ML13289A094: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(7 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML13289A094
| number = ML13289A094
| issue date = 05/02/2013
| issue date = 05/02/2013
| title = Sequoyah Nuclear Plan (SQN) NPDES Permit No. TN0026450 - Application for Renewal
| title = Plan (SQN) NPDES Permit No. TN0026450 - Application for Renewal
| author name = Anderson C M
| author name = Anderson C
| author affiliation = Tennessee Valley Authority
| author affiliation = Tennessee Valley Authority
| addressee name = Janjic V
| addressee name = Janjic V
Line 19: Line 19:


=Text=
=Text=
{{#Wiki_filter:Tenn essee V a ll e y Authority , 1101 Marke t St r eet , B R4A , C h attanooga , Ten n essee 374 0 2 May 2 , 2013 Mr. Vo j in Janj i c Manager , Permit Sect i on Division of Water Pollution Control Tennessee Department of Environment and Conservation 6th Floor , L&C Anne x 401 Chur c h Street Nashville , Tennessee 3 724 3
{{#Wiki_filter:Tennessee Valley Authority, 1101 Market Street, BR4A, Chattanooga, Tennessee 37402 May 2, 2013 Mr. Voj in Janjic Manager, Permit Section Division of Water Pollution Control Tennessee Department of Environment and Conservation 6th Floor, L&C Annex 401 Church Street Nashville, Tennessee 37243


==Dear Mr ,==
==Dear Mr,==
Janjic: TENNESSEE VALLEY AUTHORITY (TVA) -SEOUOYAH NUCLEAR PLANT (SON) -NPDES PERM I T NO. TN00264 50 -APPLICATION FOR RENEWAL Encl o sed is t he NPDES renewal app li ca ti on package for SON c o ns i sting of EPA Form 1 , s i te map , Form 2C , flow schemat i c , and NPDES perm i t address form. TVA would appreciate cons i deration of the following i n the renewed permit. Outfall 1 0 1 1. Enclosed is a summary of the Reasonab l e Potential e v aluation and to x i city test results s i nce 2005. As d i scussed i n the enclosure , TVA requests that the c urrent mon i t o ring limit be replaced w i th an IC 2s = 42.8%, which is based on revised effluent flow and is consistent with the Technical Support Document for effluents demonstrating No Reasonable Potential. Toxi c ity at the instream wastewater concentrat i on would serve only as a hard tr i gger for accelerated b i om o n i tor i ng , as stated i n the c urrent permit. 2. TVA requests continuation of the 3 1 6(a) var i ance as incorporated i n the current permit. Enclosed is SON's revised Alternate Thermal Lim i t (ATL) study plan , which proposes to conduct b i ological monitoring at SON dur i ng applicable autumn months and once per permit cycle during the summer months to assess the aquatic c ommunity. TVA bel i eves this approach is the most effic i ent use of resources and will pro v ide TDEC w i th the data necessary for cont i nued support of SaN's permitted ATL under Sect i on 316 (a) of the C l ean Water Act. Based on the results summarized in the enclosed Reservoir Fish Assemblage Index Report , TVA believes that thermal discharges from SON have not had a negative effect on the maintenance of a balanced ind i genous fish populat i on i n Chickamauga Reservoir. Also enc l osed are add i t i onal reports fo r stud i es related to Clean Water Act Sect i on 316 eva l uations as required b y Part III.F. o f the current perm i t and the study to c onfirm the calibrati o n of the numerical m o del as requ i red by Part III.G.
Janjic:
Mr. Vojin Janjic Page 2 May 2,2013 Outfall 103 1. This is an internal monitoring point (IMP) for various flows treated in the low volume waste treatment pond (L VWTP) and ultimately discharges through the Diffuser Pond at Outfall 101. Turbine building sump (TBS) flows are the primary wastewaters treated in the LVWTP. TVA requests when flows are routed through the permitted alternate path of the Yard Drainage Pond that compliance monitoring be required at Outfall 101 for IMP 103 parameters and frequencies.
TENNESSEE VALLEY AUTHORITY (TVA) - SEOUOYAH NUCLEAR PLANT (SON) - NPDES PERMIT NO. TN0026450 - APPLICATION FOR RENEWAL Enclosed is the NPDES renewal application package for SON consisting of EPA Form 1, site map, Form 2C, flow schematic, and NPDES permit address form. TVA would appreciate consideration of the following in the renewed permit.
: 2. TVA requests the monitoring frequency for Total Suspended Solids and Oil and Grease at IMP 103 be reduced to once per month. SON has consistently demonstrated compliance rel i ability with established permit limitations for these parameters.
Outfall 10 1
: 3. TVA requests the monitoring frequency for flow and be reduced to once per week in the renewal permit. TVA requests that flow measurements be recorded based on instantaneous flow meter readings.
: 1. Enclosed is a summary of the Reasonable Potential evaluation and toxicity test results since 2005. As discussed in the enclosure, TVA requests that the current monitoring limit be replaced with an IC2s =42.8%, which is based on revised effluent flow and is consistent with the Technical Support Document for effluents demonstrating No Reasonable Potential.
Historical data demonstrates that SON has consistently maintained compliance with the permit for these parameters. In add i tion , project planning is underway to upgrade the existing pH control process by using carbon dioxide injection to adjust L VWTP discharge pH. Outfall 107 1. This is an internal monitoring point for discharges of metal cleaning wastewater and storm water from a lined pond and an unlined pond. The existing permit allows that storm water be d i scharged from these ponds without monitoring since metal cleaning wastes are no longer discharged to these ponds. TVA requests approval through the renewal permit to also discharge stormwater via alternate paths of the Yard Drainage Pond and Condenser Cooling Water Discharge Channel, wh i ch both ultimately discharge through the Diffuser Pond at Outfall 101. 2. Since the influent lines from the plant to the Metal Cleaning Waste Treatment Ponds have been disconnected , SON plans to c l ose these ponds in the future. The final closure plan will be submitted to the Divis i on for review and approval prior to the construction phase. To facilitate dewatering for future closure , TVA requests the existing language found in Part 1.A.3. be replaced w i th the follow i ng in the renewal permit. TVA Sequoyah Nuclear Plant is authorized to discharge rain water from the Metal Cleaning Waste *Treatment Ponds to the Low Volume'Waste Treatment Pond , the Yard Drainage Pond , or the Condenser Cooling Water Discharge Channel , which ultimately discharges in the Diffuser Pond (Outfall 101). The permittee is not required to monitor discharge through IMP 107 for routine decanting of accumulated rainwater.
Toxi city at the instream wastewater concentration would serve only as a hard trigger for accelerated biomonitoring, as stated in the current permit.
Mr. Vojin Janj i c Page 3 May 2 , 2013 During the process of closing the Metal Cleaning Waste Treatment Ponds , al/ monitoring requirements at IMP 107 shall be waived to facilitate complete dewatering. During the dewatering process , samples shall be collected for TSS , O&G , c opper, iron and flow at Outfall 101 to ensure the water quality of the receiving stream is protected. Due to the additional residence time within the Diffuser Pond , these parameters shall be monitored daily at Outfall 101 from the beginning o f the dewatering event(s) through three days following termination of the dewatering.
: 2. TVA requests continuation of the 316(a) variance as incorporated in the current permit.
All monitoring results shall be reported in the DMR for Outfall 101. Miscellaneous
Enclosed is SON 's revised Alternate Thermal Limit (ATL) study plan, which proposes to conduct biological monitoring at SON during applicable autumn months and once per permit cycle during the summer months to assess the aquatic community. TVA believes this approach is the most efficient use of resources and will provide TDEC with the data necessary for continued support of SaN 's permitted ATL under Section 316(a) of the Clean Water Act.
: 1. TVA requests that the following language be included in the introduction to Part I.A. We believe this would alleviate the need for preparing a separate water quality certification for the Nuc l ear Regulatory Commission. This TN-NPDES permit also constitutes the State's certification under Section 401 of the Clean Water Act for the purpose of obtaining any federal license for activities resulting in the discharge s covered under the TN-NPDES permit. 2. SON discharges storm water from outfalls covered under the Tennessee MUlti-Sector General Permit , track i ng number TNR050015. TVA requests the requirement in Part II.C. of the NPDES perm i t to maintain signage for storm water runoff be removed in the renewal permit. 3. In January 1990 , TVA rece i ved a consent order from the Division requiring that SON submit a plan to the Div i sion deta ili ng TVA's systems and procedures to prevent damage to fish and aquatic life from TVA's discharges in response to an alleged fish kill incident.
Based on the results summarized in the enclosed Reservoir Fish Assemblage Index Report, TVA believes that thermal discharges from SON have not had a negative effect on the maintenance of a balanced indigenous fish population in Chickamauga Reservoir. Also enclosed are additional reports for studies related to Clean Water Act Section 316 evaluations as required by Part III.F. of the current permit and the study to confirm the calibration of the numerical model as requ ired by Part III.G.
A copy of this Order is enclosed for your convenience. Pursuant to the plan submitted to the Division , SON has maintained an aerat i on system at the i ntake forebay for the purpose of compliance with this Order. TVA now requests the following language be incorporated in Part III of the renewal permit to facilitate resolution or termination of the long-standing Order. TVA shal/provide supplemental aeration , as necessary , in Jaw-oxygen zones of the intake forebay area to serve as a fish refuge. Aeration may be temporarily discontinued during periods of maintenance. The permittee may request approval from the Division to permanently discontinue aeration upon demonstration that supplemental aeration is not necessary for fish survival in the intake f o rebay. 4. TVA requests the existing language found in Part IV.B. for maintaining a Biocide/Corrosion Treatment Plan (B/CTP) be replaced with the following in the renewal permit. This language i s consistent with that found in other TN-NPDES permits. The use of toxic chemicals and biocides at the site for process and non-process flows shall be managed under a Biocide/Corrosion Treatment Plan (BlCTP). The BlCTP shall describe chemical applications and macroinvertebrate control s, include all material feed rates , and proposed m onitoring schedule(s). The permittee shall conduct treatments of Mr. Vojin Janjic Page 4 May 2,2013 intake or process waters under this permit using biocides, dispersants, surfactants, corrosion inhibiting chemicals , or detoxification chemica ls in accordance with conditions approved and specified in the BlCTP. The permittee shall maintain the BlCTP at the facility and make the plan available t o the pennit issuing authority upon request. The permittee sha ll amend the BlCTP whenever there is a change in the application of the chemical additives or change in the operation of the facility that materially increases the potential for these activities to result in a discharge of sig nifi cant amounts of pollutants. The Division sha ll also be notified in writing within 30 days of any material changes that will change the active ingredients or quantities used of any such chemical additives.
TVA apprec iat es your consideration of the information provided herein in the development of the re issue d permit. If you have any questions regarding this NPDES permit renewal application , please contact Trav is Markum at (423) 751-2795 i n Chattanooga or by email at trmarkum@tva
.gov. Sincerely , M .
C hia M. Anderson Senior Manager Water and Waste Compliance Enclosure cc (Enclosure)
: Dr. Richard Urban Manager , Chattanooga Environmental Field Office Div ision of Water Pollution Control State Office Building , Suite 550 540 McCallie Avenue Chattanooga, Tennessee 37402-2013 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington , DC 20555 Please print or type in the unshaded areas only(fill-in areas are spaced for elite type, I.e., 12 characters/inch).
Form A pprove d. OMB N o. 2040-0086. A pprova l exp ires 5-31-92.FORMU.S. ENVIRONMENTAL PROTECTION AGENCYI. EPA I.D. NUMBER 1GENERAL INFORMATION GENERAL C onso lid a t e d P erm it s P rogra m (R ea d th e "G enera l I ns t ruc ti ons" b e f ore s t ar ti ng.)12131415LABEL ITEMSGENERAL INSTRUCTIONSIf a preprinted label has been provided, affix in the I. EPA I.D. NUMBERdesignated space. Review the information care-fully; if any of it is incorrect, cross through it and enter the correct data in the appropriate fill-in areaIII. FACILITY NAMEbelow. Also, if any of the preprinted data is absent PLEASE PLACE LABEL IN THIS SPACE (the area to the left of the label space lists the i n forma ti on th a t s h ou ld appear), p l ease prov id e it V. FACILIT Y i n th e proper fill-i n area (s)b e low. If th e l a b e l i s      MAILING ADDRESScomplete and correct, you need not complete Items 1, III, V, and VI (except VI-B which must be comp l e t e d regar dl ess). Comp l e t e a ll items if no VI. FACILIT Ylabel has been provided. Refer to the instructions      LOCATIONfor detailed item descriptions and for the legal authorizations under which this data is collected.II. POLLUTANT CHARACTERISTICSINSTRUCTIONS:  Complete A through J to determine whether you need to submit any permit application forms to the EPA. if you answer "yes" to any questions, youmust submit this form and the supplemental form listed in the parenthesis following the question. Mark "X" in the box in the third column if the supplemental form isattached. If you answer "no" to each question, you need not submit any of these forms. You may answer "no" if your activity is excluded from permit requirements; see S ec ti on C o f th e i ns t ruc ti ons. S ee a l so, S ec ti on D o f th e i ns t ruc ti ons f or d e fi n iti ons o f b o ld-f ace d terms.MARK 'X'MARK 'X'SPECIFIC QUESTIONSYESNOFORMSPECIFIC QUESTIONSYESNOFORM ATTACHED ATTACHED A.I s thi s f ac ility a pu bli c ly owne d trea tmen t wor k s B.D oes or w ill thi s f ac ilit y (e ith er ex i s ti ng or propose d)w hi c h resu lt s i n a di sc harge t o wa ters o f th e U.S.?i nc l u d e a concen t ra t e d an i ma l f ee ding opera ti on o r(FORM 2A)aqua ti c an i ma l pro d uc ti on f ac ility w hi c h resu lt s i n 161718 a di sc harge t o wa ters o f th e U.S.?  (FORM 2B)192021 C. I s thi s a f ac ilit y w hi c h curren tly resu lt s i n di sc harges D.I s thi s a propose d f ac ilit y (o th er th an th ose d escr ib e d t o wa ters o f th e U.S. o th er th an th ose d escr ib e d i n i n A or B a b ove)w hi c h w ill resu lt i n a di sc harge t oA or B above?  (FORM 2C)222324 wa ters o f th e U.S.?  (FORM 2D)252627E.Does or will this facility treat, store, or dispose o fF.Do you or will you inject at this facility industrial o r h azar dous was t es?  (FORM 3)municipal effluent below the lowermost stratum con-taining, within  one quarter mile of the well bore, 282930underground sources of drinking water?  (FORM 4)313233G.Do you or will you inject at this facility any producedH.Do you or will you inject at this facility fluids for specialwaterorotherfluidswhicharebroughttothesurprocessessuchasminingofsulfurbytheFrasch 04 00205TN564 X X X X X X X F EPA S T/A C Dwater or other fluids which are brought to the sur-processes such as mining of sulfur by the Fraschface in connection with conventional oil or naturalprocess, solution mining of minerals, in situ combus-gas production, inject fluids used for enhancedtion of fossil fuel, or recovery of geothermal energy?recovery of oil or natural gas, or inject fluids fo r(FORM 4)storage of liquid hydrocarbons?  (FORM 4)343536373839 I.I s thi s f ac ility a propose d s t a tionary source w hi c h i s J.I s thi s f ac ility a propose d s t a tionary source w hi c h i sone of the 28 industrial categories listed in the in-NOT one of the 28 industrial categories listed in the structions and which will potentially emit 100 tonsinstructions and which will potentially emit 250 tonsper year of any air pollutant regulated under theper year of any air pollutant regulated under the Clean Clean Air Act and may affect or be located in an Ai r A c t an d may a ff ec t or b e l oca t e d i n an a tt a inmen t a tt a inmen t area?  (FORM 5)404142area?  (FORM 5)434445III. NAME OF FACILITY1SKIPTVASEQUOYAHNUCLEARPLANT1516-2930 69IV. FACILITY CONTACTA. NAME & TITLE (last , first , & title)B. PHONE (area code & no.)
2JOHN T.CARLIN,VICEPRESIDENT423843700115164546-4849-5152-55 V. FACILITY MAILING ADDRESSA. STREET OR P.O. BOX 3P.O.BOX2000,OPS4A-SQN1516 45B. CITY OR TOWNC. STATED. ZIP CODE 4SODDYDAISYTN37379151640414247 -51 VI. FACILITY LOCATION A. STREET
, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER 5SEQUOYAHACCESSROAD155 45B. COUNTY NAMEHAMILTON 46 70C. CITY OR TOWND. STATEE. ZIP CODEF. COUNTY CODE(if known)6SODDYDAISYTN37379151640414247 15152-54EPA Form 3510-1 (8-90)CONTINUE  ON PAGE 2 X X X X C C C C C C ELECTRIC SERVICES E NNES SEE V ALL e Y AUTHORITY Operafing Perm i l , Cooling Tower , Un i l l (see ned page forofhtJr air ptlrmits)
SON Inert Landfill Perm i l MLl lfi*Sector General (stonnwater) i , I i s l orage , or d i sposal Includ e II oltler SLlrtace water bodies in Itle map area. See instructions Sequoyan NLlclear Plant (SON) prodLlceS e lectric power by tnermonLlclear li"ion Jonn T. Cartin S i t e V i ce President , SeqLloyan NLlclear P l ant , ,
Form 1 - General Section X - Existing Environmental Permits Chattanooga-Hamilton County Air Pollution Control Bureau4150-30600701-03COperating Permit, Cooling Tower, Unit 24150-30700804-06COperating Permit, Insulation Saw A and Saw B 4150-10200501-08COperating Permit, Auxiliary Boilers A and B 4150-30703099-09COperating Permit, Carpenter Shop 4150-30900203-10COperating Permit, Abrasive Blasting Operation 4150-20200102-11COperating Permit, Emergency Generators 1A, 1B, 2A, 2B and Blackout Generators 1 and 2 5°5' 15'' W 8 5Intake Outfall 116 Outfall 117 Outfall 118IMP103 IMP 107Forebay Outfall 110Outfall 101E35°12' 30'' N Outfall 101 IMP 1030.75 mi 0TVA Sequoyah Nuclear PlantNPDES Permit No. TN0026450 Hamilton County April 2013 Please print or type in the unshaded areas only. EPA I.D. NUMBER (copy from Item 1 of Form 1)
TN5640020504  Form Approved. OMB No. 2040-0086. Approval expires 8-31-98. FORM 2C NPDES    EPA  U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water. A. OUTFALL NUMBER (list) B. LATITUDE C. LONGITUDE D. RECEIVING WATER (name) 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. 101 35 12 30 85 5 15 Tennessee River 101E 35 13 15 85 5 45 Tennessee River  IMP 103 35 8 15 85 8 0 SQN Diffuser Pond IMP 107 35 8 30 85 8 0 SQN Low Volume Waste Treatment Pond 110 35 13 30 85 5 15 Intake Forebay 116 35 13 30 85 5 15 Tennessee River 117 35 13 30 85 5 0 Tennessee River 118 35 13 30 85 5 15 Intake Forebay II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures. B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary. 1. OUT- FALL NO (list) 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT a. OPERATION (list) b. AVERAGE FLOW (include units) a. DESCRIPTION b. LIST CODES FROMTABLE 2C-1 101 Discharges from Diffuser Pond include: 1490.854 MGD Discharge to surface water 4 A Sedimentation 1 U (1) Low Volume Waste Treatment Pond (via Internal Monitoring Point 103): (1.230 MGD) pH adjustment / neutralization 2 K (a) Discharge from metal cleaning waste ponds (IMP 107)
    (b) Turbine building sump (2) CCW Discharge Channel: (1447.014 MGD) 
  (a) Raw cooling water system Disinfection (other) 2 H (b) Diesel fuel recover trench; high  pressure fire water, potable water (c) Condenser Circulating system    (d) Stormwater Runoff    (3) Cooling tower blowdown basin (40.436 MGD) 
  (a) Essential Raw Cooling Water system Disinfection (other) 2 H (b) Cooling towers (closed/helper mode) stormwater runoff (c) Liquid rad waste treatment system Ion exchange 2 J (d) Steam Generator Blowdown Multi-media filtration 1 Q (4) Yard drainage pond: (2.125 MGD) Sedimentation (settling) 1 U (a) Construction/Demo landfill stormwater (b) Switchyard runoff    (c) Various building heat loads (d) Yard drainage system (5) Net Storm Water (Runoff, precipitation, less evaporation) (0.049 MGD) 101E Discharges from Diffuser Pond during emergency conditions only. 0 MGD Discharge to surface water 4 A OFFICIAL USE ONLY (effluent guidelines sub-categories) EPA Form 3510-2C (8-90)  PAGE 1a OF 4 CONTINUE ON PAGE 1b Please print or type in the unshaded areas only. EPA I.D. NUMBER (copy from Item 1 of Form 1)
TN5640020504  Form Approved. OMB No. 2040-0086. Approval expires 8-31-98. FORM 2C NPDES    EPA  U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water. A. OUTFALL NUMBER (list) B. LATITUDE C. LONGITUDE D. RECEIVING WATER (name) 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. See Page 1a                                                                II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES C. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures. D. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary. 1. OUT- FALL NO (list) 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT a. OPERATION (list) b. AVERAGE FLOW (include units) a. DESCRIPTION b. LIST CODES FROMTABLE 2C-1 IMP  103 Discharges from Low Volume Waste Treatment Pond (LVWTP): 1.230 MGD Sedimentation (Settling) 1 U pH adjustment / neutralization 2 K (1) Discharges from metal cleaning waste (0.0022 MGD)            ponds (IMP 107)
    (2) Turbine Building Sump: (1.047 MGD) 
  (a) Miscellaneous Low Volume Wastewaters    (b) Turbine building floor and equipment drains  pH adjustment / neutralization 2 K (c) Condensate demin. regeneration waste (d) Secondary system leaks and draindown (e) Steam Generator blowdown (f) Component Cooling System wastewater (g) Miscellaneous equipment cooling (h) Ice condenser waste Sedimentation (settling) 1 U (i) Alum sludge ponds (WTP)
Landfill 5 Q (3) Neutral waste sump (WTP) (0.177 MGD) 
  (4) Net Storm Water (Runoff, precipitation, less evaporation) (0.004 MGD)
IMP 107 Discharges from Metal Cleaning Waste Ponds: 0.0022 MGD Sedimentation (Settling) 1 U pH adjustment / neutralization 2 K (1) Metal cleaning waste (0.000 MGD)** Chemical precipitation 2 C (2) Net Storm Water (Runoff, precipitation, less evaporation) (0.0022 MGD) Chemical oxidation 2 B Flocculation 1 G ** Influent lines to MCWP are disconnected Last MCWP discharge occurred on 5/31/2006    OFFICIAL USE ONLY (effluent guidelines sub-categories) EPA Form 3510-2C (8-90)  PAGE 1b OF 4 CONTINUE ON PAGE 1c Please print or type in the unshaded areas only. EPA I.D. NUMBER (copy from Item 1 of Form 1)
TN5640020504  Form Approved. OMB No. 2040-0086. Approval expires 8-31-98. FORM 2C NPDES    EPA  U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water. A. OUTFALL NUMBER (list) B. LATITUDE C. LONGITUDE D. RECEIVING WATER (name) 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC. See Page 1a                                                                II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES E. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures. F. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary. 1. OUT- FALL NO (list) 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT a. OPERATION (list) b. AVERAGE FLOW (include units) a. DESCRIPTION b. LIST CODES FROMTABLE 2C-1 110 Discharges include wastewater from: 0.058 MGD Discharge to surface waters 4 A (1) ERCW system ** 0 MGD (2) Cooling towers (closed cycle) ** 0 MGD (3) Liquid rad waste treatment system ** 0 MGD (4) Net Storm Water (Runoff, precipitation, less evaporation) (0.058 MGD) 
      ** Recycle cooling water during closed mode operation is discharged through Outfall 110. Outfall 110 has been inactive for approximately 18 years, but remains in the event the plant goes into closed mode.
116 CCW Intake Trash sluice 0.006 MGD Discharge to surface waters 4 A 117 Essential Raw Cooling Water screen and strainer backwash 0.014 MGD Discharge to surface waters 4 A 118 Dredge Pond 0 MGD Discharge to surface waters 4 A Sedimentation (settling) 1 U  Filtration 1 Q      Pond is not in service at this time. Therefore outfall 118 is inactive. Only stormwater from surrounding vegetated area discha rges. No industrial activity in area. If in service, the pond would provide sedimentation during dredge activities and filtration for lower depth waste waters.      OFFICIAL USE ONLY (effluent guidelines sub-categories) EPA Form 3510-2C (8-90)  PAGE 1c OF 4 CONTINUE ON PAGE 2


CONTINUED FROM PAGE 1c C. Except for storm runoff, leaks, or spills, are any of the discharges described in Items II-A or B intermittent or seasonal?
Mr. Vojin Janjic Page 2 May 2,2013 Outfall 103
YES (complete the following table)
: 1. This is an internal monitoring point (IMP) for various flows treated in the low volume waste treatment pond (L VWTP) and ultimately discharges through the Diffuser Pond at Outfall 101.
NO (go to Section III) 1. OUTFALL NUMBER (list) 2. OPERATION(s) CONTRIBUTING FLOW (list) 3. FREQUENCY 4. FLOW a. DAYS PER WEEK (specify average) b. MONTHS PER YEAR (specify average) a. FLOW RATE (in mgd) b. TOTAL VOLUME (specify with units)  
Turbine building sump (TBS) flows are the primary wastewaters treated in the LVWTP. TVA requests when flows are routed through the permitted alternate path of the Yard Drainage Pond that compliance monitoring be required at Outfall 101 for IMP 103 parameters and frequencies.
: c. DURATION (in days) 1. LONG TERM AVERAGE 2. MAXIMUM DAILY 1. LONG TERM AVERAGE 2. MAXIMUM DAILY IMP 107 110 116 117  118    Metal cleaning waste waters Cooling Tower blowdown basin CCW Intake Trash Sluice ERCW Traveling Screen and ERCW Strainer Backwash ERCW Dredge Pond (a)  
: 2. TVA requests the monitoring frequency for Total Suspended Solids and Oil and Grease at IMP 103 be reduced to once per month. SON has consistently demonstrated compliance reliability with established permit limitations for these parameters.
(b) 1 4 3 (c) (a)
: 3. TVA requests the monitoring frequency for flow and be reduced to once per week in the renewal permit. TVA requests that flow measurements be recorded based on instantaneous flow meter readings. Historical data demonstrates that SON has consistently maintained compliance with the permit for these parameters. In add ition , project planning is underway to upgrade the existing pH control process by using carbon dioxide injection to adjust LVWTP discharge pH.
(b) 12 12 12 (c) (a)
Outfall 107
(b) 0.0060 0.0100 0.0040 (c) (a)
: 1. This is an internal monitoring point for discharges of metal cleaning wastewater and storm water from a lined pond and an unlined pond. The existing permit allows that storm water be discharged from these ponds without monitoring since metal cleaning wastes are no longer discharged to these ponds. TVA requests approval through the renewal permit to also discharge stormwater via alternate paths of the Yard Drainage Pond and Condenser Cooling Water Discharge Channel, which both ultimately discharge through the Diffuser Pond at Outfall 101.
(b) 0.0450 0.0216 0.0096 (c) (a)
: 2. Since the influent lines from the plant to the Metal Cleaning Waste Treatment Ponds have been disconnected, SON plans to close these ponds in the future. The final closure plan will be submitted to the Division for review and approval prior to the construction phase. To facilitate dewatering for future closure, TVA requests the existing language found in Part 1.A.3. be replaced with the following in the renewal permit.
(b) 0.0060 MG 0.0100 MG 0.0040 MG (c)  (a) 
TVA Sequoyah Nuclear Plant is authorized to discharge rain water from the Metal Cleaning Waste *Treatment Ponds to the Low Volume ' Waste Treatment Pond, the Yard Drainage Pond, or the Condenser Cooling Water Discharge Channel, which ultimately discharges in the Diffuser Pond (Outfall 101). The permittee is not required to monitor discharge through IMP 107 for routine decanting of accumulated rainwater.
(b) 0.0450 MG 0.0216 MG 0.0096 MG (c) (a)
 
(b) < 1 < 1 < 1 (c) (a) Last MCWP discharge occurred on 5/31/2006. Influent lines are cut and capped. Stormwater flows only are discharged from pond. (b) Cooling Tower blowdown basin discharges recycled cooling water through outfall 110 while the plant is in closed mode. The plant has not entered closed mode for approximately 18 years. Outfall 110 remains inactive until closed mode operation is necessary, which will result in a discharge flow of approximately 1487.4276 MGD. (c) No dredging operations conducted during current permit cycle. Pond is vegetated and no industrial activity in the area.
Mr. Vojin Janjic Page 3 May 2, 2013 During the process of closing the Metal Cleaning Waste Treatment Ponds, al/ monitoring requirements at IMP 107 shall be waived to facilitate complete dewatering. During the dewatering process, samples shall be collected for TSS, O&G, copper, iron and flow at Outfall 101 to ensure the water quality of the receiving stream is protected. Due to the additional residence time within the Diffuser Pond, these parameters shall be monitored daily at Outfall 101 from the beginning of the dewatering event(s) through three days following termination of the dewatering. All monitoring results shall be reported in the DMR for Outfall 101.
Miscellaneous
: 1. TVA requests that the following language be included in the introduction to Part I.A. We believe this would alleviate the need for preparing a separate water quality certification for the Nuclear Regulatory Commission.
This TN-NPDES permit also constitutes the State's certification under Section 401 of the Clean Water Act for the purpose of obtaining any federal license for activities resulting in the discharges covered under the TN-NPDES permit.
: 2. SON discharges storm water from outfalls covered under the Tennessee MUlti-Sector General Permit, tracking number TNR050015. TVA requests the requirement in Part II .C. of the NPDES perm it to maintain signage for storm water runoff be removed in the renewal permit.
: 3. In January 1990, TVA received a consent order from the Division requiring that SON submit a plan to the Division detailing TVA's systems and procedures to prevent damage to fish and aquatic life from TVA's discharges in response to an alleged fish kill incident. A copy of this Order is enclosed for your convenience . Pursuant to the plan submitted to the Division, SON has maintained an aeration system at the intake forebay for the purpose of compliance with this Order. TVA now requests the following language be incorporated in Part III of the renewal permit to facilitate resolution or termination of the long-standing Order.
TVA shal/provide supplemental aeration, as necessary, in Jaw-oxygen zones of the intake forebay area to serve as a fish refuge. Aeration may be temporarily discontinued during periods of maintenance. The permittee may request approval from the Division to permanently discontinue aeration upon demonstration that supplemental aeration is not necessary for fish survival in the intake forebay.
: 4. TVA requests the existing language found in Part IV.B. for maintaining a Biocide/Corrosion Treatment Plan (B/CTP) be replaced with the following in the renewal permit. This language is consistent with that found in other TN-NPDES permits.
The use of toxic chemicals and biocides at the site for process and non-process flows shall be managed under a Biocide/Corrosion Treatment Plan (BlCTP). The BlCTP shall describe chemical applications and macroinvertebrate controls, include all material feed rates, and proposed monitoring schedule(s). The permittee shall conduct treatments of
 
Mr. Vojin Janjic Page 4 May 2,2013 intake or process waters under this permit using biocides, dispersants, surfactants, corrosion inhibiting chemicals, or detoxification chemicals in accordance with conditions approved and specified in the BlCTP.
The permittee shall maintain the BlCTP at the facility and make the plan available to the pennit issuing authority upon request. The permittee shall amend the BlCTP whenever there is a change in the application of the chemical additives or change in the operation of the facility that materially increases the potential for these activities to result in a discharge of significant amounts of pollutants. The Division shall also be notified in writing within 30 days of any material changes that will change the active ingredients or quantities used of any such chemical additives.
TVA appreciates your consideration of the information provided herein in the development of the reissued permit. If you have any questions regarding this NPDES permit renewal application, please contact Travis Markum at (423) 751-2795 in Chattanooga or by email at trmarkum@tva .gov.
Sincerely, C hia M. Anderson M.~JLrLJt:7YL Senior Manager Water and Waste Compliance Enclosure cc (Enclosure):
Dr. Richard Urban Manager, Chattanooga Environmental Field Office Division of Water Pollution Control State Office Building , Suite 550 540 McCallie Avenue Chattanooga, Tennessee 37402-2013 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington , DC 20555
 
Please print or type in the unshaded areas only (fill-in areas are spaced for elite type, I.e., 12 characters/inch).                                                                Form Approved. OMB No. 2040-0086. Approval expires 5-31-92.
FORM                                                        U.S. ENVIRONMENTAL PROTECTION AGENCY                                I. EPA I.D. NUMBER 1
EPA                                        GENERAL INFORMATION                                                S                                                            T/A C Consolidated Permits Program                              F T N 5 6 4 0 0 2 0 5 0 4                                        D GENERAL (Read the "General Instructions" before starting.)                  1  2                                                    13 14 15 LABEL ITEMS                                                                                                                                    GENERAL INSTRUCTIONS If a preprinted label has been provided, affix in the I. EPA I.D. NUMBER                                                                                                                          designated space. Review the information care-fully; if any of it is incorrect, cross through it and enter the correct data in the appropriate fill-in area III. FACILITY NAME                                                                                                                          below. Also, if any of the preprinted data is absent PLEASE PLACE LABEL IN THIS SPACE                                          (the area to the left of the label space lists the information that should appear) , please provide it V. FACILITY                                                                                                                                  in the proper fill-in area(s) below. If the label is MAILING ADDRESS                                                                                                                        complete and correct, you need not complete Items 1, III, V, and VI (except VI-B which must be completed regardless). Complete all items if no VI. FACILITY                                                                                                                                label has been provided. Refer to the instructions LOCATION                                                                                                                              for detailed item descriptions and for the legal authorizations under which this data is collected.
II. POLLUTANT CHARACTERISTICS INSTRUCTIONS: Complete A through J to determine whether you need to submit any permit application forms to the EPA. if you answer "yes" to any questions, you must submit this form and the supplemental form listed in the parenthesis following the question. Mark "X" in the box in the third column if the supplemental form is attached. If you answer "no" to each question, you need not submit any of these forms. You may answer "no" if your activity is excluded from permit requirements; see Section C of the instructions. See also, Section D of the instructions for definitions of bold-faced terms.
MARK 'X'                                                                                              MARK 'X' SPECIFIC QUESTIONS                                    YES    NO        FORM                          SPECIFIC QUESTIONS                                  YES      NO        FORM ATTACHED                                                                                              ATTACHED A. Is this facility a publicly owned treatment works                                                    B. Does or will this facility (either existing or proposed) which results in a discharge to waters of the U.S.?                            X                    include a concentrated animal feeding operation or                              X (FORM 2A)                                                                                            aquatic animal production facility which results in 16    17        18          a discharge to waters of the U.S.? (FORM 2B)                          19      20        21 C. Is this a facility which currently results in discharges                                              D. Is this a proposed facility (other than those described to waters of the U.S. other than those described in                    X                  X          in A or B above) which will result in a discharge to                            X A or B above? (FORM 2C)                                                22    23        24          waters of the U.S.? (FORM 2D)                                          25      26        27 E. Does or will this facility treat, store, or dispose of                                                F. Do you or will you inject at this facility industrial or hazardous wastes? (FORM 3)                                                    X                    municipal effluent below the lowermost stratum con-                              X taining, within one quarter mile of the well bore, 28    29        30          underground sources of drinking water? (FORM 4)                        31      32        33 G. Do you or will you inject at this facility any produced                                              H. Do you or will you inject at this facility fluids for special water or other fluids which are brought to the sur    sur-                                          processes such as mining of sulfur by the Frasch face in connection with conventional oil or natural                            X                    process, solution mining of minerals, in situ combus-                            X gas production, inject fluids used for enhanced                                                      tion of fossil fuel, or recovery of geothermal energy?
recovery of oil or natural gas, or inject fluids for                                                (FORM 4) storage of liquid hydrocarbons? (FORM 4)                              34    35        36                                                                                37      38        39 I. Is this facility a proposed stationary source which is                                                J. Is this facility a proposed stationary source which is one of the 28 industrial categories listed in the in-                                                NOT one of the 28 industrial categories listed in the structions and which will potentially emit 100 tons                            X                    instructions and which will potentially emit 250 tons                            X per year of any air pollutant regulated under the                                                    per year of any air pollutant regulated under the Clean Clean Air Act and may affect or be located in an                                                    Air Act and may affect or be located in an attainment attainment area? (FORM 5)                                              40    41        42          area? (FORM 5)                                                        43      44        45 III. NAME OF FACILITY C
1 SKIP T V A                        S E Q U O Y A H                            N U C L E A R                    P L A N T 15 16-29 30                                                                                                                                                                                            69 IV. FACILITY CONTACT A. NAME & TITLE (last, first, & title)                                                              B. PHONE ( area code & no.)
C 2      J  O  H  N        T.          C    A    R    L I N,            V I C E              P  R  E    S    I  D    E  N    T            4    2    3        8    4    3        7    0    0  1 15 16                                                                                                                                        45 46      -  48          49 -    51        52    -      55 V. FACILITY MAILING ADDRESS A. STREET OR P.O. BOX C
3 P. O.            B O X                2    0    0 0,          O P S          4    A    -  S  Q    N 15 16                                                                                                                                        45 B. CITY OR TOWN                                                          C. STATE        D. ZIP CODE C
4      S    O  D  D    Y          D    A    I  S Y                                                                        T N          3    7 3 7 9 15 16                                                                                                                40        41 42        47        -        51 VI. FACILITY LOCATION A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER C
5 S        E Q U O Y A H                          A C C E S S                  R    O  A    D 15 5                                                                                                                                        45 B. COUNTY NAME H A M            I  L T O N 46                                                                                                              70 C. CITY OR TOWN                                                          D. STATE        E. ZIP CODE              F. COUNTY CODE (if known)
C 6      S    O  D  D    Y          D    A    I  S  Y                                                                      T N          3    7    3  7      9 15 16                                                                                                                40        41 42      47        1        51            52 - 54 EPA Form 3510-1 (8-90)                                                                                                                                                              CONTINUE ON PAGE 2
 
ELECTRIC SERVICES E NNES SEE                      V ALL        e  Y      AUTHORITY Operafing Permil , Cooling Tower, Unil l (see ned page forofhtJr air ptlrmits)
SON Inert Landfill Permil MLllfi*Sector General Perm~  (stonnwater)
                        ,                                                            Ii i
slorage, or disposal Include II              oltler SLlrtace water bodies in Itle map area. See instructions Sequoyan NLlclear Plant (SON) prodLlceS electric power by tnermonLlclear li"ion Jonn T. Cartin Site Vice President, SeqLloyan NLlclear Plant
 
Form 1 - General Section X - Existing Environmental Permits Chattanooga-Hamilton County Air Pollution Control Bureau 4150-30600701-03C  Operating Permit, Cooling Tower, Unit 2 4150-30700804-06C  Operating Permit, Insulation Saw A and Saw B 4150-10200501-08C  Operating Permit, Auxiliary Boilers A and B 4150-30703099-09C  Operating Permit, Carpenter Shop 4150-30900203-10C  Operating Permit, Abrasive Blasting Operation 4150-20200102-11C  Operating Permit, Emergency Generators 1A, 1B, 2A, 2B and Blackout Generators 1 and 2
 
85 5&deg; 5 15 W Outfall 116 Outfall 117 Outfall 118                        Intake Forebay Outfall 110 IMP 107 Outfall 101E IMP 103 Outfall 101 35&deg; 12 30 N TVA Sequoyah Nuclear Plant 0                  0.75 mi NPDES Permit No. TN0026450 Hamilton County April 2013
 
EPA I.D. NUMBER (copy from Item 1 of Form 1)                                Form Approved.
OMB No. 2040-0086.
Please print or type in the unshaded areas only.                                    TN5640020504                                              Approval expires 8-31-98.
FORM                                                                              U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, 2C NPDES EPA                                            COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.
A. OUTFALL                        B. LATITUDE                          C. LONGITUDE NUMBER                                                                                                                D. RECEIVING WATER (name)
: 1. DEG.      2. MIN. 3. SEC.      1. DEG. 2. MIN. 3. SEC.
(list) 101                  35            12          30          85          5          15        Tennessee River 101E                  35            13          15          85          5          45        Tennessee River IMP 103                35            8          15          85          8          0        SQN Diffuser Pond IMP 107                35            8          30          85          8          0        SQN Low Volume Waste Treatment Pond 110                  35            13          30          85          5          15        Intake Forebay 116                  35            13          30          85          5          15        Tennessee River 117                  35            13          30          85          5          0        Tennessee River 118                  35            13          30          85          5          15        Intake Forebay II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.
: 1. OUT-                        2. OPERATION(S) CONTRIBUTING FLOW                                                                      3. TREATMENT FALL NO (list)                        a. OPERATION (list)                          b. AVERAGE FLOW                          a. DESCRIPTION                      b. LIST CODES FROM (include units)                                                                TABLE 2C-1 101          Discharges from Diffuser Pond include:                          1490.854 MGD            Discharge to surface water                            4            A Sedimentation                                          1            U (1)  Low Volume Waste Treatment Pond (via (1.230 MGD)            pH adjustment / neutralization                        2            K Internal Monitoring Point 103):
(a) Discharge from metal cleaning waste ponds (IMP 107)
(b) Turbine building sump (2) CCW Discharge Channel:                                      (1447.014 MGD)
(a) Raw cooling water system                                                          Disinfection (other)                                  2            H (b) Diesel fuel recover trench; high pressure fire water, potable water (c) Condenser Circulating system (d) Stormwater Runoff (3) Cooling tower blowdown basin                                (40.436 MGD)
(a) Essential Raw Cooling Water system                                                Disinfection (other)                                  2            H (b) Cooling towers (closed/helper mode) stormwater runoff (c) Liquid rad waste treatment system                                                  Ion exchange                                          2            J (d) Steam Generator Blowdown                                                          Multi-media filtration                                1            Q (4) Yard drainage pond:                                            (2.125 MGD)            Sedimentation (settling)                              1            U (a) Construction/Demo landfill stormwater (b) Switchyard runoff (c) Various building heat loads (d) Yard drainage system (5) Net Storm Water (Runoff, precipitation, (0.049 MGD) less evaporation) 101E          Discharges from Diffuser Pond during 0 MGD              Discharge to surface water                            4            A emergency conditions only.
OFFICIAL USE ONLY (effluent guidelines sub-categories)
EPA Form 3510-2C (8-90)                                                              PAGE 1a OF 4                                                          CONTINUE ON PAGE 1b
 
EPA I.D. NUMBER (copy from Item 1 of Form 1)                                Form Approved.
OMB No. 2040-0086.
Please print or type in the unshaded areas only.                                      TN5640020504                                            Approval expires 8-31-98.
FORM                                                                                U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, 2C NPDES EPA                                            COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.
A. OUTFALL                        B. LATITUDE                        C. LONGITUDE NUMBER                                                                                                                D. RECEIVING WATER (name)
: 1. DEG.      2. MIN. 3. SEC.      1. DEG.      2. MIN. 3. SEC.
(list)
See Page 1a II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES C. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
D. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.
: 1. OUT-                          2. OPERATION(S) CONTRIBUTING FLOW                                                                    3. TREATMENT FALL NO (list)                        a. OPERATION (list)                          b. AVERAGE FLOW                          a. DESCRIPTION                      b. LIST CODES FROM (include units)                                                                TABLE 2C-1 IMP            Discharges from Low Volume Waste Treatment 1.230 MGD          Sedimentation (Settling)                                1            U Pond (LVWTP):
103 pH adjustment / neutralization                          2            K (1)    Discharges from metal cleaning waste                      (0.0022 MGD) ponds (IMP 107)
(2) Turbine Building Sump:                                          (1.047 MGD)
(a) Miscellaneous Low Volume Wastewaters (b) Turbine building floor and equipment pH adjustment / neutralization                          2            K drains (c) Condensate demin. regeneration waste (d) Secondary system leaks and draindown (e) Steam Generator blowdown (f) Component Cooling System wastewater (g) Miscellaneous equipment cooling (h) Ice condenser waste                                                              Sedimentation (settling)                                1            U (i) Alum sludge ponds (WTP)                                                          Landfill                                                5            Q (3) Neutral waste sump (WTP)                                        (0.177 MGD)
(4) Net Storm Water (Runoff, precipitation, less (0.004 MGD) evaporation)
IMP            Discharges from Metal Cleaning Waste Ponds:                        0.0022 MGD          Sedimentation (Settling)                                1            U 107                                                                                                    pH adjustment / neutralization                          2            K (1)    Metal cleaning waste                                      (0.000 MGD)**          Chemical precipitation                                  2            C (2)    Net Storm Water (Runoff, precipitation, less (0.0022 MGD)          Chemical oxidation                                      2            B evaporation)
Flocculation                                            1            G
                    ** Influent lines to MCWP are disconnected Last MCWP discharge occurred on 5/31/2006 OFFICIAL USE ONLY (effluent guidelines sub-categories)
EPA Form 3510-2C (8-90)                                                                PAGE 1b OF 4                                                        CONTINUE ON PAGE 1c
 
EPA I.D. NUMBER (copy from Item 1 of Form 1)                                Form Approved.
OMB No. 2040-0086.
Please print or type in the unshaded areas only.                                    TN5640020504                                              Approval expires 8-31-98.
FORM                                                                              U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, 2C NPDES EPA                                            COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.
A. OUTFALL                        B. LATITUDE                          C. LONGITUDE NUMBER                                                                                                                D. RECEIVING WATER (name)
: 1. DEG.      2. MIN. 3. SEC.      1. DEG. 2. MIN. 3. SEC.
(list)
See Page 1a II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES E. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
F. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.
: 1. OUT-                        2. OPERATION(S) CONTRIBUTING FLOW                                                                      3. TREATMENT FALL NO (list)                        a. OPERATION (list)                          b. AVERAGE FLOW                          a. DESCRIPTION                      b. LIST CODES FROM (include units)                                                                TABLE 2C-1 110          Discharges include wastewater from:                                0.058 MGD            Discharge to surface waters                            4            A (1)  ERCW system                                                    ** 0 MGD (2)  Cooling towers (closed cycle)                                  ** 0 MGD (3)  Liquid rad waste treatment system                              ** 0 MGD (4)  Net Storm Water (Runoff, precipitation, (0.058 MGD) less evaporation)
                  ** Recycle cooling water during closed mode operation is discharged through Outfall 110. Outfall 110 has been inactive for approximately 18 years, but remains in the event the plant goes into closed mode.
116          CCW Intake Trash sluice                                            0.006 MGD            Discharge to surface waters                            4            A 117          Essential Raw Cooling Water screen and 0.014 MGD            Discharge to surface waters                            4            A strainer backwash 118          Dredge Pond                                                          0 MGD              Discharge to surface waters                            4            A Sedimentation (settling)                                1            U Filtration                                              1            Q Pond is not in service at this time. Therefore outfall 118 is inactive. Only stormwater from surrounding vegetated area discharges. No industrial activity in area. If in service, the pond would provide sedimentation during dredge activities and filtration for lower depth waste waters.
OFFICIAL USE ONLY (effluent guidelines sub-categories)
EPA Form 3510-2C (8-90)                                                              PAGE 1c OF 4                                                          CONTINUE ON PAGE 2
 
CONTINUED FROM PAGE 1c C. Except for storm runoff, leaks, or spills, are any of the discharges described in Items II-A or B intermittent or seasonal?
YES (complete the following table)                             NO (go to Section III)
: 3. FREQUENCY                                            4. FLOW
: 1. OUTFALL               2. OPERATION(s)
NUMBER              CONTRIBUTING FLOW                                                     a. FLOW RATE                b. TOTAL VOLUME
: a. DAYS         b. MONTHS                                                                           c.
(list)                      (list)                PER WEEK        PER YEAR (in mgd)                 (specify with units)
DURATION (specify        (specify                                                                        (in days) average)        average)    1. LONG TERM     2. MAXIMUM     1. LONG TERM     2. MAXIMUM AVERAGE          DAILY          AVERAGE          DAILY IMP 107     Metal cleaning waste waters                   (a)           (a)           (a)           (a)             (a)             (a)             (a) 110    Cooling Tower blowdown basin                  (b)           (b)           (b)           (b)             (b)             (b)             (b) 116    CCW Intake Trash Sluice                        1            12          0.0060        0.0450      0.0060 MG         0.0450 MG            <1 117    ERCW Traveling Screen and                      4            12          0.0100        0.0216      0.0100 MG         0.0216 MG            <1 ERCW Strainer Backwash                          3            12          0.0040         0.0096      0.0040 MG         0.0096 MG             <1 118    ERCW Dredge Pond                              (c)            (c)           (c)            (c)              (c)             (c)             (c)
(a)   Last MCWP discharge occurred on 5/31/2006. Influent lines are cut and capped. Stormwater flows only are discharged from pond.
(b)   Cooling Tower blowdown basin discharges recycled cooling water through outfall 110 while the plant is in closed mode. The plant has not entered closed mode for approximately 18 years. Outfall 110 remains inactive until closed mode operation is necessary, which will result in a discharge flow of approximately 1487.4276 MGD.
(c)   No dredging operations conducted during current permit cycle. Pond is vegetated and no industrial activity in the area.
III. PRODUCTION A. Does an effluent guideline limitation promulgated by EPA under Section 304 of the Clean Water Act apply to your facility?
III. PRODUCTION A. Does an effluent guideline limitation promulgated by EPA under Section 304 of the Clean Water Act apply to your facility?
YES (complete Item III-B)
YES (complete Item III-B)                                     NO (go to Section IV)
NO (go to Section IV) B. Are the limitations in the applicable effluent guideline expressed in terms of production (or other measure of operation)
B. Are the limitations in the applicable effluent guideline expressed in terms of production (or other measure of operation)?
YES (complete Item III-C)
YES (complete Item III-C)                                     NO (go to Section IV)
NO (go to Section IV) C. If you answered "yes" to Item III-B, list the quantity which represents an actual measurement of your level of production, expressed in the terms and units used in the applicable effluent guideline, and indicate the affected outfalls.  
C. If you answered yes to Item III-B, list the quantity which represents an actual measurement of your level of production, expressed in the terms and units used in the applicable effluent guideline, and indicate the affected outfalls.
: 1. AVERAGE DAILY PRODUCTION 2. AFFECTED OUTFALLS (list outfall numbers) a. QUANTITY PER DAY b. UNITS OF MEASURE c. OPERATION, PRODUCT, MATERIAL, ETC. (specify)   IV. IMPROVEMENTS A. Are you now required by any Federal, State or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.       YES (complete the following table)   NO (go to Item IV-B)
: 1. AVERAGE DAILY PRODUCTION                                                                   2. AFFECTED
: 1. IDENTIFICATION OF CONDITION, AGREEMENT, ETC. 2. AFFECTED OUTFALLS 3. BRIEF DESCRIPTION OF PROJECT 4. FINAL COM- PLIANCE DATE
: a. QUANTITY PER DAY             b. UNITS OF MEASURE                   c. OPERATION,   PRODUCT,     MATERIAL,   ETC.                         OUTFALLS (specify)                                     (list outfall numbers)
: a. NO. b. SOURCE OF DISCHARGE a. RE- QUIRED b. PRO- JECTED       B. OPTIONAL: You may attach additional sheets describing any additional water pollution control programs (or other environmental projects which may affect your discharges) you now have underway or which you plan. Indicate whether each program is now underway or planned, and indicate your actual or planned sc hedules for construction.       MARK "X" IF DESCRIPTION OF ADDITIONAL CONTROL PROGRAMS IS ATTACHED EPA Form 3510-2C (Rev. 2-85) PAGE 2 OF 4 CONTINUE ON PAGE 3 CONTINUED FROM PAGE 2 V. INTAKE AND EFFLUENT CHARACTERISTICS A, B, & C: See instructions before proceeding - Complete one set of tables for each outfall - Annotate the outfall number in the space provided. NOTE:  Tables V-A, V-B, and V-C are included on separate sheets numbered V-1 through V-9.
IV. IMPROVEMENTS A. Are you now required by any Federal, State or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application?
D. Use the space below to list any of the pollutants listed in Table 2c-3 of the instructions, which you know or have reason to believe is discharged or may be discharged from any outfall. For every pollutant you list, briefly describe the reasons you believe it to be present and report any analytical data in your possession.
This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.
: 1. POLLUTANT 2. SOURCE 1. POLLUTANT 2. SOURCE See site Biocide Corrosion Treatment Plan (B/CTP).
YES (complete the following table)                               NO (go to Item IV-B)
: 2. AFFECTED OUTFALLS                                                                        4. FINAL COM-
: 1. IDENTIFICATION OF CONDITION,                                                           3. BRIEF DESCRIPTION OF PROJECT                     PLIANCE DATE AGREEMENT, ETC.                      a. NO.     b. SOURCE OF DISCHARGE                                                             a. RE-     b. PRO-QUIRED    JECTED B. OPTIONAL: You may attach additional sheets describing any additional water pollution control programs (or other environmental projects which may affect your discharges) you now have underway or which you plan. Indicate whether each program is now underway or planned, and indicate your actual or planned schedules for construction.
MARK X IF DESCRIPTION OF ADDITIONAL CONTROL PROGRAMS IS ATTACHED EPA Form 3510-2C (Rev. 2-85)                                                   PAGE 2 OF 4                                                   CONTINUE ON PAGE 3


Dimethylamine (The use of dimethylamine will not result in detectible quantities at Outfall 101)  
EPA I.D. NUMBER (copy from Item 1 of Form 1)
TN5640020504 CONTINUED FROM PAGE 2 V. INTAKE AND EFFLUENT CHARACTERISTICS A, B, & C: See instructions before proceeding - Complete one set of tables for each outfall - Annotate the outfall number in the space provided.
NOTE: Tables V-A, V-B, and V-C are included on separate sheets numbered V-1 through V-9.
D. Use the space below to list any of the pollutants listed in Table 2c-3 of the instructions, which you know or have reason to believe is discharged or may be discharged from any outfall. For every pollutant you list, briefly describe the reasons you believe it to be present and report any analytical data in your possession.
: 1. POLLUTANT                                2. SOURCE                            1. POLLUTANT                            2. SOURCE See site Biocide Corrosion Treatment Plan (B/CTP).
Dimethylamine (The use of               Steam Generator Layup dimethylamine will not result in detectible quantities at Outfall 101)
VI. POTENTIAL DISCHARGES NOT COVERED BY ANALYSIS Is any pollutant listed in Item V-C a substance or a component of a substance which you currently use or manufacture as an intermediate or final product or byproduct?
YES (list all such pollutants below)                                    NO (go to Item VI-B)
EPA FORM 3510-2C (8-90)                                                  PAGE 3 OF 4                                                CONTINUE ON PAGE 4


Steam Generator Layup VI. POTENTIAL DISCHARGES NOT COVERED BY ANALYSIS Is any pollutant listed in Item V-C a substance or a component of a substance which you currently use or manufacture as an intermediate or final product or byproduct?
                    ""'Wiidi~o"r reason                    any biological test for 8ClJle or chronic toxicity has been made on sny of your discharges or on your discharge within the last 3 years?
YES (list all such pollutants below)
181 YES (identify the tes/(s) and describe their purposes below)                                  o NO (go to Section VIII)
NO (go to Item VI-B)  
Per the requ irements of the SON NPOES Permit No. TN0026450, IC2510xicity testing has been conducted on discharges from Outfall 101 once per year when oxidizing biocides are being used and once per year when non-oxidizing biocides are being used . Results are routinely submitted with the appropriate Discharge Monitoring Reports.
it.;;;\,.",,;;;;;.. by a contract laboratory or consulting firm?
181 YES (Iisl the n8f11fJ, address, and telephone number of, and pollutants                      o NO (go to Section IX) analyzed by, each such laboniloly or flfm below)
A. NAM E                                    B. ADDRESS GEL Laboratories LLC                          PO Box 30712                                    (843) 556-8171                All pollutants except for field 2040 Savage Road                                                                parameterii (temperature, flow, Charleston. SC 29407                                                            pH, sulfite, and tola! residua!
chlorine)
I .
I certify under penalty of law Ihal this documenl and al/ attachmenls WBf8 prepared under my direclion or supetvision in accordance with a system designed to aSSUf8 that qualified personnel properly gather and eva/uale the Information submitted. Based on my Inquiry of the person or persons who the system or those persons dif8ctly f8sponsitJ/e forgathering the Informetion, the Information submitted Is, 10 the best of my knowledge and
"".,....... accurate,                    lam* aware that there are signific8nt penalties for submitting false infOlmation, including tha possibility of fine and PAGE. OF.


EPA FORM 3510-2C (8-90) PAGE 3 OF 4 CONTINUE ON PAGE 4 EPA I.D. NUMBER (copy from Item 1 of Form 1)
PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of                                                      EPA I.D. NUMBER (copy from Item 1 of Form 1) this information on separate sheets (use the same format) instead of completing these pages.
TN5640020504
TN5640020504 SEE INSTRUCTIONS.
OUTFALL NO.
V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C) 101 PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.
: 2. EFFLUENT                                                                                        3. UNITS                              4. INTAKE (optional)
: 1. POLLUTANT                    a. MAXIMUM DAILY VALUE                    b. MAXIMUM 30 DAY VALUE                        c. LONG TERM AVRG. VALUE                                        (specify if blank)                    a. LONG TERM (if available)                                (if available)                      d. NO. OF                                              AVERAGE VALUE                b. NO. OF (1)              (2) MASS                (1)                (2) MASS                    (1)                (2) MASS            ANALYSES      a. CONCEN-          b. MASS          (1)              (2) MASS      ANALYSES CONCENTRATION                              CONCENTRATION                                  CONCENTRATION                                                  TRATION                        CONCENTRATION
: a. Biochemical Oxygen Demand                  <2.00                                                                                                                                      1            mg/L                            <2.00                                    1 (BOD)
: b. Chemical Oxygen Demand                    25.8                                                                                                                                      1            mg/L                              23.4                                    1 (COD)
: c. Total Organic Carbon (TOC)                    2.87                                                                                                                                      1            mg/L                              2.84                                    1
: d. Total Suspended Solids (TSS)                    4.67                                                                                                                                      1            mg/L                              2.64                                    1
: e. Ammonia (as N)              0.129                                                                                                                                      1            mg/L                            0.144                                    1 VALUE                                    VALUE                                            VALUE                                                                                          VALUE
: f. Flow                                    1770                                                                                      1527                                762          MGD                                          1616                          1
: g. Temperature            VALUE                                    VALUE                                            VALUE                                                                                          VALUE (winter)                                  34.4                                                                                      26.5                              394                    &deg;C
: h. Temperature            VALUE                                    VALUE                                            VALUE                                                                                          VALUE (summer)                                  43.2                                                                                      36.7                              354                    &deg;C                                25.8                          1 MINIMUM              MAXIMUM              MINIMUM                MAXIMUM I. pH                            7.52                  7.68                                                                                                                4        STANDARD UNITS PART B -            Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.
: 2. MARK 'X'                                                                      3. EFFLUENT                                                                                4. UNITS                        5. INTAKE (optional)
: 1. POLLUT-        a. BE-    b. BE-          a. MAXIMUM DAILY VALUE                      b. MAXIMUM 30 DAY VALUE                      c. LONG TERM AVRG. VALUE                                                                  a. LONG TERM ANT AND      LIEVED    LIEVED                                                                (if available)                                (if available)              d. NO. OF  a. CONCEN-        b. MASS              AVERAGE VALUE              b. NO. OF CAS NO.        PRE-      AB-              (1)              (2) MASS                  (1)                  (2) MASS                  (1)                  (2) MASS      ANAL-      TRATION                          (1)              (2) MASS      ANAL-(if available)    SENT      SENT      CONCENTRATION                              CONCENTRATION                                  CONCENTRATION                                YSES                                  CONCENTRATION                          YSES
: a. Bromide (24959-67-9)            X                      <0.200                                                                                                                                1          mg/L                        <0.200                                  1
: b. Chlorine, Total Residual          X                      <0.07                                                                                                                                1          mg/L                        <0.05                                  1
: c. Color                X                        20.0                                                                                                                                1          PCU                            15.0                                1
: d. Fecal Coliform                          X
: e. Fluoride (16984-48-8)            X                      <0.100                                                                                                                                1          mg/L                        <0.100                                  1
: f. Nitrate-Nitrite (as N)          X                      0.167                                                                                                                                1          mg/L                        0.127                                  1 EPA Form 3510-2C (8-90)                                                                                                  Page V-1                                                                                          CONTINUE ON PAGE V-2


reason any biological test for 8ClJle or chronic toxicity has been made on sny of your discharges or on your discharge within t he last 3 years? 181 Y E S (identify the tes/(s) and describe their purposes below) o N O (go to Section VIII) Per the requ i rements of the SON NPOES Permit No. TN0026450 , IC2510x i city testing has been conducted on discharges from Outfall 101 once per year when oxidiz i ng b i ocides are being used and once per year when non-ox i dizing biocides are being used. Results are routinely submitted w i th the appropria t e Discharge Monitoring R eports. it.;;;\,.",,;;;;;
ITEM V-B CONTINUED FROM PAGE V-1
.. by a contract laboratory or consulting firm? 181 Y E S (Iisl the n8f11fJ , address , and telephone number of, and pollutants analyzed by , each such laboniloly or flfm below) A. NAM E B. A DDR ESS GEL Laboratories LLC PO Box 30712 (843) 556-8171 I . 2040 Savage Road Cha rl eston. SC 29407 o N O (go to Section IX) All pollutants except for field parameterii (temperature , flow , pH , sulfite , and tola! residua! c hlorine) I certify under penalty of law Ihal this documenl and al/ attachmenls WBf8 prepared under my direclion or supetvision in accordance with a system designed to aSSUf8 that qualified personnel properly gather and eva/uale the Information submitted. Based on my Inquiry of the person or persons who the system or those persons dif8ctly f8sponsitJ/e forgathering the Informetion, the Information submitted Is , 10 the best of my knowledge and ""., ....... accurate, lam* aware that there are signific8nt penalties for submitting false infOlmation, including tha possibility of fine and PAGE. OF.
: 2. MARK 'X'                                                      3. EFFLUENT                                                            4. UNITS                  5. INTAKE (optional)
PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all ofEPA I.D. NUMBER (co py from Item 1 of Form 1
: 1. POLLUT-     a. BE-    b. BE-            a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE          c. LONG TERM AVRG. VALUE                                               a. LONG TERM             b. NO. OF ANT AND      LIEVED    LIEVED                                                (if available)                     (if available)         d. NO. OF a. CONCEN-    b. MASS      AVERAGE VALUE              ANAL-CAS NO.       PRE-      AB-              (1)           (2) MASS       (1)               (2) MASS       (1)               (2) MASS   ANAL-     TRATION                  (1)           (2) MASS     YSES (if available)   SENT      SENT      CONCENTRATION                  CONCENTRATION                    CONCENTRATION                        YSES                          CONCENTRATION
)this information on separate sheets (use the same format) instead of completing these pages.SEE INSTRUCTIONS.OUTFALL NO.
: g. Nitrogen, Total Organic        X                      0.247                                                                                              1        mg/L                  0.314                            1 (as N)
V. INTAKE AND EFFLUENT CHARACTERISTICS (con ti nue d from page 3 o f Form 2-C)PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.2. EFFLUENT3. UNITS4. INTAKE (o p tional)1. POLLUTANTa. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUE (specify if blank)a. LONG TERM(if available)(if available)d. NO. OF AVERAGE VALUEb. NO. OF(1)(2) MASS(1)(2) MASS(1)(2) MASS ANALYSESa. CONCEN-b. MASS (1)(2) MASS ANALYSESCONCENTRATIONCONCENTRATIONCONCENTRATIONTRATIONCONCENTRATIONa. BiochemicalOxygen Demand (BOD)b. Chemical Oxygen Demand (COD)c. Total Or g anicCarbon (TOC)d. Total Sus p endedSolids (TSS)e. Ammonia (as N)VALUEVALUEVALUEVALUE f. Flow g. Tem peratureVALUEVALUEVALUEVALUE(winter)&deg;C 101 762 3940.1441mg/Lmg/L mg/L mg/L mg/L<2.00 1<2.0025.82.87 4.670.129 152726.5 177034.4 1 1
: h. Oil and Grease                X                      <4.00                                                                                              1        mg/L                  <3.95                            1 I. Phosphorus (as P), Total        X                      <0.050                                                                                              1        mg/L                 <0.050                            1 (7723-14-0)
123.4 2.84 2.64 1MGD16161TN5640020504 1
: j. Radioactivity (1) Alpha, Total                          X*
1 1
(2) Beta, Total                          X*
1 h. Tem peratureVALUEVALUEVALUEVALUE(summer)&deg;CMINIMUMMAXIMUMMINIMUMMAXIMUMI. pHSTANDARD UNITSPART B - Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limitedeither directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you mustprovide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.2. MARK 'X'3. EFFLUENT4. UNITS5. INTAKE (o p tional)1. POLLUT-a. BE-b. BE-a. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMANT ANDLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS AVERAGE VALUEb. NO. OFCAS NO.PRE-A B-(1)(2) MASS(1)(2) MASS(1)(2) MASS ANAL-TRATION(1)(2) MASS ANAL-(if available)SENTSENTCONCENTRATIONCONCENTRATIONCONCENTRATIONYSESCONCENTRATIONYSESa. Bromide (24959-67-9)b. Chlorine
(3) Radium, Total                          X*
,Total Residualc. Color d. FecalColiform X e. Fluoride
(4) Radium 226, Total                      X*
: k. Sulfate (as SO 4 )            X                        12.9                                                                                              1        mg/L                  12.9                            1 (14808-79-8)
: l. Sulfide (as S)                X                      <0.100                                                                                              1       mg/L                <0.100                            1 m Sulfite (as SO 4 )            X                        <2.0                                                                                              1        mg/L                  <2.0                            1 (14265-45-3)
: n. Surfactants        X                      <0.050                                                                                              1       mg/L                <0.050                            1
: o. Aluminum, Total                X                      0.050                                                                                              1       mg/L                <0.050                            1 (7429-90-5)
: p. Barium, Total                X                     0.0279                                                                                              1        mg/L                0.0280                            1 (7440-39-3)
: q. Boron, Total                X                      0.0281                                                                                              1        mg/L                0.0178                            1 (7440-42-8)
: r. Cobalt, Total                X                     <0.001                                                                                              1        mg/L                <0.001                            1 (7440-48-4)
: s. Iron,Total (7439-89-6)          X                      0.131                                                                                              1        mg/L                0.0919                            1
: t. Magnesium, Total                X                        6.36                                                                                              1        mg/L                  6.18                            1 (7439-95-4)
: u. Molybdenum, Total                X                    0.000564                                                                                              1        mg/L                0.000584                          1 (7439-98-7)
: v. Manganese, Total                X                      0.0630                                                                                              1        mg/L                0.0395                            1 (7439-96-5)
: w. Tin, Total (7440-31-5)           X                      <0.005                                                                                              1        mg/L                <0.005                            1
: x. Titanium, Total                 X                      <0.005                                                                                              1        mg/L                <0.005                            1 (7440-32-6)
*Believed absent other than naturally occurring radioactive materials.
EPA Form 3510-2C                                                                                  Page V-2                                                                        CONTINUE ON PAGE V-3


(16984-48-8)f. Nitrate-Nitrite (as N)<0.0720.0<0.10043.27.527.68 X X36.7X<0.200 X 1mg/L X 1mg/L0.167 1PCU25.81mg/L 1 1mg/L 4 354 1 1<0.200<0.0515.0<0.1000.127 1 1
EPA I.D. NUMBER (copy from Item 1 of Form 1)                     OUTFALL NUMBER CONTINUED FROM PAGE 3 OF FORM 2-C TN5640020504                                            101 PART C -         If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) , mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully.
1EPA Form 3510-2C (8-90)Page V-1CONTINUE ON PAGE V-2 ITEM V-B CONTINUED FROM PAGE V-1 2. MARK 'X'
Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.
: 3. EFFLUENT
: 1. POLLUTANT                  2. MARK 'X'                                                        3. EFFLUENT                                                                    4. UNITS                    5. INTAKE (optional)
: 4. UNITS 5. INTAKE (optional)
AND CAS          a. TEST- b. BE-    c. BE-        a. MAXIMUM DAILY VALUE          b. MAXIMUM 30 DAY VALUE                c. LONG TERM AVRG. VALUE                                                  a. LONG TERM              b. NO. OF NUMBER            ING        LIEVED LIEVED                                                    (if available)                      (if available)          d. NO. OF a. CONCEN-  b. MASS          AVERAGE VALUE                ANAL-(if available)      RE-        PRE-    AB-                (1)          (2) MASS            (1)              (2) MASS            (1)              (2) MASS  ANAL-    TRATION                (1) CONCEN-      (2) MASS        YSES QUIRED    SENT    SENT        CONCENTRATION                      CONCENTRATION                          CONCENTRATION                      YSES                              TRATION METALS, CYANIDE, AND TOTAL PHENOLS 1M. Antimony, Total (7440-36-0)                      X                    <0.002                                                                                                      1        mg/L                  <0.002                            1 2M. Arsenic, Total (7440-38-2)                            X                    <0.005                                                                                                      1        mg/L                  <0.005                            1 3M. Beryllium, Total, (7440-41-7)                    X                  <0.0005                                                                                                      1        mg/L                  <0.0005                            1 4M. Cadmium, Total (7440-43-9)                      X                  <0.0001                                                                                                      1        mg/L                  <0.0001                            1 5M. Chromium, Total (7440-47-3)                      X                    <0.003                                                                                                      1        mg/L                  <0.003                            1 6M. Copper, Total (7440-50-8)                            X                  0.00109                                                                                                      1        mg/L                  <0.001                            1 7M. Lead, Total (7439-92-1)                            X                    <0.002                                                                                                      1        mg/L                  <0.002                            1 8M. Mercury, Total (7439-97-6)                            X                0.00000278                                                                                                      1        mg/L                0.00000169                          1 9M. Nickel, Total (7440-02-0)                            X                    <0.002                                                                                                      1        mg/L                  <0.002                            1 10M. Selenium, Total (7782-49-2)                      X                    <0.005                                                                                                      1        mg/L                  <0.005                            1 11M. Silver, Total (7440-22-4)                            X                    <0.001                                                                                                      1        mg/L                  <0.001                            1 12M. Thallium, Total (7440-28-0)                      X                  <0.0005                                                                                                      1        mg/L                  <0.0005                            1 13M. Zinc, Total (7440-66-6)                            X                    <0.010                                                                                                      1        mg/L                  <0.010                            1 14M. Cyanide, Total (57-12-5)                        X                    <0.005                                                                                                      1        mg/L                  <0.005                            1 15M. Phenols, Total                                  X                    <0.007                                                                                                      1        mg/L                  <0.005                            1 DIOXIN 2,3,7,8-Tetra-                                        DESCRIBE RESULTS chlorodibenzo-P                                X Dioxin (1764-01-6)
: 1. PO LL UT-a. BE-b. BE-
EPA Form 3510-2C (8-90)                                                                                                  Page V-3                                                                                  CONTINUE ON PAGE V-4
: a. MAXIMUM DAILY VALU E b. MAXIMUM 30 DAY VALU E c. LONG TERM AVRG. VALU E a. LONG TERM
: b. NO. OF ANT ANDLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS A VERAGE VALUE A NAL-CAS NO.PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION (1)(2) MASSYSES (if ava il a bl e)SEN T SEN T CONCENTRATION CONCENTRATION CONCENTRATION YSES CONCENTRATION
: g. Nitro g en, Total Organic X 1 mg/L 1 (as N)h. Oil and Grease X 1 mg/L 1 I. Phos p horus (as P), Total X 1 mg/L 1 (7723-14-0)j. Radioactivity (1) Al p ha, Total X*(2) Beta , Total X*(3) Radium , Total X*(4) Radium 226, Total X*k. Sulfate (as SO 4)X 1 mg/L 1 (14808-79-8
)l. Sulfide (as S)X 1 mg/L 1 m Sulfite (as SO 4)X 1 mg/L 1 (14265-45-3
)n. Surfactants X 1 mg/L 1 o. Aluminum
, Total X 1 mg/L 1 (7429-90-5)p. Barium , Total X 1 mg/L 1 (7440-39-3)q. Boron , Total X 1 mg/L 1 (7440-42-8)r. Cobalt , Total X 1 mg/L 1 (7440-48-4)s. Iron , Total (7439-89-6)
X 1 mg/L 1 t. Ma g nesium, Total X 1 mg/L 1 (7439-95-4)u. Mol y bdenum, Total X 1 mg/L 1 (7439-98-7)v. Man g anese, Total X 1 mg/L 1 (7439-96-5)w. Tin , Total (7440-31-5)
X 1 mg/L 1 x. Titanium
, Total X 1 mg/L 1 (7440-32-6)*B e li eve d a b sent ot h er t h an natura ll y occurr i ng ra di oact i ve mater i a l s.0.314<3.95<0.050<4.00 0.000564 0.247 0.0630<0.005<0.005 0.0279 0.0281<0.001 0.131 6.36 12.9<0.100<2.0<0.050 0.050<0.050 12.9<0.100<2.0<0.050<0.050 0.000584 0.0395<0.005
<0.005 0.0280 0.0178<0.001 0.0919 6.18 EPA Form 3510-2C Page V-2 CONTINUE ON PAGE V-3 EPA I.D. NUMBER (copy from Item 1 of Form 1)
OUTFALL NUMBER CONTINUED FROM PAGE 3 OF FORM 2-CPART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions), mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if youknow or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully.


Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.1. POLLUTANT2. MARK 'X'3. EFFLUENT4. UNITS5. INTAKE (optional)
CONTINUED FROM PAGE V-3
AND CASa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMb. NO. OF NUMBERINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASSAVERAGE VALUEANAL-(if available)RE-PRE-AB-(1)(2) MASS (1)(2) MASS (1)(2) MASSANAL-TRATION(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION METALS, CYANIDE, AND TOTAL PHENOLS 1M. Antimon y , Total (7440-36-0)
: 1. POLLUTANT            2. MARK 'X'                                         3. EFFLUENT                                                                  4. UNITS                5. INTAKE (optional)
X<0.002 1 mg/L<0.002 1 2M. Arsenic, Total (7440-38-2)
AND CAS      a. TEST- b. BE- c. BE-   a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE            c. LONG TERM AVRG. VALUE                                              a. LONG TERM        b. NO. OF NUMBER      ING      LIEVED LIEVED                                      (if available)                     (if available)         d. NO. OF a. CONCEN-   b. MASS      AVERAGE VALUE            ANAL-(if available) RE-       PRE-   AB-           (1)         (2) MASS       (1)               (2) MASS         (1)             (2) MASS  ANAL-     TRATION           (1) CONCEN-     (2) MASS      YSES QUIRED    SENT  SENT  CONCENTRATION               CONCENTRATION                     CONCENTRATION                      YSES                         TRATION GC/MS FRACTION - VOLATILE COMPOUNDS 1V. Acrolein (107-02-8)              X                      <0.005                                                                                            1        mg/L                <0.005                      1 2V. Acrylonitrile (107-13-1)               X                     <0.005                                                                                            1       mg/L                 <0.005                      1 3V. Benzene (71-43-2)               X                      <0.001                                                                                            1        mg/L                <0.001                      1 4V. Bis (Chloro-methyl) Ether                            X          *                                                                                                                              *
X<0.005 1 mg/L<0.005 1 3M. Ber y llium, Total, (7440-41-7)
(542-88-1) 5V. Bromoform (75-25-2)                X                     <0.001                                                                                            1        mg/L                <0.001                      1 6V. Carbon Tetrachloride            X                      <0.001                                                                                            1        mg/L                <0.001                      1 (56-23-5) 7V. Chlorobenzene (108-90-7)              X                      <0.001                                                                                            1        mg/L                <0.001                      1 8V. Chlorodi-bromomethane            X                      <0.001                                                                                            1        mg/L                <0.001                      1 (124-48-1) 9V. Chloroethane (75-00-3)                X                      <0.001                                                                                            1        mg/L                <0.001                      1 10V. 2-Chloro-ethylvinyl Ether        X                      <0.005                                                                                           1       mg/L                 <0.005                       1 (110-75-8) 11V. Chloroform (67-66-3)                X                      <0.001                                                                                            1       mg/L                <0.001                      1 12V. Dichloro-bromomethane            X                      <0.001                                                                                            1        mg/L                <0.001                      1 (75-27-4) 13V. Dichloro-difluoromethane          X*                    <0.001                                                                                            1        mg/L                <0.001                      1 (75-71-8) 14V. 1,1-Dichloro-ethane (75-34-3)        X                      <0.001                                                                                            1        mg/L                <0.001                      1 15V. 1,2-Dichloro-ethane (107-06-2)       X                     <0.001                                                                                           1        mg/L                 <0.001                       1 16V. 1,1-Dichloro-ethylene (75-35-4)       X                     <0.001                                                                                           1        mg/L                 <0.001                       1 17V. 1,2-Dichloro-propane (78-87-5)        X                      <0.001                                                                                            1        mg/L                <0.001                      1 18V. 1,3-Dichloro-propylene (542-75-6)    X                      <0.002                                                                                            1        mg/L                <0.002                      1 19V. Ethylbenzene (100-41-4)              X                      <0.001                                                                                            1        mg/L                <0.001                      1 20V. Methyl Bromide (74-83-9)       X                     <0.001                                                                                           1        mg/L                 <0.001                       1 21V. Methyl Chloride (74-87-3)       X                     <0.001                                                                                           1        mg/L                 <0.001                       1
X<0.0005 1 mg/L<0.0005 1 4M. Cadmium, Total (7440-43-9)
* NOTE: Bis (Chloro-methyl) Ether and Dichloro-difluoromethane were removed as requirements from 40 CFR Part 123 by US EPA in 1995.
X<0.0001 1 mg/L<0.0001 1 5M. Chromium, Total (7440-47-3)
EPA Form 3510-2C (8-90)                                                                            Page V-4                                                                              CONTINUE ON PAGE V-5
X<0.003 1 mg/L<0.003 1 6M. Co pp er, Total (7440-50-8)
X 0.00109 1 mg/L<0.001 1 7M. Lead, Total


(7439-92-1)
EPA I.D. NUMBER (copy from Item 1 of Form 1)                OUTFALL NUMBER CONTINUED FROM PAGE V-4                                                                      TN5640020504                                          101
X<0.002 1 mg/L<0.002 1 8M. Mercur y , Total (7439-97-6)X0.0000027 8 1 mg/L 1 9M. Nickel, Total
: 1. POLLUTANT            2. MARK 'X'                                            3. EFFLUENT                                                                4. UNITS              5. INTAKE (optional)
AND CAS      a. TEST- b. BE- c. BE-   a. MAXIMUM DAILY VALUE        b. MAXIMUM 30 DAY VALUE          c. LONG TERM AVRG. VALUE                                              a. LONG TERM        b. NO. OF NUMBER        ING      LIEVED LIEVED                                        (if available)                    (if available)          d. NO. OF a. CONCEN-  b. MASS      AVERAGE VALUE          ANAL-(if available)  RE-      PRE-  AB-          (1)         (2) MASS          (1)              (2) MASS        (1)              (2) MASS  ANAL-    TRATION            (1) CONCEN-    (2) MASS    YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                      CONCENTRATION                      YSES                          TRATION GC/MS FRACTION - VOLATILE COMPOUNDS (continued) 22V. Methylene Chloride (75-09-2)        X                     <0.002                                                                                             1       mg/L               <0.002                       1 23V. 1,1,2,2-Tetra-chloroethane              X                      <0.001                                                                                              1        mg/L              <0.001                        1 (79-34-5) 24V. Tetrachloro-ethylene (127-18-4)      X                      <0.001                                                                                              1        mg/L              <0.001                        1 25V. Toluene (108-88-3)                X                      <0.001                                                                                              1        mg/L              <0.001                        1 26V. 1,2-Trans-Dichloroethylene          X                      <0.001                                                                                              1        mg/L              <0.001                        1 (156-60-5) 27V. 1,1,1-Tri-chloroethane              X                      <0.001                                                                                              1        mg/L              <0.001                        1 (71-55-6) 28V. 1,1,2-Tri-chloroethane              X                      <0.001                                                                                              1        mg/L              <0.001                        1 (79-00-5) 29V. Trichloro-ethylene (79-01-6)       X                      <0.001                                                                                              1        mg/L              <0.001                        1 30V. Trichloro-fluoromethane            X*                    <0.001                                                                                              1        mg/L              <0.001                        1 (75-69-4) 31V. Vinyl Chloride (75-01-4)        X                      <0.001                                                                                              1        mg/L              <0.001                        1 GC/MS FRACTION - ACID COMPOUNDS 1A. 2-Chloropheno (95-57-8)                X                      <0.010                                                                                              1       mg/L               <0.010                        1 2A. 2,4-Dichloro-phenol (120-83-2)        X                      <0.010                                                                                              1        mg/L              <0.010                        1 3A. 2,4-Dimethyl-phenol (105-67-9)        X                      <0.010                                                                                              1        mg/L              <0.010                        1 4A. 4,6-Dinitro-O-Cresol (534-52-1)        X                      <0.010                                                                                              1        mg/L              <0.010                        1 5A. 2,4-Dinitro-phenol (51-28-5)          X                      <0.020                                                                                              1        mg/L              <0.020                        1 6A. 2-Nitrophenol (88-75-5)                X                      <0.010                                                                                              1        mg/L              <0.010                        1 7A. 4-Nitrophenol (100-02-7)                X                      <0.010                                                                                              1        mg/L              <0.010                        1 8A. P-Chloro-M Cresol (59-50-7)          X                      <0.010                                                                                              1        mg/L              <0.010                        1 9A. Pentachloro-phenol (87-86-5)          X                      <0.010                                                                                              1        mg/L              <0.010                        1 10A. Phenol (108-95-2)                X                      <0.010                                                                                              1        mg/L              <0.010                        1 11A. 2,4,6-Trichloro-phenol (88-06-2)          X                      <0.010                                                                                              1        mg/L              <0.010                        1
* NOTE: Trichlorofluoromethane was removed as a requirement from 40 CFR Part 123 by US EPA in 1995.
EPA Form 3510-2C (8-90)                                                                                  Page V-5                                                                                CONTINUE ON PAGE V-6


(7440-02-0)
CONTINUED FROM PAGE V-5
X<0.002 1 mg/L<0.002 1 10M. Selenium, Total (7782-49-2)
: 1. POLLUTANT            2. MARK 'X'                                          3. EFFLUENT                                                                  4. UNITS                5. INTAKE (optional)
X<0.005 1 mg/L<0.005 1 11M. Silver, Total
AND CAS      a. TEST- b. BE-  c. BE-  a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE            c. LONG TERM AVRG. VALUE                                              a. LONG TERM          b. NO. OF NUMBER      ING      LIEVED LIEVED                                      (if available)                      (if available)          d. NO. OF a. CONCEN-  b. MASS      AVERAGE VALUE            ANAL-(if available) RE-      PRE-  AB-          (1)          (2) MASS      (1)              (2) MASS          (1)              (2) MASS  ANAL-    TRATION            (1) CONCEN-    (2) MASS      YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                      CONCENTRATION                      YSES                        TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 1B. Acenaphthene (83-32-9)                                X 2B. Acenaphtylene (208-96-8)                              X 3B. Anthracene (120-12-7)                              X 4B. Benzidine (92-87-5)                                X 5B. Benzo (a)
Anthracene                              X (56-55-3) 6B. Benzo (a)
Pyrene (50-32-8)                        X 7B. 3,4-Benzo-fluoranthene                            X (205-99-2) 8B. Benzo (ghi)
Perylene                                X (191-24-2) 9B. Benzo (k)
Fluoranthene                            X (207-08-9) 10B. Bis (2-Chloro-ethoxy) Methane                          X (111-91-1) 11B. Bis (2-Chloro-ethyl) Ether                            X (111-44-4) 12B. Bis (2-Chloro-isopropyl) Ether                        X (102-60-1) 13B. Bis (2-Ethyl-hexyl) Phthalate                        X (117-81-7) 14B. 4-Bromo-phenyl Phenyl                            X Ether (101-55-3) 15B. Butyl Benzyl Phthalate (85-68-7)                      X 16B. 2-Chloro-naphthalene                              X (91-58-7) 17B. 4-Chloro-phenyl Phenyl                            X Ether (7005-72-3) 18B. Chrysene (218-01-9)                              X 19B. Dibenzo (a,h)
Anthracene                              X (53-70-3) 20B. 1,2-Dichloro-benzene (95-50-1)                        X    <0.001                                                                                             1        mg/L                 <0.001                       1 21B. 1,3-Dichloro-benzene (541-73-1)                       X     <0.001                                                                                             1        mg/L                 <0.001                       1 EPA Form 3510-2C (8-90)                                                                            Page V-6                                                                              CONTINUE ON PAGE V-7


(7440-22-4)
EPA I.D. NUMBER (copy from Item 1 of Form 1)                OUTFALL NUMBER TN5640020504                                          101 CONTINUED FROM PAGE V-6
X<0.001 1 mg/L<0.001 1 12M. Thallium, Total (7440-28-0)
: 1. POLLUTANT              2. MARK 'X'                                          3. EFFLUENT                                                                  4. UNITS                5. INTAKE (optional)
X<0.0005 1 mg/L<0.0005 1 13M. Zinc, Total
AND CAS        a. TEST- b. BE-  c. BE-  a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE          c. LONG TERM AVRG. VALUE                                              a. LONG TERM        b. NO. OF NUMBER        ING      LIEVED LIEVED                                        (if available)                    (if available)          d. NO. OF a. CONCEN-  b. MASS      AVERAGE VALUE          ANAL-(if available)  RE-      PRE-  AB-          (1)        (2) MASS          (1)              (2) MASS        (1)              (2) MASS  ANAL-    TRATION            (1) CONCEN-   (2) MASS      YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                      CONCENTRATION                        YSES                        TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued) 22B. 1,4-Dichloro-benzene (106-46-7)                         X     <0.001                                                                                             1       mg/L                 <0.001                     1 23B. 3,3'-Dichloro-benzidine                                  X (91-94-1) 24B. Diethyl Phthalate                                  X (84-66-2) 25B. Dimethyl Phthalate                                  X (131-11-3) 26B. Di-N-Butyl Phthalate                                  X (84-74-2) 27B. 2,4-Dinitro-toluene (121-14-2)                          X 28B. 2,6-Dinitro-toluene (606-20-2)                          X 29B. Di-N-Octyl Phthalate                                  X (117-84-0) 30B. 1,2-Diphenyl-hydrazine (as Azo-                          X benzene) (122-66-7) 31B. Fluoranthene (206-44-0)                                  X 32B. Fluorene (86-73-7)                                  X 33B. Hexachlorobenzene (118-74-1)                                  X 34B. Hexa-chlorobutadiene                            X (87-68-3) 35B. Hexachloro-cyclopentadiene                            X (77-47-4) 36B. Hexachloro-ethane (67-72-1)                            X 37B. Indeno (1,2,3-cd) Pyrene                          X (193-39-5) 38B. Isophorone (78-59-1)                                  X 39B. Naphthalene (91-20-3)                                  X 40B. Nitrobenzene (98-95-3)                                  X 41B. N-Nitro-sodimethylamine                            X (62-75-9) 42B. N-Nitrosodi-Propylamine                                X (621-64-7)
EPA Form 3510-2C (8-90)                                                                                Page V-7                                                                                CONTINUE ON PAGE V-8


(7440-66-6)
CONTINUED FROM PAGE V-7
X<0.010 1 mg/L<0.010 1 14M. C y anide, Total (57-12-5)
: 1. POLLUTANT              2. MARK 'X'                                         3. EFFLUENT                                                                4. UNITS               5. INTAKE (optional)
X<0.005 1 mg/L<0.005 1 15M. Phenols, Total X<0.007 1 mg/L<0.005 1 DIOXIN 2,3,7,8-Tetra-DESCRIBE RESULT S chlorodibenzo-P X Dioxin (1764-01-6) 0.0000016 9 TN5640020504 101 EPA Form 3510-2C (8-90)
AND CAS      a. TEST- b. BE-   c. BE-   a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE          c. LONG TERM AVRG. VALUE                                              a. LONG TERM        b. NO. OF NUMBER        ING        LIEVED LIEVED                                      (if available)                   (if available)         d. NO. OF a. CONCEN-   b. MASS       AVERAGE VALUE           ANAL-(if available) RE-       PRE-   AB-           (1)         (2) MASS       (1)               (2) MASS         (1)             (2) MASS   ANAL-   TRATION             (1) CONCEN-     (2) MASS    YSES QUIRED    SENT  SENT  CONCENTRATION               CONCENTRATION                     CONCENTRATION                     YSES                             TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued) 43B. N-Nitro-sodiphenylamine                            X (86-30-6) 44B. Phenanthrene (85-01-8)                                   X 45B. Pyrene (129-00-0)                                  X 46B. 1,2,4 - Tri-chlorobenzene                              X     <0.001                                                                                           1        mg/L                 <0.001                     1 (120-82-1)
Page V-3 CONTINUE ON PAGE V-4 CONTINUED FROM PAGE V-31. POLLUTANT2. MARK 'X'3. EFFLUENT4. UNITS
GC/MS FRACTION - PESTICIDES 1P. Aldrin (309-00-2)                                  X 2P. BHC (319-84-6)                                  X 3P.  -BHC (319-85-7)                                  X 4P. - BHC (58-89-9)                                  X 5P. - BHC (319-86-8)                                  X 6P. Chlordane (57-74-9)                                  X 7P. 4,4'-DDT (50-29-3)                                  X 8P. 4,4'-DDE (72-55-9)                                  X 9P. 4,4'-DDD (72-54-8)                                  X 10P. Dieldrin (60-57-1)                                  X 11P. -Endosulfan (115-29-7)                                  X 12P. -Endosulfan (115-29-7)                                  X 13P. Endosulfan Sulfate                                    X (1031-07-8) 14P. Endrin (72-20-8)                                  X 15P. Endrin Aldehyde                                    X (7421-93-4) 16P. Heptachlor (76-44-8)                                  X EPA Form 3510-2C (8-90)                                                                        Page V-8                                                                        CONTINUE ON PAGE V-9
: 5. INTAKE (o p tional)AND CA S a. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALU E b. MAXIMUM 30 DAY VALU E c. LONG TERM AVRG. VALU Ea. LONG TERMb. NO. OF NUMBE RINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS A VERAGE VALUE A NAL-(if available)RE-PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION (1) CONCEN-(2) MASSYSESQUIREDSEN T SEN T CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - VOLATILE COMPOUNDS 1V. Acrolein (107-02-8)
X<0.005 1 mg/L<0.005 1 2V. Acr y lonitrile (107-13-1)
X<0.005 1 mg/L<0.005 1 3V. Benzene


(71-43-2)X<0.001 1 mg/L<0.001 14V.Bis (Chloro-methyl) Ether X**(542-88-1)5V. Bromoform
EPA I.D. NUMBER (copy from Item 1 of Form 1)                  OUTFALL NUMBER TN5640020504                                            101 CONTINUED FROM PAGE V-8
: 1. POLLUTANT            2. MARK 'X'                                            3. EFFLUENT                                                                    4. UNITS                5. INTAKE (optional)
AND CAS      a. TEST- b. BE-  c. BE-  a. MAXIMUM DAILY VALUE        b. MAXIMUM 30 DAY VALUE            c. LONG TERM AVRG. VALUE                        a. LONG TERM            a. LONG TERM        b. NO. OF NUMBER      ING      LIEVED LIEVED                                        (if available)                      (if available)          d. NO. OF    AVERAGE VALUE            AVERAGE VALUE            ANAL-(if available) RE-      PRE-   AB-           (1)          (2) MASS          (1)              (2) MASS          (1)              (2) MASS  ANAL-  a. CONCEN-    b. MASS (1) CONCEN-      (2) MASS      YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                        CONCENTRATION                        YSES    TRATION                  TRATION GC/MS FRACTION - PESTICIDES (continued) 17B. Heptachlor Epoxide                                X (1024-57-3) 18P. PCB-1242 (53469-21-9)                           X 19P. PCB-1254 (11097-69-1)                           X 20P. PCB-1221 (11104-28-2)                            X 21P. PCB-1232 (11141-16-5)                            X 22P. PCB-1248 (12672-29-6)                            X 23P. PCB-1260 (11096-82-5)                            X 24P. PCB-1016 (12674-11-2)                            X 25P. Toxaphene (8001-35-2)                            X EPA Form 3510-2C (8-90)                                                                        Page V-9


(75-25-2)X<0.001 1 mg/L<0.001 1 6V. Carbon
PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of                                                      EPA I.D. NUMBER (copy from Item 1 of Form 1) this information on separate sheets (use the same format) instead of completing these pages.
TN5640020504 SEE INSTRUCTIONS.
OUTFALL NO.
V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C) 103 PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.
: 2. EFFLUENT                                                                                        3. UNITS                              4. INTAKE (optional)
: 1. POLLUTANT                    a. MAXIMUM DAILY VALUE                  b. MAXIMUM 30 DAY VALUE                        c. LONG TERM AVRG. VALUE                                        (specify if blank)                    a. LONG TERM (if available)                                (if available)                      d. NO. OF                                              AVERAGE VALUE                b. NO. OF (1)              (2) MASS                (1)                  (2) MASS                    (1)                (2) MASS            ANALYSES      a. CONCEN-          b. MASS          (1)              (2) MASS      ANALYSES CONCENTRATION                            CONCENTRATION                                    CONCENTRATION                                                    TRATION                        CONCENTRATION
: a. Biochemical Oxygen Demand                    2.91                                                                                                                                      1            mg/L                            <2.00                                    1 (BOD)
: b. Chemical Oxygen Demand                    28.3                                                                                                                                      1            mg/L                              23.4                                    1 (COD)
: c. Total Organic Carbon (TOC)                    4.73                                                                                                                                      1            mg/L                              2.84                                    1
: d. Total Suspended Solids (TSS)                    16.0*                                                                                      <9.1                                          54            mg/L                              2.64                                    1
: e. Ammonia (as N)              0.170                                                                                                                                      1            mg/L                            0.144                                    1 VALUE                                    VALUE                                            VALUE                                                                                          VALUE
: f. Flow                                    2.06                                                                                      1.06                              762          MGD                                          1616                          1
: g. Temperature            VALUE                                    VALUE                                            VALUE                                                                                          VALUE (winter)
: h. Temperature h                        VALUE                                    VALUE                                            VALUE                                                                                          VALUE (summer)                                  34.8                                                                                                                            4                    &deg;C                                25.8                          1 MINIMUM              MAXIMUM              MINIMUM                MAXIMUM I. pH                            6.73                  8.35                                                                                                              72        STANDARD UNITS PART B -            Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.
: 2. MARK 'X'                                                                      3. EFFLUENT                                                                                4. UNITS                        5. INTAKE (optional)
: 1. POLLUT-        a. BE-    b. BE-          a. MAXIMUM DAILY VALUE                      b. MAXIMUM 30 DAY VALUE                      c. LONG TERM AVRG. VALUE                                                                  a. LONG TERM ANT AND      LIEVED    LIEVED                                                                (if available)                                (if available)             d. NO. OF  a. CONCEN-        b. MASS              AVERAGE VALUE              b. NO. OF CAS NO.        PRE-      AB-              (1)              (2) MASS                    (1)                  (2) MASS                  (1)                  (2) MASS      ANAL-      TRATION                          (1)              (2) MASS      ANAL-(if available)    SENT      SENT      CONCENTRATION                              CONCENTRATION                                  CONCENTRATION                                YSES                                  CONCENTRATION                          YSES
: a. Bromide (24959-67-9)            X                      <0.20                                                                                                                                1          mg/L                        <0.200                                  1
: b. Chlorine, Total Residual          X                       <0.06                                                                                                                                1          mg/L                        <0.05                                  1
: c. Color                X                        40.0                                                                                                                                1          PCU                            15.0                                1
: d. Fecal Coliform                          X
: e. Fluoride (16984-48-8)            X                      0.104                                                                                                                                1         mg/L                       <0.100                                  1
: f. Nitrate-Nitrite (as N)          X                      0.301                                                                                                                                1          mg/L                        0.127                                  1
* Value based on historical TSS data from routine grab samples collected as required by the permit and does not include the composite sample result of 7.20 mg/L TSS.
EPA Form 3510-2C (8-90)                                                                                                    Page V-1                                                                                            CONTINUE ON PAGE V-2


Tetrachloride X<0.001 1 mg/L<0.001 1 (56-23-5)7V. Chlorobenzen e (108-90-7)
ITEM V-B CONTINUED FROM PAGE V-1
X<0.001 1 mg/L<0.001 1 8V. Chlorodi-
: 2. MARK 'X'                                                    3. EFFLUENT                                                            4. UNITS                  5. INTAKE (optional)
: 1. POLLUT- a. BE-      b. BE-      a. MAXIMUM DAILY VALUE          b. MAXIMUM 30 DAY VALUE          c. LONG TERM AVRG. VALUE                                                a. LONG TERM            b. NO. OF ANT AND      LIEVED  LIEVED                                              (if available)                    (if available)          d. NO. OF a. CONCEN-    b. MASS      AVERAGE VALUE              ANAL-CAS NO.        PRE-      AB-          (1)          (2) MASS          (1)                (2) MASS        (1)                (2) MASS  ANAL-    TRATION                  (1)            (2) MASS      YSES (if available)    SENT    SENT  CONCENTRATION                    CONCENTRATION                    CONCENTRATION                        YSES                        CONCENTRATION
: g. Nitrogen, Total Organic        X                 0.740                                                                                                  1        mg/L                  0.314                            1 (as N)
: h. Oil and Grease                X                  17.0                                                                <5.7                            55      mg/L                  <3.95                            1 I. Phosphorus (as P), Total        X                0.0696                                                                                                  1       mg/L                 <0.050                            1 (7723-14-0)
: j. Radioactivity (1) Alpha, Total                          X*
(2) Beta, Total                          X*
(3) Radium, Total                          X*
(4) Radium 226, Total                    X*
: k. Sulfate (as SO 4 )            X                  23.7                                                                                                  1        mg/L                  12.9                            1 (14808-79-8)
: l. Sulfide (as S)                X                <0.100                                                                                                  1        mg/L                <0.100                            1 m Sulfite (as SO 4 )            X                    2.0                                                                                                1        mg/L                  <2.0                            1 (14265-45-3)
: n. Surfactants        X                <0.050                                                                                                  1        mg/L                <0.050                            1
: o. Aluminum, Total                X                0.0968                                                                                                  1        mg/L                <0.050                            1 (7429-90-5)
: p. Barium, Total                X                0.0312                                                                                                  1        mg/L                0.0280                            1 (7440-39-3)
: q. Boron, Total                X                0.0287                                                                                                  1        mg/L                0.0178                            1 (7440-42-8)
: r. Cobalt, Total                X               <0.001                                                                                                 1       mg/L                 <0.001                           1 (7440-48-4)
: s. Iron,Total (7439-89-6)          X                0.221                                                                                                  1        mg/L                0.0919                            1
: t. Magnesium, Total                X                  6.33                                                                                                  1        mg/L                  6.18                            1 (7439-95-4)
: u. Molybdenum, Total                X                0.00092                                                                                                1        mg/L                0.000584                          1 (7439-98-7)
: v. Manganese, Total                X                0.0966                                                                                                  1        mg/L                0.0395                            1 (7439-96-5)
: w. Tin, Total (7440-31-5)          X                <0.005                                                                                                  1        mg/L                <0.005                            1
: x. Titanium, Total                X                <0.005                                                                                                  1       mg/L                <0.005                            1 (7440-32-6)
* Believed absent other than naturally occurring radioactive materials.
EPA Form 3510-2C                                                                                  Page V-2                                                                          CONTINUE ON PAGE V-3


bromomethane X<0.001 1 mg/L<0.001 1 (124-48-1)9V. Chloroethane
EPA I.D. NUMBER (copy from Item 1 of Form 1)                    OUTFALL NUMBER CONTINUED FROM PAGE 3 OF FORM 2-C TN5640020504                                            103 PART C -        If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) , mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully.
Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.
: 1. POLLUTANT                  2. MARK 'X'                                                        3. EFFLUENT                                                                    4. UNITS                    5. INTAKE (optional)
AND CAS          a. TEST- b. BE-    c. BE-        a. MAXIMUM DAILY VALUE          b. MAXIMUM 30 DAY VALUE                c. LONG TERM AVRG. VALUE                                                  a. LONG TERM              b. NO. OF NUMBER            ING        LIEVED LIEVED                                                    (if available)                      (if available)          d. NO. OF a. CONCEN-  b. MASS          AVERAGE VALUE                ANAL-(if available)      RE-        PRE-    AB-                (1)          (2) MASS            (1)              (2) MASS            (1)              (2) MASS  ANAL-    TRATION                (1) CONCEN-      (2) MASS        YSES QUIRED    SENT    SENT        CONCENTRATION                      CONCENTRATION                          CONCENTRATION                      YSES                              TRATION METALS, CYANIDE, AND TOTAL PHENOLS 1M. Antimony, Total (7440-36-0)                      X                    <0.002                                                                                                      1        mg/L                  <0.002                            1 2M. Arsenic, Total (7440-38-2)                            X                    <0.005                                                                                                      1        mg/L                  <0.005                            1 3M. Beryllium, Total, (7440-41-7)                    X                  <0.0005                                                                                                      1        mg/L                  <0.0005                            1 4M. Cadmium, Total (7440-43-9)                      X                  <0.0001                                                                                                      1        mg/L                  <0.0001                            1 5M. Chromium, Total (7440-47-3)                      X                    <0.003                                                                                                      1        mg/L                  <0.003                            1 6M. Copper, Total (7440-50-8)                            X                  0.00224                                                                                                      1        mg/L                  <0.001                            1 7M. Lead, Total (7439-92-1)                            X                    <0.002                                                                                                      1        mg/L                  <0.002                            1 8M. Mercury, Total (7439-97-6)                            X                0.00000103                                                                                                      1        mg/L                0.00000169                          1 9M. Nickel, Total (7440-02-0)                            X                    <0.002                                                                                                      1        mg/L                  <0.002                            1 10M. Selenium, Total (7782-49-2)                      X                    <0.005                                                                                                      1        mg/L                  <0.005                            1 11M. Silver, Total (7440-22-4)                            X                   <0.001                                                                                                     1       mg/L                   <0.001                             1 12M. Thallium, Total (7440-28-0)                      X                  <0.0005                                                                                                      1        mg/L                  <0.0005                            1 13M. Zinc, Total (7440-66-6)                            X                    <0.010                                                                                                      1        mg/L                  <0.010                            1 14M. Cyanide, Total (57-12-5)                       X                    <0.005                                                                                                      1        mg/L                  <0.005                            1 15M. Phenols, Total                                  X                    <0.005                                                                                                      1        mg/L                  <0.005                            1 DIOXIN 2,3,7,8-Tetra-                                        DESCRIBE RESULTS chlorodibenzo-P                                X Dioxin (1764-01-6)
EPA Form 3510-2C (8-90)                                                                                                  Page V-3                                                                                  CONTINUE ON PAGE V-4


(75-00-3)X<0.001 1 mg/L<0.001 1 10V. 2-Chloro-
CONTINUED FROM PAGE V-3
: 1. POLLUTANT            2. MARK 'X'                                          3. EFFLUENT                                                                  4. UNITS                5. INTAKE (optional)
AND CAS      a. TEST- b. BE-  c. BE-  a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE            c. LONG TERM AVRG. VALUE                                              a. LONG TERM        b. NO. OF NUMBER      ING      LIEVED LIEVED                                      (if available)                    (if available)          d. NO. OF a. CONCEN-  b. MASS      AVERAGE VALUE            ANAL-(if available) RE-      PRE-  AB-          (1)          (2) MASS      (1)              (2) MASS          (1)              (2) MASS  ANAL-    TRATION            (1) CONCEN-    (2) MASS      YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                      CONCENTRATION                      YSES                        TRATION GC/MS FRACTION - VOLATILE COMPOUNDS 1V. Acrolein (107-02-8)              X                      <0.005                                                                                            1        mg/L                <0.005                      1 2V. Acrylonitrile (107-13-1)              X                      <0.005                                                                                            1        mg/L                <0.005                      1 3V. Benzene (71-43-2)                X                      <0.001                                                                                            1        mg/L                <0.001                      1 4V. Bis (Chloro-methyl) Ether                            X          *                                                                                                                              *
(542-88-1) 5V. Bromoform (75-25-2)                X                      <0.001                                                                                            1        mg/L                <0.001                      1 6V. Carbon Tetrachloride            X                      <0.001                                                                                            1        mg/L                <0.001                      1 (56-23-5) 7V. Chlorobenzene (108-90-7)              X                      <0.001                                                                                            1        mg/L                <0.001                      1 8V. Chlorodi-bromomethane            X                      <0.001                                                                                            1        mg/L                <0.001                      1 (124-48-1) 9V. Chloroethane (75-00-3)               X                     <0.001                                                                                           1       mg/L                 <0.001                       1 10V. 2-Chloro-ethylvinyl Ether        X                      <0.005                                                                                            1        mg/L                <0.005                      1 (110-75-8) 11V. Chloroform (67-66-3)                X                      <0.001                                                                                            1        mg/L                <0.001                      1 12V. Dichloro-bromomethane            X                      <0.001                                                                                            1        mg/L                <0.001                      1 (75-27-4) 13V. Dichloro-difluoromethane          X*                    <0.001                                                                                            1        mg/L                <0.001                      1 (75-71-8) 14V. 1,1-Dichloro-ethane (75-34-3)        X                      <0.001                                                                                            1        mg/L                <0.001                      1 15V. 1,2-Dichloro-ethane (107-06-2)        X                      <0.001                                                                                            1        mg/L                <0.001                      1 16V. 1,1-Dichloro-ethylene (75-35-4)      X                      <0.001                                                                                            1        mg/L                <0.001                      1 17V. 1,2-Dichloro-propane (78-87-5)        X                      <0.001                                                                                            1        mg/L                <0.001                      1 18V. 1,3-Dichloro-propylene (542-75-6)    X                      <0.002                                                                                            1        mg/L                <0.002                      1 19V. Ethylbenzene (100-41-4)              X                      <0.001                                                                                            1        mg/L                <0.001                      1 20V. Methyl Bromide (74-83-9)        X                      <0.001                                                                                            1        mg/L                <0.001                      1 21V. Methyl Chloride (74-87-3)      X                      <0.001                                                                                            1        mg/L                <0.001                      1
* NOTE: Bis (Chloro-methyl) Ether and Dichloro-difluoromethane were removed as requirements from 40 CFR Part 123 by US EPA in 1995.
EPA Form 3510-2C (8-90)                                                                            Page V-4                                                                              CONTINUE ON PAGE V-5


ethylvinyl Ether X<0.005 1 mg/L<0.005 1 (110-75-8)11V. Chloroform
EPA I.D. NUMBER (copy from Item 1 of Form 1)                OUTFALL NUMBER CONTINUED FROM PAGE V-4                                                                      TN5640020504                                          103
: 1. POLLUTANT            2. MARK 'X'                                            3. EFFLUENT                                                                4. UNITS              5. INTAKE (optional)
AND CAS      a. TEST- b. BE-  c. BE-  a. MAXIMUM DAILY VALUE        b. MAXIMUM 30 DAY VALUE          c. LONG TERM AVRG. VALUE                                              a. LONG TERM        b. NO. OF NUMBER        ING      LIEVED LIEVED                                        (if available)                    (if available)          d. NO. OF a. CONCEN-  b. MASS      AVERAGE VALUE          ANAL-(if available)  RE-      PRE-  AB-          (1)          (2) MASS          (1)              (2) MASS        (1)              (2) MASS  ANAL-    TRATION            (1) CONCEN-    (2) MASS    YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                      CONCENTRATION                      YSES                          TRATION GC/MS FRACTION - VOLATILE COMPOUNDS (continued) 22V. Methylene Chloride (75-09-2)        X                      <0.002                                                                                              1        mg/L              <0.002                        1 23V. 1,1,2,2-Tetra-chloroethane              X                      <0.001                                                                                              1        mg/L              <0.001                        1 (79-34-5) 24V. Tetrachloro-ethylene (127-18-4)      X                      <0.001                                                                                              1        mg/L              <0.001                        1 25V. Toluene (108-88-3)                X                      <0.001                                                                                              1        mg/L              <0.001                        1 26V. 1,2-Trans-Dichloroethylene          X                     <0.001                                                                                             1        mg/L               <0.001                        1 (156-60-5) 27V. 1,1,1-Tri-chloroethane              X                      <0.001                                                                                              1        mg/L              <0.001                        1 (71-55-6) 28V. 1,1,2-Tri-chloroethane              X                      <0.001                                                                                              1        mg/L              <0.001                        1 (79-00-5) 29V. Trichloro-ethylene (79-01-6)        X                      <0.001                                                                                              1        mg/L              <0.001                        1 30V. Trichloro-fluoromethane            X*                    <0.001                                                                                              1        mg/L              <0.001                        1 (75-69-4) 31V. Vinyl Chloride (75-01-4)        X                      <0.001                                                                                              1        mg/L              <0.001                        1 GC/MS FRACTION - ACID COMPOUNDS 1A. 2-Chloropheno (95-57-8)                 X                      <0.010                                                                                              1        mg/L              <0.010                        1 2A. 2,4-Dichloro-phenol (120-83-2)        X                      <0.010                                                                                              1        mg/L              <0.010                        1 3A. 2,4-Dimethyl-phenol (105-67-9)        X                      <0.010                                                                                              1        mg/L              <0.010                        1 4A. 4,6-Dinitro-O-Cresol (534-52-1)        X                      <0.010                                                                                              1        mg/L              <0.010                        1 5A. 2,4-Dinitro-phenol (51-28-5)          X                      <0.020                                                                                              1        mg/L              <0.020                        1 6A. 2-Nitrophenol (88-75-5)                X                      <0.010                                                                                              1        mg/L              <0.010                        1 7A. 4-Nitrophenol (100-02-7)                X                      <0.010                                                                                              1        mg/L              <0.010                        1 8A. P-Chloro-M Cresol (59-50-7)          X                      <0.010                                                                                              1        mg/L              <0.010                        1 9A. Pentachloro-phenol (87-86-5)          X                      <0.010                                                                                              1        mg/L              <0.010                        1 10A. Phenol (108-95-2)                X                      <0.010                                                                                              1        mg/L              <0.010                        1 11A. 2,4,6-Trichloro-phenol (88-06-2)          X                      <0.010                                                                                              1        mg/L              <0.010                        1
* NOTE: Trichlorofluoromethane was removed as a requirement from 40 CFR Part 123 by US EPA in 1995.
EPA Form 3510-2C (8-90)                                                                                  Page V-5                                                                                CONTINUE ON PAGE V-6


(67-66-3)X<0.001 1 mg/L<0.001 1 12V. Dichloro-
CONTINUED FROM PAGE V-5
: 1. POLLUTANT            2. MARK 'X'                                          3. EFFLUENT                                                                  4. UNITS                5. INTAKE (optional)
AND CAS      a. TEST- b. BE-  c. BE-  a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE            c. LONG TERM AVRG. VALUE                                              a. LONG TERM          b. NO. OF NUMBER      ING      LIEVED LIEVED                                      (if available)                      (if available)          d. NO. OF a. CONCEN-  b. MASS      AVERAGE VALUE            ANAL-(if available) RE-      PRE-  AB-          (1)          (2) MASS      (1)              (2) MASS          (1)              (2) MASS  ANAL-    TRATION            (1) CONCEN-    (2) MASS      YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                      CONCENTRATION                      YSES                        TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 1B. Acenaphthene (83-32-9)                                X 2B. Acenaphtylene (208-96-8)                              X 3B. Anthracene (120-12-7)                              X 4B. Benzidine (92-87-5)                                X 5B. Benzo (a)
Anthracene                              X (56-55-3) 6B. Benzo (a)
Pyrene (50-32-8)                        X 7B. 3,4-Benzo-fluoranthene                            X (205-99-2) 8B. Benzo (ghi)
Perylene                                X (191-24-2) 9B. Benzo (k)
Fluoranthene                            X (207-08-9) 10B. Bis (2-Chloro-ethoxy) Methane                          X (111-91-1) 11B. Bis (2-Chloro-ethyl) Ether                            X (111-44-4) 12B. Bis (2-Chloro-isopropyl) Ether                        X (102-60-1) 13B. Bis (2-Ethyl-hexyl) Phthalate                        X (117-81-7) 14B. 4-Bromo-phenyl Phenyl                            X Ether (101-55-3) 15B. Butyl Benzyl Phthalate (85-68-7)                      X 16B. 2-Chloro-naphthalene                              X (91-58-7) 17B. 4-Chloro-phenyl Phenyl                            X Ether (7005-72-3) 18B. Chrysene (218-01-9)                              X 19B. Dibenzo (a,h)
Anthracene                              X (53-70-3) 20B. 1,2-Dichloro-benzene (95-50-1)                        X    <0.001                                                                                             1       mg/L                 <0.001                       1 21B. 1,3-Dichloro-benzene (541-73-1)                      X    <0.001                                                                                            1        mg/L                <0.001                        1 EPA Form 3510-2C (8-90)                                                                            Page V-6                                                                              CONTINUE ON PAGE V-7


bromomethane X<0.001 1 mg/L<0.001 1 (75-27-4)13V. Dichloro-
EPA I.D. NUMBER (copy from Item 1 of Form 1)                OUTFALL NUMBER TN5640020504                                          103 CONTINUED FROM PAGE V-6
: 1. POLLUTANT              2. MARK 'X'                                          3. EFFLUENT                                                                  4. UNITS                5. INTAKE (optional)
AND CAS        a. TEST- b. BE-  c. BE-  a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE          c. LONG TERM AVRG. VALUE                                              a. LONG TERM        b. NO. OF NUMBER        ING      LIEVED LIEVED                                        (if available)                    (if available)          d. NO. OF a. CONCEN-  b. MASS      AVERAGE VALUE          ANAL-(if available)  RE-      PRE-  AB-          (1)        (2) MASS          (1)              (2) MASS        (1)              (2) MASS  ANAL-    TRATION            (1) CONCEN-    (2) MASS      YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                      CONCENTRATION                        YSES                        TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued) 22B. 1,4-Dichloro-benzene (106-46-7)                          X     <0.001                                                                                             1       mg/L                 <0.001                     1 23B. 3,3'-Dichloro-benzidine                                  X (91-94-1) 24B. Diethyl Phthalate                                  X (84-66-2) 25B. Dimethyl Phthalate                                  X (131-11-3) 26B. Di-N-Butyl Phthalate                                  X (84-74-2) 27B. 2,4-Dinitro-toluene (121-14-2)                          X 28B. 2,6-Dinitro-toluene (606-20-2)                          X 29B. Di-N-Octyl Phthalate                                  X (117-84-0) 30B. 1,2-Diphenyl-hydrazine (as Azo-                          X benzene) (122-66-7) 31B. Fluoranthene (206-44-0)                                  X 32B. Fluorene (86-73-7)                                  X 33B. Hexachlorobenzene (118-74-1)                                  X 34B. Hexa-chlorobutadiene                            X (87-68-3) 35B. Hexachloro-cyclopentadiene                            X (77-47-4) 36B. Hexachloro-ethane (67-72-1)                            X 37B. Indeno (1,2,3-cd) Pyrene                          X (193-39-5) 38B. Isophorone (78-59-1)                                  X 39B. Naphthalene (91-20-3)                                  X 40B. Nitrobenzene (98-95-3)                                  X 41B. N-Nitro-sodimethylamine                            X (62-75-9) 42B. N-Nitrosodi-Propylamine                                X (621-64-7)
EPA Form 3510-2C (8-90)                                                                                Page V-7                                                                                CONTINUE ON PAGE V-8


difluoromethane X*<0.001 1 mg/L<0.001 1 (75-71-8)14V. 1 , 1-Dichloro-ethane (75-34-3)
CONTINUED FROM PAGE V-7
X<0.001 1 mg/L<0.001 1 15V. 1 , 2-Dichloro-ethane (107-06-2)
: 1. POLLUTANT              2. MARK 'X'                                         3. EFFLUENT                                                                4. UNITS               5. INTAKE (optional)
X<0.001 1 mg/L<0.001 1 16V. 1 , 1-Dichloro-ethylene (75-35-4)
AND CAS      a. TEST- b. BE-   c. BE-   a. MAXIMUM DAILY VALUE      b. MAXIMUM 30 DAY VALUE          c. LONG TERM AVRG. VALUE                                              a. LONG TERM        b. NO. OF NUMBER        ING        LIEVED LIEVED                                      (if available)                   (if available)         d. NO. OF a. CONCEN-   b. MASS       AVERAGE VALUE           ANAL-(if available) RE-       PRE-   AB-           (1)         (2) MASS       (1)               (2) MASS         (1)             (2) MASS   ANAL-   TRATION             (1) CONCEN-     (2) MASS    YSES QUIRED    SENT  SENT  CONCENTRATION               CONCENTRATION                     CONCENTRATION                      YSES                             TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued) 43B. N-Nitro-sodiphenylamine                            X (86-30-6) 44B. Phenanthrene (85-01-8)                                   X 45B. Pyrene (129-00-0)                                 X 46B. 1,2,4 - Tri-chlorobenzene                              X     <0.001                                                                                           1       mg/L                 <0.001                     1 (120-82-1)
X<0.001 1 mg/L<0.001 1 17V. 1 , 2-Dichloro-propane (78-87-5)
GC/MS FRACTION - PESTICIDES 1P. Aldrin (309-00-2)                                 X 2P. BHC (319-84-6)                                 X 3P. -BHC (319-85-7)                                 X 4P. - BHC (58-89-9)                                   X 5P. - BHC (319-86-8)                                 X 6P. Chlordane (57-74-9)                                   X 7P. 4,4'-DDT (50-29-3)                                   X 8P. 4,4'-DDE (72-55-9)                                   X 9P. 4,4'-DDD (72-54-8)                                   X 10P. Dieldrin (60-57-1)                                   X 11P. -Endosulfan (115-29-7)                                 X 12P. -Endosulfan (115-29-7)                                 X 13P. Endosulfan Sulfate                                    X (1031-07-8) 14P. Endrin (72-20-8)                                   X 15P. Endrin Aldehyde                                    X (7421-93-4) 16P. Heptachlor (76-44-8)                                   X EPA Form 3510-2C (8-90)                                                                       Page V-8                                                                        CONTINUE ON PAGE V-9
X<0.001 1 mg/L<0.001 1 18V. 1 , 3-Dichloro-propylene (542-75-6)
X<0.002 1 mg/L<0.002 1 19V. Eth y lbenzen e (100-41-4)
X<0.001 1 mg/L<0.001 1 20V. Meth y l Bromide (74-83-9)
X<0.001 1 mg/L<0.001 1 21V. Meth y l Chloride (74-87-3)
X<0.001 1 mg/L<0.001 1* NOTE: Bis (Chloro-methyl) Ether and Dichloro-difluoromethane were removed as requirements from 40 CFR Part 123 by US EPA in 1995.
EPA Form 3510-2C (8-90)
Page V-4 CONTINUE ON PAGE V-5 EPA I.D. NUMBER (co py from Item 1 of Form 1
)OUTFALL NUMBE R CONTINUED FROM PAGE V-4 1. POLLUTAN T 2. MARK 'X'
: 3. EFFLUEN T 4. UNITS 5. INTAKE (opt i o n a l)AND CA Sa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALU Eb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMb. NO. OF NUMBE RINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS A VERAGE VALUE A NAL-(if available)RE-PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/M S FRA C TI O N - V O LATILE CO MP OU ND S (co n t in ued)22V. Meth y len e Chloride (75-09-2)
X<0.002 1 mg/L<0.002 1 23V. 1 , 1 , 2 , 2-Tetra-chloroethane X<0.001 1 mg/L<0.001 1 (79-34-5)24V. Tetrachloro
-ethylene (127-18-4)
X<0.001 1 mg/L<0.001 1 25V. Toluen e (108-88-3)
X<0.001 1 mg/L<0.001 1 26V. 1 , 2-Trans-Dichloroethylene X<0.001 1 mg/L<0.001 1 (156-60-5)27V. 1 , 1 , 1-Tri-chloroethane X<0.001 1 mg/L<0.001 1 (71-55-6)28V. 1 , 1 , 2-Tri-chloroethane X<0.001 1 mg/L<0.001 1 (79-00-5)29V. Trichloro
-ethylene (79-01-6)
X<0.001 1 mg/L<0.001 1 30V. Trichloro
-fluoromethane X*<0.001 1 mg/L<0.001 1 (75-69-4)31V. Vin yl Chloride (75-01-4)
X<0.001 1 mg/L<0.001 1 GC/MS FRACTION - ACID COMPOUND S 1A. 2-Chloro p heno (95-57-8)X<0.010 1 mg/L<0.010 1 2A. 2 , 4-Dichloro
-phenol (120-83-2)
X<0.010 1 mg/L<0.010 1 3A. 2,4-Dimeth y l-phenol (105-67-9)
X<0.010 1 mg/L<0.010 1 4A. 4 , 6-Dinitro-O
-Cresol (534-52-1)
X<0.010 1 mg/L<0.010 1 5A. 2 , 4-Dinitro-phenol (51-28-5)
X<0.020 1 mg/L<0.020 1 6A. 2-Nitro p heno l (88-75-5)X<0.010 1 mg/L<0.010 1 7A. 4-Nitro p heno l (100-02-7)
X<0.010 1 mg/L<0.010 1 8A. P-Chloro-M Cresol (59-50-7)
X<0.010 1 mg/L<0.010 1 9A. Pentachloro
-phenol (87-86-5)
X<0.010 1 mg/L<0.010 1 10A. Pheno l (108-95-2)
X<0.010 1 mg/L<0.010 1 11A. 2 , 4 , 6-Trichloro
-phenol (88-06-2)
X<0.010 1 mg/L<0.010 1* NOTE: Trichlorofluoromethane was removed as a requirement from 40 CFR Part 123 by US EPA in 1995.
TN5640020504 101 EPA Form 3510-2C (8-90)
Page V-5 CONTINUE ON PAGE V-6 CONTINUED FROM PAGE V-51. POLLUTANT2. MARK 'X'3. EFFLUENT4. UNITS
: 5. INTAKE (o p tional)AND CA S a. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALU E b. MAXIMUM 30 DAY VALU E c. LONG TERM AVRG. VALU Ea. LONG TERMb. NO. OF NUMBE RINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS A VERAGE VALUE A NAL-(if available)RE-PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION (1) CONCEN-(2) MASSYSESQUIREDSEN T SEN T CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUND S 1B. Acena p hthene (83-32-9)X 2B. Acena p ht y len e (208-96-8)
X 3B. Anthracene (120-12-7)
X 4B. Benzidine


(92-87-5)X 5B.Benzo (a)Anthracene X (56-55-3)6B.Benzo (a)Pyrene (50-32-8)
EPA I.D. NUMBER (copy from Item 1 of Form 1)                  OUTFALL NUMBER TN5640020504                                            103 CONTINUED FROM PAGE V-8
X 7B. 3 , 4-Benzo-fluoranthene X (205-99-2)8B. Benzo (g hi)Perylene X (191-24-2)9B.Benzo (k)Fluoranthene X (207-08-9)10B.Bis (2-Chloro-ethoxy) Methane X (111-91-1)11B.Bis (2-Chloro-ethyl) Ether X (111-44-4)12B.Bis (2-Chloro-isopropyl)
: 1. POLLUTANT            2. MARK 'X'                                            3. EFFLUENT                                                                    4. UNITS                5. INTAKE (optional)
Ether X (102-60-1)13B. Bis (2-Eth y l-hexyl) Phthalate X (117-81-7)14B. 4-Bromo-phenyl Phenyl X Ether (101-55-3)15B. But y l Benz yl Phthalate (85-68-7)
AND CAS      a. TEST- b. BE- c. BE-   a. MAXIMUM DAILY VALUE        b. MAXIMUM 30 DAY VALUE            c. LONG TERM AVRG. VALUE                        a. LONG TERM            a. LONG TERM        b. NO. OF NUMBER      ING      LIEVED LIEVED                                        (if available)                     (if available)           d. NO. OF    AVERAGE VALUE            AVERAGE VALUE            ANAL-(if available) RE-       PRE-   AB-           (1)          (2) MASS          (1)             (2) MASS          (1)               (2) MASS  ANAL-   a. CONCEN-     b. MASS (1) CONCEN-      (2) MASS      YSES QUIRED    SENT  SENT  CONCENTRATION                CONCENTRATION                        CONCENTRATION                        YSES    TRATION                  TRATION GC/MS FRACTION - PESTICIDES (continued) 17B. Heptachlor Epoxide                                X (1024-57-3) 18P. PCB-1242 (53469-21-9)                           X 19P. PCB-1254 (11097-69-1)                           X 20P. PCB-1221 (11104-28-2)                           X 21P. PCB-1232 (11141-16-5)                           X 22P. PCB-1248 (12672-29-6)                           X 23P. PCB-1260 (11096-82-5)                           X 24P. PCB-1016 (12674-11-2)                           X 25P. Toxaphene (8001-35-2)                             X EPA Form 3510-2C (8-90)                                                                        Page V-9
X 16B. 2-Chloro-


naphthalene X (91-58-7)17B. 4-Chloro-
Tennessee River 42.320 0.006  Outfall 116                                                                                                                                                                                          0.014                Outfall 117 Cond. Circulating Water Outfall 118                                    Raw Cooling Water                                                                    ERCW Screen &
CCW Trash Sluice                Intake Forebay                                      Dredge                  Diesel fuel recover trench                ERCW Intake (INACTIVE)            Pond                  High Press Fire water Strainer Backwash Potable water 1447.871                                                                                                                  40.306                                  Raw Water Outfall 110                              1447.014                                                                                          Treatment Condenser Cooling                                                                    DP                      CCW Discharge Water (CCW)                                                                                                  Channel (DC)                                                                    TBS NS Intake                                                                                        0.024                                                Cooling Water LVP Cooling Towers Units 1 & 2 NS 1447.865 Tennessee e River 0.058                                                                                                        CCW Discharge Channel Helper Mode                                              CCS Wastewaters Primary System Waste 1409.865                                                      Closed Mode Condenser                                            Cold Water Circulating System                                      Return Channel                                                                              Cooling Tower o do Blowdown Basin as Steam Generator                                                                  0.030              (CTB)
Blowdown NS DC          ERCW System                                                                      0.050 1447.014 40.436                                    0.049 38.000                                          Condensate Demin.
System (Alt) 37.125                  Radioactive Floor Drain                    Liquid Radwaste Raw Cooling Water and Sump                                Treatment System System                                          West Valve Vault Room (LRW)                              0.004 Drains                                                                    NS Laundry, Shower, and                                                                          Low Volume Waste Chemical Drains                                                                              Treatment Pond                Diffuser Pond (DP)
Raw Water CCS Wastewater Neutral Waste                          0.177          (LVP)
Condensate Demin.
0 875 0.875          Treatment                        System Wastewater                              Sump p 1490.854 IMP                        IMP Emergency Spillway Raw Service Water                  Miscellaneous              0.463 TBS                                                                107                        103 System                      Equipment Cooling 0.0022                    1.230 Raw Water                                                                                NS Outfall 101 0.412                                                                    YDP Leaks & Draindowns                                                        Unlined Metal                  Lined Metal Cleaning                      Cleaning                                                                                  Outfall 101E Waste Pond                    Waste Pond 2.125 Water Treatment                    Makeup Water System                      Process wastewaters                                                                                                            1 1.047 0.030                                  YDP DC Filter Backwash and TBS WTP Wastewaters Turbine Building                Yard Drainage Sump (TBS)                    Pond (YDP)
Make-up Water                                            0.004 Primary System                                DP (DWST)
LRW 1.047                            2.119                                      0.006 Component Cooling                                                      0.030                                                                                                                  NS CCS Wastewater                            TBS System Miscellaneous Low Volume 0.180                                                                                0.030                            Miscellaneous Low Volume Steam                            Steam Generator                                                    Wastewaters Wastewater & Yard Drainage Generator Fill                        Blowdown                                                                                              Service Building Sump Miscellaneous Equipment Office Bldg Floor & Equip Drains Cooling Water Diesel Gen Bldg Sump & O&G Essential Raw Cooling Water Interceptor (o/w separator) 0.202                                                                                                                    Maintenance Draindown Backup Security Diesel O&G Secondary System                                            CTB                                          Component Cooling System Interceptor (o/w separator)
Wastewater Solar Bldg Sump Process waters and wastewaters Air Cooling Water Steam Generator Blowdown Switchyard Bus Cooling Water Condensate Demin Regen Waste Miscellaneous line leaks, flushes Secondary System                        Condensate Demin                                                Secondary System leaks and LRW                                                                and draindowns Leaks & Downdrains                          System                                                          Draindowns ERCW system t    maint.
i t draindowns d i d Ice Condenser waste Electrical Sumps 0.022                                                                                              Laboratory wastewaters East Valve Vault Room drains Turbine Building floor and Pressure washing & vehicle rinses 0.100        Condensate Demin                                                    Equipment drains TBS                                                                                                                                    Switchyard stormwater runoff Alum Sludge Pond Regeneration Waste                                                                                        Landfill Runoff DC    CCW Discharge Channel CTB Cooling Tower Basin                                            n          Negligible flow                                                    Tennessee Valley Authority LRW Liquid Radwaste Treatment System                                            Alternate path                                                      S Sequoyahh Nuclear N l    Pl t Plant Chemical Additive                                                  Wastewater Flow Schematic TBS Turbine Building Sump NS              Net Stormwater Flow (runoff,                                      NPDES Permit No. TN0026450 LVP    Low Volume Waste Treatment Pond                                          precipitation, less evaporation)
April 2013 YDP Yard Discharge Pond All flows shown in million gallons per day (MGD)
DP    Diffuser Pond


phenyl Phenyl X Ether (7005-72-3)18B. Chr y sene (218-01-9)
Tennessee Department of Environment and Conservation Division of Water Pollution Control 401 Church Street, 6th Floor L & C Annex Nashville, TN 37243-1534 Phone: (615)532-0625 PERMIT CONTACT INFORMATION Please complete all sections. If one person serves multiple functions, please repeat this information in each section.
X19B.Dibenzo (a,h)Anthracene X (53-70-3)20B. 1 , 2-Dichloro-benzene (95-50-1)
PERMIT NUMBER:                  TN0026450                                                                DATE:        April 2013 PERMITTED FACILITY:              TVA Sequoyah Nuclear Plant                                            COUNTY:          Hamilton OFFICIAL PERMIT CONTACT:
X<0.001 1 mg/L<0.001 1 21B. 1 , 3-Dichloro-benzene (541-73-1)
(The permit signatory authority, e.g. responsible corporate officer, principle executive officer or ranking elected official)
X<0.001 1 mg/L<0.001 1 EPA Form 3510-2C (8-90)
Official
Page V-6 CONTINUE ON PAGE V-7 EPAI.D.NUMBER(copyfromItem1ofForm1)
OUTFALL NUMBER CONTINUED FROM PAGE V-61. POLLUTANT2. MARK 'X
'3. EFFLUENT
: 4. UNITS 5. INTAKE (o p tional)AND CA Sa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMb. NO. OF NUMBERINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASSAVERAGE VALUEANAL-(if available)RE-PRE-AB-(1)(2) MASS (1)(2) MASS (1)(2) MASSANAL-TRATION(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued)22B. 1 , 4-Dichloro-benzene (106-46-7)X<0.001 1 mg/L<0.001 1 23B. 3 , 3'-Dichloro-benzidine X (91-94-1)24B. Dieth y l Phthalate X (84-66-2)25B. Dimeth y l Phthalate X (131-11-3)26B. Di-N-But y l Phthalate X (84-74-2)27B. 2 , 4-Dinitro-toluene (121-14-2)
X 28B. 2 , 6-Dinitro-toluene (606-20-2)
X 29B. Di-N-Oct y l Phthalate X (117-84-0)30B. 1,2-Di p hen y l-hydrazine (as Azo-X benzene)(122-66-7)31B. Fluoranthene (206-44-0)
X 32B. Fluorene (86-73-7)X 33B. Hexachlorobenzene (118-74-1)
X 34B. Hexa-chlorobutadiene X (87-68-3)35B. Hexachloro-


cyclopentadiene X (77-47-4)36B. Hexachloro-
==Contact:==
John T. Carlin                                                Title or Position:  Site Vice President Mailing Address:        Sequoyah Acess Road, PO Box 2000                              City:      Soddy Daisy                      State: TN    Zip:  37379 Phone number(s):          (423) 843-7001                                                E-mail:    jtcarlin@tva.gov PERMIT BILLING ADDRESS (where invoices should be sent):
Billing


ethane (67-72-1)
==Contact:==
X 37B. Indeno (1,2,3-cd)
Brad M. Love                                                  Title or Position:  Environmental Scientist Mailing Address:        Sequoyah Acess Road, PO Box 2000                              City:      Soddy Daisy                      State: TN    Zip:  37379 Phone number(s):          (423) 843-6714                                                E-mail:    bmlove@tva.gov FACILITY LOCATION (actual location of permit site and local contact for site activity):
Pyrene X (193-39-5)38B. Iso p horone (78-59-1)X 39B. Na p hthalene (91-20-3)X 40B. Nitrobenzene (98-95-3)X 41B. N-Nitro-
Facility Location


sodimethylamine X (62-75-9)42B. N-Nitrosodi-
==Contact:==
Brad M. Love                              Title or Position:  Environmental Scientist Facility Location (physical street address):  Seqouyah Access Road                      City:      Soddy Daisy                      State: TN    Zip:  37379 Phone number(s):                              (423) 843-6714                          E-mail:    bmlove@tva.gov Alternate Contact (if desired):                                                        Title or Position:
Mailing Address:                                                                        City:                                      State:      Zip:
Phone number(s):                                                                        E-mail:
FACILITY REPORTING (Discharge Monitoring Report (DMR) or other reporting):
Cognizant Official authorized for permit reporting:                                      Title or Position:
Facility Location (physical street address):                                            City:                                      State:      Zip:
Phone number(s):                                                                        E-mail:
Fax number for reporting:                                                                  Does the facility have interest in starting        Yes        No*
electronic DMR reporting?*
CN-1090 (rev. 04-2007)                                                                                                                          RDAs 2352 AND 2366


Propylamine X (621-64-7)TN5640020504 101 EPA Form 3510-2C (8-90)
TENNESSEE VALLEY AUTHORITY (TVA) - SEQUOYAH NUCLEAR PLANT (SQN) -
Page V-7 CONTINUE ON PAGE V-8 CONTINUED FROM PAGE V-7
NPDES PERMIT NO. TN0026450 - WET REASONABLE POTENTIAL Current Whole Effluent Toxicity (WET) Requirements:
: 1. POLLUTAN T 2. MARK 'X'
Outfall 101 -   7-day or 3-brood IC25 Hard Trigger = 43.2%
: 3. EFFLUENT
[IWC = 43.2% effluent (2.3 TUc)]
: 4. UNITS 5. INTAKE (o p tional)AND CA Sa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMb. NO. OF NUMBERINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASSAVERAGE VALUEANAL-(if available)RE-PRE-AB-(1)(2) MASS (1)(2) MASS (1)(2) MASSANAL-TRATION(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued)43B. N-Nitro-sodiphenylamine X (86-30-6)44B. Phenanthrene
Monitoring Frequency Governed by B/CTP:
1/year when oxidizing biocides used 1/year when non-oxidizing biocides used Proposed WET Requirements:
Outfall 101 -   7-day or 3-brood IC25 Hard Trigger = 42.8%
[IWC = 42.8% effluent (2.3 TUc)]
Monitoring Frequency Governed by B/CTP:
1/year when oxidizing biocides used 1/year when non-oxidizing biocides used


(85-01-8)X 45B. Pyrene (129-00-0)
==Background:==
X 46B. 1 , 2 , 4 - Tri-chlorobenzene X<0.001 1 mg/L<0.001 1 (120-82-1)GC/MS FRACTION - PESTICIDES 1P. Aldrin (309-00-2)
X 2P.BHC (319-84-6)
X 3P.-BHC (319-85-7)
X 4P.-BHC (58-89-9)X 5P.-BHC (319-86-8)
X 6P. Chlordane (57-74-9)X 7P. 4 , 4'-DDT (50-29-3)X 8P. 4 , 4'-DDE (72-55-9)X 9P. 4 , 4'-DDD (72-54-8)X 10P. Dieldrin (60-57-1)X 11P.-Endosulfan (115-29-7)
X 12P.-Endosulfan (115-29-7)
X 13P. Endosulfan Sulfate X (1031-07-8)14P. Endrin


(72-20-8)X 15P. Endrin
The current permit, effective March 1, 2011, requires chronic toxicity biomonitoring at a frequency governed by the B/CTP and with a monitoring limit (IC25  43.2%) that serves as a hard trigger for accelerated biomonitoring. Previous to the issuance of the current permit, Outfall 101 demonstrated No Reasonable Potential for excursions above the ambient water quality chronic (CCC) criterion using historical effluent data. This demonstration of No Reasonable Potential has been maintained throughout the current permit cycle as evidenced in the accompanying historical effluent data for the last 20 studies.
Based on guidance in EPAs Technical Support Document (TSD) for Water Quality-based Toxics Control (EPA/505/2-90-001), a permit limit is not required when No Reasonable Potential exists for excursions above the CCC. In this situation, the TSD recommends that biomonitoring be conducted at a frequency of once every 5 years as part of the permit renewal process.
Proposed Changes:
: 1. TVA requests that the current permits requirement for the B/CTP to govern the frequency of biomonitoring remain (i.e., once per year when oxidizing biocides are used, and once per year when non-oxidizing biocides are used).
: 2. TVA requests that the current monitoring limit be replaced with an IC25 = 42.8%,
which is based on revised effluent flow, and is consistent with the TSD guidance for effluents demonstrating No Reasonable Potential. Toxicity at the instream wastewater concentration (IWC) would serve only as a hard trigger for accelerated biomonitoring, as stated in the current permit.
: 3. TVA requests changes to the Serial Dilutions table as follows:
Page 22 of 28, table following paragraph 3:
Serial Dilutions for Whole Effluent Toxicity (WET) Testing 100%                    Monitoring Limit (100+ML)/2                            0.5 X ML    O.25 X ML  Control Effluent                        (ML)
                                                  % effluent 100        71.4                42.8            21.4        10.7        0
: 4. TVA also requests that all other text in Section E of the permit remain unchanged.
Dilution and Instream Waste Concentration Calculations Outfall 101:
Average Discharge = 1491 MGD Tennessee River 1Q10 = 3483 MGD Qs 3483 Dilution Factor (DF):    DF =          =        = 2.34 Qw 1491 Qw 1491 Instream Wastewater Concentration (IWC): IWC =                      =      x 100 = 42.8%
Qs 3483 Reasonable Potential Determination:
The last 20 studies for Outfall 101 were used for determining Reasonable Potential, with all studies resulting in no observed toxicity (<1.0 TUc) and a coefficient of variation equal to zero. This outcome demonstrates that no Reasonable Potential for excursions above the CCC exists, based on data obtained from testing conducted under the current operating conditions.
Historical data for the last 20 studies follows, and is followed thereafter with documentation of chemical additions which occurred during sampling for toxicity tests for Outfall 101.
2


Aldehyde X (7421-93-4)16P. Heptachlor (76-44-8)X EPA Form 3510-2C (8-90)
SQN Documentation:
Page V-8 CONTINUE ON PAGE V-9 EPA I.D. NUMBER (co py from Item 1 of Form 1
Summary of SQN Outfall 101 WET Biomonitoring Results **
)OUTFALL NUMBER CONTINUED FROM PAGE V-8
Acute Results      Chronic (96-h Survival)     Results
: 1. POLLUTAN T 2. MARK 'X'
                                                              % Survival      Study Study in        Toxicity Toxicity Undiluted        Units Units (TUc)
: 3. EFFLUEN T 4. UNITS 5. INTAKE (o p tional)AND CASa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALU E b. MAXIMUM 30 DAY VALU E c. LONG TERM AVRG. VALUE
Test Date                    Test Species            Sample        (TUa)
: a. LONG TERMa. LONG TERMb. NO. OF NUMBERINGLIEVEDLIEVED(if available)(if available)
: 64. Feb 8-15, 2005                Ceriodaphnia dubia            100
: d. NO. OF A VERAGE VALUE A VERAGE VALUE A NAL-(if available)RE-PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-a. CONCEN-b. MASS(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATIONCONCENTRATIONCONCENTRATIONYSESTRATIONTRATION GC/MS FRACTION - PESTICIDES (continued)17B. He p tachlo r Epoxide X (1024-57-3)18P. PCB-1242 (53469-21-9)
                                                                              <1.0      <1.0 Pimephales promelas              93
X 19P. PCB-1254
: 65. Jun 7-14, 2005                Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            100
: 66. Jul 19-26, 2005                Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            100
: 67. Nov 1-8, 2005                  Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            100
: 68. Nov 16-23, 2005                Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            98
: 69. Nov 14-21, 2006                Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            100
: 70. Nov 28 - Dec 5, 2006          Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            98
: 71. May 30- Jun 6, 2007            Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            100
: 72. Dec 4-11, 2007                Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            100
: 73. Apr 15-22, 2008                Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            93
: 74. Oct 28- Nov 4, 2008            Ceriodaphnia dubia            100
                                                                              <1.0      <1.0 Pimephales promelas            98
: 75. Feb 10-17, 2009                Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas            100
: 76. May 12-19, 2009                Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas              98
: 77. Nov 17-24, 2009                Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas            100
: 78. May 11-18, 2010                Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas            100
: 79. Nov 2-9, 2010                  Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas            100
: 80. May 3-10, 2011                Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas            100
: 81. Nov 8-15, 2011                Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas              98
: 82. May 8-15, 2012                Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas            100
: 83. Aug 12-17, 2012                Ceriodaphnia dubia            100          <1.0      <1.0 Pimephales promelas            100 n                                                                  40              20      20 Maximum                                                          100            <1.0      <1.0 Minimum                                                            93            <1.0      <1.0 Mean                                                              99            <1.0      <1.0 CV                                                              0.02            0.00      0.00
    **Last 20 studies only were included for determining RP.
Shaded area includes data collected under the current permit.
3


(11097-69-1)
Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date      Sodium    Towerbrom PCL-222      PCL-401 CL-363 Cuprostat- H-130M          Nalco    H-150M Hypochlorite    mg/L        mg/L      mg/L      mg/L    PF mg/L mg/L Quat      73551    mg/L mg/L        TRC      Phosphate Copolymer DMAD        Azole                  mg/L      Quat TRC                                                                        EO/PO 11/07/2004      -        <0.0187      0.000    0.014      -        -          -          -        -
X 20P. PCB-1221
11/08/2004      -        <0.0192      0.047    0.030      -        -          -          -        -
11/09/2004      -        <0.0233      0.048    0.016      -        -        0.041        -        -
11/10/2004      -        <0.0149      0.047    0.016      -        -        0.041        -        -
11/11/2004      -        <0.0149      0.049    0.017      -        -        0.043        -        -
11/12/2004      -        <0.0253      0.048    0.017      -        -        0.042        -        -
02/06/2005      -        <0.0042      0.028    0.010      -        -          -          -        -
02/07/2005      -        <0.0116      0.028    0.010      -        -          -        0.007      -
02/08/2005      -        <0.0080      0.028    0.010      -        -          -          -        -
02/09/2005      -        0.0199      0.028    0.010      -        -          -          -        -
02/10/2005      -        <0.0042      0.028    0.010      -        -          -          -        -
02/11/2005      -        0.0155      0.028    0.010      -        -          -        0.007      -
06/05/2005      -        0.0063          -        -        -        -          -          -        -
06/06/2005      -        0.0043          -        -        -        -          -          -      0.037 06/07/2005      -        0.0103          -        -        -        -          -          -      0.037 06/08/2005      -        0.0295          -        -        -        -          -          -      0.037 06/09/2005      -        0.0129          -        -        -        -          -          -        -
06/10/2005      -        0.0184          -        -        -        -          -          -        -
07/17/2005      -        0.0109      0.026    0.009      -       -          -          -        -
07/18/2005      -        0.0150      0.026    0.009      -        -          -          -      0.036 07/19/2005      -        0.0163      0.026    0.009      -        -          -          -      0.036 07/20/2005      -        0.0209      0.026    0.009      -        -          -        0.014    0.036 07/21/2005      -        0.0242      0.026    0.009      -        -          -          -        -
07/22/2005      -        0.0238      0.054    0.018      -        -          -        0.014      -
10/30/2005      -        0.0068          -        -        -        -          -          -        -
10/31/2005      -        0.0112          -        -        -        -          -          -        -
11/01/2005      -        0.0104          -        -        -        -          -          -      0.035 11/02/2005      -        0.0104          -        -        -        -          -          -      0.036 11/03/2005      -        0.0117          -        -        -        -          -          -      0.036 11/04/2005      -        0.0165          -        -        -        -          -          -      0.035 11/14/2005      -        0.0274          -        -        -        -          -          -        -
11/15/2005      -        0.0256          -        -        -        -          -          -        -
11/16/2005      -        0.0234          -        -        -        -          -          -        -
11/17/2005      -        0.0231          -        -        -        -          -          -        -
11/18/2005      -        0.0200          -        -        -        -          -          -        -
11/19/2005      -        0.0116          -         -        -        -          -          -        -
4


(11104-28-2)
Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date      Sodium Towerbrom PCL-222 PCL-401 CL-363 Cuprostat- H-130M                  Nalco      H-    MSW Hypochlorite mg/L        mg/L      mg/L    mg/L    PF mg/L mg/L Quat      73551    150M    101 mg/L        TRC    Phosphate Copolymer DMAD        Azole                  mg/L    mg/L    mg/L TRC                                                                      EO/PO      Quat Phosphate 11/12/2006      -        0.0055        -        -        -        -          -          -      -      -
X 21P. PCB-1232
11/13/2006      -        0.0068        -        -        -        -          -          -    0.037    -
11/14/2006      -        0.0143        -        -        -        -          -          -    0.037    -
11/15/2006      -        0.0068        -        -        -        -          -          -    0.037    -
11/16/2006      -        0.0267        -        -        -        -          -          -    0.037    -
11/17/2006      -        0.0222        -        -        -        -          -          -      -      -
11/26/2006      -        0.0188        -        -        -        -          -          -      -      -
11/27/2006      -        0.0138        -        -        -        -          -          -      -      -
11/28/2006      -        0.0120        -        -        -        -          -          -      -      -
11/29/2006      -        0.0288        -        -        -        -          -          -      -      -
11/30/2006      -        0.0376        -        -        -        -          -          -      -      -
12/01/2006      -        0.0187        -        -        -        -          -          -      -      -
05/28/07      -          -          -        -        -        -          -          -      -    0.015 05/29/07      -          -          -        -        -        -          -          -    0.036  0.015 05/30/07      -        0.0084        -        -        -        -          -        0.017  0.036  0.015 05/31/07      -        0.0103        -        -        -        -          -          -    0.036  0.015 06/01/07      -        0.0164        -        -        -        -          -        0.017  0.036  0.015 06/02/07      -        0.0305        -        -        -        -          -          -      -    0.015 12/02/07      -        0.0241        -        -        -        -          -          -      -      -
12/03/07      -        0.0128        -        -        -        -          -          -      -      -
12/04/07      -        0.0238        -        -        -        -          -          -      -      -
12/05/07      -        0.0158        -        -        -        -          -          -      -      -
12/06/07      -        0.0162        -        -        -        -          -          -      -      -
12/07/07      -        0.0175        -        -        -        -          -          -      -
04/13/08      -        0.0039        -        -        -        -          -          -      -      -
04/14/08      -        0.0124        -        -        -        -          -          -      -      -
04/15/08      -        0.0229        -        -        -        -          -          -      -      -
04/16/08      -        0.0143        -        -        -        -          -          -      -      -
04/17/08      -        0.0120        -        -        -        -          -          -      -      -
04/18/08      -        0.0149        -        -        -        -          -          -      -      -
10/26/08      -        0.0260        -        -        -        -          -          -      -      -
10/27/08      -        0.0151        -         -        -        -          -        0.017    -      -
10/28/08      -        0.0172        -        -        -        -          -          -    0.041    -
10/29/08      -        0.0154        -        -         -        -          -        0.018  0.041  0.030 10/30/08      -          -          -        -        -        -          -          -    0.041  0.030 10/31/08      -        0.0086        -        -        -        -          -          -    0.041  0.030 5


(11141-16-5)
Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date    Sodium Towerbrom PCL-222 PCL-401            CL- Cuprostat- H-130M Nalco          Spectrus  H-150M    MSW Hypochlorite  mg/L      mg/L        mg/L      363 PF mg/L mg/L        73551      CT1300      mg/L    101 mg/L        TRC    Phosphate Copolymer mg/L        Azole    Quat    mg/L      mg/L      Quat    mg/L TRC                                        DMAD                      EO/PO      Quat            Phosphate 02/08/09      -        0.0197        -          -        -        -      -      0.017        -          -      -
X 22P. PCB-1248
02/09/09      -        0.0237        -          -        -        -      -      0.017        -          -      -
02/10/09      -        0.0104        -          -        -        -      -      0.021        -          -      -
02/11/09      -        0.0155        -          -        -        -      -      0.017        -          -      -
02/12/09      -        0.0106        -          -        -        -      -      0.017        -          -      -
02/13/09      -          -          -          -        -        -      -        -          -          -      -
05/10/09      -        0.0129        -          -        -        -      -        -          -          -      -
05/11/09      -        0.0415        -          -        -        -      -        -          -      0.0446    -
05/12/09      -        0.0053        -          -        -        -      -        -          -      0.0396    -
05/13/09      -        0.0049        -          -        -        -      -        -          -      0.0396    -
05/14/09      -      <0.0141        -          -        -        -      -        -          -      0.0397    -
05/15/09      -      <0.0160        -          -        -        -      -        -          -          -      -
11/15/09      -       0.025        -          -        -        -      -        -          -          -      -
11/16/09      -        0.0152        -          -        -        -      -        -          -          -      -
11/17/09      -        0.0255        -          -        -        -      -        -          -          -      -
11/18/09      -        0.0306        -          -        -        -      -        -          -          -      -
11/19/09      -        0.0204        -          -                  -      -        -          -          -      -
11/20/09      -        0.0093        -          -        -        -      -        -          -          -      -
05/09/10      -        0.0192        -          -        -        -      -        -          -          -      -
05/10/10      -        0.0055        -          -        -        -      -        -          -          -      -
05/11/10      -        0.0100        -          -        -        -      -        -        0.039        -      -
05/12/10      -        0.0171        -          -        -        -      -        -        0.039        -      -
05/13/10      -        0.0041        -          -                  -      -        -        0.039        -      -
05/14/10      -        0.0099        -          -       -        -      -        -        0.039        -      -
6


(12672-29-6)
Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date      Sodium    Towerbrom  PCL-    PCL-401    CL-363 Cuprostat- H-130M  Nalco      Spectrus    H-150M    MSW    Floguard Hypochlorite    mg/L    222      mg/L      mg/L  PF mg/L    mg/L  73551      CT1300      mg/L      101      MS6236 mg/L        TRC    mg/L    Copolymer  DMAD    Azole    Quat    mg/L      mg/L        Quat      mg/L      mg/L TRC                  Phos-                                        EO/PO      Quat                Phosphate Phosphate phate 10/31/10      -            -      -        -        -        -        -      -          -          -        -        -
X 23P. PCB-1260
11/01/10      -        0.0122    -        -        -        -        -      -          -          -        -        -
11/02/10      -        0.0112    -        -        -        -        -      -          -          -        -        -
11/03/10      -        0.0163    -        -        -       -        -      -          -          -        -        -
11/04/10      -        0.0107    -        -        -        -        -      -          -          -        -        -
11/05/10      -        0.0132    -        -        -        -        -      -          -          -        -        -
05/01/2011      -            -      -        -        -        -        -      -          -          -        -        -
05/02/2011      -            -      -        -        -        -        -      -        0.04        -        -        -
05/03/2011      -            -      -        -        -        -        -      -        0.04        -        -        -
05/04/2011      -        0.0155    -        -        -        -        -      -        0.04        -        -        -
05/05/2011      -        0.0179    -        -        -        -        -      -        0.04        -        -        -
05/06/2011      -        0.0089    -        -        -        -        -      -          -          -        -        -
11/06/2011      -        0.0168    -        -        -        -        -      -          -          -        -        -
11/07/2011      -        0.0225    -        -        -        -        -      -          -          -        -        -
11/08/2011      -        0.0141    -        -        -        -        -      -          -          -        -        -
11/09/2011      -        0.0239    -        -        -        -        -      -          -          -        -        -
11/10/2011      -        0.0242    -        -        -        -        -      -          -          -        -        -
11/11/2011      -        0.0231    -        -        -        -        -      -          -          -        -        -
05/06/2012      -            -      -        -        -        -        -      -          -          -        -        -
05/07/2012      -            -      -        -        -        -        -      -          -          -        -        -
05/08/2012      -            -      -        -        -        -        -      -        0.041        -        -        -
05/09/2012      -        0.0145    -        -        -        -        -      -        0.041        -        -        -
05/10/2012      -        0.0298    -        -        -        -        -      -        0.041        -        -        -
05/11/2012      -        0.0174    -        -        -        -        -      -          -          -        -        -
08/12/2012      -            -      -        -        -        -        -      -          -          -        -      0.029 08/13/2012      -        0.0256    -        -        -        -        -    0.028      0.037        -         -      0.029 08/14/2012      -        0.0209    -        -        -        -        -      -        0.037        -        -      0.029 08/15/2012      -        0.0279    -        -        -        -        -    0.028        -          -        -      0.029 08/16/2012      -        0.0076    -        -        -        -        -      -          -          -        -      0.029 08/17/2012      -        0.0446    -        -        -        -        -      -          -          -        -      0.032 7


(11096-82-5)
Study Plan for Evaluation of the TVA Sequoyah Nuclear Plant Discharge in Support of an Alternate Thermal Limit Soddy Daisy, Hamilton County, Tennessee Tennessee Valley Authority June 8, 2011
X 24P. PCB-1016


(12674-11-2)
TABLE OF CONTENTS EXECUTIVE
X 25P. Toxa p hen e (8001-35-2)
XTN5640020504101 EPA Form 3510-2C (8-90)
Page V-9 PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You ma y re port some or all o fEPA I.D. NUMBER (co py from Item 1 of Form 1
)this information on separate sheets (use the same format) instead of completing these pages.SEE INSTRUCTIONS.OUTFALL NO.
V. INTAKE AND EFFLUENT CHARACTERISTICS (con ti nue d from page 3 o f Form 2-C)PART A - You must provide the results of at least one anal ysis for ever y pollutant in this table. Com plete one table for each outfall. See instructions for additional details.2. EFFLUENT3. UNITS4. INTAKE (o ptional)1. POLLUTANTa. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUE(specify if blank)a. LONG TERM(if available)(if available)d. NO. OF AVERAGE VALUEb. NO. OF (1)(2) MASS (1)(2) MASS (1)(2) MASS ANALYSESa. CONCEN-b. MASS (1)(2) MASS ANALYSESCONCENTRATIONCONCENTRATIONCONCENTRATIONTRATIONCONCENTRATIONa. BiochemicalOxygen Demand (BOD)b. Chemical Oxygen Demand (COD)c. Total Or ganicCarbon (TOC)d. Total Sus p endedSolids (TSS)e. Ammonia (as N)VALUEVALUEVALUE VALUEf. Flow g. Tem peratureVALUE VALUE VALUE VALUE(winter)hTemperature VALUE VALUE VALUE VALUE<9.1 103 7620.1441mg/Lmg/L mg/L mg/L mg/L<2.00 1 2.91 28.3 4.73 16.0*0.170 1.06 2.06 1 1
1 23.4 2.84 2.64MGD16161TN5640020504 1
1 1 54 1 h. Temperature VALUE VALUE VALUE VALUE(summer)&deg;CMINIMUMMAXIMUMMINIMUMMAXIMUMI. pHSTANDARD UNITSPART B - Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for an y pollutant which is limitedeither directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you mustprovide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.2. MARK 'X'3. EFFLUENT4. UNITS5. INTAKE (o ptional)1. POLLUT-a. BE-b. BE-a. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMANT ANDLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS AVERAGE VALUEb. NO. OFCAS NO.PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION (1)(2) MASS ANAL-(if available)
SEN T SEN TCONCENTRATIONCONCENTRATIONCONCENTRATIONYSESCONCENTRATIONYSESa. Bromide(24959-67-9)b. Chlorine
,Total Residualc. Colord. FecalColiform Xe. Fluoride (16984-48-8)f. Nitrate-Nitrite (as N)72<0.06 40.0 0.104 34.86.738.35 X XX<0.20 X 1mg/L X 1mg/L 0.30125.81 4 1 1mg/L 1 1mg/L 1PCU* Value based on historical TSS data from routine grab samples collected as required by the permit and does not include the composite sample result of 7.20 mg/L TSS.
1 1<0.200<0.05 15.0<0.100 0.127 1EPA Form 3510-2C (8-90)Page V-1CONTINUE ON PAGE V-2 ITEM V-B CONTINUED FROM PAGE V-12. MARK 'X'3. EFFLUENT4. UNITS5. INTAKE (optional)
: 1. POLLUT-a. BE-b. BE-
: a. MAXIMUM DAILY VALU E b. MAXIMUM 30 DAY VALU E c. LONG TERM AVRG. VALUE
: a. LONG TERM
: b. NO. OF ANT AN DLIEVEDLIEVED (if available
)(if available
)d. NO. OFa. CONCEN-b. MASS A VERAGE VALUE A NAL-CAS NO.PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION (1)(2) MASSYSES (if available)
SEN T SEN T CONCENTRATION CONCENTRATION CONCENTRATION YSES CONCENTRATION
: g. Nitro g en, Total Organic X 1 mg/L 1 (as N)h. Oil and Grease X 55 mg/L 1 I. Phos p horus (as P), Total X 1 mg/L 1 (7723-14-0)j. Radioactivit y (1) Al p ha, Total X*(2) Beta , Total X*(3) Radium , Total X*(4) Radium 226, Total X*k. Sulfate (as SO 4)X 1 mg/L 1 (14808-79-8
)l. Sulfid e (as S)X 1 mg/L 1 m Sulfite (as SO 4)X 1 mg/L 1 (14265-45-3
)n. Surfactants X 1 mg/L 1 o. Aluminum
, Total X 1 mg/L 1 (7429-90-5)p. Barium , Total X 1 mg/L 1 (7440-39-3)q. Boron , Total X 1 mg/L 1 (7440-42-8)r. Cobalt , Total X 1 mg/L 1 (7440-48-4)s. Iron , Total (7439-89-6)
X 1 mg/L 1 t. Ma g nesium, Total X 1 mg/L 1 (7439-95-4)u. Mol y bdenum, Total X 1 mg/L 1 (7439-98-7)v. Man g anese, Total X 1 mg/L 1 (7439-96-5)w. Tin , Tota l (7440-31-5)
X 1 mg/L 1 x. Titanium
, Total X 1 mg/L 1 (7440-32-6)* Believed absent other than naturally occurring radioactive materials.
<5.7 0.314<3.95<0.050 17.0 0.00092 0.740 0.0966<0.005<0.005 0.0312 0.0287<0.001 0.221 6.33 23.7<0.100 2.0<0.050 0.0968 0.0696 12.9<0.100<2.0<0.050<0.050 0.000584 0.0395<0.005
<0.005 0.0280 0.0178<0.001 0.0919 6.18 EPA Form 3510-2C Page V-2 CONTINUE ON PAGE V-3 EPA I.D. NUMBER (copy from Item 1 of Form 1)
OUTFALL NUMBER CONTINUED FROM PAGE 3 OF FORM 2-CPART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions),  mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if youknow or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully. 


Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.1. POLLUTANT2. MARK 'X'3. EFFLUENT4. UNITS5. INTAKE (optional)
==SUMMARY==
AND CASa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMb. NO. OF NUMBERINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASSAVERAGE VALUEANAL-(if available)RE-PRE-AB-(1)(2) MASS (1)(2) MASS (1)(2) MASSANAL-TRATION(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION METALS, CYANIDE, AND TOTAL PHENOLS 1M. Antimon y , Total (7440-36-0)
............................................................................................. iii
X<0.002 1 mg/L<0.002 1 2M. Arsenic, Total (7440-38-2)
X<0.005 1 mg/L<0.005 1 3M. Ber y llium, Total, (7440-41-7)
X<0.0005 1 mg/L<0.0005 1 4M. Cadmium, Total (7440-43-9)
X<0.0001 1 mg/L<0.0001 1 5M. Chromium, Total (7440-47-3)
X<0.003 1 mg/L<0.003 1 6M. Co pp er, Total (7440-50-8)
X 0.00224 1 mg/L<0.001 1 7M. Lead, Total


(7439-92-1)
==1.0    INTRODUCTION==
X<0.002 1 mg/L<0.002 1 8M. Mercur y , Total (7439-97-6)X0.0000010 3 1 mg/L 1 9M. Nickel, Total
................................................................................................. 1 1.1      Facility Information .......................................................................................... 1 1.2      Regulatory Basis ............................................................................................... 1 1.2.1    Applicable Thermal Criteria ....................................................................... 1 1.2.2    Permitted Conditions .................................................................................. 2 1.2.3    Criteria for Alternate Thermal Limits Under &sect;316(a) ................................ 2 1.2.4    Mixing Zone Requirements in Tennessee Rule 1200-4-3-0.5 .................... 4 1.3      Study Plan Organization ................................................................................... 5 2.0    STUDY BACKGROUND ..................................................................................... 5 2.1      Sequoyah Nuclear Plant .................................................................................... 5 2.2      Description of the Receiving Waterbody ......................................................... 5 2.3      Previous &sect;316(a) Demonstration Study ............................................................ 6 2.4      Contemporary Studies ...................................................................................... 7 3.0     STUDY PLAN....................................................................................................... 8 3.1     Study Timing .................................................................................................... 8 3.2      Study Scope ...................................................................................................... 8 Task 1 - Evaluate Plant Operating Conditions ......................................................... 8 Task 2 - Thermal Plume Monitoring and Mapping ................................................. 9 Task 3 - Establishment of Biological Sampling Stations ....................................... 10 Task 4 - Shoreline and River Bottom Habitat Characterization ............................ 10 Task 5 - Supporting Water Quality Measurements ................................................ 11 Task 6 - Biological Evaluations ............................................................................. 11 Task 7 -Water Supply and Recreational Use Support Evaluation ......................... 14 3.3     Data Contribution to the Analysis/Demonstration ......................................... 14 3.3.1   Traditional Analyses ................................................................................. 14 3.3.2    Supporting Multi-metric Bioassessment................................................... 15 3.3.4    Reasonable Potential Evaluation .............................................................. 16 3.4      Reporting ........................................................................................................ 16 3.5      Study Schedule Summary ............................................................................... 16 4.0    LITERATURE CITED ........................................................................................ 18 i


(7440-02-0)
LIST OF FIGURES Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge
X<0.002 1 mg/L<0.002 1 10M. Selenium, Total (7782-49-2)
........................................................................................................................................ 20 Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 .................. 21 Figure 3. Biological monitoring zone downstream of Sequoyah Nuclear plant............. 22 Figure 4. Biological monitoring zone upstream of Sequoyah Nuclear plant thermal discharge ......................................................................................................................... 23 Figure 5. Anticipated transects to be established for conduct of the integrative multi-metric aquatic shoreline habitat assessment ................................................................... 24 ii
X<0.005 1 mg/L<0.005 1 11M. Silver, Total


(7440-22-4)
EXECUTIVE
X<0.001 1 mg/L<0.001 1 12M. Thallium, Total (7440-28-0)
X<0.0005 1 mg/L<0.0005 1 13M. Zinc, Total


(7440-66-6)
==SUMMARY==
X<0.010 1 mg/L<0.010 1 14M. C y anide, Total (57-12-5)
X<0.005 1 mg/L<0.005 1 15M. Phenols, Total X<0.005 1 mg/L<0.005 1 DIOXIN 2,3,7,8-Tetra-DESCRIBE RESULT S chlorodibenzo-P X Dioxin (1764-01-6) 0.0000016 9 TN5640020504 103 EPA Form 3510-2C (8-90)
Page V-3 CONTINUE ON PAGE V-4 CONTINUED FROM PAGE V-31. POLLUTANT2. MARK 'X'3. EFFLUENT4. UNITS
: 5. INTAKE (o p tional)AND CA S a. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALU E b. MAXIMUM 30 DAY VALU E c. LONG TERM AVRG. VALU Ea. LONG TERMb. NO. OF NUMBE RINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS A VERAGE VALUE A NAL-(if available)RE-PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION (1) CONCEN-(2) MASSYSESQUIREDSEN T SEN T CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - VOLATILE COMPOUNDS 1V. Acrolein (107-02-8)
X<0.005 1 mg/L<0.005 1 2V. Acr y lonitrile (107-13-1)
X<0.005 1 mg/L<0.005 1 3V. Benzene


(71-43-2)X<0.001 1 mg/L<0.001 14V.Bis (Chloro-methyl) Ether X**(542-88-1)5V. Bromoform
This document sets forth a revised Study Plan, which the Tennessee Valley Authority (TVA) plans to implement for the purpose of evaluating the Sequoyah Nuclear Plant (SQN) thermal discharge in support of compliance with the National Pollutant Discharge Elimination System (NPDES) permit for the facility and continuance of the associated Alternate Thermal Limit (ATL) for Outfall 101 as authorized under Section 316(a) of Clean Water Act and Tennessee Department of Environment and Conservation rules.
As required by the NPDES permit, the Study Plan was first submitted to the Tennessee Department of Environment and Conservation (TDEC) on December 20, 2010 and subject to review by TDEC and the U. S. Environmental Protection Agency (EPA),
Region 4. Comments and suggested revisions were provided to TVA by TDEC in a meeting held on April 7, 2011 and have been incorporated herein.
The Study Plan provides regulatory background for the work; information about SQN operations; a brief description of the receiving waterbody; a summary of previous
&sect;316(a) and more recent monitoring studies conducted at the plant; and a detailed Scope of Work proposing the collection of new data to evaluate the potential impact of the Sequoyah Nuclear thermal discharge on the aquatic life and other classified uses of the Tennessee River/Chickamauga Reservoir in the vicinity of the plant. Specifically, studies are proposed to:
: 1. Collect the temperature data needed to delineate and map the spatial boundaries of the thermal discharge plume;
: 2. Characterize the aquatic and wildlife habitat in the study area;
: 3. Sample the fish, macroinvertebrate, and plankton communities;
: 4. Survey potentially affected wildlife;
: 5. Evaluate maintenance of a balanced indigenous population (BIP) by performing traditional and multi-metric analyses of collected data, as appropriate; and
: 6. Evaluate the reasonable potential for impairment of non-aquatic life uses of the receiving waterbody as they relate to the thermal discharge.
Field sampling activities are scheduled to begin in the summer and autumn of 2011.
Resultant information will be used to support renewal of the facilitys NPDES permit set to expire October 31, 2013.
iii


(75-25-2)X<0.001 1 mg/L<0.001 1 6V. Carbon
==1.0     INTRODUCTION==


Tetrachloride X<0.001 1 mg/L<0.001 1 (56-23-5)7V. Chlorobenzen e (108-90-7)
This document sets forth a revised Study Plan, which the Tennessee Valley Authority (TVA) plans to implement for the purpose of evaluating the Sequoyah Nuclear Plant (SQN) thermal discharge in support of compliance with the National Pollutant Discharge Elimination System (NPDES) permit for the facility (NPDES Permit No.: TN0026450). The Study Plan includes a review and discussion of applicable regulatory requirements for the thermal discharge and presents specific work elements for the re-verification of the existing Alternate Thermal Limit (ATL) for Outfall 101 in accordance with Clean Water Act (CWA) Section (&sect;) 316(a). As required by the NPDES permit, the Study Plan was first submitted to the Tennessee Department of Environment and Conservation (TDEC) on December 20, 2010 and subject to review by TDEC and the U. S. Environmental Protection Agency (EPA), Region 4. Comments and suggested revisions were provided to TVA by TDEC in a meeting held on April 7, 2011 and have been incorporated herein.
X<0.001 1 mg/L<0.001 1 8V. Chlorodi-
1.1    Facility Information Unit 1 and 2 were placed in operation in 1981 and 1982, respectively. Both units can produce more than 2,400 megawatts of electricity. SQN is located on the right descending bank of the Tennessee River (Chickamauga Reservoir) near Chattanooga, Tennessee (Figure 1). The facility withdraws cooling water from Chickamauga Reservoir via an intake channel and skimmer wall at river mile (TRM) 484.8. The cooling water intake structure (supporting six circulator pumps) provides the units a nominal flow of 1.11 x 106 gallons per minute (gpm) or 1,602 million gallons per day (mgd). The facility employs a once-through (open cycle) condenser cooling water system and can also operate with cooling towers in helper mode. The plant discharges heated effluent to Chickamauga Reservoir via Outfall 101 located at TRM 483.6 as authorized by the NPDES permit (Figure 2).
1.2    Regulatory Basis 1.2.1 Applicable Thermal Criteria TDEC has specified use classifications for the states surface waters and developed temperature criteria intended to support those uses (TDEC Rule 1200-4-4 and 1200-4-3-.03, respectively). The Tennessee River at the location of SQN has been classified for the following uses: Municipal, Industrial, and Domestic Water Supply, Industrial Water Supply, Fish and Aquatic Life, Recreation, Irrigation, Livestock Watering and Wildlife, and Navigation. Except for Irrigation and Livestock Watering and Wildlife (qualitative criteria), temperature criteria relevant to warm-water conditions of the Tennessee River at SQN specify that:
The maximum water temperature change shall not exceed 3&deg;C [5.4&deg;F] relative to an upstream control point. The temperature of the water shall not exceed 30.5&deg;C [86.9&deg;F] and the maximum 1


bromomethane X<0.001 1 mg/L<0.001 1 (124-48-1)9V. Chloroethane
rate of change shall not exceed 2&deg;C [3.6&deg;F] per hour. The temperature of impoundments where stratification occurs will be measured at a depth of 5 feet, or mid-depth whichever is less, and the temperature in flowing streams shall be measured at mid-depth. [Rule 1200-4-3-.03]
The SQN plants once-through cooling water system design utilizing cooling towers in helper mode provides for the most thermodynamically efficient method of generating electricity and as a result produces a heated discharge. As such, the thermal discharge typically exceeds TDECs established temperature criteria, therefore, multiport diffusers with mixing zone are used to adequately mix the thermal effluent to meet the state water quality standard at the end of the mixing zone. In such cases, the TDEC rules specific to the Fish and Aquatic Life use classification provide that:
A successful demonstration as determined by the state conducted for thermal discharge limitations under Section 316(a) of the Clean Water Act, (33 U.S.C. &sect;1326), shall constitute compliance [with the temperature criteria].
TVA has previously made such successful demonstration for the SQN thermal discharge in support of mixing zone criteria as further discussed below.
1.2.2 Permitted Conditions Currently permitted thermal discharge limitations for SQN specify that the daily maximum temperature is not to exceed 30.5&deg;C (86.9&deg;F) at the end of the mixing zone (Page 1 of 28),
NPDES permit TN0026450). This mixing zone criteria are based on a previous demonstration by TVA, in accordance with CWA &sect;316(a) and TDEC Rule 1200-4-3-.03 noted above, that a balanced indigenous population (BIP) of fish, shellfish, and wildlife is supported in the Tennessee River potentially affected by the thermal discharge. The mixing zone criteria, as supported by the biological studies, also encompass other components of the TDEC temperature criteria, specifically the change in temperature from ambient/upstream conditions and rate of change in temperature. SQN has maintained a good compliance record with its mixing zone criteria throughout each NPDES permit term since first authorized in the late-1980s; ongoing biological monitoring has consistently demonstrated the mixing zone criteria are protective of aquatic communities in the river near the facility.
1.2.3 Criteria for Alternate Thermal Limits Under &sect;316(a)
The regulatory provisions that implement CWA &sect;316(a) provide limited guidance on precisely what the demonstration study must contain to be considered adequate and do not identify precise criteria against which to measure whether a balanced and indigenous aquatic community is protected and maintained. Instead, the regulations provide broad guidelines.
Under the broad regulatory guidelines, the discharger must show that the ATL desired, considering the cumulative impact of its thermal discharge together with all other significant impacts on the species affected, will assure the protection and propagation of a balanced, indigenous community of shellfish, fish and wildlife in and on the body of water into which the 2


(75-00-3)X<0.001 1 mg/L<0.001 1 10V. 2-Chloro-
discharge is to be made (40 CFR &sect;125.73). Critical to the demonstration is the meaning of the term balanced indigenous community. The rules provide the following definition:
The term balanced indigenous community is synonymous with the term balanced, indigenous population (i.e., BIP) in the Act and means a biotic community typically characterized by diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species and by a lack of domination by pollution tolerant species. Such a community may include historically non-native species introduced in connection with a program of wildlife management and species whose presence or abundance results from substantial, irreversible environmental modifications (40 CFR &sect;125.73).
Pursuant to this regulatory definition, a successful demonstration must show that under the desired ATL, and in light of the cumulative impact of the thermal discharge together with all other significant impacts on the species affected, the following characteristics, which are indicative of a BIP, will continue to exist: (1) diversity, (2) the capacity of the community to sustain itself through cyclic seasonal changes, (3) presence of necessary food chain species, and (4) a lack of domination by pollution tolerant species.
There are several methodologies a discharger may pursue in making a &sect;316(a) demonstration.
Under the regulations, new dischargers must use predictive methods (e.g., laboratory studies, literature surveys, or modeling) to estimate an appropriate ATL that will assure the protection and propagation of a balanced, indigenous community prior to commencing the thermal discharge. However, existing dischargers, such as SQN, need not use predictive methods. For such dischargers, &sect;316(a) demonstrations may be based upon the absence of prior appreciable harm to a balanced, indigenous community (see 40 CFR &sect;125.73(c)(1)(i) and (ii)). Such demonstrations must show either that:
i)      No appreciable harm has resulted from the thermal component of the discharge taking into account the interaction of such thermal component with other pollutants and the additive effect of other thermal sources to a balanced, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge has been made; or ii)      Despite the occurrence of such previous harm, the desired alternative effluent limitations (or appropriate modifications thereof) will nevertheless assure the protection and propagation of a balanced, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge is made.
Furthermore, in determining whether or not prior appreciable harm has occurred, the regulations provide that the permitting agency consider the length of time during which the applicant has been discharging and the nature of the discharge. The regulations do not define prior appreciable harm. However, using the definition of balanced, indigenous community, mixing zone criteria are generally granted under either of the following circumstances:
3
: 1.     When a discharger shows that the characteristics of a BIP (i.e., diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species, and a lack of domination by pollution tolerant species) exist.
Stated another way, the existence of such characteristics essentially prove that the aquatic community has not been appreciably harmed; or
: 2.      Despite any evidence of previous harm, the characteristics of a BIP, as stated above, will nevertheless be protected and assured under the alternate limit.
1.2.4 Mixing Zone Requirements in Tennessee Rule 1200430.5 As noted above, &sect;316(a) pertains to the Fish and Aquatic Life use classification and provides NPDES-permitted facilities a regulatory compliant means of demonstrating that promulgated temperature criteria may be more stringent than necessary to support a BIP. In such cases, less stringent thermal criteria (i.e., ATLs) are justified. However, other use classifications such as Domestic Water Supply and Recreation must be protected as well. Compliance with TDEC temperature criteria for these uses is typically determined after the discharge has had the opportunity to mix with the receiving water; that is, an allowable mixing zone is determined.
TDEC rules define the mixing zone as:
That section of a flowing stream or impounded waters in the immediate vicinity of an outfall where an effluent becomes dispersed and mixed. [1200-4-3-.04(8)]
The rules [1200-4-3-.05(2)] further provide that mixing zones are to be restricted in area and length and not:
: 1.      prevent the free passage of fish or cause aquatic life mortality in the receiving waters;
: 2.      contain materials in concentrations that exceed acute criteria beyond the zone immediately surrounding the outfall;
: 3.      result in offensive conditions;
: 4.      produce undesirable aquatic life or result in dominance of a nuisance species;
: 5.      endanger the public health or welfare; or
: 6.      adversely affect the reasonable and necessary uses of the area;
: 7.      create a condition of chronic toxicity beyond the edge of the mixing zone;
: 8.      adversely affect nursery and spawning areas; or
: 9.      adversely affect species with special state or federal status.
While TVAs proposed &sect;316(a) demonstration study plan fully examines the effects of the thermal discharge on the aquatic life components of the mixing zone requirements, the potential effects to other non-aquatic life use classifications (items 3, 5, and 6 above) are generally not evaluated. Therefore, this plan has been revised herein to incorporate and/or collect additional 4


ethylvinyl Ether X<0.005 1 mg/L<0.005 1 (110-75-8)11V. Chloroform
information needed to address the reasonable potential for impairment of other non-aquatic life uses in the Tennessee River near the facility.
1.3    Study Plan Organization This Study Plan is organized into the following sections:
: 1.      Introductory information, including regulatory basis and rationale for the study;
: 2.      Background information, including a summary of the findings of the previous
                &sect;316(a) investigation and subsequent biological monitoring; and,
: 3.      The proposed design and implementation schedule for the SQN &sect;316(a) demonstration Study Plan.
2.0     STUDY BACKGROUND 2.1     Sequoyah Nuclear Plant The SQN facility is operated to produce base-load electric power throughout the year. When operating at design (nameplate) capacity (2,400 MW), the units requires approximately 1,602 million gallons per day of condenser cooling water. Waste heat increases the temperature of the cooling water by approximately 16.4&deg;C (29.5&deg;F) before it is discharged into the river. The actual condenser flow, and hence the T, may vary somewhat with the circulating water pump head and the condenser efficiency.
2.2    Description of the Receiving Waterbody Sequoyah Nuclear is located on the right descending bank of Chickamauga Reservoir (TRM 484.5) approximately 18 miles northeast of Chattanooga, Tennessee, and 7 miles southwest of Soddy-Daisy, Tennessee (Figure 1). Chickamauga Reservoir was impounded in 1940 and at full pool covers approximately 36,240 acres.
The topography of the reservoir in the vicinity of the discharge outlet consists of a shallow overbank area on the plant side which extends from TRM 484 downstream to TRM 481.8 and varies in depth from 2 to 20 ft and from 500 to 3,100 ft in width. This shallow area is bordered by a main river channel which is about 900 feet (ft) wide and approximately 60 ft deep. Along this reach there are several small, shallow embayments.
The Tennessee River flow in the vicinity of SQN is controlled by releases from Watts Bar and Chickamauga Dams, and to a lesser extent Hiwassee River. SQN is situated on Chickamauga Reservoir approximately 54.5 river miles downstream from Watts Bar Dam and 13.5 river miles upstream from Chickamauga Dam.
5


(67-66-3)X<0.001 1 mg/L<0.001 1 12V. Dichloro-
2.3    Previous &sect;316(a) Demonstration Study TVA conducted comprehensive &sect;316(a) demonstration-related studies of the SQN thermal effluent in the mid-1980s to support establishment of the current mixing zone criteria for the plant discharge (TVA, 1989). The minimum average daily flow for the Tennessee River near SQN at the time of the early studies was 6,000 cfs.
The mid-1980s studies included extensive sampling of the aquatic community including:
* Phytoplankton,
* Periphyton,
* Aquatic macrophytes,
* Zooplankton,
* Benthic macroinvertebrates; and
* Fish populations.
Hydrothermal, water quality and other parameters also were evaluated.
Major findings of these studies included:
* Average dissolved concentration in the water column was similar immediately upstream and downstream of SQN.
* Analysis of the data indicate that the assemblages of phytoplankton, zooplankton, and macroinvertebrates were diverse and, in general, relatively abundant.
* Dominance of blue-green algae was similar upstream and downstream of SQN.
* The phytoplankton and zooplankton communities were found to be similar, or if different, not impacted by SQN operation, at all stations during 20 of the 27 survey months when the plant was in operation.
* Species richness in the benthic macroinvertebrate communities during pre-operational and operational monitoring was similar.
* No changes were documented in the aquatic macrophyte community that reflected effects of the thermal effluent.
* Fish species occurrence and abundance data indicated insignificant impacts. Avoidances of the plume could not be detected for any species of fish. One study found that sauger (Sander canadensis) were not concentrated in the thermal plume during winter months nor inhibited from movement past SQN. Results of gonadal inspections indicate that the heated discharge did not adversely affect fish reproduction.
6
* Other fisheries studies indicated that the thermal discharge resulted in no discernible increase in parasitism.
* No mortalities of threadfin shad due to cold shock following shutdown of SQN were observed or reported, and none are anticipated to occur in the future.
2.4    Contemporary Studies Monitoring of the thermal effects of the SQN discharge on the aquatic community of the receiving waterbody has been more recently conducted by TVA after an agreement was reached with TDEC in 2001. TVAs Vital Signs monitoring program also provides useful information for evaluating reservoir-wide effects. Monitoring has included sampling of the fish and macroinvertebrate communities and associated collection of temperature and other water quality parameters. Results of the permit monitoring work and TVAs ongoing Vital Signs monitoring (TVA, 2011) have consistently demonstrated that fish and macroinvertebrate assemblages of Chickamauga Reservoir within and downstream of the SQN thermal discharge are similar to those of upstream locations, as well as to established mainstem reservoir reference conditions for the area.
Results of the above studies notwithstanding, TVA plans to implement this Study Plan for the purpose of further evaluating the SQN thermal discharge to support continuance of the ATL for the facility discharge in accordance with CWA &sect;316(a) and TDEC Rule 1200-4-3-.03(e).
7


bromomethane X<0.001 1 mg/L<0.001 1 (75-27-4)13V. Dichloro-
3.0     STUDY PLAN This &sect;316(a) demonstration Study Plan is informed by communications with TDEC and EPA, the study design of the previous demonstration study, and TVAs ongoing river/reservoir biological monitoring programs.
3.1     Study Timing As reasonably practicable, TVA sampling crews will coordinate with SQN facility operations staff to schedule field studies to coincide with representative conditions of maximum generation for the time period to be sampled as dictated by seasonal power demand. The additional field studies will be conducted during the period of critical environmental (thermal) conditions in summer (mid-July - August) when plant operations and ambient reservoir temperatures are at expected seasonal maximums. Summer monitoring will be conducted once during the SQN permit cycle. Data collection during this period will focus on characterization/delineation of the thermal plume and biological field investigations inclusive of thermally affected and unaffected areas. TVA will also conduct monitoring in autumn (October - mid-December) as has been occurring in previous study years.
3.2      Study Scope The following tasks will be conducted for the SQN &sect;316(a) demonstration Study:
Task 1 - Evaluate Plant Operating Conditions During the course of the study, SQN operational data will be recorded, compiled, and analyzed to assist in the interpretation of thermal plume characteristics and biological community information. Available historical operational data will also be compiled and analyzed to evaluate and identify any material changes in SQN operations over the most recent 5-year period that might affect the thermal plume characteristics. Parameters to be recorded during the proposed study and evaluated historically include, but are not limited to:
* Cooling water intake flow and water temperature;
* Discharge flow and water temperature; and
* Power generation statistics.
The data will be presented in tabular and graphical formats to describe SQN operational conditions during the current study.
8


difluoromethane X*<0.001 1 mg/L<0.001 1 (75-71-8)14V. 1 , 1-Dichloro-ethane (75-34-3)
Task 2 - Thermal Plume Monitoring and Mapping Physical measurements will be taken to characterize and map the SQN thermal plume concurrent with biological field sampling during the sampling events. In this manner, it is expected that the plume will be characterized under representative thermal maxima and seasonally-expected low flow conditions. Measurements will be collected during periods of high power production from SQN, as reasonably practicable, to capture maximum extent of the thermal plume under existing river flow/reservoir elevation conditions. This effort will allow general delineation of the Primary Study Area per the EPA (1977) draft guidance defined as the: entire geographic area bounded annually by the locus of the 2&deg;C above ambient surface isotherms as these isotherms are distributed throughout an annual period); ensure placement of the biological sampling locations within thermally influenced areas; and inform the evaluation of potential impacts on recreation and water supply uses.
X<0.001 1 mg/L<0.001 1 15V. 1 , 2-Dichloro-ethane (107-06-2)
However, it is important to emphasize that the >2&#xba;C isopleth boundary is not a bright line; it is dynamic, changing geometrically in response to changes in ambient river flows and temperatures and SQN operations. As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced. Every effort will be made to collect biological samples in thermally affected areas as guided by the Primary Study Area definition.
X<0.001 1 mg/L<0.001 1 16V. 1 , 1-Dichloro-ethylene (75-35-4)
Field activities will include measurement of surface to bottom temperature profiles along transects across the plume. One transect will be located proximate to the thermal discharge point; subsequent downstream transects will be concentrated in the near field area of the plume where the change in plume temperature is expected to be most rapid. The distance between transects in the remainder of the Primary Study Area will increase with distance downstream or away from the discharge point. The farthest downstream transect will be just outside of the Primary Study Area. A transect upstream of the discharge that is not affected by the thermal plume will be included for determining ambient temperature conditions. The total number of transects needed to fully characterize and delineate the plume will be determined in the field.
X<0.001 1 mg/L<0.001 1 17V. 1 , 2-Dichloro-propane (78-87-5)
Temperature profile measurement (surface to bottom) points along a given transect will begin at or near the shoreline from which the discharge originates and continue across the plume until ambient background temperature conditions (based on surface (0.1 meters (m)/0.3 ft depth) measurements) or the far shore is reached. The number of measurement points along transects will generally be proportional to the width of the plume and the magnitude of the temperature change across a given transect. The distances between transects and measurement points will depend on the size of the discharge plume.
X<0.001 1 mg/L<0.001 1 18V. 1 , 3-Dichloro-propylene (542-75-6)
The temperature measurement instrument (Hydrolab or equivalent) will be calibrated to a thermometer whose calibration is traceable to the National Institute of Standards and Technology.
X<0.002 1 mg/L<0.002 1 19V. Eth y lbenzen e (100-41-4)
9
X<0.001 1 mg/L<0.001 1 20V. Meth y l Bromide (74-83-9)
X<0.001 1 mg/L<0.001 1 21V. Meth y l Chloride (74-87-3)
X<0.001 1 mg/L<0.001 1* NOTE: Bis (Chloro-methyl) Ether and Dichloro-difluoromethane were removed as requirements from 40 CFR Part 123 by US EPA in 1995.
EPA Form 3510-2C (8-90)
Page V-4 CONTINUE ON PAGE V-5 EPA I.D. NUMBER (copy f rom It em 1 o f F orm 1)OUTFALL NUMBE R CONTINUED FROM PAGE V-4 1. POLLUTAN T 2. MARK 'X'
: 3. EFFLUEN T 4. UNITS 5. INTAKE (opt i o n a l)AND CA Sa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALU Eb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMb. NO. OF NUMBE RINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS A VERAGE VALUE A NAL-(if available)RE-PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/M S FRA C TI O N - V O LATILE CO MP OU ND S (co n t in ued)22V. Meth y len e Chloride (75-09-2)
X<0.002 1 mg/L<0.002 1 23V. 1 , 1 , 2 , 2-Tetra-chloroethane X<0.001 1 mg/L<0.001 1 (79-34-5)24V. Tetrachloro
-ethylene (127-18-4)
X<0.001 1 mg/L<0.001 1 25V. Toluen e (108-88-3)
X<0.001 1 mg/L<0.001 1 26V. 1 , 2-Trans-Dichloroethylene X<0.001 1 mg/L<0.001 1 (156-60-5)27V. 1 , 1 , 1-Tri-chloroethane X<0.001 1 mg/L<0.001 1 (71-55-6)28V. 1 , 1 , 2-Tri-chloroethane X<0.001 1 mg/L<0.001 1 (79-00-5)29V. Trichloro
-ethylene (79-01-6)
X<0.001 1 mg/L<0.001 1 30V. Trichloro
-fluoromethane X*<0.001 1 mg/L<0.001 1 (75-69-4)31V. Vin yl Chloride (75-01-4)
X<0.001 1 mg/L<0.001 1 GC/MS FRACTION - ACID COMPOUND S 1A. 2-Chloro p heno (95-57-8)X<0.010 1 mg/L<0.010 1 2A. 2 , 4-Dichloro
-phenol (120-83-2)
X<0.010 1 mg/L<0.010 1 3A. 2,4-Dimeth y l-phenol (105-67-9)
X<0.010 1 mg/L<0.010 1 4A. 4 , 6-Dinitro-O
-Cresol (534-52-1)
X<0.010 1 mg/L<0.010 1 5A. 2 , 4-Dinitro-phenol (51-28-5)
X<0.020 1 mg/L<0.020 1 6A. 2-Nitro p heno l (88-75-5)X<0.010 1 mg/L<0.010 1 7A. 4-Nitro p heno l (100-02-7)
X<0.010 1 mg/L<0.010 1 8A. P-Chloro-M Cresol (59-50-7)
X<0.010 1 mg/L<0.010 1 9A. Pentachloro
-phenol (87-86-5)
X<0.010 1 mg/L<0.010 1 10A. Pheno l (108-95-2)
X<0.010 1 mg/L<0.010 1 11A. 2 , 4 , 6-Trichloro
-phenol (88-06-2)
X<0.010 1 mg/L<0.010 1* NOTE: Trichlorofluoromethane was removed as a requirement from 40 CFR Part 123 by US EPA in 1995.
TN5640020504 103 EPA Form 3510-2C (8-90)
Page V-5 CONTINUE ON PAGE V-6 CONTINUED FROM PAGE V-51. POLLUTANT2. MARK 'X'3. EFFLUENT4. UNITS
: 5. INTAKE (o p tional)AND CA S a. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALU E b. MAXIMUM 30 DAY VALU E c. LONG TERM AVRG. VALU Ea. LONG TERMb. NO. OF NUMBE RINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASS A VERAGE VALUE A NAL-(if available)RE-PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-TRATION (1) CONCEN-(2) MASSYSESQUIREDSEN T SEN T CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUND S 1B. Acena p hthene (83-32-9)X 2B. Acena p ht y len e (208-96-8)
X 3B. Anthracene (120-12-7)
X 4B. Benzidine


(92-87-5)X 5B.Benzo (a)Anthracene X (56-55-3)6B.Benzo (a)Pyrene (50-32-8)
Temperature data will be compiled and analyzed to present the horizontal and vertical dimensions of the SQN thermal plume using spatial analysis techniques to yield plume cross-sections, which can be used to demonstrate the existence of a zone of passage under and/or around the plume.
X 7B. 3 , 4-Benzo-fluoranthene X (205-99-2)8B. Benzo (g hi)Perylene X (191-24-2)9B.Benzo (k)Fluoranthene X (207-08-9)10B.Bis (2-Chloro-ethoxy) Methane X (111-91-1)11B.Bis (2-Chloro-ethyl) Ether X (111-44-4)12B.Bis (2-Chloro-isopropyl)
Task 3 - Establishment of Biological Sampling Stations Water temperature data from Task 2 will define the relationships between the biological sampling zone and thermally affected areas as informed by the EPA (1977) draft guidance, which identifies the Primary Study Area as having water temperatures of >2&deg;C (3.6&#xba;F) above ambient temperature. The thermally affected sampling location will be referred to as the downstream zone; the non-thermally-affected sampling location will be referred to as the upstream zone. If it is determined, based on the plume temperature measurements/mapping that the currently used biological sampling zone downstream of SQN is not fully within the EPA guidance-defined Primary Study Area, that sampling zone will be re-established within the EPA Primary Study Area.
Ether X (102-60-1)13B. Bis (2-Eth y l-hexyl) Phthalate X (117-81-7)14B. 4-Bromo-phenyl Phenyl X Ether (101-55-3)15B. But y l Benz yl Phthalate (85-68-7)
Figure 3 depicts the downstream biological sampling zone; Figure 4 includes the location of the ambient biological sampling zone upstream of SQN.
X 16B. 2-Chloro-
Task 4 - Shoreline and River Bottom Habitat Characterization Informed by the results of Tasks 2 and 3, habitat characterization will be conducted at each selected sampling location to evaluate potential for bias in the results due to habitat differences between the thermally affected area and the ambient sampling locations, and to support interpretation of the biological data. Eight line-of-sight transects will be established across the width of Chickamauga Reservoir downstream and upstream of SQN to assess the quality of shoreline habitat (Figure 5). An integrative multi-metric index (Shoreline Aquatic Habitat Index or SAHI), including several habitat parameters important to resident fish species, will be used to measure the existing fish habitat quality. Using the SAHI, individual metrics are scored through comparison of observed conditions with reference conditions and assigned a corresponding value.
River bottom habitat characterization for both the upstream and downstream study zones will consist of eight transects each collected perpendicular to the shoreline. Each transect will evaluate substrate by collecting 10 equally spaced Ponar dredge samples across the width of the reservoir. Each sample will be visually estimated to define substrate and then sieved to define percent makeup of substrate. At each sample location, depth, and sediment type encountered will be recorded. Sediment categories include bedrock, boulder, cobble, gravel, sand, fines, and detritus. Each site will be assigned one of three habitat categories to reduce the amount of assessment variability. Habitat categories are as follows: A) areas with presence of large substrates such as cobble and boulders, B) areas dominated by sand or fine substrates and C) areas with a presence of a mixture of both A and B (small and large) habitat types.
10


naphthalene X (91-58-7)17B. 4-Chloro-
Task 5 - Supporting Water Quality Measurements In addition to the thermal plume measurements, additional water quality profiles will be collected as necessary in conjunction with the field studies to: (i) support interpretation of the biological data; and (ii) evaluate potential impacts to water supply and recreational uses. Using a Hydrolab, or equivalent unit, three water column profiles at one-meter increments will be collected near the left descending bank, right descending bank and mid-channel at the upstream and downstream ends of each sample zone, and other areas as needed (e.g., at water supply intakes). Each profile collected will include temperature, dissolved oxygen concentration, pH, and conductivity.
Task 6 - Biological Evaluations The biological evaluations will focus on major representative species of the aquatic and wildlife community that could potentially be affected by the SQN thermal discharge. Sampling will be conducted during the summer months (mid-July - August) once during the SQN permit cycle to evaluate worst case conditions. Autumn monitoring (October - mid-December) will be conducted as a measure of potential manifested effects to the aquatic community from summer-long exposure to the thermal discharge and other stressors (basis for existing multi-metric assessments).
The biological communities to be sampled and collection methodologies are provided in the following sections.
Reservoir Fish Community Monitoring Informed by the habitat characterization and temperature measurements, the fish community will be sampled during sample events at two locations: downstream within the thermal influence of the power plant (Figure 3); and upstream and beyond thermal influence of SQN (centered at TRM 489.5) (Figure 4). Sampling will be conducted by boat electrofishing and gill netting (Hubert 1996; Reynolds, 1996).
The electrofishing methodology is based on existing monitoring programs and consists of 15 shoreline-oriented boat electrofishing runs in the upstream sampling zone and 15 shoreline runs in the downstream zone. Each run is 300 m (984 ft) long and electrofishing is conducted for a duration of approximately 15 minutes each. The total near-shore linear area sampled will be approximately 4,500 m (15,000 ft) per zone (Jennings, et al., 1995; Hickman and McDonough, 1996; McDonough and Hickman, 1999). Should the size of the SQN thermal plume (i.e.,
Primary Study Area) be too small to allow collection of all replicate electrofishing runs, the needed remaining replicate runs will be conducted as close as practicable to the Primary Study Area and be identified in the data analyses. As indicated previously, the >2&#xba;C isopleth boundary that defines the Primary Study Area is not a rigid boundary; rather, its geometry changes in response to ambient river flows and temperatures and SQN operations (discharge flow). As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced.
11


phenyl Phenyl X Ether (7005-72-3)18B. Chr y sene (218-01-9)
Experimental gill nets (so called because of their use for research as opposed to commercial fishing) are used as an additional gear type to collect fish from deeper habitats not effectively sampled by electrofishing. Each experimental gill net consists of five-6.1 m (20 ft) panels for a total length of 30.5 m (100 ft). The distinguishing characteristic of experimental gill nets is mesh size that varies between panels. For this application, each net has panels with mesh sizes of 2.5 (1 inch (in)), 5.1 (2 in), 7.6 (3 in), 10.2 (4 in), and 12.7 (5 in) centimeters (cm). Experimental gill nets are typically set perpendicular to river flow extending from near-shore to the main channel of the reservoir. Ten overnight experimental gill net sets will be used at each area.
X19B.Dibenzo (a,h)Anthracene X (53-70-3)20B. 1 , 2-Dichloro-benzene (95-50-1)
Fish collected will be identified by species, counted, and examined for anomalies (such as disease, deformities, or hybridization).
X<0.001 1 mg/L<0.001 1 21B. 1 , 3-Dichloro-benzene (541-73-1)
Reservoir Benthic Macroinvertebrate Community Monitoring Benthic macroinvertebrates will be sampled with benthic grab samplers at ten equally-spaced points along the upstream (ambient) and downstream (mid-plume) sampling zones (Figures 3 and 4). A Ponar sampler (area per sample 0.06 m2) will be used for most samples. When heavier substrates are encountered, a Peterson sampler (area per sample 0.11 m2) will be used.
X<0.001 1 mg/L<0.001 1 EPA Form 3510-2C (8-90)
Bottom sediments will be washed on a 533 micron () screen; organisms will be picked from the screen and from any remaining substrate. Organisms will be sent to an independent laboratory for identification to the lowest practicable taxonomic level.
Page V-6 CONTINUE ON PAGE V-7 EPA I.D. NUMBER (copy from Item 1 of Form 1)
Reservoir Plankton Community Monitoring At the request of TDEC, phytoplankton samples will be obtained from a photic zone1 composite water sample collected at two locations each in the main channel area of the downstream sampling zone (Primary Study Area: mid-plume and plume downstream boundary; see Figure 3) and the upstream zone (Figure 4). This will be accomplished by lowering the intake end of a peristaltic pump sample tube to the bottom of the photic zone; and with the pump activated, slowly retrieving the sample tubing at a constant rate until the reservoir surface is reached. The phytoplankton data will be used to compare potential algal community response to thermal influence based on high-level taxonomy (i.e., Chrysophyta, Chlorophyta, Cyanophyta).
OUTFALL NUMBER CONTINUED FROM PAGE V-61. POLLUTANT2. MARK 'X
Zooplankton samples will be collected with a plankton net (300 millimeter (1 ft) diameter with 153  mesh) towed at two locations each in the main channel area of the downstream sampling zone (Primary Study Area: mid-plume and plume downstream boundary) and the upstream zone (Figures 3 and 4). Tows will consist of a vertical pull (tow) of the entire water column from 2 m off the bottom to the surface of the reservoir. Comparative analysis of zooplankton data from the two locations will be used to evaluate potential thermal influence on community structure.
'3. EFFLUENT
1 For the purposes of this study, the photic zone is defined as twice the Secchi disk transparency depth or 4 meters, whichever is greater.
: 4. UNITS 5. INTAKE (o p tional)AND CA Sa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMb. NO. OF NUMBERINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASSAVERAGE VALUEANAL-(if available)RE-PRE-AB-(1)(2) MASS (1)(2) MASS (1)(2) MASSANAL-TRATION(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued)22B. 1 , 4-Dichloro-benzene (106-46-7)X<0.001 1 mg/L<0.001 1 23B. 3 , 3'-Dichloro-benzidine X (91-94-1)24B. Dieth y l Phthalate X (84-66-2)25B. Dimeth y l Phthalate X (131-11-3)26B. Di-N-But y l Phthalate X (84-74-2)27B. 2 , 4-Dinitro-toluene (121-14-2)
12
X 28B. 2 , 6-Dinitro-toluene (606-20-2)
X 29B. Di-N-Oct y l Phthalate X (117-84-0)30B. 1,2-Di p hen y l-hydrazine (as Azo-X benzene)(122-66-7)31B. Fluoranthene (206-44-0)
X 32B. Fluorene (86-73-7)X 33B. Hexachlorobenzene (118-74-1)
X 34B. Hexa-chlorobutadiene X (87-68-3)35B. Hexachloro-


cyclopentadiene X (77-47-4)36B. Hexachloro-
Plankton sampling will be conducted once during the sampling events utilizing established TVA procedures. Among other criteria, these procedures specify replicate sampling, proper sample preservation, and data processing requirements.
Wildlife Community Evaluation The wildlife community will be evaluated via implementation of visual encounter (observational) wildlife survey methodology and supported through review of the available literature, and communications with natural resource agency contacts. The effort will focus on the more water dependent species of the herpetofaunal, avian, and mammalian communities.
These activities will assist in identifying the wildlife species expected for the ecoregion, establish the presence/absence of a BIP of wildlife in the study area, and support evaluation of potential direct effects of temperature on sensitive life stages and any indirect effects such as increased predation.
A review of available resources to identify any threatened or endangered species potentially occurring in the study area will also be conducted.
For the visual encounter surveys, two permanent transects will be established both upstream and downstream of the SQN thermal effluent. The midpoint of the upstream transect will be positioned at TRM 489.5 and span a distance of 2,100 m within this transect. The downstream transect will be located in the field based on sampling event and likewise span a distance 2,100
: m. The beginning and ending point of each transect will be marked with GPS for relocation.
Transects will be positioned approximately 30 m offshore and parallel to the shoreline occurring on both right and left descending banks. Basic inventories will be conducted to provide a representative sampling of wildlife present during summer (mid-July - August) and late autumn-early winter (October - December).
Each transect will be surveyed by steadily traversing the length by boat and simultaneously recording observations of wildlife. Sampling frame of each transect will generally follow the strip or belt transect concept with all individuals enumerated that crossed the center-line of each transect landward to an area that included the shoreline and riparian zone (i.e., belt width generally averages 60 m where vision is not obscured). Information recorded will include wildlife identification (to the lowest taxonomic trophic level) that is observed visually and/or audibly and a direct count of individuals observed per trophic level. If flocks of a species or mixed flock of a group of species are observed, an estimate of the number of individuals present will be generated. Time will be recorded at the starting and ending point of each transect to provide a general measure of effort expended. However, times may vary among transects primarily due to the difficulty in approaching some wildlife species without inadvertently flushing them from basking or perching sites. To compensate for the variation of effort expended per transect, observations will be standardized to numbers per minute or numbers per hectare in preparation for analysis.
13


ethane (67-72-1)
The principal objective and purpose behind the wildlife surveys are to provide a preliminary set of observations to verify trophic levels of birds, mammals, amphibians and reptiles present that might be affected by thermal effects of the power plant (i.e., the ATL). If trophic levels are not represented, further investigation will be used to target specific species and/or species groups (guilds) that will determine the cause.
X 37B. Indeno (1,2,3-cd)
Task 7 -Water Supply and Recreational Use Support Evaluation Water temperature data collected as part of the thermal mapping (Task 2) and collection of supporting water quality information (Task 5) will be used to evaluate potential thermal impacts to water supply and recreational uses in the vicinity of SQN. Locations of any public water supply intakes and/or established public recreational areas will be determined and their position(s) mapped relative to the SQN thermal plume. We are aware of one domestic water supply intake located within approximately 10 river miles downstream of the SQN thermal discharge (Figure 1). The existence of any relevant water temperature data collected by the owners of these water supply intake(s) will be determined; and if available, requested to augment the field-collected data. As necessary (limited or no available owner-supplied temperature data),
Pyrene X (193-39-5)38B. Iso p horone (78-59-1)X 39B. Na p hthalene (91-20-3)X 40B. Nitrobenzene (98-95-3)X 41B. N-Nitro-
direct measurements of water temperature may also be conducted specifically at these locations to evaluate potential thermal effects of the SQN discharge.
3.3    Data Contribution to the Analysis/Demonstration The analysis of fish, macroinvertebrate, and plankton community data will include traditional analyses whereby community attributes for the thermally affected areas will be compared to the non-thermally affected ambient location. For the purposes of the demonstration (within river/reservoir comparisons), the composition of fish and macroinvertebrate assemblages collected at the upstream station, uninfluenced by the SQN thermal discharge, is expected to set the baseline for evaluating the presence of a BIP in the downstream thermally influenced area. In that regard, a BIP is the expected determination for the thermally uninfluenced area.
3.3.1 Traditional Analyses As applicable, biological community data will be compiled into tables providing a listing of species collected and their status with regard to expected occurrence in the ecoregion. Reference materials such as: The Fishes of Tennessee (Etnier and Starnes, 1993); similarly applicable publications; and best professional judgment by experienced aquatic biologists will be used for this determination. The dataset will be further evaluated with regard to the following:
* Life stages represented,
* Food chain species present (e.g., predator and prey species),
* Thermally-tolerant or -sensitive species present (based on Yoder et al., 2006),
* Representative Important Species (commercially and/or recreationally); and
* Other community attributes (fish and macroinvertebrates) 14


sodimethylamine X (62-75-9)42B. N-Nitrosodi-
To evaluate similarity with the downstream thermally influenced area, traditional species diversity indices will be used. Diversity indices provide important information about community composition and take the relative abundances of different species into account as well as species richness (i.e., number of individual species). Two diversity indices will be calculated for each sample location; such as: the Shannon-Weiner diversity index (H) (Levinton, 1982) and Simpsons Index of Diversity (Ds) (Simpson, 1949). Of the many biological diversity indices, these two indices are the most commonly reported in the scientific literature and will be evaluated for use in determining if community structure is similar between the thermally influenced and non-thermally influenced sampling locations. Other methods/indices for evaluating similarity between sampling sites will also be considered.
Based on the BIP baseline for the thermally uninfluenced ambient (upstream) location, comparative statistical analysis of the diversity indices and/or other measures of biological community status such as: species richness, relative abundance, pollution tolerance, trophic guilds, indigenousness, and thermal sensitivity (each pending sufficient sample size) will be used to confirm the presence/absence of a BIP in the thermally influenced study area.
3.3.2 Supporting Multimetric Bioassessment Upon review of the species listings and establishment that the fish and macroinvertebrate populations are appropriate to the aquatic systems of the ecoregion, sample data also will be analyzed using TVAs Reservoir Fish Assemblage Index (RFAI) methodology (McDonough and Hickman 1999) and Reservoir Benthic Index to further evaluate if the SQN thermal discharge has materially changed ecological conditions in the receiving water body (Tennessee River -
Chickamauga Reservoir).
Reservoir Fish Assemblage Index The RFAI uses 12 fish assemblage metrics from four general categories: Species Richness and Composition (8 metrics); Trophic Composition (two metrics); Abundance (one metric); and Fish Health (absence of anomalies) (one metric). Individual species can be utilized for more than one metric.
Each metric is assigned a score based on expected fish assemblage characteristics in the absence of human-induced impacts other than impoundment of the reservoir. Individual metric scores for a sampling area (i.e., upstream or downstream) will be summed to obtain the RFAI score for each sample location and comparatively analyzed. The maximum RFAI score is 60.
Ecological health ratings (12-21 Very Poor, 22-31 Poor, 32-40 Fair, 41-50 Good, or 51-60 Excellent) are then applied to scores.
Based on statistical analysis of multiple RFAI datasets, RFAI scores between sites (e.g.,
downstream vs. upstream) will need to differ by 6 points or more to be considered to have different fish assemblages based on documented variability in the sampling methodology.
15


Propylamine X (621-64-7)TN5640020504 103 EPA Form 3510-2C (8-90)
Regardless of the scores, a metric-by-metric examination will be conducted; this review will be helpful in evaluating potential metric-specific impacts that may be thermally related.
Page V-7 CONTINUE ON PAGE V-8 CONTINUED FROM PAGE V-7
Reservoir Benthic Macroinvertebrate Index The RBI is similarly calculated as the RFAI except that it uses seven metrics specific to the macroinvertebrate assemblage. Each metric is assigned a score based on reference conditions and then summed to produce an overall RBI score for each sample site. The maximum RBI score is
: 1. POLLUTAN T 2. MARK 'X'
: 35. Ecological health ratings (7-12 Very Poor, 13-18 Poor, 19-23 Fair, 24-29 Good, or 30-35 Excellent) will then be applied to scores.
: 3. EFFLUENT
Based on statistical analysis of multiple RBI datasets, RBI scores between sites (e.g.,
: 4. UNITS 5. INTAKE (o p tional)AND CA Sa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALUEb. MAXIMUM 30 DAY VALUEc. LONG TERM AVRG. VALUEa. LONG TERMb. NO. OF NUMBERINGLIEVEDLIEVED(if available)(if available)d. NO. OFa. CONCEN-b. MASSAVERAGE VALUEANAL-(if available)RE-PRE-AB-(1)(2) MASS (1)(2) MASS (1)(2) MASSANAL-TRATION(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued)43B. N-Nitro-sodiphenylamine X (86-30-6)44B. Phenanthrene
downstream vs. upstream) that differ by 4 points or more will be considered to have different macroinvertebrate assemblages. A metric-by-metric examination will also be conducted, regardless of the scores, to evaluate potential thermally-related impacts on specific metrics.
3.3.4 Reasonable Potential Evaluation Based on existing information and temperature data collected/obtained during the study, the reasonable potential for the thermal discharge to impair current and future water supply and recreational (water contact) uses will be evaluated. The measured temperatures at the water supply intake location and location of any named recreational areas or areas where recreational users are known to congregate within the thermally influenced area (if any), will form the basis for determining reasonable potential for use impairment. Should reasonable potential be indicated, TVA will discuss with TDEC; and as necessary, submit a revised scope of work (study design) for this task (Task 7) proposing additional data collections and/or analysis to focus the evaluation.
3.4    Reporting A final Project Report will be prepared providing a description of the study design, data collection methods, SQN operational data, thermal plume mapping results, water quality monitoring data, and aquatic and wildlife community information. Raw data and associated field collection parameters will be appended to the report.
Results and conclusions regarding the &sect;316(a) demonstration (maintenance of a BIP) and support of other use classifications (recreation and water supply) will be presented.
3.5    Study Schedule Summary Field sampling will be conducted during summer (mid-July - August) once during the SQN permit cycle and autumn (October - mid-December); each event will include sampling of the Primary Study Area/downstream zone and upstream/ambient zone.
16


(85-01-8)X 45B. Pyrene (129-00-0)
TVA will provide TDEC with an interim progress report of the summer 2011 sampling results in spring of 2012. Final report will be completed and submitted with the SQN NPDES permit renewal package.
X 46B. 1 , 2 , 4 - Tri-chlorobenzene X<0.001 1 mg/L<0.001 1 (120-82-1)GC/MS FRACTION - PESTICIDES 1P. Aldrin (309-00-2)
17
X 2P.BHC (319-84-6)
X 3P.-BHC (319-85-7)
X 4P.-BHC (58-89-9)X 5P.-BHC (319-86-8)
X 6P. Chlordane (57-74-9)X 7P. 4 , 4'-DDT (50-29-3)X 8P. 4 , 4'-DDE (72-55-9)X 9P. 4 , 4'-DDD (72-54-8)X 10P. Dieldrin (60-57-1)X 11P.-Endosulfan (115-29-7)
X 12P.-Endosulfan (115-29-7)
X 13P. Endosulfan Sulfate X (1031-07-8)14P. Endrin


(72-20-8)X 15P. Endrin
4.0    LITERATURE CITED EPA 1977. Draft Interagency 316(a) technical guidance manual and guide for thermal effects sections of nuclear facilities environmental impact statements. U.S. Environmental Protection Agency and U.S. Nuclear Regulatory Commission. U.S. Environmental Protection Agency, Office of Water Enforcement, Permits Division, Industrial Permits Branch, Washington, D.C.
Etnier, D.A. & Starnes, W.C. 1993. The Fishes of Tennessee. University of Tennessee Press, Knoxville, TN, 681 pp.
Hickman, G.D. and T.A. McDonough. 1996. Assessing the Reservoir Fish Assemblage Index-A potential measure of reservoir quality. In: D. DeVries (Ed.) Reservoir symposium-Multidimensional approaches to reservoir fisheries management. Reservoir Committee, Southern Division, American Fisheries Society, Bethesda, MD. pp 85-97.
Hubert, W. A. 1996. Passive capture techniques, entanglement gears. Pages 160-165 in B. R.
Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society, Bethesda, MD.
Jennings, M. J., L. S. Fore, and J. R. Karr. 1995. Biological monitoring of fish assemblages in Tennessee Valley reservoirs, Regulated Rivers: Research and Management, Vol. 11, pages 263-274.
Levinton, J.S. 1982. Marine Ecology. Prentice-Hall, Inc. Englewood Cliffs, NJ McDonough, T.A. and G.D. Hickman. 1999. Reservoir Fish Assemblage Index development: A tool for assessing ecological health in Tennessee Valley Authority impoundments. In:
Assessing the sustainability and biological integrity of water resources using fish communities. Simon, T. (Ed.) CRC Press, Boca Raton, FL. pp 523-540.
Reynolds, J.B. 1996. Electrofishing. Pages 221-251 in B. R. Murphy and D. W. Willis, editors.
Fisheries techniques, 2nd edition. American Fisheries Society, Bethesda, MD.
Simpson, E.H. (1949) Measurement of diversity. Nature 163:688 see http://www.wku.edu/~smithch/biogeog/SIMP1949.htm TVA 2011. Biological Monitoring of the Tennessee River Near Sequoyah Nuclear Plant Discharge Autumn 2010. Tennessee Valley Authority, Knoxville, TN.
TVA 1989. A Predictive 316(a) Demonstration for an Alternative Winter Thermal Discharge Limit for Sequoyah Nuclear Plant, Chickamauga Reservoir, Tennessee. Tennessee Valley Authority, Chattanooga, TN Yoder, C.O., B.J. Armitage, and E.T. Rankin. 2006. Re-evaluation of the technical justification for existing Ohio River mainstem temperature criteria. Midwest Biodiversity Institute, Columbus, OH.
18


Aldehyde X (7421-93-4)16P. Heptachlor (76-44-8)X EPA Form 3510-2C (8-90)
FIGURES 19
Page V-8 CONTINUE ON PAGE V-9 EPA I.D. NUMBER (copy from Item 1 of Form 1
)OUTFALL NUMBER CONTINUED FROM PAGE V-8
: 1. POLLUTAN T 2. MARK 'X'
: 3. EFFLUEN T 4. UNITS 5. INTAKE (o p tional)AND CASa. TEST-b. BE-c. BE-a. MAXIMUM DAILY VALU E b. MAXIMUM 30 DAY VALU E c. LONG TERM AVRG. VALUE
: a. LONG TERMa. LONG TERMb. NO. OF NUMBERINGLIEVEDLIEVED(if available)(if available)
: d. NO. OF A VERAGE VALUE A VERAGE VALUE A NAL-(if available)RE-PRE-A B-(1)(2) MASS (1)(2) MASS (1)(2) MASS ANAL-a. CONCEN-b. MASS(1) CONCEN-(2) MASSYSESQUIREDSENTSENTCONCENTRATIONCONCENTRATIONCONCENTRATIONYSESTRATIONTRATION GC/MS FRACTION - PESTICIDES (continued)17B. He p tachlo r Epoxide X (1024-57-3)18P. PCB-1242 (53469-21-9)
X 19P. PCB-1254


(11097-69-1)
Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge 20
X 20P. PCB-1221


(11104-28-2)
Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 21
X 21P. PCB-1232


(11141-16-5)
Biomonitoring Stations Downstream of Sequoyah Nuclear Plant
X 22P. PCB-1248
* Electrofi shing Stations o  Gil l N etting Sta tions
              -     Benthic Macroinvertebrate Transects Figure 3. Biological monitoring zone downstream of Sequoyah Nuclear plant 22


(12672-29-6)
Biomonitoring Stations Upstream of Sequoyah Nuclear Plant
X 23P. PCB-1260
* Electrofishing Stations o  Gill Netting Stations
                                      -     Benthic Macroinvertebrat e Transects Figure 4. Biological monitoring zone upstream of Sequoyah Nuclear plant thermal discharge 23


(11096-82-5)
Transects for Shoreli ne Aquatic Habitat Index (SAH I)
X 24P. PCB-1016
Upstream and Dow nstream of Sequoyah Nuclear Plant CCW Discharge
                - - SAHI Transect s Figure 5. Anticipated transects to be established for conduct of the integrative multi-metric aquatic shoreline habitat assessment 24


(12674-11-2)
Biological Monitoring of the Tennessee River Near Sequoyah Nuclear Plant Discharge, Summer and Autumn 2011 May 2012 Tennessee Valley Authority Biological and Water Resources Knoxville, Tennessee
X 25P. Toxa p hen e (8001-35-2)
XTN5640020504103 EPA Form 3510-2C (8-90)
Page V-9 42.320ERCW Intake 40.306ERCW Screen & Strainer  BackwashCCWDischarge 0.014 Outfall 117Intake Forebay 1447.871CCW Trash Sluice 0.006 Outfall 116Tennessee RiverCondenserCooling(INACTIVE)
Outfall 118Dredge Pond Outfall 110 DP 1447.014Raw WaterTreatmentCond. Circulating WaterRaw Cooling Water Diesel fuel recover trench High Press Fire water Potable waterCooling Water CCW Discharge Channel (DC)Helper ModeCold WaterReturn ChannelCondenser CoolingWater (CCW)
Intake 1447.865CondenserCirculating SystemTennesse e NS 0.024 1409.865Cooling Tower Bl o w down B as inCooling TowersUnits 1 & 2 NS 0.058Closed ModeTBSCCW Discharge Channel CCS Wastewaters Primary System Waste LVP 38.000 e RiverLiquid RadwasteTreatment System (LRW)odoas(CTB)DCRaw Cooling WaterSystem0875 37.125Radioactive Floor Drain and SumpWest Valve Vault Room DrainsLaundry, Shower, and Chemical DrainsCCS Wastewater Condensate Demin. SystemWastewater 0.030Low Volume WasteTreatment Pond (LVP)Diffuser Pond (DP) 40.436 NS 0.004 0.177 NS 0.049 1447.014Neutral Waste Sum pSteam Generator BlowdownERCW System Condensate Demin.System (Alt) 0.050Raw WaterTreatmentRaw Service WaterSystemMiscellaneousEquipment Cooling Outfall 101 1490.854 0.412Water TreatmentSystem 1.230IMP 107 0.0022 2.125Emergency Spillway Outfall 101E 0.875TBS 0.463Makeup Water ProcesswastewatersSystem WastewaterRaw WaterLeaks & Draindowns YDP 1.047IMP 103 pUnlined MetalCleaningWaste PondLined MetalCleaningWaste Pond NSTreatmentTurbine Building Sump (TBS)Yard DrainagePond (YDP)System 1.047Process wastewatersFilter Backwash andWTP WastewatersMake-up Water(DWST)Component CoolingSystemTBS 0.030 0.004Primary SystemCCS WastewaterLRW DP NS 0.006 1 DC YDP 2.119TBS 0.030 0.202Condensate DeminSystemSystem Steam Generator Fill 0.180Steam GeneratorBlowdownSecondary System 0.030CTBLRWSecondary SystemLeaks&DowndrainsMiscellaneous Low Volume Wastewater & Yard DrainageService Building SumpOffice Bldg Floor & Equip Drains Diesel Gen Bldg Sump & O&G Interceptor (o/w separator)Backup Security Diesel O&G  Interceptor (o/w separator)Solar Bldg Sump Air Cooling Water Switchyard Bus Cooling Water Miscellaneous line leaks, flushesand draindownsERCWt itdidMiscellaneous Low Volume WastewatersMiscellaneous Equipment Cooling WaterEssential Raw Cooling Water Maintenance DraindownComponent Cooling SystemWastewaterProcess waters and wastewaters Steam Generator Blowdown Condensate DeminRegenWaste Secondary System leaks andDraindownsTennessee Valley AuthorityShNlPltCondensate DeminRegeneration WasteSystem 0.100 0.022Negligible flow n Leaks & DowndrainsTBS ERCW sys tem ma i n t. d ra i n downsElectrical Sumps East Valve Vault Room drains Pressure washing & vehicle rinses Switchyard stormwater runoff Landfill RunoffIce Condenser waste Laboratory wastewaters Turbine Building floor andEquipment drainsAlum Sludge PondCTB DCCCW Discharge ChannelCooling Tower Basin S equoya h N uc l ear Pl an tWastewater Flow SchematicNPDES Permit No. TN0026450 April 2013All  flows shown in million gallons per day (MGD)
Alternate pathChemical Additive Net Stormwater Flow (runoff, precipitation, less evaporation)
NS DPTBSLRW LVP YDPLiquid RadwasteTreatment SystemTurbine Building SumpLow Volume Waste Treatment PondYard Discharge PondDiffuser Pond CN-1090 (rev. 04-2007)
RDAs 2352 AND 2366 Tennessee Department of Environment and Conservation        Division of Water Pollution Control                    401 Church Street, 6 th Floor L & C Annex                                                                            Nashville, TN  37243-1534 Phone: (615)532-0625 PERMIT CONTACT INFORMATION Please complete all sections. If one person serves multiple functions, please repeat this information in each section.
PERMIT NUMBER:          TN0026450 DATE:    April 2013 PERMITTED FACILITY:
TVA Sequoyah Nuclear Plant                    COUNTY:      Hamilton    (The permit signatory authority, e.g. responsible corporate officer, principle executive officer or ranking elected official)
John T. Carlin Site Vice President      Sequoyah Acess Road, PO Box 2000    Soddy Daisy TN 37379      (423) 843-7001 jtcarlin@tva.gov Brad M. Love Environmental Scientist      Sequoyah Acess Road, PO Box 2000    Soddy Daisy TN 37379      (423) 843-6714 bmlove@tva.gov


Brad M. Love Environmental Scientist Seqouyah Access Road    Soddy Daisy TN 37379                              (423) 843-6714 bmlove@tva.gov
Table of Contents Table of Contents ............................................................................................................................. i List of Tables ................................................................................................................................. iii List of Figures ................................................................................................................................ vi Acronyms and Abbreviations ...................................................................................................... viii Introduction ..................................................................................................................................... 1 Plant Description ............................................................................................................................. 2 Methods........................................................................................................................................... 2 Shoreline Aquatic Habitat Assessment ........................................................................................... 2 River Bottom Habitat ...................................................................................................................... 3 Fish Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN....................................................................................................................................... 3 Traditional Analyses ....................................................................................................................... 8 Benthic Macroinvertebrate Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN ...................................................................................................... 9 Plankton Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN ................................................................................................................................ 11 Phytoplankton ............................................................................................................................... 11 Zooplankton .................................................................................................................................. 12 Data Analysis ................................................................................................................................ 12 Visual Encounter Surveys (Observations of Wildlife) ................................................................. 12 Chickamauga Reservoir Flow and SQN Temperature.................................................................... 1 Thermal Plume Characterization .................................................................................................... 1 Water Quality Parameters at Fish Sampling Sites during RFAI Samples ...................................... 2 Results and Discussion ................................................................................................................... 2 Aquatic Habitat in the Vicinity of SQN .......................................................................................... 2 Shoreline Aquatic Habitat Assessment ........................................................................................... 2 River Bottom Habitat ...................................................................................................................... 3 Fish Community.............................................................................................................................. 3 Traditional Analyses ....................................................................................................................... 9 Benthic Macroinvertebrate Community ....................................................................................... 12 Plankton Community .................................................................................................................... 15 Plankton Summary ........................................................................................................................ 18 Review of Previous Plankton Studies ........................................................................................... 19 Visual Encounter Survey/Wildlife Observations .......................................................................... 20 Chickamauga Reservoir Flow and Temperature Near SQN ......................................................... 21 i


Yes          No*              . OFFICIAL PERMIT CONTACT: Official Contact:Title or Position:PERMIT BILLING ADDRESS (where invoices should be sent):
Thermal Plume Characterization .................................................................................................. 21 Water Quality Parameters at Fish Sampling Sites During RFAI Samples ................................... 22 Literature Cited ............................................................................................................................. 23 Tables ............................................................................................................................................ 25 Figures........................................................................................................................................... 77 ii
Billing Contact: Phone number(s):Title or Position:
Mailing Address:City:State:Zip:E-mail:FACILITY LOCATION (actual location of permit site and local contact for site activity): Facility Location Contact:Phone number(s):Title or Position
:Facility Location (physical street address):City:State:Zip:E-mail:Alternate Contact (if desired): Phone number(s):Title or Position:
Mailing Address:
City: State:Zip:E-mail:FACILITY REPORTING (Discharge Monitoring Report (DMR) or other reporting):
Mailing Address:City:State:Zip:E-mail:Phone number(s):Cognizant Official authorized for permit reporting:Phone number(s):E-mail:Fax number for reporting:Does the facility have interest in starting  electronic DMR reporting?* Facility Location (physical street address):City:State:Zip:Title or Position:
TENNESSEE VALLEY AUTHORITY (TVA) - SEQUOYAH NUCLEAR PLANT (SQN) - NPDES PERMIT NO. TN0026450 - WET REASONABLE POTENTIAL


Current Whole Effluent Toxicity (WET) Requirements
List of Tables Table 1. Shoreline Aquatic Habitat Index (SAHI) metrics and scoring criteria. ......................... 26 Table 2. Expected values for upper mainstem Tennessee River reservoir transition and forebay zones ................................................................................................................................... 27 Table 3. Average trophic guild proportions and average number of fish species, bound by confidence intervals (95%), expected in upper mainstem Tennessee River reservoir transition and forebay zones and proportions and numbers of species observed during summer and autumn 2011. .................................................................................................. 28 Table 4. RFAI scoring criteria (2002) for fish community samples in forebay, transition, and inflow sections of upper mainstream Tennessee River reservoirs. ..................................... 29 Table 5. Scoring criteria for benthic macroinvertebrate community samples (lab-processed) for forebay, transition, and inflow sections of mainstream Tennessee River reservoirs. ......... 30 Table 6. SAHI scores for 16 shoreline habitat assessments conducted within the Upstream RFAI sampling area of SQN on Chickamauga Reservoir, autumn 2009. .................................... 31 Table 7. SAHI Scores for 16 Shoreline Habitat Assessments Conducted within the Downstream RFAI Sampling Area of SQN on Chickamauga Reservoir, Autumn 2009. ....................... 32 Table 8. Substrate percentages and average water depth (ft) per transect upstream (8 transects) and downstream (8 transects) of SQN. ............................................................................... 33 Table 9. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of Sequoyah Nuclear Plant Summer 2011. .................................. 34 Table 10. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of (Sequoyah nuclear) Autumn 2011. .......................................... 38 Table 11. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Summer 2011. ........... 42 Table 12. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Summer 2011. ................................ 43 Table 13. Autumn 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Autumn 2011. ........... 44 Table 14. Autumn 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Autumn 2011. ................................. 45 Table 15. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run), tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, summer 2011. ...................................................... 46 Table 16. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run), tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, autumn 2011........................................................ 47 iii
:      Outfall 101 -
7-day or 3-brood IC 25  Hard Trigger = 43.2%   [IWC = 43.2% effluent (2.3 TUc)]          Monitoring Frequency Governed by B/CTP:
1/year when oxidizing biocides used    1/year when non-oxidizing biocides used Proposed WET Requirements
:      Outfall 101 -
7-day or 3-brood IC 25  Hard Trigger = 42.8% [IWC = 42.8% effluent (2.3 TUc)]
Monitoring Frequency Governed by B/CTP:
1/year when oxidizing biocides used 1/year when non-oxidizing biocides used


==Background:==
Table 17. Summary of RFAI scores from sites located directly upstream and downstream of Sequoyah Nuclear Plant as well as scores from sampling conducted during autumn 1993-2011 as part of the Vital Signs Monitoring Program in Chickamauga Reservoir. ............. 48 Table 18. Comparison of mean density per square meter of benthic taxa collected at upstream and downstream sites near SQN during August and October 2011.................................... 49 Table 19. Summary of RBI Scores from Sites Located Directly Upstream and Downstream of Sequoyah Nuclear Plant as Well as Scores from Sampling Conducted as Part of the Vital Signs Monitoring Program in Chickamauga Reservoir. ..................................................... 50 Table 20. Comparison of mean density per Square Meter of Benthic Taxa collected with a Ponar Dredge along Transects Upstream and Downstream of Sequoyah Nuclear Plant, Chickamauga Reservoir, Summer and Autumn 2011......................................................... 51 Table 21. Individual Metric Ratings and the Overall RBI Field Scores for Downstream and Upstream Sampling Sites Near SQN, Chickamauga Reservoir, Autumn 2000-2010. ....... 56 Table 22. Mean percent composition of major phytoplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011...................................................... 57 Table 23. Comparison of the similarity of phytoplankton taxa within paired replicate samples. 57 Table 24. Taxa richness of the main phytoplankton groups. ....................................................... 57 Table 25. Percent Similarity Index for comparison of phytoplankton communities among sites.
      ............................................................................................................................................. 57 Table 26. Phytoplankton taxa and density (cells/ml) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.
Abbreviations R1 and R2 designate replicate samples. ................................................. 58 Table 27. Percentage Composition of phytoplankton for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. ...... 61 Table 28. Concentrations of chlorophyll a (apparent and corrected), phaeophytin a and the chlorophyll/phaeophytin index values for samples collected upstream and downstream of SQN during 2011. ............................................................................................................... 64 Table 29. Mean percent composition of major zooplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011. ........................................................... 64 Table 30. Comparison of the similarity of zooplankton taxa within paired replicate samples. ... 65 Table 31. Taxa richness of the main zooplankton groups. ........................................................... 65 Table 32. Percent Similarity Index for comparison of zooplankton communities among sites. . 65 Table 33. Zooplankton taxa and density (organisms/m3) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. Abbreviations R1 and R2 designate replicate samples. ................................ 66 Table 34. Percentage composition of zooplankton taxa for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.
      ............................................................................................................................................. 68 Table 35. Wildlife Visual Encounter Survey Results of Shoreline Upstream and Downstream of Sequoyah Nuclear Plant during August (Summer) and October (Autumn) 2011. (RDB =
right descending bank, LDB = Left Descending Bank) ...................................................... 70 iv


The current permit, effective March 1, 2011, requires chronic toxicity biomonitoring at a frequency governed by the B/CTP and with a monitoring limit (IC 25  43.2%) that serves as a hard trigger for accelerated biomonitoring. Previous to the issuance of the current permit, Outfall 101 demonstrated No Reasonable Potential for excursions above the
Table 36. Water temperature (&deg;F) profiles measured at five locations (10%, 30%, 50%, 70%,
90%) from right descending bank along transects located at TRM 486.7 (ambient), TRM 483.4 (discharge), TRM 481.1 (middle of plume), TRM 480.0 (downstream limit of plume), and TRM 478.3 (below plume) on August 25, 2011 (Summer)............................ 71 Table 37. Water temperature (&deg;F) profiles measured at five locations (10%, 30%, 50%, 70%,
90%) from right descending bank along transects located at TRM 487 (ambient), TRM 483.4 (discharge), TRM 482.2 (below discharge), TRM 481.0 (downstream limit of plume), and TRM 478.3 (below plume) on September 14, 2011 (Autumn). ..................... 72 Table 38. Seasonal water quality parameters collected along vertical depth profiles downstream (TRM 482) and upstream (TRM 490.5) of the Sequoyah Nuclear Plant in Chickamauga Reservoir on the Tennessee River. Abbreviations: &deg;C -Temperature in degrees Celsius, &deg;F
      - Temperature in degrees Fahrenheit, Cond - Conductivity, DO - Dissolved Oxygen ..... 73 v


ambient water quality chronic (CCC) criteri on using historical effluent data. This demonstration of No Reasonable Potential has been maintained throughout the current
List of Figures Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge ................ 78 Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 ...................... 79 Figure 3. Biological monitoring stations upstream of Sequoyah Nuclear Plant. ......................... 80 Figure 4. Biological monitoring stations downstream of Sequoyah Nuclear Plant, including mixing zone and thermal plume from SQN CCW discharge. ............................................ 81 Figure 5. Benthic and shoreline habitat transects within the fish community sampling area upstream and downstream of SQN. .................................................................................... 82 Figure 6. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge during October 2010 through November 2011. ........................................................................................... 83 Figure 7. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River downstream of SQN. ............................................................................... 84 Figure 8. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River downstream of SQN. ............................................................................... 85 Figure 9. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River downstream of SQN. ............................................................................... 86 Figure 10. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River downstream of SQN. ............................................................................... 87 Figure 11. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River upstream of SQN. .................................................................................... 88 Figure 12. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River upstream of SQN. .................................................................................... 89 Figure 13. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River upstream of SQN. .................................................................................... 90 Figure 14. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River upstream of SQN. .................................................................................... 91 Figure 15. Number of indigenous fish species collected during RFAI samples downstream of SQN (TRM 482) during 1996 and 1999 through 2011....................................................... 92 Figure 16. Number of indigenous fish species collected during RFAI samples upstream of SQN (TRM 490.5) during 1993 to 1997 and 1999 through 2011. .............................................. 92 Figure 17. Proportions of selected benthic taxa from Ponar dredge sampling at locations upstream and downstream of SQN, summer and autumn 2011.......................................... 93 Figure 18. Mean phytoplankton densities (cells/ml) for samples collected August 25, 2011. .... 94 Figure 19. Mean phytoplankton biovolume (&#xb5;m3/ml) for samples collected August 25, 2011. . 94 Figure 20. Mean phytoplankton densities (cells/ml) for samples collected October 10, 2011. .... 94 Figure 21. Mean phytoplankton biovolume (&#xb5;m3/ml) for samples collected October 10, 2011. 94 Figure 22. Mean chlorophyll a concentrations for samples collected August 25 and October 10, 2011..................................................................................................................................... 95 vi


permit cycle as evidenced in the accompanying historical effluent data for the last 20 studies.  
Figure 23. Mean zooplankton densities (number/m3) for samples collected August 25, 2011. .. 95 Figure 24. Mean zooplankton densities (number/m3) for samples collected October 10, 2011 .. 95 Figure 25. Dendrogram of phytoplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month. (Coph. Corr =
0.89) .................................................................................................................................... 96 Figure 26. Dendrogram of phytoplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month. (Coph. Corr =
0.78) .................................................................................................................................... 97 Figure 27. Dendrogram of zooplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month. (Coph. Corr =
0.87) .................................................................................................................................... 98 Figure 28. Dendrogram of zooplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month. (Coph. Corr =
0.78) .................................................................................................................................... 99 Figure 29. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, August 23 through August 25, 2011 ...................................................................... 100 Figure 30. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, October 8 through October 10, 2011 ...................................................................... 100 Figure 31. Total daily average releases (cubic feet per second) from Watts Bar, Apalachia, and Ocoee 1 dams, October 2010 through November 2011 and historic daily average flows averaged for the same period 1976 through 2010. ............................................................ 101 Figure 32. Daily average water temperatures (&deg;F) at a depth of five feet, recorded upstream of SQN intake (Station 14) and downstream of SQN discharge (Station 8), October 2009 through November 2010. .................................................................................................. 102 vii


Based on guidance in EPA's Technical Support Document (TSD) for Water Quality-based Toxics Control (EPA/505/2-90-001), a permit limit is not required when No Reasonable Potential exists for excursions above the CCC. In this situation, the TSD recommends that biomonitoring be conducted at a frequency of once every 5 years as part of the permit renewal process.
Acronyms and Abbreviations BIP  Balanced Indigenous Population CCW  Condenser cooling water CFS  Cubic feet per second MW    Megawatts NPDES National Pollutant Discharge Elimination System QA    Quality Assurance RBI  Reservoir Benthic Macroinvertebrate Index RFAI  Reservoir Fish Assemblage Index SAHI  Shoreline Assessment Habitat Index SQN  Sequoyah Nuclear Plant TRM  Tennessee River Mile TVA  Tennessee Valley Authority VS    Vital Signs viii


Proposed Changes:
Introduction Section 316(a) of the Clean Water Act (CWA) authorizes alternative thermal limits (ATL) for the control of the thermal component of a discharge from a point source so long as the limits will assure the protection of Balanced Indigenous Populations (BIP) of aquatic life. The term balanced indigenous population, as defined in EPAs regulations implementing Section 316(a),
: 1. TVA requests that the current permit's requirement for the B/CTP to govern the frequency of biomonitoring remain (i.e., once per year when oxidizing biocides are used, and once per year when non-oxidizing biocides are used).  
means a biotic community that is typically characterized by:
: 2. TVA requests that the current monitoring limit be replaced with an IC 25 = 42.8%, which is based on revised effluent flow, and is consistent with the TSD guidance for effluents demonstrating No Reasonable Potential. Toxicity at the instream wastewater concentration (IWC) would serve only as a har d trigger for accelerated biomonitoring, as stated in the current permit.
(1) diversity appropriate to ecoregion; (2) the capacity to sustain itself through cyclic seasonal changes; (3) the presence of necessary food chain species; (4) lack of domination by pollution-tolerant species; and Prior to 1999, the Tennessee Valley Authoritys (TVA) Sequoyah Nuclear Plant (SQN) was operating under a 316(a) ATL that had been continued with each permit renewal based on studies conducted in the mid-1970s. In 1999, EPA Region IV began requesting additional data in conjunction with NPDES permit renewal applications to verify that BIP was being maintained at TVAs thermal plants with ATLs. TVA proposed that its existing Vital Signs (VS) monitoring program, supplemented with additional fish and benthic macroinvertebrate community monitoring upstream and downstream of thermal plants with ATLs, was appropriate for that purpose. The VS monitoring program began in 1990 in the Tennessee River System. This program was implemented to evaluate ecological health conditions in major reservoirs as part of TVAs stewardship role. One of the 5 indicators used in the VS program to evaluate reservoir health is the Reservoir Fish Assemblage Index (RFAI) methodology. RFAI has been thoroughly tested on TVA and other reservoirs and published in peer-reviewed literature (Jennings, et al.,
2 3. TVA requests changes to the Serial Dilutions table as follows:
1995; Hickman and McDonough, 1996; McDonough and Hickman, 1999). Fish communities are used to evaluate ecological conditions because of their importance in the aquatic food web and because fish life cycles are long enough to integrate conditions over time. Benthic macroinvertebrate populations are assessed using the Reservoir Benthic Index (RBI) methodology. Because benthic macroinvertebrates are relatively immobile, negative impacts to aquatic ecosystems can be detected earlier in benthic macroinvertebrate communities than in fish communities. These data are used to supplement RFAI results to provide a more thorough examination of differences in aquatic communities upstream and downstream of thermal discharges.
Page 22 of 28, table following paragraph 3
TVA initiated a study to evaluate fish and benthic macroinvertebrate communities in areas immediately upstream and downstream of SQN during autumn 1999-2011 using RFAI and RBI multi-metric evaluation techniques. Beginning in 2011, evaluations of plankton and wildlife communities were included as well. This report presents the results of summer and autumn 2011 RFAI, RBI, plankton, and wildlife data collected upstream and downstream of SQN.
1
: 4. TVA also requests that all other text in Section E of the permit remain unchanged.  


Dilution and Instream Waste Concentration Calculations
Plant Description Sequoyah Nuclear Power Plant (SQN) is located on the right (west) bank of Chickamauga Reservoir at Tennessee River Mile (TRM) 484.5 approximately 18 miles northeast of Chattanooga, Tennessee, and 7 miles southwest of Soddy-Daisy, Tennessee. SQN is situated approximately 54.5 river miles downstream from Watts Bar Dam and 13.5 river miles upstream from Chickamauga Dam (Figure 1).
SQN Unit 1 began commercial operation on July 1, 1981, and Unit 2 on June 1, 1982. Net operating capacity is about 2,400 MW of electricity. Waste heat load is about 4,800 MW of thermal energy. Waste heat is transferred to the condenser cooling water (CCW), pumped from the river at TRM 484.8 (Figure 2). This heat is then dissipated either to the atmosphere using two natural-draft cooling towers, to the river through a two-leg submerged multiport diffuser located at TRM 483.6, or by a combination of the two. With both units operating at maximum power, maximum CCW water demand is 2,558 cfs.
Methods Aquatic Habitat in the Vicinity of SQN Shoreline and river bottom habitat data presented in this report were collected during autumn 2009. TVA assumes habitat data to be valid for three years, barring any major changes to the river/reservoir (e.g., flood). Since no significant changes have occurred in the river system from the initial characterization, habitat will be sampled again during the next autumn sampling event.
In the event of a major change to the river/reservoir, habitat would be re-sampled the following autumn.
Shoreline Aquatic Habitat Assessment An integrative multi-metric index (Shoreline Aquatic Habitat Index or SAHI), including several habitat parameters important to resident fish species, was used to measure existing fish habitat quality in the vicinity of Sequoyah Nuclear Plant. Using the general format developed by Plafkin et al. (1989), seven metrics were established to characterize selected physical habitat attributes important to resident fish populations which rely heavily on the littoral or shoreline zone for reproductive success, juvenile development, and/or adult feeding (Table 1). Habitat Suitability Indices (US Fish and Wildlife Service), along with other sources of information on biology and habitat requirements (Etnier and Starnes 1993), were consulted to develop reference criteria or expected conditions from a high quality environment for each parameter. Some generalizations were necessary in setting up scoring criteria to cover the various requirements of all species into one index.
Individual metrics are scored through comparison of observed conditions with these reference conditions and assigned a corresponding value: good-5; fair-3; or poor-1 (Table 1). The scores for each metric are summed to obtain the SAHI value. The range of potential SAHI values (7-
: 35) is trisected to provide some descriptor of habitat quality (poor: 7-16; fair: 17-26; and good:
27-35).
2


Outfall 101:
The quality of shoreline aquatic habitat was assessed while traveling parallel to the shoreline in a boat and evaluating the habitat within 10 vertical feet of full pool. This was much easier to accomplish when the reservoir was at least 10 feet below full pool during the assessment allowing accurate determination of near-shore aquatic habitat quality. To sample river bottom habitat, eight line-of-sight transects were established across the width of Chickamauga reservoir within the SQN downstream (TRMs 481.1 to 483.6) and upstream (TRMs 487.9 to 491.1) fish community sampling areas (Figure 5). Near-shore aquatic habitat was assessed along sections of shoreline corresponding to the left descending (LDB) and right descending (RDB) bank locations for each of the eight line-of-sight transects. These individual sections (8 on the LDB and 8 on the RDB for a total of 16 shoreline assessments) were scored using SAHI criteria. Percentages of aquatic macrophytes in the littoral areas of the 8 LDB and 8 RDB shoreline sections were also estimated.
River Bottom Habitat Along each of the 8 line-of-sight transects described above, 10 benthic grab samples were collected with a Ponar sampler at equally spaced points from the LDB to RDB. Substrate material collected with the Ponar was dumped into a screen and substrate percentages were estimated to determine existing benthic habitat across the width of the river. Water depths at each sample location were recorded (feet). If no substrate was collected after multiple Ponar drops, it was assumed that the substrate was bedrock. For example, when the Ponar was pulled shut, collectors could feel substrate consistency; if it shut easily and was not embedded in the substrate on numerous drops within the same location, substrate was recorded as bedrock.
Fish Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN Two sample locations, one upstream and one downstream of the plant discharge were selected in Chickamauga Reservoir. The SQN discharge enters the Tennessee River at TRM 483.6 (Figure 2). The upstream monitoring site was centered at TRM 490.5 (Figure 3) and the downstream site was centered at TRM 482.0 (Figure 4).
Fish sampling methods included boat electrofishing and gill netting (Hubert, 1996; Reynolds, 1996). Electrofishing methodology consisted of fifteen boat electrofishing runs near the shoreline, each 300 meters long with a duration of approximately 10 minutes each. The total near-shore area sampled was approximately 4,500 meters (15,000 feet).
Experimental gill nets (so called because of their use for research as opposed to commercial fishing) were used as an additional gear type to collect fish from deeper habitats not effectively sampled by electrofishing. Each experimental gill net consists of five 6.1-meter panels for a total length of 30.5 meters (100.1 feet). The distinguishing characteristic of experimental gill nets is mesh size that varies between panels. For this application, each net has panels with mesh sizes of 2.5, 5.1, 7.6, 10.2, and 12.7 cm. Experimental gill nets are typically set perpendicular to river flow extending from near-shore toward the main channel of the reservoir. Ten overnight experimental gill net sets were used at each area.
3


Average Discharge = 1491 MGD
Fish collected were identified by species, counted, and examined for anomalies (such as disease, deformations, parasites, or hybridization). The resulting data were analyzed using RFAI methodology.
The RFAI uses 12 fish community metrics from four general categories: Species Richness and Composition; Trophic Composition; Abundance; and Fish Health. Individual species can be utilized for more than one metric. Together, these 12 metrics provide a balanced evaluation of fish community integrity. The individual metrics are described below, grouped by category:
Species Richness and Composition (1) Total number of indigenous species -- Greater numbers of indigenous species are considered representative of healthier aquatic ecosystems. As conditions degrade, numbers of species at an area decline.
(2) Number of centrarchid species -- Sunfish species (excluding black basses) are invertivores and a high diversity of this group is indicative of reduced siltation and suitable sediment quality in littoral areas.
(3) Number of benthic invertivore species -- Due to the special dietary requirements of this species group and the limitations of their food source in degraded environments, numbers of benthic invertivore species increase with better environmental quality.
(4) Number of intolerant species -- This group is made up of species that are particularly intolerant of physical, chemical, and thermal habitat degradation.
Higher numbers of intolerant species suggest the presence of fewer environmental stressors.
(5) Percentage of tolerant individuals (excluding Young-of-Year) -- This metric signifies poorer water quality with increasing proportions of individuals tolerant of degraded conditions.
(6) Percent dominance by one species -- Ecological quality is considered reduced if one species inordinately dominates the resident fish community.
(7) Percentage of non-indigenous species -- Based on the assumption that non-indigenous species reduce the quality of resident fish communities.
4


Tennessee River 1Q10 = 3483 MGD 
(8) Number of top carnivore species -- Higher diversity of piscivores is indicative of the availability of diverse and plentiful forage species and the presence of suitable habitat.
Trophic Composition (9) Percentage of individuals as top carnivores -- A measure of the functional aspect of top carnivores which feed on major planktivore populations.
(10) Percentage of individuals as omnivores -- Omnivores are less sensitive to environmental stresses due to their ability to vary their diets. As trophic links are disrupted due to degraded conditions, specialist species such as insectivores decline while opportunistic omnivorous species increase in relative abundance.
Abundance (11) Average number per run -- (number of individuals) -- This metric is based upon the assumption that high quality fish assemblages support large numbers of individuals.
Fish Health (12) Percentage of individuals with anomalies -- Incidence of diseases, lesions, tumors, external parasites, deformities, blindness, and natural hybridization are noted for all fish measured, with higher incidence indicating less favorable environmental conditions.
RFAI methodology addresses all four attributes or characteristics of a balanced indigenous population defined by the CWA, as described below:
(1.) A biotic community characterized by diversity appropriate to the ecoregion: Diversity is addressed by the metrics in the Species Richness and Composition category, especially metric 1 - total number of indigenous species. Determination of reference conditions based on the forebay and transition zones of upper mainstem Tennessee River reservoirs (as described below) ensures appropriate species expectations for the ecoregion.
(2.) The capacity for the community to sustain itself through cyclic seasonal change: TVA uses an autumn data collection period for biological indicators, both VS and upstream/downstream monitoring. Autumn monitoring is used to document community condition or health after being subjected to the wide variety of stressors throughout the year.
One of the main benefits of using biological indicators is their ability to integrate stressors through time. Examining the condition or health of a community at the end of the biological year (i.e., autumn) provides insight into how well the community has dealt with the stresses through an annual seasonal cycle. Likewise, evaluation of the condition of individuals in the community (in this case, individual fish as reflected in Metric 12) provides insight into how well the community can be expected to withstand stressors through winter. Further, multiple sampling years during the permit renewal cycle add to the evidence of whether or not the autumn 5


Dilution Factor (DF):   34.2 1491 3483 Qw Qs DF Instream Wastewater Concentration (IWC): %8.42100x 3483 1491 Qs Qw IWC  Reasonable Potential Determination:
monitoring approach has correctly demonstrated the ability of the community to sustain itself through repeated seasonal changes.
Summer sampling was conducted during August 2011. This time of year is considered a stressful time for the biotic community. Summer sampling was conducted to collect data on the biotic community during a high stress period near SQN plant. These data were compared with data collected during summer 2010.
(3.) The presence of necessary food chain species: Integrity of the food chain is measured by the Trophic Composition metrics, with support from the Abundance metric and Species Richness and Composition metrics. Existence of a healthy fish community indicates presence of necessary food chain species because the fish community is comprised of species that utilize multiple feeding mechanisms that transcend various levels in the aquatic food web. Basing evaluations on a sound multi-metric system such as the RFAI enhances the ability to discern alterations in the aquatic food chain.
Three dominant fish trophic levels exist within Tennessee River reservoirs; insectivores, omnivores, and top carnivores. To determine the presence of necessary food chain species, these three groups should be well represented within the overall fish community. Other fish trophic levels include benthic invertivores, planktivores, herbivores, and parasitic species. Insectivores include most sunfish, minnows, and silversides. Omnivores include gizzard shad, common carp, carpsuckers, buffalo, channel catfish, and blue catfish. Top carnivores include black bass, gar, skipjack herring, crappie, flathead catfish, sauger, and walleye. Benthic invertivores include freshwater drum, suckers, and darters. Planktivores include alewife, threadfin shad, and paddlefish. Herbivores include largescale stonerollers. Lampreys in the genus Ichthyomyzon are the only parasitic species occurring in Tennessee River reservoirs.
To establish expected proportions of each trophic guild and the expected number of species included in each guild occurring in upper mainstem Tennessee River reservoirs (Nickajack, Chickamauga, Watts Bar, and Fort Loudon reservoirs), data collected from 1993 to 2010 during autumn were analyzed for each reservoir zone where upstream and downstream sample stations were established to monitor effects of the SQN discharge (forebay- downstream of SQN and transition- upstream of SQN). Samples collected in the downstream vicinity of thermal discharges were not included in this analysis so that accurate expectations could be calculated with the assumption that these data represent what should occur in upper mainstem Tennessee River reservoirs absent from point source effects (i.e. power plant discharges). Therefore, data from the monitoring site downstream of SQN at TRM 482 were not included in this analysis.
Data from 900 electrofishing runs (a total of 270,000 meters of shoreline sampled) and from 600 overnight experimental gill net sets were included in this analysis for forebay areas in upper mainstem Tennessee River reservoirs. For upper mainstem Tennessee River transition zones, data from 750 electrofishing runs and 500 overnight experimental gill net sets were included.
From these data, the range of proportional values for each trophic level and the range of the number of species included in each trophic level were trisected. This trisection is intended to show less than expected, expected and above expected values for trophic level proportions and species occurring within each reservoir zone in upper mainstem Tennessee River reservoirs (Table 2). These data were also averaged and bound by confidence intervals (95%) to further 6


The last 20 studies for Outfall 101 were used for determining Reasonable Potential, with all studies resulting in no observed toxicity (<1.0 TUc) and a coefficient of variation equal to zero. This outcome demonstrates that no Reasonable Potential for excursions above the CCC exists, based on data obtained from testing conducted under the current operating conditions.
evaluate expected values for proportions of each trophic level and the number of species expected for each trophic level by reservoir zone (Table 3).
Historical data for the last 20 studies follows, and is followed thereafter with documentation of chemical additions which occurred during sampling for toxicity tests for
(4.) A lack of domination by pollution-tolerant species: Domination by pollution-tolerant species is measured by metrics 3 (Number of benthic invertivore species), 4 (Number of intolerant species), 5 (Percentage of tolerant individuals), 6 (Percent dominance by one species), and 10 (Percentage of individuals as omnivores).
Scoring categories are based on expected fish community characteristics in the absence of human-induced impacts other than impoundment of the reservoir. These categories were developed from historical fish assemblage data representative of forebay and transition zones from upper mainstem Tennessee River reservoirs (Hickman and McDonough, 1996). Attained values for each of the 12 metrics were compared to the scoring criteria and assigned scores to represent relative degrees of degradation: least degraded (5); intermediate degraded (3); and most degraded (1). Scoring criteria for upper mainstem Tennessee River reservoirs are shown in Table 4.
If a metric was calculated as a percentage (e.g., Percentage of tolerant individuals), data from electrofishing and gill netting were scored separately and allotted half the total score for that individual metric. Individual metric scores for a sampling area (e.g., upstream or downstream) are summed to obtain the RFAI score for the area.
TVA uses RFAI results to determine maintenance of BIP using two approaches. One is absolute in that it compares the RFAI scores and individual metrics to predetermined values.
The other is relative in that it compares RFAI scores attained downstream to the upstream control site. The absolute approach is based on Jennings et al. (1995) who suggested that favorable comparisons of the attained RFAI score from the potential impact zone to a predetermined criterion can be used to identify the presence of normal community structure and function and hence existence of BIP. For multi-metric indices, TVA uses two criteria to ensure a conservative screening of BIP. First, if an RFAI score reaches 70% of the highest attainable score of 60 (adjusted upward to include sample variability as described below), and second, if fewer than half of RFAI metrics receive a low (1) or moderate (3) score, then normal community structure and function would be present indicating that BIP had been maintained, thus no further evaluation would be needed.
RFAI scores range from 12 to 60. Ecological health ratings (12-21 [Very Poor], 22-31
[Poor], 32-40 [Fair], 41-50 [Good], or 51-60 [Excellent]) are then applied to scores. As discussed in detail below, the average variation for RFAI scores in TVA reservoirs is 6 (+ 3).
Therefore, any location that attains an RFAI score of 45 or higher would be considered to have BIP. It must be stressed that scores below this threshold do not necessarily reflect an adversely impacted fish community. The threshold is used to serve as a conservative screening level; i.e.,
any fish community that meets these criteria is obviously not adversely impacted. RFAI scores below this level would require a more in-depth look to determine if BIP exists. An inspection of individual RFAI metric results and species of fish used in each metric would be an initial step to help identify if operation of SQN is a contributing factor. This approach is appropriate because a validated multi-metric index is being used and scoring criteria applicable to the zone of study are available.
7


Outfall 101.  
A difference in RFAI scores attained at the downstream area compared to the upstream (control) area is used as one basis for determining presence or absence of impacts on the resident fish community from SQNs operations. The definition of similar is integral to accepting the validity of these interpretations. The Quality Assurance (QA) component of the Vital Signs monitoring program deals with how well the RFAI scores can be repeated and is accomplished by collecting a second set of samples at 15%-20% of the areas each year. Comparison of paired-sample QA data collected over seven years shows that the difference in RFAI index scores ranges from 0 to 18 points. The mean difference between these 54 paired scores is 4.6 points with 95% confidence limits of 3.4 and 5.8. The 75th percentile of the sample differences is 6, and the 90th percentile is 12. Based on these results, a difference of 6 points or less in the overall RFAI scores is the value selected for defining similar scores between upstream and downstream fish communities. That is, if the downstream RFAI score is within 6 points of the upstream score and if there are no major differences in overall fish community composition, then the two locations are considered similar. It is important to bear in mind that differences greater than 6 points can be expected simply due to method variation (i.e., 25% of the QA paired sample sets exceeded a difference of 6). An examination of the 12 metrics (with emphases on fish species used for each metric) is conducted to determine any difference in scores and the potential for the difference to be thermally related.
Traditional Analyses In addition to RFAI analyses, data were analyzed using traditional statistical methods. Data from the survey were used to calculate catch per unit effort (CPUE), which was expressed as number of fish per electrofishing run or fish per net night. CPUE values were calculated by pollution tolerance, trophic guilds (e.g., benthic invertivores, top carnivores, etc.), thermal sensitivity (Yoder et al. 2006), and indigenousness. CPUE, species richness, and diversity values were computed for each electrofishing effort (to maximize sample size; n = 30) and compared upstream and downstream to assess potential effects of power plant discharges.
Diversity was quantified using two commonly used diversity indices: Shannon diversity index (Shannon 1948) and Simpson diversity index (Simpson 1949). Both indices account for the number of species present, as well as the relative abundance of each species.
Shannon diversity index values were computed using the formula:
ln where:
S = total number of species N = total number of individuals ni = total number of individuals in the ith species The Simpson diversity index was calculated as follows:
8


Serial Dilutions for Whole Effluent Toxicity (WET) Testing 100% Effluent (100+ML)/2 Monitoring Limit (ML) 0.5 X ML O.25 X ML Control % effluent 100 71.4 42.8 21.4 10.7 0 3SQN Documentation
S                  1 where:
:  Summary of SQN Outfall 101 WET Biomonitoring Results **
S = total number of species N = total number of individuals ni = total number of individuals in the ith species An independent two-sample t-test was used to test for differences in CPUE, species richness, and diversity values upstream and downstream of SQN ( = 0.05). Before statistical tests were performed using this method, data were analyzed for normality using the Shapiro-Wilk test (Shapiro and Wilk, 1965) and homogeneity of variance using Levenes test (Levene, 1960).
Acute Results  (96-h Survival) Chronic Results 
Non-normal count data or data with unequal variances were transformed using square root conversion; the transformation ln(x+1) was used for CPUE data without a normal distribution or unequal variance. Transformed data was reanalyzed for normal distribution and equal variances.
If transformation normalized the data and/ or resulted in homogeneous variances, transformed data were tested using an independent two-sample t-test. If transformed data were not normally distributed or had unequal variances, statistical analysis was conducted using the Wilcoxon-Mann-Whitney test (Mann and Whitney, 1947; Wilcoxon, 1945).
Benthic Macroinvertebrate Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN During summer 2011, benthic macroinvertebrate data were collected along transects established across the full width of the reservoir at TRMs 481.3 and 483.4 downstream of SQN (Figure 3) and TRMs 488.0 and 490.5 upstream of SQN (Figure 4). Autumn 2011 sites included only TRM 481.3, TRM 483.4 and TRM 490.5. TRM 488.0 was not used as a collection site in autumn 2011 because TRM 490.5 is a long-term data collection site for the autumn seasons. Historically, the benthic macroinvertebrate community downstream of SQN was sampled at TRM 482.0; however during summer and autumn 2011, benthic macroinvertebrates were sampled at two transects (TRM 481.3 and TRM 483.4) to more accurately depict the health of the downstream benthic community.
Benthic grab samples were used to collect samples at equally spaced points along the upstream and downstream transects. During summer 2011, benthic grab samples were collected from five points along the two upstream transects. Autumn 2011 samples were collected from ten points along the transect located at TRM 490.5 and five points at TRM 488.0. Samples were collected from ten points along each downstream transect during summer and autumn 2011.
A Ponar sampler (area per sample 0.06 m2) was used for most samples. When heavier substrate was encountered, a Peterson sampler (area per sample 0.11 m2) was used. Collection and processing techniques followed standard VS procedures (OER-ESP-RRES-AMM-21.11; Quantitative Sample Collection - Benthic Macroinvertebrate Sampling with a Ponar Dredge).
Bottom sediments were washed on a 533 screen; organisms were then picked from the screen and any remaining substrate. For each sample, organisms and substrate were placed in a sample 9


Test Date
jar and fixed in formalin. Samples were sent to an independent consultant who identified each organism collected to the lowest possible taxonomic level.
Benthic community results were evaluated using seven community characteristics or metrics.
Results for each metric were assigned a score of 1, 3, or 5 depending upon how they scored based on reference conditions developed for VS reservoir inflow sample sites. Scoring criteria for upper mainstem Tennessee River reservoirs are shown in Table 5. The scores for the seven metrics were summed to produce a benthic score for each sample site. Potential scores ranged from 7 to 35. Ecological health ratings (7-12 [Very Poor], 13-18 [Poor], 19-23 [Fair], 24-29 [Good], or 30-35 [Excellent]) were then applied to scores. The individual metrics are shown below:
(1) Average number of taxaThis metric is calculated by averaging the total number of taxa present in each sample at a site. Taxa generally mean family or order level because samples are processed in the field. For chironomids, taxa refers to obviously different organisms (i.e., separated by body size, head capsule size and shape, color, etc.). Greater taxa richness indicates better conditions than lower taxa richness.
(2) Proportion of samples with long-lived organismsThis is a presence/absence metric which is evaluated based on the proportion of samples with at least one long-lived organism (Corbicula, Hexagenia, mussels, and snails) present. The presence of long-lived taxa is indicative of conditions which allow long-term survival.
(3) Average number of EPT taxaThis metric is calculated by averaging the number of Ephemeroptera, Plecoptera, and Trichoptera taxa present in each sample at a site.
Higher diversity of these taxa indicates good water quality and better habitat conditions.
(4) Percentage as oligochaetesThis metric is calculated by averaging the percentage of oligochaetes in each sample at a site. Oligochaetes are considered tolerant organisms so a higher proportion indicates poorer water quality.
(5) Percentage as dominant taxaThis metric is calculated by selecting the two most abundant taxa in a sample, summing the number of individuals in those two taxa, dividing that sum by the total number of animals in the sample, and converting to a percentage for that sample. The percentage is then averaged for the 10 samples at each site. Often, the most abundant taxa differed among the 10 samples at a site.
This allows more discretion to identify imbalances at a site than developing an average for a single dominant taxon for all samples a site. This metric is used as an evenness indicator. Dominance of one or two taxa indicates poor conditions.
(6) Average density excluding Chironomids and OligochaetesThis metric is calculated by first summing the number of organisms, excluding chironomids and oligochaetes, present in each sample and then averaging these densities for the 10 10


Test Species % Survival in Undiluted Sample Study Toxicity Units (TUa)  Study Toxicity Units (TUc) 64. Feb 8-15, 2005 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 93  65. Jun 7-14, 2005 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100  66. Jul 19-26, 2005 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100  67. Nov 1-8, 2005 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100  68. Nov 16-23, 2005 Ceriodaphnia dubia 100 <1.0 <1.0  Pimephales promelas 98  69. Nov 14-21, 2006 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100  70. Nov 28 - Dec 5, 2006 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 98  71. May 30- Jun 6, 2007 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100  72. Dec 4-11, 2007 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100  73. Apr 15-22, 2008 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 93  74. Oct 28- Nov 4, 2008 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 98  75. Feb 10-17, 2009 Ceriodaphnia dubia 100 <1.0  <1.0 Pimephales promelas 100    76. May 12-19, 2009 Ceriodaphnia dubia 100 <1.0  <1.0 Pimephales promelas 98    77. Nov 17-24, 2009 Ceriodaphnia dubia 100 <1.0  <1.0 Pimephales promelas 100    78. May 11-18, 2010 Ceriodaphnia dubia 100 <1.0  <1.0 Pimephales promelas 100    79. Nov 2-9, 2010 Ceriodaphnia dubia 100 <1.0  <1.0 Pimephales promelas 100    80. May 3-10, 2011 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100    81. Nov 8-15, 2011 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 98    82. May 8-15, 2012 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100    83. Aug 12-17, 2012 Ceriodaphnia dubia 100 <1.0  <1.0  Pimephales promelas 100    n  40 20  20 Maximum  100 <1.0  <1.0 Minimum  93 <1.0  <1.0 Mean  99 <1.0  <1.0 CV  0.02 0.00 0.00 **Last 20 studies only were included for determining RP. Shaded area includes data collected under the current permit.
samples at a site. This metric examines the community, excluding taxa which often dominate under adverse conditions. A high abundance of non-chironomids and non-oligochaetes indicates good water quality conditions.
4Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date Sodium Hypochlorit emg/L  TRC Towerbrom mg/L  TRC PCL-222 mg/L Phosphate PCL-401 mg/L CopolymerCL-363mg/L DMADCuprostat-PF mg/L  Azole H-130M mg/L Quat Nalco 73551 mg/L EO/PO H-150Mmg/L Quat 11/07/2004 11/08/2004 11/09/2004 11/10/2004 11/11/2004 11/12/2004 - - - - - - <0.0187
(7) Zero-samples: Proportion of samples with containing no organismsThis metric is the proportion of samples at a site which have no organisms present.
<0.0192 <0.0233 <0.0149 <0.0149 <0.0253 0.000 0.047 0.048 0.047 0.049 0.048 0.014 0.030 0.016 0.016 0.017 0.017 - - - - - - - - - - - - - - - - 0.041 0.041 0.043 0.042 - - - - - - - - - - 02/06/2005 02/07/2005 02/08/2005 02/09/2005 02/10/2005 02/11/2005 - - - - - - <0.0042
Zero-samples indicate living conditions unsuitable to support aquatic life (i.e.
<0.0116
toxicity, unsuitable substrate, etc.). Any site having one empty sample was assigned a score of three, and any site with two or more empty samples received a score of one. Sites with no empty samples were assigned a score of five.
<0.0080 0.0199 <0.0042 0.0155 0.028 0.028 0.028 0.028 0.028 0.028 0.010 0.010 0.010 0.010 0.010 0.010 - - - - - - -
A similar or higher benthic index score at the downstream site compared to the upstream site is used as basis for determining absence of impact on the benthic macroinvertebrate community related to SQNs thermal discharge. The QA component of VS monitoring shows that the comparison of benthic index scores from 49 paired sample sets collected over the past seven years range from 0 to 14 points, the 75th percentile is 4, the 90th percentile is 6. The mean difference between these 49 paired scores is 3.1 points with 95% confidence limits of 2.2 and 4.1. Based on these results, a difference of 4 points or less is the value selected for defining similar scores between upstream and downstream benthic communities. That is, if the downstream benthic score is within 4 points of the upstream score, the communities will be considered similar and it will be concluded that SQN has had no effect. Once again, it is important to bear in mind that differences greater than 4 points can be expected simply due to method variation (25% of the QA paired sample sets exceeded that value). When such occurs, a metric-by-metric examination will be conducted to determine what caused the difference in scores and the potential for the difference to be thermally related.
-
Plankton Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN Samples for analysis of the phytoplankton and zooplankton communities were collected in the mid-channel at four locations, two upstream of SQN at TRM 490.1 and 487.9 and two downstream at TRM 483.4 and 481.1, on August 25 and October 10, 2011. Two replicate samples for both phytoplankton and zooplankton were collected at each site on each sample date.
- - -
Phytoplankton A low-volume peristaltic pump and tubing apparatus were used to collect integrated water samples along a vertical gradient from the bottom to the top of the photic zone, which was defined as the zone from the surface to twice the Secchi depth reading or from the surface to four meters, whichever was greater. From each of these water samples, a subsample was removed and preserved in glutaraldehyde for taxonomic identification and enumeration of the phytoplankton community. A second subsample was removed from each water sample for analysis of phytopigment (chlorophyll) concentrations.
- - - - - - - - 0.007 - - - 0.007 - - - - - - 06/05/2005 06/06/2005 06/07/2005 06/08/2005 06/09/2005 06/10/2005 - - - - - - 0.0063 0.0043 0.0103 0.0295 0.0129 0.0184 - - - - - - - - - -
11
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - 0.037 0.037 0.037 - - 07/17/2005 07/18/2005 07/19/2005 07/20/2005 07/21/2005 07/22/2005 - - - - - - 0.0109 0.0150 0.0163 0.0209 0.0242 0.0238 0.026 0.026 0.026 0.026 0.026 0.054 0.009 0.009 0.009 0.009 0.009 0.018 - - - - - - - - - -
- - - - - - - - - - - 0.014 - 0.014 - 0.036 0.036 0.036 - - 10/30/2005 10/31/2005 11/01/2005 11/02/2005 11/03/2005 11/04/2005 - - - - - - 0.0068 0.0112 0.0104 0.0104 0.0117 0.0165 - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - 0.035 0.036 0.036 0.035 11/14/2005 11/15/2005 11/16/2005 11/17/2005 11/18/2005 11/19/2005 - - - - - - 0.0274 0.0256 0.0234 0.0231 0.0200 0.0116 - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - -
5Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date Sodium Hypochlorit emg/L  TRC Towerbrom mg/L  TRC PCL-222 mg/L PhosphatePCL-401 mg/L CopolymerCL-363mg/L DMADCuprostat-PF mg/L Azole H-130M mg/L Quat Nalco 73551 mg/L EO/PO H-150M mg/L Quat MSW  101  mg/L Phosphate11/12/2006 11/13/2006 11/14/2006 11/15/2006 11/16/2006 11/17/2006 - - - - - - 0.0055 0.0068 0.0143 0.0068 0.0267 0.0222 - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - 0.037 0.037 0.037 0.037 - -
- - - - - 11/26/2006 11/27/2006 11/28/2006 11/29/2006 11/30/2006 12/01/2006 - - - - - - 0.0188 0.0138 0.0120 0.0288 0.0376 0.0187 - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - 05/28/07 05/29/07 05/30/07 05/31/07 06/01/07 06/02/07 - - - - - - - - 0.0084 0.0103 0.0164 0.0305 - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - 0.017 - 0.017 - - 0.036 0.036 0.036 0.036 - 0.015 0.015 0.015 0.015 0.015 0.015 12/02/07 12/03/07 12/04/07 12/05/07 12/06/07 12/07/07 - - - - - - 0.0241 0.0128 0.0238 0.0158 0.0162 0.0175 - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- -  04/13/08 04/14/08 04/15/08 04/16/08 04/17/08 04/18/08 - - - - - - 0.0039 0.0124 0.0229 0.0143 0.0120 0.0149 - - - - - - -
-
- - -
- - - - - - - -
-
- - -
- - - - - - - -
-
- - -
- - - - - - - -
-
- - -
- 10/26/08 10/27/08 10/28/08 10/29/08 10/30/08 10/31/08 - - - - - - 0.0260 0.0151 0.0172 0.0154 - 0.0086 - - - - - - - -
- - -
- - - - - - - -
-
- - -
- - - - - - - - 0.017 - 0.018 -
- - - 0.041 0.041 0.041 0.041 -
-
- 0.030 0.030 0.030     


6Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date Sodium Hypochlorit emg/L  TRC Towerbrom mg/L  TRC PCL-222 mg/L Phosphate PCL-401 mg/L Copolymer CL-363 mg/L DMADCuprostat-PF mg/L Azole H-130Mmg/L Quat Nalco 73551 mg/L EO/PO Spectrus CT1300 mg/L Quat H-150M mg/L Quat MSW  101  mg/L Phosphate02/08/09 02/09/09 02/10/09 02/11/09 02/12/09 02/13/09 - - - - - - 0.0197 0.0237 0.0104 0.0155 0.0106 - - - - - - - - - - - - - - - - - - - -
Zooplankton Samples for taxonomic identification and enumeration of the zooplankton community were collected using a conical net with 80 &#xb5;m mesh, towed vertically through the water column from two meters off the bottom to the surface of the reservoir. Samples were preserved in 70% ethyl alcohol (EtOH).
- - - - - - - - - - - 0.017 0.017 0.021 0.017 0.017 - - - - - - - - - - - - - - - - - - - 05/10/09 05/11/09 05/12/09 05/13/09 05/14/09 05/15/09 - - - - - - 0.0129 0.0415 0.0053 0.0049 <0.0141 <0.0160 - - - - - - -
Data Analysis Basic summary statistics were used to compare abundances among sites. Two separate measures of diversity, percent similarity and the Bray-Curtis Index of similarity, were used to examine spatial variability within the plankton communities, taking into account both the taxa richness and the uniformity of distribution of individuals among the taxa. Species or taxa richness is expressed simply as the number of species or distinct taxa in the community.
-
One measure of spatial variability between plankton communities was the calculation of Percent Similarity (PS). To calculate PS, the number of individuals in each species was calculated as the fractional proportion of the total community. For each species, the proportion in community 1 was then compared to the proportion in community 2, and the lower of the two values was tabulated. When all taxa had been compared in this manner, the tabulated list (of the lower of each pair of values) was summed, and this sum defined as the PS of the two communities.
- - -
Within the plankton community, spatial variability was also analyzed using hierarchical clustering based on the Bray-Curtis index of similarity. Samples were sorted into groups (clusters) based on the overall resemblance to each other. Cluster analyses were interpreted graphically on dendrograms to relate the similarity of communities among the sampling stations.
- - - - - - - -
Before calculating the measures of diversity for the zooplankton data, the immature specimens identified as Cladocera and Bosminidae (one sample each) were removed; the taxa Eurytemora affinis and Eurytemora sp. were combined in one sample; and in October samples, specimens from all taxa under the group Sididae were combined.
-
Visual Encounter Surveys (Observations of Wildlife)
- - -
Two permanent transects were established both upstream and downstream of the SQN thermal discharge. The midpoint of the upstream transect was positioned at the RFAI upstream study area and spanned a distance of 2,100 m within this transect (Figure 3). The downstream transect was collected directly below the power plant and likewise spanned a distance 2,100 m (Figure 4).
- - - - - - - -
The beginning and ending point of each transect were marked with GPS for relocation.
-
Transects were positioned approximately 30 m offshore and parallel to the shoreline occurring on both right and left descending banks. Visual Encounter Surveys were conducted to provide a representative sampling of wildlife present during summer (August) and autumn (October).
- - -
Each transect was surveyed by steadily traversing the length by boat and simultaneously recording observations of wildlife. Sampling frame of each transect generally followed the strip or belt transect concept with all individual species enumerated that crossed the center-line of each transect landward to an area that included the shoreline and riparian zone (i.e., belt width generally averages 60 m where vision is not obscured). Information recorded was identified to 12
- - - - - - - - 0.0446 0.0396 0.0396 0.0397 - -
-
- - -
- 11/15/09 11/16/09 11/17/09 11/18/09 11/19/09 11/20/09 - - - - - - 0.025 0.0152 0.0255 0.0306 0.0204 0.0093 - - - - - - -
- - - - - - - - -  - -
- - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - 05/09/10 05/10/10 05/11/10 05/12/10 05/13/10 05/14/10 - - - - - - 0.0192 0.0055 0.0100 0.0171 0.0041 0.0099 - - - - - - -
-
- - -
- - - - -  - -
-
- - -
- - - - - - - -
-
- - -
- - - 0.039 0.039 0.039 0.039 - - - - - - -
-
- - -


7Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date Sodium Hypochlorite mg/L  TRC Towerbrom mg/L  TRC PCL-222 mg/L Phos-phate PCL-401 mg/L Copolymer CL-363 mg/L DMAD Cuprostat-PF mg/L Azole H-130Mmg/L Quat Nalco 73551 mg/L EO/PO Spectrus CT1300 mg/L Quat H-150M mg/L Quat MSW  101  mg/L Phosphate Floguard MS6236 mg/L Phosphate10/31/10 11/01/10 11/02/10 11/03/10 11/04/10 11/05/10 - - - - - - - 0.0122 0.0112 0.0163 0.0107 0.0132 - - - - - - - - -
the lowest taxonomic trophic level that was observed visually and a direct count of individuals observed per trophic level. If flocks of a species or mixed flock of a group of species were observed, an estimate of the number of individuals present was generated. Time was recorded at the start and end points of each transect to provide a general measure of effort expended. If times varied among transects, it was primarily due to the difficulty in approaching some wildlife species without inadvertently flushing them from basking or perching sites. To compensate for the variation of effort expended per transect, observations were standardized to numbers per minute or numbers per hectare in preparation for analysis.
- - - - - - - - - - - -
The principal objective and purpose behind the surveys were to provide a preliminary set of observations to verify trophic levels of birds, mammals, amphibians and reptiles have not been affected by thermal effects from the SQN discharge. If trophic levels were not represented, further investigations will be used to target specific species and/or species groups (guilds) in an attempt to determine the cause.
- - - - - - - - - - - -
Chickamauga Reservoir Flow and SQN Temperature Total daily average discharge from Watts Bar, Apalachia (Hiwassee River), and Ocoee 1 (Ocoee River) dams was used to describe the volume of water flowing past SQN and was obtained from TVAs River Operations database.
- - - - - - - - - - - - - - - - - -
Water temperature data were also obtained from TVAs River Operations database. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge are depicted in Figure 6. Station 14 (TRM 490.4) was used to measure the ambient temperature upstream of the SQN intake. Station 8 (TRM 483.4) was used to measure temperatures downstream of SQN discharge. Water temperatures at both stations were computed as the average of temperatures measured at the 3-, 5-, and 7-ft depths.
- - - - - -
Thermal Plume Characterization Physical measurements were taken to characterize and map the SQN thermal plume concurrent with biological field sampling during both summer and fall sampling events. The plume was characterized under representative thermal maxima and seasonally expected low flow conditions.
- - - 05/01/2011 05/02/2011 05/03/2011 05/04/2011 05/05/2011 05/06/2011 - - - - - - -
Measurements were collected during periods of high power production from SQN, as reasonably practicable, to capture maximum extent of the thermal plume under existing river flow/reservoir elevation conditions. This effort allowed general delineation of the Primary Study Area per the EPA (1977) draft guidance defined as the entire geographic area bounded annually by the locus of the 2&deg;C above ambient surface isotherms as these isotherms are distributed throughout an annual period, ensuring placement of the biological sampling locations within thermally influenced areas.
- - 0.0155 0.0179 0.0089 - - - - - - -
However, it is important to emphasize that the >2&#xba;C isopleth boundary is not a bright line; it is dynamic, changing geometrically in response to changes in ambient river flows and temperatures and SQN operations. As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced. Every 1
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - 0.04 0.04 0.04 0.04 - - - - - - - -
- - - - - -
- - - - - 11/06/2011 11/07/2011 11/08/2011 11/09/2011 11/10/2011 11/11/2011 - - - - - - 0.0168 0.0225 0.0141 0.0239 0.0242 0.0231 - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - -  
- - - - - 05/06/2012 05/07/2012 05/08/2012 05/09/2012 05/10/2012 05/11/2012 - - - - - - - - - 0.0145 0.0298 0.0174 - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - 0.041 0.041 0.041 - - - - - - - - - - -
- - - - - -
- - 08/12/2012 08/13/2012 08/14/2012 08/15/2012 08/16/2012 08/17/2012 - - - - - - - 0.0256 0.0209 0.0279 0.0076 0.0446 - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - - 0.028 - 0.028 -
- - 0.037 0.037 - - - - - - - - - -
- - - - - 0.029 0.029 0.029 0.029 0.029 0.032               


Study Plan for Evaluation of the TVA Sequoyah Nuclear Plant Discharge in Support of an Alternate Thermal Limit Soddy Daisy, Hamilton County, Tennessee Tennessee Valley Authority June 8, 2011 i  TABLEOFCONTENTS EXECUTIVE
effort was made to collect biological samples in thermally affected areas as guided by the Primary Study Area definition.
Field activities included measurement of surface to bottom temperature profiles along transects across the plume. One transect was located proximate to the thermal discharge point; subsequent downstream transects were concentrated in the near field area of the plume where the change in plume temperature was expected to be most rapid. The distance between transects in the remainder of the Primary Study Area increased with distance downstream or away from the discharge point. The farthest downstream transect was just outside of the Primary Study Area.
A transect upstream of the discharge that is not affected by the thermal plume was included for determining ambient temperature conditions. The total number of transects needed to fully characterize and delineate the plume were determined in the field.
Temperature profile measurement (surface to bottom) points along a given transect were spaced equally across the river channel. Points began at or near the shoreline from which the discharge originated and continued across the plume [based on surface (0.1 m or 0.3 ft depth) measurements] until the far shore was reached. Measurements along transects were conducted at points 10%, 30%, 50%, 70%, and 90% from the originating shoreline. The distances between transects and measurement points depended on the size of the discharge plume.
The temperature measurement instrument (Hydrolab) was calibrated to a thermometer whose calibration is traceable to the National Institute of Standards and Technology. Temperature data were compiled and analyzed to present the horizontal and vertical dimensions of the SQN thermal plume, which was used to demonstrate the existence of a zone of passage under and/or around the plume.
Water Quality Parameters at Fish Sampling Sites during RFAI Samples Water quality conditions were measured using a Hydrolab which provided readings for dissolved oxygen (ppm), water temperature (&deg;C and &deg;F), conductivity (&#xb5;s/cm), and pH.
Readings were taken along a vertical gradient from just above the bottom of the river to approximately 0.3 m from the surface at 1- to 2-m intervals. Readings were conducted in the mid-channel at the most downstream and upstream boundaries of the electrofishing sample area at stations upstream and downstream of SQN.
Results and Discussion Aquatic Habitat in the Vicinity of SQN Shoreline Aquatic Habitat Assessment Of the sixteen shoreline sections sampled upstream of SQN, 6% (1 transect) rated Good, 88%
(14 transects) rated Fair, and 6% (1 transect) rated Poor. The average scores for transects on the left and right descending banks were similar at 22 (Fair) and 21 (Fair), respectively. No aquatic macrophytes were present on either shoreline (Table 6).
2


==SUMMARY==
Of the sixteen shoreline transects sampled downstream of SQN, 19% (3 transects) rated Good, 56% (9 transects) rated Fair, and 25% (4 transects) rated Poor (Table 7). The average scores for transects on the left and right descending banks were identical at 22 (Fair). Aquatic macrophyte coverage averaged 2% on the left descending bank and 5% on the right descending bank (Table 7).
............................................................................................. iii
River Bottom Habitat Figures 7-10 display substrate percentages as well as water depth at each sample point along each of the 8 transects downstream of SQN. Figures 11-14 display substrate percentages as well as water depth at each sample point along each of the 8 transects upstream of SQN.
The three most dominant substrate types encountered along the 8 transects downstream of SQN were mollusk shell (27.6%), silt (19.9%) and clay (16.4%). The three most dominant substrate types encountered along the 8 transects upstream of SQN were silt (51.2%), mollusk shell (18.4%), and bedrock (8.8%). Overall average water depth was similar upstream and downstream of SQN (Table 8).
Fish Community During summer 2011, RFAI scores of 41 (Good) and 38 (Fair) were recorded for the downstream and upstream sites, respectively (Table 9). Given the downstream site scored higher than the upstream (control), it was concluded that BIP was maintained at the downstream site during summer 2011.
During autumn 2011, an RFAI score of 35 (Fair) was recorded at both the downstream and upstream sites (Table 10). Because both sites received the same score, it can be concluded that BIP was maintained at the downstream site during autumn 2011.
For each season, the upstream and downstream sites were compared using the four characteristics of BIP. For the discussion of each characteristic, the downstream site was compared to the upstream site (control) using the RFAI metrics applicable to each characteristic.
(1) A biotic community characterized by diversity appropriate to the ecoregion Summer 2011 Total number of indigenous species (> 27 required for highest score for the site downstream of SQN; > 29 required for highest score for the site upstream of SQN)
Twenty-eight indigenous species were collected at the downstream site, while 29 indigenous species were collected at the upstream site, resulting in the highest score for the downstream site and a mid-range score for the upstream site for this metric (Table 9). River redhorse and sauger were collected at the upstream site only, while white bass were only collected at the downstream site; all other species were collected at both sites (Tables 11 and 12).
Total number of centrarchid species (> 4 required for highest score) 3
 
Both upstream and downstream sites received the highest possible score for the metric Number of centrarchid species. The same eight sunfish species were collected at both sites (Tables 9, 11, and 12).
Total number of benthic invertivore species (> 7 required for highest score)
Only three benthic invertivore species were collected at the downstream site, resulting in the lowest score (1) for the metric Number of benthic invertivore species. Freshwater drum, logperch, and spotted sucker were collected at both upstream and downstream sites; river redhorse was only collected at the upstream site. As a result of this one additional species, the upstream site received a moderate score of 3 (Tables 9, 11, and 12).
Total number of intolerant species (> 4 required for highest score)
Both the upstream and downstream sites received the highest score for the metric Number of intolerant species. Five of the six intolerant species were collected at both sites; river redhorse was collected at the upstream site only (Tables 9, 11, and 12).
Total number of top carnivore species (> 6 required for highest score)
Ten top carnivore species were collected at both sites resulting in both sites receiving the highest score (5) for the metric Number of top carnivore species. White bass were only collected downstream of SQN, while sauger were only collected at the upstream site. All other top carnivore species (black crappie, flathead catfish, largemouth bass, skipjack herring, smallmouth bass, spotted bass, spotted gar, white crappie, and yellow bass) were collected at both sites (Tables 9, 11, and 12).
The overall RFAI score for the downstream site was 41 (Good) and for the upstream site 38 (Fair). These similar scores indicated that the species richness and composition for the five previous metrics described above were similar between sites (Table 9).
Autumn 2011 Total number of indigenous species (> 27 required for highest score for site downstream of SQN;
> 29 required for highest score for site upstream of SQN)
Twenty-five indigenous species were collected at the downstream site, while 27 indigenous species were collected at the upstream site resulting in the mid-range score (3) for this metric at both sites. Longear sunfish and golden redhorse were collected at the downstream site, but not at the upstream site. White crappie, largescale stoneroller, yellow perch, logperch, and walleye were collected only at the upstream site (Tables 10, 13, and 14).
Total number of centrarchid species (> 4 required for highest score)
Both the upstream and downstream sites received the highest possible score (5) for the metric Number of centrarchid species. Six of the seven centrarchid species were collected at both sites while white crappie was only collected at the upstream site and longear sunfish only at the downstream site (Tables 10, 13, and 14).
Total number of benthic invertivore species (> 7 required for highest score) 4


==1.0INTRODUCTION==
With only 3 benthic invertivore species each, both sites received the lowest score for the metric Number of benthic invertivore species. Golden redhorse was collected at the downstream site only and logperch was only collected upstream of SQN (Tables 10, 13, and 14).
................................................................................................. 11.1Facility Information .......................................................................................... 11.2Regulatory Basis ............................................................................................... 11.2.1Applicable Thermal Criteria ....................................................................... 11.2.2Permitted Conditions .................................................................................. 21.2.3Criteria for Alternate Thermal Limits Under &sect;316(a) ................................ 21.2.4Mixing Zone Requirements in Tennessee Rule 1200-4-3-0.5 .................... 41.3Study Plan Organization ................................................................................... 52.0STUDY BACKGROUND ..................................................................................... 52.1Sequoyah Nuclear Plant .................................................................................... 52.2Description of the Receiving Waterbody ......................................................... 52.3Previous &sect;316(a) Demonstration Study ............................................................ 62.4Contemporary Studies ...................................................................................... 73.0STUDY PLAN ....................................................................................................... 83.1Study Timing .................................................................................................... 83.2Study Scope ...................................................................................................... 8Task 1 - Evaluate Plant Operating Conditions ......................................................... 8Task 2 - Thermal Plume Monitoring and Mapping ................................................. 9Task 3 - Establishment of Biological Sampling Stations ....................................... 10Task 4 - Shoreline and River Bottom Habitat Characterization ............................ 10Task 5 - Supporting Water Quality Measurements ................................................ 11Task 6 - Biological Evaluations ............................................................................. 11Task 7 -Water Supply and Recreational Use Support Evaluation ......................... 143.3Data Contribution to the Analysis/Demonstration ......................................... 143.3.1Traditional Analyses ................................................................................. 143.3.2Supporting Multi-metric Bioassessment ................................................... 153.3.4Reasonable Potential Evaluation .............................................................. 163.4Reporting ........................................................................................................ 163.5Study Schedule Summary ............................................................................... 164.0LITERATURE CITED ........................................................................................ 18 ii    LISTOFFIGURES Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge ..............................................................................................................................
Total number of intolerant species (> 4 required for highest score)
.......... 20Figure 2. Site map for Sequoyah Nuclear plant showing condenser co oling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 .................. 21Figure 3. Biological monitoring zone downstream of Sequoyah Nuclear plant ............. 22Figure 4. Biological monitoring zone upstream of Sequoyah Nuclear plant thermal discharge .....................................................................................................................
Both the upstream and downstream sites received the mid-range score (3) for the metric Number of intolerant species. Three of the four intolerant species (skipjack herring, smallmouth bass, and spotted sucker) were collected at each site; longear sunfish was collected downstream of SQN only (Tables 10, 13, and 14).
.... 23Figure 5. Anticipated transects to be established for conduct of the integrative multi-metric aquatic shoreline habitat assessment ................................................................... 24 iii    EXECUTIVE
Total number of top carnivore species (> 6 required for highest score)
Nine top carnivore species were collected at the downstream site and 11 at the upstream site.
However, both the upstream and downstream sites received the highest score (5) for this metric.
Walleye and white crappie were only collected at the upstream site; the remaining nine top carnivore species were collected at both sites (Tables 10, 13, and 14).
Both sites received the same overall score (35-Fair) for the five aforementioned RFAI diversity metrics, indicating that fish community diversity during autumn 2011was similar upstream and downstream of SQN (Table 10).
(2) The capacity for the community to sustain itself through cyclic seasonal change Autumn RFAI sampling was conducted downstream of SQN during 1996 and from 1999 through 2011. RFAI scores during this period averaged 41 which rated Good. With the exception of 1998, autumn RFAI sampling was conducted upstream of SQN from 1993 through 2011. RFAI scores during this period averaged 44 (Good) (Table 17).
The downstream site during summer 2011 received a score of 41 (Good) and the upstream site scored 38 (Fair) (Table 9). During autumn 2011, both sites received the same score of 35 (Fair) (Table 10). These scores are below the historical average for these sites, but fall within the historical range of overall RFAI scores (upstream: 34-51; downstream: 35-48) (Table 17).
The composition of the autumn 2011 sample should be indicative of the ability of the fish community to withstand the stressors of an annual seasonal cycle. The numbers of indigenous species collected during autumn RFAI samples downstream of SQN during 1996 and from 1999 through 2011 ranged from 23 to 31 and the average was 27 (Figure 15). During the periods from 1993 to 1997 and 1999 to 2011, the numbers of indigenous species collected during autumn RFAI samples upstream of SQN ranged from 20 to 31 and the average number of indigenous species was 28 (Figure 16). Although the long term average of indigenous species was similar between sites, the upstream site has consistently contained a higher number of species.
Regardless, a diverse fish community has continued to persist and has exhibited the ability to sustain itself through cyclic seasonal change at both sites.
During summer 2011, 28 indigenous species were collected downstream of SQN and 29 at the upstream site. During autumn 2011, twenty-five indigenous species were collected downstream, and 27 upstream of SQN. These numbers from both summer and autumn were within the 5


==SUMMARY==
average range for this metric when compared to the historical data (Figures 15, 16), indicating that the indigenous fish community was similar upstream and downstream of SQN.
This document sets forth a revised Study Plan, which the Tennessee Valley Authority (TVA) plans to implement for the purpose of evaluating the Sequoyah Nuclear Plant (SQN) thermal discharge in support of compliance with the National Pollutant Discharge Elimination System (NPDES) permit for the facility and continuance of the associated Alternate Thermal Limit (ATL) for Outfall 101 as authorized under Section 316(a) of Clean Water Act and Tennessee Department of Environment and Conservation rules. As required by the NPDES permit, the Study Plan was first submitted to the Tennessee Department of Environment and Conservation (TDEC) on December 20, 2010 and subject to review by TDEC and the U. S. Environmental Protection Agency (EPA), Region 4. Comments and suggested revisions were provided to TVA by TDEC in a meeting held on April 7, 2011 and have been incorporated herein.  
Percentage of anomalies (< 2 % required for highest score)
The percentage of anomalies (e.g., visible lesions, bacterial and fungal infections parasites, muscular and skeletal deformities, and hybridization) in the summer sample should be indicative of the ability of the fish community to withstand the stressors of an annual seasonal cycle. Both upstream and downstream sites recorded the highest score for this metric during summer 2011 due to a low percentage of observed anomalies (Tables 9 and 10).
(3) The presence of necessary food chain species Summer 2011 Insectivores constituted 52.0%, omnivores 35.2%, top carnivores 11.0%, benthic invertivores 1.7%, and planktivores 0.1% of the overall fish sample downstream of SQN during summer 2011. Proportions of insectivores and omnivores met the expectations calculated from historical data for upper mainstem Tennessee River reservoir forebay areas. Proportions of benthic invertivores and top carnivores were below historical averages. Percentages of planktivores were low which is indicative of a healthy environment. No parasitic species were collected (Tables 2 and 3). Trophic levels were represented with 10 insectivorous species, 10 top carnivore species, 7 omnivorous species, 3 benthic invertivore species, and 1 planktivore species (Tables 2, 3, and 11). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River forebay zones (Tables 2 and 3).
At the upstream site during summer 2011, composition by trophic guild was insectivores 52.0%,
omnivores 36.3%, top carnivores 8.8%, benthic invertivores 2.6%, and planktivores 0.1% of the overall fish sample. Proportions of planktivores and insectivores exceeded the expectations calculated from historical data for upper mainstem Tennessee River reservoir transition areas, proportions of benthic invertivores met average expectations, proportions of omnivores and top carnivores were less than expected (Tables 2 and 3). Ten insectivorous species, 10 top carnivore species, 7 omnivorous species, 4 benthic invertivore species, and 1 plantivorous species made up the overall fish sample at the upstream site (Tables 2, 3, and 11). The number of species for each trophic guild, except for omnivores, met or exceeded expectations calculated from historical data for upper mainstem Tennessee River transition zones. Omnivore species were less than the expected number (Tables 2 and 3).
Overall, trophic guild proportions and composition were similar between sites upstream and downstream of SQN during summer 2011, indicating that the thermal discharge did not affect fish community composition downstream of SQN.
Autumn 2011 Insectivores composed 48.3%, omnivores 29.7%, top carnivores 5.2%, planktivores 16.1%, and benthic invertivores 0.8% of the overall fish sample downstream of SQN. Proportions of insectivores, omnivores, and plantivores either met or exceeded expectations calculated from historical data for upper mainstem Tennessee River reservoir forebay areas. Proportions of top 6


The Study Plan provides regulatory background for the work; information about SQN operations; a brief description of the receiving waterbody; a summary of previous &sect;316(a) and more recent monitoring studies conducted at the plant; and a detailed Scope of Work proposing the collecti on of new data to evaluate the potential impact of the Sequoyah Nuclear thermal discharge on the aquatic life and other classified uses of the Tennessee River/Chickamauga Reservoir in th e vicinity of the plant. Specifically, studies are proposed to:
carnivores and benthic invertivores were low and did not meet the average proportional expectations. No parasitic species were collected (Tables 2 and 3). Trophic levels were represented with 8 insectivore species, 9 top carnivore species, 6 omnivore species, 1 planktivore species and 3 benthic invertivore species (Tables 2, 3, and 13). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River forebay zones (Tables 2 and 3).
: 1. Collect the temperature data needed to delineate and map the spatial boundaries of the thermal discharge plume;
At the upstream site, insectivores constituted 45.6%, omnivores 33.3%, top carnivores 8.2%,
: 2. Characterize the aquatic and wild life habitat in the study area;
benthic invertivores 1.3%, herbivores 0.7%, and planktivores 1.1% of the overall fish sample.
: 3. Sample the fish, macroinvertebrate, and plankton communities;
Proportions of insectivores and omnivores met the expectations calculated from historical data for upper mainstem Tennessee River reservoir transition areas. Proportions of benthic invertivores and top carnivores were lower than expectations, while proportions of planktivores exceeded historical expectations (Tables 2 and 3). Trophic levels were represented with 8 insectivore species, 11 top carnivore species, 6 omnivore species, 3 benthic invertivore species, 1 herbivore species, and 1 plantivorous species (Table 11). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River transition zones (Tables 2 and 3).
: 4. Survey potentially affected wildlife;
Overall, trophic guild proportions and composition were similar between sites upstream and downstream of SQN, indicating that the thermal discharge did not affect fish community composition downstream of SQN.
: 5. Evaluate maintenance of a balanced indigenous population (BIP) by performing traditional and multi-metric analyses of collected data, as appropriate; and
(4) A lack of domination by pollution-tolerant species Summer 2011 Number of intolerant species (> 4 required for highest score)
: 6. Evaluate the reasonable potential for impairment of non-aquatic life uses of the receiving waterbody as they relate to the thermal discharge. Field sampling activities are scheduled to begin in the summer and autumn of 2011. Resultant information will be used to s upport renewal of the facility's NPDES permit set to expire October 31, 2013.
Five pollution intolerant species were collected at the downstream site during summer 2011, while 6 were collected at the upstream site. Both sites received the highest RFAI score for this metric (Table 9).
1   
Percentage of tolerant individuals (< 31% required for highest electrofishing score upstream and downstream of SQN; < 14% required for highest gill net score downstream of SQN-forebay criteria; < 16% required for highest gill net score upstream of SQN- transition criteria)
Both sites received the lowest RFAI score (0.5) for the electrofishing and gill net portions of this metric. At both sites, this was primarily due to collection of a high percentage of bluegill and gizzard shad in the electrofishing samples and collection of large percentages of gizzard shad in the gill net samples (Table 9).
Percentage of omnivores (< 24% required for highest electrofishing score downstream of SQN-forebay criteria; < 22% required for highest electrofishing score upstream of SQN-transition criteria; < 17% required for highest gill net score downstream of SQN; < 23% required for highest gill net score upstream of SQN)
Omnivores constituted 31.2% of the electrofishing sample downstream of SQN and 35.1%
upstream of SQN. Although only 3.9% difference, the downstream site received a mid-range score and the upstream site a low score for the metric during summer 2011. Proportions of 7


==1.0INTRODUCTION==
omnivores in the gill net samples at each site were much higher due to large numbers of gizzard shad, resulting in the lowest score for this portion of the metric for both sites (Table 9). The overall proportion of omnivores (electrofishing and gill net combined) was 36.3% at the upstream site and 35.2% at the downstream site. These proportions met expectations for this trophic guild in upper mainstem Tennessee River reservoirs (Tables 2 and 3).
This document sets forth a revised Study Pla n, which the Tennessee Valley Authority (TVA) plans to implement for the purpose of evaluating the Sequoyah Nuclear Plant (SQN) thermal discharge in support of complian ce with the National Pollutant Discharge Elimination System (NPDES) permit for the facility (NPDES Permit No.: TN0026450). The Study Plan includes a review and discussion of applicable regulatory requirements for the thermal discharge and presents specific work elements for the re-verification of the existing Alternate Thermal Limit (ATL) for Outfall 101 in accordance with Clean Water Act (CWA) Section (&sect;) 316(a). As required by the NPDES permit, the Study Plan was first submitted to the Tennessee Department of Environment and Conservation (TDEC) on December 20, 2010 and subject to review by TDEC and the U. S. Environmental Protection Agency (EPA), Region 4. Comments and suggested revisions were provided to TVA by TDEC in a meeting held on April 7, 2011 and have been incorporated herein.
Percent dominance by one species (< 25% required for highest electrofishing score downstream of SQN-forebay criteria; < 20% required for highest electrofishing score upstream of SQN-transition criteria; < 15% required for highest gill net score downstream of SQN; < 14% required for highest gill net score upstream of SQN)
1.1FacilityInformationUnit 1 and 2 were placed in operation in 1981 and 1982, respectively. Both units can produce more than 2,400 megawatts of el ectricity. SQN is located on th e right descendi ng bank of the Tennessee River (Chickamauga Reservoir) near Ch attanooga, Tennessee (Figure 1). The facility withdraws cooling water from Chickamauga Reservoir via an intake channel and skimmer wall at river mile (TRM) 484.8. The cooling water intake structure (supporting six circulator pumps) provides the units a nominal flow of 1.11 x 10 6 gallons per minute (gpm) or 1,602 million gallons per day (mgd). The facility employs a once-through (open cycle) condenser cooling water system and can also operate with cooling towers in helper mode. The plant discharges heated effluent to Chickamauga Reservoir via Outfall 101 located at TRM 483.6 as authorized by the NPDES permit (Figure 2).
This metric received the lowest RFAI score for the electrofishing sample at the upstream site, while receiving the mid-range score at the downstream site. Both sites received the lowest score for the gill net sample. The electrofishing samples both downstream and upstream of SQN were dominated by bluegill. Gill net samples at both sites were dominated by gizzard shad (Table 9).
1.2RegulatoryBasis1.2.1ApplicableThermalCriteriaTDEC has specified "use classifications" for the state's surface waters and developed temperature criteria intended to support thos e uses (TDEC Rule 1200-4-4 and 1200-4-3-.03, respectively). The Tennessee River at the location of SQN has been classified for the following uses: Municipal, Industrial, and Domestic Water Supply, Industrial Water Supply, Fish and Aquatic Life, Recreation, Irrigation, Livestock Watering and Wildlife, and Navigation. Except for Irrigation and Livestock Watering and Wildlife (qualitative criteria), temperature criteria relevant to warm-water conditions of th e Tennessee River at SQN specify that: 
Autumn 2011 Number of intolerant species (> 4 required for highest score)
"The maximum water temperatur e change shall not exceed 3&deg;C
Four pollution intolerant species were collected at the downstream site and three at the upstream site during autumn 2011, one more that at the upstream site. Both sites received the mid-range RFAI score for this metric (Table 9).
[5.4&deg;F] relative to an upstream control point. The temperature of the water shall not exceed 30.5&deg;C
Percentage of tolerant individuals (< 31 % required for highest electrofishing score upstream and downstream of SQN; < 14% required for highest gill net score downstream of SQN-forebay criteria; < 16% required for highest gill net score upstream of SQN- transition criteria)
[86.9&deg;F] and the maximum 2  rate of change shall not exceed 2&deg;C
The percentage of tolerant individuals in electrofishing samples was almost twice as large (80.8%) at the upstream site compared to the downstream site (42.6%), resulting in the lowest score for the upstream site and mid-range for the downstream site. The difference was mostly due to higher numbers of bluegill in the electrofishing sample at the upstream site. The gill netting samples contained high percentages of gizzard shad and received the lowest scores at both sites (Table 10).
[3.6&deg;F] per hour. The temperature of impoundments where stratification occurs will be measured at a depth of 5 feet, or mid-depth whichever is less, and the temperature in flowing streams shall be measured at mid-depth."
Percentage of omnivores (< 24% required for highest electrofishing score downstream of SQN-forebay criteria; < 22% required for highest electrofishing score upstream of SQN-transition criteria; < 17% required for highest gill net score downstream of SQN; < 23% required for highest gill net score upstream of SQN)
[Rule 1200-4-3-.03] The SQN plant's "once-through" cooling water system design utilizing cooling towers in helper mode provides for the most thermodynamically effi cient method of generati ng electricity and as a result produces a heated discharge. As such, the thermal discharge ty pically exceeds TDEC's established temperature criteria, therefore, multiport diffusers with mixing zone are used to adequately mix the thermal effluent to meet the state water quality standa rd at the end of the mixing zone. In such cases, the TDEC rules specific to the Fish and Aquatic Life use
Omnivores made up 27.5% of the electrofishing sample downstream of SQN and 31.9%
upstream of SQN, resulting in a mid-range score for this metric at both sites. Proportions of omnivores in the gill net samples at each site were higher due to large numbers of gizzard shad, resulting in the lowest score for this portion of the metric for both sites. The overall proportion of omnivores (electrofishing and gill net combined) at the upstream site was 33.3% and 29.7% at the downstream site (Table 10). These proportions met expectations for this trophic guild in upper mainstem Tennessee River reservoirs (Tables 2 and 3).
8


classification provide that:
Percent dominance by one species (< 25% required for highest electrofishing score downstream of SQN-forebay criteria; < 20% required for highest electrofishing score upstream of SQN-transition criteria; < 15% required for highest gill net score downstream of SQN; < 14% required for highest gill net score upstream of SQN)
"A successful demonstration as determined by the state conducted for thermal discharge limitations under Section 316(a) of the Clean Water Act, (33 U.S.C. &sect;1326), shall constitute compliance- [with the temperature criteria]."
The downstream site received the mid-range RFAI score for the electrofishing sample and the lowest score for the gill net sample. The upstream site received the lowest score for this metric for both electrofishing and gill net samples. The electrofishing sample downstream of SQN was dominated by Mississippi silversides (non-indigenous), while the electrofishing sample upstream of SQN was dominated by bluegill. Gill net samples at both sites were dominated by gizzard shad (Table 10).
TVA has previously made such successful demonstration for the SQN thermal discharge in support of mixing zone criteria as further discussed below.
Traditional Analyses Summer 2011 One species richness parameter (number of insectivore species) was statistically (P<0.05) higher upstream than downstream of SQN. Although the differences were not significant, seven of the other nine species richness measures were also higher upstream of the plant (including non-indigenous species). Numbers of omnivore and tolerant species were higher downstream, but the differences were not significant. Of the parameters comparing CPUE, two, total CPUE and CPUE of intolerant individuals, were statistically higher at the site upstream of SQN than the downstream. Seven of the remaining eight parameters were higher upstream than downstream, but the differences were not significant. CPUE of top carnivores was slightly higher at the downstream site. Both diversity values showed no statistical difference between sites, although both were higher at the upstream site (Table 15).
1.2.2PermittedConditionsCurrently permitted thermal discharge limitations for SQN specify that the daily maximum temperature is not to exceed 30.5&deg;C (86.9&deg;F) at the end of the mixing zone (Page 1 of 28), NPDES permit TN0026450). This mixing zone criter ia are based on a prev ious demonstration by TVA, in accordance with CWA &sect;316(a) and TDEC Rule 1200-4-3-.03 noted above, that a balanced indigenous population (B IP) of fish, shellfish, and wi ldlife is supported in the Tennessee River potentially affected by the thermal discharge. The mixing zone criteria, as supported by the biological studies, also encomp ass other components of the TDEC temperature criteria, specifically the change in temperature from ambient/upstream conditions and rate of change in temperature. SQN has maintained a good compliance record with its mixing zone criteria throughout each NPDES permit term since first authorized in the late-1980s; ongoing biological monitoring has consistently demonstrated the mixing zone criteria are protective of aquatic communities in the river near the facility.
Autumn 2011 All species richness parameters were similar (no statistical difference) upstream and downstream of SQN. Six of the ten species richness measures were higher at the downstream site (including numbers of omnivore and tolerant species), while three were higher at the upstream site; mean numbers of benthic invertivore species were the same at both sites. Two of the ten parameters comparing CPUE, total CPUE and CPUE of non-indigenous individuals, were statistically higher at the downstream site (Table 16). These significant differences were driven by the higher numbers (approximately nine times more) of the non-indigenous Mississippi silverside collected at the downstream site (Tables 13 and 14). All other CPUE parameters showed no statistical difference between sites. CPUEs of insectivores, omnivores, top carnivores, and thermally sensitive individuals were also higher at the downstream site, but differences were not statistically significant. The remaining four parameters (CPUE of benthic invertivores, indigenous, tolerant, and intolerant individuals) were higher at the upstream site. Both diversity values were slightly higher at the downstream site, but differences were not significant (Table 16).
1.2.3CriteriaforAlternateThermalLimitsUnder&sect;316(a)The regulatory provisions that implement CWA &sect;316(a) provide limited guidance on precisely what the demonstration study must contain to be considered adequate and do not identify precise criteria against which to measure whether a "
9
balanced and indigenous" aquatic community is protected and maintained.
Instead, the regulations provi de broad guidelines.
Under the broad regulatory guidelines, the disc harger must show that the ATL desired, "considering the cumulative impact of its thermal discharge together with all other significant impacts on the species affected," will "assure the protection and propagation of a balanced, indigenous community of shellfis h, fish and wildlife in and on the body of wa ter into which the 3  discharge is to be mad e (40 CFR &sect;125.73).
Critical to the demonstration is the meaning of the term "balanced indigenous community". The rules provide the following definition: "The term "
balanced indigenous community
" is synonymous with the term balanced, indigenous population (i.e., BIP) in the Act and means a biotic community typically characterized by diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species and by a lack of domination by pollution tolerant species. Such a community may include historically non-native species introduced in connection with a program of wildlife management and species whos e presence or abundance results from substantial, irreversible environmental modifications" (40 CFR &sect;125.73).
Pursuant to this regulatory definition, a successful demonstration must show that under the desired ATL, and in light of the cumulative impact of the thermal discharge together with all other significant impacts on the species affected, the following characteristics, which are indicative of a BIP, will continue to exist: (1) diversity, (2) the capacity of the community to sustain itself through cyclic seasonal changes, (3) presence of n ecessary food chain species, and (4) a lack of domination by pollution tolerant species. There are several methodologies a discharger may pursue in making a &sect;316(a) demonstration.
Under the regulations, new dischargers must use predictive met hods (e.g., laboratory studies, literature surveys, or modeling) to estimate an appropriate ATL that will assure the protection and propagation of a balanced , indigenous community prior to commencing the thermal discharge. However, existing dischargers , such as SQN, need not use predictive methods. For such dischargers, &sect;316(a) demonstrations may be based upon the "
absence of prio r appreciable harm" to a balanced, indigenous community (s ee 40 CFR &sect;125.73(c)(1)(i) and (ii)). Such demonstrations must show either that: i) No appreciable harm has resulted from the thermal component of the discharge taking into account the interaction of such thermal component with other pollutants and the additive effect of other thermal sources to a balanced, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge has been made; or ii) Despite the occurrence of such previ ous harm, the desired alternative effluent limitations (or appropriate modifications thereof) will nevertheless assure the protection and propagation of a balance d, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge is made. Furthermore, in determining whether or not prior appreciable harm has o ccurred, the regulations provide that the permitting agency consider the length of time during which the applicant has been discharging and the nature of the discharge. The regulations do not define "
prior appreciable harm
." However, using the definition of "balanced, indigenous community," mixing zone criteria are generally granted under either of the following circumstances:
4  1. When a discharger shows that the characteristics of a BIP (i.e., diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species, and a lack of domination by pollution tolerant species) exist. Stated another way, the existence of such characteristics essentially prove that the aquatic community has not been appreciably harmed; or
: 2. Despite any evidence of previous harm, the characteristics of a BIP, as stated above, will nevertheless be protected and assured under the alternate limit.
1.2.4MixingZoneRequirementsinTennesseeRule1200430.5As noted above, &sect;316(a) pertains to the Fish an d Aquatic Life use clas sification and provides NPDES-permitted facilities a regulatory compliant means of demonstrating that promulgated temperature criteria may be more stringent than necessary to support a BIP.
In such cases, less stringent thermal criteria (i.e., ATLs) are justified. However, other use classifications such as Domestic Water Supply and Recreation must be protected as well. Compliance with TDEC temperature criteria for these uses is typically determined after the discharge has had the opportunity to mix with the receiving water; that is, an allowable mixing zone is determined.
TDEC rules define the mixing zone as: 
"That section of a flowing stre am or impounded waters in the imme diate vicinity of an outfall where an effluent becomes dispersed and mixed
." [1200-4-3-.04(8)]
The rules [1200-4-3-.05(2)] further provide that mixing zones are to be restricted in area and length and not:
: 1. prevent the free passage of fish or cause aquatic life mortality in the receiving waters;
: 2. contain materials in concentrations that exceed acute criteria beyond the zone immediately surrounding the outfall;
: 3. result in offensive conditions;
: 4. produce undesirable aquatic life or result in dominance of a nuisance species;
: 5. endanger the public health or welfare; or 
: 6. adversely affect the reasonable and necessary uses of the area;
: 7. create a condition of chronic toxicity beyond the edge of the mixing zone;
: 8. adversely affect nursery and spawning areas; or
: 9. adversely affect species with special state or federal status.
While TVA's proposed &sect;316(a) demonstration study plan fully examines the effects of the thermal discharge on the aquatic life components of the mixing zone requirements, the potential effects to other non-aquatic life use classifications (items 3, 5, and 6 above) are generally not evaluated. Therefore, this plan has been revised herein to incorporate a nd/or collect additional 5  information needed to address the reasonable potential for impairment of other non-aquatic life uses in the Tennessee River near the facility.
1.3StudyPlanOrganization This Study Plan is organized into the following sections: 1. Introductory information, including regul atory basis and rationale for the study; 2. Background information, including a summ ary of the findings of the previous
&sect;316(a) investigation and subsequent biological monitoring; and,  3. The proposed design and implementation schedule for the SQN &sect;316(a) demonstration Study Plan.
2.0STUDYBACKGROUND2.1SequoyahNuclearPlantThe SQN facility is operated to produce base-load electric power throughout the year. When operating at design (nameplate) capacity (2,400 MW), the units requires approximately 1,602 million gallons per day of condenser cooling water. Waste heat increases the temperature of the cooling water by approximately 16.4&deg;C (29.5&deg;F) before it is discharged into the river. The actual condenser flow, and hence the T, may vary somewhat with the circulating water pump head and the condenser efficiency.
2.2DescriptionoftheReceivingWaterbodySequoyah Nuclear is located on th e right descending bank of Chickamauga Reservoir (TRM 484.5) approximately 18 miles northeast of Chattanooga, Tennessee, and 7 miles southwest of Soddy-Daisy, Tennessee (Figure 1). Chickamauga Reservoir was impounded in 1940 and at full pool covers approximately 36,240 acres.
The topography of the reservoir in the vicinity of the discharge outlet consists of a shallow overbank area on the plant side which extends from TRM 484 downstream to TRM 481.8 and varies in depth from 2 to 20 ft and from 500 to 3,100 ft in width. This sha llow area is bordered by a main river channel which is about 900 feet (ft) wide and approximately 60 ft deep. Along this reach there are several small, shallow embayments.
The Tennessee River flow in the vicinity of SQN is controlled by releases from Watts Bar and Chickamauga Dams, and to a lesser extent Hiwassee River. SQN is situated on Chickamauga Reservoir approximately 54.5 river miles downstream from Watts Bar Dam and 13.5 river miles upstream from Chickamauga Dam.
6    2.3Previous&sect;316(a)DemonstrationStudyTVA conducted comprehensive &sect;316(a) demonstr ation-related studies of the SQN thermal effluent in the mid-1980s to support establishment of the current mixing zone criteria for the plant discharge (TVA, 1989). The minimum averag e daily flow for the Tennessee River near SQN at the time of the early studies was 6,000 cfs. The mid-1980s studies included extensive sampling of the aquatic community including:  Phytoplankton,  Periphyton, Aquatic macrophytes, Zooplankton, Benthic macroinvertebrates; and Fish populations.
Hydrothermal, water quality and other parameters also were evaluated.
Major findings of these studies included:  Average dissolved concentration in the water column was similar immediately upstream and downstream of SQN. Analysis of the data indicate that the assemblages of phytoplankton, zooplankton, and macroinvertebrates were diverse and, in general, relatively abundant. Dominance of blue-green algae was similar upstream and downstream of SQN. The phytoplankton and zooplankton communities were found to be similar, or if different, not impacted by SQN operation, at all stations during 20 of the 27 survey months when the plan t was in operation. Species richness in the benthic macroinvertebrate communities du ring pre-operational and operational monitoring was similar. No changes were documented in the aquatic macrophyte community that reflected effects of the thermal effluent. Fish species occurrence and abundance data in dicated insignificant impacts. Avoidances of the plume could not be detected for a ny species of fish. One study found that sauger (Sander canadensis) were not concentrated in the thermal plume during winter months nor inhibited from movement past SQN. Resu lts of gonadal inspecti ons indicate that the heated discharge did not advers ely affect fish reproduction.
7    Other fisheries studies indicated that the th ermal discharge resulted in no discernible increase in parasitism. No mortalities of threadfin shad due to cold shock following shutdown of SQN were observed or reported, and none are antic ipated to occur in the future.
2.4ContemporaryStudiesMonitoring of the thermal effects of the S QN discharge on the aquatic community of the receiving waterbody has been more recently conducted by TVA after an agreement was reached with TDEC in 2001. TVA's "Vital Signs" monitoring program also provides useful information for evaluating reservoir-wide effects. Monitoring has included sampling of the fish and macroinvertebrate communities and associated collection of temperature and other water quality parameters. Results of the permit monitoring work and TVA's ongoing Vital Signs monitoring (TVA, 2011) have consistently demonstrated that fish and macr oinvertebrate assemblages of Chickamauga Reservoir within and downstream of the SQN thermal discharge are similar to those of upstream locations, as well as to established mainstem reservoir reference conditions for the area. Results of the above studies notwithstanding, TVA plans to implement this Study Plan for the purpose of further evaluating the SQN thermal discharge to support continuance of the ATL for the facility discharge in accordance with CWA &sect;316(a) and TDEC Rule 1200-4-3-.03(e).  


8  3.0STUDYPLANThis &sect;316(a) demonstration Study Plan is informed by communications with TDEC and EPA, the study design of the previous demonstr ation study, and TVA's ongoing river/reservoir biological monitoring programs.
Fish Community Summary In conclusion, evaluation of the five characteristics of BIP and their respective metrics and traditional analyses indicated the downstream site was similar to the upstream site and that a balanced fish community existed at the site downstream of SQN in summer and autumn 2011.
3.1StudyTimingAs reasonably practicable, TVA sampling crews will coordinate with SQN facility operations staff to schedule field studies to coincide with representative conditions of maximum generation for the time period to be sampled as dictated by seasonal power demand. The additional field studies will be conducted during the period of critical environmental (thermal) conditions in summer (mid-July - August) when plant operations and ambient reservoir temperatures are at expected seasonal maximums. Summer monitoring will be conducted once during the SQN permit cycle. Data collection during this period will focus on characterization/delineation of the thermal plume and biological field investigations inclusive of thermally affected and unaffected areas. TVA will also conduct monitoring in autumn (October - mid-December) as has been occurring in previous study years.
Summer 2011 Seven of the 12 RFAI metrics received equal scores at both sites for the summer of 2011. The upstream site received a lower score for the metrics Number of indigenous species, Percent dominance by one species, Percent top carnivores, and Percent omnivores (Table 9).
3.2StudyScopeThe following tasks will be conducted for the SQN &sect;316(a) demonstration Study:
Twenty-nine indigenous species were collected at the upstream site and 28 were collected at the downstream site. No statistical difference existed in numbers of indigenous species and CPUE of indigenous individuals between sites (Table 15). Thirty-one resident important species (RIS) were collected at the upstream site compared to 29 at the downstream site (Tables 11 and 12).
Task1-EvaluatePlantOperatingConditionsDuring the course of the study, SQN operational data will be recorded, compiled, and analyzed to assist in the interpretation of thermal plume characteristics and biological community information. Available historical operational data will also be compiled and analyzed to evaluate and identify any material changes in SQN operations over the most recent 5-year period that might affect the thermal plume characteristics. Parameters to be recorded during the proposed study and evaluated historically include, but are not limited to:  Cooling water intake flow and water temperature;  Discharge flow and water temperature; and  Power generation statistics. The data will be presented in tabular and graphical formats to describe SQN operational conditions during the current study.  
RIS are defined in EPA guidance as those species which are representative in terms of their biological requirements of a balanced, indigenous community of fish, shellfish, and wildlife in the body of water into which the discharge is made (EPA and NRC 1977). RIS often include non-indigenous species.
The same three aquatic nuisance (non-indigenous) species, common carp, yellow perch, and Mississippi silverside, were collected at both sites (Tables 11 and 12); CPUE of these three species was similar between sites (Table 15).
The same two thermally sensitive species (spotted sucker and logperch) were collected at both sites (Tables 11 and 12) and were collected in similar densities (Table 15). Water temperatures greater than 32.2&deg;C (90&deg;F) are known to be the avoidance level and/or lethal level to these species (Yoder et al. 2006).
Four commercially valuable species were collected at the downstream site and five were collected at the upstream site. Twenty-four recreationally valuable species were collected at the upstream site, while 25 were collected at the downstream site (Tables 11 and 12).
Autumn 2011 Nine of the 12 RFAI metrics received the same scores at both sites. The upstream site received a lower score for the electrofishing portion of the metric Percent dominance by one species and Percent tolerant individuals, while the downstream site received a lower score for the metric Percent top carnivores (Table 10).
Twenty-eight indigenous species were collected at the upstream site, while 25 were collected at the downstream site. Numbers of indigenous species and indigenous CPUEs at the downstream site were similar to those at the upstream site (Table 16). Thirty resident important species were collected at the upstream site compared to 27 resident important species at the downstream stations (Tables 13 and 14). Representative important species are defined in EPA guidance as those species which are representative in terms of their biological requirements of a balanced, indigenous community of fish, shellfish, and wildlife in the body of water into which the discharge is made (EPA and NRC 1977).
10


9  Task2-ThermalPlumeMonitoringandMappingPhysical measurements will be taken to characterize and map the SQN thermal plume concurrent with biological field sampling during the sampling events. In this manner, it is expected that the plume will be characterized under representative thermal maxima and seasonally-expected low flow conditions. Measurements will be collected during periods of hi gh power production from SQN, as reasonably practicable, to capture maximum extent of the thermal plume under existing river flow/reservoir elevation conditions. This effort will allow general delineation of the "Primary Study Area" per the EPA (1977) draft guidance defined as the: "
Three aquatic nuisance species (common carp, yellow perch, and Mississippi silverside) were collected at the upstream site, while two aquatic nuisance species (common carp and Mississippi silverside) were collected at the downstream site (Tables 13 and 14). Although the numbers of non-indigenous species was similar between sites, CPUE of non-indigenous individuals was significantly higher at the downstream site (Table 16). This was due to a large number of Mississippi silversides collected at the downstream site (917, or 33.5% of total catch) compared to the upstream site (124, or 6.3 % of total catch) (Tables 13 and 14). This is a schooling fish species and is commonly collected in large numbers.
entire geographic area bounded annually by the lo cus of the 2&deg;C above am bient surface isotherms as these isotherms are distributed throughout an annual period"); ensure placement of the biological sampling locations within thermally influenced areas; and inform the evaluation of potential impacts on recreation and water supply uses. However, it is important to emphasize that the >
Two thermally sensitive species (spotted sucker and logperch) were collected upstream, while one (spotted sucker) was collected downstream (Tables 13 and 14). CPUE of these species was similar between sites (Table 16). Water temperatures greater than 32.2&deg;C (90&deg;F) are known to be the upper avoidance level or lethal to the aforementioned species (Yoder et al. 2006).
2&#xba;C isopleth boundary is not a bright line; it is dynamic, changing geometrically in response to changes in ambient river flows and temperatures and SQN operations. As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced. Every effort will be made to collect biological samples in thermally affected areas as guided by the Primary Study Area definition. Field activities will include measurement of surface to bottom temperature profiles along transects across the plume. One transect will be located proximate to the thermal discharge point; subsequent downstream transects will be concentrated in the near field area of the plume where the change in plume temperature is expected to be most rapid. The distance between transects in the remainder of the Primary Study Area will increase with distance downstream or away from the discharge point. The farthest downstream transect will be just outside of the Primary Study Area. A transect upstream of the discharge that is not affected by the thermal plume will be included for determining ambient temperature conditions. The total number of transects needed to fully characterize and delineate the plume will be determined in the field. Temperature profile measurement (surface to bottom) points along a given transect will begin at or near the shoreline from which the discharge originates and continue across the plume until ambient background temperature conditions (based on surface (0.1 meters (m)/0.3 ft depth) measurements) or the far shore is reached. The number of measuremen t points along transects will generally be proportional to the width of the plume and the magnitude of the temperature change across a given transect. The distances between transects and measurement points will depend on the size of the discharge plume. The temperature measurement instrument (Hydrolab or equivalent) will be calibrated to a thermometer whose calibration is traceable to the National Institute of Standards and Technology.
Thirteen commercially valuable species were collected at downstream site and 11 at the upstream site. Twenty-four recreationally valuable species were collected at the upstream site, while 19 were collected at the downstream site (Tables 13 and 14).
10  Temperature data will be compiled and analyzed to present the horizontal and vertical dimensions of the SQN thermal plume using spatial analysis techniques to yield plume cross-sections, which can be used to demonstrate th e existence of a zone of passage under and/or around the plume.
As discussed above, RFAI scores have an intrinsic variability of +/-3 points. This variability comes from various sources, including annual variations in air temperature and stream flow; variations in pollutant loadings from nonpoint sources; changes in habitat, such as extent and density of aquatic vegetation; natural population cycles and movements of the species being sampled (TWRC, 2006). Another source of variability arises from the fact that nearly any practical measurement, lethal or non-lethal, of a biological community is a sample rather than a measurement of the entire population. As long as scores are within the 6-point range, there is no certainty that any real change at a site has occurred or difference between sites exists beyond method variability.
Task3-EstablishmentofBiologicalSamplingStationsWater temperature data from Task 2 will define the relationships between the biological sampling zone and thermally affected areas as informed by the EPA (1977) draft guidance, which identifies the Primary Study Area as having water temperatures of
It should be noted that the upstream site is scored using transition criteria and the downstream site using forebay criteria (Table 4). More accurate comparisons can be made between sites that are located in the same reservoir zone (i.e., transition to transition). Due to the location of SQN, it is not possible to have an upstream and downstream site within the same reservoir zone. SQN is located at the downstream end of the transition zone on Chickamauga Reservoir; therefore, the downstream site is located in the upstream section of the forebay. The physical and chemical composition of a forebay is often different than that of a transition zone; consequently, inherent differences exist among the aquatic communities (e.g. species diversity is often higher in a transition zone than a forebay).
>2&deg;C (3.6&#xba;F) above ambient temperature. The thermally affected sampling location will be referred to as the "downstream zone;" the non-thermally-affected sampling location will be referred to as the "upstream zone." If it is determined, based on the plume temperature measurements/mapping that the currently used biological sampling zone downstream of SQN is not fully within the EPA guidance-defined Primary Study Area, that sampling zone will be re-established within the EPA Primary Study Area. Figure 3 depicts the downstream biological sampling zone; Figure 4 includes the location of the ambient biological sampling zone upstream of SQN.
Through the years sampled, the upstream site averaged a score of 44 (Good) while the downstream site averaged a score of 41 (Good), indicating the sites were similar annually and that the SQN heated effluent is not adversely affecting the fish community in the vicinity of the plant (Table 17). RFAI scores are presented for the Chickamauga Reservoir inflow site (TRM 529.0), the forebay site (TRM 472.3), and the Hiwassee River Embayment site (HiRM 8.5) to provide additional information on the health of the fish community throughout the reservoir; however, aquatic communities at these sites are not affected by SQN thermal discharges and are not used to determine BIP in relation to SQN. The average RFAI scores at these three sites among all years sampled have remained in the Good range (Table 17).
Task4-ShorelineandRiverBottomHabitatCharacterizationInformed by the results of Tasks 2 and 3, hab itat characterization will be conducted at each selected sampling location to evaluate potential for bias in the results due to habitat differences between the thermally affected area and the ambient sampling locations, and to support interpretation of the biological data. Eight line-of-sight transects will be established across the width of Chickamauga Reservoir downstream and upstream of SQN to assess the quality of shoreline habitat (Figure 5). An integrative multi-metric index (Shoreline Aquatic Habitat Index or SAHI), including several habitat parameters importa nt to resident fish species, will be used to measure the existing fish habitat quality. Using the SAHI, individual metrics are scored through comparison of observed conditions with reference conditions and assigned a corresponding value. River bottom habitat characterization for both the upstream and downstream study zones will consist of eight transects each collected perpendicular to the shoreline.
11
Each transect will evaluate substrate by collecting 10 equally spaced Ponar dredge samples across the width of the reservoir. Each sample will be visually estimated to define substrate and then sieved to define percent makeup of substrate. At each sample location, depth, and sediment type encountered will be recorded. Sediment categ ories include bedrock, boul der, cobble, gravel, sand, fines, and detritus. Each site will be assigned one of three habitat categories to reduce the amount of assessment variability.
Habitat categories are as follows: A) areas with presence of large substrates such as cobble and boulders, B) areas dominated by sand or fine substrates and C) areas with a presence of a mixture of both A and B (small and large) habitat types.
11  Task5-SupportingWaterQualityMeasurementsIn addition to the thermal plume measurements, additional water quality profiles will be collected as necessary in conjunction with the fi eld studies to: (i) support interpretation of the biological data; and (ii) evaluate potential impacts to water s upply and recreational uses. Using a Hydrolab, or equivalent unit, three water column profiles at one-meter increments will be collected near the left descending bank, right descending bank and mid-channel at the upstream and downstream ends of each sample zone, and other areas as needed (e.g., at water supply intakes). Each profile collected will include temperature, dissolved oxygen concentration, pH, and conductivity.
Task6-BiologicalEvaluationsThe biological evaluations will focus on major representative species of the aquatic and wildlife community that could potentially be affected by the SQN thermal discharge. Sampling will be conducted during the summer months (mid-July - August) once during the SQN permit cycle to evaluate "worst case" conditions. Autumn monitoring (October - mid-December) will be conducted as a measure of potential manifested effects to the aquatic community from summer-long exposure to the thermal discharge and other stressors (basis for existing multi-metric assessments). The biological communities to be sampled and collection methodologies are provided in the following sections.
ReservoirFishCommunityMonitoringInformed by the habitat characterization and temperature measurements, the fish community will be sampled during sample events at two locations: downstream within the thermal influence of the power plant (Figure 3); and upstream and beyond thermal influence of SQN (centered at TRM 489.5) (Figure 4). Sampling will be conducted by boat electrofishing and gill netting (Hubert 1996; Reynolds, 1996). The electrofishing methodology is based on existing monitoring programs and consists of 15 shoreline-oriented boat electrofishing runs in the upstream sampling zone and 15 shoreline runs in the downstream zone. Each run is 300 m (984 ft) long and electrofishing is conducted for a duration of approximately 15 minutes each. The total near-shore linear area sampled will be approximately 4,500 m (15,000 ft) per zone (J ennings, et al., 1995; Hickman and McDonough, 1996; McDonough and Hickman, 1999). Should the size of the SQN thermal plume (i.e., Primary Study Area) be too small to allow collec tion of all replicate electrofishing runs, the needed remaining replicate runs will be conducted as close as practicable to the Primary Study Area and be identified in the data analyses. As indicated previously, the >
2&#xba;C isopleth boundary that defines the Primary Study Area is not a ri gid boundary; rather, its geometry changes in response to ambient river flows and temperatures and SQN operations (discharge flow). As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced.
12  Experimental gill nets (so called because of th eir use for research as opposed to commercial fishing) are used as an additional gear type to collect fish from deeper habitats not effectively sampled by electrofishing. Each experimental gill net consists of five-6.1 m (20 ft) panels for a total length of 30.5 m (100 ft). Th e distinguishing characteristic of experimental gill nets is mesh size that varies between panels. For this application, each net has panels with mesh sizes of 2.5 (1 inch (in)), 5.1 (2 in), 7.6 (3 in), 10.2 (4 in), and 12.7 (5 in) centimeters (cm). Experimental gill nets are typically set perpendicular to river flow extending from near-shore to the main


channel of the reservoir. Ten overnight experimental gill net sets will be used at each area. Fish collected will be identified by species, counted, and examined for anomalies (such as disease, deformities, or hybridization).
Individual metric scores, overall RFAI scores, species collected, and catch per effort from electrofishing and gill netting for the upstream and downstream sampling sites at SQN during 1999 through 2010 are included in Shaffer et al., 2010 and Simmons, 2011.
ReservoirBenthicMacroinvertebrateCommunityMonitoringBenthic macroinvertebrates will be sampled with benthic grab samplers at ten equally-spaced points along the upstream (ambient) and downstream (mid-plume) sampling zones (Figures 3 and 4). A Ponar sampler (area per sample 0.06 m
Benthic Macroinvertebrate Community Summer 2011 During summer 2011, RBI scores at the downstream transects TRM 481.3 and TRM 483.4 were 27 (Good) and 29 (Good), respectively, and were slightly higher than those at upstream transects TRM 488.0 and TRM 490.5 [27 (Good) and 23 (Fair), respectively] (Table 18). A difference of 4 points or less between upstream and downstream stations is used to define similar conditions between the two sites. Because the average of the downstream sites (28) scored three points higher than that of the upstream sites (25) and rated Good, it can be determined that BIP was maintained. For the discussion of each RBI metric, the downstream site was compared to the upstream control site.
: 2) will be used for most samples. When heavier substrates are encountered, a Peterson sampler (area per sample 0.11 m
Average number of taxa (> 5 required for highest score-forebay criteria; > 6.6 required for highest score-transition criteria)
: 2) will be used. Bottom sediments will be washed on a 533 micron () screen; organisms will be picked from the screen and from any remaining substrate. Organisms will be sent to an independent laboratory for identification to the lowest practicable taxonomic level.
The downstream sites (forebay) averaged 11.2 taxa, while the upstream sites (transition) averaged 7.1 taxa; all sites received the highest score for this metric (Table 18).
ReservoirPlanktonCommunityMonitoringAt the request of TDEC, phytoplankton samples will be obtained from a photic zone 1 composite water sample collected at two locations each in the main channel area of the downstream sampling zone (Primary Study Area: mid-plume and plume downstream boundary; see Figure 3) and the upstream zone (Figure 4). This will be accomplished by lowering the intake end of a peristaltic pump sample tube to the bottom of the photic zone; and with the pump activated, slowly retrieving the sample tubing at a constant rate until the reservoir surface is reached. The phytoplankton data will be used to compare potential algal community response to thermal influence based on high-level taxonomy (i.e., Chrysophyta, Chlorophyta, Cyanophyta). Zooplankton samples will be collected with a plankton net (300 millimeter (1 ft) diameter with 153  mesh) towed at two locations each in the main channel area of the downstream sampling zone (Primary Study Area: mid-plume and plume downstream boundary) and the upstream zone (Figures 3 and 4). Tows will consist of a vertical pull (tow) of the entire water column from 2 m off the bottom to the surface of the reservoir. Comparative analysis of zooplankton data from the two locations will be used to evaluate potential thermal influence on community structure.  
Proportion of samples with long-lived organisms (> 0.8 required for highest score-forebay criteria; > 0.9 required for highest score-transition criteria)
The observed values for the metric Proportion of samples with long-lived organisms (e.g.,
Corbicula, Hexagenia, mussels, and snails) were 0.8 at both downstream transects and both sites scored 3 (mid-range). Upstream of SQN, all samples at the transect at TRM 488.0 contained long-lived organisms (1.0) resulting in a score of 5, while TRM 409.5 received a score of 1 with only 40% of samples containing long-lived organisms (Table 18). Snail proportions, in particular, were higher downstream of SQN as compared to those upstream (Figure 19).
Average number of EPT taxa (> 0.9 required for highest score-forebay criteria; > 1.4 required for highest score-transition criteria)
The average number of EPT taxa present in each sample were 0.9 and 1.2 at the downstream transects, resulting in scores of 3 and 5, respectively. At the upstream transects TRM 488.0 and TRM 490.5, average number of EPT taxa was 0.8 (score: 3) and 0.2 (score: 1), respectively (Table 18). Ephemeroptera (mayflies) and Trichoptera (caddisflies) proportions were slightly higher at the downstream sites as compared to the upstream sites (Figure 17).
Average proportion of oligochaete individuals (< 21.0 required for highest score-forebay criteria;
< 11.0 required for highest score-transition criteria)
The average proportion of oligochaete individuals at the downstream sites were 35.6% (score of
: 3) and 54.4% (score of 1). The upstream sites had smaller percentages of samples containing oligochaetes (15.5% at TRM 488.0 and 7.2% at TRM 490.5) and therefore, received higher scores of 3 and 5, respectively (Table 18).
12


1 For the purposes of this study, the photic zone is defined as twice the Secchi disk transparency depth or 4 meters, whichever is greater.
Average proportion of total abundance comprised by the two most abundant species (< 81.7 required for highest score-forebay criteria; < 77.8 required for highest score-transition criteria)
13  Plankton sampling will be conducted once during the sampling ev ents utilizing established TVA procedures. Among other cr iteria, these procedures specify replicate sampling, proper sample preservation, and data processing requirements.
Both downstream sites received scores of 5 with proportions of 73.7% (TRM 481.3) and 75.5%
WildlifeCommunityEvaluationThe wildlife community will be evaluated via implementation of visual encounter (observational) wildlife survey methodology and supported through review of the available literature, and communications with natural resource agency contacts. The effort will focus on the more water dependent species of the herpetofaunal, avian, and mammalian communities.
(TRM 483.4) of the samples comprising the two most abundant taxa (chironomids and oligochaetes). At the upstream sites TRM 488.0 and TRM 490.5, 82.8% and 86.4% of the total abundance, respectively, was comprised of the two most abundant taxa (chironomids and oligochaetes) resulting in mid-range scores for both sites (Tables 18 and 20).
These activities will assist in identifying the wildlife species expected for the ecoregion, establish the presence/absence of a BIP of wildlife in the study area, a nd support evaluation of potential direct effects of temperature on sensitive life stages and any indirect effects such as increased
Average density excluding chironomids and oligochaetes (> 249.9 required for highest score-forebay criteria; > 609.9 required for highest score-transition criteria)
At the downstream sites, average densities of organisms excluding chironomids and oligochaetes were 235/m2 and 525/m2, resulting in scores of 3 and 5, respectively. At the sites upstream of SQN, densities excluding chironomids and oligochaetes were 470/m2 and 396.7/m2 and both sites received scores of 3 (Table 18).
Proportion of samples containing no organisms (0 required for highest score)
There were no samples at any site upstream and downstream of SQN which were void of organisms. Therefore, all sites received the highest score for this RBI metric during summer 2011 (Table 18).
In conclusion, during the summer of 2011 downstream sites scored the same or higher than the upstream site on all metrics except Average number of oligochaetes indicating BIP was maintained downstream of SQN.
Autumn 2011 Autumn RBI scores for downstream were 29 (Good), 27 (Good), while the upstream site scored 19 (Fair) (Table 18). A difference of 4 points or less between upstream and downstream stations is used to define similar conditions between the two sites. Because the downstream site scored 8 to 10 points higher and rated Good, it can be determined that BIP was maintained. For the discussion of each RBI metric, the downstream site was compared to the upstream control site.
Average number of taxa (> 5 required for highest score-forebay criteria; > 6.6 required for highest score-transition criteria)
Averages of 7.8 and 13.6 taxa were observed for sites downstream of SQN. The site upstream of SQN averaged 6.6 taxa per sample. The downstream sites both received the highest score for this metric, while the upstream site received the mid-range score (Table 18).
Proportion of samples with long-lived organisms (> 0.8 required for highest score-forebay criteria; > 0.9 required for highest score-transition criteria)
The metric proportion of samples with long-lived organisms (Corbicula, Hexagenia, mussels, and snails) scored 3 at both downstream sites with proportions of 0.7 and 0.8. The proportion of samples with long-lived organisms (0.8) was similar at the upstream site and therefore, also a score of 3 (Table 18).
13


predation.
Average number of EPT taxa (> 0.9 required for highest score-forebay criteria; > 1.4 required for highest score-transition criteria)
A review of available resources to identify any threatened or endangered species potentially occurring in the study area will also be conducted.
The average numbers of EPT taxa present per sample at each of the downstream sites were 1.0 and 0.9, resulting in scores of 5 and 3, respectively. The site upstream of SQN received a score of 1 with 0.5 EPT taxa per sample (Table 18). Ephemeroptera (mayflies) and Trichoptera (caddisflies) proportions were higher at the downstream sites as compared to the upstream site (Figure 19).
For the visual encounter surveys, two permanent transects will be established both upstream and downstream of the SQN thermal effluent. The midpoint of the upstream transect will be positioned at TRM 489.5 and span a distance of 2,100 m within this transect. The downstream transect will be located in the field based on sampling event and likewise span a distance 2,100 m. The beginning and ending point of each transect will be marked with GPS for relocation. Transects will be positioned approximately 30 m offshore and parallel to the shoreline occurring on both right and left descending banks. Basic inventories will be conducted to provide a representative sampling of wildlife present during summer (mid-July - August) and late autumn-early winter (October - December). Each transect will be surveyed by steadily traversing the length by boat and simultaneously recording observations of wildlife. Sampling frame of each transect will generally follow the strip or belt transect concept with all individuals enumerated that crossed the center-line of each transect landward to an area th at included the shoreline and ri parian zone (i.e., belt width generally averages 60 m where vision is not obscured). Information recorded will include wildlife identification (to the lowest taxonomic trophic level) that is obser ved visually and/or audibly and a direct count of indi viduals observed per trophic level. If flocks of a species or mixed flock of a group of species are observed, an estimate of the number of individuals present will be generated. Time will be recorded at the starting and ending point of each transect to provide a general measure of effort expended. However, times may vary among transects primarily due to the difficulty in approaching some wildlife species without inadvertently flushing them from basking or perching sites. To compensate for the variation of effort expended per transect, observations will be standardized to numbers per minute or numbers per hectare in preparation for analysis.
Average proportion of oligochaete individuals (< 21.0 required for highest score-forebay criteria;
14  The principal objective and purpose behind the wildlife surveys are to provide a preliminary set of observations to verify trophic levels of birds, mammals, amphibians and reptiles present that might be affected by thermal effects of the power plant (i.e., the ATL). If trophic levels are not represented, further investigation will be used to target specific species and/or species groups (guilds) that will determine the cause.
< 11.0 required for highest score-transition criteria)
Task7-WaterSupplyandRecreationalUseSupportEvaluationWater temperature data collected as part of the thermal mapping (Task 2) and collection of supporting water quality information (Task 5) will be used to evaluate potential thermal impacts to water supply and recreational uses in the vi cinity of SQN. Locations of any public water supply intakes and/or established public recreational areas will be determined and their position(s) mapped relative to the SQN thermal plume. We are aware of one domestic water supply intake located within approximately 10 river miles downstream of the SQN thermal discharge (Figure 1). The existence of any relevant water temperature data collected by the owners of these water supply intake(s) will be determined; and if available, requested to augment the field-collected data. As necessary (limited or no available owner-supplied temperature data), direct measurements of water temperature may also be conducted specifically at these locations to evaluate potential thermal effects of the SQN discharge.
At the downstream sites, average proportion of oligochaete individuals in each sample was 29.4% at TRM 481.3 and 48.1% at TRM 483.4 resulting in scores of 3 and 1, respectively. The upstream site received a score of 3 with a proportion of 14.8% (Table 18).
3.3DataContributiontotheAnalysis/DemonstrationThe analysis of fish, macroinvertebrate, and plankton community data will include traditional analyses whereby community attributes for the thermally affected areas will be compared to the non-thermally affected ambient location. For the purposes of the demonstration (within river/reservoir comparisons), the composition of fish and macroinvertebrate assemblages
Average proportion of total abundance comprised by the two most abundant species (< 81.7 required for highest score-forebay criteria; < 77.8 required for highest score-transition criteria)
During autumn 2011, 78.6% of the total abundance at TRM 481.3 was comprised of the two most abundant taxa (chironomids and oligochaetes). The two most abundant taxa at TRM 483.4 were oligochaetes and flatworms (Planariidae) and constituted 77% of the total abundance. Both downstream sites received the highest score of 5. At the upstream site TRM 490.5, 84.5% of the total abundance was comprised by the two most abundant taxa, chironomids and fingernail clams (Sphaeriidae), resulting in a mid-range score for this metric (Tables 18 and 20).
Average density excluding chironomids and oligochaetes (> 249.9 required for highest score-forebay criteria; > 609.9 required for highest score-transition criteria)
At the downstream sites, average densities excluding chironomids and oligochaetes were 181.7/m2 and 1,685/m2 resulting in scores of 3 and 5, respectively. Average density excluding chironomids and oligochaetes at the upstream site was 263.3/m2, resulting in the lowest score for this metric (Table 18).
Proportion of samples containing no organisms (0 required for highest score)
There were no samples at any site which were void of organisms. Therefore, all sites received the highest score for this RBI metric during autumn 2011 (Table 18).
In conclusion, during the autumn of 2011, downstream sites scored the same or higher on all the metrics indicating a BIP of benthic macroinvertebrates was maintained downstream of SQN (Table 18). The low score at the upstream site (19) was lower than expected based on historical scores; however, similarly low scores of 21 and 17 were observed in 2007 and 2008, respectively. A possible reason for the low score at the upstream site could be pollution impacts from the Hiwassee River, which enters the Tennessee River 9 miles upstream of TRM 490.5.
Individual RBI metric ratings and field scores from TRM 482.0 (downstream) and TRM 490.5 (upstream) are listed in Table 21 for comparison of results from 2000 to 2010. Although downstream sites sampled in 2011 were proximate to the transect sampled from 2000-2010 14


collected at the upstream station, uninfluenced by the SQN thermal discharge, is expected to set the baseline for evaluating the presence of a BIP in the downstream thermally influenced area. In that regard, a BIP is the expected determination for the thermally uninfluenced area.
(TRM 482.0), 2011 RBI scores cannot be directly compared to those from 2000 to 2010 without inference.
3.3.1TraditionalAnalysesAs applicable, biological community data will be compiled into tables providing a listing of species collected and their status with regard to expected occurrence in the ecoregion. Reference materials such as: "
RBI scores for the inflow, forebay, and Hiwassee River embayment sites are included in Table 19 to provide additional information on the overall health of the benthic macroinvertebrate community in Chickamauga Reservoir. RBI scores have averaged Good for the inflow and forebay sites and Fair for the Hiwassee River embayment over all sample years.
The Fishes of Tennessee" (Etnier and Starnes, 1993); similarly applicable publications; and best professional judgment by e xperienced aquatic biologists will be used for this determination. The dataset will be furt her evaluated with rega rd to the following:  Life stages represented,  Food chain species present (e.g., predator and prey species),  Thermally-tolerant or -sensitive specie s present (based on Yoder et al., 2006), Representative Important Species (co mmercially and/or r ecreationally); and  Other community attributes (fish and macroinvertebrates) 15  To evaluate similarity with the downstream thermally influenced area, traditional species diversity indices will be used. Diversity indices provide important information about community composition and take the relative abundances of different species into account as well as species richness (i.e., number of individual species). Tw o diversity indices will be calculated for each sample location; such as: the Shannon-Weiner diversity index (H) (Levinton, 1982) and Simpson's Index of Diversity (D s) (Simpson, 1949). Of the many bi ological diversity indices, these two indices are the most commonly reported in the scientific literature and will be evaluated for use in determining if community structure is similar between the thermally influenced and non-thermally influenced sampling locations. Other methods/indices for evaluating similarity between sampli ng sites will also be considered. Based on the BIP baseline for the thermally uninfluenced ambient (upstream) location, comparative statistical analysis of the diversity indices and/or other measures of biological community status such as: sp ecies richness, relative abundan ce, pollution tolerance, trophic guilds, indigenousness, and thermal sensitivity (each pending sufficient sample size) will be used to confirm the presence/absence of a BIP in the thermally influenced study area.
Plankton Community Detailed results of taxa collected and estimates of sample density are provided in Table 26 (phytoplankton) and in Table 33 (zooplankton).
3.3.2SupportingMultimetricBioassessmentUpon review of the species listings and establishment that the fish and macroinvertebrate populations are appropriate to the aquatic systems of the ecoregion, sample data also will be analyzed using TVA's Reservoir Fish Assemblage Index (RFAI) methodology (McDonough and Hickman 1999) and Reservoir Bent hic Index to further evaluate if the SQN thermal discharge has materially changed ecological conditions in the receivi ng water body (Tennessee River - Chickamauga Reservoir). Reservoir Fish Assemblage Index The RFAI uses 12 fish assemblage metrics from four general categories:  Species Richness and Composition (8 metrics); Trophic Composition (two metrics); Abundance (one metric); and Fish Health (absence of anomalies) (one metric). Individual species can be utilized for more than one metric. Each metric is assigned a score based on "expected" fish assemblage characteristics in the absence of human-induced impacts other than impoundment of the reservoir. Individual metric scores for a sampling area (i.e., upstream or downstream) will be summed to obtain the RFAI score for each sample location and comparatively analyzed. The maximum RFAI score is 60.
Phytoplankton Summer 2011 Figure 18 indicates that average phytoplankton densities decreased progressively from TRM 490.7 (the most upstream site) to TRM 483.4 (immediately downstream of the diffusers).
Ecological health ratings (12-21 "Very Poor", 22-31 "Poor", 32-40 "Fair", 41-50 "Good", or  51-60 "Excellent") are then applied to scores. Based on statistical analysis of multiple RFAI datasets, RFAI scores between sites (e.g., downstream vs. upstream) will need to differ by 6 points or more to be considered to have different fish assemblages based on documented variability in the sampling methodology.
Phytoplankton density was lowest at TRM 483.4 and increased further downstream at TRM 481.1 to concentrations similar to the most upstream site.
16  Regardless of the scores, a metric-by-metric examination will be conducted; this review will be helpful in evaluating potential metric-specific impacts that may be thermally related. Reservoir Benthic Macroinvertebrate Index The RBI is similarly calculated as the RFAI except that it uses seven metrics specific to the macroinvertebrate assemblage. Each metric is a ssigned a score based on reference conditions and then summed to produce an overall RBI score for each sample site. The maximum RBI score is
Numerically, cyanophytes were the dominant taxa (96 to 99 percent; Table 22, Figure 18) at all sites, with a prevalence of Cyanogranis and several taxa in the family Chroococcaceae (Table 26). Considered as a percentage of total biovolume, bacillariophytes (diatoms) were more dominant (Figure 19). Total taxa richness for paired replicate samples ranged from 43 to 49, and the percentage of taxa shared between replicates samples ranged from 52.1 to 76.7 percent (Table 23). However, of the 67 taxa collected in August, seven cyanophyte taxa were common to all replicate samples and accounted for 86 to 95 percent of the total population (Tables 24, 26).
: 35. Ecological health ratings (7-12 "Very Poor
Percent Similarity coefficients (ranging from 75 to 87; Table 25) and Bray-Curtis similarity coefficients (BCe) were high (ranging from 0.78 to 0.81, Figure 25), indicating that the structure of the phytoplankton community was similar at all sites. The cluster analysis indicated that the communities at TRM 481.1 and TRM 487.9 were the most similar, followed by TRM 483.4 and 490.7. No upstream to downstream trend was evident.
", 13-18 "Poor", 19-23 "Fair", 24-29 "Good", or 30-35 "Excellent") will then be applied to scores. Based on statistical analysis of multiple RBI datasets, RBI scores between sites (e.g., downstream vs. upstream) that differ by 4 points or more will be considered to have different macroinvertebrate assemblages. A metric-by-metric examination will also be conducted, regardless of the scores, to evaluate potential thermally-related impacts on specific metrics.
Autumn 2011 Total population densities in October were much lower compared to those in August, and the spatial trend was reversed. That is, phytoplankton density increased progressively from the most upstream site (TRM 490.7) to a maximum density at the diffuser (TRM 483.4), then decreased again slightly at the site further downstream at TRM 481.1 (Figure 20).
3.3.4ReasonablePotentialEvaluationBased on existing information and temperature data collected/obtaine d during the study, the reasonable potential for the thermal discharge to impair current and future water supply and recreational (water contact) uses will be evaluated. The measured temperatures at the water supply intake location and location of any named recreational areas or areas where recreational users are known to congregate within the thermally influenced area (if any), will form the basis for determining reasonable potential for use impairment. Should reasonable potential be indicated, TVA will discuss with TDEC; and as necessary, submit a revised scope of work (study design) for this task (Task 7) proposing additional data collections and/or analysis to focus the evaluation.
Bacillariophytes (diatoms) were numerically dominant (36 to 63 percent; Table 22, Figure 20) at all sites and comprised approximately 74 to 91 percent of the total biovolume (Figure 21).
3.4ReportingA final Project Report will be prepared providing a description of the study design, data collection methods, SQN operational data, thermal plume mapping results, water quality monitoring data, and aquatic and wildlife community information. Ra w data and associated field collection parameters will be appended to the report.
Cryptophytes (Cryptomonas) were subdominant (21 to 36 percent) and the composition of chlorophytes and cyanophytes ranged from 6 to 16 percent. Total taxa richness for paired replicate samples ranged from 27 to 32 at the three lower sites, but only 19 taxa were collected at 15


Results and conclusions regarding the &sect;316(a) demonstration (maintenance of a BIP) and support of other use classifications (recreation and water suppl y) will be presented.
TRM 490.7. The number of taxa shared between replicate samples ranged from 50.0 to 57.9 percent (Table 23). However, of the 38 taxa collected in October, nine were common to all samples and accounted for 74 to 97 percent of the total population. A mix of cyanophyte taxa often comprised more than 10 percent of the population in any given sample, but seldom was the same taxon present in both replicates, and no single taxon was represented in all samples (Tables 24, 26).
3.5StudyScheduleSummaryField sampling will be conducted during summer (mid-July - August) once during the SQN permit cycle and autumn (October - mid-December); each event will include sampling of the Primary Study Area/downstream zone and upstream/ambient zone.
October PS coefficients among the three lower sites were relatively high (71 to 80), while the PS coefficients for TRM 490.7 were notably lower (63 for each site comparison) (Table 25). By this measure, the communities downstream (TRM 487.9, 483.4, and 481.1) were relatively similar, but the community at the most upstream site (TRM 490.7) showed the greatest dissimilarity to any other. The same taxa (Aulacoseira, Fragilaria, and Cryptomonas) were dominant at each site, but TRM 490.7 had lower taxa richness and the dominant taxa comprised a greater percentage of the overall population (Table 27).
17  TVA will provide TDEC with an interim progress report of the summer 2011 sampling results in spring of 2012. Final report will be completed and submitted with the SQN NPDES permit renewal package.
The Bray-Curtis similarity coefficients (BCe) (0.64 to 0.73) indicate that phytoplankton community structure was slightly more dissimilar among sites in October than in August, which is supported by the PS coefficients. TRM 483.4 and TRM 487.9 formed the first cluster (BCe, 0.73), followed by a secondary cluster with TRM 481.1 (BCe, 0.68). TRM 490.7 clustered last, indicating this site was least similar in terms of taxa shared and taxa abundances (Figure 26).
18  4.0LITERATURECITED EPA 1977. Draft  Interagency 316(a) technical guidance manual and guide for thermal effects sections of nuclear facilities environmental impact statements. U.S. Environmental Protection Agency and U.S. Nuclear Regulatory Commission. U.S. Environmental Protection Agency, Office of Water Enforcement, Permits Division, Industrial Permits Branch, Washington, D.C.
Overall, TRM 490.7 had higher composition of diatoms and lower composition of chlorophytes and cryptophytes compared to the three downstream locations (Table 22).
Etnier, D.A. & Starnes, W.C. 1993.
Chlorophyll Chlorophyll a concentrations differed among the four sites in samples collected in both August and October (Table 28, Figure 22). Upstream to downstream differences in chlorophyll a concentrations closely paralleled phytoplankton density, but as expected, the chlorophyll a concentration was more closely associated with biovolume (Figures 19, 21).
The Fishes of Tennessee. University of Tennessee Press, Knoxville, TN, 681 pp. Hickman, G.D. and T.A. McDonough. 1996. Assessing the Reservoir Fish Assemblage Index- A potential measure of reservoir quality.
August data show TRM 483.4 had the lowest concentrations (6.0 &#xb5;g/l) followed by TRM 490.7 (9.5 &#xb5;g/l). Chlorophyll a concentrations were similar for TRM 481.1 (12 &#xb5;g/l) and TRM 487.9 (14 &#xb5;g/l) (Table 28). Decreased concentrations at TRM 483.4 are supported by findings of reduced phytoplankton cell densities and biovolume at this location (Table 26, Figure 19).
In: D. DeVries (Ed.) Reservoir symposium- Multidimensional approaches to reservoir fisheries management. Reservoir Committee, Southern Division, American Fisher ies Society, Bethesda, MD. pp 85-97. Hubert, W. A. 1996. Passive capture techniques, entanglement gears. Pages 160-165 in B. R. Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society, Bethesda, MD.
October chlorophyll a concentrations increased progressively from TRM 490.7 to TRM 483.4, and then decreased at TRM 481.1 to a concentration similar to that of the uppermost site (TRM 490.7). Again, the spatial differences are supported by the phytoplankton density (Table 26) and biovolume data (Figure 21).
Jennings, M. J., L. S. Fore, and J. R. Karr.
Zooplankton Overall, 35 zooplankton taxa were represented in the samples collected. The number of taxa represented in each major group was 10 to 12, with the exception of the Bivalvia, for which only 2 taxa were represented (Table 31). Notably, taxa richness for individual samples ranged from 8 to 16, but the number of taxa shared between replicates ranged from only 3 to 8 (21.4 to 66.7 percent) due to substantial variability in the presence/absence of less abundant taxa (Tables 30, 33). In the samples collected during both August and October, four to five taxa comprised the majority (approximately 90 to 99 percent) of the populations at each of the four sites. The 16
1995. Biological monitoring of fish assemblages in Tennessee Valley reservoirs, Regulated Rivers: Rese arch and Management, Vol. 11, pages 263-274.
Levinton, J.S. 1982.
Marine Ecology. Prentice-Hall, Inc. Englewood Cliffs, NJ McDonough, T.A. and G.D. Hickman. 1999. Reservoir Fish Assemblage Index development: A tool for assessing ecological health in Tennessee Valley Authority impoundments.
In: Assessing the sustainability and biological integrity of water resources using fish communities. Simon, T. (Ed.)
CRC Press, Boca Raton, FL. pp 523-540. Reynolds, J.B. 1996. Electrofishing. Pages 221-251 in B. R. Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. Amer ican Fisheries Society, Bethesda, MD. Simpson, E.H. (1949) Measurement of diversity.
Nature 163:688 see http://www.wku.edu/~smithch/biogeog/SIMP1949.htm TVA 2011. Biological Monitoring of the Tennessee River Near Sequoyah Nuclear Plant Discharge Autumn 2010. Tennessee Valley Authority, Knoxville, TN.
TVA 1989. A Predictive 316(a) De monstration for an Alternative Winter Thermal Discharge Limit for Sequoyah Nuclear Plant, Chickamauga Reservoir, Tennessee. Tennessee Valley Authority, Chattanooga, TN  Yoder, C.O., B.J. Armitage, and E.T. Rankin. 2006. Re-evaluation of the technical justification for existing Ohio River mainstem temperature criteria. Midwest Bi odiversity Institute, Columbus, OH.
19  FIGURES 20  Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge


21  Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 22  Figure 3. Biological monitoring zone downstream of Sequoyah Nuclear plant Biomonitoring St a tions Downstream of Sequoyah Nuclear Plant
dominant taxa were the cladocerans Bosmina longirostris and Diaphanosoma birgei (not present in October); copepods in the orders Calanoida and Cyclopoida; and the rotifer Conochilus unicornis (Table 33).
* E l ec trofi shi ng S tat io n s o Gill N e tting S ta tio n s -Be nthic Macroinvertebrate Transects 23  Figure 4. Biological monitoring zone upst ream of Sequoyah Nuclear plant thermal discharge Biomonitoring Stations Upstream of Sequoyah Nuclear Plant
Summer 2011 Data from August samples showed that zooplankton densities were notably higher at sites downstream of the diffusers. Densities increased progressively from the most upstream site (TRM 490.7) to the highest density at TRM 483.4, just downstream of the diffusers, then decreased slightly at TRM 481.2. The lower overall density at TRM 481.2 was largely due to the collection of fewer rotifers. TRM 483.4 had higher rotifer group density than all other sites.
* Electrof i s h i ng Statio n s o G ill Netti ng Stat i o n s -Benth i c Macro i nvertebra t e Tra n sects .
TRM 481.1 had the highest density of cladocerans (Figure 23).
* 24   Figure 5. Anticipated transects to be established for conduct of the integrative multi-metric aquatic shoreline habitat assessment Transects for Shore li ne Aquat i c Hab i tat I ndex (SAH I) Upstream and Do w nstream of Sequoyah Nuc l ear P l ant CCW D i scharge --SA H I T r a n se ct s Biological Monitoring of the Tennessee River Near Sequoyah Nuclear Plant Discharge, Summer and Autumn 2011 May 2012 Tennessee Valley Authority Biological and Water Resources Knoxville, Tennessee
Cladocerans were numerically dominant (49 to 68 percent; Table 29, Figure 23) at all sites. The composition of copepods and rotifers was generally similar (15 to 26 percent) among all sites except TRM 481.1. Rotifers comprised only two percent of the population at TRM 481.1 and copepods comprised a slightly higher percentage (30 percent) compared to other sites. Total taxa richness for paired replicate samples was relatively low, ranging from 8 to 14. Taxa richness was highest (14) at TRM 481.1, with sites upstream having only 8 to 9 taxa represented (Table 30).
August PS coefficients (70 to 80) were relatively high among the three most upstream sites, indicating similar community structure. TRM 481.1 had somewhat low PS coefficients with TRM 483.4 and TRM 487.9 (63 and 69, respectively), due largely to lower composition of copepods in the order Calanoida and the rotifer Conochilus unicornis at TRM 481.1. The PS coefficient (75) for TRM 481.1 and TRM 490.7 was relatively high (Table 32).
Bray-Curtis Similarity yielded similar results. Coefficients ranged from 0.65 to 0.80. TRM 483.4 and TRM 490.7 were the most similar, with a high coefficient of 0.80. These sites formed a secondary cluster with TRM 487.9 (BCe, 0.72). TRM 481.1 clustered last (BCe, 0.65),
indicating this site was least similar to the other sites in terms of taxa shared and taxa abundances (Figure 27).
Autumn 2011 In October, average zooplankton densities were highest at TRM 481.1, but variability between the replicate samples was high. TRM 490.7 had the second highest population density.
Densities were similar at TRM 483.4 and TRM 487.5 (Figure 24).
Comparable to findings in August, cladocerans were numerically dominant (44 to 71 percent) at all sites and copepods were subdominant (23 to 40 percent). However, the composition of rotifers was higher at TRM 481.1 (16 percent) than at sites upstream (2 to 6 percent), which is the reverse of findings in August (Table 29). Total taxa richness ranged from 12 to 16 at the three most upstream sites, but only 9 taxa were collected at TRM 481.1 (Table 30).
October PS coefficients (72 to 93) were higher among sites than in August, but yielded similar findings, with the lowest PS coefficients (72 to 83) for TRM 481.1 (Table 32). However, the density and composition of copepods in the order Calanoida and the rotifer Conochilus unicornis were highest at TRM 481.1 in October and lowest in August (Table 33). These taxa contributed to the dissimilarity between TRM 481.1 and other sites exhibited during both sample dates.
17


Table of Contents Table of Contents .............................................................................................................
Bray-Curtis Similarity yielded similar results. Coefficients ranged from 0.63 to 0.70. TRM 483.3 and TRM 487.9 formed the first cluster (BCe, 0.70), indicating the communities at these sites were the most similar of the four. These sites form a secondary cluster with TRM 490.7 (BCe, 0.68). TRM 481.1 clustered last, indicating greater dissimilarity with other sites (Figure 28).
................ iList of Tables ................................................................................................................
Plankton Summary The results of the Phytoplankton and Zooplankton studies at SQN during 2011 generally support findings from previous studies, which are presented in the section following this summary.
................. iiiList of Figures ...............................................................................................................
Phytoplankton Phytoplankton data indicated that quantitative characteristics (total and group cell densities) differed among sites in both August and October, but there were few differences in community structure among the four sample sites on either date. Notably, the reduced phytoplankton densities, biovolume, and chlorophyll concentrations at TRM 483.4 in August could be interpreted as an effect from SQN diffuser discharge. Previous studies have indentified reduced phytoplankton densities and chlorophyll concentrations (biovolume was not measured) at TRM 483.4 due to the diffusers mixing water from the bottom - containing low phytoplankton densities - with water of the upper strata that typically contain greater densities. Previous studies have also documented that when phytoplankton reductions have occurred at TRM 483.4 in apparent relation to diffuser mixing, densities recovered within a few miles downstream of the diffusers. Likewise, in August, phytoplankton parameters (density, biovolume, and chlorophyll) showed lowest values at TRM 483.4, and then increased at TRM 481.1 to levels similar to those found upstream of the diffuser. Additionally, previous studies have documented that when differences have occurred in phytoplankton communities among locations, these differences typically have been either increases or decreases in organism densities, not compositional changes in the community. This was supported in the current study. In both August and October, the two independent measures of diversity indicated relatively high levels of similarity among sites upstream and downstream of the diffusers, even though population densities differed. Only TRM 490.7 exhibited lower similarity when compared with the other sites, and then only in October. However, we do not consider this dissimilarity related to the operation of SQN.
................. viAcronyms and Abbreviations ....................................................................................................
Zooplankton Zooplankton data indicated that quantitative differences existed among sites in both August and October, but there were no upstream to downstream trends in population densities that provided definitive evidence of an effect from the operation of SQN. In August, zooplankton densities were highest at TRM 483.4, just downstream of the diffuser, and densities at both downstream sites were higher compared to those of the upstream sites. In October, zooplankton densities were highest at TRM 481.1, the most downstream site. Densities at TRM 483.4 and TRM 487.9 were very similar, but were lower than those at the most upstream and most downstream sites.
.. viiiIntroduction ..................................................................................................................
As with phytoplankton, compositions of the zooplankton communities were generally similar among sites, even though population densities differed. Overall, TRM 481.1 was more dissimilar to the other sites in both August and October. This was due in part to higher population densities at TRM 481.1, but interestingly, the taxa that contributed most to the 18
................... 1Plant Description .............................................................................................................
................ 2Methods........................................................................................................................
................... 2Shoreline Aquatic Habitat Assessment ........................................................................................... 2River Bottom Habitat ..........................................................................................................
............ 3Fish Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN............................................................................................................................
........... 3Traditional Analyses ..........................................................................................................
............. 8Benthic Macroinvertebrate Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN ...................................................................................................... 9Plankton Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN ........................................................................................................................
........ 11Phytoplankton .................................................................................................................
.............. 11Zooplankton ...................................................................................................................
............... 12Data Analysis .................................................................................................................
............... 12Visual Encounter Surveys (Observations of Wildlife) ................................................................. 12Chickamauga Reservoir Flow and SQN Temperature .................................................................... 1Thermal Plume Characterization ................................................................................................
.... 1Water Quality Parameters at Fish Sampling Sites during RFAI Samples ...................................... 2Results and Discussion ........................................................................................................
........... 2Aquatic Habitat in the Vicinity of SQN ........................................................................................
.. 2Shoreline Aquatic Habitat Assessment ........................................................................................... 2River Bottom Habitat ..........................................................................................................
............ 3Fish Community.................................................................................................................
............. 3Traditional Analyses ..........................................................................................................
............. 9Benthic Macroinvertebrate Community ....................................................................................... 12Plankton Community ............................................................................................................
........ 15Plankton Summary ..............................................................................................................
.......... 18Review of Previous Plankton Studies ...........................................................................................
19Visual Encounter Survey/Wildlife Observations .......................................................................... 20Chickamauga Reservoir Flow and Temperature Near SQN ......................................................... 21i Thermal Plume Characterization ................................................................................................
.. 21Water Quality Parameters at Fish Sampling Sites During RFAI Samples ................................... 22Literature Cited ..............................................................................................................
............... 23Tables ........................................................................................................................
.................... 25Figures........................................................................................................................
................... 77  ii List of Tables Table 1. Shoreline Aquatic Habitat Index (SAHI) metrics and scoring criteria. ......................... 26Table 2. Expected values for upper mainstem Tennessee River reservoir transition and forebay zones .........................................................................................................................
.......... 27Table 3. Average trophic guild proportions a nd average number of fish species, bound by confidence intervals (95%), expected in upper mainstem Tennessee River reservoir transition and forebay zones and proportions and numbers of speci es observed during summer and autumn 2011. .................................................................................................. 28Table 4. RFAI scoring criteria (2002) for fish community samples in forebay, transition, and inflow sections of upper mainstream Tennessee River reservoirs. ..................................... 29Table 5. Scoring criteria for benthic macroinvertebrate community samples (lab-processed) for forebay, transition, and inflow sections of mainstream Tennessee River reservoirs. ......... 30Table 6. SAHI scores for 16 shoreline habitat assessments conducted within the Upstream RFAI sampling area of SQN on Chickamauga Reservoir, autumn 2009. .................................... 31Table 7. SAHI Scores for 16 Shoreline Habitat Assessments Conducted within the Downstream RFAI Sampling Area of SQN on Chickamauga Reservoir, Autumn 2009. ....................... 32Table 8. Substrate percentages and average water depth (ft) per transect upstream (8 transects) and downstream (8 transects) of SQN. ............................................................................... 33Table 9. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of Sequoyah Nuclear Plant Summer 2011. .................................. 34Table 10. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of (Sequoyah nuclear) Autumn 2011. .......................................... 38Table 11. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During El ectrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Summer 2011. ........... 42Table 12. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electro fishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Summer 2011. ................................ 43Table 13. Autumn 2011 Species Collected, Tr ophic level, Indigenous and Tolerance Classification, Catch Per Effort During El ectrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Autumn 2011. ........... 44Table 14. Autumn 2011 Species Collected, Tr ophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electro fishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Autumn 2011. ................................. 45Table 15. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run), tolerance de signations, trophic le vels, and non-indigenous individuals, along with speci es richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, summer 2011. ...................................................... 46Table 16. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run), tolerance de signations, trophic le vels, and non-indigenous individuals, along with speci es richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, autumn 2011. ....................................................... 47iii Table 17. Summary of RFAI scores from sites located directly upstream and downstream of Sequoyah Nuclear Plant as well as scores from sampling conducted during autumn 1993-2011 as part of the Vital Signs Monitoring Program in Chickamauga Reservoir. ............. 48Table 18. Comparison of mean density per square meter of benthic taxa collected at upstream and downstream sites near SQN during August and October 2011. ................................... 49Table 19. Summary of RBI Scores from Sites Located Directly Upstream and Downstream of Sequoyah Nuclear Plant as Well as Scores from Sampling Conducted as Part of the Vital Signs Monitoring Program in Chickamauga Reservoir. ..................................................... 50Table 20. Comparison of mean density per Square Meter of Benthic Taxa collected with a Ponar Dredge along Transects Upstream and Do wnstream of Sequoyah Nuclear Plant, Chickamauga Reservoir, Summer and Autumn 2011. ........................................................ 51Table 21. Individual Metric Ratings and the Ov erall RBI Field Scores for Downstream and Upstream Sampling Sites Near SQN, Chickamauga Reservoir, Autumn 2000-2010. ....... 56Table 22. Mean percent composition of major phytoplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011. ..................................................... 57Table 23. Comparison of the similarity of phytopla nkton taxa within paired replicate samples. 57Table 24. Taxa richness of the main phytoplankton groups. ....................................................... 57Table 25. Percent Similarity Index for comparison of phytoplankton communities among sites.
...............................................................................................................................
.............. 57Table 26. Phytoplankton taxa and density (cells/ml) data for samples collected at four stations within Chickamauga Reservoir on the Tenne ssee River - August 25 and October 10, 2011.
Abbreviations "R1" and R2" designate replicate samples. ................................................. 58Table 27. Percentage Composition of phytoplankton for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. ...... 61Table 28. Concentrations of chlorophyll a (apparent and co rrected), phaeophytin a and the chlorophyll/phaeophytin index values for samples collected upstream and downstream of SQN during 2011. ............................................................................................................... 64Table 29. Mean percent composition of major zooplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011. ........................................................... 64Table 30. Comparison of the similarity of zooplankton taxa within paired replicate samples. ... 65Table 31. Taxa richness of the main zooplankton groups. ........................................................... 65Table 32. Percent Similarity Index for comparison of zooplankton communities among sites. . 65Table 33. Zooplankton taxa and density (organisms/m3) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. Abbreviations "R1" and R2" designate replicate samples. ................................ 66Table 34. Percentage composition of zooplankton taxa for samples collected at four stations within Chickamauga Reservoir on the Tenne ssee River - August 25 and October 10, 2011.
...............................................................................................................................
.............. 68Table 35. Wildlife Visual Encounter Survey Resu lts of Shoreline Upstream and Downstream of Sequoyah Nuclear Plant during August (Summer) and October (Autumn) 2011.  (RDB = right descending bank, LDB = Left Descending Bank) ...................................................... 70iv Table 36. Water temperature (&deg;F) profiles meas ured at five locations (10%, 30%, 50%, 70%, 90%) from right descending bank along transects located at TRM 486.7 (ambient), TRM 483.4 (discharge), TRM 481.1 (middle of plume), TRM 480.0 (downstream limit of plume), and TRM 478.3 (below plume) on August 25, 2011 (Summer). ........................... 71Table 37. Water temperature (&deg;F) profiles meas ured at five locations (10%, 30%, 50%, 70%, 90%) from right descending bank along transects located at TRM 487 (ambient), TRM 483.4 (discharge), TRM 482.2 (below discharge), TRM 481.0 (downstream limit of plume), and TRM 478.3 (below plume) on September 14, 2011 (Autumn). ..................... 72Table 38. Seasonal water quality parameters collected along vertical depth profiles downstream (TRM 482) and upstream (TRM 490.5) of the Sequoyah Nuclear Plant in Chickamauga Reservoir on the Tennessee River.
Abbreviations: &deg;C -Tempera ture in degrees Celsius, &deg;F - Temperature in degrees Fahrenheit, Cond - Conductivity, DO - Dissolved Oxygen ..... 73  v List of Figures Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge ................ 78Figure 2. Site map for Sequoyah Nuclear plant showing condenser co oling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 ...................... 79Figure 3. Biological monitoring stations upstream of Sequoyah Nuclear Plant. ......................... 80Figure 4. Biological monitoring stations downstream of Sequoyah Nuclear Plant, including mixing zone and thermal plume from SQN CCW discharge. ............................................ 81Figure 5. Benthic and shoreline habitat transects within the fish community sampling area upstream and downstream of SQN. .................................................................................... 82Figure 6. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge during October 2010 through November 2011. ........................................................................................... 83Figure 7. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River downstream of SQN. ............................................................................... 84Figure 8. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River downstream of SQN. ............................................................................... 85Figure 9. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River downstream of SQN. ............................................................................... 86Figure 10. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River downstream of SQN. ............................................................................... 87Figure 11. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River upstream of SQN. .................................................................................... 88Figure 12. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River upstream of SQN. .................................................................................... 89Figure 13. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River upstream of SQN. .................................................................................... 90Figure 14. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River upstream of SQN. .................................................................................... 91Figure 15. Number of indigenous fish species collected during RFAI samples downstream of SQN (TRM 482) during 1996 and 1999 through 2011....................................................... 92Figure 16. Number of indigenous fish species collected during RFAI samples upstream of SQN (TRM 490.5) during 1993 to 1997 and 1999 through 2011. .............................................. 92Figure 17. Proportions of selected benthic taxa from Ponar dredge sampling at locations upstream and downstream of SQN, summer and autumn 2011. ......................................... 93Figure 18. Mean phytoplankton densities (cells/ml) for samples collected August 25, 2011. .... 94Figure 19. Mean phytoplankton biovolume (&#xb5;m 3/ml) for samples collected August 25, 2011. . 94Figure 20. Mean phytoplankton densities (cells/ml) for samples collected October 10, 2011. .... 94Figure 21. Mean phytoplankton biovolume (&#xb5;m 3/ml) for samples collected October 10, 2011. 94Figure 22. Mean chlorophyll a concentrations for samples collected August 25 and October 10, 2011...........................................................................................................................
.......... 95vi Figure 23. Mean zooplankton densities (number/m
: 3) for samples collected August 25, 2011. .. 95Figure 24. Mean zooplankton densities (number/m
: 3) for samples collected October 10, 2011 .. 95Figure 25. Dendrogram of phytoplankt on community (taxa density, log 10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month.  (Coph. Corr =
0.89) .........................................................................................................................
........... 96Figure 26. Dendrogram of phytoplankt on community (taxa density, log 10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month.  (Coph. Corr =


0.78) .........................................................................................................................
dissimilarity of this site were the same in both months. In August, TRM 481.1 had the lowest density and composition of calanoid copepods and of the rotifer Conochilus unicornis. In October, the same site had the highest density and composition of these taxa. Although the reduced densities of these taxa in August may have been due in part to operation of SQN, the greater abundance of organisms at TRM 481.1 - including the highest densities of copepods and cladocerans among all four sites - suggests that the majority of the reduction is more likely related to other variables. One such variable is the patchy nature of plankton distributions, as evidenced by the high variability in density of some taxa observed between replicate samples collected at each site. Such patchy distributions have been described in previous studies, and are discussed further in the review following this summary.
........... 97Figure 27. Dendrogram of zooplankton community (taxa density, log 10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month.  (Coph. Corr =
Review of Previous Plankton Studies Previous plankton studies around SQN were conducted with the objective of evaluating the effects of SQN operations on plankton, but these were not controlled experiments (i.e.
experiments designed to keep all variables constant except the test factor - in this case, the power plant). Instead, the program monitored a dynamic system: even without the influence of SQN, differences between the control locations (upstream of the plant) and the test locations (downstream of the plant) were expected due to other possible variables. One possible variable is the longitudinal point, or transition zone, where water velocities become sufficiently low for phytoplankton to remain in the photic zone long enough to sustain growth and reproduction. The location of this transition zone in the reservoir is dependent on flow conditions, and it might fluctuate upstream or downstream daily or even hourly, as inflows from the Hiwassee River and releases from Chickamauga and Watts Bar dams vary (Figures 29 and 30 - hourly average flows). Other variables may include but are not limited to: reservoir stratification; inflow from the overbanks and other highly productive areas; phase of population (and community) growth; the patchy nature of plankton distribution; differences in depth among sample locations; travel time between sample locations; and light penetration. Like the transition zone, many of the factors in this list are also directly or indirectly related to flow conditions. Each of the factors listed here has an important influence on plankton, and each contributes to the composition of the community sampled at each location.
Studies to date have documented that when differences in phytoplankton and zooplankton communities occurred among sample locations, these differences typically were either increases or decreases in organism densities, not community changes. Studies have shown that downstream increases were more commonly observed under relatively high reservoir flows (e.g.,
30,000 cfs), while when reservoir flows were quite low (i.e., <10,000), decreases in downstream plankton densities were expected, particularly at the diffuser location (TRM 483.4). Greater variability in plankton densities was observed at intermediate flows.
The studies also indicated that reductions in phytoplankton densities were caused by different mechanisms than were reductions in zooplankton densities.
The mechanism most likely responsible for reductions of phytoplankton densities and of chlorophyll concentrations is mixing of the water column at the diffuser location. In-plant plankton studies conducted in 1987 (TVA, 1988) and in 1988 (TVA, 1989) indicated some reduction in cell densities may have occurred as water was entrained through the CCWS, but most of the reductions observed at TRM 483.4 were due to mixing caused by the diffusers. The cooling water that is withdrawn from the lower strata near the skimmer wall has naturally low 19


0.87) .........................................................................................................................
concentrations of phytoplankton compared to upper strata. This water is carried through the CCWS, heated, and discharged through the diffusers. The momentum from being discharged through the diffuser ports, plus the buoyancy from the added heat, cause this water to rise and mix with ambient water near the diffusers. The water withdrawn from and discharged at the bottom, already low in phytoplankton, and the mixing which redistributes the phytoplankton concentrated near the surface, are reflected as reduced phytoplankton concentrations for TRM 483.4 at most strata.
........... 98Figure 28. Dendrogram of zooplankton community (taxa density, log 10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month.  (Coph. Corr =
Previous studies have also documented that when phytoplankton reductions occurred at TRM 483.4 in apparent relation to diffuser mixing, recovery was realized by TRM 478.2 (previous study site). Furthermore, special biweekly surveys conducted from April to October, 1989, showed downstream phytoplankton concentrations recovered to levels similar to those above the diffuser within 1-2 river miles (TVA, 1990).
Reductions in zooplankton densities appear to be caused by a more complex set of factors, including passage through the SQN CCWS. In-plant studies have shown substantial reductions in zooplankton densities during passage through the CCWS, even without heat (TVA, 1988).
Zooplankton densities were significantly lower in the diffuser pond samples compared to intake samples, and essentially all zooplankton examined from the diffuser pond were immobile and presumed dead (TVA, 1989). Discharge of the water with reduced number of zooplankters would result in some reduction in density at the diffuser location (TRM 483.4). However, these reductions alone were not sufficient to account for the magnitude of decreased density typically observed, particularly since many of the dead zooplankters would still be discharged and included in the enumeration from TRM 483.4.
These results indicate that some other factor or combination of factors, in addition to mixing at the diffuser, must be involved in reduced zooplankton densities at the diffuser site. One possible factor that became evident as more studies were conducted is the complex hydraulics in the vicinity of the diffuser discharge. The hydraulics of this area were likely complex even before SQN was constructed, due to the narrowing and deepening of the channel compared to upstream, and to the presence of an overbank (typically highly productive) with its point of inflow to the channel just upstream of where the channel narrows and deepens. Construction of SQN, including the addition of an underwater dam that occupies about half of the cross-sectional area of the river channel and the installation of the diffusers with buoyant discharge, further complicated the hydraulics in this area. Obviously, collection of representative samples from this area is difficult due to varying contributions of several factors, including reduced densities in the discharge water, increased densities in water entering the channel from the upstream overbank, and physical mixing of the zooplankton (which typically are not evenly distributed in the water column) in the ambient channel water. Although some of the reductions in zooplankton densities are due to operation of SQN, it has not been possible to specify the magnitude of that reduction separate from that due to other variables.
Visual Encounter Survey/Wildlife Observations Summer 2011 Thirty-three individuals composing 11 bird species and 1 mammal species were observed along shoreline transects (RDB and LDB) upstream of SQN. Along shoreline transects downstream of SQN, 51 individuals constituting 10 bird and one mammal species were observed. Bird species 20


0.78) .........................................................................................................................
observed both upstream and downstream of SQN included unidentified species of swallow, belted kingfisher, osprey, and great blue heron. American crow, turkey vulture, red-winged blackbird, and an unidentified duck species were only observed at the transects upstream of SQN, while wood duck, double-crested cormorant, European starling, and green heron were only observed along transects downstream. White-tailed deer was the only mammal species observed during the survey and was observed in equal numbers (4 individuals) upstream and downstream of SQN (Table 35).
........... 99Figure 29. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, August 23 through August 25, 2011 ...................................................................... 100Figure 30. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, October 8 through October 10, 2011 ...................................................................... 100Figure 31. Total daily average rel eases (cubic feet per second) from Watts Bar, Apalachia, and Ocoee 1 dams, October 2010 through November 2011 and historic daily average flows averaged for the same period 1976 through 2010. ............................................................ 101Figure 32. Daily average water temp eratures (&deg;F) at a depth of five feet, recorded upstream of SQN intake (Station 14) and downstream of SQN discharge (Station 8), October 2009 through November 2010. .................................................................................................. 102    vii viii  Acronyms and Abbreviations
Autumn 2011 Four species of birds comprising 9 individuals were observed along transects upstream of SQN.
Downstream of SQN, 1,024 birds composing 17 species and one species of mammal were observed. Three of the four bird species (great blue heron, belted kingfisher, and an unidentified songbird species) observed upstream were viewed downstream; an unidentified wren species was observed along transects upstream of SQN only. Fourteen bird species were only observed downstream of SQN and included blue jay, northern mockingbird, double-crested cormorant, American coot, American widgeon, pied-billed grebe, mallard, tufted titmouse, killdeer, wood duck, black-crowned night heron, gadwall, green-winged teal, and an unidentified sandpiper species. The only mammal species observed at the downstream transect was eastern gray squirrel (1 individual) (Table 35).
In summary, the wildlife community downstream of SQN was similar to that upstream during summer 2011. During the autumn 2011 survey, species richness and total numbers observed were significantly higher downstream of SQN.
Chickamauga Reservoir Flow and Temperature Near SQN Total average daily flows from Watts Bar Dam, Ocoee No. 1 Dam, and Appalachia Dam from October 2010 to November 2011 and historical daily average flows from 1976 through 2010 are shown in Figure 31. Daily average flows from October 2010 to November 2011 were similar (total daily average flows averaged 6% higher) to historical daily average flows, but were below the historical averages during the summer and autumn sampling periods (Figure 31).
Daily average water temperatures recorded upstream of the SQN intake and downstream of SQN discharge, October 2010 through November 2011, are shown in Figure 20. Water temperatures remained within permitted limits (below 86.9&deg;F) throughout the year (Figure 32).
Thermal Plume Characterization Summer 2011 Temperature profiles collected on August 25, 2011 indicated the thermal plume extended from the SQN discharge point (TRM 483.6) downstream approximately 4.1 miles to TRM 479.5 (Table 36, Figure 4). The average ambient surface water temperature (0.3 m and 1 m depths) measured at TRM 486.7 on the date of the survey was 81.86&deg;F; the maximum temperature recorded downstream of the discharge was 86.85&deg;F. Once discharged from diffusers located on the river bottom, the thermal plume rose to the surface and remained in the upper 1 m (3.3 ft) of 21


BIP  Balanced Indigenous Population CCW  Condenser cooling water CFS  Cubic feet per second MW  Megawatts NPDES National Pollutant Discharge Elimination System QA  Quality Assurance RBI  Reservoir Benthic Macroinvertebrate Index RFAI Reservoir Fish Assemblage Index SAHI  Shoreline Assessment Habitat Index SQN Sequoyah Nuclear Plant TRM  Tennessee River Mile TVA  Tennessee Valley Authority VS  Vital Signs
the water column, as evidenced by temperatures measured at TRM 481.1 and TRM 480.0 (Table 36).
Autumn 2011 On August 14, 2011, the SQN thermal plume extended downstream approximately 2.6 miles to TRM 481 (Table 37, Figure 4). The average ambient surface water temperature (0.3 m and 1 m depths) measured at TRM 487.0 on the date of the survey was 77.16&deg;F. Downstream of the discharge, the maximum water temperature measured was 81.91&deg;F. The thermal plume remained in the upper 1 m (3.3 ft) of the water column, as evidenced by temperatures measured at TRM 483.4, TRM 482.2, and TRM 481 (Table 37).
In summary, the entire biomonitoring zone downstream of SQN was contained within the thermal plume during the summer and autumn 2011 survey periods (Figure 4). The thermal plume extended further downstream during the summer monitoring period than the autumn period. The difference was attributed to several factors including releases from Watts Bar Dam upstream and Chickamauga Dam downstream of the plant, power generation at SQN, and condenser cooling water discharge.
Water Quality Parameters at Fish Sampling Sites During RFAI Samples Observed values of water temperature, conductivity, dissolved oxygen, and pH are listed for each profile (LDB, mid-channel, and RDB), transect (downstream, middle, and upstream), site (TRM 482 and 490.5), and season (summer and autumn 2011) in Table 38.
Summer 2011 Water temperatures at the sampling site upstream of SQN ranged from 80.44 to 83.73&deg;F.
Downstream of SQN, water temperatures ranged from 81.73 to 87.04&deg;F. Dissolved oxygen concentrations ranged from 4.22 to 6.56 ppm at the sampling site upstream of SQN. Dissolved oxygen readings taken at the sampling site downstream of SQN ranged from 5.26 to 7.56 ppm.
Conductivity values ranged from 190 to 227.5 &#xb5;S at the downstream site and 193.2 to 201.3 at the upstream site. At the downstream site, pH values ranged from 7.55 to 8.5, while at the upstream site pH values ranged from 7.3 to 8.66 (Table 38).
Autumn 2011 Water temperatures at the sampling site upstream of SQN ranged from 69.85 to 70.47&deg;F.
Downstream of SQN, water temperatures ranged from 70.43 to 74.89&deg;F. Dissolved oxygen concentrations ranged from 7.10 to 7.94 ppm at the sampling site upstream of SQN. Dissolved oxygen readings taken at the sampling site downstream of SQN ranged from 6.60 to 9.69 ppm.
Conductivity values ranged from 182.7 to 185.3 &#xb5;S at the downstream site and 179.4 to 191.6 &#xb5;S at the upstream site. At the downstream site, pH values ranged from 7.23 to 8.50, while at the upstream site pH values ranged from 7.17 to 7.6 (Table 38).
22


Introduction Section 316(a) of the Clean Wate r Act (CWA) authorizes alternative thermal limits (ATL) for the control of the thermal component of a discharge from a point source so long as the limits will assure the protection of Balanced Indigenous Populations (BIP) of aquatic life. The term "balanced indigenous population," as defined in EPA's regulations implementing Section 316(a), means a biotic community that is typically characterized by:  
Literature Cited EPA (U.S. Environmental Protection Agency) and NRC (U.S. Nuclear Regulatory Commission).
(1) diversity appropriate to ecoregion; (2)  the capacity to sustain itself th rough cyclic seasonal changes; (3)  the presence of necessa ry food chain species; (4) lack of domination by polluti on-tolerant species; and Prior to 1999, the Tennessee Valley Authority
1977 (draft). Interagency 316(a) Technical Guidance manual and Guide for Thermal Effects Sections of Nuclear Facilities Environmental Impact Statements. U.S.
's (TVA) Sequoyah Nuclear Plant (SQN) was operating under a 316(a) ATL that had been continued with each permit renewal based on studies conducted in the mid-1970s. In 1999, EPA Region IV began requesting additional data in conjunction with NPDES permit renewal applications to verify that BIP was being maintained at TVA's thermal plants with ATLs. TVA propose d that its existing Vital Signs (VS) monitoring program, supplemented with additional fish and benthic macroinvertebrate community monitoring upstream and downstream of thermal pl ants with ATLs, was appropriate for that purpose. The VS monitoring program began in 1990 in the Tennessee River System. This program was implemented to evaluate ecological health conditions in major re servoirs as part of TVA's stewardship role. One of the 5 indicators used in the VS program to evaluate reservoir health is the Reservoir Fish Assemblage Index (RFAI) methodology. RFAI has been thoroughly tested on TVA and other reservoirs and published in peer-reviewed literature (Jennings, et al., 1995; Hickman and McDonough, 1996; McDonough and Hickman, 1999). Fish communities
Environmental Protection Agency, Office of Water Enforcement, Permits Division, Industrial Permits Branch, Washington, DC.
Etnier, D.A. & Starnes, W.C. (1993) The Fishes of Tennessee. University of Tennessee Press, Knoxville, Tennessee, 681 pp.
Hickman, G. D. and T. A. McDonough. 1996. Assessing the Reservoir Fish Assemblage Index-A potential measure of reservoir quality. In: D. DeVries (Ed.) Reservoir symposium-Multidimensional approaches to reservoir fisheries management. Reservoir Committee, Southern Division, American Fisheries Society, Bethesda, MD. pp 85-97.
Hubert, W. A., 1996. Passive capture techniques, entanglement gears. Pages 160-165 in B. R.
Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society Bethesda, Maryland, USA.
Jennings, M. J., L. S. Fore, and J. R. Karr. 1995. Biological monitoring of fish assemblages in the Tennessee Valley reservoirs. Regulated Rivers 11:263-274.
Levene, Howard. 1960. Robust tests for equality of variances. In Ingram Olkin, Harold Hotelling, et alia. Stanford University Press. pp. 278-292.
Mann, H. B.; Whitney, D. R. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics 18 (1): 50-60.
McDonough, T.A. and G.D. Hickman. 1999. Reservoir Fish Assemblage Index development: A tool for assessing ecological health in Tennessee Valley Authority impoundments. In:
Assessing the sustainability and biological integrity of water resources using fish communities. Simon, T. (Ed.) CRC Press, Boca Raton, pp 523-540.
Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K., and Hughes, R.M. (1989). Rapid assessment protocols for use in streams and rivers: benthic macroinvertebrates and fish.
EPA/444/4-89-001, Washington DC, USA.
Reynolds, J. B., 1996. Electrofishing. Pages 221-251 in B. R. Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society Bethesda, Maryland, USA.
Shaffer, G.P., J.W. Simmons, and D.S. Baxter. 2010. Biological monitoring in the vicinity of the Sequoyah Nuclear Plant discharge, autumn 2009. Tennessee Valley Authority, Aquatic Monitoring and Management, Knoxville, TN. 76 pp.
23


are used to evaluate ecological conditions because of their im portance in the aquatic food web and because fish life cycles are long enough to integrate conditions over time. Benthic macroinvertebrate populations are assessed using the Reservoir Benthic Index (RBI) methodology. Because benthic macroinvertebrates are relatively immobile, negative impacts to aquatic ecosystems can be detected earlier in benthic macroinvertebrate communities than in fish communities. These data are used to supplement RFAI results to provide a more thorough examination of differences in aquatic communities upstream and downstream of thermal
Shapiro, S. S. and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52 (3-4): 591-611.
Simmons, J.W. 2011. Biological monitoring in the vicinity of the Sequoyah Nuclear Plant discharge, autumn 2010. Tennessee Valley Authority, Biological and Water Resources, Chattanooga, TN. 58 pp.
Tennessee Valley Authority. 1988. Results of plankton studies conducted in 1986 and 1987 as part of the Operational Aquatic Monitoring Program at Sequoyah Nuclear Plant, Chickamauga Reservoir. Office of Natural Resources and Economic Development, Division of Air and Water Resources, Knoxville, Tennessee.
Tennessee Valley Authority. 1989. Plankton studies at Sequoyah Nuclear Plant in 1988. River Basin Operations, Water Resources, Chattanooga, Tennessee, TVA/WR/AB89/3.
Tennessee Valley Authority. 1990. Plankton studies at Sequoyah Nuclear Plant in 1989. River Basin Operations, Water Resources, Chattanooga, Tennessee, TVA/WR/AB90/2.
TWRC. 2006. Strategic Plan, 2006-2012. Tennessee Wildlife Resources Commission, Nashville, TN. March 2006. pp 124-125. http://tennessee.gov/twra/pdfs/StratPlan06-12.pdf Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1 (6): 80-83 Yoder, C.O., B.J. Armitage, and E.T. Rankin. 2006. Re-evaluation of the Technical Justification for Existing Ohio River Mainstem Temperature Criteria. Midwest Biodiversity Institute, Columbus, Ohio.
24


discharges. TVA initiated a study to evaluate fish and benthic macroinvertebrate communities in areas immediately upstream and downstream of S QN during autumn 1999-2011 using RFAI and RBI multi-metric evaluation techniques. Beginning in 2011, evaluations of plankton and wildlife communities were included as well. This report presents the results of summer and autumn 2011 RFAI, RBI, plankton, and wildlife data collected upstream and downstream of SQN.
Tables 25
1 Plant Description Sequoyah Nuclear Power Plant (SQN) is located on the right (west) bank of Chickamauga Reservoir at Tennessee River Mile (TRM) 484.5 approximately 18 miles northeast of Chattanooga, Tennessee, and 7 miles southwest of Soddy-Daisy, Tennessee. SQN is situated approximately 54.5 river miles downstream from Watts Bar Dam and 13.5 river miles upstream from Chickamauga Dam (Figure 1). SQN Unit 1 began commercial operation on July 1, 1981, and Unit 2 on June 1, 1982. Net operating capacity is about 2,400 MW of electricity. Waste heat load is about 4,800 MW of thermal energy. Waste heat is transferred to the condenser cooling water (CCW), pumped from the river at TRM 484.8 (Figure 2).
This heat is then dissipated either to the atmosphere using two natural-draft cooling towe rs, to the river through a two-leg submerged multiport diffuser located at TRM 483.6, or by a combination of the two. With both units operating at maximum power, maximum CCW water demand is 2,558 cfs.
Methods  Aquatic Habitat in the Vicinity of SQN Shoreline and river bottom habitat data presented in this report were collected during autumn 2009. TVA assumes habitat data to be valid for three years, barring any major changes to the river/reservoir (e.g., flood). Sin ce no significant changes have occurred in the river system from the initial characterization, habitat will be sampled again during the next autumn sampling event. In the event of a major change to the river/rese rvoir, habitat would be re-sampled the following autumn.
Shoreline Aquatic Habitat Assessment An integrative multi-metric index (Shoreline Aquatic Habitat Index or SAHI), including several habitat parameters important to resident fish species, was used to measure existing fish habitat quality in the vicinity of Sequoyah Nuclear Plant. Using the general format developed by Plafkin et al. (1989), seven metrics were establ ished to characterize selected physical habitat attributes important to resident fish populations which rely h eavily on the littora l or shoreline zone for reproductive success, juvenile development, and/or adult feeding (Table 1). Habitat Suitability Indices (US Fish and Wildlife Service), along with other sources of information on biology and habitat requirements (Etnier and Starnes 1993), were consulted to develop "reference" criteria or "expected" conditions from a high quality environment for each parameter. Some generalizations were necessary in setting up scoring criteria to cover the various requirements of a ll species into one index. Individual metrics are scored through comparison of observed c onditions with these "reference" conditions and assigned a correspon ding value: good-5; fair-3; or poor
-1 (Table 1). The scores for each metric are summed to obtain the SAHI value. The range of potential SAHI values (7-35) is trisected to provide some descriptor of habitat quality (poor: 7-16; fair: 17-26; and good:
27-35).
2 The quality of shoreline aquatic habitat was assessed while traveling parallel to the shoreline in a boat and evaluating the habitat within 10 vertical feet of full pool. This was much easier to accomplish when the reservoir was at least 10 feet below full pool during the assessment allowing accurate determination of near-shore aquatic habitat quality. To sample river bottom habitat, eight line-of-sight transects were established across the width of Chickamauga reservoir within the SQN downstream (TRMs 481.1 to 483.6) and upstream (TRMs 487.9 to 491.1) fish community sampling areas (Figure 5). Near-shore aquatic habitat was asse ssed along sections of shoreline corresponding to the left descending (LDB) and righ t descending (RDB) bank locations for each of the eight line-of-sight transects. These individual sections (8 on the LDB and 8 on the RDB for a total of 16 shoreline assessments) we re scored using SAHI criteria. Percentages of aquatic macrophytes in the littoral areas of the 8 LDB and 8 RDB shoreline sections were also estimated. River Bottom Habitat Along each of the 8 line-of-sight transects described above, 10 benthic grab samples were collected with a Ponar sampler at equally spaced points from the LDB to RDB. Substrate material collected with the Ponar was dumped into a screen and substrate percentages were estimated to determine existing benthic habitat across the width of the river. Water depths at each sample location were recorded (feet). If no substrate was collected after multiple Ponar drops, it was assumed that the substrate was bedrock. For example, when the Ponar was pulled shut, collectors could feel subs trate consistency; if it shut easily and was not embedded in the substrate on numerous drops within the same location, substrate was recorded as bedrock.
Fish Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN Two sample locations, one upstream and one downstream of the plant discharge were selected in Chickamauga Reservoir. The SQN discharge en ters the Tennessee Ri ver at TRM 483.6 (Figure 2). The upstream monitoring site was centered at TRM 490.5 (Figure 3) and the downstream site was centered at TRM 482.0 (Figure 4). Fish sampling methods included boat electrofish ing and gill netting (Hubert, 1996; Reynolds, 1996). Electrofishing methodology consisted of fifteen boat elec trofishing runs near the shoreline, each 300 meters long with a duration of approximately 10 minutes each. The total near-shore area sampled was approximately 4,500 meters (15,000 feet). Experimental gill nets (so called because of their use for research as opposed to commercial


fishing) were used as an additional gear type to collect fish from deeper habitats not effectively sampled by electrofishing. Each experimental gill net consists of five 6.1-meter panels for a total length of 30.5 meters (100.1 feet). The distinguishing characteristic of experimental gill nets is mesh size that varies between panels. For this application, each net has panels with mesh sizes of 2.5, 5.1, 7.6, 10.2, and 12.7 cm. Experimental gill nets are typically set pe rpendicular to river flow extending from near-shore toward the main channel of the reservoir. Ten overnight experimental gill net sets were used at each area.
Table 1. Shoreline Aquatic Habitat Index (SAHI) metrics and scoring criteria.
3 Fish collected were identified by species, counted, and examined for anom alies (such as disease, deformations, parasites, or hybridization). Th e resulting data were analyzed using RFAI methodology. The RFAI uses 12 fish community metrics from four general categories:  Species Richness and Composition; Trophic Composition; Abundance; and Fish Health. Individual species can be utilized for more than one metric. Together, these 12 metrics provide a balanced evaluation of fish community integrity. The individual metr ics are described below, grouped by category: Species Richness and Composition (1) Total number of indigenous species -- Greater numbers of indigenous species are considered representative of healthier aquatic ecosystems. As conditions degrade, numbers of species at an area decline.  
Metric                                          Scoring Criteria                                          Score Cover          Stable cover (boulders, rootwads, brush, logs, aquatic vegetation, artificial structures) in 25 5 to 75 % of the drawdown zone Stable cover in 10 to 25 % or > 75 % of the drawdown zone                                      3 Stable Cover in < 10 % of the drawdown zone                                                    1 Substrate      Percent of drawdown zone with gravel substrate > 40                                            5 Percent of drawdown zone with gravel substrate between 10 and 40                                3 Percent substrate gravel < 10                                                                  1 Erosion        Little or no evidence of erosion or bank failure. Most bank surfaces stabilized by woody        5 vegetation.
(2) Number of centrarchid species -- Sunfish species (excl uding black basses) are invertivores and a high dive rsity of this group is indi cative of reduced siltation and suitable sediment quality in littoral areas.  
Areas of erosion small and infrequent. Potential for increased erosion due to less desirable    3 vegetation cover (grasses) on > 25 % of bank surfaces.
Areas of erosion extensive, exposed or collapsing banks occur along > 30% of shoreline.         1 Canopy Cover    Tree or shrub canopy > 60 % along adjacent bank                                                5 Tree or shrub canopy 30 to 60 % along adjacent bank                                            3 Tree or shrub canopy < 30 % along adjacent bank                                                1 Riparian Zone  Width buffered > 18 meters                                                                      5 Width buffered between 6 and 18 meters                                                          3 Width buffered < 6 meters                                                                      1 Habitat        Habitat diversity optimum. All major habitats (logs, brush, native vegetation, boulders,       5 gravel) present in proportions characteristic of high quality, sufficient to support all life history aspects of target species. Ready access to deeper sanctuary areas present.
Habitat diversity less than optimum. Most major habitats present, but proportion of one is      3 less than desirable, reducing species diversity. No ready access to deeper sanctuary areas.
Habitat diversity is nearly lacking. One habitat dominates, leading to lower species           1 diversity. No ready access to deeper sanctuary areas.
Gradient        Drawdown zone gradient abrupt (> 1 meter per 10 meters). Less than 10 percent of               5 shoreline with abrupt gradient due to dredging.
Drawdown zone gradient abrupt. (> 1 meter per 10 meters) in 10 to 40 % of the shoreline        3 resulting from dredging. Rip-rap used to stabilize bank along > 10 % of the shoreline.
Drawdown zone gradient abrupt in > 40 % of the shoreline resulting from dredging.              1 Seawalls used to stabilize bank along > 10 % of the shoreline.
26


(3) Number of benthic invertivore species -- Due to the special dietary requirements of this species group and the limitations of their food source in degraded environments, numbers of benthic invertivore species increase with better environmental quality.  
Table 2. Expected values for upper mainstem Tennessee River reservoir transition and forebay zones.
Upper Mainstem Tennessee River Transition                    Upper Mainstem Tennessee River Forebay Proportion            Number of species                  Proportion              Number of species Trophic Guild              -         Avg          +      -   Avg      +          -        Avg          +        -    Avg      +
Benthic Invertivore    < 2.4      2.4 to 4.8  > 4.8    <2    2 to 4  >4        < 2.2      2.2 to 4.2  > 4.2    <2    2 to 4  >4 Insectivore            < 24.2    24.2 to 48.4 > 48.4    <4    4 to 8  >8        < 34.2    34.2 to 62.6  > 62.6    <4    4 to 8  >8 Top Carnivore          < 18.9    18.9 to 37.7 > 37.7    <4    4 to 8  >8        < 18.8    18.8 to 33.4  > 33.4    <4    4 to 8  >8 Omnivore                > 40.2    20.2 to 40.2 < 20.2    >6    3 to 6  <3        > 40.1    21.4 to 40.1  < 21.4    >6    3 to 6  <3 Planktivore            > 41.2    20.6 to 41.2 < 20.6    0      1    >1        > 10.4    5.2 to 10.4  < 5.2      0      1    >1 Parasitic              < 0.4      0.4 to 0.9  > 0.9    0      1    >1        < 0.4      0.4 to 0.8  > 0.8      0      1    >1 Herbivore                ---          ---      ---    ---    ---    ---        ---          ---        ---    ---    ---    ---
      *Values calculated from data collected from 1993 to 2010 from 750 electrofishing runs and 500 overnight experimental gill net sets in upper mainstem Tennessee River reservoir transition areas and from 900 electrofishing runs and 600 overnight experimental gill net sets in forebay areas of upper mainstem Tennessee River reservoirs. This trisection is intended to show less than expected (-), expected or average (Avg), and above expected or average (+) values for trophic level proportions and species occurring within each reservoir zone in upper mainstem Tennessee River reservoirs..
27


(4) Number of intolerant species -- This group is made up of species that are particularly intolerant of physical, chemical, and thermal habitat degradation.
Table 3. Average trophic guild proportions and average number of fish species, bound by confidence intervals (95%),
Higher numbers of intolerant species suggest the presence of fewer environmental stressors.  
expected in upper mainstem Tennessee River reservoir transition and forebay zones and proportions and numbers of species observed during summer and autumn 2011.
(5) Percentage of tolerant individuals (excluding Young-of-Year) -- This metric signifies poorer water quality with incr easing proportions of i ndividuals tolerant of degraded conditions.  
Summer 2011              Autumn                                    Summer 2011            Autumn Transition Zones                                                      Forebay Zones (Upstream)        2011 (Upstream)                                (Downstream)    2011 (Downstream)
Average        Average                Number              Number    Average      Average              Number              Number Proportion          Proportion                                    Proportion          Proportion Trophic Guild      Proportion    Number of                   of                  of  Proportion    Number of                of                  of
(%)                  (%)                                          (%)                (%)
(%)          Species                Species              Species    (%)        Species              Species            Species Benthic Invertivore    3.1 + 0.2      3.7 + 0.2    2.6        4        1.3        3      2.3 + 0.4    3.3 + 0.3    1.7        3        0.8        3 Insectivore          44.5 + 2.2      9.2 + 0.5    52.2        10      45.6        8    50.4 + 5.7    8.7 + 0.5    52.0      10      48.3        8 Top Carnivore        18.2 + 0.9    10.2 + 0.5    8.8        10        8.2        11    19.0 + 2.7    9.9 + 0.3    11.0      10        5.2        9 Omnivore              29.5 + 1.5      6.4 + 0.3    36.3        7      33.3        6    22.4 + 3.5    6.1 + 0.3    35.2        7      29.7        6 Planktivore            5.6 + 0.3      1.1 + 0.1    0.1        1        1.1        1      1.8 + 0.9    1.0 + 0.1    0.1        1      16.1        1 Parasitic            0.04 + 0.02      1.0 + 0.1    ----        ----      ----      ----  0.05 + 0.05  0.1 + 0.08    ----      ----    ----      ----
Herbivore          0.01 + 0.004      1.0 + 0.1    ----        ----      0.1        1        ----        ----      ----      ----    ----      ----
              *Expected values were calculated using data collected from 1993 to 2010 from 750 electrofishing runs and 500 overnight experimental gill net sets in upper mainstem Tennessee River reservoir transition areas and from 900 electrofishing runs and 600 overnight experimental gill net sets in forebay areas of upper mainstem Tennessee River reservoirs.
28


  (6) Percent dominance by one species -- Ecological quality is considered reduced if one species inordinately dominates the resident fish community.
Table 4. RFAI scoring criteria (2002) for fish community samples in forebay, transition, and inflow sections of upper mainstream Tennessee River reservoirs. Upper mainstream reservoirs include Nickajack, Chickamauga, Watts Bar, Fort Loudoun, Melton Hill, and Tellico.
  (7) Percentage of non-indigenous species -- Based on the assumption that non-indigenous species reduce the quality of resident fish communities.
Scoring Criteria Forebay            Transition                Inflow Metric                Gear          1      3    5    1        3      5      1        3      5
4 (8) Number of top carnivore species -- Higher diversity of pi scivores is indicative of the availability of diverse and plentif ul forage species a nd the presence of suitable habitat.
: 1. Total species                    Combined      <14  14-27  >27  <15    15-29    >29      <14    14-27  >27
Trophic Composition (9) Percentage of individuals as top carnivores -- A measure of the functional aspect of top carnivores which feed on major planktivore populations.
: 2. Total Centrarchid species        Combined      <2      2-4  >4    <2      2-4    >4      <3      3-4    >4
  (10) Percentage of individuals as omnivores -- Omnivores are less sensitive to          environmental stresses due to their ability to vary their diet
: 3. Total benthic invertivores        Combined      <4      4-7  >7    <4      4-7    >7      <3      3-6    >6
: s. As trophic links are disrupted due to degraded conditions, specialist species such as insectivores          decline while opportunistic omnivor ous species increase in relative abundance.  
: 4. Total intolerant species          Combined      <2      2-4  >4    <2      2-4    >4      <2      2-4    >4
: 5. Percent tolerant individuals    Electrofishing >62%  31-62%  <31% >62%  31-62%  <31%    >58%    29-58%  <29%
Gill netting  >28%  14-28%  <14%  >32%  16-32%  <16%
: 6. Percent dominance by 1 species Electrofishing >50%  25-50%  <25%  >40%  20-40%  <20%    >46%    23-46%  <23%
Gill netting  >29%  15-29% <15%  >28%  14-28%  <14%
: 7. Percent non-indigenous species Electrofishing >4%    2-4%  <2%  >6%      3-6%    <3%    >17%    8-17%  <8%
Gill netting  >16%  8-16%  <8%  >9%      5-9%    <5%
: 8. Total top carnivore species       Combined      <4      4-7  >7    <4      4-7    >7      <3      3-6    >6
: 9. Percent top carnivores         Electrofishing <5%    5-10%  >10%  <6%    6-11%  >11%    <11%    11-22%  >22%
Gill netting <25%  25-50%  >50%  <26%  26-52%  >52%
: 10. Percent omnivores             Electrofishing >49%  24-49%  <24%  >44%  22-44%  <22%    >55%    27-55%  <27%
Gill netting  >34%  17-34%  <17%  >46%  23-46%  <23%
: 11. Average number per run        Electrofishing <121  121-241 >241  <105  105-210  >210    <51    51-102  >102 Gill netting  <12  12-24  >24  <12    12-24    >24
: 12. Percent anomalies            Electrofishing >5%    2-5%  <2%  >5%      2-5%    <2%    >5%      2-5%  <2%
Gill netting  >5%    2-5%  <2%  >5%      2-5%    <2%
29


Abundance (11) Average number per run -- (number of individuals) -- This metric is based          upon the assumption that high quality fish assemblages support large numbers of individuals.
Table 5. Scoring criteria for benthic macroinvertebrate community samples (lab-processed) for forebay, transition, and inflow sections of mainstream Tennessee River reservoirs. (TRM 481.3 and TRM 483.4-Forbay, TRM 488.0 and TRM 490.5-Transition) scoring criteria were used for sites upstream and downstream of SQN.
Fish Health (12) Percentage of individuals with anomalies -- Incidence of diseases, lesions,          tumors, external parasites, deformities, blindness, and natural hybridization are  
Benthic Community                                          Forebay                          Transition                          Inflow Metrics                                            1            3          5            1        3        5          1            3        5 Average number of taxa
                                                < 2.8      2.8-5.5    > 5.5        < 3.3    3.3-6.6    > 6.6      < 4.2      4.2-8.3    > 8.3 Proportion of samples with long-lived organisms                                        < 0.6      0.6-0.8    > 0.8        < 0.6    0.6-0.9    > 0.9      < 0.6      0.6-0.8    > 0.8 Average number of EPT (Ephemeroptera, Plecoptera, Trichoptera)         < 0.6      0.6-0.9    > 0.9        < 0.6    0.6-1.4    > 1.4      < 0.9      0.9-1.9    > 1.9 Average proportion of oligochaete individuals                                                                                   23.9-12.0
                                                > 41.9      41.9-21.0    < 21.0      > 21.9  21.9-11.0  < 11.0      > 23.9                < 12.0 Average proportion of total abundance comprised by the two most abundant taxa        > 90.3      90.3-81.7    < 81.7      > 87.9  87.9-77.8  < 77.8      > 86.2    86.2-73.1  < 73.1 Average density excluding chironomids and
                                              < 125.0    125.0-249.9 > 249.9      < 305.0 305.0-609.9 > 609.9    < 400.0    400.0-799.9 > 799.9 oligochaetes Zero-samples - proportion of samples
                                                  >0          ---        0            >0        ---        0        >0          ---        0 containing no organisms 30


noted for all fish measured, w ith higher incidence indicating less favorable         environmental conditions.
Table 6. SAHI scores for 16 shoreline habitat assessments conducted within the Upstream RFAI sampling area of SQN on Chickamauga Reservoir, autumn 2009.
RFAI methodology addresses all f our attributes or characteris tics of a "balanced indigenous population" defined by the CW A, as described below:  
1(LD)      2(LD)      3(LD)    4(LD)      5(LD)    6(LD)    7(LD)      8(LD)    Avg.
Latitude          35.26755  35.27312  35.27784  35.28179    35.28669  35.29674  35.20021  35.3037 Longitude        -85.09749  -85.09602 -85.09093 -85.08571    -85.0741 -85.06678 -85.06367  -85.06049 Aquatic 0%        0%        0%        0%          0%        0%        0%        0%      0%
Macrophytes SAHI Variables Cover                1          1          5        1          5        1        1        3      2 Substrate            5          1          1        1          3        5        3        5      3 Erosion              1          5          1        5          5        3        1        3      3 Canopy Cover          5          5          5        5          1        5        5        5      5 Riparian Zone        5          5         5        5          1        5        5        5      5 Habitat              1          1          3        1          3        1        1        3      2 Slope                1          1          1        1          3        3        3        3      2 Total                19        19        21        19          21        23        19        27      22 Rating              Fair      Fair      Fair      Fair        Fair      Fair      Fair      Good    Fair 1(RD)      2(RD)      3(RD)    4(RD)      5(RD)    6(RD)    7(RD)      8(RD)    Avg.
Latitude          35.26823  35.27665  35.28347  35.28747    35.29329  35.30095  35.30458  35.3092 Longitude          -85.108  -85.10484 -85.09809 -85.09035  -85.08268 -85.07718 -85.07455  -85.07194 Aquatic 0%        0%        0%        0%          0%        0%        0%        0%      0%
Macrophytes SAHI Variables Cover                3          1          5        5          3        3        5        1      3 Substrate            5          5          5        5          1        5        1        1      4 Erosion              1          1          5        5          5        5        5        3      4 Canopy Cover          5          5          1        3          5        3        3        1      3 Riparian Zone        5          5          1        1          5        1        1        1      3 Habitat              1          3          3        3          1        3        3        1      2 Slope                1          1          1        1          1        3        1        3      2 Total                21        21        21        23          21        23        19        11      21 Rating              Fair      Fair      Fair      Fair        Fair      Fair      Fair      Poor    Fair
*Scores are shown for eight shoreline sections on the left descending bank (LD) and eight shoreline sections along the right descending bank (RD). Scoring criteria: poor (7-16); fair (17-26); and good (27-35).
31


(1.) A biotic community ch aracterized by diversity appropriate to the ecoregion:
Table 7. SAHI Scores for 16 Shoreline Habitat Assessments Conducted within the Downstream RFAI Sampling Area of SQN on Chickamauga Reservoir, Autumn 2009.
Diversity is addressed by the metrics in the Species Richness and Composition category, especially metric 1 - "total number of indigenous species." Determination of reference conditions based on the forebay and transition zones of upper mainstem Te nnessee River reservoirs (as described below) ensures appropriate species expectations for the ecoregion.
1(LD)    2(LD)      3(LD)    4(LD)    5(LD)    6(LD)    7(LD)    8(LD)    Avg.
   (2.) The capacity for the community to sustain itself through cyclic seasonal change
Latitude          35.19455  35.20021  35.20443  35.20584  35.20617  35.2061  35.20865  35.21104 Longitude        -85.11967 -85.11858 -85.11671 -85.11346 -85.10754 -85.10212 -85.09711 -85.09188 Aquatic 0%        0%        15%        0%        0%      10%        0%        0%    2%
: TVA uses an autumn data collection period for biological indicators, both VS and upstream/downstream monitoring. Autumn monitoring is used to document community
Macrophytes SAHI Variables Cover                5          5        5        5        3          1        1          3      4 Substrate            1        1          1        3        1        1        1        1      1 Erosion              3        5          3        3        3        1        3        5      3 Canopy Cover          5        3          5        5        5        5        1        1      4 Riparian Zone        5        3          5        5        5        5        1        3      4 Habitat              3        3          3        3        1        1        3          1      2 Slope                3        5          5        3        5        5        1        1      4 Total                25        25        27        27        23        19      11        15    22 Rating              Fair      Fair      Good      Good      Fair      Fair    Poor      Poor   Fair 1(RD)    2(RD)      3(RD)    4(RD)    5(RD)    6(RD)    7(RD)    8(RD)    Avg.
Latitude          35.19718  35.20069  35.20722  35.20967  35.21449  35.21521  35.21565  35.2159 Longitude        -85.12923  -85.12331 -85.12156 -85.11884  -85.1115 -85.10953 -85.10047 -85.09368 Aquatic 0%        0%        0%        0%      10%        5%      25%        0%    5%
Macrophytes SAHI Variables Cover                3          5        5        3        1          3        5          3      4 Substrate            3        1          3        3        1        1        1        1      2 Erosion              5        5          5        5        3        3        1        5      4 Canopy Cover          5        5          5        1        1        1        5        1      3 Riparian Zone        5        5          5        1        1        1        3        5      3 Habitat              1        3          3        3        1        1        3          1      2 Slope                3        1          3        1        5        5        5        5      4 Total                25        25        29        17        13        15      23        21    22 Rating              Fair      Fair      Good      Fair      Poor      Poor      Fair      Fair  Fair
*Scores are Shown for Eight Shoreline Sections on the Left Descending Bank (LD) and Eight Shoreline Sections Along the Right Descending Bank (RD). Scoring Criteria: Poor (7-16); Fair (17-26); and good (27-35).
32


condition or health after being s ubjected to the wide variety of stressors throughout the year. One of the main benefits of using biological indicators is their ability to integrate stressors through time. Examining the condition or health of a community at the end of the "biological year" (i.e., autumn) provides insight into how well the community has dealt with the stresses through an annual seasonal cycle. Likewise, ev aluation of the condition of individuals in the community (in this case, individual fish as refl ected in Metric 12) provi des insight into how well the community can be expected to withstand stressors through winter. Further, multiple sampling years during the permit renewal cycle add to the evidence of whether or not the autumn 5
Table 8. Substrate percentages and average water depth (ft) per transect upstream (8 transects) and downstream (8 transects) of SQN.
monitoring approach has correctly demonstrated the ability of the community to sustain itself through repeated seasonal changes.
                              % Substrate per transect downstream of SQN 1        2      3        4      5      6      7      8    AVG Mollusk shell      15.5    32.0  20.5    26.0    24.5    22.5  26.5  52.9    27.6 Silt              37.5    12.0  11.0    13.0    23.5    36.0  19.5    7.0    19.9 Clay              14.0    16.0    9.0    30.0    8.0    29.5    6.0  17.0    16.4 Sand              19.5    14.0  22.0      6.0    12.0    3.5  28.5    2.5    13.5 Bedrock            10.0      9.0  18.0    20. 20.0      0    10.0  15.0    12.8 Detritus            2.5      4.5    3.5      3.5    3.0    5.0    3.0    4.6    3.7 Gravel              0      3.0    7.0      1.0    8.0    3.5    3.5    0.5    3.0 Cobble              1.0      9.5    9.0      0.5    1.0      0    3.0    0.5    3.1 Avg. depth (ft)   27.1    39.7  32.6    33.2    27    29.8  35.1  44.7    33.7 Actual depth range: 7.4 to 78.5 ft
Summer sampling was conducted during August 2011. This time of year is considered a stressful time for the biotic community. Summer sampling was conducted to collect data on the biotic community during a high stress period near SQN plant. These data were compared with data collected during summer 2010.   
                              % Substrate per transect upstream of SQN 1        2      3        4      5      6      7      8    AVG Silt              30.5    43.0  56.5    22.0    45.5    71.0  63.5  77.5    51.2 Mollusk shell      25.0    19.5  15.5    33.5    20.0    10.0  15.5    8.0    18.4 Bedrock            10.0    20.0    0      20.0    20.0      0      0      0      8.8 Detritus            7.0      7.0    8.5      7.5    2.5    10.5    9.0    8.0    7.5 Clay              14.0      0      0        5      7.0    8.5    8.0    6.5    6.1 Cobble              4.0      5.0  10.0      0      2.5      0    4.0    0      3.2 Sand                7.5      5.5    7.5    4.5      0.5      0      0      0      3.1 Gravel              2.0      0    2.0      7.5    2.0      0      0      0      1.7 Avg. depth (ft)    33      30.1  34.9    33.6    26.2    31.8  32.2   26.1    31.0 Actual depth range: 6.4 to 55.2 ft 33


(3.) The presence of necessary food chain species
Table 9. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of Sequoyah Nuclear Plant Summer 2011.
: Integrity of the food chain is measured by the Trophic Composition metrics, with support from the Abundance metric and Species Richness and Composition metrics. Existence of a healthy fish community indicates presence of necessary food chain species because the fish community is comprised of species that utilize multiple feeding mechanisms that transcend various leve ls in the aquatic food web. Basing evaluations on a sound multi-metric system such as the RFAI enhances the ability to discern alterations in the aquatic food chain.
Summer 2011                                  Gear                              TRM 482                    TRM 490.5 Metric                              (Electrofishing/Gill Net)          Obs            Score          Obs          Score A. Species richness and composition
: 1. Number of indigenous species Combined                    28                5            29            3 (Tables 11 and 12)
: 2. Number of centrarchid species          Combined                      8                5                            5 (less Micropterus)                                                Black crappie                        8 Bluegill                    Black crappie Green sunfish                      Bluegill Longear sunfish                  Green sunfish Redbreast sunfish                Longear sunfish Redear sunfish                Redbreast sunfish Warmouth                      Redear sunfish White crappie                    Warmouth White crappie
: 3. Number of benthic invertivore          Combined                      3                1              4            3 species                                                                                       Freshwater drum Freshwater drum Logperch Logperch River redhorse Spotted sucker Spotted sucker
: 4. Number of intolerant species           Combined                      5                5              6            5 Brook silverside                Brook silverside Longear sunfish                Longear sunfish Skipjack herring                River redhorse Smallmouth bass                Skipjack herring Spotted sucker                Smallmouth bass Spotted sucker 34


Three dominant fish trophic levels exist within Tennessee River reservoirs; insectivores, omnivores, and top carnivores. To determine the presence of necessary food chain species, these three groups should be well represented within the overall fish community. Other fish trophic levels include benthic invertivores , planktivores, herbivores, and parasitic species. Insectivores include most sunfish, minnows, and silversides. Omnivores include gizzard shad, common carp, carpsuckers, buffalo, channel catfish, and blue ca tfish. Top carnivores include black bass, gar, skipjack herring, crappie, flathead catfish, sauge r, and walleye. Benthi c invertivores include freshwater drum, suckers, and darters. Pla nktivores include alewife, threadfin shad, and paddlefish. Herbivores include largescal e stonerollers. Lampreys in the genus Ichthyomyzon are the only parasitic species occurring in Tennessee River reservoirs.  
Table 9. (Continued)
Summer 2011                                  Gear                            TRM 482                              TRM 490.5 Metric                              (Electrofishing/Gill Net)                Obs            Score                Obs              Score
: 5. Percent tolerant individuals                                            85.7%                              79.8%
Bluegill        49.1%              Bluegill            40.7%
Bluntnose minnow        1.6%        Bluntnose minnow          5.3%
Common carp          0.2%          Common carp              0.2%
Electrofishing          Gizzard shad        26.9%          Gizzard shad          28.2%
0.5                                    0.5 Golden shiner        1.6%          Golden shiner          1.1%
Green sunfish        0.1%          Green sunfish          0.3%
Largemouth bass        3.8%        Largemouth bass          1.7%
Redbreast sunfish      1.6%        Redbreast sunfish         1.4%
Spotfin shiner      0.7%          Spotfin shiner          1.0%
55.1%                              43.9%
Bluegill          0.7%            Bluegill          0.8%
Common carp          0.7%        Gizzard shad         37.9%
Gill Netting                                      0.5                                    0.5 Gizzard shad        52.2%        Golden shiner        3.8%
White crappie        1.4%      Largemouth bass         0.8%
White crappie         0.8%
: 6. Percent dominance by one species                                        49.1%                              40.7%
Electrofishing                  Bluegill          1.5      Bluegill                      0.5 52.2%                              37.9%
Gill Netting                                      0.5                                    0.5 Gizzard shad                       Gizzard shad
: 7. Percent non-indigenous species                                          2.9%                                5.2%
Common carp        0.3%            Common carp            0.1%
Electrofishing                                      1.5                                    1.5 Mississippi silverside 2.5%        Mississippi silverside    4.8%
Yellow perch        0.1%            Yellow perch          0.3%
0.7%                                0%
Gill Netting                                      2.5                                    2.5 Common carp 35


To establish expected proportions of each trophic guild and the expected number of species included in each guild occurring in upper mainstem Tennessee River reservoirs (Nickajack, Chickamauga, Watts Bar, and Fort Loudon reser voirs), data collected from 1993 to 2010 during autumn were analyzed for each reservoir zone where upstream and downstream sample stations were established to monitor effects of the SQN discharge (forebay- downstream of SQN and transition- upstream of SQN). Samples collected in the downstream vicinity of thermal discharges were not included in this analysis so that accurate e xpectations could be calculated with the assumption that these data represent what should occur in upper mainstem Tennessee River reservoirs absent from point source effects (i.e. power plant discharges). Therefore, data from the monitoring site downstream of SQN at TRM 482 were not included in this analysis. Data from 900 electrofishing runs (a total of 270,000 meters of shoreline sampled) and from 600 overnight experimental gill net sets were included in this analysis for forebay areas in upper mainstem Tennessee River reservoirs. For upper mainstem Tennessee Ri ver transition zones, data from 750 electrofishing runs and 500 overnight experimental gill net sets were included. From these data, the range of proportional values for each trophic level and the range of the number of species included in each trophic level were trisected. This trisection is intended to show less than expected, expected and above ex pected values for trophi c level proportions and species occurring within each reservoir zone in upper mainstem Tennessee River reservoirs (Table 2). These data were also averaged and bound by confidence intervals (95%) to further 6
Table 9. (Continued)
evaluate expected values for proportions of each trophic level and the number of species expected for each trophic level by reservoir zone (Table 3).  
Summer 2011                                  Gear                    TRM 482                      TRM 490.5 Metric                            (Electrofishing/Gill Net)             Obs      Score                Obs      Score
: 8. Number of top carnivore species                                        10                            10 Black crappie                  Black crappie Flathead catfish              Flathead catfish Largemouth bass              Largemouth bass Skipjack herring                  Sauger Combined          Smallmouth bass          5    Skipjack herring          5 Spotted bass                Smallmouth bass Spotted gar                    Spotted bass White bass                    Spotted gar White crappie                  White crappie Yellow bass                    Yellow bass B. Trophic composition
: 9. Percent top carnivores                                                8.2%                          5.3%
Black crappie  1.0%        Flathead catfish  0.8%
Largemouth bass  3.0%        Largemouth bass    1.7%
Smallmouth bass  0.1%        Smallmouth bass    0.2%
Electrofishing                              1.5                            0.5 Spotted bass  0.8%          Spotted bass    1.1%
Spotted gar    2.2%          Spotted gar    1.5%
White bass    0.1%
Yellow bass    0.2%
29.0%                          42.4%
Black crappie  10.1%        Black crappie    16.7%
Flathead catfish 1.4%        Flathead catfish  1.5%
Skipjack herring 1.4%        Largemouth bass    0.8%
Gill Netting        Spotted bass  7.2%  1.5      Sauger        0.8%  1.5 Spotted gar    1.4%        Skipjack herring 15.2%
White bass    0.7%          Spotted bass    2.3%
White crappie  1.4%        White crappie    0.8%
Yellow bass    5.1%          Yellow bass      4.5%
36


(4.) A lack of domination by pollution-tolerant species:  Domination by pollution-tolerant species is measured by metrics 3 ("Number of benthic invertivore spec ies"), 4 ("Number of intolerant species"), 5 ("Percentage of tolera nt individuals"), 6 ("Percent dominance by one species"), and 10 ("Percentage of individuals as omnivores").
Table 9. (Continued)
Scoring categories are based on "expected" fish community characteristic s in the absence of human-induced impacts other than impoundment of the reservoir. These categories were developed from historical fish assemblage data representative of forebay and transition zones from upper mainstem Tennessee River reservoirs (Hickman and McDonough, 1996). Attained values for each of the 12 metrics were compared to the scoring criteria and assigned scores to
Summer 2011                            Gear                    TRM 482                          TRM 490.5 Metric                      (Electrofishing/Gill Net)             Obs          Score                Obs            Score
: 10. Percent omnivores                                             31.2%                            35.1%
Bluntnose minnow  1.6%        Bluntnose minnow        5.3%
Channel catfish  0.7%        Channel catfish        0.2%
Electrofishing Common carp      0.2%  2.5    Common carp          0.2%  1.5 Gizzard shad    26.9%          Gizzard shad        28.2%
Golden shiner    1.6%          Golden shiner        1.1%
Smallmouth buffalo  0.1%      Smallmouth buffalo        0.2%
61.6%                            47.7%
Blue catfish    5.8%        Blue catfish      4.5%
Channel catfish  1.4%      Channel catfish      1.5%
Gill Netting                                0.5                                  0.5 Common carp      0.7%        Gizzard shad      37.9%
Gizzard shad    52.2%      Golden shiner      3.8%
Smallmouth buffalo  1.4%
C. Fish abundance and health
: 11. Average number per run        Electrofishing                  60.7          0.5                82.4            0.5 Gill Netting                  13.8          1.5                13.2            1.5
: 12. Percent anomalies            Electrofishing                  1.2%          2.5                0.6%              2.5 Gill Netting                  0%            2.5                0%              2.5 41                                  38 Overall RFAI Score Good                                Fair 37


represent relative degrees of degrad ation: least degraded (5); intermediate degraded (3); and most degraded (1). Scoring criteria for upper main stem Tennessee River reservoirs are shown in Table 4. If a metric was calculated as a pe rcentage (e.g., "Percentage of tolerant individuals"), data from electrofishing and gill netting were scored separately and allotted half the total score for that individual metric. Individual metric scores for a sampling area (e.g., upstream or downstream) are summed to obtain the RFAI score for the area.
Table 10. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of (Sequoyah nuclear) Autumn 2011.
TVA uses RFAI results to determine maintenance of BIP using two approaches. One is "absolute" in that it compares the RFAI scores and individual metrics to predetermined values. The other is "relative" in that it compares RFAI scores attained downstream to the upstream control site. The "absolute" ap proach is based on Jennings et al. (1995) who suggested that favorable comparisons of the attained RFAI score from the potential impact zone to a predetermined criterion can be used to identify the presence of normal community structure and function and hence existence of BIP. For multi-metric indices, TVA uses two criteria to ensure a conservative screening of BIP. First, if an RF AI score reaches 70% of the highest attainable score of 60 (adjusted upward to include sample variability as described below), and second, if fewer than half of RFAI metrics receive a low (1) or moderate (3) score, then normal community structure and function would be present indicating that BIP had been maintained, thus no further evaluation would be needed. RFAI scores range from 12 to 60. Ecologica l health ratings (12-21 ["Very Poor"], 22-31
Autumn 2011                                Gear                        TRM 482                    TRM 490.5 Metric                            (Electrofishing/Gill Net)               Obs      Score              Obs          Score A. Species richness and composition
["Poor"], 32-40 ["Fair"], 41-50 ["G ood"], or  51-60 ["Excellent"]) are then applied to scores. As discussed in detail below, the average variati on for RFAI scores in TVA reservoirs is 6 (+
: 1. Number of indigenous species                                            25        3                27            3 Combined (Tables 13 and 14) 7                          7 Black crappie              Black crappie Bluegill                    Bluegill
3). Therefore, any location that attains an RFAI scor e of 45 or higher would be considered to have BIP. It must be stressed that scores below this threshold do not necessarily reflect an adversely impacted fish community. The threshold is used to serve as a conservativ e screening level; i.e., any fish community that meets these criteria is obviously not adversely im pacted. RFAI scores below this level would require a more in-depth look to determine if BIP exists. An inspection of individual RFAI metric results and species of fish used in each metr ic would be an initial step to help identify if operation of SQN is a contributing factor. This approach is appropriate because a validated multi-metric index is being used and scor ing criteria applicable to the zone of study are available.
: 2. Number of centrarchid species                                Green sunfish              Green sunfish Combined                                      5                              5 (less Micropterus)                                             Longear sunfish            Redbreast sunfish Redbreast sunfish            Redear sunfish Redear sunfish                Warmouth Warmouth                  White crappie 3                            3
7 A difference in RFAI scores attained at the downstream area compared to the upstream (control) area is used as one basis for determining presence or absence of impacts on the resident fish community from SQN's operations. The definition of "similar" is integral to accepting the validity of these interpretations. The Quality Assurance (QA) component of the Vital Signs monitoring program deals with how well the RFAI scores can be repeated and is accomplished by collecting a second set of samples at 15%-20% of the areas each year. Comparison of paired-sample QA data collected over seven years shows that the difference in RFAI index scores ranges from 0 to 18 points. The mean differen ce between these 54 paired scores is 4.6 points with 95% confidence limits of 3.4 and 5.8. The 75 th percentile of the sample differences is 6, and the 90 th percentile is 12. Based on these results, a difference of 6 points or less in the overall RFAI scores is the value selected for defining "similar" scores between upstream and downstream fish communities. That is, if the downstream RFAI score is within 6 points of the upstream score and if there are no major differences in overall fish community composition, then the two locations are considered similar. It is important to bear in mind that differences greater than 6 points can be expected simply due to method variation (i.e., 25% of the QA paired sample sets exceeded a difference of 6). An examination of the 12 metrics (with emphases on fish species used for each metric) is conducted to determine any difference in scores and the potential for the difference to be thermally related. Traditional Analyses In addition to RFAI analyses, data were analyzed using traditional statistical methods. Data from the survey were used to calculate catch per uni t effort (CPUE), which was expressed as number of fish per electrofishing run or fish per net night. CPUE values were calculated by pollution tolerance, trophic guilds (e.g., benthic invertivores, top carnivores, etc.), thermal sensitivity (Yoder et al. 2006), and indigenousness. CPUE, sp ecies richness, and di versity values were computed for each electrofishing effort (to maximize sample size; n = 30) and compared upstream and downstream to assess potential e ffects of power plant discharges.
: 3. Number of benthic invertivore                              Freshwater drum            Freshwater drum Combined                                      1                              1 species                                                        Golden redhorse                Logperch Spotted sucker              Spotted sucker 4                            3 Longear sunfish            Skipjack herring
Diversity was quantified using two commonly used diversity indices:
: 4. Number of intolerant species         Combined              Skipjack herring        3  Smallmouth bass            3 Smallmouth bass              Spotted sucker Spotted sucker 42.6%                          80.8%
Shannon diversity index (Shannon 1948) and Simpson diversity index (Simpson 1949). Both indices account for the number of species present, as well as the relative abundance of each species.
Bluegill        12.3%            Bluegill    43.0%
Shannon diversity index values were computed using the formula:  where: S  = total number of species N = total number of individuals 
Bluntnose minnow      0.5%       Bluntnose minnow  0.1%
Common carp        0.%          Common carp      0.1%
Gizzard shad      26.1%        Gizzard shad    30.8%
: 5. Percent tolerant individuals    Electrofishing                                    1.5                            0.5 Golden shiner      0.3%          Golden shiner  0.2%
Green sunfish      0.1%         Green sunfish    0.1%
Largemouth bass      1.6%        Largemouth bass  1.7%
Redbreast sunfish      0.9%      Redbreast sunfish  4.7%
Spotfin shiner      0.5%        Spotfin shiner  0.2%
38


n i = total number of individuals in the i th species The Simpson diversity index was calculated as follows:
Table 10 (continued).
8 where: S = total number of species  
Autumn 2011                          Gear                      TRM 482                              TRM 490.5 Metric                      (Electrofishing/Gill Net)              Obs              Score              Obs            Score 64.8%                                  42.4%
Bluegill          0.8%              Bluegill          0.7%
Gill Netting        Gizzard shad        63.1%    0.5  Gizzard shad        39.6%    0.5 Largemouth bass        0.8%          Golden shiner        0.7%
White crappie        1.4%
: 6. Percent dominance by one                                      35.1%                                  43.0%
Electrofishing                                        1.5                                0.5 species                                               Mississippi silverside                      Bluegill 63.1%                                  39.6%
Gill Netting                                        0.5                                0.5 Gizzard shad                      Gizzard shad 6.9%
33.8%
: 7. Percent non-indigenous Electrofishing                                        0.5    Common carp          0.1% 0.5 species                                                 Common carp            0.3%
Mississippi silverside  6.3%
Mississippi silverside    33.5%
Yellow perch          0.1%
Gill Netting                      0%                2.5                0%              2.5 39


N = total number of individuals n i  = total number of individuals in the i th species An independent two-sample t-test was used to test for differences in CPUE, species richness, and diversity values upstream and downstream of SQN ( = 0.05). Before statistical tests were performed using this method, data were analyzed for normality using the Shapiro-Wilk test (Shapiro and Wilk, 1965) and homogeneity of va riance using Levene's test (Levene, 1960). Non-normal count data or data with unequal variances were transformed using square root conversion; the transformation ln(x+1) was used for CPUE data without a normal distribution or unequal variance. Transformed data was reanalyzed for normal distribution and equal variances. If transformation normalized the data and/ or resulted in homogeneous variances, transformed data were tested using an independent two-sample t-test. If transformed data were not normally distributed or had unequal variances, statistical analysis was conducted using the Wilcoxon-Mann-Whitney test (Mann and Whitney, 1947; Wilcoxon, 1945).  
Table 10. (Continued)
Autumn 2011                                  Gear                    TRM 482                        TRM 490.5 Metric                            (Electrofishing/Gill Net)             Obs          Score              Obs            Score
: 8. Number of top carnivore species                                        9                              11 Black crappie                      Black crappie Flathead catfish                  Flathead catfish Largemouth bass                    Largemouth bass Skipjack herring                  Skipjack herring Smallmouth bass                    Smallmouth bass Combined                                      5                                5 Spotted bass                      Spotted bass Spotted gar                        Spotted gar White bass                          Walleye Yellow bass                        White bass White crappie Yellow bass B. Trophic composition
: 9. Percent top carnivores                                                4.5%                            6.2%
Black crappie      1.9%        Black crappie        1.4%
Flathead catfish    0.01%        Flathead catfish      0.5%
Largemouth bass      1.6%      Largemouth bass        1.7%
Electrofishing      Smallmouth bass    0.01%  0.5  Smallmouth bass        0.9%  1.5 Spotted bass      0.4%          Spotted bass        1.4%
Spotted gar      0.6%          Spotted gar        0.1%
White bass          0.1%
Yellow bass        0.2%
19.7%                          34.5%
Black crappie      7.4%        Black crappie      12.2%
Flathead catfish    2.5%      Flathead catfish      0.7%
Largemouth bass      0.8%      Skipjack herring      8.6%
Skipjack herring    1.6%        Spotted bass        6.5%
Gill Netting                                  0.5                              1.5 Smallmouth bass      0.8%          Walleye          0.7%
Spotted bass      4.1%          White bass        1.4%
White bass        0.8%        White crappie        1.4%
Yellow bass        1.6%        Yellow bass        2.9%
Black crappie      7.4%
40


Benthic Macroinvertebrate Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN During summer 2011, benthic macroinvertebrate data were collected along transects established across the full width of the reservoir at TRMs 481.3 and 483.4 downstream of SQN (Figure 3) and TRMs 488.0 and 490.5 upstream of SQN (Figure 4). Autumn 2011 site s included only TRM 481.3, TRM 483.4 and TRM 490.5. TRM 488.0 was not used as a collection site in autumn 2011 because TRM 490.5 is a long-term data collection site for the autumn seasons. Historically, the benthic macroinvertebrate community downstream of SQN was sampled at TRM 482.0; however during summer and autumn 2011, benthic macroinvertebrates were sampled at two transects (TRM 481.3 and TRM 483.4) to more accurately depict the health of the downstream benthic community. Benthic grab samples were used to collect samples at equally spaced points along the upstream and downstream transects. During summer 2011, benthic grab samples were collected from five points along the two upstream transects. Autumn 2011 samples were collected from ten points along the transect located at TRM 490.5 and five points at TRM 488.0. Samples were collected from ten points along each downstream transect during summer and autumn 2011. A Ponar sampler (area per sample 0.06 m
Table 10. (Continued)
: 2) was used for most samples. When heavier substrate was encountered, a Peterson sampler (area per sample 0.11 m
Autumn 2011                            Gear                    TRM 482                    TRM 490.5 Metric                      (Electrofishing/Gill Net)             Obs        Score              Obs        Score
: 2) was used. Collection and processing techniques followed standard VS procedures (OER-ESP-RRES-AMM-21.11; Quantitative Sample Collection - Benthic Macroinvertebrate Sampling with a Ponar Dredge). Bottom sediments were washed on a 533 screen; organisms were then picked from the screen and any remaining substrate. For each sample, organisms and substrate were placed in a sample 9
: 10. Percent omnivores                                            27.5%                        31.9%
jar and fixed in formalin. Samples were sent to an independent consultant who identified each organism collected to the lowest possible taxonomic level. Benthic community results were evaluated using seven community characteristics or metrics. Results for each metric were assigned a scor e of 1, 3, or 5 depending upon how they scored based on reference conditions developed for VS reservoir inflow sample sites. Scoring criteria for upper mainstem Tennessee River reservoirs ar e shown in Table 5. The scores for the seven metrics were summed to produce a benthic score for each sample site. Potential scores ranged from 7 to 35. Ecological health ratings (7-12
Blue catfish  0.01%          Blue catfish    0.1%
["Very Poor"], 13-18 ["Poor"], 19-23 ["Fair"], 24-29 ["Good"], or 30-35 ["Excellent"]) were then applied to scores. The individual metrics are shown below:
Bluntnose minnow 0.5%        Bluntnose minnow  0.1%
(1) Average number of taxa-This metric is calculated by averaging the total number of taxa present in each sample at a site. Taxa generally mean family or order level because samples are processed in the field. For chironomids, taxa refers to obviously different organisms (i.e., sepa rated by body size, head capsule size and shape, color, etc.). Greater taxa richne ss indicates better conditi ons than lower taxa richness.  
Channel catfish  0.2%        Channel catfish  0.7%
(2) Proportion of samples wi th long-lived organisms-This is a presence/absence metric which is evaluated based on the proportion of samples with at least one long-lived organism (Corbicula, Hexagenia, mussels, and snails) present. The presence of long-lived taxa is indicative of conditions which allow long-term survival.  
Electrofishing                              1.5                          1.5 Common carp    0.3%          Common carp    0.1%
(3) Average number of EPT taxa-This metric is calculated by averaging the number of Ephemeroptera , Plecoptera , and Trichoptera taxa present in each sample at a site.
Gizzard shad  26.1%        Gizzard shad    30.8%
Higher diversity of these taxa indica tes good water quality and better habitat conditions.  
Golden shiner  0.3%          Golden shiner  0.2%
(4) Percentage as oligochaetes-This metric is calculated by averaging the percentage of oligochaetes in each sample at a site. Oligochaetes are considered tolerant organisms so a higher proportion indicates poorer water quality.  
Blue catfish    0.1%
  (5) Percentage as dominant taxa-This metric is calculated by selecting the two most abundant taxa in a sample, summing the number of individuals in those two taxa, dividing that sum by the total number of animals in the sample, and converting to a percentage for that sample. The percentage is then averaged for the 10 samples at each site. Often, the most abundant taxa differed among the 10 samples at a site.
76.2%                        51.1%
This allows more discretion to identify imbalances at a site than developing an
Blue catfish  9.8%          Blue catfish    5.8%
Gill Netting        Channel catfish  3.3%  0.5  Channel catfish  5.0%  0.5 Gizzard shad  63.1%        Gizzard shad    39.6%
Golden shiner  0.7%
C. Fish abundance and health
: 11. Average number per run        Electrofishing                  174.2        1.5              122.4        1.5 Gill Netting                  12.2       1.5              13.9        1.5
: 12. Percent anomalies            Electrofishing                    0.6        2.5               0.3        2.5 Gill Netting                    0        2.5                0          2.5 Overall RFAI Score                                                            35                            35 Fair                          Fair 41


average for a single dominant taxon for all samples a site. This metric is used as an evenness indicator. Dominance of one or two taxa indicates poor conditions.
Table 11. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Summer 2011.
(6) Average density excluding Chironomids and Oligochaetes-This metric is calculated by first summing the number of organisms, excluding chironomids and oligochaetes, present in each sample and then averaging these densities for the 10 10 samples at a site. This metric examines the community, excluding taxa which often dominate under adverse conditions. A high abundance of non-chironomids and non-oligochaetes indicates go od water quality conditions.  
Commer- Recrea-Thermally                    EF Catch EF Catch            Gill Netting Trophic Indigenous                      cially  tionally                  Total fish                Total Gill Total fish Percent Common Name              Scientific name                      Tolerance Sensitive                    Rate Per Rate Per            Catch Rate Per level    species                      Valuable Valuable                      EF                      net fish Combined Composition Species                      Run    Hour                Net Night Species  Species Gizzard shad          Dorosoma cepedianum      OM        X        TOL        .        X        X      16.33    57.38    245          7.20          72      317      30.2%
(7) Zero-samples: Proportion of samples with containing no organisms-This metric is the proportion of samples at a site which have no organisms present. "Zero-samples" indicate living conditions unsuitable to support aquatic life (i.e.
Common carp            Cyprinus carpio          OM        .      TOL        .        X        .      0.13      0.47      2          0.10          1        3      0.3%
toxicity, unsuitable substrate, etc.). Any site having one empty sample was assigned a score of three, and any site with two or more empty samples received a score of one. Sites with no empty samples were assigned a score of five.
Golden shiner          Notemigonus crysoleucas OM          X        TOL        .        X        .      1.00    3.51      15            .            .        15      1.4%
A similar or higher benthic index score at the downstream site compared to the upstream site is used as basis for determining absence of impact on the benthic macroinvertebrate community related to SQN's thermal discharge. The QA component of VS mon itoring shows that the comparison of benthic index scores from 49 paired sample sets collected over the past seven years range from 0 to 14 points, the 75 th percentile is 4, the 90 th percentile is 6. The mean difference between these 49 paired scores is 3.1 points with 95% confidence limits of 2.2 and
Spotfin shiner        Cyprinella spiloptera    IN        X        TOL        .          .        .      0.40      1.41      6            .            .        6      0.6%
Bluntnose minnow      Pimephales notatus        OM        X        TOL        .          .      X      1.00    3.51      15            .            .        15      1.4%
Redbreast sunfish      Lepomis auritus          IN        X        TOL        .          .      X      1.00    3.51      15            .            .        15      1.4%
Green sunfish          Lepomis cyanellus        IN        X        TOL        .          .      X      0.07    0.23      1            .            .        1      0.1%
Bluegill              Lepomis macrochirus      IN        X        TOL        .          .      X      29.80    104.68    447          0.10          1      448      42.7%
Largemouth bass        Micropterus salmoides    TC        X        TOL        .          .      X      2.33    8.20      35            .            .        35      3.3%
White crappie          Pomoxis annularis        TC        X        TOL        .          .      X        .        .      .          0.20          2        2      0.2%
Skipjack herring      Alosa chrysochloris      TC        X        INT        .        X        X        .        .      .          0.20          2        2      0.2%
Spotted sucker        Minytrema melanops        BI        X        INT        X          X        .      0.47      1.64      7           0.20          2        9      0.9%
Longear sunfish        Lepomis megalotis        IN        X        INT        .          .      X      0.13      0.47      2          0.10          1        3      0.3%
Smallmouth bass        Micropterus dolomieu      TC        X        INT        .          .      X      0.07    0.23      1            .           .         1      0.1%
Brook silverside      Labidesthes sicculus      IN        X        INT        .        X        X      0.07      0.23      1            .            .         1        0.1%
Spotted gar            Lepisosteus oculatus      TC        X          .        .        X        .      1.33      4.68    20          0.20          2        22      2.1%
Threadfin shad        Dorosoma petenense        PK        X          .        .        X        X      0.13    0.47      2            .            .        2      0.2%
Smallmouth buffalo Ictiobus bubalus              OM        X          .        .        X        X      0.07      0.23      1          0.20          2        3      0.3%
Blue catfish          Ictalurus furcatus        OM        X          .        .        X        X        .        .      .          0.80          8        8      0.8%
Channel catfish        Ictalurus punctatus      OM        X          .        .        X        X      0.40      1.41      6          0.20          2        8      0.8%
Flathead catfish      Pylodictis olivaris      TC        X          .        .        X        X        .        .      .          0.20          2        2      0.2%
White bass            Morone chrysops          TC        X          .        .          .      X      0.07      0.23      1          0.10          1        2      0.2%
Yellow bass            Morone mississippiensis  TC        X          .        .          .      X      0.13      0.47      2          0.70          7        9      0.9%
Warmouth              Lepomis gulosus          IN        X          .        .          .      X      0.07      0.23      1            .            .        1      0.1%
Redear sunfish        Lepomis microlophus      IN        X          .        .          .      X      2.53      8.90     38          0.50          5        43      4.1%
Spotted bass          Micropterus punctulatus  TC        X          .        .          .      X      0.47      1.64      7          1.00          10        17      1.6%
Black crappie          Pomoxis nigromaculatus    TC        X          .        .          .      X      0.60      2.11      9          1.40          14        23      2.2%
Yellow perch          Perca flavescens          IN        .          .        .          .      X      0.07    0.23      1            .            .        1      0.1%
Logperch              Percina caprodes          BI        X          .      X          .      X      0.33      1.17      5            .            .        5      0.5%
Freshwater drum        Aplodinotus grunniens    BI        X          .        .        X        X        .        .      .          0.40          4        4      0.4%
Mississippi silverside Menidia audens            IN        .          .        .        X        .      1.73      6.09    26            .            .        26      2.5%
Total                                                      28                  2         14      25    60.73    213.33    911          13.80        138      1,049      100%
Number Samples                                                                                              15                              10 Species Collected                                                                                          26                              18
              *All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Trophic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).
42


===4.1. Based===
Table 12. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Summer 2011.
on these results, a difference of 4 point s or less is the value selected for defining "similar" scores between upstream and downstream benthic communities. That is, if the downstream benthic score is within 4 points of the upstream score, the communities will be considered similar and it will be concluded that SQN has had no effect. Once again, it is important to bear in mind that differences greater than 4 points can be expected simply due to method variation (25% of the QA paired sample sets exceeded that value). When such occurs, a metric-by-metric examination will be conducted to determine what caused the difference in scores and the potential for the difference to be thermally related.
Commer- Recrea-Thermally                    EF Catch EF Catch            Gill Netting Trophic Indigenous                      cially  tionally                  Total fish                Total Gill Total fish Percent Common Name            Scientific name                            Tolerance Sensitive                    Rate Per Rate Per            Catch Rate Per level    species                      Valuable Valuable                      EF                      net fish Combined Composition Species                      Run    Hour                Net Night Species  Species Gizzard shad          Dorosoma cepedianum      OM        X        TOL        .        X        X      23.27    81.54      349          5.00          50        399      29.2%
Plankton Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN Samples for analysis of the phytoplankton and zooplankton communities were collected in the mid-channel at four locations, two upstream of SQN at TRM 490.1 and 487.9 and two downstream at TRM 483.4 and 481.1, on August 25 and October 10, 2011. Two replicate samples for both phytoplankton and zooplankton were collected at each site on each sample date.
Common carp            Cyprinus carpio          OM        .      TOL        .        X        .      0.13    0.47      2            .            .        2        0.1%
Phytoplankton A low-volume peristaltic pump a nd tubing apparatus were used to collect integrated water samples along a vertical gradient from the bo ttom to the top of the photic zone, which was defined as the zone from the surface to twice the Secchi depth reading or from the surface to four meters, whichever was greater. From each of these water samples, a subsample was removed and preserved in glutaraldehyde for taxonomic identification and enumeration of the phytoplankton community. A second subsample was removed from each water sample for analysis of phytopigment (c hlorophyll) concentrations.
Golden shiner          Notemigonus crysoleucas  OM        X        TOL        .        X        .      0.87    3.04      13          0.50          5          18      1.3%
11 12  Zooplankton Samples for taxonomic identification and enumer ation of the zooplankton community were collected using a conical net with 80 &#xb5;m mesh, towed vertically through the water column from two meters off the bottom to the surface of the reservoir. Samples were preserved in 70% ethyl alcohol (EtOH).
Spotfin shiner        Cyprinella spiloptera    IN        X        TOL        .          .        .      0.80    2.80      12            .            .        12      0.9%
Data Analysis Basic summary statistics were used to compare abundances among sites. Two separate measures of diversity, percent similarity and the Bray-Curtis Index of similarity, were used to examine spatial variability within the plankton communities, taking into account both the taxa richness and the uniformity of distribution of individuals among the taxa. Species or taxa richness is expressed simply as the number of species or distinct taxa in the community.  
Bluntnose minnow      Pimephales notatus        OM        X        TOL        .          .      X      4.33    15.19      65            .            .        65      4.8%
Redbreast sunfish      Lepomis auritus          IN        X        TOL        .          .      X      1.13    3.97      17            .            .        17      1.2%
Green sunfish          Lepomis cyanellus        IN        X        TOL        .          .      X      0.27    0.93      4             .            .          4      0.3%
Bluegill              Lepomis macrochirus      IN        X        TOL        .          .      X      33.53    117.52    503          0.10          1         504      36.8%
Largemouth bass        Micropterus salmoides    TC        X        TOL        .          .      X      1.40    4.91      21          0.10          1          22      1.6%
White crappie          Pomoxis annularis        TC        X        TOL        .          .      X        .        .        .          0.10          1          1      0.1%
Skipjack herring      Alosa chrysochloris      TC        X        INT        .        X        X        .        .        .          2.00          20        20      1.5%
Spotted sucker        Minytrema melanops        BI        X        INT      X          X        .      0.53      1.87      8          0.10          1          9      0.7%
River redhorse        Moxostoma carinatum      BI        X        INT        .          .        .      0.07    0.23      1            .            .          1      0.1%
Longear sunfish        Lepomis megalotis        IN        X        INT        .          .      X      0.53    1.87      8            .            .          8      0.6%
Smallmouth bass        Micropterus dolomieu      TC        X        INT        .          .      X      0.13    0.47      2            .            .          2      0.1%
Brook silverside      Labidesthes sicculus      IN        X        INT        .        X        .      0.13    0.47      2            .            .          2      0.1%
Spotted gar            Lepisosteus oculatus      TC        X          .        .        X        .      1.27    4.44      19            .            .        19      1.4%
Threadfin shad        Dorosoma petenense        PK        X          .        .        X        X      0.07    0.23      1            .            .         1        0.1%
Smallmouth buffalo    Ictiobus bubalus          OM        X          .        .        X        X      0.13    0.47      2            .            .        2        0.1%
Blue catfish          Ictalurus furcatus        OM        X          .        .        X        X        .        .        .          0.60          6          6      0.4%
Channel catfish        Ictalurus punctatus      OM        X          .        .        X        X      0.20    0.70        3          0.20          2          5        0.4%
Flathead catfish      Pylodictis olivaris      TC        X          .        .        X        X      0.67      2.34      10          0.20          2          12      0.9%
Yellow bass            Morone mississippiensis  TC        X          .        .          .      X        .        .        .          0.60          6          6      0.4%
Warmouth              Lepomis gulosus          IN        X          .        .          .      X      0.13    0.47      2            .            .          2      0.1%
Redear sunfish        Lepomis microlophus      IN        X          .        .          .      X      5.93    20.79      89          0.70          7          96      7.0%
Spotted bass          Micropterus punctulatus  TC        X          .        .          .      X      0.87      3.04      13          0.30          3          16      1.2%
Black crappie          Pomoxis nigromaculatus    TC        X          .        .          .      X        .        .        .          2.20          22        22      1.6%
Yellow perch          Perca flavescens          IN        .          .        .          .      X      0.27    0.93      4            .            .          4      0.3%
Logperch              Percina caprodes          BI        X          .      X          .      X      1.27    4.44      19            .            .        19      1.4%
Sauger                Sander canadense          TC        X          .        .          .      X        .        .        .          0.10           1          1      0.1%
Freshwater drum        Aplodinotus grunniens    BI        X          .        .        X        X      0.13      0.47      2          0.40          4          6        0.4%
Mississippi silverside Menidia audens            IN        .          .        .        X        .      4.33    15.19      65            .           .         65      4.8%
Total                                                      29                  2          14      24    82.39    288.79    1,236        13.20        132      1,368    100%
Number Samples                                                                                             15                              10 Species Collected                                                                                          26                              16
                *All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Trophic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).
43


One measure of spatial variability between plankton communities was the calculation of Percent Similarity (PS). To calculate PS, the number of individuals in each species was calculated as the fractional proportion of the total community. For each species, the proportion in community 1 was then compared to the proportion in community 2, and the lower of the two values was tabulated. When all taxa had been compared in this manner, the tabulated list (of the lower of each pair of values) was summed, and this sum defined as the PS of the two communities.  
Table 13. Autumn 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Autumn 2011.
Commer- Recrea-Thermally                    EF Catch EF Catch            Gill Netting Trophic Indigenous                      cially  tionally                  Total fish                Total Gill Total fish Percent Common Name            Scientific name                            Tolerance Sensitive                    Rate Per Rate Per            Catch Rate Per level    species                      Valuable Valuable                      EF                      net fish Combined Composition Species                      Run    Hour                Net Night Species  Species Gizzard shad          Dorosoma cepedianum      OM        X        TOL        .        X        X      45.53  212.11    683          7.70        77        760      27.8%
Common carp            Cyprinus carpio          OM        .      TOL        .        X        .      0.47    2.17      7            .          .          7        0.3%
Golden shiner          Notemigonus crysoleucas  OM        X        TOL        .        X        .      0.60    2.80      9            .          .          9        0.3%
Spotfin shiner        Cyprinella spiloptera    IN        X        TOL        .          .        .      0.80    3.73      12            .          .        12        0.4%
Bluntnose minnow      Pimephales notatus        OM        X        TOL        .          .      X      0.93    4.35      14            .          .        14      0.5%
Redbreast sunfish      Lepomis auritus          IN        X        TOL        .          .      X        1.60    7.45      24            .          .        24        0.9%
Green sunfish          Lepomis cyanellus        IN        X        TOL        .          .      X        0.07    0.31      1            .          .          1        0.0%
Bluegill              Lepomis macrochirus      IN        X        TOL        .          .      X      21.47  100.00    322          0.10          1        323      11.8%
Largemouth bass        Micropterus salmoides    TC        X        TOL        .          .      X        2.73    12.73      41          0.10          1        42        1.5%
Skipjack herring      Alosa chrysochloris      TC        X        INT        .        X        X          .        .        .          0.20          2          2        0.1%
Spotted sucker        Minytrema melanops        BI        X        INT        X        X        .      0.73    3.42      11          0.10          1        12        0.4%
Longear sunfish        Lepomis megalotis        IN        X        INT        .          .      X        0.13    0.62      2            .          .          2        0.1%
Smallmouth bass        Micropterus dolomieu      TC        X        INT        .          .      X        0.07    0.31      1          0.10          1          2        0.1%
Spotted gar            Lepisosteus oculatus      TC        X          .        .        X        .      1.00    4.66      15            .          .        15      0.5%
Threadfin shad        Dorosoma petenense        PK        X          .        .        X        .      29.27  136.34    439            .          .        439      16.1%
Golden redhorse        Moxostoma erythrurum      BI        X          .        .        X        .        .        .        .          0.10          1          1        0.0%
Blue catfish          Ictalurus furcatus        OM        X          .        .        X        X        0.07    0.31      1          1.20        12        13      0.5%
Channel catfish        Ictalurus punctatus      OM        X          .        .        X        X        0.33    1.55      5          0.40          4          9      0.3%
Flathead catfish      Pylodictis olivaris      TC        X          .        .        X        X        0.07    0.31      1          0.30          3          4      0.1%
White bass            Morone chrysops          TC        X        .          .          .      X          .        .        .          0.10          1          1        0.0%
Yellow bass            Morone mississippiensis  TC        X          .        .          .      X          .        .        .          0.20          2          2        0.1%
Warmouth              Lepomis gulosus          IN        X          .        .          .      X        0.47    2.17      7            .          .          7        0.3%
Redear sunfish        Lepomis microlophus      IN        X          .        .          .      X        2.27    10.56      34          0.10          1        35      1.3%
Spotted bass          Micropterus punctulatus  TC        X          .        .          .      X        0.73    3.42      11          0.50          5        16      0.6%
Black crappie          Pomoxis nigromaculatus    TC        X          .        .          .      X        3.27    15.22      49          0.90          9        58      2.1%
Freshwater drum        Aplodinotus grunniens    BI        X          .        .        X        X        0.47    2.17      7          0.10          1          8      0.3%
Mississippi silverside Menidia audens            IN        .          .        .        X        .      61.13  284.78    917            .          .        917      33.5%
Total                                                      25                  1        13      19    174.21  811.49    2,613        12.20        122      2,735      100%
Number Samples                                                                                              15                            10 Species Collected                                                                                            23                            16
                *All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Trophic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).
44


Within the plankton community, spatial variability was also analyzed using hierarchical clustering based on the Bray-Curtis index of similarity. Sample s were sorted into groups (clusters) based on the overall resemblance to ea ch other. Cluster analyses were interpreted graphically on dendrograms to relate the similarity of communities among the sampling stations.  
Table 14. Autumn 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Autumn 2011.
Commer- Recrea-Thermally                    EF Catch EF Catch            Gill Netting Trophic Indigenous                      cially  tionally                  Total fish                Total Gill Total fish Percent Common Name            Scientific name                            Tolerance Sensitive                    Rate Per Rate Per            Catch Rate Per level    species                      Valuable Valuable                      EF                      net fish Combined Composition Species                      Run    Hour                Net Night Species  Species Gizzard shad          Dorosoma cepedianum      OM        X        TOL        .        X        X      37.73  164.53    566          5.50        55        621      31.4%
Common carp            Cyprinus carpio          OM        .      TOL        .        X        .      0.07    0.29      1            .            .        1      0.1%
Golden shiner          Notemigonus crysoleucas  OM        X        TOL        .        X        .      0.27    1.16        4          0.10          1          5      0.3%
Spotfin shiner        Cyprinella spiloptera    IN        X        TOL        .          .        .      0.27    1.16      4            .            .        4      0.2%
Bluntnose minnow      Pimephales notatus        OM        X        TOL        .          .      X      0.13    0.58      2            .            .        2      0.1%
Redbreast sunfish      Lepomis auritus          IN        X        TOL        .          .      X        5.73  25.00      86            .            .        86      4.4%
Green sunfish          Lepomis cyanellus        IN        X        TOL        .          .      X        0.07    0.29      1            .            .        1      0.1%
Bluegill              Lepomis macrochirus      IN        X        TOL        .          .      X      52.60  229.36    789          0.10          1      790      40.0%
Largemouth bass        Micropterus salmoides    TC        X        TOL        .          .      X      2.07    9.01      31            .            .        31      1.6%
White crappie          Pomoxis annularis        TC        X        TOL        .          .      X          .        .        .          0.20          2        2      0.1%
Skipjack herring      Alosa chrysochloris      TC        X        INT        .        X        X          .        .        .          1.20          12        12      0.6%
Smallmouth bass        Micropterus dolomieu      TC        X        INT        .          .      X        1.07    4.65      16            .            .        16      0.8%
Spotted sucker        Minytrema melanops        BI        X        INT        X          .        .      0.40    1.74      6          0.40          4        10      0.5%
Spotted gar            Lepisosteus oculatus      TC        X          .        .        X        X        0.13    0.58      2            .            .        2      0.1%
Threadfin shad        Dorosoma petenense        PK        X          .        .        X        .      1.47    6.40      22            .            .        22      1.1%
Largescale stoneroller Campostoma oligolepis    HB        X          .        .          .      X        0.93    4.07      14            .            .        14      0.7%
Blue catfish          Ictalurus furcatus        OM        X          .        .        X        X        0.07    0.29        1          0.80          8          9      0.5%
Channel catfish        Ictalurus punctatus      OM        X          .        .        X        X        0.80    3.49      12          0.70          7        19      1.0%
Flathead catfish      Pylodictis olivaris      TC        X          .        .        X        X        0.60    2.62        9          0.10          1        10      0.5%
White bass            Morone chrysops          TC        X          .        .          .      X        0.07    0.29      1          0.20          2          3      0.2%
Yellow bass            Morone mississippiensis  TC        X          .        .          .      X        0.20    0.87      3          0.40          4          7      0.4%
Warmouth              Lepomis gulosus          IN        X          .        .          .      X        0.67    2.91      10            .            .        10      0.5%
Redear sunfish        Lepomis microlophus      IN        X          .        .          .      X        4.27    18.60      64          1.50        15        79      4.0%
Spotted bass          Micropterus punctulatus  TC        X          .        .          .      X        1.67    7.27      25          0.90          9        34      1.7%
Black crappie          Pomoxis nigromaculatus    TC        X          .        .          .      X        1.73    7.56      26          1.70        17        43      2.2%
Yellow perch          Perca flavescens          IN        .        .        .          .      X        0.13    0.58        2            .            .        2      0.1%
Logperch              Percina caprodes          BI        X          .        X          .      X        0.07    0.29      1            .            .        1      0.1%
Walleye                Sander vitreum            TC        X          .        .          .      X          .        .        .          0.10          1        1        0.1%
Freshwater drum        Aplodinotus grunniens    BI        X          .        .        X        X        0.93    4.07      14            .            .        14      0.7%
Mississippi silverside Menidia audens            IN        .        .        .        X        .      8.27  36.05      124            .            .      124      6.3%
Total                                                      27                  2        11      24    122.42  533.71    1,836        13.90        139      1,975      100%
Number Samples                                                                                              15                            10 Species Collected                                                                                            27                            15
                *All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Trophic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).
45


Before calculating the measures of diversity for the zooplankton data, the immature specimens identified as Cladocera and Bosminidae (one sample each) were removed; the taxa Eurytemora affinis and Eurytemora sp. were combined in one sample; and in October samples, specimens from all taxa under the group Sididae were combined.
Table 15. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run),
tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, summer 2011.
Mean (Standard Deviation)
Downstream              Upstream              Significant            Test Parameter                                                                                                                            P Value (TRM 482)            (TRM 490.5)            Difference          Statistic(a)
Number of species (per run)
Total (Species richness)                          10.7 (2.3)            12.1 (3.5)                No              t= -1.23      0.23 Benthic invertivores                                0.5 (0.7)            0.8 (0.8)                No              Z= -1.28      0.20 Insectivores                                        3.4 (1.5)            4.5 (1.1)                Yes              Z= -2.08      0.04 Omnivores                                          2.2. (1.1)            1.8 (0.9)                No              Z= 1.44        0.15 Top carnivores                                      2.3 (0.7)            2.5 (1.4)                No              Z= 0.09        0.93 Non-indigenous                                      0.5 (0.5)            0.9 (0.7)                No              Z= -1.57      0.11 Indigenous                                          7.9 (2.1)            8.7 (1.9)                No              t= -1.79      0.28 Tolerant                                            4.5 (0.8)            4.4 (1.2)                No              Z= 0.39        0.69 Intolerant                                          0.5 (1.0)            1.0 (0.8)                No              Z= -1.90      0.06 Thermally sensitive                                0.5 (0.7)            0.6 (0.8)                No              Z= -0.41      0.68 CPUE (per run)
Total                                            4.05 (1.63)            5.49 (2.10)              Yes              t= -2.11      0.04 Benthic invertivores                              0.05 (0.10)            0.13 (0.21)                No              Z= -1.50      0.13 Insectivores                                      2.35 (1.36)            3.13 (1.29)                No              t= -1.59      0.12 Omnivores                                        1.26 (1.47)            1.92 (1.68)                No              Z= -1.14      0.25 Top Carnivores(b)                                0.33(0.14)            0.29 (0.22)                No                t= 0.98      0.33 Non-indigenous                                    0.13 (0.27)          0.32 (0.39)                No              Z= -1.65      0.10 Indigenous                                        4.83 (1.72)            6.06 (2.02)                No              t= -1.79      0.08 Tolerant                                          3.47 (1.52)            4.38 (1.92)                No              t= -1.44      0.16 Intolerant                                        0.05 (0.09)            0.09 (0.09)              Yes              Z= -1.99      0.05 Thermally sensitive                              0.07 (0.10)            0.13 (0.22)                No              Z= -0.47      0.64 Diversity indices (per run)
Simpson                                          0.64 (0.14)            0.70 (0.11)                No              Z= -1.37      0.17 Shannon(b)                                        5.02 (2.18)            7.02 (4.10)                No              t= -1.79      0.13 (a) t-Value indicates results of independent two-sample t-test (=0.05). Z-Value indicates results of Mann-Whitney-Wilcoxon Z-test (=0.05) used when raw data could not be normalized using transformation.
(b) Square root or ln(x+1) transformed data used for statistical analyses because raw data were not normally distributed and/or did not have equal variances.
46


Visual Encounter Surveys (O bservations of Wildlife) Two permanent transects were established both upstream and downstream of the SQN thermal discharge. The midpoint of the upstream tran sect was positioned at the RFAI upstream study area and spanned a distance of 2,100 m within this transect (Figure 3). The downstream transect was collected directly below th e power plant and likew ise spanned a distance 2,100 m (Figure 4).
Table 16. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run),
The beginning and ending point of each transect were marked with GPS for relocation. Transects were positioned approximately 30 m offs hore and parallel to the shoreline occurring on both right and left descending banks. Visual Encounter Surveys were conducted to provide a representative sampling of wildlife present during summer (August) and autumn (October). Each transect was surveyed by steadily trav ersing the length by boat and simultaneously recording observations of wildlife. Sampling frame of each transect generally followed the strip or belt transect concept with all individual species enumerated that crossed the center-line of each transect landward to an area that included the shoreline and riparian zone (i.e., belt width generally averages 60 m where vision is not obscured). Information recorded was identified to the lowest taxonomic trophic level that was observe d visually and a direct count of individuals observed per trophic level. If flocks of a species or mixed flock of a group of species were observed, an estimate of the number of individuals present was generated. Time was recorded at the start and end points of each transect to provide a general measure of effort expended. If times varied among transects, it was primarily due to the difficulty in approaching some wildlife species without inadvertently flushing them from basking or perching sites. To compensate for the variation of effort expende d per transect, observations were standardized to numbers per minute or numbers per hectare in preparation for analysis.
tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, autumn 2011.
The principal objective and purpos e behind the surveys were to provide a preliminary set of observations to verify trophic levels of birds, mammals, amphibians and reptiles have not been affected by thermal effects from the SQN discharg
Mean (Standard Deviation)
: e. If trophic levels were not represented, further investigations will be used to target sp ecific species and/or specie s groups (guilds) in an attempt to determine the cause.
Downstream              Upstream              Significant              Test Parameter                                                                                                                            P Value (TRM 482)            (TRM 490.5)            Difference          Statistic(a)
Chickamauga Reservoir Flow and SQN Temperature Total daily average discharge from Watts Bar, Apalachia (Hiwassee River), and Ocoee 1 (Ocoee River) dams was used to describe the volume of water flowing past SQN and was obtained from TVA's River Operations database. Water temperature data were also obtained from TVA's River Operations database. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge are de picted in Figure 6. Station 14 (TRM 490.4) was used to measure the ambient temperature upstr eam of the SQN intake. Station 8 (TRM 483.4) was used to measure temperatures downstream of SQN discharge. Water temperatures at both stations were computed as the average of temperatures measured at the 3-, 5-, and 7-ft depths.
Number of species (per run)
Thermal Plume Characterization Physical measurements were taken to characterize and map the SQN thermal plume concurrent with biological field sampling during both summer and fall sampling events. The plume was characterized under representative thermal maxima and seasonally expected low flow conditions. Measurements were collected du ring periods of high power produc tion from SQN, as reasonably practicable, to capture maximum extent of the thermal plume unde r existing river flow/reservoir elevation conditions. This effo rt allowed general delineation of the "Primary Study Area" per the EPA (1977) draft guidance defined as the "
Total (Species richness)                          13.5 (3.0)            12.9 (2.4)                No                t= 0.6      0.55 Benthic invertivores                                0.5 (0.3)             0.5 (0.5)                No              Z= 0.94        0.35 Insectivores                                        3.9 (1.8)            4.1 (1.0)                 No              Z= -0.45      0.65 Omnivores                                          2.3 (1.0)            1.9 (0.6)                 No              Z= 1.16        0.25 Top carnivores                                      3.1 (1.0)             3.2 (1.7)                No              Z= 0.04        0.97 Non-indigenous                                      1.2 (0.4)            1.1 (0.5)                No              Z= 0.78        0.44 Indigenous(b)                                     10.1 (3.5)            9.4 (2.2)                No                t= 0.48      0.63 Tolerant                                            4.7 (1.7)             3.9 (0.9)                 No                t= 1.62      0.12 Intolerant                                          0.7 (0.9)             0.8 (0.6)                No              Z= -0.67      0.50 Thermally sensitive                                0.6 (0.5)            0.4 (0.6)                No              Z= 1.18        0.24 CPUE (per run)
entire geographic area bounded annually by the locus of the 2&deg;C above ambient surface isotherm s as these isotherms ar e distributed throughout an annual period", ensuring placement of the biological sampling locations within thermally influenced areas. However, it is important to emphasize that the >
Total(b)                                          3.34 (0.71)            2.81 (0.50)              Yes                t= 2.34      0.03 Benthic invertivores                              0.08 (0.06)            0.09 (0.07)               No              Z= -0.22      0.83 Insectivores                                      5.86 (2.98)            4.80 (3.25)               No                t= 0.93      0.36 Omnivores                                        3.19 (1.36)            2.60 (1.54)                No                t= 1.16      0.25 Top Carnivores                                    0.52 (0.27)            0.50 (0.47)                No              Z= 0.94        0.35 Non-indigenous                                    4.11 (3.41)            0.56 (0.50)              Yes              Z= 3.43      0.0006 Indigenous(b)                                    7.51 (4.37)            7.60 (2.86)                No              t= -0.30      0.76 Tolerant                                          4.95 (2.66)            6.60 (2.74)                No              t= -1.67      0.11 Intolerant                                        0.05 (0.07)           0.10 (0.11)                No              Z= -1.53      0.13 Thermally sensitive                              0.05 (0.05)            0.03 (0.05)                No              Z= 1.18        0.24 Diversity indices (per run)
2&#xba;C isopleth boundary is not a bright line; it is dynamic, changing geometrically in response to ch anges in ambient river flows and temperatures and SQN operations. As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced. Every 1
Simpson                                          0.84 (0.06)            0.83 (0.12)                No              Z= -0.33      0.74 Shannon                                            9.1 (2.1)            8.9 (2.6)                 No                t= 0.16      0.87 (a) t-Value indicates results of independent two-sample t-test (=0.05). Z-Value indicates results of Wilcoxon Rank-Sum Z-test (=0.05) used when raw data could not be normalized using transformation.
effort was made to collect biological samples in thermally affected areas as guided by the Primary Study Area definition. Field activities included measurement of surface to bottom temperature profiles along transects across the plume. One transect was located proximate to the thermal discharge point; subsequent downstream transects were concentrated in the near field area of the plume where the change in plume temperature was expected to be most rapid. The distance between transects in the remainder of the Primary Study Area increased with distance downstream or away from the discharge point. The farthest downstream transect was just outside of the Primary Study Area. A transect upstream of the discharge that is not affected by the thermal plume was included for determining ambient temperature conditions. The total number of transects needed to fully characterize and delineate the plume we re determined in the field. Temperature profile measurement (surface to bottom) points along a given transect were spaced equally across the river channel. Points began at or near the shoreline from which the discharge originated and continued across the plume [based on surface (0.1 m or 0.3 ft depth) measurements] until the far shore was reached. Measurements along transects were conducted at
(b) Square root or ln(x+1) transformed data used for statistical analyses because raw data were not normally distributed and/or did not have equal variances.
47


points 10%, 30%, 50%, 70%, and 90% from the originating shoreline. The distances between transects and measurement poi nts depended on the size of the discharge plume. The temperature measurement instrument (Hydrolab) was calibrated to a thermometer whose
Table 17. Summary of RFAI scores from sites located directly upstream and downstream of Sequoyah Nuclear Plant as well as scores from sampling conducted during autumn 1993-2011 as part of the Vital Signs Monitoring Program in Chickamauga Reservoir.
Station          Location  1993 1994 1995 1996 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Average Inflow          TRM 529.0    52  52    48    42  44    42    44    46    48  48    42    42  42    42  44  44  44    50      45 Transition TRM 490.5    51  40    48    44  39    45    46    45    51  42    49    46  47    44  34  41 39      35      44 SQN Upstream Forebay SQN TRM 482.0    ---  ---  ---  47  ---    41    48    46    43  45    41    39  35    38  38  37 39      35      41 Downstream Forebay          TRM 472.3    43  44    47    ---  40    45    45    48    46  43    43    46  43    41  41  42  40    34      43 Hiwassee River HiRM 8.5    46  39    39    ---  40    43    43    47  ---  36    42    45  ---  41  --- 42 ---    37      42 Embayment
    *TRM 482 scored with forebay criteria, TRM 490.5 scored with transition criteria (Refer to Table 4).
    **RFAI Scores: 12-21 (Very Poor), 22-31 (Poor), 32-40 (Fair), 41-50 (Good), or 51-60 (Excellent) 48


calibration is traceable to the National Institute of Standards and Technology. Temperature data were compiled and analyzed to present the horizontal and vertical dimensions of the SQN thermal plume, which was used to demonstrate the existence of a zone of passage under and/or around the plume.
Table 18. Comparison of mean density per square meter of benthic taxa collected at upstream and downstream sites near SQN during August and October 2011.
Water Quality Parameters at Fish Sampling Sites during RFAI Samples Water quality conditions were measured usi ng a Hydrolab which pr ovided readings for dissolved oxygen (ppm), water temperature (&deg;C and &deg;F), conductivity (&#xb5;s/cm), and pH.
DOWNSTREAM                                              UPSTREAM TRM 481.3                        TRM 483.4              TRM 488.0              TRM 490.5 Summer          Autumn          Summer          Autumn          Summer          Summer          Autumn Metric                              Obs    Rating  Obs    Rating  Obs    Rating  Obs    Rating  Obs    Rating Obs    Rating  Obs    Rating
Readings were taken along a vertical gradient from just above the bottom of the river to approximately 0.3 m from the surface at 1- to 2-m intervals. Readings were conducted in the mid-channel at the most downstream and upstream boundaries of the electrofishing sample area at stations upstream and downstream of SQN.
: 1. Average number of taxa            9.0      5      7.8      5    13.6      5    13.6      5    7.0      5    7.2      5      6.6      3
Results and Discussion Aquatic Habitat in the Vicinity of SQN Shoreline Aquatic Habitat Assessment Of the sixteen shoreline sections sampled upstrea m of SQN, 6% (1 transect) rated "Good," 88%
: 2. Proportion of samples with long-0.8        3      0.7      3    0.8      3    0.8      3    1.0        5    0.4        1    0.8        3 lived organisms
(14 transects) rated "Fair," and 6% (1 transect) rated "Poor."  Th e average scores for transects on the left and right descending banks were similar at 22 ("Fair") and 21 ("Fa ir"), respectively. No aquatic macrophytes were present on either shoreline (Table 6).
: 3. Average number of EPT taxa        0.9        3     1.0        5    1.2        5    0.9      3    0.8        3    0.2       1    0.5        1
2 Of the sixteen shoreline transects sampled downstream of SQN, 19% (3 transects) rated "Good," 56% (9 transects) rated "Fair," and 25% (4 transects) rated "Poor" (Table 7). The average scores for transects on the left and right descending banks were identical at 22 ("Fair"). Aquatic macrophyte coverage averaged 2% on the left descending bank and 5% on the right descending
: 4. Average proportion of 35.6      3    29.4      3    54.4      1    48.1      1  15.5        3    7.2        5    14.8        3 oligochaete individuals
: 5. Average proportion of total abundance comprised by the two      73.7      5    78.6       5    75.5      5    77.0      5    82.8      3    86.4      3    84.5      3 most abundant taxa
: 6. Average density excluding 235.0      3    181.7      3  525.0      5  1685.0      5  470.0      3  396.7      3    263.3      1 chironomids and oligochaetes
: 7. Zero-samples - proportion of 0        5      0        5      0        5      0        5      0        5      0        5      0        5 samples containing no organisms Benthic Index Score                          27                29              29              27            27              23              19 Good              Good          Good            Good          Good            Fair            Fair
  *TRM 481.3 and 483.4 scored with forebay criteria, TRM 488.9 and 490.5 scored with transition criteria (Refer to Table 5).
Reservoir Benthic Index Scores: 7-12 (Very Poor), 13-18 (Poor), 19-23 (Fair), 24-29 (Good), 30-35 (Excellent) 49


bank (Table 7). River Bottom Habitat Figures 7-10 display substrate percentages as well as water depth at each sample point along each of the 8 transects downstream of SQN. Figures 11-14 display substrate percentages as well as water depth at each sample point along each of the 8 transects upstream of SQN. The three most dominant substrate types encount ered along the 8 transects downstream of SQN were mollusk shell (27.6%), silt (19.9%) and clay (16.4%). The three most dominant substrate types encountered along the 8 transects upstream of SQN were silt (51.2%), mollusk shell (18.4%), and bedrock (8.8%). Overall average water depth was similar upstream and downstream of SQN (Table 8).
Table 19. Summary of RBI Scores from Sites Located Directly Upstream and Downstream of Sequoyah Nuclear Plant as Well as Scores from Sampling Conducted as Part of the Vital Signs Monitoring Program in Chickamauga Reservoir.
Fish Community During summer 2011, RFAI scores of 41 ("Good") and 38 ("Fair") were recorded for the downstream and upstream sites, respectively (Table 9). Given the downstream site scored higher than the upstream (control), it was concluded that BIP was maintained at the downstream site during summer 2011.
Station              Location  1994 1995 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011                Average Inflow              TRM 527.4    ---  ---  ---  ---  ---  29    27    33    35    31  ---    23  23  23    21
During autumn 2011, an RFAI score of 35 ("Fair") was recorded at both the downstream and upstream sites (Table 10). Because both sites received the same score, it can be concluded that BIP was maintained at the downstream site during autumn 2011. For each season, the upstream and downstream sites were compared using the four characteristics of BIP. For the discussion of each characteristic, the downstream site was compared to the upstream site (control) using the RFAI metrics applicable to each characteristic. 
* 27 Inflow              TRM 518.0    19   31    25    21  23    29    23    27    35    29    33    25  --- 31    ---    27          27 Transition TRM 490.5    33  29    31    31  23    25    25    31    31    31  27    21  17  27    23    19          27 SQN Upstream Forebay TRM 482.0    ---  ---  ---  ---  23    31    29    29    33    31  31    25  25  23    29    ---        28 SQN Downstream Forebay              TRM 472.3    31  27    29    25  27    27    21    27    29    27  29    19  25  23    ---    21          26 Hiwassee River HiRM 8.5    17  27    25    21  ---  21    ---    31    ---  25    ---  13  --- 19    ---    19          22 Embayment
(1) A biotic community characterized by diversity appropriate to the ecoregion Summer 2011 Total number of indigenous species (> 27 required for highest score for the site downstream of SQN; > 29 required for highest score for the site upstream of SQN)
            * - Sampling was conducted, but data was not available at the time this report was issued.
Twenty-eight indigenous species were collected at the downstream site, while 29 indigenous species were collected at the upstream site, resulting in the highest score for the downstream site and a mid-range score for the upstream site for this metric (Table 9). River redhorse and sauger were collected at the upstream site only, while white bass were only collected at the downstream
Reservoir Benthic Index Scores: 7-12 (Very Poor), 13-18 (Poor), 19-23 (Fair), 24-29 (Good), 30-35 (Excellent) 50


site; all other species were collec ted at both sites (Tables 11 and 12).
Table 20. Comparison of mean density per Square Meter of Benthic Taxa collected with a Ponar Dredge along Transects Upstream and Downstream of Sequoyah Nuclear Plant, Chickamauga Reservoir, Summer and Autumn 2011.
Total number of centrarchid species (> 4 required for highest score) 3 Both upstream and downstream sites received the highest possible score for the metric "Number of centrarchid species."  The same eight sunfish species were collected at both sites (Tables 9, 11, and 12).
Summer    Autumn      Summer        Autumn        Summer    Summer      Autumn Taxa                              Downstream Downstream  Downstream    Downstream      Upstream  Upstream    Upstream TRM 481.3 TRM 481.3   TRM 483.4    TRM 483.4     TRM 488.0 TRM 490.5    TRM 490.5 Insecta Diptera Chironomidae Ablabesmyia annulata            5          8            2            2            13          7          7 Ablabesmyia mallochi            2        -----          3          -----        -----      -----        -----
Total number of benthic invertivore species (> 7 required for highest score)
Ablabesmyia rhamphe gp.          7        -----        10            13          -----      -----        -----
Only three benthic invertivore species were collected at the downstream site, resulting in the lowest score (1) for the metric "Number of be nthic invertivore species." Freshwater drum, logperch, and spotted sucker we re collected at both upstream and downstream sites; river redhorse was only collected at the upstream site. As a result of this one additional species, the upstream site received a moderate score of 3 (Tables 9, 11, and 12).
Ablabesmyia sp.               -----      -----        -----        ------        -----        3          -----
Total number of intolerant species (> 4 required for highest score) Both the upstream and downstream sites received the highest score for the metric "Number of intolerant species." Five of th e six intolerant specie s were collected at bot h sites; river redhorse was collected at the upstream s ite only (Tables 9, 11, and 12).
Chironomidae                    3          2          -----        ------        -----      -----        -----
Total number of top carnivore species (> 6 required for highest score)
Chironomus crassicaudatus      10          2          10          ------          7          73          22 Chironomus decorus gp.          2          2        ------        ------        -----    ------        -----
Ten top carnivore species were collected at both sites resulting in both sites receiving the highest score (5) for the metric "Number of top carnivo re species."  White bass were only collected downstream of SQN, while sauger were only collected at the upstream site. All other top carnivore species (black crappie, flathead catfish, largemouth bass, skipjack herring, smallmouth bass, spotted bass, spotted gar, white crappie, and yellow bass) were collected at both sites (Tables 9, 11, and 12).
Chironomus major                15          2        ------        ------        -----        27          2 Chironomus sp.                  5       ------      ------        ------        ------    ------      ------
The overall RFAI score for the downstream site was 41 ("Good") and for the upstream site 38 ("Fair"). These similar scores indicated that the species richness and composition for the five previous metrics described above were similar between sites (Table 9).
Cladopelma sp.                ------    ------      ------        ------        ------    ------          2 Cladotanytarsus sp.           ------    ------          5            2          ------    ------        15 Coelotanypus sp.               135        23          35            12           217        410        ------
Autumn 2011 Total number of indigenous species (> 27 required for highest scor e for site downstream of SQN; > 29 required for highest score for site upstream of SQN)
Coelotanypus tricolor        ------      205        -------        103          ------    ------        292 Clinotanypus sp.             ------    ------      -------          2          ------    ------      ------
Twenty-five indigenous species were collected at the downstream site, while 27 indigenous species were collected at the upstream site resulting in the mid-range score (3) for this metric at both sites. Longear sunfish and golden redhorse were collected at the downstream site, but not at the upstream site. White crappie, largescale stoneroller, yellow perch, logperch, and walleye
Cryptochironomus sp.            7          7            2            7            3        ------        3 Cricotopus sp.                ------    ------      -------          2          ------      ------    -------
Cricotopus reverses gp.       ------        2        -------      --------      ------    ------      -------
Dicrotendipes lucifer        ------    -------        58            45          ------    ------      -------
Dicrotendipes modestus        ------    -------        12            53          ------    ------      -------
Dicrotendipes neomodestus        2          2          28            5          ------      ------    -------
Dicrotendipes simpsoni        ------    -------          3            3          ------      ------    -------
Dicrotendipes sp.             ------    -------          2            2          ------      ------    -------
Glyptotendipes sp.            ------        2          27             3          ------      ------    -------
Hydrobaenus sp.                  2      -------    -------        -------      ------      ------    -------
Microtendipes pedellus gp.      2      -------    -------        -------      ------      ------    -------
Nanocladius alternantherae    ------    -------    -------          2          ------      ------    -------
Nanocladius distinctus        ------    -------        3            5          ------      ------    -------
Orthocladius sp.              ------    -------        2          -------      ------    -------    -------
Parachironomus carinatus    -------    -------          7            3          ------    -------    -------
Parachironomus frequens      -------    --------    -------          7        -------    -------    -------
Parachironomus sp.          -------    -------    -------          2        -------    -------    -------
Polypedilum halterale gp.    -------       2            3         -------      -------    -------    -------
Procladius sp.                   5          2            2            2            7      -------        5 Pseudochironomus sp.         -------    -------      -------          2        -------    -------    -------
51


were collected only at the upstream site (Tables 10, 13, and 14).
Table 20 (continued).
Total number of centrarchid species (> 4 required for highest score) Both the upstream and downstream sites received the highest possible score (5) for the metric "Number of centrarchid species." Six of the seven centrarch id species were collected at both sites while white crappie was only collected at the upstream site and longear sunfish only at the downstream site (Tables 10, 13, and 14).
Summer    Autumn      Summer    Autumn    Summer    Summer    Autumn Taxa                              Downstream Downstream  Downstream Downstream Upstream  Upstream  Upstream TRM 481.3 TRM 481.3    TRM 483.4 TRM 483.4 TRM 488.0 TRM 490.5 TRM 490.5 Chironomidae (Cont.)
Total number of benthic invertivore species (> 7 required for highest score) 4 With only 3 benthic invertivore species each, both sites received the lowest score for the metric "Number of benthic invertivore species." Golden redhorse was collected at the downstream site only and logperch was only collected upstream of SQN (Tables 10, 13, and 14). Total number of intolerant species (> 4 required for highest score) Both the upstream and downstream sites received the mid-range score (3) for the metric "Number of intolerant species."
Tanytarsus sp.                 2          3        -------      5      -------  -------  -------
Three of the four intolera nt species (skipjack herring, smallmouth bass, and spotted sucker) were collect ed at each site; longear sunfish was collected downstream of SQN only (Tables 10, 13, and 14).
Thienemanniella lobapodema  -------    -------      -------  -------      10      -------  -------
Total number of top carnivore species (> 6 required for highest score)
Ceratopogonidae                  3       -------      -------  -------    -------  -------      2 Argia sp.                    -------    -------        2      -------    -------  -------  -------
Nine top carnivore species were collected at th e downstream site and 11 at the upstream site. However, both the upstream and downstream sites received the highest score (5) for this metric. Walleye and white crappie were only collected at the upstream site; the remaining nine top carnivore species were collected at both sites (Tables 10, 13, and 14). Both sites received the same overall score (35-"Fair") for the five aforementioned RFAI diversity metrics, indicating that fish community diversity during autumn 2011was similar upstream and downstream of SQN (Table 10).
Palpomyia sp.               -------    -------      -------  -------    -------      7      -------
Chaoboridae                    -------    -------      -------  -------    -------  -------  -------
Chaoborus punctipennis        115        67          22        2        63      260        10 Ephemeroptera Ephemeridae Hexagenia limbata              28        23            3        13         20        3        7 Hexagenia sp.                   2      -------      -------      2      -------  -------      2 Heptageniidae Stenacron interpunctatum        2          3        -------  -------    -------  -------  -------
Caenidae Caenis sp.                  -------    -------      -------  -------    -------  -------      2 Trichoptera Leptoceridae Oecetis sp.                    7          8          20        12          7      -------      3 Polycentropodidae Cyrnellus fraternus            3      -------        17        18      -------  -------  -------
Polycentropus sp.           -------    -------      -------  -------    -------  -------      2 Hydroptilidae Orthotrichia sp.             -------      2            3      -------    -------  -------  -------
Ostracoda Podocopa Candoniidae Candona sp.                     3        70        -------    58      -------      7        22 Ostracoda                            5          2            3      -------    -------  -------  -------
Brachiopoda Cladocera Daphnidae Ceriodaphnia                    2      -------      -------  -------    -------  -------  -------
Sididae Sida crystallina                2          2          32        5      -------  -------     3 52


(2) The capacity for the community to sustain itself through cyclic seasonal change Autumn RFAI sampling was conducted downstream of SQN during 1996 and from 1999 through 2011. RFAI scores during this period averaged 41 which rated "Good."
Table 20 (continued).
With the exception of 1998, autumn RFAI sampling was conducted upstream of SQN from 1993 through 2011. RFAI scores during this period aver aged 44 ("Good") (Table 17). The downstream site during summer 2011 received a score of 41 ("Good") and the upstream site scored 38 ("Fair") (Table 9). During autumn 2011, both sites received the same score of 35
Summer    Autumn    Summer    Autumn    Summer    Summer    Autumn Taxa                          Downstream Downstream Downstream Downstream Upstream  Upstream  Upstream TRM 481.3  TRM 481.3  TRM 483.4  TRM 483.4 TRM 488.0 TRM 490.5 TRM 490.5 Oligocheata Haplotaxida Tubificidae Aulodrilus piqueti          392        33          27        77          7         3        2 Branchiura sowerbyi          3         2          10         3        -----    -----    -----
("Fair") (Table 10). These scores are below the historical average for these sites, but fall within the historical range of overall RFAI scores (upstream: 34-51; downstream: 35-48) (Table 17). The composition of the autumn 2011 sample should be indicative of the ability of the fish community to withstand the stre ssors of an annual s easonal cycle. The numbers of indigenous species collected during autumn RFAI samples downstream of SQN during 1996 and from 1999 through 2011 ranged from 23 to 31 and the average was 27 (Figure 15). During the periods from 1993 to 1997 and 1999 to 2011, the numbers of indigenous species collected during autumn RFAI samples upstream of SQN ranged from 20 to 31 and the average number of indigenous species was 28 (Figure 16). Although the long term average of indigenous species was similar between sites, the upstream site has consistently contained a higher number of species.
Limnodrilus hoffmeisteri    10         13          7       93        20      -----      10 Limnodrilus cervix          -----        2         -----    -----      -----    -----    -----
Regardless, a diverse fish community has continue d to persist and has exhibited the ability to sustain itself through cyclic seasona l change at both sites. During summer 2011, 28 indigenous species were collected downstream of SQN and 29 at the upstream site. During autumn 2011, twenty-five indigenous species were collected downstream, and 27 upstream of SQN. These numbers from both summer and autumn were within the 5
Tubificidae                168        75          52      542        60        70      120 Naididae Dero sp.                     60        18        855      822          7      -----    -----
average range for this metric when compared to the historical data (Figures 15, 16), indicating that the indigenous fish community was similar upstream and downstream of SQN.
Naididae                      3         3         137      167        -----    -----      12 Nais cf. pardalis          -----      -----        30        2       -----    -----    -----
Percentage of anomalies (< 2 % required for highest score)
Nais sp.                   -----      -----        22        40        -----    -----      5 Prisitina breviseta        -----        2         -----    -----      -----    -----      5 Pristina leidyi            -----      -----        2       -----      -----    -----    -----
The percentage of anomalies (e.g., visible lesions, bacterial and fungal infections parasites, muscular and skeletal deformities, and hybridization) in the summer sample should be indicative of the ability of the fish community to withstand the stressors of an annua l seasonal cycle. Both upstream and downstream sites recorded the highest score for this metric during summer 2011 due to a low percentage of observed anomalies (Tables 9 and 10). 
Pristina sp.               -----        2         -----      25        -----    -----    -----
  (3) The presence of necessary food chain species Summer 2011 Insectivores constituted 52.0%, omnivores 35.2%, top carnivores 11.0%, benthic invertivores 1.7%, and planktivores 0.1% of the overall fish sample downstream of SQN during summer 2011. Proportions of insectivores and omnivores met the expectations calculated from historical data for upper mainstem Tennessee River reserv oir forebay areas. Proportions of benthic invertivores and top carnivores were below historical averages.
Slavina appendiculata      -----      -----        15        18        -----    -----    -----
Percentages of planktivores were low which is indicative of a healthy environment. No parasitic species were collected (Tables 2 and 3). Trophic levels were repr esented with 10 insect ivorous species, 10 top carnivore species, 7 omnivorous species, 3 benthic invertivore species, and 1 planktivore species (Tables 2, 3, and 11). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River forebay zones (Tables 2 and 3). At the upstream site during summer 2011, composition by trophic guild was insectivores 52.0%, omnivores 36.3%, top carnivores 8.8%, benthic i nvertivores 2.6%, and planktivores 0.1% of the overall fish sample. Proportions of planktivores and insectivor es exceeded the expectations calculated from historical data for upper main stem Tennessee River reservoir transition areas, proportions of benthic invertivores met average expectations, proportions of omnivores and top carnivores were less than expected (Tables 2 and 3). Ten insectivorous species, 10 top carnivore species, 7 omnivorous species, 4 be nthic invertivore species, and 1 plantivorous species made up the overall fish sample at the upstream site (Tab les 2, 3, and 11). The number of species for each trophic guild, except for omnivores, met or exceeded expectations calculated from historical data for upper mainstem Tennessee River transition zones. Omnivore species were less than the expected number (Tables 2 and 3).
Stylaria lacustris          -----      -----      -----    410        -----    -----    -----
Overall, trophic guild proportions and composition were similar between sites upstream and downstream of SQN during summer 2011, indicating that the thermal discharg e did not affect fish community composition downstream of SQN.
Branchiobdellida Branchiodellida            -----      -----      -----      2       -----    -----    -----
Autumn 2011 Insectivores composed 48.3%, omnivores 29.7%, top carnivores 5.2%, planktivores 16.1%, and benthic invertivores 0.8% of the overall fish sample downstream of SQN. Proportions of insectivores, omnivores, and plantivores either met or exceeded expectations calculated from historical data for upper mainstem Tennessee Rive r reservoir forebay areas. Proportions of top 6
Bivalvia Veneroida Corbiculidae Corbicula fluminea        42        38          98      212        223        67        67 Dreissenidae Dreissena polymorpha    -------    -------      77      198      -------  -------  -------
carnivores and benthic inverti vores were low and did not m eet the average proportional expectations. No parasitic species were collected (Tables 2 and 3). Trophic levels were represented with 8 insectivore sp ecies, 9 top carnivore species, 6 omnivore species, 1 planktivore species and 3 benthic invertivore species (Table s 2, 3, and 13). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River forebay zones (Tables 2 and 3). At the upstream site, insectivores constituted 45.6%, omnivores 33.3%, top carnivores 8.2%, benthic invertivores 1.3%, herbivores 0.7%, and planktivores 1.1% of the overall fish sample. Proportions of insectivores and omnivores met the expectations calculated from historical data for upper mainstem Tennessee River reservoir transition areas. Proportions of benthic invertivores and top carnivores were lower than expectations, wh ile proportions of planktivores exceeded historical expectations (Tables 2 and 3). Trophic levels were represented with 8 insectivore species, 11 top carnivo re species, 6 omnivore species, 3 benthic invertivore species, 1 herbivore species, and 1 planti vorous species (Table 11). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River transition zones (Tables 2 and 3).
Sphaeriidae Eupera cubensis          -------    -------        2     -------    -------  -------  -------
Musculium transversum    100        62          27      138        187      283      165 Pisidium sp.               20        12          12        5        20        27        3 Sphaeriidae              -------    -------    -------      2       -------  -------  -------
Unionoida Unoinidae Utterbackia imbecillis      2       -------    -------      5      -------  -------  -------
Truncilla truncata      -------    -------    -------  -------    -------  -------      2 Gastropoda Mesogastropoda Viviparidae Viviparus sp.                 7       -------      13        55          3     -------  -------
53


Overall, trophic guild proportions and composition were similar between sites upstream and downstream of SQN, indicating that the therma l discharge did not affect fish community composition downstream of SQN.  
Table 20 (continued).
  (4) A lack of domination by pollution-tolerant species Summer 2011 Number of intolerant species (> 4 required for highest score)
Summer    Autumn    Summer    Autumn    Summer    Summer    Autumn Taxa                          Downstream Downstream Downstream Downstream Upstream  Upstream  Upstream TRM 481.3  TRM 481.3  TRM 483.4  TRM 483.4 TRM 488.0 TRM 490.5 TRM 490.5 Gastropoda (cont.)
Five pollution intolerant species were collected at the downstream site during summer 2011, while 6 were collected at the upstream site. Both sites received the highest RFAI score for this metric (Table 9).
Campeloma decisum        -------    -------      2          7      -------  -------      2 Hydrobiidae Amnicola limosa          -------    -------      3          2      -------  -------  -------
Percentage of tolerant individuals
Pleuroceridae Pleurocera canaliculata  -------    -------      3        10      -------  -------      3 Basommatophora Planorbidae Menetus dilatatus        -------    -------      2      -------    -------  -------  -------
(< 31% required for highest electrofishing score upstream and downstream of SQN; < 14% required for highest gill net score downstream of SQN-forebay criteria; < 16% required for highest gill net score upstream of SQN- transition criteria) Both sites received the lowest RFAI score (0.5) for the electrofishing and gill net portions of this metric. At both sites, this was primarily due to collection of a high percentage of bluegill and gizzard shad in the electrofishi ng samples and collection of large percentages of gizzard shad in the gill net samples (Table 9).  
Malacostraca Amphipoda Crangonyctidae Crangonyx sp.               2      -------    -------      8      -------  -------  -------
Gammaridae Gammarus sp.             -------    -------      7          3      -------  -------  -------
Talitrida Hyalella azteca          -------      3      -------    -------    -------  -------  -------
Maxillopoda Copepoda Cyclopoida                  5      -------       3          5         3        7        2 Harpacticoida            -------    -------      2      -------    -------  -------  -------
Turbellaria Tricladida Planariidae Dugesia tigrina              2          2        185      625      -------  -------  -------
Cura foremanii            -------      2      -------    -------    -------  -------  -------
Hirudinea Rhynchobdellida Glossiphoniidae Glossiphoniidae sp.       -------    -------      12        88      -------      3      -------
Helobdella stagnalis        15        22        17        165        10        3        3 Helobdella sp.           -------      2          2        73      -------  -------  -------
Helobdella triserialis    -------    -------      8        13      -------  -------  -------
Placobdella montifera    -------      3      -------    -------    -------  -------  -------
Pharyngobdellida Erpobdellidae Erpobdellidae            -------    -------      3        28      -------  -------  -------
54


Percentage of omnivores (< 24% required for highest elect rofishing score downstream of SQN-forebay criteria; < 22% require d for highest electrofishing sc ore upstream of SQN-transition criteria; < 17% required for highest gill net score downstream of SQN; < 23% required for
Table 20 (continued).
Summer    Autumn    Summer    Autumn    Summer    Summer    Autumn Taxa                          Downstream Downstream Downstream Downstream Upstream  Upstream  Upstream TRM 481.3  TRM 481.3  TRM 483.4  TRM 483.4  TRM 488.0 TRM 490.5 TRM 490.5 Nematoda Nematoda Nematoda                    2      -------        2      -------    -------      3        2 Arachnoidea Unoinicolidae Unionicola sp.            -------      2      -------    -------    -------  -------    8 Acariformes Hygrobatidae Atractides sp.          -------    -------        2      -------    -------  -------     2 Hydrozoa Hydroida Hydridae Number of samples                10        10          10        10        5        5      10 Mean Density per meter&#xb2;         1,205      735        1,883      4,283      887      1,263      810 Taxa Richness                    42        40          54        58        20        18        36 Sum of area sampled (meters&#xb2;)    0.60      0.60        0.60      0.60      0.30      0.30    0.60 55


highest gill net score upstream of SQN) Omnivores constituted 31.2% of the electrofishing sample downstream of SQN and 35.1% upstream of SQN. Although only 3.9% difference, the downstream site received a mid-range score and the upstream site a low score for the metric during summer 2011. Proportions of 7
Table 21. Individual Metric Ratings and the Overall RBI Field Scores for Downstream and Upstream Sampling Sites Near SQN, Chickamauga Reservoir, Autumn 2000-2010. Reservoir Benthic Index Scores: 7-12 (Very Poor), 13-18 (Poor), 19-23 (Fair), 24-29 (Good), 30-35 (Excellent).
omnivores in the gill net samples at each site were much higher due to large numbers of gizzard shad, resulting in the lowest score for this portion of the metric for both sites (Table 9). The overall proportion of omnivores (electrofishing and gill net combined) was 36.3% at the upstream site and 35.2% at the downstream site. These proportions met expectations for this trophic guild in upper mainstem Tennessee River reservoirs (Tables 2 and 3).
Downstream (TRM 482.0)          2000      2001      2002      2003      2004        2005        2006      2007      2008        2009        2010 Metric                        Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Avg. Number of Taxa            3.7    3  6.2    5  5.4    5  5.7      5  6.3   5  6.6    5  4.9     5  4.1    3  5.8    5  4.2    3    5      5
Percent dominance by one species (< 25% required for highest electrofishing score downstream of SQN-forebay criteria; < 20% required for highest electrofishing score upstream of SQN-transition criteria; < 15% required for highest gill net score downstream of SQN; < 14% required for highest gill net score upstream of SQN) This metric received the lowest RFAI score for the electrofishing sample at the upstream site, while receiving the mid-range score at the downstream site. Both sites received the lowest score for the gill net sample. The electrofishing samples both downstream and upstream of SQN were dominated by bluegill. Gill net samples at both sites were dominated by gizzard shad (Table 9).
% Long-Lived Organisms        0.9    5  0.8    5  1      5  0.6      3  1      5  0.9    5  0.9    5  0.6    3  0.6    3  0.7     3  0.9     5 Avg. Number of EPT Taxa        0.3    1  0.6    3  0.4    1  0.3      1  0.5    3  0.7    3  0.7    3  0.5    3 0.6    3  0.5    3 0.5    3
Autumn 2011 Number of intolerant species (> 4 required for highest score)
% as Oligochaetes            27.9    3  27.1    3 19.4    3  9.4      5  8.8    5    15     3  17.3    3  6.3    5  21.7    3  4.4    5  11.7    5
Four pollution intolerant species were collected at the downstream site and three at the upstream site during autumn 2011, one more that at the upstream site. Both sites received the mid-range RFAI score for this metric (Table 9).  
% as Dominant Taxa            87.6    3  80.8    5 78.6    5  79.8    5 68.4    5    79    5  78.1    5  90.6    3  83.9    3  83.9    3  81.3    5 Density excluding chironomids 230    3 348.3    5  365    5  580      5 563.3  5  573.3    5  265    5  125    3  166.7  3  104.4    1  98.3    1 and oligochaetes Number of Samples with Zero 0      5  0      5  0      5    0      5  0      5    0      5    0      5  0      5  0      5    0      5  0      5 Organisms Overall Score                        23        31        29          29        33          31          31        25        25          23        29 Upstream (TRM 490.5)              2000      2001      2002        2003      2004        2005        2006      2007      2008        2009      2010 Metric                        Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Avg. Number of Taxa            4.7    5  6      5  6.4    5  7.4      5  7.2    5  6.8    5  5.4    5 4.7    5  5.4    5    5      5  4.4    5
% Long-Lived Organisms        0.9    5  0.9    5  1      5  0.9      5  0.9    5  0.9    5  0.8    5  0.5    3  0.3    1  0.8    5  0.7    3 Avg. Number of EPT Taxa        0.3    1  0.4    3  0.2    1  0.7      3  0.7    3  0.9     5  0.5    3  0.3    1  0.1    1  0.6    3  0.7    3
% as Oligochaetes              7.7    5  14.8    3  8.4    5  10.7    5  6.4    5  4.4     5  2.5    5  5.2    5  16.7    3  7.2    5  1.1    5
% as Dominant Taxa            88.4    1  79.4    3  85      3  71      5  78    5  79.8    3  83.1    3  93.4    1  95    1  81.2    3  91.8    1 Density excluding chironomids 218.3    1  230    1 168.6    1 341.7    3 571.7  3  479.2    3  223.3    1  56.7    1  31.7    1  81.7    1  181.7    1 and oligochaetes Number of Samples with Zero 0      5  0      5  0      5    0      5  0      5    0      5    0      5  0      5  0      5    0      5  0      5 Organisms Overall Score                        23        25        25          31        31          31          27        21        17          27        23 56


Percentage of tolerant individuals (< 31 % required for highest electrofishing score upstream and downstream of SQN; < 14% required for hi ghest gill net score downstream of SQN-forebay criteria; < 16% required for highest gill net score upstream of SQN- transition criteria)
Table 22. Mean percent composition of major phytoplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011.
August 25, 2011                                  October 10, 2011 TRM        TRM          TRM        TRM          TRM      TRM          TRM        TRM Division          481.1      483.4        487.9      490.7        481.1    483.4        487.9      490.7 Bacillariophyta          0            0          1          0            36        38          39        63 Chlorophyta              1            1          2          1            16        16          13        11 Chrysophyta              0            0          0          0            ---        ---        ---        ---
Cryptophyta              0            0          0          0            30        34          36        21 Cyanophyta              99          98          96        98            16        12          12        11 Euglenophyta              0            0          0          0            1          0          ---        0 Pyrrophyta                0            0          0          0            1          0            0          ---
*To enhance pattern recognition, percentages are rounded to whole numbers, and values may not add to 100.
0 values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.
Table 23. Comparison of the similarity of phytoplankton taxa within paired replicate samples.
August 25, 2011                              October 10, 2011 TRM        TRM        TRM      TRM          TRM      TRM        TRM        TRM 481.1      483.4      487.9    490.7        481.1    483.4      487.9      490.7 R1    R2    R1    R2  R1    R2  R1    R2      R1    R2  R1    R2  R1    R2  R1    R2 Replicate Taxa Richness    37    39    36    40  36    43  33    40      23    25  21    24  19    22  15    15 Combined Taxa Richness        43          46        49        48            32        30        27        19 Species Shared                33          30        30        25            16        15        14         11 Percent Shared              76.7%      65.2%      61.2%    52.1%        50.0%    50.0%       51.9%      57.9%
Table 24. Taxa richness of the main phytoplankton groups.
Total Number of Taxa Group                    August                October              Combined Bacillariophyta                    9                      12                    16 Chlorophyta                        31                    14                    37 Chrysophyta                          7                    ---                     7 Cryptophyta                          2                      1                      2 Cyanophyta                          14                      7                    18 Euglenophyta                        1                      2                      2 Pyrrophyta                          3                      2                      4 Total Taxa Richness                            67                    38                    86 Table 25. Percent Similarity Index for comparison of phytoplankton communities among sites.
Phytoplankton - Percent Similaritya Station Comparison                          August 25, 2011                October 10, 2011 TRM 481.1              - TRM 483.4                        83                              76
                              - TRM 487.9                        85                              71
                              - TRM 490.7                        75                              63 TRM 483.4              - TRM 487.9                        87                              80
                              - TRM 490.7                        81                              63 TRM 487.9              - TRM 490.7                        84                              63
: a. Percent Similarity comparison of two communities 57


The percentage of tolerant individuals in electrofishing samples was almost twice as large (80.8%) at the upstream site compared to the downstream site (42.6%), resulting in the lowest score for the upstream site and mid-range for the downstream site. The difference was mostly due to higher numbers of bluegill in the electrofishing sample at the upstream site. The gill netting samples contained high percentages of gizzard shad and received the lowest scores at both sites (Table 10).
Table 26. Phytoplankton taxa and density (cells/ml) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. Abbreviations R1 and R2 designate replicate samples.
Percentage of omnivores (< 24% required for highest elect rofishing score downstream of SQN-forebay criteria; < 22% require d for highest electrofishing sc ore upstream of SQN-transition criteria; < 17% required for highest gill net score downstream of SQN; < 23% required for highest gill net score upstream of SQN) Omnivores made up 27.5% of the electrofishing sample downstream of SQN and 31.9% upstream of SQN, resulting in a mid-range score for this metric at both sites. Proportions of omnivores in the gill net samples at each site were higher due to large numbers of gizzard shad, resulting in the lowest score for this portion of the metric for both sites. The overall proportion of omnivores (electrofishing and gill net combined) at the upstream site was 33.3% and 29.7% at the downstream site (Table 10). These proportions met expectations for this trophic guild in upper mainstem Tennessee River rese rvoirs (Tables 2 and 3).   
TRM 481.1                      TRM 483.4                      TRM 487.9                  TRM 490.7 August      October          August        October        August        October      August        October Division          Taxon            R1    R2    R1      R2      R1      R2    R1      R2      R1        R2    R1    R2    R1    R2      R1    R2 Bacillariophyta    Achnanthes                                    30.3                                    34.1                      28.4 Anomoeneis                                            56.8 Aulacoseira    151.5  151.5 74.9    66.1    60.6    56.8  90.4    74.9  170.4    166.5  51.0  68.3        56.8    69.1  76.5 Cyclotella      568.0  814.1 17.6    22.0  333.2    312.4  20.9    16.5  2044.7  1908.4  23.1  20.9 710.0  1164.4    2.2    6.6 Nitzschia        68.2  265.1  3.3      2.2  121.2    113.6  3.3          702.9    306.7  4.4    3.3  56.8  170.4    0.5    1.0 Skeletonema      45.4  75.7                                                397.6    357.8              454.4  227.2 Stephanodiscus        18.9                  60.6            2.2 Surirella                                              28.4 Synedra          22.7  113.6 12.1      9.9    30.3    56.8  16.5    9.9    68.2      5.5  6.6    8.8        28.4    5.9    5.6 Achnanthidium                          1.1                    3.3    1.1                    0.7    0.1                  2.9    1.5 Cocconeis                    2.2      1.1                            0.1                    0.7 Cymbella                      0.1      0.7                    0.1                                    0.7                  0.5 Fragilaria                  50.7    63.9                  86.0    50.7                    72.7  52.9                 83.7  54.4 Gyrosigma                                                                                                                        0.5 Melosira                                                                                    0.2    0.4 Navicula                      0.1      0.7                            0.1                    3.3    2.2 Bacillariophyta Total      856  1,439  161    168    636      625  223    153    3,384    2,779  163    158  1,221  1,676    165    146 Chlorophyta        Carteria        22.7  18.9                            28.4 Chlamydomonas  386.2  302.9  5.5      6.6  121.2    198.8  49.6    20.9  681.6    511.2  23.1  16.5 198.8  142.0    9.6    6.6 Chlorococcaceae  22.7  56.8                  121.2    113.6                136.3     408.9              170.4  142.0 Chlorogonium                                                                          34.1 Coelastrum            75.7                                                272.6    408.9 Cosmarium                                              28.4 Crucigenia                                  121.2            5.7    0.6                            0.8        894.6    0.3    7.6 Diacanthos                                                                            34.1 Dictyosphaerium 249.9                        121.2    227.2                           136.3              113.6  312.4 Euastrum        22.7 Eudorina                                    484.7 Golenkinia                                            28.4                  34.1    34.1                      28.4 Kirchneriella                                                              136.3 Lagerheimia                                  30.3     28.4                          34.1                85.2 Micractinium          113.6                121.2    113.6                170.4                        113.6 Monomastix                                            28.4 Monoraphidium  249.9  151.5  4.4            151.5    426.0          4.4   443.0    920.1          0.1 397.6  227.2 58


8 Percent dominance by one species (< 25% required for highest electrofishing score downstream of SQN-forebay criteria; < 20% required for highest electrofishing score upstream of SQN-transition criteria; < 15% required for highest gill net score downstream of SQN; < 14% required for highest gill net score upstream of SQN) The downstream site received the mid-range RFAI score for the electrofishing sample and the lowest score for the gill net sample. The upstream site received the lowest score for this metric for both electrofishing and gill net samples. The electrofishing sample downstream of SQN was dominated by Mississippi silversi des (non-indigenous), while the electrofishing sample upstream of SQN was dominated by bluegill. Gill net samples at both sites were dominated by gizzard shad (Table 10).  
Table 26 (continued).
TRM 481.1                  TRM 483.4                  TRM 487.9                  TRM 490.7 August      October        August      October      August      October        August      October Division        Taxon            R1    R2    R1    R2    R1    R2    R1    R2    R1      R2    R1    R2    R1    R2  R1    R2 Chlorophyta    Mougeotia        22.7 (continued)     Oocystis              18.9                60.6  142.0              545.3  272.6              113.6  113.6 Pandorina      363.5  87.8                                                                      87.8 Pediastrum      76.8  208.3  22.8        242.3  87.8  22.8    1.8        1056.4  0.8                113.6  2.1 Pyramichlamys    22.7  56.8                                                                              28.4 Quadrigula                                                                                        28.4 Scenedesmus    284.0 1022.4  0.4  10.5  1272.3  426.0  3.1  13.2  1363.1 1158.7  16.1  17.6  1703.9 1168.4 15.6    6.1 Schroederia      22.7  75.7                30.3    28.4                      34.1                        28.4 Sphaerocystis                                                                272.6 Staurastrum                                        28.4          0.7  34.1          0.1                              0.0 Teilingia                                                                                                21.9 Tetraedron      45.4                0.7  30.3  113.6                34.1  34.1          0.7  113.6  85.2 Tetrastrum            75.7  5.7                113.6  0.4        136.3  136.3  2.9 Treubaria                                  30.3    28.4                      34.1 Actinastrum                  17.6  11.4                  8.8    0.8                0.4  17.6                3.8    0.4 Ankistrodesmus                8.8    5.7                                                    0.2 Chlorella                    23.1  16.5                13.2    7.7                3.3    3.3                        0.1 Closterium                          0.7 Elakatothrix                  0.6                                                                              1.0 Selenastrum                  9.4                        0.2                              1.4 Chlorophyta Total      1,792  2,265  98    52    2,938  2,189  104    50  3,987  5,521  47    58    3,126  3,306  32    21 Chrysophyta    Chrysococcus                                                                                      28.4 Conradiella            132.5              242.3  198.8              408.9  204.5              170.4  340.8 Erkenia        272.6  208.3              121.2  113.6              408.9  937.2              568.0  198.8 Goniochloris                                                          34.1                      28.4 Gonyostomum                                                                    5.5                5.5    5.5 Kephyrion                                                                                                28.4 Mallomonas                                                            68.2  68.2 Chrysophyta Total      273    341                364    312                920    1,215                801    573 Cryptophyta    Cryptomonas    318.1  397.6 146.6  123.4  30.3    56.8  188.4  139.9 306.7  681.6 157.6  137.7  426.0  284.0 53.6  49.2 Rhodomonas      454.4  284.0              121.2  113.6              238.6  1465.4              568.0  312.4 Cryptophyta Total      772    682  147    123    151    170    188    140  545    2,147  158    138    994    596  54    49 59


Traditional Analyses Summer 2011 One species richness parameter (number of insect ivore species) was statis tically (P<0.05) higher upstream than downstream of SQN. Although the di fferences were not significant, seven of the other nine species richness measures were also higher upstream of the plant (including non-indigenous species). Numbers of omnivore and tolerant species were higher downstream, but the differences were not significant. Of the parameters comparing CPUE, two, total CPUE and CPUE of intolerant individuals, were statistically higher at the site upstream of SQN than the downstream. Seven of the remaining eight parameters were higher upstream than downstream, but the differences were not signi ficant. CPUE of top carnivore s was slightly higher at the downstream site. Both diversity values showed no statistical difference between sites, although both were higher at the upstream site (Table 15).
Table 26 (continued).
Autumn 2011 All species richness parameters were similar (no statistical difference) upstream and downstream of SQN. Six of the ten species richness measures were higher at the downstream site (including numbers of omnivore and tolerant species), while three were higher at the upstream site; mean numbers of benthic invertivore species were the same at both sites. Two of the ten parameters comparing CPUE, total CPUE and CPUE of non-i ndigenous individuals, we re statistically higher at the downstream site (Table 16). These sign ificant differences were driven by the higher numbers (approximately nine time s more) of the non-indigenous Mi ssissippi silverside collected at the downstream site (Tables 13 and 14). All other CPUE parameters showed no statistical difference between sites. CPUEs of insectivores, omnivores, top carnivores, and thermally sensitive individuals were also higher at the downstream site, but differences were not statistically significant. The remaining four parameters (CPUE of benthic invertivores, indigenous, tolerant, and intolerant individuals) were higher at the upstream site. Both diversity values were slightly higher at the downstream site, but differenc es were not significant (Table 16).    
TRM 481.1                      TRM 483.4                      TRM 487.9                        TRM 490.7 August          October        August          October        August          October        August          October Division        Taxon                R1        R2      R1    R2    R1        R2    R1    R2    R1          R2    R1    R2    R1        R2      R1    R2 Cyanophyta      Anabaena            43.9      738.4    0.9                    76.8    1.5        886.1      477.1  1.9    74.4 Anabaenopsis                                                                                                                  153.6 Aphanocapsa        6179.6    17561.7                3513.9    2186.7                5316.3      477.1              10947.7    6957.8 Chroococcaceae    98554.4  65702.9              78022.2  70835.9              100607.6  104714.0            151938.0  170416.9 Chroococcus        795.2      75.7    22.0    0.2  363.5      340.8          11.4  681.6      477.1          2.9            227.2 Cyanocatena                                        21900.9  10266.1                                                        14783.2 Cyanogranis        59789.6  158097.6              65702.9  94447.9              68988.0    98760.2            123192.9  68988.0 Cylindrospermopsis 2805.8    2515.9                1206.5    1318.4                1243.9      1756.2              666.0      467.4 Dactylococcopsis    22.7      56.8                                                            136.3              142.0      142.0 Leptolyngbya                          32.8 Limnothrix                                    25.7                            2.3 Lyngbya            3358.7    1416.2                1269.2    1817.5                963.3      1613.1              1363.2    3908.7 Merismopedia      8497.0    5566.2          11.4            1931.1    2.4  59.3  272.6      2453.7              454.4      681.6 Oscillatoria      6410.1    3691.9                4543.8    4158.1                4089.5      6043.3              8503.5    7403.6 Planktothrix                                  48.5                                                                                          27.9 Pseudanabaena                                  0.9                            34.3                    19.8 Synechococcus      61664.6  110873.7              30113.8  34989.9              40203.9    62789.2            22585.4  35415.9 Synechocystis      5339.0    4998.2                4453.0    3635.1                7497.3      6986.2              5963.8    5310.6 Cyanophyta Total          253,461  371,295    56    87  211,090  226,004    4    107  230,750    286,683  22    77  325,757  314,856    0    28 Euglenophyta    Euglena              45        11      6      7    15                0    1      5                              5                1 Trachelomonas                                                                  1 Euglenophyta Total          45        11      6      7    15                0    3      5                              5                1 Pyrrophyta      Glenodinium          23        5                                                                11                  28 Gymnodinium          45        38                    30                                          34                            28 Peridinium          45        5              2                        0    0      11                        1              28 Ceratium                                        0                              0 Pyrrophyta Total            114        49              2    30                0    0      11          45            1    28        57 Total Phytoplankton Cell Count      257,313  376,081    467  439  215,224  229,301    519  453  239,603    298,391 389    432  331,933  321,065    251   244 60


9 Fish Community Summary In conclusion, evaluation of the five characteristics of BIP and their respective metrics and traditional analyses indicated the downstream site was similar to the upstream site and that a balanced fish community existed at the site downstream of SQN in summer and autumn 2011.
Table 27. Percentage Composition of phytoplankton for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.
Summer 2011 Seven of the 12 RFAI metrics received equal scores at both sites for the summer of 2011. The upstream site received a lower score for the metrics "Number of indigenous species," "Percent dominance by one species," "Percent top carnivores," and "Percent omnivores" (Table 9).
August 25, 2011                                   October 10, 2011 TRM        TRM          TRM            TRM        TRM        TRM          TRM        TRM 481.1      483.4        487.9        490.7      481.1      483.4        487.9       490.7 Taxon        R1    R2  R1    R2    R1    R2    R1    R2  R1    R2  R1    R2    R1      R2  R1    R2 Bacillariophyta Achnanthes            ---    ---  0      ---  ---      0    ---    0  ---    --- ---    ---  ---    --- ---    ---
Twenty-nine indigenous species were collected at the upstream site and 28 were collected at the downstream site. No statistical difference existed in numbers of indigenous species and CPUE of indigenous individuals between sites (Table 15). Thirty-one resident important species (RIS) were collected at the upstream site compared to 29 at the downstream site (Tables 11 and 12).
Anomoeneis            ---   --- ---      0  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
RIS are defined in EPA guidance as those species which are representative in terms of their biological requirements of a bala nced, indigenous community of fish, shellfish, and wildlife in the body of water into which the discharge is made (EPA and NRC 1977). RIS often include non-indigenous species. The same three aquatic nuisance (non-indi genous) species, common carp, yellow perch, and Mississippi silverside, were colle cted at both sites (Tables 11 and 12); CPUE of these three species was similar between sites (Table 15).
Aulacoseira          0      0  0      0    0      0    ---    0  16      15 17      17    13      16  27      31 Cyclotella            0      0  0        0    1      1    0      0  4        5  4      4    6      5  1      3 Nitzschia            0      0  0        0    0      0    0      0  1      1  1      ---    1      1  0      0 Skeletonema          0      0  ---    ---  0      0    0      0  ---    --- ---    ---  ---    --- ---    ---
The same two thermally sensitive species (spotte d sucker and logperch) were collected at both sites (Tables 11 and 12) and were collected in similar densities (Table 15). Water temperatures greater than 32.2&deg;C (90&deg;F) are known to be the a voidance level and/or lethal level to these species (Yoder et al. 2006).
Stephanodiscus        ---    0  0      ---  ---    ---    ---    --- ---    ---  0      ---  ---    --- ---    ---
Four commercially valuable species were collected at the downstream site and five were collected at the upstream site. Twenty-four recreationally valuable species were collected at the upstream site, while 25 were collected at the downstream site (Tables 11 and 12).
Surirella            ---    --- ---      0  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
Autumn 2011 Nine of the 12 RFAI metrics received the same scores at both sites. The upstream site received a lower score for the electrofishing portion of the metric "Percent dominance by one species" and "Percent tolerant individuals", while the downstream site received a lower score for the metric "Percent top carnivores" (Table 10).
Synedra              0      0  0        0    0      0    ---    0  3        2  3      2    2        2  2        2 Achnanthidium        ---    --- ---    ---  ---    ---    ---    --- ---      0  1      0    0        0  1        1 Cocconeis            ---    --- ---    ---  ---    ---    ---    --- 0        0  ---      0    0      --- ---    ---
Twenty-eight indigenous species we re collected at the upstream s ite, while 25 were collected at the downstream site. Numbers of indigenous species and indigenous CPUEs at the downstream site were similar to those at the upstream site (T able 16). Thirty resident important species were collected at the upstream site compared to 27 resident important species at the downstream stations (Tables 13 and 14). Representative im portant species are defined in EPA guidance as those species which are representative in terms of their biological requirements of a balanced, indigenous community of fish, shellfish, and wildlife in the body of water into which the discharge is made (EPA and NRC 1977).
Cymbella              ---    --- ---    ---  ---    ---    ---    --- 0        0  0      ---  ---      0  0      ---
10 Three aquatic nuisance species (common carp, yello w perch, and Mississippi silverside) were collected at the upstream site, while two aquatic nuisance species (common carp and Mississippi silverside) were collected at the downstream site (Tables 13 and 14). Although the numbers of non-indigenous species was similar between site s, CPUE of non-indige nous individuals was significantly higher at the downstream site (Table 16). This was due to a large number of Mississippi silversides collected at the downstream site (917, or 33.5% of total catch) compared to the upstream site (124, or 6.3 % of total catch) (Tables 13 and 14). Th is is a schooling fish species and is commonly collected in large numbers. Two thermally sensitive species (spotted sucker and logperch) were collected upstream, while one (spotted sucker) was collected downstream (T ables 13 and 14). CPUE of these species was similar between sites (Table 16). Water temper atures greater than 32.2&deg;C (90&deg;F) are known to be the upper avoidance level or lethal to the aforementioned species (Yoder et al. 2006). Thirteen commercially valuable species were collected at downstream site and 11 at the upstream site. Twenty-four recreationally valuable species were collected at the upstream site, while 19 were collected at the downstream site (Tables 13 and 14).
Fragilaria            ---    --- ---    ---  ---    ---    ---    --- 11     15  17      11    19      12 33      22 Gyrosigma            ---    --- ---    ---  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---      0 Melosira              ---    --- ---    ---  ---    ---    ---    --- ---    --- ---    ---    0      0  ---    ---
As discussed above, RFAI scores have an intrinsi c variability of +/-3 points. This variability comes from various sources, including annual variations in air temperature and stream flow; variations in pollutant loadings from nonpoint sources; changes in habitat, such as extent and density of aquatic vegetation; natural population cycles and movements of the species being sampled (TWRC, 2006). Another source of variability arises from the fact that nearly any practical measurement, lethal or non-lethal, of a biological community is a sample rather than a measurement of the entire population. As long as scores are within the 6-point range, there is no certainty that any real change at a site has occurred or diffe rence between s ites exists beyond method variability.
Navicula              ---    --- ---    ---  ---    ---    ---    ---  0      0  ---      0    1      1  ---    ---
It should be noted that the upstream site is scored using transition criteria and the downstream site using forebay criteria (Table 4). More accurate comparisons can be made between sites that are located in the same reservoir zone (i.e., transi tion to transition). Due to the location of SQN, it is not possible to have an upstream and downstream site within the same reservoir zone. SQN is located at the downstream end of the transition zone on Chickamauga Reservoir; therefore, the downstream site is located in the upstream section of the forebay. The physical and chemical composition of a forebay is often different than th at of a transition zone; consequently, inherent differences exist among the aquatic communities (e.g. species diversity is often higher in a transition zone than a forebay).
Bacillariophyta Total 0      0  0        0    1      1    0      1  34      38  43      34    42      36  66      60 Chlorophyta Carteria              0      0  ---      0  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
Through the years sampled, the upstream site averaged a score of 44 ("Good") while the downstream site averaged a scor e of 41 ("Good"), indicating the sites were similar annually and that the SQN heated effluent is not adversely affecting the fish community in the vicinity of the plant (Table 17). RFAI scores are presented for the Chickamauga Reservoir inflow site (TRM 529.0), the forebay site (TRM 472.3), and the Hiwassee River Embayment site (HiRM 8.5) to provide additional information on the health of the fish community throughout the reservoir; however, aquatic communities at these sites are not affected by SQN thermal discharges and are not used to determine BIP in relation to SQN. The average RFAI scores at these three sites among all years sampled have remained in the "Good" range (Table 17).
Chlamydomonas        0      0  0        0    0      0    0      0  1      2  10       5     6       4  4      3 Chlorococcaceae      0      0  0        0    0      0    0      0  ---    --- ---    ---  ---    --- ---    ---
11 Individual metric scores, overall RFAI scores, species collected, and catch per effort from electrofishing and gill netting for the upstream and downstream sampling sites at SQN during 1999 through 2010 are included in Shaffe r et al., 2010 and Simmons, 2011.
Chlorogonium          ---    --- ---    ---  ---      0    ---    --- ---    --- ---    ---  ---    --- ---    ---
Benthic Macroinvertebrate Community Summer 2011 During summer 2011, RBI scores at the downstream transects TRM 481.3 and TRM 483.4 were 27 ("Good") and 29 ("Good"), respectively, and were slightly higher than those at upstream transects TRM 488.0 and TRM 490.5 [27 ("Good") and 23 ("Fair"), respectively] (Table 18). A difference of 4 points or less between upstream and downstream stations is used to define "similar" conditions between the two sites. Because the average of the downstream sites (28)
Coelastrum            ---    0  ---    ---  0      0    ---    --- ---    --- ---    ---  ---    --- ---    ---
Cosmarium            ---    --- ---      0  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
Crucigenia            ---    --- 0      ---  ---    ---    ---    0  ---    ---  1      0    ---     0  0      3 Diacanthos            ---    --- ---    ---  ---      0    ---    --- ---    --- ---    ---  ---    --- ---    ---
Dictyosphaerium      0      --- 0        0  ---      0    0      0  ---    --- ---    ---  ---    --- ---    ---
Euastrum              0      --- ---    ---  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
Eudorina              ---    --- 0      ---  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
Golenkinia            ---    --- ---      0    0      0    ---    0  ---    --- ---    ---  ---    --- ---    ---
Kirchneriella        ---    --- ---    ---  0      ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
Lagerheimia          ---    --- 0        0  ---      0    0      --- ---    --- ---    ---  ---    --- ---    ---
Micractinium          ---    0  0        0    0      ---    0      --- ---    --- ---    ---  ---    --- ---    ---
Monomastix            ---    --- ---      0  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
Monoraphidium        0      0  0        0    0      0    0      0  1      --- ---      1    ---      0  ---    ---
Mougeotia            0      --- ---    ---  ---    ---    ---    --- ---    --- ---    ---  ---    --- ---    ---
Oocystis              ---    0  0        0    0      0    0      0  ---    --- ---    ---  ---    --- ---    ---
Pandorina            0      0  ---    ---  ---    ---    0      --- ---    --- ---    ---  ---    --- ---    ---
Pediastrum            0      0  0        0  ---      0    ---    0  5      ---  4       0    0      ---  1      ---
Pyramichlamys        0      0  ---    ---  ---    ---    ---    0 ---    --- ---    ---  ---    --- ---    ---
Quadrigula            ---    --- ---    ---  ---    ---    0      --- ---    --- ---    ---  ---    --- ---    ---
Scenedesmus          0      0  1        0    1      0    1      0  0        2  1      3     4       4   6      3 61


scored three points higher than that of the upstream sites (2
Table 27. (Continued)
: 5) and rated "Good", it can be determined that BIP was maintained. For the discussion of each RBI metric, the downstream site was compared to the upstream control site.
August 25, 2011                                October 10, 2011 TRM        TRM        TRM          TRM        TRM        TRM          TRM        TRM 481.1      483.4      487.9        490.7     481.1     483.4        487.9      490.7 Taxon      R1 R2      R1 R2 R1 R2              R1 R2      R1 R2      R1 R2 R1 R2            R1 R2 (Chlorophyta)
Average number of taxa (> 5 required for highest score-forebay criteria; > 6.6 required for highest score-transition criteria) The downstream sites (forebay) averaged 11.2 taxa, while the upstream sites (transition) averaged 7.1 taxa; all sites received the highest score for this metric (Table 18). Proportion of samples with long-lived organisms (> 0.8 required for highest score-forebay criteria; > 0.9 required for highest score-transition criteria)
Schroederia        0    0    0    0    ---    0    ---    0  ---    --- ---    ---  ---    --- ---    ---
The observed values for the metric "Proportion of samples with long-lived organisms" (e.g., Corbicula , Hexagenia , mussels, and snails) were 0.8 at bot h downstream transe cts and both sites scored 3 (mid-range). Upstream of SQN, all samples at the transect at TRM 488.0 contained long-lived organisms (1.0) resulting in a score of 5, while TRM 409.5 received a score of 1 with only 40% of samples containing long-lived organisms (Table 18). Snail proportions, in particular, were higher downstream of SQN as compared to those upstream (Figure 19).
Sphaerocystis      ---    --- ---    ---  ---    0    ---    --- ---    --- ---    ---  ---    --- ---    ---
Average number of EPT taxa (> 0.9 required for highest score-forebay criteria; > 1.4 required for highest score-transition criteria) The average number of EPT taxa present in each sample were 0.9 and 1.2 at the downstream transects, resulting in scores of 3 and 5, respectively. At the upstream transects TRM 488.0 and TRM 490.5, average number of EPT taxa was 0.8 (score: 3) and 0.2 (sco re: 1), respectively (Table 18).
Staurastrum        ---    --- ---    0    0    ---    ---    --- ---    --- ---    0    0      --- ---    0 Teilingia          ---    --- ---    ---  ---    ---    ---    0  ---    --- ---    ---  ---    --- ---    ---
Ephemeroptera (mayflies) and Trichoptera (caddisflies) propor tions were slightly higher at the downstream sites as compared to the upstream sites (Figure 17).
Tetraedron          0    --- 0      0    0    0      0      0  ---    0  ---    ---  ---    0  ---    ---
Average proportion of ol igochaete individuals
Tetrastrum        ---    0  ---   0    0      0     ---    ---  1    --- 0     ---  1      --- ---    ---
(< 21.0 required for highest score-forebay criteria; < 11.0 required for highest score-transition criteria)
Treubaria          ---    --- 0      0    ---     0     ---    --- ---    --- ---    ---  ---    --- ---    ---
The average proportion of oligocha ete individuals at the downstream sites were 35.6% (score of 3) and 54.4% (score of 1). The upstream sites had smaller percentages of samples containing oligochaetes (15.5% at TRM 488.0 and 7.2% at TRM 490.5) and therefore, received higher scores of 3 and 5, respectively (Table 18).
Actinastrum        ---    --- ---    ---  ---    ---    ---    ---  4    3   2    0    0      4    2    0 Ankistrodesmus    ---    --- ---    ---  ---    ---    ---    --- 2    1   ---    ---  ---    0   ---    ---
12 Average proportion of total abundance comp rised by the two most abundant species (< 81.7 required for highest score-forebay criteria; < 77.8 required for highest score-transition criteria) Both downstream sites received scores of 5 with proportions of 73.7% (TRM 481.3) and 75.5% (TRM 483.4) of the samples comprising the two most abundant taxa (chironomids and oligochaetes). At the upstream sites TRM 488.0 and TRM 490.5, 82.8% and 86.4% of the total abundance, respectively, was comprised of the two most abundant taxa (chironomids and oligochaetes) resulting in mid-range scores for both sites (Tables 18 and 20). Average density excluding chironomids and oligochaetes
Chlorella          ---    --- ---    ---  ---    ---    ---    ---  5     4    3    2    1      1   ---    0 Closterium        ---    --- ---    ---  ---    ---    ---    --- ---    0  ---    ---  ---    --- ---    ---
(> 249.9 required for highest score-forebay criteria; > 609.9 required for highest score-transition criteria)
Elakatothrix      ---    --- ---    ---  ---    ---    ---    --- 0      --- ---    ---  ---    ---  0    ---
At the downstream sites, average densities of organisms excluding chironomids and oligochaetes were 235/m 2 and 525/m 2 , resulting in scores of 3 and 5, respectively. At the sites upstream of SQN, densities excluding chironomids and oligochaetes were 470/m 2 and 396.7/m 2 and both sites received scores of 3 (Table 18).
Selenastrum        ---    --- ---    ---  ---    ---    ---    --- 2      --- 0      ---  ---    0   ---    ---
Proportion of samples containing no organisms (0 required for highest score) There were no samples at any site upstream and downstream of SQN which were void of organisms. Therefore, all sites received the highest score for this RBI metric during summer 2011 (Table 18).   
Chlorophyta Total  1    1  1      1    2    2      1      1  21    12  20    11    12    14  13    9 Chrysophyta Chrysococcus      ---    --- ---    ---  ---    ---    0      --- ---    --- ---    ---  ---    --- ---    ---
Conradiella        ---    0    0    0    0      0    0      0  ---    --- ---    ---  ---    --- ---    ---
Erkenia            0    0    0    0    0      0    0      0  ---    --- ---    ---  ---    --- ---    ---
Goniochloris      ---    --- ---    ---  0    ---    0      --- ---    --- ---    ---  ---    --- ---    ---
Gonyostomum        ---    --- ---    ---  ---    0    0      0  ---    --- ---    ---  ---    --- ---    ---
Kephyrion          ---    --- ---    ---  ---    ---    ---    0  ---    --- ---    ---  ---    --- ---    ---
Mallomonas        ---    --- ---    ---  0    0      ---    --- ---    --- ---    ---  ---    --- ---    ---
Chrysophyta Total  0    0  0      0    0    0      0      0  ---    --- ---    ---  ---    --- ---    ---
Cryptophyta Cryptomonas        0    0    0    0    0      0    0      0  31    28  36    31    41    32  21    20 Rhodomonas          0    0    0    0    0      0    0      0  ---    --- ---    ---  ---    --- ---    ---
Cryptophyta Total  0    0    0    0    0      1     0      0  31    28  36    31    41    32  21    20 Cyanophyta Anabaena            0    0  ---    0    0      0    ---    ---  0    ---  0    ---  0    17  ---    ---
Anabaenopsis      ---    --- ---    ---  ---    ---    ---   0   ---    --- ---    ---  ---    --- ---    ---
Aphanocapsa        2    5    2    1     2     0    3     2  ---    --- ---    ---  ---    --- ---    ---
Chroococcaceae    38    17  36    31    42    35    46    53  ---    --- ---    ---  ---    --- ---    ---
Chroococcus        0    0    0    0    0      0    ---    0   5     0   ---    3     ---    1   ---    ---
Cyanocatena        ---    --- 10    4    ---    ---    ---    5  ---    --- ---    ---  ---    --- ---    ---
Cyanogranis        23    42  31    41    29    33    37    21  ---    --- ---    ---  ---    --- ---    ---
Cylindrospermopsis  1    1  1      1    1    1      0      0  ---    --- ---    ---  ---    --- ---    ---
Dactylococcopsis    0    0   ---    ---  ---     0    0      0   ---    --- ---    ---  ---    --- ---    ---
Leptolyngbya      ---    --- ---    ---  ---    ---    ---    ---  7    --- ---    ---  ---    --- ---    ---
Limnothrix        ---    --- ---    ---  ---    ---    ---    --- ---    6   ---    1    ---    --- ---    ---
Lyngbya            1    0  1      1    0    1      0      1  ---    --- ---    ---  ---    --- ---    ---
Merismopedia        3     1  ---    1    0    1     0      0  ---    3  0     13    ---    --- ---    ---
Oscillatoria        2    1  2      2    2    2     3     2  ---    --- ---    ---  ---    --- ---    ---
Planktothrix      ---    --- ---    ---  ---    ---    ---    --- ---  11  ---    ---  ---    --- ---  11 Pseudanabaena      ---    --- ---    ---  ---    ---    ---    --- ---   0   ---    8    5     --- ---    ---
Synechococcus      24    29  14    15    17    21    7    11  ---    --- ---    ---  ---    --- ---    ---
Synechocystis      2    1    2     2     3     2    2     2   ---    --- ---    ---  ---    --- ---    ---
Cyanophyta Total  99    99  98    99    96    96    98    98  12    20  1    24    6    18   ---  11 62


In conclusion, during the summer of 2011 downstream sites scored the same or higher than the upstream site on all metrics except "Average number of oligochaetes" indicating BIP was maintained downstream of SQN.
Table 27. (Continued)
Autumn 2011 Autumn RBI scores for downstream were 29 ("Good"), 27 ("Good"), while the upstream site scored 19 ("Fair") (Table 18). A difference of 4 points or less between upstream and downstream stations is used to define "similar" conditions between the two sites. Because the downstream site scored 8 to 10 points higher and rated "Good," it can be determined that BIP was maintained. For the discussion of each RBI metric, the downstream site was compared to the upstream control site.
August 25, 2011                                October 10, 2011 TRM        TRM        TRM          TRM        TRM        TRM          TRM        TRM Taxon          481.1      483.4       487.9        490.7     481.1      483.4        487.9      490.7 R1 R2      R1 R2 R1 R2              R1 R2      R1 R2      R1 R2 R1 R2            R1 R2 Euglenophyta Euglena            0      0    0    ---  0    ---    0      --- 1    2    0    0     ---    --- 0     ---
Average number of taxa (> 5 required for highest score-forebay criteria; > 6.6 required for highest score-transition criteria)
Trachelomonas      ---    --- ---   ---  ---    ---    ---    --- ---    --- ---    0    ---    --- ---    ---
Averages of 7.8 and 13.6 taxa were observed for sites downstream of SQN. The site upstream of SQN averaged 6.6 taxa per sample. The downstream sites both received the highest score for this metric, while the upstream site received the mid-range score (Table 18). Proportion of samples with long-lived organisms (> 0.8 required for highest score-forebay criteria; > 0.9 required for highest score-transition criteria)
Euglenophyta Total  0    0   0     ---   0     ---    0     --- 1     2  0     1     ---    --- 0     ---
The metric "proportion of samples with long-lived organisms" (Corbicula , Hexagenia, mussels, and snails) scored 3 at both downstream sites with proportions of 0.7 and 0.8. The proportion of samples with long-lived organisms (0.8) was similar at the upstream site and therefore, also a score of 3 (Table 18).
Pyrrophyta Glenodinium          0    0  ---    ---  ---    0      0      --- ---    --- ---    ---  ---    --- ---    ---
13 Average number of EPT taxa (> 0.9 required for highest score-forebay criteria; > 1.4 required for highest score-transition criteria) The average numbers of EPT taxa present per sample at each of the downstream sites were 1.0 and 0.9, resulting in scores of 5 and 3, respectively. The site upstream of SQN received a score of 1 with 0.5 EPT taxa per sample (Table 18).
Gymnodinium          0    0    0    ---  ---    0      ---    0  ---    --- ---    ---  ---    --- ---    ---
Ephemeroptera (mayflies) and Trichoptera (caddisflies) proportions were higher at the downstream sites as compared to the upstream site (Figure 19).
Peridinium          0      0  ---    ---  0     ---    ---    0   ---    1   0      0    ---    0  ---    ---
Average proportion of ol igochaete individuals
Ceratium            ---    --- ---    ---  ---    ---    ---    --- ---    0  ---    0    ---    --- ---    ---
(< 21.0 required for highest score-forebay criteria; < 11.0 required for highest score-transition criteria)
Pyrrophyta Total  0      0  0      ---  0    0      0      0  ---    1  0      0    ---    0  ---    ---
At the downstream sites, average proportion of oligochaete individuals in each sample was 29.4% at TRM 481.3 and 48.1% at TRM 483.4 resulting in scores of 3 and 1, respectively. The upstream site received a score of 3 with a proportion of 14.8% (Table 18).
63
Average proportion of total abundance comp rised by the two most abundant species (< 81.7 required for highest score-forebay criteria; < 77.8 required for highest score-transition criteria)
During autumn 2011, 78.6% of the total abundance at TRM 481.3 was comprised of the two most abundant taxa (chironomids and oligochaetes). The two most abundant taxa at TRM 483.4 were oligochaetes and flatworms (Planariidae) and constituted 77%
of the total abundance. Both downstream sites received the highest score of 5. At the upstream site TRM 490.5, 84.5% of the total abundance was comprised by the two most abundant taxa, chironomids and fingernail clams (Sphaeriidae), resulting in a mid-range score for this metric (Tables 18 and 20). Average density excluding chironomids and oligochaetes
(> 249.9 required for highest score-forebay criteria; > 609.9 required for highest score-transition criteria)
At the downstream sites, average densities excluding chironomids and oligochaetes were


181.7/m 2 and 1,685/m 2 resulting in scores of 3 and 5, re spectively. Average density excluding chironomids and oligochaetes at the upstream site was 263.3/m 2, resulting in the lowest score for this metric (Table 18).
Table 28. Concentrations of chlorophyll a (apparent and corrected), phaeophytin a and the chlorophyll/phaeophytin index values for samples collected upstream and downstream of SQN during 2011.
Proportion of samples containing no organisms (0 required for highest score) There were no samples at any site which were void of organisms. Therefore, all sites received the highest score for this RBI metric during autumn 2011 (Table 18). In conclusion, during the autumn of 2011, downstream sites scored the same or higher on all the metrics indicating a BIP of benthic macroinvertebrates was ma intained downstream of SQN (Table 18). The low score at the upstream site (1
Collection    Sample                    Chlorophyll a (&#xb5;g/L) Phaeophytin Chlorophyll/Phaeophytin Replicate Date          Site                    Apparent Corrected              a (&#xb5;g/L)                     Index TRM 08/25/2011      481.2          R1            13            11              2.2                        1.6 R2            14            13              1.5                        1.6 TRM 483.4          R1              8            6              2.5                         1.5 R2              8             6              2.6                        1.5 TRM 487.9          R1            13            13              < 1.0                        1.7 R2            15            15              < 1.0                       1.7 TRM 490.7          R1            11            10              1.0                        1.6 R2            11            9              1.5                         1.6 TRM 10/10/2011     481.1          R1              6            5              1.0                        1.6 R2              8            7              1.7                        1.6 TRM 483.4         R1            10            9              1.4                        1.6 R2            13            11              1.6                        1.6 TRM 487.9          R1              7            6              1.7                        1.5 R2              9            8              1.4                         1.6 TRM 490.8          R1              7            5              2.0                        1.5 R2              6            6              1.1                         1.6 Table 29. Mean percent composition of major zooplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011.
: 9) was lower than expected based on historical scores; however, similarly low scores of 21 and 17 were observed in 2007 and 2008, respectively. A possible reason for the low score at the upstream site could be pollution impacts from the Hiwassee River, which enters the Tennessee River 9 miles upstream of TRM 490.5.            Individual RBI metric ratings and field scores from TRM 482.0 (downstream) and TRM 490.5 (upstream) are listed in Table 21 for comp arison of results from 2000 to 2010. Although downstream sites sampled in 2011 were proximate to the transect sampled from 2000-2010 14 (TRM 482.0), 2011 RBI scores cannot be directly compared to those from 2000 to 2010 without inference.
August 25, 2011                                October 10, 2011 TRM        TRM        TRM      TRM            TRM        TRM        TRM        TRM Group            481.1       483.4      487.9     490.7        481.1      483.4       487.9      490.7 Bivalvia (veliger)      ---        ---      ---        ---            ---        0          0        ---
RBI scores for the inflow, forebay, and Hiwassee River embayment sites are included in Table 19 to provide additional information on the overall health of the benthic macroinvertebrate community in Chickamauga Reservoir. RBI scores have averaged "Good" for the inflow and forebay sites and "Fair" for the Hiwassee River embayment over all sample years.
Cladocera                66          51        65          62            44          59          71        69 Copepoda                32          27        20          23            40          37          23        29 Rotifera                  2          22        15          16            16          4          6          2
Plankton Community  Detailed results of taxa collected and estimates of sample density are provided in Table 26 (phytoplankton) and in Ta ble 33 (zooplankton).
* Percentages are rounded to whole numbers, and values may not add to 100.
Phytoplankton Summer 2011 Figure 18 indicates that averag e phytoplankton densities decreased progressively from TRM 490.7 (the most upstream site) to TRM 483.4 (immediately downstream of the diffusers). Phytoplankton density was lowest at TRM 483.4 and increased further downstream at TRM 481.1 to concentrations similar to the most upstream site. Numerically, cyanophytes were the dominant taxa (96 to 99 per cent; Table 22, Figure 18) at all sites, with a prevalence of Cyanogranis and several taxa in the family Chroococcaceae (Table 26). Considered as a percentage of total biovolume, bacillariophytes (diatoms) were more dominant (Figure 19). Total taxa richness for paired replicate samples ranged from 43 to 49, and the percentage of taxa shared between replicates samples ranged from 52.1 to 76.7 percent (Table 23). However, of the 67 taxa collected in August, seven cya nophyte taxa were common to all replicate samples and accounted for 86 to 95 percent of the tota l population (Tables 24, 26). Percent Similarity coefficients (ranging from 75 to 87; Table 25) and Bray-Curtis similarity coefficients (BCe) were high (ranging from 0.78 to 0.81, Figure 25), indicating that the structure of the phytoplankton community was similar at all sites. The cluste r analysis indicated that the communities at TRM 481.1 and TRM 487.9 were the most similar, followed by TRM 483.4 and 490.7. No upstream to downstream trend was evident.
0 values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.
Autumn 2011 Total population densities in October were much lower compared to those in August, and the spatial trend was reversed. That is, phytoplankton density increased progressively from the most upstream site (TRM 490.7) to a maximum density at the diffuser (TRM 483.4), then decreased
64


again slightly at the site further downstream at TRM 481.1 (Figure 20). Bacillariophytes (diatoms) were numerically dominant (36 to 63 percent; Table 22, Figure 20) at all sites and comprised approximately 74 to 91 percent of the total biovolume (Figure 21).
Table 30. Comparison of the similarity of zooplankton taxa within paired replicate samples.
Cryptophytes (Cryptomonas) were subdominant (21 to 36 percent) and the composition of chlorophytes and cyanophytes ranged from 6 to 16 percent. Total taxa richness for paired replicate samples ranged from 27 to 32 at the three lower sites, but only 19 taxa were collected at 15 TRM 490.7. The number of taxa shared between replicate samples ranged from 50.0 to 57.9 percent (Table 23). However, of the 38 taxa collected in October, nine were common to all samples and accounted for 74 to 97 percent of the total population. A mix of cyanophyte taxa often comprised more than 10 percent of the population in any given sample, but seldom was the same taxon present in both replicates, and no sing le taxon was represented in all samples (Tables 24, 26). October PS coefficients among the three lower sites were relatively high (71 to 80), while the PS coefficients for TRM 490.7 were notably lower (63 for each site comparison) (Table 25). By this measure, the communities downstream (TRM 487.9, 483.4, and 481.1) were relatively similar, but the community at the most upstream site (TRM 490.7) showed the greatest dissimilarity to any other. The same taxa (Aulacoseira, Fragilaria, and Cryptomonas) were dominant at each site, but TRM 490.7 had lower taxa richness and the dominant taxa comprised a greater percentage of the overa ll population (Table 27). The Bray-Curtis similarity coefficients (BCe) (0.64 to 0.73) indicate that phytoplankton
August 25, 2011                            October 10, 2011 TRM        TRM        TRM      TRM          TRM    TRM        TRM      TRM 481.1      483.4      487.9    490.7       481.1  483.4      487.9    490.7 R1 R2      R1 R2 R1 R2          R1 R2      R1 R2    R1 R2 R1 R2        R1 R2 Replicate Taxa Richness    8    9    6    7    7    8  7    7      7    7 11 11      8    9 12    9 Combined Taxa Richness        14          8          9        9            9      16        12        13 Species Shared                3          5          6        5            5      6          5        8 Percent Shared              21.4%      62.5%      66.7%      55.6%      55.6%    37.5%    41.7%    61.5%
Table 31. Taxa richness of the main zooplankton groups.
Total Number of Taxa Group                  August                October          Combined Bivalvia                          ---                    2                  2 Cladocera                          7                    8                11 Copepoda                          3                    9                  10 Rotifera                          8                    7                12 Total Taxa Richness                          18                    26                 35 Table 32. Percent Similarity Index for comparison of zooplankton communities among sites.
Zooplankton - Percent Similaritya Station Comparison                        August 25, 2011            October 10, 2011 TRM 481.1              - TRM 483.4                      63                         83
                                - TRM 487.9                     69                        72
                                - TRM 490.7                      75                        74 TRM 483.4             - TRM 487.9                      70                        86
                                - TRM 490.7                     72                        89 TRM 487.9              - TRM 490.7                     80                        93
: a. Percent Similarity comparison of two communities 65


community structure was slightly more dissimilar among sites in October than in August, which is supported by the PS coefficients. TRM 483.4 and TRM 487.9 formed the first cluster (BCe, 0.73), followed by a secondary cluster with TRM 481.1 (BCe, 0.68). TRM 490.7 clustered last, indicating this site was least similar in terms of taxa shar ed and taxa abundances (Figure 26). Overall, TRM 490.7 had higher composition of diatoms and lower composition of chlorophytes and cryptophytes compared to the three downstream locations (Table 22).
Table 33. Zooplankton taxa and density (organisms/m3) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. Abbreviations R1 and R2 designate replicate samples.
Chlorophyll Chlorophyll a concentrations differed among the four sites in samples collected in both August and October (Table 28, Figure 22). Upstream to downstream di fferences in chlorophyll a concentrations closely parallel ed phytoplankton density, but as expected, the chlorophyll a concentration was more closely associated with biovolume (Figures 19, 21).
TRM 481.1             TRM 483.4                 TRM 487.9                   TRM 490.7 August    October     August     October      August       October         August   October Taxon                                R1    R2  R1    R2  R1    R2    R1    R2    R1    R2    R1      R2    R1    R2  R1    R2 Bivalvia Corbiculidae Corbicula fluminea (veliger)                                               9 Dreissenidae Dreissena polymorpha (veliger)                                     9      9                  15 Cladocera Cladocera (immature)                                                                               15 Diplostraca Bosminidae Bosmina longirostris          1175  2385 5017  18182 1421  784  2461  3614  596    1083  2895  3762    627    796 5511  5863 Bosminidae (immature)                                                                                                         40 Eubosmina tubicen                                                  18                                34                41 Daphiniidae Ceriodaphnia                          147                    41                  79    120                  37        14 Daphnia galeata                76                    31 Daphnia lumholtzi                    73                                  9           160    30    17                      40 Daphnia retrocurva                                                                                                  89 Leptodoridae Leptodora kindtii              38        38                            18 Sididae Diaphanosoma birgei            417  1027            958  1238                397    321                  111    265 Diaphanosoma brachyurum                                                                                                  14 Sididae (immature)                               112                                                                    14    40 Ilyocryptidae Ilyocryptus spinifer                                                9 Macrothricidae Macrothrix sp.                                                             9 Copepoda Calanoida Calanoida                                37  3961  12907 247    372  1558  1276  357    80    1006    872    111    44  2020  2193 Temoridae Epischura fluviatilis                                                                                34 Eurytemora affinis                        377                    186    120                  15    77                82    120 Eurytemora sp.                                   673 66
August data show TRM 483.4 had the lowest co ncentrations (6.0 &#xb5;g/l) followed by TRM 490.7 (9.5 &#xb5;g/l). Chlorophyll a concentrations were similar for TRM 481.1 (12 &#xb5;g/l) and TRM 487.9 (14 &#xb5;g/l) (Table 28). Decreased concentratio ns at TRM 483.4 are supported by findings of reduced phytoplankton cell densities and biovolume at this loca tion (Table 26, Figure 19).
October chlorophyll a concentrations increased progressively from TRM 490.7 to TRM 483.4, and then decreased at TRM 481.1 to a concentration similar to that of the uppermost site (TRM 490.7). Again, the spatial differences are supporte d by the phytoplankton density (Table 26) and biovolume data (Figure 21).
Zooplankton Overall, 35 zooplankton taxa were represented in the samples collected. The number of taxa represented in each major group was 10 to 12, with the exception of the Bivalvia, for which only 2 taxa were represented (Table 31). Notably, taxa richness for individual samples ranged from 8 to 16, but the number of taxa shared between replicates ranged from only 3 to 8 (21.4 to 66.7 percent) due to substantial variability in the presence/absence of less abundant taxa (Tables 30, 33). In the samples collected during both August and October, four to five taxa comprised the majority (approximately 90 to 99 percent) of the populations at each of the four sites. The 16 dominant taxa were the cladocerans Bosmina longirostris and Diaphanosoma birgei (not present in October); copepods in the orders Ca lanoida and Cyclopoida; and the rotifer Conochilus unicornis (Table 33).
Summer 2011 Data from August samples showed that zooplan kton densities were notably higher at sites downstream of the diffusers. Densities increased progressively from the most upstream site (TRM 490.7) to the highest density at TRM 483.4, just downstream of the diffusers, then decreased slightly at TRM 481.2. The lower over all density at TRM 481.2 wa s largely due to the collection of fewer rotifers. TRM 483.4 had higher rotifer group density than all other sites.
TRM 481.1 had the highest density of cladocerans (Figure 23). Cladocerans were numerically dominant (49 to 68 percent; Table 29, Figure 23) at all sites. The composition of copepods and rotifers was generally similar (15 to 26 percent) among all sites except TRM 481.1. Rotifers comprised only tw o percent of the population at TRM 481.1 and copepods comprised a slightly higher percentage (30 percent) compared to other sites. Total taxa richness for paired replicate samples was relatively low, ranging from 8 to 14. Taxa richness was highest (14) at TRM 481.1, with sites upstream having only 8 to 9 taxa represented (Table 30). August PS coefficients (70 to 80) were relatively high among the three most upstream sites, indicating similar community structure. TR M 481.1 had somewhat low PS coefficients with TRM 483.4 and TRM 487.9 (63 and 69, respectively), due largely to lower composition of copepods in the order Ca lanoida and the rotifer Conochilus unicornis at TRM 481.1. The PS coefficient (75) for TRM 481.1 and TRM 490.7 was relatively high (Table 32).
Bray-Curtis Similarity yielded similar results. Coefficients ranged from 0.65 to 0.80. TRM 483.4 and TRM 490.7 were the most similar, with a high coefficient of 0.80. These sites formed a secondary cluster with TRM 487.9 (BCe, 0.72). TRM 481.1 clustered last (BCe, 0.65), indicating this site was least similar to the other sites in terms of taxa shared and taxa abundances (Figure 27).
Autumn 2011 In October, average zooplankton densities were highest at TRM 481.1, but variability between the replicate samples was high. TRM 490.7 ha d the second highest population density. Densities were similar at TR M 483.4 and TRM 487.5 (Figure 24). Comparable to findings in August, cladocerans were numerically dominant (44 to 71 percent) at all sites and copepods were subdominant (23 to 40 percent). However, the composition of rotifers was higher at TRM 481.1 (16 pe rcent) than at sites upstream (2 to 6 percent), which is the reverse of findings in August (Table 29). Total taxa richness ranged from 12 to 16 at the three most upstream sites, but only 9 taxa were collected at TRM 481.1 (Table 30).
October PS coefficients (72 to 93) were higher among sites than in August, but yielded similar findings, with the lowest PS coe fficients (72 to 83) for TRM 481.1 (Table 32). However, the density and composition of copepods in the order Calanoida and the rotifer Conochilus unicornis were highest at TRM 481.1 in October and lowest in August (Table 33).
These taxa contributed to the dissimilarity between TRM 481.1 and other sites exhibited during both sample dates.
17 Bray-Curtis Similarity yielded similar results. Coefficients ranged from 0.63 to 0.70. TRM 483.3 and TRM 487.9 formed the first cluster (BCe , 0.70), indicating the co mmunities at these sites were the most similar of the four. These sites form a secondary cluster with TRM 490.7 (BCe, 0.68). TRM 481.1 clustered last, indicating greater dissimilarity with other sites (Figure 28).
Plankton Summary The results of the Phytoplankton and Zooplankt on studies at SQN duri ng 2011 generally support findings from previous studies, which are presented in the section following this summary.
Phytoplankton Phytoplankton data indicated that quantitative characteristics (total and group cell densities) differed among sites in both August and October, but there were few differences in community structure among the four sample sites on eith er date. Notably, the reduced phytoplankton densities, biovolume, and chlorophyll con centrations at TRM 483.4 in August could be interpreted as an effect from SQN diffuser discha rge. Previous studies have indentified reduced phytoplankton densities and chloro phyll concentrations (biovolume was not measured) at TRM 483.4 due to the diffusers mixing water from the bottom - containing low phytoplankton densities - with water of the upper strata that typi cally contain greater dens ities. Previous studies have also documented that when phytoplankt on reductions have occurred at TRM 483.4 in apparent relation to diffuser mixing, densities recovered within a few miles downstream of the diffusers. Likewise, in August, phytoplankton parameters (density, biovolume, and chlorophyll) showed lowest values at TRM 483.4, and then increased at TRM 481.1 to levels similar to those found upstream of the diffuser. Additionally, previous studies have documented that when differences have occurred in phytoplankton communities among locations, these differences typically have been either increases or decreases in organism densities, not compositional changes in the community. This was supporte d in the current study. In both August and October, the two independent measures of diversity indicated relatively high levels of similarity among sites upstream and downstream of the diffusers, even t hough population densities differed. Only TRM 490.7 exhibited lower similarity when compared with the other sites, and then only in October. However, we do not consider this dissimilarity related to the operation of SQN.
Zooplankton Zooplankton data indicated that quantitative differences existed among sites in both August and October, but there were no upstream to downstream trends in population de nsities that provided definitive evidence of an effect from the operation of SQN. In August, zooplankton densities were highest at TRM 483.4, just downstream of the diffuser, and densities at both downstream sites were higher compared to those of the upstr eam sites. In October, zooplankton densities were highest at TRM 481.1, the most downstream site. Densities at TRM 483.4 and TRM 487.9 were very similar, but were lower than those at the most upstream and most downstream sites. As with phytoplankton, compositions of the zooplankton communities were generally similar among sites, even though population densities differed. Overall, TRM 481.1 was more dissimilar to the other sites in both August and October. This was due in part to higher population densities at TRM 481.1, but interestingly, the taxa that contributed most to the 18 dissimilarity of this site were the same in both months. In August, TRM 481.1 had the lowest density and composition of calanoid copepods and of the rotifer Conochilus unicornis. In October, the same site had the highest density and composition of these taxa. Although the reduced densities of these taxa in August may have been due in part to operation of SQN, the greater abundance of organisms at TRM 481.1 - in cluding the highest dens ities of copepods and cladocerans among all four sites - suggests that the majority of the reduction is more likely related to other variables. One such variable is the "patchy" nature of plankton distributions, as evidenced by the high variability in density of some taxa observed between replicate samples collected at each site. Such patchy distributions have been described in previous studies, and are discussed further in the revi ew following this summary.
Review of Previous Plankton Studies Previous plankton studies around SQN were c onducted with the objectiv e of evaluating the effects of SQN operations on plankton, but these were not controlled experiments (i.e. experiments designed to keep all variables constant except the test factor - in this case, the power plant). Instead, the program monitored a dynamic system:
even without the influence of SQN, differences between the control locations (upstream of the plant) and the test locations (downstream of the plant) were expected due to other possible va riables. One possible variable is the longitudinal point, or transition zone, where water velocities become sufficiently low for phytoplankton to remain in the photic zone long enough to sustain growth and reproduction. The location of this transition zone in the reservoir is dependent on flow conditions, and it might fluctuate upstream or downstream daily or even hourly, as inflows from the Hiwassee River and releases from Chickamauga and Watts Bar dams vary (Figures 29 and 30 - hourly average flows). Other variables may include but are not limited to: reservoir stratification; inflow from the overbanks and other highly productive areas; phase of popul ation (and community) growth;


the patchy nature of plankton di stribution; differences in depth among sample locations; travel time between sample locations; and light penetration. Like the transition zone, many of the factors in this list are also direc tly or indirectly related to flow conditions. Each of the factors listed here has an important influence on plankton, and each contributes to the composition of the community sampled at each location. Studies to date have documented that when differences in phyt oplankton and zooplankton communities occurred among sample locations, these differences typically were either increases or decreases in organism densities, not community changes. Studies have shown that downstream increases were more commonly obser ved under relatively high reservoir flows (e.g., 30,000 cfs), while when reservoir flows were quite low (i.e., <10,000), decreases in downstream plankton densities were expecte d, particularly at the diffuse r location (TRM 483.4). Greater variability in plankton densities was observed at intermediate flows. The studies also indicated that reductions in phytoplankton dens ities were caused by different mechanisms than were reductions in zooplankton densities. The mechanism most likely re sponsible for reductions of phytoplankton densities and of chlorophyll concentrations is mixing of the water column at the diffuser location. In-plant plankton studies conducted in 1987 (TVA, 1988) and in 1988 (TVA, 1989) indicated some reduction in cell densities may have occurred as water was entrained through the CCWS, but most of the reductions observed at TRM 483.4 were due to mixing caused by the diffusers. The cooling water that is withdrawn from the lower strata near the skimmer wall has naturally low 19 concentrations of phytoplankton compared to upper strata. This water is carried through the CCWS, heated, and discharged through the diffusers. The momentum from being discharged through the diffuser ports, plus the buoyancy from the added heat, cause this water to rise and mix with ambient water near the diffusers. The water withdrawn from and discharged at the bottom, already low in phytoplankton, and th e mixing which redistri butes the phytoplankton concentrated near the surface, are reflected as reduced phytoplankton concentrations for TRM 483.4 at most strata. Previous studies have also documented that when phytoplankton reductions occurred at TRM 483.4 in apparent relation to diffuser mixing, recovery was realized by TRM 478.2 (previous study site). Furthermore, special biweekly surveys conducted from Ap ril to October, 1989, showed downstream phytoplankton concentrations recovered to levels similar to those above the diffuser within 1-2 river miles (TVA, 1990).
Table 33 (continued).
Reductions in zooplankton densities appear to be caused by a more complex set of factors, including passage through the S QN CCWS. In-plant studies have shown substantial reductions in zooplankton densities during passage through the CCWS, even without heat (TVA, 1988). Zooplankton densities were sign ificantly lower in the diffuser pond samples compared to intake samples, and essentially all zooplankton examined from the diffuser pond were immobile and presumed dead (TVA, 1989). Discharge of the water with reduced number of zooplankters would result in some reduction in density at th e diffuser location (TRM 483.4). However, these
TRM 481.1              TRM 483.4             TRM 487.9            TRM 490.7 August    October    August      October              August    October    August Taxon            R1    R2    R1    R2    R1    R2    R1    R2  R1  R2  R1    R2  R1    R2  R1    R2 (Copepoda)
Cyclopoida Cyclopoida                  1023  1284  453  2918 1019  661  230    370 119  241  137  94  221    265  220  179 Cyclopidae Cyclops sp.               38                          41                                    37 Eucyclops agilis                                              9 Mesocyclops edax                                              27 Tropocyclops prasinus                                                                                    41    20 Harpacticoida Harpacticoida                                112 Poecilostomatoida Ergasilidae Ergasilus sp.                                                       18                                  41    40 Rotifera Flosculariaceae Conochilidae Conochilus unicornis      38        1773  6846  31  2312  416        278  281  503      184    265  96    199 Ploima Brachionidae Brachionus angularis                                                                                      14 Brachionus calyciflorus          37  38                      9      9 Brachionus patulus                                                                        9 Brachionus quadridentatus                                                                17 Brachionus quadridentatus 15
: f. brevispinus Kellicottia longispina                                                        40 Keratella cochlearis                                                      40                              14 Platyias patulus                37 Gastropidae Ascomorpha sp.                                                                                       44 Lecanidae Lecane sp.                 38 Trichocercidae Trichocerca sp.                 37 Total Zooplankton Abundance      2842  5064 11657 41751 3707  5449  4930  5462 1866 2326 4632  4917 1327  1769 8122  8734 67


reductions alone were not sufficient to account for the magnitude of decr eased density typically observed, particularly since many of the dead zooplankters would still be discharged and included in the enumeration from TRM 483.4. These results indicate that some other factor or combination of factors, in addition to mixing at the diffuser, must be involved in reduced zooplankton densities at the diffuser site. One possible factor that became evident as more studies were conducted is the complex hydraulics in the vicinity of the diffuser discharge. The hydraulics of this area were likely complex even before SQN was constructed, due to the narrowing and deepening of the channel compared to upstream, and to the presence of an overbank (typically high ly productive) with its poi nt of inflow to the channel just upstream of where the channel na rrows and deepens. Construction of SQN, including the addition of an underwater dam that occupies about ha lf of the cross-sectional area of the river channel and the in stallation of the diffusers w ith buoyant discharge, further complicated the hydraulics in th is area. Obviously, collection of representative samples from this area is difficult due to varyi ng contributions of several factors, including reduced densities in the discharge water, increased densities in water entering the channel from the upstream overbank, and physical mixing of the zooplankton (which typically are not evenly distributed in the water column) in the ambient channel water. Although some of the reductions in zooplankton densities are due to operation of SQN, it has not been possible to specify the magnitude of that reduction separate from that due to other variables.
Table 34. Percentage composition of zooplankton taxa for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.
Visual Encounter Survey/Wildlife Observations Summer 2011 Thirty-three individuals composing 11 bird species and 1 mammal species were observed along shoreline transects (RDB and LDB) upstream of SQN. Along shoreline transects downstream of SQN, 51 individuals constituting 10 bird and one mammal species were observed. Bird species 20 observed both upstream and downstream of SQN included unidentified species of swallow, belted kingfisher, osprey, and great blue heron. American crow, turkey vulture, red-winged blackbird, and an unidentified duck species were only observed at the transects upstream of SQN, while wood duck, double-crested cormorant, European starling, and green heron were only observed along transects downstream. White-tailed deer was the only mammal species observed during the survey and was observed in equal numbers (4 individuals) upstream and downstream of SQN (Table 35).
August 25, 2011                            October 10, 2011 TRM      TRM      TRM      TRM          TRM      TRM      TRM      TRM 481.1    483.4    487.9    490.7        481.1    483.4     487.9     490.7 R1 R2 R1 R2 R1 R2 R1 R2                    R1 R2 R1 R2 R1 R2 R1 R2 Bivalvia Corbiculidae                        ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
Autumn 2011 Four species of birds comprising 9 individuals were observed along transects upstream of SQN.
Corbicula fluminea (veliger)     ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  0  ---  --- ---  ---
Downstream of SQN, 1,024 birds composing 17 species and one species of mammal were observed. Three of the four bird species (great blue heron, belted kingfishe r, and an unidentified songbird species) observed upstream were viewed downstream; an unidentified wren species was observed along transects upstream of SQN only.
Dreissenidae                        ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---   ---
Fourteen bird species were only observed downstream of SQN and included blue jay, northern mockingbird, double-crested cormorant, American coot, American widgeon, pied-billed grebe, mallard, tufted titmouse, killdeer, wood duck, black-crowned night heron, gadwall, green-winged teal, and an unidentified sandpiper species. The only mammal species observed at the downstream trans ect was eastern gray squirrel (1 individua l) (Table 35). In summary, the wildlife community downstream of SQN was similar to that upstream during summer 2011. During the autumn 2011 survey, species richness and total numbers observed were significantly higher downstream of SQN.
Dreissena polymorpha (veliger)   ---  ---  ---  ---  ---  ---  ---  ---    ---  ---  0    0    0  --- ---  ---
Chickamauga Reservoir Flow and Temperature Near SQN Total average daily flows from Watts Bar Dam, Ocoee No. 1 Dam, and Appalachia Dam from October 2010 to November 2011 and historical daily average flows fr om 1976 through 2010 are shown in Figure 31. Daily average flows from October 2010 to November 2011 were similar (total daily average flows averaged 6% higher) to historical daily averag e flows, but were below the historical averages during the summer and autumn sampling periods (Figure 31). Daily average water temperatures recorded upstream of the SQN intake and downstream of SQN discharge, October 2010 through November 2011, are shown in Figure 20. Water temperatures remained within permitted limits (below 86.9&deg;F) throughout the year (Figure 32).
Bivalvia Total                         ---  ---  ---  --- ---  ---  ---  ---    ---  ---  0    0    0  --- ---  ---
Thermal Plume Characterization Summer 2011 Temperature profiles collected on August 25, 2011 indicated the thermal plume extended from the SQN discharge point (TRM 483.6) downstream approximately 4.1 miles to TRM 479.5 (Table 36, Figure 4). The average ambient surf ace water temperature (0.3 m and 1 m depths) measured at TRM 486.7 on the date of the survey was 81.86&deg;F; the maximum temperature recorded downstream of the discharge was 86.85&deg;F. Once discharged from diffusers located on the river bottom, the thermal plume rose to the surface and remained in the upper 1 m (3.3 ft) of 21 the water column, as evidenced by temperatures measured at TRM 481.1 and TRM 480.0 (Table 36). Autumn 2011 On August 14, 2011, the SQN thermal plume extended downstream approximately 2.6 miles to TRM 481 (Table 37, Figure 4). The average ambient surface water temperature (0.3 m and 1 m depths) measured at TRM 487.0 on the date of the survey was 77.16&deg;F. Downstream of the discharge, the maximum water temperature measured was 81.91&deg;F. The thermal plume remained in the upper 1 m (3.3 ft) of the water column, as evidenced by temperatures measured at TRM 483.4, TRM 482.2, and TRM 481 (Table 37). In summary, the entire biomonitoring zone downstream of SQN was contained within the thermal plume during the summer and autumn 2011 survey periods (Figure 4). The thermal plume extended further downstream during the summer monitoring period than the autumn period. The difference was attributed to several factors including releases from Watts Bar Dam upstream and Chickamauga Dam downstream of the plant, power generation at SQN, and condenser cooling wate r discharge.
Cladocera Cladocera (immature)                 ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  ---  0  --- ---  ---
Water Quality Parameters at Fish Sampling Sites During RFAI Samples Observed values of water temperature, conductivity, dissolved oxygen, and pH are listed for each profile (LDB, mid-channel, and RDB), transect (downstream, middle, and upstream), site (TRM 482 and 490.5), and season (summer and autumn 2011) in Table 38.
Diplostraca                          ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
Summer 2011 Water temperatures at the sampling site upstream of SQN ranged from 80.44 to 83.73&deg;F. Downstream of SQN, water temperatures ranged from 81.73 to 87.04&deg;F. Dissolved oxygen concentrations ranged from 4.22 to 6.56 ppm at the sampling site upstream of SQN. Dissolved oxygen readings taken at the sampling site downstream of SQN ranged from 5.26 to 7.56 ppm. Conductivity values ranged from 190 to 227.5 &#xb5;S at the downstream site and 193.2 to 201.3 at the upstream site. At the downstream site, pH values ranged from 7.55 to 8.5, while at the upstream site pH values ranged from 7.3 to 8.66 (Table 38).
Bosminidae                          ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
Autumn 2011 Water temperatures at the sampling site upstream of SQN ranged from 69.85 to 70.47&deg;F. Downstream of SQN, water temperatures ranged from 70.43 to 74.89&deg;F. Dissolved oxygen concentrations ranged from 7.10 to 7.94 ppm at the sampling site upstream of SQN. Dissolved oxygen readings taken at the sampling site downstream of SQN ranged from 6.60 to 9.69 ppm. Conductivity values ranged from 182.7 to 185.3 &#xb5;S at the downstream site and 179.4 to 191.6 &#xb5;S at the upstream site. At the downstream site, pH values ranged from 7.23 to 8.50, while at the upstream site pH values ranged fr om 7.17 to 7.6  (Table 38).
Bosmina longirostris            41  47  38  14  32    47  47  45      43  44  50  66  63  77  68    67 Bosminidae (immature)           ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---    0 Eubosmina tubicen                ---  ---  ---  ---  ---  ---  ---  ---    ---  ---  0    --- ---  1  1    ---
22 Literature Cited EPA (U.S. Environmental Protection Agency) an d NRC (U.S. Nuclear Re gulatory Commission).
Daphiniidae                        ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
1977 (draft). Interagency 316(a) Technical Guidance manual and Guide for Thermal
Ceriodaphnia                    ---  3  ---  1  4     5   3  ---    ---  --- ---  --- ---  ---  0   ---
Daphnia galeata                  3   ---  1  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
Daphnia lumholtzi                ---  1   ---  ---  ---  7   ---  ---    ---  --- ---  0    1   0  ---    0 Daphnia retrocurva              ---  ---  ---  ---  ---  ---  ---  5      ---  --- ---  --- ---  --- ---  ---
Leptodoridae                        ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
Leptodora kindtii                1   ---  ---  ---  ---  ---  ---  ---      0    --- ---  0   ---  --- ---  ---
Sididae                            ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
Diaphanosoma birgei              15  20  26  23  21    14   8  15      ---  --- ---  --- ---  --- ---  ---
Diaphanosoma brachyurum          ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  ---  0    ---
Sididae (immature)               ---  ---  ---  ---  ---  ---  ---  ---    ---  0  ---  --- ---  ---  0    0 Ilyocryptidae                      ---  ---  ---  ---  ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
Ilyocryptus spinifer            ---  ---  ---  ---  ---  ---  ---  ---    ---  ---  0   --- ---  --- ---  ---
Macrothricidae                      ---  ---  ---  --- ---  ---  ---  ---    ---  --- ---  --- ---  --- ---  ---
Macrothrix sp.                   ---  ---  ---  --- ---  ---  ---  ---    ---  --- ---  0   ---  --- ---  ---
Cladocera Total                        60  72  65  38  57    72  58  65      43  44  50  67  63  78  69    68 Copepoda Calanoida                              ---  ---  ---  --- ---  ---  ---  ---    ---  --- ---  ---  ---  --- ---  ---
Calanoida                            ---  1   7    7  19    3   8    2      34  31  32  23  22  18  25    25 Temoridae                            ---  ---  ---  --- ---  ---  ---  ---    ---  --- ---  ---  ---  --- ---  ---
Epischura fluviatilis              ---  ---  ---  --- ---  ---  ---  ---    ---  --- ---  ---  ---  1  ---  ---
Eurytemora affinis                ---  ---  ---  --- ---  ---  ---  ---    3     --- 4     2  0    2  1    1 Eurytemora sp.                     ---  ---  ---  --- ---  ---  ---  ---    ---  2   ---  ---  ---  --- ---  ---
Cyclopoida                            ---  ---  ---  --- ---  ---  ---  ---    ---  --- ---  ---  --- --- ---  ---
Cyclopoida                          36  25  27  12  6    10  17  15      4   7   5   7   3   2  3     2 68


Effects Sections of Nuclear Facilities Environmental Impact Statements. U.S. Environmental Protection Agency, Office of Water Enforcement, Permits Division, Industrial Permits Branch, Washington, DC.
Table 34. (Continued)
Etnier, D.A. & Starnes, W.C. (1993)
August 25, 2011                                      October 10, 2011 TRM        TRM          TRM          TRM              TRM        TRM        TRM        TRM 481.1      483.4        487.9        490.7            481.1      483.4      487.9      490.7 R1 R2      R1 R2 R1 R2                R1 R2            R1 R2      R1 R2      R1 R2      R1 R2 (Cyclopoida)
The Fishes of Tennessee. University of Tennessee Press, Knoxville, Tennessee, 681 pp. Hickman, G. D. and T. A. McDonough. 1996. Asse ssing the Reservoir Fish Assemblage Index- A potential measure of reservoir quality.
Cyclops sp.                               1      --- ---      1  ---    ---    3      ---      ---    --- ---    --- ---    --- ---    ---
In: D. DeVries (Ed.) Reservoir symposium- Multidimensional approaches to reservoir fisheries management. Reservoir Committee, Southern Division, American Fisher ies Society, Bethesda, MD. pp 85-97. Hubert, W. A., 1996. Passive capture techniques, entanglement gears. Pages 160-165 in B. R. Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society Bethesda, Maryland, USA.
Eucyclops agilis                        ---    --- ---    ---  ---    ---    ---    ---      ---    ---  0      --- ---    --- ---    ---
Jennings, M. J., L. S. Fore, and J. R. Karr.
Mesocyclops edax                        ---    --- ---    ---  ---    ---    ---    ---      ---    ---  1      --- ---    --- ---    ---
1995. Biological monitoring of fish assemblages in the Tennessee Valley reservoirs.
Tropocyclops prasinus                    ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    ---  1      0 Harpacticoida                                ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Regulated Rivers 11:263-274.
Harpacticoida                            ---    --- ---    ---  ---    ---    ---    ---      ---      0  ---    --- ---    --- ---    ---
Levene, Howard. 1960. Robust tests for equality of variances. In Ingram Olkin , Harold Hotelling, et alia. Stanford University Press. pp. 278-292.
Poecilostomatoida                            ---    --- ---    --- ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Mann, H. B.; Whitney, D. R. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other.
Ergasilidae                                ---    --- ---    --- ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Annals of Mathematical Statistics 18 (1): 50-60.
Ergasilus sp.                           ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---      0  ---    ---  1      0 Copepoda Total                                  37      26  34      20  26      14    28      17        41      40  41      33  25    22  30      29 Rotifera Flosculariaceae                              ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
McDonough, T.A. and G.D. Hickman. 1999. Reservoir Fish Assemblage Index development: A tool for assessing ecological health in Tennessee Valley Authority impoundments.
Conochilidae                              ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
In: Assessing the sustainability and biological integrity of water resources using fish communities. Simon, T. (Ed.)
Conochilus unicornis                      1      ---  1      42  15      12    14      15        15      16  8      --- 11     ---  1      2 Ploima                                        ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
CRC Press, Boca Raton, pp 523-540.
Brachionidae                              ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K., and Hughes, R.M. (1989). Rapid assessment protocols for use in streams and ri vers: benthic macroinvertebrates and fish. EPA/444/4-89-001, Washington DC, USA. Reynolds, J. B., 1996. Electrofishing. Pages 221-251 in B. R. Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society Bethesda, Maryland, USA. Shaffer, G.P., J.W. Simmons, and D.S. Baxter. 2010. Biological monitoring in the vicinity of the Sequoyah Nuclear Plant discharge, autumn 2009. Tennessee Valley Authority, Aquatic Monitoring and Management, Knoxville, TN. 76 pp.
Brachionus angularis                    ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    ---  0      ---
23 Shapiro, S. S. and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples).
Brachionus calyciflorus                  ---    1   ---    ---  ---    ---    ---    ---        0      ---  0      0  ---    --- ---    ---
Biometrika 52 (3-4): 591-611.
Brachionus patulus                      ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    0  ---    ---
Simmons, J.W. 2011. Biological monitoring in th e vicinity of the Sequoyah Nuclear Plant discharge, autumn 2010. Tennessee Valley Au thority, Biological and Water Resources, Chattanooga, TN. 58 pp.
Brachionus quadridentatus                ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    0  ---    ---
Tennessee Valley Authority. 1988. Results of plankton studies conducted in 1986 and 1987 as part of the Operational Aquatic Monitoring Program at Sequo yah Nuclear Plant, Chickamauga Reservoir. Office of Natural Resources and Economic Development, Division of Air and Water Resources, Knoxville, Tennessee.
Brachionus quadridentatus f. brevispinus ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    ---  0    --- ---    ---
Tennessee Valley Authority. 1989. Plankton studies at Sequoyah Nuclear Plant in 1988. River Basin Operations, Water Resources, Chattanooga, Tennessee, TVA/WR/AB-89/3.
Kellicottia longispina                  ---    --- ---    ---  ---      2    ---    ---      ---    --- ---    --- ---    --- ---    ---
Keratella cochlearis                    ---    --- ---    ---  2      ---    ---    ---      ---    --- ---    --- ---    ---  0      ---
Platyias patulus                        ---    1  ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Gastropidae                                ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Ascomorpha sp.                           ---    --- ---    ---  ---    ---    ---    2        ---    --- ---    --- ---    --- ---    ---
Lecanidae                                  ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Lecane sp.                               1      --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Trichocercidae                            ---    --- ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Trichocerca sp.                         ---    1  ---    ---  ---    ---    ---    ---      ---    --- ---    --- ---    --- ---    ---
Rotifera Total                                  3      2    1      42  17      14    14      17        16      16  9      0  11      1  2      2
* Percentages are rounded to whole numbers, and values may not add to 100.
0 values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.
69


Tennessee Valley Authority. 1990. Plankton studies at Sequoyah Nuclear Plant in 1989. River Basin Operations, Water Resources, Chattanooga, Tennessee, TVA/WR/AB-90/2. TWRC. 2006. Strategic Plan, 2006-2012. Tennessee Wildlife Resources Commission, Nashville, TN. March 2006. pp 124-125. http://tennessee.gov/twra/pdfs/StratPlan06-
Table 35. Wildlife Visual Encounter Survey Results of Shoreline Upstream and Downstream of Sequoyah Nuclear Plant during August (Summer) and October (Autumn) 2011. (RDB = right descending bank, LDB = Left Descending Bank)
Season          Site      Transect              Birds            Obs.          Mammals          Obs.
August 2011    Upstream      RDB              Swallow sp.            1 Belted Kingfisher        1 American Crow          4 Turkey Vulture          2 Osprey              1 Great Blue Heron          5 Unidentified Duck          2 Upstream      LDB              Swallow sp.           2      White-tailed Deer    4 Red-winged Blackbird        5 American Crow          1 Great Blue Heron          5 Downstream      RDB              Swallow Sp.           3      White-tailed Deer    4 Osprey              2 Wood Duck            1 Great Blue Heron          4 Double-crested Cormorant      2 Downstream      LDB            Belted Kingfisher        1 Swallow sp.           5 European Starling        30 Green Heron            1 Great Blue Heron          2 October 2011  Upstream      RDB              Songbird sp.           2 Great Blue Heron          4 Upstream      LDB                Wren sp.             1 Belted Kingfisher        1 Great Blue Heron          1 Downstream      RDB              Songbird sp.           6    Eastern Gray Squirrel  1 Belted Kingfisher        3 Blue Jay            1 Northern Mockingbird        1 Double-crested Cormorant      1 Great Blue Heron          5 American Coot          335 American Widgeon          2 Pied-billed Grebe        2 Mallard            5 Downstream      LDB            Belted Kingfisher        2 Tufted Titmouse          3 Killdeer            2 Sandpiper sp.         2 Songbird sp.           3 Great Blue Heron          7 Wood Duck            15 American Coot          603 Black-crowned Night Heron      1 Gadwall              3 Mallard            13 Green-winged Teal        2 Pied-billed Grebe        2 Double-crested Cormorant      5 70


12.pdf Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1 (6): 80-83 Yoder, C.O., B.J. Armitage, and E.T. Rankin. 2006. Re-evaluation of the Technical Justification for Existing Ohio River Mainstem Temperatur e Criteria. Midwest Biodiversity Institute, Columbus, Ohio.
Table 36. Water temperature (&deg;F) profiles measured at five locations (10%, 30%, 50%, 70%, 90%) from right descending bank along transects located at TRM 486.7 (ambient), TRM 483.4 (discharge), TRM 481.1 (middle of plume), TRM 480.0 (downstream limit of plume),
24 25  
and TRM 478.3 (below plume) on August 25, 2011 (Summer). Green numbers represent ambient temperatures used to characterize the thermal plume. Red numbers represent temperatures 3.6F (2&deg;C) or greater above ambient temperature.
Depth Ambient TRM 486.7              SQN Discharge TRM 483.4        Middle of Plume TRM 481.1        At Plume Limit TRM 480.0          Below Plume TRM 478.3 (m) 10%  30%  50%    70%    90%  10%    30%    50%  70%  90%  10%    30%    50%  70%  90%  10%    30%  50%    70%  90%  10%      30%  50%  70%    90%
0.3    82.35  82.63 81.63  81.55  81.59 85.42 85.15  84.92  85.30 84.69 85.28 85.69  86.63 86.22 86.85 85.95  85.51 85.89  86.72 86.77 84.18  84.74  85.19 85.46  85.86 1      81.93  82.38 81.52  81.43  81.54 85.08 85.06  83.52  84.85 84.87 85.03 84.87  85.03 86.04 86.72 85.77  85.08 85.69  84.97 86.16 84.11  84.63  85.03 85.30  85.37 2      81.63  81.50 81.32  81.23  81.41 84.72 84.58  82.58  84.96 84.43 84.69 84.51  84.65 85.32      84.51  84.18 85.21        84.88 83.52  83.98  84.74 84.31  85.33 3      81.36  81.32 81.21  81.68  81.37 82.60 82.96  81.73  84.51 83.32 84.02 84.16  84.40 84.27      84.40  83.93 84.31              83.55  83.95  84.51 84.13  85.32 4      81.25  81.09 81.10  81.05  81.27 82.13 82.40        84.31 84.45 83.75 83.97  84.29 84.24       84.34  83.82 83.84                      83.93  84.11 84.11  85.26 5      81.12        81.09  81.03  81.05      82.18        84.22 83.80      83.86  84.25 84.20      84.18        83.59                      83.89  83.93 84.06  84.97 6                    81.03  81.01  80.73                    84.33 83.82      83.66  84.16            84.11        82.96                      83.82  83.86 83.84  84.16 7                    80.98  80.94  80.65                    84.20 83.75      83.75  84.07            83.98        82.58                      83.46  83.79 83.82  83.84 8                    80.85  80.89  80.65                    84.20 82.76      83.12  83.84            83.61        82.36                      83.43  83.75 83.80  83.77 9                    80.80 80.85  80.65                      83.70 82.11      82.94  83.53            83.39        82.17                      83.17  83.66 83.75  83.68 10                  80.80  80.85  80.65                    83.55 82.09      82.85  83.16            83.28        82.11                      83.26  83.17 83.71  83.66 11                  80.80  80.83  80.64                    83.10 81.68      82.49  82.72            83.19        82.11                      83.25  82.99 83.66  83.64 12                          80.83  80.64                    83.14 81.70      82.54  82.47            83.14        82.09                      83.10  82.90 82.92 13                                80.64                    82.67 81.63      82.47  82.20                          82.11                      83.10  82.80 82.87 14                                80.64                    82.17 81.59      82.38  82.08                          82.11                      83.05  82.54 82.63 15                                                          82.18            82.26  82.08                                                      83.01  82.53 82.58 16                                                          82.13            82.26  82.08                                                            82.51 82.58 17                                                          82.06            82.27  82.08                                                            82.51 82.56 18                                                          82.04            82.15  82.08                                                            82.45 82.56 71


Tables  
Table 37. Water temperature (&deg;F) profiles measured at five locations (10%, 30%, 50%, 70%, 90%) from right descending bank along transects located at TRM 487 (ambient), TRM 483.4 (discharge), TRM 482.2 (below discharge), TRM 481.0 (downstream limit of plume), and TRM 478.3 (below plume) on September 14, 2011 (Autumn). Green numbers represent ambient temperatures used to characterize the thermal plume. Red numbers represent temperatures 3.6F (2&deg;C) or greater above ambient temperature.
Depth Ambient TRM 487            SQN Discharge TRM 483.4        Below Discharge TRM 482.2        At Plume Limit TRM 481            Below Plume TRM 480.5 (m) 10%  30%  50%  70%  90%  10%  30%    50%    70%  90%  10%    30%    50%  70%  90%  10%    30%  50%    70%  90%  10%    30%    50%  70%    90%
0.3  77.18 77.18 77.54 77.36 77.54 81.25 80.42 80.55  80.01 81.68 81.45  81.21  81.14 81.48 81.91 80.15  81.03 81.32  80.53 80.65 80.08  80.04  80.42 79.25  79.45 1    77.00 76.82 77.18 76.64 77.18 80.71 80.29  80.10  79.88 81.09 81.09  80.28  79.79 80.06 80.71 79.61  79.74 79.75  79.66 79.59 78.18  79.14  79.00 78.62  78.76 2    76.64 76.46 76.46 76.46 76.28 82.35 80.08  80.06  79.70 80.58        79.83  79.29 79.20 80.24 78.60  78.60 79.00  79.30 78.80 78.82  78.49  78.48 78.44  77.58 3    76.64 76.46 76.10 76.10 76.10 78.40 79.61  80.06  79.54 80.69        79.74  78.93 79.00 79.39 78.40  78.21 78.04  78.84 78.51 78.71  78.19  78.21        77.52 4    76.46 76.46 75.92 75.20 75.38      78.06  79.97  79.47 80.80        79.47        78.84 78.87        77.83 77.49  78.75 77.61 78.58  78.04  77.94        77.49 5    76.46      75.56 75.20                    80.20  79.34 80.64        78.24        78.53 78.71        77.68 77.34  78.69 77.49 78.13  77.81  77.56 6                75.20 75.02                    79.02  79.25 80.55                    78.37 78.58        77.38 77.32  78.51 77.43        77.74  77.50 7                75.20 75.02                          78.49 80.28                    78.28              77.32 77.20                      77.70  77.45 8                75.02 74.48                          77.58 78.49                    78.06              77.20 76.93                      77.67  77.36 9                75.02 74.48                          77.22 77.54                    77.67              77.04 76.84                      77.58  77.34 10                74.48 74.30                          76.15 77.43                    77.59              76.96 76.80                      77.52  77.09 11                73.58 74.30                          76.12 77.36                    77.58              76.66 76.69                      77.49  76.96 12                73.22                                75.97 76.82                    77.56              76.28 76.41                      77.47  76.23 13                                                      75.94 76.82                    77.23              76.21 76.24                      77.05  76.19 14                                                      75.87 76.05                    76.14              76.08 76.19 15                                                      75.76                          75.83              76.08 76.06 1 16                                                      75.76                          75.78                    76.03 17                                                      75.74                          75.78 18                                                      75.72 72


26  Table 1. Shoreline Aquatic Habitat Index (SAHI) metrics and scoring criteria.
Table 38. Seasonal water quality parameters collected along vertical depth profiles downstream (TRM 482) and upstream (TRM 490.5) of the Sequoyah Nuclear Plant in Chickamauga Reservoir on the Tennessee River. Abbreviations: &deg;C -
Metric Scoring Criteria Score    Cover Stable cover (boulders, rootwads, brush, logs, aquatic vegetation, artificial structures) in 25 to 75 % of the drawdown zone 5     Stable cover in 10 to 25 % or > 75 % of the drawdown zone 3     Stable Cover in < 10 % of the drawdown zone 1   Substrate Percent of drawdown zone with gravel substrate > 40 5     Percent of drawdown zone with gravel substrate between 10 and 40 3     Percent substrate gravel < 10 1   Erosion Little or no evidence of erosion or bank failure. Most bank surfaces stabilized by woody vegetation.
Temperature in degrees Celsius, &deg;F - Temperature in degrees Fahrenheit, Cond - Conductivity, DO - Dissolved Oxygen Summer - TRM 482 LDB                                      Mid-channel                                RDB Depth    C    &deg;F  Cond    DO     pH     Depth    C      &deg;F   Cond  DO     pH    Depth  C    &deg;F    Cond  DO  pH 0.3    29.33 84.79  192.8  7.46  7.91      0.3   29.50  85.10  192.2  8.05  8.11  0.3 29.73 85.51  192.6 6.73 7.74 1.5   29.09 84.36  193.1   7.18  7.83      1.5   29.15  84.47  192.3 7.55  7.98  1.5  29.30 84.74 192.8 7.22 7.86 3    28.67 83.61  193.0  6.51 7.67      3    29.10  84.38  192.4 7.49  7.95    3  29.07 84.33  193.8 7.59 7.98 5    28.62 83.52  193.6.39  7.64      4   29.07  84.33  192.7.45  7.93    5  28.74 83.73  192.4 8.22 8.18 6    28.85  83.93  192.4 7.17  7.85 Downstream Transect                                                      8   28.69  83.64  192.0  7.02  7.80 12    28.40   83.12  191.4 6.55  7.70 15    28.19  82.74  192.2  6.38  7.64 19    28.07  82.53  227.6.24  7.63 0.3    29.60 85.28 192.8  6.89  7.78      0.3  29.35  84.83  191.6  7.35          0.3 30.58 87.04  191.8 9.12 8.37 1.5    29.14 84.45 191.6  7.03  7.81      1.5  29.03  84.25  191.3 7.35  7.92  1.5  29.19 84.54  191.0 8.58 8.21 3     28.59 83.46  192.3   8.05  8.07      3   28.79  83.82  191.2 7.16  7.86    3  28.69 85.44  190.4 7.94 8.02 4.5   28.30 82.94  190.2   8.35  8.23      4    28.65  83.57  191.0 7.23  7.87 Middle                                                        8    28.35  83.03  191.6.94  7.79 Transect 12    27.93  82.27  191.6.60  7.71 14.5   27.87  82.17  191.2 6.53  7.67 0.3   28.75 83.75  190.9  9.00  8.21      0.3  29.20  84.56  192.0 7.61  7.81  0.3  29.31 84.76  190.0 9.66 8.50 1.5    27.84 82.11  190.0   7.12  7.72      1.5  29.07  84.33  191.7  7.44  7.79   1.5 29.25 84.65  191.5 9.58 8.45 3     27.78 82.00  190.5   7.14 7.63      3    29.09  84.36  191.9  6.78  7.68    3  29.15 84.47  190.7 9.48 8.42 3.5   27.77 81.99 190.0  6.96 7.55      4   28.75  83.75  191.2 6.73  7.67    4   29.18 84.52  190.7 9.69 8.46 Upstream                                                      6   28.44   83.19 191.8 6.84  7.70   29.12 84.42  191.0 9.55 8.44 Transect                                                      8    28.50  83.30 191.6.88  7.72    8  28.83 83.89 190.8 8.36 8.19 12    27.86  82.15  190.6 6.86  7.73  12  27.63 81.73  191.9 6.60 7.64 16    27.80  82.04 190.4 6.85  7.75 73
5    Areas of erosion small and infrequent. Potential for increased erosion due to less desirable vegetation cover (grasses) on > 25 % of bank surfaces.
3    Areas of erosion extensive, exposed or collapsing banks occur along > 30% of shoreline.
1    Canopy Cover Tree or shrub canopy > 60 % along adjacent bank 5    Tree or shrub canopy 30 to 60 % along adjacent bank 3     Tree or shrub canopy < 30 % along adjacent bank 1    Riparian Zone Width buffered > 18 meters 5    Width buffered between 6 and 18 meters 3    Width buffered < 6 meters 1    Habitat Habitat diversity optimum. All major habitats (logs, brush, native vegetation, boulders, gravel) present in proportions characteristic of high quality, sufficient to support all life history aspects of target species. Ready access to deeper sanctuary areas present.
5    Habitat diversity less than optimum. Most major habitats present, but proportion of one is less than desirable, reducing species diversity. No ready access to deeper sanctuary areas.
3     Habitat diversity is nearly lacking. One habitat dominates, leading to lower species diversity. No ready access to deeper sanctuary areas.
1    Gradient Drawdown zone gradient abrupt (> 1 meter per 10 meters). Less than 10 percent of shoreline with abrupt gradient due to dredging.
5     Drawdown zone gradient abrupt. (> 1 meter per 10 meters) in 10 to 40 % of the shoreline resulting from dredging. Rip-rap used to stabilize bank along > 10 % of the shoreline.
3     Drawdown zone gradient abrupt in > 40 % of the shoreline resulting from dredging. Seawalls used to stabilize bank along > 10 % of the shoreline.
1 Table 2. Expected values for upper mainstem Tennessee River reservoir transition and forebay zones. Upper Mainstem Tennessee River Transition Upper Mainstem Tennessee River Forebay Proportion Number of species Proportion Number of species Trophic Guild
  - Avg + - Avg +  - Avg + - Avg +              Benthic Invertivore < 2.4 2.4 to 4.8 > 4.8 < 2 2 to 4 > 4 < 2.2 2.2 to 4.2 > 4.2 < 2 2 to 4 > 4              Insectivore < 24.2 24.2 to 48.4 > 48.4 < 4 4 to 8 > 8  < 34.2 34.2 to 62.6 > 62.6 < 4 4 to 8 > 8              Top Carnivore < 18.9 18.9 to 37.7 > 37.7 < 4 4 to 8 > 8 < 18.8 18.8 to 33.4 > 33.4 < 4 4 to 8 > 8              Omnivore > 40.2 20.2 to 40.2 < 20.2 > 6 3 to 6 < 3  > 40.1 21.4 to 40.1 < 21.4 > 6 3 to 6 < 3              Planktivore > 41.2 20.6 to 41.2 < 20.6 0 1 > 1 > 10.4 5.2 to 10.4 < 5.2 0 1 > 1              Parasitic < 0.4 0.4 to 0.9 > 0.9 0 1 > 1 < 0.4 0.4 to 0.8 > 0.8 0 1 > 1              Herbivore --- --- --- --- --- --- --- --- --- --- --- ---              *Values calculated from data collected from 1993 to 2010 from 750 electrofishing runs and 500 overnight experimental gill net sets in upper mainstem Tennessee River reservoir transition areas and from 900 electrofishing runs and 600 overnight experimental gill net sets in forebay areas of upper mainstem Tennessee River reservoirs. This trisection is intended to show less than expected (-), expected or average (Avg), and above expected or average (+) values for trophic level proportions and species occurring within each reservoir zone in upper mainstem Tennessee River reservoirs..
27 Table 3. Average trophic guild proportions and average num ber of fish species, bound by confidence intervals (95%), expected in upper mainstem Tennessee River reservoir transition and forebay zo nes and proportions and numbers of species observed during summer and autumn 2011.
Transition Zones Summer 2011 (Upstream) Autumn 2011 (Upstream) Forebay Zones Summer 2011 (Downstream) Autumn 2011 (Downstream) Trophic Guild Average Proportion (%) Average Number of Species Proportion (%) Number of Species Proportion (%) Number of Species Average Proportion (%) Average Number of Species Proportion (%) Number of Species Proportion (%) Number of Species              Benthic Invertivore 3.1 + 0.2 3.7 + 0.2 2.6 4 1.3 3 2.3 + 0.4 3.3 + 0.3 1.7 3 0.8 3             Insectivore 44.5 + 2.2 9.2 + 0.5 52.2 10 45.6 8 50.4 + 5.7 8.7 + 0.5 52.0 10 48.3 8              Top Carnivore 18.2 + 0.9 10.2 + 0.5 8.8 10 8.2 11 19.0 + 2.7 9.9 + 0.3 11.0 10 5.2 9              Omnivore 29.5 + 1.5 6.4 + 0.3 36.3 7 33.3 6 22.4 + 3.5 6.1 + 0.3 35.2 7 29.7 6              Planktivore 5.6 + 0.3 1.1 + 0.1 0.1 1 1.1 1 1.8 + 0.9 1.0 + 0.1 0.1 1 16.1 1              Parasitic 0.04 + 0.02 1.0 + 0.1 ---- ---- ---- ---- 0.05 + 0.05 0.1 + 0.08 ---- ---- ---- ----              Herbivore 0.01 + 0.004 1.0 + 0.1 ---- ---- 0.1 1 ---- ---- ---- ---- ---- ----              *Expected values were calculated using data collected from 1993 to 2010 from 750 electrofishing runs and 500 overnight experimental gill net sets in upper main stem Tennessee River reservoir transition a reas and from 900 electrofishing runs and 600 overnight experimental gill net sets in forebay areas of upper mainstem Tennessee River reservoirs.
28 Table 4. RFAI scoring criteria (2002) fo r fish community samples in forebay, transition, and inflow sections of upper mainstream Tennessee River reservoirs.
Upper mainstream reservoirs include Nickajack, Chickamauga, Watts Bar, Fort Loudoun, Melton Hill, and Tellico.
Scoring Criteria   Forebay Transition Inflow Metric Gear 1 3 5 1 3 5 1 3 5           1. Total species Combined <14 14-27 >27 <15 15-29 >29 <14 14-27 >27            2. Total Centrarchid species Combined <2 2-4 >4 <2 2-4 >4 <3 3-4 >4            3. Total benthic invertivores Combined <4 4-7 >7 <4 4-7 >7 <3 3-6 >6            4. Total intolerant species Combined <2 2-4 >4 <2 2-4 >4 <2 2-4 >4            5. Percent tolerant individuals Electrofishing >62% 31-62%<31% >62% 31-62%<31% >58% 29-58%<29% Gill netting >28% 14-28%<14% >32% 16-32%<16%              6. Percent dominance by 1 species Electrofishing >50% 25-50%<25% >40% 20-40%<20% >46% 23-46%<23% Gill netting >29% 15-29%<15% >28% 14-28%<14%              7. Percent non-indigenous species Electrofishing >4% 2-4% <2% >6% 3-6% <3% >17% 8-17% <8%  Gill netting >16% 8-16% <8% >9% 5-9% <5%              8. Total top carnivore species Combin ed <4 4-7 >7 <4 4-7 >7 <3 3-6 >6            9. Percent top carnivores Electrofishing <5% 5-10% >10% <6% 6-11% >11% <11% 11-22%>22%  Gill netting <25% 25-50%>50% <26% 26-52%>52%              10. Percent omnivores Electrofishing >49% 24-49%<24% >44% 22-44%<22% >55% 27-55%<27% Gill netting >34% 17-34%<17% >46% 23-46%<23%              11. Average number per run Electrofishing <121 121-241>241 <105 105-210>210 <51 51-102 >102 Gill netting <12 12-24 >24 <12 12-24 >24              12. Percent anomalies Electrofishing >5% 2-5% <2% >5% 2-5% <2% >5% 2-5% <2%  Gill netting >5% 2-5% <2% >5% 2-5% <2%   29 Table 5. Scoring criteria for benthic macroinvertebrate community samples (lab-processed) for forebay, transition, and inflow sections of mainstream Tennessee River reservoirs. (TRM 481.3 and TRM 483.4-Forbay, TRM 488.0 and TRM 490.5-Transition) scoring criteria were used for sites upstream and downstream of SQN.
Benthic Community Forebay Transition Inflow Metrics 1 3 5 1 3 1 3 5            Average number of taxa
  < 2.8 2.8-5.5 > 5.5 < 3.3 3.3-6.6 > 6.6 < 4.2 4.2-8.3 > 8.3 Proportion of samples with long-lived


organisms
Table 38 (continued).
Summer - TRM 490.5 LDB                            Mid-channel                            RDB Depth    C    &deg;F    Cond  DO  pH  Depth  C    &deg;F    Cond  DO  pH  Depth  C    &deg;F    Cond  DO  pH 0.3    28.19  82.74  198.5 9.58 8.52  0.3  27.90  82.22  198.7 8.88 8.33  0.3  28.32 82.98  194.5 9.50 8.51 1.5    28.15  82.67  199.0 9.54 8.49  1.5  27.72  81.90  200.1 7.07 8.16  1.5  28.29 82.92  194.9 9.40 8.42 3    27.51  81.52  197.7 6.60 7.62  3  27.68  81.82  200.2 7.74 8.03  3  27.43 81.37  196.6 6.13 7.55 5    26.91  80.44  200.6 4.23 7.33  4  27.30  81.14  200.5 5.75 7.62  4.5  27.19 80.94  198.1 5.17 7.42 7    26.91  80.44  199.5 4.31 7.36  6  27.19  80.94  200.0 5.50 7.53 Downstream Transect                                                8  27.15  80.87  201.1 5.21 7.48 10  27.09  80.76  200.7 5.04 7.45 13  27.11  80.80  200.3 5.17 7.46 17  27.14  80.85  200.1 5.37 7.47 0.3    28.70  83.66  196.0 10.9  n/a  0.3  28.38  83.08  198.8 9.84 8.57  0.3  28.74 83.73  193.2 9.83 8.64 1.5    28.28  82.90  196.2 10.0  n/a  1.5  27.90  82.22  200.6 8.48 8.20  1.5  27.44 81.39  199.4 6.58 7.75 3    27.16  80.89  198.2 4.68  n/a  3  27.25  81.05  201.3 5.61 7.54  3  27.27 81.09  200.4 5.88 7.55 5    27.09  80.76  197.3 4.37  n/a  5  27.13  80.83  200.9 4.97 7.45  4  27.34 81.21  200.4 6.15 7.59 Middle                                                  7  27.02  80.64  200.3 4.71 7.40  6  27.17 80.91  200.8 5.50 7.44 Transect                                                9  27.00  80.60  200.7 4.62 7.38  7  27.19 80.94  201.1 5.57 7.37 11  26.98  80.56  200.5 4.56 7.40 0.3    28.71  83.68  197.8 10.4 8.66  0.3  28.15  82.67  200.6 8.30 8.15  0.3  28.07 82.53  200.0 6.15 8.12 1.5    28.49  83.28  197.9 9.92 8.55  1.5  27.87  82.17  200.0 7.77 7.97  1.5  27.80 82.04  200.1 6.24 7.89 3    27.70  81.86  197.0 6.00 7.79  3  27.36  81.25  200.3 5.78 7.51  3  27.46 81.43  199.6 7.93 7.49 Upstream                                                4  27.24  81.03  200.5 5.21 7.42  4  27.37 81.27  199.3 8.58 7.43 Transect                                                6  27.18  80.92  200.7 4.94 7.36 8  27.08  80.74  200.5 4.73 7.30 9.5  27.07  80.73  200.2 4.68 7.30 74


  < 0.6 0.6-0.8 > 0.8  < 0.6 0.6-0.9 > 0.9  < 0.6 0.6-0.8 > 0.8 Average number of EPT (Ephemeroptera, Plecoptera, Trichoptera)
Table 38 (continued).
Autumn - TRM 482 LDB                              Mid-channel                            RDB Depth    C    &deg;F    Cond  DO  pH  Depth  C      &deg;F    Cond  DO  pH  Depth  C    &deg;F    Cond  DO  pH 0.3    22.43  72.37  184.5 7.45 7.49  0.3  22.92  73.26  183.7 7.57 7.48 0.3  22.43 72.37  184.4 7.49 7.54 1.5    22.42  72.36  184.3 7.41 7.47  1.5  22.89  73.20  183.7 7.48 7.47  1.5  22.19 71.94  184.7 7.48 7.49 2    22.38  72.28  184.0 7.42 7.44  3  22.63  72.73  184.2 7.41 7.44  3  22.14 71.85  185.1 7.37 7.47 5  22.51  72.52  184.6 7.38 7.43  5  22.12 71.82  185.3 7.32 7.44 Downstream                                              7  22.35  72.23  185.0 7.34 7.40 Transect                                                9  22.18  71.92  184.4 7.29 7.36 11  21.75  71.15  184.8 7.29 7.33 13  21.70  71.06  184.2 7.33 7.29 15  21.63  70.93  183.7 7.29 7.25 0.3    23.49  74.28  183.7 7.72 7.57  0.3  23.46  74.23  183.4 7.59 7.50  0.3  22.97 73.35  183.8 7.62 7.52 1.5    23.21  73.78  183.6 7.66 7.53  1.5  23.89  75.00  183.8 7.47 7.49  1.5  22.71 72.88  183.8 7.57 7.52 3    23.21  73.78  183.4 7.66 7.49  3  22.96  73.33  183.8 7.45 7.47  3  22.65 72.77 184.1 7.45 7.51 4  22.92  73.26  183.4 7.40 7.45  4  22.59 72.66  183.9 7.74 7.46 6  22.81  73.06  183.9 7.33 7.44 Middle                                                  8  22.45  72.41  183.5 7.34 7.39 Transect 10  21.99  71.58  183.3 7.32 7.37 12  21.74  71.13  182.9 7.31 7.33 14  21.41  70.54  183.0 7.23 7.29 16  21.39  70.50  183.1 7.15 7.23 0.3    23.75  74.75  183.8 7.49 7.49  0.3  23.83  74.89  183.7 7.42 7.49  0.3  23.42 74.16  183.5 9.66 8.50 1.5    23.46  74.23  183.5 7.39 7.51  1.5  23.57  74.43  183.3 7.37 7.48  1.5  23.28 73.90  183.4 9.58 8.45 3    22.97  73.35  183.9 7.33 7.48  3  23.03  73.45  183.9 7.34 7.84  3  23.08 73.54  183.6 9.48 8.42 4    22.69  72.84  184.0 7.30 7.47  4  22.71  72.88  183.3 7.33 7.47                          9.69 8.46 Upstream          6    22.61  72.70 183.6 7.24 7.46  6   22.48  72.46  183.3 7.31 7.46                          9.55 8.44 Transect          8    22.38  72.28  184.2 7.12 7.44  8  22.44  72.39  183.1 7.32 7.45                          8.36 8.19 10    22.15  71.87  184.4 7.06 7.42  10  22.32  72.18  183.9 7.27 7.43                          6.60 7.64 12    22.17  71.91  184.1 7.06 7.39  12  21.89  71.40  182.7 7.29 7.41 14  21.54  70.77  182.8 7.24 7.38 16  21.35  70.43  183.0 7.26 7.39 75


  < 0.6 0.6-0.9 > 0.9 < 0.6 0.6-1.4 > 1.4  < 0.9 0.9-1.9 > 1.9 Average proportion of oligochaete individuals
Table 38 (continued).
Autumn - TRM 490.5 LDB                              Mid-channel                            RDB Depth    C    &deg;F    Cond  DO  pH  Depth  C      &deg;F    Cond  DO  pH  Depth C    &deg;F    Cond  DO  pH 0.3    21.23  70.21  182.7 7.68 7.54  0.3  21.26  70.27  182.9 7.67 7.55  0.3  21.21 70.18  182.6 7.82 7.58 1.5    21.23  70.21  182.7 7.66 7.52  1.5  21.26  70.27  183.0 7.62 7.56  1.5  21.21 70.18  182.8 7.82 7.56 2      21.22  70.20  182.6 7.66 7.54  3  21.26  70.27  183.0 7.59 7.54  3  21.20 70.16  186.7 7.84 7.55 4  21.26  70.27  183.0 7.55 7.53  4  21.19 70.14  183.5 7.94 7.55 Downstream                                              6  21.25  70.25  183.0 7.50 7.56 Transect                                                8  21.24  70.23 183.0 7.48 7.51 10  21.24  70.23  182.6 7.46 7.59 12  21.23  70.21  183.0 7.44 7.47 14  21.24  70.23  183.0 7.37 7.44 16  21.03  69.85  183.0 7.39 7.42 0.3    21.09  69.96  191.6 7.81 7.57  0.3  21.33  70.39  187.0 7.68 7.54  0.3  21.34 70.41  182.7 7.67 7.52 1.5    21.09  69.96  182.7 7.79 7.57  1.5  21.33  70.39  182.0 7.65 7.50  1.5  21.34 70.41  182.8 7.66 7.57 3      21.10  69.98  180.7 7.75 7.55  3  21.32  70.38  182.2 7.60 7.51  3  21.34 70.41  187.7 7.65 7.51 Middle          5      21.20  70.16  181.7 7.75 7.48  5  21.37  70.47  182.4 7.54 7.17  4  21.34 70.41  182.7 7.59 7.54 Transect                                                7  21.29  70.32  181.1 7.50 7.45  6  21.33 70.39  182.8 7.55 7.53 9  21.27  70.29  181.3 7.47 7.40  8  21.32 70.38  182.8 7.44 7.50 10  21.31 70.36  182.8 7.45 7.48 0.3    21.06  69.91  179.4 7.81 7.56 0.3  21.20  70.16  179.5 7.40 7.49  0.3  21.29 70.32  180.7 7.72 7.55 1.5    21.06  69.91  179.5 7.81 7.52  1.5  21.20  70.16  179.5 7.46 7.50  1.5  21.28 70.30  180.2 7.83 7.56 3      21.03  69.85  179.9 7.77 7.55  3  21.20  70.16  180.0 7.45 7.50  2  21.22 70.20  181.1 7.86 7.60 Upstream                                                5  21.19  70.14  179.4 7.44 7.48 Transect 7  21.19  70.14  179.4 7.39 7.46 9   21.25  70.25  179.5 7.10 7.41 76


> 41.9 41.9-21.0 < 21.0  > 21.9 21.9-11.0 < 11.0  > 23.9 23.9-12.0
Figures 77
< 12.0 Average proportion of total abundance comprised by the two most abundant taxa
> 90.3 90.3-81.7 < 81.7  > 87.9 87.9-77.8 < 77.8  > 86.2 86.2-73.1 < 73.1 Average density excluding chironomids and


oligochaetes < 125.0 125.0-249.9 > 249.9  < 305.0 305.0-609.9 > 609.9  < 400.0 400.0-799.9 > 799.9 Zero-samples - proportion of samples containing no organisms
Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge 78
> 0 --- 0  > 0 --- 0  > 0 --- 0 30 31  Table 6. SAHI scores for 16 shoreline habitat assessments conducted within the Upstream RFAI sampling area of SQN on Chickamauga Reservoir, autumn 2009. 1(LD) 2(LD) 3(LD) 4(LD) 5(LD) 6(LD) 7(LD) 8(LD) Avg.          Latitude 35.26755 35.27312 35.27784 35.281 79 35.28669 35.29674 35.20021 35.3037  Longitude -85.09749 -85.09602 -85.09093 -85.08571 -85.0741 -85.06678 -85.06367 -85.06049 Aquatic Macrophytes 0% 0% 0% 0% 0% 0% 0% 0% 0%          SAHI Variables Cover 1 1 5 1 5 1 1 3 2 Substrate 5 1 1 1 3 5 3 5 3 Erosion 1 5 1 5 5 3 1 3 3 Canopy Cover 5 5 5 5 1 5 5 5 5 Riparian Zone 5 5 5 5 1 5 5 5 5 Habitat 1 1 3 1 3 1 1 3 2 Slope 1 1 1 1 3 3 3 3 2          Total 19 19 21 19 21 23 19 27 22 Rating Fair Fair Fair Fair Fair Fair Fair Good Fair            1(RD) 2(RD) 3(RD) 4(RD) 5(RD) 6(RD) 7(RD) 8(RD) Avg.          Latitude 35.26823 35.27665 35.28347 35.287 47 35.29329 35.30095 35.30458 35.3092  Longitude -85.108 -85.10484 -85.09809 -85.09035 -85.08268 -85.07718 -85.07455 -85.07194 Aquatic Macrophytes 0% 0% 0% 0% 0% 0% 0% 0% 0%          SAHI Variables Cover 3 1 5 5 3 3 5 1 3 Substrate 5 5 5 5 1 5 1 1 4 Erosion 1 1 5 5 5 5 5 3 4 Canopy Cover 5 5 1 3 5 3 3 1 3 Riparian Zone 5 5 1 1 5 1 1 1 3 Habitat 1 3 3 3 1 3 3 1 2 Slope 1 1 1 1 1 3 1 3 2          Total 21 21 21 23 21 23 19 11 21 Rating Fair Fair Fair Fair Fair Fair Fair Poor Fair  *Scores are shown for eight shoreline sections on th e left descending bank (LD) and eight shoreline sections along the right descending bank (RD). Scoring criteria: poor (7-16); fair (17-26); and good (27-35).
32  Table 7. SAHI Scores for 16 Shoreline Habitat Assessments Conducted within the Downstream RFAI Sampling Area of SQN on Chic kamauga Reservoir, Autumn 2009. 1(LD) 2(LD) 3(LD) 4(LD) 5(LD) 6(LD) 7(LD) 8(LD) Avg.          Latitude 35.19455 35.20021 35.20443 35.205 84 35.20617 35.2061 35.20865 35.21104  Longitude -85.11967 -85.11858 -85.11671 -85.11346 -85.10754 -85.10212 -85.09711 -85.09188 Aquatic Macrophytes 0% 0% 15% 0% 0% 10% 0% 0% 2%          SAHI Variables Cover 5 5 5 5 3 1 1 3 4 Substrate 1 1 1 3 1 1 1 1 1 Erosion 3 5 3 3 3 1 3 5 3 Canopy Cover 5 3 5 5 5 5 1 1 4 Riparian Zone 5 3 5 5 5 5 1 3 4 Habitat 3 3 3 3 1 1 3 1 2 Slope 3 5 5 3 5 5 1 1 4          Total 25 25 27 27 23 19 11 15 22 Rating Fair Fair Good Good Fair Fair Poor Poor Fair                      1(RD) 2(RD) 3(RD) 4(RD) 5(RD) 6(RD) 7(RD) 8(RD) Avg.          Latitude 35.19718 35.20069 35.20722 35.209 67 35.21449 35.21521 35.21565 35.2159  Longitude -85.12923 -85.12331 -85.12156 -85.11884 -85.1115 -85.10953 -85.10047 -85.09368 Aquatic Macrophytes 0% 0% 0% 0% 10% 5% 25% 0% 5%          SAHI Variables Cover 3 5 5 3 1 3 5 3 4 Substrate 3 1 3 3 1 1 1 1 2 Erosion 5 5 5 5 3 3 1 5 4 Canopy Cover 5 5 5 1 1 1 5 1 3 Riparian Zone 5 5 5 1 1 1 3 5 3 Habitat 1 3 3 3 1 1 3 1 2 Slope 3 1 3 1 5 5 5 5 4          Total 25 25 29 17 13 15 23 21 22 Rating Fair Fair Good Fair Poor Poor Fair Fair Fair *Scores are Shown for Eight Shoreline Sections on the Left Descending Bank (LD) and Eight Shoreline Sections Along the Right Descending Bank (RD). Scoring Criteria: Poor (7-16)
; Fair (17-26); and good (27-35).
Table 8. Substrate percentages and average water depth (ft) per transect upstream (8 transects) and downstream (8 transects) of SQN. 
  % Substrate per transect downstream of SQN 1 2 3 4 5 6 7 8 AVG          Mollusk shell 15.5 32.0 20.5 26.0 24.5 22.5 26.5 52.9 27.6 Silt 37.5 12.0 11.0 13.0 23.5 36.0 19.5 7.0 19.9 Clay 14.0 16.0 9.0 30.0 8.0 29.5 6.0 17.0 16.4 Sand 19.5 14.0 22.0 6.0 12.0 3.5 28.5 2.5 13.5 Bedrock 10.0 9.0 18.0 20. 20.0 0 10.0 15.0 12.8 Detritus 2.5 4.5 3.5 3.5 3.0 5.0 3.0 4.6 3.7 Gravel 0 3.0 7.0 1.0 8.0 3.5 3.5 0.5 3.0 Cobble 1.0 9.5 9.0 0.5 1.0 0 3.0 0.5 3.1          Avg. depth (ft) 27.1 39.7 32.6 33.2 27 29.8 35.1 44.7 33.7 Actual depth range: 7.4 to 78.5 ft
        % Substrate per transect upstream of SQN 1 2 3 4 5 6 7 8 AVG          Silt 30.5 43.0 56.5 22.0 45.5 71.0 63.5 77.5 51.2 Mollusk shell 25.0 19.5 15.5 33.5 20.0 10.0 15.5 8.0 18.4 Bedrock 10.0 20.0 0 20.0 20.0 0 0 0 8.8 Detritus 7.0 7.0 8.5 7.5 2.5 10.5 9.0 8.0 7.5 Clay 14.0 0 0 5 7.0 8.5 8.0 6.5 6.1 Cobble 4.0 5.0 10.0 0 2.5 0 4.0 0 3.2 Sand 7.5 5.5 7.5 4.5 0.5 0 0 0 3.1 Gravel 2.0 0 2.0 7.5 2.0 0 0 0 1.7          Avg. depth (ft) 33 30.1 34.9 33.6 26.2 31.8 32.2 26.1 31.0 Actual depth range: 6.4 to 55.2 ft 33 34  Table 9. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstrea m (TRM 490.5) of Sequoyah Nuclea r Plant Summer 2011. Summer 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net)Obs Score Obs Score A. Species richness and composition
: 1. Number of indigenous species  (Tables 11 and 12)
Combined 28 5 29 3      2. Number of centrarchid species (less Micropterus
) Combined 8 Black crappie Bluegill Green sunfish Longear sunfish Redbreast sunfish Redear sunfish Warmouth White crappie 5  8 Black crappie Bluegill Green sunfish Longear sunfish Redbreast sunfish Redear sunfish Warmouth White crappie 5      3. Number of benthic invertivore species Combined 3 Freshwater drum Logperch Spotted sucker 1 4 Freshwater drum Logperch River redhorse Spotted sucker 3      4. Number of intolerant species Combined 5 Brook silverside Longear sunfish Skipjack herring Smallmouth bass Spotted sucker 5 6 Brook silverside Longear sunfish River redhorse Skipjack herring Smallmouth bass Spotted sucker 5
35  Table 9.  (Continued) Summer 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net)Obs Score Obs Score 5. Percent tolerant individuals Electrofishing 85.7% Bluegill 49.1% Bluntnose minnow 1.6% Common carp 0.2% Gizzard shad 26.9% Golden shiner 1.6% Green sunfish 0.1% Largemouth bass 3.8% Redbreast sunfish 1.6% Spotfin shiner 0.7% 0.5 79.8% Bluegill 40.7% Bluntnose minnow 5.3% Common carp 0.2% Gizzard shad 28.2% Golden shiner 1.1% Green sunfish 0.3% Largemouth bass 1.7% Redbreast sunfish 1.4% Spotfin shiner 1.0% 0.5        Gill Netting 55.1% Bluegill 0.7% Common carp 0.7% Gizzard shad 52.2% White crappie 1.4%  0.5 43.9% Bluegill 0.8% Gizzard shad 37.9% Golden shiner 3.8% Largemouth bass 0.8% White crappie 0.8% 0.5      6. Percent dominance by one species Electrofishing 49.1% Bluegill 1.5 40.7% Bluegill  0.5        Gill Netting 52.2% Gizzard shad 0.5 37.9% Gizzard shad 0.5      7. Percent non-indigenous species Electrofishing 2.9% Common carp 0.3% Mississippi silverside 2.5% Yellow perch 0.1% 1.5 5.2% Common carp 0.1% Mississippi silverside 4.8% Yellow perch 0.3% 1.5        Gill Netting 0.7% Common carp 2.5 0%  2.5 36  Table 9.  (Continued) Summer 2011 Gear TRM 482  TRM 490.5 Metric (Electrofishing/Gill Net)Obs Score Obs Score      8. Number of top carnivore species


Combined 10 Black crappie Flathead catfish Largemouth bass Skipjack herring Smallmouth bass Spotted bass Spotted gar White bass White crappie Yellow bass 5 10 Black crappie Flathead catfish Largemouth bass Sauger Skipjack herring Smallmouth bass Spotted bass Spotted gar White crappie Yellow bass 5 B. Trophic composition
Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 79
: 9. Percent top carnivores Electrofishing 8.2% Black crappie 1.0% Largemouth bass 3.0% Smallmouth bass 0.1% Spotted bass 0.8% Spotted gar 2.2% White bass 0.1% Yellow bass 0.2% 1.5 5.3% Flathead catfish 0.8% Largemouth bass 1.7% Smallmouth bass 0.2% Spotted bass 1.1% Spotted gar 1.5%  0.5        Gill Netting 29.0% Black crappie 10.1% Flathead catfish 1.4% Skipjack herring 1.4% Spotted bass 7.2% Spotted gar 1.4% White bass 0.7% White crappie 1.4% Yellow bass 5.1% 1.5 42.4% Black crappie 16.7% Flathead catfish 1.5% Largemouth bass 0.8% Sauger 0.8% Skipjack herring 15.2% Spotted bass 2.3% White crappie 0.8% Yellow bass 4.5% 1.5 37  Table  9.  (Continued) Summer 2011 Gear TRM 482  TRM 490.5 Metric (Electrofishing/Gill Net)Obs Score Obs Score 10. Percent omnivores Electrofishing 31.2% Bluntnose minnow 1.6% Channel catfish 0.7% Common carp 0.2% Gizzard shad 26.9% Golden shiner 1.6% Smallmouth buffalo 0.1% 2.5 35.1% Bluntnose minnow 5.3% Channel catfish 0.2% Common carp 0.2% Gizzard shad 28.2% Golden shiner 1.1% Smallmouth buffalo 0.2% 1.5        Gill Netting 61.6% Blue catfish 5.8% Channel catfish 1.4% Common carp 0.7% Gizzard shad 52.2% Smallmouth buffalo 1.4% 0.5 47.7% Blue catfish 4.5% Channel catfish 1.5% Gizzard shad 37.9% Golden shiner 3.8%  0.5 C. Fish abundance and health
: 11. Average number per run Electrofishing 60.7 0.5 82.4 0.5        Gill Netting 13.8 1.5 13.2 1.5      12. Percent anomalies Electrofishing 1.2% 2.5 0.6% 2.5        Gill Netting 0% 2.5 0% 2.5 Overall RFAI Score 41 Good 38 Fair 38  Table 10. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of (Sequoyah nuclear) Autumn 2011. Autumn 2011 Gear TRM 482  TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score A. Species richness and composition
: 1. Number of indigenous species (Tables 13 and 14)
Combined 25 3 27 3      2. Number of centrarchid species (less Micropterus)  Combined 7 Black crappie Bluegill Green sunfish Longear sunfish Redbreast sunfish Redear sunfish Warmouth 5 7 Black crappie Bluegill Green sunfish Redbreast sunfish Redear sunfish Warmouth White crappie 5      3. Number of benthic invertivore species Combined 3 Freshwater drum Golden redhorse Spotted sucker 1 3 Freshwater drum Logperch Spotted sucker 1 4. Number of intolerant species Combined 4 Longear sunfish Skipjack herring Smallmouth bass Spotted sucker 3 3 Skipjack herring Smallmouth bass Spotted sucker 3      5. Percent tolerant individuals Electrofishing 42.6% Bluegill 12.3% Bluntnose minnow 0.5% Common carp 0.% Gizzard shad 26.1% Golden shiner 0.3% Green sunfish 0.1% Largemouth bass 1.6% Redbreast sunfish 0.9% Spotfin shiner 0.5% 1.5 80.8% Bluegill 43.0% Bluntnose minnow 0.1% Common carp 0.1% Gizzard shad 30.8% Golden shiner 0.2% Green sunfish 0.1% Largemouth bass 1.7% Redbreast sunfish 4.7% Spotfin shiner 0.2% 0.5 39  Table 10 (continued). Autumn 2011 Gear TRM 482  TRM 490.5  Metric (Electrofishing/Gill Net) Obs Score Obs Score  Gill Netting 64.8%  Bluegill 0.8% Gizzard shad 63.1% Largemouth bass 0.8%  0.5 42.4%  Bluegill 0.7% Gizzard shad 39.6% Golden shiner 0.7% White crappie 1.4%  0.5 6. Percent dominance by one species Electrofishing 35.1% Mississippi silverside 1.5 43.0% Bluegill 0.5        Gill Netting 63.1% Gizzard shad 0.5 39.6% Gizzard shad 0.5      7. Percent non-indigenous species Electrofishing 33.8%  Common carp 0.3% Mississippi silverside 33.5%  0.5 6.9%  Common carp 0.1% Mississippi silverside 6.3% Yellow perch 0.1%  0.5        Gill Netting 0% 2.5 0% 2.5 40  Table 10.  (Continued)Autumn 2011 Gear TRM 482  TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score      8. Number of top carnivore species Combined 9 Black crappie Flathead catfish Largemouth bass Skipjack herring Smallmouth bass Spotted bass Spotted gar White bass Yellow bass 5 11 Black crappie Flathead catfish Largemouth bass Skipjack herring Smallmouth bass Spotted bass Spotted gar Walleye White bass White crappie Yellow bass 5 B. Trophic composition
: 9. Percent top carnivores Electrofishing 4.5% Black crappie 1.9% Flathead catfish 0.01% Largemouth bass 1.6% Smallmouth bass 0.01% Spotted bass 0.4% Spotted gar 0.6%  0.5 6.2% Black crappie 1.4% Flathead catfish 0.5% Largemouth bass 1.7% Smallmouth bass 0.9% Spotted bass 1.4% Spotted gar 0.1% White bass 0.1% Yellow bass 0.2% 1.5        Gill Netting 19.7% Black crappie 7.4% Flathead catfish 2.5% Largemouth bass 0.8% Skipjack herring 1.6% Smallmouth bass 0.8% Spotted bass 4.1% White bass 0.8% Yellow bass 1.6% Black crappie 7.4% 0.5 34.5% Black crappie 12.2% Flathead catfish 0.7% Skipjack herring 8.6% Spotted bass 6.5% Walleye 0.7% White bass 1.4% White crappie 1.4% Yellow bass 2.9%  1.5 41  Table 10.  (Continued)
Autumn 2011 Gear TRM 482  TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score      10. Percent omnivores Electrofishing 27.5% Blue catfish 0.01% Bluntnose minnow 0.5% Channel catfish 0.2% Common carp 0.3% Gizzard shad 26.1% Golden shiner 0.3%  1.5 31.9% Blue catfish 0.1% Bluntnose minnow 0.1% Channel catfish 0.7% Common carp 0.1% Gizzard shad 30.8% Golden shiner 0.2% Blue catfish 0.1% 1.5        Gill Netting 76.2% Blue catfish 9.8% Channel catfish 3.3% Gizzard shad 63.1%  0.5 51.1% Blue catfish 5.8% Channel catfish 5.0% Gizzard shad 39.6% Golden shiner 0.7% 0.5      C. Fish abundance and health
: 11. Average number per run Electrofishing 174.2 1.5 122.4 1.5        Gill Netting 12.2 1.5 13.9 1.5      12. Percent anomalies Electrofishing 0.6 2.5 0.3 2.5        Gill Netting 0 2.5 0 2.5 Overall RFAI Score 35  35    Fair  Fair 42  Table 11. Summer 2011 Species Collected, Tro phic level, Indigenous and Tolerance Cl assification, Catch Per Effort During Electrofishing and Gill Netting at Area s Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Summer 2011. Common Name Scientific name Trophic level Indigenous species ToleranceThermally Sensitive Species Commer-cially Valuable Species Recrea- tionally ValuableSpecies EF Catch Rate Per Run EF Catch Rate Per Hour Total fish EF Gill Netting Catch Rate Per Net Night Total Gill net fish Total fish Combined Percent Composition  Gizzard shad Dorosoma cepedianum OM X TOL . X X 16.33 57.38 245 7.20 72 317 30.2%  Common carp  Cyprinus carpio OM . TOL . X . 0.13 0.47 2 0.10 1 3 0.3%  Golden shiner  Notemigonus crysoleucas OM X TOL . X . 1.00 3.51 15 . . 15 1.4%  Spotfin shiner  Cyprinella spiloptera IN X TOL . . . 0.40 1.41 6 . . 6 0.6%  Bluntnose minnow  Pimephales notatus OM X TOL . . X 1.00 3.51 15 . . 15 1.4%  Redbreast sunfish  Lepomis auritus IN X TOL . . X 1.00 3.51 15 . . 15 1.4%  Green sunfish Lepomis cyanellus IN X TOL . . X 0.07 0.23 1 . . 1 0.1%  Bluegill Lepomis macrochirus IN X TOL . . X 29.80 104.68 447 0.10 1 448 42.7%  Largemouth bass Micropterus salmoides TC X TOL . . X 2.33 8.20 35 . . 35 3.3%  White crappie  Pomoxis annularis TC X TOL . . X . . . 0.20 2 2 0.2%  Skipjack herring  Alosa chrysochloris TC X INT . X X . . . 0.20 2 2 0.2%  Spotted sucker Minytrema melanops BI X INT X X . 0.47 1.64 7 0.20 2 9 0.9%  Longear sunfish Lepomis megalotis IN X INT . . X 0.13 0.47 2 0.10 1 3 0.3%  Smallmouth bass Micropterus dolomieu TC X INT . . X 0.07 0.23 1 . . 1 0.1%  Brook silverside Labidesthes sicculus IN X INT . X X 0.07 0.23 1 . . 1 0.1%  Spotted gar  Lepisosteus oculatus TC X . . X . 1.33 4.68 20 0.20 2 22 2.1%  Threadfin shad Dorosoma petenense PK X . . X X 0.13 0.47 2 . . 2 0.2%  Smallmouth buffalo  Ictiobus bubalus OM X . . X X 0.07 0.23 1 0.20 2 3 0.3%  Blue catfish  Ictalurus furcatus OM X . . X X . . . 0.80 8 8 0.8%  Channel catfish  Ictalurus punctatus OM X . . X X 0.40 1.41 6 0.20 2 8 0.8%  Flathead catfish  Pylodictis olivaris TC X . . X X . . . 0.20 2 2 0.2%  White bass  Morone chrysops TC X . . . X 0.07 0.23 1 0.10 1 2 0.2%  Yellow bass  Morone mississippiensis TC X . . . X 0.13 0.47 2 0.70 7 9 0.9%  Warmouth  Lepomis gulosus IN X . . . X 0.07 0.23 1 . . 1 0.1%  Redear sunfish Lepomis microlophus IN X . . . X 2.53 8.90 38 0.50 5 43 4.1%  Spotted bass  Micropterus punctulatus TC X . . . X 0.47 1.64 7 1.00 10 17 1.6%  Black crappie  Pomoxis nigromaculatus TC X . . . X 0.60 2.11 9 1.40 14 23 2.2%  Yellow perch  Perca flavescens IN . . . . X 0.07 0.23 1 . . 1 0.1%  Logperch  Percina caprodes BI X . X . X 0.33 1.17 5 . . 5 0.5%  Freshwater drum  Aplodinotus grunniens BI X . . X X . . . 0.40 4 4 0.4%  Mississippi silverside  Menidia audens IN . . . X . 1.73 6.09 26 . . 26 2.5% Total  28  2 14 25 60.73 213.33 911 13.80 138 1,049 100% Number Samples 15  10    Species Collected 26  18    *All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Troph ic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).
43  Table 12. Summer 2011 Species Collected, Tro phic level, Indigenous and Tolerance Cl assification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Summer 2011.
Common Name Scientific name Trophic level Indigenous species ToleranceThermally Sensitive Species Commer-cially Valuable Species Recrea- tionally ValuableSpecies EF Catch Rate Per Run EF Catch Rate Per Hour Total fish EF Gill Netting Catch Rate Per Net Night Total Gill net fish Total fish Combined Percent Composition Gizzard sha d D orosoma cepedianum OM XTOL.X X23.27 81.54 349 5.00 50 39929.2% Common carp Cyprinus carpio OM . TOL . X . 0.13 0.47 2 . . 2 0.1% Golden shiner N otemigonus crysoleucas OM X TOL . X . 0.87 3.04 13 0.50 5 18 1.3% Spotfin shiner Cyprinella spiloptera IN X TOL . . . 0.80 2.80 12 . . 12 0.9% Bluntnose minnow Pimephales notatus OM X TOL . . X 4.33 15.19 65 . . 65 4.8% Redbreast sunfish L epomis auritus IN X TOL . . X 1.13 3.97 17 . . 17 1.2% Green sunfish L epomis cyanellus IN X TOL . . X 0.27 0.93 4 . . 4 0.3% Bluegill L epomis macrochirus IN X TOL . . X 33.53 117.52 503 0.10 1 504 36.8% Largemouth bass M icropterus salmoides TC X TOL . . X 1.40 4.91 21 0.10 1 22 1.6% White crappie Pomoxis annularis TC X TOL . . X . . . 0.10 1 1 0.1% Skipjack herring Alosa chrysochloris TC X INT . X X . . . 2.00 20 20 1.5% Spotted sucker Minytrema melanops BI X INT X X . 0.53 1.87 8 0.10 1 9 0.7% River redhorse M oxostoma carinatum BI X INT . . . 0.07 0.23 1 . . 1 0.1% Longear sunfish Lepomis megalotis IN X INT . . X 0.53 1.87 8 . . 8 0.6% Smallmouth bass M icropterus dolomieu TC X INT . . X 0.13 0.47 2 . . 2 0.1% Brook silverside Labidesthes sicculus IN X INT . X . 0.13 0.47 2 . . 2 0.1% Spotted gar L episosteus oculatus TC X . . X . 1.27 4.44 19 . . 19 1.4% Threadfin shad D orosoma petenense PK X . . X X 0.07 0.23 1 . . 1 0.1% Smallmouth buffalo Ictiobus bubalus OM X . . X X 0.13 0.47 2 . . 2 0.1% Blue catfish Ictalurus furcatus OM X . . X X . . . 0.60 6 6 0.4% Channel catfish Ictalurus punctatus OM X . . X X 0.20 0.70 3 0.20 2 5 0.4% Flathead catfish P ylodictis olivaris TC X . . X X 0.67 2.34 10 0.20 2 12 0.9% Yellow bass Morone mississippiensis TC X . . . X . . . 0.60 6 6 0.4% Warmouth L epomis gulosus IN X . . . X 0.13 0.47 2 . . 2 0.1% Redear sunfish Lepomis microlophus IN X . . . X 5.93 20.79 89 0.70 7 96 7.0% Spotted bass Micropterus punctulatus TC X . . . X 0.87 3.04 13 0.30 3 16 1.2% Black crappie Pomoxis nigromaculatus TC X . . . X . . . 2.20 22 22 1.6% Yellow perch Perca flavescens IN . . . . X 0.27 0.93 4 . . 4 0.3% Logperch Percina caprodes BI X . X . X 1.27 4.44 19 . . 19 1.4% Sauger Sander canadense TC X . . . X . . . 0.10 1 1 0.1% Freshwater drum Aplodinotus grunniens BI X . . X X 0.13 0.47 2 0.40 4 6 0.4% Mississippi silverside Menidia audens IN . . . X . 4.33 15.19 65 . . 65 4.8% Total  29 2142482.39 288.79 1,236 13.20 132 1,368 100% Number Samples 15  10    Species Collected 26  16    *All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Troph ic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).
44  Table 13. Autumn 2011 Species Collected, Trophic level, Indige nous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Autumn 2011.
Common Name Scientific name Trophic level Indigenous species Tolerance Thermally Sensitive Species Commer-cially Valuable Species Recrea- tionally ValuableSpecies EF Catch Rate Per Run EF Catch Rate Per Hour Total fish EF Gill Netting Catch Rate Per Net Night Total Gill net fish Total fish Combined Percent Composition Gizzard shad D orosoma cepedianum OM X TOL . X X 45.53 212.11 683 7.70 77 760 27.8% Common carp Cyprinus carpio OM . TOL . X . 0.47 2.17 7 . . 7 0.3% Golden shiner N otemigonus crysoleucas OM X TOL . X . 0.60 2.80 9 . . 9 0.3% Spotfin shiner Cyprinella spiloptera IN X TOL . . . 0.80 3.73 12 . . 12 0.4% Bluntnose minnow Pimephales notatus OM X TOL . . X 0.93 4.35 14 . . 14 0.5% Redbreast sunfish L epomis auritus IN X TOL . . X 1.60 7.45 24 . . 24 0.9% Green sunfish L epomis cyanellus IN X TOL . . X 0.07 0.31 1 . . 1 0.0% Bluegill L epomis macrochirus IN X TOL . . X 21.47 100.00 322 0.10 1 323 11.8% Largemouth bass M icropterus salmoides TC X TOL . . X 2.73 12.73 41 0.10 1 42 1.5% Skipjack herring Alosa chrysochloris TC X INT . X X . . . 0.20 2 2 0.1% Spotted sucker Minytrema melanops BI X INT X X . 0.73 3.42 11 0.10 1 12 0.4% Longear sunfish Lepomis megalotis IN X INT . . X 0.13 0.62 2 . . 2 0.1% Smallmouth bass M icropterus dolomieu TC X INT . . X 0.07 0.31 1 0.10 1 2 0.1% Spotted gar L episosteus oculatus TC X . . X . 1.00 4.66 15 . . 15 0.5% Threadfin shad D orosoma petenense PK X . . X . 29.27 136.34 439 . . 439 16.1% Golden redhorse M oxostoma erythrurum BI X . . X . . . . 0.10 1 1 0.0% Blue catfish Ictalurus furcatus OM X . . X X 0.07 0.31 1 1.20 12 13 0.5% Channel catfish Ictalurus punctatus OM X . . X X 0.33 1.55 5 0.40 4 9 0.3% Flathead catfish P ylodictis olivaris TC X . . X X 0.07 0.31 1 0.30 3 4 0.1% White bass Morone chrysops TC    X . . . X . . . 0.10 1 1 0.0% Yellow bass Morone mississippiensis TC X . . . X . . . 0.20 2 2 0.1% Warmouth L epomis gulosus IN X . . . X 0.47 2.17 7 . . 7 0.3% Redear sunfish Lepomis microlophus IN X . . . X 2.27 10.56 34 0.10 1 35 1.3% Spotted bass Micropterus punctulatus TC X . . . X 0.73 3.42 11 0.50 5 16 0.6% Black crappie Pomoxis nigromaculatus TC X . . . X 3.27 15.22 49 0.90 9 58 2.1% Freshwater drum Aplodinotus grunniens BI X . . X X 0.47 2.17 7 0.10 1 8 0.3% Mississippi silverside Menidia audens IN . . . X . 61.13 284.78 917 . . 917 33.5% Total  25  1 13 19 174.21 811.49 2,613 12.20 122 2,735 100% Number Samples 15  10    Species Collected 23  16    *All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Troph ic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).
45  Table 14. Autumn 2011 Species Collected, Tro phic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Autumn 2011.
Common Name Scientific name Trophic level Indigenous species Tolerance Thermally Sensitive Species Commer-cially Valuable Species Recrea- tionally ValuableSpecies EF Catch Rate Per Run EF Catch Rate Per Hour Total fish EF Gill Netting Catch Rate Per Net Night Total Gill net fish Total fish Combined Percent Composition Gizzard shad D orosoma cepedianum OM X TOL . X X 37.73 164.53 566 5.50 55 621 31.4% Common carp Cyprinus carpio OM . TOL . X . 0.07 0.29 1 . . 1 0.1% Golden shiner N otemigonus crysoleucas OM X TOL . X . 0.27 1.16 4 0.10 1 5 0.3% Spotfin shiner Cyprinella spiloptera IN X TOL . . . 0.27 1.16 4 . . 4 0.2% Bluntnose minnow Pimephales notatus OM X TOL . . X 0.13 0.58 2 . . 2 0.1% Redbreast sunfish L epomis auritus IN X TOL . . X 5.73 25.00 86 . . 86 4.4% Green sunfish L epomis cyanellus IN X TOL . . X 0.07 0.29 1 . . 1 0.1% Bluegill L epomis macrochirus IN X TOL . . X 52.60 229.36 789 0.10 1 790 40.0% Largemouth bass M icropterus salmoides TC X TOL . . X 2.07 9.01 31 . . 31 1.6% White crappie Pomoxis annularis TC X TOL . . X . . . 0.20 2 2 0.1% Skipjack herring Alosa chrysochloris TC X INT . X X . . . 1.20 12 12 0.6% Smallmouth bass M icropterus dolomieu TC X INT . . X 1.07 4.65 16 . . 16 0.8% Spotted sucker Minytrema melanops BI X INT X . . 0.40 1.74 6 0.40 4 10 0.5% Spotted gar L episosteus oculatus TC X . . X X 0.13 0.58 2 . . 2 0.1% Threadfin shad D orosoma petenense PK X . . X . 1.47 6.40 22 . . 22 1.1% Largescale stoneroller Campostoma oligolepis HB X . . . X 0.93 4.07 14 . . 14 0.7% Blue catfish Ictalurus furcatus OM X . . X X 0.07 0.29 1 0.80 8 9 0.5% Channel catfish Ictalurus punctatus OM X . . X X 0.80 3.49 12 0.70 7 19 1.0% Flathead catfish P ylodictis olivaris TC X . . X X 0.60 2.62 9 0.10 1 10 0.5% White bass Morone chrysops TC X . . . X 0.07 0.29 1 0.20 2 3 0.2% Yellow bass Morone mississippiensis TC X . . . X 0.20 0.87 3 0.40 4 7 0.4% Warmouth L epomis gulosus IN X . . . X 0.67 2.91 10 . . 10 0.5% Redear sunfish Lepomis microlophus IN X . . . X 4.27 18.60 64 1.50 15 79 4.0% Spotted bass Micropterus punctulatus TC X . . . X 1.67 7.27 25 0.90 9 34 1.7% Black crappie Pomoxis nigromaculatus TC X . . . X 1.73 7.56 26 1.70 17 43 2.2% Yellow perch Perca flavescens IN . . . . X 0.13 0.58 2 . . 2 0.1% Logperch Percina caprodes BI X . X . X 0.07 0.29 1 . . 1 0.1% Walleye Sander vitreum TC X . . . X . . . 0.10 1 1 0.1% Freshwater drum Aplodinotus grunniens BI X . . X X 0.93 4.07 14 . . 14 0.7% Mississippi silverside Menidia audens IN . . . X . 8.27 36.05 124 . . 124 6.3% Total  27  2 11 24 122.42 533.71 1,836 13.90 139 1,975 100% Number Samples 15  10    Species Collected 27  15    *All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Troph ic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).
46  Table 15. Spatial statistical comparisons of numbers of species , mean electrofishing catch per unit effort values (number/run), tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Se quoyah Nuclear Plant, summer 2011.
Mean (Standard Deviation)
Parameter Downstream (TRM 482)Upstream(TRM 490.5)
Significant Difference Test Statistic (a)P Value Number of species (per run)
Total (Species richness) 10.7 (2.3) 12.1 (3.5) No t= -1.23 0.23    Benthic invertivores 0.5 (0.7) 0.8 (0.8) No Z= -1.28 0.20    Insectivores 3.4 (1.5) 4.5 (1.1) Yes Z= -2.08 0.04    Omnivores 2.2. (1.1) 1.8 (0.9) No Z= 1.44 0.15    Top carnivores 2.3 (0.7) 2.5 (1.4) No Z= 0.09 0.93    Non-indigenous 0.5 (0.5) 0.9 (0.7) No Z= -1.57 0.11    Indigenous 7.9 (2.1) 8.7 (1.9) No t= -1.79 0.28    Tolerant 4.5 (0.8) 4.4 (1.2) No Z= 0.39 0.69    Intolerant 0.5 (1.0) 1.0 (0.8) No Z= -1.90 0.06    Thermally sensitive 0.5 (0.7) 0.6 (0.8)
No Z= -0.41 0.68 CPUE (per run)
Total 4.05 (1.63) 5.49 (2.10) Yes t= -2.11 0.04    Benthic invertivores 0.05 (0.10) 0.13 (0.21) No Z= -1.50 0.13    Insectivores 2.35 (1.36) 3.13 (1.29) No t= -1.59 0.12    Omnivores 1.26 (1.47) 1.92 (1.68) No Z= -1.14 0.25    Top Carnivores (b) 0.33(0.14) 0.29 (0.22) No t= 0.98 0.33    Non-indigenous 0.13 (0.27) 0.32 (0.39) No Z= -1.65 0.10    Indigenous 4.83 (1.72) 6.06 (2.02) No t= -1.79 0.08    Tolerant 3.47 (1.52) 4.38 (1.92) No t= -1.44 0.16    Intolerant  0.05 (0.09) 0.09 (0.09) Yes Z= -1.99 0.05    Thermally sensitive 0.07 (0.10) 0.13 (0.22)
No Z= -0.47 0.64 Diversity indices (per run)
Simpson 0.64 (0.14) 0.70 (0.11) No Z= -1.37 0.17    Shannon (b) 5.02 (2.18) 7.02 (4.10) No t= -1.79 0.13 (a) t-Value indicates results of independent two-sample t-test (=0.05). Z-Value indicates results of Mann-Whitney-Wilcoxon Z-test (=0.05) used when raw data could not be normalized using transformation.
(b) Square root or ln(x+1) transformed data used for statistical analyses because raw data were not normally distributed and/or did not have equal variances.
47  Table 16. Spatial statistical comparisons of numbers of species , mean electrofishing catch per unit effort values (number/run), tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, autumn 2011. 


Mean (Standard Deviation)
Biomonitoring Stations Upstream of Sequoyah Nuclear Plant
Parameter Downstream (TRM 482)Upstream(TRM 490.5)
* Electrofishing o  Gill Netting e  Plankton! Water Quality
Significant Difference Test Statistic (a)P Value Number of species (per run)
    - - Benthic Macroinvertebrate Transect
Total (Species richness) 13.5 (3.0) 12.9 (2.4) No t= 0.6 0.55    Benthic invertivores 0.5 (0.3) 0.5 (0.5) No Z= 0.94 0.35    Insectivores 3.9 (1.8) 4.1 (1.0) No Z= -0.45 0.65    Omnivores 2.3 (1.0) 1.9 (0.6) No Z= 1.16 0.25    Top carnivores 3.1 (1.0) 3.2 (1.7) No Z= 0.04 0.97    Non-indigenous 1.2 (0.4) 1.1 (0.5) No Z= 0.78 0.44    Indigenous (b) 10.1 (3.5) 9.4 (2.2) No t= 0.48 0.63    Tolerant 4.7 (1.7) 3.9 (0.9) No t= 1.62 0.12    Intolerant 0.7 (0.9) 0.8 (0.6) No Z= -0.67 0.50    Thermally sensitive 0.6 (0.5) 0.4 (0.6)
_ _ Wildlife Observation Transect Figure 3. Biological monitoring stations upstream of Sequoyah Nuclear Plant.
No Z= 1.18 0.24 CPUE (per run)
80
Total (b) 3.34 (0.71) 2.81 (0.50) Yes t= 2.34 0.03    Benthic invertivores 0.08 (0.06) 0.09 (0.07) No Z= -0.22 0.83    Insectivores 5.86 (2.98) 4.80 (3.25) No t= 0.93 0.36    Omnivores 3.19 (1.36) 2.60 (1.54) No t= 1.16 0.25    Top Carnivores 0.52 (0.27) 0.50 (0.47) No Z= 0.94 0.35    Non-indigenous 4.11 (3.41) 0.56 (0.50) Yes Z= 3.43 0.0006    Indigenous (b) 7.51 (4.37) 7.60 (2.86) No t= -0.30 0.76    Tolerant 4.95 (2.66) 6.60 (2.74) No t= -1.67 0.11    Intolerant  0.05 (0.07) 0.10 (0.11) No Z= -1.53 0.13    Thermally sensitive 0.05 (0.05) 0.03 (0.05)
No Z= 1.18 0.24 Diversity indices (per run)
Simpson 0.84 (0.06) 0.83 (0.12) No Z= -0.33 0.74    Shannon 9.1 (2.1) 8.9 (2.6) No t= 0.16 0.87 (a) t-Value indicates results of independent two-sample t-test (=0.05). Z-Value indicates results of Wilcoxon Rank-Sum Z-test (=0.05) used when raw data could not be normalized using transformation. (b) Square root or ln(x+1) transformed data used for statistical analyses because raw data were not normally distributed and/or did not have equal variances.
48  Table 17. Summary of RFAI scores from si tes located directly upstream and downstream of Sequoyah Nuclear Plant as well as scores from sampling conducted during autumn 1993-2011 as part of the Vita l Signs Monitoring Program in Chickamauga Reservoir.
Station Location 1993 1994 1995 1996 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Average Inflow TRM 529.0 52 52 48 42 44 42 44 46 48 48 42 42 42 42 44 44 44 50 45 Transition SQN Upstream TRM 490.5 51 40 48 44 39 45 46 45 51 42 49 46 47 44 34 41 39 35 44 Forebay SQN


Downstream TRM 482.0
Biomonitoring Stations Downstream of Sequoyah Nuclear Plant
--- --- --- 47 --- 41 48 46 43 45 41 39 35 38 38 37 39 35 41 Forebay TRM 472.3 43 44 47 --- 40 45 45 48 46 43 43 46 43 41 41 42 40 34 43 Hiwassee River Embayment HiRM 8.5 46 39 39 --- 40 43 43 47 --- 36 42 45 --- 41 --- 42 --- 37 42  *TRM 482 scored with forebay criteria, TRM 490.5 scored with transition criteria (Refer to Table 4).  **RFAI Scores: 12-21 ("Very Poor"), 22-31 ("Poor"), 32-40 ("Fair"), 41-50 ("Good"), or 51-60 ("Excellent")
* Electrofishing o  Gill Netting o    Planktonl Water Quality
    - - Benthic Macroinvertebrate Transect
    - - Wildlife Observation Transect DThermal Plume, Summer (0812512011)
    ~ Thermal Plume, Autumn (0911412011)
Figure 4. Biological monitoring stations downstream of Sequoyah Nuclear Plant, including mixing zone and thermal plume from SQN CCW discharge.
81


49  Table 18. Comparison of mean density per square meter of benthi c taxa collected at upstream and downstream sites near SQN duri ng August and October 2011.
Transects for Shoreli ne Aquatic Habitat Index (SAH I)
DOWNSTREAM UPSTREAM  TRM 481.3 TRM 483.4 TRM 488.0 TRM 490.5 Summer Autumn Summer Autumn Summer Summer Autumn Metric Obs Rating Obs Rating Obs Rating Ob s Rating Obs Rating Obs Rating Obs Rating 1. Average number of taxa 9.0 5 7.8 5 13.6 5 13.6 5 7.0 5 7.2 5 6.6 3 2. Proportion of samples with long-lived organisms 0.8 3 0.7 3 0.8 3 0.8 3 1.0 5 0.4 1 0.8 3 3. Average number of EPT taxa 0.9 3 1.0 5 1.2 5 0.9 3 0.8 3 0.2 1 0.5 1 4. Average proportion of oligochaete individuals 35.6 3 29.4 3 54.4 1 48.1 1 15.5 3 7.2 5 14.8 3 5. Average proportion of total abundance comprised by the two most abundant taxa 73.7 5 78.6 5 75.5 5 77.0 5 82.8 3 86.4 3 84.5 3 6. Average density excluding chironomids and oligochaetes 235.0 3 181.7 3 525.0 5 1685.0 5 470.0 3 396.7 3 263.3 1 7. Zero-samples - proportion of samples containing no organisms 0 5 0 5 0 5 0 5 0 5 0 5 0 5 Benthic Index Score 27  29  29  27  27  23  19  Good  Good  Good  Good  Good  Fair  Fair *TRM 481.3 and 483.4 scored with forebay criteria, TRM 488.9 and 490.5 scored with transition criteria (Refer to Table 5). Reservoir Benthic Index Scores:  7-12 ("Very Poor"), 13-18  ("Poor"), 19-23 ("Fair"), 24-29 
Upstream and Dow nstream of Sequoyah Nuclear Plant CCW Discharge
("Good"), 30-35 ("Excellent")
                - - SAHI Transects Figure 5. Benthic and shoreline habitat transects within the fish community sampling area upstream and downstream of SQN. SAHI data were collected on the left and right descending banks at endpoints of each transect.
Table 19. Summary of RBI Scores from Sites Located Directly Upstream and Downstream of Sequoyah Nuclear Plant as Well as Scores from Sampling Conducted as Part of the Vita l Signs Monitoring Program in Chickamauga Reservoir.
82
Station Location 1994 1995 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Average  Inflow TRM 527.4
--- --- --- --- --- 29 27 33 35 31 --- 23 23 23 21
* 27 Inflow TRM 518.0 19 31 25 21 23 29 23 27 35 29 33 25 --- 31 --- 27 27 Transition


SQN Upstream TRM 490.5 33 29 31 31 23 25 25 31 31 31 27 21 17 27 23 19 27 Forebay SQN Downstream TRM 482.0
Figure 6. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge during October 2010 through November 2011. Station 14 was used for upstream ambient temperatures of the SQN intake and was located at TRM 490.4. Station 8 was used for temperatures downstream of SQN discharge and was located at TRM 483.4.
--- --- --- --- 23 31 29 29 33 31 31 25 25 23 29 --- 28 Forebay TRM 472.3 31 27 29 25 27 27 21 27 29 27 29 19 25 23 --- 21 26 Hiwassee River Embayment HiRM 8.5 17 27 25 21 --- 21 --- 31 --- 25 --- 13 --- 19 --- 19  22 * - Sampling was conducted, but data was not available at the time this report was issued. Reservoir Benthic Index Scores:  7-12 ("Very Poor"), 13-18 ("
83
Poor"), 19-23 ("Fair"), 24-29 ("G ood"), 30-35 ("Excellent")
50 51  Table 20. Comparison of mean density per Square Meter of Benthic Taxa collected with a Ponar Dredge along Transects Upstream and Downstream of Sequoyah Nuclear Plant, Chickamauga Reservoir, Summer and Autumn 2011. Taxa Summer Downstream TRM 481.3 Autumn Downstream TRM 481.3 Summer Downstream TRM 483.4 Autumn Downstream TRM 483.4 Summer Upstream TRM 488.0 Summer Upstream TRM 490.5 Autumn Upstream TRM 490.5 Insecta            Diptera Chironomidae Ablabesmyia annulata 5 8 2 2 13 7 7            Ablabesmyia mallochi 2 ----- 3 ----- ----- ----- -----            Ablabesmyia rhamphe gp. 7 ----- 10 13 ----- ----- -----            Ablabesmyia sp. ----- ----- ----- ------ ----- 3 -----            Chironomidae 3 2 ----- ------ ----- ----- -----            Chironomus crassicaudatus 10 2 10 ------ 7 73 22            Chironomus decorus gp. 2 2 ------ ------ ----- ------ -----            Chironomus major 15 2 ------ ------ ----- 27 2            Chironomus sp. 5 ------ ------ ------ ------ ------ ------            Cladopelma sp. ------ ------ ------ ------ ------ ------ 2            Cladotanytarsus sp. ------ ------ 5 2 ------ ------ 15            Coelotanypus sp. 135 23 35 12 217 410 ------            Coelotanypus tricolor ------ 205 ------- 103 ------ ------ 292            Clinotanypus sp.
------ ------ ------- 2 ------ ------ ------            Cryptochironomus sp.
7 7 2 7 3 ------ 3            Cricotopus sp.
------ ------ ------- 2 ------ ------ -------            Cricotopus reverses gp. ------ 2 ------- -------- ------ ------ -------            Dicrotendipes lucifer ------ ------- 58 45 ------ ------ -------            Dicrotendipes modestus ------ ------- 12 53 ------ ------ -------            Dicrotendipes neomodestus 2 2 28 5 ------ ------ -------            Dicrotendipes simpsoni ------ ------- 3 3 ------ ------ -------            Dicrotendipes sp.
------ ------- 2 2 ------ ------ -------            Glyptotendipes sp. ------ 2 27 3 ------ ------ -------            Hydrobaenus sp. 2 ------- ------- ------- ------ ------ -------            Microtendipes pedellus gp. 2 ------- ------- ------- ------ ------ -------            Nanocladius alternantherae ------ ------- ------- 2 ------ ------ -------            Nanocladius distinctus ------ ------- 3 5 ------ ------ -------            Orthocladius sp. ------ ------- 2 ------- ------ ------- -------            Parachironomus carinatus ------- ------- 7 3 ------ ------- -------            Parachironomus frequens ------- -------- ------- 7 ------- ------- -------            Parachironomus sp. ------- ------- ------- 2 ------- ------- -------            Polypedilum halterale gp.
------- 2 3 ------- ------- ------- -------            Procladius sp.
5 2 2 2 7 ------- 5            Pseudochironomus sp.
------- ------- ------- 2 ------- ------- -------
52  Table 20 (continued). Taxa Summer Downstream TRM 481.3 Autumn Downstream TRM 481.3 Summer Downstream TRM 483.4 Autumn Downstream TRM 483.4 Summer Upstream TRM 488.0 Summer Upstream TRM 490.5 Autumn Upstream TRM 490.5      Chironomidae (Cont.)
Tanytarsus sp.
2 3 ------- 5 ------- ------- -------            Thienemanniella lobapodema
------- ------- ------- ------- 10 ------- -------        Ceratopogonidae 3 ------- ------- ------- ------- ------- 2            Argia sp. ------- ------- 2 ------- ------- ------- -------            Palpomyia sp. ------- ------- ------- ------- ------- 7 -------        Chaoboridae
------- ------- ------- ------- ------- ------- -------            Chaoborus punctipennis 115 67 22 2 63 260 10    Ephemeroptera Ephemeridae Hexagenia limbata 28 23 3 13 20 3 7            Hexagenia sp. 2 ------- ------- 2 ------- ------- 2        Heptageniidae Stenacron interpunctatum 2 3 ------- ------- ------- ------- -------        Caenidae Caenis sp.
------- ------- ------- ------- ------- ------- 2    Trichoptera Leptoceridae


Oecetis sp.
Figure 7. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River downstream of SQN. *Water depth (ft) at each point is denoted. Transects 1 and 2 are the most downstream of the eight transects downstream of the SQN discharge.
7 8 20 12 7 ------- 3        Polycentropodidae Cyrnellus fraternus 3 ------- 17 18 ------- ------- -------            Polycentropus sp. ------- ------- ------- ------- ------- ------- 2        Hydroptilidae Orthotrichia sp. ------- 2 3 ------- ------- ------- ------- Ostracoda            Podocopa Candoniidae Candona sp. 3 70 ------- 58 ------- 7 22    Ostracoda 5 2 3 ------- ------- ------- ------- Brachiopoda Cladocera Daphnidae Ceriodaphnia 2 ------- ------- ------- ------- ------- -------        Sididae Sida crystallina 2 2 32 5 ------- ------- 3 53  Table 20 (continued).
84
Taxa Summer Downstream TRM 481.3 Autumn Downstream TRM 481.3 Summer Downstream TRM 483.4 Autumn Downstream TRM 483.4 Summer Upstream TRM 488.0 Summer Upstream TRM 490.5 Autumn Upstream TRM 490.5 Oligocheata Haplotaxida Tubificidae Aulodrilus piqueti 392 33 27 77 7 3 2           Branchiura sowerbyi 3 2 10 3 ----- ----- -----          Limnodrilus hoffmeisteri 10 13 7 93 20 ----- 10          Limnodrilus cervix ----- 2 ----- ----- ----- ----- -----          Tubificidae 168 75 52 542 60 70 120        Naididae Dero sp. 60 18 855 822 7 ----- -----          Naididae 3 3 137 167 ----- ----- 12          Nais cf. pardalis ----- ----- 30 2 ----- ----- -----          Nais sp. ----- ----- 22 40 ----- ----- 5          Prisitina breviseta ----- 2 ----- ----- ----- ----- 5          Pristina leidyi ----- ----- 2 ----- ----- ----- -----          Pristina sp. ----- 2 ----- 25 ----- ----- -----          Slavina appendiculata ----- ----- 15 18 ----- ----- -----          Stylaria lacustris ----- ----- ----- 410 ----- ----- -----        Branchiobdellida Branchiodellida ----- ----- ----- 2 ----- ----- ----- Bivalvia            Veneroida Corbiculidae Corbicula fluminea 42 38 98 212 223 67 67        Dreissenidae Dreissena polymorpha ------- ------- 77 198 ------- ------- -------        Sphaeriidae Eupera cubensis ------- ------- 2 ------- ------- ------- -------              Musculium transversum 100 62 27 138 187 283 165              Pisidium sp
. 20 12 12 5 20 27 3              Sphaeriidae ------- ------- ------- 2 ------- ------- -------    Unionoida Unoinidae Utterbackia imbecillis 2 ------- ------- 5 ------- ------- -------              Truncilla truncata ------- ------- ------- ------- ------- ------- 2 Gastropoda Mesogastropoda Viviparidae Viviparus sp. 7 ------- 13 55 3 ------- -------
54 Table 20 (continued).
Taxa Summer Downstream TRM 481.3 Autumn Downstream TRM 481.3 Summer Downstream TRM 483.4 Autumn Downstream TRM 483.4 Summer Upstream TRM 488.0 Summer Upstream TRM 490.5 Autumn Upstream TRM 490.5 Gastropoda (cont.)
Campeloma decisum ------- ------- 2 7 ------- ------- 2        Hydrobiidae Amnicola limosa
------- ------- 3 2 ------- ------- -------        Pleuroceridae Pleurocera canaliculata ------- ------- 3 10 ------- ------- 3    Basommatophora Planorbidae Menetus dilatatus ------- ------- 2 ------- ------- ------- ------- Malacostraca Amphipoda Crangonyctidae Crangonyx sp. 2 ------- ------- 8 ------- ------- -------        Gammaridae Gammarus sp. ------- ------- 7 3 ------- ------- -------        Talitrida Hyalella azteca ------- 3 ------- ------- ------- ------- ------- Maxillopoda Copepoda Cyclopoida 5 ------- 3 5 3 7 2            Harpacticoida ------- ------- 2 ------- ------- ------- ------- Turbellaria Tricladida Planariidae Dugesia tigrina 2 2 185 625 ------- ------- -------            Cura foremanii ------- 2 ------- ------- ------- ------- ------- Hirudinea            Rhynchobdellida Glossiphoniidae Glossiphoniidae sp.
------- ------- 12 88 ------- 3 -------            Helobdella stagnalis 15 22 17 165 10 3 3            Helobdella sp.
------- 2 2 73 ------- ------- -------            Helobdella triserialis ------- ------- 8 13 ------- ------- -------            Placobdella montifera ------- 3 ------- ------- ------- ------- -------    Pharyngobdellida Erpobdellidae Erpobdellidae ------- ------- 3 28 ------- ------- -------
Table 20 (continued).
Taxa Summer Downstream TRM 481.3 Autumn Downstream TRM 481.3 Summer Downstream TRM 483.4 Autumn Downstream TRM 483.4 Summer Upstream TRM 488.0 Summer Upstream TRM 490.5 Autumn Upstream TRM 490.5 Nematoda            Nematoda Nematoda 2 ------- 2 ------- ------- 3 2 Arachnoidea Unoinicolidae Unionicola sp. ------- 2 ------- ------- ------- ------- 8    Acariformes Hygrobatidae Atractides sp. ------- ------- 2 ------- ------- ------- 2 Hydrozoa            Hydroida Hydridae Number of samples 10 10 10 10 5 5 10 Mean Density per meter&#xb2; 1,205 735 1,883 4,283 887 1,263 810 Taxa Richness 42 40 54 58 20 18 36 Sum of area sampled (meters&#xb2;) 0.60 0.60 0.60 0.60 0.30 0.30 0.60 55 56  Table 21. Individual Metric Ratings and the Overall RBI Field Scores for Downstream and Upstream Sampling Sites Near SQN, Chickamauga Reservoir, Autumn 2000-2010.
Reservoir Benthic Index Scores: 7-12
("Very Poor"), 13-18 ("Poor"), 19-23
("Fair"), 24-29 ("Good"), 30-35 ("Excellent"). Downstream (TRM 482.0) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Metric Obs Score Obs Score Obs Score Obs Score Obs Score ObsScore Obs Score Obs Score Obs Score Obs Score ObsScore Avg. Number of Taxa 3.7 3 6.2 5 5.4 5 5.7 5 6.3 5 6.6 5 4.9 5 4.1 3 5.8 5 4.2 3 5 5 % Long-Lived Organisms 0.9 5 0.8 5 1 5 0.6 3 1 5 0.9 5 0.9 5 0.6 3 0.6 3 0.7 3 0.9 5 Avg. Number of EPT Taxa 0.3 1 0.6 3 0.4 1 0.3 1 0.5 3 0.7 3 0.7 3 0.5 3 0.6 3 0.5 3 0.5 3 % as Oligochaetes 27.9 3 27.1 3 19.4 3 9.4 5 8.8 5 15 3 17.3 3 6.3 5 21.7 3 4.4 5 11.7 5 % as Dominant Taxa 87.6 3 80.8 5 78.6 5 79.8 5 68.4 5 79 5 78.1 5 90.6 3 83.9 3 83.9 3 81.3 5 Density excluding chironomids and oligochaetes 230 3 348.3 5 365 5 580 5 563.35 573.35 265 5 125 3 166.73 104.41 98.3 1 Number of Samples with Zero Organisms 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 Overall Score 23  31  29  29  33  31  31  25  25  23  29 Upstream (TRM 490.5) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Metric Obs Score Obs Score Obs Score Obs Score Obs Score ObsScore Obs Score Obs Score Obs Score Obs Score ObsScore Avg. Number of Taxa 4.7 5 6 5 6.4 5 7.4 5 7.2 5 6.8 5 5.4 5 4.7 5 5.4 5 5 5 4.4 5 % Long-Lived Organisms 0.9 5 0.9 5 1 5 0.9 5 0.9 5 0.9 5 0.8 5 0.5 3 0.3 1 0.8 5 0.7 3 Avg. Number of EPT Taxa 0.3 1 0.4 3 0.2 1 0.7 3 0.7 3 0.9 5 0.5 3 0.3 1 0.1 1 0.6 3 0.7 3 % as Oligochaetes 7.7 5 14.8 3 8.4 5 10.7 5 6.4 5 4.4 5 2.5 5 5.2 5 16.7 3 7.2 5 1.1 5 % as Dominant Taxa 88.4 1 79.4 3 85 3 71 5 78 5 79.8 3 83.1 3 93.4 1 95 1 81.2 3 91.8 1 Density excluding chironomids and oligochaetes 218.3 1 230 1 168.61 341.73 571.73 479.23 223.3 1 56.7 1 31.7 1 81.7 1 181.7 1 Number of Samples with Zero Organisms 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 Overall Score 23  25  25  31  31  31  27  21  17  27  23 57  Table 22. Mean percent composition of major phytoplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011.
August 25, 2011 October 10, 2011 Division TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 Bacillariophyta 0 0 1 0  36 38 39 63 Chlorophyta 1 1 2 1  16 16 13 11 Chrysophyta 0 0 0 0  ---  ---  ---  --- Cryptophyta 0 0 0 0  30 34 36 21 Cyanophyta 99 98 96 98  16 12 12 11 Euglenophyta 0 0 0 0  1 0  --- 0 Pyrrophyta 0 0 0 0  1 0 0  --- *To enhance pattern recognition, percentages are rounded to whole numbers, and values may not add to 100.                                      "0" values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.
Table 23. Comparison of the similarity of phytoplankton taxa within paired replicate samples. August 25, 2011 October 10, 2011 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  R1 R2 R1 R2 R1 R2 R1 R2  R1 R2 R1 R2 R1 R2 R1 R2 Replicate Taxa Richness 37 39 36 40 36 43 33 40  23 25 21 24 19 22 15 15 Combined Taxa Richness 43 46 49 48  32 30 27 19 Species Shared 33 30 30 25  16 15 14 11 Percent Shared 76.7% 65.2% 61.2% 52.1%  50.0% 50.0% 51.9% 57.9%
Table 24. Taxa richness of the main phytoplankton groups.
Group Total Number of Taxa August October Combined Bacillariophyta 9 12 16 Chlorophyta 31 14 37 Chrysophyta 7 --- 7 Cryptophyta 2 1 2 Cyanophyta 14 7 18 Euglenophyta 1 2 2 Pyrrophyta 3 2 4 Total Taxa Richness 67 38 86  Table 25. Percent Similarity Index for compar ison of phytoplankton communities among sites. Phytoplankton - Percent Similarity aStation Comparison August 25, 2011 October 10, 2011 TRM 481.1 - TRM 483.4 83 76  - TRM 487.9 85 71  - TRM 490.7 75 63 TRM 483.4 - TRM 487.9 87 80  - TRM 490.7 81 63 TRM 487.9 - TRM 490.7 84 63 a. Percent Similarity comparison of two communities Table 26. Phytoplankton taxa and density (cells/ml) data for samples collected at four stations within Chickamauga Reservoir o n the Tennessee River - August 25 and October 10, 2011. Abbrev iations "R1" and R2" designate replicate samples.
TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  August October August October August October August October Division Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Bacillariophyta Achnanthes 30.3    34.1    28.4    Anomoeneis 56.8            Aulacoseira 151.5 151.5 74.9 66.1 60.6 56.8 90.4 74.9 170.4 166.5 51.0 68.3  56.8 69.1 76.5  Cyclotella 568.0 814.1 17.6 22.0 333.2 312.4 20.9 16.5 2044.7 1908.4 23.1 20.9 710.0 1164.4 2.2 6.6  Nitzschia 68.2 265.1 3.3 2.2 121.2 113.6 3.3  702.9 306.7 4.4 3.3 56.8 170.4 0.5 1.0  Skeletonema 45.4 75.7      397.6 357.8  454.4 227.2    Stephanodiscus 18.9  60.6  2.2          Surirella 28.4            Synedra 22.7 113.6 12.1 9.9 30.3 56.8 16.5 9.9 68.2 5.5 6.6 8.8  28.4 5.9 5.6  Achnanthidium 1.1  3.3 1.1  0.7 0.1  2.9 1.5  Cocconeis 2.2 1.1    0.1  0.7      Cymbella  0.1 0.7  0.1    0.7  0.5  Fragilaria 50.7 63.9  86.0 50.7  72.7 52.9  83.7 54.4  Gyrosigma


===0.5 Melosira===
Figure 8. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River downstream of SQN. *Water depth (ft) at each point is denoted.
0.2 0.4      Navicula  0.1 0.7    0.1  3.3 2.2    Bacillariophyta Total 856 1,439 161 168 636 625 223 153 3,384 2,779 163 158 1,221 1,676 165 146 Chlorophyta Carteria 22.7 18.9    28.4            Chlamydomonas 386.2 302.9 5.5 6.6 121.2 198.8 49.6 20.9 681.6 511.2 23.1 16.5 198.8 142.0 9.6 6.6  Chlorococcaceae 22.7 56.8  121.2 113.6  136.3 408.9  170.4 142.0    Chlorogonium 34.1        Coelastrum 75.7      272.6 408.9        Cosmarium 28.4            Crucigenia 121.2  5.7 0.6    0.8  894.6 0.3 7.6  Diacanthos 34.1        Dictyosphaerium 249.9    121.2 227.2    136.3  113.6 312.4    Euastrum 22.7                Eudorina    484.7            Golenkinia 28.4  34.1 34.1    28.4    Kirchneriella 136.3        Lagerheimia 30.3 28.4    34.1  85.2    Micractinium 113.6  121.2 113.6  170.4    113.6    Monomastix 28.4            Monoraphidium 249.9 151.5 4.4  151.5 426.0  4.4 443.0 920.1  0.1 397.6 227.2    58 Table 26 (continued).
85
TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  August October August October August October August October Division Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Chlorophyta Mougeotia 22.7                (continued) Oocystis  18.9  60.6 142.0  545.3 272.6  113.6 113.6    Pandorina 363.5 87.8          87.8    Pediastrum 76.8 208.3 22.8  242.3 87.8 22.8 1.8  1056.4 0.8  113.6 2.1  Pyramichlamys 22.7 56.8            28.4    Quadrigula 28.4    Scenedesmus 284.0 1022.4 0.4 10.5 1272.3 426.0 3.1 13.2 1363.1 1158.7 16.1 17.6 1703.9 1168.4 15.6 6.1  Schroederia 22.7 75.7  30.3 28.4    34.1    28.4    Sphaerocystis 272.6        Staurastrum 28.4  0.7 34.1  0.1    0.0  Teilingia 21.9    Tetraedron 45.4  0.7 30.3 113.6  34.1 34.1  0.7 113.6 85.2    Tetrastrum 75.7 5.7  113.6 0.4  136.3 136.3 2.9      Treubaria 30.3 28.4    34.1        Actinastrum 17.6 11.4  8.8 0.8  0.4 17.6  3.8 0.4  Ankistrodesmus 8.8 5.7        0.2      Chlorella 23.1 16.5  13.2 7.7  3.3 3.3    0.1  Closterium


===0.7 Elakatothrix===
Figure 9. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River downstream of SQN. *Water depth (ft) at each point is denoted.
86


0.6            1.0  Selenastrum 9.4    0.2    1.4    Chlorophyta Total 1,792 2,265 98 52 2,938 2,189 104 50 3,987 5,521 47 58 3,126 3,306 32 21 Chrysophyta Chrysococcus 28.4    Conradiella 132.5  242.3 198.8  408.9 204.5  170.4 340.8    Erkenia 272.6 208.3  121.2 113.6  408.9 937.2  568.0 198.8    Goniochloris 34.1    28.4    Gonyostomum 5.5  5.5 5.5    Kephyrion 28.4    Mallomonas 68.2 68.2      Chrysophyta Total 273 341  364 312  920 1,215  801 573  Cryptophyta Cryptomonas 318.1 397.6 146.6 123.4 30.3 56.8 188.4 139.9 306.7 681.6 157.6 137.7 426.0 284.0 53.6 49.2  Rhodomonas 454.4 284.0  121.2 113.6  238.6 1465.4  568.0 312.4  Cryptophyta Total 772 682 147 123 151 170 188 140 545 2,147 158 138 994 596 54 49  59 60  Table 26 (continued).
Figure 10. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River downstream of SQN. *Water depth (ft) at each point is denoted.
TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 August October August October August October August October Division Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Cyanophyta Anabaena 43.9 738.4 0.9  76.8 1.5  886.1 477.1 1.9 74.4      Anabaenopsis 153.6    Aphanocapsa 6179.6 17561.7  3513.9 2186.7  5316.3 477.1  10947.7 6957.8    Chroococcaceae 98554.4 65702.9  78022.2 70835.9  100607.6 104714.0  151938.0 170416.9    Chroococcus 795.2 75.7 22.0 0.2 363.5 340.8  11.4 681.6 477.1  2.9  227.2    Cyanocatena 21900.9 10266.1        14783.2    Cyanogranis 59789.6 158097.6  65702.9 94447.9  68988.0 98760.2  123192.9 68988.0    Cylindrospermopsis 2805.8 2515.9  1206.5 1318.4  1243.9 1756.2  666.0 467.4    Dactylococcopsis 22.7 56.8        136.3  142.0 142.0    Leptolyngbya 32.8              Limnothrix 25.7    2.3          Lyngbya 3358.7 1416.2  1269.2 1817.5  963.3 1613.1  1363.2 3908.7    Merismopedia 8497.0 5566.2  11.4  1931.1 2.4 59.3 272.6 2453.7  454.4 681.6    Oscillatoria 6410.1 3691.9  4543.8 4158.1  4089.5 6043.3  8503.5 7403.6    Planktothrix 48.5            27.9  Pseudanabaena 0.9    34.3  19.8      Synechococcus 61664.6 110873.7  30113.8 34989.9  40203.9 62789.2  22585.4 35415.9    Synechocystis 5339.0 4998.2  4453.0 3635.1  7497.3 6986.2  5963.8 5310.6  Cyanophyta Total 253,461 371,295 56 87 211,090 226,004 4 107 230,750 286,683 22 77 325,757 314,856 0 28 Euglenophyta Euglena 45 11 6 7 15  0 1 5    5  1  Trachelomonas 1        Euglenophyta Total 45 11 6 7 15  0 3 5    5  1  Pyrrophyta Glenodinium 23 5        11  28    Gymnodinium 45 38  30    34    28    Peridinium 45 5  2  0 0 11  1  28    Ceratium    0    0        Pyrrophyta Total 114 49  2 30  0 0 11 45  1 28 57  Total Phytoplankton Cell Count 257,313 376,081 467 439 215,224 229,301 519 453 239,603 298,391 389 432 331,933 321,065 251 244 61  Table 27. Percentage Composition of phytoplankton for samples collected at four stations within Chickamauga Reservoir on the Te nnessee River - August 25 and October 10, 2011.
87
August 25, 2011 October 10, 2011 Taxon TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 R1 R2 R1 R2 R1 R2 R1 R2  R1 R2 R1 R2 R1 R2 R1 R2 Bacillariophyta Achnanthes  ---  --- 0  ---  --- 0  --- 0  ---  ---  ---  ---  ---  ---  ---  --- Anomoeneis  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Aulacoseira 0 0 0 0 0 0  --- 0  16 15 17 17 13 16 27 31 Cyclotella 0 0 0 0 1 1 0 0  4 5 4 4 6 5 1 3 Nitzschia 0 0 0 0 0 0 0 0  1 1 1  --- 1 1 0 0 Skeletonema 0 0  ---  --- 0 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Stephanodiscus  --- 0 0  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  --- Surirella  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Synedra 0 0 0 0 0 0  --- 0  3 2 3 2 2 2 2 2 Achnanthidium  ---  ---  ---  ---  ---  ---  ---  ---  --- 0 1 0 0 0 1 1 Cocconeis  ---  ---  ---  ---  ---  ---  ---  ---  0 0  --- 0 0  ---  ---  --- Cymbella  ---  ---  ---  ---  ---  ---  ---  ---  0 0 0  ---  --- 0 0  --- Fragilaria  ---  ---  ---  ---  ---  ---  ---  ---  11 15 17 11 19 12 33 22 Gyrosigma  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0 Melosira  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0 0  ---  --- Navicula  ---  ---  ---  ---  ---  ---  ---  ---  0 0  --- 0 1 1  ---  --- Bacillariophyta Total 0 0 0 0 1 1 0 1  34 38 43 34 42 36 66 60 Chlorophyta Carteria 0 0  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Chlamydomonas 0 0 0 0 0 0 0 0  1 2 10 5 6 4 4 3 Chlorococcaceae 0 0 0 0 0 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Chlorogonium  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Coelastrum  --- 0  ---  --- 0 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Cosmarium  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Crucigenia  ---  --- 0  ---  ---  ---  --- 0  ---  --- 1 0  --- 0 0 3 Diacanthos  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Dictyosphaerium 0  --- 0 0  --- 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Euastrum 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Eudorina  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Golenkinia  ---  ---  --- 0 0 0  --- 0  ---  ---  ---  ---  ---  ---  ---  --- Kirchneriella  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Lagerheimia  ---  --- 0 0  --- 0 0  ---  ---  ---  ---  ---  ---  ---  ---  --- Micractinium  --- 0 0 0 0  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  --- Monomastix  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Monoraphidium 0 0 0 0 0 0 0 0  1  ---  --- 1  --- 0  ---  --- Mougeotia 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Oocystis  --- 0 0 0 0 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Pandorina 0 0  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  --- Pediastrum 0 0 0 0  --- 0  --- 0  5  --- 4 0 0  --- 1  --- Pyramichlamys 0 0  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  --- Quadrigula  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  --- Scenedesmus 0 0 1 0 1 0 1 0  0 2 1 3 4 4 6 3 62  Table 27. (Continued)
August 25, 2011 October 10, 2011 Taxon TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 R1 R2 R1 R2 R1 R2 R1 R2  R1 R2 R1 R2 R1 R2 R1 R2 (Chlorophyta)                  Schroederia 0 0 0 0  --- 0  --- 0  ---  ---  ---  ---  ---  ---  ---  --- Sphaerocystis  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Staurastrum  ---  ---  --- 0 0  ---  ---  ---  ---  ---  --- 0 0  ---  --- 0 Teilingia  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  --- Tetraedron 0  --- 0 0 0 0 0 0  --- 0  ---  ---  --- 0  ---  --- Tetrastrum  --- 0  --- 0 0 0  ---  ---  1  --- 0  --- 1  ---  ---  --- Treubaria  ---  --- 0 0  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Actinastrum  ---  ---  ---  ---  ---  ---  ---  ---  4 3 2 0 0 4 2 0 Ankistrodesmus  ---  ---  ---  ---  ---  ---  ---  ---  2 1  ---  ---  --- 0  ---  --- Chlorella  ---  ---  ---  ---  ---  ---  ---  ---  5 4 3 2 1 1  --- 0 Closterium  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  --- Elakatothrix  ---  ---  ---  ---  ---  ---  ---  ---  0  ---  ---  ---  ---  --- 0  --- Selenastrum  ---  ---  ---  ---  ---  ---  ---  ---  2  --- 0  ---  --- 0  ---  --- Chlorophyta Total 1 1 1 1 2 2 1 1  21 12 20 11 12 14 13 9 Chrysophyta Chrysococcus  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  --- Conradiella  --- 0 0 0 0 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Erkenia 0 0 0 0 0 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Goniochloris  ---  ---  ---  --- 0  --- 0  ---  ---  ---  ---  ---  ---  ---  ---  --- Gonyostomum  ---  ---  ---  ---  --- 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Kephyrion  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  --- Mallomonas  ---  ---  ---  --- 0 0  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Chrysophyta Total 0 0 0 0 0 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Cryptophyta Cryptomonas 0 0 0 0 0 0 0 0  31 28 36 31 41 32 21 20 Rhodomonas 0 0 0 0 0 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Cryptophyta Total 0 0 0 0 0 1 0 0  31 28 36 31 41 32 21 20 Cyanophyta Anabaena 0 0  --- 0 0 0  ---  ---  0  --- 0  --- 0 17  ---  --- Anabaenopsis  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  ---  ---  --- Aphanocapsa 2 5 2 1 2 0 3 2  ---  ---  ---  ---  ---  ---  ---  --- Chroococcaceae 38 17 36 31 42 35 46 53  ---  ---  ---  ---  ---  ---  ---  --- Chroococcus 0 0 0 0 0 0  --- 0  5 0  --- 3  --- 1  ---  --- Cyanocatena  ---  --- 10 4  ---  ---  --- 5  ---  ---  ---  ---  ---  ---  ---  --- Cyanogranis 23 42 31 41 29 33 37 21  ---  ---  ---  ---  ---  ---  ---  --- Cylindrospermopsis 1 1 1 1 1 1 0 0  ---  ---  ---  ---  ---  ---  ---  --- Dactylococcopsis 0 0  ---  ---  --- 0 0 0  ---  ---  ---  ---  ---  ---  ---  --- Leptolyngbya  ---  ---  ---  ---  ---  ---  ---  ---  7  ---  ---  ---  ---  ---  ---  --- Limnothrix  ---  ---  ---  ---  ---  ---  ---  ---  --- 6  --- 1  ---  ---  ---  --- Lyngbya 1 0 1 1 0 1 0 1  ---  ---  ---  ---  ---  ---  ---  --- Merismopedia 3 1  --- 1 0 1 0 0  --- 3 0 13  ---  ---  ---  --- Oscillatoria 2 1 2 2 2 2 3 2  ---  ---  ---  ---  ---  ---  ---  --- Planktothrix  ---  ---  ---  ---  ---  ---  ---  ---  --- 11  ---  ---  ---  ---  --- 11 Pseudanabaena  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  --- 8 5  ---  ---  --- Synechococcus 24 29 14 15 17 21 7 11  ---  ---  ---  ---  ---  ---  ---  --- Synechocystis 2 1 2 2 3 2 2 2  ---  ---  ---  ---  ---  ---  ---  --- Cyanophyta Total 99 99 98 99 96 96 98 98  12 20 1 24 6 18  --- 11 63  Table 27.  (Continued)
August 25, 2011 October 10, 2011 Taxon TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 R1 R2 R1 R2 R1 R2 R1 R2  R1 R2 R1 R2 R1 R2 R1 R2 Euglenophyta Euglena 0 0 0  --- 0  --- 0  ---  1 2 0 0  ---  --- 0  --- Trachelomonas  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  --- Euglenophyta Total 0 0 0  --- 0  --- 0  ---  1 2 0 1  ---  --- 0  --- Pyrrophyta Glenodinium 0 0  ---  ---  --- 0 0  ---  ---  ---  ---  ---  ---  ---  ---  --- Gymnodinium 0 0 0  ---  --- 0  --- 0  ---  ---  ---  ---  ---  ---  ---  --- Peridinium 0 0  ---  --- 0  ---  --- 0  --- 1 0 0  --- 0  ---  --- Ceratium  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  --- 0  ---  ---  ---  --- Pyrrophyta Total 0 0 0  --- 0 0 0 0  --- 1 0 0  --- 0  ---  --- 


64  Table 28. Concentrations of chlorophyll a (apparent and corrected), phaeophytin a and the chlorophyll/phaeophytin index values for samples collected upstream and downstream of SQN during 2011.
Figure 11. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River upstream of SQN. *Water depth (ft) at each point is denoted.
Collection Date Sample Site Replicate Chlorophyll a (&#xb5;g/L) Phaeophytin a (&#xb5;g/L) Chlorophyll/Phaeophytin Index Apparent Corrected        08/25/2011 TRM 481.2 R1 13 11 2.2 1.6  R2 14 13 1.5 1.6  TRM 483.4 R1 8 6 2.5 1.5  R2 8 6 2.6 1.5  TRM 487.9 R1 13 13 < 1.0 1.7  R2 15 15 < 1.0 1.7  TRM 490.7 R1 11 10 1.0 1.6  R2 11 9 1.5 1.6 10/10/2011 TRM 481.1 R1 6 5 1.0 1.6  R2 8 7 1.7 1.6  TRM 483.4 R1 10 9 1.4 1.6  R2 13 11 1.6 1.6  TRM 487.9 R1 7 6 1.7 1.5  R2 9 8 1.4 1.6  TRM 490.8 R1 7 5 2.0 1.5  R2 6 6 1.1 1.6  Table 29. Mean percent composition of major zooplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011.  
Transects 1 and 2 are the most downstream of the eight transects upstream of the SQN discharge.
88


August 25, 2011 October 10, 2011 Group TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 Bivalvia (veliger) ---  ---  ---  ---  --- 0 0  --- Cladocera 66 51 65 62  44 59 71 69 Copepoda 32 27 20 23  40 37 23 29 Rotifera 2 22 15 16  16 4 6 2
Figure 12. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River upstream of SQN. *Water depth (ft) at each point is denoted.
* Percentages are rounded to whole numbers, and values may not add to 100.                                                                                          "0" values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.
89


65    Table 30. Comparison of the similarity of zooplankton taxa within paired replicate samples.
Figure 13. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River upstream of SQN. *Water depth (ft) at each point is denoted.
August 25, 2011 October 10, 2011 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  R1 R2 R1 R2 R1 R2 R1 R2  R1 R2 R1 R2 R1 R2 R1 R2 Replicate Taxa Richness 8 9 6 7 7 8 7 7  7 7 11 11 8 9 12 9 Combined Taxa Richness 14 8 9 9  9 16 12 13 Species Shared 3 5 6 5  5 6 5 8 Percent Shared 21.4% 62.5% 66.7% 55.6%  55.6% 37.5% 41.7% 61.5%  Table 31. Taxa richness of the main zooplankton groups.
90
Group Total Number of Taxa August October Combined Bivalvia  --- 2 2 Cladocera 7 8 11 Copepoda 3 9 10 Rotifera 8 7 12 Total Taxa Richness 18 26 35  Table 32. Percent Similarity Index for comparison of zooplankton communities among sites. Zooplankton - Percent Similarity a Station Comparison August 25, 2011 October 10, 2011 TRM 481.1 - TRM 483.4 63 83  - TRM 487.9 69 72  - TRM 490.7 75 74 TRM 483.4 - TRM 487.9 70 86  - TRM 490.7 72 89 TRM 487.9 - TRM 490.7 80 93 a. Percent Similarity comparison of two communities Table 33. Zooplankton taxa and density (organ isms/m3) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. A bbreviations "R1" and R2" designate replicate samples.
TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  August October August October August October August October Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Bivalvia                Corbiculidae Corbicula fluminea (veliger) 9        Dreissenidae Dreissena polymorpha (veliger) 9 9  15      Cladocera Cladocera (immature) 15      Diplostraca Bosminidae Bosmina longirostris 1175 2385 5017 18182 1421 784 2461 3614 596 1083 2895 3762 627 796 5511 5863 Bosminidae (immature) 40 Eubosmina tubicen 18    34  41  Daphiniidae Ceriodaphnia 147    41  79 120  37  14  Daphnia galeata 76    31            Daphnia lumholtzi 73      9  160 30 17    40 Daphnia retrocurva 89  Leptodoridae Leptodora kindtii 38  38    18        Sididae                Diaphanosoma birgei 417 1027  958 1238  397 321  111 265  Diaphanosoma brachyurum 14  Sididae (immature) 112          14 40 Ilyocryptidae Ilyocryptus spinifer 9          Macrothricidae Macrothrix sp.
9        Copepoda                Calanoida Calanoida 37 3961 12907 247 372 1558 1276 357 80 1006 872 111 44 2020 2193 Temoridae Epischura fluviatilis 34    Eurytemora affinis 377    186 120  15 77  82 120 Eurytemora sp.
673              66 67  Table 33 (continued).
TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  August October August October  August October August Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 (Copepoda)
Cyclopoida Cyclopoida 1023 1284 453 2918 1019 661 230 370 119 241 137 94 221 265 220 179 Cyclopidae Cyclops sp.
38    41      37    Eucyclops agilis 9          Mesocyclops edax 27          Tropocyclops prasinus 41 20 Harpacticoida Harpacticoida 112            Poecilostomatoida Ergasilidae Ergasilus sp.
18      41 40 Rotifera                Flosculariaceae Conochilidae Conochilus unicornis 38  1773 6846 31 2312 416  278 281 503  184 265 96 199 Ploima                Brachionidae Brachionus angularis 14  Brachionus calyciflorus 37 38    9 9        Brachionus patulus 9    Brachionus quadridentatus 17    Brachionus quadridentatus        f. brevispinus 15      Kellicottia longispina 40      Keratella cochlearis 40      14  Platyias patulus 37              Gastropidae Ascomorpha sp.
44  Lecanidae Lecane sp.
38                Trichocercidae Trichocerca sp.
37              Total Zooplankton Abundance 2842 5064 11657 41751 3707 5449 4930 5462 1866 2326 4632 4917 1327 1769 8122 8734 Table 34. Percentage composition of zooplankton taxa for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.
August 25, 2011 October 10, 2011 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  R1 R2 R1 R2 R1 R2 R1 R2  R1 R2 R1 R2 R1 R2 R1 R2 Bivalvia                                  Corbiculidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Corbicula fluminea (veliger)  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  --- Dreissenidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Dreissena polymorpha (veliger)  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0 0 0  ---  ---  --- Bivalvia Total  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0 0 0  ---  ---  --- Cladocera Cladocera (immature)  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  --- Diplostraca  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Bosminidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Bosmina longirostris 41 47 38 14 32 47 47 45  43 44 50 66 63 77 68 67 Bosminidae (immature)  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0 Eubosmina tubicen  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  --- 1 1  --- Daphiniidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Ceriodaphnia  --- 3  --- 1 4 5 3  ---  ---  ---  ---  ---  ---  --- 0  --- Daphnia galeata 3  --- 1  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Daphnia lumholtzi  --- 1  ---  ---  --- 7  ---  ---  ---  ---  --- 0 1 0  --- 0 Daphnia retrocurva  ---  ---  ---  ---  ---  ---  --- 5  ---  ---  ---  ---  ---  ---  ---  --- Leptodoridae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Leptodora kindtii 1  ---  ---  ---  ---  ---  ---  ---  0  ---  --- 0  ---  ---  ---  --- Sididae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Diaphanosoma birgei 15 20 26 23 21 14 8 15  ---  ---  ---  ---  ---  ---  ---  --- Diaphanosoma brachyurum  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  --- Sididae (immature)  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  --- 0 0 Ilyocryptidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Ilyocryptus spinifer  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  --- Macrothricidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Macrothrix sp.  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  --- Cladocera Total 60 72 65 38 57 72 58 65  43 44 50 67 63 78 69 68 Copepoda                      Calanoida
  --- --- --- --- --- --- --- ---  --- --- --- --- --- --- --- ---      Calanoida
  ---1 7 7 19 3 8 2  34 31 32 23 22 18 25 25      Temoridae
  --- --- --- --- --- --- --- ---  --- --- --- --- --- --- --- ---        Epischura fluviatilis
  --- --- --- --- --- --- --- ---  --- --- --- --- ---1 --- ---        Eurytemora affinis
  --- --- --- --- --- --- --- ---  3 ---4 2 0 2 1 1        Eurytemora sp.
  --- --- --- --- --- --- --- ---  ---2 --- --- --- --- --- ---  Cyclopoida
  --- --- --- --- --- --- --- ---  --- --- --- --- --- --- --- ---      Cyclopoida 36 25 27 12 6 10 17 15  4 7 5 7 3 2 3 2  68 69  Table 34.  (Continued)
August 25, 2011 October 10, 2011 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7  R1 R2 R1 R2 R1 R2 R1 R2  R1 R2 R1 R2 R1 R2 R1 R2 (Cyclopoida)
Cyclops sp.
1  ---  --- 1  ---  --- 3  ---  ---  ---  ---  ---  ---  ---  ---  --- Eucyclops agilis  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  --- Mesocyclops edax  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 1  ---  ---  ---  ---  --- Tropocyclops prasinus  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 1 0 Harpacticoida  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Harpacticoida  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  ---  ---  ---  --- Poecilostomatoida  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Ergasilidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Ergasilus sp.  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  --- 1 0 Copepoda Total 37 26 34 20 26 14 28 17  41 40 41 33 25 22 30 29 Rotifera                                  Flosculariaceae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Conochilidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Conochilus unicornis 1  --- 1 42 15 12 14 15  15 16 8  --- 11  --- 1 2 Ploima  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Brachionidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Brachionus angularis  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  --- Brachionus calyciflorus  --- 1  ---  ---  ---  ---  ---  ---  0  --- 0 0  ---  ---  ---  --- Brachionus patulus  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  --- Brachionus quadridentatus  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  --- Brachionus quadridentatus f. brevispinus  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  ---  ---  --- Kellicottia longispina  ---  ---  ---  ---  --- 2  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Keratella cochlearis  ---  ---  ---  --- 2  ---  ---  ---  ---  ---  ---  ---  ---  --- 0  --- Platyias patulus  --- 1  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Gastropidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Ascomorpha sp.  ---  ---  ---  ---  ---  ---  --- 2  ---  ---  ---  ---  ---  ---  ---  --- Lecanidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Lecane sp.
1  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Trichocercidae  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Trichocerca sp.  --- 1  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Rotifera Total 3 2 1 42 17 14 14 17  16 16 9 0 11 1 2 2
* Percentages are rounded to whole numbers, and values may not add to 100.                                                                                              "0" values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.
70  Table 35. Wildlife Visual Encounter Survey Results of Shoreline Upstream and Downstream of Sequoyah Nuclear Plant during August (Summer) and October (Autumn) 2011.  (RDB = right descending bank, LDB = Left Descending Bank)
Season Site Transect Birds Obs. Mammals Obs. August 2011 Upstream RDB Swallow sp.
1      Belted Kingfisher 1      American Crow 4      Turkey Vulture 2      Osprey 1      Great Blue Heron 5      Unidentified Duck 2    Upstream LDB Swallow sp.
2 White-tailed Deer 4    Red-winged Blackbird 5      American Crow 1      Great Blue Heron 5    Downstream RDB Swallow Sp.
3 White-tailed Deer 4    Osprey 2      Wood Duck 1      Great Blue Heron 4      Double-crested Cormorant 2    Downstream LDB Belted Kingfisher 1      Swallow sp. 5      European Starling 30      Green Heron 1      Great Blue Heron 2  October 2011 Upstream RDB Songbird sp.
2      Great Blue Heron 4    Upstream LDB Wren sp. 1      Belted Kingfisher 1      Great Blue Heron 1    Downstream RDB Songbird sp. 6 Eastern Gray Squirrel 1    Belted Kingfisher 3      Blue Jay 1      Northern Mockingbird 1      Double-crested Cormorant 1      Great Blue Heron 5      American Coot 335      American Widgeon 2      Pied-billed Grebe 2      Mallard 5    Downstream LDB Belted Kingfisher 2      Tufted Titmouse 3      Killdeer 2      Sandpiper sp. 2      Songbird sp. 3      Great Blue Heron 7      Wood Duck 15      American Coot 603      Black-crowned Night Heron 1      Gadwall 3      Mallard 13      Green-winged Teal 2      Pied-billed Grebe 2      Double-crested Cormorant 5 71  Table 36. Water temperature (&deg;F) profiles meas ured at five locations (10%, 30%, 50%, 70%, 90%) from right descending bank alon g transects located at TRM 486.7 (ambient), TRM 483.4 (discharge), TRM 481.1 (middle of plume), TRM 480.0 (dow nstream limit of pl ume), and TRM 478.3 (below plume) on August 25, 2011 (Summer).
Green numbers represent ambient temperatures used to characterize the thermal plume. Red numbers represent temperatures 3.6
&#xfb;F (2&deg;C) or greater above ambient temperature.
Depth (m) Ambient TRM 486.7 SQN Discharge TRM 483.4 Middle of Plume TRM 481.1 At Plume Limit TRM 480.0 Below Plume TRM 478.3 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%                          0.3 82.35 82.63 81.63 81.55 81.59 85.42 85.15 84.92 85.30 84.69 85.28 85.69 86.63 86.22 86.85 85.95 85.51 85.89 86.72 86.77 84.18 84.74 85.19 85.46 85.86 1 81.93 82.38 81.52 81.43 81.54 85.08 85.06 83.52 84.85 84.87 85.03 84.87 85.03 86.04 86.72 85.77 85.08 85.69 84.97 86.16 84.11 84.63 85.03 85.30 85.37 2 81.63 81.50 81.32 81.23 81.41 84.72 84.58 82.58 84.96 84.43 84.69 84.51 84.65 85.32  84.51 84.18 85.21  84.88 83.52 83.98 84.74 84.31 85.33 3 81.36 81.32 81.21 81.68 81.37 82.60 82.96 81.73 84.51 83.32 84.02 84.16 84.40 84.27  84.40 83.93 84.31  83.55 83.95 84.51 84.13 85.32 4 81.25 81.09 81.10 81.05 81.27 82.13 82.40  84.31 84.45 83.75 83.97 84.29 84.24  84.34 83.82 83.84    83.93 84.11 84.11 85.26 5 81.12  81.09 81.03 81.05  82.18  84.22 83.80  83.86 84.25 84.20  84.18  83.59    83.89 83.93 84.06 84.97 6  81.03 81.01 80.73    84.33 83.82  83.66 84.16  84.11  82.96    83.82 83.86 83.84 84.16 7  80.98 80.94 80.65    84.20 83.75  83.75 84.07  83.98  82.58    83.46 83.79 83.82 83.84 8  80.85 80.89 80.65    84.20 82.76  83.12 83.84  83.61  82.36    83.43 83.75 83.80 83.77 9  80.80 80.85 80.65    83.70 82.11  82.94 83.53  83.39  82.17    83.17 83.66 83.75 83.68 10  80.80 80.85 80.65    83.55 82.09  82.85 83.16  83.28  82.11    83.26 83.17 83.71 83.66 11  80.80 80.83 80.64    83.10 81.68  82.49 82.72  83.19  82.11    83.25 82.99 83.66 83.64 12    80.83 80.64    83.14 81.70  82.54 82.47  83.14  82.09    83.10 82.90 82.92  13    80.64    82.67 81.63  82.47 82.20    82.11    83.10 82.80 82.87  14    80.64    82.17 81.59  82.38 82.08    82.11    83.05 82.54 82.63  15        82.18  82.26 82.08        83.01 82.53 82.58  16        82.13  82.26 82.08          82.51 82.58  17        82.06  82.27 82.08          82.51 82.56  18        82.04  82.15 82.08          82.45 82.56 Table 37. Water temperature (&deg;F) profiles measured at five locations (10%, 30%, 50%, 70%, 90%) from right descending bank along transects located at TRM 487 (ambient), TRM 483.4 (discharge), TRM 482.2 (below discharge), TRM 481.0 (downstream limit of plume), and TRM 478.3 (below plume) on September 14, 2011 (Autumn).
Green numbers represent ambient temperatures used to characterize the thermal plume.
Red numbers represent temperatures 3.6
&#xfb;F (2&deg;C) or greater above ambient temperature.
Depth (m) Ambient TRM 487 SQN Discharge TRM 483.4 Below Discharge TRM 482.2 At Plume Limit TRM 481 Below Plume TRM 480.5 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%                          0.3 77.18 77.18 77.54 77.36 77.54 81.25 80.42 80.55 80.01 81.68 81.45 81.21 81.14 81.48 81.91 80.15 81.03 81.32 80.53 80.65 80.08 80.04 80.42 79.25 79.45 1 77.00 76.82 77.18 76.64 77.18 80.71 80.29 80.10 79.88 81.09 81.09 80.28 79.79 80.06 80.71 79.61 79.74 79.75 79.66 79.59 78.18 79.14 79.00 78.62 78.76 2 76.64 76.46 76.46 76.46 76.28 82.35 80.08 80.06 79.70 80.58  79.83 79.29 79.20 80.24 78.60 78.60 79.00 79.30 78.80 78.82 78.49 78.48 78.44 77.58 3 76.64 76.46 76.10 76.10 76.10 78.40 79.61 80.06 79.54 80.69  79.74 78.93 79.00 79.39 78.40 78.21 78.04 78.84 78.51 78.71 78.19 78.21  77.52 4 76.46 76.46 75.92 75.20 75.38  78.06 79.97 79.47 80.80  79.47  78.84 78.87  77.83 77.49 78.75 77.61 78.58 78.04 77.94  77.49 5 76.46  75.56 75.20    80.20 79.34 80.64  78.24  78.53 78.71  77.68 77.34 78.69 77.49 78.13 77.81 77.56  6  75.20 75.02    79.02 79.25 80.55    78.37 78.58  77.38 77.32 78.51 77.43  77.74 77.50  7  75.20 75.02    78.49 80.28    78.28  77.32 77.20    77.70 77.45  8  75.02 74.48    77.58 78.49    78.06  77.20 76.93    77.67 77.36  9  75.02 74.48    77.22 77.54    77.67  77.04 76.84    77.58 77.34  10  74.48 74.30    76.15 77.43    77.59  76.96 76.80    77.52 77.09  11  73.58 74.30    76.12 77.36    77.58  76.66 76.69    77.49 76.96  12  73.22      75.97 76.82    77.56  76.28 76.41    77.47 76.23  13        75.94 76.82    77.23  76.21 76.24    77.05 76.19  14        75.87 76.05    76.14  76.08 76.19        15        75.76    75.83  76.08 76.06        1  16        75. 7 7.0 7 7 76    75. 8  76 3      17        75. 4    75. 8          18        75. 2                  72 Table 38. Seasonal water quality parameters collected along vertical depth profiles downst ream (TRM 482) and upstream (TRM 490.5) of the Sequoyah Nuclear Plant in Chickamauga Re servoir on the Tennessee Rive
: r. Abbreviations: &deg;C -Temperature in degrees Celsius, &deg;F - Temperature in degrees Fahrenheit, Cond - Conducti vity, DO - Dissolved Oxygen Summer - TRM 482 LDB Mid-channel RDB  Depth &#xfb;C &deg;F Cond DO pHDepth&#xfb;C&deg;FCond DO pHDepth&#xfb;C&deg;FCond DO pH Downstream Transect 0.3 29.33 84.79 192.8 7.467.910.329.5085.10192.2 8.058.110.329.7385.51192.66.737.74 1.5 29.09 84.36 193.1 7.187.831.529.1584.47192.3 7.557.981.529.3084.74192.87.227.86 3 28.67 83.61 193.0 6.517.67 329.1084.38192.4 7.497.95 329.0784.33193.87.597.98 5 28.62 83.52 193.1 6.397.64 429.0784.33192.5 7.457.93 528.7483.73192.48.228.18      628.8583.93192.4 7.177.85            828.6983.64192.0 7.027.80            1228.4083.12191.4 6.557.70            1528.1982.74192.2 6.387.64            1928.0782.53227.5 6.247.63                        Middle Transect 0.3 29.60 85.28 192.8 6.897.780.329.3584.83191.6 7.35 0.330.5887.04191.89.128.37 1.5 29.14 84.45 191.6 7.037.811.529.0384.25191.3 7.357.921.529.1984.54191.08.588.21 3 28.59 83.46 192.3 8.058.07 328.7983.82191.2 7.167.86 328.6985.44190.47.948.02 4.5 28.30 82.94 190.2 8.358.23 428.6583.57191.0 7.237.87            828.3583.03191.7 6.947.79            1227.9382.27191.8 6.607.71            14.527.8782.17191.2 6.537.67                                          Upstream Transect 0.3 28.75 83.75 190.9 9.008.210.329.2084.56192.0 7.617.810.329.3184.76190.09.668.50 1.5 27.84 82.11 190.0 7.127.721.529.0784.33191.7 7.447.791.529.2584.65191.59.588.45 3 27.78 82.00 190.5 7.147.63 329.0984.36191.9 6.787.68 329.1584.47190.79.488.42 3.5 27.77 81.99 190.0 6.967.55 428.7583.75191.2 6.737.67 429.1884.52190.79.698.46      628.4483.19191.8 6.847.70 629.1284.42191.09.558.44      828.5083.30191.5 6.887.72 828.8383.89190.88.368.19      1227.8682.15190.6 6.867.73 1227.6381.73191.96.607.64      1627.8082.04190.4 6.857.75                        73 Table 38 (continued). Summer - TRM 490.5 LDB Mid-channel RDB  Depth &#xfb;C &deg;F Cond DO pHDepth&#xfb;C&deg;FCond DO pHDepth&#xfb;C&deg;FCond DO pH Downstream Transect 0.3 28.19 82.74 198.5 9.588.520.327.9082.22198.7 8.888.330.328.3282.98194.59.508.51 1.5 28.15 82.67 199.0 9.548.491.527.7281.90200.1 7.078.161.528.2982.92194.99.408.42 3 27.51 81.52 197.7 6.607.62 327.6881.82200.2 7.748.03 327.4381.37196.66.137.55 5 26.91 80.44 200.6 4.237.33 427.3081.14200.5 5.757.624.527.1980.94198.15.177.42 7 26.91 80.44 199.5 4.317.36 627.1980.94200.0 5.507.53            827.1580.87201.1 5.217.48            1027.0980.76200.7 5.047.45            1327.1180.80200.3 5.177.46            1727.1480.85200.1 5.377.47                        Middle Transect 0.3 28.70 83.66 196.0 10.9n/a0.328.3883.08198.8 9.848.570.328.7483.73193.29.838.64 1.5 28.28 82.90 196.2 10.0n/a1.527.9082.22200.6 8.488.201.527.4481.39199.46.587.75 3 27.16 80.89 198.2 4.68n/a 327.2581.05201.3 5.617.54 327.2781.09200.45.887.55 5 27.09 80.76 197.3 4.37n/a 527.1380.83200.9 4.977.45 427.3481.21200.46.157.59      727.0280.64200.3 4.717.40 627.1780.91200.85.507.44      927.0080.60200.7 4.627.38 727.1980.94201.15.577.37      1126.9880.56200.5 4.567.40                                          Upstream Transect 0.3 28.71 83.68 197.8 10.48.660.328.1582.67200.6 8.308.150.328.0782.53200.06.158.12 1.5 28.49 83.28 197.9 9.928.551.527.8782.17200.0 7.777.971.527.8082.04200.16.247.89 3 27.70 81.86 197.0 6.007.79 327.3681.25200.3 5.787.51 327.4681.43199.67.937.49      427.2481.03200.5 5.217.42 427.3781.27199.38.587.43      627.1880.92200.7 4.947.36            827.0880.74200.5 4.737.30            9.527.0780.73200.2 4.687.30                          74 Table 38 (continued).
Autumn - TRM 482 LDB Mid-channel RDB  Depth &#xfb;C &deg;F Cond DO pHDepth&#xfb;C&deg;FCond DO pHDepth&#xfb;C&deg;FCond DO pH Downstream Transect 0.3 22.43 72.37 184.5 7.457.490.322.9273.26183.7 7.577.480.322.4372.37184.47.497.54 1.5 22.42 72.36 184.3 7.417.471.522.8973.20183.7 7.487.471.522.1971.94184.77.487.49 2 22.38 72.28 184.0 7.427.44 322.6372.73184.2 7.417.44 322.1471.85185.17.377.47      522.5172.52184.6 7.387.43 522.1271.82185.37.327.44      722.3572.23185.0 7.347.40            922.1871.92184.4 7.297.36            1121.7571.15184.8 7.297.33            1321.7071.06184.2 7.337.29            1521.6370.93183.7 7.297.25                        Middle Transect 0.3 23.49 74.28 183.7 7.727.570.323.4674.23183.4 7.597.500.322.9773.35183.87.627.52 1.5 23.21 73.78 183.6 7.667.531.523.8975.00183.8 7.477.491.522.7172.88183.87.577.52 3 23.21 73.78 183.4 7.667.49 322.9673.33183.8 7.457.47 322.6572.77184.17.457.51      422.9273.26183.4 7.407.45 422.5972.66183.97.747.46      622.8173.06183.9 7.337.44            822.4572.41183.5 7.347.39            1021.9971.58183.3 7.327.37            1221.7471.13182.9 7.317.33            1421.4170.54183.0 7.237.29            1621.3970.50183.1 7.157.23                        Upstream Transect 0.3 23.75 74.75 183.8 7.497.490.323.8374.89183.7 7.427.490.323.4274.16183.59.668.50 1.5 23.46 74.23 183.5 7.397.511.523.5774.43183.3 7.377.481.523.2873.90183.49.588.45 3 22.97 73.35 183.9 7.337.48 323.0373.45183.9 7.347.84 323.0873.54183.69.488.42 4 22.69 72.84 184.0 7.307.47 422.7172.88183.3 7.337.47    9.698.46 6 22.61 72.70 183.6 7.247.46 622.4872.46183.3 7.317.46    9.558.44 8 22.38 72.28 184.2 7.127.44 822.4472.39183.1 7.327.45    8.368.19 10 22.15 71.87 184.4 7.067.42 1022.3272.18183.9 7.277.43    6.607.64 12 22.17 71.91 184.1 7.067.39 1221.8971.40182.7 7.297.41            1421.5470.77182.8 7.247.38            1621.3570.43183.0 7.267.39        75 76  Table 38 (continued).
Autumn - TRM 490.5 LDB Mid-channel RDB  Depth &#xfb;C &deg;F Cond DO pH Depth &#xfb;C &deg;F Cond DO pH Depth &#xfb;C &deg;F Cond DO pH Downstream Transect 0.3 21.23 70.21 182.7 7.687.540.321.2670.27182.9 7.677.550.321.2170.18182.67.827.58 1.5 21.23 70.21 182.7 7.667.521.521.2670.27183.0 7.627.561.521.2170.18182.87.827.56 2 21.22 70.20 182.6 7.667.54 321.2670.27183.0 7.597.54 321.2070.16186.77.847.55      421.2670.27183.0 7.557.53 421.1970.14183.57.947.55      621.2570.25183.0 7.507.56            821.2470.23183.0 7.487.51            1021.2470.23182.6 7.467.59            1221.2370.21183.0 7.447.47            1421.2470.23183.0 7.377.44            1621.0369.85183.0 7.397.42                        Middle Transect 0.3 21.09 69.96 191.6 7.817.570.321.3370.39187.0 7.687.540.321.3470.41182.77.677.52 1.5 21.09 69.96 182.7 7.797.571.521.3370.39182.0 7.657.501.521.3470.41182.87.667.57 3 21.10 69.98 180.7 7.757.55 321.3270.38182.2 7.607.51 321.3470.41187.77.657.51 5 21.20 70.16 181.7 7.757.48 521.3770.47182.4 7.547.17 421.3470.41182.77.597.54      721.2970.32181.1 7.507.45 621.3370.39182.87.557.53      921.2770.29181.3 7.477.40 821.3270.38182.87.447.50            1021.3170.36182.87.457.48                  Upstream Transect 0.3 21.06 69.91 179.4 7.817.560.321.2070.16179.5 7.407.490.321.2970.32180.77.727.55 1.5 21.06 69.91 179.5 7.817.521.521.2070.16179.5 7.467.501.521.2870.30180.27.837.56 3 21.03 69.85 179.9 7.777.55 321.2070.16180.0 7.457.50 221.2270.20181.17.867.60      521.1970.14179.4 7.447.48            721.1970.14179.4 7.397.46            921.2570.25179.5 7.107.41                       


Figures 
Figure 14. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River upstream of SQN. *Water depth (ft) at each point is denoted.
91


77 78   Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge
35 31                                                                                                                              Avg = 27 30 30                                    29 28                                        27 26        26            26                              26 25                                            25                                                                                      25 24
   # of indigenous species 25 23 20 15 10 5
0 1996      1999          2000    2001    2002          2003      2004        2005      2006          2007    2008    2009          2010      2011 Year Figure 15. Number of indigenous fish species collected during RFAI samples downstream of SQN (TRM 482) during 1996 and 1999 through 2011.
40 Avg = 28 35 30                                                          31    30                  31                30      31              28        28 28        29                    28                                29                    29 30
  # of indigenous species 27                                                                                            27                        27 23 25 20 20 15 10 5
0 1993    1994      1995    1996  1997  1999    2000      2001    2002      2003    2004      2005    2006  2007  2008    2009      2010    2011 Year Figure 16. Number of indigenous fish species collected during RFAI samples upstream of SQN (TRM 490.5) during 1993 to 1997 and 1999 through 2011.
92


79    Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 Figure 3. Biological monitoring stations upstream of Sequoyah Nuclear Plant.
Mayflies            Caddisflies        Snails 4
80  Biomonitoring Stations Upstream of Sequoyah Nuclear Plant
Percent of overall sample 3
* Electrofishing o Gill Netting e Plankton!
2 1
Water Quality --Benthic Macroinvertebrate Transect __ Wildlife Observation Transect 81    Figure 4. Biological monitoring stations downstream of Sequoyah Nuclear Plant, including mixing zone and thermal plum e from SQN CCW discharge.
0 STRM 481.3   ATRM 481.3     STRM 483.4       ATRM 483.4   STRM 488.0   STRM 490.5   ATRM 490.5 Figure 17. Proportions of selected benthic taxa from Ponar dredge sampling at locations upstream and downstream of SQN, summer and autumn 2011.
Biomonitoring Stations Downstream of Sequoyah Nuclear Plant
93
* Electrofishing o Gill Netting o Planktonl Water Quality --Benthic Macroinvertebrate Transect --Wildlife Observation Transect DThermal Plume, Summer (0812512011) Thermal Plume, Autumn (0911412011)
Figure 5. Benthic and shoreline habitat transects within the fish community sampling area upstream and downstream of SQN.
SAHI data were collected on the left and right descending banks at endpoi nts of each transect.
82  Transects for Shore li ne Aquat i c Hab i tat I ndex (SAH I) Upstream and Do w nstream of Sequoyah Nuc l ear P l ant CCW D i scharge --SAH I T ransects Figure 6. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake a nd downstream of SQN discharge during October 2010 through November 2011. Station 14 was used for upstream ambient temperatures of the SQN intake and was locat ed at TRM 490.4. Station 8 was used for temperatures downstream of SQN disc harge and was located at TRM 483.4.
83 84    Figure 7. Substrate composition at ten equally sp aced points per transect (1 and 2) across the Tennessee River downstream of SQN.  *Water depth (ft) at each point is denoted. Transects 1 and 2 are the most downstream of the eight transects downstream of the SQN discharge.
Figure 8. Substrate composition at ten equally sp aced points per transect (3 and 4) across the Tennessee River downstream of SQN.  *Water depth (ft) at each point is denoted.
85 Figure 9. Substrate composition at ten equally sp aced points per transect (5 and 6) across the Tennessee River downstream of SQN.  *Water depth (ft) at each point is denoted.
86 Figure 10. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River downstream of SQN.  *Water depth (ft) at each point is denoted.87 Figure 11. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River upstream of SQN.  *Water depth (ft) at each point is denoted. Transects 1 and 2 are the most downstream of the eight trans ects upstream of the SQN discharge.
88 Figure 12. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River upstream of SQN.  *Water depth (ft) at each point is denoted.
89 Figure 13. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River upstream of SQN.  *Water depth (ft) at each point is denoted.
90 Figure 14. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River upstream of SQN.  *Water depth (ft) at each point is denoted.
91 Figure 15. Number of indigenous fish species collected during RFAI samples downstream of SQN (TRM 482) during 1996 and 1999 through 2011.
31 25 28 29 24 25 27262626 30 23 26 25 0 5 10 15 20 25 30 35 1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011#ofindigenousspecies Year Avg=27 Figure 16. Number of indigenous fish species collected during RFAI samples upstream of SQN (TRM 490.5) during 1993 to 1997 and 1999 through 2011.
30 28 29 27 20 28 23 31 30 29 31 29 30 31 272828 27 0 5 10 15 20 25 30 35 40 1993 1994 1995 1996 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011#ofindigenousspecies Year Avg=28  92 0 1 2 3 4 S TRM481.3 A TRM481.3 S TRM483.4 A TRM483.4 S TRM488.0 S TRM490.5 A TRM490.5PercentofoverallsampleMayfliesCaddisflies Snails Figure 17. Proportions of selected benthic taxa from Ponar dredge sampling at locations upstream and downstream of SQN, summer and autumn 2011.
93 Figure 18. Mean phytoplankton densities (ce lls/ml) for samples collected August 25, 2011.
Figure 19. Mean phytoplankton biovolume (&#xb5;m 3/ml) for samples collected August 25, 2011.
Figure 20. Mean phytoplankton densities (ce lls/ml) for samples collected October 10, 2011.


Figure 21. Mean phytoplankton biovolume (&#xb5;m 3/ml) for samples collected October 10, 2011.
400,000                                                                                                                    600 Phytoplankton Density (cells/ml)                                                                                          Phytoplankton Density (cells/ml) 350,000 500 300,000                                                      Bacillariophyta                                                                                                                Bacillariophyta 400 250,000                                                       Chlorophyta                                                                                                                    Chlorophyta 200,000                                                      Chrysophyta                                                  300                                                                Chrysophyta 150,000                                                      Cryptophyta                                                                                                                    Cryptophyta 200 100,000                                                       Cyanophyta                                                                                                                      Cyanophyta Euglenophyta                                                100                                                                Euglenophyta 50,000 Pyrrophyta                                                                                                                      Pyrrophyta 0                                                                                                                      0 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7                                                                                  TRM 481.1    TRM 483.4    TRM 487.9    TRM 490.7 Site                                                                                                                        Site Figure 18. Mean phytoplankton densities (cells/ml) for                                                                    Figure 20. Mean phytoplankton densities (cells/ml) for samples collected August 25, 2011.                                                                                          samples collected October 10, 2011.
050,000100,000150,000 200,000250,000300,000 350,000400,000TRM481.1TRM483.4TRM487.9TRM490.7PhytoplanktonDensity(cells/ml)SiteBacillariophytaChlorophytaChrysophytaCryptophytaCyanophytaEuglenophytaPyrrophyta 0200,000400,000 600,000800,0001,000,0001,200,000 1,400,000 1,600,000TRM481.1TRM483.4TRM487.9TRM490.7Biovolume(&#xb5;m 3/ml)BacillariophytaChlorophytaChrysophytaCryptophytaCyanophytaEuglenophytaPyrrophyta 0 100 200 300 400 500 600TRM481.1TRM483.4TRM487.9TRM490.7PhytoplanktonDensity(cells/ml)SiteBacillariophytaChlorophytaChrysophytaCryptophytaCyanophytaEuglenophytaPyrrophyta 020,00040,00060,00080,000100,000120,000TRM481.1TRM483.4TRM487.9TRM490.7Biovolume(&#xb5;m 3/ml)BacillariophytaChlorophytaChrysophytaCryptophytaCyanophytaEuglenophytaPyrrophyta 94 Figure 22. Mean chlorophyll a concentrations for samples collected August 25 and October 10, 2011.  
1,600,000                                                                                                                 120,000 1,400,000 100,000 1,200,000                                                      Bacillariophyta                                                                                                                Bacillariophyta Biovolume (&#xb5;m 3 /ml)                                                                                                               Biovolume (&#xb5;m 3 /ml)
Chlorophyta                                                  80,000                                                            Chlorophyta 1,000,000 Chrysophyta                                                                                                                    Chrysophyta 800,000                                                                                                                    60,000 Cryptophyta                                                                                                                    Cryptophyta 600,000                                                      Cyanophyta                                                                                                                      Cyanophyta 40,000 400,000                                                      Euglenophyta                                                                                                                    Euglenophyta Pyrrophyta                                                  20,000                                                            Pyrrophyta 200,000 0                                                                                                                          0 TRM 481.1  TRM 483.4    TRM 487.9  TRM 490.7                                                                            TRM 481.1    TRM 483.4    TRM 487.9    TRM 490.7 Figure 19. Mean phytoplankton biovolume (&#xb5;m3/ml) for                                                                      Figure 21. Mean phytoplankton biovolume (&#xb5;m3/ml) for samples collected August 25, 2011.                                                                                        samples collected October 10, 2011.
94


Figure 23. Mean zooplankton densities (number/m
16                                                                  August 2011 45,000 October 2011 Chlorophyll a concentration (&#xb5;g/l)
: 3) for samples collected August 25, 2011.
Zooplankton Density (No. /m3) 14                                                                                                                          40,000 12                                                                                                                          35,000 30,000                                                         Rotifera 10 25,000                                                         Copepoda 8
Figure 24. Mean zooplankton densities (number/m
14                                                                            20,000                                                         Cladocera 6        12 15,000 10                                 9.5 4                                                                                                                          10,000 7
: 3) for samples collected October 10, 2011 12 6 149.5 6 10 75.5 0 2 4 6 8 10 12 14 16TRM481.2TRM483.4TRM487.9TRM490.7Chlorophyllaconcentration(&#xb5;g/l)SiteAugust2011October2011 01,0002,0003,0004,000 5,000 6,000TRM481.2TRM483.4TRM487.9TRM490.7ZooplanktonDensity(No./m 3)SiteRotiferaCopepodaCladocera 05,00010,00015,000 20,00025,00030,000 35,000 40,000 45,000TRM481.1TRM483.4TRM487.9TRM490.7ZooplanktonDensity(No./m 3)SiteRotiferaCopepodaCladocera 95 0.775 0.80.8250.850.875 0.90.9250.950.975Bray-Curtis SimilarityT_487.9_8T_481.1_8T_483.4_8T_490.7_8 Figure 25. Dendrogram of phytoplankt on community (taxa density, log 10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month.  (Coph. Corr = 0.89) 96 0.60.65 0.70.75 0.80.85 0.90.95Bray-Curtis SimilarityT_490.7_10T_483.4_10T_487.9_10T_481.1_10 Figure 26. Dendrogram of phytoplankt on community (taxa density, log 10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month.  (Coph. Corr = 0.78) 97 0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96Bray-Curtis SimilarityT_483.3_8T_490.7_8 T_487.9_8T_481.1_8  Figure 27. Dendrogram of zooplank ton community (taxa density, log 10+1) cluster analysis (aver age distance) based on Bray-Curtis distance matrix among sa mples collected August 25, 2011. Samples for each location are coded by river mile and month.  (Coph. Corr = 0.87) 98 99    Figure 28. Dendrogram of zooplank ton community (taxa density, log 10+1) cluster analysis (aver age distance) based on Bray-Curtis distance matrix among sa mples collected October 10, 2011. Samples for each location are coded by river mile and month.  (Coph. Corr = 0.78) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95Bray-Curtis SimilarityT_483.3_10T_487.9_10 T_490.7_10T_481.1_10 Figure 29. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, August 23 through August 25, 2011 05,00010,00015,00020,000 25,00030,00035,000 40,00045,00050,00013579111315171921231357911131517192123135791113151719212308/23/201108/24/201108/25/2011Discharge(cfs)DateandHourChickamaugaWattsBarApalachiaandOcoee#1    Figure 30. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, October 8 through October 10, 2011 05,00010,00015,00020,000 25,000 30,00035,00040,000 45,000 50,00013579111315171921231357911131517192123135791113151719212310/08/201110/09/201110/10/2011Discharge(cfs)DateandHourChickamaugaWattsBarApalachiaandOccoe#1 100 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,00010/111/112/11/12/13/14/15/16/17/18/19/110/111/1 Discharge(cfs)Date 2011DailyAverageFlow HistoricalDailyAverage1976 2010 Figure 31. Total daily average releases (cubic feet per second) from Watts Bar, Apalachia, and Ocoee 1 dams, October 2010 through November 2011 and historic daily average flows averaged for the same period 1976 through 2010.
6         6                                             5.5 2                                                                                                                           5,000 0                                                                                                                              0 TRM 481.1   TRM 483.4          TRM 487.9  TRM 490.7 TRM 481.2    TRM 483.4             TRM 487.9          TRM 490.7 Site Site Figure 22. Mean chlorophyll a concentrations for samples                                                                          Figure 24. Mean zooplankton densities (number/m3) for collected August 25 and October 10, 2011.                                                                                        samples collected October 10, 2011 6,000 Zooplankton Density (No. /m3) 5,000 4,000                                                                    Rotifera Copepoda 3,000 Cladocera 2,000 1,000 0
101 102    Figure 32. Daily average water temperatures (&deg; F) at a depth of five feet, recorded upstream of SQN intake (Station 14) and downstream of SQN discharge (Station 8), October 2009 through November 2010.
TRM 481.2   TRM 483.4         TRM 487.9      TRM 490.7 Site Figure 23. Mean zooplankton densities (number/m3) for samples collected August 25, 2011.
0 10 20 30 40 50 60 70 80 90 100 WaterTemperature(&deg;F)Date DownstreamofSQNDischarge UpstreamofSQNIntake TNStateThermalDischargeLimit(86.9&deg;F)
95
April 19, 2013 Bradley M. Love, OPS 5N-SQN SEQUOY AH NUCLEAR PLANT (SQN)--RlVER SCHEDULING FOR LOW FLOW CONDITONS Part IlI.F.l.b.
and Part IlI.F.l.c. of the current SQN National Pollutant Discharge E limin ation System (NPDES) permit summarize req uir ements related to monitoring thermal compliance for Outfall 101 , the plant diffuser discharge to the Tennessee River. In particular, in these part s of the permit , range s for the daily average flow past SQN are defined wherein specia l field surveys are required to verify the adequacy of the plant ambient river temperature and the adequacy of the plant diffuser mixing zone. These ranges in flow are given both for river condition s characterized by unsteady flow and river conditions characterized by steady flow. The type of unsteady flows of concern is the type created by strong hydro peaking, s u stained day after da y with low daily average flows. Similarly, the type of steady flows of concern is the type created by continuous , unvarying hydro operation , again sustained day after day , but at daily average flows lower than those of concern for low flow hydro peaking. To verify compliance to the se requirements for special field surveys, the NPDES permit specifies that river flow data shall b e submitted with the app lication for re-issuance of the permit. The purpose of this memo is to provide these data. In genera l , in the current NPDES permit, the daily average river flows past SQN that trigger the need for special field surveys are as follows: No units in operation at SON: No field surveys required.
One unit in operation at SQN: Field surveys required if the daily average flow past SQN drops below 3 , 000 cfs in stea dy hydro operation or below 6,500 cfs in unsteady/peaking operation. Two units in operation at SQN: Field s ur veys required if the daily average flow pa s t SQN drop s below 6 , 000 cfs in stea d y hydro operation or below 13 , 000 cf s in unsteady/peaking operation.
The current TV A strategy for managing these requirements is to schedule the operation of Chickama uga Reservoir in a manner so that there i s no need to perform these special surveys. Th us far , there has been no need to schedule daily average river flows past SQN at a level below the trigger for steady-related surveys. And thus far , when it has been necessary to schedule riv e r flows at a level below the trigger for unsteady-related surveys, such has been accomplished by limiting hydro peaking at C hickamauga Dam and Watts Bar Dam.
Given in Attachme nt 1 is a plot showing the daily average flow past SQN for th e period beginning March 1 , 2011 and ending March 31, 2013. This period spans the time from the effective date of the current NPDES permit through the most recent full month (as of the date of this memo). Based on the actual operation of SQN , also given are the trigger levels summarized above. As shown, within the period of record, the daily average flow past SQN never dropped below the steady trigger for special field surveys. The daily average flow past SQN dropped below the unsteady trigger only fo r sing l e events in May 2011 and October 2011, and several events from Apri l 2012 through July 2012. In these events, and as presented above, hydro peaking at Chickama u ga Dam and Watts Bar Dam was limited to move Chickamauga Reservoir toward steady ope r ation, providing a more predictable behavior of the SQN thermal effluent and precluding the need for special field surveys. In limiting peaking ope r at i ons at C hickam auga Dam and Watts Bar Dam , restrIctIOns are provided in as much as s uch i s fea si ble in considerat i on of TVA's responsibility for providing public safety , navigation , power supply , recreation , water supp l y , and water quality. Peaking operations are characterized by provid ing hydro releases o nl y during those hour s of the day wherein there is a large demand for power , with little or no releases made during off-peak hours. In peaking operations , hydro releases can be suspended for eight or more hours per day (i.e., zero flow), followed by a period of intense high flow, creating significant slosh in g in Chickamauga Reservoir.
In contrast, when peaking ope r ations are limit ed, efforts are made to provide hydro releases around-the-clock.
Furthermore, if a change in flow is needed , an attempt is made to implement such as a single step from one steady condition to another steady condition. In practice, it is not uncommon for a hydro unit to trip out of service , temporarily interrupting the flow. Incidents i n the immediate vicinity of the dams also can cause interruptions (e.g., cap s ized boat). In such events, releases are u sua ll y resumed within a short period of time following the incident , and may require a short duration release at a hi gher flow to preserve the total volume of release required for that day. Short duration releases at a higher flow also are somet ime s required in response to unexpected disturbances in the power system , such as a shortfall in power supply due to the unexpected trip of a large generating unit. For the same period of time as in Attachment 1 , given in Attachment 2 is a plot of the hourl y releases from Chickamauga Dam and Watts Bar Dam. Release patterns associated with hydr o peaking are apparent, w ith hourly flows from each hydro plant regularly varying within a s ingle day between 5,000 cfs or less and over 45 , 000 cfs. Periods of zero flow also are common , particularly at Chickama u ga Dam. Given in Attachment 3 is the same plot as in Attachment 2, but showing only those periods containing special hydro operations in support of SQN (i.e., as prompted by the requirements of Part 1lI.F.1.b.
and Part 1lI.F.I.c. of the SQN NPDES permit). Within the period of record , a total of 762 days, there were a total 77 days requiring specia l hydro operations in s upp ort of SQN. For these periods , the limit ations on peaking operations are apparent, with flow variations far l ess than those shown in Attachment
: 1. Given in Attachment 4 is the same plot as Attachment 3 , but showing only the period from April 2012 through July 2012, which contained most of the events with daily average river flows below the unstead y trigger of 13,000 cfs. As shown , peaking ope rati ons as describe above are absent. At Watts Bar Dam , there were no events where the flow h ad to be interrupted or where higher releases were required in response to a river or power system need. At Chickamauga Dam, there were four events where the flow was temporari l y interrupted and three events where higher releases were required on a short term basis in response to river or power system needs.
In conclusion, by the operating strategy discussed above and by the data presented herein, SQN thus far has operated in compliance with the requirements of Part III.F.l.b.
and Part III.F.l.c. of the current NPDES permit. TV A River Scheduling will continue to maintain notes in their special operations database in support of these requirements , as long as they are found in the NPDES permit. Furthermore, TVA River Scheduling i s prepared to manage special field surveys if there is a need to operate Chickamauga Reservoir in a manner that nece ss itates s uch by the NPDES permit requirements.
Please contact me if you have any questions regarding the contents of this memo. Technical Special st V -River Scheduling WT IOB-K PNH:JGP Attachments cc (Attachments):
T. W. Barnett , WT IOC-K L. D. Bean, WT IOB-K J. H. Everett, WT IOC-K T. R. Markum , BR 4A-C EDMS Vault -Knoxville , WT CA -K Approximate Daily Average Flow Past SQN from March 1, 2011 through March 31, 2013 0 5 10 15 20 25 30 35 40 45 50 55 60Mar-11Apr-11May-11Jun-11Jul-11Aug-11Sep-11Oct-11Nov-11Dec-11Jan-12Feb-12Mar-12Apr-12May-12Jun-12Jul-12Aug-12Sep-12Oct-12Nov-12Dec-12Jan-13Feb-13Mar-13Approx Daily Avgerage River Flow Past SQN (1000 cfs)Approx daily average flow past SQNUnsteady trigger for special field surveysSteady trigger for special field surveys U1Outage U1 Trip U1Outage U1 Trip U2 Trip U2Outage U2 Trip Hourly Releases from Chickamauga Dam and Watts Bar Dam from March 1, 2011 through March 31, 2013 0 5 10 15 20 25 30 35 40 45 50 55 60Mar-11Apr-11May-11Jun-11Jul-11Aug-11Sep-11Oct-11Nov-11Dec-11Jan-12Feb-12Mar-12Apr-12May-12Jun-12Jul-12Aug-12Sep-12Oct-12Nov-12Dec-12Jan-13Feb-13Mar-13Hourly Release (1000 cfs)Chickamauga DamWatts Bar Dam Hourly Releases from Chickamauga Dam and Watts Bar Da m for Periods Requiring Special Hydro Operations for SQN 0 5 10 15 20 25 30 35 40 45 50 55 60Mar-11Apr-11May-11Jun-11Jul-11Aug-11Sep-11Oct-11Nov-11Dec-11Jan-12Feb-12Mar-12Apr-12May-12Jun-12Jul-12Aug-12Sep-12Oct-12Nov-12Dec-12Jan-13Feb-13Mar-13Hourly Release (1000 cfs)Chickamauga DamWatts Bar Dam Hourly Releases from Chickamauga Dam and Watts Bar Dam for Periods Requiring Special Hydro Operations for SQN, April 2012 through July 2012 0 5 10 15 20 25 30 35 40 45 50 55 60Apr-12May-12Jun-12Jul-12Hourly Releases (1000 cfs)Chickamauga DamWatts Bar Dam March 5 , 2013 Bradley M. Love , OPS 5N-SON SEOUOYAH NUCLEAR PLANT UPDATE OF FLOWRATE CHARACTERISTICS THROUGH THE DIFFUSERS Part III , Section G of the current Sequoyah Nuclear Plant (SON) National Pollutant Discharge Elimination System (NPDES) permit states that: "The permittee shall calibrate the flowrate characteristics through the diffusers on a schedule of at least once every two years." In fulfillment of this requirement , a test of the flowrate characteristics through the diffusers was conducted on November 16 , 2012. Plant conditions for the test included the operation of three Condenser Cooling Water pumps and three Essential Raw Cooling Water pumps. In the test , the flowrate through the diffusers was determined based on measurements of water velocities in the diffuser pond using an acoustic doppler current profiler.
Measurements for the diffuser head were made using the stage recorders belonging to the SON Environmental Data Station. All instruments were certified prior to the test. The results of the measurements , which include a summary of all tests since 1986 , are provided in Attachment
: 1. The rating curve for computing the diffuser flowrate has been updated based on the new information and is provided in Attachment
: 2. With the updated curve , the mean-square error between the computed and measured diffuser flowrates is about 6.5 percent. This error falls within the +/-1 0 percent standard given by the NPDES inspection manual and demonstrates that the hydraulic characteristics of the diffusers continue to provide a good method to estimate the discharge from SON to the Tennessee River. The updated rating curve will be incorporated into the compliance model for Outfall 101. If you have any questions regarding this work , please call me at (423) 632-2881. /P aul N. Hopping Technical Speci ist River Scheduling WT 10B-K PNH: JGP Attachments cc (Attachments)
: Matthew T. Boyington , WT 10B-K Kelie H. Hammond, WT 10C-K Gary D. Lucas , WT 10B-K Travis R. Markum, BR 4A-C Robert D. Stone , MP 5G-C EDMS , WT 10C-K Attachment 1 C alibr a ti on D a t a f o r SQN Di f fu se r Di sc h arge , 1 9 8 6 -20 1 2 Fie l d M eas ur e m e nt s N um ber Tes t Of W a t er S ur fa ce E l evat i o n (Bl Diff u se r D i ffuser D i sc h arge Pump s Di f fu ser H ead D i sc h a r ge Da t e M eas u re m e nt Rive r M e th o d (Al Po nd H Q CC W E R C W (feet M SL) (feet MSL) (feet) (cfs) 1 2118/1986 2 4 MM 678.03 677.00 1.03 889 1 21 1 7/1 986 3 4 MM 678.46 676.90 1.56 1 , 297 1 2/18/1986 4 4 MM 680.4 1 676.90 3.51 1 ,6 86 1 21 1 9/1986 6 4 MM 683.53 677.1 7 6.36 2,490 03128/1 989 5 4 MM 680.80 676.46 4.34 2 , 0 1 5 03/29/1 989 5 4 MM 680.82 676.3 5 4.47 2 , 1 6 1 03/22/1990 2 3 MM 678.44 677.27 1.1 7 943 04/05/1990 3 4 MM 680.57 678.5 4 2.03 1 , 470 1 0105/1990 3 4 M M 682.30 680.20 2.1 0 1 , 457 1 2/19/1990 6 4 MM 682.54 676.26 6.28 2,350 04103/1 99 1 6 4 MM 684.20 678.1 8 6.02 2,5 11 05/22/199 1 6 4 MM 688.70 682.60 6.10 2 , 45 1 1 2/1 0/199 1 5 4 MM 682.70 677.90 4.80 2 ,2 1 3 04/10/1 992 2 3 M M 680.1 3 679.12 1.0 1 879 02/1 8/1994 "} 2 3 MM 679.42 678.1 3 1.29 87 1 06/1 4/1 994 6 4 M M 6 8 8.50 682.00 6.50 2,507 04/03/1997 'U} 3 3 MM 679.50 677.30 2.20 1 , 223 05/23/1 997 6 3 MM 688.40 681.80 6.60 2 , 551 05/06/1998 6 3 ADCP 688.20 681.70 6.50 2,345 05/1 1/1 999 6 3 ADC P 689.20 682.60 6.60 2,274 1 0/1 0/200 1 6 3 ADCP 687.1 0 680.30 6.80 2 , 359 07/272002 6 4 A D CP 689.40 682.40 7.00 2 ,759 04/23/2003 ,., 3 4 ADCP 6 8 4.05 682.2 0 1.85 1 ,5 52 03/07/2006 6 3 AD C P 682.0 6 675.97 6.09 2 , 511 11/04/2007 3 4 ADCP 680.88 678.66 2.22 1 , 29 1 11 117/2009 3 3 ADCP 679.71 677.67 2.04 1350 1 2/1 7/2009 6 3 ADCP 683.29 677.1 5 6.1 4 2354 0 1/03/20 11 6 3 ADCP 686.08 678.90 7.1 8 2360 11/1 6/20 1 2 3 3 ADCP 68 1.08 678.62 2.4 6 1 299 N ote s: (A) MM=Mar s h.McBirney i n s tr ume nt atio n. ADCP=AcQu s tic Dopp l er Cu rren t Profiler instr u m e ntation. (8) Wate r s urface e l evat i o n s fo r the d iff u se r pond and r i ver reco r ded by in s tr ume n tati o n of t h e SQN E nvi r onmental Data Stat i on. MSL=Mean Sea Leve l. (C) The te s t of 02 1 1 8/94 was pe r formed wit h very w i nd y cond i tio n s , mak i ng it difficult to keep the boat s tead y. Due to t he po t ent i a l e rr o r in t r od u ced by th ese co ndi t i ons, th e r es u l tin g m easu r eme nt wa s n ot u s ed to dc t ennine the head-di sc harge re l ationship for t h e d i ff u s er discharge. (D) T h e t e s t of 04 1 03/97 in cl ud ed a m a l f un c ti o n of t h e Mar s h-Mc B imey com p ass , w h ic h p r o h ibited the co ll ec tion of data for flow directio n. The d i ffuse r di s charge i s ba se d o n an ass u med flow d i rec t io n. Due t o the potential e rr o r i n tro d uce d by the s e co n ditio n s, th e r es ultin g meas u reme n t was n ot u se d to determ i ne t he head-d i sc harge r e lat i o n s hip for the diff u se r di sc h ar ge. (E) T h e t est of 04/23/03 was perf o rm ed w i th an ADCP se tt i n g that likel y ove r e s timated th e vo lu me of water passing through the diffu se r pond. T h e r es u lting d i s c h arge s ignificant l y exceeded t h e capac it y of p u mp s i n s e r vice at the time. Due to the potent i a l erro r in troduced by t h ese cond i t i on s, th e r esu lt ing measurement was no t u sed t o determ i ne the head-d i s charge r e l at i o n s h i p fo r the d i ff u se r d i s c h a r ge.
Attachment 2 Rating C urv e for SQN Diffuser Discharge 9 8 7 _ 6 -Q) .! -J: 5 "C ca Q) J: 4 Q) III 3 c 2 1 2012 Rating Curve Computation
:' / Q= CAH II2, where: // C/Co = 0.8949+0.4697 (HlHo)-1.201 0(HlHo)'+1
.6581(HlHo)'-1
.0888H1Ho)'+0
.2584(HlHo)'. for H lHo < 1.0 .. / -C/Co = 0.9913. for HlHo > 1.0 / / Co = 3.736 cfsffeel"'
; Ho = 6 feet; A =259.6 feet' l,l' , .. ,/ H = D iffe ren ce in elevation between the water su rfa ce in the diffuser pond (E DS Station 12) and the water : .. ".' surface in the r iver (EDS Stat i on 13). ./0 : :' 0 / .'1' ,..//0 ,:' h .,/' .// ....... ,/ . : " ......... / .... /. 0 0 ..... D ... ** .... .... -10% / .... /" y: ' ....... ... ,,/ ......... .' 0***** .... v/ .' "" .........
/ ..... " .... ... 'O'. -Rating Curve .,/ .. ..0 . ...,;,-0::
.....
... 0 Field Measurements .. -... Note: Rat i ng curve valid only for ___ .-.;;;;ii d i ffuser head below about 8 feet. 0 o 500 1000 1500 2000 2500 3000 Diffuser Discharge , Q (cfs)
TENNESSEE VALLEY AUTHORITY River Operations & Renewable


Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of March 2011 
Bray-Cu rtis S imilarity 0.775  0.8    0.825  0.85      0.875      0.9      0.925  0.95  0.975 T_487.9_8 T_481.1_8 T_483.4_8 T_490.7_8 Figure 25. Dendrogram of phytoplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month. (Coph. Corr = 0.89) 96


WR2013-1-45-152
Bray-Cu rtis Similarity 0.6    0.65    0.7    0.75        0.8        0.85  0.9  0.95 T_490.7_10 T_483.4_10 T_487.9_10 T_481.1_10 Figure 26. Dendrogram of phytoplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month. (Coph. Corr = 0.78) 97


Prepared by T. Matthew Boyington Paul N. Hopping Walter L. Harper
Bray-Curtis Similarity 0.64  0.68  0.72    0.76      0.8      0.84    0.88  0.92  0.96 T_483.3_8 T_490.7_8 T_487.9_8 T_481.1_8 Figure 27. Dendrogram of zooplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month. (Coph. Corr = 0.87) 98


Knoxville, Tennessee
Bray-Curtis Similarity 0.6    0.65    0.7    0.75      0.8        0.85  0.9  0.95 T_483.3_10 T_487.9_10 T_490.7_10 T_481.1_10 Figure 28. Dendrogram of zooplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month. (Coph. Corr = 0.78) 99


April 2013 i EXECUTIVE
50,000 Chickamauga 45,000 Watts Bar 40,000                                                                        Apalachia and Ocoee #1 35,000 Discharge (cfs) 30,000 25,000 20,000 15,000 10,000 5,000 0
1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 08/23/2011                      08/24/2011                                08/25/2011 Date and Hour Figure 29. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, August 23 through August 25, 2011 50,000 Chickamauga 45,000 Watts Bar 40,000                                                            Apalachia and Occoe #1 35,000 Discharge (cfs) 30,000 25,000 20,000 15,000 10,000 5,000 0
1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 10/08/2011                      10/09/2011                                10/10/2011 Date and Hour Figure 30. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, October 8 through October 10, 2011 100


==SUMMARY==
100,000 2011 Daily Average Flow 90,000 Historical Daily Average 80,000                                                                                19762010 70,000 Discharge (cfs) 60,000 50,000 40,000 30,000 20,000 10,000 0
10/1  11/1  12/1  1/1  2/1  3/1  4/1    5/1  6/1  7/1  8/1    9/1        10/1      11/1 Date Figure 31. Total daily average releases (cubic feet per second) from Watts Bar, Apalachia, and Ocoee 1 dams, October 2010 through November 2011 and historic daily average flows averaged for the same period 1976 through 2010.
101


The National Pollutant Discharge Elimination System (NPDES) permit for Sequoyah Nuclear Plant (SQN) identifies the release of cooling water to the Tennessee River through the plant discharge diffusers as Outfall 101. The primary method to monitor comp liance with the NPDES temperature limits for this outfall includes the use of a numerical model that solves a set of governing equations for the hydrothermal conditions produced in the river by the interaction of the SQN release and the river discharge. The numerical model operates in real-time and utilizes a combination of measured and computed values for the temperature, flow, and stage in the river; and the temperature and flow from the SQN discharge diffusers. Part III, Section G of the permit
100 90 80 70 Water Temperature (&deg;F) 60 50 40 30                                                  Downstream of SQN Discharge 20                                                  Upstream of SQN Intake 10                                                  TN State Thermal Discharge Limit (86.9 &deg;F) 0 Date Figure 32. Daily average water temperatures (&deg;F) at a depth of five feet, recorded upstream of SQN intake (Station 14) and downstream of SQN discharge (Station 8), October 2009 through November 2010.
102


states: The numerical model used to determine compliance with the temperature requirements for Outfall 101 shall be subject of a calibration study once during the permit cycle. The study should be accomplished in time for data to be av ailable for the next permit application for re-issuance of the permit. A report of the study will be presented to the division of Water Pollution Control. This report is provided in fulfillment of these requirements.  
April 19, 2013 Bradley M. Love, OPS 5N-SQN SEQUOY AH NUCLEAR PLANT (SQN)--RlVER SCHEDULING FOR LOW FLOW CONDITONS Part IlI.F.l .b. and Part IlI.F.l .c. of the current SQN National Pollut ant Discharge Elimin ation System (NPDES) permit summarize requirements related to monitoring thermal compliance for Outfall 101 , the plant diffuser discharge to the Tennessee River. In particu lar, in these parts of the permit , ranges for the daily average flow past SQN are defined where in specia l field surveys are required to verify the adequacy of the plant ambient river temperature and the adequacy of the plant diffuser mixing zone. These ranges in flow are given both for river conditions characterized by unsteady flow and river conditions characterized by steady flow. The type of unsteady flows of concern is the type created by strong hydro peakin g, sustained day after day with low daily average flows . Similarly, the type of steady flows of concern is the type created by continuous, unvarying hydro operation, again sustained day after day, but at daily average flows lower than those of concern for low flow hydro peaking. To verify compliance to these requirements for special field surveys, the NPDES permit specifies that river flow data shall be submitted with the application for re-issuance of the permit. The purpos e of this memo is to provide these data.
In general, in the current NPDES permit, the daily average river flows past SQN that trigger the need for special field surveys are as follows:
No units in operation at SON: No field surveys required.
One unit in operation at SQN: Field surveys required if the daily averag e flow past SQN drops below 3,000 cfs in steady hydro operation or below 6,500 cfs in unstea dy/peaking operation.
Two units in operation at SQN: Field surveys required if the daily averag e flow past SQN drops below 6,000 cfs in steady hydro operation or below 13,000 cfs in unstea dy/peaking operation.
The current TV A strategy for managing these requirements is to schedule the operation of Chickamauga Reservoir in a manner so that there is no need to perfor m these special surveys.
Thus far, there has been no need to schedule daily average river flows past SQN at a level below the trigger for steady-related surveys. And thus far, when it has been necessary to schedule river flows at a level below the trigger for unsteady-related surveys, such has been accomplished by limiting hydro peaking at Chickamauga Dam and Watts Bar Dam.


The basic formulation of the numerical model is presented herein. Three empirical parameters are used to calibrate the model. The first is the effective width of the diffuser slot, and the  
Given in Attachment 1 is a plot showing the daily average flow past SQN for the period beginning March 1, 2011 and ending March 31, 2013 . This period spans the time from the effective date of the current NPDES permit through the most recent full month (as of the date of this memo). Based on the actual operation of SQN, also given are the trigger levels summarized above. As shown, within the period of record, the daily average flow past SQN never dropped below the steady trigger for special field surveys. The daily averag e flow past SQN dropped below the unsteady trigger only for single events in May 2011 and October 2011, and several events from Apri l 2012 through July 2012. In these events, and as presented above, hydro peaking at Chickamauga Dam and Watts Bar Dam was limited to move Chickamauga Reservoir toward steady operation, providing a more predictable behavior of the SQN thermal effluent and precluding the need for special field surveys.
In limiting peaking operat ions at Chickamauga Dam and Watts Bar Dam, restrIctIOns are provided in as much as such is feasible in consideration of TVA' s respon sibility for providing public safety , navigation, power supply , recreation, water supply, and water quality . Peaking operations are characterized by provid ing hydro releases only during those hours of the day wherein there is a large demand for power, with little or no releases made during off-peak hours.
In peaking operations, hydro releases can be suspended for eight or more hours per day (i.e., zero flow), followed by a period of intense high flow, creating significant sloshin g in Chickamauga Reservoir. In contrast, when peaking operations are limited, efforts are made to provide hydro releases around-the-clock. Furthermore, if a change in flow is needed
                                                                              , an attempt is made to implement such as a single step from one steady condition to anothe r steady condition. In practice, it is not uncommon for a hydro unit to trip out of service, tempo rarily interrupting the flow. Incidents in the immediate vicinity of the dams also can cause interru ptions (e.g., capsized boat). In such events, releases are usually resumed within a short period of time following the incident, and may require a short duration release at a hi gher flow to preser ve the total volume of release required for that day. Short duration releases at a higher flow also are sometimes required in response to unexpected disturbances in the power system , such as a shortfall in power supply due to the unexpected trip of a large generating unit.
For the same period of time as in Attachment 1, given in Attachment 2 is a plot of the hourly releases from Chickamauga Dam and Watts Bar Dam. Release pattern s associated with hydro peaking are apparent, with hourly flows from each hydro plant regula rly varying within a single day between 5,000 cfs or less and over 45,000 cfs. Periods of zero flow also are common, particularly at Chickamauga Dam. Given in Attachment 3 is the same plot as in Attachment 2, but showing only those periods containing special hydro operations in support of SQN (i.e., as prompted by the requirements of Part 1lI.F.1.b. and Part 1lI.F.I.c. of the SQN NPDES permit).
Within the period of record , a total of 762 days, there were a total 77 days requiring specia l hydro operations in support of SQN . For these periods, the limitations on peaking operations are apparent, with flow variations far less than those shown in Attachment
: 1. Given in Attachment 4 is the same plot as Attachment 3, but showing only the period from April 2012 through July 2012, which contained most of the events with daily average river flows below the unsteady trigger of 13,000 cfs. As shown , peaking operations as describe above are absent. At Watts Bar Dam, there were no events where the flow had to be interrupted or where higher releases were required in response to a river or power system need. At Chickamaug a Dam, there were four events where the flow was temporarily interrupted and three events where higher releases were required on a short term basis in response to river or power system needs.


second is a relationship used to compute the entrainment of ambient water along the trajectory of the plume. The third parameter is a relationship for the amount of diffuser effluent that is re-entrained into the diffuser plume for periods of sustained low river flow.
In conclusion, by the operating strategy discussed above and by the data presented herein, SQN thus far has operated in compliance with the requirements of Part III.F.l
                                                                          .b. and Part III.F.l .c. of the current NPDES permit. TV A River Scheduling will continue to maintain notes in their special operations database in support of these requirements , as long as they are found in the NPDES permit. Furthermore, TVA River Scheduling is prepared to manage special field surveys if there is a need to operate Chickamauga Reservoir in a manne r that necess itates such by the NPDES permit requirements.
Please contact me if you have any questions regarding the contents of this memo .
Z~Z; 7,~
Technical Special st River Scheduling V-WT IOB-K PNH:JGP Attachments cc (Attachments):
T. W. Barnett, WT IOC-K L. D. Bean, WT IOB-K J. H. Everett, WT IOC-K T. R. Markum, BR 4A-C EDMS Vault - Knoxville, WT CA - K


Temperature measurements across the downstream end of the SQN mixing zone from fifty samples collected between 1982 and 2012 were used in this calibration study. These observed data were compared with computed downstream temperatures from the numerical model for the same periods of time. In this process, sensitivity tests were performed for the effective diffuser slot width, entrainment relationship, and plume re-entrainment function. The results show acceptable agreement between computed and measured temperatures, particularly at river temperatures greater than 75&#xba;F. The overall average discrepancy between the measured and computed downstream temperatures was about 0.55 F&#xba; (0.31 C&#xba;). For downstream temperatures above 75&#xba;F, the average discrepancy was about 0.38 F&#xba; (0.21 C&#xba;). There was no significant change in the model performance compared to the previous calibration, and as a result, no update was required in the model parameter set.
Attachment 1 Approximate Daily Average Flow Past SQN from March 1, 2011 through March 31, 2013 60 Approx daily average f low past SQN 55                                                                                                                                                 Unsteady trigger f or special f ield surveys Steady trigger f or special f ield surveys 50 Approx Daily Avgerage River Flow Past SQN (1000 cfs) 45 40 35 30 25 20 15 10 5
ii CONTENTS Page EXECUTIVE
U1              U1          U1                                                        U1                                              U2                            U2                            U2 Outage            Trip        Trip                                                      Outage                                          Trip                        Outage                          Trip 0
Mar-11  Apr-11  May-11    Jun-11  Jul-11      Aug-11      Sep-11  Oct-11  Nov-11  Dec-11  Jan-12  Feb-12  Mar-12  Apr-12  May-12  Jun-12  Jul-12  Aug-12      Sep-12  Oct-12  Nov-12  Dec-12  Jan-13  Feb-13    Mar-13


==SUMMARY==
Hourly Release (1000 cfs) 0  5  10  15  20      25    30    35    40  45  50  55                                60 Mar-11 Apr-11 May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Apr-12                                                                                                                                                                                                            Attachment 2 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12                                                                  Watts Bar Dam Dec-12 Chickamauga Dam Jan-13 Feb-13 Hourly Releases from Chickamauga Dam and Watts Bar Dam from March 1, 2011 through March 31, 2013 Mar-13
.............................................................................................................
iLIST OF FIGURES ...............................................................................................................
........ iiiLIST OF TABLES ................................................................................................................
......... iiiINTRODUCTION ..................................................................................................................
........ 1BACKGROUND ....................................................................................................................
........ 3NUMERICAL MODEL ...............................................................................................................
... 7Plume Entrainment ...........................................................................................................
12Diffuser Effluent Re-Entrainment .....................................................................................
13CALIBRATION ...................................................................................................................
........ 13Previous Calibration Data and Calibration Work ................................................................... 13New Calibration Data and Calibration Work .......................................................................... 16Diffuser Slot Width ............................................................................................................ 16Plume Entrainment Coefficient .........................................................................................
16Diffuser Effluent Re-Entrainment .....................................................................................
18Results of Updated Calibration ........................................................................................
20CONCLUSIONS....................................................................................................................
....... 23REFERENCES ....................................................................................................................
......... 24 iii LIST OF FIGURES Page Figure 1. Location of Sequoyah Nuclear Plant .............................................................................. 1Figure 2. Chickamauga Reservoir in the Vicinity of Sequoyah Nuclear Plant ............................. 2Figure 3. Locations of Instream Temperature Monitors for Sequoyah Nuclear Plant ................... 6Figure 4. Sequoyah Nuclear Plant Outfall 101 Discharge Diffusers ............................................. 7Figure 5. Two-Dimensional Plane Buoyant Jet Model for a Submerged Diffuser ........................ 8Figure 6. Sensitivity of Computed Temperature T d to Diffuser Effective Slot Width ................ 17Figure 7. Sensitivity of Computed Temperature T d to Plume Entrainment Coefficient .............. 18Figure 8. Sensitivity of Computed Temperature T d to Effluent Re-Entrainment Function ......... 19Figure 9. Comparison of Computed and Measured Temperatures T d for Field Studies from April 1982 through November 2012 ...................................................................21Figure 10. Comparison of Computed and Measured 24-hour Average Temperatures T d for Station 8 for 2010 .................................................................................................21Figure 11. Comparison of Computed and Measured Hourly Average Temperatures T d for Station 8 for 2010 ................................................................................................22 LIST OF TABLES Table 1. Summary of SQN Instream Thermal Limits for Outfall 101 ........................................... 5Table 2. Thermal Surveys at SQN from April 1982 through March 1983 .................................. 14Table 3. Thermal Surveys at SQN from March 1996 through April 2003 .................................. 15Table 4. Thermal Surveys at SQN from February 2004 through November 2007 ...................... 15Table 5. Thermal Surveys at SQN from November 2012 ........................................................... 16Table 6. Plume Re-Entrainment Iteration Numbers and Factors ................................................. 19 1 INTRODUCTION The Sequoyah Nuclear Plant (SQN) is located on the right bank of Chickamauga Reservoir at Tennessee River Mile (TRM) 484.5. As shown in Figure 1, the plant is northeast of Chattanooga, Tennessee, about 13.5 miles upstream and 45.4 miles downstream of Chickamauga Dam and Watts Bar Dam, respectively. As shown in Figure 2, the reservoir in the vicinity of SQN contains a deep main channel with adjacent overbanks and embayments. The main channel is approximately 900 feet wide and 50 to 60 f eet deep, depending on the pool elevation in Chickamauga Reservoir. The overbanks are highly irregular and usually less than 20 feet deep.


SQN has two units with a total summertime gross generating capacity of about 2350 MWe and an associated waste heat load of about 15.6x10 9 Btu/hr (TVA, 2010). The heat transferred from the steam condensers to the cooling water is dissipated to the atmosphere by two natural draft cooling towers, to the river by a two-leg submerged multiport diffuser, or by a combination of both. The release to the river is identified in the National Pollutant Discharge Elimination System (NPDES) Permit as Outfall 101.
Hourly Release (1000 cfs) 0  5  10  15  20      25    30    35    40  45  50              55                    60 Mar-11 Apr-11 May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Attachment 3 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 Jan-13                                                                  Watts Bar Dam Chickamauga Dam Feb-13 Mar-13 Hourly Releases from Chickamauga Dam and Watts Bar Dam for Periods Requiring Special Hydro Operations for SQN
Figure 1. Location of Sequoyah Nuclear Plant 2  Figure 2. Chickamauga Reservoir in th e Vicinity of Sequoyah Nuclear Plant f/llllllm Denotes Reservoir areas of water depth less than 20 feet Mixing Zone 3 The compliance of SQN operation with the instream temperature limits specified in the NPDES permit (TDEC, 2011) is based on a downstream temperature that is calculated on a real-time basis by a numerical computer model. Part III, Section G of the permit states:
The numerical model used to determine co mpliance with the temperature requirements for Outfall 101 shall be subject of a calibra tion study once during the permit cycle. The study should be accomplished in time for data to be available for the next permit application for re-issuance of the permit. A re port of the study will be presented to the Division of Water Pollution Control. Any adjustments to th e numerical model to improve its accuracy will not need separate approval from the Division of Water Pollution Control; however, the Division will be notified when such adjustments are made.
This report presents a summary of complian ce model and the required calibration study.


BACKGROUND
Attachment 4 Hourly Releases from Chickamauga Dam and Watts Bar Dam for Periods Requiring Special Hydro Operations for SQN, April 2012 through July 2012 60 Chickamauga Dam 55 Watts Bar Dam 50 45 40 Hourly Releases (1000 cfs) 35 30 25 20 15 10 5
0 Apr-12  May-12                Jun-12                  Jul-12


The original method of monitoring thermal comp liance for the SQN diffuser discharge (i.e., Outfall 101), included two temperature stations located near the downstream corners of the mixing zone, Station 8 and Station 11 (see Figure 2). Because of the necessity to keep the navigation channel free of obstructions, temperature stations could not be situated between these locations to monitor the center of the thermal plume. The upstream ambient river temperature was measured at Station 13, located on the plant intake skimmer wall. In August 1983, the Tennessee Valley Authority (TVA) reported the result s of six field studies of the SQN diffuser performance under various river and plant operating conditions (TVA, 1983a). The data summarized in the report showed that based on measured temperature variations across the downstream edge of the mixing zone, Station 8 and Station 11 were inad equate in providing a representative cross-sectional average temperature of the thermal plume. In particular, it was found that Station 11 often was not in the main path of flow of the thermal plume and did not always show elevated temperatures. The remaining downstream monitor, St ation 8, also was not considered adequate because it again was located outside the navigation cha nnel. In the report, TVA proposed an alternate method to monitor thermal compliance involving the use of a numerical model to simulate the behavior of the thermal plume in the mixing zone. The model would provide a real-time assessment of compliance with the thermal discharge limitations. Information required for the model included: the ambient river temperature upstream of the diffuser mixing zone (measured at Station 13, see Figure 2), the di scharge in the river at SQN (determined from measurements at Watts Bar Dam and Chickamauga Dam), the depth of flow in the river (measured at Station 13), the temperature of the flow issuing from the plant diffusers (measured at Station 12, see Figu re 2), and the discharge of the flow issuing from the diffusers (determined from measurements at both Station 12 and Station 13). A PC, located in the SQN Environmental Data Station (EDS), was to be used collect the required data, compute the thermal compliance parameters, and distri bute the results to plant operators (see TVA, 1983b). The August 1983 report presented results demonstrating the validity of using the numerical model for tracking compliance with the Outfall 101 thermal limitations.  
March 5, 2013 Bradley M. Love, OPS 5N-SON SEOUOYAH NUCLEAR PLANT UPDATE OF FLOWRATE CHAR ACTERISTICS THROUGH THE DIFFUSERS Part III , Section G of the current Sequoyah Nuclear Plant (SON)
National Pollutant Discharge Elimination System (NPDES) permit states that: "The permittee shall calibrate the flowrate characteristics through the diffusers on a schedule of at least once every two years." In fulfillment of this requirement, a test of the flowrate characteristic s through the diffusers was conducted on November 16, 2012 . Plant conditions for the test included the operation of three Condenser Cooling Water pumps and three Essential Raw Coolin g Water pumps . In the test ,
the flowrate through the diffusers was determined based on measu rements of water velocities in the diffuser pond using an acoustic doppler current profiler. Measu rements for the diffuser head were made using the stage recorders belonging to the SON Enviro nmental Data Station . All instruments were certified prior to the test.
The results of the measurements, which include a summary of all tests since 1986, are provided in Attachment 1. The rating curve for computing the diffuser flowra te has been updated based on the new information and is provided in Attachment 2. With the updated curve , the root-mean-square error between the computed and measured diffuse r flowrates is about 6.5 percent.
This error falls within the +/-1 0 percent standard given by the NPDE S inspection manual and demonstrates that the hydraulic characteristics of the diffusers continue to provide a good method to estimate the discharge from SON to the Tennessee River. The updated rating curve will be incorporated into the compliance model for Outfall 101 .
If you have any questions regarding this work, please call me at (423) 632-2881 .
~/?~
/Paul N. Hopping                        -
Technical Speci ist River Scheduling WT 10B-K PNH :JGP Attachments cc (Attachments):
Matthew T. Boyington, WT 10B-K Kelie H. Hammond, WT 10C-K Gary D. Lucas , WT 10B-K Travis R. Markum, BR 4A-C Robert D. Stone , MP 5G-C EDMS , WT 10C-K


4 The method of using the numerical model was sent to the Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), requesting approval for implementation as a valid means for monitoring SQN thermal compliance. The key advantage of the method includes a representation of the cross-sectiona l average downstream temperature that is at least as good as the instream temperature measurements from Station 8 and Station 11. The method also provides consistency with procedures that are used for scheduling releases from Watts Bar Dam and Chickamauga Dam, as well as procedures for operating Sequoyah Nuclear Plant. This consistency helps TVA minimize unexpected events that can potentially threaten the NPDES thermal limits for Outfall 101. In March 1984 approval was granted for TVA to use the numerical model as the primary method to track thermal compliance.
Attach ment 1 Calibration Data for SQN Diffu ser Discharge, 1986 - 20 12 Field Meas urements Numbe r Test                Of                              Water Surface Elevatio n (Bl            Diffuse r Discharge                                                              Diffuser Date              Pumps                                Diffuser                                Head      Dischar ge Measurement                              River Method (Al            Pond                                    H            Q CC W    ERCW                          (feet MSL)        (feet MSL)            (feet)         (cfs) 12118/1986          2        4          MM                678.03            677.00              1.03          889 12117/ 1986        3          4          MM                678.46            676.90              1.56        1,297 12/18/19 86        4          4          MM                680.4 1            676.90              3.5 1        1,686 12119/19 86        6          4          MM                683.53            677. 17            6.36          2,490 03128/ 1989          5          4          MM                680.80            676.46              4.34          2,0 15 03 /29/ 1989        5          4          MM                680.82            676.35              4.47          2, 16 1 03 /22/1990          2          3          MM                678.44            677.27              1.1 7          943 04 /05/1990          3        4            MM                680.57            678.54              2.03          1,470 10105/1990          3        4            MM                682.30            680.20              2. 10        1,457 12/19/19 90          6        4            MM                682.54            676.26              6.28        2,350 04103 / 199 1       6        4            MM                684.20            678. 18              6.02        2,5 11 05/22/199 1          6        4            MM                688.70            682.60              6. 10        2,45 1 12/ 10/199 1        5         4            MM              682.70            677.90              4.80          2,2 13 04/ 10/1992          2          3           MM                680. 13          679.12              1.0 1          879 02 /18/1994 "}        2          3            MM              679.42            678. 13              1.29          87 1 06/14/ 1994          6          4            MM              688.50            682.00              6.50          2,507 04 /03/1997 'U}        3          3            MM              679.50            677.30              2.20          1,223 05/23 / 1997        6          3            MM              688.40            681.80              6.60          2,551 05 /06/1998          6          3          ADCP              688.20            681.70              6.50          2,345 05/1 1/ 1999        6          3          ADC P            689.20            682.60              6.60          2,274 10/10/200 1          6        3            ADCP              687. 10            680.30              6.80          2,359 07/272002            6        4            ADCP              689.40            682.40              7.00          2,759 04/23 /2003 ,.,        3        4            ADCP              684.05            682.20              1.85          1,552 03 /07/2006          6        3            ADC P            682.06            675.97              6.09          2,511 11 /04/2007          3        4          ADCP              680.88            678.66              2.22          1,29 1 11 117/2009          3        3          ADCP              679.71            677.67              2.04          1350 12/17/2009          6        3          ADCP              683.29            677. 15              6. 14        2354 0 1/03/20 11        6        3          ADCP              686.08            678.90              7. 18        2360 11 / 16/20 12        3        3          ADCP              68 1.08          678.62              2.46          1299 Notes:
Except for infrequent outages, the model has been in use ever since. S ubsequently, Station 11 was removed from the river. However, Station 8 was retained to provide an optional method to track thermal compliance should there be a need to remove the model from service.
(A) MM=Marsh.McBirney instrumentation. ADCP=AcQustic Doppler Current Profiler instrume ntation.
Due to the ever changing understanding of the hydrothermal aspects of Chickamauga Reservoir, as well as the operational aspects of the nuclear plant and river system, modifications have been necessary over the years for both the numerical model and thermal criteria for Outfall 101. The current version of the model is presented in more detail later. The current thermal criteria are presented in Table 1. The limit for the temperature at the downstream end of the mixing zone (T d) is a 24-hour average value of 86.9&deg;F (30.5&deg;C) and an hourly average value of 93.0&deg;F (33.9&deg;C). The instream temperature rise (T) is limited to a 24-hour average of 5.4 F&deg; (3.0 C&#xba;) for months April through October, and 9.0 F&deg; (5.0 C&#xba;) for months November through March. The latter "wintertime" limit was obtained by a 316(a) variance. The temperature rate-of-change at the downstream end of the mixing zone (dT d/dt) is limited to 3.6 F&deg;/hr (2 C&#xba;/hr). With the compliance model, dT d/dt is based on 24-hour average river conditions and 15 minute plant conditions. Other details related to the temperature limits for Outfall 101 are provided in the notes accompanying Table 1. It is important to note that compliance with instream temperature limits are based on a computed downstream temperature at a depth of 5.0 feet. And in a similar fashion, the upstream temperature is measured at the 5.0 foot depth, based on the average of temperature readings at the 3-f oot, 5-foot and 7-foor depths.  
(8) Water surface elevat ions for the diffuser pond and river recorded by in strumentation of the SQN Environmental Data Station. MSL=Mean Sea Leve l.
(C) The test of 02118/94 was performed with very windy cond itions, making it difficult to keep the boat steady.
Due to the potential error introduced by these condi tions, the resulting measurement was not used to dctennine the head-discharge relationship for the diffuser discharge.
(D) The test of 04103 /97 incl uded a malfunction of the Marsh-McBimey compass , which prohibited the coll ection of data for flow direction. The diffuser discharge is based on an assumed flow direction. Due to the potential error introduced by these conditio ns, th e resulting measurement was not used to determ ine the head -discharge relationship for the diffuser di scharge.
(E) The test of 04 /23 /03 was perform ed with an ADCP setting that likely overestimated th e volume of water passing through the diffuser pond. The resulting discharge significantly exceeded the capac ity of pumps in service at the time . Due to the potential erro r introduced by these cond itions, the resu lt ing measurement was not used to determine the head-discharge relationship for the diffuser discharg e.


Originally, the ambient river temperature for the temperature rise was measured at Station 13, about 1.1 miles upstream of the discharge diffu sers. However, under sustained low flow
Attachment 2 Rating Curve for SQN Diffuser Discharge 9
                                                                                                                                                                                        /
2012 Rating Curve Computation                                                                                                                                            :'
Q= CAH II2, where :                                                                                                                                                  //
C/Co = 0.8949+0.4697 (HlHo)-1.201 0(HlHo)'+1 .6581(HlHo)'-1 .0888H1Ho)'+0.2584(HlHo)'. for HlHo < 1.0
                                                                                                                                                                          ../
8 - C/Co = 0.9913. for HlHo > 1.0
                                                                                                                                                                                                            /
                                                                                                                                                                                  /
Co = 3.736 cfsffeel"'; Ho = 6 feet; A =259.6 feet'                                                                                                      l,l' H = Diffe rence in elevation between the water su rface in the diffuser pond (E DS Station 12) and the water
                                                                                                                                                                                                      , ..,/
surface in the river (EDS Station 13).
                                                                                                                                                            ./0                                :
7                                                                                                                                                :' 0                    /          .'1'
                                                                                                                                                ,..//0 ~
                                                                                                                                                                              ~D      ,:'
--                                                                                                                                          ./ /
_    6                                                                                                                                                                      h .,/'
Q)                                                                                                                                      ,/                                .
J:
"C ca Q) 5                                                                                                                    ..../.
                                                                                                                    ....-10% /
                                                                                                                                  /
0          0 D ...**....
                                                                                                                                              ..../"
J:
~
  ~
Q)
III 4
                                                                                                ... ,,/
y: '
                                                                                                        ....... ~
                                                                                                                                    '+I~~
c 3
0 *****.... v /.' ""........./
                                                                              ..... Ol~ "....
2
                                                              ~...'O'.                                                                        -        Rating Curve
                                                              .,/              ....0
                                                  ....,;,-0::  .....~.,...... ~                                                                0 Field Measurements 1                              ~- ..-                ...
Note: Rating curve valid only for diffuser head below about 8 feet.
___.-.;;;;ii 0
o                      500                      1000                              1500                                2000                                2500                              3000 Diffuser Discharge , Q (cfs)


conditions, it was discovered that heat from the diffusers can migrate upstream and reach the area of Station 13. In this manner, the ambient temperature can become elevated, thereby artificially reducing the measured impact of the plant on the river (i.e., T). As such, in late March 2006, a new ambient temperature station was installed in the river further upstream at TRM 490.4, about 6.8 miles upstream of the diffusers.
TENNESSEE VALLEY AUTHORITY River Operations & Renewable Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of March 2011 WR2013-1-45-152 Prepared by T. Matthew Boyington Paul N. Hopping Walter L. Harper Knoxville, Tennessee April 2013
The location of the new monitor, entitled Station 14, is shown in Figure 3.
5 Table 1. Summary of SQN Instream Thermal Limits for Outfall 101 Type of Limit Averaging (hours) NPDES Limit 2 Max Downstream Temperature, T d 24 86.9&deg;F (30.5&deg;C) Max Downstream Temperature, T d 1 93.0&deg;F (33.9&deg;C) Max Temperature Rise, T 24 5.4 F&deg;/9.0 F&deg; (3.0 C&#xba;/5.0 C&#xba;) Max Temperature Rate-of-Change, dT d/dt Mixed  3.6 F&deg;/hr ( 2 C&#xba;/hr) Notes: 1. Compliance with the river limitations (river temperature, temperature rise, and rate of temperature change) shall be monitored by means of a numerical model that solves the thermohydrodynamic equations governing the flow and thermal conditions in the reservoir. This numerical model will utilize measured values of the upstream temperature profile and river stage; flow, temperature and performance characteristics of the diffuser discharge; and river flow as determined from releases at the Watts Bar and Chickamauga Dams. In the event that the modeling system described here is out of service, an alternate method will be employed to measure water temperatures at least one time per day and verify compliance of the maximum river temperature and maximum temperature rise. Depth average measurements can be taken at a downstream backup temperature monitor at the downstream end of the diffuser mixing zone (left bank Tennessee River mile 483.4) or by grab sampling from boats. Boat sampling will include average 5-foot depth measurements (average of 3, 5, and 7-foot depths). Sampling from a boat shall be made outside the skimmer wall (ambient temperature) and at quarter points and mid-channel at downstream Tennessee River mile 483.4 (downstream temperature). The downstream reported value will be a depth (3, 5, and 7-foot) and lateral (quarter points and midpoint) average of the instream measurements. Monitoring in the alternative mode using boat sampling shall not be required when unsafe boating conditions occur.
: 2. Compliance with river temperature, temperature rise, and rate of temperature change limitations shall be applicable at the edge of a mixing zone which shall not exceed the following dimensions: (1) a maximum length of 1500 feet downstream of the diffusers, (2) a maximum width of 750 feet, and (3) a maximum length of 275 feet upstream of the diffusers. The depth of the mixing zone measured from the surface varies linearly from the surface 275 feet upstream of the diffusers to the top of the diffuser pipes and extends to the bottom downstream of the diffusers. When the plant is operated in closed mode, the mixing zone shall also include the area of the intake forebay.
: 3. Information required by the numerical model and evaluations for the river temperature, temperature rise, and rate of temperature change shall be made every 15 minutes. The ambient temperature shall be determined at the 5-foot depth as the average of measurements at depths 3 feet, 5 feet, and 7 feet. The river temperature at the downstream end of the mixing zone shall be determined as that computed by the numerical model at a depth of 5 feet.  
: 4. Daily maximum temperatures for the ambient temperature, the river temperature at the downstr eam edge of the mixing zone, and temperature rise shall be determined from 24-hour average values. The 24-hour average values shall be calculated every 15 minutes using the current and previous ninety-six 15-minute values, thus creating a 'rolling' average. The maximum of the ninety-six observations generated per day by this procedure shall be reported as the daily maximum value. For the river temperature at the downstream end of the mixing zone, the 1-hour average shall also be determined. The 1-hour average values shall be calculated every 15 minutes using the average of the current and previous four 15-minute values, again creating a rolling average.  
: 5. The daily maximum 24-hour average river temperature is limited to 86.9&deg;F (30.5&deg;C). Since the state's criteria makes exception for exceeding the value as a result of natural conditions, when the 24-hour average ambient temperature exceeds 84.9&deg;F (29.4&deg;C) and the plant is operated in helper mode, the maximum temperature may exceed 86.9&deg;F (30.5&deg;C). In no case shall the plant discharge cause the 1-hour average downstream river temperature at the downstream of the mixing zone to exceed 93.0&deg;F (33.9&deg;C) without the consent of the permitting authority.
: 6. The temperature rise is the difference between the 24-hour average ambient river temperature measured at Station 14 and the computed 24-hour average temperature at the downstream end of the mixing zone. The 24-hour average temperature rise shall be limited to 5.4F&deg; (3.0 C&deg;) during the months of April through October. The 24-hour average temperature rise shall be limited to 9.0F&deg; (5.0 C&deg;) during the months of November through March.
: 7. The rate of temperature change shall be computed at 15-minute intervals based on the current 24-hour average ambient river temperature, current 24-hour-hour average river flow, and current values of the flow and temperature of water discharging through the diffuser pipes. The 1-hour average rate of temperature change shall be calculated every 15-minutes by averaging the current and previous four 15-minute values. The 1-hour average rate of temperature change shall be limited to 3.6F&deg; (2 C&deg;) per hour.


6  Figure 3. Locations of Instream Temper ature Monitors for Sequoyah Nuclear Plant SQNSta 8, TRM 483.4 Mixing Zone Diffusers Sta 12Sta 13, TRM 484.7 T = T d-T u T uSta 14, TRM 490.4 T d dT d/dtChickamauga ReservoirTennessee River Soddy CreekOpossumCreekDaily average flow Intake 7 NUMERICAL MODEL The diffusers at SQN are located on the bottom of the navigation channel in Chickamauga Reservoir. As shown in Figur e 4, each diffuser is 350 feet long, and contains seventeen 2-inch diameter ports per linear foot of pipe, arranged in rows over an arc of approximately 18 degrees in the downstream upper quadrant of the diffuser conduit. The two diffuser legs rest on an elevated pad approximately 10 feet above the bottom of the river, occupying the 700 feet of
EXECUTIVE


navigation channel on the plant-side of the river (right side of the channel, looking downstream). The flow in the immediate vicinity of the ports is far too complex to be analyzed on a real-time basis with current computer technology. Therefore, a simplifying assumption is made that the diffusers can be treated as a slot jet with a length equal to that of the perforated sections of the pipe. The width of this assumed slot is one of three empirical parameters used to calibrate the model. The second is a relationship used to compute the entrainment of ambient water along the trajectory of the plume and the third is a relationshi p for the amount of diffuser effluent that is re-entrained into the diffuser plum e for sustained low river flow.
==SUMMARY==


The initial development of the numerical model is described in detail by Benton (2003). Based on later studies that provided evidence that re-entrainment occurs (TVA, 2009), the original numerical model was modified to better reflect the local buildup of heat that occurs in the river under such conditions. Before presenting calibrati on results, it is appropriate first to provide a  
The National Pollutant Discharge Elimination System (NPDES) permit for Sequoyah Nuclear Plant (SQN) identifies the release of cooling water to the Tennessee River through the plant discharge diffusers as Outfall 101. The primary method to monitor compliance with the NPDES temperature limits for this outfall includes the use of a numerical model that solves a set of governing equations for the hydrothermal conditions produced in the river by the interaction of the SQN release and the river discharge. The numerical model operates in real-time and utilizes a combination of measured and computed values for the temperature, flow, and stage in the river; and the temperature and flow from the SQN discharge diffusers. Part III, Section G of the permit states: The numerical model used to determine compliance with the temperature requirements for Outfall 101 shall be subject of a calibration study once during the permit cycle. The study should be accomplished in time for data to be available for the next permit application for re-issuance of the permit. A report of the study will be presented to the division of Water Pollution Control. This report is provided in fulfillment of these requirements.
The basic formulation of the numerical model is presented herein. Three empirical parameters are used to calibrate the model. The first is the effective width of the diffuser slot, and the second is a relationship used to compute the entrainment of ambient water along the trajectory of the plume. The third parameter is a relationship for the amount of diffuser effluent that is re-entrained into the diffuser plume for periods of sustained low river flow.
Temperature measurements across the downstream end of the SQN mixing zone from fifty samples collected between 1982 and 2012 were used in this calibration study. These observed data were compared with computed downstream temperatures from the numerical model for the same periods of time. In this process, sensitivity tests were performed for the effective diffuser slot width, entrainment relationship, and plume re-entrainment function. The results show acceptable agreement between computed and measured temperatures, particularly at river temperatures greater than 75&#xba;F. The overall average discrepancy between the measured and computed downstream temperatures was about 0.55 F&#xba; (0.31 C&#xba;). For downstream temperatures above 75&#xba;F, the average discrepancy was about 0.38 F&#xba; (0.21 C&#xba;). There was no significant change in the model performance compared to the previous calibration, and as a result, no update was required in the model parameter set.
i


brief description of the model formulation.
CONTENTS Page EXECUTIVE
Figure 4. Sequoyah Nuclear Plant Outfall 101 Discharge Diffusers 8 In general, the model treats the effluent discharge from the diffusers as a fully mixed, plane buoyant jet with a two-dimensional (vertical and longitudinal) trajector
: y. This is shown schematically in Figure 5. The jet discharges into a temperature-stratified, uniform-velocity flow and entrains ambient fluid as it evol ves along its trajectory. The width, b, of the jet and the dilution of the effluent heat energy increase along the jet trajectory, decreasing the bulk mixed temperature along its path.
Figure 5. Two-Dimensional Plane Buoyant Jet Model for a Submerged Diffuser Consideration of the mass, momentum, and energy for a cross section of the plume orthogonal to the jet trajectory and having a differential thickness ds, yields the following system of ordinary differential equations, ejjmbv ds d (conservation of mass in jet), (1) eejjumbuv ds d (conservation of x momentum in jet), (2) jeeejjbgvmbvv ds d (conservation of y momentum in jet), (3) eejjjcTmbcTv ds d (conservation of thermal energy in jet), (4) j v u ds dx, and (5) j v v ds dy, (velocity of jet tangent to trajectory). (6) uriver(y) = u e y x s b (s) Triver(y)R u v j v 9 The following auxiliary relationships also are needed to solve the differential equations,  2/1 2 2vuumee e , (7) jwater j T, (8) ewater e T, (9) yTT river e, (10) river euu, (11) 0e v , and (12) 2/122vuv j. (13)  In these equations, the subscripts j and e denote conditions within the buoyant jet and conditions within the water upstream of the mixing zone that is entrained by the jet, respectively. Thus,  j denotes the density of water at a point inside the jet and  e denotes the density of water entrained from upstream of the mixing zone.
T e denotes the temperature of the water upstream of the mixing zone that is entrained by the jet. The x-velocity of the entrained water, u e, is the same as the river velocity, u river, which is negligible in the vertical direction (i.e., v e = 0). The magnitude of the velocity along the jet trajectory is denoted by v j, with x- and y-components u and v , respectively. The individual jets issuing from th e array of 2-inch diamet er outlet ports of each diffuser are modeled as a plane je t issuing from a slot of width b 0. Ideally, the slot width is chosen to preserve the total momentum flux issuing from the circular ports of the diffuser.
However, as indicated earlier, for this formulation, the slot width is used as a term to calibrate the numerical model. The river velocity u river is computed by a one-dimensional unsteady flow model of Chickamauga Reservoir. Apart from information for the reservoir geometry, the basic input for the flow model includes the measured hydro releases at Watts Bar Dam and Chickamauga Hydro Dam and the measured river water surface elevation at SQN.


The transverse gradients of velocity, temperature, and density that occur within the jet due to turbulent diffusion of the effluent momentum and energy are modeled as an entrainment mass flux, m e, induced by the vectorial difference between the velocity of the jet and that of the river flow upstream of the mixing zone. Empirical relationships for the entrainment coefficient  are based on arguments of jet self-similarity and asymptotic behavior. These relationships incorporate non-dimensional parameters, such as a Richardson or densimetric Froude number, that describe the relative strengths of buoyancy and momentum flux in the jet (e.g., see Fischer et al., 1979). Again, as indicated earlier, the entrainment coefficient, lik e the slot width, is adjusted as part of the calibration process.
==SUMMARY==
10 The initial conditions required by the model include,  0 0bbss, (14)  cos 0Rxss, (15)  sin 0Ryss, (16)  cos 0 0 0 b q uss, (17)  sin 0 0 0 b q vss, and (18) 0 0TTss j. (19)  This system of differential equations, auxiliary equations, and initial conditions comprise a first-order, initial-value problem that can be integrated from the diffuser slot outlet (s = s 0) to any point along the plume trajectory.
............................................................................................................. i LIST OF FIGURES ....................................................................................................................... iii LIST OF TABLES ......................................................................................................................... iii INTRODUCTION .......................................................................................................................... 1 BACKGROUND ............................................................................................................................ 3 NUMERICAL MODEL.................................................................................................................. 7 Plume Entrainment ........................................................................................................... 12 Diffuser Effluent Re-Entrainment ..................................................................................... 13 CALIBRATION ........................................................................................................................... 13 Previous Calibration Data and Calibration Work ................................................................... 13 New Calibration Data and Calibration Work.......................................................................... 16 Diffuser Slot Width............................................................................................................ 16 Plume Entrainment Coefficient ......................................................................................... 16 Diffuser Effluent Re-Entrainment ..................................................................................... 18 Results of Updated Calibration ........................................................................................ 20 CONCLUSIONS........................................................................................................................... 23 REFERENCES ............................................................................................................................. 24 ii
Note in the above that R is the radius of the diffuser conduit, b 0 is the effective width of the diffuser slot,  is the exit angle of the diffuser jet, T 0 is the temperature of effluent i ssuing from the slot, and q 0 is the effluent discha rge per unit length of diffuser. In practice, integration of the govern ing equations is halted when the jet centerline reaches a point five feet below the water surface (the regulatory compliance depth) or when the upper boundary of the jet reaches the water surface. The jet temperature, T j, at this point is reported as the fully-mixed temperature to which the thermal regulatory criteria are applied or to which monitoring station data at the edge of the regulatory mixing zone are compared. The integration is done with an adaptive step-size, fourth-order Runge-Kutta algorithm.  


In the model, Station 13 (Figure 2), located 1.1 miles upstream of the diffusers, is used to represent the temperature of the water entrained in the mixing zone, yTT river e. Whereas this is a good assumption for river flows where the effl uent plume is carried downstream, it weakens for low river flows. Based on the understanding gained in recent studies (TVA, 2009), it is known that partial re-entrainment of the effluent plume occurs at sustained low river flow, increasing the temperature of the water entering the mixing zone above that represented by Station 13. To simulate this phenomenon, the model modifies the Station 13 temperature profile for low river flows. For each point in the profile, a local densimetric Froude number is computed as
LIST OF FIGURES Page Figure 1. Location of Sequoyah Nuclear Plant .............................................................................. 1 Figure 2. Chickamauga Reservoir in the Vicinity of Sequoyah Nuclear Plant ............................. 2 Figure 3. Locations of Instream Temperature Monitors for Sequoyah Nuclear Plant................... 6 Figure 4. Sequoyah Nuclear Plant Outfall 101 Discharge Diffusers ............................................. 7 Figure 5. Two-Dimensional Plane Buoyant Jet Model for a Submerged Diffuser ........................ 8 Figure 6. Sensitivity of Computed Temperature Td to Diffuser Effective Slot Width ................ 17 Figure 7. Sensitivity of Computed Temperature Td to Plume Entrainment Coefficient .............. 18 Figure 8. Sensitivity of Computed Temperature Td to Effluent Re-Entrainment Function ......... 19 Figure 9. Comparison of Computed and Measured Temperatures Td for Field Studies from April 1982 through November 2012 ...................................................................21 Figure 10. Comparison of Computed and Measured 24-hour Average Temperatures Td for Station 8 for 2010 .................................................................................................21 Figure 11. Comparison of Computed and Measured Hourly Average Temperatures Td for Station 8 for 2010 ................................................................................................22 LIST OF TABLES Table 1. Summary of SQN Instream Thermal Limits for Outfall 101........................................... 5 Table 2. Thermal Surveys at SQN from April 1982 through March 1983 .................................. 14 Table 3. Thermal Surveys at SQN from March 1996 through April 2003 .................................. 15 Table 4. Thermal Surveys at SQN from February 2004 through November 2007...................... 15 Table 5. Thermal Surveys at SQN from November 2012 ........................................................... 16 Table 6. Plume Re-Entrainment Iteration Numbers and Factors ................................................. 19 iii


bZZ ge epe river r u F , (20) 11 where u river is the average river velocity, Z e-Z b is the elevation of the profile point relative to the bottom elevation of the river, e is the entrainment water density at that elevation, and p is the density of the effluent plume at the 5-foot compliance depth. The densimetric Froude number represents the ratio of momentum forces to buoyancy forces in the river flow. If F r is less than 1.0 (i.e., buoyancy greater than momentum), it is assumed that the buoyancy of the plume is sufficient to cause part of the plume to travel upstream and become re-entrained into the flow, thereby increasing the temperature of the water entering the mixing zone. The modified entrainment temperature N e T at each point in the Station 13 profile is computed by repeatedly evaluating 1n e p n eTR1.0TRT (21) for values of n from 1 to N , where N is the number of iterations of Eq. (21), R is a re-entrainment fraction, 0n e T is the original Station 13 temperature, and T p is the computed plume temperature at the 5-foot depth.
INTRODUCTION The Sequoyah Nuclear Plant (SQN) is located on the right bank of Chickamauga Reservoir at Tennessee River Mile (TRM) 484.5. As shown in Figure 1, the plant is northeast of Chattanooga, Tennessee, about 13.5 miles upstream and 45.4 miles downstream of Chickamauga Dam and Watts Bar Dam, respectively. As shown in Figure 2, the reservoir in the vicinity of SQN contains a deep main channel with adjacent overbanks and embayments. The main channel is approximately 900 feet wide and 50 to 60 feet deep, depending on the pool elevation in Chickamauga Reservoir. The overbanks are highly irregular and usually less than 20 feet deep.
N and R are functions of the 24-hour average river velocity. After new Station 13 temperatures have been computed for the entire profile, the mixing zone computation is performed again, using the modified profile to get a new plume temperature at the 5-foot depth. It is emphasized that the final result of the model is the computed temperature at the downstream end of the mixing zone. The instream temperature rise is still computed based on the temperature measurement at the new ambient temperature monitor, Station 14.  
SQN has two units with a total summertime gross generating capacity of about 2350 MWe and an associated waste heat load of about 15.6x109 Btu/hr (TVA, 2010). The heat transferred from the steam condensers to the cooling water is dissipated to the atmosphere by two natural draft cooling towers, to the river by a two-leg submerged multiport diffuser, or by a combination of both. The release to the river is identified in the National Pollutant Discharge Elimination System (NPDES) Permit as Outfall 101.
Figure 1. Location of Sequoyah Nuclear Plant 1


Values for N and R are calibrated based on observed temperatures at the downstream end of the diffuser mixing zone for low river flow conditions, as indicated earlier.
f/llllllm Denotes Reservoir areas of water depth less than 20 feet Mixing Zone Figure 2. Chickamauga Reservoir in the Vicinity of Sequoyah Nuclear Plant 2
Depending on the river stage, the modifications by Equatio n 21 begin to take effect as the 24-hour average river flow drops through the range of 17,000 cfs to 25,000 cf s, and increases as the 24-hour average river flow continues to drop. For river flows above this range, no modification is needed for re-entrainment.


The downstream temperature and instream temper ature rise provided by the model are computed every 15 minutes, using instantaneous values of the measured diffuser discharge temperature (Station 12), measured upstream temperature profile (Station 13), measured ambient temperature (Station 14), measured river elev ation (Station 13), and computed values of the river velocity (one-dimensional unsteady flow model of Chickama uga Reservoir) and diffuser discharge. The diffuser discharge is computed based on the difference in water elevation between the SQN
The compliance of SQN operation with the instream temperature limits specified in the NPDES permit (TDEC, 2011) is based on a downstream temperature that is calculated on a real-time basis by a numerical computer model. Part III, Section G of the permit states:
The numerical model used to determine compliance with the temperature requirements for Outfall 101 shall be subject of a calibration study once during the permit cycle. The study should be accomplished in time for data to be available for the next permit application for re-issuance of the permit. A report of the study will be presented to the Division of Water Pollution Control. Any adjustments to the numerical model to improve its accuracy will not need separate approval from the Division of Water Pollution Control; however, the Division will be notified when such adjustments are made.
This report presents a summary of compliance model and the required calibration study.
BACKGROUND The original method of monitoring thermal compliance for the SQN diffuser discharge (i.e.,
Outfall 101), included two temperature stations located near the downstream corners of the mixing zone, Station 8 and Station 11 (see Figure 2). Because of the necessity to keep the navigation channel free of obstructions, temperature stations could not be situated between these locations to monitor the center of the thermal plume. The upstream ambient river temperature was measured at Station 13, located on the plant intake skimmer wall. In August 1983, the Tennessee Valley Authority (TVA) reported the results of six field studies of the SQN diffuser performance under various river and plant operating conditions (TVA, 1983a). The data summarized in the report showed that based on measured temperature variations across the downstream edge of the mixing zone, Station 8 and Station 11 were inadequate in providing a representative cross-sectional average temperature of the thermal plume. In particular, it was found that Station 11 often was not in the main path of flow of the thermal plume and did not always show elevated temperatures. The remaining downstream monitor, Station 8, also was not considered adequate because it again was located outside the navigation channel. In the report, TVA proposed an alternate method to monitor thermal compliance involving the use of a numerical model to simulate the behavior of the thermal plume in the mixing zone. The model would provide a real-time assessment of compliance with the thermal discharge limitations.
Information required for the model included: the ambient river temperature upstream of the diffuser mixing zone (measured at Station 13, see Figure 2), the discharge in the river at SQN (determined from measurements at Watts Bar Dam and Chickamauga Dam), the depth of flow in the river (measured at Station 13), the temperature of the flow issuing from the plant diffusers (measured at Station 12, see Figure 2), and the discharge of the flow issuing from the diffusers (determined from measurements at both Station 12 and Station 13). A PC, located in the SQN Environmental Data Station (EDS), was to be used collect the required data, compute the thermal compliance parameters, and distribute the results to plant operators (see TVA, 1983b). The August 1983 report presented results demonstrating the validity of using the numerical model for tracking compliance with the Outfall 101 thermal limitations.
3


diffuser pond (Station 12) and the river (Station 13). All computations are performed every 15 minutes to provide rolling hourly and 24-hour average values. Th e hourly averages are based on the current and previous four 15-minute values , whereas the 24 hour averages are based on current and previous ninety-six 15-minute values. The temperature rate-of-change is determined slightly different, being computed every 15 minutes based on current 24-hour average river conditions and current 15-minute values of the flow and temperature of water discharging from the SQN diffusers. This method was adopted in August 2001 in order to distinguish between rate-of-change events due to changes in SQN operations (i.e. changes in plant discharge flow and/or temperature) and those due to non-SQN changes in opera tions (e.g., changes in river flow). Prior to this change, SQN was held accountable for temperature rate-of-change events over which it had very little control or influence.
The method of using the numerical model was sent to the Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), requesting approval for implementation as a valid means for monitoring SQN thermal compliance. The key advantage of the method includes a representation of the cross-sectional average downstream temperature that is at least as good as the instream temperature measurements from Station 8 and Station 11. The method also provides consistency with procedures that are used for scheduling releases from Watts Bar Dam and Chickamauga Dam, as well as procedures for operating Sequoyah Nuclear Plant. This consistency helps TVA minimize unexpected events that can potentially threaten the NPDES thermal limits for Outfall 101. In March 1984 approval was granted for TVA to use the numerical model as the primary method to track thermal compliance.
12 Plume Entrainment Two empirical relationships for the plume entrainment coefficient are available in the numerical model. The first, developed by McIntosh, was inferred from a relationship for the entrainment coefficient determined from the data re ported in 1983 (TVA, 1983a) and is given by 00.155.000.175.027.0 d d 2.5 d dF for F0.75 for F 0.27F for  , (22)  where F d is the densimetric Froude number of the diffuser discharge defined by ood o d d gb w F. (23)
Except for infrequent outages, the model has been in use ever since. Subsequently, Station 11 was removed from the river. However, Station 8 was retained to provide an optional method to track thermal compliance should there be a need to remove the model from service.
The term w d is the velocity of the diffuser discharge, g is the gravitational constant, b 0 is the diffuser slot width,  d is the density of the diffuser discharge, and  o is the density of the ambient river water at the discharge depth.  
Due to the ever changing understanding of the hydrothermal aspects of Chickamauga Reservoir, as well as the operational aspects of the nuclear plant and river system, modifications have been necessary over the years for both the numerical model and thermal criteria for Outfall 101. The current version of the model is presented in more detail later. The current thermal criteria are presented in Table 1. The limit for the temperature at the downstream end of the mixing zone (Td) is a 24-hour average value of 86.9&deg;F (30.5&deg;C) and an hourly average value of 93.0&deg;F (33.9&deg;C). The instream temperature rise (T) is limited to a 24-hour average of 5.4 F&deg; (3.0 C&#xba;)
for months April through October, and 9.0 F&deg; (5.0 C&#xba;) for months November through March.
The latter wintertime limit was obtained by a 316(a) variance. The temperature rate-of-change at the downstream end of the mixing zone (dTd/dt) is limited to +/-3.6 F&deg;/hr (+/-2 C&#xba;/hr). With the compliance model, dTd/dt is based on 24-hour average river conditions and 15 minute plant conditions. Other details related to the temperature limits for Outfall 101 are provided in the notes accompanying Table 1. It is important to note that compliance with instream temperature limits are based on a computed downstream temperature at a depth of 5.0 feet. And in a similar fashion, the upstream temperature is measured at the 5.0 foot depth, based on the average of temperature readings at the 3-foot, 5-foot and 7-foor depths.
Originally, the ambient river temperature for the temperature rise was measured at Station 13, about 1.1 miles upstream of the discharge diffusers. However, under sustained low flow conditions, it was discovered that heat from the diffusers can migrate upstream and reach the area of Station 13. In this manner, the ambient temperature can become elevated, thereby artificially reducing the measured impact of the plant on the river (i.e., T). As such, in late March 2006, a new ambient temperature station was installed in the river further upstream at TRM 490.4, about 6.8 miles upstream of the diffusers. The location of the new monitor, entitled Station 14, is shown in Figure 3.
4


The second entrainment coefficient, based on la boratory data, was originally developed by Benton in 1986 and is given by
Table 1. Summary of SQN Instream Thermal Limits for Outfall 101 Averaging                        NPDES Type of Limit (hours)                          Limit2 Max Downstream Temperature, Td                              24                      86.9&deg;F (30.5&deg;C)
Max Downstream Temperature, Td                                1                      93.0&deg;F (33.9&deg;C)
Max Temperature Rise, T                                24            5.4 F&deg;/9.0 F&deg; (3.0 C&#xba;/5.0 C&#xba;)
Max Temperature Rate-of-Change, dTd/dt                        Mixed                  +/-3.6 F&deg;/hr (+/-2 C&#xba;/hr)
Notes:
: 1. Compliance with the river limitations (river temperature, temperature rise, and rate of temperature change) shall be monitored by means of a numerical model that solves the thermohydrodynamic equations governing the flow and thermal conditions in the reservoir. This numerical model will utilize measured values of the upstream temperature profile and river stage; flow, temperature and performance characteristics of the diffuser discharge; and river flow as determined from releases at the Watts Bar and Chickamauga Dams. In the event that the modeling system described here is out of service, an alternate method will be employed to measure water temperatures at least one time per day and verify compliance of the maximum river temperature and maximum temperature rise. Depth average measurements can be taken at a downstream backup temperature monitor at the downstream end of the diffuser mixing zone (left bank Tennessee River mile 483.4) or by grab sampling from boats. Boat sampling will include average 5-foot depth measurements (average of 3, 5, and 7-foot depths). Sampling from a boat shall be made outside the skimmer wall (ambient temperature) and at quarter points and mid-channel at downstream Tennessee River mile 483.4 (downstream temperature). The downstream reported value will be a depth (3, 5, and 7-foot) and lateral (quarter points and midpoint) average of the instream measurements. Monitoring in the alternative mode using boat sampling shall not be required when unsafe boating conditions occur.
: 2. Compliance with river temperature, temperature rise, and rate of temperature change limitations shall be applicable at the edge of a mixing zone which shall not exceed the following dimensions: (1) a maximum length of 1500 feet downstream of the diffusers, (2) a maximum width of 750 feet, and (3) a maximum length of 275 feet upstream of the diffusers. The depth of the mixing zone measured from the surface varies linearly from the surface 275 feet upstream of the diffusers to the top of the diffuser pipes and extends to the bottom downstream of the diffusers. When the plant is operated in closed mode, the mixing zone shall also include the area of the intake forebay.
: 3. Information required by the numerical model and evaluations for the river temperature, temperature rise, and rate of temperature change shall be made every 15 minutes. The ambient temperature shall be determined at the 5-foot depth as the average of measurements at depths 3 feet, 5 feet, and 7 feet. The river temperature at the downstream end of the mixing zone shall be determined as that computed by the numerical model at a depth of 5 feet.
: 4. Daily maximum temperatures for the ambient temperature, the river temperature at the downstream edge of the mixing zone, and temperature rise shall be determined from 24-hour average values. The 24-hour average values shall be calculated every 15 minutes using the current and previous ninety-six 15-minute values, thus creating a rolling average. The maximum of the ninety-six observations generated per day by this procedure shall be reported as the daily maximum value. For the river temperature at the downstream end of the mixing zone, the 1-hour average shall also be determined. The 1-hour average values shall be calculated every 15 minutes using the average of the current and previous four 15-minute values, again creating a rolling average.
: 5. The daily maximum 24-hour average river temperature is limited to 86.9&deg;F (30.5&deg;C). Since the states criteria makes exception for exceeding the value as a result of natural conditions, when the 24-hour average ambient temperature exceeds 84.9&deg;F (29.4&deg;C) and the plant is operated in helper mode, the maximum temperature may exceed 86.9&deg;F (30.5&deg;C). In no case shall the plant discharge cause the 1-hour average downstream river temperature at the downstream of the mixing zone to exceed 93.0&deg;F (33.9&deg;C) without the consent of the permitting authority.
: 6. The temperature rise is the difference between the 24-hour average ambient river temperature measured at Station 14 and the computed 24-hour average temperature at the downstream end of the mixing zone. The 24-hour average temperature rise shall be limited to 5.4F&deg; (3.0 C&deg;) during the months of April through October. The 24-hour average temperature rise shall be limited to 9.0F&deg; (5.0 C&deg;) during the months of November through March.
: 7. The rate of temperature change shall be computed at 15-minute intervals based on the current 24-hour average ambient river temperature, current 24-hour-hour average river flow, and current values of the flow and temperature of water discharging through the diffuser pipes. The 1-hour average rate of temperature change shall be calculated every 15-minutes by averaging the current and previous four 15-minute values. The 1-hour average rate of temperature change shall be limited to 3.6F&deg; (2 C&deg;) per hour.
5


20584254361691310.rmf.tanh.. , (24)  where b/urmf river 3, (25) and odo l gQb0. (26)  Term uriver is the ambient river veloci ty, as previously defined, Q 0 is the diffuser discharge flowrate, and l is the length of the ported section of the diffuser.
Sta 14, TRM 490.4 Tu Opossum Creek Chickamauga Reservoir Tennessee River Soddy Creek T = Td - Tu Sta 13, TRM 484.7 Daily average flow Intake SQN Sta 12 Mixing Zone Td                  Diffusers dTd/dt            Sta 8, TRM 483.4 Figure 3. Locations of Instream Temperature Monitors for Sequoyah Nuclear Plant 6


13 Diffuser Effluent Re-Entrainment Partial re-entrainment of the diffuser plume is known to occur under c onditions of low river flow. When the diffuser plume attempts to entrain an amount of ambient flow greater than what is available from further upstream, the upper portions of the plume tend to migrate upstream and plunge downward to be mixed with the flow in the lower portion of the river. The formulation to simulate this phenomenon was presented earlier (Eqs. 20 and 21). The unknown coefficients to be determined in the calibration process are the number of iterations N and re-entrainment fraction R in Eq. (21), which are functions of the 24-hour average river velocity.
NUMERICAL MODEL The diffusers at SQN are located on the bottom of the navigation channel in Chickamauga Reservoir. As shown in Figure 4, each diffuser is 350 feet long, and contains seventeen 2-inch diameter ports per linear foot of pipe, arranged in rows over an arc of approximately 18 degrees in the downstream upper quadrant of the diffuser conduit. The two diffuser legs rest on an elevated pad approximately 10 feet above the bottom of the river, occupying the 700 feet of navigation channel on the plant-side of the river (right side of the channel, looking downstream).
CALIBRATION
The flow in the immediate vicinity of the ports is far too complex to be analyzed on a real-time basis with current computer technology. Therefore, a simplifying assumption is made that the diffusers can be treated as a slot jet with a length equal to that of the perforated sections of the pipe. The width of this assumed slot is one of three empirical parameters used to calibrate the model. The second is a relationship used to compute the entrainment of ambient water along the trajectory of the plume and the third is a relationship for the amount of diffuser effluent that is re-entrained into the diffuser plume for sustained low river flow.
The initial development of the numerical model is described in detail by Benton (2003). Based on later studies that provided evidence that re-entrainment occurs (TVA, 2009), the original numerical model was modified to better reflect the local buildup of heat that occurs in the river under such conditions. Before presenting calibration results, it is appropriate first to provide a brief description of the model formulation.
Figure 4. Sequoyah Nuclear Plant Outfall 101 Discharge Diffusers 7


The numerical model is calibrated to achieve the best match between computed downstream temperatures and field measurements at the downstream end of the mixing zone. Field measurements at the downstream end of the mixing zone are of two types-those including samples from field surveys across the entire widt h of the mixing zone and those from Station 8, which includes samples only at the left-hand corner of the mixing zone (e.g., see Figure 2). Higher priority is given to matching data from field surveys, since such measurements are made across the entire width of the plume mixing zone and are more representative of the average temperature in the thermal plume at the 5-foot compliance depth.
In general, the model treats the effluent discharge from the diffusers as a fully mixed, plane buoyant jet with a two-dimensional (vertical and longitudinal) trajectory. This is shown schematically in Figure 5. The jet discharges into a temperature-stratified, uniform-velocity flow and entrains ambient fluid as it evolves along its trajectory. The width, b, of the jet and the dilution of the effluent heat energy increase along the jet trajectory, decreasing the bulk mixed temperature along its path.
Previous Calibration Data and Calibration Work
y Triver(y)                                      s v v j
uriver(y) = ue                          u b(s)
R x
Figure 5. Two-Dimensional Plane Buoyant Jet Model for a Submerged Diffuser Consideration of the mass, momentum, and energy for a cross section of the plume orthogonal to the jet trajectory and having a differential thickness ds, yields the following system of ordinary differential equations, d
( j v j b) = me (conservation of mass in jet),                                        (1) ds d
( j v j bu ) = me u e (conservation of x momentum in jet),                             (2) ds d
( j v j bv) = me ve + bg ( e  j ) (conservation of y momentum in jet),             (3) ds d
( j v j bcT j ) = me cTe (conservation of thermal energy in jet),                      (4) ds dx u
      =    , and                                                                               (5) ds v j dy v
      = , (velocity of jet tangent to trajectory).                                             (6) ds v j 8


Prior to the NPDES permit of March 2011, field surveys were performed in 1981, 1982, 1983, 1987, 1996, 1997, 1999, 2000, 2002, 2003, 2004, 2006, and 2007. In July 1981, TVA conducted the first field survey of the SQN thermal discha rge (TVA, 1982). The results of the field surveys were compared to projections from modeling re lationships developed from mixing theory and a physical model test of the discharge diffusers. Adequate agreement was achieved between measured data and model projections. In cases where there were discrepancies, the model under-predicted the observed dilutions (i.e., over-predicted temperatures).  
The following auxiliary relationships also are needed to solve the differential equations,
[
me =  e (u e  u ) + v 2 2
                                  ]1/ 2
                                        ,                                                           (7) j =  water (T j ),                                                                           (8) e =  water (Te ) ,                                                                           (9)
Te = Triver ( y ) ,                                                                           (10) u e = u river ,                                                                               (11) ve = 0 , and                                                                                  (12)
(
v j = u2 + v2      )1/ 2
                              .                                                                    (13)
In these equations, the subscripts j and e denote conditions within the buoyant jet and conditions within the water upstream of the mixing zone that is entrained by the jet, respectively. Thus, j denotes the density of water at a point inside the jet and e denotes the density of water entrained from upstream of the mixing zone. Te denotes the temperature of the water upstream of the mixing zone that is entrained by the jet. The x-velocity of the entrained water, ue, is the same as the river velocity, uriver, which is negligible in the vertical direction (i.e., ve = 0). The magnitude of the velocity along the jet trajectory is denoted by vj, with x- and y-components u and v, respectively. The individual jets issuing from the array of 2-inch diameter outlet ports of each diffuser are modeled as a plane jet issuing from a slot of width b0. Ideally, the slot width is chosen to preserve the total momentum flux issuing from the circular ports of the diffuser.
However, as indicated earlier, for this formulation, the slot width is used as a term to calibrate the numerical model. The river velocity uriver is computed by a one-dimensional unsteady flow model of Chickamauga Reservoir. Apart from information for the reservoir geometry, the basic input for the flow model includes the measured hydro releases at Watts Bar Dam and Chickamauga Hydro Dam and the measured river water surface elevation at SQN.
The transverse gradients of velocity, temperature, and density that occur within the jet due to turbulent diffusion of the effluent momentum and energy are modeled as an entrainment mass flux, me, induced by the vectorial difference between the velocity of the jet and that of the river flow upstream of the mixing zone. Empirical relationships for the entrainment coefficient  are based on arguments of jet self-similarity and asymptotic behavior. These relationships incorporate non-dimensional parameters, such as a Richardson or densimetric Froude number, that describe the relative strengths of buoyancy and momentum flux in the jet (e.g., see Fischer et al., 1979). Again, as indicated earlier, the entrainment coefficient, like the slot width, is adjusted as part of the calibration process.
9


Between April 1982 and March 1983, five field surveys containing seventeen sets of samples across the downstream end of the mixing zone were performed to acquire data for validation of the computed compliance technique (TVA, 1983a). The results of these surveys are given in Table 2. Only one SQN unit was operating during the March 1983 test-the other five tests were for operation with two units. The results of the numerical model compared favorably with the field-measured downstream temperatures. On average, the discrepancy between the measured and computed downstream temperatures was about 0.40 F&deg; (0.22 C&deg;). Since the accuracy of the temperature sensors used by TVA are only about +/-0.25 F&deg; (+/-0.14 C&deg;), the agreement between the field measurements and the computer model was considered good. A similar comparison
The initial conditions required by the model include, b s = s = b0 0        ,                                                                          (14) x s = s = R cos 0              ,                                                                  (15) y s = s = R sin 0              ,                                                                  (16) q0 u s=s =          cos 0
b0            ,                                                              (17) q0 v s=s =          sin 0
b0          , and                                                           (18)
Tj          = T0 s = s0
                      .                                                                        (19)
This system of differential equations, auxiliary equations, and initial conditions comprise a first-order, initial-value problem that can be integrated from the diffuser slot outlet (s = s0) to any point along the plume trajectory. Note in the above that R is the radius of the diffuser conduit, b0 is the effective width of the diffuser slot,  is the exit angle of the diffuser jet, T0 is the temperature of effluent issuing from the slot, and q0 is the effluent discharge per unit length of diffuser. In practice, integration of the governing equations is halted when the jet centerline reaches a point five feet below the water surface (the regulatory compliance depth) or when the upper boundary of the jet reaches the water surface. The jet temperature, Tj, at this point is reported as the fully-mixed temperature to which the thermal regulatory criteria are applied or to which monitoring station data at the edge of the regulatory mixing zone are compared. The integration is done with an adaptive step-size, fourth-order Runge-Kutta algorithm.
In the model, Station 13 (Figure 2), located 1.1 miles upstream of the diffusers, is used to represent the temperature of the water entrained in the mixing zone, Te = Triver ( y ) . Whereas this is a good assumption for river flows where the effluent plume is carried downstream, it weakens for low river flows. Based on the understanding gained in recent studies (TVA, 2009), it is known that partial re-entrainment of the effluent plume occurs at sustained low river flow, increasing the temperature of the water entering the mixing zone above that represented by Station 13. To simulate this phenomenon, the model modifies the Station 13 temperature profile for low river flows. For each point in the profile, a local densimetric Froude number is computed as uriver Fr =                                      ,                                                (20) e  p g              (Ze  Zb )
e 10


between the Station 8 and Station 11 temperatures and the measured average temperatures across the downstream edge of the mixing zone revealed that the discrepancy for Station 8 was about 0.79 F&deg; (0.44 C&deg;) and for Station 11 about 0.65 F&deg; (0.36 C&deg;). Consequently, it was concluded 14 that the numerical model is not only an accurate representation of the downstream temperature but also is likely superior to the monitoring approach using Station 8 and Station 11.
where uriver is the average river velocity, Ze-Zb is the elevation of the profile point relative to the bottom elevation of the river, e is the entrainment water density at that elevation, and p is the density of the effluent plume at the 5-foot compliance depth. The densimetric Froude number represents the ratio of momentum forces to buoyancy forces in the river flow. If Fr is less than 1.0 (i.e., buoyancy greater than momentum), it is assumed that the buoyancy of the plume is sufficient to cause part of the plume to travel upstream and become re-entrained into the flow, thereby increasing the temperature of the water entering the mixing zone. The modified entrainment temperature TeN at each point in the Station 13 profile is computed by repeatedly evaluating Ten = R x T p + (1.0 R ) x Ten 1                                                            (21) for values of n from 1 to N, where N is the number of iterations of Eq. (21), R is a re-entrainment fraction, Ten =0 is the original Station 13 temperature, and Tp is the computed plume temperature at the 5-foot depth. N and R are functions of the 24-hour average river velocity. After new Station 13 temperatures have been computed for the entire profile, the mixing zone computation is performed again, using the modified profile to get a new plume temperature at the 5-foot depth. It is emphasized that the final result of the model is the computed temperature at the downstream end of the mixing zone. The instream temperature rise is still computed based on the temperature measurement at the new ambient temperature monitor, Station 14.
Values for N and R are calibrated based on observed temperatures at the downstream end of the diffuser mixing zone for low river flow conditions, as indicated earlier. Depending on the river stage, the modifications by Equation 21 begin to take effect as the 24-hour average river flow drops through the range of 17,000 cfs to 25,000 cfs, and increases as the 24-hour average river flow continues to drop. For river flows above this range, no modification is needed for re-entrainment.
The downstream temperature and instream temperature rise provided by the model are computed every 15 minutes, using instantaneous values of the measured diffuser discharge temperature (Station 12), measured upstream temperature profile (Station 13), measured ambient temperature (Station 14), measured river elevation (Station 13), and computed values of the river velocity (one-dimensional unsteady flow model of Chickamauga Reservoir) and diffuser discharge. The diffuser discharge is computed based on the difference in water elevation between the SQN diffuser pond (Station 12) and the river (Station 13). All computations are performed every 15 minutes to provide rolling hourly and 24-hour average values. The hourly averages are based on the current and previous four 15-minute values, whereas the 24 hour averages are based on current and previous ninety-six 15-minute values. The temperature rate-of-change is determined slightly different, being computed every 15 minutes based on current 24-hour average river conditions and current 15-minute values of the flow and temperature of water discharging from the SQN diffusers. This method was adopted in August 2001 in order to distinguish between rate-of-change events due to changes in SQN operations (i.e. changes in plant discharge flow and/or temperature) and those due to non-SQN changes in operations (e.g., changes in river flow). Prior to this change, SQN was held accountable for temperature rate-of-change events over which it had very little control or influence.
11


In September 1987, TVA released a report desc ribing the field surveys in support of the validation and calibration of the SQN numerical model that had been performed up to that date (TVA, 1987). In the report, a ch art was introduced that described the ambient and operational conditions for which field surveys had been performed. This chart indicated combinations of river flow, season, and number of operating units, showing what tests had been performed, and assigning relative priorities for tests to be performed in the future. With this guidance, six more field surveys were performed between March 1996 and April 2003, to measure downstream temperatures for various river flows and at different times of year. The results of these surveys produced ten sets of samples across the downstream end of the mixing zone, as given in Table 3.  
Plume Entrainment Two empirical relationships for the plume entrainment coefficient are available in the numerical model. The first, developed by McIntosh, was inferred from a relationship for the entrainment coefficient determined from the data reported in 1983 (TVA, 1983a) and is given by 0.27 for F < 0.75 d
0.27
    =          for 0.75  Fd  1.00 ,                                                          (22) 2.5 Fd 0.55 for Fd > 1.00 where Fd is the densimetric Froude number of the diffuser discharge defined by wd Fd =                        .                                                                 (23)
( d  o )
gbo o
The term wd is the velocity of the diffuser discharge, g is the gravitational constant, b0 is the diffuser slot width, d is the density of the diffuser discharge, and o is the density of the ambient river water at the discharge depth.
The second entrainment coefficient, based on laboratory data, was originally developed by Benton in 1986 and is given by 1 + tanh(6.543  rmf  2.0584)
    = 0.31 + 1.69                                  ,                                         (24) 2 where rmf = u river 3
                  /b,                                                                            (25) and g    d b = Q0  o            .                                                                 (26) l  o Term uriver is the ambient river velocity, as previously defined, Q0 is the diffuser discharge flowrate, and l is the length of the ported section of the diffuser.
12


Between 2004 and 2007 a number of additional field surveys were performed, providing twenty-three more sets of samples containing temperature measurements across the downstream end of the diffuser mixing for various river flows and at different times of the year. The results of these surveys are given in Table 4.  
Diffuser Effluent Re-Entrainment Partial re-entrainment of the diffuser plume is known to occur under conditions of low river flow. When the diffuser plume attempts to entrain an amount of ambient flow greater than what is available from further upstream, the upper portions of the plume tend to migrate upstream and plunge downward to be mixed with the flow in the lower portion of the river. The formulation to simulate this phenomenon was presented earlier (Eqs. 20 and 21). The unknown coefficients to be determined in the calibration process are the number of iterations N and re-entrainment fraction R in Eq. (21), which are functions of the 24-hour average river velocity.
CALIBRATION The numerical model is calibrated to achieve the best match between computed downstream temperatures and field measurements at the downstream end of the mixing zone. Field measurements at the downstream end of the mixing zone are of two typesthose including samples from field surveys across the entire width of the mixing zone and those from Station 8, which includes samples only at the left-hand corner of the mixing zone (e.g., see Figure 2).
Higher priority is given to matching data from field surveys, since such measurements are made across the entire width of the plume mixing zone and are more representative of the average temperature in the thermal plume at the 5-foot compliance depth.
Previous Calibration Data and Calibration Work Prior to the NPDES permit of March 2011, field surveys were performed in 1981, 1982, 1983, 1987, 1996, 1997, 1999, 2000, 2002, 2003, 2004, 2006, and 2007. In July 1981, TVA conducted the first field survey of the SQN thermal discharge (TVA, 1982). The results of the field surveys were compared to projections from modeling relationships developed from mixing theory and a physical model test of the discharge diffusers. Adequate agreement was achieved between measured data and model projections. In cases where there were discrepancies, the model under-predicted the observed dilutions (i.e., over-predicted temperatures).
Between April 1982 and March 1983, five field surveys containing seventeen sets of samples across the downstream end of the mixing zone were performed to acquire data for validation of the computed compliance technique (TVA, 1983a). The results of these surveys are given in Table 2. Only one SQN unit was operating during the March 1983 testthe other five tests were for operation with two units. The results of the numerical model compared favorably with the field-measured downstream temperatures. On average, the discrepancy between the measured and computed downstream temperatures was about 0.40 F&deg; (0.22 C&deg;). Since the accuracy of the temperature sensors used by TVA are only about +/-0.25 F&deg; (+/-0.14 C&deg;), the agreement between the field measurements and the computer model was considered good. A similar comparison between the Station 8 and Station 11 temperatures and the measured average temperatures across the downstream edge of the mixing zone revealed that the discrepancy for Station 8 was about 0.79 F&deg; (0.44 C&deg;) and for Station 11 about 0.65 F&deg; (0.36 C&deg;). Consequently, it was concluded 13


Table 2. Thermal Surveys at SQN from April 1982 through March 1983 Date Approx Time River Temperatures (5-foot depth)
that the numerical model is not only an accurate representation of the downstream temperature but also is likely superior to the monitoring approach using Station 8 and Station 11.
Flow (cfs) Stage (ft MSL)T u T d T Measured ( F) Measured ( F) Measured ( F) 04/04/1982 0900 CST 19900 676.46 56.8 61.9 5.1 04/04/1982 1000 CST 19800 676.46 56.7 60.1 3.4 04/04/1982 1100 CST 19600 676.47 56.7 61.2 4.5 04/04/1982 1200 CST 19700 676.50 57.2 61.9 4.7 04/04/1982 1300 CST 19700 676.45 57.4 62.2 4.8 05/14/1982 0900 CDT 7200 682.43 74.5 71.8 -2.7 05/14/1982 1100 CDT 9100 682.40 73.4 71.8 -1.6 05/14/1982 1300 CDT 6300 682.42 72.1 73.6 1.5 09/02/1982 1400 CDT 38500 680.30 78.1 80.1 2.0 11/10/1982 1300 CST 36200 677.57 59.0 60.1 1.1 11/10/1982 1400 CST 31600 677.59 59.0 60.6 1.6 11/10/1982 1500 CST 32300 677.58 59.0 60.4 1.4 03/31/1983 1100 CST 9800 676.34 51.4 54.3 2.9 03/31/1983 1200 CST 9400 676.34 50.4 54.7 4.3 03/31/1983 1300 CST 9300 676.34 52.5 54.5 2.0 03/31/1983 1400 CST 9500 676.34 51.4 54.9 3.5 03/31/1983 1500 CST 9400 676.36 51.4 54.9 3.5  
In September 1987, TVA released a report describing the field surveys in support of the validation and calibration of the SQN numerical model that had been performed up to that date (TVA, 1987). In the report, a chart was introduced that described the ambient and operational conditions for which field surveys had been performed. This chart indicated combinations of river flow, season, and number of operating units, showing what tests had been performed, and assigning relative priorities for tests to be performed in the future. With this guidance, six more field surveys were performed between March 1996 and April 2003, to measure downstream temperatures for various river flows and at different times of year. The results of these surveys produced ten sets of samples across the downstream end of the mixing zone, as given in Table 3.
Between 2004 and 2007 a number of additional field surveys were performed, providing twenty-three more sets of samples containing temperature measurements across the downstream end of the diffuser mixing for various river flows and at different times of the year. The results of these surveys are given in Table 4.
Table 2. Thermal Surveys at SQN from April 1982 through March 1983 River         Temperatures (5-foot depth)
Approx                          Tu        Td          T Date                  Flow     Stage Time                        Measured Measured Measured (cfs)   (ft MSL)
(&deg;F)       (&deg;F)         (&deg;F) 04/04/1982 0900 CST   19900     676.46   56.8       61.9         5.1 04/04/1982 1000 CST   19800     676.46   56.7       60.1         3.4 04/04/1982 1100 CST   19600     676.47   56.7       61.2         4.5 04/04/1982 1200 CST   19700     676.50   57.2       61.9         4.7 04/04/1982 1300 CST   19700     676.45   57.4       62.2         4.8 05/14/1982 0900 CDT     7200     682.43   74.5       71.8         -2.7 05/14/1982 1100 CDT     9100     682.40   73.4       71.8         -1.6 05/14/1982 1300 CDT     6300     682.42   72.1       73.6         1.5 09/02/1982 1400 CDT   38500     680.30   78.1       80.1         2.0 11/10/1982 1300 CST   36200     677.57   59.0       60.1         1.1 11/10/1982 1400 CST   31600     677.59   59.0       60.6         1.6 11/10/1982 1500 CST   32300     677.58   59.0       60.4         1.4 03/31/1983 1100 CST     9800     676.34   51.4       54.3         2.9 03/31/1983 1200 CST     9400     676.34   50.4       54.7         4.3 03/31/1983 1300 CST     9300     676.34   52.5       54.5         2.0 03/31/1983 1400 CST     9500     676.34   51.4       54.9         3.5 03/31/1983 1500 CST     9400     676.36   51.4       54.9         3.5 14


15 Table 3. Thermal Surveys at SQN from March 1996 through April 2003 Date Approx Time River Temperatures (5-foot depth)
Table 3. Thermal Surveys at SQN from March 1996 through April 2003 River                   Temperatures (5-foot depth)
Flow (cfs) Stage (ft MSL) T u T d T Measured ( F) Measured ( F) Measured ( F) 03/01/1996 1100 CST 42456 676.96 45.9 48.8 2.9 03/01/1996 1445 CST 28136 677.04 46.2 50.2 4.0 03/01/1996 1600 CST 21962 677.00 46.1 51.4 5.3 03/01/1996 1700 CST 20280 677.00 46.0 51.5 5.5 07/24/1997 1550 CDT 40441 682.57 83.5 84.7 1.2 03/24/1999* 1250 CST 35731 677.46 51.9 54.5 2.7 08/02/2000 1000 CDT 12472 682.20 82.1 85.1 3.0 08/02/2000 1100 CDT 8624 682.20 82.1 85.3 3.1 07/27/2002 1250 CDT 17231 682.37 84.0 86.6 2.6 04/23/2003 1445 CDT 34178 682.53 63.7 64.2 0.5
Approx                                    Tu              Td                T Date                          Flow         Stage Time                                Measured        Measured          Measured (cfs)   (ft MSL)
(&deg;F)             (&deg;F)             (&deg;F) 03/01/1996       1100 CST       42456       676.96       45.9             48.8               2.9 03/01/1996       1445 CST       28136       677.04       46.2             50.2               4.0 03/01/1996       1600 CST       21962       677.00       46.1             51.4               5.3 03/01/1996       1700 CST       20280       677.00       46.0             51.5               5.5 07/24/1997       1550 CDT       40441       682.57       83.5             84.7               1.2 03/24/1999*       1250 CST       35731       677.46       51.9             54.5               2.7 08/02/2000       1000 CDT       12472       682.20       82.1             85.1               3.0 08/02/2000       1100 CDT         8624       682.20       82.1             85.3               3.1 07/27/2002       1250 CDT       17231       682.37       84.0             86.6               2.6 04/23/2003       1445 CDT       34178       682.53       63.7             64.2               0.5
* The survey of 03/24/1999 is lacking valid upstream temperature data and was not used in the calibration.
* The survey of 03/24/1999 is lacking valid upstream temperature data and was not used in the calibration.
Table 4. Thermal Surveys at SQN from February 2004 through November 2007 Date Approx Time River Temperatures (5-foot depth)
Table 4. Thermal Surveys at SQN from February 2004 through November 2007 River                       Temperatures (5-foot depth)
Flow (cfs) Stage (ft MSL) T u T d T Measured ( F) Measured ( F) Measured ( F) 02/14/2004 0600 CST 51133 677.50 43.7 46.3 2.6 02/22/2004 1800 CST 18468 678.40 45.8 50.5 4.7 08/22/2004 1800 CST 12340 682.00 79.8 84.1 4.3 08/23/2004 1800 CST 39238 682.20 79.8 82.4 2.6 04/01/2006 1915 CST 7084 677.20 59.7 63.5 3.8 04/04/2006 0015 CST 7996 677.70 59.3 63.9 4.6 04/04/2006 1105 CST 8251 677.80 59.6 61.3 1.7 04/04/2006 2030 CST 8258 678.00 59.0 63.2 4.2 04/05/2006 0915 CST 7917 678.20 59.2 62.8 3.6 04/05/2006 2215 CST 8277 678.40 60.4 64.2 3.8 04/06/2006 0915 CST 8174 678.50 59.7 63.3 3.6 04/06/2006 2315 CST 8077 678.70 61.0 64.5 3.5 04/07/2006 0840 CST 8162 678.80 59.9 63.9 4.0 04/07/2006 1435 CST 7889 678.80 60.0 64.7 4.7 05/22/2006 1445 CST 14511 682.00 73.4 72.9 -0.5 05/23/2006 1455 CST 17878 682.20 73.5 73.9 0.4 05/28/2006 1440 CST 13396 682.30 76.6 76.7 0.1 05/29/2006 1435 CST 13713 682.40 77.5 77.6 0.1 05/30/2006 1425 CST 14304 682.40 79.7 79.2 -0.5 09/20/2007 1200 CST 8545 681.80 79.3 83.4 4.1 09/21/2007 1300 CST 8629 681.70 80.6 82.5 1.9 09/22/2007 0600 CST 6969 681.70 79.5 81.8 2.3 11/04/2007 1200 CST 7664 678.70 64.9 69.5 4.6  
Approx                                            Tu              Td                T Date                              Flow           Stage Time                                        Measured        Measured          Measured (cfs)       (ft MSL)
(&deg;F)             (&deg;F)             (&deg;F) 02/14/2004         0600 CST         51133         677.50           43.7             46.3               2.6 02/22/2004         1800 CST         18468         678.40           45.8             50.5               4.7 08/22/2004         1800 CST         12340         682.00           79.8             84.1               4.3 08/23/2004         1800 CST         39238         682.20           79.8             82.4               2.6 04/01/2006         1915 CST         7084         677.20           59.7             63.5               3.8 04/04/2006         0015 CST         7996         677.70           59.3             63.9               4.6 04/04/2006         1105 CST         8251         677.80           59.6             61.3               1.7 04/04/2006         2030 CST         8258         678.00           59.0             63.2               4.2 04/05/2006         0915 CST         7917         678.20           59.2             62.8               3.6 04/05/2006         2215 CST         8277         678.40           60.4             64.2               3.8 04/06/2006         0915 CST         8174         678.50           59.7             63.3               3.6 04/06/2006         2315 CST         8077         678.70           61.0             64.5               3.5 04/07/2006         0840 CST         8162         678.80           59.9             63.9               4.0 04/07/2006         1435 CST         7889         678.80           60.0             64.7               4.7 05/22/2006         1445 CST         14511         682.00           73.4             72.9             -0.5 05/23/2006         1455 CST         17878         682.20           73.5             73.9               0.4 05/28/2006         1440 CST         13396         682.30           76.6             76.7               0.1 05/29/2006         1435 CST         13713         682.40           77.5             77.6               0.1 05/30/2006         1425 CST         14304         682.40           79.7             79.2             -0.5 09/20/2007         1200 CST         8545         681.80           79.3             83.4               4.1 09/21/2007         1300 CST         8629         681.70           80.6             82.5               1.9 09/22/2007         0600 CST         6969         681.70           79.5             81.8               2.3 11/04/2007         1200 CST         7664         678.70           64.9             69.5               4.6 15


16 The most recent calibration of the numerical model was performed in 2009 to support the NPDES permit of September 2005 (TVA, 2009). The data from Table 2, Table 3, and Table 4 were used in this calibration. The average overall discrepancy between the measured and computed downstream temperatures was about 0.55 F&#xba; (0.31 C&#xba;). For downstream temperatures above 75&#xba;F, the average discrepancy improved to about 0.38 F&#xba; (0.21 C&#xba;).
The most recent calibration of the numerical model was performed in 2009 to support the NPDES permit of September 2005 (TVA, 2009). The data from Table 2, Table 3, and Table 4 were used in this calibration. The average overall discrepancy between the measured and computed downstream temperatures was about 0.55 F&#xba; (0.31 C&#xba;). For downstream temperatures above 75&#xba;F, the average discrepancy improved to about 0.38 F&#xba; (0.21 C&#xba;).
New Calibration Data and Calibration Work Since the 2009 model calibration, an additional field study was performed in November 2012 (Table 5). The study included the operation of one unit at SQN and was conducted concurrently with independent measurements for the discharge through the diffusers (TVA, 2013). With this, altogether fifty data points with sets of temperature samples across the downstream end of the mixing zone were available for updating the model calibration (i.e., Table 2 through Table 5).
New Calibration Data and Calibration Work Since the 2009 model calibration, an additional field study was performed in November 2012 (Table 5). The study included the operation of one unit at SQN and was conducted concurrently with independent measurements for the discharge through the diffusers (TVA, 2013). With this, altogether fifty data points with sets of temperature samples across the downstream end of the mixing zone were available for updating the model calibration (i.e., Table 2 through Table 5).
Table 5. Thermal Surveys at SQN from November 2012 Date Approx Time River Temperatures (5-foot depth)
Table 5. Thermal Surveys at SQN from November 2012 River                     Temperatures (5-foot depth)
Flow (cfs) Stage (ft MSL) T u T d T Measured ( F) Measured ( F) Measured ( F) 11/16/2012 1400 CST 12599 678.62 57.0 60.3 3.3 Diffuser Slot Width The effective slot width for a multiport diffuser of the type at SQN can be assumed to fall somewhere between the width of a rectangle with length equal to that of the diffuser section and area equal to the total area of the ports; and the width a rectangle with length equal to that of the diffuser section and area equal to the arc length of the perforated section of the diffuser. For the SQN diffuser, this slot width woul d be between 0.37 feet and 2.67 f eet. Multiple slot widths in this range were evaluated and compared with fifty measured data points from the field surveys (i.e., from Table 2 through Table 5). The results, gi ven in Figure 6, show that larger slot widths yielded better agreement with the measured data. The nominal arc lengt h of the perforated section of the diffuser (i.e., 2.67 feet) was selected as the best diffuser slot width to be used in the numerical model. This is the same value used in the 2009 model calibration.
Approx                                      Tu              Td                T Date                          Flow         Stage Time                                    Measured        Measured        Measured (cfs)     (ft MSL)
Plume Entrainment Coefficient Figure 7 shows the comparison with measured data of downstream temperatures computed with the McIntosh (Eq. 22) and Benton (Eq. 24) entrainment coefficients, again based on fifty data points from the field surveys in Table 2 through Table 5. Both entrainment coefficients result in relatively close matches with th e measured data. Although the McIntosh coefficient seems to perform better at low ambient river temperatures, temperatures computed using the Benton coefficient more closely match measured downstream temperatures at higher river temperatures.
(&deg;F)           (&deg;F)             (&deg;F) 11/16/2012       1400 CST         12599       678.62         57.0           60.3               3.3 Diffuser Slot Width The effective slot width for a multiport diffuser of the type at SQN can be assumed to fall somewhere between the width of a rectangle with length equal to that of the diffuser section and area equal to the total area of the ports; and the width a rectangle with length equal to that of the diffuser section and area equal to the arc length of the perforated section of the diffuser. For the SQN diffuser, this slot width would be between 0.37 feet and 2.67 feet. Multiple slot widths in this range were evaluated and compared with fifty measured data points from the field surveys (i.e., from Table 2 through Table 5). The results, given in Figure 6, show that larger slot widths yielded better agreement with the measured data. The nominal arc length of the perforated section of the diffuser (i.e., 2.67 feet) was selected as the best diffuser slot width to be used in the numerical model. This is the same value used in the 2009 model calibration.
17 Since the accuracy of the computation is more critical at temperatures approaching the NPDES limit for downstream temperature, the Benton coefficient, Eq. (24) is used in the compliance
Plume Entrainment Coefficient Figure 7 shows the comparison with measured data of downstream temperatures computed with the McIntosh (Eq. 22) and Benton (Eq. 24) entrainment coefficients, again based on fifty data points from the field surveys in Table 2 through Table 5. Both entrainment coefficients result in relatively close matches with the measured data. Although the McIntosh coefficient seems to perform better at low ambient river temperatures, temperatures computed using the Benton coefficient more closely match measured downstream temperatures at higher river temperatures.
16


model.
Since the accuracy of the computation is more critical at temperatures approaching the NPDES limit for downstream temperature, the Benton coefficient, Eq. (24) is used in the compliance model.
Figure 6. Sensitivity of Computed Temperature T d to Diffuser Effective Slot Width 45 50 55 60 65 70 75 80 85 9045505560657075808590 Computed (o F)Measured (o F)Field Data -1982 -2012 Line of perfect agreementB0 = 0.37 ft B0 =1.137 ftB0 = 1.903 ftB0 = 2.67 ftB0 = 3.437 ft 18  Figure 7. Sensitivity of Computed Temperature T d to Plume Entrainment Coefficient Diffuser Effluent Re-Entrainment Based on the evaluation of numerous combinations of N and R for diffuser effluent re-entrainment (Eq. 20 and 21), Table 6 gives the values that resulted in computed downstream temperatures that most closely matched measurements in the field surveys (i.e., fifty data points from Table 2 through Table 5). For river velocities between the values give n in Table 6, the re-entrainment factor R is interpolated between the table values. The number of iterations N is interpolated and then rounded to the nearest integer. No re-entrainment correction is performed for 24-hour river velocities greater than the highes t value in the table.
Field Data - 1982 - 2012 90 Line of perfect agreement 85        B0 = 0.37 ft B0 =1.137 ft B0 = 1.903 ft 80 B0 = 2.67 ft B0 = 3.437 ft 75 Computed (oF) 70 65 60 55 50 45 45      50          55          60        65        70      75  80    85        90 Measured  (oF)
Figure 6. Sensitivity of Computed Temperature Td to Diffuser Effective Slot Width 17


Figure 8 shows the comparison of measured and computed downstream temperatures with and without the correction for plume re-entrainment as given in Table 6. Temperatures computed using the plume re-entrainment correction more closely matched measured values for twenty-seven of the fifty data points. Temperatures computed without using the plume re-entrainment correction more closely matched measured valu es for six data points , with no significant differences for the remaining data points. Based upon these results the re-entrainment correction method is used.
Field Data - 1982-2012 90 Line of perfect agreement 85          Benton Entrainment Coefficient McIntosh Entrainment Coefficient 80 75 Computed (oF) 70 65 60 55 50 45 45      50        55            60    65          70    75  80    85        90 Measured  (oF)
45 50 55 60 65 70 75 80 85 9045505560657075808590 Computed (o F)Measured (o F)Field Data -1982-2012Line of perfect agreementBenton Entrainment Coefficient McIntosh Entrainment Coefficient 19 Table 6. Plume Re-Entrainment Iteration Numbers and Factors River Velocity (ft/sec) Number of Iterations N Re-entrainment Factor R 0.000 3 0.21930 0.050 3 0.13300 0.075 3 0.11000 0.100 3 0.10000 0.200 3 0.02670 0.300 3 0.03507 0.400 3 0.00893 0.500 3 0.00447 0.600 0 0.00000 Figure 8. Sensitivity of Computed Temperature T d to Effluent Re-Entrainment Function 45 50 55 60 65 70 75 80 85 9045505560657075808590 Computed (o F)Measured (o F)Field Data -1982-2012Line of perfect agreementUsing Plume ReentrainmentNot Using Plume Reentrainment 20 Results of Updated Calibration For the assumed diffuser slot width and entrainment coefficient, and updated calibration including the re-entrainment function for low river flow, the computed and measured downstream temperatures for the fifty downstream temperature data points collected in SQN field surveys since March 1982 are shown in Figur e 9. The average discrepancy between the measured and computed downstream temperatures was about 0.55 F&#xba; (0.31 C&#xba;). For downstream temperatures above 75&#xba;F, the average discrepancy was 0.38 F&#xba; (0.21 C&#xba;). There was no significant change in the model performance compared to the previous calibration.
Figure 7. Sensitivity of Computed Temperature Td to Plume Entrainment Coefficient Diffuser Effluent Re-Entrainment Based on the evaluation of numerous combinations of N and R for diffuser effluent re-entrainment (Eq. 20 and 21), Table 6 gives the values that resulted in computed downstream temperatures that most closely matched measurements in the field surveys (i.e., fifty data points from Table 2 through Table 5). For river velocities between the values given in Table 6, the re-entrainment factor R is interpolated between the table values. The number of iterations N is interpolated and then rounded to the nearest integer. No re-entrainment correction is performed for 24-hour river velocities greater than the highest value in the table.
Figure 8 shows the comparison of measured and computed downstream temperatures with and without the correction for plume re-entrainment as given in Table 6. Temperatures computed using the plume re-entrainment correction more closely matched measured values for twenty-seven of the fifty data points. Temperatures computed without using the plume re-entrainment correction more closely matched measured values for six data points, with no significant differences for the remaining data points. Based upon these results the re-entrainment correction method is used.
18


To be consistent with the 24-hour averaging specified in the current NPDES permit, the 24-hour average temperatures measured in 2010 at the downstream temper ature monitor, Station 8, are compared to those computed by numerical model in Figure 10. 2010 was selected because it represents a new climatic extreme in East Tennessee for the period of record for this model. As before, the measured temperatures correspond to th e average of sens or readings at the 3-foot, 5-foot, and 7-foot depths. The overall average discrepancy between the measured and computed 24-hour average downstream temperatures was about 0.71 F&#xba; (0.39 C&#xba;), and about 0.63 F&#xba; (0.35 C&#xba;) for downstream temperatures above 75&#xba;F.
Table 6. Plume Re-Entrainment Iteration Numbers and Factors River Velocity Number of Iterations Re-entrainment Factor (ft/sec)            N                      R 0.000              3                  0.21930 0.050              3                  0.13300 0.075              3                  0.11000 0.100              3                  0.10000 0.200              3                  0.02670 0.300              3                  0.03507 0.400              3                   0.00893 0.500              3                  0.00447 0.600              0                  0.00000 Field Data - 1982-2012 90 Line of perfect agreement 85 Using Plume Reentrainment 80        Not Using Plume Reentrainment 75 Computed (oF) 70 65 60 55 50 45 45  50        55          60        65        70    75   80      85      90 Measured (oF)
Figure 8. Sensitivity of Computed Temperature Td to Effluent Re-Entrainment Function 19


Measured downstream hourly average temperatures for the same time period are compared to those computed by numerical model in Figure 11.
Results of Updated Calibration For the assumed diffuser slot width and entrainment coefficient, and updated calibration including the re-entrainment function for low river flow, the computed and measured downstream temperatures for the fifty downstream temperature data points collected in SQN field surveys since March 1982 are shown in Figure 9. The average discrepancy between the measured and computed downstream temperatures was about 0.55 F&#xba; (0.31 C&#xba;). For downstream temperatures above 75&#xba;F, the average discrepancy was 0.38 F&#xba; (0.21 C&#xba;). There was no significant change in the model performance compared to the previous calibration.
As expected, the temperature data are much more scattered for the hourly temperatures. Th e average discrepancy between the measured and computed hourly average downstream temperatures was 0.86 F&#xba; (0.48 C&#xba;)
To be consistent with the 24-hour averaging specified in the current NPDES permit, the 24-hour average temperatures measured in 2010 at the downstream temperature monitor, Station 8, are compared to those computed by numerical model in Figure 10. 2010 was selected because it represents a new climatic extreme in East Tennessee for the period of record for this model. As before, the measured temperatures correspond to the average of sensor readings at the 3-foot, 5-foot, and 7-foot depths. The overall average discrepancy between the measured and computed 24-hour average downstream temperatures was about 0.71 F&#xba; (0.39 C&#xba;), and about 0.63 F&#xba; (0.35 C&#xba;) for downstream temperatures above 75&#xba;F.
for the full range of river temperatures, decreasing to 0.71 F&#xba; (0.39 C&#xba;)
Measured downstream hourly average temperatures for the same time period are compared to those computed by numerical model in Figure 11. As expected, the temperature data are much more scattered for the hourly temperatures. The average discrepancy between the measured and computed hourly average downstream temperatures was 0.86 F&#xba; (0.48 C&#xba;) for the full range of river temperatures, decreasing to 0.71 F&#xba; (0.39 C&#xba;) for downstream temperatures above 75&#xba;F.
for downstream temperatures above 75&#xba;F.  
It needs to be emphasized that in Figure 10 and Figure 11, the data from Station 8 is not necessarily representative of the average temperature across the downstream end of the mixing zone. However, in monitoring the NPDES compliance for Outfall 101, data from Station 8 is considered valuable for verifying basic trends in the downstream temperature as determined by the numerical model, thus providing the motivation for presenting the comparisons given in these figures.
20


It needs to be emphasized that in Figure 10 and Figure 11, the data from Station 8 is not necessarily representative of the average temperature across the downstream end of the mixing zone. However, in monitoring the NPDES compliance for Outfall 101, da ta from Station 8 is considered valuable for verifying basic trends in the downstream temperature as determined by the numerical model, thus providing the motivati on for presenting the comparisons given in these figures.
90 Line of perfect agreement 85 Field Data 1982 - 2012 80 75 Computed (oF) 70 65 60 55 50 45 45    50            55        60        65        70          75          80          85        90 Measured  (oF)
21  Figure 9. Comparison of Computed and Measured Temperatures T d for Field Studies from April 1982 through November 2012 Figure 10. Comparison of Co mputed and Measured 24-hour Average Temperatures T d for Station 8 for 2010 45 50 55 60 65 70 75 80 85 9045505560657075808590 Computed (o F)Measured (o F)Line of perfect agreementField  Data 1982 -2012 40 45 50 55 60 65 70 75 80 85 904045505560657075808590 Computed (o F)Measured(o F)Line of perfect agreement Measured 2010Erroneous data due to faulty sensor--values removed from discrepancy calculations 22  Figure 11. Comparison of Co mputed and Measured Hourly Average Temperatures T d for Station 8 for 2010 40 45 50 55 60 65 70 75 80 85 904045505560657075808590 Computed (o F)Measured (o F)Line of perfect agreement Measured 2010Erroneous data due to faulty sensor--values removed from discre p anc y calculations
Figure 9. Comparison of Computed and Measured Temperatures Td for Field Studies from April 1982 through November 2012 90 85                    Line of perfect agreement 80                    Measured 2010 75 70 Computed (oF) 65 60 Erroneous data due to faulty 55                                                                              sensor--values removed from discrepancy calculations 50 45 40 40       45         50       55       60         65         70       75           80     85       90 Measured (oF)
Figure 10. Comparison of Computed and Measured 24-hour Average Temperatures Td for Station 8 for 2010 21


23 CONCLUSIONS The numerical model for the SQN effluent discharge computes the temperature at the downstream end of the mixing zone with sufficient accuracy for use as the primary method of verifying thermal compliance fo r Outfall 101. In the updated calibration study summarized herein, which used the results from fifty sets of temperature samples across the downstream end of the diffuser mixing zone, the average discrepancy between the measured and computed downstream temperatures was about 0.55 F&#xba; (0.31 C&#xba;). For downstream temperatures above 75&#xba;F, the average discrepancy improved to about 0.38 F&#xba; (0.21 C&#xba;). There was no significant change in the model performance compared to the previous calibr ation, and as a result, no update was required in the model parameter set.
90 85 Line of perfect agreement 80 Measured 2010 75 70 Computed (oF) 65 60 Erroneous data due to faulty 55                                                                    sensor--values removed from discrepancy calculations 50 45 40 40  45        50        55         60        65          70    75         80          85    90 Measured  (oF)
24 REFERENCES Benton, D.J. (2003), "Development of a Two-Dimensional Plume Model," Dynamic Solutions, LLC, Knoxville, Tennessee, May 2003.
Figure 11. Comparison of Computed and Measured Hourly Average Temperatures Td for Station 8 for 2010 22


CONCLUSIONS The numerical model for the SQN effluent discharge computes the temperature at the downstream end of the mixing zone with sufficient accuracy for use as the primary method of verifying thermal compliance for Outfall 101. In the updated calibration study summarized herein, which used the results from fifty sets of temperature samples across the downstream end of the diffuser mixing zone, the average discrepancy between the measured and computed downstream temperatures was about 0.55 F&#xba; (0.31 C&#xba;). For downstream temperatures above 75&#xba;F, the average discrepancy improved to about 0.38 F&#xba; (0.21 C&#xba;). There was no significant change in the model performance compared to the previous calibration, and as a result, no update was required in the model parameter set.
23
REFERENCES Benton, D.J. (2003), Development of a Two-Dimensional Plume Model, Dynamic Solutions, LLC, Knoxville, Tennessee, May 2003.
Fischer, H. B., E. J. List, R. C. Y. Yoh, J. Imberger, and N. H. Brooks (1979), Mixing in Inland and Coastal Waters, Academic Press: New York, 1979.
Fischer, H. B., E. J. List, R. C. Y. Yoh, J. Imberger, and N. H. Brooks (1979), Mixing in Inland and Coastal Waters, Academic Press: New York, 1979.
TDEC (2005), "NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES)", Tennessee Department of Environment and Conservation, Division of Water Pollu tion Control, Nashville, Tennessee 37243-1534, July 29, 2005.  
TDEC (2005), NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES), Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Nashville, Tennessee 37243-1534, July 29, 2005.
TDEC (2011), NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES), Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Nashville, Tennessee 37243-1534, January 31, 2011.
TVA (1982), McIntosh, D.A., B.E. Johnson, and E.B. Speaks, A Field Verification of Sequoyah Nuclear Plant Diffuser Performance Model One-Unit Operation, TVA Division of Air and Water Resources, Water Systems Development Branch, Report No.
WR28-1-45-110, October 1982.
TVA (1983a), McIntosh, D.A., B.E. Johnson, and E.B. Speaks, Validation of Computerized Thermal Compliance and Plume Development at Sequoyah Nuclear Plant, Tennessee Valley Authority, Division of Air and Water Resources, Water Systems Development Branch Report No. WR28-l-45-115, August 1983.
TVA (1983b), Waldrop, W.R., and D.A. McIntosh, Real-Time Computation of Compliance with Thermal Water Quality Standards, Proceedings of Microcomputers in Civil Engineering, University of Central Florida, Orlando, Florida, November 1983.
TVA (1987), Ostrowski, P., and M.C. Shiao, Quality Program for Verification of Sequoyah Nuclear Plant Thermal Computed Compliance System, Tennessee Valley Authority, Office of Natural Resources and Economic Development, Division of Air and Water Resources Report No. WR28-3-45-134, September 1987.
TVA (2003), Harper, W.L., Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of August 2001, Report No. WR2003-1-45-149, Tennessee Valley Authority, River Operations, June 2003.
24
 
TVA (2009), Harper, W.L. and P.N. Hopping, Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of September 2005, Report No. WR2009-1-45-150, Tennessee Valley Authority, River Operations, January 2009.
TVA (2009), Ambient Temperature and Mixing Zone Studies for Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of September 2005, Report No.
WR2009-1-45-151, Tennessee Valley Authority, River Operations, January 2009.
TVA (2010), Sequoyah Nuclear Plant (SQN) - Revised Thermal Performance Baseline and Capacity Ratings, Memo from Scott D. Terry to J.D. Williams (B85100419001),
April 14, 2010.
TVA (2013), Sequoyah Nuclear Plant (SQN)--Update of Flowrate Characteristics Through the Diffusers, Memo from Paul N. Hopping to Bradley M. Love, March 4, 2013.
25


TDEC (2011), "NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES)", Tennessee Department of Environment and Conservation, Division of Water Pollut ion Control, Nashville, Tennessee 37243-1534, January 31, 2011.
                                                          ...            RECEIVED STATE OF TENNESSEE                  90 JAN 18 Ai'lIO: 05 DEPARTMENT OF HEALTH AND ENVIRONMENT                  r-r,'*- u.
SECil(r,,{R):::OF'ST,"TE IN THE l-1ATTER OF:                  )
                                        )      OFFICE OF WATER TENNESSEE VALLEY                      )      MANAGEMENT AUTHORITY                          )      DIVISI ON OF WATER
                                        )        POLLUTION CONTROL
                                        )      No. 89-303 6
                                        )
                                        )      DdCKET No. 17.30- D-89-0 674A RESPONDENT                            )
AGREED ORDER This cause came to be heard before the Water Quali ty Contro l Board in open meetin g upon the motion of the partie s    that the*
Board approv e the partie s' settle ment as embod ied herein .
By signat ures      of the  partie s'    couns el,      as  entere d below ,
repres enting      that each attorn ey is        acting      with  tne    full      and expli cit autho rity of their clien ts,          the Board finds that these named partie s have agreed to the terms              and condi tions          of   this agreed    and  final  order as    a  resolu tion betwe en        said 'parti es regard ing      the  Comm ission ers's    Order and Asses sment          issue d        to Respo ndent on May 22, 1989.
The *Comm iss'ion er's    Order and Assess ment' alleg;e s          that      fish were killed        as  a resul t  of   the  opera tion 'of      Respo ndent        TVA's Sequoy ah Nucle ar Plant        in the      summe r of  1988      in violat ion of T.C.A . Sectio n 69 114(a )        and  (b)      Divis ion       perso nnel determ ined      the  cause  of the fish kills to be low, disso l ved oxygen and high tempe rature condi tions in the waters affect ed by Respo ndent' s opera tion of Sequoy ah Nucle ar Plant.
TVA conten ds that during this period , therm al requir ement s in the plant 's Naticrl i:1l :E-ollu tant Discha rge Elimin ation System (NPDES) permi t No. TN002 6450 were not violat ed and that diss,ol ved oxygen levels were    not  lowere d due    to  opera tion  of  the    plant    in  accord ance


TVA (1982), McIntosh, D.A., B.E. Johnson, and E.B. Speaks, "A Field Verification of Sequoyah Nuclear Plant Diffuser Performa nce Model One-Unit Operation," TVA Division of Air and Water Resources, Water Systems Development Branch, Report No.
with the NPDES permi t.
WR28-1-45-110, October 1982.  
Howev er, TVA desire s    toful~y    resolv e this matte r as provid ed herein .
The Board now finds the Agreem ent of these partie s *to be as follow s, and it is so found and ordere d by the Board that:
FINDINGS OF FACT I
I. TVA is a co:cpo r.ate agency and instru menta lity of the United States . Govern ment. It opera tes the Sequoy ah Nucle ar Plant* for the purpos e of produ cing electr ical power as autho rized by an act of Congr ess known as the Tenne ssee Valley Autho rity Act of 1933, 16 U.S.C . SS 831-83 1dd (1988) .
: 2. TVA is autho rized to discha rge wastew ater from a facili ty' locate d at the Sequo yah Nucle ar Plant in Hamil ton Count y, Tenne ssee, to receiv ing waters named Tenne ss.ee River , Plant Intake Embay ment (herei nafter "Intak e Embay ment")
                                                                , and Diffu ser Pond in accord ance with the terms and condi tions of NPDES permi t No.TN 00264 50. The NPDES permi t was issued by the United States Enviro nment al Protec tion Agency in conju nction with the State of Tenne ssee's Certif icatio n Condi tions. Tenne ssee's Certif icatio n Condi tions state that TVA is in no way reliev ed from any liabi lity for damag es which might .resul t from the discha rge of wastew ater. The prima ry nature of the wastew ater in questi on is a ther:ll al discha rge result ing from TVA's plant opera tions.
: 3. Coolin g water for TVA's Sequoy ah Nucle ar Plant is drawn into the Intake Embay ment below a deep skimm er wall to provid e coole r water from the lower depths of the Tenne ssee River.      The bottom of the skimm er wall is about 12 feet from the river bottom and
'i'lbout 39.5 fest* below the norma l maximu m summe r eleva tion of the water. surfac e. Dissol ved oxygen and tempe rature condi tions in the Intake Embay ment are thus relate d to the condi tions presen t in the lower strata of the river .where summe r tempe rature s are cooler and summe r dissol ved oxygen levels are lower than those in the lower strata .
: 4. In open mode opera tion, the coolin g water is discha rged from*
the conde nsers into the Diffu ser Pond and then to the Tenne ssee River throug h two diffus ers. In help~r mode, the coolin g water is pumped throug h the coolin g towers into the Diffu ser Pond and then discha rged to the Tenne ssee River throug h the diffus ers.     In closed mode, the coolin g wat.er. is pumped throug h the. coolin g towers and ~ecirculated into the Intake Embay ment.
The plant was operat ed in open mode until approx imatel y 6:30 p.m. on Augus t 2 when opera tion in helpe r mode comme nced to lower the tempe rature of the discha rged water .
: 5. The Tenne ssee River, Intake Embay ment, and Diffu ser Pond are "water s" of* the State, as define d by T.C.A . Sectio n 69-3-1 03(33 ).
Pursua nt to T.C~A. Sectio n 69-3-1 05(a)( 1), all water s of the State of Tenne ssee have been class ified by the Tenne ssee Water Qualit y Contro l Board for suitab le uses.      The above waters
* are classi fied by .Rule 1200- 4-4-.0 1 of *the Offic ial Comp ilation ,
Rules and Regul ations of the State of Tenne ssee ( herei nafte r referr ed to as Rules) fo~ all class ified uses includ ing the use of fish and aquat ic life.      The waters of the Diffu ser Pond are physi cally separa ted from the Tenne ssee River by a dike.
: 6.      In additi on to  earlie r report ed  fish kill event s, the Divisi on was notifi ed by TVA on Augus t I., 1988, of a fish kill in the Intake Embay ment at sequoy C!h Nucle ar Plant .      Divis ion person nel  inves tigate d  the  report ed  fish  kill    and   counte d  278 dead fish in the Intake Embay ment.        A readin g of the dissol ved oxygen at the locati on of the fish kill ranged from*O . 2* to 0.7 mg!l.
: 7. On Augus t 2, 1988, a second  ~iteinvestigation        ofSeq~oyah was  condu cted. The  dissol ved  oxyge n  prese nt    in  the  Intake Embay ment was measu red by Divisi on      perso nnel.        On.e  locat ion showed dissdl ved oxygen to range from 1.9 to 2.5 mg/l. A second locati on showed dissol ved oxygen to range from 0.2 to 0.4 mg/l.


TVA (1983a), McIntosh, D.A., B.E. Johns on, and E.B. Speaks, "Validation of Computerized Thermal Compliance and Plume Development at Sequoyah Nuclear Plant," Tennessee Valley Authority, Division of Air and Water Resources, Water Systems Development Branch Report No. WR28-l-45-115, August 1983.  
The Diffus er Pond was also inspec ted on    this    date.      Dead  and dying fish were observ ed.      The tempe rature of the water in the Diffus er Pond was    measu red  at 37&deg;C  (98&deg;F)      (with in    allow able tempe rature  limits  under NPDES    permi t  No. TN002 64S0      for  the Diffus er Pond). Dissol ved oxygen was less than 1.0 mg/l:
B.. On Augus t 4, 1988, Divisi on person nel took measu remen ts of
.disso lved oxygen in the Tenne ssee River.          Midch annel dissol ved
*oxyge n readin gs at theS- footd epth ranged from 4.3 to 8.7 rog/l with most readin gs approx imatin g 7.5 mg/l.
Disso lved oxyge n readin gs at the IS-foo t depth and below , from where water is drawn into the Intake Embay ment below the deep skimm er wall, corres ponde d to the. disso lyed oxygen
* level
: s. in the Intak e Embay ment.
: 9. On Augus t 25, 198B, the Divisi on receiv ed a repor t from TVA regard ing the Augus t 1, 1988, fish kill.      The report , stated that the loss of fish in the Intake Embay ment was undou btedly relate d to extrem ely low dissol ved oxygen levels ** in the Intake Embay ment.
: 10. In Octob er of 1988, TVA submi tted a repor t to the Divisi on on  "The Effec ts  of Sequoy ah Nucle ar Plant on 'Temp erature          and Dissol ved Oxygen in Chicka mauga Reser voir During Summe r 1988" in respo nse to the Divis ion's reque st that TVA docum ent the condi tions in the reserv oir and action s taken by TVA to mitig ate the impac ts of its therJT. al discha rge. TVA report ed that it had releas ed cold water from Norris Dam in an effor t to .lower water tempe rature s and raise the level of dissol ved oxygen in the water .
Also! cooJ.e r*wate r from Watts Bar Dam and near b5.nk turbin es were used to achiev e higher dissol ved oxygen releas es from Watts Bar Darn. It was also repor ted that water entere d*
Seguo yah at approx imatel y 27.5&deg;C (B2&deg;P) , was warmed to about 40.5&deg;C (105&deg;F )
throug h the plant, cooled to about 3PC (88&deg;F) with a coolin g tower (afte r switc hing to helpe r mode on Augus t 2), then discha rged back to the reserv oir throug h the Diffu ser Pond at approx imatel y 31.7&deg;C (89.8&deg; F) in compl ianc;e with appli cable


TVA (1983b), Waldrop, W.R., and D.A. McIntosh, Real-Time Computation of Compliance with Thermal Water Quality Standards, Proceedings of Microcomputers in Civil Engineering, University of Central Florida, Orlando, Flor ida, November 1983.  
therm al criter ia establ ished in the NPDES permi"
                                                    "- t for the Diffu ser Pond discha rge. The repo"r ted tempe rature s were based upon        an "Augus t 25, 1988, in-pla nt survey .
: 11. On Octob er 20, 1988, the Divisi on" receiv ed a summa ry from TVA of dead fish observ ed" in the Sequoy ah Nucle ar Plant Intake Embay ment and Diffu ser Pond from Augus t 3 to Septem ber 14, 1988.
The total numbe r of dead fish observ ed during this time period was report ed to be 16,372 in the Intake Embay ment and 392 in the Diffus er Pond.
: 12. On March 14, 1989, the Divisi on receiv ed a repor t from the Tenne ssee Wildl ife Resou rces Agenc y ("TWR A")
which conta ined calcu lation s of fisher y value loss "and TWRA perso nnel salar y expen ses. TWRA report ed the follow ing costs:
Diffus er Pond Total  fi~hery  value lost:            $ 56.92 Person nel salari es:                      95.03 Total                                    $151. 95 Intake Embay ment Total fisher y value lost:              $1,233 .93 Person nel salari es:                        117.39 Total                                    $1,351 .3"2
: 13. The Divisi on has incurr ed costs in the form of expen ses for "trave l, salari es, and analys es costs in the amoun t of $588.7 0.
: 14. TVA has coope rated with the Divisi on in its inves tigati ons.


TVA (1987), Ostrowski, P., and M.C. Shiao, "Quality Program for Verification of Sequoyah Nuclear Plant Thermal Computed Compliance System," Tennessee Valley Authority, Office of Natural Resources and Economic Developm ent, Division of Air and Water Resources Report No. WR28-3-45-134, September 1987.  
CONCLUSIONS OF LAW
: 1. The opera tion of the intake pumps at TVA's Sequo yah Nuclea r Plant    to draw    low  disso lved  oxyge n water  into    the  Intake Embay ment and the discha rge of heated water into the Diffus er Pond caused a condi tion which result ed in harm to fish in said embay ment and pond for which condi tion, if not prope riy autho rized, the Comm issione r may assess damag es under T. C.A.
Sectio n 69-3-1 16.
: 2. A discha rge result ing in harm to fish and aquat ic li'fe which is not prope rly autho rized is pollu tion and in viola tion of T.e.A . Sectio n 69-3-1 14(a) and (b).
ORDER WHEREFORE,    premi ses consid ered, it is Ordere d by the Board that TVA shall:
: 1. Opera te Sequoy ah Nucle ar Plant in full compl iance with it.s NPDES permi t and applic able provis ions of the Act and rules promu lgated thereu nder.
: 2. Pay the State of Tenne ssee a monet ary amoun t of TWO THOUSAND NINETY-ONE DOLLARS AND NINETY,..SEVEN CENTS ($2,09 1.97) withi n thirty (30) days of the effect ive date of this Order .
: 3.      Prepar e and submi t a  plan to the Divisi on,  within ninety (9 0) days of receip t of this Order, which detail s TVA's propos ed system s and proced ures to preve nt damage to fish and aquat ic life from TVA's .disch arges. Eithe r party may reque st that the Board review and receiv e comme nts on the plan from the partie s.
: 4. The facts and conclu sions of law recite d herein are to be used only in admin istrati ve procee dings before the Board betwee n these partie s. Neith er party waives any right s or defen ses regard ing the facts and conclu sions of law stated herei n by enteri ng into this Agreed Order.
Furthe rmore r TVA is advise d that the forego ing Order is not in any way to be constr ued as a waive r expres r        s or implie d r of any provis ion of the law or regula tions r i'nclu dinq, but not limite d tOr    future  enforc ement for violat ions  of the Act .and Regul ations
* which are not charge d as violat ions of this Order.
Howev er, compl iance with the Order will be one factor consid ered in any decisi on wheth er to take enforc ement action again st TVA in the future .
REASONS FOR DECISI ON It appea rs to* the Board that the partie s signa tory hereto have propo sed this Order in good faith and in the intere st of settli ng these procee dings in accord and in the inter est of avoidi ng the time and expen se of prolon ged litiga tion. The Board has review ed the Order and finds nothin g in it which is contra ry to the public intere st and the purpo ses and inten t of the Water Quali ty Contro l Act.
The Board wishes to encou rage such agreed resolu tions when they do not endan ger publi c health r safetY r and welfa re, consi stent with the provis ions of the Unifor m Adnd. nist.r.o ,tive Proced ures Act which encou rage inform al settle ments as a means to resolv e a contes ted case.
The propos ed final order is prope r and. lawfu l.
There being no good and satis'f actory reason for the Board to set aside the volun tary agreem ent of the partie s r i t will be approv ed as they have execu ted it.


TVA (2003), Harper, W.L., "Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of August 2001, Report No. WR2003-1-45-149, Tennessee Valley Authority, River Operations, June 2003.  
REVIEW OF THE FINAL ORDER Any person aggrie ved by the entry of this Order is entitl ed to file a petiti on for recon sidera tion before the Board within ten (10) days after the date of entry of .this Order. If no action is taken upon the petiti on within twenty (20) days of its receip t by the Board , the petiti on shall be deemed to have been denied . See T.C.A . Sectio n 4-5-31 7. Furth er, any party may petiti on the Board to stay the effect ivene ss of this Order within seven (7) days of its entry. See T.C.A . Sectio n 4-5-31 6.
Any person aggrie ved by the entry of this Order is entitl ed to petiti on the Chanc ery Court of Davids on County for review within sixty (60) days    0+ the entry of this Order .      See T.C.A .
Sectio n 69 111 and 'Secti on 4-5-3 22.
A, petit ion for recon sidera tion of the Order does not act to extend this sixty (60) day period which begins to run on the effec tive date of the Order dispos ing of the petiti on.
This the    17    day of Chairm an The Tenne ssee Water Qualit y Contro l Board


25 TVA (2009), Harper, W.L. and P.N. Hopping, "Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of September 2005, Report No. WR2009-1-45-150, Tennessee Valley Authority, Rive r Operations, January 2009.
APPROVED FOR ENTRY:
TVA (2009), "Ambient Temperature and Mixing Zone Studies for Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of September 2005," Report No.
FOR THE COMMISSIONER OF THE TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT
    ~~            b.fo x'  - ~j~~~~
James E. Fox, Deputy Gener al Couns el Attorn ey for Respo ndent, Tenne ssee Valley Aut~ority Filed in the Admi nistra tive Proced ures Divisi on, Office of the Secre tary of State, on this
                                    /~aYOf&#xa5;-~
1990.
                              ~c.~~
Charle s C. Sulliv an, II, Direc tor Admi nistra tive Proced ures Divisi on E3149 320 I D6/0GC


WR2009-1-45-151, Tennessee Valley Author ity, River Operations, January 2009.  
PROCEDURE
                                            ,S eglibyiliNtidlear1?
                                                ,"            . lant
                      'Operating Procedure for Intake:Forebay:FishRefuge
    ,J>urpose:          This :procedure .identifies, (1) how low dissolved oxygen (DO) concentrations within:the Sequo.yah NuClear :Plant (SQN) Intake -p orebay willbe-predicted;'(2) howSQN -will create 'aDO enhanced :fish refuge within the lntake :F orebayio :prevent. a -possible DO induced :fish 'kill; and
                      *(3) establishes protocol interfaces with appropriate State agencies.
    }'rocedure:                                                                                                ;
i*
i N orris Engineering Laboratory will monitor Chickamauga Reservoir :for DO concentrations. Methodology employed will include continuous:measurement                          ~
of DO irom:stations in the 'Watts Bar Bydro (WBH ) tailrace. Additional DO measurements will be taken routinely :from .stations located at Tennessee River I*
Miles (TRM)-472:3 and 490.:5. The SQN intake is located between these stations      I at TRM 484.7. 'NorrisEngineeringLaboratorywill use the:BoxExchange Transport Temperature Ecology Reservoir (BETTER) model to simulate "Chickamauga Reservoir and predict DO concentrations ahheS QN intake wall. Results will be displayed on the TVAEnvironment and River Resou skimmer rce Aide    I (TERRA) soihatpredictions are availableio Reservoir System Operations, Environmental Compliance, :and SQNEnvironmentalSection. DOpredicti ons I
            ~froin the model will be updated daily (Monday through :Friday). 'The:p redictions red f
will cover:a :period of-three days .and will use ,the 'most recent data -for -measu no, forecast meteoro logy, .and forecast :riverflows.
            'Engineering '.Services Central Region :and SQN Environmental Section will
                                                                                                  'be ted  DO    at alerted by Norris Engineering Laboratory if the measured or'thepredic the SQN intake skimmer dropsto-4.0mg/L or lower.
ent Norris Engineering 'Laboratory will alert ,SQN Environmental Section to implem
                    ., ...... uIJuuF. if:
              '. The measured or predicted DO at any station drops to 'below '2.:5mgIL (i,e.,-WBHtailrace, TRM-472.3, or TRM 490.:5).
/
              .* Thepredicted.DO attheS QN skimmer drops to 3.0 mgIL.


TVA (2010), "Sequoyah Nuclear Plant (SQN) - Revised Thermal Performance Baseline and Capacity Ratings," Memo from Scott D. Terry to J.D. Williams (B85100419001),
l-,
April 14, 2010.  
that
  .To implement dailys amplin g,SQN Environmental Section will ensure ofthe DOme asurem entsar etaken .at depths 0.3, I,J"an d5me ters onthe"inside
  .skimmer wall, .and on*the outside of the skimmer wall at approximatel y  14  meters nmental
  'below the top of-the wall* (center* ofthe submerged openi ng).S QN Enviro yfor
:Section will ensure'that:there.are visual inspections of the intake foreba visual in~pect  ions :may
:stressed fish at the'water .surface ..Alternately, :sampling and dictates .
:be perfor med by Engineering .services ,-Cent nil Regio n as the situation The organization collecting .samples and.visuals will report results io    'Water
  'Management Environmental Compliance in 'Chattanooga and to the 'Norris Engineering Laboratory.
                                                                              .advise The SQNEnvironmental ancrWasteControl manager or designeewi11 g  oftheD  O SQNO peratio ns during each momi ng's shift turnov er meetin levels and predicted trends in:the SQN.intakeforebay when dailyD O sampling is initiated.
                                                                                  'at Aeration system openibilitywillbe ensured' daily. Aeration effectiveness several forebay'locations will be detennined byweeldysampJing at 0:3, 1,:3 ,and 5..;meter d~pths.                                                   '
conditions
  ,Aeration systemilow'vvilrbe initiated whenever any ofthe following are met*
If the measured DO at the center of the intake skinuner wall opening and (14-meter depth) onthe outside ofthe skimnierwalLfalls betwe en2.0 2.:5 mgIL Jor .2 .consecutive daily samples. ,
    ..      Ifthe.m easure d'DO of anyon e daily sample fallsbe tween 2. 0 and 2~5
                                                                                        ~glL
          , .and TERRAreflects:aprediction of constant or worsening conditions.
I
    '.      'When evedh e measured DO of any daily sample drops -to 2. 0 :mgIL or
            .lower.                                                                          I on the      i
    'When everth eineas uredD O at the center of the skimmer wall opening                    I*
daily samples outside of the wall increases to above 2:5 mgIL for .2 consecutive ng will and conditions are predicted to -remain stable or improve, aeration sampli
/


TVA (2013), "Sequoyah Nuclear Plant (SQN)--Update of Flowrate Characteristics Through the Diffusers," Memo from Paul N.
Attachment 1
Hopping to Bradley M. Love, March 4, 2013. 
                                    -Organizational Contacts Water ManagemenrEnvironrnental- Compliance WaneyBuilding --'Chattanooga)
... RECEIVED STATE OF TENNESSEE 90 JAN 18 Ai'lIO: 05 DEPARTMENT OF HEALTH AND ENVIRONMENT r-r,'*-u. SECil(r,,{R):::OF'ST,"TE IN THE l-1ATTER OF: TENNESSEE VALLEY AUTHORITY RESPONDENT ) ) ) ) ) ) ) ) ) OFFICE OF WATER MANAGEMENT DIVISION OF WATER POLLUTION CONTROL No. 89-3036 DdCKET No. 17.30-D-89-0674A AGREED ORDER This cause came to be heard before the Water Quality Control Board in open meeting upon the motion of the parties that the* Board approve the parties' settlement as embodied herein. By signatures of the parties' counsel, as entered below, representing that each attorney is acting with tne full and explicit authority of their clients, the Board finds that these named parties have agreed to the terms and conditions of this agreed and final order as a resolution between said 'parties regarding the Commissioners's Order and Assessment issued to Respondent on May 22, 1989. The *Commiss'ioner's Order and Assessment' alleg;es that fish were killed as a result of the operation
  ~ei1 Woomer     .                             7.5J..:.7307
'of Respondent TVA's Sequoyah Nuclear Plant in the summer of 1988 in violation of T.C.A. Section 69-3-114(a) and (b) Division personnel determined the cause of the fish kills to be low, dissol ved oxygen and high temperature conditions in the waters affected by Respondent's operation of Sequoyah Nuclear Plant. TVA contends that during this period, thermal requirements in the plant's Naticrli:1l
  -Wl!-yne Wilson                                751-8961 DonDycus                                      75),-7322
:E-ollutant Discharge Elimination System (NPDES) permit No. TN0026450 were not violated and that diss,olved oxygen levels were not lowered due to operation of the plant in accordance 
  .Jack Milligan                                751-7360 Engineering Services-CentniJRegion (power Service Center-- Chickamauga Dam)
.. with the NPDES permit. However, TVA desires resolve this matter as provided herein. The Board now finds the Agreement of these parties *to be as follows, and it is so found and ordered by the Board that: FINDINGS OF FACT I I. TVA is a co:cpor.ate agency and instrumentality of the United States . Government.
  .RobertBond                                     697-4108
It operates the Sequoyah Nuclear Plant* for the purpose of producing electrical power as authorized by an act of Congress known as the Tennessee Valley Authority Act of 1933, 16 U.S.C. SS 831-831dd (1988). 2. TVA is authorized to discharge wastewater from a facility' located at the Sequoyah Nuclear Plant in Hamilton County, Tennessee, to receiving waters named Tenness.ee River, Plant Intake Embayment (hereinafter "Intake Embayment"), and Diffuser Pond in accordance with the terms and conditions of NPDES permit No.TN0026450.
  ]erryLiner                                     697-4100 Garry' Grant                                 697-4380
The NPDES permit was issued by the United States Environmental Protection Agency in conjunction with the State of Tennessee's Certification Conditions.
  -Secretary .                                   697-4263 Engineering 'Services -Norris Engineering -Laboratory Ming'Shiao                                     632-1886
Tennessee's Certification Conditions state that TVA is in no way relieved from any liability for damages which might .result from the discharge of wastewater.
  -Walter Harper                                 632-1882 Switchboard                                  632-1900 Corporate Environmental Protection (Nuclear)
The primary nature of the wastewater in question is a ther:llal discharge resulting from TVA's plant operations.
Diedre ::Nida                                 7.51-8123
: 3. Cooling water for TVA's Sequoyah Nuclear Plant is drawn into the Intake Embayment below a deep skimmer wall to provide cooler water from the lower depths of the Tennessee River. The bottom of the skimmer wall is about 12 feet from the river bottom and 'i'lbout 39.5 fest* below the normal maximum summer elevation of the water. surface. Dissolved oxygen and temperature conditions in the Intake Embayment are thus related to the conditions present in the lower strata of the river .where summer temperatures are cooler and summer dissolved oxygen levels are lower than those in the lower strata. 
                                'Sequoyah Environmental Section Debby.Bodine                                  843-6700, Pager Number 10496 lamar Strickland                              843-7748, -Pager Number 10861
... 4. In open mode operation, the cooling water is discharged from* the condensers into the Diffuser Pond and then to the Tennessee River through two diffusers.
. Stephanie Howard                              843-6713, Pager Number 60438 Jerry Osborne                                  843-7630, Pager Number 90091
In mode, the cooling water is pumped through the cooling towers into the Diffuser Pond and then discharged to the Tennessee River through the diffusers.
:Shlft*Operations 'Supervisor                  843-6211 Jim Baumstark                                  843-6501}}
In closed mode, the cooling wat.er. is pumped through the. cooling towers and into the Intake Embayment.
The plant was operated in open mode until approximately 6:30 p.m. on August 2 when operation in helper mode commenced to lower the temperature of the discharged water. 5. The Tennessee River, Intake Embayment, and Diffuser Pond are "waters" of* the State, as defined by T.C.A. Section 69-3-103(33).
Pursuant to Section 69-3-105(a)(1), all waters of the State of Tennessee have been classified by the Tennessee Water Quality Control Board for suitable uses. The above waters* are classified by .Rule 1200-4-4-.01 of *the Official Compilation, Rules and Regulations of the State of Tennessee ( hereinafter referred to as Rules) all classified uses including the use of fish and aquatic life. The waters of the Diffuser Pond are physically separated from the Tennessee River by a dike. 6. In addition to earlier reported fish kill events, the Division was notified by TVA on August I., 1988, of a fish kill in the Intake Embayment at sequoyC!h Nuclear Plant. Division personnel investigated the reported fish kill and counted 278 dead fish in the Intake Embayment.
A reading of the dissolved oxygen at the location of the fish kill ranged from*O. 2* to 0.7 mg!l. 7. On August 2, 1988, a second was conducted.
The dissolved oxygen present in the Intake Embayment was measured by Division personnel.
On.e location showed dissdlved oxygen to range from 1.9 to 2.5 mg/l. A second location showed dissolved oxygen to range from 0.2 to 0.4 mg/l. 
., The Diffuser Pond was also inspected on this date. Dead and dying fish were observed.
The temperature of the water in the Diffuser Pond was measured at 37&deg;C (98&deg;F) (within allowable temperature limits under NPDES permit No. TN00264S0 for the Diffuser Pond). Dissolved oxygen was less than 1.0 mg/l: B.. On August 4, 1988, Division personnel took measurements of .dissolved oxygen in the Tennessee River. Midchannel dissolved
*oxygen readings at theS-footdepth ranged from 4.3 to 8.7 rog/l with most readings approximating 7.5 mg/l. Dissolved oxygen readings at the IS-foot depth and below, from where water is drawn into the Intake Embayment below the deep skimmer wall, corresponded to the. dissolyed oxygen* levels. in the Intake Embayment.
: 9. On August 25, 198B, the Division received a report from TVA regarding the August 1, 1988, fish kill. The report, stated that the loss of fish in the Intake Embayment was undoubtedly related to extremely low dissolved oxygen levels** in the Intake Embayment.
: 10. In October of 1988, TVA submitted a report to the Division on "The Effects of Sequoyah Nuclear Plant on 'Temperature and Dissolved Oxygen in Chickamauga Reservoir During Summer 1988" in response to the Division's request that TVA document the conditions in the reservoir and actions taken by TVA to mitigate the impacts of its therJT.al discharge.
TVA reported that it had released cold water from Norris Dam in an effort to .lower water temperatures and raise the level of dissolved oxygen in the water. Also! cooJ.er*water from Watts Bar Dam and near b5.nk turbines were used to achieve higher dissolved oxygen releases from Watts Bar Darn. It was also reported that water entered* Seguoyah at approximately 27.5&deg;C (B2&deg;P), was warmed to about 40.5&deg;C (105&deg;F) through the plant, cooled to about 3PC (88&deg;F) with a cooling tower (after switching to helper mode on August 2), then discharged back to the reservoir through the Diffuser Pond at approximately 31.7&deg;C (89.8&deg;F) in complianc;e with applicable 
"-thermal criteria established in the NPDES permi"t for the Diffuser Pond discharge.
The repo"rted temperatures were based upon an "August 25, 1988, in-plant survey. 11. On October 20, 1988, the Division" received a summary from TVA of dead fish observed" in the Sequoyah Nuclear Plant Intake Embayment and Diffuser Pond from August 3 to September 14, 1988. The total number of dead fish observed during this time period was reported to be 16,372 in the Intake Embayment and 392 in the Diffuser Pond. 12. On March 14, 1989, the Division received a report from the Tennessee Wildlife Resources Agency ("TWRA") which contained calculations of fishery value loss "and TWRA personnel salary expenses.
TWRA reported the following costs: Diffuser Pond Total value lost: Personnel salaries:
Total Intake Embayment Total fishery value lost: Personnel salaries:
Total $ 56.92 95.03 $151. 95 $1,233.93 117.39 $1,351.3"2
: 13. The Division has incurred costs in the form of expenses for "travel, salaries, and analyses costs in the amount of $588.70. 14. TVA has cooperated with the Division in its investigations. 
.. CONCLUSIONS OF LAW 1. The operation of the intake pumps at TVA's Sequoyah Nuclear Plant to draw low dissolved oxygen water into the Intake Embayment and the discharge of heated water into the Diffuser Pond caused a condition which resulted in harm to fish in said embayment and pond for which condition, if not properiy authorized, the Commissioner may assess damages under T. C.A. Section 69-3-116.
: 2. A discharge resulting in harm to fish and aquatic li'fe which is not properly authorized is pollution and in violation of T.e.A. Section 69-3-114(a) and (b). ORDER WHEREFORE, premises considered, it is Ordered by the Board that TVA shall: 1. Operate Sequoyah Nuclear Plant in full compliance with it.s NPDES permit and applicable provisions of the Act and rules promulgated thereunder.
: 2. Pay the State of Tennessee a monetary amount of TWO THOUSAND NINETY-ONE DOLLARS AND NINETY,..SEVEN CENTS ($2,091.97) within thirty (30) days of the effective date of this Order. 3. Prepare and submit a plan to the Division, within ninety (9 0) days of receipt of this Order, which details TVA's proposed systems and procedures to prevent damage to fish and aquatic life from TVA's.discharges.
Either party may request that the Board review and receive comments on the plan from the parties. 
: 4. The facts and conclusions of law recited herein are to be used only in administrative proceedings before the Board between these parties. Neither party waives any rights or defenses regarding the facts and conclusions of law stated herein by entering into this Agreed Order. Furthermore r TVA is advised that the foregoing Order is not in any way to be construed as a waiver r express or implied r of any provision of the law or regulations r i'ncludinq, but not limited tOr future enforcement for violations of the Act .and Regulations*
which are not charged as violations of this Order. However, compliance with the Order will be one factor considered in any decision whether to take enforcement action against TVA in the future. REASONS FOR DECISION It appears to* the Board that the parties signatory hereto have proposed this Order in good faith and in the interest of settling these proceedings in accord and in the interest of avoiding the time and expense of prolonged litigation.
The Board has reviewed the Order and finds nothing in it which is contrary to the public interest and the purposes and intent of the Water Quality Control Act. The Board wishes to encourage such agreed resolutions when they do not endanger public health r safetYr and welfare, consistent with the provisions of the Uniform Adnd.nist.r.o,tive Procedures Act which encourage informal settlements as a means to resolve a contested case. The proposed final order is proper and. lawful. There being no good and satis'factory reason for the Board to set aside the voluntary agreement of the parties ri t will be approved as they have executed it. 
.. REVIEW OF THE FINAL ORDER Any person aggrieved by the entry of this Order is entitled to file a petition for reconsideration before the Board within ten (10) days after the date of entry of .this Order. If no action is taken upon the petition within twenty (20) days of its receipt by the Board, the petition shall be deemed to have been denied. See T.C.A. Section 4-5-317. Further, any party may petition the Board to stay the effectiveness of this Order within seven (7) days of its entry. See T.C.A. Section 4-5-316. Any person aggrieved by the entry of this Order is entitled to petition the Chancery Court of Davidson County for review within sixty (60) days 0+ the entry of this Order. See T.C.A. Section 69-3-111 and 'Section 4-5-322. A, petition for reconsideration of the Order does not act to extend this sixty (60) day period which begins to run on the effective date of the Order disposing of the petition.
This the 17 day of Chairman The Tennessee Water Quality Control Board APPROVED FOR ENTRY: FOR THE COMMISSIONER OF THE TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT
... b.fox' -
James E. Fox, Deputy General Counsel Attorney for Respondent, Tennessee Valley Filed in the Administrative Procedures Division, Office of the Secretary of State, on this 1990. E3149 320 I D6/0GC Charles C. Sullivan, II, Director Administrative Procedures Division 
" / ,J>urpose:
}'rocedure:
PROCEDURE ,S e g lib y iliNtidlear1?lant
," . 'Operating Procedure for Intake:Forebay:FishRefuge This :procedure .identifies, (1) how low dissolved oxygen (DO) concentrations within:the Sequo.yah NuClear :Plant (SQN) Intake -p orebay willbe-predicted;'(2) howSQN -will create 'aDO enhanced :fish refuge within the lntake :F orebayio :prevent.
a -possible DO induced :fish 'kill; and *(3) establishes protocol interfaces with appropriate State agencies.
N orris Engineering Laboratory will monitor Chickamauga Reservoir
:for DO concentrations.
Methodology employed will include continuous:measurement of DO irom:stations in the 'Watts Bar Bydro(WBH) tailrace.
Additional DO measurements will be taken routinely
:from .stations located at Tennessee River Miles (TRM)-472:3 and 490.:5. The SQN intake is located between these stations at TRM 484.7. 'NorrisEngineeringLaboratorywill use the:BoxExchange Transport Temperature Ecology Reservoir (BETTER) model to simulate "Chickamauga Reservoir and predict DO concentrations ahheSQN intake skimmer wall. Results will be displayed on the TVAEnvironment and River Resource Aide (TERRA) soihatpredictions are availableio Reservoir System Operations, Environmental Compliance, :and SQNEnvironmentalSection.
DOpredictions the model will be updated daily (Monday through :Friday).
'The:predictions will cover:a :period of-three days .and will use ,the 'most recent data -for -measured no, forecast meteoro logy, .and forecast :riverflows.
'Engineering
'.Services Central Region :and SQN Environmental Section will 'be alerted by Norris Engineering Laboratory if the measured or'thepredicted DO at the SQN intake skimmer dropsto-4.0mg/L or lower. Norris Engineering
'Laboratory will alert ,SQN Environmental Section to implement
., ...... uIJuuF. if: '. The measured or predicted DO at any station drops to 'below '2.:5mgIL (i,e.,-WBHtailrace, TRM-472.3, or TRM 490.:5). .* Thepredicted.DO attheSQN skimmer drops to 3.0 mgIL. ,:' ,.'; ; i* i I* I I I f 
/ .To implement dailysampling,SQN Environmental Section will ensure that DOmeasurementsaretaken.at depths 0.3, I,J"and5meters onthe"inside of the .skimmer wall, .and on*the outside of the skimmer wall at approximately 14 meters 'below the top of-the wall* (center* of the submerged opening).S QN Environmental
:Section will ensure'that:there.are visual inspections of the intakeforebayfor
:stressed fish at the'water .surface .. Alternately, :sampling and visual
:may :be performed by Engineering .services
,-Centnil Region as the situation dictates . The organization collecting .samples and.visuals will report results io 'Water 'Management Environmental Compliance in 'Chattanooga and to the 'Norris Engineering Laboratory.
The SQNEnvironmental ancrWasteControl manager or designeewi11.advise SQNOperations during each moming's shift turnover meeting oftheDO levels and predicted trends in:the SQN.intakeforebay when dailyDO sampling is initiated.
Aeration system openibilitywillbe ensured' daily. Aeration effectiveness
'at several forebay'locations will be detennined byweeldysampJing at 0:3, 1,:3 ,and 5..;meter
' ,Aeration systemilow'vvilrbe initiated whenever any of the following conditions are met* .. '. If the measured DO at the center of the intake skinuner wall opening (14-meter depth) onthe outside of the skimnierwalLfalls between2.0 and 2.:5 mgIL Jor .2 .consecutive daily samples. , Ifthe.measured'DO of anyone daily sample fallsbetween
: 2. 0 and , .and TERRAreflects:aprediction of constant or worsening conditions.
'Whenevedhe measured DO of any daily sample drops -to 2. 0 :mgIL or .lower. 'WhenevertheineasuredDO at the center of the skimmer wall opening on the outside of the wall increases to above 2:5 mgIL for .2 consecutive daily samples and conditions are predicted to -remain stable or improve, aeration sampling will I I ! i I* l-,
Attachment 1 -Organizational Contacts Water ManagemenrEnvironrnental-Compliance WaneyBuilding  
--'Chattanooga)
Woomer . -W l!-yne Wilson DonDycus .Jack Milligan 7.5J..:.7307 751-8961 75),-7322 751-7360 Engineering Services-CentniJRegion (power Service Center--Chickamauga Dam) .RobertBond  
]erryLiner Garry' Grant -Secretary . 697-4108 697-4100 697-4380 697-4263 Engineering  
'Services -Norris Engineering -Laboratory Ming'Shiao -Walter Harper Switchboard 632-1886 632-1882 632-1900 Corporate Environmental Protection (Nuclear)
Diedre ::Nida Debby.Bodine lamar Strickland . Stephanie Howard Jerry Osborne :Shlft*Operations
'Supervisor Jim Baumstark 7.51-8123  
'Sequoyah Environmental Section 843-6700, Pager Number 10496 843-7748, -Pager Number 10861 843-6713, Pager Number 60438 843-7630, Pager Number 90091 843-6211 843-6501}}

Latest revision as of 18:15, 25 February 2020

Plan (SQN) NPDES Permit No. TN0026450 - Application for Renewal
ML13289A094
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 05/02/2013
From: Anderson C
Tennessee Valley Authority
To: Janjic V
Office of Nuclear Reactor Regulation, State of TN, Dept of Environment & Conservation
Shared Package
ML13289A109 List: ... further results
References
TAC MF0057, TAC MF0058, TN0026450
Download: ML13289A094 (243)


Text

Tennessee Valley Authority, 1101 Market Street, BR4A, Chattanooga, Tennessee 37402 May 2, 2013 Mr. Voj in Janjic Manager, Permit Section Division of Water Pollution Control Tennessee Department of Environment and Conservation 6th Floor, L&C Annex 401 Church Street Nashville, Tennessee 37243

Dear Mr,

Janjic:

TENNESSEE VALLEY AUTHORITY (TVA) - SEOUOYAH NUCLEAR PLANT (SON) - NPDES PERMIT NO. TN0026450 - APPLICATION FOR RENEWAL Enclosed is the NPDES renewal application package for SON consisting of EPA Form 1, site map, Form 2C, flow schematic, and NPDES permit address form. TVA would appreciate consideration of the following in the renewed permit.

Outfall 10 1

1. Enclosed is a summary of the Reasonable Potential evaluation and toxicity test results since 2005. As discussed in the enclosure, TVA requests that the current monitoring limit be replaced with an IC2s =42.8%, which is based on revised effluent flow and is consistent with the Technical Support Document for effluents demonstrating No Reasonable Potential.

Toxi city at the instream wastewater concentration would serve only as a hard trigger for accelerated biomonitoring, as stated in the current permit.

2. TVA requests continuation of the 316(a) variance as incorporated in the current permit.

Enclosed is SON 's revised Alternate Thermal Limit (ATL) study plan, which proposes to conduct biological monitoring at SON during applicable autumn months and once per permit cycle during the summer months to assess the aquatic community. TVA believes this approach is the most efficient use of resources and will provide TDEC with the data necessary for continued support of SaN 's permitted ATL under Section 316(a) of the Clean Water Act.

Based on the results summarized in the enclosed Reservoir Fish Assemblage Index Report, TVA believes that thermal discharges from SON have not had a negative effect on the maintenance of a balanced indigenous fish population in Chickamauga Reservoir. Also enclosed are additional reports for studies related to Clean Water Act Section 316 evaluations as required by Part III.F. of the current permit and the study to confirm the calibration of the numerical model as requ ired by Part III.G.

Mr. Vojin Janjic Page 2 May 2,2013 Outfall 103

1. This is an internal monitoring point (IMP) for various flows treated in the low volume waste treatment pond (L VWTP) and ultimately discharges through the Diffuser Pond at Outfall 101.

Turbine building sump (TBS) flows are the primary wastewaters treated in the LVWTP. TVA requests when flows are routed through the permitted alternate path of the Yard Drainage Pond that compliance monitoring be required at Outfall 101 for IMP 103 parameters and frequencies.

2. TVA requests the monitoring frequency for Total Suspended Solids and Oil and Grease at IMP 103 be reduced to once per month. SON has consistently demonstrated compliance reliability with established permit limitations for these parameters.
3. TVA requests the monitoring frequency for flow and be reduced to once per week in the renewal permit. TVA requests that flow measurements be recorded based on instantaneous flow meter readings. Historical data demonstrates that SON has consistently maintained compliance with the permit for these parameters. In add ition , project planning is underway to upgrade the existing pH control process by using carbon dioxide injection to adjust LVWTP discharge pH.

Outfall 107

1. This is an internal monitoring point for discharges of metal cleaning wastewater and storm water from a lined pond and an unlined pond. The existing permit allows that storm water be discharged from these ponds without monitoring since metal cleaning wastes are no longer discharged to these ponds. TVA requests approval through the renewal permit to also discharge stormwater via alternate paths of the Yard Drainage Pond and Condenser Cooling Water Discharge Channel, which both ultimately discharge through the Diffuser Pond at Outfall 101.
2. Since the influent lines from the plant to the Metal Cleaning Waste Treatment Ponds have been disconnected, SON plans to close these ponds in the future. The final closure plan will be submitted to the Division for review and approval prior to the construction phase. To facilitate dewatering for future closure, TVA requests the existing language found in Part 1.A.3. be replaced with the following in the renewal permit.

TVA Sequoyah Nuclear Plant is authorized to discharge rain water from the Metal Cleaning Waste *Treatment Ponds to the Low Volume ' Waste Treatment Pond, the Yard Drainage Pond, or the Condenser Cooling Water Discharge Channel, which ultimately discharges in the Diffuser Pond (Outfall 101). The permittee is not required to monitor discharge through IMP 107 for routine decanting of accumulated rainwater.

Mr. Vojin Janjic Page 3 May 2, 2013 During the process of closing the Metal Cleaning Waste Treatment Ponds, al/ monitoring requirements at IMP 107 shall be waived to facilitate complete dewatering. During the dewatering process, samples shall be collected for TSS, O&G, copper, iron and flow at Outfall 101 to ensure the water quality of the receiving stream is protected. Due to the additional residence time within the Diffuser Pond, these parameters shall be monitored daily at Outfall 101 from the beginning of the dewatering event(s) through three days following termination of the dewatering. All monitoring results shall be reported in the DMR for Outfall 101.

Miscellaneous

1. TVA requests that the following language be included in the introduction to Part I.A. We believe this would alleviate the need for preparing a separate water quality certification for the Nuclear Regulatory Commission.

This TN-NPDES permit also constitutes the State's certification under Section 401 of the Clean Water Act for the purpose of obtaining any federal license for activities resulting in the discharges covered under the TN-NPDES permit.

2. SON discharges storm water from outfalls covered under the Tennessee MUlti-Sector General Permit, tracking number TNR050015. TVA requests the requirement in Part II .C. of the NPDES perm it to maintain signage for storm water runoff be removed in the renewal permit.
3. In January 1990, TVA received a consent order from the Division requiring that SON submit a plan to the Division detailing TVA's systems and procedures to prevent damage to fish and aquatic life from TVA's discharges in response to an alleged fish kill incident. A copy of this Order is enclosed for your convenience . Pursuant to the plan submitted to the Division, SON has maintained an aeration system at the intake forebay for the purpose of compliance with this Order. TVA now requests the following language be incorporated in Part III of the renewal permit to facilitate resolution or termination of the long-standing Order.

TVA shal/provide supplemental aeration, as necessary, in Jaw-oxygen zones of the intake forebay area to serve as a fish refuge. Aeration may be temporarily discontinued during periods of maintenance. The permittee may request approval from the Division to permanently discontinue aeration upon demonstration that supplemental aeration is not necessary for fish survival in the intake forebay.

4. TVA requests the existing language found in Part IV.B. for maintaining a Biocide/Corrosion Treatment Plan (B/CTP) be replaced with the following in the renewal permit. This language is consistent with that found in other TN-NPDES permits.

The use of toxic chemicals and biocides at the site for process and non-process flows shall be managed under a Biocide/Corrosion Treatment Plan (BlCTP). The BlCTP shall describe chemical applications and macroinvertebrate controls, include all material feed rates, and proposed monitoring schedule(s). The permittee shall conduct treatments of

Mr. Vojin Janjic Page 4 May 2,2013 intake or process waters under this permit using biocides, dispersants, surfactants, corrosion inhibiting chemicals, or detoxification chemicals in accordance with conditions approved and specified in the BlCTP.

The permittee shall maintain the BlCTP at the facility and make the plan available to the pennit issuing authority upon request. The permittee shall amend the BlCTP whenever there is a change in the application of the chemical additives or change in the operation of the facility that materially increases the potential for these activities to result in a discharge of significant amounts of pollutants. The Division shall also be notified in writing within 30 days of any material changes that will change the active ingredients or quantities used of any such chemical additives.

TVA appreciates your consideration of the information provided herein in the development of the reissued permit. If you have any questions regarding this NPDES permit renewal application, please contact Travis Markum at (423) 751-2795 in Chattanooga or by email at trmarkum@tva .gov.

Sincerely, C hia M. Anderson M.~JLrLJt:7YL Senior Manager Water and Waste Compliance Enclosure cc (Enclosure):

Dr. Richard Urban Manager, Chattanooga Environmental Field Office Division of Water Pollution Control State Office Building , Suite 550 540 McCallie Avenue Chattanooga, Tennessee 37402-2013 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington , DC 20555

Please print or type in the unshaded areas only (fill-in areas are spaced for elite type, I.e., 12 characters/inch). Form Approved. OMB No. 2040-0086. Approval expires 5-31-92.

FORM U.S. ENVIRONMENTAL PROTECTION AGENCY I. EPA I.D. NUMBER 1

EPA GENERAL INFORMATION S T/A C Consolidated Permits Program F T N 5 6 4 0 0 2 0 5 0 4 D GENERAL (Read the "General Instructions" before starting.) 1 2 13 14 15 LABEL ITEMS GENERAL INSTRUCTIONS If a preprinted label has been provided, affix in the I. EPA I.D. NUMBER designated space. Review the information care-fully; if any of it is incorrect, cross through it and enter the correct data in the appropriate fill-in area III. FACILITY NAME below. Also, if any of the preprinted data is absent PLEASE PLACE LABEL IN THIS SPACE (the area to the left of the label space lists the information that should appear) , please provide it V. FACILITY in the proper fill-in area(s) below. If the label is MAILING ADDRESS complete and correct, you need not complete Items 1, III, V, and VI (except VI-B which must be completed regardless). Complete all items if no VI. FACILITY label has been provided. Refer to the instructions LOCATION for detailed item descriptions and for the legal authorizations under which this data is collected.

II. POLLUTANT CHARACTERISTICS INSTRUCTIONS: Complete A through J to determine whether you need to submit any permit application forms to the EPA. if you answer "yes" to any questions, you must submit this form and the supplemental form listed in the parenthesis following the question. Mark "X" in the box in the third column if the supplemental form is attached. If you answer "no" to each question, you need not submit any of these forms. You may answer "no" if your activity is excluded from permit requirements; see Section C of the instructions. See also, Section D of the instructions for definitions of bold-faced terms.

MARK 'X' MARK 'X' SPECIFIC QUESTIONS YES NO FORM SPECIFIC QUESTIONS YES NO FORM ATTACHED ATTACHED A. Is this facility a publicly owned treatment works B. Does or will this facility (either existing or proposed) which results in a discharge to waters of the U.S.? X include a concentrated animal feeding operation or X (FORM 2A) aquatic animal production facility which results in 16 17 18 a discharge to waters of the U.S.? (FORM 2B) 19 20 21 C. Is this a facility which currently results in discharges D. Is this a proposed facility (other than those described to waters of the U.S. other than those described in X X in A or B above) which will result in a discharge to X A or B above? (FORM 2C) 22 23 24 waters of the U.S.? (FORM 2D) 25 26 27 E. Does or will this facility treat, store, or dispose of F. Do you or will you inject at this facility industrial or hazardous wastes? (FORM 3) X municipal effluent below the lowermost stratum con- X taining, within one quarter mile of the well bore, 28 29 30 underground sources of drinking water? (FORM 4) 31 32 33 G. Do you or will you inject at this facility any produced H. Do you or will you inject at this facility fluids for special water or other fluids which are brought to the sur sur- processes such as mining of sulfur by the Frasch face in connection with conventional oil or natural X process, solution mining of minerals, in situ combus- X gas production, inject fluids used for enhanced tion of fossil fuel, or recovery of geothermal energy?

recovery of oil or natural gas, or inject fluids for (FORM 4) storage of liquid hydrocarbons? (FORM 4) 34 35 36 37 38 39 I. Is this facility a proposed stationary source which is J. Is this facility a proposed stationary source which is one of the 28 industrial categories listed in the in- NOT one of the 28 industrial categories listed in the structions and which will potentially emit 100 tons X instructions and which will potentially emit 250 tons X per year of any air pollutant regulated under the per year of any air pollutant regulated under the Clean Clean Air Act and may affect or be located in an Air Act and may affect or be located in an attainment attainment area? (FORM 5) 40 41 42 area? (FORM 5) 43 44 45 III. NAME OF FACILITY C

1 SKIP T V A S E Q U O Y A H N U C L E A R P L A N T 15 16-29 30 69 IV. FACILITY CONTACT A. NAME & TITLE (last, first, & title) B. PHONE ( area code & no.)

C 2 J O H N T. C A R L I N, V I C E P R E S I D E N T 4 2 3 8 4 3 7 0 0 1 15 16 45 46 - 48 49 - 51 52 - 55 V. FACILITY MAILING ADDRESS A. STREET OR P.O. BOX C

3 P. O. B O X 2 0 0 0, O P S 4 A - S Q N 15 16 45 B. CITY OR TOWN C. STATE D. ZIP CODE C

4 S O D D Y D A I S Y T N 3 7 3 7 9 15 16 40 41 42 47 - 51 VI. FACILITY LOCATION A. STREET, ROUTE NO. OR OTHER SPECIFIC IDENTIFIER C

5 S E Q U O Y A H A C C E S S R O A D 15 5 45 B. COUNTY NAME H A M I L T O N 46 70 C. CITY OR TOWN D. STATE E. ZIP CODE F. COUNTY CODE (if known)

C 6 S O D D Y D A I S Y T N 3 7 3 7 9 15 16 40 41 42 47 1 51 52 - 54 EPA Form 3510-1 (8-90) CONTINUE ON PAGE 2

ELECTRIC SERVICES E NNES SEE V ALL e Y AUTHORITY Operafing Permil , Cooling Tower, Unil l (see ned page forofhtJr air ptlrmits)

SON Inert Landfill Permil MLllfi*Sector General Perm~ (stonnwater)

, Ii i

slorage, or disposal Include II oltler SLlrtace water bodies in Itle map area. See instructions Sequoyan NLlclear Plant (SON) prodLlceS electric power by tnermonLlclear li"ion Jonn T. Cartin Site Vice President, SeqLloyan NLlclear Plant

Form 1 - General Section X - Existing Environmental Permits Chattanooga-Hamilton County Air Pollution Control Bureau 4150-30600701-03C Operating Permit, Cooling Tower, Unit 2 4150-30700804-06C Operating Permit, Insulation Saw A and Saw B 4150-10200501-08C Operating Permit, Auxiliary Boilers A and B 4150-30703099-09C Operating Permit, Carpenter Shop 4150-30900203-10C Operating Permit, Abrasive Blasting Operation 4150-20200102-11C Operating Permit, Emergency Generators 1A, 1B, 2A, 2B and Blackout Generators 1 and 2

85 5° 5 15 W Outfall 116 Outfall 117 Outfall 118 Intake Forebay Outfall 110 IMP 107 Outfall 101E IMP 103 Outfall 101 35° 12 30 N TVA Sequoyah Nuclear Plant 0 0.75 mi NPDES Permit No. TN0026450 Hamilton County April 2013

EPA I.D. NUMBER (copy from Item 1 of Form 1) Form Approved.

OMB No. 2040-0086.

Please print or type in the unshaded areas only. TN5640020504 Approval expires 8-31-98.

FORM U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, 2C NPDES EPA COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.

A. OUTFALL B. LATITUDE C. LONGITUDE NUMBER D. RECEIVING WATER (name)

1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC.

(list) 101 35 12 30 85 5 15 Tennessee River 101E 35 13 15 85 5 45 Tennessee River IMP 103 35 8 15 85 8 0 SQN Diffuser Pond IMP 107 35 8 30 85 8 0 SQN Low Volume Waste Treatment Pond 110 35 13 30 85 5 15 Intake Forebay 116 35 13 30 85 5 15 Tennessee River 117 35 13 30 85 5 0 Tennessee River 118 35 13 30 85 5 15 Intake Forebay II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.

B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

1. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT FALL NO (list) a. OPERATION (list) b. AVERAGE FLOW a. DESCRIPTION b. LIST CODES FROM (include units) TABLE 2C-1 101 Discharges from Diffuser Pond include: 1490.854 MGD Discharge to surface water 4 A Sedimentation 1 U (1) Low Volume Waste Treatment Pond (via (1.230 MGD) pH adjustment / neutralization 2 K Internal Monitoring Point 103):

(a) Discharge from metal cleaning waste ponds (IMP 107)

(b) Turbine building sump (2) CCW Discharge Channel: (1447.014 MGD)

(a) Raw cooling water system Disinfection (other) 2 H (b) Diesel fuel recover trench; high pressure fire water, potable water (c) Condenser Circulating system (d) Stormwater Runoff (3) Cooling tower blowdown basin (40.436 MGD)

(a) Essential Raw Cooling Water system Disinfection (other) 2 H (b) Cooling towers (closed/helper mode) stormwater runoff (c) Liquid rad waste treatment system Ion exchange 2 J (d) Steam Generator Blowdown Multi-media filtration 1 Q (4) Yard drainage pond: (2.125 MGD) Sedimentation (settling) 1 U (a) Construction/Demo landfill stormwater (b) Switchyard runoff (c) Various building heat loads (d) Yard drainage system (5) Net Storm Water (Runoff, precipitation, (0.049 MGD) less evaporation) 101E Discharges from Diffuser Pond during 0 MGD Discharge to surface water 4 A emergency conditions only.

OFFICIAL USE ONLY (effluent guidelines sub-categories)

EPA Form 3510-2C (8-90) PAGE 1a OF 4 CONTINUE ON PAGE 1b

EPA I.D. NUMBER (copy from Item 1 of Form 1) Form Approved.

OMB No. 2040-0086.

Please print or type in the unshaded areas only. TN5640020504 Approval expires 8-31-98.

FORM U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, 2C NPDES EPA COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.

A. OUTFALL B. LATITUDE C. LONGITUDE NUMBER D. RECEIVING WATER (name)

1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC.

(list)

See Page 1a II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES C. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.

D. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

1. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT FALL NO (list) a. OPERATION (list) b. AVERAGE FLOW a. DESCRIPTION b. LIST CODES FROM (include units) TABLE 2C-1 IMP Discharges from Low Volume Waste Treatment 1.230 MGD Sedimentation (Settling) 1 U Pond (LVWTP):

103 pH adjustment / neutralization 2 K (1) Discharges from metal cleaning waste (0.0022 MGD) ponds (IMP 107)

(2) Turbine Building Sump: (1.047 MGD)

(a) Miscellaneous Low Volume Wastewaters (b) Turbine building floor and equipment pH adjustment / neutralization 2 K drains (c) Condensate demin. regeneration waste (d) Secondary system leaks and draindown (e) Steam Generator blowdown (f) Component Cooling System wastewater (g) Miscellaneous equipment cooling (h) Ice condenser waste Sedimentation (settling) 1 U (i) Alum sludge ponds (WTP) Landfill 5 Q (3) Neutral waste sump (WTP) (0.177 MGD)

(4) Net Storm Water (Runoff, precipitation, less (0.004 MGD) evaporation)

IMP Discharges from Metal Cleaning Waste Ponds: 0.0022 MGD Sedimentation (Settling) 1 U 107 pH adjustment / neutralization 2 K (1) Metal cleaning waste (0.000 MGD)** Chemical precipitation 2 C (2) Net Storm Water (Runoff, precipitation, less (0.0022 MGD) Chemical oxidation 2 B evaporation)

Flocculation 1 G

    • Influent lines to MCWP are disconnected Last MCWP discharge occurred on 5/31/2006 OFFICIAL USE ONLY (effluent guidelines sub-categories)

EPA Form 3510-2C (8-90) PAGE 1b OF 4 CONTINUE ON PAGE 1c

EPA I.D. NUMBER (copy from Item 1 of Form 1) Form Approved.

OMB No. 2040-0086.

Please print or type in the unshaded areas only. TN5640020504 Approval expires 8-31-98.

FORM U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, 2C NPDES EPA COMMERCIAL, MINING AND SILVICULTURAL OPERATIONS Consolidated Permits Program I. OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.

A. OUTFALL B. LATITUDE C. LONGITUDE NUMBER D. RECEIVING WATER (name)

1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. 3. SEC.

(list)

See Page 1a II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES E. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.

F. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

1. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT FALL NO (list) a. OPERATION (list) b. AVERAGE FLOW a. DESCRIPTION b. LIST CODES FROM (include units) TABLE 2C-1 110 Discharges include wastewater from: 0.058 MGD Discharge to surface waters 4 A (1) ERCW system ** 0 MGD (2) Cooling towers (closed cycle) ** 0 MGD (3) Liquid rad waste treatment system ** 0 MGD (4) Net Storm Water (Runoff, precipitation, (0.058 MGD) less evaporation)
    • Recycle cooling water during closed mode operation is discharged through Outfall 110. Outfall 110 has been inactive for approximately 18 years, but remains in the event the plant goes into closed mode.

116 CCW Intake Trash sluice 0.006 MGD Discharge to surface waters 4 A 117 Essential Raw Cooling Water screen and 0.014 MGD Discharge to surface waters 4 A strainer backwash 118 Dredge Pond 0 MGD Discharge to surface waters 4 A Sedimentation (settling) 1 U Filtration 1 Q Pond is not in service at this time. Therefore outfall 118 is inactive. Only stormwater from surrounding vegetated area discharges. No industrial activity in area. If in service, the pond would provide sedimentation during dredge activities and filtration for lower depth waste waters.

OFFICIAL USE ONLY (effluent guidelines sub-categories)

EPA Form 3510-2C (8-90) PAGE 1c OF 4 CONTINUE ON PAGE 2

CONTINUED FROM PAGE 1c C. Except for storm runoff, leaks, or spills, are any of the discharges described in Items II-A or B intermittent or seasonal?

YES (complete the following table) NO (go to Section III)

3. FREQUENCY 4. FLOW
1. OUTFALL 2. OPERATION(s)

NUMBER CONTRIBUTING FLOW a. FLOW RATE b. TOTAL VOLUME

a. DAYS b. MONTHS c.

(list) (list) PER WEEK PER YEAR (in mgd) (specify with units)

DURATION (specify (specify (in days) average) average) 1. LONG TERM 2. MAXIMUM 1. LONG TERM 2. MAXIMUM AVERAGE DAILY AVERAGE DAILY IMP 107 Metal cleaning waste waters (a) (a) (a) (a) (a) (a) (a) 110 Cooling Tower blowdown basin (b) (b) (b) (b) (b) (b) (b) 116 CCW Intake Trash Sluice 1 12 0.0060 0.0450 0.0060 MG 0.0450 MG <1 117 ERCW Traveling Screen and 4 12 0.0100 0.0216 0.0100 MG 0.0216 MG <1 ERCW Strainer Backwash 3 12 0.0040 0.0096 0.0040 MG 0.0096 MG <1 118 ERCW Dredge Pond (c) (c) (c) (c) (c) (c) (c)

(a) Last MCWP discharge occurred on 5/31/2006. Influent lines are cut and capped. Stormwater flows only are discharged from pond.

(b) Cooling Tower blowdown basin discharges recycled cooling water through outfall 110 while the plant is in closed mode. The plant has not entered closed mode for approximately 18 years. Outfall 110 remains inactive until closed mode operation is necessary, which will result in a discharge flow of approximately 1487.4276 MGD.

(c) No dredging operations conducted during current permit cycle. Pond is vegetated and no industrial activity in the area.

III. PRODUCTION A. Does an effluent guideline limitation promulgated by EPA under Section 304 of the Clean Water Act apply to your facility?

YES (complete Item III-B) NO (go to Section IV)

B. Are the limitations in the applicable effluent guideline expressed in terms of production (or other measure of operation)?

YES (complete Item III-C) NO (go to Section IV)

C. If you answered yes to Item III-B, list the quantity which represents an actual measurement of your level of production, expressed in the terms and units used in the applicable effluent guideline, and indicate the affected outfalls.

1. AVERAGE DAILY PRODUCTION 2. AFFECTED
a. QUANTITY PER DAY b. UNITS OF MEASURE c. OPERATION, PRODUCT, MATERIAL, ETC. OUTFALLS (specify) (list outfall numbers)

IV. IMPROVEMENTS A. Are you now required by any Federal, State or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application?

This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

YES (complete the following table) NO (go to Item IV-B)

2. AFFECTED OUTFALLS 4. FINAL COM-
1. IDENTIFICATION OF CONDITION, 3. BRIEF DESCRIPTION OF PROJECT PLIANCE DATE AGREEMENT, ETC. a. NO. b. SOURCE OF DISCHARGE a. RE- b. PRO-QUIRED JECTED B. OPTIONAL: You may attach additional sheets describing any additional water pollution control programs (or other environmental projects which may affect your discharges) you now have underway or which you plan. Indicate whether each program is now underway or planned, and indicate your actual or planned schedules for construction.

MARK X IF DESCRIPTION OF ADDITIONAL CONTROL PROGRAMS IS ATTACHED EPA Form 3510-2C (Rev. 2-85) PAGE 2 OF 4 CONTINUE ON PAGE 3

EPA I.D. NUMBER (copy from Item 1 of Form 1)

TN5640020504 CONTINUED FROM PAGE 2 V. INTAKE AND EFFLUENT CHARACTERISTICS A, B, & C: See instructions before proceeding - Complete one set of tables for each outfall - Annotate the outfall number in the space provided.

NOTE: Tables V-A, V-B, and V-C are included on separate sheets numbered V-1 through V-9.

D. Use the space below to list any of the pollutants listed in Table 2c-3 of the instructions, which you know or have reason to believe is discharged or may be discharged from any outfall. For every pollutant you list, briefly describe the reasons you believe it to be present and report any analytical data in your possession.

1. POLLUTANT 2. SOURCE 1. POLLUTANT 2. SOURCE See site Biocide Corrosion Treatment Plan (B/CTP).

Dimethylamine (The use of Steam Generator Layup dimethylamine will not result in detectible quantities at Outfall 101)

VI. POTENTIAL DISCHARGES NOT COVERED BY ANALYSIS Is any pollutant listed in Item V-C a substance or a component of a substance which you currently use or manufacture as an intermediate or final product or byproduct?

YES (list all such pollutants below) NO (go to Item VI-B)

EPA FORM 3510-2C (8-90) PAGE 3 OF 4 CONTINUE ON PAGE 4

""'Wiidi~o"r reason any biological test for 8ClJle or chronic toxicity has been made on sny of your discharges or on your discharge within the last 3 years?

181 YES (identify the tes/(s) and describe their purposes below) o NO (go to Section VIII)

Per the requ irements of the SON NPOES Permit No. TN0026450, IC2510xicity testing has been conducted on discharges from Outfall 101 once per year when oxidizing biocides are being used and once per year when non-oxidizing biocides are being used . Results are routinely submitted with the appropriate Discharge Monitoring Reports.

it.;;;\,.",,;;;;;.. by a contract laboratory or consulting firm?

181 YES (Iisl the n8f11fJ, address, and telephone number of, and pollutants o NO (go to Section IX) analyzed by, each such laboniloly or flfm below)

A. NAM E B. ADDRESS GEL Laboratories LLC PO Box 30712 (843) 556-8171 All pollutants except for field 2040 Savage Road parameterii (temperature, flow, Charleston. SC 29407 pH, sulfite, and tola! residua!

chlorine)

I .

I certify under penalty of law Ihal this documenl and al/ attachmenls WBf8 prepared under my direclion or supetvision in accordance with a system designed to aSSUf8 that qualified personnel properly gather and eva/uale the Information submitted. Based on my Inquiry of the person or persons who the system or those persons dif8ctly f8sponsitJ/e forgathering the Informetion, the Information submitted Is, 10 the best of my knowledge and

"".,....... accurate, lam* aware that there are signific8nt penalties for submitting false infOlmation, including tha possibility of fine and PAGE. OF.

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of EPA I.D. NUMBER (copy from Item 1 of Form 1) this information on separate sheets (use the same format) instead of completing these pages.

TN5640020504 SEE INSTRUCTIONS.

OUTFALL NO.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C) 101 PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

2. EFFLUENT 3. UNITS 4. INTAKE (optional)
1. POLLUTANT a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE (specify if blank) a. LONG TERM (if available) (if available) d. NO. OF AVERAGE VALUE b. NO. OF (1) (2) MASS (1) (2) MASS (1) (2) MASS ANALYSES a. CONCEN- b. MASS (1) (2) MASS ANALYSES CONCENTRATION CONCENTRATION CONCENTRATION TRATION CONCENTRATION
a. Biochemical Oxygen Demand <2.00 1 mg/L <2.00 1 (BOD)
b. Chemical Oxygen Demand 25.8 1 mg/L 23.4 1 (COD)
c. Total Organic Carbon (TOC) 2.87 1 mg/L 2.84 1
d. Total Suspended Solids (TSS) 4.67 1 mg/L 2.64 1
e. Ammonia (as N) 0.129 1 mg/L 0.144 1 VALUE VALUE VALUE VALUE
f. Flow 1770 1527 762 MGD 1616 1
g. Temperature VALUE VALUE VALUE VALUE (winter) 34.4 26.5 394 °C
h. Temperature VALUE VALUE VALUE VALUE (summer) 43.2 36.7 354 °C 25.8 1 MINIMUM MAXIMUM MINIMUM MAXIMUM I. pH 7.52 7.68 4 STANDARD UNITS PART B - Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.
2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)
1. POLLUT- a. BE- b. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM ANT AND LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE b. NO. OF CAS NO. PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) (2) MASS ANAL-(if available) SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES CONCENTRATION YSES
a. Bromide (24959-67-9) X <0.200 1 mg/L <0.200 1
b. Chlorine, Total Residual X <0.07 1 mg/L <0.05 1
c. Color X 20.0 1 PCU 15.0 1
d. Fecal Coliform X
e. Fluoride (16984-48-8) X <0.100 1 mg/L <0.100 1
f. Nitrate-Nitrite (as N) X 0.167 1 mg/L 0.127 1 EPA Form 3510-2C (8-90) Page V-1 CONTINUE ON PAGE V-2

ITEM V-B CONTINUED FROM PAGE V-1

2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)
1. POLLUT- a. BE- b. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF ANT AND LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-CAS NO. PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) (2) MASS YSES (if available) SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES CONCENTRATION
g. Nitrogen, Total Organic X 0.247 1 mg/L 0.314 1 (as N)
h. Oil and Grease X <4.00 1 mg/L <3.95 1 I. Phosphorus (as P), Total X <0.050 1 mg/L <0.050 1 (7723-14-0)
j. Radioactivity (1) Alpha, Total X*

(2) Beta, Total X*

(3) Radium, Total X*

(4) Radium 226, Total X*

k. Sulfate (as SO 4 ) X 12.9 1 mg/L 12.9 1 (14808-79-8)
l. Sulfide (as S) X <0.100 1 mg/L <0.100 1 m Sulfite (as SO 4 ) X <2.0 1 mg/L <2.0 1 (14265-45-3)
n. Surfactants X <0.050 1 mg/L <0.050 1
o. Aluminum, Total X 0.050 1 mg/L <0.050 1 (7429-90-5)
p. Barium, Total X 0.0279 1 mg/L 0.0280 1 (7440-39-3)
q. Boron, Total X 0.0281 1 mg/L 0.0178 1 (7440-42-8)
r. Cobalt, Total X <0.001 1 mg/L <0.001 1 (7440-48-4)
s. Iron,Total (7439-89-6) X 0.131 1 mg/L 0.0919 1
t. Magnesium, Total X 6.36 1 mg/L 6.18 1 (7439-95-4)
u. Molybdenum, Total X 0.000564 1 mg/L 0.000584 1 (7439-98-7)
v. Manganese, Total X 0.0630 1 mg/L 0.0395 1 (7439-96-5)
w. Tin, Total (7440-31-5) X <0.005 1 mg/L <0.005 1
x. Titanium, Total X <0.005 1 mg/L <0.005 1 (7440-32-6)
  • Believed absent other than naturally occurring radioactive materials.

EPA Form 3510-2C Page V-2 CONTINUE ON PAGE V-3

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER CONTINUED FROM PAGE 3 OF FORM 2-C TN5640020504 101 PART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) , mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully.

Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION METALS, CYANIDE, AND TOTAL PHENOLS 1M. Antimony, Total (7440-36-0) X <0.002 1 mg/L <0.002 1 2M. Arsenic, Total (7440-38-2) X <0.005 1 mg/L <0.005 1 3M. Beryllium, Total, (7440-41-7) X <0.0005 1 mg/L <0.0005 1 4M. Cadmium, Total (7440-43-9) X <0.0001 1 mg/L <0.0001 1 5M. Chromium, Total (7440-47-3) X <0.003 1 mg/L <0.003 1 6M. Copper, Total (7440-50-8) X 0.00109 1 mg/L <0.001 1 7M. Lead, Total (7439-92-1) X <0.002 1 mg/L <0.002 1 8M. Mercury, Total (7439-97-6) X 0.00000278 1 mg/L 0.00000169 1 9M. Nickel, Total (7440-02-0) X <0.002 1 mg/L <0.002 1 10M. Selenium, Total (7782-49-2) X <0.005 1 mg/L <0.005 1 11M. Silver, Total (7440-22-4) X <0.001 1 mg/L <0.001 1 12M. Thallium, Total (7440-28-0) X <0.0005 1 mg/L <0.0005 1 13M. Zinc, Total (7440-66-6) X <0.010 1 mg/L <0.010 1 14M. Cyanide, Total (57-12-5) X <0.005 1 mg/L <0.005 1 15M. Phenols, Total X <0.007 1 mg/L <0.005 1 DIOXIN 2,3,7,8-Tetra- DESCRIBE RESULTS chlorodibenzo-P X Dioxin (1764-01-6)

EPA Form 3510-2C (8-90) Page V-3 CONTINUE ON PAGE V-4

CONTINUED FROM PAGE V-3

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - VOLATILE COMPOUNDS 1V. Acrolein (107-02-8) X <0.005 1 mg/L <0.005 1 2V. Acrylonitrile (107-13-1) X <0.005 1 mg/L <0.005 1 3V. Benzene (71-43-2) X <0.001 1 mg/L <0.001 1 4V. Bis (Chloro-methyl) Ether X * *

(542-88-1) 5V. Bromoform (75-25-2) X <0.001 1 mg/L <0.001 1 6V. Carbon Tetrachloride X <0.001 1 mg/L <0.001 1 (56-23-5) 7V. Chlorobenzene (108-90-7) X <0.001 1 mg/L <0.001 1 8V. Chlorodi-bromomethane X <0.001 1 mg/L <0.001 1 (124-48-1) 9V. Chloroethane (75-00-3) X <0.001 1 mg/L <0.001 1 10V. 2-Chloro-ethylvinyl Ether X <0.005 1 mg/L <0.005 1 (110-75-8) 11V. Chloroform (67-66-3) X <0.001 1 mg/L <0.001 1 12V. Dichloro-bromomethane X <0.001 1 mg/L <0.001 1 (75-27-4) 13V. Dichloro-difluoromethane X* <0.001 1 mg/L <0.001 1 (75-71-8) 14V. 1,1-Dichloro-ethane (75-34-3) X <0.001 1 mg/L <0.001 1 15V. 1,2-Dichloro-ethane (107-06-2) X <0.001 1 mg/L <0.001 1 16V. 1,1-Dichloro-ethylene (75-35-4) X <0.001 1 mg/L <0.001 1 17V. 1,2-Dichloro-propane (78-87-5) X <0.001 1 mg/L <0.001 1 18V. 1,3-Dichloro-propylene (542-75-6) X <0.002 1 mg/L <0.002 1 19V. Ethylbenzene (100-41-4) X <0.001 1 mg/L <0.001 1 20V. Methyl Bromide (74-83-9) X <0.001 1 mg/L <0.001 1 21V. Methyl Chloride (74-87-3) X <0.001 1 mg/L <0.001 1

  • NOTE: Bis (Chloro-methyl) Ether and Dichloro-difluoromethane were removed as requirements from 40 CFR Part 123 by US EPA in 1995.

EPA Form 3510-2C (8-90) Page V-4 CONTINUE ON PAGE V-5

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER CONTINUED FROM PAGE V-4 TN5640020504 101

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - VOLATILE COMPOUNDS (continued) 22V. Methylene Chloride (75-09-2) X <0.002 1 mg/L <0.002 1 23V. 1,1,2,2-Tetra-chloroethane X <0.001 1 mg/L <0.001 1 (79-34-5) 24V. Tetrachloro-ethylene (127-18-4) X <0.001 1 mg/L <0.001 1 25V. Toluene (108-88-3) X <0.001 1 mg/L <0.001 1 26V. 1,2-Trans-Dichloroethylene X <0.001 1 mg/L <0.001 1 (156-60-5) 27V. 1,1,1-Tri-chloroethane X <0.001 1 mg/L <0.001 1 (71-55-6) 28V. 1,1,2-Tri-chloroethane X <0.001 1 mg/L <0.001 1 (79-00-5) 29V. Trichloro-ethylene (79-01-6) X <0.001 1 mg/L <0.001 1 30V. Trichloro-fluoromethane X* <0.001 1 mg/L <0.001 1 (75-69-4) 31V. Vinyl Chloride (75-01-4) X <0.001 1 mg/L <0.001 1 GC/MS FRACTION - ACID COMPOUNDS 1A. 2-Chloropheno (95-57-8) X <0.010 1 mg/L <0.010 1 2A. 2,4-Dichloro-phenol (120-83-2) X <0.010 1 mg/L <0.010 1 3A. 2,4-Dimethyl-phenol (105-67-9) X <0.010 1 mg/L <0.010 1 4A. 4,6-Dinitro-O-Cresol (534-52-1) X <0.010 1 mg/L <0.010 1 5A. 2,4-Dinitro-phenol (51-28-5) X <0.020 1 mg/L <0.020 1 6A. 2-Nitrophenol (88-75-5) X <0.010 1 mg/L <0.010 1 7A. 4-Nitrophenol (100-02-7) X <0.010 1 mg/L <0.010 1 8A. P-Chloro-M Cresol (59-50-7) X <0.010 1 mg/L <0.010 1 9A. Pentachloro-phenol (87-86-5) X <0.010 1 mg/L <0.010 1 10A. Phenol (108-95-2) X <0.010 1 mg/L <0.010 1 11A. 2,4,6-Trichloro-phenol (88-06-2) X <0.010 1 mg/L <0.010 1

  • NOTE: Trichlorofluoromethane was removed as a requirement from 40 CFR Part 123 by US EPA in 1995.

EPA Form 3510-2C (8-90) Page V-5 CONTINUE ON PAGE V-6

CONTINUED FROM PAGE V-5

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 1B. Acenaphthene (83-32-9) X 2B. Acenaphtylene (208-96-8) X 3B. Anthracene (120-12-7) X 4B. Benzidine (92-87-5) X 5B. Benzo (a)

Anthracene X (56-55-3) 6B. Benzo (a)

Pyrene (50-32-8) X 7B. 3,4-Benzo-fluoranthene X (205-99-2) 8B. Benzo (ghi)

Perylene X (191-24-2) 9B. Benzo (k)

Fluoranthene X (207-08-9) 10B. Bis (2-Chloro-ethoxy) Methane X (111-91-1) 11B. Bis (2-Chloro-ethyl) Ether X (111-44-4) 12B. Bis (2-Chloro-isopropyl) Ether X (102-60-1) 13B. Bis (2-Ethyl-hexyl) Phthalate X (117-81-7) 14B. 4-Bromo-phenyl Phenyl X Ether (101-55-3) 15B. Butyl Benzyl Phthalate (85-68-7) X 16B. 2-Chloro-naphthalene X (91-58-7) 17B. 4-Chloro-phenyl Phenyl X Ether (7005-72-3) 18B. Chrysene (218-01-9) X 19B. Dibenzo (a,h)

Anthracene X (53-70-3) 20B. 1,2-Dichloro-benzene (95-50-1) X <0.001 1 mg/L <0.001 1 21B. 1,3-Dichloro-benzene (541-73-1) X <0.001 1 mg/L <0.001 1 EPA Form 3510-2C (8-90) Page V-6 CONTINUE ON PAGE V-7

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER TN5640020504 101 CONTINUED FROM PAGE V-6

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued) 22B. 1,4-Dichloro-benzene (106-46-7) X <0.001 1 mg/L <0.001 1 23B. 3,3'-Dichloro-benzidine X (91-94-1) 24B. Diethyl Phthalate X (84-66-2) 25B. Dimethyl Phthalate X (131-11-3) 26B. Di-N-Butyl Phthalate X (84-74-2) 27B. 2,4-Dinitro-toluene (121-14-2) X 28B. 2,6-Dinitro-toluene (606-20-2) X 29B. Di-N-Octyl Phthalate X (117-84-0) 30B. 1,2-Diphenyl-hydrazine (as Azo- X benzene) (122-66-7) 31B. Fluoranthene (206-44-0) X 32B. Fluorene (86-73-7) X 33B. Hexachlorobenzene (118-74-1) X 34B. Hexa-chlorobutadiene X (87-68-3) 35B. Hexachloro-cyclopentadiene X (77-47-4) 36B. Hexachloro-ethane (67-72-1) X 37B. Indeno (1,2,3-cd) Pyrene X (193-39-5) 38B. Isophorone (78-59-1) X 39B. Naphthalene (91-20-3) X 40B. Nitrobenzene (98-95-3) X 41B. N-Nitro-sodimethylamine X (62-75-9) 42B. N-Nitrosodi-Propylamine X (621-64-7)

EPA Form 3510-2C (8-90) Page V-7 CONTINUE ON PAGE V-8

CONTINUED FROM PAGE V-7

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued) 43B. N-Nitro-sodiphenylamine X (86-30-6) 44B. Phenanthrene (85-01-8) X 45B. Pyrene (129-00-0) X 46B. 1,2,4 - Tri-chlorobenzene X <0.001 1 mg/L <0.001 1 (120-82-1)

GC/MS FRACTION - PESTICIDES 1P. Aldrin (309-00-2) X 2P. BHC (319-84-6) X 3P. -BHC (319-85-7) X 4P. - BHC (58-89-9) X 5P. - BHC (319-86-8) X 6P. Chlordane (57-74-9) X 7P. 4,4'-DDT (50-29-3) X 8P. 4,4'-DDE (72-55-9) X 9P. 4,4'-DDD (72-54-8) X 10P. Dieldrin (60-57-1) X 11P. -Endosulfan (115-29-7) X 12P. -Endosulfan (115-29-7) X 13P. Endosulfan Sulfate X (1031-07-8) 14P. Endrin (72-20-8) X 15P. Endrin Aldehyde X (7421-93-4) 16P. Heptachlor (76-44-8) X EPA Form 3510-2C (8-90) Page V-8 CONTINUE ON PAGE V-9

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER TN5640020504 101 CONTINUED FROM PAGE V-8

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF AVERAGE VALUE AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- a. CONCEN- b. MASS (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION TRATION GC/MS FRACTION - PESTICIDES (continued) 17B. Heptachlor Epoxide X (1024-57-3) 18P. PCB-1242 (53469-21-9) X 19P. PCB-1254 (11097-69-1) X 20P. PCB-1221 (11104-28-2) X 21P. PCB-1232 (11141-16-5) X 22P. PCB-1248 (12672-29-6) X 23P. PCB-1260 (11096-82-5) X 24P. PCB-1016 (12674-11-2) X 25P. Toxaphene (8001-35-2) X EPA Form 3510-2C (8-90) Page V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of EPA I.D. NUMBER (copy from Item 1 of Form 1) this information on separate sheets (use the same format) instead of completing these pages.

TN5640020504 SEE INSTRUCTIONS.

OUTFALL NO.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C) 103 PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

2. EFFLUENT 3. UNITS 4. INTAKE (optional)
1. POLLUTANT a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE (specify if blank) a. LONG TERM (if available) (if available) d. NO. OF AVERAGE VALUE b. NO. OF (1) (2) MASS (1) (2) MASS (1) (2) MASS ANALYSES a. CONCEN- b. MASS (1) (2) MASS ANALYSES CONCENTRATION CONCENTRATION CONCENTRATION TRATION CONCENTRATION
a. Biochemical Oxygen Demand 2.91 1 mg/L <2.00 1 (BOD)
b. Chemical Oxygen Demand 28.3 1 mg/L 23.4 1 (COD)
c. Total Organic Carbon (TOC) 4.73 1 mg/L 2.84 1
d. Total Suspended Solids (TSS) 16.0* <9.1 54 mg/L 2.64 1
e. Ammonia (as N) 0.170 1 mg/L 0.144 1 VALUE VALUE VALUE VALUE
f. Flow 2.06 1.06 762 MGD 1616 1
g. Temperature VALUE VALUE VALUE VALUE (winter)
h. Temperature h VALUE VALUE VALUE VALUE (summer) 34.8 4 °C 25.8 1 MINIMUM MAXIMUM MINIMUM MAXIMUM I. pH 6.73 8.35 72 STANDARD UNITS PART B - Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.
2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)
1. POLLUT- a. BE- b. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM ANT AND LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE b. NO. OF CAS NO. PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) (2) MASS ANAL-(if available) SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES CONCENTRATION YSES
a. Bromide (24959-67-9) X <0.20 1 mg/L <0.200 1
b. Chlorine, Total Residual X <0.06 1 mg/L <0.05 1
c. Color X 40.0 1 PCU 15.0 1
d. Fecal Coliform X
e. Fluoride (16984-48-8) X 0.104 1 mg/L <0.100 1
f. Nitrate-Nitrite (as N) X 0.301 1 mg/L 0.127 1
  • Value based on historical TSS data from routine grab samples collected as required by the permit and does not include the composite sample result of 7.20 mg/L TSS.

EPA Form 3510-2C (8-90) Page V-1 CONTINUE ON PAGE V-2

ITEM V-B CONTINUED FROM PAGE V-1

2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)
1. POLLUT- a. BE- b. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF ANT AND LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-CAS NO. PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) (2) MASS YSES (if available) SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES CONCENTRATION
g. Nitrogen, Total Organic X 0.740 1 mg/L 0.314 1 (as N)
h. Oil and Grease X 17.0 <5.7 55 mg/L <3.95 1 I. Phosphorus (as P), Total X 0.0696 1 mg/L <0.050 1 (7723-14-0)
j. Radioactivity (1) Alpha, Total X*

(2) Beta, Total X*

(3) Radium, Total X*

(4) Radium 226, Total X*

k. Sulfate (as SO 4 ) X 23.7 1 mg/L 12.9 1 (14808-79-8)
l. Sulfide (as S) X <0.100 1 mg/L <0.100 1 m Sulfite (as SO 4 ) X 2.0 1 mg/L <2.0 1 (14265-45-3)
n. Surfactants X <0.050 1 mg/L <0.050 1
o. Aluminum, Total X 0.0968 1 mg/L <0.050 1 (7429-90-5)
p. Barium, Total X 0.0312 1 mg/L 0.0280 1 (7440-39-3)
q. Boron, Total X 0.0287 1 mg/L 0.0178 1 (7440-42-8)
r. Cobalt, Total X <0.001 1 mg/L <0.001 1 (7440-48-4)
s. Iron,Total (7439-89-6) X 0.221 1 mg/L 0.0919 1
t. Magnesium, Total X 6.33 1 mg/L 6.18 1 (7439-95-4)
u. Molybdenum, Total X 0.00092 1 mg/L 0.000584 1 (7439-98-7)
v. Manganese, Total X 0.0966 1 mg/L 0.0395 1 (7439-96-5)
w. Tin, Total (7440-31-5) X <0.005 1 mg/L <0.005 1
x. Titanium, Total X <0.005 1 mg/L <0.005 1 (7440-32-6)
  • Believed absent other than naturally occurring radioactive materials.

EPA Form 3510-2C Page V-2 CONTINUE ON PAGE V-3

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER CONTINUED FROM PAGE 3 OF FORM 2-C TN5640020504 103 PART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) , mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully.

Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION METALS, CYANIDE, AND TOTAL PHENOLS 1M. Antimony, Total (7440-36-0) X <0.002 1 mg/L <0.002 1 2M. Arsenic, Total (7440-38-2) X <0.005 1 mg/L <0.005 1 3M. Beryllium, Total, (7440-41-7) X <0.0005 1 mg/L <0.0005 1 4M. Cadmium, Total (7440-43-9) X <0.0001 1 mg/L <0.0001 1 5M. Chromium, Total (7440-47-3) X <0.003 1 mg/L <0.003 1 6M. Copper, Total (7440-50-8) X 0.00224 1 mg/L <0.001 1 7M. Lead, Total (7439-92-1) X <0.002 1 mg/L <0.002 1 8M. Mercury, Total (7439-97-6) X 0.00000103 1 mg/L 0.00000169 1 9M. Nickel, Total (7440-02-0) X <0.002 1 mg/L <0.002 1 10M. Selenium, Total (7782-49-2) X <0.005 1 mg/L <0.005 1 11M. Silver, Total (7440-22-4) X <0.001 1 mg/L <0.001 1 12M. Thallium, Total (7440-28-0) X <0.0005 1 mg/L <0.0005 1 13M. Zinc, Total (7440-66-6) X <0.010 1 mg/L <0.010 1 14M. Cyanide, Total (57-12-5) X <0.005 1 mg/L <0.005 1 15M. Phenols, Total X <0.005 1 mg/L <0.005 1 DIOXIN 2,3,7,8-Tetra- DESCRIBE RESULTS chlorodibenzo-P X Dioxin (1764-01-6)

EPA Form 3510-2C (8-90) Page V-3 CONTINUE ON PAGE V-4

CONTINUED FROM PAGE V-3

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - VOLATILE COMPOUNDS 1V. Acrolein (107-02-8) X <0.005 1 mg/L <0.005 1 2V. Acrylonitrile (107-13-1) X <0.005 1 mg/L <0.005 1 3V. Benzene (71-43-2) X <0.001 1 mg/L <0.001 1 4V. Bis (Chloro-methyl) Ether X * *

(542-88-1) 5V. Bromoform (75-25-2) X <0.001 1 mg/L <0.001 1 6V. Carbon Tetrachloride X <0.001 1 mg/L <0.001 1 (56-23-5) 7V. Chlorobenzene (108-90-7) X <0.001 1 mg/L <0.001 1 8V. Chlorodi-bromomethane X <0.001 1 mg/L <0.001 1 (124-48-1) 9V. Chloroethane (75-00-3) X <0.001 1 mg/L <0.001 1 10V. 2-Chloro-ethylvinyl Ether X <0.005 1 mg/L <0.005 1 (110-75-8) 11V. Chloroform (67-66-3) X <0.001 1 mg/L <0.001 1 12V. Dichloro-bromomethane X <0.001 1 mg/L <0.001 1 (75-27-4) 13V. Dichloro-difluoromethane X* <0.001 1 mg/L <0.001 1 (75-71-8) 14V. 1,1-Dichloro-ethane (75-34-3) X <0.001 1 mg/L <0.001 1 15V. 1,2-Dichloro-ethane (107-06-2) X <0.001 1 mg/L <0.001 1 16V. 1,1-Dichloro-ethylene (75-35-4) X <0.001 1 mg/L <0.001 1 17V. 1,2-Dichloro-propane (78-87-5) X <0.001 1 mg/L <0.001 1 18V. 1,3-Dichloro-propylene (542-75-6) X <0.002 1 mg/L <0.002 1 19V. Ethylbenzene (100-41-4) X <0.001 1 mg/L <0.001 1 20V. Methyl Bromide (74-83-9) X <0.001 1 mg/L <0.001 1 21V. Methyl Chloride (74-87-3) X <0.001 1 mg/L <0.001 1

  • NOTE: Bis (Chloro-methyl) Ether and Dichloro-difluoromethane were removed as requirements from 40 CFR Part 123 by US EPA in 1995.

EPA Form 3510-2C (8-90) Page V-4 CONTINUE ON PAGE V-5

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER CONTINUED FROM PAGE V-4 TN5640020504 103

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - VOLATILE COMPOUNDS (continued) 22V. Methylene Chloride (75-09-2) X <0.002 1 mg/L <0.002 1 23V. 1,1,2,2-Tetra-chloroethane X <0.001 1 mg/L <0.001 1 (79-34-5) 24V. Tetrachloro-ethylene (127-18-4) X <0.001 1 mg/L <0.001 1 25V. Toluene (108-88-3) X <0.001 1 mg/L <0.001 1 26V. 1,2-Trans-Dichloroethylene X <0.001 1 mg/L <0.001 1 (156-60-5) 27V. 1,1,1-Tri-chloroethane X <0.001 1 mg/L <0.001 1 (71-55-6) 28V. 1,1,2-Tri-chloroethane X <0.001 1 mg/L <0.001 1 (79-00-5) 29V. Trichloro-ethylene (79-01-6) X <0.001 1 mg/L <0.001 1 30V. Trichloro-fluoromethane X* <0.001 1 mg/L <0.001 1 (75-69-4) 31V. Vinyl Chloride (75-01-4) X <0.001 1 mg/L <0.001 1 GC/MS FRACTION - ACID COMPOUNDS 1A. 2-Chloropheno (95-57-8) X <0.010 1 mg/L <0.010 1 2A. 2,4-Dichloro-phenol (120-83-2) X <0.010 1 mg/L <0.010 1 3A. 2,4-Dimethyl-phenol (105-67-9) X <0.010 1 mg/L <0.010 1 4A. 4,6-Dinitro-O-Cresol (534-52-1) X <0.010 1 mg/L <0.010 1 5A. 2,4-Dinitro-phenol (51-28-5) X <0.020 1 mg/L <0.020 1 6A. 2-Nitrophenol (88-75-5) X <0.010 1 mg/L <0.010 1 7A. 4-Nitrophenol (100-02-7) X <0.010 1 mg/L <0.010 1 8A. P-Chloro-M Cresol (59-50-7) X <0.010 1 mg/L <0.010 1 9A. Pentachloro-phenol (87-86-5) X <0.010 1 mg/L <0.010 1 10A. Phenol (108-95-2) X <0.010 1 mg/L <0.010 1 11A. 2,4,6-Trichloro-phenol (88-06-2) X <0.010 1 mg/L <0.010 1

  • NOTE: Trichlorofluoromethane was removed as a requirement from 40 CFR Part 123 by US EPA in 1995.

EPA Form 3510-2C (8-90) Page V-5 CONTINUE ON PAGE V-6

CONTINUED FROM PAGE V-5

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 1B. Acenaphthene (83-32-9) X 2B. Acenaphtylene (208-96-8) X 3B. Anthracene (120-12-7) X 4B. Benzidine (92-87-5) X 5B. Benzo (a)

Anthracene X (56-55-3) 6B. Benzo (a)

Pyrene (50-32-8) X 7B. 3,4-Benzo-fluoranthene X (205-99-2) 8B. Benzo (ghi)

Perylene X (191-24-2) 9B. Benzo (k)

Fluoranthene X (207-08-9) 10B. Bis (2-Chloro-ethoxy) Methane X (111-91-1) 11B. Bis (2-Chloro-ethyl) Ether X (111-44-4) 12B. Bis (2-Chloro-isopropyl) Ether X (102-60-1) 13B. Bis (2-Ethyl-hexyl) Phthalate X (117-81-7) 14B. 4-Bromo-phenyl Phenyl X Ether (101-55-3) 15B. Butyl Benzyl Phthalate (85-68-7) X 16B. 2-Chloro-naphthalene X (91-58-7) 17B. 4-Chloro-phenyl Phenyl X Ether (7005-72-3) 18B. Chrysene (218-01-9) X 19B. Dibenzo (a,h)

Anthracene X (53-70-3) 20B. 1,2-Dichloro-benzene (95-50-1) X <0.001 1 mg/L <0.001 1 21B. 1,3-Dichloro-benzene (541-73-1) X <0.001 1 mg/L <0.001 1 EPA Form 3510-2C (8-90) Page V-6 CONTINUE ON PAGE V-7

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER TN5640020504 103 CONTINUED FROM PAGE V-6

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued) 22B. 1,4-Dichloro-benzene (106-46-7) X <0.001 1 mg/L <0.001 1 23B. 3,3'-Dichloro-benzidine X (91-94-1) 24B. Diethyl Phthalate X (84-66-2) 25B. Dimethyl Phthalate X (131-11-3) 26B. Di-N-Butyl Phthalate X (84-74-2) 27B. 2,4-Dinitro-toluene (121-14-2) X 28B. 2,6-Dinitro-toluene (606-20-2) X 29B. Di-N-Octyl Phthalate X (117-84-0) 30B. 1,2-Diphenyl-hydrazine (as Azo- X benzene) (122-66-7) 31B. Fluoranthene (206-44-0) X 32B. Fluorene (86-73-7) X 33B. Hexachlorobenzene (118-74-1) X 34B. Hexa-chlorobutadiene X (87-68-3) 35B. Hexachloro-cyclopentadiene X (77-47-4) 36B. Hexachloro-ethane (67-72-1) X 37B. Indeno (1,2,3-cd) Pyrene X (193-39-5) 38B. Isophorone (78-59-1) X 39B. Naphthalene (91-20-3) X 40B. Nitrobenzene (98-95-3) X 41B. N-Nitro-sodimethylamine X (62-75-9) 42B. N-Nitrosodi-Propylamine X (621-64-7)

EPA Form 3510-2C (8-90) Page V-7 CONTINUE ON PAGE V-8

CONTINUED FROM PAGE V-7

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF a. CONCEN- b. MASS AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- TRATION (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued) 43B. N-Nitro-sodiphenylamine X (86-30-6) 44B. Phenanthrene (85-01-8) X 45B. Pyrene (129-00-0) X 46B. 1,2,4 - Tri-chlorobenzene X <0.001 1 mg/L <0.001 1 (120-82-1)

GC/MS FRACTION - PESTICIDES 1P. Aldrin (309-00-2) X 2P. BHC (319-84-6) X 3P. -BHC (319-85-7) X 4P. - BHC (58-89-9) X 5P. - BHC (319-86-8) X 6P. Chlordane (57-74-9) X 7P. 4,4'-DDT (50-29-3) X 8P. 4,4'-DDE (72-55-9) X 9P. 4,4'-DDD (72-54-8) X 10P. Dieldrin (60-57-1) X 11P. -Endosulfan (115-29-7) X 12P. -Endosulfan (115-29-7) X 13P. Endosulfan Sulfate X (1031-07-8) 14P. Endrin (72-20-8) X 15P. Endrin Aldehyde X (7421-93-4) 16P. Heptachlor (76-44-8) X EPA Form 3510-2C (8-90) Page V-8 CONTINUE ON PAGE V-9

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER TN5640020504 103 CONTINUED FROM PAGE V-8

1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS 5. INTAKE (optional)

AND CAS a. TEST- b. BE- c. BE- a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM a. LONG TERM b. NO. OF NUMBER ING LIEVED LIEVED (if available) (if available) d. NO. OF AVERAGE VALUE AVERAGE VALUE ANAL-(if available) RE- PRE- AB- (1) (2) MASS (1) (2) MASS (1) (2) MASS ANAL- a. CONCEN- b. MASS (1) CONCEN- (2) MASS YSES QUIRED SENT SENT CONCENTRATION CONCENTRATION CONCENTRATION YSES TRATION TRATION GC/MS FRACTION - PESTICIDES (continued) 17B. Heptachlor Epoxide X (1024-57-3) 18P. PCB-1242 (53469-21-9) X 19P. PCB-1254 (11097-69-1) X 20P. PCB-1221 (11104-28-2) X 21P. PCB-1232 (11141-16-5) X 22P. PCB-1248 (12672-29-6) X 23P. PCB-1260 (11096-82-5) X 24P. PCB-1016 (12674-11-2) X 25P. Toxaphene (8001-35-2) X EPA Form 3510-2C (8-90) Page V-9

Tennessee River 42.320 0.006 Outfall 116 0.014 Outfall 117 Cond. Circulating Water Outfall 118 Raw Cooling Water ERCW Screen &

CCW Trash Sluice Intake Forebay Dredge Diesel fuel recover trench ERCW Intake (INACTIVE) Pond High Press Fire water Strainer Backwash Potable water 1447.871 40.306 Raw Water Outfall 110 1447.014 Treatment Condenser Cooling DP CCW Discharge Water (CCW) Channel (DC) TBS NS Intake 0.024 Cooling Water LVP Cooling Towers Units 1 & 2 NS 1447.865 Tennessee e River 0.058 CCW Discharge Channel Helper Mode CCS Wastewaters Primary System Waste 1409.865 Closed Mode Condenser Cold Water Circulating System Return Channel Cooling Tower o do Blowdown Basin as Steam Generator 0.030 (CTB)

Blowdown NS DC ERCW System 0.050 1447.014 40.436 0.049 38.000 Condensate Demin.

System (Alt) 37.125 Radioactive Floor Drain Liquid Radwaste Raw Cooling Water and Sump Treatment System System West Valve Vault Room (LRW) 0.004 Drains NS Laundry, Shower, and Low Volume Waste Chemical Drains Treatment Pond Diffuser Pond (DP)

Raw Water CCS Wastewater Neutral Waste 0.177 (LVP)

Condensate Demin.

0 875 0.875 Treatment System Wastewater Sump p 1490.854 IMP IMP Emergency Spillway Raw Service Water Miscellaneous 0.463 TBS 107 103 System Equipment Cooling 0.0022 1.230 Raw Water NS Outfall 101 0.412 YDP Leaks & Draindowns Unlined Metal Lined Metal Cleaning Cleaning Outfall 101E Waste Pond Waste Pond 2.125 Water Treatment Makeup Water System Process wastewaters 1 1.047 0.030 YDP DC Filter Backwash and TBS WTP Wastewaters Turbine Building Yard Drainage Sump (TBS) Pond (YDP)

Make-up Water 0.004 Primary System DP (DWST)

LRW 1.047 2.119 0.006 Component Cooling 0.030 NS CCS Wastewater TBS System Miscellaneous Low Volume 0.180 0.030 Miscellaneous Low Volume Steam Steam Generator Wastewaters Wastewater & Yard Drainage Generator Fill Blowdown Service Building Sump Miscellaneous Equipment Office Bldg Floor & Equip Drains Cooling Water Diesel Gen Bldg Sump & O&G Essential Raw Cooling Water Interceptor (o/w separator) 0.202 Maintenance Draindown Backup Security Diesel O&G Secondary System CTB Component Cooling System Interceptor (o/w separator)

Wastewater Solar Bldg Sump Process waters and wastewaters Air Cooling Water Steam Generator Blowdown Switchyard Bus Cooling Water Condensate Demin Regen Waste Miscellaneous line leaks, flushes Secondary System Condensate Demin Secondary System leaks and LRW and draindowns Leaks & Downdrains System Draindowns ERCW system t maint.

i t draindowns d i d Ice Condenser waste Electrical Sumps 0.022 Laboratory wastewaters East Valve Vault Room drains Turbine Building floor and Pressure washing & vehicle rinses 0.100 Condensate Demin Equipment drains TBS Switchyard stormwater runoff Alum Sludge Pond Regeneration Waste Landfill Runoff DC CCW Discharge Channel CTB Cooling Tower Basin n Negligible flow Tennessee Valley Authority LRW Liquid Radwaste Treatment System Alternate path S Sequoyahh Nuclear N l Pl t Plant Chemical Additive Wastewater Flow Schematic TBS Turbine Building Sump NS Net Stormwater Flow (runoff, NPDES Permit No. TN0026450 LVP Low Volume Waste Treatment Pond precipitation, less evaporation)

April 2013 YDP Yard Discharge Pond All flows shown in million gallons per day (MGD)

DP Diffuser Pond

Tennessee Department of Environment and Conservation Division of Water Pollution Control 401 Church Street, 6th Floor L & C Annex Nashville, TN 37243-1534 Phone: (615)532-0625 PERMIT CONTACT INFORMATION Please complete all sections. If one person serves multiple functions, please repeat this information in each section.

PERMIT NUMBER: TN0026450 DATE: April 2013 PERMITTED FACILITY: TVA Sequoyah Nuclear Plant COUNTY: Hamilton OFFICIAL PERMIT CONTACT:

(The permit signatory authority, e.g. responsible corporate officer, principle executive officer or ranking elected official)

Official

Contact:

John T. Carlin Title or Position: Site Vice President Mailing Address: Sequoyah Acess Road, PO Box 2000 City: Soddy Daisy State: TN Zip: 37379 Phone number(s): (423) 843-7001 E-mail: jtcarlin@tva.gov PERMIT BILLING ADDRESS (where invoices should be sent):

Billing

Contact:

Brad M. Love Title or Position: Environmental Scientist Mailing Address: Sequoyah Acess Road, PO Box 2000 City: Soddy Daisy State: TN Zip: 37379 Phone number(s): (423) 843-6714 E-mail: bmlove@tva.gov FACILITY LOCATION (actual location of permit site and local contact for site activity):

Facility Location

Contact:

Brad M. Love Title or Position: Environmental Scientist Facility Location (physical street address): Seqouyah Access Road City: Soddy Daisy State: TN Zip: 37379 Phone number(s): (423) 843-6714 E-mail: bmlove@tva.gov Alternate Contact (if desired): Title or Position:

Mailing Address: City: State: Zip:

Phone number(s): E-mail:

FACILITY REPORTING (Discharge Monitoring Report (DMR) or other reporting):

Cognizant Official authorized for permit reporting: Title or Position:

Facility Location (physical street address): City: State: Zip:

Phone number(s): E-mail:

Fax number for reporting: Does the facility have interest in starting Yes No*

electronic DMR reporting?*

CN-1090 (rev. 04-2007) RDAs 2352 AND 2366

TENNESSEE VALLEY AUTHORITY (TVA) - SEQUOYAH NUCLEAR PLANT (SQN) -

NPDES PERMIT NO. TN0026450 - WET REASONABLE POTENTIAL Current Whole Effluent Toxicity (WET) Requirements:

Outfall 101 - 7-day or 3-brood IC25 Hard Trigger = 43.2%

[IWC = 43.2% effluent (2.3 TUc)]

Monitoring Frequency Governed by B/CTP:

1/year when oxidizing biocides used 1/year when non-oxidizing biocides used Proposed WET Requirements:

Outfall 101 - 7-day or 3-brood IC25 Hard Trigger = 42.8%

[IWC = 42.8% effluent (2.3 TUc)]

Monitoring Frequency Governed by B/CTP:

1/year when oxidizing biocides used 1/year when non-oxidizing biocides used

Background:

The current permit, effective March 1, 2011, requires chronic toxicity biomonitoring at a frequency governed by the B/CTP and with a monitoring limit (IC25 43.2%) that serves as a hard trigger for accelerated biomonitoring. Previous to the issuance of the current permit, Outfall 101 demonstrated No Reasonable Potential for excursions above the ambient water quality chronic (CCC) criterion using historical effluent data. This demonstration of No Reasonable Potential has been maintained throughout the current permit cycle as evidenced in the accompanying historical effluent data for the last 20 studies.

Based on guidance in EPAs Technical Support Document (TSD) for Water Quality-based Toxics Control (EPA/505/2-90-001), a permit limit is not required when No Reasonable Potential exists for excursions above the CCC. In this situation, the TSD recommends that biomonitoring be conducted at a frequency of once every 5 years as part of the permit renewal process.

Proposed Changes:

1. TVA requests that the current permits requirement for the B/CTP to govern the frequency of biomonitoring remain (i.e., once per year when oxidizing biocides are used, and once per year when non-oxidizing biocides are used).
2. TVA requests that the current monitoring limit be replaced with an IC25 = 42.8%,

which is based on revised effluent flow, and is consistent with the TSD guidance for effluents demonstrating No Reasonable Potential. Toxicity at the instream wastewater concentration (IWC) would serve only as a hard trigger for accelerated biomonitoring, as stated in the current permit.

3. TVA requests changes to the Serial Dilutions table as follows:

Page 22 of 28, table following paragraph 3:

Serial Dilutions for Whole Effluent Toxicity (WET) Testing 100% Monitoring Limit (100+ML)/2 0.5 X ML O.25 X ML Control Effluent (ML)

% effluent 100 71.4 42.8 21.4 10.7 0

4. TVA also requests that all other text in Section E of the permit remain unchanged.

Dilution and Instream Waste Concentration Calculations Outfall 101:

Average Discharge = 1491 MGD Tennessee River 1Q10 = 3483 MGD Qs 3483 Dilution Factor (DF): DF = = = 2.34 Qw 1491 Qw 1491 Instream Wastewater Concentration (IWC): IWC = = x 100 = 42.8%

Qs 3483 Reasonable Potential Determination:

The last 20 studies for Outfall 101 were used for determining Reasonable Potential, with all studies resulting in no observed toxicity (<1.0 TUc) and a coefficient of variation equal to zero. This outcome demonstrates that no Reasonable Potential for excursions above the CCC exists, based on data obtained from testing conducted under the current operating conditions.

Historical data for the last 20 studies follows, and is followed thereafter with documentation of chemical additions which occurred during sampling for toxicity tests for Outfall 101.

2

SQN Documentation:

Summary of SQN Outfall 101 WET Biomonitoring Results **

Acute Results Chronic (96-h Survival) Results

% Survival Study Study in Toxicity Toxicity Undiluted Units Units (TUc)

Test Date Test Species Sample (TUa)

64. Feb 8-15, 2005 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 93

65. Jun 7-14, 2005 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 100

66. Jul 19-26, 2005 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 100

67. Nov 1-8, 2005 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 100

68. Nov 16-23, 2005 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 98

69. Nov 14-21, 2006 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 100

70. Nov 28 - Dec 5, 2006 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 98

71. May 30- Jun 6, 2007 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 100

72. Dec 4-11, 2007 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 100

73. Apr 15-22, 2008 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 93

74. Oct 28- Nov 4, 2008 Ceriodaphnia dubia 100

<1.0 <1.0 Pimephales promelas 98

75. Feb 10-17, 2009 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 100
76. May 12-19, 2009 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 98
77. Nov 17-24, 2009 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 100
78. May 11-18, 2010 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 100
79. Nov 2-9, 2010 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 100
80. May 3-10, 2011 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 100
81. Nov 8-15, 2011 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 98
82. May 8-15, 2012 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 100
83. Aug 12-17, 2012 Ceriodaphnia dubia 100 <1.0 <1.0 Pimephales promelas 100 n 40 20 20 Maximum 100 <1.0 <1.0 Minimum 93 <1.0 <1.0 Mean 99 <1.0 <1.0 CV 0.02 0.00 0.00
    • Last 20 studies only were included for determining RP.

Shaded area includes data collected under the current permit.

3

Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date Sodium Towerbrom PCL-222 PCL-401 CL-363 Cuprostat- H-130M Nalco H-150M Hypochlorite mg/L mg/L mg/L mg/L PF mg/L mg/L Quat 73551 mg/L mg/L TRC Phosphate Copolymer DMAD Azole mg/L Quat TRC EO/PO 11/07/2004 - <0.0187 0.000 0.014 - - - - -

11/08/2004 - <0.0192 0.047 0.030 - - - - -

11/09/2004 - <0.0233 0.048 0.016 - - 0.041 - -

11/10/2004 - <0.0149 0.047 0.016 - - 0.041 - -

11/11/2004 - <0.0149 0.049 0.017 - - 0.043 - -

11/12/2004 - <0.0253 0.048 0.017 - - 0.042 - -

02/06/2005 - <0.0042 0.028 0.010 - - - - -

02/07/2005 - <0.0116 0.028 0.010 - - - 0.007 -

02/08/2005 - <0.0080 0.028 0.010 - - - - -

02/09/2005 - 0.0199 0.028 0.010 - - - - -

02/10/2005 - <0.0042 0.028 0.010 - - - - -

02/11/2005 - 0.0155 0.028 0.010 - - - 0.007 -

06/05/2005 - 0.0063 - - - - - - -

06/06/2005 - 0.0043 - - - - - - 0.037 06/07/2005 - 0.0103 - - - - - - 0.037 06/08/2005 - 0.0295 - - - - - - 0.037 06/09/2005 - 0.0129 - - - - - - -

06/10/2005 - 0.0184 - - - - - - -

07/17/2005 - 0.0109 0.026 0.009 - - - - -

07/18/2005 - 0.0150 0.026 0.009 - - - - 0.036 07/19/2005 - 0.0163 0.026 0.009 - - - - 0.036 07/20/2005 - 0.0209 0.026 0.009 - - - 0.014 0.036 07/21/2005 - 0.0242 0.026 0.009 - - - - -

07/22/2005 - 0.0238 0.054 0.018 - - - 0.014 -

10/30/2005 - 0.0068 - - - - - - -

10/31/2005 - 0.0112 - - - - - - -

11/01/2005 - 0.0104 - - - - - - 0.035 11/02/2005 - 0.0104 - - - - - - 0.036 11/03/2005 - 0.0117 - - - - - - 0.036 11/04/2005 - 0.0165 - - - - - - 0.035 11/14/2005 - 0.0274 - - - - - - -

11/15/2005 - 0.0256 - - - - - - -

11/16/2005 - 0.0234 - - - - - - -

11/17/2005 - 0.0231 - - - - - - -

11/18/2005 - 0.0200 - - - - - - -

11/19/2005 - 0.0116 - - - - - - -

4

Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date Sodium Towerbrom PCL-222 PCL-401 CL-363 Cuprostat- H-130M Nalco H- MSW Hypochlorite mg/L mg/L mg/L mg/L PF mg/L mg/L Quat 73551 150M 101 mg/L TRC Phosphate Copolymer DMAD Azole mg/L mg/L mg/L TRC EO/PO Quat Phosphate 11/12/2006 - 0.0055 - - - - - - - -

11/13/2006 - 0.0068 - - - - - - 0.037 -

11/14/2006 - 0.0143 - - - - - - 0.037 -

11/15/2006 - 0.0068 - - - - - - 0.037 -

11/16/2006 - 0.0267 - - - - - - 0.037 -

11/17/2006 - 0.0222 - - - - - - - -

11/26/2006 - 0.0188 - - - - - - - -

11/27/2006 - 0.0138 - - - - - - - -

11/28/2006 - 0.0120 - - - - - - - -

11/29/2006 - 0.0288 - - - - - - - -

11/30/2006 - 0.0376 - - - - - - - -

12/01/2006 - 0.0187 - - - - - - - -

05/28/07 - - - - - - - - - 0.015 05/29/07 - - - - - - - - 0.036 0.015 05/30/07 - 0.0084 - - - - - 0.017 0.036 0.015 05/31/07 - 0.0103 - - - - - - 0.036 0.015 06/01/07 - 0.0164 - - - - - 0.017 0.036 0.015 06/02/07 - 0.0305 - - - - - - - 0.015 12/02/07 - 0.0241 - - - - - - - -

12/03/07 - 0.0128 - - - - - - - -

12/04/07 - 0.0238 - - - - - - - -

12/05/07 - 0.0158 - - - - - - - -

12/06/07 - 0.0162 - - - - - - - -

12/07/07 - 0.0175 - - - - - - -

04/13/08 - 0.0039 - - - - - - - -

04/14/08 - 0.0124 - - - - - - - -

04/15/08 - 0.0229 - - - - - - - -

04/16/08 - 0.0143 - - - - - - - -

04/17/08 - 0.0120 - - - - - - - -

04/18/08 - 0.0149 - - - - - - - -

10/26/08 - 0.0260 - - - - - - - -

10/27/08 - 0.0151 - - - - - 0.017 - -

10/28/08 - 0.0172 - - - - - - 0.041 -

10/29/08 - 0.0154 - - - - - 0.018 0.041 0.030 10/30/08 - - - - - - - - 0.041 0.030 10/31/08 - 0.0086 - - - - - - 0.041 0.030 5

Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date Sodium Towerbrom PCL-222 PCL-401 CL- Cuprostat- H-130M Nalco Spectrus H-150M MSW Hypochlorite mg/L mg/L mg/L 363 PF mg/L mg/L 73551 CT1300 mg/L 101 mg/L TRC Phosphate Copolymer mg/L Azole Quat mg/L mg/L Quat mg/L TRC DMAD EO/PO Quat Phosphate 02/08/09 - 0.0197 - - - - - 0.017 - - -

02/09/09 - 0.0237 - - - - - 0.017 - - -

02/10/09 - 0.0104 - - - - - 0.021 - - -

02/11/09 - 0.0155 - - - - - 0.017 - - -

02/12/09 - 0.0106 - - - - - 0.017 - - -

02/13/09 - - - - - - - - - - -

05/10/09 - 0.0129 - - - - - - - - -

05/11/09 - 0.0415 - - - - - - - 0.0446 -

05/12/09 - 0.0053 - - - - - - - 0.0396 -

05/13/09 - 0.0049 - - - - - - - 0.0396 -

05/14/09 - <0.0141 - - - - - - - 0.0397 -

05/15/09 - <0.0160 - - - - - - - - -

11/15/09 - 0.025 - - - - - - - - -

11/16/09 - 0.0152 - - - - - - - - -

11/17/09 - 0.0255 - - - - - - - - -

11/18/09 - 0.0306 - - - - - - - - -

11/19/09 - 0.0204 - - - - - - - -

11/20/09 - 0.0093 - - - - - - - - -

05/09/10 - 0.0192 - - - - - - - - -

05/10/10 - 0.0055 - - - - - - - - -

05/11/10 - 0.0100 - - - - - - 0.039 - -

05/12/10 - 0.0171 - - - - - - 0.039 - -

05/13/10 - 0.0041 - - - - - 0.039 - -

05/14/10 - 0.0099 - - - - - - 0.039 - -

6

Sequoyah Nuclear Plant Diffuser (Outfall 101) Discharge Concentrations of Chemicals Used to Control Microbiologically Induced Corrosion and Mollusks, During Toxicity Test Sampling November 7, 2004 - August 17, 2012 Date Sodium Towerbrom PCL- PCL-401 CL-363 Cuprostat- H-130M Nalco Spectrus H-150M MSW Floguard Hypochlorite mg/L 222 mg/L mg/L PF mg/L mg/L 73551 CT1300 mg/L 101 MS6236 mg/L TRC mg/L Copolymer DMAD Azole Quat mg/L mg/L Quat mg/L mg/L TRC Phos- EO/PO Quat Phosphate Phosphate phate 10/31/10 - - - - - - - - - - - -

11/01/10 - 0.0122 - - - - - - - - - -

11/02/10 - 0.0112 - - - - - - - - - -

11/03/10 - 0.0163 - - - - - - - - - -

11/04/10 - 0.0107 - - - - - - - - - -

11/05/10 - 0.0132 - - - - - - - - - -

05/01/2011 - - - - - - - - - - - -

05/02/2011 - - - - - - - - 0.04 - - -

05/03/2011 - - - - - - - - 0.04 - - -

05/04/2011 - 0.0155 - - - - - - 0.04 - - -

05/05/2011 - 0.0179 - - - - - - 0.04 - - -

05/06/2011 - 0.0089 - - - - - - - - - -

11/06/2011 - 0.0168 - - - - - - - - - -

11/07/2011 - 0.0225 - - - - - - - - - -

11/08/2011 - 0.0141 - - - - - - - - - -

11/09/2011 - 0.0239 - - - - - - - - - -

11/10/2011 - 0.0242 - - - - - - - - - -

11/11/2011 - 0.0231 - - - - - - - - - -

05/06/2012 - - - - - - - - - - - -

05/07/2012 - - - - - - - - - - - -

05/08/2012 - - - - - - - - 0.041 - - -

05/09/2012 - 0.0145 - - - - - - 0.041 - - -

05/10/2012 - 0.0298 - - - - - - 0.041 - - -

05/11/2012 - 0.0174 - - - - - - - - - -

08/12/2012 - - - - - - - - - - - 0.029 08/13/2012 - 0.0256 - - - - - 0.028 0.037 - - 0.029 08/14/2012 - 0.0209 - - - - - - 0.037 - - 0.029 08/15/2012 - 0.0279 - - - - - 0.028 - - - 0.029 08/16/2012 - 0.0076 - - - - - - - - - 0.029 08/17/2012 - 0.0446 - - - - - - - - - 0.032 7

Study Plan for Evaluation of the TVA Sequoyah Nuclear Plant Discharge in Support of an Alternate Thermal Limit Soddy Daisy, Hamilton County, Tennessee Tennessee Valley Authority June 8, 2011

TABLE OF CONTENTS EXECUTIVE

SUMMARY

............................................................................................. iii

1.0 INTRODUCTION

................................................................................................. 1 1.1 Facility Information .......................................................................................... 1 1.2 Regulatory Basis ............................................................................................... 1 1.2.1 Applicable Thermal Criteria ....................................................................... 1 1.2.2 Permitted Conditions .................................................................................. 2 1.2.3 Criteria for Alternate Thermal Limits Under §316(a) ................................ 2 1.2.4 Mixing Zone Requirements in Tennessee Rule 1200-4-3-0.5 .................... 4 1.3 Study Plan Organization ................................................................................... 5 2.0 STUDY BACKGROUND ..................................................................................... 5 2.1 Sequoyah Nuclear Plant .................................................................................... 5 2.2 Description of the Receiving Waterbody ......................................................... 5 2.3 Previous §316(a) Demonstration Study ............................................................ 6 2.4 Contemporary Studies ...................................................................................... 7 3.0 STUDY PLAN....................................................................................................... 8 3.1 Study Timing .................................................................................................... 8 3.2 Study Scope ...................................................................................................... 8 Task 1 - Evaluate Plant Operating Conditions ......................................................... 8 Task 2 - Thermal Plume Monitoring and Mapping ................................................. 9 Task 3 - Establishment of Biological Sampling Stations ....................................... 10 Task 4 - Shoreline and River Bottom Habitat Characterization ............................ 10 Task 5 - Supporting Water Quality Measurements ................................................ 11 Task 6 - Biological Evaluations ............................................................................. 11 Task 7 -Water Supply and Recreational Use Support Evaluation ......................... 14 3.3 Data Contribution to the Analysis/Demonstration ......................................... 14 3.3.1 Traditional Analyses ................................................................................. 14 3.3.2 Supporting Multi-metric Bioassessment................................................... 15 3.3.4 Reasonable Potential Evaluation .............................................................. 16 3.4 Reporting ........................................................................................................ 16 3.5 Study Schedule Summary ............................................................................... 16 4.0 LITERATURE CITED ........................................................................................ 18 i

LIST OF FIGURES Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge

........................................................................................................................................ 20 Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 .................. 21 Figure 3. Biological monitoring zone downstream of Sequoyah Nuclear plant............. 22 Figure 4. Biological monitoring zone upstream of Sequoyah Nuclear plant thermal discharge ......................................................................................................................... 23 Figure 5. Anticipated transects to be established for conduct of the integrative multi-metric aquatic shoreline habitat assessment ................................................................... 24 ii

EXECUTIVE

SUMMARY

This document sets forth a revised Study Plan, which the Tennessee Valley Authority (TVA) plans to implement for the purpose of evaluating the Sequoyah Nuclear Plant (SQN) thermal discharge in support of compliance with the National Pollutant Discharge Elimination System (NPDES) permit for the facility and continuance of the associated Alternate Thermal Limit (ATL) for Outfall 101 as authorized under Section 316(a) of Clean Water Act and Tennessee Department of Environment and Conservation rules.

As required by the NPDES permit, the Study Plan was first submitted to the Tennessee Department of Environment and Conservation (TDEC) on December 20, 2010 and subject to review by TDEC and the U. S. Environmental Protection Agency (EPA),

Region 4. Comments and suggested revisions were provided to TVA by TDEC in a meeting held on April 7, 2011 and have been incorporated herein.

The Study Plan provides regulatory background for the work; information about SQN operations; a brief description of the receiving waterbody; a summary of previous

§316(a) and more recent monitoring studies conducted at the plant; and a detailed Scope of Work proposing the collection of new data to evaluate the potential impact of the Sequoyah Nuclear thermal discharge on the aquatic life and other classified uses of the Tennessee River/Chickamauga Reservoir in the vicinity of the plant. Specifically, studies are proposed to:

1. Collect the temperature data needed to delineate and map the spatial boundaries of the thermal discharge plume;
2. Characterize the aquatic and wildlife habitat in the study area;
3. Sample the fish, macroinvertebrate, and plankton communities;
4. Survey potentially affected wildlife;
5. Evaluate maintenance of a balanced indigenous population (BIP) by performing traditional and multi-metric analyses of collected data, as appropriate; and
6. Evaluate the reasonable potential for impairment of non-aquatic life uses of the receiving waterbody as they relate to the thermal discharge.

Field sampling activities are scheduled to begin in the summer and autumn of 2011.

Resultant information will be used to support renewal of the facilitys NPDES permit set to expire October 31, 2013.

iii

1.0 INTRODUCTION

This document sets forth a revised Study Plan, which the Tennessee Valley Authority (TVA) plans to implement for the purpose of evaluating the Sequoyah Nuclear Plant (SQN) thermal discharge in support of compliance with the National Pollutant Discharge Elimination System (NPDES) permit for the facility (NPDES Permit No.: TN0026450). The Study Plan includes a review and discussion of applicable regulatory requirements for the thermal discharge and presents specific work elements for the re-verification of the existing Alternate Thermal Limit (ATL) for Outfall 101 in accordance with Clean Water Act (CWA) Section (§) 316(a). As required by the NPDES permit, the Study Plan was first submitted to the Tennessee Department of Environment and Conservation (TDEC) on December 20, 2010 and subject to review by TDEC and the U. S. Environmental Protection Agency (EPA), Region 4. Comments and suggested revisions were provided to TVA by TDEC in a meeting held on April 7, 2011 and have been incorporated herein.

1.1 Facility Information Unit 1 and 2 were placed in operation in 1981 and 1982, respectively. Both units can produce more than 2,400 megawatts of electricity. SQN is located on the right descending bank of the Tennessee River (Chickamauga Reservoir) near Chattanooga, Tennessee (Figure 1). The facility withdraws cooling water from Chickamauga Reservoir via an intake channel and skimmer wall at river mile (TRM) 484.8. The cooling water intake structure (supporting six circulator pumps) provides the units a nominal flow of 1.11 x 106 gallons per minute (gpm) or 1,602 million gallons per day (mgd). The facility employs a once-through (open cycle) condenser cooling water system and can also operate with cooling towers in helper mode. The plant discharges heated effluent to Chickamauga Reservoir via Outfall 101 located at TRM 483.6 as authorized by the NPDES permit (Figure 2).

1.2 Regulatory Basis 1.2.1 Applicable Thermal Criteria TDEC has specified use classifications for the states surface waters and developed temperature criteria intended to support those uses (TDEC Rule 1200-4-4 and 1200-4-3-.03, respectively). The Tennessee River at the location of SQN has been classified for the following uses: Municipal, Industrial, and Domestic Water Supply, Industrial Water Supply, Fish and Aquatic Life, Recreation, Irrigation, Livestock Watering and Wildlife, and Navigation. Except for Irrigation and Livestock Watering and Wildlife (qualitative criteria), temperature criteria relevant to warm-water conditions of the Tennessee River at SQN specify that:

The maximum water temperature change shall not exceed 3°C [5.4°F] relative to an upstream control point. The temperature of the water shall not exceed 30.5°C [86.9°F] and the maximum 1

rate of change shall not exceed 2°C [3.6°F] per hour. The temperature of impoundments where stratification occurs will be measured at a depth of 5 feet, or mid-depth whichever is less, and the temperature in flowing streams shall be measured at mid-depth. [Rule 1200-4-3-.03]

The SQN plants once-through cooling water system design utilizing cooling towers in helper mode provides for the most thermodynamically efficient method of generating electricity and as a result produces a heated discharge. As such, the thermal discharge typically exceeds TDECs established temperature criteria, therefore, multiport diffusers with mixing zone are used to adequately mix the thermal effluent to meet the state water quality standard at the end of the mixing zone. In such cases, the TDEC rules specific to the Fish and Aquatic Life use classification provide that:

A successful demonstration as determined by the state conducted for thermal discharge limitations under Section 316(a) of the Clean Water Act, (33 U.S.C. §1326), shall constitute compliance [with the temperature criteria].

TVA has previously made such successful demonstration for the SQN thermal discharge in support of mixing zone criteria as further discussed below.

1.2.2 Permitted Conditions Currently permitted thermal discharge limitations for SQN specify that the daily maximum temperature is not to exceed 30.5°C (86.9°F) at the end of the mixing zone (Page 1 of 28),

NPDES permit TN0026450). This mixing zone criteria are based on a previous demonstration by TVA, in accordance with CWA §316(a) and TDEC Rule 1200-4-3-.03 noted above, that a balanced indigenous population (BIP) of fish, shellfish, and wildlife is supported in the Tennessee River potentially affected by the thermal discharge. The mixing zone criteria, as supported by the biological studies, also encompass other components of the TDEC temperature criteria, specifically the change in temperature from ambient/upstream conditions and rate of change in temperature. SQN has maintained a good compliance record with its mixing zone criteria throughout each NPDES permit term since first authorized in the late-1980s; ongoing biological monitoring has consistently demonstrated the mixing zone criteria are protective of aquatic communities in the river near the facility.

1.2.3 Criteria for Alternate Thermal Limits Under §316(a)

The regulatory provisions that implement CWA §316(a) provide limited guidance on precisely what the demonstration study must contain to be considered adequate and do not identify precise criteria against which to measure whether a balanced and indigenous aquatic community is protected and maintained. Instead, the regulations provide broad guidelines.

Under the broad regulatory guidelines, the discharger must show that the ATL desired, considering the cumulative impact of its thermal discharge together with all other significant impacts on the species affected, will assure the protection and propagation of a balanced, indigenous community of shellfish, fish and wildlife in and on the body of water into which the 2

discharge is to be made (40 CFR §125.73). Critical to the demonstration is the meaning of the term balanced indigenous community. The rules provide the following definition:

The term balanced indigenous community is synonymous with the term balanced, indigenous population (i.e., BIP) in the Act and means a biotic community typically characterized by diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species and by a lack of domination by pollution tolerant species. Such a community may include historically non-native species introduced in connection with a program of wildlife management and species whose presence or abundance results from substantial, irreversible environmental modifications (40 CFR §125.73).

Pursuant to this regulatory definition, a successful demonstration must show that under the desired ATL, and in light of the cumulative impact of the thermal discharge together with all other significant impacts on the species affected, the following characteristics, which are indicative of a BIP, will continue to exist: (1) diversity, (2) the capacity of the community to sustain itself through cyclic seasonal changes, (3) presence of necessary food chain species, and (4) a lack of domination by pollution tolerant species.

There are several methodologies a discharger may pursue in making a §316(a) demonstration.

Under the regulations, new dischargers must use predictive methods (e.g., laboratory studies, literature surveys, or modeling) to estimate an appropriate ATL that will assure the protection and propagation of a balanced, indigenous community prior to commencing the thermal discharge. However, existing dischargers, such as SQN, need not use predictive methods. For such dischargers, §316(a) demonstrations may be based upon the absence of prior appreciable harm to a balanced, indigenous community (see 40 CFR §125.73(c)(1)(i) and (ii)). Such demonstrations must show either that:

i) No appreciable harm has resulted from the thermal component of the discharge taking into account the interaction of such thermal component with other pollutants and the additive effect of other thermal sources to a balanced, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge has been made; or ii) Despite the occurrence of such previous harm, the desired alternative effluent limitations (or appropriate modifications thereof) will nevertheless assure the protection and propagation of a balanced, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge is made.

Furthermore, in determining whether or not prior appreciable harm has occurred, the regulations provide that the permitting agency consider the length of time during which the applicant has been discharging and the nature of the discharge. The regulations do not define prior appreciable harm. However, using the definition of balanced, indigenous community, mixing zone criteria are generally granted under either of the following circumstances:

3

1. When a discharger shows that the characteristics of a BIP (i.e., diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species, and a lack of domination by pollution tolerant species) exist.

Stated another way, the existence of such characteristics essentially prove that the aquatic community has not been appreciably harmed; or

2. Despite any evidence of previous harm, the characteristics of a BIP, as stated above, will nevertheless be protected and assured under the alternate limit.

1.2.4 Mixing Zone Requirements in Tennessee Rule 1200430.5 As noted above, §316(a) pertains to the Fish and Aquatic Life use classification and provides NPDES-permitted facilities a regulatory compliant means of demonstrating that promulgated temperature criteria may be more stringent than necessary to support a BIP. In such cases, less stringent thermal criteria (i.e., ATLs) are justified. However, other use classifications such as Domestic Water Supply and Recreation must be protected as well. Compliance with TDEC temperature criteria for these uses is typically determined after the discharge has had the opportunity to mix with the receiving water; that is, an allowable mixing zone is determined.

TDEC rules define the mixing zone as:

That section of a flowing stream or impounded waters in the immediate vicinity of an outfall where an effluent becomes dispersed and mixed. [1200-4-3-.04(8)]

The rules [1200-4-3-.05(2)] further provide that mixing zones are to be restricted in area and length and not:

1. prevent the free passage of fish or cause aquatic life mortality in the receiving waters;
2. contain materials in concentrations that exceed acute criteria beyond the zone immediately surrounding the outfall;
3. result in offensive conditions;
4. produce undesirable aquatic life or result in dominance of a nuisance species;
5. endanger the public health or welfare; or
6. adversely affect the reasonable and necessary uses of the area;
7. create a condition of chronic toxicity beyond the edge of the mixing zone;
8. adversely affect nursery and spawning areas; or
9. adversely affect species with special state or federal status.

While TVAs proposed §316(a) demonstration study plan fully examines the effects of the thermal discharge on the aquatic life components of the mixing zone requirements, the potential effects to other non-aquatic life use classifications (items 3, 5, and 6 above) are generally not evaluated. Therefore, this plan has been revised herein to incorporate and/or collect additional 4

information needed to address the reasonable potential for impairment of other non-aquatic life uses in the Tennessee River near the facility.

1.3 Study Plan Organization This Study Plan is organized into the following sections:

1. Introductory information, including regulatory basis and rationale for the study;
2. Background information, including a summary of the findings of the previous

§316(a) investigation and subsequent biological monitoring; and,

3. The proposed design and implementation schedule for the SQN §316(a) demonstration Study Plan.

2.0 STUDY BACKGROUND 2.1 Sequoyah Nuclear Plant The SQN facility is operated to produce base-load electric power throughout the year. When operating at design (nameplate) capacity (2,400 MW), the units requires approximately 1,602 million gallons per day of condenser cooling water. Waste heat increases the temperature of the cooling water by approximately 16.4°C (29.5°F) before it is discharged into the river. The actual condenser flow, and hence the T, may vary somewhat with the circulating water pump head and the condenser efficiency.

2.2 Description of the Receiving Waterbody Sequoyah Nuclear is located on the right descending bank of Chickamauga Reservoir (TRM 484.5) approximately 18 miles northeast of Chattanooga, Tennessee, and 7 miles southwest of Soddy-Daisy, Tennessee (Figure 1). Chickamauga Reservoir was impounded in 1940 and at full pool covers approximately 36,240 acres.

The topography of the reservoir in the vicinity of the discharge outlet consists of a shallow overbank area on the plant side which extends from TRM 484 downstream to TRM 481.8 and varies in depth from 2 to 20 ft and from 500 to 3,100 ft in width. This shallow area is bordered by a main river channel which is about 900 feet (ft) wide and approximately 60 ft deep. Along this reach there are several small, shallow embayments.

The Tennessee River flow in the vicinity of SQN is controlled by releases from Watts Bar and Chickamauga Dams, and to a lesser extent Hiwassee River. SQN is situated on Chickamauga Reservoir approximately 54.5 river miles downstream from Watts Bar Dam and 13.5 river miles upstream from Chickamauga Dam.

5

2.3 Previous §316(a) Demonstration Study TVA conducted comprehensive §316(a) demonstration-related studies of the SQN thermal effluent in the mid-1980s to support establishment of the current mixing zone criteria for the plant discharge (TVA, 1989). The minimum average daily flow for the Tennessee River near SQN at the time of the early studies was 6,000 cfs.

The mid-1980s studies included extensive sampling of the aquatic community including:

  • Phytoplankton,
  • Periphyton,
  • Aquatic macrophytes,
  • Zooplankton,
  • Benthic macroinvertebrates; and
  • Fish populations.

Hydrothermal, water quality and other parameters also were evaluated.

Major findings of these studies included:

  • Average dissolved concentration in the water column was similar immediately upstream and downstream of SQN.
  • Analysis of the data indicate that the assemblages of phytoplankton, zooplankton, and macroinvertebrates were diverse and, in general, relatively abundant.
  • Dominance of blue-green algae was similar upstream and downstream of SQN.
  • The phytoplankton and zooplankton communities were found to be similar, or if different, not impacted by SQN operation, at all stations during 20 of the 27 survey months when the plant was in operation.
  • Species richness in the benthic macroinvertebrate communities during pre-operational and operational monitoring was similar.
  • No changes were documented in the aquatic macrophyte community that reflected effects of the thermal effluent.
  • Fish species occurrence and abundance data indicated insignificant impacts. Avoidances of the plume could not be detected for any species of fish. One study found that sauger (Sander canadensis) were not concentrated in the thermal plume during winter months nor inhibited from movement past SQN. Results of gonadal inspections indicate that the heated discharge did not adversely affect fish reproduction.

6

  • Other fisheries studies indicated that the thermal discharge resulted in no discernible increase in parasitism.
  • No mortalities of threadfin shad due to cold shock following shutdown of SQN were observed or reported, and none are anticipated to occur in the future.

2.4 Contemporary Studies Monitoring of the thermal effects of the SQN discharge on the aquatic community of the receiving waterbody has been more recently conducted by TVA after an agreement was reached with TDEC in 2001. TVAs Vital Signs monitoring program also provides useful information for evaluating reservoir-wide effects. Monitoring has included sampling of the fish and macroinvertebrate communities and associated collection of temperature and other water quality parameters. Results of the permit monitoring work and TVAs ongoing Vital Signs monitoring (TVA, 2011) have consistently demonstrated that fish and macroinvertebrate assemblages of Chickamauga Reservoir within and downstream of the SQN thermal discharge are similar to those of upstream locations, as well as to established mainstem reservoir reference conditions for the area.

Results of the above studies notwithstanding, TVA plans to implement this Study Plan for the purpose of further evaluating the SQN thermal discharge to support continuance of the ATL for the facility discharge in accordance with CWA §316(a) and TDEC Rule 1200-4-3-.03(e).

7

3.0 STUDY PLAN This §316(a) demonstration Study Plan is informed by communications with TDEC and EPA, the study design of the previous demonstration study, and TVAs ongoing river/reservoir biological monitoring programs.

3.1 Study Timing As reasonably practicable, TVA sampling crews will coordinate with SQN facility operations staff to schedule field studies to coincide with representative conditions of maximum generation for the time period to be sampled as dictated by seasonal power demand. The additional field studies will be conducted during the period of critical environmental (thermal) conditions in summer (mid-July - August) when plant operations and ambient reservoir temperatures are at expected seasonal maximums. Summer monitoring will be conducted once during the SQN permit cycle. Data collection during this period will focus on characterization/delineation of the thermal plume and biological field investigations inclusive of thermally affected and unaffected areas. TVA will also conduct monitoring in autumn (October - mid-December) as has been occurring in previous study years.

3.2 Study Scope The following tasks will be conducted for the SQN §316(a) demonstration Study:

Task 1 - Evaluate Plant Operating Conditions During the course of the study, SQN operational data will be recorded, compiled, and analyzed to assist in the interpretation of thermal plume characteristics and biological community information. Available historical operational data will also be compiled and analyzed to evaluate and identify any material changes in SQN operations over the most recent 5-year period that might affect the thermal plume characteristics. Parameters to be recorded during the proposed study and evaluated historically include, but are not limited to:

  • Cooling water intake flow and water temperature;
  • Discharge flow and water temperature; and
  • Power generation statistics.

The data will be presented in tabular and graphical formats to describe SQN operational conditions during the current study.

8

Task 2 - Thermal Plume Monitoring and Mapping Physical measurements will be taken to characterize and map the SQN thermal plume concurrent with biological field sampling during the sampling events. In this manner, it is expected that the plume will be characterized under representative thermal maxima and seasonally-expected low flow conditions. Measurements will be collected during periods of high power production from SQN, as reasonably practicable, to capture maximum extent of the thermal plume under existing river flow/reservoir elevation conditions. This effort will allow general delineation of the Primary Study Area per the EPA (1977) draft guidance defined as the: entire geographic area bounded annually by the locus of the 2°C above ambient surface isotherms as these isotherms are distributed throughout an annual period); ensure placement of the biological sampling locations within thermally influenced areas; and inform the evaluation of potential impacts on recreation and water supply uses.

However, it is important to emphasize that the >2ºC isopleth boundary is not a bright line; it is dynamic, changing geometrically in response to changes in ambient river flows and temperatures and SQN operations. As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced. Every effort will be made to collect biological samples in thermally affected areas as guided by the Primary Study Area definition.

Field activities will include measurement of surface to bottom temperature profiles along transects across the plume. One transect will be located proximate to the thermal discharge point; subsequent downstream transects will be concentrated in the near field area of the plume where the change in plume temperature is expected to be most rapid. The distance between transects in the remainder of the Primary Study Area will increase with distance downstream or away from the discharge point. The farthest downstream transect will be just outside of the Primary Study Area. A transect upstream of the discharge that is not affected by the thermal plume will be included for determining ambient temperature conditions. The total number of transects needed to fully characterize and delineate the plume will be determined in the field.

Temperature profile measurement (surface to bottom) points along a given transect will begin at or near the shoreline from which the discharge originates and continue across the plume until ambient background temperature conditions (based on surface (0.1 meters (m)/0.3 ft depth) measurements) or the far shore is reached. The number of measurement points along transects will generally be proportional to the width of the plume and the magnitude of the temperature change across a given transect. The distances between transects and measurement points will depend on the size of the discharge plume.

The temperature measurement instrument (Hydrolab or equivalent) will be calibrated to a thermometer whose calibration is traceable to the National Institute of Standards and Technology.

9

Temperature data will be compiled and analyzed to present the horizontal and vertical dimensions of the SQN thermal plume using spatial analysis techniques to yield plume cross-sections, which can be used to demonstrate the existence of a zone of passage under and/or around the plume.

Task 3 - Establishment of Biological Sampling Stations Water temperature data from Task 2 will define the relationships between the biological sampling zone and thermally affected areas as informed by the EPA (1977) draft guidance, which identifies the Primary Study Area as having water temperatures of >2°C (3.6ºF) above ambient temperature. The thermally affected sampling location will be referred to as the downstream zone; the non-thermally-affected sampling location will be referred to as the upstream zone. If it is determined, based on the plume temperature measurements/mapping that the currently used biological sampling zone downstream of SQN is not fully within the EPA guidance-defined Primary Study Area, that sampling zone will be re-established within the EPA Primary Study Area.

Figure 3 depicts the downstream biological sampling zone; Figure 4 includes the location of the ambient biological sampling zone upstream of SQN.

Task 4 - Shoreline and River Bottom Habitat Characterization Informed by the results of Tasks 2 and 3, habitat characterization will be conducted at each selected sampling location to evaluate potential for bias in the results due to habitat differences between the thermally affected area and the ambient sampling locations, and to support interpretation of the biological data. Eight line-of-sight transects will be established across the width of Chickamauga Reservoir downstream and upstream of SQN to assess the quality of shoreline habitat (Figure 5). An integrative multi-metric index (Shoreline Aquatic Habitat Index or SAHI), including several habitat parameters important to resident fish species, will be used to measure the existing fish habitat quality. Using the SAHI, individual metrics are scored through comparison of observed conditions with reference conditions and assigned a corresponding value.

River bottom habitat characterization for both the upstream and downstream study zones will consist of eight transects each collected perpendicular to the shoreline. Each transect will evaluate substrate by collecting 10 equally spaced Ponar dredge samples across the width of the reservoir. Each sample will be visually estimated to define substrate and then sieved to define percent makeup of substrate. At each sample location, depth, and sediment type encountered will be recorded. Sediment categories include bedrock, boulder, cobble, gravel, sand, fines, and detritus. Each site will be assigned one of three habitat categories to reduce the amount of assessment variability. Habitat categories are as follows: A) areas with presence of large substrates such as cobble and boulders, B) areas dominated by sand or fine substrates and C) areas with a presence of a mixture of both A and B (small and large) habitat types.

10

Task 5 - Supporting Water Quality Measurements In addition to the thermal plume measurements, additional water quality profiles will be collected as necessary in conjunction with the field studies to: (i) support interpretation of the biological data; and (ii) evaluate potential impacts to water supply and recreational uses. Using a Hydrolab, or equivalent unit, three water column profiles at one-meter increments will be collected near the left descending bank, right descending bank and mid-channel at the upstream and downstream ends of each sample zone, and other areas as needed (e.g., at water supply intakes). Each profile collected will include temperature, dissolved oxygen concentration, pH, and conductivity.

Task 6 - Biological Evaluations The biological evaluations will focus on major representative species of the aquatic and wildlife community that could potentially be affected by the SQN thermal discharge. Sampling will be conducted during the summer months (mid-July - August) once during the SQN permit cycle to evaluate worst case conditions. Autumn monitoring (October - mid-December) will be conducted as a measure of potential manifested effects to the aquatic community from summer-long exposure to the thermal discharge and other stressors (basis for existing multi-metric assessments).

The biological communities to be sampled and collection methodologies are provided in the following sections.

Reservoir Fish Community Monitoring Informed by the habitat characterization and temperature measurements, the fish community will be sampled during sample events at two locations: downstream within the thermal influence of the power plant (Figure 3); and upstream and beyond thermal influence of SQN (centered at TRM 489.5) (Figure 4). Sampling will be conducted by boat electrofishing and gill netting (Hubert 1996; Reynolds, 1996).

The electrofishing methodology is based on existing monitoring programs and consists of 15 shoreline-oriented boat electrofishing runs in the upstream sampling zone and 15 shoreline runs in the downstream zone. Each run is 300 m (984 ft) long and electrofishing is conducted for a duration of approximately 15 minutes each. The total near-shore linear area sampled will be approximately 4,500 m (15,000 ft) per zone (Jennings, et al., 1995; Hickman and McDonough, 1996; McDonough and Hickman, 1999). Should the size of the SQN thermal plume (i.e.,

Primary Study Area) be too small to allow collection of all replicate electrofishing runs, the needed remaining replicate runs will be conducted as close as practicable to the Primary Study Area and be identified in the data analyses. As indicated previously, the >2ºC isopleth boundary that defines the Primary Study Area is not a rigid boundary; rather, its geometry changes in response to ambient river flows and temperatures and SQN operations (discharge flow). As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced.

11

Experimental gill nets (so called because of their use for research as opposed to commercial fishing) are used as an additional gear type to collect fish from deeper habitats not effectively sampled by electrofishing. Each experimental gill net consists of five-6.1 m (20 ft) panels for a total length of 30.5 m (100 ft). The distinguishing characteristic of experimental gill nets is mesh size that varies between panels. For this application, each net has panels with mesh sizes of 2.5 (1 inch (in)), 5.1 (2 in), 7.6 (3 in), 10.2 (4 in), and 12.7 (5 in) centimeters (cm). Experimental gill nets are typically set perpendicular to river flow extending from near-shore to the main channel of the reservoir. Ten overnight experimental gill net sets will be used at each area.

Fish collected will be identified by species, counted, and examined for anomalies (such as disease, deformities, or hybridization).

Reservoir Benthic Macroinvertebrate Community Monitoring Benthic macroinvertebrates will be sampled with benthic grab samplers at ten equally-spaced points along the upstream (ambient) and downstream (mid-plume) sampling zones (Figures 3 and 4). A Ponar sampler (area per sample 0.06 m2) will be used for most samples. When heavier substrates are encountered, a Peterson sampler (area per sample 0.11 m2) will be used.

Bottom sediments will be washed on a 533 micron () screen; organisms will be picked from the screen and from any remaining substrate. Organisms will be sent to an independent laboratory for identification to the lowest practicable taxonomic level.

Reservoir Plankton Community Monitoring At the request of TDEC, phytoplankton samples will be obtained from a photic zone1 composite water sample collected at two locations each in the main channel area of the downstream sampling zone (Primary Study Area: mid-plume and plume downstream boundary; see Figure 3) and the upstream zone (Figure 4). This will be accomplished by lowering the intake end of a peristaltic pump sample tube to the bottom of the photic zone; and with the pump activated, slowly retrieving the sample tubing at a constant rate until the reservoir surface is reached. The phytoplankton data will be used to compare potential algal community response to thermal influence based on high-level taxonomy (i.e., Chrysophyta, Chlorophyta, Cyanophyta).

Zooplankton samples will be collected with a plankton net (300 millimeter (1 ft) diameter with 153 mesh) towed at two locations each in the main channel area of the downstream sampling zone (Primary Study Area: mid-plume and plume downstream boundary) and the upstream zone (Figures 3 and 4). Tows will consist of a vertical pull (tow) of the entire water column from 2 m off the bottom to the surface of the reservoir. Comparative analysis of zooplankton data from the two locations will be used to evaluate potential thermal influence on community structure.

1 For the purposes of this study, the photic zone is defined as twice the Secchi disk transparency depth or 4 meters, whichever is greater.

12

Plankton sampling will be conducted once during the sampling events utilizing established TVA procedures. Among other criteria, these procedures specify replicate sampling, proper sample preservation, and data processing requirements.

Wildlife Community Evaluation The wildlife community will be evaluated via implementation of visual encounter (observational) wildlife survey methodology and supported through review of the available literature, and communications with natural resource agency contacts. The effort will focus on the more water dependent species of the herpetofaunal, avian, and mammalian communities.

These activities will assist in identifying the wildlife species expected for the ecoregion, establish the presence/absence of a BIP of wildlife in the study area, and support evaluation of potential direct effects of temperature on sensitive life stages and any indirect effects such as increased predation.

A review of available resources to identify any threatened or endangered species potentially occurring in the study area will also be conducted.

For the visual encounter surveys, two permanent transects will be established both upstream and downstream of the SQN thermal effluent. The midpoint of the upstream transect will be positioned at TRM 489.5 and span a distance of 2,100 m within this transect. The downstream transect will be located in the field based on sampling event and likewise span a distance 2,100

m. The beginning and ending point of each transect will be marked with GPS for relocation.

Transects will be positioned approximately 30 m offshore and parallel to the shoreline occurring on both right and left descending banks. Basic inventories will be conducted to provide a representative sampling of wildlife present during summer (mid-July - August) and late autumn-early winter (October - December).

Each transect will be surveyed by steadily traversing the length by boat and simultaneously recording observations of wildlife. Sampling frame of each transect will generally follow the strip or belt transect concept with all individuals enumerated that crossed the center-line of each transect landward to an area that included the shoreline and riparian zone (i.e., belt width generally averages 60 m where vision is not obscured). Information recorded will include wildlife identification (to the lowest taxonomic trophic level) that is observed visually and/or audibly and a direct count of individuals observed per trophic level. If flocks of a species or mixed flock of a group of species are observed, an estimate of the number of individuals present will be generated. Time will be recorded at the starting and ending point of each transect to provide a general measure of effort expended. However, times may vary among transects primarily due to the difficulty in approaching some wildlife species without inadvertently flushing them from basking or perching sites. To compensate for the variation of effort expended per transect, observations will be standardized to numbers per minute or numbers per hectare in preparation for analysis.

13

The principal objective and purpose behind the wildlife surveys are to provide a preliminary set of observations to verify trophic levels of birds, mammals, amphibians and reptiles present that might be affected by thermal effects of the power plant (i.e., the ATL). If trophic levels are not represented, further investigation will be used to target specific species and/or species groups (guilds) that will determine the cause.

Task 7 -Water Supply and Recreational Use Support Evaluation Water temperature data collected as part of the thermal mapping (Task 2) and collection of supporting water quality information (Task 5) will be used to evaluate potential thermal impacts to water supply and recreational uses in the vicinity of SQN. Locations of any public water supply intakes and/or established public recreational areas will be determined and their position(s) mapped relative to the SQN thermal plume. We are aware of one domestic water supply intake located within approximately 10 river miles downstream of the SQN thermal discharge (Figure 1). The existence of any relevant water temperature data collected by the owners of these water supply intake(s) will be determined; and if available, requested to augment the field-collected data. As necessary (limited or no available owner-supplied temperature data),

direct measurements of water temperature may also be conducted specifically at these locations to evaluate potential thermal effects of the SQN discharge.

3.3 Data Contribution to the Analysis/Demonstration The analysis of fish, macroinvertebrate, and plankton community data will include traditional analyses whereby community attributes for the thermally affected areas will be compared to the non-thermally affected ambient location. For the purposes of the demonstration (within river/reservoir comparisons), the composition of fish and macroinvertebrate assemblages collected at the upstream station, uninfluenced by the SQN thermal discharge, is expected to set the baseline for evaluating the presence of a BIP in the downstream thermally influenced area. In that regard, a BIP is the expected determination for the thermally uninfluenced area.

3.3.1 Traditional Analyses As applicable, biological community data will be compiled into tables providing a listing of species collected and their status with regard to expected occurrence in the ecoregion. Reference materials such as: The Fishes of Tennessee (Etnier and Starnes, 1993); similarly applicable publications; and best professional judgment by experienced aquatic biologists will be used for this determination. The dataset will be further evaluated with regard to the following:

  • Life stages represented,
  • Food chain species present (e.g., predator and prey species),
  • Thermally-tolerant or -sensitive species present (based on Yoder et al., 2006),
  • Representative Important Species (commercially and/or recreationally); and
  • Other community attributes (fish and macroinvertebrates) 14

To evaluate similarity with the downstream thermally influenced area, traditional species diversity indices will be used. Diversity indices provide important information about community composition and take the relative abundances of different species into account as well as species richness (i.e., number of individual species). Two diversity indices will be calculated for each sample location; such as: the Shannon-Weiner diversity index (H) (Levinton, 1982) and Simpsons Index of Diversity (Ds) (Simpson, 1949). Of the many biological diversity indices, these two indices are the most commonly reported in the scientific literature and will be evaluated for use in determining if community structure is similar between the thermally influenced and non-thermally influenced sampling locations. Other methods/indices for evaluating similarity between sampling sites will also be considered.

Based on the BIP baseline for the thermally uninfluenced ambient (upstream) location, comparative statistical analysis of the diversity indices and/or other measures of biological community status such as: species richness, relative abundance, pollution tolerance, trophic guilds, indigenousness, and thermal sensitivity (each pending sufficient sample size) will be used to confirm the presence/absence of a BIP in the thermally influenced study area.

3.3.2 Supporting Multimetric Bioassessment Upon review of the species listings and establishment that the fish and macroinvertebrate populations are appropriate to the aquatic systems of the ecoregion, sample data also will be analyzed using TVAs Reservoir Fish Assemblage Index (RFAI) methodology (McDonough and Hickman 1999) and Reservoir Benthic Index to further evaluate if the SQN thermal discharge has materially changed ecological conditions in the receiving water body (Tennessee River -

Chickamauga Reservoir).

Reservoir Fish Assemblage Index The RFAI uses 12 fish assemblage metrics from four general categories: Species Richness and Composition (8 metrics); Trophic Composition (two metrics); Abundance (one metric); and Fish Health (absence of anomalies) (one metric). Individual species can be utilized for more than one metric.

Each metric is assigned a score based on expected fish assemblage characteristics in the absence of human-induced impacts other than impoundment of the reservoir. Individual metric scores for a sampling area (i.e., upstream or downstream) will be summed to obtain the RFAI score for each sample location and comparatively analyzed. The maximum RFAI score is 60.

Ecological health ratings (12-21 Very Poor, 22-31 Poor, 32-40 Fair, 41-50 Good, or 51-60 Excellent) are then applied to scores.

Based on statistical analysis of multiple RFAI datasets, RFAI scores between sites (e.g.,

downstream vs. upstream) will need to differ by 6 points or more to be considered to have different fish assemblages based on documented variability in the sampling methodology.

15

Regardless of the scores, a metric-by-metric examination will be conducted; this review will be helpful in evaluating potential metric-specific impacts that may be thermally related.

Reservoir Benthic Macroinvertebrate Index The RBI is similarly calculated as the RFAI except that it uses seven metrics specific to the macroinvertebrate assemblage. Each metric is assigned a score based on reference conditions and then summed to produce an overall RBI score for each sample site. The maximum RBI score is

35. Ecological health ratings (7-12 Very Poor, 13-18 Poor, 19-23 Fair, 24-29 Good, or 30-35 Excellent) will then be applied to scores.

Based on statistical analysis of multiple RBI datasets, RBI scores between sites (e.g.,

downstream vs. upstream) that differ by 4 points or more will be considered to have different macroinvertebrate assemblages. A metric-by-metric examination will also be conducted, regardless of the scores, to evaluate potential thermally-related impacts on specific metrics.

3.3.4 Reasonable Potential Evaluation Based on existing information and temperature data collected/obtained during the study, the reasonable potential for the thermal discharge to impair current and future water supply and recreational (water contact) uses will be evaluated. The measured temperatures at the water supply intake location and location of any named recreational areas or areas where recreational users are known to congregate within the thermally influenced area (if any), will form the basis for determining reasonable potential for use impairment. Should reasonable potential be indicated, TVA will discuss with TDEC; and as necessary, submit a revised scope of work (study design) for this task (Task 7) proposing additional data collections and/or analysis to focus the evaluation.

3.4 Reporting A final Project Report will be prepared providing a description of the study design, data collection methods, SQN operational data, thermal plume mapping results, water quality monitoring data, and aquatic and wildlife community information. Raw data and associated field collection parameters will be appended to the report.

Results and conclusions regarding the §316(a) demonstration (maintenance of a BIP) and support of other use classifications (recreation and water supply) will be presented.

3.5 Study Schedule Summary Field sampling will be conducted during summer (mid-July - August) once during the SQN permit cycle and autumn (October - mid-December); each event will include sampling of the Primary Study Area/downstream zone and upstream/ambient zone.

16

TVA will provide TDEC with an interim progress report of the summer 2011 sampling results in spring of 2012. Final report will be completed and submitted with the SQN NPDES permit renewal package.

17

4.0 LITERATURE CITED EPA 1977. Draft Interagency 316(a) technical guidance manual and guide for thermal effects sections of nuclear facilities environmental impact statements. U.S. Environmental Protection Agency and U.S. Nuclear Regulatory Commission. U.S. Environmental Protection Agency, Office of Water Enforcement, Permits Division, Industrial Permits Branch, Washington, D.C.

Etnier, D.A. & Starnes, W.C. 1993. The Fishes of Tennessee. University of Tennessee Press, Knoxville, TN, 681 pp.

Hickman, G.D. and T.A. McDonough. 1996. Assessing the Reservoir Fish Assemblage Index-A potential measure of reservoir quality. In: D. DeVries (Ed.) Reservoir symposium-Multidimensional approaches to reservoir fisheries management. Reservoir Committee, Southern Division, American Fisheries Society, Bethesda, MD. pp 85-97.

Hubert, W. A. 1996. Passive capture techniques, entanglement gears. Pages 160-165 in B. R.

Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society, Bethesda, MD.

Jennings, M. J., L. S. Fore, and J. R. Karr. 1995. Biological monitoring of fish assemblages in Tennessee Valley reservoirs, Regulated Rivers: Research and Management, Vol. 11, pages 263-274.

Levinton, J.S. 1982. Marine Ecology. Prentice-Hall, Inc. Englewood Cliffs, NJ McDonough, T.A. and G.D. Hickman. 1999. Reservoir Fish Assemblage Index development: A tool for assessing ecological health in Tennessee Valley Authority impoundments. In:

Assessing the sustainability and biological integrity of water resources using fish communities. Simon, T. (Ed.) CRC Press, Boca Raton, FL. pp 523-540.

Reynolds, J.B. 1996. Electrofishing. Pages 221-251 in B. R. Murphy and D. W. Willis, editors.

Fisheries techniques, 2nd edition. American Fisheries Society, Bethesda, MD.

Simpson, E.H. (1949) Measurement of diversity. Nature 163:688 see http://www.wku.edu/~smithch/biogeog/SIMP1949.htm TVA 2011. Biological Monitoring of the Tennessee River Near Sequoyah Nuclear Plant Discharge Autumn 2010. Tennessee Valley Authority, Knoxville, TN.

TVA 1989. A Predictive 316(a) Demonstration for an Alternative Winter Thermal Discharge Limit for Sequoyah Nuclear Plant, Chickamauga Reservoir, Tennessee. Tennessee Valley Authority, Chattanooga, TN Yoder, C.O., B.J. Armitage, and E.T. Rankin. 2006. Re-evaluation of the technical justification for existing Ohio River mainstem temperature criteria. Midwest Biodiversity Institute, Columbus, OH.

18

FIGURES 19

Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge 20

Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 21

Biomonitoring Stations Downstream of Sequoyah Nuclear Plant

  • Electrofi shing Stations o Gil l N etting Sta tions

- Benthic Macroinvertebrate Transects Figure 3. Biological monitoring zone downstream of Sequoyah Nuclear plant 22

Biomonitoring Stations Upstream of Sequoyah Nuclear Plant

  • Electrofishing Stations o Gill Netting Stations

- Benthic Macroinvertebrat e Transects Figure 4. Biological monitoring zone upstream of Sequoyah Nuclear plant thermal discharge 23

Transects for Shoreli ne Aquatic Habitat Index (SAH I)

Upstream and Dow nstream of Sequoyah Nuclear Plant CCW Discharge

- - SAHI Transect s Figure 5. Anticipated transects to be established for conduct of the integrative multi-metric aquatic shoreline habitat assessment 24

Biological Monitoring of the Tennessee River Near Sequoyah Nuclear Plant Discharge, Summer and Autumn 2011 May 2012 Tennessee Valley Authority Biological and Water Resources Knoxville, Tennessee

Table of Contents Table of Contents ............................................................................................................................. i List of Tables ................................................................................................................................. iii List of Figures ................................................................................................................................ vi Acronyms and Abbreviations ...................................................................................................... viii Introduction ..................................................................................................................................... 1 Plant Description ............................................................................................................................. 2 Methods........................................................................................................................................... 2 Shoreline Aquatic Habitat Assessment ........................................................................................... 2 River Bottom Habitat ...................................................................................................................... 3 Fish Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN....................................................................................................................................... 3 Traditional Analyses ....................................................................................................................... 8 Benthic Macroinvertebrate Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN ...................................................................................................... 9 Plankton Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN ................................................................................................................................ 11 Phytoplankton ............................................................................................................................... 11 Zooplankton .................................................................................................................................. 12 Data Analysis ................................................................................................................................ 12 Visual Encounter Surveys (Observations of Wildlife) ................................................................. 12 Chickamauga Reservoir Flow and SQN Temperature.................................................................... 1 Thermal Plume Characterization .................................................................................................... 1 Water Quality Parameters at Fish Sampling Sites during RFAI Samples ...................................... 2 Results and Discussion ................................................................................................................... 2 Aquatic Habitat in the Vicinity of SQN .......................................................................................... 2 Shoreline Aquatic Habitat Assessment ........................................................................................... 2 River Bottom Habitat ...................................................................................................................... 3 Fish Community.............................................................................................................................. 3 Traditional Analyses ....................................................................................................................... 9 Benthic Macroinvertebrate Community ....................................................................................... 12 Plankton Community .................................................................................................................... 15 Plankton Summary ........................................................................................................................ 18 Review of Previous Plankton Studies ........................................................................................... 19 Visual Encounter Survey/Wildlife Observations .......................................................................... 20 Chickamauga Reservoir Flow and Temperature Near SQN ......................................................... 21 i

Thermal Plume Characterization .................................................................................................. 21 Water Quality Parameters at Fish Sampling Sites During RFAI Samples ................................... 22 Literature Cited ............................................................................................................................. 23 Tables ............................................................................................................................................ 25 Figures........................................................................................................................................... 77 ii

List of Tables Table 1. Shoreline Aquatic Habitat Index (SAHI) metrics and scoring criteria. ......................... 26 Table 2. Expected values for upper mainstem Tennessee River reservoir transition and forebay zones ................................................................................................................................... 27 Table 3. Average trophic guild proportions and average number of fish species, bound by confidence intervals (95%), expected in upper mainstem Tennessee River reservoir transition and forebay zones and proportions and numbers of species observed during summer and autumn 2011. .................................................................................................. 28 Table 4. RFAI scoring criteria (2002) for fish community samples in forebay, transition, and inflow sections of upper mainstream Tennessee River reservoirs. ..................................... 29 Table 5. Scoring criteria for benthic macroinvertebrate community samples (lab-processed) for forebay, transition, and inflow sections of mainstream Tennessee River reservoirs. ......... 30 Table 6. SAHI scores for 16 shoreline habitat assessments conducted within the Upstream RFAI sampling area of SQN on Chickamauga Reservoir, autumn 2009. .................................... 31 Table 7. SAHI Scores for 16 Shoreline Habitat Assessments Conducted within the Downstream RFAI Sampling Area of SQN on Chickamauga Reservoir, Autumn 2009. ....................... 32 Table 8. Substrate percentages and average water depth (ft) per transect upstream (8 transects) and downstream (8 transects) of SQN. ............................................................................... 33 Table 9. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of Sequoyah Nuclear Plant Summer 2011. .................................. 34 Table 10. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of (Sequoyah nuclear) Autumn 2011. .......................................... 38 Table 11. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Summer 2011. ........... 42 Table 12. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Summer 2011. ................................ 43 Table 13. Autumn 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Autumn 2011. ........... 44 Table 14. Autumn 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Autumn 2011. ................................. 45 Table 15. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run), tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, summer 2011. ...................................................... 46 Table 16. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run), tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, autumn 2011........................................................ 47 iii

Table 17. Summary of RFAI scores from sites located directly upstream and downstream of Sequoyah Nuclear Plant as well as scores from sampling conducted during autumn 1993-2011 as part of the Vital Signs Monitoring Program in Chickamauga Reservoir. ............. 48 Table 18. Comparison of mean density per square meter of benthic taxa collected at upstream and downstream sites near SQN during August and October 2011.................................... 49 Table 19. Summary of RBI Scores from Sites Located Directly Upstream and Downstream of Sequoyah Nuclear Plant as Well as Scores from Sampling Conducted as Part of the Vital Signs Monitoring Program in Chickamauga Reservoir. ..................................................... 50 Table 20. Comparison of mean density per Square Meter of Benthic Taxa collected with a Ponar Dredge along Transects Upstream and Downstream of Sequoyah Nuclear Plant, Chickamauga Reservoir, Summer and Autumn 2011......................................................... 51 Table 21. Individual Metric Ratings and the Overall RBI Field Scores for Downstream and Upstream Sampling Sites Near SQN, Chickamauga Reservoir, Autumn 2000-2010. ....... 56 Table 22. Mean percent composition of major phytoplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011...................................................... 57 Table 23. Comparison of the similarity of phytoplankton taxa within paired replicate samples. 57 Table 24. Taxa richness of the main phytoplankton groups. ....................................................... 57 Table 25. Percent Similarity Index for comparison of phytoplankton communities among sites.

............................................................................................................................................. 57 Table 26. Phytoplankton taxa and density (cells/ml) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.

Abbreviations R1 and R2 designate replicate samples. ................................................. 58 Table 27. Percentage Composition of phytoplankton for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. ...... 61 Table 28. Concentrations of chlorophyll a (apparent and corrected), phaeophytin a and the chlorophyll/phaeophytin index values for samples collected upstream and downstream of SQN during 2011. ............................................................................................................... 64 Table 29. Mean percent composition of major zooplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011. ........................................................... 64 Table 30. Comparison of the similarity of zooplankton taxa within paired replicate samples. ... 65 Table 31. Taxa richness of the main zooplankton groups. ........................................................... 65 Table 32. Percent Similarity Index for comparison of zooplankton communities among sites. . 65 Table 33. Zooplankton taxa and density (organisms/m3) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. Abbreviations R1 and R2 designate replicate samples. ................................ 66 Table 34. Percentage composition of zooplankton taxa for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.

............................................................................................................................................. 68 Table 35. Wildlife Visual Encounter Survey Results of Shoreline Upstream and Downstream of Sequoyah Nuclear Plant during August (Summer) and October (Autumn) 2011. (RDB =

right descending bank, LDB = Left Descending Bank) ...................................................... 70 iv

Table 36. Water temperature (°F) profiles measured at five locations (10%, 30%, 50%, 70%,

90%) from right descending bank along transects located at TRM 486.7 (ambient), TRM 483.4 (discharge), TRM 481.1 (middle of plume), TRM 480.0 (downstream limit of plume), and TRM 478.3 (below plume) on August 25, 2011 (Summer)............................ 71 Table 37. Water temperature (°F) profiles measured at five locations (10%, 30%, 50%, 70%,

90%) from right descending bank along transects located at TRM 487 (ambient), TRM 483.4 (discharge), TRM 482.2 (below discharge), TRM 481.0 (downstream limit of plume), and TRM 478.3 (below plume) on September 14, 2011 (Autumn). ..................... 72 Table 38. Seasonal water quality parameters collected along vertical depth profiles downstream (TRM 482) and upstream (TRM 490.5) of the Sequoyah Nuclear Plant in Chickamauga Reservoir on the Tennessee River. Abbreviations: °C -Temperature in degrees Celsius, °F

- Temperature in degrees Fahrenheit, Cond - Conductivity, DO - Dissolved Oxygen ..... 73 v

List of Figures Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge ................ 78 Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 ...................... 79 Figure 3. Biological monitoring stations upstream of Sequoyah Nuclear Plant. ......................... 80 Figure 4. Biological monitoring stations downstream of Sequoyah Nuclear Plant, including mixing zone and thermal plume from SQN CCW discharge. ............................................ 81 Figure 5. Benthic and shoreline habitat transects within the fish community sampling area upstream and downstream of SQN. .................................................................................... 82 Figure 6. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge during October 2010 through November 2011. ........................................................................................... 83 Figure 7. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River downstream of SQN. ............................................................................... 84 Figure 8. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River downstream of SQN. ............................................................................... 85 Figure 9. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River downstream of SQN. ............................................................................... 86 Figure 10. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River downstream of SQN. ............................................................................... 87 Figure 11. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River upstream of SQN. .................................................................................... 88 Figure 12. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River upstream of SQN. .................................................................................... 89 Figure 13. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River upstream of SQN. .................................................................................... 90 Figure 14. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River upstream of SQN. .................................................................................... 91 Figure 15. Number of indigenous fish species collected during RFAI samples downstream of SQN (TRM 482) during 1996 and 1999 through 2011....................................................... 92 Figure 16. Number of indigenous fish species collected during RFAI samples upstream of SQN (TRM 490.5) during 1993 to 1997 and 1999 through 2011. .............................................. 92 Figure 17. Proportions of selected benthic taxa from Ponar dredge sampling at locations upstream and downstream of SQN, summer and autumn 2011.......................................... 93 Figure 18. Mean phytoplankton densities (cells/ml) for samples collected August 25, 2011. .... 94 Figure 19. Mean phytoplankton biovolume (µm3/ml) for samples collected August 25, 2011. . 94 Figure 20. Mean phytoplankton densities (cells/ml) for samples collected October 10, 2011. .... 94 Figure 21. Mean phytoplankton biovolume (µm3/ml) for samples collected October 10, 2011. 94 Figure 22. Mean chlorophyll a concentrations for samples collected August 25 and October 10, 2011..................................................................................................................................... 95 vi

Figure 23. Mean zooplankton densities (number/m3) for samples collected August 25, 2011. .. 95 Figure 24. Mean zooplankton densities (number/m3) for samples collected October 10, 2011 .. 95 Figure 25. Dendrogram of phytoplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month. (Coph. Corr =

0.89) .................................................................................................................................... 96 Figure 26. Dendrogram of phytoplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month. (Coph. Corr =

0.78) .................................................................................................................................... 97 Figure 27. Dendrogram of zooplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month. (Coph. Corr =

0.87) .................................................................................................................................... 98 Figure 28. Dendrogram of zooplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month. (Coph. Corr =

0.78) .................................................................................................................................... 99 Figure 29. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, August 23 through August 25, 2011 ...................................................................... 100 Figure 30. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, October 8 through October 10, 2011 ...................................................................... 100 Figure 31. Total daily average releases (cubic feet per second) from Watts Bar, Apalachia, and Ocoee 1 dams, October 2010 through November 2011 and historic daily average flows averaged for the same period 1976 through 2010. ............................................................ 101 Figure 32. Daily average water temperatures (°F) at a depth of five feet, recorded upstream of SQN intake (Station 14) and downstream of SQN discharge (Station 8), October 2009 through November 2010. .................................................................................................. 102 vii

Acronyms and Abbreviations BIP Balanced Indigenous Population CCW Condenser cooling water CFS Cubic feet per second MW Megawatts NPDES National Pollutant Discharge Elimination System QA Quality Assurance RBI Reservoir Benthic Macroinvertebrate Index RFAI Reservoir Fish Assemblage Index SAHI Shoreline Assessment Habitat Index SQN Sequoyah Nuclear Plant TRM Tennessee River Mile TVA Tennessee Valley Authority VS Vital Signs viii

Introduction Section 316(a) of the Clean Water Act (CWA) authorizes alternative thermal limits (ATL) for the control of the thermal component of a discharge from a point source so long as the limits will assure the protection of Balanced Indigenous Populations (BIP) of aquatic life. The term balanced indigenous population, as defined in EPAs regulations implementing Section 316(a),

means a biotic community that is typically characterized by:

(1) diversity appropriate to ecoregion; (2) the capacity to sustain itself through cyclic seasonal changes; (3) the presence of necessary food chain species; (4) lack of domination by pollution-tolerant species; and Prior to 1999, the Tennessee Valley Authoritys (TVA) Sequoyah Nuclear Plant (SQN) was operating under a 316(a) ATL that had been continued with each permit renewal based on studies conducted in the mid-1970s. In 1999, EPA Region IV began requesting additional data in conjunction with NPDES permit renewal applications to verify that BIP was being maintained at TVAs thermal plants with ATLs. TVA proposed that its existing Vital Signs (VS) monitoring program, supplemented with additional fish and benthic macroinvertebrate community monitoring upstream and downstream of thermal plants with ATLs, was appropriate for that purpose. The VS monitoring program began in 1990 in the Tennessee River System. This program was implemented to evaluate ecological health conditions in major reservoirs as part of TVAs stewardship role. One of the 5 indicators used in the VS program to evaluate reservoir health is the Reservoir Fish Assemblage Index (RFAI) methodology. RFAI has been thoroughly tested on TVA and other reservoirs and published in peer-reviewed literature (Jennings, et al.,

1995; Hickman and McDonough, 1996; McDonough and Hickman, 1999). Fish communities are used to evaluate ecological conditions because of their importance in the aquatic food web and because fish life cycles are long enough to integrate conditions over time. Benthic macroinvertebrate populations are assessed using the Reservoir Benthic Index (RBI) methodology. Because benthic macroinvertebrates are relatively immobile, negative impacts to aquatic ecosystems can be detected earlier in benthic macroinvertebrate communities than in fish communities. These data are used to supplement RFAI results to provide a more thorough examination of differences in aquatic communities upstream and downstream of thermal discharges.

TVA initiated a study to evaluate fish and benthic macroinvertebrate communities in areas immediately upstream and downstream of SQN during autumn 1999-2011 using RFAI and RBI multi-metric evaluation techniques. Beginning in 2011, evaluations of plankton and wildlife communities were included as well. This report presents the results of summer and autumn 2011 RFAI, RBI, plankton, and wildlife data collected upstream and downstream of SQN.

1

Plant Description Sequoyah Nuclear Power Plant (SQN) is located on the right (west) bank of Chickamauga Reservoir at Tennessee River Mile (TRM) 484.5 approximately 18 miles northeast of Chattanooga, Tennessee, and 7 miles southwest of Soddy-Daisy, Tennessee. SQN is situated approximately 54.5 river miles downstream from Watts Bar Dam and 13.5 river miles upstream from Chickamauga Dam (Figure 1).

SQN Unit 1 began commercial operation on July 1, 1981, and Unit 2 on June 1, 1982. Net operating capacity is about 2,400 MW of electricity. Waste heat load is about 4,800 MW of thermal energy. Waste heat is transferred to the condenser cooling water (CCW), pumped from the river at TRM 484.8 (Figure 2). This heat is then dissipated either to the atmosphere using two natural-draft cooling towers, to the river through a two-leg submerged multiport diffuser located at TRM 483.6, or by a combination of the two. With both units operating at maximum power, maximum CCW water demand is 2,558 cfs.

Methods Aquatic Habitat in the Vicinity of SQN Shoreline and river bottom habitat data presented in this report were collected during autumn 2009. TVA assumes habitat data to be valid for three years, barring any major changes to the river/reservoir (e.g., flood). Since no significant changes have occurred in the river system from the initial characterization, habitat will be sampled again during the next autumn sampling event.

In the event of a major change to the river/reservoir, habitat would be re-sampled the following autumn.

Shoreline Aquatic Habitat Assessment An integrative multi-metric index (Shoreline Aquatic Habitat Index or SAHI), including several habitat parameters important to resident fish species, was used to measure existing fish habitat quality in the vicinity of Sequoyah Nuclear Plant. Using the general format developed by Plafkin et al. (1989), seven metrics were established to characterize selected physical habitat attributes important to resident fish populations which rely heavily on the littoral or shoreline zone for reproductive success, juvenile development, and/or adult feeding (Table 1). Habitat Suitability Indices (US Fish and Wildlife Service), along with other sources of information on biology and habitat requirements (Etnier and Starnes 1993), were consulted to develop reference criteria or expected conditions from a high quality environment for each parameter. Some generalizations were necessary in setting up scoring criteria to cover the various requirements of all species into one index.

Individual metrics are scored through comparison of observed conditions with these reference conditions and assigned a corresponding value: good-5; fair-3; or poor-1 (Table 1). The scores for each metric are summed to obtain the SAHI value. The range of potential SAHI values (7-

35) is trisected to provide some descriptor of habitat quality (poor: 7-16; fair: 17-26; and good:

27-35).

2

The quality of shoreline aquatic habitat was assessed while traveling parallel to the shoreline in a boat and evaluating the habitat within 10 vertical feet of full pool. This was much easier to accomplish when the reservoir was at least 10 feet below full pool during the assessment allowing accurate determination of near-shore aquatic habitat quality. To sample river bottom habitat, eight line-of-sight transects were established across the width of Chickamauga reservoir within the SQN downstream (TRMs 481.1 to 483.6) and upstream (TRMs 487.9 to 491.1) fish community sampling areas (Figure 5). Near-shore aquatic habitat was assessed along sections of shoreline corresponding to the left descending (LDB) and right descending (RDB) bank locations for each of the eight line-of-sight transects. These individual sections (8 on the LDB and 8 on the RDB for a total of 16 shoreline assessments) were scored using SAHI criteria. Percentages of aquatic macrophytes in the littoral areas of the 8 LDB and 8 RDB shoreline sections were also estimated.

River Bottom Habitat Along each of the 8 line-of-sight transects described above, 10 benthic grab samples were collected with a Ponar sampler at equally spaced points from the LDB to RDB. Substrate material collected with the Ponar was dumped into a screen and substrate percentages were estimated to determine existing benthic habitat across the width of the river. Water depths at each sample location were recorded (feet). If no substrate was collected after multiple Ponar drops, it was assumed that the substrate was bedrock. For example, when the Ponar was pulled shut, collectors could feel substrate consistency; if it shut easily and was not embedded in the substrate on numerous drops within the same location, substrate was recorded as bedrock.

Fish Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN Two sample locations, one upstream and one downstream of the plant discharge were selected in Chickamauga Reservoir. The SQN discharge enters the Tennessee River at TRM 483.6 (Figure 2). The upstream monitoring site was centered at TRM 490.5 (Figure 3) and the downstream site was centered at TRM 482.0 (Figure 4).

Fish sampling methods included boat electrofishing and gill netting (Hubert, 1996; Reynolds, 1996). Electrofishing methodology consisted of fifteen boat electrofishing runs near the shoreline, each 300 meters long with a duration of approximately 10 minutes each. The total near-shore area sampled was approximately 4,500 meters (15,000 feet).

Experimental gill nets (so called because of their use for research as opposed to commercial fishing) were used as an additional gear type to collect fish from deeper habitats not effectively sampled by electrofishing. Each experimental gill net consists of five 6.1-meter panels for a total length of 30.5 meters (100.1 feet). The distinguishing characteristic of experimental gill nets is mesh size that varies between panels. For this application, each net has panels with mesh sizes of 2.5, 5.1, 7.6, 10.2, and 12.7 cm. Experimental gill nets are typically set perpendicular to river flow extending from near-shore toward the main channel of the reservoir. Ten overnight experimental gill net sets were used at each area.

3

Fish collected were identified by species, counted, and examined for anomalies (such as disease, deformations, parasites, or hybridization). The resulting data were analyzed using RFAI methodology.

The RFAI uses 12 fish community metrics from four general categories: Species Richness and Composition; Trophic Composition; Abundance; and Fish Health. Individual species can be utilized for more than one metric. Together, these 12 metrics provide a balanced evaluation of fish community integrity. The individual metrics are described below, grouped by category:

Species Richness and Composition (1) Total number of indigenous species -- Greater numbers of indigenous species are considered representative of healthier aquatic ecosystems. As conditions degrade, numbers of species at an area decline.

(2) Number of centrarchid species -- Sunfish species (excluding black basses) are invertivores and a high diversity of this group is indicative of reduced siltation and suitable sediment quality in littoral areas.

(3) Number of benthic invertivore species -- Due to the special dietary requirements of this species group and the limitations of their food source in degraded environments, numbers of benthic invertivore species increase with better environmental quality.

(4) Number of intolerant species -- This group is made up of species that are particularly intolerant of physical, chemical, and thermal habitat degradation.

Higher numbers of intolerant species suggest the presence of fewer environmental stressors.

(5) Percentage of tolerant individuals (excluding Young-of-Year) -- This metric signifies poorer water quality with increasing proportions of individuals tolerant of degraded conditions.

(6) Percent dominance by one species -- Ecological quality is considered reduced if one species inordinately dominates the resident fish community.

(7) Percentage of non-indigenous species -- Based on the assumption that non-indigenous species reduce the quality of resident fish communities.

4

(8) Number of top carnivore species -- Higher diversity of piscivores is indicative of the availability of diverse and plentiful forage species and the presence of suitable habitat.

Trophic Composition (9) Percentage of individuals as top carnivores -- A measure of the functional aspect of top carnivores which feed on major planktivore populations.

(10) Percentage of individuals as omnivores -- Omnivores are less sensitive to environmental stresses due to their ability to vary their diets. As trophic links are disrupted due to degraded conditions, specialist species such as insectivores decline while opportunistic omnivorous species increase in relative abundance.

Abundance (11) Average number per run -- (number of individuals) -- This metric is based upon the assumption that high quality fish assemblages support large numbers of individuals.

Fish Health (12) Percentage of individuals with anomalies -- Incidence of diseases, lesions, tumors, external parasites, deformities, blindness, and natural hybridization are noted for all fish measured, with higher incidence indicating less favorable environmental conditions.

RFAI methodology addresses all four attributes or characteristics of a balanced indigenous population defined by the CWA, as described below:

(1.) A biotic community characterized by diversity appropriate to the ecoregion: Diversity is addressed by the metrics in the Species Richness and Composition category, especially metric 1 - total number of indigenous species. Determination of reference conditions based on the forebay and transition zones of upper mainstem Tennessee River reservoirs (as described below) ensures appropriate species expectations for the ecoregion.

(2.) The capacity for the community to sustain itself through cyclic seasonal change: TVA uses an autumn data collection period for biological indicators, both VS and upstream/downstream monitoring. Autumn monitoring is used to document community condition or health after being subjected to the wide variety of stressors throughout the year.

One of the main benefits of using biological indicators is their ability to integrate stressors through time. Examining the condition or health of a community at the end of the biological year (i.e., autumn) provides insight into how well the community has dealt with the stresses through an annual seasonal cycle. Likewise, evaluation of the condition of individuals in the community (in this case, individual fish as reflected in Metric 12) provides insight into how well the community can be expected to withstand stressors through winter. Further, multiple sampling years during the permit renewal cycle add to the evidence of whether or not the autumn 5

monitoring approach has correctly demonstrated the ability of the community to sustain itself through repeated seasonal changes.

Summer sampling was conducted during August 2011. This time of year is considered a stressful time for the biotic community. Summer sampling was conducted to collect data on the biotic community during a high stress period near SQN plant. These data were compared with data collected during summer 2010.

(3.) The presence of necessary food chain species: Integrity of the food chain is measured by the Trophic Composition metrics, with support from the Abundance metric and Species Richness and Composition metrics. Existence of a healthy fish community indicates presence of necessary food chain species because the fish community is comprised of species that utilize multiple feeding mechanisms that transcend various levels in the aquatic food web. Basing evaluations on a sound multi-metric system such as the RFAI enhances the ability to discern alterations in the aquatic food chain.

Three dominant fish trophic levels exist within Tennessee River reservoirs; insectivores, omnivores, and top carnivores. To determine the presence of necessary food chain species, these three groups should be well represented within the overall fish community. Other fish trophic levels include benthic invertivores, planktivores, herbivores, and parasitic species. Insectivores include most sunfish, minnows, and silversides. Omnivores include gizzard shad, common carp, carpsuckers, buffalo, channel catfish, and blue catfish. Top carnivores include black bass, gar, skipjack herring, crappie, flathead catfish, sauger, and walleye. Benthic invertivores include freshwater drum, suckers, and darters. Planktivores include alewife, threadfin shad, and paddlefish. Herbivores include largescale stonerollers. Lampreys in the genus Ichthyomyzon are the only parasitic species occurring in Tennessee River reservoirs.

To establish expected proportions of each trophic guild and the expected number of species included in each guild occurring in upper mainstem Tennessee River reservoirs (Nickajack, Chickamauga, Watts Bar, and Fort Loudon reservoirs), data collected from 1993 to 2010 during autumn were analyzed for each reservoir zone where upstream and downstream sample stations were established to monitor effects of the SQN discharge (forebay- downstream of SQN and transition- upstream of SQN). Samples collected in the downstream vicinity of thermal discharges were not included in this analysis so that accurate expectations could be calculated with the assumption that these data represent what should occur in upper mainstem Tennessee River reservoirs absent from point source effects (i.e. power plant discharges). Therefore, data from the monitoring site downstream of SQN at TRM 482 were not included in this analysis.

Data from 900 electrofishing runs (a total of 270,000 meters of shoreline sampled) and from 600 overnight experimental gill net sets were included in this analysis for forebay areas in upper mainstem Tennessee River reservoirs. For upper mainstem Tennessee River transition zones, data from 750 electrofishing runs and 500 overnight experimental gill net sets were included.

From these data, the range of proportional values for each trophic level and the range of the number of species included in each trophic level were trisected. This trisection is intended to show less than expected, expected and above expected values for trophic level proportions and species occurring within each reservoir zone in upper mainstem Tennessee River reservoirs (Table 2). These data were also averaged and bound by confidence intervals (95%) to further 6

evaluate expected values for proportions of each trophic level and the number of species expected for each trophic level by reservoir zone (Table 3).

(4.) A lack of domination by pollution-tolerant species: Domination by pollution-tolerant species is measured by metrics 3 (Number of benthic invertivore species), 4 (Number of intolerant species), 5 (Percentage of tolerant individuals), 6 (Percent dominance by one species), and 10 (Percentage of individuals as omnivores).

Scoring categories are based on expected fish community characteristics in the absence of human-induced impacts other than impoundment of the reservoir. These categories were developed from historical fish assemblage data representative of forebay and transition zones from upper mainstem Tennessee River reservoirs (Hickman and McDonough, 1996). Attained values for each of the 12 metrics were compared to the scoring criteria and assigned scores to represent relative degrees of degradation: least degraded (5); intermediate degraded (3); and most degraded (1). Scoring criteria for upper mainstem Tennessee River reservoirs are shown in Table 4.

If a metric was calculated as a percentage (e.g., Percentage of tolerant individuals), data from electrofishing and gill netting were scored separately and allotted half the total score for that individual metric. Individual metric scores for a sampling area (e.g., upstream or downstream) are summed to obtain the RFAI score for the area.

TVA uses RFAI results to determine maintenance of BIP using two approaches. One is absolute in that it compares the RFAI scores and individual metrics to predetermined values.

The other is relative in that it compares RFAI scores attained downstream to the upstream control site. The absolute approach is based on Jennings et al. (1995) who suggested that favorable comparisons of the attained RFAI score from the potential impact zone to a predetermined criterion can be used to identify the presence of normal community structure and function and hence existence of BIP. For multi-metric indices, TVA uses two criteria to ensure a conservative screening of BIP. First, if an RFAI score reaches 70% of the highest attainable score of 60 (adjusted upward to include sample variability as described below), and second, if fewer than half of RFAI metrics receive a low (1) or moderate (3) score, then normal community structure and function would be present indicating that BIP had been maintained, thus no further evaluation would be needed.

RFAI scores range from 12 to 60. Ecological health ratings (12-21 [Very Poor], 22-31

[Poor], 32-40 [Fair], 41-50 [Good], or 51-60 [Excellent]) are then applied to scores. As discussed in detail below, the average variation for RFAI scores in TVA reservoirs is 6 (+ 3).

Therefore, any location that attains an RFAI score of 45 or higher would be considered to have BIP. It must be stressed that scores below this threshold do not necessarily reflect an adversely impacted fish community. The threshold is used to serve as a conservative screening level; i.e.,

any fish community that meets these criteria is obviously not adversely impacted. RFAI scores below this level would require a more in-depth look to determine if BIP exists. An inspection of individual RFAI metric results and species of fish used in each metric would be an initial step to help identify if operation of SQN is a contributing factor. This approach is appropriate because a validated multi-metric index is being used and scoring criteria applicable to the zone of study are available.

7

A difference in RFAI scores attained at the downstream area compared to the upstream (control) area is used as one basis for determining presence or absence of impacts on the resident fish community from SQNs operations. The definition of similar is integral to accepting the validity of these interpretations. The Quality Assurance (QA) component of the Vital Signs monitoring program deals with how well the RFAI scores can be repeated and is accomplished by collecting a second set of samples at 15%-20% of the areas each year. Comparison of paired-sample QA data collected over seven years shows that the difference in RFAI index scores ranges from 0 to 18 points. The mean difference between these 54 paired scores is 4.6 points with 95% confidence limits of 3.4 and 5.8. The 75th percentile of the sample differences is 6, and the 90th percentile is 12. Based on these results, a difference of 6 points or less in the overall RFAI scores is the value selected for defining similar scores between upstream and downstream fish communities. That is, if the downstream RFAI score is within 6 points of the upstream score and if there are no major differences in overall fish community composition, then the two locations are considered similar. It is important to bear in mind that differences greater than 6 points can be expected simply due to method variation (i.e., 25% of the QA paired sample sets exceeded a difference of 6). An examination of the 12 metrics (with emphases on fish species used for each metric) is conducted to determine any difference in scores and the potential for the difference to be thermally related.

Traditional Analyses In addition to RFAI analyses, data were analyzed using traditional statistical methods. Data from the survey were used to calculate catch per unit effort (CPUE), which was expressed as number of fish per electrofishing run or fish per net night. CPUE values were calculated by pollution tolerance, trophic guilds (e.g., benthic invertivores, top carnivores, etc.), thermal sensitivity (Yoder et al. 2006), and indigenousness. CPUE, species richness, and diversity values were computed for each electrofishing effort (to maximize sample size; n = 30) and compared upstream and downstream to assess potential effects of power plant discharges.

Diversity was quantified using two commonly used diversity indices: Shannon diversity index (Shannon 1948) and Simpson diversity index (Simpson 1949). Both indices account for the number of species present, as well as the relative abundance of each species.

Shannon diversity index values were computed using the formula:

ln where:

S = total number of species N = total number of individuals ni = total number of individuals in the ith species The Simpson diversity index was calculated as follows:

8

S 1 where:

S = total number of species N = total number of individuals ni = total number of individuals in the ith species An independent two-sample t-test was used to test for differences in CPUE, species richness, and diversity values upstream and downstream of SQN ( = 0.05). Before statistical tests were performed using this method, data were analyzed for normality using the Shapiro-Wilk test (Shapiro and Wilk, 1965) and homogeneity of variance using Levenes test (Levene, 1960).

Non-normal count data or data with unequal variances were transformed using square root conversion; the transformation ln(x+1) was used for CPUE data without a normal distribution or unequal variance. Transformed data was reanalyzed for normal distribution and equal variances.

If transformation normalized the data and/ or resulted in homogeneous variances, transformed data were tested using an independent two-sample t-test. If transformed data were not normally distributed or had unequal variances, statistical analysis was conducted using the Wilcoxon-Mann-Whitney test (Mann and Whitney, 1947; Wilcoxon, 1945).

Benthic Macroinvertebrate Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN During summer 2011, benthic macroinvertebrate data were collected along transects established across the full width of the reservoir at TRMs 481.3 and 483.4 downstream of SQN (Figure 3) and TRMs 488.0 and 490.5 upstream of SQN (Figure 4). Autumn 2011 sites included only TRM 481.3, TRM 483.4 and TRM 490.5. TRM 488.0 was not used as a collection site in autumn 2011 because TRM 490.5 is a long-term data collection site for the autumn seasons. Historically, the benthic macroinvertebrate community downstream of SQN was sampled at TRM 482.0; however during summer and autumn 2011, benthic macroinvertebrates were sampled at two transects (TRM 481.3 and TRM 483.4) to more accurately depict the health of the downstream benthic community.

Benthic grab samples were used to collect samples at equally spaced points along the upstream and downstream transects. During summer 2011, benthic grab samples were collected from five points along the two upstream transects. Autumn 2011 samples were collected from ten points along the transect located at TRM 490.5 and five points at TRM 488.0. Samples were collected from ten points along each downstream transect during summer and autumn 2011.

A Ponar sampler (area per sample 0.06 m2) was used for most samples. When heavier substrate was encountered, a Peterson sampler (area per sample 0.11 m2) was used. Collection and processing techniques followed standard VS procedures (OER-ESP-RRES-AMM-21.11; Quantitative Sample Collection - Benthic Macroinvertebrate Sampling with a Ponar Dredge).

Bottom sediments were washed on a 533 screen; organisms were then picked from the screen and any remaining substrate. For each sample, organisms and substrate were placed in a sample 9

jar and fixed in formalin. Samples were sent to an independent consultant who identified each organism collected to the lowest possible taxonomic level.

Benthic community results were evaluated using seven community characteristics or metrics.

Results for each metric were assigned a score of 1, 3, or 5 depending upon how they scored based on reference conditions developed for VS reservoir inflow sample sites. Scoring criteria for upper mainstem Tennessee River reservoirs are shown in Table 5. The scores for the seven metrics were summed to produce a benthic score for each sample site. Potential scores ranged from 7 to 35. Ecological health ratings (7-12 [Very Poor], 13-18 [Poor], 19-23 [Fair], 24-29 [Good], or 30-35 [Excellent]) were then applied to scores. The individual metrics are shown below:

(1) Average number of taxaThis metric is calculated by averaging the total number of taxa present in each sample at a site. Taxa generally mean family or order level because samples are processed in the field. For chironomids, taxa refers to obviously different organisms (i.e., separated by body size, head capsule size and shape, color, etc.). Greater taxa richness indicates better conditions than lower taxa richness.

(2) Proportion of samples with long-lived organismsThis is a presence/absence metric which is evaluated based on the proportion of samples with at least one long-lived organism (Corbicula, Hexagenia, mussels, and snails) present. The presence of long-lived taxa is indicative of conditions which allow long-term survival.

(3) Average number of EPT taxaThis metric is calculated by averaging the number of Ephemeroptera, Plecoptera, and Trichoptera taxa present in each sample at a site.

Higher diversity of these taxa indicates good water quality and better habitat conditions.

(4) Percentage as oligochaetesThis metric is calculated by averaging the percentage of oligochaetes in each sample at a site. Oligochaetes are considered tolerant organisms so a higher proportion indicates poorer water quality.

(5) Percentage as dominant taxaThis metric is calculated by selecting the two most abundant taxa in a sample, summing the number of individuals in those two taxa, dividing that sum by the total number of animals in the sample, and converting to a percentage for that sample. The percentage is then averaged for the 10 samples at each site. Often, the most abundant taxa differed among the 10 samples at a site.

This allows more discretion to identify imbalances at a site than developing an average for a single dominant taxon for all samples a site. This metric is used as an evenness indicator. Dominance of one or two taxa indicates poor conditions.

(6) Average density excluding Chironomids and OligochaetesThis metric is calculated by first summing the number of organisms, excluding chironomids and oligochaetes, present in each sample and then averaging these densities for the 10 10

samples at a site. This metric examines the community, excluding taxa which often dominate under adverse conditions. A high abundance of non-chironomids and non-oligochaetes indicates good water quality conditions.

(7) Zero-samples: Proportion of samples with containing no organismsThis metric is the proportion of samples at a site which have no organisms present.

Zero-samples indicate living conditions unsuitable to support aquatic life (i.e.

toxicity, unsuitable substrate, etc.). Any site having one empty sample was assigned a score of three, and any site with two or more empty samples received a score of one. Sites with no empty samples were assigned a score of five.

A similar or higher benthic index score at the downstream site compared to the upstream site is used as basis for determining absence of impact on the benthic macroinvertebrate community related to SQNs thermal discharge. The QA component of VS monitoring shows that the comparison of benthic index scores from 49 paired sample sets collected over the past seven years range from 0 to 14 points, the 75th percentile is 4, the 90th percentile is 6. The mean difference between these 49 paired scores is 3.1 points with 95% confidence limits of 2.2 and 4.1. Based on these results, a difference of 4 points or less is the value selected for defining similar scores between upstream and downstream benthic communities. That is, if the downstream benthic score is within 4 points of the upstream score, the communities will be considered similar and it will be concluded that SQN has had no effect. Once again, it is important to bear in mind that differences greater than 4 points can be expected simply due to method variation (25% of the QA paired sample sets exceeded that value). When such occurs, a metric-by-metric examination will be conducted to determine what caused the difference in scores and the potential for the difference to be thermally related.

Plankton Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN Samples for analysis of the phytoplankton and zooplankton communities were collected in the mid-channel at four locations, two upstream of SQN at TRM 490.1 and 487.9 and two downstream at TRM 483.4 and 481.1, on August 25 and October 10, 2011. Two replicate samples for both phytoplankton and zooplankton were collected at each site on each sample date.

Phytoplankton A low-volume peristaltic pump and tubing apparatus were used to collect integrated water samples along a vertical gradient from the bottom to the top of the photic zone, which was defined as the zone from the surface to twice the Secchi depth reading or from the surface to four meters, whichever was greater. From each of these water samples, a subsample was removed and preserved in glutaraldehyde for taxonomic identification and enumeration of the phytoplankton community. A second subsample was removed from each water sample for analysis of phytopigment (chlorophyll) concentrations.

11

Zooplankton Samples for taxonomic identification and enumeration of the zooplankton community were collected using a conical net with 80 µm mesh, towed vertically through the water column from two meters off the bottom to the surface of the reservoir. Samples were preserved in 70% ethyl alcohol (EtOH).

Data Analysis Basic summary statistics were used to compare abundances among sites. Two separate measures of diversity, percent similarity and the Bray-Curtis Index of similarity, were used to examine spatial variability within the plankton communities, taking into account both the taxa richness and the uniformity of distribution of individuals among the taxa. Species or taxa richness is expressed simply as the number of species or distinct taxa in the community.

One measure of spatial variability between plankton communities was the calculation of Percent Similarity (PS). To calculate PS, the number of individuals in each species was calculated as the fractional proportion of the total community. For each species, the proportion in community 1 was then compared to the proportion in community 2, and the lower of the two values was tabulated. When all taxa had been compared in this manner, the tabulated list (of the lower of each pair of values) was summed, and this sum defined as the PS of the two communities.

Within the plankton community, spatial variability was also analyzed using hierarchical clustering based on the Bray-Curtis index of similarity. Samples were sorted into groups (clusters) based on the overall resemblance to each other. Cluster analyses were interpreted graphically on dendrograms to relate the similarity of communities among the sampling stations.

Before calculating the measures of diversity for the zooplankton data, the immature specimens identified as Cladocera and Bosminidae (one sample each) were removed; the taxa Eurytemora affinis and Eurytemora sp. were combined in one sample; and in October samples, specimens from all taxa under the group Sididae were combined.

Visual Encounter Surveys (Observations of Wildlife)

Two permanent transects were established both upstream and downstream of the SQN thermal discharge. The midpoint of the upstream transect was positioned at the RFAI upstream study area and spanned a distance of 2,100 m within this transect (Figure 3). The downstream transect was collected directly below the power plant and likewise spanned a distance 2,100 m (Figure 4).

The beginning and ending point of each transect were marked with GPS for relocation.

Transects were positioned approximately 30 m offshore and parallel to the shoreline occurring on both right and left descending banks. Visual Encounter Surveys were conducted to provide a representative sampling of wildlife present during summer (August) and autumn (October).

Each transect was surveyed by steadily traversing the length by boat and simultaneously recording observations of wildlife. Sampling frame of each transect generally followed the strip or belt transect concept with all individual species enumerated that crossed the center-line of each transect landward to an area that included the shoreline and riparian zone (i.e., belt width generally averages 60 m where vision is not obscured). Information recorded was identified to 12

the lowest taxonomic trophic level that was observed visually and a direct count of individuals observed per trophic level. If flocks of a species or mixed flock of a group of species were observed, an estimate of the number of individuals present was generated. Time was recorded at the start and end points of each transect to provide a general measure of effort expended. If times varied among transects, it was primarily due to the difficulty in approaching some wildlife species without inadvertently flushing them from basking or perching sites. To compensate for the variation of effort expended per transect, observations were standardized to numbers per minute or numbers per hectare in preparation for analysis.

The principal objective and purpose behind the surveys were to provide a preliminary set of observations to verify trophic levels of birds, mammals, amphibians and reptiles have not been affected by thermal effects from the SQN discharge. If trophic levels were not represented, further investigations will be used to target specific species and/or species groups (guilds) in an attempt to determine the cause.

Chickamauga Reservoir Flow and SQN Temperature Total daily average discharge from Watts Bar, Apalachia (Hiwassee River), and Ocoee 1 (Ocoee River) dams was used to describe the volume of water flowing past SQN and was obtained from TVAs River Operations database.

Water temperature data were also obtained from TVAs River Operations database. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge are depicted in Figure 6. Station 14 (TRM 490.4) was used to measure the ambient temperature upstream of the SQN intake. Station 8 (TRM 483.4) was used to measure temperatures downstream of SQN discharge. Water temperatures at both stations were computed as the average of temperatures measured at the 3-, 5-, and 7-ft depths.

Thermal Plume Characterization Physical measurements were taken to characterize and map the SQN thermal plume concurrent with biological field sampling during both summer and fall sampling events. The plume was characterized under representative thermal maxima and seasonally expected low flow conditions.

Measurements were collected during periods of high power production from SQN, as reasonably practicable, to capture maximum extent of the thermal plume under existing river flow/reservoir elevation conditions. This effort allowed general delineation of the Primary Study Area per the EPA (1977) draft guidance defined as the entire geographic area bounded annually by the locus of the 2°C above ambient surface isotherms as these isotherms are distributed throughout an annual period, ensuring placement of the biological sampling locations within thermally influenced areas.

However, it is important to emphasize that the >2ºC isopleth boundary is not a bright line; it is dynamic, changing geometrically in response to changes in ambient river flows and temperatures and SQN operations. As such, samples collected outside of, but generally proximate to the Primary Study Area boundary should not be discounted as non-thermally influenced. Every 1

effort was made to collect biological samples in thermally affected areas as guided by the Primary Study Area definition.

Field activities included measurement of surface to bottom temperature profiles along transects across the plume. One transect was located proximate to the thermal discharge point; subsequent downstream transects were concentrated in the near field area of the plume where the change in plume temperature was expected to be most rapid. The distance between transects in the remainder of the Primary Study Area increased with distance downstream or away from the discharge point. The farthest downstream transect was just outside of the Primary Study Area.

A transect upstream of the discharge that is not affected by the thermal plume was included for determining ambient temperature conditions. The total number of transects needed to fully characterize and delineate the plume were determined in the field.

Temperature profile measurement (surface to bottom) points along a given transect were spaced equally across the river channel. Points began at or near the shoreline from which the discharge originated and continued across the plume [based on surface (0.1 m or 0.3 ft depth) measurements] until the far shore was reached. Measurements along transects were conducted at points 10%, 30%, 50%, 70%, and 90% from the originating shoreline. The distances between transects and measurement points depended on the size of the discharge plume.

The temperature measurement instrument (Hydrolab) was calibrated to a thermometer whose calibration is traceable to the National Institute of Standards and Technology. Temperature data were compiled and analyzed to present the horizontal and vertical dimensions of the SQN thermal plume, which was used to demonstrate the existence of a zone of passage under and/or around the plume.

Water Quality Parameters at Fish Sampling Sites during RFAI Samples Water quality conditions were measured using a Hydrolab which provided readings for dissolved oxygen (ppm), water temperature (°C and °F), conductivity (µs/cm), and pH.

Readings were taken along a vertical gradient from just above the bottom of the river to approximately 0.3 m from the surface at 1- to 2-m intervals. Readings were conducted in the mid-channel at the most downstream and upstream boundaries of the electrofishing sample area at stations upstream and downstream of SQN.

Results and Discussion Aquatic Habitat in the Vicinity of SQN Shoreline Aquatic Habitat Assessment Of the sixteen shoreline sections sampled upstream of SQN, 6% (1 transect) rated Good, 88%

(14 transects) rated Fair, and 6% (1 transect) rated Poor. The average scores for transects on the left and right descending banks were similar at 22 (Fair) and 21 (Fair), respectively. No aquatic macrophytes were present on either shoreline (Table 6).

2

Of the sixteen shoreline transects sampled downstream of SQN, 19% (3 transects) rated Good, 56% (9 transects) rated Fair, and 25% (4 transects) rated Poor (Table 7). The average scores for transects on the left and right descending banks were identical at 22 (Fair). Aquatic macrophyte coverage averaged 2% on the left descending bank and 5% on the right descending bank (Table 7).

River Bottom Habitat Figures 7-10 display substrate percentages as well as water depth at each sample point along each of the 8 transects downstream of SQN. Figures 11-14 display substrate percentages as well as water depth at each sample point along each of the 8 transects upstream of SQN.

The three most dominant substrate types encountered along the 8 transects downstream of SQN were mollusk shell (27.6%), silt (19.9%) and clay (16.4%). The three most dominant substrate types encountered along the 8 transects upstream of SQN were silt (51.2%), mollusk shell (18.4%), and bedrock (8.8%). Overall average water depth was similar upstream and downstream of SQN (Table 8).

Fish Community During summer 2011, RFAI scores of 41 (Good) and 38 (Fair) were recorded for the downstream and upstream sites, respectively (Table 9). Given the downstream site scored higher than the upstream (control), it was concluded that BIP was maintained at the downstream site during summer 2011.

During autumn 2011, an RFAI score of 35 (Fair) was recorded at both the downstream and upstream sites (Table 10). Because both sites received the same score, it can be concluded that BIP was maintained at the downstream site during autumn 2011.

For each season, the upstream and downstream sites were compared using the four characteristics of BIP. For the discussion of each characteristic, the downstream site was compared to the upstream site (control) using the RFAI metrics applicable to each characteristic.

(1) A biotic community characterized by diversity appropriate to the ecoregion Summer 2011 Total number of indigenous species (> 27 required for highest score for the site downstream of SQN; > 29 required for highest score for the site upstream of SQN)

Twenty-eight indigenous species were collected at the downstream site, while 29 indigenous species were collected at the upstream site, resulting in the highest score for the downstream site and a mid-range score for the upstream site for this metric (Table 9). River redhorse and sauger were collected at the upstream site only, while white bass were only collected at the downstream site; all other species were collected at both sites (Tables 11 and 12).

Total number of centrarchid species (> 4 required for highest score) 3

Both upstream and downstream sites received the highest possible score for the metric Number of centrarchid species. The same eight sunfish species were collected at both sites (Tables 9, 11, and 12).

Total number of benthic invertivore species (> 7 required for highest score)

Only three benthic invertivore species were collected at the downstream site, resulting in the lowest score (1) for the metric Number of benthic invertivore species. Freshwater drum, logperch, and spotted sucker were collected at both upstream and downstream sites; river redhorse was only collected at the upstream site. As a result of this one additional species, the upstream site received a moderate score of 3 (Tables 9, 11, and 12).

Total number of intolerant species (> 4 required for highest score)

Both the upstream and downstream sites received the highest score for the metric Number of intolerant species. Five of the six intolerant species were collected at both sites; river redhorse was collected at the upstream site only (Tables 9, 11, and 12).

Total number of top carnivore species (> 6 required for highest score)

Ten top carnivore species were collected at both sites resulting in both sites receiving the highest score (5) for the metric Number of top carnivore species. White bass were only collected downstream of SQN, while sauger were only collected at the upstream site. All other top carnivore species (black crappie, flathead catfish, largemouth bass, skipjack herring, smallmouth bass, spotted bass, spotted gar, white crappie, and yellow bass) were collected at both sites (Tables 9, 11, and 12).

The overall RFAI score for the downstream site was 41 (Good) and for the upstream site 38 (Fair). These similar scores indicated that the species richness and composition for the five previous metrics described above were similar between sites (Table 9).

Autumn 2011 Total number of indigenous species (> 27 required for highest score for site downstream of SQN;

> 29 required for highest score for site upstream of SQN)

Twenty-five indigenous species were collected at the downstream site, while 27 indigenous species were collected at the upstream site resulting in the mid-range score (3) for this metric at both sites. Longear sunfish and golden redhorse were collected at the downstream site, but not at the upstream site. White crappie, largescale stoneroller, yellow perch, logperch, and walleye were collected only at the upstream site (Tables 10, 13, and 14).

Total number of centrarchid species (> 4 required for highest score)

Both the upstream and downstream sites received the highest possible score (5) for the metric Number of centrarchid species. Six of the seven centrarchid species were collected at both sites while white crappie was only collected at the upstream site and longear sunfish only at the downstream site (Tables 10, 13, and 14).

Total number of benthic invertivore species (> 7 required for highest score) 4

With only 3 benthic invertivore species each, both sites received the lowest score for the metric Number of benthic invertivore species. Golden redhorse was collected at the downstream site only and logperch was only collected upstream of SQN (Tables 10, 13, and 14).

Total number of intolerant species (> 4 required for highest score)

Both the upstream and downstream sites received the mid-range score (3) for the metric Number of intolerant species. Three of the four intolerant species (skipjack herring, smallmouth bass, and spotted sucker) were collected at each site; longear sunfish was collected downstream of SQN only (Tables 10, 13, and 14).

Total number of top carnivore species (> 6 required for highest score)

Nine top carnivore species were collected at the downstream site and 11 at the upstream site.

However, both the upstream and downstream sites received the highest score (5) for this metric.

Walleye and white crappie were only collected at the upstream site; the remaining nine top carnivore species were collected at both sites (Tables 10, 13, and 14).

Both sites received the same overall score (35-Fair) for the five aforementioned RFAI diversity metrics, indicating that fish community diversity during autumn 2011was similar upstream and downstream of SQN (Table 10).

(2) The capacity for the community to sustain itself through cyclic seasonal change Autumn RFAI sampling was conducted downstream of SQN during 1996 and from 1999 through 2011. RFAI scores during this period averaged 41 which rated Good. With the exception of 1998, autumn RFAI sampling was conducted upstream of SQN from 1993 through 2011. RFAI scores during this period averaged 44 (Good) (Table 17).

The downstream site during summer 2011 received a score of 41 (Good) and the upstream site scored 38 (Fair) (Table 9). During autumn 2011, both sites received the same score of 35 (Fair) (Table 10). These scores are below the historical average for these sites, but fall within the historical range of overall RFAI scores (upstream: 34-51; downstream: 35-48) (Table 17).

The composition of the autumn 2011 sample should be indicative of the ability of the fish community to withstand the stressors of an annual seasonal cycle. The numbers of indigenous species collected during autumn RFAI samples downstream of SQN during 1996 and from 1999 through 2011 ranged from 23 to 31 and the average was 27 (Figure 15). During the periods from 1993 to 1997 and 1999 to 2011, the numbers of indigenous species collected during autumn RFAI samples upstream of SQN ranged from 20 to 31 and the average number of indigenous species was 28 (Figure 16). Although the long term average of indigenous species was similar between sites, the upstream site has consistently contained a higher number of species.

Regardless, a diverse fish community has continued to persist and has exhibited the ability to sustain itself through cyclic seasonal change at both sites.

During summer 2011, 28 indigenous species were collected downstream of SQN and 29 at the upstream site. During autumn 2011, twenty-five indigenous species were collected downstream, and 27 upstream of SQN. These numbers from both summer and autumn were within the 5

average range for this metric when compared to the historical data (Figures 15, 16), indicating that the indigenous fish community was similar upstream and downstream of SQN.

Percentage of anomalies (< 2 % required for highest score)

The percentage of anomalies (e.g., visible lesions, bacterial and fungal infections parasites, muscular and skeletal deformities, and hybridization) in the summer sample should be indicative of the ability of the fish community to withstand the stressors of an annual seasonal cycle. Both upstream and downstream sites recorded the highest score for this metric during summer 2011 due to a low percentage of observed anomalies (Tables 9 and 10).

(3) The presence of necessary food chain species Summer 2011 Insectivores constituted 52.0%, omnivores 35.2%, top carnivores 11.0%, benthic invertivores 1.7%, and planktivores 0.1% of the overall fish sample downstream of SQN during summer 2011. Proportions of insectivores and omnivores met the expectations calculated from historical data for upper mainstem Tennessee River reservoir forebay areas. Proportions of benthic invertivores and top carnivores were below historical averages. Percentages of planktivores were low which is indicative of a healthy environment. No parasitic species were collected (Tables 2 and 3). Trophic levels were represented with 10 insectivorous species, 10 top carnivore species, 7 omnivorous species, 3 benthic invertivore species, and 1 planktivore species (Tables 2, 3, and 11). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River forebay zones (Tables 2 and 3).

At the upstream site during summer 2011, composition by trophic guild was insectivores 52.0%,

omnivores 36.3%, top carnivores 8.8%, benthic invertivores 2.6%, and planktivores 0.1% of the overall fish sample. Proportions of planktivores and insectivores exceeded the expectations calculated from historical data for upper mainstem Tennessee River reservoir transition areas, proportions of benthic invertivores met average expectations, proportions of omnivores and top carnivores were less than expected (Tables 2 and 3). Ten insectivorous species, 10 top carnivore species, 7 omnivorous species, 4 benthic invertivore species, and 1 plantivorous species made up the overall fish sample at the upstream site (Tables 2, 3, and 11). The number of species for each trophic guild, except for omnivores, met or exceeded expectations calculated from historical data for upper mainstem Tennessee River transition zones. Omnivore species were less than the expected number (Tables 2 and 3).

Overall, trophic guild proportions and composition were similar between sites upstream and downstream of SQN during summer 2011, indicating that the thermal discharge did not affect fish community composition downstream of SQN.

Autumn 2011 Insectivores composed 48.3%, omnivores 29.7%, top carnivores 5.2%, planktivores 16.1%, and benthic invertivores 0.8% of the overall fish sample downstream of SQN. Proportions of insectivores, omnivores, and plantivores either met or exceeded expectations calculated from historical data for upper mainstem Tennessee River reservoir forebay areas. Proportions of top 6

carnivores and benthic invertivores were low and did not meet the average proportional expectations. No parasitic species were collected (Tables 2 and 3). Trophic levels were represented with 8 insectivore species, 9 top carnivore species, 6 omnivore species, 1 planktivore species and 3 benthic invertivore species (Tables 2, 3, and 13). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River forebay zones (Tables 2 and 3).

At the upstream site, insectivores constituted 45.6%, omnivores 33.3%, top carnivores 8.2%,

benthic invertivores 1.3%, herbivores 0.7%, and planktivores 1.1% of the overall fish sample.

Proportions of insectivores and omnivores met the expectations calculated from historical data for upper mainstem Tennessee River reservoir transition areas. Proportions of benthic invertivores and top carnivores were lower than expectations, while proportions of planktivores exceeded historical expectations (Tables 2 and 3). Trophic levels were represented with 8 insectivore species, 11 top carnivore species, 6 omnivore species, 3 benthic invertivore species, 1 herbivore species, and 1 plantivorous species (Table 11). The number of species for each observed trophic guild met or exceeded expectations, which were calculated from historical data for upper mainstem Tennessee River transition zones (Tables 2 and 3).

Overall, trophic guild proportions and composition were similar between sites upstream and downstream of SQN, indicating that the thermal discharge did not affect fish community composition downstream of SQN.

(4) A lack of domination by pollution-tolerant species Summer 2011 Number of intolerant species (> 4 required for highest score)

Five pollution intolerant species were collected at the downstream site during summer 2011, while 6 were collected at the upstream site. Both sites received the highest RFAI score for this metric (Table 9).

Percentage of tolerant individuals (< 31% required for highest electrofishing score upstream and downstream of SQN; < 14% required for highest gill net score downstream of SQN-forebay criteria; < 16% required for highest gill net score upstream of SQN- transition criteria)

Both sites received the lowest RFAI score (0.5) for the electrofishing and gill net portions of this metric. At both sites, this was primarily due to collection of a high percentage of bluegill and gizzard shad in the electrofishing samples and collection of large percentages of gizzard shad in the gill net samples (Table 9).

Percentage of omnivores (< 24% required for highest electrofishing score downstream of SQN-forebay criteria; < 22% required for highest electrofishing score upstream of SQN-transition criteria; < 17% required for highest gill net score downstream of SQN; < 23% required for highest gill net score upstream of SQN)

Omnivores constituted 31.2% of the electrofishing sample downstream of SQN and 35.1%

upstream of SQN. Although only 3.9% difference, the downstream site received a mid-range score and the upstream site a low score for the metric during summer 2011. Proportions of 7

omnivores in the gill net samples at each site were much higher due to large numbers of gizzard shad, resulting in the lowest score for this portion of the metric for both sites (Table 9). The overall proportion of omnivores (electrofishing and gill net combined) was 36.3% at the upstream site and 35.2% at the downstream site. These proportions met expectations for this trophic guild in upper mainstem Tennessee River reservoirs (Tables 2 and 3).

Percent dominance by one species (< 25% required for highest electrofishing score downstream of SQN-forebay criteria; < 20% required for highest electrofishing score upstream of SQN-transition criteria; < 15% required for highest gill net score downstream of SQN; < 14% required for highest gill net score upstream of SQN)

This metric received the lowest RFAI score for the electrofishing sample at the upstream site, while receiving the mid-range score at the downstream site. Both sites received the lowest score for the gill net sample. The electrofishing samples both downstream and upstream of SQN were dominated by bluegill. Gill net samples at both sites were dominated by gizzard shad (Table 9).

Autumn 2011 Number of intolerant species (> 4 required for highest score)

Four pollution intolerant species were collected at the downstream site and three at the upstream site during autumn 2011, one more that at the upstream site. Both sites received the mid-range RFAI score for this metric (Table 9).

Percentage of tolerant individuals (< 31 % required for highest electrofishing score upstream and downstream of SQN; < 14% required for highest gill net score downstream of SQN-forebay criteria; < 16% required for highest gill net score upstream of SQN- transition criteria)

The percentage of tolerant individuals in electrofishing samples was almost twice as large (80.8%) at the upstream site compared to the downstream site (42.6%), resulting in the lowest score for the upstream site and mid-range for the downstream site. The difference was mostly due to higher numbers of bluegill in the electrofishing sample at the upstream site. The gill netting samples contained high percentages of gizzard shad and received the lowest scores at both sites (Table 10).

Percentage of omnivores (< 24% required for highest electrofishing score downstream of SQN-forebay criteria; < 22% required for highest electrofishing score upstream of SQN-transition criteria; < 17% required for highest gill net score downstream of SQN; < 23% required for highest gill net score upstream of SQN)

Omnivores made up 27.5% of the electrofishing sample downstream of SQN and 31.9%

upstream of SQN, resulting in a mid-range score for this metric at both sites. Proportions of omnivores in the gill net samples at each site were higher due to large numbers of gizzard shad, resulting in the lowest score for this portion of the metric for both sites. The overall proportion of omnivores (electrofishing and gill net combined) at the upstream site was 33.3% and 29.7% at the downstream site (Table 10). These proportions met expectations for this trophic guild in upper mainstem Tennessee River reservoirs (Tables 2 and 3).

8

Percent dominance by one species (< 25% required for highest electrofishing score downstream of SQN-forebay criteria; < 20% required for highest electrofishing score upstream of SQN-transition criteria; < 15% required for highest gill net score downstream of SQN; < 14% required for highest gill net score upstream of SQN)

The downstream site received the mid-range RFAI score for the electrofishing sample and the lowest score for the gill net sample. The upstream site received the lowest score for this metric for both electrofishing and gill net samples. The electrofishing sample downstream of SQN was dominated by Mississippi silversides (non-indigenous), while the electrofishing sample upstream of SQN was dominated by bluegill. Gill net samples at both sites were dominated by gizzard shad (Table 10).

Traditional Analyses Summer 2011 One species richness parameter (number of insectivore species) was statistically (P<0.05) higher upstream than downstream of SQN. Although the differences were not significant, seven of the other nine species richness measures were also higher upstream of the plant (including non-indigenous species). Numbers of omnivore and tolerant species were higher downstream, but the differences were not significant. Of the parameters comparing CPUE, two, total CPUE and CPUE of intolerant individuals, were statistically higher at the site upstream of SQN than the downstream. Seven of the remaining eight parameters were higher upstream than downstream, but the differences were not significant. CPUE of top carnivores was slightly higher at the downstream site. Both diversity values showed no statistical difference between sites, although both were higher at the upstream site (Table 15).

Autumn 2011 All species richness parameters were similar (no statistical difference) upstream and downstream of SQN. Six of the ten species richness measures were higher at the downstream site (including numbers of omnivore and tolerant species), while three were higher at the upstream site; mean numbers of benthic invertivore species were the same at both sites. Two of the ten parameters comparing CPUE, total CPUE and CPUE of non-indigenous individuals, were statistically higher at the downstream site (Table 16). These significant differences were driven by the higher numbers (approximately nine times more) of the non-indigenous Mississippi silverside collected at the downstream site (Tables 13 and 14). All other CPUE parameters showed no statistical difference between sites. CPUEs of insectivores, omnivores, top carnivores, and thermally sensitive individuals were also higher at the downstream site, but differences were not statistically significant. The remaining four parameters (CPUE of benthic invertivores, indigenous, tolerant, and intolerant individuals) were higher at the upstream site. Both diversity values were slightly higher at the downstream site, but differences were not significant (Table 16).

9

Fish Community Summary In conclusion, evaluation of the five characteristics of BIP and their respective metrics and traditional analyses indicated the downstream site was similar to the upstream site and that a balanced fish community existed at the site downstream of SQN in summer and autumn 2011.

Summer 2011 Seven of the 12 RFAI metrics received equal scores at both sites for the summer of 2011. The upstream site received a lower score for the metrics Number of indigenous species, Percent dominance by one species, Percent top carnivores, and Percent omnivores (Table 9).

Twenty-nine indigenous species were collected at the upstream site and 28 were collected at the downstream site. No statistical difference existed in numbers of indigenous species and CPUE of indigenous individuals between sites (Table 15). Thirty-one resident important species (RIS) were collected at the upstream site compared to 29 at the downstream site (Tables 11 and 12).

RIS are defined in EPA guidance as those species which are representative in terms of their biological requirements of a balanced, indigenous community of fish, shellfish, and wildlife in the body of water into which the discharge is made (EPA and NRC 1977). RIS often include non-indigenous species.

The same three aquatic nuisance (non-indigenous) species, common carp, yellow perch, and Mississippi silverside, were collected at both sites (Tables 11 and 12); CPUE of these three species was similar between sites (Table 15).

The same two thermally sensitive species (spotted sucker and logperch) were collected at both sites (Tables 11 and 12) and were collected in similar densities (Table 15). Water temperatures greater than 32.2°C (90°F) are known to be the avoidance level and/or lethal level to these species (Yoder et al. 2006).

Four commercially valuable species were collected at the downstream site and five were collected at the upstream site. Twenty-four recreationally valuable species were collected at the upstream site, while 25 were collected at the downstream site (Tables 11 and 12).

Autumn 2011 Nine of the 12 RFAI metrics received the same scores at both sites. The upstream site received a lower score for the electrofishing portion of the metric Percent dominance by one species and Percent tolerant individuals, while the downstream site received a lower score for the metric Percent top carnivores (Table 10).

Twenty-eight indigenous species were collected at the upstream site, while 25 were collected at the downstream site. Numbers of indigenous species and indigenous CPUEs at the downstream site were similar to those at the upstream site (Table 16). Thirty resident important species were collected at the upstream site compared to 27 resident important species at the downstream stations (Tables 13 and 14). Representative important species are defined in EPA guidance as those species which are representative in terms of their biological requirements of a balanced, indigenous community of fish, shellfish, and wildlife in the body of water into which the discharge is made (EPA and NRC 1977).

10

Three aquatic nuisance species (common carp, yellow perch, and Mississippi silverside) were collected at the upstream site, while two aquatic nuisance species (common carp and Mississippi silverside) were collected at the downstream site (Tables 13 and 14). Although the numbers of non-indigenous species was similar between sites, CPUE of non-indigenous individuals was significantly higher at the downstream site (Table 16). This was due to a large number of Mississippi silversides collected at the downstream site (917, or 33.5% of total catch) compared to the upstream site (124, or 6.3 % of total catch) (Tables 13 and 14). This is a schooling fish species and is commonly collected in large numbers.

Two thermally sensitive species (spotted sucker and logperch) were collected upstream, while one (spotted sucker) was collected downstream (Tables 13 and 14). CPUE of these species was similar between sites (Table 16). Water temperatures greater than 32.2°C (90°F) are known to be the upper avoidance level or lethal to the aforementioned species (Yoder et al. 2006).

Thirteen commercially valuable species were collected at downstream site and 11 at the upstream site. Twenty-four recreationally valuable species were collected at the upstream site, while 19 were collected at the downstream site (Tables 13 and 14).

As discussed above, RFAI scores have an intrinsic variability of +/-3 points. This variability comes from various sources, including annual variations in air temperature and stream flow; variations in pollutant loadings from nonpoint sources; changes in habitat, such as extent and density of aquatic vegetation; natural population cycles and movements of the species being sampled (TWRC, 2006). Another source of variability arises from the fact that nearly any practical measurement, lethal or non-lethal, of a biological community is a sample rather than a measurement of the entire population. As long as scores are within the 6-point range, there is no certainty that any real change at a site has occurred or difference between sites exists beyond method variability.

It should be noted that the upstream site is scored using transition criteria and the downstream site using forebay criteria (Table 4). More accurate comparisons can be made between sites that are located in the same reservoir zone (i.e., transition to transition). Due to the location of SQN, it is not possible to have an upstream and downstream site within the same reservoir zone. SQN is located at the downstream end of the transition zone on Chickamauga Reservoir; therefore, the downstream site is located in the upstream section of the forebay. The physical and chemical composition of a forebay is often different than that of a transition zone; consequently, inherent differences exist among the aquatic communities (e.g. species diversity is often higher in a transition zone than a forebay).

Through the years sampled, the upstream site averaged a score of 44 (Good) while the downstream site averaged a score of 41 (Good), indicating the sites were similar annually and that the SQN heated effluent is not adversely affecting the fish community in the vicinity of the plant (Table 17). RFAI scores are presented for the Chickamauga Reservoir inflow site (TRM 529.0), the forebay site (TRM 472.3), and the Hiwassee River Embayment site (HiRM 8.5) to provide additional information on the health of the fish community throughout the reservoir; however, aquatic communities at these sites are not affected by SQN thermal discharges and are not used to determine BIP in relation to SQN. The average RFAI scores at these three sites among all years sampled have remained in the Good range (Table 17).

11

Individual metric scores, overall RFAI scores, species collected, and catch per effort from electrofishing and gill netting for the upstream and downstream sampling sites at SQN during 1999 through 2010 are included in Shaffer et al., 2010 and Simmons, 2011.

Benthic Macroinvertebrate Community Summer 2011 During summer 2011, RBI scores at the downstream transects TRM 481.3 and TRM 483.4 were 27 (Good) and 29 (Good), respectively, and were slightly higher than those at upstream transects TRM 488.0 and TRM 490.5 [27 (Good) and 23 (Fair), respectively] (Table 18). A difference of 4 points or less between upstream and downstream stations is used to define similar conditions between the two sites. Because the average of the downstream sites (28) scored three points higher than that of the upstream sites (25) and rated Good, it can be determined that BIP was maintained. For the discussion of each RBI metric, the downstream site was compared to the upstream control site.

Average number of taxa (> 5 required for highest score-forebay criteria; > 6.6 required for highest score-transition criteria)

The downstream sites (forebay) averaged 11.2 taxa, while the upstream sites (transition) averaged 7.1 taxa; all sites received the highest score for this metric (Table 18).

Proportion of samples with long-lived organisms (> 0.8 required for highest score-forebay criteria; > 0.9 required for highest score-transition criteria)

The observed values for the metric Proportion of samples with long-lived organisms (e.g.,

Corbicula, Hexagenia, mussels, and snails) were 0.8 at both downstream transects and both sites scored 3 (mid-range). Upstream of SQN, all samples at the transect at TRM 488.0 contained long-lived organisms (1.0) resulting in a score of 5, while TRM 409.5 received a score of 1 with only 40% of samples containing long-lived organisms (Table 18). Snail proportions, in particular, were higher downstream of SQN as compared to those upstream (Figure 19).

Average number of EPT taxa (> 0.9 required for highest score-forebay criteria; > 1.4 required for highest score-transition criteria)

The average number of EPT taxa present in each sample were 0.9 and 1.2 at the downstream transects, resulting in scores of 3 and 5, respectively. At the upstream transects TRM 488.0 and TRM 490.5, average number of EPT taxa was 0.8 (score: 3) and 0.2 (score: 1), respectively (Table 18). Ephemeroptera (mayflies) and Trichoptera (caddisflies) proportions were slightly higher at the downstream sites as compared to the upstream sites (Figure 17).

Average proportion of oligochaete individuals (< 21.0 required for highest score-forebay criteria;

< 11.0 required for highest score-transition criteria)

The average proportion of oligochaete individuals at the downstream sites were 35.6% (score of

3) and 54.4% (score of 1). The upstream sites had smaller percentages of samples containing oligochaetes (15.5% at TRM 488.0 and 7.2% at TRM 490.5) and therefore, received higher scores of 3 and 5, respectively (Table 18).

12

Average proportion of total abundance comprised by the two most abundant species (< 81.7 required for highest score-forebay criteria; < 77.8 required for highest score-transition criteria)

Both downstream sites received scores of 5 with proportions of 73.7% (TRM 481.3) and 75.5%

(TRM 483.4) of the samples comprising the two most abundant taxa (chironomids and oligochaetes). At the upstream sites TRM 488.0 and TRM 490.5, 82.8% and 86.4% of the total abundance, respectively, was comprised of the two most abundant taxa (chironomids and oligochaetes) resulting in mid-range scores for both sites (Tables 18 and 20).

Average density excluding chironomids and oligochaetes (> 249.9 required for highest score-forebay criteria; > 609.9 required for highest score-transition criteria)

At the downstream sites, average densities of organisms excluding chironomids and oligochaetes were 235/m2 and 525/m2, resulting in scores of 3 and 5, respectively. At the sites upstream of SQN, densities excluding chironomids and oligochaetes were 470/m2 and 396.7/m2 and both sites received scores of 3 (Table 18).

Proportion of samples containing no organisms (0 required for highest score)

There were no samples at any site upstream and downstream of SQN which were void of organisms. Therefore, all sites received the highest score for this RBI metric during summer 2011 (Table 18).

In conclusion, during the summer of 2011 downstream sites scored the same or higher than the upstream site on all metrics except Average number of oligochaetes indicating BIP was maintained downstream of SQN.

Autumn 2011 Autumn RBI scores for downstream were 29 (Good), 27 (Good), while the upstream site scored 19 (Fair) (Table 18). A difference of 4 points or less between upstream and downstream stations is used to define similar conditions between the two sites. Because the downstream site scored 8 to 10 points higher and rated Good, it can be determined that BIP was maintained. For the discussion of each RBI metric, the downstream site was compared to the upstream control site.

Average number of taxa (> 5 required for highest score-forebay criteria; > 6.6 required for highest score-transition criteria)

Averages of 7.8 and 13.6 taxa were observed for sites downstream of SQN. The site upstream of SQN averaged 6.6 taxa per sample. The downstream sites both received the highest score for this metric, while the upstream site received the mid-range score (Table 18).

Proportion of samples with long-lived organisms (> 0.8 required for highest score-forebay criteria; > 0.9 required for highest score-transition criteria)

The metric proportion of samples with long-lived organisms (Corbicula, Hexagenia, mussels, and snails) scored 3 at both downstream sites with proportions of 0.7 and 0.8. The proportion of samples with long-lived organisms (0.8) was similar at the upstream site and therefore, also a score of 3 (Table 18).

13

Average number of EPT taxa (> 0.9 required for highest score-forebay criteria; > 1.4 required for highest score-transition criteria)

The average numbers of EPT taxa present per sample at each of the downstream sites were 1.0 and 0.9, resulting in scores of 5 and 3, respectively. The site upstream of SQN received a score of 1 with 0.5 EPT taxa per sample (Table 18). Ephemeroptera (mayflies) and Trichoptera (caddisflies) proportions were higher at the downstream sites as compared to the upstream site (Figure 19).

Average proportion of oligochaete individuals (< 21.0 required for highest score-forebay criteria;

< 11.0 required for highest score-transition criteria)

At the downstream sites, average proportion of oligochaete individuals in each sample was 29.4% at TRM 481.3 and 48.1% at TRM 483.4 resulting in scores of 3 and 1, respectively. The upstream site received a score of 3 with a proportion of 14.8% (Table 18).

Average proportion of total abundance comprised by the two most abundant species (< 81.7 required for highest score-forebay criteria; < 77.8 required for highest score-transition criteria)

During autumn 2011, 78.6% of the total abundance at TRM 481.3 was comprised of the two most abundant taxa (chironomids and oligochaetes). The two most abundant taxa at TRM 483.4 were oligochaetes and flatworms (Planariidae) and constituted 77% of the total abundance. Both downstream sites received the highest score of 5. At the upstream site TRM 490.5, 84.5% of the total abundance was comprised by the two most abundant taxa, chironomids and fingernail clams (Sphaeriidae), resulting in a mid-range score for this metric (Tables 18 and 20).

Average density excluding chironomids and oligochaetes (> 249.9 required for highest score-forebay criteria; > 609.9 required for highest score-transition criteria)

At the downstream sites, average densities excluding chironomids and oligochaetes were 181.7/m2 and 1,685/m2 resulting in scores of 3 and 5, respectively. Average density excluding chironomids and oligochaetes at the upstream site was 263.3/m2, resulting in the lowest score for this metric (Table 18).

Proportion of samples containing no organisms (0 required for highest score)

There were no samples at any site which were void of organisms. Therefore, all sites received the highest score for this RBI metric during autumn 2011 (Table 18).

In conclusion, during the autumn of 2011, downstream sites scored the same or higher on all the metrics indicating a BIP of benthic macroinvertebrates was maintained downstream of SQN (Table 18). The low score at the upstream site (19) was lower than expected based on historical scores; however, similarly low scores of 21 and 17 were observed in 2007 and 2008, respectively. A possible reason for the low score at the upstream site could be pollution impacts from the Hiwassee River, which enters the Tennessee River 9 miles upstream of TRM 490.5.

Individual RBI metric ratings and field scores from TRM 482.0 (downstream) and TRM 490.5 (upstream) are listed in Table 21 for comparison of results from 2000 to 2010. Although downstream sites sampled in 2011 were proximate to the transect sampled from 2000-2010 14

(TRM 482.0), 2011 RBI scores cannot be directly compared to those from 2000 to 2010 without inference.

RBI scores for the inflow, forebay, and Hiwassee River embayment sites are included in Table 19 to provide additional information on the overall health of the benthic macroinvertebrate community in Chickamauga Reservoir. RBI scores have averaged Good for the inflow and forebay sites and Fair for the Hiwassee River embayment over all sample years.

Plankton Community Detailed results of taxa collected and estimates of sample density are provided in Table 26 (phytoplankton) and in Table 33 (zooplankton).

Phytoplankton Summer 2011 Figure 18 indicates that average phytoplankton densities decreased progressively from TRM 490.7 (the most upstream site) to TRM 483.4 (immediately downstream of the diffusers).

Phytoplankton density was lowest at TRM 483.4 and increased further downstream at TRM 481.1 to concentrations similar to the most upstream site.

Numerically, cyanophytes were the dominant taxa (96 to 99 percent; Table 22, Figure 18) at all sites, with a prevalence of Cyanogranis and several taxa in the family Chroococcaceae (Table 26). Considered as a percentage of total biovolume, bacillariophytes (diatoms) were more dominant (Figure 19). Total taxa richness for paired replicate samples ranged from 43 to 49, and the percentage of taxa shared between replicates samples ranged from 52.1 to 76.7 percent (Table 23). However, of the 67 taxa collected in August, seven cyanophyte taxa were common to all replicate samples and accounted for 86 to 95 percent of the total population (Tables 24, 26).

Percent Similarity coefficients (ranging from 75 to 87; Table 25) and Bray-Curtis similarity coefficients (BCe) were high (ranging from 0.78 to 0.81, Figure 25), indicating that the structure of the phytoplankton community was similar at all sites. The cluster analysis indicated that the communities at TRM 481.1 and TRM 487.9 were the most similar, followed by TRM 483.4 and 490.7. No upstream to downstream trend was evident.

Autumn 2011 Total population densities in October were much lower compared to those in August, and the spatial trend was reversed. That is, phytoplankton density increased progressively from the most upstream site (TRM 490.7) to a maximum density at the diffuser (TRM 483.4), then decreased again slightly at the site further downstream at TRM 481.1 (Figure 20).

Bacillariophytes (diatoms) were numerically dominant (36 to 63 percent; Table 22, Figure 20) at all sites and comprised approximately 74 to 91 percent of the total biovolume (Figure 21).

Cryptophytes (Cryptomonas) were subdominant (21 to 36 percent) and the composition of chlorophytes and cyanophytes ranged from 6 to 16 percent. Total taxa richness for paired replicate samples ranged from 27 to 32 at the three lower sites, but only 19 taxa were collected at 15

TRM 490.7. The number of taxa shared between replicate samples ranged from 50.0 to 57.9 percent (Table 23). However, of the 38 taxa collected in October, nine were common to all samples and accounted for 74 to 97 percent of the total population. A mix of cyanophyte taxa often comprised more than 10 percent of the population in any given sample, but seldom was the same taxon present in both replicates, and no single taxon was represented in all samples (Tables 24, 26).

October PS coefficients among the three lower sites were relatively high (71 to 80), while the PS coefficients for TRM 490.7 were notably lower (63 for each site comparison) (Table 25). By this measure, the communities downstream (TRM 487.9, 483.4, and 481.1) were relatively similar, but the community at the most upstream site (TRM 490.7) showed the greatest dissimilarity to any other. The same taxa (Aulacoseira, Fragilaria, and Cryptomonas) were dominant at each site, but TRM 490.7 had lower taxa richness and the dominant taxa comprised a greater percentage of the overall population (Table 27).

The Bray-Curtis similarity coefficients (BCe) (0.64 to 0.73) indicate that phytoplankton community structure was slightly more dissimilar among sites in October than in August, which is supported by the PS coefficients. TRM 483.4 and TRM 487.9 formed the first cluster (BCe, 0.73), followed by a secondary cluster with TRM 481.1 (BCe, 0.68). TRM 490.7 clustered last, indicating this site was least similar in terms of taxa shared and taxa abundances (Figure 26).

Overall, TRM 490.7 had higher composition of diatoms and lower composition of chlorophytes and cryptophytes compared to the three downstream locations (Table 22).

Chlorophyll Chlorophyll a concentrations differed among the four sites in samples collected in both August and October (Table 28, Figure 22). Upstream to downstream differences in chlorophyll a concentrations closely paralleled phytoplankton density, but as expected, the chlorophyll a concentration was more closely associated with biovolume (Figures 19, 21).

August data show TRM 483.4 had the lowest concentrations (6.0 µg/l) followed by TRM 490.7 (9.5 µg/l). Chlorophyll a concentrations were similar for TRM 481.1 (12 µg/l) and TRM 487.9 (14 µg/l) (Table 28). Decreased concentrations at TRM 483.4 are supported by findings of reduced phytoplankton cell densities and biovolume at this location (Table 26, Figure 19).

October chlorophyll a concentrations increased progressively from TRM 490.7 to TRM 483.4, and then decreased at TRM 481.1 to a concentration similar to that of the uppermost site (TRM 490.7). Again, the spatial differences are supported by the phytoplankton density (Table 26) and biovolume data (Figure 21).

Zooplankton Overall, 35 zooplankton taxa were represented in the samples collected. The number of taxa represented in each major group was 10 to 12, with the exception of the Bivalvia, for which only 2 taxa were represented (Table 31). Notably, taxa richness for individual samples ranged from 8 to 16, but the number of taxa shared between replicates ranged from only 3 to 8 (21.4 to 66.7 percent) due to substantial variability in the presence/absence of less abundant taxa (Tables 30, 33). In the samples collected during both August and October, four to five taxa comprised the majority (approximately 90 to 99 percent) of the populations at each of the four sites. The 16

dominant taxa were the cladocerans Bosmina longirostris and Diaphanosoma birgei (not present in October); copepods in the orders Calanoida and Cyclopoida; and the rotifer Conochilus unicornis (Table 33).

Summer 2011 Data from August samples showed that zooplankton densities were notably higher at sites downstream of the diffusers. Densities increased progressively from the most upstream site (TRM 490.7) to the highest density at TRM 483.4, just downstream of the diffusers, then decreased slightly at TRM 481.2. The lower overall density at TRM 481.2 was largely due to the collection of fewer rotifers. TRM 483.4 had higher rotifer group density than all other sites.

TRM 481.1 had the highest density of cladocerans (Figure 23).

Cladocerans were numerically dominant (49 to 68 percent; Table 29, Figure 23) at all sites. The composition of copepods and rotifers was generally similar (15 to 26 percent) among all sites except TRM 481.1. Rotifers comprised only two percent of the population at TRM 481.1 and copepods comprised a slightly higher percentage (30 percent) compared to other sites. Total taxa richness for paired replicate samples was relatively low, ranging from 8 to 14. Taxa richness was highest (14) at TRM 481.1, with sites upstream having only 8 to 9 taxa represented (Table 30).

August PS coefficients (70 to 80) were relatively high among the three most upstream sites, indicating similar community structure. TRM 481.1 had somewhat low PS coefficients with TRM 483.4 and TRM 487.9 (63 and 69, respectively), due largely to lower composition of copepods in the order Calanoida and the rotifer Conochilus unicornis at TRM 481.1. The PS coefficient (75) for TRM 481.1 and TRM 490.7 was relatively high (Table 32).

Bray-Curtis Similarity yielded similar results. Coefficients ranged from 0.65 to 0.80. TRM 483.4 and TRM 490.7 were the most similar, with a high coefficient of 0.80. These sites formed a secondary cluster with TRM 487.9 (BCe, 0.72). TRM 481.1 clustered last (BCe, 0.65),

indicating this site was least similar to the other sites in terms of taxa shared and taxa abundances (Figure 27).

Autumn 2011 In October, average zooplankton densities were highest at TRM 481.1, but variability between the replicate samples was high. TRM 490.7 had the second highest population density.

Densities were similar at TRM 483.4 and TRM 487.5 (Figure 24).

Comparable to findings in August, cladocerans were numerically dominant (44 to 71 percent) at all sites and copepods were subdominant (23 to 40 percent). However, the composition of rotifers was higher at TRM 481.1 (16 percent) than at sites upstream (2 to 6 percent), which is the reverse of findings in August (Table 29). Total taxa richness ranged from 12 to 16 at the three most upstream sites, but only 9 taxa were collected at TRM 481.1 (Table 30).

October PS coefficients (72 to 93) were higher among sites than in August, but yielded similar findings, with the lowest PS coefficients (72 to 83) for TRM 481.1 (Table 32). However, the density and composition of copepods in the order Calanoida and the rotifer Conochilus unicornis were highest at TRM 481.1 in October and lowest in August (Table 33). These taxa contributed to the dissimilarity between TRM 481.1 and other sites exhibited during both sample dates.

17

Bray-Curtis Similarity yielded similar results. Coefficients ranged from 0.63 to 0.70. TRM 483.3 and TRM 487.9 formed the first cluster (BCe, 0.70), indicating the communities at these sites were the most similar of the four. These sites form a secondary cluster with TRM 490.7 (BCe, 0.68). TRM 481.1 clustered last, indicating greater dissimilarity with other sites (Figure 28).

Plankton Summary The results of the Phytoplankton and Zooplankton studies at SQN during 2011 generally support findings from previous studies, which are presented in the section following this summary.

Phytoplankton Phytoplankton data indicated that quantitative characteristics (total and group cell densities) differed among sites in both August and October, but there were few differences in community structure among the four sample sites on either date. Notably, the reduced phytoplankton densities, biovolume, and chlorophyll concentrations at TRM 483.4 in August could be interpreted as an effect from SQN diffuser discharge. Previous studies have indentified reduced phytoplankton densities and chlorophyll concentrations (biovolume was not measured) at TRM 483.4 due to the diffusers mixing water from the bottom - containing low phytoplankton densities - with water of the upper strata that typically contain greater densities. Previous studies have also documented that when phytoplankton reductions have occurred at TRM 483.4 in apparent relation to diffuser mixing, densities recovered within a few miles downstream of the diffusers. Likewise, in August, phytoplankton parameters (density, biovolume, and chlorophyll) showed lowest values at TRM 483.4, and then increased at TRM 481.1 to levels similar to those found upstream of the diffuser. Additionally, previous studies have documented that when differences have occurred in phytoplankton communities among locations, these differences typically have been either increases or decreases in organism densities, not compositional changes in the community. This was supported in the current study. In both August and October, the two independent measures of diversity indicated relatively high levels of similarity among sites upstream and downstream of the diffusers, even though population densities differed. Only TRM 490.7 exhibited lower similarity when compared with the other sites, and then only in October. However, we do not consider this dissimilarity related to the operation of SQN.

Zooplankton Zooplankton data indicated that quantitative differences existed among sites in both August and October, but there were no upstream to downstream trends in population densities that provided definitive evidence of an effect from the operation of SQN. In August, zooplankton densities were highest at TRM 483.4, just downstream of the diffuser, and densities at both downstream sites were higher compared to those of the upstream sites. In October, zooplankton densities were highest at TRM 481.1, the most downstream site. Densities at TRM 483.4 and TRM 487.9 were very similar, but were lower than those at the most upstream and most downstream sites.

As with phytoplankton, compositions of the zooplankton communities were generally similar among sites, even though population densities differed. Overall, TRM 481.1 was more dissimilar to the other sites in both August and October. This was due in part to higher population densities at TRM 481.1, but interestingly, the taxa that contributed most to the 18

dissimilarity of this site were the same in both months. In August, TRM 481.1 had the lowest density and composition of calanoid copepods and of the rotifer Conochilus unicornis. In October, the same site had the highest density and composition of these taxa. Although the reduced densities of these taxa in August may have been due in part to operation of SQN, the greater abundance of organisms at TRM 481.1 - including the highest densities of copepods and cladocerans among all four sites - suggests that the majority of the reduction is more likely related to other variables. One such variable is the patchy nature of plankton distributions, as evidenced by the high variability in density of some taxa observed between replicate samples collected at each site. Such patchy distributions have been described in previous studies, and are discussed further in the review following this summary.

Review of Previous Plankton Studies Previous plankton studies around SQN were conducted with the objective of evaluating the effects of SQN operations on plankton, but these were not controlled experiments (i.e.

experiments designed to keep all variables constant except the test factor - in this case, the power plant). Instead, the program monitored a dynamic system: even without the influence of SQN, differences between the control locations (upstream of the plant) and the test locations (downstream of the plant) were expected due to other possible variables. One possible variable is the longitudinal point, or transition zone, where water velocities become sufficiently low for phytoplankton to remain in the photic zone long enough to sustain growth and reproduction. The location of this transition zone in the reservoir is dependent on flow conditions, and it might fluctuate upstream or downstream daily or even hourly, as inflows from the Hiwassee River and releases from Chickamauga and Watts Bar dams vary (Figures 29 and 30 - hourly average flows). Other variables may include but are not limited to: reservoir stratification; inflow from the overbanks and other highly productive areas; phase of population (and community) growth; the patchy nature of plankton distribution; differences in depth among sample locations; travel time between sample locations; and light penetration. Like the transition zone, many of the factors in this list are also directly or indirectly related to flow conditions. Each of the factors listed here has an important influence on plankton, and each contributes to the composition of the community sampled at each location.

Studies to date have documented that when differences in phytoplankton and zooplankton communities occurred among sample locations, these differences typically were either increases or decreases in organism densities, not community changes. Studies have shown that downstream increases were more commonly observed under relatively high reservoir flows (e.g.,

30,000 cfs), while when reservoir flows were quite low (i.e., <10,000), decreases in downstream plankton densities were expected, particularly at the diffuser location (TRM 483.4). Greater variability in plankton densities was observed at intermediate flows.

The studies also indicated that reductions in phytoplankton densities were caused by different mechanisms than were reductions in zooplankton densities.

The mechanism most likely responsible for reductions of phytoplankton densities and of chlorophyll concentrations is mixing of the water column at the diffuser location. In-plant plankton studies conducted in 1987 (TVA, 1988) and in 1988 (TVA, 1989) indicated some reduction in cell densities may have occurred as water was entrained through the CCWS, but most of the reductions observed at TRM 483.4 were due to mixing caused by the diffusers. The cooling water that is withdrawn from the lower strata near the skimmer wall has naturally low 19

concentrations of phytoplankton compared to upper strata. This water is carried through the CCWS, heated, and discharged through the diffusers. The momentum from being discharged through the diffuser ports, plus the buoyancy from the added heat, cause this water to rise and mix with ambient water near the diffusers. The water withdrawn from and discharged at the bottom, already low in phytoplankton, and the mixing which redistributes the phytoplankton concentrated near the surface, are reflected as reduced phytoplankton concentrations for TRM 483.4 at most strata.

Previous studies have also documented that when phytoplankton reductions occurred at TRM 483.4 in apparent relation to diffuser mixing, recovery was realized by TRM 478.2 (previous study site). Furthermore, special biweekly surveys conducted from April to October, 1989, showed downstream phytoplankton concentrations recovered to levels similar to those above the diffuser within 1-2 river miles (TVA, 1990).

Reductions in zooplankton densities appear to be caused by a more complex set of factors, including passage through the SQN CCWS. In-plant studies have shown substantial reductions in zooplankton densities during passage through the CCWS, even without heat (TVA, 1988).

Zooplankton densities were significantly lower in the diffuser pond samples compared to intake samples, and essentially all zooplankton examined from the diffuser pond were immobile and presumed dead (TVA, 1989). Discharge of the water with reduced number of zooplankters would result in some reduction in density at the diffuser location (TRM 483.4). However, these reductions alone were not sufficient to account for the magnitude of decreased density typically observed, particularly since many of the dead zooplankters would still be discharged and included in the enumeration from TRM 483.4.

These results indicate that some other factor or combination of factors, in addition to mixing at the diffuser, must be involved in reduced zooplankton densities at the diffuser site. One possible factor that became evident as more studies were conducted is the complex hydraulics in the vicinity of the diffuser discharge. The hydraulics of this area were likely complex even before SQN was constructed, due to the narrowing and deepening of the channel compared to upstream, and to the presence of an overbank (typically highly productive) with its point of inflow to the channel just upstream of where the channel narrows and deepens. Construction of SQN, including the addition of an underwater dam that occupies about half of the cross-sectional area of the river channel and the installation of the diffusers with buoyant discharge, further complicated the hydraulics in this area. Obviously, collection of representative samples from this area is difficult due to varying contributions of several factors, including reduced densities in the discharge water, increased densities in water entering the channel from the upstream overbank, and physical mixing of the zooplankton (which typically are not evenly distributed in the water column) in the ambient channel water. Although some of the reductions in zooplankton densities are due to operation of SQN, it has not been possible to specify the magnitude of that reduction separate from that due to other variables.

Visual Encounter Survey/Wildlife Observations Summer 2011 Thirty-three individuals composing 11 bird species and 1 mammal species were observed along shoreline transects (RDB and LDB) upstream of SQN. Along shoreline transects downstream of SQN, 51 individuals constituting 10 bird and one mammal species were observed. Bird species 20

observed both upstream and downstream of SQN included unidentified species of swallow, belted kingfisher, osprey, and great blue heron. American crow, turkey vulture, red-winged blackbird, and an unidentified duck species were only observed at the transects upstream of SQN, while wood duck, double-crested cormorant, European starling, and green heron were only observed along transects downstream. White-tailed deer was the only mammal species observed during the survey and was observed in equal numbers (4 individuals) upstream and downstream of SQN (Table 35).

Autumn 2011 Four species of birds comprising 9 individuals were observed along transects upstream of SQN.

Downstream of SQN, 1,024 birds composing 17 species and one species of mammal were observed. Three of the four bird species (great blue heron, belted kingfisher, and an unidentified songbird species) observed upstream were viewed downstream; an unidentified wren species was observed along transects upstream of SQN only. Fourteen bird species were only observed downstream of SQN and included blue jay, northern mockingbird, double-crested cormorant, American coot, American widgeon, pied-billed grebe, mallard, tufted titmouse, killdeer, wood duck, black-crowned night heron, gadwall, green-winged teal, and an unidentified sandpiper species. The only mammal species observed at the downstream transect was eastern gray squirrel (1 individual) (Table 35).

In summary, the wildlife community downstream of SQN was similar to that upstream during summer 2011. During the autumn 2011 survey, species richness and total numbers observed were significantly higher downstream of SQN.

Chickamauga Reservoir Flow and Temperature Near SQN Total average daily flows from Watts Bar Dam, Ocoee No. 1 Dam, and Appalachia Dam from October 2010 to November 2011 and historical daily average flows from 1976 through 2010 are shown in Figure 31. Daily average flows from October 2010 to November 2011 were similar (total daily average flows averaged 6% higher) to historical daily average flows, but were below the historical averages during the summer and autumn sampling periods (Figure 31).

Daily average water temperatures recorded upstream of the SQN intake and downstream of SQN discharge, October 2010 through November 2011, are shown in Figure 20. Water temperatures remained within permitted limits (below 86.9°F) throughout the year (Figure 32).

Thermal Plume Characterization Summer 2011 Temperature profiles collected on August 25, 2011 indicated the thermal plume extended from the SQN discharge point (TRM 483.6) downstream approximately 4.1 miles to TRM 479.5 (Table 36, Figure 4). The average ambient surface water temperature (0.3 m and 1 m depths) measured at TRM 486.7 on the date of the survey was 81.86°F; the maximum temperature recorded downstream of the discharge was 86.85°F. Once discharged from diffusers located on the river bottom, the thermal plume rose to the surface and remained in the upper 1 m (3.3 ft) of 21

the water column, as evidenced by temperatures measured at TRM 481.1 and TRM 480.0 (Table 36).

Autumn 2011 On August 14, 2011, the SQN thermal plume extended downstream approximately 2.6 miles to TRM 481 (Table 37, Figure 4). The average ambient surface water temperature (0.3 m and 1 m depths) measured at TRM 487.0 on the date of the survey was 77.16°F. Downstream of the discharge, the maximum water temperature measured was 81.91°F. The thermal plume remained in the upper 1 m (3.3 ft) of the water column, as evidenced by temperatures measured at TRM 483.4, TRM 482.2, and TRM 481 (Table 37).

In summary, the entire biomonitoring zone downstream of SQN was contained within the thermal plume during the summer and autumn 2011 survey periods (Figure 4). The thermal plume extended further downstream during the summer monitoring period than the autumn period. The difference was attributed to several factors including releases from Watts Bar Dam upstream and Chickamauga Dam downstream of the plant, power generation at SQN, and condenser cooling water discharge.

Water Quality Parameters at Fish Sampling Sites During RFAI Samples Observed values of water temperature, conductivity, dissolved oxygen, and pH are listed for each profile (LDB, mid-channel, and RDB), transect (downstream, middle, and upstream), site (TRM 482 and 490.5), and season (summer and autumn 2011) in Table 38.

Summer 2011 Water temperatures at the sampling site upstream of SQN ranged from 80.44 to 83.73°F.

Downstream of SQN, water temperatures ranged from 81.73 to 87.04°F. Dissolved oxygen concentrations ranged from 4.22 to 6.56 ppm at the sampling site upstream of SQN. Dissolved oxygen readings taken at the sampling site downstream of SQN ranged from 5.26 to 7.56 ppm.

Conductivity values ranged from 190 to 227.5 µS at the downstream site and 193.2 to 201.3 at the upstream site. At the downstream site, pH values ranged from 7.55 to 8.5, while at the upstream site pH values ranged from 7.3 to 8.66 (Table 38).

Autumn 2011 Water temperatures at the sampling site upstream of SQN ranged from 69.85 to 70.47°F.

Downstream of SQN, water temperatures ranged from 70.43 to 74.89°F. Dissolved oxygen concentrations ranged from 7.10 to 7.94 ppm at the sampling site upstream of SQN. Dissolved oxygen readings taken at the sampling site downstream of SQN ranged from 6.60 to 9.69 ppm.

Conductivity values ranged from 182.7 to 185.3 µS at the downstream site and 179.4 to 191.6 µS at the upstream site. At the downstream site, pH values ranged from 7.23 to 8.50, while at the upstream site pH values ranged from 7.17 to 7.6 (Table 38).

22

Literature Cited EPA (U.S. Environmental Protection Agency) and NRC (U.S. Nuclear Regulatory Commission).

1977 (draft). Interagency 316(a) Technical Guidance manual and Guide for Thermal Effects Sections of Nuclear Facilities Environmental Impact Statements. U.S.

Environmental Protection Agency, Office of Water Enforcement, Permits Division, Industrial Permits Branch, Washington, DC.

Etnier, D.A. & Starnes, W.C. (1993) The Fishes of Tennessee. University of Tennessee Press, Knoxville, Tennessee, 681 pp.

Hickman, G. D. and T. A. McDonough. 1996. Assessing the Reservoir Fish Assemblage Index-A potential measure of reservoir quality. In: D. DeVries (Ed.) Reservoir symposium-Multidimensional approaches to reservoir fisheries management. Reservoir Committee, Southern Division, American Fisheries Society, Bethesda, MD. pp 85-97.

Hubert, W. A., 1996. Passive capture techniques, entanglement gears. Pages 160-165 in B. R.

Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society Bethesda, Maryland, USA.

Jennings, M. J., L. S. Fore, and J. R. Karr. 1995. Biological monitoring of fish assemblages in the Tennessee Valley reservoirs. Regulated Rivers 11:263-274.

Levene, Howard. 1960. Robust tests for equality of variances. In Ingram Olkin, Harold Hotelling, et alia. Stanford University Press. pp. 278-292.

Mann, H. B.; Whitney, D. R. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics 18 (1): 50-60.

McDonough, T.A. and G.D. Hickman. 1999. Reservoir Fish Assemblage Index development: A tool for assessing ecological health in Tennessee Valley Authority impoundments. In:

Assessing the sustainability and biological integrity of water resources using fish communities. Simon, T. (Ed.) CRC Press, Boca Raton, pp 523-540.

Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K., and Hughes, R.M. (1989). Rapid assessment protocols for use in streams and rivers: benthic macroinvertebrates and fish.

EPA/444/4-89-001, Washington DC, USA.

Reynolds, J. B., 1996. Electrofishing. Pages 221-251 in B. R. Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society Bethesda, Maryland, USA.

Shaffer, G.P., J.W. Simmons, and D.S. Baxter. 2010. Biological monitoring in the vicinity of the Sequoyah Nuclear Plant discharge, autumn 2009. Tennessee Valley Authority, Aquatic Monitoring and Management, Knoxville, TN. 76 pp.

23

Shapiro, S. S. and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52 (3-4): 591-611.

Simmons, J.W. 2011. Biological monitoring in the vicinity of the Sequoyah Nuclear Plant discharge, autumn 2010. Tennessee Valley Authority, Biological and Water Resources, Chattanooga, TN. 58 pp.

Tennessee Valley Authority. 1988. Results of plankton studies conducted in 1986 and 1987 as part of the Operational Aquatic Monitoring Program at Sequoyah Nuclear Plant, Chickamauga Reservoir. Office of Natural Resources and Economic Development, Division of Air and Water Resources, Knoxville, Tennessee.

Tennessee Valley Authority. 1989. Plankton studies at Sequoyah Nuclear Plant in 1988. River Basin Operations, Water Resources, Chattanooga, Tennessee, TVA/WR/AB89/3.

Tennessee Valley Authority. 1990. Plankton studies at Sequoyah Nuclear Plant in 1989. River Basin Operations, Water Resources, Chattanooga, Tennessee, TVA/WR/AB90/2.

TWRC. 2006. Strategic Plan, 2006-2012. Tennessee Wildlife Resources Commission, Nashville, TN. March 2006. pp 124-125. http://tennessee.gov/twra/pdfs/StratPlan06-12.pdf Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1 (6): 80-83 Yoder, C.O., B.J. Armitage, and E.T. Rankin. 2006. Re-evaluation of the Technical Justification for Existing Ohio River Mainstem Temperature Criteria. Midwest Biodiversity Institute, Columbus, Ohio.

24

Tables 25

Table 1. Shoreline Aquatic Habitat Index (SAHI) metrics and scoring criteria.

Metric Scoring Criteria Score Cover Stable cover (boulders, rootwads, brush, logs, aquatic vegetation, artificial structures) in 25 5 to 75 % of the drawdown zone Stable cover in 10 to 25 % or > 75 % of the drawdown zone 3 Stable Cover in < 10 % of the drawdown zone 1 Substrate Percent of drawdown zone with gravel substrate > 40 5 Percent of drawdown zone with gravel substrate between 10 and 40 3 Percent substrate gravel < 10 1 Erosion Little or no evidence of erosion or bank failure. Most bank surfaces stabilized by woody 5 vegetation.

Areas of erosion small and infrequent. Potential for increased erosion due to less desirable 3 vegetation cover (grasses) on > 25 % of bank surfaces.

Areas of erosion extensive, exposed or collapsing banks occur along > 30% of shoreline. 1 Canopy Cover Tree or shrub canopy > 60 % along adjacent bank 5 Tree or shrub canopy 30 to 60 % along adjacent bank 3 Tree or shrub canopy < 30 % along adjacent bank 1 Riparian Zone Width buffered > 18 meters 5 Width buffered between 6 and 18 meters 3 Width buffered < 6 meters 1 Habitat Habitat diversity optimum. All major habitats (logs, brush, native vegetation, boulders, 5 gravel) present in proportions characteristic of high quality, sufficient to support all life history aspects of target species. Ready access to deeper sanctuary areas present.

Habitat diversity less than optimum. Most major habitats present, but proportion of one is 3 less than desirable, reducing species diversity. No ready access to deeper sanctuary areas.

Habitat diversity is nearly lacking. One habitat dominates, leading to lower species 1 diversity. No ready access to deeper sanctuary areas.

Gradient Drawdown zone gradient abrupt (> 1 meter per 10 meters). Less than 10 percent of 5 shoreline with abrupt gradient due to dredging.

Drawdown zone gradient abrupt. (> 1 meter per 10 meters) in 10 to 40 % of the shoreline 3 resulting from dredging. Rip-rap used to stabilize bank along > 10 % of the shoreline.

Drawdown zone gradient abrupt in > 40 % of the shoreline resulting from dredging. 1 Seawalls used to stabilize bank along > 10 % of the shoreline.

26

Table 2. Expected values for upper mainstem Tennessee River reservoir transition and forebay zones.

Upper Mainstem Tennessee River Transition Upper Mainstem Tennessee River Forebay Proportion Number of species Proportion Number of species Trophic Guild - Avg + - Avg + - Avg + - Avg +

Benthic Invertivore < 2.4 2.4 to 4.8 > 4.8 <2 2 to 4 >4 < 2.2 2.2 to 4.2 > 4.2 <2 2 to 4 >4 Insectivore < 24.2 24.2 to 48.4 > 48.4 <4 4 to 8 >8 < 34.2 34.2 to 62.6 > 62.6 <4 4 to 8 >8 Top Carnivore < 18.9 18.9 to 37.7 > 37.7 <4 4 to 8 >8 < 18.8 18.8 to 33.4 > 33.4 <4 4 to 8 >8 Omnivore > 40.2 20.2 to 40.2 < 20.2 >6 3 to 6 <3 > 40.1 21.4 to 40.1 < 21.4 >6 3 to 6 <3 Planktivore > 41.2 20.6 to 41.2 < 20.6 0 1 >1 > 10.4 5.2 to 10.4 < 5.2 0 1 >1 Parasitic < 0.4 0.4 to 0.9 > 0.9 0 1 >1 < 0.4 0.4 to 0.8 > 0.8 0 1 >1 Herbivore --- --- --- --- --- --- --- --- --- --- --- ---

  • Values calculated from data collected from 1993 to 2010 from 750 electrofishing runs and 500 overnight experimental gill net sets in upper mainstem Tennessee River reservoir transition areas and from 900 electrofishing runs and 600 overnight experimental gill net sets in forebay areas of upper mainstem Tennessee River reservoirs. This trisection is intended to show less than expected (-), expected or average (Avg), and above expected or average (+) values for trophic level proportions and species occurring within each reservoir zone in upper mainstem Tennessee River reservoirs..

27

Table 3. Average trophic guild proportions and average number of fish species, bound by confidence intervals (95%),

expected in upper mainstem Tennessee River reservoir transition and forebay zones and proportions and numbers of species observed during summer and autumn 2011.

Summer 2011 Autumn Summer 2011 Autumn Transition Zones Forebay Zones (Upstream) 2011 (Upstream) (Downstream) 2011 (Downstream)

Average Average Number Number Average Average Number Number Proportion Proportion Proportion Proportion Trophic Guild Proportion Number of of of Proportion Number of of of

(%) (%) (%) (%)

(%) Species Species Species (%) Species Species Species Benthic Invertivore 3.1 + 0.2 3.7 + 0.2 2.6 4 1.3 3 2.3 + 0.4 3.3 + 0.3 1.7 3 0.8 3 Insectivore 44.5 + 2.2 9.2 + 0.5 52.2 10 45.6 8 50.4 + 5.7 8.7 + 0.5 52.0 10 48.3 8 Top Carnivore 18.2 + 0.9 10.2 + 0.5 8.8 10 8.2 11 19.0 + 2.7 9.9 + 0.3 11.0 10 5.2 9 Omnivore 29.5 + 1.5 6.4 + 0.3 36.3 7 33.3 6 22.4 + 3.5 6.1 + 0.3 35.2 7 29.7 6 Planktivore 5.6 + 0.3 1.1 + 0.1 0.1 1 1.1 1 1.8 + 0.9 1.0 + 0.1 0.1 1 16.1 1 Parasitic 0.04 + 0.02 1.0 + 0.1 ---- ---- ---- ---- 0.05 + 0.05 0.1 + 0.08 ---- ---- ---- ----

Herbivore 0.01 + 0.004 1.0 + 0.1 ---- ---- 0.1 1 ---- ---- ---- ---- ---- ----

  • Expected values were calculated using data collected from 1993 to 2010 from 750 electrofishing runs and 500 overnight experimental gill net sets in upper mainstem Tennessee River reservoir transition areas and from 900 electrofishing runs and 600 overnight experimental gill net sets in forebay areas of upper mainstem Tennessee River reservoirs.

28

Table 4. RFAI scoring criteria (2002) for fish community samples in forebay, transition, and inflow sections of upper mainstream Tennessee River reservoirs. Upper mainstream reservoirs include Nickajack, Chickamauga, Watts Bar, Fort Loudoun, Melton Hill, and Tellico.

Scoring Criteria Forebay Transition Inflow Metric Gear 1 3 5 1 3 5 1 3 5

1. Total species Combined <14 14-27 >27 <15 15-29 >29 <14 14-27 >27
2. Total Centrarchid species Combined <2 2-4 >4 <2 2-4 >4 <3 3-4 >4
3. Total benthic invertivores Combined <4 4-7 >7 <4 4-7 >7 <3 3-6 >6
4. Total intolerant species Combined <2 2-4 >4 <2 2-4 >4 <2 2-4 >4
5. Percent tolerant individuals Electrofishing >62% 31-62% <31% >62% 31-62% <31% >58% 29-58% <29%

Gill netting >28% 14-28% <14% >32% 16-32% <16%

6. Percent dominance by 1 species Electrofishing >50% 25-50% <25% >40% 20-40% <20% >46% 23-46% <23%

Gill netting >29% 15-29% <15% >28% 14-28% <14%

7. Percent non-indigenous species Electrofishing >4% 2-4% <2% >6% 3-6% <3% >17% 8-17% <8%

Gill netting >16% 8-16% <8% >9% 5-9% <5%

8. Total top carnivore species Combined <4 4-7 >7 <4 4-7 >7 <3 3-6 >6
9. Percent top carnivores Electrofishing <5% 5-10% >10% <6% 6-11% >11% <11% 11-22% >22%

Gill netting <25% 25-50% >50% <26% 26-52% >52%

10. Percent omnivores Electrofishing >49% 24-49% <24% >44% 22-44% <22% >55% 27-55% <27%

Gill netting >34% 17-34% <17% >46% 23-46% <23%

11. Average number per run Electrofishing <121 121-241 >241 <105 105-210 >210 <51 51-102 >102 Gill netting <12 12-24 >24 <12 12-24 >24
12. Percent anomalies Electrofishing >5% 2-5% <2% >5% 2-5% <2% >5% 2-5% <2%

Gill netting >5% 2-5% <2% >5% 2-5% <2%

29

Table 5. Scoring criteria for benthic macroinvertebrate community samples (lab-processed) for forebay, transition, and inflow sections of mainstream Tennessee River reservoirs. (TRM 481.3 and TRM 483.4-Forbay, TRM 488.0 and TRM 490.5-Transition) scoring criteria were used for sites upstream and downstream of SQN.

Benthic Community Forebay Transition Inflow Metrics 1 3 5 1 3 5 1 3 5 Average number of taxa

< 2.8 2.8-5.5 > 5.5 < 3.3 3.3-6.6 > 6.6 < 4.2 4.2-8.3 > 8.3 Proportion of samples with long-lived organisms < 0.6 0.6-0.8 > 0.8 < 0.6 0.6-0.9 > 0.9 < 0.6 0.6-0.8 > 0.8 Average number of EPT (Ephemeroptera, Plecoptera, Trichoptera) < 0.6 0.6-0.9 > 0.9 < 0.6 0.6-1.4 > 1.4 < 0.9 0.9-1.9 > 1.9 Average proportion of oligochaete individuals 23.9-12.0

> 41.9 41.9-21.0 < 21.0 > 21.9 21.9-11.0 < 11.0 > 23.9 < 12.0 Average proportion of total abundance comprised by the two most abundant taxa > 90.3 90.3-81.7 < 81.7 > 87.9 87.9-77.8 < 77.8 > 86.2 86.2-73.1 < 73.1 Average density excluding chironomids and

< 125.0 125.0-249.9 > 249.9 < 305.0 305.0-609.9 > 609.9 < 400.0 400.0-799.9 > 799.9 oligochaetes Zero-samples - proportion of samples

>0 --- 0 >0 --- 0 >0 --- 0 containing no organisms 30

Table 6. SAHI scores for 16 shoreline habitat assessments conducted within the Upstream RFAI sampling area of SQN on Chickamauga Reservoir, autumn 2009.

1(LD) 2(LD) 3(LD) 4(LD) 5(LD) 6(LD) 7(LD) 8(LD) Avg.

Latitude 35.26755 35.27312 35.27784 35.28179 35.28669 35.29674 35.20021 35.3037 Longitude -85.09749 -85.09602 -85.09093 -85.08571 -85.0741 -85.06678 -85.06367 -85.06049 Aquatic 0% 0% 0% 0% 0% 0% 0% 0% 0%

Macrophytes SAHI Variables Cover 1 1 5 1 5 1 1 3 2 Substrate 5 1 1 1 3 5 3 5 3 Erosion 1 5 1 5 5 3 1 3 3 Canopy Cover 5 5 5 5 1 5 5 5 5 Riparian Zone 5 5 5 5 1 5 5 5 5 Habitat 1 1 3 1 3 1 1 3 2 Slope 1 1 1 1 3 3 3 3 2 Total 19 19 21 19 21 23 19 27 22 Rating Fair Fair Fair Fair Fair Fair Fair Good Fair 1(RD) 2(RD) 3(RD) 4(RD) 5(RD) 6(RD) 7(RD) 8(RD) Avg.

Latitude 35.26823 35.27665 35.28347 35.28747 35.29329 35.30095 35.30458 35.3092 Longitude -85.108 -85.10484 -85.09809 -85.09035 -85.08268 -85.07718 -85.07455 -85.07194 Aquatic 0% 0% 0% 0% 0% 0% 0% 0% 0%

Macrophytes SAHI Variables Cover 3 1 5 5 3 3 5 1 3 Substrate 5 5 5 5 1 5 1 1 4 Erosion 1 1 5 5 5 5 5 3 4 Canopy Cover 5 5 1 3 5 3 3 1 3 Riparian Zone 5 5 1 1 5 1 1 1 3 Habitat 1 3 3 3 1 3 3 1 2 Slope 1 1 1 1 1 3 1 3 2 Total 21 21 21 23 21 23 19 11 21 Rating Fair Fair Fair Fair Fair Fair Fair Poor Fair

  • Scores are shown for eight shoreline sections on the left descending bank (LD) and eight shoreline sections along the right descending bank (RD). Scoring criteria: poor (7-16); fair (17-26); and good (27-35).

31

Table 7. SAHI Scores for 16 Shoreline Habitat Assessments Conducted within the Downstream RFAI Sampling Area of SQN on Chickamauga Reservoir, Autumn 2009.

1(LD) 2(LD) 3(LD) 4(LD) 5(LD) 6(LD) 7(LD) 8(LD) Avg.

Latitude 35.19455 35.20021 35.20443 35.20584 35.20617 35.2061 35.20865 35.21104 Longitude -85.11967 -85.11858 -85.11671 -85.11346 -85.10754 -85.10212 -85.09711 -85.09188 Aquatic 0% 0% 15% 0% 0% 10% 0% 0% 2%

Macrophytes SAHI Variables Cover 5 5 5 5 3 1 1 3 4 Substrate 1 1 1 3 1 1 1 1 1 Erosion 3 5 3 3 3 1 3 5 3 Canopy Cover 5 3 5 5 5 5 1 1 4 Riparian Zone 5 3 5 5 5 5 1 3 4 Habitat 3 3 3 3 1 1 3 1 2 Slope 3 5 5 3 5 5 1 1 4 Total 25 25 27 27 23 19 11 15 22 Rating Fair Fair Good Good Fair Fair Poor Poor Fair 1(RD) 2(RD) 3(RD) 4(RD) 5(RD) 6(RD) 7(RD) 8(RD) Avg.

Latitude 35.19718 35.20069 35.20722 35.20967 35.21449 35.21521 35.21565 35.2159 Longitude -85.12923 -85.12331 -85.12156 -85.11884 -85.1115 -85.10953 -85.10047 -85.09368 Aquatic 0% 0% 0% 0% 10% 5% 25% 0% 5%

Macrophytes SAHI Variables Cover 3 5 5 3 1 3 5 3 4 Substrate 3 1 3 3 1 1 1 1 2 Erosion 5 5 5 5 3 3 1 5 4 Canopy Cover 5 5 5 1 1 1 5 1 3 Riparian Zone 5 5 5 1 1 1 3 5 3 Habitat 1 3 3 3 1 1 3 1 2 Slope 3 1 3 1 5 5 5 5 4 Total 25 25 29 17 13 15 23 21 22 Rating Fair Fair Good Fair Poor Poor Fair Fair Fair

  • Scores are Shown for Eight Shoreline Sections on the Left Descending Bank (LD) and Eight Shoreline Sections Along the Right Descending Bank (RD). Scoring Criteria: Poor (7-16); Fair (17-26); and good (27-35).

32

Table 8. Substrate percentages and average water depth (ft) per transect upstream (8 transects) and downstream (8 transects) of SQN.

% Substrate per transect downstream of SQN 1 2 3 4 5 6 7 8 AVG Mollusk shell 15.5 32.0 20.5 26.0 24.5 22.5 26.5 52.9 27.6 Silt 37.5 12.0 11.0 13.0 23.5 36.0 19.5 7.0 19.9 Clay 14.0 16.0 9.0 30.0 8.0 29.5 6.0 17.0 16.4 Sand 19.5 14.0 22.0 6.0 12.0 3.5 28.5 2.5 13.5 Bedrock 10.0 9.0 18.0 20. 20.0 0 10.0 15.0 12.8 Detritus 2.5 4.5 3.5 3.5 3.0 5.0 3.0 4.6 3.7 Gravel 0 3.0 7.0 1.0 8.0 3.5 3.5 0.5 3.0 Cobble 1.0 9.5 9.0 0.5 1.0 0 3.0 0.5 3.1 Avg. depth (ft) 27.1 39.7 32.6 33.2 27 29.8 35.1 44.7 33.7 Actual depth range: 7.4 to 78.5 ft

% Substrate per transect upstream of SQN 1 2 3 4 5 6 7 8 AVG Silt 30.5 43.0 56.5 22.0 45.5 71.0 63.5 77.5 51.2 Mollusk shell 25.0 19.5 15.5 33.5 20.0 10.0 15.5 8.0 18.4 Bedrock 10.0 20.0 0 20.0 20.0 0 0 0 8.8 Detritus 7.0 7.0 8.5 7.5 2.5 10.5 9.0 8.0 7.5 Clay 14.0 0 0 5 7.0 8.5 8.0 6.5 6.1 Cobble 4.0 5.0 10.0 0 2.5 0 4.0 0 3.2 Sand 7.5 5.5 7.5 4.5 0.5 0 0 0 3.1 Gravel 2.0 0 2.0 7.5 2.0 0 0 0 1.7 Avg. depth (ft) 33 30.1 34.9 33.6 26.2 31.8 32.2 26.1 31.0 Actual depth range: 6.4 to 55.2 ft 33

Table 9. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of Sequoyah Nuclear Plant Summer 2011.

Summer 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score A. Species richness and composition

1. Number of indigenous species Combined 28 5 29 3 (Tables 11 and 12)
2. Number of centrarchid species Combined 8 5 5 (less Micropterus) Black crappie 8 Bluegill Black crappie Green sunfish Bluegill Longear sunfish Green sunfish Redbreast sunfish Longear sunfish Redear sunfish Redbreast sunfish Warmouth Redear sunfish White crappie Warmouth White crappie
3. Number of benthic invertivore Combined 3 1 4 3 species Freshwater drum Freshwater drum Logperch Logperch River redhorse Spotted sucker Spotted sucker
4. Number of intolerant species Combined 5 5 6 5 Brook silverside Brook silverside Longear sunfish Longear sunfish Skipjack herring River redhorse Smallmouth bass Skipjack herring Spotted sucker Smallmouth bass Spotted sucker 34

Table 9. (Continued)

Summer 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score

5. Percent tolerant individuals 85.7% 79.8%

Bluegill 49.1% Bluegill 40.7%

Bluntnose minnow 1.6% Bluntnose minnow 5.3%

Common carp 0.2% Common carp 0.2%

Electrofishing Gizzard shad 26.9% Gizzard shad 28.2%

0.5 0.5 Golden shiner 1.6% Golden shiner 1.1%

Green sunfish 0.1% Green sunfish 0.3%

Largemouth bass 3.8% Largemouth bass 1.7%

Redbreast sunfish 1.6% Redbreast sunfish 1.4%

Spotfin shiner 0.7% Spotfin shiner 1.0%

55.1% 43.9%

Bluegill 0.7% Bluegill 0.8%

Common carp 0.7% Gizzard shad 37.9%

Gill Netting 0.5 0.5 Gizzard shad 52.2% Golden shiner 3.8%

White crappie 1.4% Largemouth bass 0.8%

White crappie 0.8%

6. Percent dominance by one species 49.1% 40.7%

Electrofishing Bluegill 1.5 Bluegill 0.5 52.2% 37.9%

Gill Netting 0.5 0.5 Gizzard shad Gizzard shad

7. Percent non-indigenous species 2.9% 5.2%

Common carp 0.3% Common carp 0.1%

Electrofishing 1.5 1.5 Mississippi silverside 2.5% Mississippi silverside 4.8%

Yellow perch 0.1% Yellow perch 0.3%

0.7% 0%

Gill Netting 2.5 2.5 Common carp 35

Table 9. (Continued)

Summer 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score

8. Number of top carnivore species 10 10 Black crappie Black crappie Flathead catfish Flathead catfish Largemouth bass Largemouth bass Skipjack herring Sauger Combined Smallmouth bass 5 Skipjack herring 5 Spotted bass Smallmouth bass Spotted gar Spotted bass White bass Spotted gar White crappie White crappie Yellow bass Yellow bass B. Trophic composition
9. Percent top carnivores 8.2% 5.3%

Black crappie 1.0% Flathead catfish 0.8%

Largemouth bass 3.0% Largemouth bass 1.7%

Smallmouth bass 0.1% Smallmouth bass 0.2%

Electrofishing 1.5 0.5 Spotted bass 0.8% Spotted bass 1.1%

Spotted gar 2.2% Spotted gar 1.5%

White bass 0.1%

Yellow bass 0.2%

29.0% 42.4%

Black crappie 10.1% Black crappie 16.7%

Flathead catfish 1.4% Flathead catfish 1.5%

Skipjack herring 1.4% Largemouth bass 0.8%

Gill Netting Spotted bass 7.2% 1.5 Sauger 0.8% 1.5 Spotted gar 1.4% Skipjack herring 15.2%

White bass 0.7% Spotted bass 2.3%

White crappie 1.4% White crappie 0.8%

Yellow bass 5.1% Yellow bass 4.5%

36

Table 9. (Continued)

Summer 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score

10. Percent omnivores 31.2% 35.1%

Bluntnose minnow 1.6% Bluntnose minnow 5.3%

Channel catfish 0.7% Channel catfish 0.2%

Electrofishing Common carp 0.2% 2.5 Common carp 0.2% 1.5 Gizzard shad 26.9% Gizzard shad 28.2%

Golden shiner 1.6% Golden shiner 1.1%

Smallmouth buffalo 0.1% Smallmouth buffalo 0.2%

61.6% 47.7%

Blue catfish 5.8% Blue catfish 4.5%

Channel catfish 1.4% Channel catfish 1.5%

Gill Netting 0.5 0.5 Common carp 0.7% Gizzard shad 37.9%

Gizzard shad 52.2% Golden shiner 3.8%

Smallmouth buffalo 1.4%

C. Fish abundance and health

11. Average number per run Electrofishing 60.7 0.5 82.4 0.5 Gill Netting 13.8 1.5 13.2 1.5
12. Percent anomalies Electrofishing 1.2% 2.5 0.6% 2.5 Gill Netting 0% 2.5 0% 2.5 41 38 Overall RFAI Score Good Fair 37

Table 10. Individual Metric Scores and the Overall RFAI Scores Downstream (TRM 482) and Upstream (TRM 490.5) of (Sequoyah nuclear) Autumn 2011.

Autumn 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score A. Species richness and composition

1. Number of indigenous species 25 3 27 3 Combined (Tables 13 and 14) 7 7 Black crappie Black crappie Bluegill Bluegill
2. Number of centrarchid species Green sunfish Green sunfish Combined 5 5 (less Micropterus) Longear sunfish Redbreast sunfish Redbreast sunfish Redear sunfish Redear sunfish Warmouth Warmouth White crappie 3 3
3. Number of benthic invertivore Freshwater drum Freshwater drum Combined 1 1 species Golden redhorse Logperch Spotted sucker Spotted sucker 4 3 Longear sunfish Skipjack herring
4. Number of intolerant species Combined Skipjack herring 3 Smallmouth bass 3 Smallmouth bass Spotted sucker Spotted sucker 42.6% 80.8%

Bluegill 12.3% Bluegill 43.0%

Bluntnose minnow 0.5% Bluntnose minnow 0.1%

Common carp 0.% Common carp 0.1%

Gizzard shad 26.1% Gizzard shad 30.8%

5. Percent tolerant individuals Electrofishing 1.5 0.5 Golden shiner 0.3% Golden shiner 0.2%

Green sunfish 0.1% Green sunfish 0.1%

Largemouth bass 1.6% Largemouth bass 1.7%

Redbreast sunfish 0.9% Redbreast sunfish 4.7%

Spotfin shiner 0.5% Spotfin shiner 0.2%

38

Table 10 (continued).

Autumn 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score 64.8% 42.4%

Bluegill 0.8% Bluegill 0.7%

Gill Netting Gizzard shad 63.1% 0.5 Gizzard shad 39.6% 0.5 Largemouth bass 0.8% Golden shiner 0.7%

White crappie 1.4%

6. Percent dominance by one 35.1% 43.0%

Electrofishing 1.5 0.5 species Mississippi silverside Bluegill 63.1% 39.6%

Gill Netting 0.5 0.5 Gizzard shad Gizzard shad 6.9%

33.8%

7. Percent non-indigenous Electrofishing 0.5 Common carp 0.1% 0.5 species Common carp 0.3%

Mississippi silverside 6.3%

Mississippi silverside 33.5%

Yellow perch 0.1%

Gill Netting 0% 2.5 0% 2.5 39

Table 10. (Continued)

Autumn 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score

8. Number of top carnivore species 9 11 Black crappie Black crappie Flathead catfish Flathead catfish Largemouth bass Largemouth bass Skipjack herring Skipjack herring Smallmouth bass Smallmouth bass Combined 5 5 Spotted bass Spotted bass Spotted gar Spotted gar White bass Walleye Yellow bass White bass White crappie Yellow bass B. Trophic composition
9. Percent top carnivores 4.5% 6.2%

Black crappie 1.9% Black crappie 1.4%

Flathead catfish 0.01% Flathead catfish 0.5%

Largemouth bass 1.6% Largemouth bass 1.7%

Electrofishing Smallmouth bass 0.01% 0.5 Smallmouth bass 0.9% 1.5 Spotted bass 0.4% Spotted bass 1.4%

Spotted gar 0.6% Spotted gar 0.1%

White bass 0.1%

Yellow bass 0.2%

19.7% 34.5%

Black crappie 7.4% Black crappie 12.2%

Flathead catfish 2.5% Flathead catfish 0.7%

Largemouth bass 0.8% Skipjack herring 8.6%

Skipjack herring 1.6% Spotted bass 6.5%

Gill Netting 0.5 1.5 Smallmouth bass 0.8% Walleye 0.7%

Spotted bass 4.1% White bass 1.4%

White bass 0.8% White crappie 1.4%

Yellow bass 1.6% Yellow bass 2.9%

Black crappie 7.4%

40

Table 10. (Continued)

Autumn 2011 Gear TRM 482 TRM 490.5 Metric (Electrofishing/Gill Net) Obs Score Obs Score

10. Percent omnivores 27.5% 31.9%

Blue catfish 0.01% Blue catfish 0.1%

Bluntnose minnow 0.5% Bluntnose minnow 0.1%

Channel catfish 0.2% Channel catfish 0.7%

Electrofishing 1.5 1.5 Common carp 0.3% Common carp 0.1%

Gizzard shad 26.1% Gizzard shad 30.8%

Golden shiner 0.3% Golden shiner 0.2%

Blue catfish 0.1%

76.2% 51.1%

Blue catfish 9.8% Blue catfish 5.8%

Gill Netting Channel catfish 3.3% 0.5 Channel catfish 5.0% 0.5 Gizzard shad 63.1% Gizzard shad 39.6%

Golden shiner 0.7%

C. Fish abundance and health

11. Average number per run Electrofishing 174.2 1.5 122.4 1.5 Gill Netting 12.2 1.5 13.9 1.5
12. Percent anomalies Electrofishing 0.6 2.5 0.3 2.5 Gill Netting 0 2.5 0 2.5 Overall RFAI Score 35 35 Fair Fair 41

Table 11. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Summer 2011.

Commer- Recrea-Thermally EF Catch EF Catch Gill Netting Trophic Indigenous cially tionally Total fish Total Gill Total fish Percent Common Name Scientific name Tolerance Sensitive Rate Per Rate Per Catch Rate Per level species Valuable Valuable EF net fish Combined Composition Species Run Hour Net Night Species Species Gizzard shad Dorosoma cepedianum OM X TOL . X X 16.33 57.38 245 7.20 72 317 30.2%

Common carp Cyprinus carpio OM . TOL . X . 0.13 0.47 2 0.10 1 3 0.3%

Golden shiner Notemigonus crysoleucas OM X TOL . X . 1.00 3.51 15 . . 15 1.4%

Spotfin shiner Cyprinella spiloptera IN X TOL . . . 0.40 1.41 6 . . 6 0.6%

Bluntnose minnow Pimephales notatus OM X TOL . . X 1.00 3.51 15 . . 15 1.4%

Redbreast sunfish Lepomis auritus IN X TOL . . X 1.00 3.51 15 . . 15 1.4%

Green sunfish Lepomis cyanellus IN X TOL . . X 0.07 0.23 1 . . 1 0.1%

Bluegill Lepomis macrochirus IN X TOL . . X 29.80 104.68 447 0.10 1 448 42.7%

Largemouth bass Micropterus salmoides TC X TOL . . X 2.33 8.20 35 . . 35 3.3%

White crappie Pomoxis annularis TC X TOL . . X . . . 0.20 2 2 0.2%

Skipjack herring Alosa chrysochloris TC X INT . X X . . . 0.20 2 2 0.2%

Spotted sucker Minytrema melanops BI X INT X X . 0.47 1.64 7 0.20 2 9 0.9%

Longear sunfish Lepomis megalotis IN X INT . . X 0.13 0.47 2 0.10 1 3 0.3%

Smallmouth bass Micropterus dolomieu TC X INT . . X 0.07 0.23 1 . . 1 0.1%

Brook silverside Labidesthes sicculus IN X INT . X X 0.07 0.23 1 . . 1 0.1%

Spotted gar Lepisosteus oculatus TC X . . X . 1.33 4.68 20 0.20 2 22 2.1%

Threadfin shad Dorosoma petenense PK X . . X X 0.13 0.47 2 . . 2 0.2%

Smallmouth buffalo Ictiobus bubalus OM X . . X X 0.07 0.23 1 0.20 2 3 0.3%

Blue catfish Ictalurus furcatus OM X . . X X . . . 0.80 8 8 0.8%

Channel catfish Ictalurus punctatus OM X . . X X 0.40 1.41 6 0.20 2 8 0.8%

Flathead catfish Pylodictis olivaris TC X . . X X . . . 0.20 2 2 0.2%

White bass Morone chrysops TC X . . . X 0.07 0.23 1 0.10 1 2 0.2%

Yellow bass Morone mississippiensis TC X . . . X 0.13 0.47 2 0.70 7 9 0.9%

Warmouth Lepomis gulosus IN X . . . X 0.07 0.23 1 . . 1 0.1%

Redear sunfish Lepomis microlophus IN X . . . X 2.53 8.90 38 0.50 5 43 4.1%

Spotted bass Micropterus punctulatus TC X . . . X 0.47 1.64 7 1.00 10 17 1.6%

Black crappie Pomoxis nigromaculatus TC X . . . X 0.60 2.11 9 1.40 14 23 2.2%

Yellow perch Perca flavescens IN . . . . X 0.07 0.23 1 . . 1 0.1%

Logperch Percina caprodes BI X . X . X 0.33 1.17 5 . . 5 0.5%

Freshwater drum Aplodinotus grunniens BI X . . X X . . . 0.40 4 4 0.4%

Mississippi silverside Menidia audens IN . . . X . 1.73 6.09 26 . . 26 2.5%

Total 28 2 14 25 60.73 213.33 911 13.80 138 1,049 100%

Number Samples 15 10 Species Collected 26 18

  • All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Trophic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).

42

Table 12. Summer 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Summer 2011.

Commer- Recrea-Thermally EF Catch EF Catch Gill Netting Trophic Indigenous cially tionally Total fish Total Gill Total fish Percent Common Name Scientific name Tolerance Sensitive Rate Per Rate Per Catch Rate Per level species Valuable Valuable EF net fish Combined Composition Species Run Hour Net Night Species Species Gizzard shad Dorosoma cepedianum OM X TOL . X X 23.27 81.54 349 5.00 50 399 29.2%

Common carp Cyprinus carpio OM . TOL . X . 0.13 0.47 2 . . 2 0.1%

Golden shiner Notemigonus crysoleucas OM X TOL . X . 0.87 3.04 13 0.50 5 18 1.3%

Spotfin shiner Cyprinella spiloptera IN X TOL . . . 0.80 2.80 12 . . 12 0.9%

Bluntnose minnow Pimephales notatus OM X TOL . . X 4.33 15.19 65 . . 65 4.8%

Redbreast sunfish Lepomis auritus IN X TOL . . X 1.13 3.97 17 . . 17 1.2%

Green sunfish Lepomis cyanellus IN X TOL . . X 0.27 0.93 4 . . 4 0.3%

Bluegill Lepomis macrochirus IN X TOL . . X 33.53 117.52 503 0.10 1 504 36.8%

Largemouth bass Micropterus salmoides TC X TOL . . X 1.40 4.91 21 0.10 1 22 1.6%

White crappie Pomoxis annularis TC X TOL . . X . . . 0.10 1 1 0.1%

Skipjack herring Alosa chrysochloris TC X INT . X X . . . 2.00 20 20 1.5%

Spotted sucker Minytrema melanops BI X INT X X . 0.53 1.87 8 0.10 1 9 0.7%

River redhorse Moxostoma carinatum BI X INT . . . 0.07 0.23 1 . . 1 0.1%

Longear sunfish Lepomis megalotis IN X INT . . X 0.53 1.87 8 . . 8 0.6%

Smallmouth bass Micropterus dolomieu TC X INT . . X 0.13 0.47 2 . . 2 0.1%

Brook silverside Labidesthes sicculus IN X INT . X . 0.13 0.47 2 . . 2 0.1%

Spotted gar Lepisosteus oculatus TC X . . X . 1.27 4.44 19 . . 19 1.4%

Threadfin shad Dorosoma petenense PK X . . X X 0.07 0.23 1 . . 1 0.1%

Smallmouth buffalo Ictiobus bubalus OM X . . X X 0.13 0.47 2 . . 2 0.1%

Blue catfish Ictalurus furcatus OM X . . X X . . . 0.60 6 6 0.4%

Channel catfish Ictalurus punctatus OM X . . X X 0.20 0.70 3 0.20 2 5 0.4%

Flathead catfish Pylodictis olivaris TC X . . X X 0.67 2.34 10 0.20 2 12 0.9%

Yellow bass Morone mississippiensis TC X . . . X . . . 0.60 6 6 0.4%

Warmouth Lepomis gulosus IN X . . . X 0.13 0.47 2 . . 2 0.1%

Redear sunfish Lepomis microlophus IN X . . . X 5.93 20.79 89 0.70 7 96 7.0%

Spotted bass Micropterus punctulatus TC X . . . X 0.87 3.04 13 0.30 3 16 1.2%

Black crappie Pomoxis nigromaculatus TC X . . . X . . . 2.20 22 22 1.6%

Yellow perch Perca flavescens IN . . . . X 0.27 0.93 4 . . 4 0.3%

Logperch Percina caprodes BI X . X . X 1.27 4.44 19 . . 19 1.4%

Sauger Sander canadense TC X . . . X . . . 0.10 1 1 0.1%

Freshwater drum Aplodinotus grunniens BI X . . X X 0.13 0.47 2 0.40 4 6 0.4%

Mississippi silverside Menidia audens IN . . . X . 4.33 15.19 65 . . 65 4.8%

Total 29 2 14 24 82.39 288.79 1,236 13.20 132 1,368 100%

Number Samples 15 10 Species Collected 26 16

  • All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Trophic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).

43

Table 13. Autumn 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Downstream (TRM 482.0) of Sequoyah Nuclear Plant Discharge, Autumn 2011.

Commer- Recrea-Thermally EF Catch EF Catch Gill Netting Trophic Indigenous cially tionally Total fish Total Gill Total fish Percent Common Name Scientific name Tolerance Sensitive Rate Per Rate Per Catch Rate Per level species Valuable Valuable EF net fish Combined Composition Species Run Hour Net Night Species Species Gizzard shad Dorosoma cepedianum OM X TOL . X X 45.53 212.11 683 7.70 77 760 27.8%

Common carp Cyprinus carpio OM . TOL . X . 0.47 2.17 7 . . 7 0.3%

Golden shiner Notemigonus crysoleucas OM X TOL . X . 0.60 2.80 9 . . 9 0.3%

Spotfin shiner Cyprinella spiloptera IN X TOL . . . 0.80 3.73 12 . . 12 0.4%

Bluntnose minnow Pimephales notatus OM X TOL . . X 0.93 4.35 14 . . 14 0.5%

Redbreast sunfish Lepomis auritus IN X TOL . . X 1.60 7.45 24 . . 24 0.9%

Green sunfish Lepomis cyanellus IN X TOL . . X 0.07 0.31 1 . . 1 0.0%

Bluegill Lepomis macrochirus IN X TOL . . X 21.47 100.00 322 0.10 1 323 11.8%

Largemouth bass Micropterus salmoides TC X TOL . . X 2.73 12.73 41 0.10 1 42 1.5%

Skipjack herring Alosa chrysochloris TC X INT . X X . . . 0.20 2 2 0.1%

Spotted sucker Minytrema melanops BI X INT X X . 0.73 3.42 11 0.10 1 12 0.4%

Longear sunfish Lepomis megalotis IN X INT . . X 0.13 0.62 2 . . 2 0.1%

Smallmouth bass Micropterus dolomieu TC X INT . . X 0.07 0.31 1 0.10 1 2 0.1%

Spotted gar Lepisosteus oculatus TC X . . X . 1.00 4.66 15 . . 15 0.5%

Threadfin shad Dorosoma petenense PK X . . X . 29.27 136.34 439 . . 439 16.1%

Golden redhorse Moxostoma erythrurum BI X . . X . . . . 0.10 1 1 0.0%

Blue catfish Ictalurus furcatus OM X . . X X 0.07 0.31 1 1.20 12 13 0.5%

Channel catfish Ictalurus punctatus OM X . . X X 0.33 1.55 5 0.40 4 9 0.3%

Flathead catfish Pylodictis olivaris TC X . . X X 0.07 0.31 1 0.30 3 4 0.1%

White bass Morone chrysops TC X . . . X . . . 0.10 1 1 0.0%

Yellow bass Morone mississippiensis TC X . . . X . . . 0.20 2 2 0.1%

Warmouth Lepomis gulosus IN X . . . X 0.47 2.17 7 . . 7 0.3%

Redear sunfish Lepomis microlophus IN X . . . X 2.27 10.56 34 0.10 1 35 1.3%

Spotted bass Micropterus punctulatus TC X . . . X 0.73 3.42 11 0.50 5 16 0.6%

Black crappie Pomoxis nigromaculatus TC X . . . X 3.27 15.22 49 0.90 9 58 2.1%

Freshwater drum Aplodinotus grunniens BI X . . X X 0.47 2.17 7 0.10 1 8 0.3%

Mississippi silverside Menidia audens IN . . . X . 61.13 284.78 917 . . 917 33.5%

Total 25 1 13 19 174.21 811.49 2,613 12.20 122 2,735 100%

Number Samples 15 10 Species Collected 23 16

  • All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Trophic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).

44

Table 14. Autumn 2011 Species Collected, Trophic level, Indigenous and Tolerance Classification, Catch Per Effort During Electrofishing and Gill Netting at Areas Upstream (TRM 490.5) of Sequoyah Nuclear Plant Discharge, Autumn 2011.

Commer- Recrea-Thermally EF Catch EF Catch Gill Netting Trophic Indigenous cially tionally Total fish Total Gill Total fish Percent Common Name Scientific name Tolerance Sensitive Rate Per Rate Per Catch Rate Per level species Valuable Valuable EF net fish Combined Composition Species Run Hour Net Night Species Species Gizzard shad Dorosoma cepedianum OM X TOL . X X 37.73 164.53 566 5.50 55 621 31.4%

Common carp Cyprinus carpio OM . TOL . X . 0.07 0.29 1 . . 1 0.1%

Golden shiner Notemigonus crysoleucas OM X TOL . X . 0.27 1.16 4 0.10 1 5 0.3%

Spotfin shiner Cyprinella spiloptera IN X TOL . . . 0.27 1.16 4 . . 4 0.2%

Bluntnose minnow Pimephales notatus OM X TOL . . X 0.13 0.58 2 . . 2 0.1%

Redbreast sunfish Lepomis auritus IN X TOL . . X 5.73 25.00 86 . . 86 4.4%

Green sunfish Lepomis cyanellus IN X TOL . . X 0.07 0.29 1 . . 1 0.1%

Bluegill Lepomis macrochirus IN X TOL . . X 52.60 229.36 789 0.10 1 790 40.0%

Largemouth bass Micropterus salmoides TC X TOL . . X 2.07 9.01 31 . . 31 1.6%

White crappie Pomoxis annularis TC X TOL . . X . . . 0.20 2 2 0.1%

Skipjack herring Alosa chrysochloris TC X INT . X X . . . 1.20 12 12 0.6%

Smallmouth bass Micropterus dolomieu TC X INT . . X 1.07 4.65 16 . . 16 0.8%

Spotted sucker Minytrema melanops BI X INT X . . 0.40 1.74 6 0.40 4 10 0.5%

Spotted gar Lepisosteus oculatus TC X . . X X 0.13 0.58 2 . . 2 0.1%

Threadfin shad Dorosoma petenense PK X . . X . 1.47 6.40 22 . . 22 1.1%

Largescale stoneroller Campostoma oligolepis HB X . . . X 0.93 4.07 14 . . 14 0.7%

Blue catfish Ictalurus furcatus OM X . . X X 0.07 0.29 1 0.80 8 9 0.5%

Channel catfish Ictalurus punctatus OM X . . X X 0.80 3.49 12 0.70 7 19 1.0%

Flathead catfish Pylodictis olivaris TC X . . X X 0.60 2.62 9 0.10 1 10 0.5%

White bass Morone chrysops TC X . . . X 0.07 0.29 1 0.20 2 3 0.2%

Yellow bass Morone mississippiensis TC X . . . X 0.20 0.87 3 0.40 4 7 0.4%

Warmouth Lepomis gulosus IN X . . . X 0.67 2.91 10 . . 10 0.5%

Redear sunfish Lepomis microlophus IN X . . . X 4.27 18.60 64 1.50 15 79 4.0%

Spotted bass Micropterus punctulatus TC X . . . X 1.67 7.27 25 0.90 9 34 1.7%

Black crappie Pomoxis nigromaculatus TC X . . . X 1.73 7.56 26 1.70 17 43 2.2%

Yellow perch Perca flavescens IN . . . . X 0.13 0.58 2 . . 2 0.1%

Logperch Percina caprodes BI X . X . X 0.07 0.29 1 . . 1 0.1%

Walleye Sander vitreum TC X . . . X . . . 0.10 1 1 0.1%

Freshwater drum Aplodinotus grunniens BI X . . X X 0.93 4.07 14 . . 14 0.7%

Mississippi silverside Menidia audens IN . . . X . 8.27 36.05 124 . . 124 6.3%

Total 27 2 11 24 122.42 533.71 1,836 13.90 139 1,975 100%

Number Samples 15 10 Species Collected 27 15

  • All species listed are Resident Important Species (RIS). No federally threatened or endangered species were collected. Trophic: benthic invertivore (BI), insectivore (IN), omnivore (OM), planktivore (PK), top carnivore (TC). Tolerance: tolerant (TOL), intolerant (INT).

45

Table 15. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run),

tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, summer 2011.

Mean (Standard Deviation)

Downstream Upstream Significant Test Parameter P Value (TRM 482) (TRM 490.5) Difference Statistic(a)

Number of species (per run)

Total (Species richness) 10.7 (2.3) 12.1 (3.5) No t= -1.23 0.23 Benthic invertivores 0.5 (0.7) 0.8 (0.8) No Z= -1.28 0.20 Insectivores 3.4 (1.5) 4.5 (1.1) Yes Z= -2.08 0.04 Omnivores 2.2. (1.1) 1.8 (0.9) No Z= 1.44 0.15 Top carnivores 2.3 (0.7) 2.5 (1.4) No Z= 0.09 0.93 Non-indigenous 0.5 (0.5) 0.9 (0.7) No Z= -1.57 0.11 Indigenous 7.9 (2.1) 8.7 (1.9) No t= -1.79 0.28 Tolerant 4.5 (0.8) 4.4 (1.2) No Z= 0.39 0.69 Intolerant 0.5 (1.0) 1.0 (0.8) No Z= -1.90 0.06 Thermally sensitive 0.5 (0.7) 0.6 (0.8) No Z= -0.41 0.68 CPUE (per run)

Total 4.05 (1.63) 5.49 (2.10) Yes t= -2.11 0.04 Benthic invertivores 0.05 (0.10) 0.13 (0.21) No Z= -1.50 0.13 Insectivores 2.35 (1.36) 3.13 (1.29) No t= -1.59 0.12 Omnivores 1.26 (1.47) 1.92 (1.68) No Z= -1.14 0.25 Top Carnivores(b) 0.33(0.14) 0.29 (0.22) No t= 0.98 0.33 Non-indigenous 0.13 (0.27) 0.32 (0.39) No Z= -1.65 0.10 Indigenous 4.83 (1.72) 6.06 (2.02) No t= -1.79 0.08 Tolerant 3.47 (1.52) 4.38 (1.92) No t= -1.44 0.16 Intolerant 0.05 (0.09) 0.09 (0.09) Yes Z= -1.99 0.05 Thermally sensitive 0.07 (0.10) 0.13 (0.22) No Z= -0.47 0.64 Diversity indices (per run)

Simpson 0.64 (0.14) 0.70 (0.11) No Z= -1.37 0.17 Shannon(b) 5.02 (2.18) 7.02 (4.10) No t= -1.79 0.13 (a) t-Value indicates results of independent two-sample t-test (=0.05). Z-Value indicates results of Mann-Whitney-Wilcoxon Z-test (=0.05) used when raw data could not be normalized using transformation.

(b) Square root or ln(x+1) transformed data used for statistical analyses because raw data were not normally distributed and/or did not have equal variances.

46

Table 16. Spatial statistical comparisons of numbers of species, mean electrofishing catch per unit effort values (number/run),

tolerance designations, trophic levels, and non-indigenous individuals, along with species richness and Simpson and Shannon diversity values, collected near Sequoyah Nuclear Plant, autumn 2011.

Mean (Standard Deviation)

Downstream Upstream Significant Test Parameter P Value (TRM 482) (TRM 490.5) Difference Statistic(a)

Number of species (per run)

Total (Species richness) 13.5 (3.0) 12.9 (2.4) No t= 0.6 0.55 Benthic invertivores 0.5 (0.3) 0.5 (0.5) No Z= 0.94 0.35 Insectivores 3.9 (1.8) 4.1 (1.0) No Z= -0.45 0.65 Omnivores 2.3 (1.0) 1.9 (0.6) No Z= 1.16 0.25 Top carnivores 3.1 (1.0) 3.2 (1.7) No Z= 0.04 0.97 Non-indigenous 1.2 (0.4) 1.1 (0.5) No Z= 0.78 0.44 Indigenous(b) 10.1 (3.5) 9.4 (2.2) No t= 0.48 0.63 Tolerant 4.7 (1.7) 3.9 (0.9) No t= 1.62 0.12 Intolerant 0.7 (0.9) 0.8 (0.6) No Z= -0.67 0.50 Thermally sensitive 0.6 (0.5) 0.4 (0.6) No Z= 1.18 0.24 CPUE (per run)

Total(b) 3.34 (0.71) 2.81 (0.50) Yes t= 2.34 0.03 Benthic invertivores 0.08 (0.06) 0.09 (0.07) No Z= -0.22 0.83 Insectivores 5.86 (2.98) 4.80 (3.25) No t= 0.93 0.36 Omnivores 3.19 (1.36) 2.60 (1.54) No t= 1.16 0.25 Top Carnivores 0.52 (0.27) 0.50 (0.47) No Z= 0.94 0.35 Non-indigenous 4.11 (3.41) 0.56 (0.50) Yes Z= 3.43 0.0006 Indigenous(b) 7.51 (4.37) 7.60 (2.86) No t= -0.30 0.76 Tolerant 4.95 (2.66) 6.60 (2.74) No t= -1.67 0.11 Intolerant 0.05 (0.07) 0.10 (0.11) No Z= -1.53 0.13 Thermally sensitive 0.05 (0.05) 0.03 (0.05) No Z= 1.18 0.24 Diversity indices (per run)

Simpson 0.84 (0.06) 0.83 (0.12) No Z= -0.33 0.74 Shannon 9.1 (2.1) 8.9 (2.6) No t= 0.16 0.87 (a) t-Value indicates results of independent two-sample t-test (=0.05). Z-Value indicates results of Wilcoxon Rank-Sum Z-test (=0.05) used when raw data could not be normalized using transformation.

(b) Square root or ln(x+1) transformed data used for statistical analyses because raw data were not normally distributed and/or did not have equal variances.

47

Table 17. Summary of RFAI scores from sites located directly upstream and downstream of Sequoyah Nuclear Plant as well as scores from sampling conducted during autumn 1993-2011 as part of the Vital Signs Monitoring Program in Chickamauga Reservoir.

Station Location 1993 1994 1995 1996 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Average Inflow TRM 529.0 52 52 48 42 44 42 44 46 48 48 42 42 42 42 44 44 44 50 45 Transition TRM 490.5 51 40 48 44 39 45 46 45 51 42 49 46 47 44 34 41 39 35 44 SQN Upstream Forebay SQN TRM 482.0 --- --- --- 47 --- 41 48 46 43 45 41 39 35 38 38 37 39 35 41 Downstream Forebay TRM 472.3 43 44 47 --- 40 45 45 48 46 43 43 46 43 41 41 42 40 34 43 Hiwassee River HiRM 8.5 46 39 39 --- 40 43 43 47 --- 36 42 45 --- 41 --- 42 --- 37 42 Embayment

  • TRM 482 scored with forebay criteria, TRM 490.5 scored with transition criteria (Refer to Table 4).
    • RFAI Scores: 12-21 (Very Poor), 22-31 (Poor), 32-40 (Fair), 41-50 (Good), or 51-60 (Excellent) 48

Table 18. Comparison of mean density per square meter of benthic taxa collected at upstream and downstream sites near SQN during August and October 2011.

DOWNSTREAM UPSTREAM TRM 481.3 TRM 483.4 TRM 488.0 TRM 490.5 Summer Autumn Summer Autumn Summer Summer Autumn Metric Obs Rating Obs Rating Obs Rating Obs Rating Obs Rating Obs Rating Obs Rating

1. Average number of taxa 9.0 5 7.8 5 13.6 5 13.6 5 7.0 5 7.2 5 6.6 3
2. Proportion of samples with long-0.8 3 0.7 3 0.8 3 0.8 3 1.0 5 0.4 1 0.8 3 lived organisms
3. Average number of EPT taxa 0.9 3 1.0 5 1.2 5 0.9 3 0.8 3 0.2 1 0.5 1
4. Average proportion of 35.6 3 29.4 3 54.4 1 48.1 1 15.5 3 7.2 5 14.8 3 oligochaete individuals
5. Average proportion of total abundance comprised by the two 73.7 5 78.6 5 75.5 5 77.0 5 82.8 3 86.4 3 84.5 3 most abundant taxa
6. Average density excluding 235.0 3 181.7 3 525.0 5 1685.0 5 470.0 3 396.7 3 263.3 1 chironomids and oligochaetes
7. Zero-samples - proportion of 0 5 0 5 0 5 0 5 0 5 0 5 0 5 samples containing no organisms Benthic Index Score 27 29 29 27 27 23 19 Good Good Good Good Good Fair Fair
  • TRM 481.3 and 483.4 scored with forebay criteria, TRM 488.9 and 490.5 scored with transition criteria (Refer to Table 5).

Reservoir Benthic Index Scores: 7-12 (Very Poor), 13-18 (Poor), 19-23 (Fair), 24-29 (Good), 30-35 (Excellent) 49

Table 19. Summary of RBI Scores from Sites Located Directly Upstream and Downstream of Sequoyah Nuclear Plant as Well as Scores from Sampling Conducted as Part of the Vital Signs Monitoring Program in Chickamauga Reservoir.

Station Location 1994 1995 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Average Inflow TRM 527.4 --- --- --- --- --- 29 27 33 35 31 --- 23 23 23 21

  • 27 Inflow TRM 518.0 19 31 25 21 23 29 23 27 35 29 33 25 --- 31 --- 27 27 Transition TRM 490.5 33 29 31 31 23 25 25 31 31 31 27 21 17 27 23 19 27 SQN Upstream Forebay TRM 482.0 --- --- --- --- 23 31 29 29 33 31 31 25 25 23 29 --- 28 SQN Downstream Forebay TRM 472.3 31 27 29 25 27 27 21 27 29 27 29 19 25 23 --- 21 26 Hiwassee River HiRM 8.5 17 27 25 21 --- 21 --- 31 --- 25 --- 13 --- 19 --- 19 22 Embayment
  • - Sampling was conducted, but data was not available at the time this report was issued.

Reservoir Benthic Index Scores: 7-12 (Very Poor), 13-18 (Poor), 19-23 (Fair), 24-29 (Good), 30-35 (Excellent) 50

Table 20. Comparison of mean density per Square Meter of Benthic Taxa collected with a Ponar Dredge along Transects Upstream and Downstream of Sequoyah Nuclear Plant, Chickamauga Reservoir, Summer and Autumn 2011.

Summer Autumn Summer Autumn Summer Summer Autumn Taxa Downstream Downstream Downstream Downstream Upstream Upstream Upstream TRM 481.3 TRM 481.3 TRM 483.4 TRM 483.4 TRM 488.0 TRM 490.5 TRM 490.5 Insecta Diptera Chironomidae Ablabesmyia annulata 5 8 2 2 13 7 7 Ablabesmyia mallochi 2 ----- 3 ----- ----- ----- -----

Ablabesmyia rhamphe gp. 7 ----- 10 13 ----- ----- -----

Ablabesmyia sp. ----- ----- ----- ------ ----- 3 -----

Chironomidae 3 2 ----- ------ ----- ----- -----

Chironomus crassicaudatus 10 2 10 ------ 7 73 22 Chironomus decorus gp. 2 2 ------ ------ ----- ------ -----

Chironomus major 15 2 ------ ------ ----- 27 2 Chironomus sp. 5 ------ ------ ------ ------ ------ ------

Cladopelma sp. ------ ------ ------ ------ ------ ------ 2 Cladotanytarsus sp. ------ ------ 5 2 ------ ------ 15 Coelotanypus sp. 135 23 35 12 217 410 ------

Coelotanypus tricolor ------ 205 ------- 103 ------ ------ 292 Clinotanypus sp. ------ ------ ------- 2 ------ ------ ------

Cryptochironomus sp. 7 7 2 7 3 ------ 3 Cricotopus sp. ------ ------ ------- 2 ------ ------ -------

Cricotopus reverses gp. ------ 2 ------- -------- ------ ------ -------

Dicrotendipes lucifer ------ ------- 58 45 ------ ------ -------

Dicrotendipes modestus ------ ------- 12 53 ------ ------ -------

Dicrotendipes neomodestus 2 2 28 5 ------ ------ -------

Dicrotendipes simpsoni ------ ------- 3 3 ------ ------ -------

Dicrotendipes sp. ------ ------- 2 2 ------ ------ -------

Glyptotendipes sp. ------ 2 27 3 ------ ------ -------

Hydrobaenus sp. 2 ------- ------- ------- ------ ------ -------

Microtendipes pedellus gp. 2 ------- ------- ------- ------ ------ -------

Nanocladius alternantherae ------ ------- ------- 2 ------ ------ -------

Nanocladius distinctus ------ ------- 3 5 ------ ------ -------

Orthocladius sp. ------ ------- 2 ------- ------ ------- -------

Parachironomus carinatus ------- ------- 7 3 ------ ------- -------

Parachironomus frequens ------- -------- ------- 7 ------- ------- -------

Parachironomus sp. ------- ------- ------- 2 ------- ------- -------

Polypedilum halterale gp. ------- 2 3 ------- ------- ------- -------

Procladius sp. 5 2 2 2 7 ------- 5 Pseudochironomus sp. ------- ------- ------- 2 ------- ------- -------

51

Table 20 (continued).

Summer Autumn Summer Autumn Summer Summer Autumn Taxa Downstream Downstream Downstream Downstream Upstream Upstream Upstream TRM 481.3 TRM 481.3 TRM 483.4 TRM 483.4 TRM 488.0 TRM 490.5 TRM 490.5 Chironomidae (Cont.)

Tanytarsus sp. 2 3 ------- 5 ------- ------- -------

Thienemanniella lobapodema ------- ------- ------- ------- 10 ------- -------

Ceratopogonidae 3 ------- ------- ------- ------- ------- 2 Argia sp. ------- ------- 2 ------- ------- ------- -------

Palpomyia sp. ------- ------- ------- ------- ------- 7 -------

Chaoboridae ------- ------- ------- ------- ------- ------- -------

Chaoborus punctipennis 115 67 22 2 63 260 10 Ephemeroptera Ephemeridae Hexagenia limbata 28 23 3 13 20 3 7 Hexagenia sp. 2 ------- ------- 2 ------- ------- 2 Heptageniidae Stenacron interpunctatum 2 3 ------- ------- ------- ------- -------

Caenidae Caenis sp. ------- ------- ------- ------- ------- ------- 2 Trichoptera Leptoceridae Oecetis sp. 7 8 20 12 7 ------- 3 Polycentropodidae Cyrnellus fraternus 3 ------- 17 18 ------- ------- -------

Polycentropus sp. ------- ------- ------- ------- ------- ------- 2 Hydroptilidae Orthotrichia sp. ------- 2 3 ------- ------- ------- -------

Ostracoda Podocopa Candoniidae Candona sp. 3 70 ------- 58 ------- 7 22 Ostracoda 5 2 3 ------- ------- ------- -------

Brachiopoda Cladocera Daphnidae Ceriodaphnia 2 ------- ------- ------- ------- ------- -------

Sididae Sida crystallina 2 2 32 5 ------- ------- 3 52

Table 20 (continued).

Summer Autumn Summer Autumn Summer Summer Autumn Taxa Downstream Downstream Downstream Downstream Upstream Upstream Upstream TRM 481.3 TRM 481.3 TRM 483.4 TRM 483.4 TRM 488.0 TRM 490.5 TRM 490.5 Oligocheata Haplotaxida Tubificidae Aulodrilus piqueti 392 33 27 77 7 3 2 Branchiura sowerbyi 3 2 10 3 ----- ----- -----

Limnodrilus hoffmeisteri 10 13 7 93 20 ----- 10 Limnodrilus cervix ----- 2 ----- ----- ----- ----- -----

Tubificidae 168 75 52 542 60 70 120 Naididae Dero sp. 60 18 855 822 7 ----- -----

Naididae 3 3 137 167 ----- ----- 12 Nais cf. pardalis ----- ----- 30 2 ----- ----- -----

Nais sp. ----- ----- 22 40 ----- ----- 5 Prisitina breviseta ----- 2 ----- ----- ----- ----- 5 Pristina leidyi ----- ----- 2 ----- ----- ----- -----

Pristina sp. ----- 2 ----- 25 ----- ----- -----

Slavina appendiculata ----- ----- 15 18 ----- ----- -----

Stylaria lacustris ----- ----- ----- 410 ----- ----- -----

Branchiobdellida Branchiodellida ----- ----- ----- 2 ----- ----- -----

Bivalvia Veneroida Corbiculidae Corbicula fluminea 42 38 98 212 223 67 67 Dreissenidae Dreissena polymorpha ------- ------- 77 198 ------- ------- -------

Sphaeriidae Eupera cubensis ------- ------- 2 ------- ------- ------- -------

Musculium transversum 100 62 27 138 187 283 165 Pisidium sp. 20 12 12 5 20 27 3 Sphaeriidae ------- ------- ------- 2 ------- ------- -------

Unionoida Unoinidae Utterbackia imbecillis 2 ------- ------- 5 ------- ------- -------

Truncilla truncata ------- ------- ------- ------- ------- ------- 2 Gastropoda Mesogastropoda Viviparidae Viviparus sp. 7 ------- 13 55 3 ------- -------

53

Table 20 (continued).

Summer Autumn Summer Autumn Summer Summer Autumn Taxa Downstream Downstream Downstream Downstream Upstream Upstream Upstream TRM 481.3 TRM 481.3 TRM 483.4 TRM 483.4 TRM 488.0 TRM 490.5 TRM 490.5 Gastropoda (cont.)

Campeloma decisum ------- ------- 2 7 ------- ------- 2 Hydrobiidae Amnicola limosa ------- ------- 3 2 ------- ------- -------

Pleuroceridae Pleurocera canaliculata ------- ------- 3 10 ------- ------- 3 Basommatophora Planorbidae Menetus dilatatus ------- ------- 2 ------- ------- ------- -------

Malacostraca Amphipoda Crangonyctidae Crangonyx sp. 2 ------- ------- 8 ------- ------- -------

Gammaridae Gammarus sp. ------- ------- 7 3 ------- ------- -------

Talitrida Hyalella azteca ------- 3 ------- ------- ------- ------- -------

Maxillopoda Copepoda Cyclopoida 5 ------- 3 5 3 7 2 Harpacticoida ------- ------- 2 ------- ------- ------- -------

Turbellaria Tricladida Planariidae Dugesia tigrina 2 2 185 625 ------- ------- -------

Cura foremanii ------- 2 ------- ------- ------- ------- -------

Hirudinea Rhynchobdellida Glossiphoniidae Glossiphoniidae sp. ------- ------- 12 88 ------- 3 -------

Helobdella stagnalis 15 22 17 165 10 3 3 Helobdella sp. ------- 2 2 73 ------- ------- -------

Helobdella triserialis ------- ------- 8 13 ------- ------- -------

Placobdella montifera ------- 3 ------- ------- ------- ------- -------

Pharyngobdellida Erpobdellidae Erpobdellidae ------- ------- 3 28 ------- ------- -------

54

Table 20 (continued).

Summer Autumn Summer Autumn Summer Summer Autumn Taxa Downstream Downstream Downstream Downstream Upstream Upstream Upstream TRM 481.3 TRM 481.3 TRM 483.4 TRM 483.4 TRM 488.0 TRM 490.5 TRM 490.5 Nematoda Nematoda Nematoda 2 ------- 2 ------- ------- 3 2 Arachnoidea Unoinicolidae Unionicola sp. ------- 2 ------- ------- ------- ------- 8 Acariformes Hygrobatidae Atractides sp. ------- ------- 2 ------- ------- ------- 2 Hydrozoa Hydroida Hydridae Number of samples 10 10 10 10 5 5 10 Mean Density per meter² 1,205 735 1,883 4,283 887 1,263 810 Taxa Richness 42 40 54 58 20 18 36 Sum of area sampled (meters²) 0.60 0.60 0.60 0.60 0.30 0.30 0.60 55

Table 21. Individual Metric Ratings and the Overall RBI Field Scores for Downstream and Upstream Sampling Sites Near SQN, Chickamauga Reservoir, Autumn 2000-2010. Reservoir Benthic Index Scores: 7-12 (Very Poor), 13-18 (Poor), 19-23 (Fair), 24-29 (Good), 30-35 (Excellent).

Downstream (TRM 482.0) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Metric Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Avg. Number of Taxa 3.7 3 6.2 5 5.4 5 5.7 5 6.3 5 6.6 5 4.9 5 4.1 3 5.8 5 4.2 3 5 5

% Long-Lived Organisms 0.9 5 0.8 5 1 5 0.6 3 1 5 0.9 5 0.9 5 0.6 3 0.6 3 0.7 3 0.9 5 Avg. Number of EPT Taxa 0.3 1 0.6 3 0.4 1 0.3 1 0.5 3 0.7 3 0.7 3 0.5 3 0.6 3 0.5 3 0.5 3

% as Oligochaetes 27.9 3 27.1 3 19.4 3 9.4 5 8.8 5 15 3 17.3 3 6.3 5 21.7 3 4.4 5 11.7 5

% as Dominant Taxa 87.6 3 80.8 5 78.6 5 79.8 5 68.4 5 79 5 78.1 5 90.6 3 83.9 3 83.9 3 81.3 5 Density excluding chironomids 230 3 348.3 5 365 5 580 5 563.3 5 573.3 5 265 5 125 3 166.7 3 104.4 1 98.3 1 and oligochaetes Number of Samples with Zero 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 Organisms Overall Score 23 31 29 29 33 31 31 25 25 23 29 Upstream (TRM 490.5) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Metric Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Obs Score Avg. Number of Taxa 4.7 5 6 5 6.4 5 7.4 5 7.2 5 6.8 5 5.4 5 4.7 5 5.4 5 5 5 4.4 5

% Long-Lived Organisms 0.9 5 0.9 5 1 5 0.9 5 0.9 5 0.9 5 0.8 5 0.5 3 0.3 1 0.8 5 0.7 3 Avg. Number of EPT Taxa 0.3 1 0.4 3 0.2 1 0.7 3 0.7 3 0.9 5 0.5 3 0.3 1 0.1 1 0.6 3 0.7 3

% as Oligochaetes 7.7 5 14.8 3 8.4 5 10.7 5 6.4 5 4.4 5 2.5 5 5.2 5 16.7 3 7.2 5 1.1 5

% as Dominant Taxa 88.4 1 79.4 3 85 3 71 5 78 5 79.8 3 83.1 3 93.4 1 95 1 81.2 3 91.8 1 Density excluding chironomids 218.3 1 230 1 168.6 1 341.7 3 571.7 3 479.2 3 223.3 1 56.7 1 31.7 1 81.7 1 181.7 1 and oligochaetes Number of Samples with Zero 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 Organisms Overall Score 23 25 25 31 31 31 27 21 17 27 23 56

Table 22. Mean percent composition of major phytoplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011.

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM Division 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 Bacillariophyta 0 0 1 0 36 38 39 63 Chlorophyta 1 1 2 1 16 16 13 11 Chrysophyta 0 0 0 0 --- --- --- ---

Cryptophyta 0 0 0 0 30 34 36 21 Cyanophyta 99 98 96 98 16 12 12 11 Euglenophyta 0 0 0 0 1 0 --- 0 Pyrrophyta 0 0 0 0 1 0 0 ---

  • To enhance pattern recognition, percentages are rounded to whole numbers, and values may not add to 100.

0 values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.

Table 23. Comparison of the similarity of phytoplankton taxa within paired replicate samples.

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Replicate Taxa Richness 37 39 36 40 36 43 33 40 23 25 21 24 19 22 15 15 Combined Taxa Richness 43 46 49 48 32 30 27 19 Species Shared 33 30 30 25 16 15 14 11 Percent Shared 76.7% 65.2% 61.2% 52.1% 50.0% 50.0% 51.9% 57.9%

Table 24. Taxa richness of the main phytoplankton groups.

Total Number of Taxa Group August October Combined Bacillariophyta 9 12 16 Chlorophyta 31 14 37 Chrysophyta 7 --- 7 Cryptophyta 2 1 2 Cyanophyta 14 7 18 Euglenophyta 1 2 2 Pyrrophyta 3 2 4 Total Taxa Richness 67 38 86 Table 25. Percent Similarity Index for comparison of phytoplankton communities among sites.

Phytoplankton - Percent Similaritya Station Comparison August 25, 2011 October 10, 2011 TRM 481.1 - TRM 483.4 83 76

- TRM 487.9 85 71

- TRM 490.7 75 63 TRM 483.4 - TRM 487.9 87 80

- TRM 490.7 81 63 TRM 487.9 - TRM 490.7 84 63

a. Percent Similarity comparison of two communities 57

Table 26. Phytoplankton taxa and density (cells/ml) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. Abbreviations R1 and R2 designate replicate samples.

TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 August October August October August October August October Division Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Bacillariophyta Achnanthes 30.3 34.1 28.4 Anomoeneis 56.8 Aulacoseira 151.5 151.5 74.9 66.1 60.6 56.8 90.4 74.9 170.4 166.5 51.0 68.3 56.8 69.1 76.5 Cyclotella 568.0 814.1 17.6 22.0 333.2 312.4 20.9 16.5 2044.7 1908.4 23.1 20.9 710.0 1164.4 2.2 6.6 Nitzschia 68.2 265.1 3.3 2.2 121.2 113.6 3.3 702.9 306.7 4.4 3.3 56.8 170.4 0.5 1.0 Skeletonema 45.4 75.7 397.6 357.8 454.4 227.2 Stephanodiscus 18.9 60.6 2.2 Surirella 28.4 Synedra 22.7 113.6 12.1 9.9 30.3 56.8 16.5 9.9 68.2 5.5 6.6 8.8 28.4 5.9 5.6 Achnanthidium 1.1 3.3 1.1 0.7 0.1 2.9 1.5 Cocconeis 2.2 1.1 0.1 0.7 Cymbella 0.1 0.7 0.1 0.7 0.5 Fragilaria 50.7 63.9 86.0 50.7 72.7 52.9 83.7 54.4 Gyrosigma 0.5 Melosira 0.2 0.4 Navicula 0.1 0.7 0.1 3.3 2.2 Bacillariophyta Total 856 1,439 161 168 636 625 223 153 3,384 2,779 163 158 1,221 1,676 165 146 Chlorophyta Carteria 22.7 18.9 28.4 Chlamydomonas 386.2 302.9 5.5 6.6 121.2 198.8 49.6 20.9 681.6 511.2 23.1 16.5 198.8 142.0 9.6 6.6 Chlorococcaceae 22.7 56.8 121.2 113.6 136.3 408.9 170.4 142.0 Chlorogonium 34.1 Coelastrum 75.7 272.6 408.9 Cosmarium 28.4 Crucigenia 121.2 5.7 0.6 0.8 894.6 0.3 7.6 Diacanthos 34.1 Dictyosphaerium 249.9 121.2 227.2 136.3 113.6 312.4 Euastrum 22.7 Eudorina 484.7 Golenkinia 28.4 34.1 34.1 28.4 Kirchneriella 136.3 Lagerheimia 30.3 28.4 34.1 85.2 Micractinium 113.6 121.2 113.6 170.4 113.6 Monomastix 28.4 Monoraphidium 249.9 151.5 4.4 151.5 426.0 4.4 443.0 920.1 0.1 397.6 227.2 58

Table 26 (continued).

TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 August October August October August October August October Division Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Chlorophyta Mougeotia 22.7 (continued) Oocystis 18.9 60.6 142.0 545.3 272.6 113.6 113.6 Pandorina 363.5 87.8 87.8 Pediastrum 76.8 208.3 22.8 242.3 87.8 22.8 1.8 1056.4 0.8 113.6 2.1 Pyramichlamys 22.7 56.8 28.4 Quadrigula 28.4 Scenedesmus 284.0 1022.4 0.4 10.5 1272.3 426.0 3.1 13.2 1363.1 1158.7 16.1 17.6 1703.9 1168.4 15.6 6.1 Schroederia 22.7 75.7 30.3 28.4 34.1 28.4 Sphaerocystis 272.6 Staurastrum 28.4 0.7 34.1 0.1 0.0 Teilingia 21.9 Tetraedron 45.4 0.7 30.3 113.6 34.1 34.1 0.7 113.6 85.2 Tetrastrum 75.7 5.7 113.6 0.4 136.3 136.3 2.9 Treubaria 30.3 28.4 34.1 Actinastrum 17.6 11.4 8.8 0.8 0.4 17.6 3.8 0.4 Ankistrodesmus 8.8 5.7 0.2 Chlorella 23.1 16.5 13.2 7.7 3.3 3.3 0.1 Closterium 0.7 Elakatothrix 0.6 1.0 Selenastrum 9.4 0.2 1.4 Chlorophyta Total 1,792 2,265 98 52 2,938 2,189 104 50 3,987 5,521 47 58 3,126 3,306 32 21 Chrysophyta Chrysococcus 28.4 Conradiella 132.5 242.3 198.8 408.9 204.5 170.4 340.8 Erkenia 272.6 208.3 121.2 113.6 408.9 937.2 568.0 198.8 Goniochloris 34.1 28.4 Gonyostomum 5.5 5.5 5.5 Kephyrion 28.4 Mallomonas 68.2 68.2 Chrysophyta Total 273 341 364 312 920 1,215 801 573 Cryptophyta Cryptomonas 318.1 397.6 146.6 123.4 30.3 56.8 188.4 139.9 306.7 681.6 157.6 137.7 426.0 284.0 53.6 49.2 Rhodomonas 454.4 284.0 121.2 113.6 238.6 1465.4 568.0 312.4 Cryptophyta Total 772 682 147 123 151 170 188 140 545 2,147 158 138 994 596 54 49 59

Table 26 (continued).

TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 August October August October August October August October Division Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Cyanophyta Anabaena 43.9 738.4 0.9 76.8 1.5 886.1 477.1 1.9 74.4 Anabaenopsis 153.6 Aphanocapsa 6179.6 17561.7 3513.9 2186.7 5316.3 477.1 10947.7 6957.8 Chroococcaceae 98554.4 65702.9 78022.2 70835.9 100607.6 104714.0 151938.0 170416.9 Chroococcus 795.2 75.7 22.0 0.2 363.5 340.8 11.4 681.6 477.1 2.9 227.2 Cyanocatena 21900.9 10266.1 14783.2 Cyanogranis 59789.6 158097.6 65702.9 94447.9 68988.0 98760.2 123192.9 68988.0 Cylindrospermopsis 2805.8 2515.9 1206.5 1318.4 1243.9 1756.2 666.0 467.4 Dactylococcopsis 22.7 56.8 136.3 142.0 142.0 Leptolyngbya 32.8 Limnothrix 25.7 2.3 Lyngbya 3358.7 1416.2 1269.2 1817.5 963.3 1613.1 1363.2 3908.7 Merismopedia 8497.0 5566.2 11.4 1931.1 2.4 59.3 272.6 2453.7 454.4 681.6 Oscillatoria 6410.1 3691.9 4543.8 4158.1 4089.5 6043.3 8503.5 7403.6 Planktothrix 48.5 27.9 Pseudanabaena 0.9 34.3 19.8 Synechococcus 61664.6 110873.7 30113.8 34989.9 40203.9 62789.2 22585.4 35415.9 Synechocystis 5339.0 4998.2 4453.0 3635.1 7497.3 6986.2 5963.8 5310.6 Cyanophyta Total 253,461 371,295 56 87 211,090 226,004 4 107 230,750 286,683 22 77 325,757 314,856 0 28 Euglenophyta Euglena 45 11 6 7 15 0 1 5 5 1 Trachelomonas 1 Euglenophyta Total 45 11 6 7 15 0 3 5 5 1 Pyrrophyta Glenodinium 23 5 11 28 Gymnodinium 45 38 30 34 28 Peridinium 45 5 2 0 0 11 1 28 Ceratium 0 0 Pyrrophyta Total 114 49 2 30 0 0 11 45 1 28 57 Total Phytoplankton Cell Count 257,313 376,081 467 439 215,224 229,301 519 453 239,603 298,391 389 432 331,933 321,065 251 244 60

Table 27. Percentage Composition of phytoplankton for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Bacillariophyta Achnanthes --- --- 0 --- --- 0 --- 0 --- --- --- --- --- --- --- ---

Anomoeneis --- --- --- 0 --- --- --- --- --- --- --- --- --- --- --- ---

Aulacoseira 0 0 0 0 0 0 --- 0 16 15 17 17 13 16 27 31 Cyclotella 0 0 0 0 1 1 0 0 4 5 4 4 6 5 1 3 Nitzschia 0 0 0 0 0 0 0 0 1 1 1 --- 1 1 0 0 Skeletonema 0 0 --- --- 0 0 0 0 --- --- --- --- --- --- --- ---

Stephanodiscus --- 0 0 --- --- --- --- --- --- --- 0 --- --- --- --- ---

Surirella --- --- --- 0 --- --- --- --- --- --- --- --- --- --- --- ---

Synedra 0 0 0 0 0 0 --- 0 3 2 3 2 2 2 2 2 Achnanthidium --- --- --- --- --- --- --- --- --- 0 1 0 0 0 1 1 Cocconeis --- --- --- --- --- --- --- --- 0 0 --- 0 0 --- --- ---

Cymbella --- --- --- --- --- --- --- --- 0 0 0 --- --- 0 0 ---

Fragilaria --- --- --- --- --- --- --- --- 11 15 17 11 19 12 33 22 Gyrosigma --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0 Melosira --- --- --- --- --- --- --- --- --- --- --- --- 0 0 --- ---

Navicula --- --- --- --- --- --- --- --- 0 0 --- 0 1 1 --- ---

Bacillariophyta Total 0 0 0 0 1 1 0 1 34 38 43 34 42 36 66 60 Chlorophyta Carteria 0 0 --- 0 --- --- --- --- --- --- --- --- --- --- --- ---

Chlamydomonas 0 0 0 0 0 0 0 0 1 2 10 5 6 4 4 3 Chlorococcaceae 0 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

Chlorogonium --- --- --- --- --- 0 --- --- --- --- --- --- --- --- --- ---

Coelastrum --- 0 --- --- 0 0 --- --- --- --- --- --- --- --- --- ---

Cosmarium --- --- --- 0 --- --- --- --- --- --- --- --- --- --- --- ---

Crucigenia --- --- 0 --- --- --- --- 0 --- --- 1 0 --- 0 0 3 Diacanthos --- --- --- --- --- 0 --- --- --- --- --- --- --- --- --- ---

Dictyosphaerium 0 --- 0 0 --- 0 0 0 --- --- --- --- --- --- --- ---

Euastrum 0 --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Eudorina --- --- 0 --- --- --- --- --- --- --- --- --- --- --- --- ---

Golenkinia --- --- --- 0 0 0 --- 0 --- --- --- --- --- --- --- ---

Kirchneriella --- --- --- --- 0 --- --- --- --- --- --- --- --- --- --- ---

Lagerheimia --- --- 0 0 --- 0 0 --- --- --- --- --- --- --- --- ---

Micractinium --- 0 0 0 0 --- 0 --- --- --- --- --- --- --- --- ---

Monomastix --- --- --- 0 --- --- --- --- --- --- --- --- --- --- --- ---

Monoraphidium 0 0 0 0 0 0 0 0 1 --- --- 1 --- 0 --- ---

Mougeotia 0 --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Oocystis --- 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

Pandorina 0 0 --- --- --- --- 0 --- --- --- --- --- --- --- --- ---

Pediastrum 0 0 0 0 --- 0 --- 0 5 --- 4 0 0 --- 1 ---

Pyramichlamys 0 0 --- --- --- --- --- 0 --- --- --- --- --- --- --- ---

Quadrigula --- --- --- --- --- --- 0 --- --- --- --- --- --- --- --- ---

Scenedesmus 0 0 1 0 1 0 1 0 0 2 1 3 4 4 6 3 61

Table 27. (Continued)

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 (Chlorophyta)

Schroederia 0 0 0 0 --- 0 --- 0 --- --- --- --- --- --- --- ---

Sphaerocystis --- --- --- --- --- 0 --- --- --- --- --- --- --- --- --- ---

Staurastrum --- --- --- 0 0 --- --- --- --- --- --- 0 0 --- --- 0 Teilingia --- --- --- --- --- --- --- 0 --- --- --- --- --- --- --- ---

Tetraedron 0 --- 0 0 0 0 0 0 --- 0 --- --- --- 0 --- ---

Tetrastrum --- 0 --- 0 0 0 --- --- 1 --- 0 --- 1 --- --- ---

Treubaria --- --- 0 0 --- 0 --- --- --- --- --- --- --- --- --- ---

Actinastrum --- --- --- --- --- --- --- --- 4 3 2 0 0 4 2 0 Ankistrodesmus --- --- --- --- --- --- --- --- 2 1 --- --- --- 0 --- ---

Chlorella --- --- --- --- --- --- --- --- 5 4 3 2 1 1 --- 0 Closterium --- --- --- --- --- --- --- --- --- 0 --- --- --- --- --- ---

Elakatothrix --- --- --- --- --- --- --- --- 0 --- --- --- --- --- 0 ---

Selenastrum --- --- --- --- --- --- --- --- 2 --- 0 --- --- 0 --- ---

Chlorophyta Total 1 1 1 1 2 2 1 1 21 12 20 11 12 14 13 9 Chrysophyta Chrysococcus --- --- --- --- --- --- 0 --- --- --- --- --- --- --- --- ---

Conradiella --- 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

Erkenia 0 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

Goniochloris --- --- --- --- 0 --- 0 --- --- --- --- --- --- --- --- ---

Gonyostomum --- --- --- --- --- 0 0 0 --- --- --- --- --- --- --- ---

Kephyrion --- --- --- --- --- --- --- 0 --- --- --- --- --- --- --- ---

Mallomonas --- --- --- --- 0 0 --- --- --- --- --- --- --- --- --- ---

Chrysophyta Total 0 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

Cryptophyta Cryptomonas 0 0 0 0 0 0 0 0 31 28 36 31 41 32 21 20 Rhodomonas 0 0 0 0 0 0 0 0 --- --- --- --- --- --- --- ---

Cryptophyta Total 0 0 0 0 0 1 0 0 31 28 36 31 41 32 21 20 Cyanophyta Anabaena 0 0 --- 0 0 0 --- --- 0 --- 0 --- 0 17 --- ---

Anabaenopsis --- --- --- --- --- --- --- 0 --- --- --- --- --- --- --- ---

Aphanocapsa 2 5 2 1 2 0 3 2 --- --- --- --- --- --- --- ---

Chroococcaceae 38 17 36 31 42 35 46 53 --- --- --- --- --- --- --- ---

Chroococcus 0 0 0 0 0 0 --- 0 5 0 --- 3 --- 1 --- ---

Cyanocatena --- --- 10 4 --- --- --- 5 --- --- --- --- --- --- --- ---

Cyanogranis 23 42 31 41 29 33 37 21 --- --- --- --- --- --- --- ---

Cylindrospermopsis 1 1 1 1 1 1 0 0 --- --- --- --- --- --- --- ---

Dactylococcopsis 0 0 --- --- --- 0 0 0 --- --- --- --- --- --- --- ---

Leptolyngbya --- --- --- --- --- --- --- --- 7 --- --- --- --- --- --- ---

Limnothrix --- --- --- --- --- --- --- --- --- 6 --- 1 --- --- --- ---

Lyngbya 1 0 1 1 0 1 0 1 --- --- --- --- --- --- --- ---

Merismopedia 3 1 --- 1 0 1 0 0 --- 3 0 13 --- --- --- ---

Oscillatoria 2 1 2 2 2 2 3 2 --- --- --- --- --- --- --- ---

Planktothrix --- --- --- --- --- --- --- --- --- 11 --- --- --- --- --- 11 Pseudanabaena --- --- --- --- --- --- --- --- --- 0 --- 8 5 --- --- ---

Synechococcus 24 29 14 15 17 21 7 11 --- --- --- --- --- --- --- ---

Synechocystis 2 1 2 2 3 2 2 2 --- --- --- --- --- --- --- ---

Cyanophyta Total 99 99 98 99 96 96 98 98 12 20 1 24 6 18 --- 11 62

Table 27. (Continued)

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM Taxon 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Euglenophyta Euglena 0 0 0 --- 0 --- 0 --- 1 2 0 0 --- --- 0 ---

Trachelomonas --- --- --- --- --- --- --- --- --- --- --- 0 --- --- --- ---

Euglenophyta Total 0 0 0 --- 0 --- 0 --- 1 2 0 1 --- --- 0 ---

Pyrrophyta Glenodinium 0 0 --- --- --- 0 0 --- --- --- --- --- --- --- --- ---

Gymnodinium 0 0 0 --- --- 0 --- 0 --- --- --- --- --- --- --- ---

Peridinium 0 0 --- --- 0 --- --- 0 --- 1 0 0 --- 0 --- ---

Ceratium --- --- --- --- --- --- --- --- --- 0 --- 0 --- --- --- ---

Pyrrophyta Total 0 0 0 --- 0 0 0 0 --- 1 0 0 --- 0 --- ---

63

Table 28. Concentrations of chlorophyll a (apparent and corrected), phaeophytin a and the chlorophyll/phaeophytin index values for samples collected upstream and downstream of SQN during 2011.

Collection Sample Chlorophyll a (µg/L) Phaeophytin Chlorophyll/Phaeophytin Replicate Date Site Apparent Corrected a (µg/L) Index TRM 08/25/2011 481.2 R1 13 11 2.2 1.6 R2 14 13 1.5 1.6 TRM 483.4 R1 8 6 2.5 1.5 R2 8 6 2.6 1.5 TRM 487.9 R1 13 13 < 1.0 1.7 R2 15 15 < 1.0 1.7 TRM 490.7 R1 11 10 1.0 1.6 R2 11 9 1.5 1.6 TRM 10/10/2011 481.1 R1 6 5 1.0 1.6 R2 8 7 1.7 1.6 TRM 483.4 R1 10 9 1.4 1.6 R2 13 11 1.6 1.6 TRM 487.9 R1 7 6 1.7 1.5 R2 9 8 1.4 1.6 TRM 490.8 R1 7 5 2.0 1.5 R2 6 6 1.1 1.6 Table 29. Mean percent composition of major zooplankton groups at sites sampled upstream and downstream of SQN in August and October, 2011.

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM Group 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 Bivalvia (veliger) --- --- --- --- --- 0 0 ---

Cladocera 66 51 65 62 44 59 71 69 Copepoda 32 27 20 23 40 37 23 29 Rotifera 2 22 15 16 16 4 6 2

  • Percentages are rounded to whole numbers, and values may not add to 100.

0 values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.

64

Table 30. Comparison of the similarity of zooplankton taxa within paired replicate samples.

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Replicate Taxa Richness 8 9 6 7 7 8 7 7 7 7 11 11 8 9 12 9 Combined Taxa Richness 14 8 9 9 9 16 12 13 Species Shared 3 5 6 5 5 6 5 8 Percent Shared 21.4% 62.5% 66.7% 55.6% 55.6% 37.5% 41.7% 61.5%

Table 31. Taxa richness of the main zooplankton groups.

Total Number of Taxa Group August October Combined Bivalvia --- 2 2 Cladocera 7 8 11 Copepoda 3 9 10 Rotifera 8 7 12 Total Taxa Richness 18 26 35 Table 32. Percent Similarity Index for comparison of zooplankton communities among sites.

Zooplankton - Percent Similaritya Station Comparison August 25, 2011 October 10, 2011 TRM 481.1 - TRM 483.4 63 83

- TRM 487.9 69 72

- TRM 490.7 75 74 TRM 483.4 - TRM 487.9 70 86

- TRM 490.7 72 89 TRM 487.9 - TRM 490.7 80 93

a. Percent Similarity comparison of two communities 65

Table 33. Zooplankton taxa and density (organisms/m3) data for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011. Abbreviations R1 and R2 designate replicate samples.

TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 August October August October August October August October Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Bivalvia Corbiculidae Corbicula fluminea (veliger) 9 Dreissenidae Dreissena polymorpha (veliger) 9 9 15 Cladocera Cladocera (immature) 15 Diplostraca Bosminidae Bosmina longirostris 1175 2385 5017 18182 1421 784 2461 3614 596 1083 2895 3762 627 796 5511 5863 Bosminidae (immature) 40 Eubosmina tubicen 18 34 41 Daphiniidae Ceriodaphnia 147 41 79 120 37 14 Daphnia galeata 76 31 Daphnia lumholtzi 73 9 160 30 17 40 Daphnia retrocurva 89 Leptodoridae Leptodora kindtii 38 38 18 Sididae Diaphanosoma birgei 417 1027 958 1238 397 321 111 265 Diaphanosoma brachyurum 14 Sididae (immature) 112 14 40 Ilyocryptidae Ilyocryptus spinifer 9 Macrothricidae Macrothrix sp. 9 Copepoda Calanoida Calanoida 37 3961 12907 247 372 1558 1276 357 80 1006 872 111 44 2020 2193 Temoridae Epischura fluviatilis 34 Eurytemora affinis 377 186 120 15 77 82 120 Eurytemora sp. 673 66

Table 33 (continued).

TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 August October August October August October August Taxon R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 (Copepoda)

Cyclopoida Cyclopoida 1023 1284 453 2918 1019 661 230 370 119 241 137 94 221 265 220 179 Cyclopidae Cyclops sp. 38 41 37 Eucyclops agilis 9 Mesocyclops edax 27 Tropocyclops prasinus 41 20 Harpacticoida Harpacticoida 112 Poecilostomatoida Ergasilidae Ergasilus sp. 18 41 40 Rotifera Flosculariaceae Conochilidae Conochilus unicornis 38 1773 6846 31 2312 416 278 281 503 184 265 96 199 Ploima Brachionidae Brachionus angularis 14 Brachionus calyciflorus 37 38 9 9 Brachionus patulus 9 Brachionus quadridentatus 17 Brachionus quadridentatus 15

f. brevispinus Kellicottia longispina 40 Keratella cochlearis 40 14 Platyias patulus 37 Gastropidae Ascomorpha sp. 44 Lecanidae Lecane sp. 38 Trichocercidae Trichocerca sp. 37 Total Zooplankton Abundance 2842 5064 11657 41751 3707 5449 4930 5462 1866 2326 4632 4917 1327 1769 8122 8734 67

Table 34. Percentage composition of zooplankton taxa for samples collected at four stations within Chickamauga Reservoir on the Tennessee River - August 25 and October 10, 2011.

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Bivalvia Corbiculidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Corbicula fluminea (veliger) --- --- --- --- --- --- --- --- --- --- --- 0 --- --- --- ---

Dreissenidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Dreissena polymorpha (veliger) --- --- --- --- --- --- --- --- --- --- 0 0 0 --- --- ---

Bivalvia Total --- --- --- --- --- --- --- --- --- --- 0 0 0 --- --- ---

Cladocera Cladocera (immature) --- --- --- --- --- --- --- --- --- --- --- --- 0 --- --- ---

Diplostraca --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Bosminidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Bosmina longirostris 41 47 38 14 32 47 47 45 43 44 50 66 63 77 68 67 Bosminidae (immature) --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0 Eubosmina tubicen --- --- --- --- --- --- --- --- --- --- 0 --- --- 1 1 ---

Daphiniidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Ceriodaphnia --- 3 --- 1 4 5 3 --- --- --- --- --- --- --- 0 ---

Daphnia galeata 3 --- 1 --- --- --- --- --- --- --- --- --- --- --- --- ---

Daphnia lumholtzi --- 1 --- --- --- 7 --- --- --- --- --- 0 1 0 --- 0 Daphnia retrocurva --- --- --- --- --- --- --- 5 --- --- --- --- --- --- --- ---

Leptodoridae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Leptodora kindtii 1 --- --- --- --- --- --- --- 0 --- --- 0 --- --- --- ---

Sididae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Diaphanosoma birgei 15 20 26 23 21 14 8 15 --- --- --- --- --- --- --- ---

Diaphanosoma brachyurum --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0 ---

Sididae (immature) --- --- --- --- --- --- --- --- --- 0 --- --- --- --- 0 0 Ilyocryptidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Ilyocryptus spinifer --- --- --- --- --- --- --- --- --- --- 0 --- --- --- --- ---

Macrothricidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Macrothrix sp. --- --- --- --- --- --- --- --- --- --- --- 0 --- --- --- ---

Cladocera Total 60 72 65 38 57 72 58 65 43 44 50 67 63 78 69 68 Copepoda Calanoida --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Calanoida --- 1 7 7 19 3 8 2 34 31 32 23 22 18 25 25 Temoridae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Epischura fluviatilis --- --- --- --- --- --- --- --- --- --- --- --- --- 1 --- ---

Eurytemora affinis --- --- --- --- --- --- --- --- 3 --- 4 2 0 2 1 1 Eurytemora sp. --- --- --- --- --- --- --- --- --- 2 --- --- --- --- --- ---

Cyclopoida --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Cyclopoida 36 25 27 12 6 10 17 15 4 7 5 7 3 2 3 2 68

Table 34. (Continued)

August 25, 2011 October 10, 2011 TRM TRM TRM TRM TRM TRM TRM TRM 481.1 483.4 487.9 490.7 481.1 483.4 487.9 490.7 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 (Cyclopoida)

Cyclops sp. 1 --- --- 1 --- --- 3 --- --- --- --- --- --- --- --- ---

Eucyclops agilis --- --- --- --- --- --- --- --- --- --- 0 --- --- --- --- ---

Mesocyclops edax --- --- --- --- --- --- --- --- --- --- 1 --- --- --- --- ---

Tropocyclops prasinus --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0 Harpacticoida --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Harpacticoida --- --- --- --- --- --- --- --- --- 0 --- --- --- --- --- ---

Poecilostomatoida --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Ergasilidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Ergasilus sp. --- --- --- --- --- --- --- --- --- --- --- 0 --- --- 1 0 Copepoda Total 37 26 34 20 26 14 28 17 41 40 41 33 25 22 30 29 Rotifera Flosculariaceae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Conochilidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Conochilus unicornis 1 --- 1 42 15 12 14 15 15 16 8 --- 11 --- 1 2 Ploima --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Brachionidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Brachionus angularis --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0 ---

Brachionus calyciflorus --- 1 --- --- --- --- --- --- 0 --- 0 0 --- --- --- ---

Brachionus patulus --- --- --- --- --- --- --- --- --- --- --- --- --- 0 --- ---

Brachionus quadridentatus --- --- --- --- --- --- --- --- --- --- --- --- --- 0 --- ---

Brachionus quadridentatus f. brevispinus --- --- --- --- --- --- --- --- --- --- --- --- 0 --- --- ---

Kellicottia longispina --- --- --- --- --- 2 --- --- --- --- --- --- --- --- --- ---

Keratella cochlearis --- --- --- --- 2 --- --- --- --- --- --- --- --- --- 0 ---

Platyias patulus --- 1 --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Gastropidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Ascomorpha sp. --- --- --- --- --- --- --- 2 --- --- --- --- --- --- --- ---

Lecanidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Lecane sp. 1 --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Trichocercidae --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Trichocerca sp. --- 1 --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Rotifera Total 3 2 1 42 17 14 14 17 16 16 9 0 11 1 2 2

  • Percentages are rounded to whole numbers, and values may not add to 100.

0 values indicate percentages less than 0.5%. Blank values indicate no individuals of the taxa collected.

69

Table 35. Wildlife Visual Encounter Survey Results of Shoreline Upstream and Downstream of Sequoyah Nuclear Plant during August (Summer) and October (Autumn) 2011. (RDB = right descending bank, LDB = Left Descending Bank)

Season Site Transect Birds Obs. Mammals Obs.

August 2011 Upstream RDB Swallow sp. 1 Belted Kingfisher 1 American Crow 4 Turkey Vulture 2 Osprey 1 Great Blue Heron 5 Unidentified Duck 2 Upstream LDB Swallow sp. 2 White-tailed Deer 4 Red-winged Blackbird 5 American Crow 1 Great Blue Heron 5 Downstream RDB Swallow Sp. 3 White-tailed Deer 4 Osprey 2 Wood Duck 1 Great Blue Heron 4 Double-crested Cormorant 2 Downstream LDB Belted Kingfisher 1 Swallow sp. 5 European Starling 30 Green Heron 1 Great Blue Heron 2 October 2011 Upstream RDB Songbird sp. 2 Great Blue Heron 4 Upstream LDB Wren sp. 1 Belted Kingfisher 1 Great Blue Heron 1 Downstream RDB Songbird sp. 6 Eastern Gray Squirrel 1 Belted Kingfisher 3 Blue Jay 1 Northern Mockingbird 1 Double-crested Cormorant 1 Great Blue Heron 5 American Coot 335 American Widgeon 2 Pied-billed Grebe 2 Mallard 5 Downstream LDB Belted Kingfisher 2 Tufted Titmouse 3 Killdeer 2 Sandpiper sp. 2 Songbird sp. 3 Great Blue Heron 7 Wood Duck 15 American Coot 603 Black-crowned Night Heron 1 Gadwall 3 Mallard 13 Green-winged Teal 2 Pied-billed Grebe 2 Double-crested Cormorant 5 70

Table 36. Water temperature (°F) profiles measured at five locations (10%, 30%, 50%, 70%, 90%) from right descending bank along transects located at TRM 486.7 (ambient), TRM 483.4 (discharge), TRM 481.1 (middle of plume), TRM 480.0 (downstream limit of plume),

and TRM 478.3 (below plume) on August 25, 2011 (Summer). Green numbers represent ambient temperatures used to characterize the thermal plume. Red numbers represent temperatures 3.6F (2°C) or greater above ambient temperature.

Depth Ambient TRM 486.7 SQN Discharge TRM 483.4 Middle of Plume TRM 481.1 At Plume Limit TRM 480.0 Below Plume TRM 478.3 (m) 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

0.3 82.35 82.63 81.63 81.55 81.59 85.42 85.15 84.92 85.30 84.69 85.28 85.69 86.63 86.22 86.85 85.95 85.51 85.89 86.72 86.77 84.18 84.74 85.19 85.46 85.86 1 81.93 82.38 81.52 81.43 81.54 85.08 85.06 83.52 84.85 84.87 85.03 84.87 85.03 86.04 86.72 85.77 85.08 85.69 84.97 86.16 84.11 84.63 85.03 85.30 85.37 2 81.63 81.50 81.32 81.23 81.41 84.72 84.58 82.58 84.96 84.43 84.69 84.51 84.65 85.32 84.51 84.18 85.21 84.88 83.52 83.98 84.74 84.31 85.33 3 81.36 81.32 81.21 81.68 81.37 82.60 82.96 81.73 84.51 83.32 84.02 84.16 84.40 84.27 84.40 83.93 84.31 83.55 83.95 84.51 84.13 85.32 4 81.25 81.09 81.10 81.05 81.27 82.13 82.40 84.31 84.45 83.75 83.97 84.29 84.24 84.34 83.82 83.84 83.93 84.11 84.11 85.26 5 81.12 81.09 81.03 81.05 82.18 84.22 83.80 83.86 84.25 84.20 84.18 83.59 83.89 83.93 84.06 84.97 6 81.03 81.01 80.73 84.33 83.82 83.66 84.16 84.11 82.96 83.82 83.86 83.84 84.16 7 80.98 80.94 80.65 84.20 83.75 83.75 84.07 83.98 82.58 83.46 83.79 83.82 83.84 8 80.85 80.89 80.65 84.20 82.76 83.12 83.84 83.61 82.36 83.43 83.75 83.80 83.77 9 80.80 80.85 80.65 83.70 82.11 82.94 83.53 83.39 82.17 83.17 83.66 83.75 83.68 10 80.80 80.85 80.65 83.55 82.09 82.85 83.16 83.28 82.11 83.26 83.17 83.71 83.66 11 80.80 80.83 80.64 83.10 81.68 82.49 82.72 83.19 82.11 83.25 82.99 83.66 83.64 12 80.83 80.64 83.14 81.70 82.54 82.47 83.14 82.09 83.10 82.90 82.92 13 80.64 82.67 81.63 82.47 82.20 82.11 83.10 82.80 82.87 14 80.64 82.17 81.59 82.38 82.08 82.11 83.05 82.54 82.63 15 82.18 82.26 82.08 83.01 82.53 82.58 16 82.13 82.26 82.08 82.51 82.58 17 82.06 82.27 82.08 82.51 82.56 18 82.04 82.15 82.08 82.45 82.56 71

Table 37. Water temperature (°F) profiles measured at five locations (10%, 30%, 50%, 70%, 90%) from right descending bank along transects located at TRM 487 (ambient), TRM 483.4 (discharge), TRM 482.2 (below discharge), TRM 481.0 (downstream limit of plume), and TRM 478.3 (below plume) on September 14, 2011 (Autumn). Green numbers represent ambient temperatures used to characterize the thermal plume. Red numbers represent temperatures 3.6F (2°C) or greater above ambient temperature.

Depth Ambient TRM 487 SQN Discharge TRM 483.4 Below Discharge TRM 482.2 At Plume Limit TRM 481 Below Plume TRM 480.5 (m) 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

0.3 77.18 77.18 77.54 77.36 77.54 81.25 80.42 80.55 80.01 81.68 81.45 81.21 81.14 81.48 81.91 80.15 81.03 81.32 80.53 80.65 80.08 80.04 80.42 79.25 79.45 1 77.00 76.82 77.18 76.64 77.18 80.71 80.29 80.10 79.88 81.09 81.09 80.28 79.79 80.06 80.71 79.61 79.74 79.75 79.66 79.59 78.18 79.14 79.00 78.62 78.76 2 76.64 76.46 76.46 76.46 76.28 82.35 80.08 80.06 79.70 80.58 79.83 79.29 79.20 80.24 78.60 78.60 79.00 79.30 78.80 78.82 78.49 78.48 78.44 77.58 3 76.64 76.46 76.10 76.10 76.10 78.40 79.61 80.06 79.54 80.69 79.74 78.93 79.00 79.39 78.40 78.21 78.04 78.84 78.51 78.71 78.19 78.21 77.52 4 76.46 76.46 75.92 75.20 75.38 78.06 79.97 79.47 80.80 79.47 78.84 78.87 77.83 77.49 78.75 77.61 78.58 78.04 77.94 77.49 5 76.46 75.56 75.20 80.20 79.34 80.64 78.24 78.53 78.71 77.68 77.34 78.69 77.49 78.13 77.81 77.56 6 75.20 75.02 79.02 79.25 80.55 78.37 78.58 77.38 77.32 78.51 77.43 77.74 77.50 7 75.20 75.02 78.49 80.28 78.28 77.32 77.20 77.70 77.45 8 75.02 74.48 77.58 78.49 78.06 77.20 76.93 77.67 77.36 9 75.02 74.48 77.22 77.54 77.67 77.04 76.84 77.58 77.34 10 74.48 74.30 76.15 77.43 77.59 76.96 76.80 77.52 77.09 11 73.58 74.30 76.12 77.36 77.58 76.66 76.69 77.49 76.96 12 73.22 75.97 76.82 77.56 76.28 76.41 77.47 76.23 13 75.94 76.82 77.23 76.21 76.24 77.05 76.19 14 75.87 76.05 76.14 76.08 76.19 15 75.76 75.83 76.08 76.06 1 16 75.76 75.78 76.03 17 75.74 75.78 18 75.72 72

Table 38. Seasonal water quality parameters collected along vertical depth profiles downstream (TRM 482) and upstream (TRM 490.5) of the Sequoyah Nuclear Plant in Chickamauga Reservoir on the Tennessee River. Abbreviations: °C -

Temperature in degrees Celsius, °F - Temperature in degrees Fahrenheit, Cond - Conductivity, DO - Dissolved Oxygen Summer - TRM 482 LDB Mid-channel RDB Depth C °F Cond DO pH Depth C °F Cond DO pH Depth C °F Cond DO pH 0.3 29.33 84.79 192.8 7.46 7.91 0.3 29.50 85.10 192.2 8.05 8.11 0.3 29.73 85.51 192.6 6.73 7.74 1.5 29.09 84.36 193.1 7.18 7.83 1.5 29.15 84.47 192.3 7.55 7.98 1.5 29.30 84.74 192.8 7.22 7.86 3 28.67 83.61 193.0 6.51 7.67 3 29.10 84.38 192.4 7.49 7.95 3 29.07 84.33 193.8 7.59 7.98 5 28.62 83.52 193.1 6.39 7.64 4 29.07 84.33 192.5 7.45 7.93 5 28.74 83.73 192.4 8.22 8.18 6 28.85 83.93 192.4 7.17 7.85 Downstream Transect 8 28.69 83.64 192.0 7.02 7.80 12 28.40 83.12 191.4 6.55 7.70 15 28.19 82.74 192.2 6.38 7.64 19 28.07 82.53 227.5 6.24 7.63 0.3 29.60 85.28 192.8 6.89 7.78 0.3 29.35 84.83 191.6 7.35 0.3 30.58 87.04 191.8 9.12 8.37 1.5 29.14 84.45 191.6 7.03 7.81 1.5 29.03 84.25 191.3 7.35 7.92 1.5 29.19 84.54 191.0 8.58 8.21 3 28.59 83.46 192.3 8.05 8.07 3 28.79 83.82 191.2 7.16 7.86 3 28.69 85.44 190.4 7.94 8.02 4.5 28.30 82.94 190.2 8.35 8.23 4 28.65 83.57 191.0 7.23 7.87 Middle 8 28.35 83.03 191.7 6.94 7.79 Transect 12 27.93 82.27 191.8 6.60 7.71 14.5 27.87 82.17 191.2 6.53 7.67 0.3 28.75 83.75 190.9 9.00 8.21 0.3 29.20 84.56 192.0 7.61 7.81 0.3 29.31 84.76 190.0 9.66 8.50 1.5 27.84 82.11 190.0 7.12 7.72 1.5 29.07 84.33 191.7 7.44 7.79 1.5 29.25 84.65 191.5 9.58 8.45 3 27.78 82.00 190.5 7.14 7.63 3 29.09 84.36 191.9 6.78 7.68 3 29.15 84.47 190.7 9.48 8.42 3.5 27.77 81.99 190.0 6.96 7.55 4 28.75 83.75 191.2 6.73 7.67 4 29.18 84.52 190.7 9.69 8.46 Upstream 6 28.44 83.19 191.8 6.84 7.70 6 29.12 84.42 191.0 9.55 8.44 Transect 8 28.50 83.30 191.5 6.88 7.72 8 28.83 83.89 190.8 8.36 8.19 12 27.86 82.15 190.6 6.86 7.73 12 27.63 81.73 191.9 6.60 7.64 16 27.80 82.04 190.4 6.85 7.75 73

Table 38 (continued).

Summer - TRM 490.5 LDB Mid-channel RDB Depth C °F Cond DO pH Depth C °F Cond DO pH Depth C °F Cond DO pH 0.3 28.19 82.74 198.5 9.58 8.52 0.3 27.90 82.22 198.7 8.88 8.33 0.3 28.32 82.98 194.5 9.50 8.51 1.5 28.15 82.67 199.0 9.54 8.49 1.5 27.72 81.90 200.1 7.07 8.16 1.5 28.29 82.92 194.9 9.40 8.42 3 27.51 81.52 197.7 6.60 7.62 3 27.68 81.82 200.2 7.74 8.03 3 27.43 81.37 196.6 6.13 7.55 5 26.91 80.44 200.6 4.23 7.33 4 27.30 81.14 200.5 5.75 7.62 4.5 27.19 80.94 198.1 5.17 7.42 7 26.91 80.44 199.5 4.31 7.36 6 27.19 80.94 200.0 5.50 7.53 Downstream Transect 8 27.15 80.87 201.1 5.21 7.48 10 27.09 80.76 200.7 5.04 7.45 13 27.11 80.80 200.3 5.17 7.46 17 27.14 80.85 200.1 5.37 7.47 0.3 28.70 83.66 196.0 10.9 n/a 0.3 28.38 83.08 198.8 9.84 8.57 0.3 28.74 83.73 193.2 9.83 8.64 1.5 28.28 82.90 196.2 10.0 n/a 1.5 27.90 82.22 200.6 8.48 8.20 1.5 27.44 81.39 199.4 6.58 7.75 3 27.16 80.89 198.2 4.68 n/a 3 27.25 81.05 201.3 5.61 7.54 3 27.27 81.09 200.4 5.88 7.55 5 27.09 80.76 197.3 4.37 n/a 5 27.13 80.83 200.9 4.97 7.45 4 27.34 81.21 200.4 6.15 7.59 Middle 7 27.02 80.64 200.3 4.71 7.40 6 27.17 80.91 200.8 5.50 7.44 Transect 9 27.00 80.60 200.7 4.62 7.38 7 27.19 80.94 201.1 5.57 7.37 11 26.98 80.56 200.5 4.56 7.40 0.3 28.71 83.68 197.8 10.4 8.66 0.3 28.15 82.67 200.6 8.30 8.15 0.3 28.07 82.53 200.0 6.15 8.12 1.5 28.49 83.28 197.9 9.92 8.55 1.5 27.87 82.17 200.0 7.77 7.97 1.5 27.80 82.04 200.1 6.24 7.89 3 27.70 81.86 197.0 6.00 7.79 3 27.36 81.25 200.3 5.78 7.51 3 27.46 81.43 199.6 7.93 7.49 Upstream 4 27.24 81.03 200.5 5.21 7.42 4 27.37 81.27 199.3 8.58 7.43 Transect 6 27.18 80.92 200.7 4.94 7.36 8 27.08 80.74 200.5 4.73 7.30 9.5 27.07 80.73 200.2 4.68 7.30 74

Table 38 (continued).

Autumn - TRM 482 LDB Mid-channel RDB Depth C °F Cond DO pH Depth C °F Cond DO pH Depth C °F Cond DO pH 0.3 22.43 72.37 184.5 7.45 7.49 0.3 22.92 73.26 183.7 7.57 7.48 0.3 22.43 72.37 184.4 7.49 7.54 1.5 22.42 72.36 184.3 7.41 7.47 1.5 22.89 73.20 183.7 7.48 7.47 1.5 22.19 71.94 184.7 7.48 7.49 2 22.38 72.28 184.0 7.42 7.44 3 22.63 72.73 184.2 7.41 7.44 3 22.14 71.85 185.1 7.37 7.47 5 22.51 72.52 184.6 7.38 7.43 5 22.12 71.82 185.3 7.32 7.44 Downstream 7 22.35 72.23 185.0 7.34 7.40 Transect 9 22.18 71.92 184.4 7.29 7.36 11 21.75 71.15 184.8 7.29 7.33 13 21.70 71.06 184.2 7.33 7.29 15 21.63 70.93 183.7 7.29 7.25 0.3 23.49 74.28 183.7 7.72 7.57 0.3 23.46 74.23 183.4 7.59 7.50 0.3 22.97 73.35 183.8 7.62 7.52 1.5 23.21 73.78 183.6 7.66 7.53 1.5 23.89 75.00 183.8 7.47 7.49 1.5 22.71 72.88 183.8 7.57 7.52 3 23.21 73.78 183.4 7.66 7.49 3 22.96 73.33 183.8 7.45 7.47 3 22.65 72.77 184.1 7.45 7.51 4 22.92 73.26 183.4 7.40 7.45 4 22.59 72.66 183.9 7.74 7.46 6 22.81 73.06 183.9 7.33 7.44 Middle 8 22.45 72.41 183.5 7.34 7.39 Transect 10 21.99 71.58 183.3 7.32 7.37 12 21.74 71.13 182.9 7.31 7.33 14 21.41 70.54 183.0 7.23 7.29 16 21.39 70.50 183.1 7.15 7.23 0.3 23.75 74.75 183.8 7.49 7.49 0.3 23.83 74.89 183.7 7.42 7.49 0.3 23.42 74.16 183.5 9.66 8.50 1.5 23.46 74.23 183.5 7.39 7.51 1.5 23.57 74.43 183.3 7.37 7.48 1.5 23.28 73.90 183.4 9.58 8.45 3 22.97 73.35 183.9 7.33 7.48 3 23.03 73.45 183.9 7.34 7.84 3 23.08 73.54 183.6 9.48 8.42 4 22.69 72.84 184.0 7.30 7.47 4 22.71 72.88 183.3 7.33 7.47 9.69 8.46 Upstream 6 22.61 72.70 183.6 7.24 7.46 6 22.48 72.46 183.3 7.31 7.46 9.55 8.44 Transect 8 22.38 72.28 184.2 7.12 7.44 8 22.44 72.39 183.1 7.32 7.45 8.36 8.19 10 22.15 71.87 184.4 7.06 7.42 10 22.32 72.18 183.9 7.27 7.43 6.60 7.64 12 22.17 71.91 184.1 7.06 7.39 12 21.89 71.40 182.7 7.29 7.41 14 21.54 70.77 182.8 7.24 7.38 16 21.35 70.43 183.0 7.26 7.39 75

Table 38 (continued).

Autumn - TRM 490.5 LDB Mid-channel RDB Depth C °F Cond DO pH Depth C °F Cond DO pH Depth C °F Cond DO pH 0.3 21.23 70.21 182.7 7.68 7.54 0.3 21.26 70.27 182.9 7.67 7.55 0.3 21.21 70.18 182.6 7.82 7.58 1.5 21.23 70.21 182.7 7.66 7.52 1.5 21.26 70.27 183.0 7.62 7.56 1.5 21.21 70.18 182.8 7.82 7.56 2 21.22 70.20 182.6 7.66 7.54 3 21.26 70.27 183.0 7.59 7.54 3 21.20 70.16 186.7 7.84 7.55 4 21.26 70.27 183.0 7.55 7.53 4 21.19 70.14 183.5 7.94 7.55 Downstream 6 21.25 70.25 183.0 7.50 7.56 Transect 8 21.24 70.23 183.0 7.48 7.51 10 21.24 70.23 182.6 7.46 7.59 12 21.23 70.21 183.0 7.44 7.47 14 21.24 70.23 183.0 7.37 7.44 16 21.03 69.85 183.0 7.39 7.42 0.3 21.09 69.96 191.6 7.81 7.57 0.3 21.33 70.39 187.0 7.68 7.54 0.3 21.34 70.41 182.7 7.67 7.52 1.5 21.09 69.96 182.7 7.79 7.57 1.5 21.33 70.39 182.0 7.65 7.50 1.5 21.34 70.41 182.8 7.66 7.57 3 21.10 69.98 180.7 7.75 7.55 3 21.32 70.38 182.2 7.60 7.51 3 21.34 70.41 187.7 7.65 7.51 Middle 5 21.20 70.16 181.7 7.75 7.48 5 21.37 70.47 182.4 7.54 7.17 4 21.34 70.41 182.7 7.59 7.54 Transect 7 21.29 70.32 181.1 7.50 7.45 6 21.33 70.39 182.8 7.55 7.53 9 21.27 70.29 181.3 7.47 7.40 8 21.32 70.38 182.8 7.44 7.50 10 21.31 70.36 182.8 7.45 7.48 0.3 21.06 69.91 179.4 7.81 7.56 0.3 21.20 70.16 179.5 7.40 7.49 0.3 21.29 70.32 180.7 7.72 7.55 1.5 21.06 69.91 179.5 7.81 7.52 1.5 21.20 70.16 179.5 7.46 7.50 1.5 21.28 70.30 180.2 7.83 7.56 3 21.03 69.85 179.9 7.77 7.55 3 21.20 70.16 180.0 7.45 7.50 2 21.22 70.20 181.1 7.86 7.60 Upstream 5 21.19 70.14 179.4 7.44 7.48 Transect 7 21.19 70.14 179.4 7.39 7.46 9 21.25 70.25 179.5 7.10 7.41 76

Figures 77

Figure 1. Vicinity map for Sequoyah Nuclear plant depicting Chickamauga and Watts Bar Dam locations and water supply intakes downstream of the plant thermal discharge 78

Figure 2. Site map for Sequoyah Nuclear plant showing condenser cooling water intake structure, skimmer wall, and NPDES-permitted discharge Outfall No. 101 79

Biomonitoring Stations Upstream of Sequoyah Nuclear Plant

  • Electrofishing o Gill Netting e Plankton! Water Quality

- - Benthic Macroinvertebrate Transect

_ _ Wildlife Observation Transect Figure 3. Biological monitoring stations upstream of Sequoyah Nuclear Plant.

80

Biomonitoring Stations Downstream of Sequoyah Nuclear Plant

  • Electrofishing o Gill Netting o Planktonl Water Quality

- - Benthic Macroinvertebrate Transect

- - Wildlife Observation Transect DThermal Plume, Summer (0812512011)

~ Thermal Plume, Autumn (0911412011)

Figure 4. Biological monitoring stations downstream of Sequoyah Nuclear Plant, including mixing zone and thermal plume from SQN CCW discharge.

81

Transects for Shoreli ne Aquatic Habitat Index (SAH I)

Upstream and Dow nstream of Sequoyah Nuclear Plant CCW Discharge

- - SAHI Transects Figure 5. Benthic and shoreline habitat transects within the fish community sampling area upstream and downstream of SQN. SAHI data were collected on the left and right descending banks at endpoints of each transect.

82

Figure 6. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge during October 2010 through November 2011. Station 14 was used for upstream ambient temperatures of the SQN intake and was located at TRM 490.4. Station 8 was used for temperatures downstream of SQN discharge and was located at TRM 483.4.

83

Figure 7. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River downstream of SQN. *Water depth (ft) at each point is denoted. Transects 1 and 2 are the most downstream of the eight transects downstream of the SQN discharge.

84

Figure 8. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River downstream of SQN. *Water depth (ft) at each point is denoted.

85

Figure 9. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River downstream of SQN. *Water depth (ft) at each point is denoted.

86

Figure 10. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River downstream of SQN. *Water depth (ft) at each point is denoted.

87

Figure 11. Substrate composition at ten equally spaced points per transect (1 and 2) across the Tennessee River upstream of SQN. *Water depth (ft) at each point is denoted.

Transects 1 and 2 are the most downstream of the eight transects upstream of the SQN discharge.

88

Figure 12. Substrate composition at ten equally spaced points per transect (3 and 4) across the Tennessee River upstream of SQN. *Water depth (ft) at each point is denoted.

89

Figure 13. Substrate composition at ten equally spaced points per transect (5 and 6) across the Tennessee River upstream of SQN. *Water depth (ft) at each point is denoted.

90

Figure 14. Substrate composition at ten equally spaced points per transect (7 and 8) across the Tennessee River upstream of SQN. *Water depth (ft) at each point is denoted.

91

35 31 Avg = 27 30 30 29 28 27 26 26 26 26 25 25 25 24

  1. of indigenous species 25 23 20 15 10 5

0 1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Year Figure 15. Number of indigenous fish species collected during RFAI samples downstream of SQN (TRM 482) during 1996 and 1999 through 2011.

40 Avg = 28 35 30 31 30 31 30 31 28 28 28 29 28 29 29 30

  1. of indigenous species 27 27 27 23 25 20 20 15 10 5

0 1993 1994 1995 1996 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Year Figure 16. Number of indigenous fish species collected during RFAI samples upstream of SQN (TRM 490.5) during 1993 to 1997 and 1999 through 2011.

92

Mayflies Caddisflies Snails 4

Percent of overall sample 3

2 1

0 STRM 481.3 ATRM 481.3 STRM 483.4 ATRM 483.4 STRM 488.0 STRM 490.5 ATRM 490.5 Figure 17. Proportions of selected benthic taxa from Ponar dredge sampling at locations upstream and downstream of SQN, summer and autumn 2011.

93

400,000 600 Phytoplankton Density (cells/ml) Phytoplankton Density (cells/ml) 350,000 500 300,000 Bacillariophyta Bacillariophyta 400 250,000 Chlorophyta Chlorophyta 200,000 Chrysophyta 300 Chrysophyta 150,000 Cryptophyta Cryptophyta 200 100,000 Cyanophyta Cyanophyta Euglenophyta 100 Euglenophyta 50,000 Pyrrophyta Pyrrophyta 0 0 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 Site Site Figure 18. Mean phytoplankton densities (cells/ml) for Figure 20. Mean phytoplankton densities (cells/ml) for samples collected August 25, 2011. samples collected October 10, 2011.

1,600,000 120,000 1,400,000 100,000 1,200,000 Bacillariophyta Bacillariophyta Biovolume (µm 3 /ml) Biovolume (µm 3 /ml)

Chlorophyta 80,000 Chlorophyta 1,000,000 Chrysophyta Chrysophyta 800,000 60,000 Cryptophyta Cryptophyta 600,000 Cyanophyta Cyanophyta 40,000 400,000 Euglenophyta Euglenophyta Pyrrophyta 20,000 Pyrrophyta 200,000 0 0 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 Figure 19. Mean phytoplankton biovolume (µm3/ml) for Figure 21. Mean phytoplankton biovolume (µm3/ml) for samples collected August 25, 2011. samples collected October 10, 2011.

94

16 August 2011 45,000 October 2011 Chlorophyll a concentration (µg/l)

Zooplankton Density (No. /m3) 14 40,000 12 35,000 30,000 Rotifera 10 25,000 Copepoda 8

14 20,000 Cladocera 6 12 15,000 10 9.5 4 10,000 7

6 6 5.5 2 5,000 0 0 TRM 481.1 TRM 483.4 TRM 487.9 TRM 490.7 TRM 481.2 TRM 483.4 TRM 487.9 TRM 490.7 Site Site Figure 22. Mean chlorophyll a concentrations for samples Figure 24. Mean zooplankton densities (number/m3) for collected August 25 and October 10, 2011. samples collected October 10, 2011 6,000 Zooplankton Density (No. /m3) 5,000 4,000 Rotifera Copepoda 3,000 Cladocera 2,000 1,000 0

TRM 481.2 TRM 483.4 TRM 487.9 TRM 490.7 Site Figure 23. Mean zooplankton densities (number/m3) for samples collected August 25, 2011.

95

Bray-Cu rtis S imilarity 0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 T_487.9_8 T_481.1_8 T_483.4_8 T_490.7_8 Figure 25. Dendrogram of phytoplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month. (Coph. Corr = 0.89) 96

Bray-Cu rtis Similarity 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 T_490.7_10 T_483.4_10 T_487.9_10 T_481.1_10 Figure 26. Dendrogram of phytoplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month. (Coph. Corr = 0.78) 97

Bray-Curtis Similarity 0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 T_483.3_8 T_490.7_8 T_487.9_8 T_481.1_8 Figure 27. Dendrogram of zooplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected August 25, 2011. Samples for each location are coded by river mile and month. (Coph. Corr = 0.87) 98

Bray-Curtis Similarity 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 T_483.3_10 T_487.9_10 T_490.7_10 T_481.1_10 Figure 28. Dendrogram of zooplankton community (taxa density, log10+1) cluster analysis (average distance) based on Bray-Curtis distance matrix among samples collected October 10, 2011. Samples for each location are coded by river mile and month. (Coph. Corr = 0.78) 99

50,000 Chickamauga 45,000 Watts Bar 40,000 Apalachia and Ocoee #1 35,000 Discharge (cfs) 30,000 25,000 20,000 15,000 10,000 5,000 0

1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 08/23/2011 08/24/2011 08/25/2011 Date and Hour Figure 29. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, August 23 through August 25, 2011 50,000 Chickamauga 45,000 Watts Bar 40,000 Apalachia and Occoe #1 35,000 Discharge (cfs) 30,000 25,000 20,000 15,000 10,000 5,000 0

1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 10/08/2011 10/09/2011 10/10/2011 Date and Hour Figure 30. Average hourly discharge from Chickamauga, Watts Bar, Apalachia, and Ocoee #1 dams, October 8 through October 10, 2011 100

100,000 2011 Daily Average Flow 90,000 Historical Daily Average 80,000 19762010 70,000 Discharge (cfs) 60,000 50,000 40,000 30,000 20,000 10,000 0

10/1 11/1 12/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 10/1 11/1 Date Figure 31. Total daily average releases (cubic feet per second) from Watts Bar, Apalachia, and Ocoee 1 dams, October 2010 through November 2011 and historic daily average flows averaged for the same period 1976 through 2010.

101

100 90 80 70 Water Temperature (°F) 60 50 40 30 Downstream of SQN Discharge 20 Upstream of SQN Intake 10 TN State Thermal Discharge Limit (86.9 °F) 0 Date Figure 32. Daily average water temperatures (°F) at a depth of five feet, recorded upstream of SQN intake (Station 14) and downstream of SQN discharge (Station 8), October 2009 through November 2010.

102

April 19, 2013 Bradley M. Love, OPS 5N-SQN SEQUOY AH NUCLEAR PLANT (SQN)--RlVER SCHEDULING FOR LOW FLOW CONDITONS Part IlI.F.l .b. and Part IlI.F.l .c. of the current SQN National Pollut ant Discharge Elimin ation System (NPDES) permit summarize requirements related to monitoring thermal compliance for Outfall 101 , the plant diffuser discharge to the Tennessee River. In particu lar, in these parts of the permit , ranges for the daily average flow past SQN are defined where in specia l field surveys are required to verify the adequacy of the plant ambient river temperature and the adequacy of the plant diffuser mixing zone. These ranges in flow are given both for river conditions characterized by unsteady flow and river conditions characterized by steady flow. The type of unsteady flows of concern is the type created by strong hydro peakin g, sustained day after day with low daily average flows . Similarly, the type of steady flows of concern is the type created by continuous, unvarying hydro operation, again sustained day after day, but at daily average flows lower than those of concern for low flow hydro peaking. To verify compliance to these requirements for special field surveys, the NPDES permit specifies that river flow data shall be submitted with the application for re-issuance of the permit. The purpos e of this memo is to provide these data.

In general, in the current NPDES permit, the daily average river flows past SQN that trigger the need for special field surveys are as follows:

No units in operation at SON: No field surveys required.

One unit in operation at SQN: Field surveys required if the daily averag e flow past SQN drops below 3,000 cfs in steady hydro operation or below 6,500 cfs in unstea dy/peaking operation.

Two units in operation at SQN: Field surveys required if the daily averag e flow past SQN drops below 6,000 cfs in steady hydro operation or below 13,000 cfs in unstea dy/peaking operation.

The current TV A strategy for managing these requirements is to schedule the operation of Chickamauga Reservoir in a manner so that there is no need to perfor m these special surveys.

Thus far, there has been no need to schedule daily average river flows past SQN at a level below the trigger for steady-related surveys. And thus far, when it has been necessary to schedule river flows at a level below the trigger for unsteady-related surveys, such has been accomplished by limiting hydro peaking at Chickamauga Dam and Watts Bar Dam.

Given in Attachment 1 is a plot showing the daily average flow past SQN for the period beginning March 1, 2011 and ending March 31, 2013 . This period spans the time from the effective date of the current NPDES permit through the most recent full month (as of the date of this memo). Based on the actual operation of SQN, also given are the trigger levels summarized above. As shown, within the period of record, the daily average flow past SQN never dropped below the steady trigger for special field surveys. The daily averag e flow past SQN dropped below the unsteady trigger only for single events in May 2011 and October 2011, and several events from Apri l 2012 through July 2012. In these events, and as presented above, hydro peaking at Chickamauga Dam and Watts Bar Dam was limited to move Chickamauga Reservoir toward steady operation, providing a more predictable behavior of the SQN thermal effluent and precluding the need for special field surveys.

In limiting peaking operat ions at Chickamauga Dam and Watts Bar Dam, restrIctIOns are provided in as much as such is feasible in consideration of TVA' s respon sibility for providing public safety , navigation, power supply , recreation, water supply, and water quality . Peaking operations are characterized by provid ing hydro releases only during those hours of the day wherein there is a large demand for power, with little or no releases made during off-peak hours.

In peaking operations, hydro releases can be suspended for eight or more hours per day (i.e., zero flow), followed by a period of intense high flow, creating significant sloshin g in Chickamauga Reservoir. In contrast, when peaking operations are limited, efforts are made to provide hydro releases around-the-clock. Furthermore, if a change in flow is needed

, an attempt is made to implement such as a single step from one steady condition to anothe r steady condition. In practice, it is not uncommon for a hydro unit to trip out of service, tempo rarily interrupting the flow. Incidents in the immediate vicinity of the dams also can cause interru ptions (e.g., capsized boat). In such events, releases are usually resumed within a short period of time following the incident, and may require a short duration release at a hi gher flow to preser ve the total volume of release required for that day. Short duration releases at a higher flow also are sometimes required in response to unexpected disturbances in the power system , such as a shortfall in power supply due to the unexpected trip of a large generating unit.

For the same period of time as in Attachment 1, given in Attachment 2 is a plot of the hourly releases from Chickamauga Dam and Watts Bar Dam. Release pattern s associated with hydro peaking are apparent, with hourly flows from each hydro plant regula rly varying within a single day between 5,000 cfs or less and over 45,000 cfs. Periods of zero flow also are common, particularly at Chickamauga Dam. Given in Attachment 3 is the same plot as in Attachment 2, but showing only those periods containing special hydro operations in support of SQN (i.e., as prompted by the requirements of Part 1lI.F.1.b. and Part 1lI.F.I.c. of the SQN NPDES permit).

Within the period of record , a total of 762 days, there were a total 77 days requiring specia l hydro operations in support of SQN . For these periods, the limitations on peaking operations are apparent, with flow variations far less than those shown in Attachment

1. Given in Attachment 4 is the same plot as Attachment 3, but showing only the period from April 2012 through July 2012, which contained most of the events with daily average river flows below the unsteady trigger of 13,000 cfs. As shown , peaking operations as describe above are absent. At Watts Bar Dam, there were no events where the flow had to be interrupted or where higher releases were required in response to a river or power system need. At Chickamaug a Dam, there were four events where the flow was temporarily interrupted and three events where higher releases were required on a short term basis in response to river or power system needs.

In conclusion, by the operating strategy discussed above and by the data presented herein, SQN thus far has operated in compliance with the requirements of Part III.F.l

.b. and Part III.F.l .c. of the current NPDES permit. TV A River Scheduling will continue to maintain notes in their special operations database in support of these requirements , as long as they are found in the NPDES permit. Furthermore, TVA River Scheduling is prepared to manage special field surveys if there is a need to operate Chickamauga Reservoir in a manne r that necess itates such by the NPDES permit requirements.

Please contact me if you have any questions regarding the contents of this memo .

Z~Z; 7,~

Technical Special st River Scheduling V-WT IOB-K PNH:JGP Attachments cc (Attachments):

T. W. Barnett, WT IOC-K L. D. Bean, WT IOB-K J. H. Everett, WT IOC-K T. R. Markum, BR 4A-C EDMS Vault - Knoxville, WT CA - K

Attachment 1 Approximate Daily Average Flow Past SQN from March 1, 2011 through March 31, 2013 60 Approx daily average f low past SQN 55 Unsteady trigger f or special f ield surveys Steady trigger f or special f ield surveys 50 Approx Daily Avgerage River Flow Past SQN (1000 cfs) 45 40 35 30 25 20 15 10 5

U1 U1 U1 U1 U2 U2 U2 Outage Trip Trip Outage Trip Outage Trip 0

Mar-11 Apr-11 May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 Jan-13 Feb-13 Mar-13

Hourly Release (1000 cfs) 0 5 10 15 20 25 30 35 40 45 50 55 60 Mar-11 Apr-11 May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Apr-12 Attachment 2 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Watts Bar Dam Dec-12 Chickamauga Dam Jan-13 Feb-13 Hourly Releases from Chickamauga Dam and Watts Bar Dam from March 1, 2011 through March 31, 2013 Mar-13

Hourly Release (1000 cfs) 0 5 10 15 20 25 30 35 40 45 50 55 60 Mar-11 Apr-11 May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11 Dec-11 Jan-12 Feb-12 Mar-12 Attachment 3 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 Jan-13 Watts Bar Dam Chickamauga Dam Feb-13 Mar-13 Hourly Releases from Chickamauga Dam and Watts Bar Dam for Periods Requiring Special Hydro Operations for SQN

Attachment 4 Hourly Releases from Chickamauga Dam and Watts Bar Dam for Periods Requiring Special Hydro Operations for SQN, April 2012 through July 2012 60 Chickamauga Dam 55 Watts Bar Dam 50 45 40 Hourly Releases (1000 cfs) 35 30 25 20 15 10 5

0 Apr-12 May-12 Jun-12 Jul-12

March 5, 2013 Bradley M. Love, OPS 5N-SON SEOUOYAH NUCLEAR PLANT UPDATE OF FLOWRATE CHAR ACTERISTICS THROUGH THE DIFFUSERS Part III , Section G of the current Sequoyah Nuclear Plant (SON)

National Pollutant Discharge Elimination System (NPDES) permit states that: "The permittee shall calibrate the flowrate characteristics through the diffusers on a schedule of at least once every two years." In fulfillment of this requirement, a test of the flowrate characteristic s through the diffusers was conducted on November 16, 2012 . Plant conditions for the test included the operation of three Condenser Cooling Water pumps and three Essential Raw Coolin g Water pumps . In the test ,

the flowrate through the diffusers was determined based on measu rements of water velocities in the diffuser pond using an acoustic doppler current profiler. Measu rements for the diffuser head were made using the stage recorders belonging to the SON Enviro nmental Data Station . All instruments were certified prior to the test.

The results of the measurements, which include a summary of all tests since 1986, are provided in Attachment 1. The rating curve for computing the diffuser flowra te has been updated based on the new information and is provided in Attachment 2. With the updated curve , the root-mean-square error between the computed and measured diffuse r flowrates is about 6.5 percent.

This error falls within the +/-1 0 percent standard given by the NPDE S inspection manual and demonstrates that the hydraulic characteristics of the diffusers continue to provide a good method to estimate the discharge from SON to the Tennessee River. The updated rating curve will be incorporated into the compliance model for Outfall 101 .

If you have any questions regarding this work, please call me at (423) 632-2881 .

~/?~

/Paul N. Hopping -

Technical Speci ist River Scheduling WT 10B-K PNH :JGP Attachments cc (Attachments):

Matthew T. Boyington, WT 10B-K Kelie H. Hammond, WT 10C-K Gary D. Lucas , WT 10B-K Travis R. Markum, BR 4A-C Robert D. Stone , MP 5G-C EDMS , WT 10C-K

Attach ment 1 Calibration Data for SQN Diffu ser Discharge, 1986 - 20 12 Field Meas urements Numbe r Test Of Water Surface Elevatio n (Bl Diffuse r Discharge Diffuser Date Pumps Diffuser Head Dischar ge Measurement River Method (Al Pond H Q CC W ERCW (feet MSL) (feet MSL) (feet) (cfs) 12118/1986 2 4 MM 678.03 677.00 1.03 889 12117/ 1986 3 4 MM 678.46 676.90 1.56 1,297 12/18/19 86 4 4 MM 680.4 1 676.90 3.5 1 1,686 12119/19 86 6 4 MM 683.53 677. 17 6.36 2,490 03128/ 1989 5 4 MM 680.80 676.46 4.34 2,0 15 03 /29/ 1989 5 4 MM 680.82 676.35 4.47 2, 16 1 03 /22/1990 2 3 MM 678.44 677.27 1.1 7 943 04 /05/1990 3 4 MM 680.57 678.54 2.03 1,470 10105/1990 3 4 MM 682.30 680.20 2. 10 1,457 12/19/19 90 6 4 MM 682.54 676.26 6.28 2,350 04103 / 199 1 6 4 MM 684.20 678. 18 6.02 2,5 11 05/22/199 1 6 4 MM 688.70 682.60 6. 10 2,45 1 12/ 10/199 1 5 4 MM 682.70 677.90 4.80 2,2 13 04/ 10/1992 2 3 MM 680. 13 679.12 1.0 1 879 02 /18/1994 "} 2 3 MM 679.42 678. 13 1.29 87 1 06/14/ 1994 6 4 MM 688.50 682.00 6.50 2,507 04 /03/1997 'U} 3 3 MM 679.50 677.30 2.20 1,223 05/23 / 1997 6 3 MM 688.40 681.80 6.60 2,551 05 /06/1998 6 3 ADCP 688.20 681.70 6.50 2,345 05/1 1/ 1999 6 3 ADC P 689.20 682.60 6.60 2,274 10/10/200 1 6 3 ADCP 687. 10 680.30 6.80 2,359 07/272002 6 4 ADCP 689.40 682.40 7.00 2,759 04/23 /2003 ,., 3 4 ADCP 684.05 682.20 1.85 1,552 03 /07/2006 6 3 ADC P 682.06 675.97 6.09 2,511 11 /04/2007 3 4 ADCP 680.88 678.66 2.22 1,29 1 11 117/2009 3 3 ADCP 679.71 677.67 2.04 1350 12/17/2009 6 3 ADCP 683.29 677. 15 6. 14 2354 0 1/03/20 11 6 3 ADCP 686.08 678.90 7. 18 2360 11 / 16/20 12 3 3 ADCP 68 1.08 678.62 2.46 1299 Notes:

(A) MM=Marsh.McBirney instrumentation. ADCP=AcQustic Doppler Current Profiler instrume ntation.

(8) Water surface elevat ions for the diffuser pond and river recorded by in strumentation of the SQN Environmental Data Station. MSL=Mean Sea Leve l.

(C) The test of 02118/94 was performed with very windy cond itions, making it difficult to keep the boat steady.

Due to the potential error introduced by these condi tions, the resulting measurement was not used to dctennine the head-discharge relationship for the diffuser discharge.

(D) The test of 04103 /97 incl uded a malfunction of the Marsh-McBimey compass , which prohibited the coll ection of data for flow direction. The diffuser discharge is based on an assumed flow direction. Due to the potential error introduced by these conditio ns, th e resulting measurement was not used to determ ine the head -discharge relationship for the diffuser di scharge.

(E) The test of 04 /23 /03 was perform ed with an ADCP setting that likely overestimated th e volume of water passing through the diffuser pond. The resulting discharge significantly exceeded the capac ity of pumps in service at the time . Due to the potential erro r introduced by these cond itions, the resu lt ing measurement was not used to determine the head-discharge relationship for the diffuser discharg e.

Attachment 2 Rating Curve for SQN Diffuser Discharge 9

/

2012 Rating Curve Computation  :'

Q= CAH II2, where : //

C/Co = 0.8949+0.4697 (HlHo)-1.201 0(HlHo)'+1 .6581(HlHo)'-1 .0888H1Ho)'+0.2584(HlHo)'. for HlHo < 1.0

../

8 - C/Co = 0.9913. for HlHo > 1.0

/

/

Co = 3.736 cfsffeel"'; Ho = 6 feet; A =259.6 feet' l,l' H = Diffe rence in elevation between the water su rface in the diffuser pond (E DS Station 12) and the water

, ..,/

surface in the river (EDS Station 13).

./0  :

7  :' 0 / .'1'

,..//0 ~

~D ,:'

-- ./ /

_ 6 h .,/'

Q) ,/ .

J:

"C ca Q) 5 ..../.

....-10% /

/

0 0 D ...**....

..../"

J:

~

~

Q)

III 4

... ,,/

y: '

....... ~

'+I~~

c 3

0 *****.... v /.' ""........./

..... Ol~ "....

2

~...'O'. - Rating Curve

.,/ ....0

....,;,-0:: .....~.,...... ~ 0 Field Measurements 1 ~- ..- ...

Note: Rating curve valid only for diffuser head below about 8 feet.

___.-.;;;;ii 0

o 500 1000 1500 2000 2500 3000 Diffuser Discharge , Q (cfs)

TENNESSEE VALLEY AUTHORITY River Operations & Renewable Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of March 2011 WR2013-1-45-152 Prepared by T. Matthew Boyington Paul N. Hopping Walter L. Harper Knoxville, Tennessee April 2013

EXECUTIVE

SUMMARY

The National Pollutant Discharge Elimination System (NPDES) permit for Sequoyah Nuclear Plant (SQN) identifies the release of cooling water to the Tennessee River through the plant discharge diffusers as Outfall 101. The primary method to monitor compliance with the NPDES temperature limits for this outfall includes the use of a numerical model that solves a set of governing equations for the hydrothermal conditions produced in the river by the interaction of the SQN release and the river discharge. The numerical model operates in real-time and utilizes a combination of measured and computed values for the temperature, flow, and stage in the river; and the temperature and flow from the SQN discharge diffusers. Part III, Section G of the permit states: The numerical model used to determine compliance with the temperature requirements for Outfall 101 shall be subject of a calibration study once during the permit cycle. The study should be accomplished in time for data to be available for the next permit application for re-issuance of the permit. A report of the study will be presented to the division of Water Pollution Control. This report is provided in fulfillment of these requirements.

The basic formulation of the numerical model is presented herein. Three empirical parameters are used to calibrate the model. The first is the effective width of the diffuser slot, and the second is a relationship used to compute the entrainment of ambient water along the trajectory of the plume. The third parameter is a relationship for the amount of diffuser effluent that is re-entrained into the diffuser plume for periods of sustained low river flow.

Temperature measurements across the downstream end of the SQN mixing zone from fifty samples collected between 1982 and 2012 were used in this calibration study. These observed data were compared with computed downstream temperatures from the numerical model for the same periods of time. In this process, sensitivity tests were performed for the effective diffuser slot width, entrainment relationship, and plume re-entrainment function. The results show acceptable agreement between computed and measured temperatures, particularly at river temperatures greater than 75ºF. The overall average discrepancy between the measured and computed downstream temperatures was about 0.55 Fº (0.31 Cº). For downstream temperatures above 75ºF, the average discrepancy was about 0.38 Fº (0.21 Cº). There was no significant change in the model performance compared to the previous calibration, and as a result, no update was required in the model parameter set.

i

CONTENTS Page EXECUTIVE

SUMMARY

............................................................................................................. i LIST OF FIGURES ....................................................................................................................... iii LIST OF TABLES ......................................................................................................................... iii INTRODUCTION .......................................................................................................................... 1 BACKGROUND ............................................................................................................................ 3 NUMERICAL MODEL.................................................................................................................. 7 Plume Entrainment ........................................................................................................... 12 Diffuser Effluent Re-Entrainment ..................................................................................... 13 CALIBRATION ........................................................................................................................... 13 Previous Calibration Data and Calibration Work ................................................................... 13 New Calibration Data and Calibration Work.......................................................................... 16 Diffuser Slot Width............................................................................................................ 16 Plume Entrainment Coefficient ......................................................................................... 16 Diffuser Effluent Re-Entrainment ..................................................................................... 18 Results of Updated Calibration ........................................................................................ 20 CONCLUSIONS........................................................................................................................... 23 REFERENCES ............................................................................................................................. 24 ii

LIST OF FIGURES Page Figure 1. Location of Sequoyah Nuclear Plant .............................................................................. 1 Figure 2. Chickamauga Reservoir in the Vicinity of Sequoyah Nuclear Plant ............................. 2 Figure 3. Locations of Instream Temperature Monitors for Sequoyah Nuclear Plant................... 6 Figure 4. Sequoyah Nuclear Plant Outfall 101 Discharge Diffusers ............................................. 7 Figure 5. Two-Dimensional Plane Buoyant Jet Model for a Submerged Diffuser ........................ 8 Figure 6. Sensitivity of Computed Temperature Td to Diffuser Effective Slot Width ................ 17 Figure 7. Sensitivity of Computed Temperature Td to Plume Entrainment Coefficient .............. 18 Figure 8. Sensitivity of Computed Temperature Td to Effluent Re-Entrainment Function ......... 19 Figure 9. Comparison of Computed and Measured Temperatures Td for Field Studies from April 1982 through November 2012 ...................................................................21 Figure 10. Comparison of Computed and Measured 24-hour Average Temperatures Td for Station 8 for 2010 .................................................................................................21 Figure 11. Comparison of Computed and Measured Hourly Average Temperatures Td for Station 8 for 2010 ................................................................................................22 LIST OF TABLES Table 1. Summary of SQN Instream Thermal Limits for Outfall 101........................................... 5 Table 2. Thermal Surveys at SQN from April 1982 through March 1983 .................................. 14 Table 3. Thermal Surveys at SQN from March 1996 through April 2003 .................................. 15 Table 4. Thermal Surveys at SQN from February 2004 through November 2007...................... 15 Table 5. Thermal Surveys at SQN from November 2012 ........................................................... 16 Table 6. Plume Re-Entrainment Iteration Numbers and Factors ................................................. 19 iii

INTRODUCTION The Sequoyah Nuclear Plant (SQN) is located on the right bank of Chickamauga Reservoir at Tennessee River Mile (TRM) 484.5. As shown in Figure 1, the plant is northeast of Chattanooga, Tennessee, about 13.5 miles upstream and 45.4 miles downstream of Chickamauga Dam and Watts Bar Dam, respectively. As shown in Figure 2, the reservoir in the vicinity of SQN contains a deep main channel with adjacent overbanks and embayments. The main channel is approximately 900 feet wide and 50 to 60 feet deep, depending on the pool elevation in Chickamauga Reservoir. The overbanks are highly irregular and usually less than 20 feet deep.

SQN has two units with a total summertime gross generating capacity of about 2350 MWe and an associated waste heat load of about 15.6x109 Btu/hr (TVA, 2010). The heat transferred from the steam condensers to the cooling water is dissipated to the atmosphere by two natural draft cooling towers, to the river by a two-leg submerged multiport diffuser, or by a combination of both. The release to the river is identified in the National Pollutant Discharge Elimination System (NPDES) Permit as Outfall 101.

Figure 1. Location of Sequoyah Nuclear Plant 1

f/llllllm Denotes Reservoir areas of water depth less than 20 feet Mixing Zone Figure 2. Chickamauga Reservoir in the Vicinity of Sequoyah Nuclear Plant 2

The compliance of SQN operation with the instream temperature limits specified in the NPDES permit (TDEC, 2011) is based on a downstream temperature that is calculated on a real-time basis by a numerical computer model. Part III, Section G of the permit states:

The numerical model used to determine compliance with the temperature requirements for Outfall 101 shall be subject of a calibration study once during the permit cycle. The study should be accomplished in time for data to be available for the next permit application for re-issuance of the permit. A report of the study will be presented to the Division of Water Pollution Control. Any adjustments to the numerical model to improve its accuracy will not need separate approval from the Division of Water Pollution Control; however, the Division will be notified when such adjustments are made.

This report presents a summary of compliance model and the required calibration study.

BACKGROUND The original method of monitoring thermal compliance for the SQN diffuser discharge (i.e.,

Outfall 101), included two temperature stations located near the downstream corners of the mixing zone, Station 8 and Station 11 (see Figure 2). Because of the necessity to keep the navigation channel free of obstructions, temperature stations could not be situated between these locations to monitor the center of the thermal plume. The upstream ambient river temperature was measured at Station 13, located on the plant intake skimmer wall. In August 1983, the Tennessee Valley Authority (TVA) reported the results of six field studies of the SQN diffuser performance under various river and plant operating conditions (TVA, 1983a). The data summarized in the report showed that based on measured temperature variations across the downstream edge of the mixing zone, Station 8 and Station 11 were inadequate in providing a representative cross-sectional average temperature of the thermal plume. In particular, it was found that Station 11 often was not in the main path of flow of the thermal plume and did not always show elevated temperatures. The remaining downstream monitor, Station 8, also was not considered adequate because it again was located outside the navigation channel. In the report, TVA proposed an alternate method to monitor thermal compliance involving the use of a numerical model to simulate the behavior of the thermal plume in the mixing zone. The model would provide a real-time assessment of compliance with the thermal discharge limitations.

Information required for the model included: the ambient river temperature upstream of the diffuser mixing zone (measured at Station 13, see Figure 2), the discharge in the river at SQN (determined from measurements at Watts Bar Dam and Chickamauga Dam), the depth of flow in the river (measured at Station 13), the temperature of the flow issuing from the plant diffusers (measured at Station 12, see Figure 2), and the discharge of the flow issuing from the diffusers (determined from measurements at both Station 12 and Station 13). A PC, located in the SQN Environmental Data Station (EDS), was to be used collect the required data, compute the thermal compliance parameters, and distribute the results to plant operators (see TVA, 1983b). The August 1983 report presented results demonstrating the validity of using the numerical model for tracking compliance with the Outfall 101 thermal limitations.

3

The method of using the numerical model was sent to the Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), requesting approval for implementation as a valid means for monitoring SQN thermal compliance. The key advantage of the method includes a representation of the cross-sectional average downstream temperature that is at least as good as the instream temperature measurements from Station 8 and Station 11. The method also provides consistency with procedures that are used for scheduling releases from Watts Bar Dam and Chickamauga Dam, as well as procedures for operating Sequoyah Nuclear Plant. This consistency helps TVA minimize unexpected events that can potentially threaten the NPDES thermal limits for Outfall 101. In March 1984 approval was granted for TVA to use the numerical model as the primary method to track thermal compliance.

Except for infrequent outages, the model has been in use ever since. Subsequently, Station 11 was removed from the river. However, Station 8 was retained to provide an optional method to track thermal compliance should there be a need to remove the model from service.

Due to the ever changing understanding of the hydrothermal aspects of Chickamauga Reservoir, as well as the operational aspects of the nuclear plant and river system, modifications have been necessary over the years for both the numerical model and thermal criteria for Outfall 101. The current version of the model is presented in more detail later. The current thermal criteria are presented in Table 1. The limit for the temperature at the downstream end of the mixing zone (Td) is a 24-hour average value of 86.9°F (30.5°C) and an hourly average value of 93.0°F (33.9°C). The instream temperature rise (T) is limited to a 24-hour average of 5.4 F° (3.0 Cº)

for months April through October, and 9.0 F° (5.0 Cº) for months November through March.

The latter wintertime limit was obtained by a 316(a) variance. The temperature rate-of-change at the downstream end of the mixing zone (dTd/dt) is limited to +/-3.6 F°/hr (+/-2 Cº/hr). With the compliance model, dTd/dt is based on 24-hour average river conditions and 15 minute plant conditions. Other details related to the temperature limits for Outfall 101 are provided in the notes accompanying Table 1. It is important to note that compliance with instream temperature limits are based on a computed downstream temperature at a depth of 5.0 feet. And in a similar fashion, the upstream temperature is measured at the 5.0 foot depth, based on the average of temperature readings at the 3-foot, 5-foot and 7-foor depths.

Originally, the ambient river temperature for the temperature rise was measured at Station 13, about 1.1 miles upstream of the discharge diffusers. However, under sustained low flow conditions, it was discovered that heat from the diffusers can migrate upstream and reach the area of Station 13. In this manner, the ambient temperature can become elevated, thereby artificially reducing the measured impact of the plant on the river (i.e., T). As such, in late March 2006, a new ambient temperature station was installed in the river further upstream at TRM 490.4, about 6.8 miles upstream of the diffusers. The location of the new monitor, entitled Station 14, is shown in Figure 3.

4

Table 1. Summary of SQN Instream Thermal Limits for Outfall 101 Averaging NPDES Type of Limit (hours) Limit2 Max Downstream Temperature, Td 24 86.9°F (30.5°C)

Max Downstream Temperature, Td 1 93.0°F (33.9°C)

Max Temperature Rise, T 24 5.4 F°/9.0 F° (3.0 Cº/5.0 Cº)

Max Temperature Rate-of-Change, dTd/dt Mixed +/-3.6 F°/hr (+/-2 Cº/hr)

Notes:

1. Compliance with the river limitations (river temperature, temperature rise, and rate of temperature change) shall be monitored by means of a numerical model that solves the thermohydrodynamic equations governing the flow and thermal conditions in the reservoir. This numerical model will utilize measured values of the upstream temperature profile and river stage; flow, temperature and performance characteristics of the diffuser discharge; and river flow as determined from releases at the Watts Bar and Chickamauga Dams. In the event that the modeling system described here is out of service, an alternate method will be employed to measure water temperatures at least one time per day and verify compliance of the maximum river temperature and maximum temperature rise. Depth average measurements can be taken at a downstream backup temperature monitor at the downstream end of the diffuser mixing zone (left bank Tennessee River mile 483.4) or by grab sampling from boats. Boat sampling will include average 5-foot depth measurements (average of 3, 5, and 7-foot depths). Sampling from a boat shall be made outside the skimmer wall (ambient temperature) and at quarter points and mid-channel at downstream Tennessee River mile 483.4 (downstream temperature). The downstream reported value will be a depth (3, 5, and 7-foot) and lateral (quarter points and midpoint) average of the instream measurements. Monitoring in the alternative mode using boat sampling shall not be required when unsafe boating conditions occur.
2. Compliance with river temperature, temperature rise, and rate of temperature change limitations shall be applicable at the edge of a mixing zone which shall not exceed the following dimensions: (1) a maximum length of 1500 feet downstream of the diffusers, (2) a maximum width of 750 feet, and (3) a maximum length of 275 feet upstream of the diffusers. The depth of the mixing zone measured from the surface varies linearly from the surface 275 feet upstream of the diffusers to the top of the diffuser pipes and extends to the bottom downstream of the diffusers. When the plant is operated in closed mode, the mixing zone shall also include the area of the intake forebay.
3. Information required by the numerical model and evaluations for the river temperature, temperature rise, and rate of temperature change shall be made every 15 minutes. The ambient temperature shall be determined at the 5-foot depth as the average of measurements at depths 3 feet, 5 feet, and 7 feet. The river temperature at the downstream end of the mixing zone shall be determined as that computed by the numerical model at a depth of 5 feet.
4. Daily maximum temperatures for the ambient temperature, the river temperature at the downstream edge of the mixing zone, and temperature rise shall be determined from 24-hour average values. The 24-hour average values shall be calculated every 15 minutes using the current and previous ninety-six 15-minute values, thus creating a rolling average. The maximum of the ninety-six observations generated per day by this procedure shall be reported as the daily maximum value. For the river temperature at the downstream end of the mixing zone, the 1-hour average shall also be determined. The 1-hour average values shall be calculated every 15 minutes using the average of the current and previous four 15-minute values, again creating a rolling average.
5. The daily maximum 24-hour average river temperature is limited to 86.9°F (30.5°C). Since the states criteria makes exception for exceeding the value as a result of natural conditions, when the 24-hour average ambient temperature exceeds 84.9°F (29.4°C) and the plant is operated in helper mode, the maximum temperature may exceed 86.9°F (30.5°C). In no case shall the plant discharge cause the 1-hour average downstream river temperature at the downstream of the mixing zone to exceed 93.0°F (33.9°C) without the consent of the permitting authority.
6. The temperature rise is the difference between the 24-hour average ambient river temperature measured at Station 14 and the computed 24-hour average temperature at the downstream end of the mixing zone. The 24-hour average temperature rise shall be limited to 5.4F° (3.0 C°) during the months of April through October. The 24-hour average temperature rise shall be limited to 9.0F° (5.0 C°) during the months of November through March.
7. The rate of temperature change shall be computed at 15-minute intervals based on the current 24-hour average ambient river temperature, current 24-hour-hour average river flow, and current values of the flow and temperature of water discharging through the diffuser pipes. The 1-hour average rate of temperature change shall be calculated every 15-minutes by averaging the current and previous four 15-minute values. The 1-hour average rate of temperature change shall be limited to 3.6F° (2 C°) per hour.

5

Sta 14, TRM 490.4 Tu Opossum Creek Chickamauga Reservoir Tennessee River Soddy Creek T = Td - Tu Sta 13, TRM 484.7 Daily average flow Intake SQN Sta 12 Mixing Zone Td Diffusers dTd/dt Sta 8, TRM 483.4 Figure 3. Locations of Instream Temperature Monitors for Sequoyah Nuclear Plant 6

NUMERICAL MODEL The diffusers at SQN are located on the bottom of the navigation channel in Chickamauga Reservoir. As shown in Figure 4, each diffuser is 350 feet long, and contains seventeen 2-inch diameter ports per linear foot of pipe, arranged in rows over an arc of approximately 18 degrees in the downstream upper quadrant of the diffuser conduit. The two diffuser legs rest on an elevated pad approximately 10 feet above the bottom of the river, occupying the 700 feet of navigation channel on the plant-side of the river (right side of the channel, looking downstream).

The flow in the immediate vicinity of the ports is far too complex to be analyzed on a real-time basis with current computer technology. Therefore, a simplifying assumption is made that the diffusers can be treated as a slot jet with a length equal to that of the perforated sections of the pipe. The width of this assumed slot is one of three empirical parameters used to calibrate the model. The second is a relationship used to compute the entrainment of ambient water along the trajectory of the plume and the third is a relationship for the amount of diffuser effluent that is re-entrained into the diffuser plume for sustained low river flow.

The initial development of the numerical model is described in detail by Benton (2003). Based on later studies that provided evidence that re-entrainment occurs (TVA, 2009), the original numerical model was modified to better reflect the local buildup of heat that occurs in the river under such conditions. Before presenting calibration results, it is appropriate first to provide a brief description of the model formulation.

Figure 4. Sequoyah Nuclear Plant Outfall 101 Discharge Diffusers 7

In general, the model treats the effluent discharge from the diffusers as a fully mixed, plane buoyant jet with a two-dimensional (vertical and longitudinal) trajectory. This is shown schematically in Figure 5. The jet discharges into a temperature-stratified, uniform-velocity flow and entrains ambient fluid as it evolves along its trajectory. The width, b, of the jet and the dilution of the effluent heat energy increase along the jet trajectory, decreasing the bulk mixed temperature along its path.

y Triver(y) s v v j

uriver(y) = ue u b(s)

R x

Figure 5. Two-Dimensional Plane Buoyant Jet Model for a Submerged Diffuser Consideration of the mass, momentum, and energy for a cross section of the plume orthogonal to the jet trajectory and having a differential thickness ds, yields the following system of ordinary differential equations, d

( j v j b) = me (conservation of mass in jet), (1) ds d

( j v j bu ) = me u e (conservation of x momentum in jet), (2) ds d

( j v j bv) = me ve + bg ( e j ) (conservation of y momentum in jet), (3) ds d

( j v j bcT j ) = me cTe (conservation of thermal energy in jet), (4) ds dx u

= , and (5) ds v j dy v

= , (velocity of jet tangent to trajectory). (6) ds v j 8

The following auxiliary relationships also are needed to solve the differential equations,

[

me = e (u e u ) + v 2 2

]1/ 2

, (7) j = water (T j ), (8) e = water (Te ) , (9)

Te = Triver ( y ) , (10) u e = u river , (11) ve = 0 , and (12)

(

v j = u2 + v2 )1/ 2

. (13)

In these equations, the subscripts j and e denote conditions within the buoyant jet and conditions within the water upstream of the mixing zone that is entrained by the jet, respectively. Thus, j denotes the density of water at a point inside the jet and e denotes the density of water entrained from upstream of the mixing zone. Te denotes the temperature of the water upstream of the mixing zone that is entrained by the jet. The x-velocity of the entrained water, ue, is the same as the river velocity, uriver, which is negligible in the vertical direction (i.e., ve = 0). The magnitude of the velocity along the jet trajectory is denoted by vj, with x- and y-components u and v, respectively. The individual jets issuing from the array of 2-inch diameter outlet ports of each diffuser are modeled as a plane jet issuing from a slot of width b0. Ideally, the slot width is chosen to preserve the total momentum flux issuing from the circular ports of the diffuser.

However, as indicated earlier, for this formulation, the slot width is used as a term to calibrate the numerical model. The river velocity uriver is computed by a one-dimensional unsteady flow model of Chickamauga Reservoir. Apart from information for the reservoir geometry, the basic input for the flow model includes the measured hydro releases at Watts Bar Dam and Chickamauga Hydro Dam and the measured river water surface elevation at SQN.

The transverse gradients of velocity, temperature, and density that occur within the jet due to turbulent diffusion of the effluent momentum and energy are modeled as an entrainment mass flux, me, induced by the vectorial difference between the velocity of the jet and that of the river flow upstream of the mixing zone. Empirical relationships for the entrainment coefficient are based on arguments of jet self-similarity and asymptotic behavior. These relationships incorporate non-dimensional parameters, such as a Richardson or densimetric Froude number, that describe the relative strengths of buoyancy and momentum flux in the jet (e.g., see Fischer et al., 1979). Again, as indicated earlier, the entrainment coefficient, like the slot width, is adjusted as part of the calibration process.

9

The initial conditions required by the model include, b s = s = b0 0 , (14) x s = s = R cos 0 , (15) y s = s = R sin 0 , (16) q0 u s=s = cos 0

b0 , (17) q0 v s=s = sin 0

b0 , and (18)

Tj = T0 s = s0

. (19)

This system of differential equations, auxiliary equations, and initial conditions comprise a first-order, initial-value problem that can be integrated from the diffuser slot outlet (s = s0) to any point along the plume trajectory. Note in the above that R is the radius of the diffuser conduit, b0 is the effective width of the diffuser slot, is the exit angle of the diffuser jet, T0 is the temperature of effluent issuing from the slot, and q0 is the effluent discharge per unit length of diffuser. In practice, integration of the governing equations is halted when the jet centerline reaches a point five feet below the water surface (the regulatory compliance depth) or when the upper boundary of the jet reaches the water surface. The jet temperature, Tj, at this point is reported as the fully-mixed temperature to which the thermal regulatory criteria are applied or to which monitoring station data at the edge of the regulatory mixing zone are compared. The integration is done with an adaptive step-size, fourth-order Runge-Kutta algorithm.

In the model, Station 13 (Figure 2), located 1.1 miles upstream of the diffusers, is used to represent the temperature of the water entrained in the mixing zone, Te = Triver ( y ) . Whereas this is a good assumption for river flows where the effluent plume is carried downstream, it weakens for low river flows. Based on the understanding gained in recent studies (TVA, 2009), it is known that partial re-entrainment of the effluent plume occurs at sustained low river flow, increasing the temperature of the water entering the mixing zone above that represented by Station 13. To simulate this phenomenon, the model modifies the Station 13 temperature profile for low river flows. For each point in the profile, a local densimetric Froude number is computed as uriver Fr = , (20) e p g (Ze Zb )

e 10

where uriver is the average river velocity, Ze-Zb is the elevation of the profile point relative to the bottom elevation of the river, e is the entrainment water density at that elevation, and p is the density of the effluent plume at the 5-foot compliance depth. The densimetric Froude number represents the ratio of momentum forces to buoyancy forces in the river flow. If Fr is less than 1.0 (i.e., buoyancy greater than momentum), it is assumed that the buoyancy of the plume is sufficient to cause part of the plume to travel upstream and become re-entrained into the flow, thereby increasing the temperature of the water entering the mixing zone. The modified entrainment temperature TeN at each point in the Station 13 profile is computed by repeatedly evaluating Ten = R x T p + (1.0 R ) x Ten 1 (21) for values of n from 1 to N, where N is the number of iterations of Eq. (21), R is a re-entrainment fraction, Ten =0 is the original Station 13 temperature, and Tp is the computed plume temperature at the 5-foot depth. N and R are functions of the 24-hour average river velocity. After new Station 13 temperatures have been computed for the entire profile, the mixing zone computation is performed again, using the modified profile to get a new plume temperature at the 5-foot depth. It is emphasized that the final result of the model is the computed temperature at the downstream end of the mixing zone. The instream temperature rise is still computed based on the temperature measurement at the new ambient temperature monitor, Station 14.

Values for N and R are calibrated based on observed temperatures at the downstream end of the diffuser mixing zone for low river flow conditions, as indicated earlier. Depending on the river stage, the modifications by Equation 21 begin to take effect as the 24-hour average river flow drops through the range of 17,000 cfs to 25,000 cfs, and increases as the 24-hour average river flow continues to drop. For river flows above this range, no modification is needed for re-entrainment.

The downstream temperature and instream temperature rise provided by the model are computed every 15 minutes, using instantaneous values of the measured diffuser discharge temperature (Station 12), measured upstream temperature profile (Station 13), measured ambient temperature (Station 14), measured river elevation (Station 13), and computed values of the river velocity (one-dimensional unsteady flow model of Chickamauga Reservoir) and diffuser discharge. The diffuser discharge is computed based on the difference in water elevation between the SQN diffuser pond (Station 12) and the river (Station 13). All computations are performed every 15 minutes to provide rolling hourly and 24-hour average values. The hourly averages are based on the current and previous four 15-minute values, whereas the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> averages are based on current and previous ninety-six 15-minute values. The temperature rate-of-change is determined slightly different, being computed every 15 minutes based on current 24-hour average river conditions and current 15-minute values of the flow and temperature of water discharging from the SQN diffusers. This method was adopted in August 2001 in order to distinguish between rate-of-change events due to changes in SQN operations (i.e. changes in plant discharge flow and/or temperature) and those due to non-SQN changes in operations (e.g., changes in river flow). Prior to this change, SQN was held accountable for temperature rate-of-change events over which it had very little control or influence.

11

Plume Entrainment Two empirical relationships for the plume entrainment coefficient are available in the numerical model. The first, developed by McIntosh, was inferred from a relationship for the entrainment coefficient determined from the data reported in 1983 (TVA, 1983a) and is given by 0.27 for F < 0.75 d

0.27

= for 0.75 Fd 1.00 , (22) 2.5 Fd 0.55 for Fd > 1.00 where Fd is the densimetric Froude number of the diffuser discharge defined by wd Fd = . (23)

( d o )

gbo o

The term wd is the velocity of the diffuser discharge, g is the gravitational constant, b0 is the diffuser slot width, d is the density of the diffuser discharge, and o is the density of the ambient river water at the discharge depth.

The second entrainment coefficient, based on laboratory data, was originally developed by Benton in 1986 and is given by 1 + tanh(6.543 rmf 2.0584)

= 0.31 + 1.69 , (24) 2 where rmf = u river 3

/b, (25) and g d b = Q0 o . (26) l o Term uriver is the ambient river velocity, as previously defined, Q0 is the diffuser discharge flowrate, and l is the length of the ported section of the diffuser.

12

Diffuser Effluent Re-Entrainment Partial re-entrainment of the diffuser plume is known to occur under conditions of low river flow. When the diffuser plume attempts to entrain an amount of ambient flow greater than what is available from further upstream, the upper portions of the plume tend to migrate upstream and plunge downward to be mixed with the flow in the lower portion of the river. The formulation to simulate this phenomenon was presented earlier (Eqs. 20 and 21). The unknown coefficients to be determined in the calibration process are the number of iterations N and re-entrainment fraction R in Eq. (21), which are functions of the 24-hour average river velocity.

CALIBRATION The numerical model is calibrated to achieve the best match between computed downstream temperatures and field measurements at the downstream end of the mixing zone. Field measurements at the downstream end of the mixing zone are of two typesthose including samples from field surveys across the entire width of the mixing zone and those from Station 8, which includes samples only at the left-hand corner of the mixing zone (e.g., see Figure 2).

Higher priority is given to matching data from field surveys, since such measurements are made across the entire width of the plume mixing zone and are more representative of the average temperature in the thermal plume at the 5-foot compliance depth.

Previous Calibration Data and Calibration Work Prior to the NPDES permit of March 2011, field surveys were performed in 1981, 1982, 1983, 1987, 1996, 1997, 1999, 2000, 2002, 2003, 2004, 2006, and 2007. In July 1981, TVA conducted the first field survey of the SQN thermal discharge (TVA, 1982). The results of the field surveys were compared to projections from modeling relationships developed from mixing theory and a physical model test of the discharge diffusers. Adequate agreement was achieved between measured data and model projections. In cases where there were discrepancies, the model under-predicted the observed dilutions (i.e., over-predicted temperatures).

Between April 1982 and March 1983, five field surveys containing seventeen sets of samples across the downstream end of the mixing zone were performed to acquire data for validation of the computed compliance technique (TVA, 1983a). The results of these surveys are given in Table 2. Only one SQN unit was operating during the March 1983 testthe other five tests were for operation with two units. The results of the numerical model compared favorably with the field-measured downstream temperatures. On average, the discrepancy between the measured and computed downstream temperatures was about 0.40 F° (0.22 C°). Since the accuracy of the temperature sensors used by TVA are only about +/-0.25 F° (+/-0.14 C°), the agreement between the field measurements and the computer model was considered good. A similar comparison between the Station 8 and Station 11 temperatures and the measured average temperatures across the downstream edge of the mixing zone revealed that the discrepancy for Station 8 was about 0.79 F° (0.44 C°) and for Station 11 about 0.65 F° (0.36 C°). Consequently, it was concluded 13

that the numerical model is not only an accurate representation of the downstream temperature but also is likely superior to the monitoring approach using Station 8 and Station 11.

In September 1987, TVA released a report describing the field surveys in support of the validation and calibration of the SQN numerical model that had been performed up to that date (TVA, 1987). In the report, a chart was introduced that described the ambient and operational conditions for which field surveys had been performed. This chart indicated combinations of river flow, season, and number of operating units, showing what tests had been performed, and assigning relative priorities for tests to be performed in the future. With this guidance, six more field surveys were performed between March 1996 and April 2003, to measure downstream temperatures for various river flows and at different times of year. The results of these surveys produced ten sets of samples across the downstream end of the mixing zone, as given in Table 3.

Between 2004 and 2007 a number of additional field surveys were performed, providing twenty-three more sets of samples containing temperature measurements across the downstream end of the diffuser mixing for various river flows and at different times of the year. The results of these surveys are given in Table 4.

Table 2. Thermal Surveys at SQN from April 1982 through March 1983 River Temperatures (5-foot depth)

Approx Tu Td T Date Flow Stage Time Measured Measured Measured (cfs) (ft MSL)

(°F) (°F) (°F) 04/04/1982 0900 CST 19900 676.46 56.8 61.9 5.1 04/04/1982 1000 CST 19800 676.46 56.7 60.1 3.4 04/04/1982 1100 CST 19600 676.47 56.7 61.2 4.5 04/04/1982 1200 CST 19700 676.50 57.2 61.9 4.7 04/04/1982 1300 CST 19700 676.45 57.4 62.2 4.8 05/14/1982 0900 CDT 7200 682.43 74.5 71.8 -2.7 05/14/1982 1100 CDT 9100 682.40 73.4 71.8 -1.6 05/14/1982 1300 CDT 6300 682.42 72.1 73.6 1.5 09/02/1982 1400 CDT 38500 680.30 78.1 80.1 2.0 11/10/1982 1300 CST 36200 677.57 59.0 60.1 1.1 11/10/1982 1400 CST 31600 677.59 59.0 60.6 1.6 11/10/1982 1500 CST 32300 677.58 59.0 60.4 1.4 03/31/1983 1100 CST 9800 676.34 51.4 54.3 2.9 03/31/1983 1200 CST 9400 676.34 50.4 54.7 4.3 03/31/1983 1300 CST 9300 676.34 52.5 54.5 2.0 03/31/1983 1400 CST 9500 676.34 51.4 54.9 3.5 03/31/1983 1500 CST 9400 676.36 51.4 54.9 3.5 14

Table 3. Thermal Surveys at SQN from March 1996 through April 2003 River Temperatures (5-foot depth)

Approx Tu Td T Date Flow Stage Time Measured Measured Measured (cfs) (ft MSL)

(°F) (°F) (°F) 03/01/1996 1100 CST 42456 676.96 45.9 48.8 2.9 03/01/1996 1445 CST 28136 677.04 46.2 50.2 4.0 03/01/1996 1600 CST 21962 677.00 46.1 51.4 5.3 03/01/1996 1700 CST 20280 677.00 46.0 51.5 5.5 07/24/1997 1550 CDT 40441 682.57 83.5 84.7 1.2 03/24/1999* 1250 CST 35731 677.46 51.9 54.5 2.7 08/02/2000 1000 CDT 12472 682.20 82.1 85.1 3.0 08/02/2000 1100 CDT 8624 682.20 82.1 85.3 3.1 07/27/2002 1250 CDT 17231 682.37 84.0 86.6 2.6 04/23/2003 1445 CDT 34178 682.53 63.7 64.2 0.5

  • The survey of 03/24/1999 is lacking valid upstream temperature data and was not used in the calibration.

Table 4. Thermal Surveys at SQN from February 2004 through November 2007 River Temperatures (5-foot depth)

Approx Tu Td T Date Flow Stage Time Measured Measured Measured (cfs) (ft MSL)

(°F) (°F) (°F) 02/14/2004 0600 CST 51133 677.50 43.7 46.3 2.6 02/22/2004 1800 CST 18468 678.40 45.8 50.5 4.7 08/22/2004 1800 CST 12340 682.00 79.8 84.1 4.3 08/23/2004 1800 CST 39238 682.20 79.8 82.4 2.6 04/01/2006 1915 CST 7084 677.20 59.7 63.5 3.8 04/04/2006 0015 CST 7996 677.70 59.3 63.9 4.6 04/04/2006 1105 CST 8251 677.80 59.6 61.3 1.7 04/04/2006 2030 CST 8258 678.00 59.0 63.2 4.2 04/05/2006 0915 CST 7917 678.20 59.2 62.8 3.6 04/05/2006 2215 CST 8277 678.40 60.4 64.2 3.8 04/06/2006 0915 CST 8174 678.50 59.7 63.3 3.6 04/06/2006 2315 CST 8077 678.70 61.0 64.5 3.5 04/07/2006 0840 CST 8162 678.80 59.9 63.9 4.0 04/07/2006 1435 CST 7889 678.80 60.0 64.7 4.7 05/22/2006 1445 CST 14511 682.00 73.4 72.9 -0.5 05/23/2006 1455 CST 17878 682.20 73.5 73.9 0.4 05/28/2006 1440 CST 13396 682.30 76.6 76.7 0.1 05/29/2006 1435 CST 13713 682.40 77.5 77.6 0.1 05/30/2006 1425 CST 14304 682.40 79.7 79.2 -0.5 09/20/2007 1200 CST 8545 681.80 79.3 83.4 4.1 09/21/2007 1300 CST 8629 681.70 80.6 82.5 1.9 09/22/2007 0600 CST 6969 681.70 79.5 81.8 2.3 11/04/2007 1200 CST 7664 678.70 64.9 69.5 4.6 15

The most recent calibration of the numerical model was performed in 2009 to support the NPDES permit of September 2005 (TVA, 2009). The data from Table 2, Table 3, and Table 4 were used in this calibration. The average overall discrepancy between the measured and computed downstream temperatures was about 0.55 Fº (0.31 Cº). For downstream temperatures above 75ºF, the average discrepancy improved to about 0.38 Fº (0.21 Cº).

New Calibration Data and Calibration Work Since the 2009 model calibration, an additional field study was performed in November 2012 (Table 5). The study included the operation of one unit at SQN and was conducted concurrently with independent measurements for the discharge through the diffusers (TVA, 2013). With this, altogether fifty data points with sets of temperature samples across the downstream end of the mixing zone were available for updating the model calibration (i.e., Table 2 through Table 5).

Table 5. Thermal Surveys at SQN from November 2012 River Temperatures (5-foot depth)

Approx Tu Td T Date Flow Stage Time Measured Measured Measured (cfs) (ft MSL)

(°F) (°F) (°F) 11/16/2012 1400 CST 12599 678.62 57.0 60.3 3.3 Diffuser Slot Width The effective slot width for a multiport diffuser of the type at SQN can be assumed to fall somewhere between the width of a rectangle with length equal to that of the diffuser section and area equal to the total area of the ports; and the width a rectangle with length equal to that of the diffuser section and area equal to the arc length of the perforated section of the diffuser. For the SQN diffuser, this slot width would be between 0.37 feet and 2.67 feet. Multiple slot widths in this range were evaluated and compared with fifty measured data points from the field surveys (i.e., from Table 2 through Table 5). The results, given in Figure 6, show that larger slot widths yielded better agreement with the measured data. The nominal arc length of the perforated section of the diffuser (i.e., 2.67 feet) was selected as the best diffuser slot width to be used in the numerical model. This is the same value used in the 2009 model calibration.

Plume Entrainment Coefficient Figure 7 shows the comparison with measured data of downstream temperatures computed with the McIntosh (Eq. 22) and Benton (Eq. 24) entrainment coefficients, again based on fifty data points from the field surveys in Table 2 through Table 5. Both entrainment coefficients result in relatively close matches with the measured data. Although the McIntosh coefficient seems to perform better at low ambient river temperatures, temperatures computed using the Benton coefficient more closely match measured downstream temperatures at higher river temperatures.

16

Since the accuracy of the computation is more critical at temperatures approaching the NPDES limit for downstream temperature, the Benton coefficient, Eq. (24) is used in the compliance model.

Field Data - 1982 - 2012 90 Line of perfect agreement 85 B0 = 0.37 ft B0 =1.137 ft B0 = 1.903 ft 80 B0 = 2.67 ft B0 = 3.437 ft 75 Computed (oF) 70 65 60 55 50 45 45 50 55 60 65 70 75 80 85 90 Measured (oF)

Figure 6. Sensitivity of Computed Temperature Td to Diffuser Effective Slot Width 17

Field Data - 1982-2012 90 Line of perfect agreement 85 Benton Entrainment Coefficient McIntosh Entrainment Coefficient 80 75 Computed (oF) 70 65 60 55 50 45 45 50 55 60 65 70 75 80 85 90 Measured (oF)

Figure 7. Sensitivity of Computed Temperature Td to Plume Entrainment Coefficient Diffuser Effluent Re-Entrainment Based on the evaluation of numerous combinations of N and R for diffuser effluent re-entrainment (Eq. 20 and 21), Table 6 gives the values that resulted in computed downstream temperatures that most closely matched measurements in the field surveys (i.e., fifty data points from Table 2 through Table 5). For river velocities between the values given in Table 6, the re-entrainment factor R is interpolated between the table values. The number of iterations N is interpolated and then rounded to the nearest integer. No re-entrainment correction is performed for 24-hour river velocities greater than the highest value in the table.

Figure 8 shows the comparison of measured and computed downstream temperatures with and without the correction for plume re-entrainment as given in Table 6. Temperatures computed using the plume re-entrainment correction more closely matched measured values for twenty-seven of the fifty data points. Temperatures computed without using the plume re-entrainment correction more closely matched measured values for six data points, with no significant differences for the remaining data points. Based upon these results the re-entrainment correction method is used.

18

Table 6. Plume Re-Entrainment Iteration Numbers and Factors River Velocity Number of Iterations Re-entrainment Factor (ft/sec) N R 0.000 3 0.21930 0.050 3 0.13300 0.075 3 0.11000 0.100 3 0.10000 0.200 3 0.02670 0.300 3 0.03507 0.400 3 0.00893 0.500 3 0.00447 0.600 0 0.00000 Field Data - 1982-2012 90 Line of perfect agreement 85 Using Plume Reentrainment 80 Not Using Plume Reentrainment 75 Computed (oF) 70 65 60 55 50 45 45 50 55 60 65 70 75 80 85 90 Measured (oF)

Figure 8. Sensitivity of Computed Temperature Td to Effluent Re-Entrainment Function 19

Results of Updated Calibration For the assumed diffuser slot width and entrainment coefficient, and updated calibration including the re-entrainment function for low river flow, the computed and measured downstream temperatures for the fifty downstream temperature data points collected in SQN field surveys since March 1982 are shown in Figure 9. The average discrepancy between the measured and computed downstream temperatures was about 0.55 Fº (0.31 Cº). For downstream temperatures above 75ºF, the average discrepancy was 0.38 Fº (0.21 Cº). There was no significant change in the model performance compared to the previous calibration.

To be consistent with the 24-hour averaging specified in the current NPDES permit, the 24-hour average temperatures measured in 2010 at the downstream temperature monitor, Station 8, are compared to those computed by numerical model in Figure 10. 2010 was selected because it represents a new climatic extreme in East Tennessee for the period of record for this model. As before, the measured temperatures correspond to the average of sensor readings at the 3-foot, 5-foot, and 7-foot depths. The overall average discrepancy between the measured and computed 24-hour average downstream temperatures was about 0.71 Fº (0.39 Cº), and about 0.63 Fº (0.35 Cº) for downstream temperatures above 75ºF.

Measured downstream hourly average temperatures for the same time period are compared to those computed by numerical model in Figure 11. As expected, the temperature data are much more scattered for the hourly temperatures. The average discrepancy between the measured and computed hourly average downstream temperatures was 0.86 Fº (0.48 Cº) for the full range of river temperatures, decreasing to 0.71 Fº (0.39 Cº) for downstream temperatures above 75ºF.

It needs to be emphasized that in Figure 10 and Figure 11, the data from Station 8 is not necessarily representative of the average temperature across the downstream end of the mixing zone. However, in monitoring the NPDES compliance for Outfall 101, data from Station 8 is considered valuable for verifying basic trends in the downstream temperature as determined by the numerical model, thus providing the motivation for presenting the comparisons given in these figures.

20

90 Line of perfect agreement 85 Field Data 1982 - 2012 80 75 Computed (oF) 70 65 60 55 50 45 45 50 55 60 65 70 75 80 85 90 Measured (oF)

Figure 9. Comparison of Computed and Measured Temperatures Td for Field Studies from April 1982 through November 2012 90 85 Line of perfect agreement 80 Measured 2010 75 70 Computed (oF) 65 60 Erroneous data due to faulty 55 sensor--values removed from discrepancy calculations 50 45 40 40 45 50 55 60 65 70 75 80 85 90 Measured (oF)

Figure 10. Comparison of Computed and Measured 24-hour Average Temperatures Td for Station 8 for 2010 21

90 85 Line of perfect agreement 80 Measured 2010 75 70 Computed (oF) 65 60 Erroneous data due to faulty 55 sensor--values removed from discrepancy calculations 50 45 40 40 45 50 55 60 65 70 75 80 85 90 Measured (oF)

Figure 11. Comparison of Computed and Measured Hourly Average Temperatures Td for Station 8 for 2010 22

CONCLUSIONS The numerical model for the SQN effluent discharge computes the temperature at the downstream end of the mixing zone with sufficient accuracy for use as the primary method of verifying thermal compliance for Outfall 101. In the updated calibration study summarized herein, which used the results from fifty sets of temperature samples across the downstream end of the diffuser mixing zone, the average discrepancy between the measured and computed downstream temperatures was about 0.55 Fº (0.31 Cº). For downstream temperatures above 75ºF, the average discrepancy improved to about 0.38 Fº (0.21 Cº). There was no significant change in the model performance compared to the previous calibration, and as a result, no update was required in the model parameter set.

23

REFERENCES Benton, D.J. (2003), Development of a Two-Dimensional Plume Model, Dynamic Solutions, LLC, Knoxville, Tennessee, May 2003.

Fischer, H. B., E. J. List, R. C. Y. Yoh, J. Imberger, and N. H. Brooks (1979), Mixing in Inland and Coastal Waters, Academic Press: New York, 1979.

TDEC (2005), NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES), Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Nashville, Tennessee 37243-1534, July 29, 2005.

TDEC (2011), NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES), Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Nashville, Tennessee 37243-1534, January 31, 2011.

TVA (1982), McIntosh, D.A., B.E. Johnson, and E.B. Speaks, A Field Verification of Sequoyah Nuclear Plant Diffuser Performance Model One-Unit Operation, TVA Division of Air and Water Resources, Water Systems Development Branch, Report No.

WR28-1-45-110, October 1982.

TVA (1983a), McIntosh, D.A., B.E. Johnson, and E.B. Speaks, Validation of Computerized Thermal Compliance and Plume Development at Sequoyah Nuclear Plant, Tennessee Valley Authority, Division of Air and Water Resources, Water Systems Development Branch Report No. WR28-l-45-115, August 1983.

TVA (1983b), Waldrop, W.R., and D.A. McIntosh, Real-Time Computation of Compliance with Thermal Water Quality Standards, Proceedings of Microcomputers in Civil Engineering, University of Central Florida, Orlando, Florida, November 1983.

TVA (1987), Ostrowski, P., and M.C. Shiao, Quality Program for Verification of Sequoyah Nuclear Plant Thermal Computed Compliance System, Tennessee Valley Authority, Office of Natural Resources and Economic Development, Division of Air and Water Resources Report No. WR28-3-45-134, September 1987.

TVA (2003), Harper, W.L., Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of August 2001, Report No. WR2003-1-45-149, Tennessee Valley Authority, River Operations, June 2003.

24

TVA (2009), Harper, W.L. and P.N. Hopping, Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of September 2005, Report No. WR2009-1-45-150, Tennessee Valley Authority, River Operations, January 2009.

TVA (2009), Ambient Temperature and Mixing Zone Studies for Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of September 2005, Report No.

WR2009-1-45-151, Tennessee Valley Authority, River Operations, January 2009.

TVA (2010), Sequoyah Nuclear Plant (SQN) - Revised Thermal Performance Baseline and Capacity Ratings, Memo from Scott D. Terry to J.D. Williams (B85100419001),

April 14, 2010.

TVA (2013), Sequoyah Nuclear Plant (SQN)--Update of Flowrate Characteristics Through the Diffusers, Memo from Paul N. Hopping to Bradley M. Love, March 4, 2013.

25

... RECEIVED STATE OF TENNESSEE 90 JAN 18 Ai'lIO: 05 DEPARTMENT OF HEALTH AND ENVIRONMENT r-r,'*- u.

SECil(r,,{R):::OF'ST,"TE IN THE l-1ATTER OF: )

) OFFICE OF WATER TENNESSEE VALLEY ) MANAGEMENT AUTHORITY ) DIVISI ON OF WATER

) POLLUTION CONTROL

) No.89-303 6

)

) DdCKET No. 17.30- D-89-0 674A RESPONDENT )

AGREED ORDER This cause came to be heard before the Water Quali ty Contro l Board in open meetin g upon the motion of the partie s that the*

Board approv e the partie s' settle ment as embod ied herein .

By signat ures of the partie s' couns el, as entere d below ,

repres enting that each attorn ey is acting with tne full and expli cit autho rity of their clien ts, the Board finds that these named partie s have agreed to the terms and condi tions of this agreed and final order as a resolu tion betwe en said 'parti es regard ing the Comm ission ers's Order and Asses sment issue d to Respo ndent on May 22, 1989.

The *Comm iss'ion er's Order and Assess ment' alleg;e s that fish were killed as a resul t of the opera tion 'of Respo ndent TVA's Sequoy ah Nucle ar Plant in the summe r of 1988 in violat ion of T.C.A . Sectio n 69 114(a ) and (b) Divis ion perso nnel determ ined the cause of the fish kills to be low, disso l ved oxygen and high tempe rature condi tions in the waters affect ed by Respo ndent' s opera tion of Sequoy ah Nucle ar Plant.

TVA conten ds that during this period , therm al requir ement s in the plant 's Naticrl i:1l :E-ollu tant Discha rge Elimin ation System (NPDES) permi t No. TN002 6450 were not violat ed and that diss,ol ved oxygen levels were not lowere d due to opera tion of the plant in accord ance

with the NPDES permi t.

Howev er, TVA desire s toful~y resolv e this matte r as provid ed herein .

The Board now finds the Agreem ent of these partie s *to be as follow s, and it is so found and ordere d by the Board that:

FINDINGS OF FACT I

I. TVA is a co:cpo r.ate agency and instru menta lity of the United States . Govern ment. It opera tes the Sequoy ah Nucle ar Plant* for the purpos e of produ cing electr ical power as autho rized by an act of Congr ess known as the Tenne ssee Valley Autho rity Act of 1933, 16 U.S.C . SS 831-83 1dd (1988) .

2. TVA is autho rized to discha rge wastew ater from a facili ty' locate d at the Sequo yah Nucle ar Plant in Hamil ton Count y, Tenne ssee, to receiv ing waters named Tenne ss.ee River , Plant Intake Embay ment (herei nafter "Intak e Embay ment")

, and Diffu ser Pond in accord ance with the terms and condi tions of NPDES permi t No.TN 00264 50. The NPDES permi t was issued by the United States Enviro nment al Protec tion Agency in conju nction with the State of Tenne ssee's Certif icatio n Condi tions. Tenne ssee's Certif icatio n Condi tions state that TVA is in no way reliev ed from any liabi lity for damag es which might .resul t from the discha rge of wastew ater. The prima ry nature of the wastew ater in questi on is a ther:ll al discha rge result ing from TVA's plant opera tions.

3. Coolin g water for TVA's Sequoy ah Nucle ar Plant is drawn into the Intake Embay ment below a deep skimm er wall to provid e coole r water from the lower depths of the Tenne ssee River. The bottom of the skimm er wall is about 12 feet from the river bottom and

'i'lbout 39.5 fest* below the norma l maximu m summe r eleva tion of the water. surfac e. Dissol ved oxygen and tempe rature condi tions in the Intake Embay ment are thus relate d to the condi tions presen t in the lower strata of the river .where summe r tempe rature s are cooler and summe r dissol ved oxygen levels are lower than those in the lower strata .

4. In open mode opera tion, the coolin g water is discha rged from*

the conde nsers into the Diffu ser Pond and then to the Tenne ssee River throug h two diffus ers. In help~r mode, the coolin g water is pumped throug h the coolin g towers into the Diffu ser Pond and then discha rged to the Tenne ssee River throug h the diffus ers. In closed mode, the coolin g wat.er. is pumped throug h the. coolin g towers and ~ecirculated into the Intake Embay ment.

The plant was operat ed in open mode until approx imatel y 6:30 p.m. on Augus t 2 when opera tion in helpe r mode comme nced to lower the tempe rature of the discha rged water .

5. The Tenne ssee River, Intake Embay ment, and Diffu ser Pond are "water s" of* the State, as define d by T.C.A . Sectio n 69-3-1 03(33 ).

Pursua nt to T.C~A. Sectio n 69-3-1 05(a)( 1), all water s of the State of Tenne ssee have been class ified by the Tenne ssee Water Qualit y Contro l Board for suitab le uses. The above waters

  • are classi fied by .Rule 1200- 4-4-.0 1 of *the Offic ial Comp ilation ,

Rules and Regul ations of the State of Tenne ssee ( herei nafte r referr ed to as Rules) fo~ all class ified uses includ ing the use of fish and aquat ic life. The waters of the Diffu ser Pond are physi cally separa ted from the Tenne ssee River by a dike.

6. In additi on to earlie r report ed fish kill event s, the Divisi on was notifi ed by TVA on Augus t I., 1988, of a fish kill in the Intake Embay ment at sequoy C!h Nucle ar Plant . Divis ion person nel inves tigate d the report ed fish kill and counte d 278 dead fish in the Intake Embay ment. A readin g of the dissol ved oxygen at the locati on of the fish kill ranged from*O . 2* to 0.7 mg!l.
7. On Augus t 2, 1988, a second ~iteinvestigation ofSeq~oyah was condu cted. The dissol ved oxyge n prese nt in the Intake Embay ment was measu red by Divisi on perso nnel. On.e locat ion showed dissdl ved oxygen to range from 1.9 to 2.5 mg/l. A second locati on showed dissol ved oxygen to range from 0.2 to 0.4 mg/l.

The Diffus er Pond was also inspec ted on this date. Dead and dying fish were observ ed. The tempe rature of the water in the Diffus er Pond was measu red at 37°C (98°F) (with in allow able tempe rature limits under NPDES permi t No. TN002 64S0 for the Diffus er Pond). Dissol ved oxygen was less than 1.0 mg/l:

B.. On Augus t 4, 1988, Divisi on person nel took measu remen ts of

.disso lved oxygen in the Tenne ssee River. Midch annel dissol ved

  • oxyge n readin gs at theS- footd epth ranged from 4.3 to 8.7 rog/l with most readin gs approx imatin g 7.5 mg/l.

Disso lved oxyge n readin gs at the IS-foo t depth and below , from where water is drawn into the Intake Embay ment below the deep skimm er wall, corres ponde d to the. disso lyed oxygen

  • level
s. in the Intak e Embay ment.
9. On Augus t 25, 198B, the Divisi on receiv ed a repor t from TVA regard ing the Augus t 1, 1988, fish kill. The report , stated that the loss of fish in the Intake Embay ment was undou btedly relate d to extrem ely low dissol ved oxygen levels ** in the Intake Embay ment.
10. In Octob er of 1988, TVA submi tted a repor t to the Divisi on on "The Effec ts of Sequoy ah Nucle ar Plant on 'Temp erature and Dissol ved Oxygen in Chicka mauga Reser voir During Summe r 1988" in respo nse to the Divis ion's reque st that TVA docum ent the condi tions in the reserv oir and action s taken by TVA to mitig ate the impac ts of its therJT. al discha rge. TVA report ed that it had releas ed cold water from Norris Dam in an effor t to .lower water tempe rature s and raise the level of dissol ved oxygen in the water .

Also! cooJ.e r*wate r from Watts Bar Dam and near b5.nk turbin es were used to achiev e higher dissol ved oxygen releas es from Watts Bar Darn. It was also repor ted that water entere d*

Seguo yah at approx imatel y 27.5°C (B2°P) , was warmed to about 40.5°C (105°F )

throug h the plant, cooled to about 3PC (88°F) with a coolin g tower (afte r switc hing to helpe r mode on Augus t 2), then discha rged back to the reserv oir throug h the Diffu ser Pond at approx imatel y 31.7°C (89.8° F) in compl ianc;e with appli cable

therm al criter ia establ ished in the NPDES permi"

"- t for the Diffu ser Pond discha rge. The repo"r ted tempe rature s were based upon an "Augus t 25, 1988, in-pla nt survey .

11. On Octob er 20, 1988, the Divisi on" receiv ed a summa ry from TVA of dead fish observ ed" in the Sequoy ah Nucle ar Plant Intake Embay ment and Diffu ser Pond from Augus t 3 to Septem ber 14, 1988.

The total numbe r of dead fish observ ed during this time period was report ed to be 16,372 in the Intake Embay ment and 392 in the Diffus er Pond.

12. On March 14, 1989, the Divisi on receiv ed a repor t from the Tenne ssee Wildl ife Resou rces Agenc y ("TWR A")

which conta ined calcu lation s of fisher y value loss "and TWRA perso nnel salar y expen ses. TWRA report ed the follow ing costs:

Diffus er Pond Total fi~hery value lost: $ 56.92 Person nel salari es: 95.03 Total $151. 95 Intake Embay ment Total fisher y value lost: $1,233 .93 Person nel salari es: 117.39 Total $1,351 .3"2

13. The Divisi on has incurr ed costs in the form of expen ses for "trave l, salari es, and analys es costs in the amoun t of $588.7 0.
14. TVA has coope rated with the Divisi on in its inves tigati ons.

CONCLUSIONS OF LAW

1. The opera tion of the intake pumps at TVA's Sequo yah Nuclea r Plant to draw low disso lved oxyge n water into the Intake Embay ment and the discha rge of heated water into the Diffus er Pond caused a condi tion which result ed in harm to fish in said embay ment and pond for which condi tion, if not prope riy autho rized, the Comm issione r may assess damag es under T. C.A.

Sectio n 69-3-1 16.

2. A discha rge result ing in harm to fish and aquat ic li'fe which is not prope rly autho rized is pollu tion and in viola tion of T.e.A . Sectio n 69-3-1 14(a) and (b).

ORDER WHEREFORE, premi ses consid ered, it is Ordere d by the Board that TVA shall:

1. Opera te Sequoy ah Nucle ar Plant in full compl iance with it.s NPDES permi t and applic able provis ions of the Act and rules promu lgated thereu nder.
2. Pay the State of Tenne ssee a monet ary amoun t of TWO THOUSAND NINETY-ONE DOLLARS AND NINETY,..SEVEN CENTS ($2,09 1.97) withi n thirty (30) days of the effect ive date of this Order .
3. Prepar e and submi t a plan to the Divisi on, within ninety (9 0) days of receip t of this Order, which detail s TVA's propos ed system s and proced ures to preve nt damage to fish and aquat ic life from TVA's .disch arges. Eithe r party may reque st that the Board review and receiv e comme nts on the plan from the partie s.
4. The facts and conclu sions of law recite d herein are to be used only in admin istrati ve procee dings before the Board betwee n these partie s. Neith er party waives any right s or defen ses regard ing the facts and conclu sions of law stated herei n by enteri ng into this Agreed Order.

Furthe rmore r TVA is advise d that the forego ing Order is not in any way to be constr ued as a waive r expres r s or implie d r of any provis ion of the law or regula tions r i'nclu dinq, but not limite d tOr future enforc ement for violat ions of the Act .and Regul ations

  • which are not charge d as violat ions of this Order.

Howev er, compl iance with the Order will be one factor consid ered in any decisi on wheth er to take enforc ement action again st TVA in the future .

REASONS FOR DECISI ON It appea rs to* the Board that the partie s signa tory hereto have propo sed this Order in good faith and in the intere st of settli ng these procee dings in accord and in the inter est of avoidi ng the time and expen se of prolon ged litiga tion. The Board has review ed the Order and finds nothin g in it which is contra ry to the public intere st and the purpo ses and inten t of the Water Quali ty Contro l Act.

The Board wishes to encou rage such agreed resolu tions when they do not endan ger publi c health r safetY r and welfa re, consi stent with the provis ions of the Unifor m Adnd. nist.r.o ,tive Proced ures Act which encou rage inform al settle ments as a means to resolv e a contes ted case.

The propos ed final order is prope r and. lawfu l.

There being no good and satis'f actory reason for the Board to set aside the volun tary agreem ent of the partie s r i t will be approv ed as they have execu ted it.

REVIEW OF THE FINAL ORDER Any person aggrie ved by the entry of this Order is entitl ed to file a petiti on for recon sidera tion before the Board within ten (10) days after the date of entry of .this Order. If no action is taken upon the petiti on within twenty (20) days of its receip t by the Board , the petiti on shall be deemed to have been denied . See T.C.A . Sectio n 4-5-31 7. Furth er, any party may petiti on the Board to stay the effect ivene ss of this Order within seven (7) days of its entry. See T.C.A . Sectio n 4-5-31 6.

Any person aggrie ved by the entry of this Order is entitl ed to petiti on the Chanc ery Court of Davids on County for review within sixty (60) days 0+ the entry of this Order . See T.C.A .

Sectio n 69 111 and 'Secti on 4-5-3 22.

A, petit ion for recon sidera tion of the Order does not act to extend this sixty (60) day period which begins to run on the effec tive date of the Order dispos ing of the petiti on.

This the 17 day of Chairm an The Tenne ssee Water Qualit y Contro l Board

APPROVED FOR ENTRY:

FOR THE COMMISSIONER OF THE TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT

~~ b.fo x' - ~j~~~~

James E. Fox, Deputy Gener al Couns el Attorn ey for Respo ndent, Tenne ssee Valley Aut~ority Filed in the Admi nistra tive Proced ures Divisi on, Office of the Secre tary of State, on this

/~aYOf¥-~

1990.

~c.~~

Charle s C. Sulliv an, II, Direc tor Admi nistra tive Proced ures Divisi on E3149 320 I D6/0GC

PROCEDURE

,S eglibyiliNtidlear1?

," . lant

'Operating Procedure for Intake:Forebay:FishRefuge

,J>urpose: This :procedure .identifies, (1) how low dissolved oxygen (DO) concentrations within:the Sequo.yah NuClear :Plant (SQN) Intake -p orebay willbe-predicted;'(2) howSQN -will create 'aDO enhanced :fish refuge within the lntake :F orebayio :prevent. a -possible DO induced :fish 'kill; and

  • (3) establishes protocol interfaces with appropriate State agencies.

}'rocedure:  ;

i*

i N orris Engineering Laboratory will monitor Chickamauga Reservoir :for DO concentrations. Methodology employed will include continuous:measurement ~

of DO irom:stations in the 'Watts Bar Bydro (WBH ) tailrace. Additional DO measurements will be taken routinely :from .stations located at Tennessee River I*

Miles (TRM)-472:3 and 490.:5. The SQN intake is located between these stations I at TRM 484.7. 'NorrisEngineeringLaboratorywill use the:BoxExchange Transport Temperature Ecology Reservoir (BETTER) model to simulate "Chickamauga Reservoir and predict DO concentrations ahheS QN intake wall. Results will be displayed on the TVAEnvironment and River Resou skimmer rce Aide I (TERRA) soihatpredictions are availableio Reservoir System Operations, Environmental Compliance, :and SQNEnvironmentalSection. DOpredicti ons I

~froin the model will be updated daily (Monday through :Friday). 'The:p redictions red f

will cover:a :period of-three days .and will use ,the 'most recent data -for -measu no, forecast meteoro logy, .and forecast :riverflows.

'Engineering '.Services Central Region :and SQN Environmental Section will

'be ted DO at alerted by Norris Engineering Laboratory if the measured or'thepredic the SQN intake skimmer dropsto-4.0mg/L or lower.

ent Norris Engineering 'Laboratory will alert ,SQN Environmental Section to implem

., ...... uIJuuF. if:

'. The measured or predicted DO at any station drops to 'below '2.:5mgIL (i,e.,-WBHtailrace, TRM-472.3, or TRM 490.:5).

/

.* Thepredicted.DO attheS QN skimmer drops to 3.0 mgIL.

l-,

that

.To implement dailys amplin g,SQN Environmental Section will ensure ofthe DOme asurem entsar etaken .at depths 0.3, I,J"an d5me ters onthe"inside

.skimmer wall, .and on*the outside of the skimmer wall at approximatel y 14 meters nmental

'below the top of-the wall* (center* ofthe submerged openi ng).S QN Enviro yfor

Section will ensure'that:there.are visual inspections of the intake foreba visual in~pect ions :may
stressed fish at the'water .surface ..Alternately, :sampling and dictates .
be perfor med by Engineering .services ,-Cent nil Regio n as the situation The organization collecting .samples and.visuals will report results io 'Water

'Management Environmental Compliance in 'Chattanooga and to the 'Norris Engineering Laboratory.

.advise The SQNEnvironmental ancrWasteControl manager or designeewi11 g oftheD O SQNO peratio ns during each momi ng's shift turnov er meetin levels and predicted trends in:the SQN.intakeforebay when dailyD O sampling is initiated.

'at Aeration system openibilitywillbe ensured' daily. Aeration effectiveness several forebay'locations will be detennined byweeldysampJing at 0:3, 1,:3 ,and 5..;meter d~pths. '

conditions

,Aeration systemilow'vvilrbe initiated whenever any ofthe following are met*

If the measured DO at the center of the intake skinuner wall opening and (14-meter depth) onthe outside ofthe skimnierwalLfalls betwe en2.0 2.:5 mgIL Jor .2 .consecutive daily samples. ,

.. Ifthe.m easure d'DO of anyon e daily sample fallsbe tween 2. 0 and 2~5

~glL

, .and TERRAreflects:aprediction of constant or worsening conditions.

I

'. 'When evedh e measured DO of any daily sample drops -to 2. 0 :mgIL or

.lower. I on the i

'When everth eineas uredD O at the center of the skimmer wall opening I*

daily samples outside of the wall increases to above 2:5 mgIL for .2 consecutive ng will and conditions are predicted to -remain stable or improve, aeration sampli

/

Attachment 1

-Organizational Contacts Water ManagemenrEnvironrnental- Compliance WaneyBuilding --'Chattanooga)

~ei1 Woomer . 7.5J..:.7307

-Wl!-yne Wilson 751-8961 DonDycus 75),-7322

.Jack Milligan 751-7360 Engineering Services-CentniJRegion (power Service Center-- Chickamauga Dam)

.RobertBond 697-4108

]erryLiner 697-4100 Garry' Grant 697-4380

-Secretary . 697-4263 Engineering 'Services -Norris Engineering -Laboratory Ming'Shiao 632-1886

-Walter Harper 632-1882 Switchboard 632-1900 Corporate Environmental Protection (Nuclear)

Diedre ::Nida 7.51-8123

'Sequoyah Environmental Section Debby.Bodine 843-6700, Pager Number 10496 lamar Strickland 843-7748, -Pager Number 10861

. Stephanie Howard 843-6713, Pager Number 60438 Jerry Osborne 843-7630, Pager Number 90091

Shlft*Operations 'Supervisor 843-6211 Jim Baumstark 843-6501