+00 8 13418-07 124. A3$DP 8.70718 02 1.00048+00 1 ~ 0000$ +00 7.95268 07 125. RVD22 8 '6368-02 8 ~ 64148 02 1.09268+02 9 13598 01 1.97608 04 7.91298 07 126. RVCS 8 64178 02 1.759SR 02 1.76048+00 9.22408 01 9 26008 02 7.89298 07 127. HXAP S.S9068-02 1,00008+04 1.00008+00 7.S462$ 07 128. HPI4 8 '404$ 02 7e98128-02 1 64648+00 9.24198-01 1 09948 01 '7.52648 07 129. ECF 8,20348 02 1 00008+00 1.0000$ too 7.49268 07 130. A3$ 8P 8 '3938 02 1.00008+00 1 04048+00 '1.34278-07 131. RPB3 7.78818 02 7.7019$ -02 3.48438+00 9.2298$ 01 3.04748 02 7.11328 07 132. RPD4 7.75478-02 '1.73438 02 1 ~ 04168+00 9.22668 01 6.19008 01 7.0828$ 07 133. RBISOP 7.21288 02 1.00008+00 1.00048too 6.58788 D7 134. RRZ2 1.21288-02 3 23128 02 1.14508 01 1.03238+00 1.01678 01 6 '8788 07 135. DLPP 7 1SSSE 02 1.00008+00 1'00008+00 6.56598 07 136. OEEP 7 '6728 02 1.00008+04 I.aoooE+oo 6.5462$ 07 13'1. QBDP 7.0884$ 02 1.0000$ tao 1.00008+04 6.47428-07 138. OLAI 6.6849$ 02 6.2302H-02 1.7352$ +00 9.37708 01 1.81208 02 6.1057$ 07 139 DSP1 6.35658-02 6.35558-42 8.13978+02 9.36458 01 1.817OH 05 S.SOS78-07 140. BVRF 6a3010$ 02 1.00008+04 l.ooaos+00 5.7551$ 07 141. GD2 6 15498 02

~ 5.8285E 02 1.58548+00 9.4172$ 01 9.0550$ 02 5. 6215B-01 142. RVD4 5 5.97988-02 1.00008+00 1.00008+04 5 46178 07

~

ll 3. NPIP 5a9263$ 02 1.00008+04 1.0000Etoo 5.41288 07 144 . NH1F 5.92638-02 1.0000E+00 1.00008+00 5. 412 88- D1 145. HXDP So8520$ 02 1.00008+00 1.00008+00 5.3449$ 07 146. RPB1 5. 1981802 5 ~ 1273$ 02 4.62958+00 9.48138-01 1.39308-02 5.2962$ 41 147. PX1F 5 e 134 9E-02 1.0000$ too 1.04008+00 5. 2379E-01 148. RC3F Se51008 02 1.0000$ too 1.00008+00 5.0326$ 07 149. RDP 5. 5100E-02 1.00008+00 1.00008+04 5.0326$ 07 150. NH2 F 5.5D20$ 02 1.00008+00 1 0000$ too

~ 5 '252$ 07 151. NPZIF 5.5420E 02 1 00008too

~ 1.00008+00 5 ~ 0252$ 07 152. G84 5.4186$ 02 5.37058-02 1.30278+00 9.4629$ 01 1.50708 01 4.94918 07 153. DN3 F 5.40128~02 1.DDDOB+00 1.4000E+04 4.93328 07 154. DE3 5.2560E 02 5.1826$ 02 5 69168+01

~ 9.4817E 01 9.2600E 04 4.S006$ -41 155. RK3F 5.1861E 02 1.00008+00 1.0000E+00 4 ~ 13618 01

MODEL Name: BFNU3M Split Fraction Imporrance Zor Group  : ALL Sorted by Fraction Importance Group Frequency 9. 1335E-06 16:25:08 20 MAY 1996 Page 3 SF Name... Fraction... Fussel-Vesely. Sirnbaum... Achievement. Reduction... SF Value.. Frequency.

Importance Importance Importance Morth North 156. RL3F 5 ~ 18618 02 1.00008i00 1.0000Et00 4.1361E 01 151 . DO3F 5.16908 02 1 ~ 0000$ +00 1.0000Etoo 4.72118 07 158. CSF 5 ~ 14078 02 1.0000$ t00 1.00008t00 4.6952E 159. AZF 4.97498-02 1.0000Etoo 1.00008t00 01 0'.54388 160. VNTF 4 '749E-02 1.00008+00 1 ~ 00008+00 4.5438E 01 161. RPD2 4.8S02E 02 2.4034E 02 1.03458+00 9.7591E 01 4.1070E 01 4.45738 07 162. LVF 4.7801$ 02 1.0000E+00 1 00008t00

~ 4.36598 07 163. PX2F 4.6050$ 02 1.0000E+00 1.0000E+00 4.20608 01 164. RB3F 4.3210E 02 1,0000E+00 1.00008+00 3.9466E 07 165. RCF 4 ~ 32108 02 1.00008+00 1 ~ OOOOE+00 3.94668 07 166. SL1 4.2609E 02 4.09108 02 8. 01308+00 9.59038-01 5.7591E 03 3.8911E 07 167. EPR62 4.2231E 02 4.1754E-02 1.3074Et00 9.5825E-01 1. 1960E-01 3.85778-07 168. CG1 4 11408-02

~ 3.35738 02 1. 3412E+00 9.6643E 01 8 '590E 02 3.7575E 07 169. EPR302 4.05778 02 4.02868 02 1 ~ 1646E+00 9.5971E 01 1. 9660$ -01 3.70618 07 170. OZVF 3.92438-02 1 ~ 0000Et00 1.00008+00 3.5842E 07 171. SM281 3 '460E 02 3 '068E 03 1.08RSEt00 9.9639E 01 4.17408 02 3.51288 07 172. GBF 3.7180E 02 1.00008+00 1 ~ 0000$ t00 3. 3958E-01 113. CRD4 3.1004$ 02 3 ~ 3919802 1 ~ 8355E+00 9.66088 01 3 '011E 02 3.3797$ -07 174. GAP 3.5335$ 02 1.0000$ t00 1.00008+00 3 ~ 2273$ 01 175. CB2 3.5203E 02 3 ~ 3150E 02 1 ~ 35$ 8E+00 9.6685$ 01 8.4570$ 02 3 ~ 21538-07 176. GDP 3.4605E 02 1 ~ 00008+00 00008+00 3 16068 07 171. DCX 3.3916$ 02 3.3941E-02 1 ~ 9165E+01 9 '6068-01 1.86508 03 3 ~ 1032807 178. RPD1 3.3349E-02 2 '911E 02 4 '6308t00 9.70098-01 8.32508 03 3.04608 07 179. OSL1 3.26198 02 3 ~ 14168-02 6 ~ 8619E+00 9 68528-01

~ 5 ~ 3410$ 03 2.984SE 07 180. TORP 3.18958 02 1.00008+00 1 00008+00 2 '1318-07 181. R480P 3. 15118-02 1.0000E+00 1.00008+00 2 ~ S781$ 01 182. GC2 3.14558-02 2.5641$ 02 1.26058+00 9 '4358-01 8 '6208 02 2.87298 07 183. HPI2 2.98768 02 -1.45078 02 S 4387$ 01 1 ~ 01458+00 8.50208 02 2 72878-07 184. EPR304 2.9S018-02 2 '7968 02 1 08138+00 9 70ROB 01 2 '8308 01 2 ~ 72188-07 185.

186.

GD1 SPP

~ 2.8705$ 02 2.8327E 02 2 38768 02 l. 15448+00 1.00008t00 9

~

'6128-01 1 33908 01 1 ~ 00008+00

2. 62178 07 2 '8738-07 181. EPR64 2.19968 02 2.7991$ 02 1 20728+00 9 ~ 72018 01 1 19008 Ol 2.5570$ 07 188. NZEP 2.76218 02 1 ~ 0000$ t00 00008t00 2 '2288 07 189. RVC9 2 ~ 71928-02 9 '2818-01 1 ~ 00008+00 2.48368-07 190. CADP 2 61398 02 1 ~ 00008+00 1.00008+00 2 38748-07 191. TB1 2.51198 02 1.60018 02 1.97088+00 9.8400H 01 1.62168 02 Ro2998$ 07 192. CF4 2.41568-02 2+2882$ 02 1 i 11688+00 9. 77128 01 1 63808 01 2.20638 07 193. SMRD1 2 37828 02 1.08438 02 7 73338-01

~ 1. 01088t00 4 56508 02 2.17218 07 194. GCR 2.3446E 02 2 '363H 02 1 25128+00 9 '7648-01 8 '7408 02 2. 1415807 195. GP1 2 2341$ -02 1.7205$ -02 1 17338+00

~ 9.82798 01 9.03108 02 2 04058 07 196 OSL2 2.20608-02 2 07858 02 2 71858+00

~ 9.79228 01 1 19508 02 2 '1488 0'1 197. U22 2.172'1E 02 1.99778 02 1 ~ 68018+00 9 ~ 8002801 2 '5378 02 1.98448 07 198. NRUP 2 13828 02 1.00008t00 1.00008+00 1 95298 07 199. RPB6 2.1314$ 02 '1 80428 02 1.02638+00 9.8196$ 01 4 07008 01 1 946'18 07 200. RPD10 2.1227$ 02 2 '0948-02 1 ~ 03118+00 9.79918 01 3 '2208-01 1.93878 07 201. CH1 2 1'RROB 02 1,S4498 02 1. 18348+00 9.81558 01 9 ~ 14108 02 1.93818 07 202. GH2 2.04658 02 1.35228 02 1 15728+00 9.86488 01 7.92008 02 1 ~ 86918 07 203. HXhl 1.98538-02 1 ~ 68428-02 4 ~ 05208+00 9. 83168-01 5.48808 03 1 ~ 81338-07 204. GH4 1.95748 02 1 ~ 68538-02 1 ~ 02508+00 9.83158 01 4.02408 01 1 ~ 78788 01 205. MCD1 1 95028 02 9 '0388 03 1 30368+00 9.90108 01 3 1590$ 02 1 ~ 78128 07 206. HXB1 9445$ 02 1.72948-02 4,26438+00 9.82718 01 5,27008 03 1 ~ 71608 07 207. HXD1 1.92928 02 1 75048 02 4o3442$ t00 9.82508 01 5.20708-03 1 16208 07 .

208. TOR2 1.9203$ 02 1 ~ 92028-02 1 4806$ t04 9;$ 0808 01 1.2970H-06 1.75398 07 209. LCP 1.$ 6788 02 1.00008+00 1 00008+00 1 70598 07 210.

211.

HXC2 l. 81658-02 1.78598-0R 1.81'218 02

-03 1.58S98+00 9.81888 01 9.98468-01 2.98508 02 1.05008 01 1 ~ 6591$

63118 01 OG52 1.5382$ 1 01318+00 1 07 212. RVC3 lo7$ 588 02 1.78508 02 4 ~ 15328+01 9.82158 01 4,40ROB 04 1 63108 07 213. HXD1 1.78518-02 1.78518 02 1. 01248+00 9. 82158 01 So8920$ -01 1.63048 07 214. HX85 1.18408-02 1.77838 02 1.03758+00 9.8222E 01 3,2150$ 01 62958 01 215. DGC1 1 '6878-02 1 ~ 39418 02 1.04518+00 9.8606$ 01 2 3600$ 01 1.61548 07 216. HPZ6 1.76868-02 1.4535$ 02 1 15328+00 9.85468 01 8 6610$ -02 1 61538 07 217.

218.

Gci 1.75288 02 1 50738-02 l. 11588+00 9.8493$ 01

~

1. 1520801

'1.3'1708 02 lo60098-07 BVR1 1.7310$ 02 Zo43238 02 2.025$ $ t00 9.8568$ 01 1.58108 07 219. S'MRC1 1.7056H-02 -1. 52968-02 6 ~ 31368 01 1. 01538t00 3.9840$ 02 1 ~ 55788 07 220. F$ 1 1 ~ 695'28 02 1.33938-02 1 811$ 8t00 9.$ 661H 01 1.6230$ -02 1.54838 01 221. CEF 1 ~ 69528 02 1 00008t00

~ 1 00008t00 1.54838 07 222 GB1 1.66958-02 1.4546$ 02 1.0883Et00 9.8545E 01 1.41508 01 1 ~ 52498 01 224.

'23.

SMRhl l. 65618 02 1.63468-02 Ii5416$ 02 5. 9742$

1. 10048+00 01 1. 01548+00 9.90998 01 3.68808 02 S.2320$ 02 1 ~ 51268-01 1.49'29$ 01 GF2 9.00518 03 225. RX1 1. 6103$ -02 1 ~ 5561$ 02 2.57368+01 9.84448-01 6.2$ 70E 04 1.47078 07 226. RBP 1.58868 02 1.00008+00 1.00008+00 1.4510$ 01 227. RD3F 1.5886E 02 1.00008+00 1.0000Et00 I 45108 07 228. U21 1.57958 02 1 56138 02 1.2760E+00 9.84398-01 5.3539$ -02 1.4427$ 07 l.

~

229. DHl 1.5662E 02 3218$ -02 5.44648+00 9.86788-01 2.96408-03 1.43058 07 230. SMlcl 1.5257$ 02 5 '7278-04 1,"00718+00 9.99458-01 7.1180E 02 1.39358 07 231. CGP 1.5102E 02 1.00008+00 1.0000$ t00 1 37948 07 232. GHF 1.5089E 02 1,00008+00 1.0000$ t00 1 ~ 3782E-07 233. RPC1 1.46198 02 9.42288 03 2 0835$ t00

~ 9.9058$ 01 8 6220E 03 1 '3538-07 234. GFF 1.3899E 02 1.0000E+00 1 OOOOEt00 1.2695E 07 235. RVC2 1. 3717E 02 1 3718E 02 4 ~ 2111E+00 9.86288 01 4.2540E 03 1.2584E 01 236. OHR1 1.36808 02 '1 ~ 3494E 02 1.4030Et00 9. 8651E 01 3.2400E 02 1.2494E 07

MODEL Name: SFNU)H Split Fraccion Importance Zor Group ALL Sorted by Fraction Importance Croup Frequency 9.l)358-06 16:25:08 20 NAY 1996 Page 4 SF Name... Fraction... Fuseel-Vesely. Sirnbaum... Achievement. Reduccion... SF Value... Frequency.

Importance Importance Importance 'Morch Morch 237. FA1 L.16478 02 8.7032E 03 1.5275E+00 9 ~ 91308 01 1.62308 02 1.06378 07 238. SM1D17 1.1647E 02 9 '780E 03 1. 1180Etoo 9 ~ 9072E Ol 1.2920E 02 1.0638$ -07 239. EPR63 1.09768 02 1.0976E 02 1.0810$ too 9 '902E 01 1 ~ 1940E 01 1.0025E 01 240. HXSF 1.0664E 02 1.0000Etoo 1.0000Et00 9.7401E 08 241. FS1 1.03728 02 7.7520E-03 1. 41178t00 9.9225E 01 1.6170E 02 9.4131E-OS 242. SM1A1 9 '763E 03 7 ~ 5450E 03 8.914)E 01 1.0075Et00 6.4980E 02 8.9292E 08 243. CSS 9.2962E 03 9 26108-03

~ 1.0930E+00 9.9074E 01 9.0550E 02 8.49078 08 244 . A3EA1 $ .95578-03 8.75158 03 3.3285$ tol 9.9125E 01 2.7100E 04 8. 1797$ -08 245. TSF 8.82528 03 1.0000E+00 1.0000E+00 8.0605E 08 246. SM18 1 8.62968 03 5.2101E 03 9 31808 01

~ 1.0052Etoo 1.0980E 02 7 '8198-08 247, FD1 8.6081E 03 5 ~ 8173E 03 1.3539E+00 9 ~ 9418E 01 1 ~ 6170E 02 7 '6228-08 248. SM1D1 8.60478 03 -l.79408 03 9 4391E 01

~ 1.00488+00 7.S740E 02 7.8591E 08 249. RPD3 8.54058 03 2.66148 03 1.00$ 2Etoo 9 ~ 9734E 01 2.4590$ 01 7.8004E 08 250. RPD9 8.35208 03 8 '8238 03 1.01188+00 9 9192$

~ 01 4.07508 01 7.62838-08 251. SDC2 8.0826$ 03 7 ~ 24718 03 1.2153E+00 9. 9215E 01 3 '5698 02 7.38228-08 252. FG2 8.02768-03 7.8425E 03 1. 3781Etoo 9 ~ 9216E 01 2.0320E 02 7.33208 08 253 RPS5 8.0178E 03 7.14578 03 1.50008+00 9.9285E 01 1.40908 02 7 '231E 08

'54.

FF) 1.98158 03 7 ~ 96858 03 1,02828+00 9.920)E 01 2 20508 01

~ 1.2899E-08 255. FAP '7.98158 03 1.0000E+00 1.00008too 7 ~ 2899E 08 256. FDF 7.98158 03 1.00008+00 1.0000E+00 7.28998 08 257, FSP 7.98158 03 1.0000$ +00 1 00008too

~ 7.2899$ 08 258. FCF 1.98158 03 1.00008too 1.00008+00 1.28998 08 259. FHl 7. 98158 03 1 ~ 98158 03 1.00058t00 9.92028 Dl 9.42808 01 7.28998 08 260. RBCQ 7 ~ 76498 03 4 ~ 42028-04 1.03448too 9.99568 01 1.26958 02 7 ~ 0921E-OS 261 e EPR303 7.59438 03 7.5820R-03 1.0298$ too 9.92428 01 2.02908 01 6.9363E-08 262+ OADl 1. 3114$ 03 6.98188 03 5. 61978too 9.9301$ 01 1.4910$ 03 6.67798 08 263. SW1B3 '7.1426$ 03 8.2742$ 04 1. 01128+00 9. 99178 01 6.$ 6808 02 6.5237E 08 264, PX23 1.08108-03 7.07208 03 9.89418too 9. 92938 01 7 ~ 94508 04 6.4675$ -08 265. FG1 7.07498 03 3.64838-03 1 22208too 9.96358 01 1 61708 02 6 46188 08 266, CSl 6.981OE-O) 6.65618 03 1. 18018+00 9.9334$ 01 3 '6398 02 6.3761$ 08 267. CCl 6. 88148-03 5.84518 03 1.03288+00 9 ~ 94158 01 1 ~ 51408 01 6.28528 08 268. FH1 6.69878 03 3.41598 03 1.21158too 9.9652$ 01 1. 61708-02 6.11838 08 269. RPC3 6.6174$ 03 6.02438-03 1. 41448+00 9.93988 01 1 '3308 02 6 04408-08, 270. DCJ 6.48848 03 5.83268 03 7. 27128 too 9 94178 Ol

~ 9 '9208 04 5 '2628 08 211. CRD1 6.4604$ -03 6.20358 03 5.69598+00 9.9380$ 01 1.3193803 5.9006E 08 272. RVC6 6.35508 03 6.29338-03 1-64818+00 9.93718 01 9 ~ 61708 03 5 ~ 80448 08 273. A3$ C1 6.29088-03 6 08828 03 2 ~ 34518tol 9.93918 01 2.713.08 04 5.74578 OS 274. SPRF 6.23288 03 1 00008too 1.00008too 5.69278-08 275. NPZ1 5 91D18 D3 5.64468 03 2 ~ 0712$ tol 9.94368 01 2.8540H 04 5 39808 0$

276. HS7 5.90448 03 5.90448 03 1 05978too 9.94108 01 F 00008 02 5 39288-08 217 . FC1 5.81538 03 3.29058 03 1 20028+00 9. 96118 01 1 61708 02 5 ~ 3114$ -08 278. NPZZ2 5.80698 03 5.80698 03 1 08868+00 9 94198 01 6 1540802 5 '037E-08 219.

280.

FP1 DJ3F 5.69788 03 5.66858 03 2.36218 03 l. 1438E+00 le0000$ too 9.97648 01 1.61108 02 1.00008+00 5.20418 08 5 ~ 17748-08 281. CRD5 5.63258 03 5.60918 03 1 08118+00 9 '4398 01 6.05328 02 5 ~ 14448 08 282. GH3 5.47398 03 3.21898-03 1 02438+00 9.96788>>01 1.17008 01 4.99968-08 283. CD3 5.41928 03 4.8673R 03 1 ~ 03318+00 9. 95138-01 1 F 28308 01 4 9496$ 08 284. ORP2 5.26688 03 -3 '7918 03 8 F 55988 01 1.0037Etoo 2.4910$ -02 4a81048 08 285. ODWS2 5. 00108-03 -5.5275$ 0) 8 00058 01 1 00558too 2.69008 02 4 '6778 0$

286. HS5 4.85458 03 4. 85458 03 1. 03318too 9.95158 01 1 26008 01 iii)388 08 2$ '1. OLP1 4.18918 03 4 78798 03 2 '4948+02 9 95218 01

~ 1 $ 1408 05 4 ~ 31468 08 28$ . HXS6 4 24368 03 3.80538-03 1 ~ 68968+00 9 96198 01 5 '8808 03 3 '7598 08 289. DP1 1437$ 03 1 39688 03 1 ~ 43568+00 9.98608 01 3 1963$ 03 3I78478-0$

290. CS3 4.05218 03 3.6659E 03 1 ~ 02378tOD 9.96338-01 1 33908 01 3 70108 08 291. DL1 3 74338 03 7 00568 03 5 0696$ 01 1.00708+00 1.40108 02 3.41898-08 292. DK1 3,74268 03 6 '2688 03 5.0644H 01 1.00698+00 1.3840$ 02 3.41838-08 293. RX) 3 59688 03 3.5509$ -03 6.55608+00 9.96458-01 6.38'108 04 3.28528-08 294. S'M182 3.5785$ -03 )e0951$ 03 1 19148+00 9 '6908 01 1.59108-02 )o2684$ -08 295. HRC1 3.56488 03 3.29048 03 6.6848E+00 9. 96718-01 5.18468 04 )i2559$ 08 296 OAL1 3.49288 03 2 26198 05 9 ~ 98608 01 1.00008+00 1.59108-02 3 ~ 19028-08 297. GC3 3.30258-03 3.21098 03 1.01958+00 9.96'798 01 1 ~ 41508 01 3,0164$ 08 298. RYl 3.10578 03 2.58878 03 5.04S68+00 9 ~ 97418-01 6 ~ 39008 04 2 '3668-08 299. GCS 3.06578-03 2.58568-03 1.02808too 9 ~ 9741$ 01 8.45708-02 2e80008-0$

300. GHS 2.93348 03 1. 86158-03 1.01888too 9.9813E 01 9 03108 02 2 192$ 08 301. VNT1 2.92068 03 1 4D168 03 1 ~ 29948+00 9.98608-01 4.6587$ 03 2.66758 08 302. HR1 2.8831H 03 2.85908 03 1 ~ 3148E+00 9. 9714$ -01 9 ~ OOOOH 03 2.63338 08 303. RB31 2.8400H 03 2.7212$ 03 2 ~ 27188+01 9.97288-01 1 25288 Ol 2.59408-08 304. RXS4 2.7654E 03 2.76508 03 1. 34448+02 9.9724$ 01 2.07208 05 2.52588 08 305.

306.

RCL1 2.12188-03 1.1219H 03 9 ~ 39548 01 l.'8268-01 00118+00 1.82208 02 8.56008 02 2.48608 08 2.42528 08 HPZ1 2.65528-03 1.73768 03 1.01868+00 9 307. TS2 2.56888 03 6.22768 Ol 1.00978+00 9. 9938E 01 6.0OSSB-O2 2.34628 08 308. HXD9 2. 56518-03 1. 70178-03 1.05538+00 9 '830E-Ol 2.9SSOB 02 2. 34348-08 309. DE1 2.5401E 03 2. 51718-03 2 '3428+00 9.97488-01 1.75208-03 2.3200E 08 310. DCB 2 ~ 3910$ 03 2.39058 03 1.64398+00 9 ~ 9761$ -01 3 '9908 03 2.1838E 08 311. LPC2 2.3571$ 03 1.75598 03 la2152$ too 9 '8248 01 8 09448 03 2. 15298-08 312. FD2 2.30868 03 2. 11508-03 1 ~ 10208+00 9 '7898 01 2 '3208 02 2.10868 0$

313. LC1 2.2994$ 03 8.89588 04 1*1498$ too 9 '9118-01 5 '0208 03 2.1002E 08 314 . RC31 2.2487$ 03 2.1381E 03 1.91308+01 9.9786E-01 1 ~ 1792$ Ol 2.0538$ 08 315. OHS3 2. 13228-03 9. 13778 04 la17298too 9 ~ 9909E 01 5.25708 03 1.9474E 08 3 16 . RVD14 2.08098 03 2.0782E 03 3 '4348+00 9 ~ 9192E-Ol 8 ~ 16408 04 1.90068 08 317 ~ GF3 2.03268 03 9.4161E 04 1 '0968~00 9 '9068 01 8.95908-02 1.8565$ 08

HODEL Name. BFNU)H Split Fraction Importance for Group Sorred by Fraction Importance Group Frequency ~ 9. 1335$ -06 16:25:0$ 20 MAY 1996 Page 5 SF Name... Fraction... Fussel Vesely. Birnbaum... Achievement. Reduction... SF Value... Frequency.

Imporrance Importance Importance North North 318. DCAl 1.9628E-03 1.3398$ 03 7 ~ 1512$ -01 1. 0013$ too 4.6908E 03 1.7928E-0$

319. SW2DI 1.9321$ 03 I.5306$ -03 I ~ 0062$ ~00 9. 9841$ 01 1.9800E 01 I ~ 7652E 08 320. PX1 1 I . 9145E-03 1. 1705$ -03 2 '721$ +00 9.9883E 01 7.9450E 04 1 ~ 1486$ 08 321. CS2 1.8912$ -03 1.8517$ 03 1.8695$ t00 9.9815E 01 2.1252E 03 1.7328E 08 322. CS5 1.8790$ 03 1.7982E 03 2 '949$ +00 9.9820E 01 9.0058E Oi 1.7162E-08 323. SN1D6 1.8485E 03 1.7642$ -03 1. 0010$ tOO 9.9824E 01 6 '610E 01 1.6883$ -08 324. OADZ 1.778$ E 03 1.6262$ -03 2 ~ 1046$ ~00 9.9837E 01 1.4100E-03 1 '246$ 08 325. SW1D16 I ~ 7551$ 03 3.9091$ 04 1.0053$ ~00 9. 9961E 01 6.8680$ 02 1.6030E-08 326. RYZ 1.1468E-03 1.7455$ 03 I ~ 4 539E+01 9.9825E-OI 1.289OE-OI 1.5954E 08 327. F83 1.7133$ 03 1.5449$ 03 1.0055E+00 9.9846$ -01 2.2050E 01 '1.5649E 08 328. PX22 1 '625E 03 1.6623$ -03 1.4266Et00 9.98348 01 3.8810E-03 1.5185E 08 329. FC4 1. 6614E-03 8.0542$ -04 1.0000E+00 9.9919$ 01 9.4280E 01 1.5174E 08 330. SP21 1 6316$ 03

~ 1.4444$ 03 9.1417E 01 1. 0014 $ too 1.6550E 02 I ~ 4902E 08 331. GF5 1.5880$ 03 1.4S24$ 03>> 1. 0151$ +00 9 '8528-01 8 '620$ 02 1.4504$ 08 332. OHRF 1 ~ 5670E 03 1 0000$ +00

~ 1.0000$ too 1.4312E 08 333. OBDI 1.5433$ 03 9. 4918$ -04 1.0063E+00 9.9905E 01 1.31208 01 1.4096E 08 334. GH7 1 '327E 03 1 3843$ -03

~ 1 ~ 0071$ +00 9.9862$ 01 1 6380$ -01

~ 1 ~ 3999$ 08 335. PWHI 1 ~ 5254E 03 1.29088-03 1 ~ 4095E+00 9. 9871$ -01 3.1422$ 03 1 ~ 3932$ 08 336. HS6 1 ~ 5169$ 03 1.5169$ 03 1 ~ 0092E+00 9 ~ 98488 01 1.4200$ 01 1 3855$

~ 08 337. CD5 1.5117E 03 1.4522$ 03 1. 5186E+00 9.9855$ -01 2.7922E 03 1.3807E 08 338. A3$ D5 1.4902E 03 2.8336$ -04 1 ~ 00318+00 9.9972$ 01 8.3940$ 02 1.3611E 08 339. OVBZ 1.4568E 03 1 ~ 29$ 2$ 03 1.25738+00 9.98708 01 5 02008 03 1.3305$ 08 340. HXC1 1.4272E 03 1 ~ 3061E 03 7.57328-01 1.00138too 5.35308 03 1.3035$ 08 341. SW1DZ 1.4172$ 03 1.1349$ 03 1.0947E+00 9.98878 01 1.18408 02 1 ~ 2944$ 08 342. SW1D7 1.4065$ 03 4.5471B 04 1.0056B+00 9.99558 01 7 '6908 02 1.2$ 46$ -08 343. PB2 1.4059E 03 1.1343$ 03 1 ~ 0691$ +00 9.98878 01 1 ~ 61608 02 1.2841$ 08 344. OALZ 1 3862$

~ 03 4 '76)E 04 9.77748-01 1.00048+00 1 88508 02 1 ~ 2661E 08 345. GG3 1.3603$ 03 6 1599$ -04 1 00638+00 9.9938$ 01 8.9590$ 02 1.2424$ OS 346.

34.'7.

Jcl OLC1 1.3550$

1 3362K 03 03

l. 3446$ -03

~

1.3109B 03

~

1.02688too 4554B+00 9.98668-01 9.98698 01 I ~ 7190$ 02 5.33608 04 1 23768 08 1

~

2204B 08

~ 3 348. ODWS1 1.32548 03 ~ 4.1632$ -03 5e2456$ 01 1.00488+00 9 ~ 91908 03 1.21058 08 349. CS1 1.28298 03 9 '465B-04 1 0360E+00 9.99028-01 2. 6615B-02 1. 1717B 08 350. HPL1 1.2117$ 03 2.0284$ 0) 8 ~ $ 129$ Dl 1 00208+00 1 ~ 6800$ 02 1 ~ 11228 08 351. SW1D11 1. 2I.I 9$ 03 '7 ~ 1049$ 04 9 ~ 91068-01 1.00078+00 7.35908 02 1.1096E 08 352. RPDS 1.2059E-03 6.3982$ -05 1.00458+00 9.9994$ 01 1 39308 D2 1 ~ 10148 08 353. HS2 1.19768 03 1.1976$ 03 1 0129B+00 9.98808 01 8.50008 02 lo0939$ 08 354. CD1 1.1197B 03 5.3666B 04 1. 4271$ + 0 0 9.99468 01 1 ~ 2550B 0) 1 D775B 0$

355. DJ31 1 o 1793B 03 6 ~ 8871B 04 2.3867B+00 9. 9931$ 01 I 96408 04 1 ~ 0711B 08 356. OJC1 1,09078 03 4.3058B 04 1 0130$ +00 9.9957$ 01 3 '040$ 02 9 9624$ 09 357. BA2 1.0377$ -03 4.8356$ Oi 1 ~ 1250B+00 9 9952E 01 3 $ 540$ 03 9.4776$ 09 358. HS3 9.97208 04 9.9720$ -04 1. 01658+00 9.99008 01 5 '000E 02 9 ~ 1079$ 09 359. RVC1 9 5564$ 04 9.5341$ 04 1.4075$ +00 9 9905$ 01 2 ~ 3340B 03 So7284$ 09 360. HSI 9.2381H 04 9.2381B 04 1.0022B+00 9.9908B-01 3 00008 01 Sei)76$ 09 361. HPI 3 9.2323$ 04 8 1009$ 04 1 0089B+00 9.9919B 01 8 ~ 3410B-02 8.4324$ 09 362. D81 9.2004$ 04 8 0198B Oi 6 ~ 0944H 01 1.0008$ too 2 0492$ 03 8.4032E 09 363. OF4 9,0745$ 04 2.7270$ 04 1 ~ 034$ B+OD 9.9973B 01 7.7170B 03 8.28828 09 364. SW1D14 9.0455$ 04 1.337$ B-OI 9.9825B 01 1.00018+00 7.09808 02 8.2617$ 09 365. OG51 9 ~ 0271E-OI 6 '035$ 04 2. 7081$ too 9.9933$ 01 3.9230$ 04 $ .2449$ -09 366. SWZDS 8.5750$ 04 7.8465B-OI 9.$ 1 00088+00 4.2910B 02 '7.8319$ 09 367. RBCT Se5669$ 04 1.1525H-03 252E-01'.4139$

01 1. 0012$ +00 1.9284H 02 7 8246$ 09 368. OLP3 So2644$ 04 4.1917B 04 9 '245$ -01 1.0004Btoo 6. 1670B-03 7 ~ 5483B 09 369. RPB2 So0251$ 04 2.5143B 04 1. 0126$ too 9 9975$ 01 1 9580E 02 7 '297$ 09 370. PCAA 7 8281E 04 1 4612$ 03

~ 5 0246$ 01 1. 0015B+00 2.92838-03 7 1498B 09 371. VHT2 7.8273$ 04 4 ~ 3184$ 04 9 ~ 2891B 01 1.0004B+00 6 03778 03 7m)49)$ 09 372. HXC3 7, 12608" 04 Se2056$ Oi 1.0943$ too 9.9948B 01 5.4880H 0) 6,5086$ 09 373. RVD21 6.9077$ 04 5.6495B 04 1. 1523B+00 9.9944$ -01 3.6950$ 03 6.3092$ 09 374. HXBI C,7982$ 04 6.7982B-04 1-0221Btoo 9.9932H-01 2.9850B 02 6 ~ 2091E 09 315. GH6 Ce6819$ 04 2.6722B 04 1.0030$ +00 9. 9973$ 01 8 '320B 02 Colo)98 09 376. SW1C7 6.6637$ 04 -3. 1950B-04 9 9540B 01 1.0003Btoo 6 49808 02 6.0863$ 09 317. RPBI 6.5542$ -04 5 8340B-04

~ 1 ~ 0401B+00 9.9942B-01 1.4330$ 02 5,9863E-09 378. HPLS 6.3672B 04 1.42678-04' 1.0078E+00 9.9986$ 01 1 8020$ 02 5.8155$ 09 379. RXS2 6.3637$ 04 '630B-04 3.0733B+01 9.9936$ 01 2 ~ 14008-05

' '650S 5. 8123B-09 3$ 0. RK33 5.98798 04 -1.29388-03 9.4417$ 01 1. 0013B+00 02 5.4691$ 09 381. OHL1 5 97'788 04 2.5134$ 04 1.1703$ +00 9.9975B 01 1.4740$ 03 5.4598$ 09 382. G86 5.9532$ 04 5.9532$ -04 1.0040$ too 9.9940$ 01 1 '830B 01 5 '374$ 09 383. CZSI 5.9238E OI 3 ~ 6163$ 03 1.4562$ 01 1.0036B+00 i."2148B-03 5.4105$ 09 384. HXDC 5 ~ 4811$ 04 5.4811$ 04 1. 0012B+ 00 9.9945B 01 3 ~ 2150$ 01 5.0062B 09 385. SW2D6 5.4728$ 04 5.8606$ 05 9.9873$ 01 1.0001$ +00 I ~ 4100$ 02 4.9986$ 09 386. RPD7

'A1 5 '848$ 04 I 9928B 04

~ 1.0007$ +00 9.9950B-01 4.0700B 01 2.08728 03 4.6442$ 09 387. 5.0145$ 04 -1.2958$ -O) 3.8046$ 01 1. 0013B+00 4.5SOOE 09 388. DD1 4.9762B 04 -I 2463$ -03

~ 3 ~ 8246$ 01 1.0012$ +00 2 0141$ 0)

~ 4.5450$ -09 389. FWH2 4.7777$ 04 2. 3468$ -04 1.0093E+00 9 9971$ -01

~ 2.46128 02 I.)637S 09 390. RXS10 4.'7376E-OI 4.7304$ 04 1.5493$ +02 9 '953$ -01 3 '730E 06 4.3270E 09 391. OHCI 4.6978E-OI 1 ~ 8872E 03 8 ~ 1955E 01 1. 0019$ +00 1 ~ 0350$ 02 4.2907$ -09

)92. SW2D7 4.65288 Oi -2.1348B-04 9 '510E 01 1.00028+00 4.1740$ 02 4.2496$ 09 393. DC1 4.6222$ -04 1.2549B 03 ') . 8813$ Ol 1 0013$ +00

~ 2.04678 03 4.2217$ 09 394. E85 4.4950E-OI 4.48SSE Oi 1.013$ $ +00 9 '955$ 01 3.1580E 02 4.1055$ 09 395. HRC6 4.4763$ -04 4 '380$ 04 1.0530$ +00 9 ~ 9957$ -01 8.1246$ 03 4.0884$ -09 396. RL36 4.3134E 04 7.7047E-04 9 ~ 6674E 01 1.0008$ +OD 2.2640$ 02 3.9)96$ 09 397. OSN1 I.2161$ 04 2.1322E 04 7.1679E 01 1.0002$ +00 7.5230$ -04 3.9055E 09 398. CRD3 4.1515$ 04 5 '880E-04 9. 8511E 01 1.0006E+00 3 ~ 8661$ 02 3 7918E 09

MODEL Name: SFNU3H Split Fraction XeLportance Cor Group Sorted by Fraction ?eporcance Group Frequency 9 1335E-06 16:25:08 20 HAY 1996 Page 6 SF Wane... Fracrion... Fussel-Vesely. 8 i rnbaum... Achieveeent. Reductxon... SF Value... Frequency.

Xnportance Ieportance Importance worth worch 399. RPD6 4.1350$ 04 3.2645E-O4 1.0228Etoo 9.9967E 01 1.4090E-02 3.7767$ -09 400. $ 86 3.9176E-O4 2 '6058-04 1.0694E+00 9.9973$ -01 3.81'708 03 3.57818 09 401. ECX0 3.90588-04 3.5977$ 04 1.0004E+00 9.9964$ 01 S. 0110E-01 3.5673E 09 402. FH2 3. 7891E-Ol 3.23668-05 X.OO)OEtOO 9.9997$ 01 1 ~ 6160E 02 3.4608E-09 403. ED29 3.7620E 04 3.7620E-OI 1.00018too 9.9962$ 01 7.8590$ 01 3.4360E-O9 404. HXD3 3.6689E Oi -9 '236E 06 9 '9488 01 1.0000E+00 1.7170E 02 3 3510E-09

~

405. OSP2 3.64028 04 -7.0699E Oi 8 '826E 01 1 0007Etoo

~ 5.774OE 03 3.32488-09 406. A3EDX 3.5214$ Oi 1.9333E 04 1 '088E+00 9.9981$ 01 2.1270E 04 3.2163$ 09 401. U843CX 3 '430E 04 2.5958$ -04 3 '3568+00 9.9974$ 01 1.1113$ 04 3. 1441E 09 40$ . FC2 3 '7998 04 9.8512E 05 9 '4008 Ol 1.00018+00 1 6160E-02

~ 3.0870E-09 409. RK3 3.31798 04 -9.1860E 04 9 ~ 6310$ -01 1.00098+00 2.4290$ 02 3.03048 09 410. A3EC2 3 '0698 04 3.X979E 04 4 '5408+00 9.99688 01 1.0470E-04 2.9290$ 09 411. EC12 3 ~ 15968-04 1.5159$ -04 1.03938+00 9 '9858-01 3.8390E 03 2.8$ 58E 09 412. EAX 3 ~ 1488$ -04 -3.6650E 04 6 ~ 14048 01 1.00048too 9.4870$ 04 2.87598 09 413. U843AX 3 ~ 1125E 04 1.411OE 04 1 63218+00 9 ~ 99868 01 2.2316$ 04 2.84288 09 414. SP12 2 '9938 04 2.1976E-O4 1. 0164E+OO 9. 9918$ 01 1.3190$ -02 2.7394E 09 415. A3$ 82 2.9756$ 04 -3.4543E 04 9.9554$ -01 1.00038+00 7.1900$ 02 2.7177E 09 416 ~ DV2F 2.9033$ 04 1.00008+00 1.00008+00 2.6517$ 09 417. NHl I 2.8236$ 04 -2 '445E 03 1.5805$ 01 1.00258too 3.0130H 03 2.5789E 09 418. NH2 1 2.8230$ Oi -2 '8738-03 1.6670$ 01 1.00258+00 2 '760E-03 2.5784$ 09 419. SP11 2 81818-04

~ 2. 0512$ -04 1.23368+00 9 '9798-01 8.7750$ -04 2.5740$ 09 420. SGT2 2 '883E 04 9 ~ 7774E 04 9.6281$ 01 1 ~ 00108+00 2 5619$ 02 2 4554E 09 421. DGA 2 '3368 04 2.3139E 04 1. 13218+00 9. 99718 01 1.7490$ 03 2.31418 09 422. SWXA2 2.48338 04 -1 13608 05

~ 9. 99298 01 1.00008too 1.56708 02 2.26828 09 423. ED34 2 '5608 04 2.)690$ Oi 1.0633$ too 9.99768 01 3 '7310H 03 2.24328-09 424. HX82 2 '360B 04 1 '9648 04 1.00898+00 9.99818 01 2.08708 02 '2.'22498 09 425. PX21 2.25868-04 -5 '0058-04 3.56508 01 1.00058too 7.92008 04 2.06298 09 426. DH2 2.24338 04 -1.57158 04 9.35338 01 1.00028too 2.42408 03 2.04898 09 427. FF2 2 '9838-04 3.9347$ 05 9. 97608 01 1.00008+00 1.61608 02 2.0078H 09 428. $ 82 2.11558 04 2 1632$ -04

~ 1. 01708+00 9.997$ E 01 1.25308-02 1.98708 09 429 DV21 2. 11898-04 1 '8938-04 1.04388+00 9.99808 01 4.52008 03 1.93538 09

'30.

SL2 2 ~ 11148 04 1 ~ 07348-04 1.00388+00 9.99898 01 2.7449$ -02 1.9284$ -.09 431. SW2CI 2.08098 04 2.0485$ 04 1 00078+00 9 99808 01 2.16908 01 1.90068-09 432. SMXC6 2 '8098 04 2 08098 04 I 00018+00 9 ~ 99798 01 6.59908 01 1.90068 09 433. NBOCF 2 '0848 04 1 00008+00 1.00008+00 1.8344$ 09 434.

435.

D'M82 2.00578-04 6 3048$ 04 9.67248 01 1 00068+00 1.88838 02 00008+00

l. 8319$

1.82358 09 QDCF 1 ~ 99658 04 1.00008+00 1 09 436. DP2 1.97528 04 -1.5)168-04 9.41518 01 1 00028+00 2 e 6116$ -03 1 8040$ 09 437. EDS 1 ~ 97148 04 1 ~ 97148 04 1.00058+00 9.99808 01 2.92508-01 1 '0068 09 438 HC2 1.9'7148 04 1. 97148-04 1.01698+00 9.99808 01 1 1550$ -02 1.80068 09

'39.

CD6 1.9582$ 04 3 '8958 OS 1.003$ H+00 9 ~ 9997801 8.78478-03 1.78868 09 440. NPI I3 1.88028 04 1.$ 480$ 04 1.64738too 9.99828 01 2 '5408 04 1 ~ 71738 09 441. U84381 1.82048 04 4 26738 06 1. 01838+00 1,00008+00 2.33118 04 1.6626$ 09 442. OSV1 1.66758 04 3.16558 04 8 ~ 6463H 01 1.00038+00 2.33308-03 1.5230E-09 443. RVL3 1 ~ 51948 04 1.51608 04 1. 18828too 9.99858 01 8.0480$ Oi 1.38778 09 444 RPTX 1.51698 04 1.0829H 04 1 93698+00 9.99898 01 1.15578 04 1.3855$ 09

'45.

SP13 1.48418 04 1 '249H 04 9 '5728 01 1.00028+00 I3.68808 3300B 02 1.)5558 09 446.

447.

SW2CS 1.33048 OI I ~ 41668 04 9. 8841801

1. 01488too 1.00048+00 9.99878 01 8 '9448-03 02 1.21518 09 1.16088 09 CRD2 1 ~ 21098 04 1.2501$ 04 448. LPC1 1 2639$ -04 7 59138 05 1.23998toO 9.9992$ 01 3.16308 04 1.15448 09 449. DK2 1.23958 04 6e92438-04 9.3757$ 01 1.00078too 1.09708 02 1 1321$ -09

~

450. ECI 1 ~ 16458 04 6.58328 05 1.00018+00 9.99938 01 3.33608-01 1.06368 09 451 ~ DL6 1 '2888 04 4,46658 04 9.59738 01 1 00048too 1 0970B 02 1.03108 09 452. RL6 1 ~ 11558 04 74618 04 9.80948 01 1.00058+00 2.4290$ -02 1.0188$ 09 453. SPR17 1.08438 04 9 '2058 05 1.08728too 9 '990H,OI 1.09008 03 9 90)98-10 454. EDIO I ~ 01118 04 1.0111$ 04 1.00028+00 9.99908 Ol 3 45608 01 9.23I6$ 10

'1668 ISS. $ 81 9 '815H-05 5 '52'78 04 3.8558H-01 1.00068+00 9 67908-04 9 10 456. GC6 9e8365$ 05 8.0237$ 05 1.00058+00 9.99928 01 1.33908-01 8.98428 10 457. GH9 9 16848 05 9.16848 05 1.00098+00 9.99918 01 8 96208 02 8.37398 10 l.

~

458. DLI 8.9489H 05 4.6707$ 04 9.58128 01 1.00058+00 1030$ -02 8.1735$ 10 459 OSP3 8.18068 05 8.50658 05 2.1792E+00 9.9991$ 01 7.21308 05 8 ~ 01988 10

'60.

RBCA 8 F 40438 05 2.7585$ 05 1 00038+00 9.99978 01 9.03728 02 7. 67618 10 461. 8'M2D9 8.22138 05 6 1242$ -06 9.99688 01 1.00008+00 1.85708 02 '7.50898 10 462. EC9 7.58938-05 1 ~ 6293$ 04 9.56498 01 1 '0028+00 3.73108 03 6 ~ 931'7$ 10 463. CSTF 1.16948-05 1.0000Btoo 1 ~ 00008+00 6 ~ 5482$ -10 464, A3 $ 81 7.05398 05 1 ~ 17IIE 04 5.3341$ 01 1.00018too 2 ~ 51608 04 6.4427$ 10 465. HRC3 6 '5398 05 5.3242E 05 1.1864$ too 9.99958 01 2.85588-04 S.8947$ 10 466. A3$ 84 6.4184$ 05 3 6857E 05 9.9991$ -01 1.0000H+00 2.8260$ -01 5 '6238 10 467. ORP3 6.1232$ 05 2.5215E 04 9.9435$ 01 1.00038+00 4.2740$ 02 5.5926$ 10 468. SM2D3 6.0234$ -05 2.57498 04 9.158)B 01 X.ooo)Btoo 1.05408-02 5 ~ 5014$ 10 469. DGO 5.5668$ -05 5.5627$ 05 1.06708+00 9.99948 01 8.2930$ 04 5.08458 10 470. SGTX 5.37348-05 -1. 2083$ -03 2.1809E 01 1.00128+00 1.54'298 03 4.9078E 10 I'7l. DV11 5.3210$ 05 5.0122E 05 1. 01038+00 9.9995$ 01 I .8650$ -03 4.8600E 10 472. AA2 5. 0418$ -05 2.3771$ 06 1. 0031$ too 1.00008+00 7.6310E 04 4 '0498 lo 473. IVC1 4.90338-05 4.64408 05 1. 60218+00 9.99958 01 1.'7044$ 05 4.4785$ 10 474. 8'M1D13 4.89898 05 4 '3318-05 1.00018+00 9.9996E 01 2 3300$ 01 4.47448 10 475. HXD10 4 '6448-05 3.8733E 05 1.00708+00 9.9996$ 01 5.48808 03 4.4429E 10 476. SM1DS I ~ 8181$ 05 4.8187E 05 X.OOOIE+00 9. 99958 01 1.1050E 01 4 ~ 4012E 10 417. DGL 4.59958 05 2.9634$ -05 9. 6815E-OX 1.00008+00 9.2970$ 04 4.20098 10 418 ~ A3 EA2 4 ~ 5811$ 05 6 '753E 05 9.2906$ 01 1.00018+00 8 '970E 04 4 ~ 1841E 10 479. OG161 I ~ 51438 05 4.0743$ 04 3.1216E 01 1.00048+00 919$ E 04 4.1231E 10

HODEL Name: BFND3H Split Fraction Importance for Group Sorred by Fraction Importance Group Frequency ~ 9.1335E-06 16:25:08 20 HAY 1996 Page 7 SF Name... Fraction... Fussel-Vesely. Hirnbaum... Achievement. Reduction... SF Value.. Frequency.

Imporrance Importance Importance North North 480 ~ HRCS 4 ~ 4942E 05 3.11268 05 1.09408too 9.99978 01 3. 3091E 04 4 '0488 10 481 ~ EC11 4.2020E-OS 2.4871E 05 1.00088too 9.9998E-01 3 1690E-02

~ 3 '379E 10 482. PCA< 3.99078 05 1.3465E-O< 9.9479E 01 1.00028too 4.3080E.02 3.6<498 10 483. A3ED23 3 '143E 05 .3.457<8-05 9.55428 01 1.0000E+00 7.1500E 04 3.30118 10

<84. A3$ CS 3.5852E-OS 3.57908 05 1.13208+00 9.99968-01 2.71008 0< 3.27<SE-10 485. R4801 3 '455E 05 -1.1338E 04 8 ~ 95138 01 l. 0001E+00 1.0800E 03 3 '3828-10 486.

487.

OSDI 3.4033E 05 3.77538 06 I ~ 00358+00 1.0000E+00 1.063OE 03 3 '084E 10 RJ31 3 '5668-05 -1.01698 04 3 2870E 01

~ 1. 0001E+00 1.52958-04 3 '657E 10 488. SM1D15 3.2659$ -05 2.80558-05 1. 0017Etoo 9. 9997E 01 1.5910E-02 2 '8298 10 489. GF6 3 '567E 05 2.90408 05 1.0003E+00 9 ~ 9997E-01 8.9590E 02 2.79188 lo 490. SPR11 3 0051E 05

~ 2.9919E 05 1.05698+00 9. 9997$ 01 5.2530E-O< 2 '447E 10

<91. ODSB1 2 '906E 05 1.2015E 05 9.9255$ 01 1.0000$ +00 1 61008 03

~ 2.7315E-10 492. HXD2 2.9853E 05 2.9983E 0< 9.43418 01 1.00038too 5 '700E 03 2.7266E-10 493. A38$ 21 2.9198E 05 -1. 0435E-05 9.8704$ 01 1.0000Etoo 8.04<OR-O< 2.66688 )0 494. ED32 2.86478 05 1.4589$ 05 1.00008too 9. 99998 01 5. 11508-01 2.6165E 10 495. SM1D12 2.7836$ 05 -2.5<53E-OS 9.98068 01 1.00008+00 1.2940E 02 2.542<E-10 496. SM2D8 2.666<8 05 1,3764E 05 9.9915E 01 1.0000E+00 1 5910E 02 2.43538-10

l. 0001E+00

~

497. RBCK 2. 64178-05 6.30188 05 9. 8712$ 01 4.8676E 03 2.4128E 10 498. CAD1 2.58568 05 1.1144$ 0< 9.56668 01 1. 0001E+00 2.5645E-03 2 ~ 3616$ 10, 499. RK31 2.46588 05 8.7896E 05 3.68658 01 1.00018+00 1 ~ 3920E 04 2. 2 521 E- 10 500 RL31 2.46588 05 8 78918 05

~ 3 '868E 01 I ~ 00018+00 1.3920E 04 2.2521E 10 RRCV 2.3977$ 05 1.6165E-O< 9 '538E 01 1. 00018+00 4.64748 03 2. 18998-10

'01 m

502. AD23 2.33028 05 1.11018 05 I ~ 0166E+00 9.99998 01 6.6700E 04 2. 11838-10 503. AC< 2.32998 05 1.83608 05 I 0275Et00 9 ~ 99988 01 6 6'700E-04 2.12808 10 504 ~ RVO2 2.02788 05 1.50068 05 2 '9388+00 9 ~ 99988 01 I ~ 37208 05 1 85118-10

~

505. A3$ C8 1.953'78 05 4,23178 05 9 ~ 47448 01 1.00008+00 8 '4408 0< 1 ~ 78448 10 506. PCAH 1.9037$ 05 2.3352$ 05 9 '958E 01 1.00008too 5.257'78 02 1.73888 10 507. SLP 1.8901$ 05 1.00008+00 1.0000E+00 1.7264$ 10 508.

509.

8$ 4 I 8721$ 05 2.58588 0< 9.30568 01 1.00038+00 3.7100$ 03 1 71008 10 AD32 1.7966$ 05 3.33848 06 9.95228 01 1.00008+00 6.97908 04 1.6410$ 10 510. LV2 1.76368-05 -3. 123<$ 405 9.9269$ iol 1 ~ 00008too I ~ 25208-03 I ~ 61088 10 511 ~ SMID18 1.73698 05 1.3850$ 05 9 98798 01 1.00008+00 1.12908 02 1.58648 10 512. RBCL 1.7077$ -05 1.30308 04 9.9050$ iol 1. 00018too 1.35288 02 1.55988 10 513. ED28 1.63538 05 1.63538 05 l. 00018+00 9.99988 01 2. 16408 01 1.49368 10 514.

515.

AC18 Lvl 1 ~ 61288 05 I ~ 39338 06 I ~ 00188+00 1.00008+00 7. 63108 04 1.47318 10 1.56198 05 4.9181$ 05 2.95368 01 1.00008+00 6.9791$ 05 1.4166$ 10 516. SM2D2 1 48198 05 5.29148 05 9.93308 01 1. 00018+00 7.83008 03 1 35358-10

~

517 DMSI I 45298-05

~ 6e80878 04 4.8240E 01 1.00078+00 I ~ 31378-03 1.32708 10 518 ~ ED30 I 4176$ 05

~ 0 0000$ too 1.00008+00 I ~ 00008+00 5.01808 01 1.29478 10 519. ED31 I ~ 38308 05 I 36508 05 1.00088+00 9 9999$ -01 1 59008 02 1.26328 10 520. Spl 1.26758 05 9.11658-06 I 01978+00

~

9.9999$ -01 I ~ 6180$ 04 1. 15778 10 521. SPRI 1.26758 05 1.26758-05 I 02918+00

~ 9.99998-01 4.34808 04 1 15778-10 522. LSHI 1.23938 05 1.01698 04 9.96458 01 I 00018+00 2.78728 02 1. 13198-10 523 524.

~ ODSB31 RBCN 1.20348 1.1809805 05 1.2537$ 04 5 '9148 05 9.2226801 9 99088 01

l. 00018+00
1. 00018toO 1.61008 03 5 '4708-02 1 ~ 09918 10 1.07868 10 525. AH2 Acli I 17788 05 -loI683$ 0$ 9.83278 01 1.00008+00 6.97908 04 1.07578-10 526. 1 ~ I'7748 DS 6 '3508 07 1.00098too 1.0000E+00 6 '7908-04 1.07548-10 527.

528 SMIC1 1.17178 1.1651$

05 2.32328 04 9.79668 01 1.00078+00 I 00028+00 1.11908 02 1.4870$ 02 1.0'702E 10

~ 06<28 SMICS 05 9. 81928 06 9.99998 01 1 10 529. SM1C3 1.16208 05 7.19268 05 9. 92448 01 1. 00018+00 9 <230$ 03 1 0613$ 10 530. DA2 1.15818 05 1.98128 04 8.72348 01 1.00028+00 1.54958 03 1+05788-10 531. DD2 I 15198 05 le8978$ 04 8.77168 01 1.00028+00 1.5<258 03 I 0530$ 10 532.

533.

DB2 1. 135<E-05 2,25048 04 8.52098 01 1.00028+00 I 5191E 03 1.0370H 10 DC2 1.12658 05 2,26048 04 8 ~ 5025$ 01 1.00028+00 1.50728 03 1 02898 10 534.

535.

HX$3 2.92588-06 3 2136$ 04 9.40298 01 I 00038+00 5 35308 03

<.48608 2 67238 11 AD27 0.00008+00 1. 8725806 9.99968 01 1 00008+00 02 0 ~ 00008+00 536. SPR18 0 ~ 00008+00 -2.42928 06 9. 9<80801 1.00008+00 4.66508 04 0.00008too 537.

538.

RTI" RS1 Oo0000$ too 0.00008+00 9.37088 05

-9. 64318-05 1.85958 01 lo6229$ 01

l. 0001$ too 1.00018+00 1.15108 1 ~ 1510E 04 04 0 ~ 00008400 0.0000H+00 539. RT3 0,0000H+00 5.81008 06 9.49448 01 1.00008+00 1.1510E 04 0.00008+00 540. A3$ C3 0 00008+00 1.29158 08 9.99958 01 1.00008+00 2.71108 04 0.00008+00 541. AD34 0,00008+00 -3.04418-O6 9.9997E-OI 1.00008too 8.6230$ 02 0.00008+00 542,. ACHI 0.00008+00 4.34748 05 7 '267E-01 1.00008+00 2 00008 04 0,00008+00 543". A3ED27 0.00008+00 -2.1646$ 06 9. 99948-01 1.00008+00 3.73308 02 0.00008too 544. A3ED4 0.00008+00 -2.D7738-05 9.7245$ 01 1.00008+00 7.53508 04 0 ~ 00008+00 545. A38D35 0.00008too I ~ 1763$ 06 9.95208 01 1,00008+00 8.69708-04 0.0000E+00 546. A38$ 11 0 00008too

~ -3. 83<58-08 9.99958 01 1.00008+00 8.0<508 04 0.00008+00 547. SMIANN 0.00008+00 1.00008+00 0 00008too

~ 0.00008+00 548. SPRS 0.00008+00 '-3. 11588-06 9.9377E 01 I ~ 00008+00 5.00208-04 0.0000E+00 549.

550.

AD1 0.00008+00 -1.12858-04 2.03118 01 l. 00018+00 1.4160E 04 2.00008 06 0.00008+00 ACH3 0.00008+00 1.0526$ 06 4.7372E-01 1.0000E+00 0.00008+00 551. A3ED3 0.0000E+00 -1.19908 08 9.9995E 01 1.00008+00 2. 51708-04 0 OOOOE+00 552. ACH2 0 ~ 0000$ +00 7.48<58 06 8 '0328-01 1.00008+00 5.00008 05 0.00008+00 553. SM2C2 0.00008+00 -6.58138-05 9.9096E-01 1. 00018+00 7.23108 03 0.00008+00 55<. SM2C3 0.00008+00 1.8958$ 04 9.83928 01 1 ~ 0002$ +00 1. 16508-02 0.00008+00 555. SHUT13 0.00008+00 5.09578 06 9. 65718-01 1.00008too 1.<860$ 04 0.00008+00 556. A3$ B25 0.00008+00 6.60878-06 9. 9241E 01 1.00008+00 8.6970$ 04 0.0000Etoo 557. TH3 0.00008+00 1.7064$ 05 9.9974$ 01 1.0000Etoo 6.07948 02 0.0000Et00 558. AD4 0.00008too -3.7385E-06 9. 9419E-01 1.0000E+00 6.4360E 0< 0.00008+00 559 A3EC10 0.00008 F 00 5.79328-05 9 ~ 3345$ 01 1. 00018+00 8.69708-04 0.0000$ too

'60.

A3ED32 0.00008+00 1.7440$ 05 9.7834$ 01 1.00008+00 8.0440$ 04 0.00008ioo

MODEI Name: BFNU3M Split Fraction Importance for Oroup ALL Sorted by Fraction Importance Group Frequency 9. 1335E-06 16:25:0$ 20 MAY 1996 Page S SF Name... Fraction... Fussel-Vese ly. i 8 mba um... Achievement Reduction... SF Value.. Frequency.

Importance Importance Importance 'Worth worth 561 ~ RPT2 O.OOOOE+00 -1.0149$ 07 9.99138 01 1.00008+00 1.1631E 04 0 ~ 0000$ ioo 562 ~ RPT5 O.OOOOEiOO -2.14$ 0E 05 9. 973$ E-01 1 ~ OOOOEioo $ .13$ 6E 03 O.OOOOE+00

,563 A3E810 0.0000EtOO 2. 9162E-06 9.99968-01 1.0000$ iOO 1.1920E 02 0.0000E+00 9 '99$ $ -01 0 0000$ ioo

~

564. SPR13 O.OOOOE+00 -$ .6100E OS 1.0000E000 3.4730E 03 ~

565. CAD1 0.0000$ tOO $ .0323E-06 7.$ $ 60E 01 1.0000E+00 3. 19958 05 0.0000$ +Oo 566 ~ A3EB15 0.00008+00 1.1$ 1$ E 01 9.99808 01 1.0000$ too $ .6910$ 04 O.OOOOE+OO 561 ~ TBO O.OOOOE+OO 1.000OE+00 O.OOOOE+OO O.OOOOEtOO 56$ . RR3 O.OOOOE+00 -$ .1/91$ -06 9.7673$ -01 1.00008+00 3.514OE 04 0.0000E+00 569 ~ AD35 O.OOOOE+00 -9.9119E 06 9.$ 694E 01 1.0000E+Oo 7. 6310E 04 0.0000$ ioO 5'/0. A3EB3 O.OOOOE+00 4.1266E-07 9. 9371E 01 1.0000$ too 1.5130E-05 0 OOOOE+00 571. SP2 O.OOOOE+OO 1.0$ 33E 05 9.9$ 77E-01 1.0000E+00 $ .7310E 03 0.0000E+00 512. RQ1 0.00008+00 2. 9510$ -04 1.4021$ 01 1.0003$ too 3.4310E 04 0 00008ioO 573. SPR16 0.0000E+00 -6.7666E 0$ 9.99948 01 1.0000Etoo 1.0660E 03 0.0000E+00 574 . RR1 0.00008+00 2.$ 694E-ol 1 $ 3738-01

~ 1.00038+00 3.5140E-04 0 00008+00

~

515. TBB 0.0000E+00 1.00008+00 0.0000$ too 0.0000E+00 516. RPTS 0.0000$ +00 -1.6176$ 06 9.94$ 5E-01 1.0000E+00 3. 1400E-04 0.0000EtOO 511. SP3 0.0000E+00 3.2$ 15$ 05 9 '620E 01 1.0000E+00 $ .5690$ 03 0.0000$ ioo 51$ . SPR15 0.0000$ +00 6.5791$ 0$ 9 '9$ $ $ OI 1.0000$ t00 5.32308 04 0.00008+00 0.0000$ tOO 519. SPR14 0.00008+00 1 '022E 07 9 '9708 01 1.0000E+00 5.0060E Oi 5$ 0. RPT9 0.0000$ +00 2 1011$ 06 9 '9$ 5E 01 1.0000$ +00 1.4041$ -02 0 ~ OOOOE+00 5$ 1. U841A1 0.00008+00

~

1.7796$ 04 2.3740$ -01 1.0002Etoo 2 3330$ -04 0.0000$ ioo 5$ 2 ~ SWlci 0.0000$ +00 1.36$ 1$ 06 9.99998 01 1.0000E+00 1.0450E 01 0 ~ 0000$ +00 5$ 3. SW1D3 0.0000$ +00 7.45148 05 9. 9153$ 01 1 00018+00

~ $ .72908 03 0.0000$ +00 5$ 4 ~ SW1D4 0.00008too 1.991$ $ 05 9.99818 01 1.00008+00 9.62308-02 0.0000$ +00 5$ 5. RXSO 0.0000$ +00 1.00008400 0.00008too 0.00008+00 586 ~ UB42A1 0.00008+00 1.7'/96$ 04 2 37408 01 1.00028too 2.33308 04 0.00008+00 5$ 7. A3$ 81$ 0.00008+00 6.4402$ 07 9.999$ E 01 1.0000$ +00 3.73308 02 0.00008+00 5$ $ . RXSS 0.00008+00 2.31748 10 9. 99998 01 1.00008+00 2.1000$ 05 0.00008+00 5$ 9. RVOB 0.00008+00 1 ~ 00008too 0 ~ 0000$ +00 0 00008+00 590. SHT21 0 ~ 0000$ +00 S 98728 05 2.68838 01 1 ~ 0001E+00 1.22908 04 0.00008+00 591 ~ AB5 0 ~ 00008+00 5.51908 06 9 92718 01 1.00008too 7.63108 04 0 ~ 00008+00 592 SCTOPS 0.00008+00 1.00008too 0.00008+00 0 ~ 0000$ +00 593

~

~ AC1 0.00008+00 1. 12858-04 2 03118 01 1. 00018+00 1.4160$ 04 0.0000$ too 594. WRTS 0 0000$ +00

~

1.00008+00 0.00008+00 0 ~ 00008+00 595. SDRBC1 0.00008+00 7.0961E 05 9.77648 01 1.00018+00 3.16388-03 0.00008+00 596. A3ED22 0.00008+00 5.15348 0$ 9.99808 01 1.0000E+00 2.51'108 04 0 0000$ +00

~

597. U2NN 0.00008+00 1.00008+00 0.0000H+00 0.0000$ too 59$ . A3$89 0.00008+00 -3.63418 0$ 9 ~ 99868 01 1.00008+00 2. 51608-04 0 00008too

~

599. SW1CNN 0.00008+00 1.00008too 0.00008too 0.0000$ too 600. A81 0.00008too 1.12$ 5E 04 2 03118 01 1. 00018+00 1 ~ 41608 04 0 ~ 00008+00 601. RXS7 0.0000$ too -5.04698 07 9,7502$ 01 1.00008+00 2 '200E-05 0.00008+00 602. A3$ D6 0.0000$ too 2 ~ 18588 0$ 9 99968 01 1.00008+00 F 80508 Ol 0 ~ 00008+00 603 A3$ 819 0.0000$ too -7.5760$ 01 9.99988 01 1.00008+00 3.7330$ 02 0.0000E+00 604.

~

A38D21 0.00008too 1.25718 07 9 '9868 01 1.00008+00 $ .69808 04 0.00008too 605 ~ UB4 181 0.0000Etoo 1.7796$ 04 2.37408 01 1.0002Etoo 2 33308 04 0.00008+00 606. AA1 0.00008+00 1.12858 04 2.0311$ 01 1.00018+00 1.41608 04 0 0000$ +00

~

607. A38816 0.00008+00 2,32868 0$ 9.99968 01 1.00008+00 6.4910E 04 0 ~ 00008+00 60$ . RVD1$ 0.00008+00 $ .9390$ 06 9.$ 8198 01 1.00008+00 7.56308 04 0 ~ 00008+00 609. A3EC9 0.0000$ too 3.75788 06 9.99958-01 1.00008+00 7.58108-02 0 ~ 00008+OO 610. SHT22 0.00008+00 3.$ 627$ OC 9 68578 01 1 0000$ +00 1,22908 04 0.00008+00 611. RVD17 0.00008+00 2.10288 OC 9.98208 01 1.00008+00 1 16408 03 0.00008+00 612. AC16 0.00008too 3.23568 06 9.99978 01 1 ~ 00008+00 $ .62308-02 Oo0000$ too 613. A3BD11 0.00008+00 1,9116$ 07 9 99458 01 1.00008+00 3 '4908 Ol 0.0000$ +00 614. SN1DNN 0.00008+00 1.00008+00 0 ~ OOOOHtoo . 0.00008+00 615. SHUF12 0.00008+00 7.6393H-05 9.68578 01 1.00018+00 2.42508 03 0.0000E+00 616 SHUT11 0.00008+00 8 '8728 05 2 ~ 68838 01 1 ~ 00018+00 le22908 04 0.0000$ +00 617.

~

A3$ 823 0.0000H+00 -3.49558-05 9.56588 01 1.00008+00 $ .04408 04 0.00008+00 61$ . RVD13 0 00008+00 1.42198 07 9.99$ 2H 01 1.00008+00 ST 04808 04 0.00008+00 619. A3$ D25 0.00008+00 2.'77788 06 9 9996E-01 1.00008+00 7 1910$ 02

~ 0 OOOOE+00 620. SHT213 0.00008+00 5.0992E 06 9 6571$ 01 1.00008+00 1.4$ 70E Ol 0.00008+00 621. SW1D9 0.00008+00 -3.12488-06 9.9976$ -01 1.00008+00 1.28808 02 0.00008+00 622. RV01 0.00008+00 6. 9471E-06 4.7451$ 01 1.0000$ too 1.32208-05 0.0000E+00 623.. A3881'1 0.00008+00 4.0060E 05 9.4$ 35$ 01 1.00008+00 7 '5008-04 0.00008+00 624. U84281 0.00008+00 -1 7796$ 04 2.3740$ 01 1.00028+00 2.33308 04 0.00008+00 625. SW1DS 0.0000$ +00 1 35688 05 9.98578 01 1.00008+00 9.41408 03 0.0000$ +00 626. RVD3$ 0.0000$ too 1.46098 07 9 '9828-01 1.0000E+00 $ .16408 04 0.0000Et00 627. RVLO 0.0000E+00 1.0000E+00 0.00008+00 0.00008+00 62$ . UB42C1 ,0.0000$ +00 -1.$ 673E-04 2.3740$ -01 1 ~ 00028+00 2.44808 04 0.0000E+00 629. RVL1 0.00008+00 -2.62208-11 9 ~ 98718 01 1.00008+00 2.03408 0$ 0.00008+00 630. S'W1BNN 0.0000E+00 1.00008+00 0.0000$ +00 0 ~ OOOOE+00 631. A3ED17 0.0000$ +00 1.2417E 05 9. 9994E 01 1.00008+00 1.62108 01 0.0000E+00 632. PEB 0.0000$ +00 1.0000$ too 0.00008too 0.0000$ +00 633. JAS 0.0000$ +00 1 ~ 0000E+00 0.0000E+00 0.0000E+00 634. DW1 0.0000E+00 ,-3.56788-06 9.3649E 01 1.0000$ too 5.6170E 05 0.0000$ +00 635. JC2 0.00008+00 4.98628 06 9 $ 162$ -01

~ 1.00008+00 2.1120$ 04 0.0000$ +00 636. IVC3 0.0000E+00 1.0201$ 0$ 9.9$ 62$ -01 1.00008+00 5.08538-05 0 00008+00 637. IV01 0.00008+00 -3.367$ $ 15 4 '392$ 01 1.00008+00 6.5257$ 15 0 ~ OOOOEtoo 63$ . IVC2 O.OOOOE+00 $ .17$ 1$ 0$ 9.9$ 51$ 01 1.00008too 5 '966E 05 0 ~ 00008ioo 639. KFS 0.00008+00 1.00008+00 0.0000$ +00 0.00008too 640. DV27 0.00008+00 2.0335$ 01 9.9996$ 01 1 OOOOE+00 5 '8208 03 0 0000$ too

~

641. DV28 0.00008+00 1.00008+00 0.0000E+00 0 ~ OOOOEtoo

0 MODEL Name BFNU3M Split Fraction Importance tor Group ALL Sorred by Fraction Importance Group Frequency 9. 1335$ -06 16i25:08 20 MAY 1996 Page 9 SF Name... Fraction... Fussel-vesely. Birnbaum... Achievement. Reduction... sF value.. Frequency.

Importance Importance Importance worth 'Worth 642 DV29 0.00008+00 -2.27618 06 9. 9959E 01 1.00008+00 5.55508 03 0.00008+00 643 KCS 0.0000Etoo I.oooosioo 0.0000E+00 0.00008+00 644 DV22 0.0000E+00 3 '6438 06 9.9995$ 01 1.0000'0 6.6070E 02 0.00008+00 645 INES 0.0000E+00 1.0000Etoo 0.00008+00 0 ~ 00008+00 646 INDS 0.0000E+00 1.0000E+00 0 0000Etoo

~ 0.00008+00 647 INFS 0.00008+00 1.0000E+00 0.00008+00 0.00008+00 648 INBS 0.0000Etoo 1.0000Etoo 0.0000E+00 0.0000Etoo 649 INCS D.oooostoo 1.0000E+00 0.0000Et00 0 ~ OOOOE+00 650 IS01 D.OOODE+00 4.4633E 08 9.99808 01 1.00008+00 2.2218E-OI 0.0000E+00 651. INHS 0.0000E+00 1.0000E+00 0.0000Etoo 0.00008+00 652. DW2 0.000OE+00 9.3797$ 06 9. 98148-01 1.00008+00 5.00868-03 O.OOOOE+OO 653. O'WP1 0.0000E+00 2.79918 05 5.0738$ -03 1.0000E+00 2 '133E 05 0.0000$ too 654. INCS 0.0000E+00 1 ~ OOOOEtoo 0.0000E+00 0.00008+00 655. INAS 0.0000E+00 1.0000E+00 0.0000Etoo 0.00008+00 656. D032 0.0000E+00 I ~ 77108 05 9.2103E 01 1.00008+00 2.24228-04 0 ~ 00008+00 657. D033 0.0000E+00 -5 '0048 05 9.47188-01 1. 0001E+00 1. 0591E-03 0.00008+00 658. MSVC1 0.00008+00 4.65268 07 9.93968 01 1.0000Etoo 7.7040$ 05 0 Oooostoo

~

659. LVP1 0.00008+00 2 '3498-05 5.07388 03 1.00008+00 2 '4938 05 0.00008too 660. DT1 1 0.0000Etoo 4 '424E 06 5.0738E 03 1.0000E+00 4.06308-06 0.0000$ too 661 ~ DT21 0 0000$ too

~ 4.01168 06 5.0738E-03 1.00008+00 4.03208 06 0.00008too 662 DN32 0.0000$ too -3 16458 05 9.1955E 01 1.00008+00 l.6I71$ 04 0 00008too

~

663 DN33 0.00008+00 1.00898 05 9 1854E-01

~ 1.00018+00 8.59678 04 0.00008+00

'64.

NAO 0.00008+00 1.00008t00 0.00008+00 0.00008+00 665. D031 0.00008+00 1 ~ 19408 04 1.8855E 01 1. 0001E+00 1. 4712$ -04 0.00008too 666. NBOCB 0.00008too 1.00008+00 0.00008too 0 ~ 00008too 667. KHS 0.0000E+00 1.00008too 0.00008+00 0 ~ 00008+00 668. DV18 0.00008too 1.00008+00 0.00008+00 0 ~ 00008+00 669.

670.

LSTRl 0.00008+00 I ~ 14978-05 9.93968-01 1.00008+00 6.82508 03 0 ~ 00008+00 LECS 0.00008+00 1.00008+00 0.00008+00 0.00008+00 671. LOH2 0.00008+00 6 ~ 19448 06 9. 99468 01 1.00008+00 1 14318 02 0 ~ 00008+00 672. L883 0.0000$ too -1 10028-06

~ 9.9994E 01 1.00008too 1 ~ 67618 02 0.00008+OD 673. LV3 0.00008+00 3 '4728 05 9. 9278E 01 1.00008+00 4.2033R 03 0.00008+00 674 LPRESS 0 00008+00 1.00008+00 0.00008+00 0 ~ Oooostoo 675 DV12 0.00008+00 -5 8422$ -07

~ 9.99938 01 1.00008too 8.40208-03 0 ~ 00008+00

'76.

LFS 0 00008too

~ 1.00008+00 0.00008+00 0.00008+00 67'7 LM1 0.00008+00 -io69668-05 5.07388 03 1.00008+00 4,1203$ 05 0 ~ 0000$ +00 678. NH22 0.00008+00 -4 31458 06

~ 9.99728 01 1.00008+00 1.50508-02 0 00008+00 679.'80 PAB 0 ~ 00008+00 1 ODOOBtOD 0 00008+00 0 ~ 00008+00 GDB 0.00008too 1,00008too 0.00008too 0.00008too 681 ~ BPR68 0.00008too 1.00008+00 0.00008+00 0 ~ 00008+00 682. FBB 0.00008+00 1.00008+00 0 00008+00 0 00008too 683 CCB 0.00008+00 1.00008+00 0.00008too 0 00008+00

'84.

CBB 0.00008+00 1.00008+00 0.00008too 0 ~ 00008+00 685. CPB 0.00008+00 1.00008+00 0.00008+00 0 ~ 00008+00 686. RD9 0.0000E+00 1.76588-06 9. 99538-01 1.0000E+00 3.'71008-03 0 ~ 00008+00 687. GEB 0.00008+00 1.00008+00 0.00008+00 0.0000$ too 688. RPR308 0.00008too 1.00008+00 0 00008+00 0,00008too 689. EDNN 0.00008+00 1.00008+00 0.00008+00 0 ~ 00008+00 690. ED36 0.00008+00 -6.19588-05 9.8391$ 01 1.00018+00 3 83708 03 0 00008+00 691 FHB 0.00008+00 1.0000$ too 0 OOODB+00 0 00008+00 692. PH3 0.00008+00 37058 06 9.99738 01 1.0000H+00 1. 61708-02 0.00008+00 693 PWA1 O.ODOOB+00 1.00008too 0.00008too 0.00008+00 694 ~ FPB 0 00008too 1.00008+00 0.00008too 0 00008too

~

695. FGB 0.00008+00 1.0000$ too 0 00008too

~ 0.00008+00 696. FC3 0.00008+00 -3.28928-05 9.98008 01 1.00008+00 1 61708 02 0.0000H+00 697 FCB O.OOOOE+00 1.00008+00 0.00008too 0.00008+00 698 CAB 0.00008too 1.00008+00 0.00008+00 0 00008+00 699 FDB 0.00008+00 1.00008+00 0.00008too 0 ~ 00008+00 700. FWC1 0 00008+00 1 87038 0'1 9. 97848-01 1.00008+00 8.64808 05 0.00008+00 701 ~ 883 0.00008+00 1.30418 05 9.8669$ 01 1.0000E+00 9.78908 Ol 0 ~ 0000$ +00 702. HUM2 0.00008+00 2 98748-06 9.9274$ 01 1.00008+00 4.11408 04 0 00008+00 703. HUM1 0 00008+00 5.48218 04 2.41988-01 1.0005E+00 7.2277R 04 0.00008+00 704 HUM3 0.00008+00 3 '2038-05 9.26878 01 1.00008+00 4.81158 04 0.00008+00 705 ECNN 0.00008+00 1.00008+00 0.00008+00 0.0000$ too 706 HSO 0.00008+00 1.0000H+00 0.00008+00 0 ~ 00008+00 707 HRLO 0.00008+00 1.00008+00 0.00008+00 0.000OE+00 708 HXD8 0.0000E+00 -1. 1344$ -04 9i78928 01 1. 00018+00 5.35308-03 0 ~ OOOOEtoo 709 HXD5 0.00008+00 8 '3548-05 9. 9963E 01 1. 00018+00 1.94708 01 0.00008+00 710 EC8 0.0000E+00 6.26638-07 9.9996E 01 1.00008+00 1.63808-02 0.00008too

'711 EC3 0.00008too -I ~ 8120$ 05 9. 8721$ 01 1.00008too 3.76708 03 0 ~ 0000$ +00 712. HXD4 0.00008+00 -1 32078-06

~ 9 9994$ 01 1.00008+00 2.08708 02 0.00008+00 713. RD35 0.00008too 9 22128-06

~ 9.99728 01 1.0000E+00 3. 13608-02 0.0000Etoo 714. CHB 0.0000$ too 1.00008+00 0.00008+00 0.0000E+00 715. CH8 0.0000E+00 1.71458 05 9. 9983E-01 1.00008+00 8.95908-02 o.oooos+oo 116. ED27 0.00008+00 2.31968 05 9.9380$ -01 1.00008+00 3.'72908 03 O.OOOOE+OO 717 CGB 0.0000E+00 1.00008+00 0.00008+00 0.00008+00 718 ED33 0.0000E+00 1 ~ 1861E 05 9 ~ 9964E 01 1.00008+00 3.16408 02 0.00008too 719 HR60 0.0000$ too 1.0000E+00 0.00008+00 0.0000E+00 720 RD11'PL6 0.0000$ too -2.847 IE-05 9. 9988E 01 1.0000Etoo 1.9650$ 01 O.OOOOStOO 721 0.00008+00 4 ~ 16348 06 9. 9996E 01 1.00008+00 8.80308-02 0 ~ 00008+00 722 ED26 0.0000Etoo 1 ~ 7524E-07 9.9999E 01 1.00008+00 1.5550E 02 0.0000Etoo

HODEL Name: SFNU3H Split Fraction Importance Lor Group ALL Sorred by Fraction Importance Croup Frequency ~ 9.1335E-06 16:25:08 20 HAY 1996 page Lo SF Name... Fraction... Fussel-Vesely. Biznbaum... Achievement. Reduction... SF Value... Frequency.

Importance Zmporrance Importance worth Worth 723. HPL2 0.0000E<<00 -3.8226E-OS 9 '9578 01 1.0000E+00 8 '23OE 02 0.00008<<00 724 . CBBL 0.00008<<DD -1.8673E-04 2.37408 01 l.00028<<00 2.4480E 04 O.OOOOE+00 725. RD31 0.00008<<00 . 1 . 12 95E -04 2 '9608 02 1.00018+00 1 ~ 1535E 04 0.00008<<00 126. RD1 0.0000E<<00 1.3554E 04 6.0L148 02 1 . 00018+00 1 ~ 4420E-Oi D.OOODE<<00 727, REl D.DOOOE+00 2.33098-04 1 ~ 4021E-OL 1.0002E+00 2 ~ 7103E-Ol 0.00008<<00 728. RCML 0.0000E<<00 -1 '5828 0'1 9 '3038-01 1.0000E<<00 2.5213E 05 0.0000E<<00 129. RCIILA 0 00008<<00

~ -3.5016E 06 3 '6208-01 1.0000E+00 5.439DE 06 D.ODODE<<00 730 ~ RCL2 0.0000E+00 -5.1121E 05 9.9957E-OI 1.0001E F 00 1.0'700E 01 0.0000E<<00 731. CS6 0.00008<<00 8 95018-07

~ 9 '9108 01 1.00008+00 9.93808 Ol 0.00008+00 732. RZl 0.0000E<<00 1.39608 04 1.3539E 01 1. 0001E+00 1 ~ 6143E 04 0.0000E<<DO 733. RFL 0.0000E<<00 2.2760E 04 1.60468 01 1.00028+00 2.71038 04 0.0000E+00 734, CSTL 0 ~ OOODE<<00 2.9466E 06 5 ~ 14558 03 1.00008+00 2 ~ 96188 06 0.0000E<<00 735. RHl 0.00008+00 1.3525E 04 1.62298 01 1. 0001E<<00 1 ~ 6143E 04 0.0000E+00 736. RJl 0.00008+00 1.3960E 04 1.35398 01 1.0001E<<00 1 ~ 6143E 04 0.00008<<00 737. RBCZ 0.0000E+00 4.1726E 06 9.99968-01 1.00008+00 8 '5378 02 ~ 0.00008<<00 738. DELL 0.00008<<00 .1 69068

~ 08 9. 99958 01 1.00008+00 1 ~ 53608 03 0.0000E<<00 739 RSCH O.OOOOE+00 1 ~ 4875E 06 9.9989E Dl 1.0000E+00 1 '683E 02 0.00008+00

'40.

RBCC 0.0000E+00 -6.2661E 01 9.99958 01 1.00008+00 1.34008-02 0.0000E<<00 741. RBCD 0.0000E+00 1.0320E 06 9.9993E-01 1.00008+00 1 ~ 3613$ 02 0.0000Et00 742. DCA2 O.OOOOE+00 7 ~ 45668 05 9.96798-01 1.00018<<00 2.27228 02 D.OOODE<<00" 743. RC1 0.00008+00 -1.37268 04 4.82848 02 1. 00018+00 1.44208 04 0.00008+00 144. RBISOS 0.00008+00 1.00008<<00 0.00008+00 D.OOOOE+00 145.

746.

RBCS 0.00008+00 1 ~ 03298 04 9.77528 01 l. 00018+00 4.57368 03 2.2039$ 02 0.0000E<<00 0.00008<<00 RSCU 0 OODOE+00

~ 1 ~ 19058 DS 9. 99478 01 1.0DDOB<<OD 747. DE21 0.00008<<00 1 ~ 86398 07 9.99838 01 1.00008+00 1 ~ 06808 03 0.00008<<00 748. RP1 0 ~ 00008+00 2.286lE 04 1. 09258 01 1.00028+00 2 '6628-04 0 00008+00

~

749. Rol 0.00008+00 2.333'1E 04 1.39208 01 1.00028+00 2.7103E 04 0 ~ 00008<<00 750. CZL2 0.00008+00 -1 ~ 25588 Ol 7.75688 01 1.00018+00 5.59528 04 0.00008<<00 751. RH1 0.00008+00 2 '5058 04 1.40218-01 1.00038+00 3.43058-04 0 00008+00 752, RN1 0.00008+00 2 ~ 96718 04 1.35398 01 1.00038+00 3.43058 04 0 0000$ +00

~

153 ~ CS13 0 ~ 00008+00 -2 12428-OS F 9 ~ 99988 01 1.00008+00 1 ~ 12268 03 0.00008+00 754. CD2 0.00008<<00 4.32958 07 9 '9668 01 1.00008+00 1.25598-03 0.0000E+00 755. CD3 0.00008+00 -6.96948 07 9 ~ 9974E 01 1.00008+00 2.63678 03 0.00008<<00 756. CZL1 0.0000E<<00 2 '2118 06 2 '9398 01 1.00008+00 3.66098-06 0.00008+00 757. CDA1 0.00008+00 1.00008+00 0 ~ 00008+00 0.0000E+00 758. CDl 0.00008+00 3 84658 D7 9.99828 01 1.0000E+00 2 10868 03 0.00008<<00 759.

760.

RK1 0.00008+00 0.00008+00 1.09838 04 lo85958 01 l. 00018+00

1. 00018+00 1.34908-04 1.34908-04 0.00008+00 0.00008+00 RL1 1 09838-04

~ 1.$ 5958 01 761. CS16 0.00008+00 -7. 1293$ -01 9 ~ 99928 01 1.00008+00 8.75568-03 0,00008<<00 762. RL32 0 ~ 00008t00 3.82508 09 9e99988 01 1 00008+00 1 ~ 55108 04 0 ~ 00008<<00 763. RK2 0.00008+00 -2.40608-05 9. 76348 01 1.00008+00 1 01608 03 0.00008+00 764. RK32 0.00008<<00 5 '8368 05 9 4169E 01 1 00018+00 9.89908-04 0 00008+00

~

165. RLS 0.00008+00 3e24818 07 9 ~ 99678 01 1.00008+00 9.78008 04 0 00008+00

~

166. RL4 0.00008+00 5.11338 05 9 '9778 01 1. 00018+00 1. 01708 03 0 ~ 00008+00 767. CS15 0.00008+00 6 '4588 07 9o99928 Ol 1.00008+00 7.66518-03 0 ~ 00008too 768. RL34 0.00008+00 So08398 05 9.1833$ 01 1. 00018+00 9 '8908 D4 0.00008+00 769. RL35 0.00008<<00 6.20998 07 9 ~ 99408 01 1.00008+00 1 ~ 03608 03 0.00008+00 170. NH23 0 00008+00 3.46408 OS 9 ~ 885lE 01 1.00008+00 3.01308 03 0.00008+00 711. Opl 0.00008<<00 8,16018 07 9 '7888 01 1.00008<<00 3.84108 04 0 ~ 00008+00 772. DJ34 0 ~ 00008<<00 1.35378 06 9 9994E 01 1.00008+00 2.37408-02 0,00008+00 773. OPT1 0.00008+00 3.93648 06 9. 9784$ -01 1.0000$ <<00 1.81708 03 0.00008<<00 774. 0881 0 00008+00

~ 2.3630$ 05 9 '4598 01 1.00008+00 5.2010$ 04 0 00008<<00

~

77S. OEEB 0 00008+00

~ 1.00008+00 0 00008<<00 0.0000R+00 776. ODSBB 0.00008+00 1.0000$ <<00 0 00008+00 0 00008+00 777. OHC3 0.00008t00 -Ia8883$ -05 9.74368 01 1.00008+00 7.3590$ 04 0.00008+00 778. OHC2 0.00008+00 2 '4588 05 9.7228E 01 1.00008+00 9. 17508 04 0.00008+00 779. DJ33 0.00008<<00 -1.22088 07 9.99748 01 1.00008+00 4.63208-04 0.00008+00 780. DZ3 0.00008+00 -5.70738-06 9.99788 01 1 00008+00 2 48108-02

~ 0.00008+00 781. OHC1 0.00008+00 3 06038 04 7. 11888-01 1.00038+00 1. 0610803 0.00008+00 782. OHL2 0.00008+00 2<12028 06 9.99538 01 1.0000E+00 4.49308-03 0.00008+00 783. NPII1 0.00008+00 2*47248 04 1.73638 02 1,00028+00 2.67908 04 0.00008+00 784. DLS 0.0000E+00 -5.26448 07 9.9991E-01 1.00008+00 5.85008 03 0 00008+00 785.. NRUB 0.00008<<00 1.00008+00 0.00008+00 0 OOODR+00 786. DN3 1 0.00008<<00 -8 7478 05 2.21008 01 1. 00018<<00 1.06218 04 0.0000R+00 7$ 7 NIEB 0.0000E+00 1.00008+00 0.00008+00 0.00008+00 788. ODSB38 0.00008+00 1.00008+00 0.00008+00 0.00008+00 789. OBD2 0.00008<<00 1 ~ 2120E 08 9.9998E 01 1.0000E+00 7.95888 04 0.00008+00 790. OBC1 0.00008<<00 -1.55988-0S 9.8036E-01 1.0000E<<00 1.93388 04 0 ~ DDOOE<<00 791. DL2 0.00008+00 7.1958E 06 9.9626$ 01 1.00008+00 1. 91908 03 0 ~ 00008+00 192. NRVD 0 00008+00

~ 1.0000E+00 0 ~ 00008+00 0.00008+00 793. RB1 0.00008<<00 1 ~ 41208 Ol 2.0960E-02 1. 00018+00 1.44208 04 0.00008+00 194. OS LINN 0.00008+00 1.00008+00 0 0000$ +00

~ 0.00008+00 795. DGCS 0.0000E<<00 1.00008+00 0.00008+00 0 ~ OOOOE<<00 796. DGCA 0.00008+00 -2i07218 07 9.9986E 01 1.0000E+00 1.46308 03 0.00008<<00 797. DCE1 0.0000E+00 5.3399$ 08 9.99958 01 1.0000E+00 1 ~ 0670R 03 0.00008<<00 798 ~ DGE 0 ~ OOOOE<<00 3.9274$ 07 9.99678 01 1.0000E+00 1.19708 03 0.00008<<00 799. DCH1 0.0000E<<DD -3.51538 08 9.99978 01 1.00008+00 1.06'108 03 0.00008+00 800.

801.

DEl 0.0000E<<00 7.27158 05 8.65048-01 l. 00018+00 1.00008+00 5.3850E-04 0 ~ OOOOE+00 0.00008<<00 R480$ 0 00008+00

~ 0 ~ 00008+00 802. OUSNN 0.00008+00 1.0000E<<00 0.00008<<00 0 ~ OOOOE<<00 803 . OXL 0.0000E+00 3. 51408-05 9.77648 01 L.ODODE<<00 1.59608 03 0.00008<<00

, NOBEL Name: BFNU3N Split Fraction Importance Ior Sorted by Fraction Importance Croup Frequency ~ 9.1335E-06 16:25:08 20 NAY 1996 Page 11 Croup ALL SF Name... Fraction , Fussel-vesely. Birnbaum... Achievement. Reduction... SF Value.. Frequency.

Importance Importance Importance North North 804 DI1 0.0000E+00 4.9451E 04 5.2982E 03 1.000SE~OO 4.9690E 04 O.OOOOE~OO

'IVI

~

805. DCP 0 ~ OOOOE+00 -2,8874E-05 9.4636E 01 1 ~ OOOOE+00 5.3800E 04 0.0000E+00 806 807 0.0000E+00 ]. 7187E-04 9 ~ 2389E 01 1 ~ 0002E+00 2.2530E 03 0.0000E~OO OLC2 0.0000E+00 3584E 04 7.8903E 01 I.OOOIE+00 6.4350E 04 0 ~ 0000Ei00 808 809

'HS1

~

OHS2 0.0000E+00 0.0000E+00 1 ~

-1.1920E 04

4. 0991E-04 9.8598E 4.7969E 01 01
1. 0001E+00 1.0004E+00 8.4290E 7.8720E 03 04 0 ~ OOOOE ~ 00 810 811

'SD2

~

DCN 0.0000E000 0.0000E+00 6,6026E 06 4.3046E 05 9.9533E 9.2003E 01 01 1.0000E+00 1.0000E+00 1.4130E 5.3800E 03 O.OOOOE~OO 0.0000E~OO 0.0000E~OO 812 813:

'RP1

~

0.0000E+00 4.8536E 05 5.1254E 01 1 ~ OOOOE+00 9.9560E 04 05 0 ~ OOOOE+00 CLP2 0.0000E+00 1.2195E-05 6.7254E 01 1.0000E+00 3 '240E 05 0 ~ OOOOE+00 814 . OPTRI 0.0000E+00 4.0596$ 05 9.7862E 01 1 ~ OOOOE+00 1.8950E 03 0 ~ OOOOE~OO

APPENDIX D. -M MATRIX Table D-l presents the $ -M matrix for the Browns Ferry Unit 3 PSA.

Table D-1 (Page 1 of 3). Phi-M LMatrix for Browns Ferry Unit 3 PSA oe v ~ Sai(LA(ofe LDSP 7 f~14 FlsRU LOFA LRSCC!C 1 LfV !SCRAN ~( f!7$2 LQAC ICRANR LLD 1.$ . F(Rat~Indy ) ~ )SC 02 ).22$ 01 1 00 4.HK 01 ).51'4.01 2.72C OL Z.WOOL 9.$ )C.GS L.itt 01 S ~ )Qt 02 i~ oi a a ~ .oi i iia.a i ~ 'all .ai i itoi i a.oi i iia 0 FFZ N XIV 1).4 X.LOE.OI 1 ~ 4(t OI 2 ~ 1'ig 01 1 ((C.OT X.iig.o'1 C.O 1 ig I 47E Qe T)g 4.9)I.OI 5 GOC.OI:.)9$ 0$ ~ oja<<'Oo S.f jg-gf L.e)c-OI 0.)et.gt - O.OOE.O0 Ic.)'.oosego 41AV )K.GC 25.9 4.75K.OI I ~ iTK OI L.ooc.o) 7.4)c-oe S.eic-oe S.ooc:oe o.ocg.oo .Set-0$ S.iet-io 2.4SI 0$ L.T t I " 4 SOE 0$ ~ 1 5)K 07 5.5(g Ot 2 ~ ZTC '0$ ) 49C Cif Z.LCE 0$

NXAV I ~ 07 )4.4 1.)7C 47 L.ift 07 Ct Q. 1.17K OT ) 4'it 04 (.Nt 0$ 5 Iig'0$ C.OC(eoo 1 21E 0$ ' )Ig 0$ 2.$ 4$ -04 ":.=4K.OI ).SSr.de).1)g 00 L..it.gt 7.79t-df

~

~ ~

Z.tig-CI O.coa.oo

4. ~ g 07 4).9 I.TOC 01 0 ~ Ooaegg 'geoo O.oggeog Q.ooge00 T.dds 04 O.ggaeOO O.OCC.OO O.aOS.OO G.OQC.OO O.oocega Q.gcgegd O.ggltgg O.ddg'Oo7 O.DQK 00 Q.ggseog'.ggjecg O.agtegg PXCZ 5.4(g 5.))R

~ 07 50.)

54.1

5. ISI.OT 2.1IK 07'9.9)$ 10 Sjg-7 ~

K 0 Q.ggttgo

).5)C OI O.gdgegd

).$ )t 4'9 O.ggtegg.

Z.OIC OI 0.00 Redo X.ISK-OI 0 .0(g ~ 0 0 0.0(geog 0 ~ DOReao 1.02t.at 0.0 0$ ~ 00 L.eet.ge O.aostgo

$ .4IC 09 0 gdgegg

' )(C QI ~

0 QOKeoo '-.- 0 004 00 0 dgteoo 0 ~ Oocego' ~ OOCego 0 ~ OOEego 01 '

LZC'OI 1.)5$ ,09 1. ~ QC OI 2.2(l OI Z.tgs 09 3)C of O.ootegg DLcv i.fft 01 41 ~ 5 2.00$ Oeo 1.)tt 07 5.4! g ZI 1.5(C.OI 2.3$ C ~ 04 '9.11$ gf 9.5)c.of 0.0(g.oo S.izc-ot 2.))c.ot ).1)$ 09 Tt-gl f.iec.gt S.dgg 00 ).IXC.49 5.41S 09 1

~ .7)g.af 1.$ )C-OI Aha Avn!lab!0 c NKCV 4.5(R.QT 44.5 4.29E ots 2.0SI 09 .3 K.QT 9.17$ 0$ ).2)$ OI 2.4'7l-OI'.44C-OI 4.44Z-OI O.C(gedg 1.25C 0$ 7.22t.lo 1.05$ -0$ X.ifg 04 e.9$ t 4$ O.dogeog 5.32$ 20 2.4)$ .0'9 2.40$ Ce O.aat 00 ApBrtUre Card QXSV 4.3 I '7 1 ~ 1 2.10C 10: 1.)(soot g ~ 47 T.gtt OI 4.49C 0$ ~ 2.ISC.OI 0.0(gedo 1 ~ 54E 0$ 1~ )Ct 10. 1.<<$ OI I 44C ~ ie'9 2 OLC 0$ 0 oogtog e ILC Xo 2.41C ~ 09 L.S'fc 0 ~ O.ogtegg PXCV PJAV 3.7('K.OT 3'

Z.ITI 07 t 07 75.2

$ 1.1 O.ogsegg'Tg I 1.)IC 0.Oat+00!

01s 2 ~ 11$ 07 osgotego.

O.OOEeoo K.ld 0~

0 g.gdteoo 5.1(E Ot 0 00K+00 Q.odtegg 3.5IK.OS O.ogcego O.OOCeoa:

4.52C-ota O.gosego' O.OOCeda

5. ~ 1$ 4 O.gdtegg c.g(g.oo O.OCCeoo 2.414 07 O.gocedg

).1$ $ 09 O.goseog 2.21$ 10 5 ~ Tic 0$

O.Doctor 0 ~ Ooseda 1.40$ -09 O.aaceoo

g. OCedo 1-5!g Oe OOCedo O.doceaa 1.)OE 09 0 Ooceoo 0 Dgle01s o.ooa oo T.o)a-oe 1.00$ -10 1 21$ .09

~

O.ddloog

.01$ 09 O.ooseoo 0 ~ Ogceoo 0 Qggeoa Q.aoseog O.oategg O.gateoo 2 ~ SXE 01. Ii.s 5.40$ 0$ 1 7.19E 0$ S.ZSC 09 L.(4$ .09 O.oot+oo. I.TLC lal ~ Aaa ia o.oi ~ oa 3.)ZC 10 o.oas.oo X.i)t 0'fs 2.22g 20 O.dgceao S.jjg 09 2.31$ 4$ T.est 0$ $ .3$ K 20 O.OORego X.CSK-OT O.OOCeagl O.ooseag CEego d.oocego. O.aotedo O.agseoal O.ogteoo 0.4(logo o.oos oo O.oocego o.oos.oo- O.ggtego O.odseog O.adgeog O.OgteOO Q.ooa.oa 1.)LI-04 PXFV $ 1. e. 0 Oasegai ~ Ogsego =.feg-09 2 ~ 17$ OIs 2.1$ C Oto 1.11S 0 ~ I 1.0)t ge o.oct.oo $ .09$ 1 0 4.3 $ $ QI 4.NS 09 i.alt 09 1 )1$ 09'.4)C-OT'

$ .24E.O'll O.oostgg S.CSC 10 O.goteog NXSZ 2 ~ 51$ 101 $ .)4$ 10: 1.37t.gt 041 1.94$ OI'.40I 1~ 4(I 0$ 1 1.2)c OI 0 0(logo ~ 4 '5E 09 o.aostoo S.3CC 09 ) tsr.ot ~ O.aottgo'.a)S-OTs 4 a 1'04 O.gasega! 1 ~ 49$ 0$ - O.aotego 0 ~ Ooseoa NXCV 1 ~ OZI 01 ~ $ 0.1 1.09$ OII $ .47$ .0$ v.ogj>>go O.ggsego! o.oos.oo O.ogseooI'.ggseg 0~ O.d(leOO O.aoteo 0 0 Ooctga ~ o.ooseao 0 ~ Oggegg O.gastOOa 4 edo-'.OOcega O.agsedos O.ooaedg O.aaseag t.'! St-0$ : 'tl. 1 4.)tc 4.5'ec 5.$ 9$ .ot 5.1)s 0$ ofs

+04'.ogtedo S.ISR-OSI .OTE 0$ 9.9IS Ots 4 ~ Cfs Oti O.D(logos 2 2$ $ Ot 0 ~ oateaai 1.74$ -OSC ).94$ 09

~

).)9$ Ots 1 ~

4.0 Oseoaa Zlsati 1.29K 09 D.dogegai 1.44$ 09! 3 '5$ -09 1 ~ 5$ $ 09 9.)OK.OI: 92.1 7.24$ Oli 7.0)c 09! 4.42$ id O.oggtgos 1.41$ -091 1.25C 0 0 ~ Oiledo 1 S-49$ 10! S.ICC 20 O.doctor ).441 20s 1.32$ -09 X ~ 7)C 101 O.odsegg O.agstoa

$ ).1! 1.1)$ OII 1.)TS 0$ ".415 0$ 1.14S Ole 2.2)S 09! 4.3)$ 091 5 24$ 0'fs O.geg.dg 7.50$ 10. 9.24$ Lai 2.)0$ Oti 2.>>t.gt 2.71t Ot 1.$ 41 09! 1,1'fg LQ! S.ets SS.S'(I Lgs 2.34S 09 O.aastoa

'.44C.aea PXCZ 4 ITK ce 'Sl. I 4.tot 0 1.$ 4$ 0$ geog O.gggeoo'.goteod '0 ~ ooceoo: O.ogctgg" Q.DCEogg O.ooseda O.oatega 0 ~ 00$ +00 O.dgtegg O.ggte00. 0.00(ego: ) Sig 10 0.00$ +Ogs o.oot+oo O.oaseod OXAZ 4.)SC-OI $ 4.24S OI: O.OOReoo W O.ggteoa: O.agtedg O.gdctoa 0.0(gogo O.gdceaa O.dosead. g ~ Ogloog O.ogseoo 0.004 Oo O.dgce00 O.odsegg O.ggtego'.SSK Q.OOCegd'.galeda

~ O.aogegg O.dgseog O.gotegol o.oos.oo. 0 ~ dilego O.aasego 0. Ogcego

).3)C.OI'.0(cO.OOEedo'.39$

O.ogsegg 0 ~ 00$ +goo 0~ O.aogegol 1."Oceoa'.4)t-ge'.<<t Oasedg'.00' ~ O.ggsego'.oateoal O.ootego O.oglegDI o.oos.oo 0 ~ Ogttog 0 ~: 2.4)s 101 X.ltsjoa OI 9.24$ Ots 2.4)c 09! 2.01$ 09! 4.40$ 09! O.dig too 1.05$ 09' ~ Oostoo ~ e. $ 7$ -101 X.ift Ot 2.))C-09 0.00$ +Oos O.galedai 1.)($ 10! l.t)c 09 O.odseoo OI'.oot QLC( 4.0)a Oel $5 ti I TIR 101 1 ~ 1$ $ OI: ~ .$ )t 09 1.)1$ 09C 2.0)R Ofi 'T.)3$ 101 1.25$ 10: O.C!ittgas 7.44$ 14' OQEtaa! 2 40$ 10! 1.4)t-ot T ~ 50$ 10 ~ 4.244 Ofs 1.49$ loi 1.97t 10 S.ZI$ 10 1.7$ C 09

).SIR Oes SC.) 0 Oateoal 1.0)'I Ots I.11C 10 1.)SS Xa! 2.5)s.oe! 2.14$ 10! 1.0$ $ Loi O.gigeda 9.74$ 09s O.oaceoas O.ool+Doi I.i)R ~ 10 3.29$ 10! 4~ 5>> 14: O.OOteOO O.agseggl o.ooc.oo O.aoseoa

).)4$ 0$ ! SC 7 OSI 2 ~ ISI Ols gjegg ).XII 10'.gdstgg'.OCI O.oottdo'.oos.ooi 0.04Ctga 0.0 00 O.adseoo. ld O,aggegga 7,27g 10 O.got+00! O.ooteog O.ooteao NXDV 97 ~ 1: 4.4IS S.oejt.at 9.))t X.tit 09s 4.74C Ots ).Sfc gf Q.aigeog 44$ 10i Q.dgsegal IIS 7.4(c 35t.oe'1.4'!

101 10: Ota 4 ~ 2~ 09s X.ZTs.dt 10 ~ Z.OXC 09a Q.ggg\QQ 0 ~ agseog: 5.51$ 10 01st 2.44K 04! 97 O.odseogl L.get ot i.tic 49: ).12$ Ofs Z.ais.09'.C) ~ 09 0 ~ Qlttoa 10 0.00'Ctgo'.03$

) ~ )SR 10 2 'ZE.LO 09 ~ O.aalegg'.OOS.OO 1.05$ 10 '9.9)t 10 O.agcegg O.odsega PXEZ Ic 97 I!

O.aoteooi O.aoseoo!

O.OgteOO.

O.ogseao 3.43$ 09

.GOEego 1 ~ 4)c 10" oo:

O.ogsegos O.goceool 2.40$ 10!

O.oat+00! 0 Ogstags 10 O.gigeod 2.2!t.oe O.aosedo'.

0 Ogstgda 5.15$

O.ogceoas 09'.40$

1 ~ 05$ 10 O.OOCegoi 1~

O.ggcegd XOI.09 O.adceog.

o.ooceoa

).17K 09 a.ooloagi

~ 4.$ 4S 49 1.17$ 10'.75$ 10 O.aoceao a.gase40i O.aoseagi O.QOCegg 0.Oat+00 2.22I Oel $$~ j! 0 ~ Oostggl O.oaseooi ).41E 09 4.13 ~ -iol O.ogl+001 1.44$ 101 ).)4$ 10! 0. CN togo O.oasegoi 1.tts Oti O.aoseaol 1.0)t 09 2.79R 10! 1.794 091 5.)9$ 091 O.agseoDI 2.)4$ 10 O.aaseoo I 2.04$ OII '9 ~ )I 4.)OR 091 C.ZLE-OS! 10 1.22$ 101 O.ogleoal a.oos+ool O.agsegai 0.004+00'XNZ 0 Oastoo: O.ogctoal 1.00$ los O.OOCego 0.00'Cega'.5'ft 3.31>jgl L.SIS Oti T.lit Oti O.oaseoo. 0 ~ Oaseoa IXIV 2.00$ OII SI ~ SI O.aoseaol O.aastdol O.oatego 4.0$ C 09 4.15E 091 Z.SXI 0$ 4 091 2 74$ gti D.galtoo ~ .Qtc oft C.S(t 10 a.ooceao: O.adleaal Q.oastoal o.oas.ool O.gigeag'.45$

O.ogttga 0.Oat+00 Z.SS'$-0$ 1 $ $ .11 $ .40$ 10 1 )1$ OII O.dggtgo Q.OOEtooi O.agseogi O.ggtegos O.oiledo'.ggseool 0 00$ +00'.agleoo! O.adltooi O.gottoo O.oosedos O.oaltaol L.ats lol 4.CSS-LOI O.agseoo ~ O.ggstgo O'XFV Se.' a.ooa.ooi O.gdteooi o.ooa+ool O.agseool O.ooseoo O.odsego!

1 ~ SLC 0$ !

1.40$ 0$ !

I O.OOR+00 0 ~ OOReogi 1.$ 1$ lai d.agtego SaBC 10 O.oogeool 2.15E 101 Q.aastao!

0. 00lego O.OOEtdao 4 Odt+OQI O.OOseOOi Q.adctdd!

D.gotega O.ggttdo O.OQCeoo ~ 0.004+001 O.OOCegoi O.gote04 I O.ogctgo'.))S 09 O.oileod'.aotego'.OOC+Odl O.OOCedas Q.dgltgai O.gateadl O.aottoai O.agtegg' ))S 09 1 '9$ -0$ 1 Sf.tl 0 ~ OOReoo 0 ~ Ogstgai ).$ 4$ 09 ).2($ 091 I 41$ 101 C.T2$ 10 1.41I ota 0.00geoo! ) Sja 10! O.aattgo t7g 10 4 ~ '99$ la 7.$ 1$ 10! 0 0<<ego! O Ogc+OO O.oottogl 4.44$ 10.

~

o.oostoo 1.2$ $ -0$ 1 St.ll 0 ~ ooteogi O.gdteaai O.oogegg O.ggceoal O.OOReool 0 DOS+gal O.oigeoo'.aoseooi 0 Ooseao ~ 0.00$ +001 o.oos+ooi O.ogtegg 0 ~ Oaseoos O.aoctdgl O.gdct00! O.aoseodi 0 ~ Ogsego 4,13$ 09 1 2$ $ Oei St.4 0 oaltoo 1.0$ $ 10! 4.)5$ 09 2~ 0(I 091 XoW$ 091 4.24$ 201 7.)(telo! O.OTttgd! 4.34$ lai 0 aos+dol ).42$ -)0 Z.ITC XO '7.49Cela; <<47tdal o goc.ool 1.51celal 5 ~ 3$ S 10. O.aal tag L.lot 0$ 1 '99.4s 0 ~ Ogseogl 0 ~ OOIegos 5.4(c 10 1.91$ 091 O.dgteool ~ $ 2$ 101 T.NS 101 0.0)geoo. 0 Oaseoal 4.22$ 091 3.29$ 101 2.49S 10 O.oostOOo 3.4S4-101 1.)3$ loi o.ooreooi O.ogsegg O.aasegQ NX(XZ I 4 24'I 09 $9~4 2.5$ 10I 1.1)s 0$ 1 O.agsego 0 ~ Ogstool 0 ODXeggl o.oostool 0 ~ Odcegol 0 '!Keooi O.OOIeool O.agteaai o.oos+ool 0 ~ ooteOOs 0 ggttool O.aolegd O.adstaoi O.OOSeOOI O.aosegoo 0 00$ +00 s 4.44$ Otl 99 1 .O.aastadl o.aos+ooi O.oolego O.gattgai O.QOC+001 Q.aottoa! 0 Oactdgl 0. 00ctaoi 0 dostaa'.agstdd 4.dog+001 D.dgtegd Q.ddt+go! O,agctgdl O.got+001 O.ddsega! O.aoceoo: O.oaseoo OXPZ 3.41E 0$ ! $ 971 O.oastgo 0.00$ +00! O.got+00 O.ggseDOI O.aastool O.agstgol O.gateog! O.OXCedg O.aaseod 0 Ooseooi o.ooc+ool O.ogleog O.dgleaos 0 Ogstdgi O.ogltoal o.ooteooi O.aaseoo. 1 Ios 09

) 1)$ Otl St.el 0 ~ Oosego O.OOR+001 O.ogle go 0 ~ OgseDOI 2.3)$ 091 O.OOCe041 O.aostgol 0.00atoo 7.$ $ $ 10 0 ~ 00$ +00 0.00$ +00! O.dgtegg ~ O.oose001 4 Daltogi O.agseao O.adst04s O.oaleoo 0 Ooseoo

'2 CIS Ot! $ $ .4 0 gal+00: 1.24$ 091 Z.NE-LOI 2 44$ 10! O.g)toga 1 ~ S)R 10 0 dastdol X.ZIS 141 0 Ooseool d.agceaa ~ 10 0.Oat+00'.01$

O.agltdd'.44t g.got+dot O.ooaedgi Q.dgstggi 0 Oattoa'.aoreoo. O.oottao 2.02$ -0'91 99.4 O.oastoal 0 oottgoi O.aglega O.ooctgo O.aaseaol 09o O.OOseOO. O.00K+001 O.ooctoo! O.DOC+04 '.gdsegal O.agstaas O.aaleoal O.gosegol O.agcegp; O.OOXtoo! 0 Oostog 1.$ 0$ 091 1.IO'R 091 O.agseooi O.agltgo O.agstoal O.agstgal 0.00$ +001 O.ogteog 0.0)aeaoI O.aoseoa O.aglegoI O.adc+001 O.ddt+001 0.00$ +001 O.aottgol O.ogstgoi O.OOS+OOI O.aastooi 0 ~ Oastaa NLtZ I 1.79$ -0$ 1 St.tl O.OOCeao 1.79$ Oti 0.00$ .00 O.adtedal o.oostgal Q.odgtdDI 0 aoteoo: 0 OastDoa 0 0 dg! 0.00 Ctoai O.oglego'.gdtt401 Q.odctga! O.gdcegdl O.gdceagi O.odtedoi o.aoceoos O.oactao 1.49$ 091 99.$ O.oattoo O.OOReooi 10 T.NS 10 O.agseoo 2.$ $ $ 1DI 2.55$ 10 O.ggttoos o.oos+oo O.ooseooi 1.2($ 101 O.agtego O.ogstdal O.ogstddl O.ooa+oo! O.oolego O.agstgg,'.21C

~

0 00$ +00 1eCLS 091 99.$ 1.21S 10 Z.TOR 101 O.gdstgg 0.got+00( O.OQC+Ooi O.gdstODI O.OOS+OOI O.ggltgas o.oostoo: I O.ggstoo O.OOCtgg ~ O.agceda'. 0 ~ Ooltgol O.ogttoai o.oos.ooi O.aosedoi O.aoseoo X.ats 091 O.oaseaa O.OOC+00! 1.)IC 10. O.ooceaol 0.00$ +OOI O.dgttooi 0. Oat tool 4 Dostggs 5 44$ )g o.aostool d.ogtegg'.dgcedgl O.DOX+ads O.adit(a ) ~ 91$ 101 0 ~ Ogstg41 O.aaleaO! o.oat+00 0 XIV 9.24C 101 9$ .9 O.aoseogl O.ggseoos D.OOCeoo O.00K+001 O.dgteool O,agstoD! O.ggttool O.gologa: O.oastoo' ~ oolegol O.OOI+OOi O.ggleog O.ggttoo! O.agledoi O.odctggl O.ogseool O.odstgg O.OOReaa accg I.42$ 101 0 OORtoo O.OOReaoi O.ogceoo. O.got+001 0.oat+001 O.aaseaol 4,00stooi O.OOseOO: 0 Ooltoo O.agltgo O.OOEtagi 0 ~ 004+ggl 0 ~ ooctoal 0 ~ Oostogl 0 ~ Oostggs a'.dotegd 4.11$ 10 O.got+00'.COI+Oai

$ .34s-lgl o.aaatool .I.WI XOI O.OOCeag O.aattoal o.dgctoa O.dgltdal 0 Dos+00 O.ggcedo! D OgstaDa 0 DOS+40 O.oostgD 0 dgcega" D.ggr+gai Q.dagedol Q.ggttda o.dgttaot O.odttddo O.oat+ad PIFZ I 1.NI 101 7 tlc 101 0 ~ OORtoa O.adsegg. O.agseool 0 ~ Ogctool 4 Ogseggi O.gassoo'.gastool 0 Oasego. 0 ~ oaleoo O.OOseOOI O.agstaol 0 Ogstaol O.oaltggj 0 Ogstoo O.aoseaaj O.agstdgs O,OORtgo 4.55$ 10 100 0 Ooseoo 0-00'$+001 3-Tfs 10 2 1(s 10 0 F 04'Ceoai O.aastogl 4.Dos+00 0 Cgctoo! 4 ~ Doseoo O.odstgaI'.04Etgol O.agsedg O.odloaoi 0 ~ Ooltogi O.agteoal 0 ~ OgseOOI O.agt+00! O.aoseog Oltt 5.)SS Xa: Q.oateaal 0. Oat+001 Q.agteco Q.ggttdoi 0. Dot+44! Q.gal+00 O.ggteggi g. (Ql ed 4 aasegg D.ogtega O.aostdoi 0-DDI+Odi 0. Qgle Qd I 0.0OI+Ogl O.adttddi Q.ogctdo O.ooc.oa OItV a 4 ~ 17$ 101 104 0 Ogseag O.agstga! O.goseoo O.got+00 O.agseggi O.ooseogl 4.Oat+401 0. Iocega O.daseoo. O.ooltoo: o.ooseoo O.OORoda 0 ~ Ogttggi 0. 001+001 0 OoseoQI O.age+001 O.ogttoo 2. 31$ -10 PZDZ TS'g 101 100 O.ooteoo 0 Oat t 0 Oa ) ~ 14$ 10 1.59I 101 o.oos+oo! O.aostagl O.OOReoos 0. (Oleoo 0 Doceoo O.ooteaal o.ooa+ooi O.ogsega O.gdctoo O.oogtgdl O.ogse00! o.ooa +001 O.agseoo O.OOCeao 4 o lit-101 104 1.14I Xo O.adttoai O.ogtedd 1.43C 21 D.ddctgoi D.ogc+QOI O.dostgai O.goledg. 1.) 4$ -14,'.adcegD O.doteaal O.golego. O.ool+ODI 0 agteggj 1.)1$ XOI O.dateooi O.OOCtadl O.OOCtaa 4.27$ 101 100 4.21R loi 0.00'Stgos O.ooteoo O.ogstaal O.OOseOO! O.agstggl 0 ~ 00$ +Ooa 0 Cdlego O.goseoo O.goceoo! 0 ~ Oostaa O.ogttoo: O.oogoaoi O.odcegdl O.odceool O.ooteooi 00'1 O.ooseggl O.aoseoo 4.24$ 101 100 O.oostoo Z.NR 101 O.aosedo 0 Ogseaal O.ogct401 O.agcegol 4 Ogsegdl O.(QEoog. O.dal+00 0:OOX+001 O.ogseoo O.ootegg ~ 0 ~ Ogcoao ~ 0 ~ Oogegd 0 ~ Ogsego 1 )2$ las O.ogtegoi 0 ~ Oastod

3. S St-101 104 2.04$ lol O.ggttagl 1.12C 10 T.iet 11 O.ogltgo j Q.dgltgoI O.aactddl 0,(dttdai D.aosego D.gal+00'.OOstaOI O.DglegD. O.gostoai 0 galtll1 0 ~ OQCegoi O.dgleddi O.dgcego! d.ogseaa Pits I ) Cts lai

~ 1001 0.00'Stool O.OORtaoi O.OOReoo O.agteoa O.OOteOO 0 ogstool 4.00ttoo I 0. C4 logo s O.aacego 0 ~ Oostoal O.ogttoal 0 ~ QOReodi O.aoseaai 0 ~ ooteodl 0 ~ Oasego 4.00$ tool 0 ~ Ogsega' ~ Oostao 3.4)$ 101 100 0 ~ Ogstoal O.OOReooi D.ooaego ).4)$ 101 0 Ogseool O.oosegol Q.ooteoal 0 (Ossggi D.oose 00 0 ~ Ogsego o.oosto 0 OORego. O.ags+00! O.oateOO! 0 ~ gaseog! 0 ~ Odsegol O.ogcegos O.ogseoo C)XDZ 3 Cls 10! 104 I O.got+001 Q.ddttaol O.ddlead Q.dgteaal Q.dgtedol O.agctddl O.ogsedal 0,(aleggi 0 got+00 0 ogctooi O.ggledg O.ggleog I O.dal+adl Q.ddtedD! 0.ddt+001 O.dgtega.

NZCZ s '2.01I 101 100 0 Ogseoal

~ O.ooteooi 1 1(t 10" I 47l ill 0.00'Ctoal O.ggteagl 4 ogsegoi 0 Cdltog o.oos oo 0.0 001 0.00t tg O O.odledg'.gdleooi O.gggtogl O.ogseggi O.OD'Stoa! O.doledg.

Q.OOC+gd O.gdteog t4t '

OXCV NXCZ 1

1~ )Ir 5 ~ ))$ -111 10!

10!

1001 100 100 O.ooceoo Q.agcegal O.ooseaQI 0 ~ Ootegol 1~ )Ic 0 Ool'tool 10!

1 4)$ 10 Q.OOCe40 0 ~ Oogego 0 OOK+gd'.dgseoos 5 ~ Lgc 111

)3$ 111 o.ooseool

4. gal+001 O.adse40 I D.dgttgai 0 00'CedoI Q.agseooi D.doceggi O.COCegg'.ggseogi 0 'gsegg 0.(ggeogi o.oaa.oo 0 Oasega 0 ~ Qott 00 0.00'gogo!

O.ogteoa.

4 Ddseooi O.ooceooi O.oot+ooi o oos+ool O.ogledo O.OORedo O.OORegg.

Q.ooseooi o.oottoos 0 ~ ggseoai ogsoggi O.dal+ODI Ootoogs 0 ~ gategol 0-ODteda1 0.00'geQOI 0.00$ +001 O.adst00!

0 ~ Ooaego O.gated'.OQCead O.ogteoo 5 ~ ~ 0 ~ Ogseogs O.ogsegg. O.ogteog

~ 14$ 111 140 0 ~ Ooceool O.OOReaol O.ogsegg. 0 F 00'Cegol O.OOS+OOI O.agteogl 4 gogegas O.Cgstdg' 0 Oale00 0. Ogleoo. O.agsegos Q.ggtega O.dal+ooi Oggogg O.OOEegdi O.agsegol O.ooseoo 0 ~ Ogsegg X(TTAL CDF'C 9. 1$ K-041 2 ~ 11S Olj 9.19$ 011 S.ZTE 07 4.)ta 07 5 19$ 071 4.45S.071 ~ .Xls 011 Z.flc 07 1.95$ - OT l. $ )s 01! X.lla 011 1.1(l 01: L.TXS-OT; 1 45g OTI 1 ~ Sfs 01 1.5)$ 07! 1.45$ 07l 2.))$ -07 T(!SSSCACXOO FCCCI S 1 00$ 101 00$ los 1 ~ 00$ 10' S.oos 1.00$ 101 1.00R 10! 1.00$ 5. (Ql-10 l,goc 10 X.OOS 1 01 1.00E 101 X.dgt 10! L.gas 10!

9'.2 111 101 1 ~ OOR 201 1.004 'LQI 1.00$ 10: 1 Ogs 10' ~ 00 ~ -10 Uoaccc Fee@ 9.2$ c-oi! 1.19$ -041 3.))c 051 I.NC F 05 ).07$ .051 5 TZE 051 4.25C OS! 4.1OE OSI 7.(gt 07 ).79$ 05 4 ~ ZSE OSs 3.) XR-051 2.))C.OS 4.2($ 05 ITS(I.OSI 2 2(c 051 1.>>s 05! 3.93$ 05 UOACCC Fret( ii ~

lgdi 54.)I )41 94.4 )I.Ss 110. Zi 95.41 99.7! lti l 131. ~ I 1$ 2 4! WZ.) 247.I 52(I

~

142.3 1X). ~

4.95$ 01 0 CUNU!ATXVE 22.9! )3.4! 4).7 51'.Is 54 Sa 41. ~ . 15.1: 77. 1: 19 IO.9 01.7'4.4 Ie. 1 271

$ 7.4 49. 1 51VALN0048$.XLS.614/96

-t Table D-I (Page 2 of 3). Phi-M Matrix for Browns Ferry Unit 3 PSA F L7$ LLO LLS KLOCA alas< I ass L ]CA F LRS 1 LSCOFA FLPML LSCCUl FRto LUPS 9.08C 0)

LSLOCA i.cit 0 ~ 2 20$ .0)-. ].07$ 04 S cie 0) 9 )SC 04 a.l ~ aa 3 ~5 I 0) ).Sll ~ 0) 1 ~ CK 02 lssa aae LOOV S LOCA

].22E 02 S.ccl.di. 4.47$ 02 4.44C 02 ~

a.s. sm . e <.aaa.a 4.)TE 45 ).69C 02 4.01$ 0) ).59C 02 O.ooeioo O.doeiOO 0 oce.oo o.ooe OO 4 CCS',44

>>3 O.CCCido L.TC E 09 1,69C 09" o.ode.no PCS NLSV s

4.00'Cido 0 ode ~ 40 C.OCC<00 O.dot<do '.971

.X 04 2 ~ Lce.ol 0-COK 00 a.a

<.aas.

a a

a.a as

.aas

~ 2.0)e e.)SE 49 04 O.OCE<00 i'll]ei09 O.OCCido .14C 09 7.)OI O.OCCioo 09 6. ~ Se-cs O.CCK 00 i.ioe-os CCC 00 S.o O.C I cs .4)K-CS

\.a s.aa 6 .44 C.lo

. a C 10 6.4)e

]ie

~ 10

~ 10 9.)5E-L S.oie 1 AMSTEjt.

.<ss s. aa 0'9 2.94tiic O.OCCiod ..SSC 09 0LAv 4.97K pcs o.cce 00 S.cle ~ 04 0 Coe 00 .>>a a~

a a.

a a ~ a 5

.-Tc.cs 1.1'!I-]0 .<LII~ aa

~. >>ss a~ i S.Tle 09 O.OOCioo O.CCEooo O.ooteod C.COIiOO O.ddti00 ~ 0 Coeedo C. Cteoo 0 OCC 04 a.aaa aa a.aa C~ Cdtioo 0 doe<Cd KPEB7URE N!Av Csee 4 ~ Ooei04 0 ~ Ool<00 O.OCR<00 O.dot<04 O.coc'00 0.00K<40 o.dce'ci O.Col<00 0 ~ 00 E.OO O.OOe.oo O.doe<Co

)de 00 O.Cot<00 o.cceiod 0.04$ <00 O.odeedd 0 a.a ass 0.00$ ido O.doe<00 0. Cdliod O.OOCido C.OCR<00 9 FX FZCX O.dot<00 0 .Cceioo C.Cot<00 0.4CC<00 .i S.SSC-09

~ a .aaa aa

].lce.os 1.)OC 09'.49$ 09 2.47K ~ 09 4 ~ 4)I 09 O.OCR<00 C.ooeiod

).40$ 09 C.cit a.aaa aa' 4)e 09

~

4 6 )e.as Cfidd 1.2)R 10 c.sce-lo O.odeooo o.ooe oo O.doe<00

).64C ]0.

4.40 C-14 4.54 I-]0 4.)SC-]0 4.Sce-]o O.CCC<00 1 9]e-]0 CARO PLFV OLCV O.ootioo 1.9)C-CS 0 .Cot<00 4 .0)K 09 1.7)C 09 5.44$ 'sl O.OOC<00 2.])C-]4 10 4.)TC-]0

~ 2]'I 09 L.sse 10 4 92K ]0 5 .11$ 04>>

0 ~ 00$ <00'.3)S 1.53$ O'9 1.24K 09 7.23I 09 1.10$ 09

].3)e 49 O.OOCido 0 ~ 00$ ioo ~

0.00$ <00 09 0.00$ <00 O.Col<00 C.COCido 0.)0K<00 O.OOCiod 2.]SI 09 O.OOC+CC O.OCK<CC a.aaa a ~

.a aa s.a

a. 1 10 C

I

]0 C.LTI-LO 2.4)C 10 C.s'!C 10 O.OCC<CO NXCV O.Cot<do O.ooe<00 2.)6$ 09 -09 ).)9K 09 ) 94C

~ 09 O.OOC<00 O.dde<CC O.dot<00 0.00 Redo C.ooe oo C.dotodo

.)Lf 09 1.5]C ~ 04 0 ~ Cot<Co 09'.00'Ciod'.)4$

O.dotioo 2.))C.OS 2.43t 0$ O.ooeidd 0.00$ <00 O.ootioo 1.06$ 08: O.oottod 0 ~ CCCido OZSV O.ddt<00 C.dec<co 0.00$ <00 $ .65$ 1 ~ 'TTK 09 O.doti)0 ].0]e ]0 5.66 $ ]0 5 Sic lo 0 Cot<00 O.ootido C.CCCido 4.)se 09 1. oie;09 0.00$ 000 4 ~ OCC<odi 0.00$ too. O.COeiod 0$ '

PLUV O.dotiod C.ooeioo ~

64S 10

-09'.67$

<.aas.aa 4.00K<)C C.odl<00'.04 I<00 O.ootioo o.ooe.oo C.COE<00  :..<s.aa ~ .<aa aa ~

O.dos<40 O.dot<Co< O.odtido O.OCC<04 C.ddt<00 FZKV O.dot<Co O.CCE<00 1.44E 04 0.00$ ioo O.doe<00 O. 00'Cido

~

'aa aa a.aas a O.OCR<00! ~

a.aas.aa. ).OT$ -09! 0.00$ <00 O.odeioo 0 ~ Ootiod O.dClico 0 OOCidd 0 00 Eioo 0 COC<00 C.OCC<00 0 ~ OOE<00 O.OOI.OO 0,00$ <00 ~ O.COC<04

],01'C 10' O.ode<00< a.asses PJAV O.Cot<CO .Cot<00 O.ooeioo O.oottod! 0 ~ 00$ tooi 2.24$ .04' L.S]e 04 0 ~ Odtood O.ootilo 0 ~ OCC+00 0.00 I<00 o.doe oo 0 ~ OOC ~ 00 C.oot<00 0.00$ <00 PZMV 0.00$ <04 O.OOC<00.

0.00$ tod.

~

C.Cot<do eotiod 0. Cdeido Cot<00' 00$ <00' O.doe<00

]0 0.00$ iddl 00$ <00: Cot<04 0,04$ <DO 0. OCC< Col I

1. )1 10 1.)dl 10 O.OOC<00 QLTV 4 ~ 10$ .04 S.CSC 09'.ootioo!

4 77$ 101 0 ~ Cotioo Z.sst 09 1.0)C 09 ~ Oot<001 O.COSioos O.OOC<00.

1. Cie-49 2 ~ 29$

0 ~ Oottod 0 ~ OCEido I O.OCR<00< O.OOC.OO O.OOC<00: O.ootioda ]0'.OCR+00 O.dottdo: I 1.40 10< L.ioe 10 0 ~ Cot<do PZFV O.OOCidd 1.74$ 09!

0.00$ iod O.dolioo 0.00$ edd: 0.00$ <00 ].3)C 09 ].STt 09 0.00$ <001 1.97S ]0! O.Cot<00! 0. OCR<40 O.OCR<00 4.ill OS! 0.00$ 0.00'C<00 C.Cot<00. 10'.

O.Cot<04 ~

0.00'C<00< 0.00$

lli 4.00$ <00 0.00$ <00

'.OOCioo

~

0.00'Cooo! 4.$ 6$

ioo'.59C 0 OCR<00 O.ode+00 0 ~ 00$ <00!

ioo'.doltoo!

O.doe<00. 4.29$ 1.7)S lds 4.54E 11 0 ~ OCE<00 0 00$ too O.odtoodi 5.51$ los 5.)7$ 10: 0.00$ <00'ZSZ NLUV OZAZ ) 9)I 09'.06t 09! 4.55$ -0$ 1 6.1]S 09. ).)se 10 0 ~ Oot<00 T ~ sst-10 O.oot<001 O.odt<001 2.05$ loi 1 ~ sot 10 7 ~ 65$ '10 O.ddt<00'.00$

<40 1.46R 101 0.00$ <00! O.odtioo 0 ~ OOR<00.

0 ~ OOIiod!

0.00$ <00 O.doeioi O.OOI.OO!

1.24$ 10!

2.63E 11.

5.54$ lls 1.6)C 11 5.56R 11 0.00$ <04 0 ~ Col<00 PLFZ 0 00$ <00'.00$ <00< 0 OCR<00'.00$

O.OCRioo 0.00$ <00 3.60S 10 2 29$ -10 O.dot<00 0 CCRtdo 5 ~ 51R 101 6.5)I los 2 ~ 5SI-09 0.00'Cioo o.ooa.oo 4.67$ 101 5.34$ -101 O.Cot<00!

0.00$

C.odtido 0 ~ OOEidd 0.00$ ioo< C.OOC<00 0 ~ Ode<00 NZAZ 0.00$ F 00 O.Cot<00: <00:

1.6)C 10 O.OCR<00 O.odtiods 2 ~ )4$ -10! O.OCR<00 O.COC<00 <00'.00$

<00!

O.dolidd'.OCeioo

=-

0.00$ <00

<00'.doe<OIL 1.]4$ 1]

O.Col<00'.00$

<00 O.ddtioo O.OOE<00 0 ~ Odt<04 0 Oolidd O.odtooos 0.04$ idd ~ O.OCR<00 0.00$ <00! O.COS<00 0 ~ CORioo O.ddtido O.OOR+00 ~

PLGZ ~

C.Col<00 O.Col<00 O.oolido 0. 00$ <dis 0.00$ ioo>> 4.00$ 000 0 ~ ooe<00 O.doc<00'.dot<00 0.40$ <CC .Cot<40 4.6)C-OS 0.00$ <00< 0 ~ 00$ O.OOC<00:

0 ~ Odtioa) O.OOE<00 0.00$ <00 0 ~ 00$ <00! O.Cot<00 O.oosidd OLAX 0.00$ ioo< 0.00$ <00 C.OCR<00 O.ool<00 ~ 0 ~ 00$ <00< 0.00$ <001 O.OCR<00! 0 ~ Ode<00 ~ 0. 40 Cadi a 1.24E 101 4.96$ 11. 4.94C 11 0 ~ Oot<00 0 OOCido O.OCCioo< 2 7$ $ 101 C.clt 10 1 ~ )TI 10 0 ~ OOEido NJAZ 0.00$ ido I.CTI 10 O.OCI<00 0.00etdol ).51$ -101 5.1$ E 101 4.45R 10 O.OOC+001 00$ <04< 0.00$ <001 2.4]S 2.40$ 11 O.Col+00 0.00$ <00 O.ddt<00! 2 12$ 10.' O.OOE<001 0.00$ <00. 0.00$ <00 NXCZ 4.46$ 09< 0. Col ioi 11! ).24$ 11 0 ~ Ootood 11'.29R O.ootido -O.OOI<OO 0.00$ <00 0 ~ 00$ 000 4.00$ tdoi 0 ~ 00$ <001 0.Cot+00 0 ~ 00$ <00>>

~

O.OCR<04:.

OLCZ NLCV 1.7)$ 09!

O.OOCood

).SSS 101 O.OOE<001 51$ 101 0.00$ iod! 0.00'C<00 O.OOCiod

.44$ 10 O.doeidd

).29$ 10 O.OOI+OO O.COCido.

O ~ OOI<OOI O.OOS<OOI O.ooliod 0.00$

0 ~ Ooeido O.doe+00

]0' 0.00$ <00'.ddt<00'.OOI+OO! 1.15$ -0$

0.00$ <001 1 0.00$ <001 O.OOE<001 O.ddt<40 0 Ooeiod O.dot<Co<

0.00$

<00'.0. Ootidl.O,Cot<04: O.OOE<041 0.00$ <00:

i.idt 11:

0 ~ OOE<00 I

4.) ~ 11 O.ddt<00 O.OOI<00 0 Ooltoo!

<00'.OOC+00 0.00$ <00! O.OCC<00 000'.00'8<00 1 ~ 47K

~

O.ootiod'.Col+001 NLtV O.OCR<00 O.OC!<00 0.00$ <00! 0 00$ <00! 4. OCR<do 4 ~ ooe<00' 0. Oolioo. 0.OCR+00< 0.00$ <00 O.ooeodo 0.00$ ioo! O.dotidd O.OCR+00 O.OOStooa 1.15$ 10 ~ Odetdd 0.00$ O.OOS<001 O.OOE<001 NZDV 4.4]C 10 0.00'Ciddi Col<00 O.odc<04 0.00$ <00. 3.CTR 11! ).CSC 11 0 ~ 00$ <00 O.ootioo 0.00'K<04'.Cot<40'.

00$ <00: O.OCR<00! ].43$ 09< O.OCR<00 ~ .Cot<00 O.dotido 0.00$ <dds 0.00$ ~

SC.S'.dotidd 01ST 4.'9)t 10 4.00'Itdo! 0 OOStdoi 0.00$ <00 ~ 0.00K<CO 0.00$ <00 O.Cot<Co< O.dolidd 0 Col<00 O.ode<00'.OOC<oos 1.07$ 0$ 0.00$ <44 .0)$ 09 O.Col<00'.00K<00 0.00$ O.Cot<00!

ioo'.OCR+00!

C.odl<001 PlEX 0 OOXiod 0.00$ iod! C.OOE<00<

~

0.00$ too 0.00$ <00 0 ~ OOIioo. O.OOIiOO! O.OOCiOO!

0.00$ <00!

~ 0. 001<40 0 ~ Col<00

<00'.OCR<00 0.00$ <001 O.OCStodl O.oolioo 4.00$ toos 0 Col<00 O.oot<401 ).6)I ill ).C)C lla O.Cot<00 P JAR O.dottool O.OOC<001 0.04$ idol 0. 00 I+001 NltV O.OOI<00 ~ O.OOS<001 0.Cot+001 0.00$ ido 5.2$ $ 10 '2.)SC-10.

0 ~ dot<001 0 ~ OOEtool 0. Ool<001 0 F 00'I+00 ~ 0 Odtioo l. 55$ -10 0.00$ too C.doltdo, 0 00$ <001

~ O.00K+001

].2)R ill 4 ~ Cot+04< O.Col<00 O.odeidd O.OOStool 0.OCR+001 0.00$ 0.00$ 040 O.OCR<00:

O.dolodd: 0 00$ <00 0 00$ <00 O.odtido 0.00tioo! 0 Odlood! O.OCR<00! O.OCR+001 1 ~ 22$ 11:-

PZEZ 0.00$ <ooi 2.)SI 10< 0.00$ <001 0 OCR+001 0. OOI<001 O.ddtiooa 0 Ootiooi O.Col<441 0 ~ dottdol O.odl<401 0.00$ <40< 0 OCR<00 O.odl<001 0 ~ 00$ oodl

<00'.OCR+00 O.OCR<00 0. 00 1+00! O.ootooo 1.01$ 0$ 0 00$ <001 MZRV 0 ~ OOCtod! O.OOS+OOI O.OOI+OOI 0 OCR<00!

4.00$ <00< 0.00K<00: 0.00$ <001 0.OCR+00! 0 ~ 04$ <00. O.Cot<44 0 00$ <00 0.00$ tdo 0 ~ OOC<ddl 0.00$ O.OCR+00 6.$ 5$ 101 4.45R 10 MZXV O.OOC<001 0.00$ tdoi 0.OCR+001 0.00$ too! 0 ~ 00$ +00 0.00)<00!

2.66til'L. 0.00$ <00! 0.00$ toos 0 ~ Odl<00 7.20'I 10 C.OO'Ctoo O.ddt<00' O.Cot<00'.

O.ootiool 1.49C 0$ < L.OSI 09 ~ 2.47E-101 0 OOE<001

'.4)$

ioo'.OOI<00 1 29$ 091 S.C)E 09! O.OCR<00! 0 0 I+00 s O.do]<00. ~

OZFV ooc+oo. 0 OCR+001 0 ~ 00$ 400I O.ool<001 O.OCR<00 0 ~ 00$ todl O.odtidii O.OOR+Ooi 1.21$ 111 1.21$ 11. 0 ~ Cdl<00 101 1.20$ 101 1.54E 10 .00$ <04 0 do]<do: O.OCRioo 00$ <00 OXCV 61$ 0$ 0.OCR+00< o.oosiool O.oos+ool 1. 42$ 101 O.OCR<00' O.OOI+OOi O.ddttooi 0 00$ <00 0 ~ Col<00 O.odtoool 0.00$ <ddi O.OOCioo O.OCR<00 0.OCR+00 1 45'C 0$ 1 091 '.2)t MXFV 0.00$ <40! O.OOC<00'.OOCidd O.OOC+00] O.OOE<001 0.00$ todl O.OCR<00<

05$ 101 O.OCR<OS'.Col<Cd<

0. OOE<04! O.CC I+00 O.OCR<00 0 ~ OCR+00 0.00$ <00 OLFZ ).09$ 09< 5.61'I 101 0.00$ odo! 0.00'I<00 0.00$ too O.OCCtoo< 0.008<001 0.00$ iod' 0.00'Ctoo 00$ <001 O.OCR<00! 1 O.OOC<40 O.OCR<00! 0.00$ tdoi 0.04$ todl 0.OCR+001 O.OCR<00! O.OOI<OOI 0. Ool<001 0 ~ OCE+001 O.OORtoo 0.00$ ioda 0 ~ 00$ <00 PZDV 0 00$ <00! O.OOI<001 9.22$ 101 0.00$ <00!

0 00$ tool 0 ~ Odt+00! 0.00)ood 0. Oolioo

].84$ 10 O.oot<001 0 00$ <001 2.52$ 10 0.00$ <001 O.COC<001 0. Co t+00 si O.Col<00< O.OCR+001 0.00$ <001 O.Col<00! 0 ~ 00$ <00 0.00$ <00< 0 ~ OOStool O.ootoool 0. 00$ ooo O,oolooo O.OOC<001 0.041<00!

PZPZ

'0.00$ <00! ' 00$ +001 0.00$ 0. OOI<00! O.OCR<00: 0. Odltooi I 0.00)oodi O.OOCtoo'.ddtioo 0.00$ todi O.OOE<001 0 00$ oodl 9.)sti]L! 0 ~ Odt<001 0.00$ <001 O.OOS<00 0.00$ <OO NICZ 0.00$ tdoI ~

O.Cot<00! 0.00$ ue! O.OOIiOOI 0. Oolido O.OCR<00'.ddeooo!

0 Ootiodl 0. Ool<041 O.OCRioo! 0.00$ iodl 0 OCR<00: 0 ~ OCE<00 S. 4)S 10! 0.OCR+00

<00'.14E

09. O.ootioo O.OC)ood 0.OCR+00 0.00$ +OOI OZDV 2. 50$ Osl O.odl+00 0.00$ <00 0 00$ oool O.OCE<00 ~ O.OOI<00'.odtioo 0.00$ <00-' OOS+00! 0 Ool<001 O.oolioo O.OCR+00 O.OCRido< 0 ~ OCR<Co O.OCR+001 O.odtooo! 0~ 0.00$ <00 ~

0 ~ OOCooo: O.CCI<00. 0 ~ OOE<00 0 OCR<00! ~

OZFZ 1 CTE 091 O.OOI+OOI O.OOIiOO 0.00$ oodl 0.00$ <00! 0 00$ <00 0.00$ oddl OOR<00'.OOI<00 O.OCR<00 O.OCR<00! 0 Ool<00 0.00$ tdo 0. OOK<001 O.doltdo ~ O.OOI OO! 0 ~ COI<001 0 ~ OOR<001 NLCZ 0 00$ iool 0.00$ idda 0.04$ iool O.OCStoo 0.00'I<00 O.dol+OO<

O.ootoodi 0.00$ <001 O.Cot<Col 0 ~ OOI<00' O.COEtdo 0 00$ <00< O,odttdd ~

0 00$ <00 0.00$ <00 0.00$ <00 0 OOI<001 0 00'C<40! 0 ~ OOE<00 NZCF 0 00$ oooi 0.00$ <001 O.OOI+00'.ddt<00 0.00$ tool 0.00$ <001 O.ooetdd 0 Oottdo 00$ tdoi 0.00$ <00< O.Col<Col 0 00$ <00! O,OORtdd 0.00$ <00 0. Cot+001 O.OOXooo! 0 00$ <001 O.dotsooi O.OOI<OO ~ 0.00$ <00 NJAV 0.00$ tddi O.odtoool O.OCR<00 0 00$ <401 0 ~ 00$ <40a 0.00$ <001 0 ~ Ootioo ~

O.ooatool O.oot<001 0.00$ <00 0 ~ Odloool 0 COE+Ooi O.Oct<00'.CCC<00 O.ootioo O.OOC<001 0.00$ <001 0 ~ 00$ <001 0. 00K<04! O.ootodoi O.Col<00 PZEZ O.dot<001 0.00$ <001 0.00'toool 0.OCR+Col 0. OOI< 00! ~ O.OCR<00'.dot<00!

0.00$ <00 0.00$ <00.

O.OOI<00. O.COStdo 0. OCR<00! 0.00$ <00 O.odttool 0 ~ 00$ <001 0 008iodi O.OOC<001 0 ~ OOR<00 NLFZ 0.00$ <001 O.OOEtooi 0.00$ oodl 0 OCItdo 0 Oot<001 O.OCC+00 O.OCR<00 0.00$ <00! O.OCR<00 O.ool<001 O.OOCood O.OCR+00 O.OORioo I 0~ 0 ~ OOC<001 0 ~ OCR<Col 0 ~ Oot<OOI O.dottooi 0 ~ 04$ <001 0 ~ 00$ <00 O.odliool 0.00$ <00! O.OOEoodl 7 '0$ -10I 0 00$ tdo! 0: OCI<40!

O.OOC<00'.00$

Ooltdo'.OOX<00!

MZDZ tool 0 ~ 00$ <001 O.CCRoool o. ooaioo! O.dot<40 O.ddt<001 0.00$ <001 0 ~ OOI<00 O.odt<00! 4.96$ 10 O.OCRioo 0.00$ <001 O.ddt<001 acz 0.00$ <001 0.00$ <001 0 OOE<OOI 0.00$ <001 0 ~ OOE+00 0.OCR+001 O.OCEtdoi 0.00$ <001 0.40$ ooo! 0.00$ <00 0 00$ <00' 0 00$ too 0 00$ oool 0.Cot+00 0. 00$ <00 O.dottoo< 0 ~ OOE<001 O.ooti001 O.OOE<001 Mits 0 00$ <001 0 00$ tool O.ooloddi 0.00$ tdol O.oot<001 0.0(I<00 O.OOCioo 26$ 10' 0.00$ <00! O.OOC<001 O,ootoool 0.00$ idd o.oosiool 0.00$ <001 2.4CC.]ls 4 ~ 00$ <001 0.00$ <00 O.oottdol 0 ~ OOI<00 O.OCSooo 0.0!I<00<

O.OOEtoo'.OOEtdoi OZEV s O.OOE<001 0.OCR+001 0.00$ <00! O.dottdd 0.00$ <001 O.ooltool 0.00$ oool O. Cot ioil 0 ~ 00$ <001 0.00$ <001 O.OCR+00< 0.00$ <00

~ 00$ tdo 0 Cot<00 O.OORiOOi O.OOXiod O.OOX<doi 0 OCXtdd OXUZ 4 ~ 4)$ 101 O.OOEiooi O.OCR<Col 0.00$ <001 0.00$ <00 0 Odltodl O.olt+00 ~ 0.00$ ooo 0.00$ <00 0.00$ <001 0. 00$ tool d r ool<00 0 00'C<00 O.OCR+40 0.00$ <001 O.OCR<00 0.00$ too 0.00$ <00 O.ooetodi O.OOI,OO<

O.OOE<001 0.00$ <001 O.OCR+00 o.ooI+ooi o.ooIioo I 0. 00$ <00 0.0!I<00:

MZEZ 0.00$ ood 0.00$ too: O.OCR<00 0.00$ <001 O.dot<00 0 00$ <00 0 00$ <001 O.ooetoo ~ 0.00$ <00 O.ddlioii 0 Ootoooi 0.00$ <OOI 0.00$ O.ddtidd PXFZ 0 Ootido O.OCR<00 O.ool<001 O.OCR<00 0 OOI<001 O.oil<00, <00.'.doltdol 0 00$ ioo: 0 OOCtoo O,oottoo! O.ootioo O.OCR<00 0.00$ tool O.ootioo: O.OOC<001 0-Odlido' O.OCR<Col 0 ~ OOE<00! 0 ~ OOC<00 O.OOIiOOI O.OOIiOOI O.OOEoooi 0.00$ <00< 0.01$

MXPZ O.OOE<00! O.oottdol 0 ~ 00$ <OOI <00'.

O.doltdd: 0.00$ <001 Ooeioi< 0 ~ Oot<OOI O.CCR<001 O.dot too; O.OCR<00 5.35$ O.OCR<00 O.oottoo. O.ooltoo II<00 O.OOC<00 0.00$ +OO O.OOI+OO ~

0ZFZ 0.00$ iool 101

0. 00$ oodl 0.00$ <001 0.00'C<00 ~ O.OotiOO! O O.Col<00: 0.00$ <00< O.oolidi! 0 ~ 00$ <00! 0.00$ <00 0-00$ <00< 0 00$ <00 O.ooltool 0 00$ too 0.00$ <00 0. OCI<00 0.00$ <00 O.OCR<00 0.00$ <001 OltV 2.46$ 101 ~

O.odloooi 0.00$ tddl 0 00$ <001 O,ddttdos O.OII+OO O.OCR<00! 0 ~ 00$ tool 0. Ooeadil 0 ~ 00$ <001 0.00!<00! 0.00$ <001 O.OOC<00 0.00'Ctooi 0 00$ tdd 0.00$ <04 O.Cot<00 d. 41$ <00 0.00$ <00 O.OOS<OOI 0.00$ <COI PZDZ 0.00$ tool 0.00$ <00! -0.00$ <001 O.OCE<001 O.Cot<00! 0.OCR+40: 0. 00$ ido O.OCC<0)l 0.00$ oool O.OCR<00 O.OCEioda O.OOC<oo 0.00$ tool 0.00$ <OOI 0.04$ <00< 0.00$ <00' O.OIE<00 0.00$ <00 0 ~ OOEtdo 0.00$ <00 ~

PXPV 0 OOR<001 0.40$ <ooa 0.00$ tdol 0.00$ <001 0.00$ <001 O.OOI<dii 0.00'E<00 O.odtodo O.oottoo! 0.00$ <dd 0.00$ tool O.OOI+OO OCR<00 0. OCR+00! O.OIE+00. O.CCSioo 0:OCR+00 0.00$ <00 0 00'C<00 ~

PX)LZ .0 ~ dot<001 4.00jtoo.'.dot<00! O.oot<001 0.OCR+00 O.OCR+001 0.OCR+001 0. COC<041 0 ~ Cot+00 i 0. 00$ <00 I 0.00$ <001 0.00$ <04 0.00$ <OOI 0.00$ <00< 0. Cot+00< 0.4)I<00 0 ~ OOK+04 O.ootidd O.ddt<001

.0)00$ <001 O.CCS<OOI 0.00$ <041 O.OOCtod O.ddtidol 0.00$ <00! 0.00'C<001 4 ~ Cdlioil O.OCE<001 0.00$ tdo 0.00$ <ooi O.OOE<04 0 00$ tdoi

~

0.00$ tdoi 0.00$ <00 0.00$ tdo< 0.00$ tod 0.OCR+041 0.0!I<00 O.dotidd 0.00$ <00 NZAZ s .O.doe<001 0.00$ todi O.dot<001 2.11$ 101 0. Col+001 O.OOF<04. 0.00$ <00! O. Ooeaooi STK'll'.Cot<00<

O.OCC<00 O.OCS+001 0.OCR+00! 0 ~ ddttod 0.00$ <00. 1.59C O.OOCido 0 ~ 00$ <001 0.OCR+001 PltZ O.OOEioo 0.00$ <001 0.OCR+001 O.OOC<001 O.oottOOI 0.0)I<00 O.OOC<00'XRV 0 ~ Cotodoi O.dotiod.

10'.OCR<00 O.OOI<001 0.OCR+001 0.00'Cido 0.00$ tool 0.00$ <00 O.OCR+00< C. O.Cot<Col 0 ~ Odttdo O.OOS<001 0 ~ OOR+001 O.OOC<00 0.00$ t00< 0.0!C<00-4 ~ doetdol

~

Mitt 0.00'Etodi 1.14E 10. 0.00$ ido O.dotooo! 0.Cot+001 0.00$ <001 0 00$ ido C.oot<001 0.40$ <04 O.dos<00 0.00$ iooi 0 ~ 00K<401 0 ~ COR<001 O.OOC+001 0.00$ <00 ~ C.oottoo OZDZ 2.40I 101 0.00$ <001 O.ootoddl 0.00$ <001 0.00$ <001 0. OC R<00 O.oolioo'- 4.00$ <00< 0. Odesdo< 0 ~ Oottdoi O.ddtsoo! O.OOEtdd 0.00$ ioo! O.OOCo001 O.dot<00. 0.40$ <00 0. Cot+00'. O.CCSodd. O.OOCedo 0.OCR+00 0.OCR+001 ~

O.CCC<40 NXCZ 0 00$ <001

0. Cot<00: 0.00$ <OOI 0 ~ 00$ tdoi O.OCC<001 0 OCR<Col O,dolioo! 0.00$ tooi 0.00 I'OO 0 ~ Ooj<001 O.OOC<001 0 ~ OOItoo: O.odlido O.OOS.OOi O.OOE+00! C.OCR<00 O.COEioo o.ooeioo 0.00$ <001 0]CV O.OOIiOOI 0.00$ <00! 0 ~ Ootoooi 0 ~ OOEtooi O.ootidoi O.OCR<00 0.00$ <40' O.ooe<OOI 0 ~ Cottdol O.odttool 0 ~ 00$ <00, 0.00'Itdo 0.00$ <001 OCC an C.OOC<00 ~ ~

0.00$ tddl O.ootoodl 0.00$ <00 0 ~ OCR+001 0.00$ iddl O.OCR<00'.00$

O.Cot<40< 0.00$ <00< 0.00$ <001 O.ddeodo! O.Cot<40 O.ddttddl O.OOSiOO! 0. 004<041 44'.OOStodl 0 ~ 00$ <00 0.00$ oooi O.ooe<00! O.doe<00 O.oot<001 O.OOR<001 ood C.dotooo O.dot<00 0.04$ <00 o. 00$ i001 NZCZ O.OCR+Col O.OOC<ods 0 ~ Cdl<001 0. Oot<001 0. Odto 001 3.)it Cca 'L.24R 041 9 ~ oseiosi 6.21'C 0$ 1 6.01$ .091 5.94$ 09< 2.6)C-09 0.40$ tdoi O.OCC<00 4.6)S 04 4.24$ 0 ~ I 4.0SE 041 FJn 0 OOE<001 0.00$ <001 O.OCR<00'.30I 5.91C 441 5 ~ 46$ CSI 5 ~ 52$ 5.14$ 04 1.00E 'L COI loa 1.00$ .11! 1.00K-]1.

7.04C 44 6.99$ 08 1.04$ 101 ').COE 101 2.00$ 14 101 L.COI<]2' 1 ~ OOC 14 l.

~

].11C.OTI 071 04 L.oos loa Coe ~ 10 L.ooe 10 TOTAL CDF'I 1.29$ 071 '6$

04'.00$

].00$ 10 2.00$ 10! Lol ).97$ 071 ).CSI 47 ~ .49E OCI 948'1)' 1 -051 ].66$ ].6CC 9.2SE F 06 10! Odt 10 L.CCR 5.4)e 11 7.34$ 061 ~

Tc<<<lc4c1 co Fcc 2.04I Loi ).doe ~ 'LO! 'L.OOE 1 4.0)EEOC ~

]0'.Sdt 1.)sl Csa 1.9]$ 06! ].ict OSI 1 ~ CLR 05! 6. L)e 06 ~

]74.1 $ .41 11! )62 4: 171) <

.06'T6.2 0'77.6

~ )5]9 7 Udicct t 8.59$ 47< 3 TCC 07! 1.2)$ OSI SS.S'.OTE 32.)i 41'9. 9! 1]18.2 0 99.4 4'9;Ss 99.7< 99.4! 99.8: 99. ~

4>>L<

55.3 05'34.)

198.5 291.9'7.1.

94.1 94.61 '99 ~ St.c C.'ll ).4< 114. ~ ! I 97.6 UOSCCC t74<L N 94.4 95.2 90.5! 91.7' 92.4< 9).C

'Le!CAT Vt STVAQ40048$ .XLS.6/686

)

~

I)

!0 Table D-I (Page 3 of 3). Phi-M Matrix for Brow ns Ferry Unit 3 PSA iB]tliiacr LZB 'IZA LjZB LIA FIAB]C UI UZZ I.C. Fttejoiocy 5.'Tent.0] 5.74C 0) $ .746 0) S ~ Tit-0) 2.05I OC C.CTC 1.2)C 04 6.$ 5C 04 C.Sit 04 PCS>>

NIBV ) ~ $ 46 11 ].$ 4I 11 ~ ).Sil 11 ).$ 4'I 11 ~ O.OOCtoC 04'.ODCodd 0 Oottoo 4.026 12 4.0)C-]2 OZAV C.SZE ]0 6.5 jt 10 6.516 10' ~ 5]t 10 0.006>>DC O.oolt01 1.)16 11 7.7)6 11 7.7]l 11 NIAV $ .976 10 S.1SR lo 5 1$ 6-10

~ 5.1st 10 0.006.04 4.)OE Gt $ .92C 10'.SCI 11 S.SCR 11 FLFX O.ODC>>04 o.oottoo O.dattode ~ O.ddltoo C.ddttoo O.daftoo. O.dacooO 0.01lt00 PICK O.CDK>>00 O.ddttao O.OCEtdo 10'.oaltdo O.ODCtoa 0 OoctdG 0 Oaltaa 0 oottaa' 0 Oattaa O.daltoa O.OGKtoo 0.006.00 0.006tdd' 0 Oaftdo C )76 11 4 11E 10 oactao' 0 oattoo O.oottoa CLCV 1.256 10 1 2SE 10 216 1 lit 10 0 OOttdc 0 Cdltdo 3$ 6-12 I 4]t 11 I 45I 1]

~

i.iit 10 iit ]2')

4. ~ 46 'ID 4.446-]0 4 446 11' OattoC 0 OOEtoa 1.526-1'2 $ .)DE ]1 5.)at 11 OIBV 2.3)6 10 2. )) R. 10. 2.336.10 2 )]K.la 1 5]t 12 0 OOEtoo 3 ~ C$ 6 11 2.65C 11 P ICY O.aac 04 C.oactad 0 Odttdd!

~ 0 OCCtaa I 906 10 0.00Ctdd O.odttdo' C.ooctda PIRV 1.166-11: ll ll tat 9.)TE 12 P JAY PIIIV 5.]CE 11 O.dalt00 I 256 jj O.aottoo.

1 I

~ ]CE 0.006.00>>

246 ll!

5 ]CE C.oactdD 1.256-]j=

9 0 ooctac 0 Oottdo

~ 10 4 Oattoo a,aocoao 0.01$ .00 0 OottdD.

176 12 9 276 12 0.04'Ctoo I 4CE 12 O.oattdo 1.4CC 12 AH87EC 9IFV F

O.oaf>>04 0.00'Ctod O.odttad!

0.04'Ctaoi o.oot.oo; 0.006+00 C. OaltdD ~ O.ooc.oo 6.0$ 6-]C O.oottoo O.dottoo O.adltod'.OOCtod 1)'.oatt00 C.daltao 1.026 12 O.ooltaa 1.0]t-ll APERTURE NIIZ NICV C.OCC>>00 O.oat>>do O.oott00>>

O.oottdoe 0 odttoo.

O.daltdD'.OCCodo U.oattoo

~ 0.00lo00 O.OOCtad 0.006tdo 0 Oottoa O.aottdo'.odttod'.odttdo'.19I O.OGI+00 "0.006+00 0.04ttdo 0.01ltaa CARQ OZAZ 4.6]R 11 4.C)R ll! O.oottoo'.6]R 4.626-1] 0 OOC.OO 0 00'Coop 1) 5.24R 12 S.24E-]2 0.006>>04 0 dottdoe 11'.oottoo'.)26 0.04$ tdo 6 ]46-]2 0 Oottoo O.OOEtDO>> C.oact40 0.04ttdD Aim Aval!ahh on NIAZ ).))E 11>> 11'. o.oot.oo lt'256 10 5.3)C 11 ).TTI 12 ) TTR 1'2 Aperture Card tICZ 0 ~ Caltod O.Cotton O.dattoo 1.)CC 11 O.OOEtad 0.10ttdo' O.odttad O.DOC+04 OZAX 0 Caftao O.oolt00 O.oactod'.oottod'.dott00>> O.ODC>>DO 0 dOttdd 0 ODtodo Dottdo O.Dot tao O.dot>>Ca O.aattoa o.oottooi O.oattao ~ 0 Oattaa 0 Oattdo O.oottode o.oot.ao O.datt00

).446 11 3.44R 11>> ).446 11 O.Dott00 0.00ttoo 7 CTC 3 9]C 12 3.tlt 12 1~ lit ]1 .1.11$ -11I O.COEtdd O.ooltdd O.dattode 1.)CC 12 1.)CI 12 O.dot>>ad 0.00ttod! O.dottoo>> O.ODCtod 0.00tt00 ~ 11 O.OaltOO O.daltoa 0 F 00'Ktaa O.Cot+00 0 OdttDO! 0.00ttda ~ O.odttoo C.dactdd: 5 CSI 12! C.oojt01 O.daftod NIDV 0.00$ 000 D.oot+OOI 0 OottDO! datt04>> D.Cotton O.ODR>>00 ~ ).OCE 1'2I O.OOCt00 O.dottaa OIBZ O.odltdo 0.00ttdo 0 Odttoo! 0 datt00>>

~ D Odtt00 0 0 Oattdd! 0.00'Coop. O.dottdd OORtoo'.Col>>do:

PZCZ 0 00ttoa

~ O.OOEtddl 0.006+00! 0 oottooi t.SCR 11 0 dott00! O.ddt+00 O.oat+00'.oot+00 0 OdltOD O.oottdo O.adttdd! O.oattod! D.dattao O.oottaoe 0 dol+OOI ~ 0. Oajtoa NIFV O.dot>>ad o.oottooi 0 Oottdo:

~ 0 ~ dottdO O.dottda O.dattoo: 0 Ddt+00: o.oattca O.dalt00'.doltoo.

PINE 0>>dattoa O.odttdol o.oot.oo>> 0 Oat>>op. C,dattao O.aottdoi C.Cot+Co O.ODE+40 0 ~ Odftoa O.adttdo 0 'ottad! 0.01'Ctdd 0. Oatt01 0.046.00: S.S]t 1)! O.ODCtod O.dattoa NINV O,oottaO 0 ~ Oottdd ~ o.oot.oo! O.dojtaD 0.01\t00: O.oottdo! O.oattdo 0.00ttoo O.ddt+00'.ddttdo>>

0 IFV 0,00looo O.oottooi C.oca oo: O.dottOO C.aatt40. O.dottoo! 0. ODRtod' O.oottao OKCV O.oattoo O.odttdd! O.aottoo', 0. 006too ~ O.dottdo O.ooltod ~ O.oottdo! Oottode O.OOI+OO O.OOCtao O.odttdoi 0 oottoo! o.ooa.oo. O.oattOD O.ODRtddt 0 ~ dottdol O.oottoo: C.oat+00 O.ddltdo: O.aostool O.OOC+00>> 0 006tdoi O.odttdo: O.odttddl 0 Oojtdo! o.oot+oo 1.1)R 11 1.1)C ill ].j)R 11 O.oattaD O.ddcooo'.ooctoo>>

O.OOCtdo'.oottdoi 1.25E 1'2' 1.25t 12 PIPE O.oactdo ~ 0 Cot+00 0 ~ Dattdo! O.dot+00>> 4.SSR 11. O.oo!.00. ~ Oaj+00 ~ O.oattad O.oof tdo. O.doltod O,oolt00 O.OCI+dol O.dottod O.oott00! O,odttdol O.daltdae o.oojtao OIDV O.ddttdo! O.oottdo 0 Odttddl O.ddttadi O.Cotton C.oot 00! O,odttdd O.oattad O.OCR+00'.ddCtdd' OIFX O.oat>>Cd>> 0 ddttdd

~ 0 oaltdo

~ O.daatad. O.dattod O.ooc+oo O.odtt00. O.odjt04 0 Odttod! O.dottod O.dottod 0 Odttode O.DDttdd: 0 00'Ctdol 1 4)R 12I O.odltod Odttoa.'.daltodi NICV 0 Odttod O.odltdo O.dattod! 0.00'ttoo! 0 OdjtdOI 0 Cotton O.OOI+OO O.OORtoo'.dattao!

NJAV O.Cot+00 0 Dottod o.oot.oo! O.OOCtoo! O.dottdol 0 Ooltddl 0 OOCtdol O.oat+00 PINK C.ddttdo! O.dos+00 O.oottooi 0. 04$ tod: 0 dottod! O.dattoal O.OORtdol 0 ddttooi D.oattoa 0 Odttoo 0 Odttoo O.OOEtdd! O.oattaa ~ O.oato01 O.dattoa! 0 OORtddl C.oat+14' 0 oattoa

~

0 dot>>do, O.opt+op! O.oattdo O.oat+00 D.dattdd O.ODC+00! O,dott44>> 00ttdo O.odftdo NZCX O.dattooe O.dottod 0 Odjtdo' O.oottoo. O.ddctdo! 0 OORtdoe O.oottoo' 0 dottaa

~

O.oat+00'.oot.oo!

o.oot+oo ~ Oottoo! C.OOCoad'.ODI.OC O.dattoo 0 ~ OOCtoo: 0 ~ oottoai Oat>>ad: O.aaltod O.ooltdd'.dattdo odd" 0. Dottdo 0ZCV D.dottod O.ddttdol o.oot+oo 0-Oattoo>> 0 ~ ddtt00! C,ODRtCO; 0,00jtOOi o,ooctdot O.odttdo O.dojtodi 0 Odltoo! 0 ~ Oatt00. O.dottdai O.dottool O.daltdd! O.odttoo O.odttao! 0 Oottdo

~ 0 OOEtddl O.dot+Col 0 Cotton D.datt44l O.odltdoi O,ddltdol O.ddt+00 0 ~ Oottod 0 ~ Odttod! O.adttdd>> C.oat+04! O.OORtool 0 OCR+00 O.dojtao'.CCRtOO O.ddttdd'.ddttaO O.dottdo O.odttdol O.oattoO. o.oot.oo. O.dottoo! 0,00jtoo'0.00ttdo'.ddttoo O.ddltoo OIFZ O.oactdd O.oottda 0 ~ 046+00! O.aaltao 0.00ttdd C.doc>>Co'.65C C.octtda O.Col+00: C.oattdo CZFV O.OORtod ~ O.dottdo O.oottdd! O.ddttdo: C.Cotton D.ddttdo ~ O.dot+001 0. Oajtoo: O.dot+04 PIDZ 0 ODR>>00. O.dattool O.oottddi C.aaltdo. O.ddttoo. O.odatdo! O.OCR+00: O.oott00: C.oattda

~ 0 daltoo 0.006+001 0 ~ OOR+Odi O.aattdoe 1.CCE 12! O.ODC>>00! 0.01'Ctadl O.dottadl O.dajtdd PCIX 0.00'Ctao. 0 ~ Odttdo>> 0 ~ 006+Odl O.ddttdde 4.0ottaa! D.ODtt00l 0 ~ oactoa o.cottoo'.dot+00>> O.odttdd'.odttdd!

0 00'lt00. O.Cotton 0 ~ Odttool O.odttaa C.oattooi D.oottdal 0 00'Coda O.oattdo 0 odttodl 0 ~ Odttdol 0 ~ Oottoa: o.ooatoa. O.oottoo! 0.00ttdo O.ddt+00 O.Cotta'.ddttoo:

PIFX 0 Col>>00 d,oottdo! C.odtt00 0 Odttdo ~ 0.00'Etdo o.oottoa O.odttoo'.aottdol D.dattod'.dajtdo:

NICK O.dattoo 0,00ttdo! O.doltdo O.OOCtoo- O.odt.oo! 0.00ltoa. 0 ~ Oaltoa OZDZ 0.00ttad O.dottdo: O,dottod- O.OOC+00 O.daitCD C.ODCt04 D.aoltdo 0 ddttdo 0.00todd O.CCC>>OC C.dottdo! 0 ~ 00ttdo! C.dotodo 0. Odt O.Cotton O.oattao O.oaltoo C.ddttOO'.ddltoa:

0 ICY O.oat>>Co O.ooltooi O,oajood! O.odltao 0.00ttdo' O.ddttod O,ddtood O.ODEtdo'.ODE>>00:

o.ooc.oo O.aottdo! 0 OOCtaoi 0 ~ 00ftoo C.oot+ao Cotton C.ddttOO 0.00ttda NICZ O.ddftdo D.dajtdd O.oottoo O.ODltdo O.ODlt01>> O.Cotton C.oottdd 0.00'Kt00 0,00tt00'.oottoo:

O.COK.OO O.docoad 1.1SE 12 0.00tooo 0.04tt00 O.odtt00 e

TOTAL CDF'S 2.)26.09 2.24R-09! 2,246 09 2 ~ 24'C 09 2.0)t ~ 09 1.5)t 09 7.07$ 10. 2.CIE 10 2.61$ 10 ICOOC45]OO f24 1.046.11 I.dal 1. 00$ -11. ] F 016 11' 1.016 12 1.006 5.006 1.04R 12. 1.00C 1'I QOOCCG 1,7TC 06 06!

11'.77R 1 77E-06 ~ ~ TTC 06 7.)6E 09 06 10'.576 1]'.12K.d

~ 2.07C 2.0TR 07 U!!4CCC Fleq H 792.6 792.7 et].C ).6 jdjc.t 65 1 07'9).2

'MACAW ZVK 99.9 99.9 40 110 ]00 101 100

~ 't

~

LTVAW004 8 a. XLS.6!486 D-4

I S