ML17334A523: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(5 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:INDIANA&MICHIGANEXZCTRICCCMPMYCONALDC.QXKNKXZRRPLANTKETHETSZBGCAGSUPPORTCENTERMDTHEKF.ATTAGBKÃT K)AEP:NRC:0533ARevised:September 15,1982andincorporated asAttachment 2toAEP:NRC:0531E'hangesareindicated byabarintheright-hand margin.'Ihisdccunntcontainsiafornation pxcpxietazy toWestinctmuse Elect~Co~zation andAn~canElec"~PowerSezv'ceCozpozaticn; itissuhnitted inconfidence ardistoheusedsole+forNwpurposeforwhichitIsfuz2LLshed
{{#Wiki_filter:INDIANA & MICHIGAN EXZCTRIC CCMPMY CONALD C. QXK NKXZRR PLANT KE THE TSZBGCAG SUPPORT CENTER MD THE        KF.
~dccQm'.?It andsuchinfozIGaticn Lsnottohezepzoduced, tzananitted, disclosed orusedat2~vtseinwholeorinpar"8404030229 820929PDRADOCK050003l5FPDR gESTtr<grOUSE PROPRIETARY CLASS2'his.documentcontainsmaterialthatisproprietary totheMestinghouse Electric'orporation.
ATTAGBK&#xc3;T K) AEP:NRC: 0533A Revised: September 15, 1982 and incorporated as Attachment 2 to AEP: NRC: 0531E are indicated by      bar in the
Theproprietary information hasbeenmarkedbymeansofbrackets.
                                      'hanges a
Thebasisformarkingthematerialproprietary isidentified bymarginalnotesreferring tbthestandards inSection8oftheaffidavit ofR.A.Miesemann ofrecord"IntheMatterofAcceptance CriteriaforEmergency CoreCoolingSystemsforLightMaterCooledNuclearPowerReactors(OocketNo.RH-50-1)"
right-hand margin.
attranscript pages3706through3710(February 24,1972).Ouetotheproprietary natureofthematerialcontained inthisreport:which.wasobtainedatconsiderabIe Mestinghouse expenseandtherelease-ofwhichwouldseriously affectourcompetitive
'Ihis dccun nt contains iafornation pxcpxietazy to Westinctmuse Elect~
: position, werequestthisinformation tobewithheldfrompublicdisclosure inaccordance withtheRulesofPractice, 10CFR2.790,andthattheinformation pre-sentedthereinbesafeguarded inaccordance with10CFR2.903.Mebelievethat-withholding thisinformation willnotadversely affectthepublic.interest.
Co~zation and An~can Elec"~ Power Sezv'ce Cozpozaticn;                   it  is which      Is fuz2LLshed    ~
Thisinformation isforyourinternal-use onlyandshouldnotbereleasedtopersonsororganizations outsidetheOirec.orate ofRegula-tionandtheACRSwithoutpriorapprovalofWestinghouse ElectricCorporation.
suhnitted in confidence ard is to he used sole+ for Nw purpose for it                          dccQm'.?It and such infozIGaticn Ls not to he zepzoduced, tzananitted, disclosed or used at2~vtse in whole or in par" 8404030229 820929 F
Shoulditbecomenecessary toreleasethisinformation to.suchpersonsaspartofthereviewprocedure, pleasecontactMesting-houseElectricCorporation andtheywillmakethenecessary arrangements requiredtoprotecttheirproprietary interests.
PDR ADOCK    050003l5 PDR
4RRlA Section1.1.11.1.21.1.31.1.41.2TitleZntzxduction SystemFul~ions'Zechnical SupportCenterSafetyParm~xsDisplaySystemNuclearDataLinkBypass6Znoperable StatusZr~tion.SystemEb~rtBasis~cCAEP-1AEP-1AEP1AEP-2AEP-2AEP-32.2.12.22.32.3.12.3;22.3.3~DataAcquisition aDisplaySystemCat@uterSystemSystemEhtaDisplaySystemCnsiteTechnical SupportCenterContxolHocmBtarger~Cpezating Facilities 3.3e13.23.3CnsiteTechnical supportCenterDesianBasisZnputDetexminatian OTSCCcexatorZntexaceAEP-9AEP-9AEP-10AEP-1144.14.24.3SafetyPazaratexs DisplaySystemPurposeZnputDetemunation Man-<~hixm ZntexfaceAEP-30AEP-30AEP-30AEP-335.5715.25.3Bypass&Jr~ableStatusZndication SystemPurposeManW~>eZntexfaceAEP-47AEP-47AEP47AEP-476.
SectionTitle7.7.17.1.17.1.2TSC~SupplySystems~totheTSCCatguter~UPSSystemCons~RaofPm'upplyAEP-56AEP-56AEP-56AEP-567.2PamrtotheTSCComplexAEP-578.8.18.1.18.1.28.1.38.1.48.1.58.28.2.18.2.28.2.38.3TaskFunctions Perfoznad byEnLLviduals intheTSC.Technical SupportYanageaant
~ztEmergency Functions Pexfozmed intheTSC/ECPforeachErargency Class.ChusualEventAlertSiteandGenialBmzgehcyFunctions ofIndividuals Reporting totheECF.AEP-58AEP-58AEP-58AEP-58AEP58AEP-59AEP-59AEP59AEP-59AEP-60AEP-61AEP-629.9.19.29.3TSCRecordandDataAvailabil'ty AEP-63Controlled PlantSpecificBeferer~i<wterial AEP-63Chca~lled Enfozma~andTec.'nical AEP-64Referer~Ywtexial.
OtherMta,Records,arZZnfonraticn
~5 1.ZBZEGDKZICH 11SYST124FCKTECNS:
TheD.C.CookPlantTechnical
~xtCenterDataSystemisbeingdeveloped anddesignedusingtheguidelines ofNUB'696topzovidetheplantcpexating andtechnical
~xtpezsannel withtMpm~ntplantinformation tofacilitate theend~nayresponsetoanaccident.
'IbisSystem,whichutilizesthe-Westinc~se P2500TSCCan@uterSystans,canalsobeusedduxingnozmalplantagezaticn foratherfhrctians suchas-plantpezfonmxa
: analysis, pezsonnel Dmin~etc.systemcansistsaf~similarcaagutezized dataacquisition, pzccessing anddisplaysystems,ereforeachD.C.CookUnit.The=fournavarfunctions pzavidedbythisccmputersystemare:1.1.1TZGKXCALSGPPORCCENTER(TSC):Theccngutersystemwillreceive,stoze,prccessanddisplayoncolor~tmanix~and/orcnhard-copy teaninals therealtimedataacquixedfxcmvaxiousplantsyst~.Pre-tripandpost-~dataarealsocollected ardcanbepzocessed anddisplayed bythecancuter.
Thissystemwillfacilitate theassessnant afttmplant'scondition byp1antoperating ardtechnical smpoxtcexsonrml.
ThedatadisplaysafthTe&nical~xtCmzterfur~ionwillpzenridesuficientinfozmation todeterrnirw:


'~-Plantsteadystatecgamting-canditians.
gESTtr<grOUSE PROPRIETARY CLASS 2
priortaNmunittrip-Transient conditions pxcducing Nminitiating eventandsystem1x8zavior duz~the~eaftheaccident.
'his. document contains  material that is proprietary to the Mestinghouse Electric'orporation. The proprietary information has been marked by means of brackets. The basis for marking the material proprietary is identified by marginal notes referring tb the standards in Section 8 of the affidavit of R. A. Miesemann of record "In the Matter of Acceptance Criteria for Emergency Core Cooling Systems for Light Mater Cooled Nuclear Power Reactors (Oocket No. RH-50-1)" at transcript pages 3706 through 3710 (February 24, 1972).
-Pxesentconditions aftheplant.TheTSCdatadzsp1aysystanmayheusedfor.-Reviewing theaccidentsecnzence..
Oue  to the proprietary nature of the material contained in this report:
-Detezznizuz@
which. was obtained at considerabIe Mestinghouse expense and the release-of which would seriously affect our competitive position, we request this information to be withheld from public disclosure in accordance with the Rules of Practice, 10 CFR 2.790, and that the information pr e-sented therein be safeguarded in accordance with 10 CFR 2.903. Me believe that- withholding this information will not adversely affect the public. interest.
apprcpxiate mitigating actions.-Evaluating thee'xtmztafanydamage.-Detezznizzizg plantstatusduringrecoverycgexaticm.
This information is for your internal-use only and should not be released to persons or organizations outside the Oirec.orate of Regula-tion and the ACRS without prior approval of Westinghouse Electric Corporation. Should    it become necessary to release this information to .
functionwillhedesc~RindetailsinSection3.011.2~M~FETYSTATICDISPLAY(PSSD):ThisPSSDsystenwasdesignedinaccordance withtheguidelines fortheSafetyPaxamteDisp1aySystem(SOS)ofNGREG0696.ThisPSSDsystem,~displaysthesafetystatusafNmplantinafaxmatthat.canheeasilyxeax~edhy+~contxolroamoperators, willhelptheoperators todetectanyahnoznnal ccnditian ina~lytnanmr.Pdditiar~l featuresafthisPSSDsystemwillhe1ptheoperators andtechnical supportpersonnel tochtaiz>detailedinformation an&~safetysystemsafNmplant.Detaileddescriptions afthissystanareplaidedinSecticn4.113NXZZARDATALINK(NDL)TheTSCcartcuter systemhasahuilt-inaff-sitedatatxazmnissian capahili.ty whichcanheusedforizztexfacing withafutureNuclearDataLink(NDL)Sub-Systm.l1AZP2 1.1.4am'rmeZWBrZSTATtaINDICATESwam(BISI):TheBISXsystemprovidestheoperators andtechnical supportpersonnel withaclearindicatian af.theavailability oCNuplantsafetysystems(ESFSystems).
such persons as part of the review procedure, please contact Mesting-house Electric Corporation and they will make the necessary arrangements required to protect their proprietary interests.
Detaileddescrq~ns ofthissystemazeprovidedinSection5.1.2REPCBTBASIS:Thisreportis~ontheproprietary Westingbmxse KRPHegort9725"Westinghouse Technical SupportCamlex,"whichwassubmitted totheHRC.'-Appropriate mxiifiaatians wexettedetoreflectthespecificdesignofD.C.CcakM.ts1aeR2.
4RRl A
2.THEDOZEACQUISITZCH
&DISPELSYSTEM2.1GSECOMP~SYSTEM:F~2.1showsthecangutersystemhaxdwaxeforeachCcokUnit.Multiple16-bithighspeedminicomputer andttenaxydevicesareusedtoprocessplantdata,generatedisplaysandpexfoxmotherman~chine interface functions.
Thesystemisconfigured inafault~tolerantchsign.Zfacantxalprocessing unit(CPU)ora~rtionofaamxyfails,thesystemwillautomatically reconf'uxe itselftoperformitschsignated functions.
2.2ZNPOZSYSTEMFigure2.2showsNnschematic diagramfortheTSCcomputerSystem.Inputsignalsfrcmthecontxolxccmardotherplantlocations aretakentothexemoteInput/Output (I/O)cabinets.
Signalisolation isprovidedintheI/OcabinetssothatnofailureontheoutputsideoftheI/Ocabinetswillaffecttheinputsignals.InadditiontoJ~seisolators, allsignalsconungfromthesafetysystaraaretakenaftertheexistingamlifiedisolators onthesesyst~.'Iheinputsignals,aftergoing+~ghtheisolators, willbeconvertstobina~information onthei~cardsandthenaxerultiplexed tothecomputer.
EachanalogsignalchannelhasitscwnAnalog/Digital Conver~,thusproviding ahighdegreeofreliability fortheinputsystem.
C,PpssCIJ4ApSL&4se*(,'ss.4as,tA1-.Ssr2.3DATADZSPIAYSYSTEMIssI2.3.1Technical rtCenterRxxnEachD.C.CbokUnithasadedicated corrrrrand consolelocatedin'theOnsiteTechnical SupportCenter.EachcormendconsoleisecguppedwithtwocolorCRCdisplaysandavideohardcopier(whichcanbeusedtoobtainahardcopyoftt~screenimage).OneCRTisdedicated tothePSSDfunctionandthesecondCRPisageneralpurposedisplay.Threesatellite
: stations, eachwithacolorCRPdisplay,arealsoprovided.
'Ihesatellite stationscanbeconnected toeitherCcokUnit1orUnit2TSCCcaguterSystem.Asharedvideohardccpierisprovidedforthethreesatellite Cps.Thesatellite stationsarearrangedsothatvisualaccessfromtheccrmrandstationcanbehmaintained whilestillproviding sufficient xccmtominimizenoiseanddistrutanoe.
ForprintinglengttFreports,alineprinterisprovided.
2.3.2ControlRnn.Tworedundant PSSDdisplayCRTsandtworedundant BISZCpsareprovidedinea&controlroom.AvideohardcopierisalsoprovidedtocbtainhadccpyoutputfrcmtheCRTscreenimage.hss2.3.3EEOoeratinFacilities (EOP):AcolorCRTterminal, whichcanbeconnected toeitherCcokunitTSCccmputer, isprovidedintheEmergency QgemtirgFacilities.
'QmremoteCRTcanbeusedtodisplayallofthedisplaysavailable onAEP-5


~~''thePSSD,TSCandBZSZfunctions exceptforthetopleveliconicdisplayafthePSSDfunctian.
Section                      Title                    ~cC Zntzxduction                                  AEP-1 System  Ful~ions                          AEP-1 1.1.1        'Zechnical Support Center                AEP 1 1.1.2        Safety Parm~xs Display System            AEP-2 1.1.3        Nuclear Data Link                        AEP-2 1.1.4        Bypass 6 Znoperable Status                AEP-3 Zr~tion. System 1.2          Eb~rt  Basis
Thisiconicdisplaywasdesignedforearlyxeaxpu.tion afaneventbytiecontxolnxxncpamtorsandtherefoxe isnotincludedinN~EOF.  
: 2.     ~   Data Acquisition a Display System 2.1            Cat@uter System 2.2                  System 2.3            Ehta Display System 2.3.1                Cnsite Technical Support Center 2.3;2              Contxol Hocm 2.3.3                Btarger~ Cpezating Facilities
~pr@ele'<<e~qt
: 3.      Cnsite Technical support Center                AEP-9 3e1            Desian Basis                            AEP-9 3.2            Znput Detexminatian                      AEP-10 3.3            OTSC Ccexator Zntex ace                  AEP-11 4        Safety Pazaratexs Display System              AEP-30 4.1            Purpose                                  AEP-30 4.2            Znput Detemunation                      AEP-30 4.3          Man-<~hixm Zntexface                      AEP-33
~Ie~gaggef>>e~yCtASIIS5SIOI5Ilet!.I.I,IIISLSIIIII@~AOeeeeoees I00eA'IOIIAef~Ae<<OSAeccotteltS~eeetlACA<<III~FjIZOPCH(sharedbyl+lIIt~IIII~OSOSI4AACCIIIIII~III~etSAtAIIQOOOlltLA~CtllIOettlAr<<e<<Ol04elc<<(CSEr'v0OfPlAectleI5IOOISCIIOttA<<SIOO~ye000r0letcArCI<<IASSAtAASIOOIIIIIII~IIItII3S2$200HDL',5III5lIIIII5COIISOOLLA5IIr'IIeAIIIIIItIIIII'0&%<<h&W<<CCrSISIStfSOIAOCAIIIII~e'SOAAOteOIaftete~eeeeAOOSAfaosaAAeeeeOAAOCefJr40~IeeQAAO'IIOI0Ccthl1teSOswlArwlArCIA~CCR~oveArCIAOCOII0Ih<<heO4Ah%AIOIIOI~IAIIO'%>>4telA~I<<II<<el~~e0lh<<e~fe<<ehe0~IheOhe0\SetttI555CIIIIIL'OL Iltfretfl ICIIIII0~tIlI~IfIIIIIIIIIItFigurc2.1.Tt.'chnical SUpportComplexSYstcmConfiguration
: 5.      Bypass & Jr~able    Status Zndication System AEP-47 571          Purpose                                  AEP-47 5.2                                                    AEP 47 5.3          ManW~>e Zntexface                        AEP-47 6.


<<SensorSignalsnon-'safety Saetysyst.syst.,sianalssianalsisolators<<I<<.~~ControlBoardIndication IIIIGISXDisplaysIPSSDDisplaysICONTROLROO14rL'PSSDDisplaysPlantProcessComputerIsolatorX/0CaninerainAIIIlILtors~-</OCa@inc.lTrainBIIIIIteIIBISIDisplaysIrIITscDisplaysITECsiSUPPOFTCENTERTSCCO><PUTTER SYSE.'lsite8oundaryE'igue2.2:TSCComputerSystemSchematic.
Section                        Title 7.
TSCBXSIPSSD(non-iconic)NUCLEARDATALIDKAEP-8 3ONSITETE'CHNICAL SUPPORTCENTER3.1DESIGNBASIS:Tt~QnsiteTechnical SupportCenter(OTSC)savesasthefocalpointforpost-accident recoverymanageaant.
7.1 TSC ~~     Supply Systems to the  TSC  Catguter AEP-56 AEP-56 7.1.1              ~   UPS  System                          AEP-56 7.1.2              Cons~Ra of Pm'upply                      AEP-56 7.2           Pamr to the    TSC Complex                    AEP-57
Assuch,itmusthavethechili~toaccess,displayandtransmitpertinent plantstatusinformation independent ofactionsinthecontxolzccm.Technica1 SupportCenterSu~ionoftheTSCCanpxterSystanwasj1.PexmnnelintheOTSCmathaveaccesstotherealtimeinformation definix~thejumentstatusofcritica1plantsystansandfunctions.
: 8.                                                            AEP-58 8.1            Task Functions Perfoznad by EnLLviduals        AEP-58 in the  TSC.
2.TfuTSCfur~immthavethecapability tostorehistorical
8.1.1                                                        AEP-58 8.1.2                                                        AEP-58 8.1.3                                                        AEP 58 8.1.4                Technical Support                        AEP-59 8.1.5 8.2 Yanageaant  ~zt                          AEP-59 Emergency Functions Pexfozmed    in the        AEP 59 TSC/ECP  for each Erargency Class.
~ventandpost-event datainordertoenab1eadiagncsis andevaluation aftheventtodeteanine t!mextentafanypossibleplantsystemdana<a.3.TheTSCQzmticnnusthavethecapability toacornsanddisplayplantgararetezs irdependent ofactionsinthcontxolroom.4.Theinterface oftbeTSCsystemequipment withexisiting plantprotection system,controlroanor~~func~5.Pazanatars tot?mextentpossibleshouldbefran<wsana~ethatisusedforcontrolrocmirZications toensuredatacons~cy~6.TlmTSCsystannusthavethecapability ofinterfacing withcamrnnication equizztant fortheoffmitetzansaussicn ofpertinent.
8.2.1                Chusual Event                            AEP-59 8.2.2              Alert                                    AEP-60 8.2.3              Site  and  Genial Bmzgehcy                AEP-61 8.3            Functions of Individuals Reporting            AEP-62 to the ECF.
plantdata.
: 9.      TSC  Record and Data Availabil'ty                    AEP-63 9.1            Controlled Plant Specific Beferer~ i<wterial AEP-63 9.2            Chca~lled Enfozma~ and Tec.'nical              AEP-64 Referer~ Ywtexial.
9.3            Other Mta, Records, arZ Znfonraticn            ~5
: 1. ZBZEGDKZICH 1 1 SYST124 FCKTECNS:
The D.C. Cook    Plant Technical    ~xt Center        Data System  is being developed and designed          using the guidelines of NUB'696 to pzovide the plant cpexating and          technical ~xt        pezsannel  with tM pm~nt        plant information to facilitate the end~nay response to an accident. 'Ibis System, which utilizes the - Westinc~se P2500 TSC Can@uter    Systans, can also be used duxing nozmal plant agezaticn            for ather fhrctians such      as- plant pezfonmxa analysis, pezsonnel Dmin~
etc.
system    cansists    af  ~    similar caagutezized      data acquisition, pzccessing        and  display systems,  ere  for  each D.C. Cook Unit. The=  four navar functions pzavided by this ccmputer system are:
1.1.1  TZGKXCAL SGPPORC CENTER (TSC):
The ccnguter      system  will receive,   stoze, prccess and display on color    ~ tmanix~         and/or cn hard-copy teaninals the real time data acquixed fxcm vaxious plant          syst~. Pre-trip      and post-~
data are also collected ard can be pzocessed          and displayed by    the cancuter. This system      will facilitate  the assessnant  af ttm plant's condition by p1ant operating ard technical              smpoxt cexsonrml.
The data    displays af      th Te&nical    ~xt      Cmzter  fur~ion will pzenride suf  icient infozmation to deterrnirw:


'.'Iheusersmastbeabletocr~teormodifydisplaystonaet;tomneedsasconditions maydictate.Inordertodefinetheinformation whichnust:heavailable intheOTSC,agenericstudyafcriticalplantsystemsandkeysafety8uwtions(asListedinTable3.1)wasconducted byWestinghouse.
    ~
Thisstudyresultedina.Listafpazanaters tobemonitored bythecarputerfortheTechnical SupportCenterSuction.ThisWest~ouse paraaater listwasreviewedandmade~PlantspecificbyAEP.Table3.2Liststhepmnaipalparanatms andTable3.3liststhebasisforinputselection.
Plant steady state cgamting- canditians.         prior ta Nm unit trip Transient conditions pxcducing Nm            initiating event and system 1x8zavior  duz~ the      ~e af the accident.
Bedtm3ancy anddiversity afprocessir~tionsareutilizedtosatisfyconcernsassociated withunavailable signalsduetosensorfailure.Sana.refixmaent afthinputparanaters ListmayhemadeafterthesuhnittaL of'hisconceptual designreportAEP-10 MESHN6HOUSK NOPRHYARY CIJ5523.3OTSCOPERATORINTERFACE TheabilityoftheOTSCtobeaneffective Mo]fnpost-accfdent recoverymanagement isafunctionoftheinputsprovidedandtheabf1ftytopresentinformation inameaningful andorganized manner.Asstatedpreviously, theman-machine interface fsthroughtheuseoffnteractfv'e
            - Pxesent    conditions af the plant.
~aphiccolorCRTdisplays.
The TSC data dzsp1ay systan may he used          for.
Theinterface AnctionsfntheOTSCconsistofdisplaysandconsolefunctions.
            - Reviewing    the accident secnzence..
.Thedisplaytypesavailable forOTSCpersonnel useconsistofgraphi'candalphanumeric displayswhicharebothpreformatted anduserconstruc-tible.Examplesofthetypesofdfsp1aysavaf1able areshownfnFigures3li32and3-3Figure3.l.fsanexamp]eofapreformatted systemstatusdisplay,g~thering important systemandloopparameters ontoasfnglepageofdisplay.Figure3.2showsmoredetailedinformation onindividual parameters suchasinformation onsensorstatus,current~value,andhighandlowlimits..Figure3.3isanexampleofagraphictrenddisplayshowingatimehistoryofre]atedparameters.
            - Detezznizuz@ apprcpxiate mitigating actions.
Highlight-
            - Evaluating the e'xtmzt af any damage.
-ingtechniques forind~cating parameters vrconditions of)nterestutil-.4zebothcolorandachraaatfc means.Byproviding acombination ofbothpreformatted anduserconstructible displaystheOTSCpersonnel areprovidedwithprearranged quicklyacces-sfblesyseminformation andtheflexibility topermitthetailoring ofinformation prmentation tomeetspecificneedsasconditions.
            - Detezznizzizg plant status during recovery cgexaticm.
dictate.Thespecificcontentofpreformatted displayswillbedetermined bymalyzingposaccidentdatarequirements intermsofeventevaluation, thesafetysitusoftheplant,andlong-term recoveryplanning.
function  will he desc~R in details in Section            3.
Ois-playswillalso.bedesignedtoreflee.plantspecificdesigndetails.8~Oisplayaccessisprovidedbothbydedicated functional consolepush-buttonsandstandardkeyboardentries.Ocdicated keysprovideaccesstothemostfrequently useddisplaysorfunctions.
1 1.2 ~       M~FETY STATIC DISPLAY (PSSD):
Forotherfunctions accesscanbeeitherdirectbyenteringshortcodesorbyutilizing
0        This    PSSD  systen was designed      in accordance    with the guidelines for This in the Safety PSSD  system,   ~
~ninstruction func.iontodetermine theidentification codeforadisplayifitisunknown.~51A27 0
Paxam a faxmat that. can he te    Disp1ay System    (SOS )
1gESTI~IGHOUSE PROPRIETARY CLASS2~Othertypesofinformation isavailable throughtheconsolekeyboard.
easily xeax~ed hy +~ contxol of NGREG displays the safety status af Nm plant 0696.
.Theseconsistoffunctions suchaspointrevie~,logs,post-trip histor-1caldatareview,andoffsitedatatransmission.
roam operators,    will help  the operators to detect any ahnoznnal ccnditian in  a  ~ly tnanmr.       Pdditiar~l features af this        PSSD  system  will he1p    the operators      and  technical support personnel to chtaiz>
Thepaintreviewfunctions enabletheconsoleoperator,to
detailed information an &~ safety systems af Nm plant.                 Detailed descriptions af this systan are plaided in Secticn 4.
'reviewplantsensorinformation.
1 1 3 NXZZAR DATA LINK (NDL)
Thetypesofreviewfunctions available are:Valuesofindividual points.~2.Pointsremovedfromscan.3.Pointsremovedfranlimitchecking.
The TSC cartcuter system has a        huilt-in aff-site data txazmnissian capahili.ty which can he used      for izztexfacing with a future Nuclear Data Link (NDL) Sub-Syst      m.
4Pointsfailedunderqualitycheckingroutines.
l1 AZP 2
$.Pointswhose'can frequencies havebeenchangedfmnthenormalscanfrequencies.
Therearelog<unctions available totheOTSCpersonnel whichcanbedisplayed onCRTswithperiodicupdatesoroutputontoahardcopydevicesuchasalineprinter.Thesefunctions canbepreprograrmed andautomatically initiated orspecified andinitiated hyconsoleoperatorinput.I~Thepost-trip reviewfunctionprovidesthecapability toreviewhistor-yicaldatatoaidinaneventevaluation.
Thisfunctioncontinuously storesinmemoryanupdatedtableofpreassigned sensorvaluesfora,predefined period.Upontheoccurrence ofadisturbance
{e.g.,planttrip)thesystemcontinues tostoredataforadefinedtimeperiod.Afterthisperiod,theentire,datarecordcanbereviewedbytheOTSCpersonnel onCRTsand/oroutputtohardcopydevicesforpermanent recordstoragepurposes.
CAC11'=8AEP-12 Ip-.,iNGHOJSE PROPRIETARY CLASSZ,Theoffsitedatatransmission functionenablesQTSCpersonnel to'trans-
.mitplantdatatooffsite',ocations viaownersuppliedcomnunications systems.TheOTSCoperatorcaninitiatetransmission ofdataeitherona"one-shot" orperiodic"asis.Thetransmitted datacanbearrangedhntofoureditedversionsforthespecificneedsofseparateoffsite:.ccnmunications receivers suchastheNRC.\2-9 iIII"545YZGHGHOUSE PROPRlEFARY CLASS2TABLE3.1,4-CRITICALP'LANTSYSTEMS/FUNCTIONS
.Reactivity Control,VrimarySystemInventory 5555rI5hgc;355.55CoreHeatRemovalCapabilities Availability andCapacityofHeatSinks5~,Containment Integrity
-'PrimarySystemPressureandTemperature Availability andCapacityofAlternate RaterSourcesAvailability andOperability ofCriticalSupportSystems-Radioactivity Control454~I'5h'55*-2-10AEP14
,Table3.2TSCPaxarratmrs ListVariables Min.NoafSignalsbetlegtarp-RCScoldlegtarp-BCSpressuxe-BeactorwaterLevel-KSlxxcnconcentxation
-Pressurizer waterLevel-Steamgenerator LevelWidexangeNanna'ancp
-SteamLinepressure~ntainFient pxesssuxe0-700degF0-700degF0-3000psig0-100%0-5000pcm0-10000-10000-1000O-a4OOpsig-5-+36psig~denotestoracptanklevel2-2oxicacidtanklevel-Auxfeedwarmflac'eedwaterflow~gh~injection f1cw589'-599'lev.599'-614'lev.0-10000-1000o-aoo~0-250KLbs/hr0-5000K1bs/hr0-200cpmAEP-15
;~"4Table3.2TSCParanaters ListVaziablesMin.NoofSignals444'4e-Lowheadinjection flew416~Neutronflux-Contmlrodposition53-Prirrary systemrelief&.4anentcoolingwaterflow2~agormntccolingwatertemp.2-Contaimnent targerature 80-5500gptn0-2500degF0-10000gptn32-200degF0-30%0-100degF0-120%pramPallinorrotClosed-not closed,4-Sec.syst.reliefvalves4-P2Rrelief~pressure1-PZRrelief~3c1m'.1-BCSdegreofsubcooling N/A-Accunulator level-Accunaxlator pressure-AcaxaQator isolation valves4-Auxbuildingsumplevel-BHRsystemflowClosed-not closedClosed-not closed0-100psigO-10OS50-350degF200sub-5super0'-10080-700psigClosed-r~
clcsed0-flccdlevel0-7000apn Table3.2TSCPaxarretars ListVariables Min.NoofSicnmls~heat,ex.outlettemp.~ricacidchaupir@flaw-KSlet-dawnflaw-BCSnake-upflaw~xgvBDtilatich dcntKer-Statusafstandby~-Kighradioactivity liquidtanklevel-Badiaactive gasdecaytkpress4-BeactorCoolantPunpsstatus4-PZRneaterbankstatus<<Wtmrolcxy Minddizection Atm.deltatemp.-Badiation 2Car~antareaxadia~11Containmzt airauriculate QCitVentradiogasChitVentiodine0-400degF0-10pe0-200gpn0-200cdclosed-nat closedEmxgizedornot0-10080-150psig0-1200anps0-200anps0-360deg0-100miles/hr0-50PegF.1-10E4mR/hr10-10E6~~10-10E6axn1O-1OE6~10-10E6cdAEP-17 Table3.2TSCPazaneters ListVariables Min.No.ofSils-Radiation (continued)
Steamgen.blowdownCondenser airejectorCoolingwaterEastCcolingwaterWestServicewaterEastServicewaterWestWasteZiquidoff-gasWastegasdecayControlrccmareaSpentfuelareaClarLzgpproomarea10-10E6cpn.1-10E4mR/hr.10-10E6cpn10-10E6cpn10-10E6cpn10-10E6cpn10-10E6cpn10-10E6cpn.1-10E4mR/hr.1-10E4mR/hr.1-10E4mR/hrNcrta1:Degreeofsubcooling willheindependently calculated bytheTSCccnauter.
Note2:Weradiation signalslistedabovearesignalsfromthe'Iexistirgradiation detectors.
AEPisintheprocessofirmlementing anewRadiation RonitorSystematCookUnits1and2,andwillprovideaseparateRadiation DataDisplaySystemfortheTSCandEOF.AEP-18 hJrh'A~Ahw~hh~r~A8hhr4~PARAHETER tYES1'INAllOUSE PltOPAlEfAQ'LASS 2TABLE23I'SCINSTRUHENT BASISINITIALEVENTDIAGNOSIS+
uBASIS.(b,c)Containment PressureSteamlinePress.ure
-Determine ifbreakisinsideoroutsideofcontairunent
-Determine ifhiqhenergysecondary l)neruptureoccurred-Honitorcontainment conditions
-Haintainanadequatereactorheatsink-Honitorsecondary sidepressureto:.-verifyoperation ofpressurecontrolsteamdumpsystem-monitorRCScooldownrateNarrowRangeSteamGenerator WaterLevelWideRangeSteamGenerator WaterLevelBoricAcidTankLevelCondensate StorageTankLevelRefueling WaterStorageTankLeveI-Determine ifmalfunction ofsecondary sidesystemhasoccurred-None-None-None-None-Honitorheatsink-Haintainsteamgenerator waterlevel-Determine ifheatsinkisbeingmaintained
-VerifyRCSborationsystemfunctions foradequatereactivity control-Haintainadequatewatersupplyforauxiliary feedwater pumps-Verifyadequatesupplyofemergency corecoolingwater-VerifyECCSandcontainment spraysystemarefunctioning
>Certain.indications onthistableareusedassecondary diagnoses astheoperatorproceedsthroughPost-Incident
: Recovery, 525lhYIF~SIlNMl""'E I'"ONIFJARY'LASS 2h


PARAHETER WideRangeThandTc-None'PfYiTIHGNONE PAOPAIHAN VMS2IAOLE2-3(Continued3 TSCINSTRUHENT OASISINITIALEVENTDIAGNOSIS*
1.1.4 am'       rmeZWBrZ STATta INDICATE Swam (BISI):
IIOASIS(b,c)I-Haintainadequatereactorheatsink-Haintaintheproperrelationship betweenRCSpressureandtemperature
The BISX system provides the operators and    technical support personnel with a clear indicatian af. the  availability oC Nu plant safety systems  (ESF Systems). Detailed descrq~ns of this system aze provided  in Section  5.
-verifyvesselNDTTcriteria-maintainprimaryinventory subcooled
1.2  REPCBT BASIS:
-maintainsafeshutdowncon-dition-maintainRHRconsiderations forcooldown-monitorRCSheatupandcooldownratePressurizer HaterLevel-None-Confirmifplantisinasafeshutdowncondition
This report    is ~       on the proprietary Westingbmxse  KRP Hegort 9725 "Westinghouse Technical Support Camlex," which was submitted to the  HRC.'- Appropriate mxiifiaatians wexe ttede to reflect the specific design  of D.C. Ccak  M.ts  1 aeR  2.
-Determine abilitytocontrolRCSpressure-HonitorRCSinventory
: 2. THE DOZE ACQUISITZCH &    DISPEL  SYSTEM 2.1  GSE  COMP~      SYSTEM:
-Haintainpressurizer waterlevel*Certainindications onthistableareusedassecondary diagnoses astheoperatorproceedsthroughPost-Incident Recovery.
F~        2.1 shows the canguter system haxdwaxe          for  each Ccok Unit. Multiple 16-bit high          speed  minicomputer and ttenaxy devices are used  to process      plant data,      generate  displays    and  pexfoxm  other man~chine      interface functions.       The system  is configured in a fault    ~
5251AQf'Slla<n<IQI<t
tolerant chsign. Zf        a cantxal processing      unit (CPU) or a ~rtion of aamxy    fails,   the  system  will    automatically reconf'uxe      itself to perform  its  chsignated functions.
~~no~nI~4n<<
2.2  ZNPOZ SYSTEM Figure 2.2 shows Nn schematic diagram            for the  TSC  computer System. Input signals frcm the contxol          xccm ard  other plant locations are taken to the xemote Input/Output (I/O) cabinets. Signal isolation             is provided in the I/O cabinets so that no failure on the output side of the I/O cabinets      will affect    the input signals.      In addition to J~se isolators,    all  signals conung from the safety systara are taken after the existing amlified isolators on these              syst~. 'Ihe input signals, after going      +~gh      the  isolators, will be converts to bina~
n~"c<<2 0ICSTIHGIIOUSE IAOPRIDARY CIASS2TABLE2-3(Continued)
information on the      i~     cards and then axe rultiplexed to the computer.
TSCINSTRUMENT OASISPARAMETER SystemWideRangePressure-NoneINITIALEVENTDIAGNOSIS*
Each analog    signal channel has      its cwn Analog/Digital Conver~,       thus providing a high degree      of reliability for the input system.
BASIS(b,c)-Determine ifplantisinasafe,shutdowncondition
-Maintaintheproperrelationship betweenRCSoressureapdtempera-ture-verifyvesselNDTTcriteria-maintainprimaryinventory subcooled (particularly withlossofol'fsitepower)-maintainl?NRconsiderations forcooldownContainment BuildingWaterLevel-')etermine whetherh'ighenergy'linerupture>asoccurredinsideoroutsidecontainment
-Determine NPSllforrecirculation modecooling-Determine whichequipment incon-tainmentissubmerged Condenser AirEjectorRadiation SteamGenerator BlowdownRadiation Contaienent Radiation
-Determine ifsteamgenerator tubeleak.hasoccurred-Determine ifsteamgenerator tubeleakhasoccurred-Determine ifhighenergylinebreakorfuelmishandling accident-Monitorradioactivity releasepathtoenvironment
-Monitorradioactivity releasepathtoenvironment
-Monitorradioactivityreleasepathtoenvironment
-Determine accessibility tocon-tainmentbuilding*Certainindications onthistableareusedassecondary diagnoses astheoperatorproceedsthroughPost-Incldpnt Recnvery.
525lAlVBTlHG!lOUSE
.",".A."."I:.'.r; CrPSSP MSIIHCIIOIISE PIIOPIIIHAW CLASS2TABI.E2-3(Continued)
TSCIHSTRIINENT BASISPARAHETER IHITIALEVENTDIAGHOSIS*
(b,c)-Determine ifsignificant fueldamagehasoccurredpl&IhJh)Auxiliary Feedwater FlowIlightleadSafetyInjection FlowLowlleadSafetyInjection FlowAreaRadiation Honltoring inAuxiliary BuildingandControlRoom-Hone-Hone-Hone-'etermine ifsourceofaccidentisoutside',
contaIrunentbuilding-Honitorenvironmental conditions aroundequipment incontainment
-Determine ifsufficient flowexiststomaintainheatsink-Determine thatECCSisdeliyer-ingflow-Honitorabilitytokeepcorecovered-Determine thatECCSisdeliver-ingflow-Honitorabilitytokeepcorecovered-Infersprayoperation
-Honitoraccessibility toplantzones/equipment
-Honitorradioactivity releasepathtoenvironment
-Honitoreffectiveness ofcleanupholdupsystems-Honitorintegrity of.long-term coolingsystemI*Certain.indications onthistableareusedassecondary diagnoses astheoperatorproceedsthroughPost-Incident Recovery.
5251AWESTIHOIIOUSE PIIOPAIETARY CLASS2 PARAMETER gf.'ftttQIIOUSE IAOPNITARY CLASSgTABLE2-3(Continued)
TSBIRSTRBMBRT BASISINITIALEVENTDIAG1IOSIS+
BASIS(b,c)[IAI-Honitorhabitability ofthecontrolroom7CoreExitThermocouples NeutronI'lux-None-None-Determine ifcoreisbeingcooled-Monitorabilityofreactivity controlsystemstokeepthecoresubcritical
-Determine ifplantisinasafeshutdowncondition IIDegreeofSuLcooling ofPrimaryCoolantPrimarySystemSafetyandReliefValvePositionPressurizer ReliefTankPressure, Temperature, andLevelContainment Isolatton ValvePosition-None-None-None-None-Haintainadequatereactorheatsink-Haintainsafeshutdowncondi-tionsI-Haintainprimarysysteminventory
-Monitorradioactivity releasepathsintothecontainment
-Monitorcapacitytorelieveprimarycoolantpressure-Monitorradioactivity releasepathsintothecontainment
-Monitorradioactivity releasepathstotheenvironment
-Monitorstatusofcontainment isolation I*Certaintndtcattcns onthistableareusedassecondary diagnoses astheoperatorproceedsthroughPost-Incident Recovery.
5251A5fSIINGIIOIISE Pl'OPIllETNY ClASS2 PARAHETERSecondary Safety,Reliefs,andAtmospheric DumpValves-Hone0WESTINGIIOUSE PROPRIETARY CUSS2TA""E~.3(Continued)
TSCINSTRUHENT BASISINITIALEVENTDIAGNOSIS*
(b,c))-Honitorsecondary systemintegrity BASIS-Honitor.radioactivity releasepathstotheenvironment Accumulator TankLevelAccumulator Isolation ValvePositionRllRSystemFitsRllRIleatExchanger OutletTemperature Component CoolingMaterFlwandTemperature
-None-None-None-None-None-Honitorprimarysysteminventory
-Determine whethertheaccumulator tankshavein5ectedintotheRCS-Determine systemoperation
-Hopitorprimarysysteminventory
-Honitorcoreheatremovalcapabilities
-Honitorcoreheatremovalcapabilities
-Honitorsystemoperation ofacriticalsupportsystem*Certainindications onthistableareusedassecondary diagnoses astheoperatorproceedsthroughPost-Incident Recovery.
551ASESTINGIIOUSE PROMJETAB'LASS 2


PARAHfTER WESIINGIIOIISE PROPRIETARY CQSSgTABLE33(Continued3 TSCIHSTRUHfHT OASISINITIALfVftITDIAGtlOSIS*
J 4Ap S  L&4 se (,
BASIS(b,c)BoricAcidChargingFlowLetdownflowWaterLevelinClosedSpacesAroundSafetyfquipmcnt
                                                              *    's    s.              4 as,   t  A  1-. Ssr C,
)nAuxiliary BuildingEmergency Ventilation DamperPositionltighLevelRadioactive Liquid,TankLevel-tlone-None-ttone-Hone-tlone-Honitorprimarysysteminventory
Pp s
-Determine boronconcentration forreactivity control-HonitorabilitytocontrolRCSpressureorpri~~rysysteminve,,or-HonitorabilitytocontrolRCSpressure-Honitorcoreheatremovalcapability-Determine boronconcentration forreactivity control-Honitorenvironmental conditions aroundrequiredsafetyequipment outsideofcontainment
s CI 2.3  DATA DZSPIAY SYSTEM 2.3.1      Technical          rt Center    Rxxn Each D.C. Cbok    Unit has a dedicated        corrrrrand  console located        in
-Ensureproperventilation tovitalareasunderpost-accident conditions
                  'the Onsite Technical Support Center.              Each cormend console            is ecgupped  with two color      CRC  displays and a video hard copier (which can be used      to obtain a hard      copy      of tt~ screen image).
-Honitorcapacitytocontainandstoreradioactive liquids'Certainindications onthistableRecovery.
One CRT  is  dedicated to the        PSSD    function      and  the second    CRP is  a general purpose display. Three              satellite stations, each with a color      CRP  display, are      also provided. 'Ihe satellite stations can    be connected      to either    Ccok      Unit  1  or Unit    2 TSC I
5251AIareusedassecondary diagnoses astheoperatorproceedsthroughPost-Incident gfg]NIIOIISE P.".".0"IQ'ARYClh.S2~~
Ccaguter System.      A shared    video hard ccpier            is provided for s
I s
the three    satellite Cps.The satellite stations                    are arranged so  that visual        access    from the      ccrmrand      station can        be maintained while      still    providing sufficient          xccm  to minimize noise and distrutanoe.          For printing lengttF reports,                a  line h
printer is provided.
2.3. 2    Control Rnn.
Two redundant      PSSD  display    CRTs    and two redundant          BISZ    Cps are provided    in ea& control        room. A video hard          copier is also provided to cbtain had ccpy output frcm the                  CRT  screen image.
2.3.3      EE          Ooeratin      Facilities    (EOP):
hs A  color  CRT  terminal, which can be connected to either Ccok unit  TSC  ccmputer,    is provided in the              Emergency    Qgemtirg Facilities.   'Qm remote CRT can be used                to display    all of    the displays available on AEP-5 s


PARAMETER Radioactive GaslloldupTankPressure'tatusofAllElectricPowerSuppliesandSystemsEffluentRadioactivity NobleGases,Radiohalogens, andParticulates PlantandEnvironsRadioactivity (Permanent andPortableInstruments)
      ~
SamplingSystemMeteorology (windspeedanddirection temperature proflie,andprecipitation)
    ~
-tlone-None-None-tlone-NoneVlf."TltlGllOUSE PROPAIETAAY CLASS2TABLE2-3(Continued)
the  PSSD, TSC and BZSZ    functions except for the top level iconic display af the    PSSD  functian. This iconic display  was designed for early  xeaxpu.tion af an event by    tie contxol nxxn cpamtors and therefoxe  is not  included in N~  EOF.
TSCINSTRUMENT BASISINITIALEVENTDIAGNOSIS*
BASIS(b,c)-Honitorcapacitytocontainandstareradiaactive gases-Ensureadequateelectricpowertasafetyandsuppartsystems-Honitorradioactivity releasepathstotheenviranment
-Monitorreleaseofradioactive materials notcoveredbyeffluentmonitors-Oetermine RCSchemistry forreactivity controlandextentoffuelcladdamage-Monitorradioactive effluenttransportation foremergency
: planning, doseassessments, andsourceestimates Containment Atmosphere temperature
-Noneandttydrogen Concentration
-Monitorcontainment integrity
-Honitorenvironmental conditians aroundequipment incontainment
*Certainindications onthistableareusedassecondary diagnoses astheoperatorproceedsthroughPost-Incident Recovery.
5251AVIESTlrlcttOUSE PROP;;tETNW CLASS2


iNgiiNGHOUSi PROPRIEMRY CLASS2SystemsStatus-ReactorCoolantSystemLoop1Loop2Loop3Loop4Taverage('F)Overpower DTPoPWR)Overtemp.
                                                              ~ pr@ele'<<e~qt ~ Ie~ gag gef>>e~y Ct AS I                                              !.I.I,                   ~ AOeeeeoees  I 00 e A'I OII Aef ~ Ae<<OS IS5SIOI 5                                    IIISLSII I Ilet                                        II@
DT(%PWR)Coldlegtemp.(narrowrange)('F)Hotlegtemp.(narrowrange))'F)Reactorcoolantflow(%)Reac'.orcoolantpressure-WR(PSlG)Pressurizer pressure(PSlA)Pressurizer vaportemp.(')Pressurizer liquidtemp.('F)Pressurizer relieftankpr.ssure(PSlG)Pressurizer relieftanklevel('h)Pressurizer relieftanktemp.('F)Pressurizer safetyrelieftemp.('F)595.2595,2110.0110.0110.0110.0559.8559.8624.0624.01000'G~02250.02250.02250.0563.8565.21.577.6110.3120.0595.2110,0110.0559.8624.0100.02250.0595.2110.0110.0559.8624.01GO.O2250.0Figure3.1'SystemStatusDisplayatQnsiteTechnical SupportCenter(Example)
Ae  ccottelt
AZP-27 yIggHGHOUSE PROPRIETARY CUSSZParameter SummaryPointQescription Yaiue..RangeUnitsStatusTO400RCSLoop1HotLegT593.40:700.OEGFNormalPO480RCSPressure2234.1OOOOLO421StmGen2NarrowRangeLevel39.10:100PO549Steamline PressureLO103RWSiLevelLO114BoricAcidTankLevel893.00:1100100.00;10098.80:100LO119Condensate StorageTankLevel58.40:100LO947Containment Bldg.'Vater Level3.30:160.TO406RCSLoop1ColdLegT54720:700OEGF.NormalPSlGNormalPCLowPSlGNormalPCNormalPCNormalPCNormalPCHighFigure3.2:Parameter!n'ormation OisplayatOnsiteTechnical SupportCenter(Example)
                                                                        ~ eeet  lA CA<<II S
AEP-28 16108-2WEST)HGHQUSE
I I
?ROPRlETARY CLASS2RCSCOLDLEGTElNP(oF)100700RCSHOTLEGTEMP(4R'100100PRZRLEYEL(~o)402500PRZRPRESSURE(PSlG)190002468101214161820T)ME(SECONDS)
t                                                                                                                            I
Rgure3.3GraphicDisplayatOnsiteTechnical SupportCanter(Example)
                  ~   I                    ~ et                                                    IIO                        I AS I                    SAt AIIQOO                                                ttA<<SIOO                S  At AASIOO        I I                                                                                                                            I I                                                                                                                            I I
AEP-29
                            ~ OSO                                                                                                                I SI4AACC                                                                                                                I ~
/<<'.s'wxA'aa<<~P 4airw<<<<<<.,'/<<./
I I~F                                                                                                                                                I I
<<-.ms<<w~-/t:.'/ga.~<<aasm/~as,a/~
j                                                                                    ~ ye000r I
wt'<<<<4iv~
t I
wm/weaww'<<c4~
I ZOP CH 3S2$ 2 00 HDL',
V/Ella(GHOIJSK PROFRIEfARY CLASS2'.0PLAI'lTSAFETYSTATUSDISPLAY4.SPURPOSEThefunctianofthePlantSafetyStatusDisplay(PSSD)istopresentasuccinctaccountoftheoverallplantsafetystatustothecontrolroomoperator(orsupervisor).
I I
Theentiredatabaseshouldbeavailable totheoperatorarrangedinaformatthatwillenhancehisresponsetoeventsandthediagnoses ofthecauseoftheevent.BecausethePSSDservesasani~aortantinterface betweentheplantprocessandtheoperator, theinformation presentation shouldbedefinedintermsofparameters andlogicsupportive ofdefinedoperating.
(shared by        I I
procedures fordealingwithabnormalevents.4.2INPUTDETERMINATION Inurdartudetermine the".squired cperatinna1 madesfnrthePSSDgenemustfirstconsider'he varioustypesoftransients whichmayoccur.Areviewafpostulated planttransients (events)indicated thattheycanbedividedintotwobasiccategories:
                                                                      <<(CS Er'v0                                                                  5 I
(b,c,e)1.Slawtransienats wnichdanotresultinimnediate protection systemsactuation andforwhichthecontrolroomoperatorhasanopportunity toreacttopossiblyterminate theeventbeforesafetysystemsarerequiredtofunction.
I l            +      I I
Z.Fasttransients whichresultinalmostimmediate reactortripandposs'.bly safeguards acuationandforwhichthecontrolroomoperator's resporsse istoreacttoensurethatappropriate safetymeasureshavebeentakenandtodiagnosetheevent(.BecausecfthefactthatLdi-;-erect parameters andsignalrangesaraassociated withthetwopotential eventtypegsthePSSOincorparatesLtwocperating mades.The',ir'tmade(TERMIRATE MODE)isitivewhi1e:hge (b,c,e)!b,c,e)4-15435AAEP-30 IIIESTll'lGHGUSE PRQPRlEl'nRY CL(SS2At(b,c.e)LpIantis1nanormaloperating cond1tion andthesecondmode(MITIGATE MDOE)isactivefollowing areactortrgp,Theparameters available for'3(b.c-)Leachmodewerechosentomaximizetheusefulamountof1nformat1on tobe(btc.e)displayed totheoperateTheroleforwhichthe:pSSDprovidesLsupport foreachoftheoperating mode/a1sasfoll'ows:
                          ~                                                                                                                      I l                    I OlltLA~             OettlAr                    Of PlAe                0l etc Ar I
t(bce)lcEMIMATEMODE1.Monitortheplantprocessforabnormalities indicative ofslowtransients thatdonotresultinimediatereactortripsandforwhichthecontrolroomoperatormighttakecorrective orprotective action.2.Monitortheintegrity
I              Ctll I              <<e<<O                      ctle I                 CI <<                                   5 5                                                              l l04elc                  IOOISC I              CCr                        CAI                                          Cef                'IIOI0 I              SISI                      IIII                                        Jr40              Ccthl 1 I
-ofthevariousboundaries toradioactive release.MITIf)ATEKOOE1.Monitorthesafetystatu"oftheastrippedcondition.
I            Stf SOIAO            ~ e' SOAAO                ee eeOAAO            ~ I eeQAAO            teSO I
2.Monitorforconditions whichmightleadtoabreachofanyofthelevelsofdefenseagainstradioactive release.3.Monitorthecondition ofthebarrierstoradioactive release.Foranyevent,thesafetystatusoftheplantcanbeevaluated intermsofsixbasicsafetyconcms.Theseconcernscanbestatedasfollows;1.Saturation ofReactorCoolant2.ReactiviyExcursion 3.LossofPrimaryCoolantInventory a.LossofPressureandTemperature Contre/142AEP-31 LB.Radioactive Release(VESTNGHQUSE PRQPRlETARy CLASS2(b,c,e)5.Containment Environmengt Byaddressing Lacysafetyconcerns, theconsequences ofabnormaleventscanbelimitedormitigatgd, (b,c,e)tTheteysafetyconcernscanberelatedtospecificabnormaloccur-rences..Tables4-Iand4-2indicatekeysafetygoalsforsometypicalpostulated eventsintermsofthePSSDoperating mode.Itmustbenotedthattheseeventsaretypicalanditisconceivable formultipleeventstooccurinundefinable sequences.
5  COIISOOL LA 5                                OOSA  f aos      aAA I                                                                                                                                    ~
Forthesereasons,thePSSDmustbedesignedonthebasisofkeysafetyconcernsratherthanspecificscenario/a
t I
/IndefiningtheinputsforthePSSQ,ttuorequirements havetobeme+~tiasfo11ows:.(b,c,e)-(b,c,e)Ll.Theinputsselectedmustrepresent aminimumsatsufficient formonitoring allpossibleeventsincluding thosewhichmightnothavebeenanticipated.
I
(b,c,e)2.Theselection ofinputsmustaddressconditions withpotentially erroneous signals,conflicting indications, andparameters outofrange(I.e.,redundancy anddiversity)g InresponsetotheLfirstrequirement, thefunctionofthePSSOhasbeenconsidered intwoways.Theprimaryfunctionistomonitortheplantprocssintermsofsatisfying thekeysafetyconcerns.
                    'Ir I                                                      swlAr            wlAr                                          oveAr CIA ~          CCR ~                          CIAO          COI I            l e
Asstatedabove,byguaranteeing thattheseconcernsareaddressed, theconditions ofunanticipated eventsoreventsequencscanbesatisfied.
I
ThesecondfunctionofthePSSDistosupportthemonitoring functionoftheplantforpostulated eventsandtoprovideaman-machine interface designthatsupportsa.definedevaluation processandprocedures forresponding toabnormalevents(b,c,e)"43"84-3AEP-32
                                                                                                                                                          ~  I A
'NEST!!1B!
f I                                                                                                                                      I I                                                                                                                      IO' I                                    teOI              0 I h<<heO                            OI ~          IAI                        I I                                    af                4 Ah%A I OII 4tel A          I I                                                                                                                                      I I                                                    ~ I <<II<<el      ~~ e0lh<<e        ~ f e<<ehe0    ~ I heOhe0 I
HOUSEPROPRIETARY CLA$$2fnordertosatisfytheLsecondconsideration ofevaluating erroneous signalsandtheneedforredundancy and"diversity, thePSSOmustperform-operations uponmulti-sensor inputstoevaluateerroneous signalsandbeabletoprovidetheoperatorwithadiversemethodofindicating theplantprocess.TheinputstothePSSOarechosenuponthebasisoftheirdirectrelevance tothekeysafetyconcerns.
t I
Tables4-3and4-4listsomespecificinputsrelatedtokeysafetyconcernsforseveralevents4.3MAN-i%CHINE INTERFACE (a,b,c)(a,c)ThePSSOsystemwill-processthedefinedinputdatasetofplantparam<<,stereatftwosecondinterval/sand generatedisplaysforredundant PSSDdedicated CRTslocatedinthecontrolroom.QAdedicated CRTwillalsobelocatedintheOnsiteTechnical SupportCentaurInordertoachieveaneffective man-machine interface, thedisplaysystemmustbedesignedtoprovidealogicalandhumanengineered dis-playstructure andselection processinamannerwhichsupportsdefinedrolesinwhichtheoperatorisexpectedtoperformduringanabnormaloccurrence.
I                                                                                                                                      I I                                                                                                                                      I I                                    tete                                                                                              I I                                                                                                                                      I eeeeA 55CIIIIIL'OLIltfretflI CIIIII0
(b,c)TheroleofthecontrolroomoperatorinLdatecting andreacting".oanabnormaloccurrence isexpectedtofollowtherourbasicactivitieQs depictedinFigure4-1.Thedisplaysystemstructure shouldbe.definedsuchthatitLsupports anidentifiable goalforeachofthegeneralactivities showninthefigureThe.segoalgsaredefinedasfollows:IActivity:Detection Goal:Thecontrolroomoperatorshouldbeinastateofreadiness tomakearapiddetection ofincipient threatsoractualeventswhichmayaffectplantsafety.Theresponseoftheoperatorwouldbebaseduponhisknowledge ofexpectedplantperformance andhisskillincontrolling theplantprocess!.
                                                            ~
Nay."4Jvsaa's'w4aActivity:
                  '    I                                                                    \Set tt I 5                                                        t 0 &%<<h&W<<
ReactionV'-"SIflGHGUSE PROPS!EERY CLASS2(b,c)Goal:Thecontrolroomoperatormustimmediately reacttothedetection ofanevent.Hisirstobjective istoassurethatappropriate safetysystemresponses havebeentakenandthatkeysafetyconcernsarebeingaddressed byobserving criticalplantparameters.
Figurc 2.1. Tt.'chnical SUpport Complex SYstcm Configuration
Activity:
Diagnosis Goal:Following thecontrolroomoperator's inmediate reactionitisthennecessary todiagnosethecause{s)oftheeventanddetermine ifanydamagetothevariousbarrierstoradioactive releasehasoccurred.
Theoperational modeatthistimewouldbebasedontheoperator's knowledge supported byreference tovariousabnormalandemergency operating procedures.
:0Activity:
Terminate/Mitigate Goal:Atthelaterstagesoftheeventthecontrolroomopera-torwillneedtoimplement therulesorstrategies thathavebeenidentified asaresultofthediagnosis activ-ity.Theoperator's goalistoverifythatcorrective actionsarasatisfying thekeysafetyconcern/a Thedisplaystructure shovtninFigure4-s/supports thespecified controlroomoperatoractivities andgoals.Thedisplaysarestructured intothreelevelsofinformation rangingfromgeneralplantsystensumaryinformation withabroadfieldofat.ention, secondlytoalevelofinformation withanarrowerfieldofattention andmoredefinitive information onsubsystems andfunctions, andfinallytoalevelofinformation containing irdividual sensorvaluesandstatuQs(a,c,f)r,34gAEP-34
'hil'G~JSCPQ,laTAR(CLASSQLeveI1wouldcontaininformation intheformofacontinuous graphicdisplayforeachofthetwooperating modesofthePSSO.Information contained inthedisplaywouldsupportthedetection activityI Amajorproblemassociated withtheman-machine interface isthe/requirement thattheplantoperatorsampleandprocessa'largenumberofplantparameters andperformwhataretermedmulti-parameter decisionprocesses.
AnadvancedconceptingraphicCRTdisplaydesignedtoaidtheoperator,,
isemployedforLevel1information inthePSSTFigure4-3isanillustration ofthedisplay.IEachrayinthefigurerepre-sentsthescaleforaprocessparameter.
Whenthenormaloperating valuesfortheparameters areplottedonthescalesandlinesaredrawnconnecting thepoints,ageometric patternisdeveloped.
Positivedeviations fromthenormalvaluesresultinpointsfurtherawayfromthecente~ofthefigurewhilenegativedeviations resultinpointsclosertothecenterofthefigure.Whentheactualvaluesofparameters aredifferent fromthenormalorreference values,theresultisageometric patterndifferent fromtheoriginalpatter/aFigures4-4and4-5arepreliminary versionsof[Level1displaysforeachofthePSSDoperationaI mode/afortwosampleevents:PrimarytoSecondary CoolantSystemLeakandPrimaryCoolantSystanLeaktoContainment.
Theparameters chosenforthedisplayswerechosento/permitanevaluation oftheteysafetyconcern/a
/ThisadvancedgraphicdispIayprovidestwodistinctadvantaoes overconventional controlrocmindicators:
aconcise,systemsleveloriented, integration ofparameters andsecondly, agraphicdisplayformat.Thedetection ofanabnormalcondition isenhancedastheoperatortaskisnowbaseduponthediscrimination oftwogeometric figures.NuIti-parameter decisions andeventevaluation isfacili-tatedbytheintegrated natureofthedisplayandthefactthatonlydifferences inparameters arehighlighted bythedisplay.Theoperatorupondetecting abnormalities isthenabletosekmorespecificinforma-tionatotherinformation levelstosupportthereaction, diagnosis, andterminate/mitigate activitiegs 5435A4-6AEP-35
)';-ST!,'su,",OUSE PROPrltTAnY CLASS2The'inforaation atfLeve12isanexpansion ofeachofthekeysafetyconcernsandsystems.blaredetailedinformation isprovidedonthestatusoftheprocess.Forexample,the'valuesofpressures andwaterlevelsinindividual steamgenerators couldbeprovidedatthislevel.Inaddition, trenddisplaysfortheprevious5minutesofoperation ofLevel1primarydisplayparameters areprov',ded.
Diversity inprocessindications atthislevelwillbeemployedtoenabletheoperatortoverifyconclusions.
AtLevel3,thedataisdetailedfurthertoprovideinformation onthestatusofindividual sensors,multiplemeasurement points,anddataanomalies.
Thesensorvaluesareannotated toinclude'suchthingsasdata-out-of-range andprocesslimits.Information onsuspectdataqua11tyiscarriedintoupperdisp1ayleve1@(a,c,f)543""A4~7AZP-36


*ee'ej&#xc3;ESTlHQHOUSE P!OPRfET'qY Ct~SSZTASLE4-1(b,c,e)PLANTSAFETYSTATUS..OISPLAY>>
Sensor Signals non-'safety              Sa  ety syst.
SAFETYGOALS-TERMINATE MOOETRANSIENTS ReactorControlSystemsMalfunction eee4e.'*C'~1C--+iAStoprodmotionMaintaincorethermalandnuclearparameters withinlimitsReactorCoolantSystemMakeupControlPreventcorethermalandnuclearparameters fromexceeding limitse'Maintain-pressurizer pressureandlevelInadvertent Oepressurization (Slow)Terminate depressurization RestoresystanpressureReactorCoolantSystemLeakLimitradioactive releaseegMaintainpressurizer pressureandlevel'e0543514-8AEP-37 V/EST1HGHOUSE PRCPRluARY CLASS2TABLE4-2ReactorTripPLANTSAFETYSTATUSOISPLAY-SAFETYGOALS-MITIGATEMOOETRANSIENTS (b,c,e)Maintainheatsinkviasteamgenerators
syst., sianals              sianals iso lato rs
-,.Maintainsubcooling bycontrolling steampressureMaintainpressurizer levelStationBlackoutProvidesecondary heatsinkMaintainsubcooling Maintainpressurizer levelEmergency EorationPreventreturntocriticality Operation withNaturalCirculation ProvideheatsinkControlsubcoo1ingMaintainpressurizer levelSpuriousSafetyInjection Oetermine safetyinjection isnotrequiredandterminate actionLossofReactorCoolantVerifyandestablish shorttermcorecoolingMaintainlongtermshutdownandcooling5435A4-9AEP-38 V<ESTtfsGHOUSE POPHIET:RYCLASS2TABLE4-2.(Continued)
<<I
PLANTSAFETYSTATUSDISPLAY-SAFETY'OALS
              ~Control Board I
-MITIGATEMODETRANSIENTS',
Indication        I Plant        Isolator            tors Process I            Computer I    GISX Displays X/0 Canine - ~</O Ca@inc.l IPSSD I
Lossof'econdary CoolantEstablish stabilized reactorcoolantsystemandsteamgenerator conditions MinimizeenergyreleasePreventliftingof.pressurizer safetyvalvesIsolate,auxiliary feedtoaffectedsteam.generator BoratetomaintainreactorshutdownmarginSteamGenerator TubeRuptureMinimizeradioactive materialreleaseEstablish feedwater tounaffected steamgenerators andisolate.faultedunitMaintainresidualheatremovalcapability
Displays                                  rain  A      Train B  I
-*-Maintain RCS'ubcooling Preventover-flooding offaultysteamgenerator VVC'43GA4-10AEP-39QVC'C IYBOllCHG"SE FROPRtci~7l'LASS 2TABLE4-3PLANTSAFETYSTATUSOISPLAYTERMINATE MOOEPARAMETERS (b,c,e)VariableTransient ReactorControlSystemMalfunction ReactorCoolantReactor'akeupCoolantControlSystemInadvertent SystemMalfunction Oepressurization LeakavgrefRodpositionOeltaTStartuprateCountratePzr.pressur0ChargingflowPzr.levelComp.coolH20radContainment radAirejectrad.Blowdownrad.Cont.humidityCont.temperatures Cont.oressurePrz.discharge pipingtempsPRTpressurePRTlevelPRTtempsRCPsealtempera-tureRCPsealflowRCPseallevelYCTflowXXXXXXXXXXXXXXXXX.XXXXXXXXXjJimp4-11.AEP-40
  <<                CONTROL ROO14                                I I                      I I                      I I
l I                      I L
      ~
t r
                'PSSD L
Displays CO><PUTTER I
IBISI Displays I
TSC r Tsc I      Displays    I SYS E.'l e
I TECsi SUPPOFT CENTER site  8 oundary E'igu e 2.2: TSC Computer System Schematic.
TSC BXSI    PSSD          NUCLEAR (non-           DATA iconic)           LID K AEP-8


Y~wRCHOVSE PRCPRIETAC CLASS7PLANTSAPPYSTATUSOISPLAY"IlTTGATE WOEPARAvETERS VWableTrans1cnt ReactorTripStationBlackoutGnergency Bar'ation Operation with'laturalClrculatlonlossofCeolantAccidentLossafSecondary CoolantSteamGenerator TubeRuature.ReactartripbreakerStartuprateReutranfluxRodpos1tfonTurbinetHpBlackoutsignalTavg(thermacoup 1es)Radbottom3nd.PrimarypressureStcamflexFeedflowPressurfterlevelCarethcrmacoup lesCont.radarat<anAfrQectarrad$at5anSlowdownradiation Cont.pressurePri.M.R.tanp.StcampressureCant.sumplevelCant.temperature-Cant.huahdltyChargingflawS.G.levelB.A.tankleveiAux.fmdflawSa'lawRMSTlevelCSTlevelXXXXI~XXXXXXXXXXXXXXXXXXXXXXXXXXXXX"XXXXXXXXa-lZ.)cSBAAEP-41 16708-1ygggtfGHOUSE PROPRtH'ARY CLOS2(a,c)CONDITIONS NORMAL?DETECTION IMPLEMENT RESPONSEIDENTIFYRESPONSEYESSAPETYLIMITSVIOLATEDREACTIONNODIAGNOSEPROBLEMDIAGNOSIS TAKECORRECTIV'EACTIONTERMINATE
3  ONSITE TE'CHNICAL SUPPORT CENTER 3.1  DESIGN BASIS:
/MITIGATE Figure4-1.OperatorResponseMadelAEP-42 1664310WESTINGHOUSE PROPRIETARY, CLASS2Qrepftie, OlsplayTpC'yXLEVEL1OISPLAYLoop,TSATTAVQTHTCPR.PressSTIjf/FOFlowPSteamRCP'sPressureReliefVlv.SafetyVlv.SprayHeatersPER.TCSReactorCoolantInventory PrzrLevelCte.LeatownW.R.TH.TC.CoreTC'sTSAT.Etc.,LEVEL2OISP'LAYS Sensors,Comparisons ofRedurufant IVleasurernent ErrorCtteeksLEVEL3OISPLAYSjInputsFigure4-2.DisplayStructure ofPlantStatusDisplayAEP-43
Tt~ Qnsite Technical        Support Center      (OTSC) saves  as  the focal point for post-accident recovery            manageaant. As such,  it must have  the  chili~          to access,    display  and  transmit pertinent plant status  information independent        of actions in the contxol        zccm.
Technica1    Support    Center    Su~ion of the        TSC  Canpxter  Systan  was j
: 1. Pexmnnel    in the    OTSC  mat  have access    to the real time information definix~ the        jument status        of critica1 plant systans        and functions.
: 2. Tfu  TSC    fur~i        mmt have the capability to store historical
      ~vent        and  post-event data in order to enab1e a diagncsis and evaluation af    th    event to deteanine      t!m extent af any possible plant system    dana<a.
: 3. The TSC    Qzmticn nust have the capability to acorns and display plant gararetezs        irdependent    of actions in th        contxol room.
: 4. The  interface of tbe        TSC  system  equipment    with exisiting plant protection system, control roan or          ~~ func~
: 5. Pazanatars    to  t?m  extent possible should be fran <w sana          ~e that  is    used    for control    rocm  irZications    to ensure    data cons~cy~
: 6. Tlm TSC    systan    nust have the capability of interfacing with camrnnication equizztant      for the offmite tzansaussicn of pertinent.
plant data.


WESTlHGHOUSE PROPRlETARY CLASS2Pressurizer Pressure(Value)psiPrimaryTavg(Value)FStartupRate(Value)Oec/MinPressurizer Level(Value)4k/////////Containment Humid(Value)o/oTemp(Value)'FChargingFlow(Value)GPMSteamGenLevel(Value)IoRadiation ContmtBlwdnAirEjectFig"~4-3.S~pieDisplay-plantSafetySttusDl~tayAEp-44
'.    'Ihe users    mast be able  to cr~te or modify displays to naet;      tom needs as    conditions  may dictate.
In order to define the information which nust: he available in the OTSC, a generic study af critical plant systems and key safety 8uwtions (as Listed in Table 3.1) was conducted by Westinghouse. This study resulted in a. List af pazanaters to be monitored by the carputer for the  Technical Support Center Suction.        This West~ouse paraaater list was    reviewed and made    ~   Plant specific by  AEP. Table 3.2 Lists the pmnaipal paranatms and Table 3.3         lists the basis  for input selection.
Bedtm3ancy and    diversity af process ir~tions are      utilized to satisfy concerns    associated with unavailable signals due      to sensor failure.
Sana. refixmaent af    th input    paranaters  List may  he made after the suhnittaL    of'his  conceptual design report AEP-10


NESTINGHOUSE PROPRIETARY CLASS2-~k4Pressurizer Pressure(Value)psiPrimaryTavg(Value)'FStartupRate(Value)Dec/MinPressurizer Level(Value)%IIIIIIIContainment Humid(Value)'6'emp(Value)'F ChargingFlow(Value)GPMSteamGenLevel(Value)%Radiation ContmtBtwdnAirEjectFigure44.SamplePlantSafetyStatusDisplay-Terminate Mode-PrimarytoSecondary CoolantSys;emLeak(SGTubelak)AEP-45 WESTINGHOUSE PROPRIETARY CLASS2RCSW.R.Pressure(Value)psiRCSW.R.Temp(Value)oF(Value)'FTsatStartupRate(Value)Dec/Min(a,c,f)4~'\Pressurizer Level(Value)%IIIIIIIrr~r\\\IIIIIIIContainment Pressure(Value)psiR.V.Level(Value)%SteamGenLevel(Value)%Radiation ContmtBiddnAirEjectFigure4-KSamplePlantSafetyStatusDisplay-MitigateMode-PrimaryCoolantSystemLeaktoContainment mx-46
MESHN6HOUSK NOPRHYARY    CIJ55 2 3.3  OTSC OPERATOR  INTERFACE The  ability of the  OTSC to be an effective Mo] fn post-accfdent recovery management is a function of the inputs provided and the abf1fty to present information in a meaningful and organized manner. As stated previously, the man-machine interface fs through the use of fnteractfv'e
'EVESTlNQHOOSE PROPRIETARY CLASS25.0.BYPASSEDANOINOPERA8LE STATUSINDICATION FOR.PLANTSAFETYSYSTEMS5.1PURPOSEThepurposeoftheBypassedandInoperable StatusIndication (BISI)systemistoprovidethecontrolroomoperatorwithacontinuous systemslevelindication ofabypassedorinoperable condition forthesystemscomprising theengineered safetyfeatures.
  ~aphic color CRT displays. The interface Anctions fn the OTSC consist of displays and console functions.
Thesystemconsiders the,actualstatusofindividual components including systemslevelbypassesandcontrolroomoperatorenteredinputsforcomponents removedfromservice.5~2INPUTOETERNINATION Bypassedandinoperable statusindication isprovidedforthesystemscomprising theengineered safetyfeaturesandtheircriticalsupoortsystems.Thesesystemsareidentified inTableS.l.Thistablealsoidentifies thetypesofcomponents forwhichmonitoring isrequired, theapproximate numberofeachtypeofcomponent, andthetypeofstatus.information needed.Thislistisgenericinnatureandwillberevisedtomeetindividual plantspecificdesigns.Ietheevaluation ofsysteminputs,thecomponents ineachsystanare.considered inthelightofbeinginaproperstatetoperformorsupoorttheoperation ofasafetyfunction.
  .The  display types available for OTSC personnel use consist of graphi'c and alphanumeric displays which are both preformatted and user construc-tible. Examples of the types of dfsp1ays avaf1able are shown fn Figures 3  li  3 2 and 3-3 Figure 3.l. fs an examp]e of a preformatted system status display, g~thering important system and loop parameters onto a sfngle page of display. Figure 3.2 shows more detailed information on individual parameters such as information on sensor status, current
Thesystemslevelbypassfunctions thatmustalsobeconsidered arelistedinTable:5.2.Inadditiontoautomatically monitored inputs,thesystemalsoconsiders theeffectofcomponent orsys.emoutofserviceinputsmanuallyenteredbythecontrolroomoperator.5.3MAN-MACHINE INTERFACE Theinterface betweentheoperatorandthissystemisprovidedbyredun-dantCRTdisplaysandkeyboardconsoleslocatedinthecontrolroom.Personnel locatedintheOnsiteTechnical SupportCenterwillalsobeAEP-47
~
~Ve'FSTlhGHOUSE PRO?RlH'hI1Y CLASS2abletoaccessthesameinformation.
value, and high and low limits.. Figure 3 . 3 is an example of a graphic trend display showing a time history of re] ated parameters. Highlight-
The6IGluti1izesastructured displayhierarchy fortheoperator'.'nterface.
-ing techniques for ind~cating parameters vr conditions of )nterest util-.
Thedisplayhierarchy isshowninFigure3.1.Theprimarydisplay,anexampleofwhichisshowninFigure3.2pcon-tainsthefollowing information foreachofthesystemscomprising theengineered safetyfeatures:
4ze both color and achraaatfc means.
LSypassedorinope~able statu"indication foreachaffectedsubsystem oneitherasystemsleveland/ortrainlevelbasis.Z.identification ofwhetherthecondition isduetotheinoperable statusofacomponent orauxiliary supportsuchascoolingwater,powersupply,tc.OtherlevelsofdisplayssuchasshowninFigure.3.3providesupporting information onindividual components withineachsubsystem andsupportsystem.Lnnadditional displayprovidesa".abulation ofallcontrolroomoperatorenteredinputsrorinoperable components forwhichautomatic monitoring cannotbeaccommodated orforwhichmonitoring doesnotcurrently existwheneverthestatusofasystembecomesinoperable orbypassed, theontrolroanoperatorwillbealertedbyanaudiblealarmandtheprimarydisplaywillindicateviavideohighlighting (e.g.,flashing, colorchange,reversevideo,etc.)theaffectedsystenandsubsys.em.
By  providing a combination of both preformatted and user constructible displays the OTSC personnel are provided with prearranged quickly acces-sfble sys em information and the flexibility to permit the tailoring of information prmentation to meet specific needs as conditions. dictate.
Theoperatorcanthenaccesssupporting displaystcdetermine thecauseofthebypassedorinoperable condition.
The specific content of preformatted displays will be determined by malyzing pos accident data requirements in terms of event evaluation, the safety situs of the plant, and long-term recovery planning. Ois-plays will also. be designed to ref lee. plant specific design details.
Theontrolroomoperatormustacknowledge theabnormalcondition inordertosilencetheaudiblealarm.Reinstatement ofnormalsystenfunctionwi11alsogenerateadifferent audiblesignal.Twoadditional capabilities oftheSISIarethetimingandtestfunc-tionssAEP48
8 ~
Oisplay access is provided both by dedicated functional console push-buttons and standard keyboard entries. Ocdicated keys provide access to the most frequently used displays or functions. For other functions access  can be  either direct by entering short codes or by utilizing ~n instruction func.ion to determine the identification code for a display if it is  unknown.
2 7
  ~51A


WESTltsGHQUSE PI'.OPHl~iARY CL".SSg/Thetimingi'unction enab'lesthecontrolromaperatortasetupacount-downtimingfunctionforasystemwhichisbypassedorinoperable.
0 1
Anaudiblealarmwouldbegenerated attheexpiration oftheoperatorspecified timelimit.-Thisfeat'urewouldaidthecontrolroomoperatorincomplying withTechnical Specification timelimitsforsystemsunavailable forservice.(a,cThetestfunctionenablesthecontrolroomoperatortotesttheefectonsystemslevelstatusofachangeincomponent, statuspriortochang-ingthecomponent's status.Inresponsetothecontrolroomoperatorenteredinput,simulating theaffectofchangingacomponent's orsys-tem'sstatus,thesystemdetermines tneresultant effectonsystemoperability andindicates theresulttothecentralracmoperator3~3AEP-49
gESTI~IGHOUSE PROPRIETARY CLASS 2 ~
*ITABLES.l-~BYPASSEDAt10ItsOPRABLSTATUSItsOICATIOt1 COMPOttEHT INPUTS~t$y,'I~'ao"a('.c)~SstemEmergency corecooling.Auxiliary feedwater Comoonents Yalves=Pumps~.Process(level,pressure)
Other types  of information is available through the console keyboard.
Valves.Pumps.ProcessStatusOpen/Shut OperableHigh/L'o~,
      .These  consist of functions such as point revie~, logs, post-trip histor-1cal data review,    and offsite  data transmission.
etc.Open/Shut
The  paint review functions enable the console operator,to 'review plant sensor information. The types of review functions available are:
.OperableNigh/Low, etc.0Containment spray'ontainment iso1ationValvesPumpsProcessValvesOpen/Shut Operable=High/Low, etcOpen/Shut Auxiliary powersystemBreakers'enerators VoltagesOpen/Closed/Out Operab.leHigh/Low'Containment ventilation YalvesMotorsOpen/Shut OperableContainment hydrogenrecombiners ValvesMotorsOpen/ShuOperableComponent coo1ingValvesPumpsOpen/Shut OperableServicewaterYalvesPumpsOpen/Shut Operable3~AEP-50~.'~~o~~~~4~
Values  of individual points.
AWESTINGHOUSE PROPRjETARY CL4SS2TABLE5.2YrqBYPASSEDANDINOPERABLE STATUS,INOICATION-SYSTEMLEVELBYPASSFUNCTIONS Safetyinjection Lowpressurizer pressureLowsteamline pressureManualreset~s44Steamlincisolation Steamdumpinterlock Steamgenerator blowdownisolation 3-5AEP-515251A
~
: 2. Points removed from scan.
: 3. Points    removed  fran limit checking.
4    Points failed under quality checking routines.
      $. Points whose'can frequencies have been changed fmn the normal scan frequencies.
There are log <unctions available to the OTSC personnel which can be displayed on CRTs with periodic updates or output onto a hard copy device such as a line printer. These functions can be preprograrmed and automatically initiated or specified and initiated hy console operator input.
I
    ~
The  post-trip review function provides the capability to review histor-y ical data to aid in an event evaluation. This function continuously stores in memory an updated table of preassigned sensor values for a, predefined per iod. Upon the occurrence of a disturbance {e.g., plant trip) the system continues to store data for a defined time period.
After this period, the entire, data record can be reviewed by the OTSC personnel on CRTs and/or output to hard copy devices for permanent record storage purposes.
                                            '=8 CAC1 1 AEP-12


IESTINGHOUSF.
Ip-.,iNGHOJSE PROPRIETARY CLASS Z
PROPRIETARY CLASS2OperatorInputsSystemsLevelStatuscCCSHlHeadSlAccumulators Etc.PrfrnaryQteplaySafetylntecuonContinent SpraylOtnerslPump1ReadyPump2OutValvetOpenStthsystern ContponentLevelQtapksyContainment SpraySucpotComoonent CoolingESPPowerEtc.SupportSystornlComponent LovelPisplayFigure5.1DisplayStructure
, The  offsite  data transmission function enables QTSC personnel to'trans-
-8ypasseCandinoperable Statusindication AEP-52 IESTINGHpUSE pRppRIETARY CLASS28YPASSEDANDINOPERABLE STATUSDISPLAYSYSTEMSEmergency CoreCooling-HighHeadSIIntermediate HeadSlLowHeadSIAccumulators Auxiliary FeedwatrContainment Isolation Containment SprayContaioment Ventilation Safeguards PowerSourceOperableOperableOperableOperableOperableOperableInoperable
  .mit plant data to offsite ',ocations via owner supplied comnunications systems. The OTSC operator can initiate transmission of data either on a "one-shot" or periodic "asis.     The transmitted data can be arranged hnto four edited versions for the specific needs of separate offsite
-TrainAComponent OperableOperableFigure.5.2Primary Disofay-Bypauedandinoperable Statusindication AZP53 WESTINGHOUSE PROPRlETARY CLAS)gTrainACONTAINMENT SPPAyTrain8TrainCVLY101PumpASuetYLV111NAOHSupplyPumpAOpenOpenOperableVLY102PumpAOutletClosedVLY103HeadrAOutletVLV121RecircAClosedClosedRefueling WaterStorageTankVLV201Pump8SuetVLV211NAOHSupplyPump8VLV202Pump8OutletVLV203Headr8OutletVLV221Recirc8OpenOpenOperableOpenClosedClosedVLV301PumpCSuetVLV311NAOHSupplyPumpCVLV302PumpCOutletVLV303HeadrCOutletVLY321RecircCOpenOpenOperableOpenClosedClosedLS1COLevelLS101LevelLS102LeveiLS103LevelNormalNormalNormalNormalNAOHSprayAdditiveLS200LevelNormalLS201LevelNormalLS202LevelNormalTS200TempNormalTS201TempNormalTS202TempNormalFigure5.3Secondary Display-BypassedandInoperable St-tusInformation AEP-54 6TSCZNSTRUiiENTATZON Asdescribed inSection2,mostoftheinputsignalsttieTSCcomputeraretakenfromtheexistinginstruments whichalsoprovidesignalsfortheControlRoomindicators.
:.ccnmunications receivers such as the NRC.
Thisapproachwillprovideconsistent datainboththecontrolroom,OnsiteTechnical SupportCenterandtheEOF.TheinputsignalstotheTSCcomputertherefore havethesamehighquality,accuracyandreliability asthecontrolroomsignal.ZnputstotheTSCcomputerprovidetransformer isolation forallanaloginputsignalsandalldigitalinputsignalsareoptically isolated.
                                                \
Znaddition, allsignalsfromtheReactorProtection Channelsaretakenaftertheexistingsafetygradeisolators.
2-9
Theinterfacing oftheTSCComputertotheexistingplantinstrumentation wasdesignedsoasnottoresultinanydegradation ofthecontrolroom,protection system,controlsorotherplantfunctions.
Anydegre'dation thatisqnotedduringcheckoutandintegrated systemstestingwillbecorrected.
AEP-55 7..TSCKWERSUPPLYSYSTEPS7.1POWERYOTHETSCCCMPUPERSYSTl24:1bg~y(UPS).ThisUPSsystemwillprovidetheTSCc~ezsarBpexiphexal egal@~<withahighquality,transient fxepowersource.7.1.1THEUPSSYSTEM:Figuxe7.1showsaone-linediagram(schematic) fortheUPSsystem.-Thesystemconsistsofxedundar&
battezychairs,.battezy,staticinvextexs, andstatictxansferswitches.
~ruxmalconditions, thebattezychargerconvertsACtoCCandsuppliesittotheimaxter.'Ihebattexychargeralsokemsthebattezyat,fiQlcharge.Theinvexter.
convertstheCCtoACinordertosupplythe7.1.2COHSHQ~SCFPCNERSUPPLYINTERRUPTIGH:
thexeisapowerxeduction (dipordegradation) orloss(failure) oftheACpcwersouxce,theUPSbattezy?eccnest".wpr'unarysourceofD"to&aumexter,ratherthan51mbattezychargerwhichhaslostitsnormals~ofACpowersupply.Tt~hFforapexicdof30minutes.Thisallowsasufficient tineintervalinwhichadiesel.genexator (badmpACsource)canbemadeavailable toprovidepowertotheinverter.
Intheunli3cely eventoflossorAEP-56 TSCPOWERSUPPLYSYSTEM(CONCEPTUAL OESIGN)IEMERGENCY SOURCENORMALSOURCEBACK-UP'OURCE INOEPENOENT600VOLTBUSINOEPENOENT 600VOLTBUSINOEPENOENT600VOLTBUSO'C.C.BREAKER225AM.C.C.BREAKER225AM.C,C.BREAKER225AAUTOMATIC TRANSFERSWITCH260A600'5KVA120~700A~MPIBATTERYCHARGERI(ALTERNATE}
700AMPBATTERYCHARGERBATTERY927A40KVAINVERTER40KVAINVERTERSTATICSNITCHSTATICSWITCHFIGURE7.IUNITWITSCCOMPUTER8P'ERIPHERALS UNITW2TSCCOMPUTER8PERIPHERALSAEP-56o


unavailability afboththerurmalandbadcupACsources,thestaticswi~willbeusedfortransfer, ifnecessary, totheenaxcpncy ACsource~7;2PONERTOTHETSCCDMPLZX:Standardbalan-plant (BOP)sourceswillprovidetheTSCwithpowerforlightingandcowmnience receptacles.
5YZGHGHOUSE PROPRlEFARY CLASS  2 iI 4
Foradditional protection,,
II "5                          TABLE  3.1
thelightizqfixturesareprovidedwithbatterypactumforcontinued operation intheeventoflossaftheEOPpamrsupply.ThePRCequitantwillbesuppliedfrcmanEssential ServicesSystembusQCsource).AEP-57 Section8.0OriginalpagesAEP-58throughAEP-62havebeendeletedfromthissubmittal.
                    - CRITICAL P'LANT SYSTEMS/FUNCTIONS
Thedescriptive information thatwascontained thereincanbefoundintheOCCNPEmergency Plan.L?afIC5~CAEP-58
    ,4
                  .Reactivity Control
                ,Vrimary System Inventory 5    55 5          Core Heat Removal    Capabilities rI  5 Availability and Capacity of    Heat Sinks hg      5 c;3
          ~,     Containment  Integrity 5
5
.5 5
            -   'Primary System Pressure    and Temperature Availability and Capacity of Alternate Rater Sources Availability and Operability of Critical Support Systems Radioactivity Control 4
5 4~
I
    '5 h
      '5 5
* 10 AEP      14


Section9.0OriginalpagesAEP-63throughAEP-65havebeendeletedfromthissubmittal.
                                , Table 3.2 TSC Paxarratmrs  List Variables                Min. No af Signals bet leg tarp                                0-700 deg F
Listingsofplantrecords,plantspecificreference
-RCS  cold leg tarp                              0-700 deg F
: material, generaltechnical reference
-BCS pressuxe                                    0-3000    psig
: material, plantprocedures andreportsthatareavailable topersonnel workingintheTSCareprovidedingeneralcompanyinternaldocuments whichpertaintothesubjectmatter.AEP-63 Attachment 1toAEP:NRC:0916I REASONSAND10CFR50.92ANALYSESFORCHANGESTOTHEDONALDC.COOKNUCLEARPLANTUNIT2TECHNICAL SPECIFICATIONS IIIj,r/II1rr+ktr'flgIPJfenrr~Ab::.,i.jf",",1;i,'j,-';:;,,;
-Beactor water Level                              0-100  %
e'It4I).r.,g~Artl11I4~'1ICjIIpI)1.,jII'I1'I11IJI,4iI,Irt'>>jar'lrrjh/trIIl AEP:NRC:0916I Attachment 1Page1of18TheTechnical Specification (T/S)changesincludedinthisletterare,ingeneral,thosenecessary tosupportthesafetyanalysesperformed byExxonNuclearCompany(ENC)fortheUnit2Cycle6reload.Inadditiontothesechanges,however,wehaveincludedadditional changeswhichareintendedtomaketheT/Ssclearer,easiertouse,ormoreconsistent withtheStandardTechnical Specifications (STSs)forWestinghouse Pressurized WaterReactors, NUREG-0452, Rev.4(orDraftRev.5,whereapplicable).
-KS lxxcn concentxation                          0-5000 pcm
AsummaryofthechangeshasbeenincludedasAttachment 10tothisletter.Itincludesabriefdescription ofeachchange,aswellasthereasonforthechange,and,whereapplicable, references tothesafetyanalysesthechangeisbasedon.Thisattachment includesanoverviewofthechanges,aswellasour10CFR50.92justifications fornosignificant hazardsconsideration.
-Pressurizer water Level                        0-100 0
Pleasenotethatthechangeswillbereferredtobytheirnumbers,whicharegiveninthe"Description ofChange"columninAttachment 10.Wehavegroupedthechangesinto12separatetypesforeaseofdiscussion.
-Steam generator Level Wide xange                                0-100 0 Nanna'ancp                                0-100  0
Thesechangesarediscussed below.1.Editorial ChangesThefirstgroupofchangestobediscussed consistsofthosethatarepurelyeditorial innature.Thesechangesarenumbered1,2,5,6,12,20/21'4'5'6'5'0~
-Steam Line pressure                            O-a4OO    psig
60~62~69'4'1~83~84'8'"90'3J94'7/98'nd105inAttachment 10.Thesechangesareproposedtoenhancethereadability oftheT/Ss,toachieveconsistency betweentheUnit1and2T/Ss,ortoachieveconsistency withtheSTSs,asdescribed inAttachment 10.Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:'(2)(3)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Criterion 1Thesechanges,beingeditorial innatureandintendedtoimprovethereadability oftheT/Ss,willnotreduceinanywayrequirements orcommitments intheexistingT/Ss.Thus,noincreaseintheprobability orconsequences ofapreviously evaluated accidentwouldbeexpected.
~ntainFient  pxess suxe                        +36 psig 589 '-599  'lev.
Criterion 2Thesepurelyeditorial changeswillnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated, becauseallaccidentanalysesandnucleardesignbasesremainunchanged.
599 '-614 'lev.
AEP:NRC:0916I Attachment 1Page2of18Criterion 3Theproposedamendment willnotinvolveasignificant reduction inmarginofsafety,because,asdiscussed above,allaccidentanalysesandnucleardesignbasesremainunchanged.
0-100 0
Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
~denote      storacp tank level        2         0-100 0
Thefirstoftheseexamplesreferstochanges.thatarepurelyadministrative innature:forexample,changestoachieveconsistency throughout theT/Ss,correction ofanerror,orachangeinnomenclature.
-2oxic acid tank level                          o-aoo  ~
Thisgroupofproposedchangesisintendedtoachieveconsistency betweentheUnit1and2T/Ss,toachievegreaterconsistency withtheSTSformat,ortoimprovetheoverallreadability oftheT/Sdocument.
-Aux feed warm    flac'eed 0-250 KLbs/hr water flow
Asthesechangesarepurelyeditorial anddonotimpactsafetyinanyway,webelievetheFederalRegisterexamplecitedisapplicable andthatthechangesinvolvenosignificant hazardsconsideration.
~gh    ~    injection f1cw 0-5000 K1bs/hr 0-200 cpm AEP-15
2.Removalof3-LooTechnical Secifications AsecondcategoryofchangesinvolvesremovalofTechnical Specification provisions for3reactorcoolantloopoperation inOperational Modes1and2.Thesearechangesnumbered3,7,16,29,30,31,46,56,59,61,67,91,99,and100inAttachment 10.Thiscategoryincludesallchangesinvolving removalof3-loopprovisions exceptforthoseassociated withFunctional Unitl.e.(Differential PressureBetweenSteamLines-High) onEngineered SafetyFeatures(ESF)Actuation Instrumentation Table3.3-3.Three-loop changesassociated withthisESFsignalarediscussed inCategory5ofthisAttachment.
LicenseCondition 2.C.3(j)forUnit2prohibits operation withlessthan4pumpsatpowerlevelsabovetheP-7permissive (approximately 11%ofratedthermalpower).Asamatterofpractice, wehaveextendedthisrestriction tocoverallofModes1and2.AsT/Sscovering3-loopoperation inModes1and2aretherefore notnecessary, weproposetoremovethemtostreamline thedocument.
IncludedinthisgroupofchangesisthedeletionofT/S3/4.4.1.4.
Althoughthisspecification containsprovisions forlessthan4-loopoperation inmodesotherthan1and2,therequirements forothermodeswhichremainapplicable areaddressed identically inotherT/Ss,asspecified below:ActionStatement (BelowP-7)WhereAddressed abcT/S3'.1.1T/Ss3.4.1.2and3.4.1.3Notneeded,since3-loopoperation inModes1and2willbeprohibited.


AEP:NRC:0916I Attachment 1Page3of18Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(2)(3)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Criterion 1Thisgroupofchangeswillextendthelicensecondition prohibiting 3-loopoperation abovetheP-7permissive toincludeallofModes1and2.Thus,thechangeswouldbeexpected, asaminimum,toreducetheprobability, orconsequences ofapreviously evaluated accident.
"4
Criterion 2Sincethesechangesplaceadditional restrictions onplantoperation, theywouldnotbeexpectedtocreatethepossibility ofanewordifferent kindofaccidentfromanypreviously analyzedorevaluated.
    ~                                    TSC Table 3.2 Paranaters  List Vaziab les                  Min. No of Signals
Criterion 3Since3-loopoperation inallofModes1and2willbeprohibited, additional margintoDNBunderaccidentconditions shouldresult.Thus,marginofsafetyshouldbeincreased ratherthandecreased.
        -Low head  injection flew                4              0-5500 gptn 16                0-2500 deg F 44 anent        cooling water flow            2              0-10000 gptn
Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
        ~agormnt ccoling water      temp.         2               32-200 deg F 0-30  %
Thesecondoftheseexamplesreferstochangesthatimposeadditional limitations, restrictions, orcontrolsnotpresently includedintheT/Ss.Sinceprohibition of3-loopoperation inModes1and2constitutes arestriction whichthecurrentT/Ssdonothave,webelievethisexampleisapplicable andthatthechangesinvolvenosignificant hazardsconsideration.
        -Contaimnent targerature                  8               0-100 deg F 4
3.Additional Restrictions BecauseofSafetyAnalysesAthirdgroupofchangesinvolvesinclusion ofproposednewrequirements intheT/Ss.Thenewrequirements areproposedtomaketheT/Ssconsistent withthesafetyanalysesperformed byENCinsupportoftheCycle6reload,ortoachieveconsistency withtheSTS.Thesechangesarenumbered9,22,51,52,55,63,64,70,72,73,80,82,86,92,and102inAttachment 10.Theapplicable references tothesafetyanalysesareincludedtherealso.Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, AEP:NRC:0916I Attachment 1Page4of18(2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Criterion 1Thesechangesconstitute additional restrictions ontheplantintermsofT/Smodeapplicability, surveillance requirements, orActionStatement requirements.
  '4
Sincenoneofthesechangesreduceinanywayprevioussafetyrequirements, theywouldnotbeexpectedtoresultinanincreaseintheprobability orconsequences ofanaccidentpreviously evaluated.
        ~Neutron  flux                                          0-120    % pram
Criterion 2Thesechangeswillplaceadditional restrictions onplantoperation andwillincrease, ratherthanreduce,requirements forsafety.Therefore, theyshouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously analyzedorevaluated.
        -Contml rod position                    53              Pall in or rot e  -Prirrary system
Criterion 3Thesechangesaddadditional safetyrequirements, andinnowayreduceanyexistingrequirements.
      -Sec. syst.
Thus,noreduction inmarginofsafetywilloccurbecauseofthesechanges.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
relief relief valves
Thesecondoftheseexamplesreferstochangesthatimposeadditional limitations, restrictions, orcontrolsnotpresently includedintheT/Ss.Thesechangesimposeadditional restrictions ontheplantforconsistency withtheCycle6safetyanalysesortheSTSs.Thus,webelievethatthisexampleisapplicable andthatthechangesinvolvenosignificant hazardsconsideration.
                                              . 4              Closed-not closed 4              Closed-not closed Closed-not closed
4.Refueling WaterStorageTankChanesAfourthgroupofchangesinvolvesT/Ss3.1.1.3,3.1.2.3,3.1.2.5,3.4.1.2,3.4.1.3,and3.9.8.1specifically astheyapplytoboratedwateradditionorpositivereactivity additionfromtheRefueling WaterStorageTank(RWST).Thesearechangesnumbered25,26,27,87,89,and104inAttachment 10.T/S3.1.1.3requiresreactorcoolantflowofatleast3000gpmduringdilutionoftheReactorCoolantSystem(RCS)boronconcentration inanymode.T/Ss3.4.1.2and3.4.1.3requireatleastonecoolantlooptobeinoperation duringborondilutioninModes3,4,and5.T/S3.9.8.1requires3000gpmofcoolantflowviatheResidualHeatRemovalSystemduringborondilutioninMode6.T/Ss3.1.2.3and3.1.2.5prohibitpositivereactivity additioninModes5and6withchargingpumpsorboricacidtransferpumpsinoperable, respectively.
      -P2R  relief  ~    pressure              1              0-100 psig O-10O  S
BecauseofconcernswithliteralT/Scompliance, questions havearisenastotheapplicability ofthesespecifications duringthetimeswhenweaddwatertotheRCSfromanoperableRWST,specifically whentheboronconcentration oftheRWSTislowerthantheRCS.
      -PZR  relief ~3c 1m'.                     1              50-350 deg F
AEP:NRC:0916I Attachment 1Page5of18TheRWSTminimumboronconcentrations statedintheT/Sswereestablished toensurethatadequateshutdownmarginismaintained, andareconsistent withnumbersassumedbyENCintheirCycle6reloadanalyses.
      -BCS degre    of subcooling          N/A                200 sub-5 super
Becauseofthis,itisourbeliefthattheborondilutionrestrictions oftheT/Sslistedabovewerenotmeanttobeapplicable duringwateradditionfromtheRWST,providedtheboronconcentration intheRWSTexceedstheminimumrequirements statedintheT/Ss.Wehavedocumented thisinterpretation inthepast(seeourletterAEP:NRC:0975A, datedFebruary28,1986);thischangeissubmitted onlytoformalize thisinterpretation.
      -Accunulator level                                        0'-100 8
Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(2)(3)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated; createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Criterion 1Ourreviewhasdetermined thattheT/SRWSTminimumboronconcentrations aresufficient toensurethatadequateshutdownmarginismaintained throughout theentirecorelife.Additionally, theRWSTboronconcentrations areconsistent withthoseassumedintheLOCAanalysesperformed byENC.Thus,weconcludethatthesechangeswillnotsignificantly increasetheprobability orconsequences ofanaccidentpreviously evaluated.
      -Accunaxlator pressure                                    0-700 psig
Criterion 2Theproposedamendment willnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated.
      -AcaxaQator isolation valves              4               Closed-r~ clcsed
Ithasbeendetermined thattheRWSTboronconcentration issufficient toensureadequateshutdownmarginfromallexpectedoperating conditions.
      -Aux building sump level                                  0-flccd level
Theconsequences ofaddingwaterfromanoperableRWSTwhichisatalowerboronconcentration thantheRCSistherefore bounded,andnonewordifferent kindofaccidentfromthosepreviously evaluated wouldbeexpected.
      -BHR system    flow                                        0-7000 apn
Criterion 3Becausethesechangeslessenoperating restrictions, itcanbeexpectedthatareduction insafetymarginmayoccur.However,becausetheRWSTminimumboronconcentrations aresufficient toprovideadequateshutdownmarginfromallexpectedoperating conditions, thisreduction insafetymarginwouldbeinsignificant.
  ,4
Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, butwherethe,resultsare AEP:NRC:09161 Attachment 1Page6of18clearlywithinlimitsestablished asacceptable.
Asdiscussed above,thesechangesrelaxrequirements relatedtoborondilutionorpositivereactivity
: addition, butareclearlyboundedbyourshutdownmarginanalyses.
Thus,weconcludethattheexamplecitedisapplicable andthatthechangesinvolvenosignificant hazardsconsiderations.
5.ChangestotheDifferential PressureBetweenSteamLines-High ESFActuation SignalThefifthgroupofproposedchangesinvolveFunctional Unitl.e(Differential PressureBetweenSteamLines-High) undertheEngineering SafetyFeature(ESF)Actuation SystemInstrumentation Table3.3-3.Thesechangesarenumbered67,68,and71inAttachment 10.Specifically, weareproposing tochangethefootnotedesignator fortheChannelstoTripcolumnofthe3-loopsectiontoaquadruple poundsign,andtoaddacorresponding newfootnotetotheTable3.3-3notations onT/Spage3/43-21.Additionally, weproposetorevisethefunctional unittoprohibit3-loopoperation inModes1and2,consistent withCategory2ofthisattachment.
TheDifferential PressureBetweenSteamLines-High actuation differsfromotherESFactuation signalsinthatasignalfromoneloopiscomparedtosignalsintheotherloops.Thecurrentfootnoteassociated withthissignalforthe3-loopcasestates:"Thechannelsassociated withtheprotective functions derivedfromtheoutofserviceReactorCoolantLoopshallbeplacedinthetrippedmode."Thiscouldbeconstrued tomeanthatallchannelsintheoutofserviceloopshouldbetripped.ThisinturnwouldresultinanESFactuation.
Itisourbeliefthatthefootnoteasappliedtothisfunctional unitmeanstotripthebistables whichindicatelowactiveloopsteampressurerelativetotheidleloop.ThisactionreducestheESFactuation logicfortheactiveloopdifferential pressures from2outof3to1outof2,andthuspermits3-loopoperation inMode3since2channelspersteamlinearenecessary foratrip.Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(2)(3)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Theprohibition of3-loopoperation inModes1and2isconsistent withthechangesincludedinCategory2ofthisattachment.
The10CFR50.92analysisisthusidentical andwillnotberepeatedhere.The10CFR50.92analysesincludedinthiscategoryaretherefore onlythoseinvolvedinrewriting theDifferential PressureBetweenSteamLines-High footnoteinT/STable3.3-3.Criterion 1Thechangesincludedinthisgroupareeditorial innature,intendedonlytoclarifytheESFActuation SystemInstrumentation Table(3.3-3)asit AEP:NRC:0916I Attachment 1Page7of18appliestotheDifferential PressureBetweenSteamLines-High actuation signal.Thus,nosignificant increaseintheprobability orconsequences ofapreviously evaluated accidentshouldoccur.Criterion 2Theproposedamendment willnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated becausethesechanges,beingeditorial innature,willnotimpactexistingsafetyanalysesorthenucleardesignbases.Criterion 3Theproposedamendment willnotinvolveasignificant reduction inmarginofsafetybecause,asdiscussed above,allaccident.
analysesandnucleardesignbasesremainunchanged asaresultoftheseproposedT/Schanges.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thefirstoftheseexamplesreferstochangesthatarepurelyadministrative innature:forexample,changestoachieveconsistency throughout theT/Ss,correction ofanerror,orachangeinnomenclature.
ThisgroupofproposedchangesisintendedonlytoclarifytheT/Ss,toavoidthepossibility thattheymaybemisread.Asthesechangesareeditorial anddonotimpactsafetyinanyway,webelievethattheFederalRegisterexamplecitedisapplicable andthatthechangesinvolvenosignificant hazardsconsideration.
6.ChangestothePower-0cratedReliefValve(PORV)Secification, 3/4.11.4ThesixthgroupofproposedchangesinvolvearedraftofT/S3/4.11.4, concerning thePressurizer Power-Operated ReliefValves(PORVs).Thesechangesarenumber95inAttachment 10.Specifically, weareproposing tochangeT/S3/4.11.4torequirethatatleast2PORVsbeavailable inModes1,2,and3.Forpurposesofthisspecification, "available" meansthatthePORVisoperablewithitssolenoiddeenergized andthattheblockvalveisoperableandenergized.
ThisdiffersfromthepresentT/S,whichallowsall3PORVstobeinoperable, providedtheirassociated blockvalvesareclosed.TheproposedchangesareintendedtoensurethatPORVreliefcapability isavailable toassistinRCSdepressurization following asteamgenerator tuberupturewithoutoffsitepower,andtorespondtocommentsmadebymembersofyourstaffatameetingheldwithusinBethesda, MDonDecember13,1984.Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(2)(3)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, createthepossibility ofnewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.
AEP:NRC:0916I Attachment 1Page8of18Criterion 1Thisgroupofchangesconstitutes additional restrictions placedonPORV(andassociated blockvalve)operability requirements.
Sincenorestrictions associated withthePORVsarereducedinanywaybythisgroupofchanges,weconcludethatthesechangeswillnotincreasetheprobability orconsequences ofapreviously analyzedaccident.
Criterion 2Sincethesechangesplaceadditional restrictions
'onplantoperation andinnowayreducepresentsafetyrestrictions, theywouldnotbeexpectedtocreatethepossibility ofanewordifferent kindofaccidentfromanypreviously analyzedorevaluated.
Criterion 3Thesechangesaddadditional restrictions onthePORVs,designedprimarily toensurethatPORVreliefvalvecapability isavailable toassistinRCSdepressurization following asteamgenerator tuberupture.Thus,thesechangeswouldbeexpectedtoincrease, ratherthandecrease, safetymargins.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesecondoftheseexamplesreferstochangesthatimposeadditional limitations, restrictions, orcontrolsnotpresently includedintheT/Ss.SincethisgroupofchangeswillrequirePORVstobeoperableinModes1through3(wherepreviously nooperability requirement existed),
theyclearlyconstitute additional restrictions.
Thus,weconcludethattheexamplecitedisapplicable andthatnosignificant hazardsareinvolved.
7.AdditionofT/S4.0.4ExemtionsTheseventhgroupofproposedchangesarethosewhichaddT/S4.0.4exemptions toexistingT/Ss.Thesechangesarenumbered44,65,66,and103inAttachment 10.Forthefirstofthesechanges,aT/S4.0.4exemption hasbeenproposedfortheflowmeasurement performed aftereachrefueling andforallflowsurveillances fortheDNBT/S,4.2.5.1(seenumbers44inAttachment 10).(Theflowspecification hasbeenmovedfromtheFspecification (3/4.2.3) totheDNBspecification (3/4.2.5.1) forconsistency withUnit1specifications.)
Thisexemption isrequiredHbecauseflowismeasuredusingsecondary calorimetric andprimarytemperature measurements, whichcanonlybeperformed atornearfullpower.Theflowinstrumentation iscalibrated basedonthismeasurement.
Exemptions havealsobeenprovidedforseveralNuclearInstrumentation System(NIS)calibrations (seenumbers65and66inAttachment 10)inT/STable4.3-1.Ofthese,thoseproposedforsourcerangeandintermediate rangedetectorcalibrations appearinSTS,Rev.4.STS,Rev.4alsoprovidesthisexemption fortheincoredetector, excorepowerrange


AEP:NRC:09161 Attachment 1Page9of18detectorcross-calibration performed afterrefueling.
Table 3.2 TSC Paxarretars List Variables                  Min. No of Sicnmls
Ourproposalextendsthisexemption tothequarterly incoredetector, excorepowerrangedetectorcross-calibration inordertoaddressthesituation whereanunscheduled outageofsignificant durationcausesthesurveillance intervalforthiscalibration tolapse.Thisexemption isproposedforthedailypowerrange,neutronfluxheatbalancebecauseitisrequiredtobeperformed above15%ratedthermalpowerbyT/S.Itisalsoproposedforthemonthlyincore-excore axialoffsetcomparison forthesamereason.Theseexemptions areneededtoaddressunscheduled outagesforwhichthesurveillance intervalhaslapsed.Anexemption fromT/S4.0.4forthesourcerangechannelfunctional testisproposed.
~    heat, ex. outlet  temp.                     0-400 deg F
Thisexemption addresses thesituation thatresultsfromareactortripaftercontinuous poweroperation ofmorethan1.25times31days.Thissurveillance cannotbeperformed atpowerwithoutdamagingthesourcerangedetectors.
~ric acid    chaupir@  flaw                      0-10  pe
Exemptions fromT/S4.0.4areproposedforthesingle-loop andtwo-looploss-of-flow tripcalibrations ofT/STable4.3-1.Thesearerequiredbecausethesecalibrations arebasedontheprimaryflowmeasurement takenatornearfullpowerwhichwasdiscussed aboveinrelationtoflowinstrumentation.
-KS let-dawn flaw                                  0-200 gpn
Thesechangesarenumbered65and66inAttachment 10.Exemptions fromT/S4.0.4areproposedforthef(D,I)penalties associated withtheOverpower 5TandOvertemperature b,Ttrips.Theseexemptions arerequiredbecausethef(5I)moduleiscalibrated todataobtainedfromtheincoredetector, excorepowerrangedetectorcross-calibration.
-BCS nake-up    flaw                              0-200  cd
Asisimpliedbytheexemption ofthiscalibration fromT/S4.0.4onarefueling frequency, whichisalreadyavailable inSTS,Rev.4,thiscalibration mustbeperformed atpower,intheapplicable mode.Thecalibration isperformed atpowersothatanappreciable signalcanbeobtainedontheincoredetectors andtheexcoredetectors.
~xg
Thesechangesarenumbered65and66inAttachment 10.Lastly,anexemption fromT/S4.0.4isproposedforSurveillance 4.7.1.5(seenumber103inAttachment 10.)Thisexemption isrequiredbecauseT/S3.7.1.5,SteamGenerator StopValves,isapplicable toMode3,andSurveillance 4.7.1.5,whichmeasuresstopvalveclosuretime,mustbeperformed inMode3.Inordertodemonstrate therequiredclosuretimeforthesteamgenerator stopvalves,steampressuremustbeinthenormaloperating rangecorresponding toprimarytemperature abovetheP-12setpoint.
-Status af standby    ~
Therefore, secondary pressureforthistestmustbeaboveapproximately 800psigforwhichsaturation temperature iswellabovethe350FMode3boundary.
vBDtilatich dcntKer
Anexemption isalsoproposedforBeginning ofCycletoenterMode2forphysicstestingprovidedthesteamgenerator stopvalvesareclosed.Thisprovision allowscontinuation ofthestartupprogramwithsteamgenerators isolatedintheeventthatsecondary sideworkisnotcomplete.
-Kigh radioactivity liquid closed-nat closed Emxgized 0-100 8 or not tank level
Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated,
-Badiaactive gas decay tk press        4        0-150 psig
-Beactor Coolant Punps status          4        0-1200 anps
-PZR  neater bank status                          0-200 anps
<<Wtmrolcxy Mind dizection                              0-360 deg 0-100  miles/hr Atm. delta  temp.                         0-50 Peg F
-Badiation 2 Car~ant        area  xadia~      1          . 1-10E4 mR/hr 1         10-10E6 ~~
Containmzt    air auriculate                10-10E6 axn QCit Vent radio gas                        1O-1OE6  ~
Chit Vent iodine                            10-10E6  cd AEP-17


AEP:NRC:0916I Attachment 1Page10of18(2)createthepossibility ofnewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Criterion 1Thechangesinthissectionarenecessary tomaketheT/Ssaccurately reflectlimitations associated withsurveillances whichmustbeperformed intheapplicable mode.Additionally, thechangesareneededtoaddressthefactthatunscheduled outagescananddooccur,andwhentheydosurveillances canexpirewithnowaytocorrectthesituation untiltheunitreturnstopower.WherepossiblewehavefollowedtheguidancegivenbytheSTSs,expanding itasnecessary toaddressthesituations justdescribed.
Table 3.2 TSC  Pazaneters  List Variables                          Min. No. of Si    ls
Asthesechangesareconsistent withtheguidanceprovidedbytheSTSs,webelievethatanyincreaseintheprobability ofoccurrence orconsequences ofanaccidentpreviously
- Radiation    (continued)
: analyzed, oranyreduction inmarginsofsafety,wouldbeinsignificant.
Steam gen. blow down                                        10-10E6 cpn Condenser  air ejector                                      . 1-10E4 mR/hr Cooling water East                                        . 10-10E6 cpn Ccoling water West                                          10-10E6 cpn Service water East                                          10-10E6 cpn Service water West                                          10-10E6 cpn Waste Ziquid    off-gas                                    10-10E6 cpn Waste gas decay                                            10-10E6 cpn Control rccm area                                          . 1-10E4 mR/hr Spent  fuel area                                          .1-10E4 mR/hr ClarLzg pp room area                                        .1-10E4 mR/hr Ncrta 1:    Degree  of subcooling will he independently calculated by the detectors.
Criterion 2Sincethesechangesrequireneitherphysicalchangestotheplantnorchangestothesafetyanalyses, itisconcluded thattheywillnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated.
TSC  ccnauter.
Criterion 3Pleaseseeourdiscussion onCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant, hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Note 2:    We    radiation signals      listed  above  are  signals    from the
Example6referstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously analyzed,accident, butwheretheresultsofthechangeareclearlywithinacceptable limits.Itisourbeliefthatthesechangesarenecessary toreflectlimitations inherentinsurveillance testingmethodsemployedbytheCookPlant,andthechangesreflectfurtherclarification oftheintentoftheoriginalT/Sasisindicated bythetypeofT/Sintheseareasthatispermitted bylaterrevisions oftheSTS.Inlightofthis,webelievethereasonsforthisgroupofchangestobeconsistent withExample6.8.ChangestoExistingT/SValuesTheeighthgroupofproposedchangesinvolvevaluesofparameters presently includedintheT/Ssthatarebeingrevisedtoreflecttheassumptions usedinthevarioussafetyanalysesperformed insupportoftheUnit2Cycle6reload.Thesechangesarenumbered4,8,10,11,13,14'5,17,18,19,23,28,34,40,42,47,48,49,54,76,78,79,and101inAttachment 10.Thatattachment alsoincludesreferences tothespecificsectionsoftheaccidentanalysesonwhichthechangesarebased.
                                                                                  'I existirg radiation                    AEP  is in the process of irmlementing a    new  Radiation Ronitor System at Cook Units 1 and  2,  and  will  provide a separate      Radiation Data Display System  for  the TSC and EOF.
AEP:NRC:0916I Attachment 1Page11of18Twotypesofchangesincludedinthisgroupneedfurtherexplanation.
AEP-18
The~firstarechangestoallowances topermitoperation withRdFRTDs.Theseareincludedinthechangesnumbered8,10,14,19,42,47,48,76,and78inAttachment 10.DuringtheUnit2Cycle6refueling outage,wewillbereplacing allofourexistingRosemount RTDswithRTDsmanufactured bytheRdFCorporation.
 
Becausetheuncertainties associated withthesenewRTDsaredifferent fromthoseassociated withtheolderRosemount RTDs,itisnecessary torevisesomeT/Svaluesaccordingly.
h  Jrh  'A~Ah                  8 hhr  4~
Weusedthereviseduncertainties toobtainTechnical Specification setpoints fromtheanalysisvaluescalculated byExxonNuclearCompany.Certainsetpoints wereaffectedbybothachangeinanalysisvalueandtherevisedallowances.
tYES1'INAllOUSE PltOPAlEfAQ'LASS 2 TABLE 2 3 I'SC INSTRUHENT  BASIS PARAHETER                                        INITIAL EVENT DIAGNOSIS+                          u          BASIS                .(b,c)
Foryourconvenience, wehaveincludedtheWestinghouse ElectricCorporation safetyevaluation fortheRdFRTDinstallation (WCAP-11080) asAttachment 3tothisletter.Thesecondgroupofchangesneedingclarification arechangesinvolvedwiththef(5I)penaltywhichisappliedtotheOvertemperature 5TandOverpower 5Treactortripsetpoints.
Containment Pressure                  - Determine  if  break is inside or outside              - Honitor containment conditions of contairunent Steaml ine Press.ure                  - Determine  if  hiqh energy secondary l)ne              - Haintain      an adequate  reactor rupture occurred                                            heat sink
(Thesearechangesnumbered15and18inAttachment 10.)Thereisonlyonef(~I)module,whichservesbothofthesetrips.Thismoduleplacesapenaltyonthesetripfunctions intheeventofanaxialimbalance inneutronfluxbetweenthetopandbottomhalvesofthecore.Thef(~I)penaltywasnotrequiredasaninputtotheOverpower LTtripforpreviousUnit2cycles,andthusf(LI)ispresently setequaltozeroinT/STable2.2-1.Thenewanalysesperformed byENCapplythef(5I)penaltytobothOverpower and2Overtemperature 5T.TheENCanalysesresultedindifferent f(5I)functions forthesetwotrips.However,becausetheysharethesamef(~I)module,asinglef(5I)functionthatconservatively boundsthesetwofunctions waschosenfortheproposedT/Ss.Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccident.
                                                                                                - Honitor      secondary side pressure to:
previously evaluated, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or'(3)involveasignificant reduction inamarginofsafety.Thechangesincludedinthisgrouparenecessary tosupportsafetyanalysesperformed byENCandWestinghouse ElectricCorporation (asreferenced byAttachment 10)insupportoftheCycle6reload.TheseanalyseshavenotyetbeenacceptedbytheCommission.
                                                                                                    .-    verify operation of pressure control steam  dump system
Ourconclusion ofnosignificant hazardsconsiderations, whichissupported below,istherefore contingent uponCommission acceptance.
                                                                                                      - monitor    RCS  cooldown  rate Narrow Range Steam Generator          - Determine  if malfunction    of secondary side        - Honitor heat sink Water Level                              system has occurred
Criterion 1Thesafetyanalysesperformed forCycle6addressed allpreviously analyzedaccidents.
                                                                                                  - Haintain steam generator        water level Wide Range Steam Generator Water        None                                                    -  Determine    if heat  sink is being Level                                                                                                maintained Boric Acid Tank Level                - None                                                    - Verify RCS boration system functions for adequate reactivity control Condensate  Storage Tank Level        - None                                                    - Haintain      adequate water supply for auxiliary feedwater pumps Refueling Water Storage Tank          None                                                    - Verify adequate supply of Leve I                                                                                              emergency core cooling water
Theanalyses, whicharereferenced inAttachment 10,demonstrated thatnosig'nificant increaseintheprobability orconsequences ofapreviously evaluated accidentisexpectedtooccur.
                                                                                                  - Verify ECCS      and  containment spray system are    functioning
AEP:NRC:0916I Attachment 1Page12of18Criterion 2Thesafetyanalysesperformed forCycle6addressed allapplicable accidents foundintheStandardReviewPlanforrelevancy toCook.Manyofthoseaddressed hadnotpreviously beenevaluated forD.C.CookUnit2.Therefore, weconcludethat,tothebestofourknowledge, thisgroupofchangeswillnotcreatethepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzed.
>Certain .indications on this table are used as secondary diagnoses        as the operator proceeds through Post-Incident Recovery, 525lh                                        YIF~SIlNMl""'E I'"ONIFJARY'LASS 2 h
Criterion 3Thesafetyanalysesperformed forCycle6(asreferenced byAttachment 10)havedemonstrated thatacceptable marginsofsafetyaremaintained forallaccidents whichwereaddressed.
 
Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
                                              'PfYiTIHGNONE PAOPAIHAN VMS          2 IAOLE 2-3 (Continued3 I
Thesecondoftheseexamplesreferstochangesresulting fromanuclearreactorcorereloading, ifnofuelassemblies significantly different fromthosefoundpreviously acceptable totheNRCforapreviouscoreatthefacilityinquestionareinvolved.
TSC INSTRUHENT OASIS                                                            I PARAHETER                                        INITIAL EVE NT DIAGNOSIS*                                  OASIS                  (b,c) I Wide Range Th and Tc                  - None                                                      - Haintain    adequate  reactor heat sink
ThesechangesaresimilartothisexampleinthattheCycle6reloadisverysimilartopreviousreloadsintermsofenrichment, powerdistribution, andfueltype.Althoughminorchangeshaveoccurred(e.g.,Fwasincreased from2.04to2.10),thechangeswereanalyzedandfoundn8ttosignificantly impactapplicable marginstosafety.Thus,weconcludethattheexamplecitedisrelevantandthatnosignificant hazardsconsideration isinvolved.
                                                                                                  - Haintain    the proper relationship between  RCS  pressure and temperature
N9.SearationofFlowRateandFTheninthgroupofchangersinvolverevisions toT/S3/4.2.3,NuclearEnthalpyHotChannelFactor(F).Thesechangesarenumbered41,42,43,48inAttachment 10.InthepresentT/Ss,RCSflowrateandFmaybehH"tradedoff"againstoneanother(i.e.,alowermeasuredRCSflowrateisacceptable providedFisalsoacceptably lower).IntheproposedTgS3/4.2.3,wehaveeliminated theabilitytotradeoffflowforF.FishHnowdefinedinT/S3.2.3onlyasafunctionofratedthermalpower.RSflowrateinMode1hasbeenmovedtoproposedT/S3/4.2.5.1, whichcontainstheMode1DNBparameters.
                                                                                                        - verify vessel    NDTT criteria
AlthoughtheActionStatements andsurveillance requirements havebeenrevisedtoreflectthisseparation, norequirement appropriate foreitherofthetwohasbeendeletedormadelesssevere.NofluxmappingisrequigedintheDNBAction'tatement, becausefluxmappingisusedtomeasureF<,notflow.Theproposedchangesincludedin)hisgroupareonlythosechangesinvolvedinseparating flowrateandFintheT/S.ChangestoexistingfHT/SvaluesforflowareincludedinCategory8ofthisattachment.
                                                                                                      - maintain primary inventory subcooled
Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, AEP:NRC:0916I Attachment 1Page13of18(2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Criterion 1Thisgroupofproposedchangesinnowayremovesorreducesanysafetyrequirements, nordoesitrequirephysicalchangestotheplant.Thus,itisnotexpectedtoinvolveasignificant increaseintheprobability orconsequences ofapreviously evaluated accident.
                                                                                                        - maintain safe shutdown con-dition
Criterion 2Theseproposedchangeswillnotcreatethepossibility ofanewordifferent kindofaccident, fromanypreviously
                                                                                                        - maintain RHR considerations for cooldown
: analyzed, because,beingprimarily editorial innature,theyimpactneithertheaccidentanalysesnorthenucleardesignbases.Criterion 3Theproposedchangeswillnotinvolveasignificant reduction inmarginofsafety,because,asdiscussed above,allaccidentanalysesandnucleardesignbasesremainunchanged.
                                                                                                        - monitor  RCS  heatup and cooldown  rate Pressurizer Hater Level              - None                                                      -  Confirm  if plant  is in  a safe shutdown  condition
Sincethesechangesactuallyrepresent additional restgictions (inthatwewillnolongerbeabletotradeoffRCSflowrateforF)itcouldbeanticipated thatanincrease, ratherthandecrease, inthemargintoDNBunderaccidentconditions mightactuallyAHresult.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
                                                                                                  - Determine    ability  to control  RCS pressure
Thefirstexamplereferstopurelyadministrative changestotheT/S:forexample,changestoachieveconsistency throughout theT/Ss,correction ofanerror,orachangeinnomenclature.
                                                                                                  - Honitor RCS inventory
ThesechangesaresimilartothisexampleinthatRCSflowrateandFarebeingseparated withnoreduction inrequirements, primarily tomakeKeUnit2T/SsmoresimilartothoseforUnit1.Thesecondexamplepublished intheFederalRegisterreferstochangesthatconstitute additional limitations, restriction's, orcontrolsnotpresently includedintheT/Ss:forexample,morestringent surveillance requirements.
                                                                                                  - Haintain pressurizer water level
Thesechangesaresimilartothisexampleigthatwewillbeprohibiting ourselves fromtradingoffRCSflowrateforF<Forthereasonsprovidedabove,weconcludethattheexamplescitedarexelevantandthatthisgroupofproposedchangesinvolvesnosignificant hazardsconsideration.
*Certain indications on this table are used as secondary diagnoses          as the operator proceeds through Post-Incident Recovery.
10.ChanestotheP-12Interlock DescritionThetenthgroupofproposedchangesinvolvestheP-12Interlock description includedinT/STable3.3-3.Thesechangesarenumbered75and77inAttachment 10.TheP-12Interlock receivesinputfromtheTlow-lowbistables.
5251A                                          Qf'Slla<n<IQI<t ~ ~no~nI~4n<< n~ "c<< 2
Thesebistables arecalibrated totripwhentheave0temperature decreases to541Fasspecified inT/STable3.3-4.
 
AEP:NRC:0916I Attachment 1Page14of18With2outof4bistables tripped,P-12permitsthemanualblockoftheLowSteamLinePressureSafetyInjection, causessteamlineisolation underconditions ofhighsteamflow,andremovesthearmingsignaltocondenser steamdump.With3of4Tchannelsabovetheresetpoint,whichisgreaterthan541F,themanual.blockofLowSteamline Pressure0aveSafe'tyInjection isdefeatedorprevented andthecondenser steamdumpisenabled.ThepresentT/Sdescription oftheP-12Interlock isconfusing inthatitneglectsthetripandresetpoints,andinsteaddescribes P-12intermsofconditions above544Fandbelow540F.Ifthisdescription isread00literally, itcouldbeinferredthatP-12isestablished whenTis0oavegreaterthanorequalto544FandwhenTislessthan540F.aveAdditionally, themanualblockofsafetyxn3ection actuation wouldnotbe00permitted untilbelow540F,wheninfactthesetpointis541F.WeproposetorewriteP-12intermsofthe541Fsetpoint, whichissimilarto0themethodology utilizedinRev.4oftheSTS,inordertobetterreflectthefunctioning ofthisinterlock.
ICSTIHGIIOUSE I AOPRIDARY CIASS 2 0
Inadditiontothechangesdescribed above,wehaverevisedtheP-12functiondescription.
TABLE  2-3 (Continued)
Thecurrent,description statesthattheSafetyInjection associated withP-12occursonhighsteamlineflowandlowsteamlinepressure.
TSC INSTRUMENT OASIS PARAMETER                                            INITIAL EVENT DIAGNOSIS*                                        BASIS                  (b,c)
TheD.C.CookUnit2ESFdesignprovidesaSafetyInjection onLowSteamLinepressurewhichdoesnotrequireacoincident signalfromP-12LowLowT.Thisparticular SafetyInjection maybeblockediftheP-12LowLowf.'ignalispresent.Highsteamlineflowaveavecoincident withP-12LowLowTdoesnotprovideaSafetyInjection; itavedoeshowevercauseasteamline xsolation.
System Wide Range Pressure            -  None                                                          -  Determine    if plant    is in  a safe ,
Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(2)(3)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Criterion 1Thesechanges,beingeditorial innatureandintendedonlytomoreaccurately describethefunctioning oftheP-12interlock, willnot,reduceinanywayrequirements orcommitments whicharepresently includedintheT/Ss.Thus,noincreaseintheprobability orconsequences ofapreviously evaluated accidentwouldbeexpected.
shutdown condition
Criterion 2Thesechanges,beingpurelyeditorial, willnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated becauseallaccidentanalysesandnucleardesignbasesremainunchanged.  
                                                                                                          - Maintain the proper relationship between    RCS  oressure apd tempera-ture
                                                                                                            - verify vessel      NDTT criteria maintain    primary inventory subcooled (particularly with loss of ol'fsite power)
                                                                                                            - maintain    l?NR  considerations for cooldown Containment Building Water Level      -  ')etermine whether h'igh energy 'line rupture                  - Determine    NPSll  for recirculation
                                            >as occurred inside or outside containment                      mode    cooling
                                                                                                          - Determine which equipment in con-tainment is submerged Condenser  Air Ejector Radiation        Determine    if steam  generator tube leak                    - Monitor radioactivity release
                                        . has occurred                                                      path to environment Steam Generator Blowdown  Radiation  -  Determine    if steam  generator tube leak                    - Monitor radioactivity release has occurred                                                    path to environment Contaienent Radiation                  Determine      if high energy line break or fuel                  - Moni tor  radi oactivi ty release mishandling accident                                              path to environment
                                                                                                          - Determine    accessibility to con-tainment building
*Certain indications  on this table are    used as secondary diagnoses            as  the operator proceeds through Post-Incldpnt Recnvery.
525lA                                          lVBTlHG!lOUSE .",".A."."I:.'.r; Cr PSS P
 
MSIIHCIIOIISE PIIOPIIIHAW CLASS 2 TABI.E  2-3 (Continued)
TSC IHSTRIINENT BASIS PARAHETER                                              IHITIAL EVENT DIAGHOSIS*
(b,c)
                                                                                                        - Determine  if  significant fuel damage has  occurred
                                                                                                        - Honitor  environmental conditions around equipment in containment Auxiliary Feedwater  Flow              Hone                                                      - Determine  if sufficient flow exists to maintain heat sink Iligh tlead Safety Injection Flow      -  Hone                                                      - Determine that  ECCS    is deliyer-ing flow
                                                                                                        - Honitor ability to    keep core covered Low llead  Safety Injection Flow        -  Hone                                                      - Determine that  ECCS    is deliver-pl&
ing flow I
hJ h)
                                                                                                        - Honitor ability to    keep core covered
                                                                                                        - Infer spray operation Area Radiation Honltoring in            -'etermine      if source of accident is outside',         - Honitor accessibility to plant Auxiliary Building  and  Control          cont a I runent bu i l ding                                zones/equipment Room
                                                                                                        - Honitor radioactivity release path to environment
                                                                                                        - Honitor effectiveness of cleanup holdup systems
                                                                                                        - Honitor integrity of .long-term cooling system I
    *Certain.indications  on  this table are used    as secondary      diagnoses  as the operator proceeds through Post-Incident Recovery.
5251A                                              WESTIHOIIOUSE PIIOPAIETARY CLASS 2
 
gf.'f tttQIIOUSE I AOPNITARY CLASS  g TABLE  2-3 (Continued)
[
TSB IRSTRBMBRT BASIS                                                            II A PARAMETER                                            INITIAL EVENT DIAG1IOSIS+                                  BASIS                  (b,c)
                                                                                                      - Honitor habitability of      the control  room 7
Core  Exit  Thermocouples                  - None                                                        Determine  if core  is being cooled I
Neutron I'lux                              - None                                                      -  Monitor  ability of reactivity control systems to keep the core subcritical                        I Determine  if plant is in  a  safe shutdown  condition Degree  of SuLcooling of                  - None                                                      Haintain    adequate  reactor heat Primary Coolant                                                                                          sink
                                                                                                      - Haintain    safe shutdown condi-tions I
Primary System Safety and                  - None                                                      - Haintain primary system inventory Relief Valve Position
                                                                                                        - Monitor radioactivity release paths into the containment Pressurizer Relief  Tank                  - None                                                      - Monitor capacity to relieve Pressure, Temperature,   and Level                                                                    primary coolant pressure
                                                                                                        - Monitor radioactivity release paths into the containment Containment Isolatton Valve              - None                                                      - Monitor radioactivity release Position                                                                                                paths to the environment
                                                                                                        - Monitor status of containment isolation              I
*Certain tndtcattcns    on  this table are used as secondary diagnoses          as the operator proceeds through Post-Incident Recovery.
5251A 5f SIINGIIOIISE  Pl'OPIllETNY ClASS 2
 
0 WESTINGIIOUSE PROPRIETARY CUSS  2 TA""E  ~. 3 (Continued)
TSC INSTRUHENT  BASIS PAR AHETER                                        INITIAL EVENT DIAGNOSIS*                              BASIS                  (b,c)
                                                                                                                                      )
Secondary Safety,  Reliefs,           - Hone                                                  -  Honitor. radioactivity release and Atmospheric Dump Valves                                                                        paths to the environment
                                                                                                - Honitor secondary  system integrity Accumulator Tank Level                  - None                                                  - Honitor primary system inventory
                                                                                                - Determine whether the accumulator tanks have in5ected into the  RCS Accumulator Isolation Valve            - None                                                  - Determine system operation Position RllR System  Fits                      - None                                                  - Hopitor primary system inventory
                                                                                                - Honitor core heat removal capabilities RllR Ileat Exchanger Outlet            - None                                                  - Honitor  core heat removal Temperature                                                                                        capabilities Component Cooling Mater  Flw          - None                                                  - Honitor system operation of and Temperature                                                                                  a critical support system
*Certain indications  on  this table are used as secondary diagnoses    as the  operator proceeds through Post-Incident Recovery.
SESTINGIIOUSE PROMJETAB'LASS 2
551A
 
WESIINGIIOIISE PROPRIETARY CQSS g TABLE 3  3 (Continued3 TSC IHSTRUHfHT OASIS PARAHfTER                                          INITIAL fVftIT DIAGtlOSIS*                              BASIS                  (b,c)
Boric Acid Charging Flow                - tlone                                                  - Honitor pr imary  system inventory
                                                                                                  - Determine boron  concentration for reactivity control
                                                                                                  - Honitor ability to control    RCS pressure Letdown  flow                          - None                                                            or pri~~ry system  inve,,or
                                                                                                  - Honitor ability to  contr ol  RCS pressure
                                                                                                  - Honitor core heat removal capab ili ty
                                                                                                  - Determine boron concentration      for reactivity control Water Level                            - ttone                                                    - Honitor environmental conditions in Closed Spaces Around Safety                                                                      around required safety equipment fquipmcnt )n Auxiliary Building                                                                    outside of containment Emergency  Ventilation Damper        - Hone                                                    - Ensure proper ventilation to Position                                                                                            vital areas under post-accident conditions ltigh Level Radioactive Liquid    ,
                                        -  tlone                                                  - Honitor capacity to contain Tank Level                                                                                          and store radioactive liquids I
'Certain indications  on this table are used as secondary diagnoses        as the operator proceeds through Post-Incident Recovery.
5251A gfg]NIIOIISE P.".".0" IQ'ARY Clh.S 2
                            ~
                              ~
 
Vlf."TltlGllOUSE PROPAIETAAY CLASS 2 TABLE  2-3 (Continued)
TSC INSTRUMENT BASIS PARAMETER                                                INITIAL EVENT      DIAGNOSIS*                            BASIS                  (b,c)
Radioactive        Gas lloldup Tank          - tlone                                                    - Honitor capacity to contain Pressure                                                                                                    and  stare radiaactive gases of All Electric
            'tatus Power          - None                                                    -  Ensure adequate  electric  power Supplies and Systems                                                                                        ta safety  and  suppart systems Effluent Radioactivity Noble                                                                              - Honitor radioactivity    release Gases,    Radiohalogens,      and                                                                          paths to the enviranment Particulates Plant    and Environs Radioactivity            - None                                                      - Monitor release of radioactive (Permanent        and Portable                                                                              materials not covered by Instruments)                                                                                               effluent monitors Sampling System                                - tlone                                                    - Oetermine  RCS  chemistry for reactivity control    and extent of fuel clad  damage Meteorology (wind speed and                    - None                                                      - Monitor radioactive effluent direction temperature prof lie,                                                                             transportation for emergency and  precipitation)                                                                                         planning, dose assessments,     and source estimates Containment Atmosphere temperature            - None                                                      - Monitor containment    integrity and ttydrogen Concentration
                                                                                                          - Honitor environmental conditians around equipment in containment
*Certain indications        on  this table are  used as secondary diagnoses        as the operator proceeds through Post-Incident Recovery.
CLASS 2 VIESTlrlcttOUSE PROP;;tETNW 5251A
 
iNgiiNGHOUSi PROPRIEMRY      CLASS 2 Systems Status  - Reactor Coolant    System Loop  1      Loop 2  Loop 3    Loop 4 T average ('F)                                 595.2        595,2  595.2    595.2 Overpower DT PoPWR)                            110.0        110.0  110,0    110.0 Overtemp. DT (%PWR)                           110.0        110.0  110.0    110.0 Cold leg temp. (narrow range) ('F)            559.8        559.8  559.8    559.8 Hot leg temp. (narrow range) )'F)              624.0        624.0  624.0    624.0 Reactor coolant flow (%)                      100 0        'G~ 0  100.0    1GO.O Reac'.or coolant pressure - WR (PSlG)        2250.0      2250.0  2250.0    2250.0 Pressurizer pressure (PSlA)                      2250.0 Pressurizer vapor temp.   (')                    563.8 Pressurizer liquid temp. ('F)                      565.2 Pressurizer relief tank pr.ssure (PSlG)                1.5 Pressurizer relief tank level ('h)                  77.6 Pressurizer relief tank temp. ('F)                110.3 Pressurizer safety relief temp. ('F)               120.0 Figure 3. 1'System  Status Display at Qnsite Technical Support Center (Example)
AZP-27
 
yIggHGHOUSE PROPRIETARY CUSS Z Parameter Summary Point      Qescription                    Yaiue    .. Range    Units      Status TO400      RCS Loop    1 Hot Leg T          593.4    0:700 . OEGF        Normal
. TO406      RCS Loop    1 Cold Leg T          5472      0:700    OEGF      . Normal PO480      RCS Pressure                    2234.1    OOOO      PSlG        Normal LO421      Stm Gen 2 Narrow Range Level      39.1    0:100    PC          Low PO549      Steamline Pressure                893.0    0:1100    PSlG        Normal LO103      RWSi Level                        100.0    0;100    PC          Normal LO114      Boric Acid Tank Level              98.8    0:100    PC          Normal LO119      Condensate Storage Tank Level      58.4    0:100    PC          Normal LO947      Containment Bldg.'Vater Level        3.3    0:160    PC          High Figure 3. 2: Parameter!n'ormation  Oisplay at Onsite Technical Support Center (Example)
AEP-28
 
16108-2 WEST)HGHQUSE ?ROPRlETARY CLASS        2 RCS COLD LEG TElNP (oF) 100 700 RCS HOT LEG TEMP (4R
                  '100 100 PRZR LEYEL (~o) 40 2500 PRZR PRESSURE (PSlG) 1900 0    2      4      6      8    10    12  14    16  18  20 T)ME (SECONDS)
Rgure  3. 3Graphic  Display at Onsite Technical Support Canter (Example)
AEP-29
 
    /
                      <<  '. s 'wxA'aa<<~P 4ai    r w<<<<<<.,'/<<./ <<-.ms<<w~ - /t: . '/ga. ~<<aa sm/~as,a/~ wt'<<<<4iv~ wm/ weaww'<<c4~
V/Ella(GHOIJSK PROFRIEfARY CLASS 2
                              '.0    PLAI'lT SAFETY STATUS DISPLAY 4.S    PURPOSE The  functian of the Plant Safety Status Display (PSSD) is to present a succinct account of the overall plant safety status to the control room operator (or supervisor). The entire data base should be available to the operator arranged in a format that will enhance his response to events and the diagnoses of the cause of the event. Because the PSSD serves as an i~a ortant interface between the plant process and the operator, the information presentation should be defined in terms of parameters and logic supportive of defined operating. procedures for dealing with abnormal events.
4.2    INPUT DETERMINATION In urdar tu determine the ".squired cperatinna1 mades fnr the PSSD gene                                            (b,c,e) must first consider'he various types of transients which may occur. A review af postulated plant transients (events) indicated that they can be divided into two basic categories:
: 1. Slaw transienats      wnich da not      result in imnediate protection systems actuation and for which the control room operator has an opportunity to react to possibly terminate the event before safety systems are required to function.
Z. Fast transients which result in almost immediate reactor trip and poss'.bly safeguards ac uation and for which the control r oom operator's  resporsse      is to react to ensure that appropriate safety measures  have been taken and to diagnose              the event(.
Because    cf the fact that Ldi-;-erect parameters and signal ranges ara                                          (b,c,e) associated with the two potential event typegs the PSSO incorpar ates Ltwo                                        !b,c,e) cperating mades. The ',ir't made (TERMIRATE MODE) is itive whi1e:hge 4-1 5435A AEP-30
 
I IIESTll'lGHGUSE PRQPRlEl'nRY CL(SS 2 At (b,c.e) LpIant is    1n a normal operating cond1tion and the second mode (MITIGATE MDOE)    is active following a reactor trgp , The parameters available for
'3 (b.c -)  Leach mode were chosen to maximize the useful amount of 1nformat1on to be (btc.e)  displayed to the operate The role for which the:pSSD providesLsupport t
for each of the operating mode/a 1s as foll'ows:
(b c e)    cEMIMATE MODE l
: 1. Monitor the plant process for abnormalities indicative of slow transients that do not result in imediate reactor trips and for which the control room operator might take corrective or protective action.
: 2. Monitor the    integrity -of    the various boundaries to radioactive release.
MITIf)ATE    KOOE
: 1. Monitor the safety statu" of the          as tripped condition.
: 2. Monitor for conditions which might lead to a breach of any of the levels of defense against radioactive release.
: 3. Monitor the condition of the barriers to radioactive release.
For any    event, the safety status of the plant can be evaluated in terms of six basic safety conc ms. These concerns can be stated as follows;
: 1. Saturation of Reactor Coolant
: 2. Reactivi y Excursion
: 3. Loss  of Primary Coolant Inventory
: a. Loss    of Pressure  and Temperature      Contre/1 4 2 AEP-31
 
(VESTNGHQUSE PRQPRlETARy CLASS 2 LB.      Radioactive Release                                                          (b,c,e)
: 5. Containment Environmengt By  addressing Lacy safety concerns,      the consequences  of abnormal events    (b,c,e) can be    limited or mitigatgd, tThe    tey safety concerns    can be related to specific abnormal occur-            (b,c,e)-
rences.. Tables 4-I and 4-2 indicate key safety goals for some typical postulated events in terms of the PSSD operating mode. It must be noted that these events are typical and        it  is conceivable for multiple events to occur in undefinable sequences. For these reasons, the PSSD must be designed on the basis of key safety concerns rather than specific scenario/a
                  /
In defining the inputs for the        PSSQ,  ttuo requirements have to be  me+~tias (b,c,e) fo 1 1 ows:.
Ll. The  inputs selected must represent a minimum sat sufficient for            (b,c,e) monitoring all possible events including those which might not have been  anticipated.
: 2. The  selection of inputs must address conditions with potentially erroneous signals, conflicting indications, and parameters out of range  (I.e.,  redundancy and  diversity)g In response to the Lfirst requirement, the function of the PSSO has been            (b,c,e) considered in two ways. The primary function is to monitor the plant proc ss in terms of satisfying the key safety concerns. As stated above, by guaranteeing that these concerns are addressed, the conditions of unanticipated events or event sequenc s can be satisfied. The second function of the PSSD is to support the monitoring function of the plant for postulated events and to provide a man-machine interface design that supports a. defined evaluation process and procedures for responding to abnormal      events 4-3 "43"8                                    AEP-32
 
                                    'NEST!!1B!HOUSE PROPRIETARY CLA$$ 2 fn order to    satisfy the Lsecond consideration of evaluating erroneous signals and    the need for redundancy and"diversity, the PSSO must perform-operations upon multi-sensor inputs to evaluate erroneous signals and be able to provide the operator with a diverse method of indicating the plant process. The inputs to the PSSO are chosen upon the basis of their direct relevance to the key safety concerns. Tables 4-3 and 4-4 list some specific inputs related to key safety concerns for several events 4.3  MAN-i%CHINE INTERFACE The PSSO system    will- process the defined input data set of plant param<<,
(a,b,c)  stere atftwo second interval/sand generate displays for redundant PSSD (a,c)    dedicated CRTs located in the control room. QA dedicated          CRT will also be located in the Onsite Technical Support Centaur In order to achieve an effective man-machine interface, the display system must be designed to provide a logical and human engineered dis-play structure and selection process in a manner which supports defined roles in which the operator is expected to perform during an abnormal occurrence.
(b,c)  The  role of the control      room  operator inLdatecting and reacting ".o an abnormal occurrence is expected to follow the rour basic activitieQs depicted in Figure 4-1. The display system structure should be. defined such that it Lsupports an identifiable goal for each of the general activities shown in the figure The.se goalgs are defined as follows:
IActi vity:    Detection Goal:        The  control    room  operator should be in a state of readiness    to make a rapid detection of incipient threats or actual events which may affect plant safety. The response of the operator would be based upon his knowledge of expected plant performance and his skill in controlling the plant process!.
 
4  a Nay. " 4 Jvsaa's 'w V'-"S IflGHGUSE PROPS!EERY  CLASS 2 Activity:        Reacti on                                                      (b,c)
Goal:            The  control room operator must immediately react to the detection of an event. His irst objective is to assure that appropriate safety system responses have been taken and that key safety concerns are being addressed by observing critical plant parameters.
Activity:        Diagnosis Goal:            Following the control room operator's inmediate reaction it  is then necessary to diagnose the cause{s) of the event and determine        if any damage to the various barriers to r adioactive release has occurred. The operational mode at this time would be based on the operator's knowledge supported by reference to various abnormal and emergency operating procedures.
:0        Activity:
Goal:
Terminate/Mitigate At the later stages of the event the control room opera-tor will need to implement the rules or strategies that have been identified as a result of the diagnosis activ-ity. The operator's goal is to verify that corrective actions ara satisfying the key safety concern/a The  display structure        shovtn  in Figure 4-s /supports the specified control (a,c,f) room operator activities and goals.              The displays are structured into three levels of information ranging from general plant systen sumary information with a broad field of at.ention, secondly to a level of information with a narrower field of attention and more definitive information on subsystems and functions, and finally to a level of information containing irdividual sensor values and statuQs 4 g r,3                                          AEP-3 4
 
                        'hil 'G~JSC P Q, la TAR( CLASS QLeveI 1 would  contain information in the form of a continuous graphic display for each of the two operating modes of the PSSO. Information contained in the display would support the detection activityI A  major problem associated with the man-machine interface is the
/requirement that the plant operator sample and process a 'large number of plant parameters and perform what are termed multi-parameter decision processes. An advanced concept in graphic CRT display designed to aid the operator,, is employed for Level 1 information in the PSST Figure 4-3 is an illustration of the display. IEach ray in the figure repre-sents the scale for a process parameter. When the normal operating values for the parameters are plotted on the scales and lines are drawn connecting the points, a geometric pattern is developed. Positive deviations from the normal values result in points further away from the cente~ of the figure while negative deviations result in points closer to the center of the figure. When the actual values of parameters are different from the normal or reference values, the result is a geometric pattern different from the original patter/a Figures 4-4 and 4-5 are preliminary versions of[Level 1 displays for each of the PSSD operationaI mode/a for two sample events:  Primary to Secondary Coolant System Leak and Primary Coolant Systan Leak to Containment. The parameters chosen for the displays were chosen to
/permit an evaluation of the tey safety concern/a
/This advanced graphic dispIay provides two distinct advantaoes over conventional control rocm indicators: a concise, systems level oriented, integration of parameters and secondly, a graphic display format. The detection of an abnormal condition is enhanced as the oper ator task is now based upon the discrimination of two geometric figures. NuIti-parameter decisions and event evaluation is facili-tated by the integrated nature of the display and the fact that only differences in parameters are highlighted by the display. The operator upon detecting abnormalities is then able to se k more specific informa-tion at other information levels to support the reaction, diagnosis, and terminate/mitigate activitiegs 4-6 AEP-35 5435A
 
                      )';-ST!,'su,",OUSE PROPrltTAnY CLASS 2 The'inforaation atfLeve1        2  is an expansion of each of the key safety (a,c,f) concerns and systems.      blare detailed information is provided on the status of the process. For example, the 'values of pressures and water levels in individual steam generators could be provided at this level.
In addition, trend displays for the previous 5 minutes of operation of Level 1 primary display parameters are prov',ded. Diversity in process indications at this level will be employed to enable the operator to verify conclusions. At Level 3, the data is detailed further to provide information on the status of individual sensors, multiple measurement points, and data anomalies. The sensor values are annotated to include
'such things as data-out-of-range and process limits. Information on suspect data qua11ty is carried into upper disp1ay leve1@
4~7 543""A                                      AZP-3 6
 
e                      'e                          e j
                                            &#xc3;ESTlHQHOUSE P!OPRfET'qY Ct ~SS Z TASLE  4-1 PLANT SAFETY STATUS..OISPLAY>> SAFETY GOALS  - TERMINATE MOOE TRANSIENTS (b,c,e)
Reactor Control Systems Malfunction ee e4 e
Stop rod motion
.'*C
'~1
-+i C-                        Maintain core thermal    and  nuclear parameters within limits A
Reactor Coolant System Makeup Control Prevent core thermal and nuclear parameters from exceeding      limits e'
Maintain- pressurizer pressure and level Inadvertent Oepressurization    (Slow)
Terminate depressurization Restore systan pressure Reactor Coolant System Leak Limit radioactive release Maintain pressurizer pressure      and  level eg
'e 0 4-8 AEP-37 54351
 
V/EST1HGHOUSE PRCPRluARY CLASS 2 TABLE  4-2 PLANT SAFETY STATUS OISPLAY    - SAFETY GOALS  - MITIGATE  MOOE  TRANSIENTS (b,c,e)
Reactor Trip Maintain heat sink via steam generators
    -,. Maintain subcooling by controlling steam pressure Maintain pressurizer level Station Blackout Provide secondary heat sink Maintain subcooling Maintain pressurizer level Emergency Eor  ation Prevent return to    criticality Operation with Natural Circulation Provide heat sink Control subcoo 1 ing Maintain pressurizer level Spur ious Safety Injection Oetermine safety    injection is not required  and terminate action Loss  of Reactor Coolant Verify  and establish short term core cooling Maintain long term shutdown and cooling 4-9 AEP-38 5435A
 
V<ESTtfsGHOUSE P OPHIET: RY CLASS 2 TABLE  4-2.(Continued)
PLANT SAFETY STATUS DISPLAY      -
SAFETY'OALS
                                    -  MITIGATE MODE TRANSIENTS',
Loss  of'econdary Coolant Establish stabilized reactor coolant system and steam generator conditions Minimize energy release Prevent lifting of. pressurizer safety valves Isolate, auxiliary feed to affected steam. generator Borate to maintain reactor shutdown margin Steam Generator Tube Rupture Minimize radioactive material release Establish feedwater to unaffected steam generators          and isolate.
faulted unit Maintain residual heat removal capability
          -*  -Maintain RCS'ubcooling Prevent over-flooding    of faulty  steam generator VV C'43GA                                        4-10 AEP-3 9 QV C'C
 
IYBOllCHG"SE FROPRtci~7l'LASS 2 TABLE  4-3 PLANT SAFETY STATUS OISPLAY TERMINATE MOOE PARAMETERS (b,c,e)
Variable                                      Transient Reactor Coolant                    Reactor Reactor Control      'akeup                            Coolant System        Control System      Inadvertent    System Malfunction      Malfunction      Oepressurization Leak avg                        X                X ref                        X                X Rod  position                X                X Oelta T                      X Startup rate                                    X Count    rate                                  X Pzr. pressur 0
Charging flow                                                                    X Pzr. level                                                                        X Comp. cool                                                                        X H20    rad Containment rad                                                                  X Air eject rad.                                                                    X Blowdown r ad.                                                                  .X Cont. humidity                                                                  X Cont. temperatures                                                              X Cont. oressure                                                                  X Prz. discharge                                                                  X piping    temps PRT  pressure                                                      X            X PRT  level                                                        X            X PRT temps                                                          X            X RCP  seal tempera-                                                              X ture RCP  seal flow RCP  seal    level YCT  flow 4-11.
jJ imp                                  AEP-4 0
 
Y~wRCHOVSE PRCPRIETAC CLASS 7 PLANT SAPPY STATUS OISPLAY      "IlTTGATE WOE PARAvETERS VWable                                          Trans1cnt Steam Operation      loss of  Loss  af Generator Reactor    Station    Gnergency    with 'latural  Ceo lant Secondary    Tube Trip    Blackout    Bar'ation    Clrcul atlon  Accident  Coolant  Ruature.
Reactar    trip  breaker    X Startup rate                X Reutran    flux              X                        X Rod  pos1tfon              X                        X Turbine tHp                            X Blackout signal                        X Tavg ( thermacoup 1 es )                              X Rad bottom 3nd.                                      X Primary pressure                                                                  X Stcam  flex                                                      X              X Feed  flow                                                        X              X Pressurf ter level                                                X              X      X Care thcrmacoup les                                                X              X      X Cont. radar    at<an                                                                        X Afr Qectar rad$ at5an                                                                              X Slowdown radiation X
Cont. pressure                                                                    X        X" Pri. M.R. tanp.                                                                  X        X Stcam pressure            I    ~
X        X Cant. sump level                                                                  X Cant. temperature-Cant. huahdl ty Charging flaw                                                                                      X S.G. level                                                                        X                X B.A. tank levei                                                                    X Aux. fmd flaw                                                                      X Sa  'law                                                                          X RMST  level                                                                      X      X CST level                                                                          X      X a-lZ.
AEP-4 1
)cSBA
 
16708-1 ygggtfGHOUSE PROPRtH'ARY CLOS 2 (a,c)
CONDITIONS NORMAL      DETECTION
                                        ?
YES      SAP ETY IMPLEMENT      IDENTIFY              LIMITS      REACTION RESPONSE      RESPONSE            VIOLATED NO DIAGNOSE PROBLEM      DIAGNOSIS TAKE COR R ECTIV'E TERMINATE ACTION        /MITIGATE Figure 4-1. Operator Response Madel AEP-42
 
16643 10 WESTINGHOUSE PROPRIETARY, CLASS 2 T p Qrepftie,              LEVEL 1 OISP LAY Olsplay C'y X Loop, TSAT          Reactor TAVQ TH TC            Coolant PR. Press        Inventory STIjf/FO Flow      Przr Level P Steam  RCP's    Cte. Leatown
                                                                  , LEVEL 2 OISP'LAYS Pressure Relief Vlv.              W.R. TH. TC.
Safety Vlv.                  Core TC's Spray                    TSAT. Etc.
Heaters PER. TCS Sensors, Comparisons      LEVEL 3 of Redurufant    OISPLAYS IVleasurernent Error Ctteeks  j Inputs Figure 4-2. Display Structure of Plant Status Display AEP-43
 
WESTlHGHOUSE PROPRlETARY CLASS 2 Primary Tavg (Value) F Startup Pressurizer                                    Rate Pressure                                        (Value) Oec/Min (Value) psi
                                /
                              /
                              /
                            /                                        Containment Pressurizer                /
Level                                                                Humid (Value) o/o (Value)  4k                                              /          Temp (Value) 'F
                                                        /
                                                      /
                                                    /
Charging                                        Radiation Flow                                            Contmt (Value) GPM                                      Blwdn Air Eject Steam Gen Level (Value) Io Fig"~ 4-3. S~pie Display plant Safety St tus Dl~tay AEp-44
 
NESTINGHOUSE PROPRIETARY CLASS 2 Primary T avg (Value)  'F Pressurizer                                        Startup Pressure                                          Rate (Value) psi                                        (Value) Dec/Min
- ~
k 4
Pressurizer                                                            Containment Level                                                                  Humid (Value) '6 (Value) %                                                      I I    'emp (Value)'F I
I I
II Charging                                          Radiation Flow                                              Contmt (Value) GPM                                      Btwdn Steam Gen                  Air Eject Level (Value) %
Figure 44. Sample Plant Safety Status Display Terminate Mode Primary to Secondary Coolant Sys;em Leak (SG Tube l ak)
AEP-45
 
WESTINGHOUSE PROPRIETARY CLASS 2 RCS W.R.
(a,c,f)
Temp (Value) oF (Value) 'F Tsat            Startup Rate RCS W.R.
Pressure                                        (Value) Dec/Min (Value) psi 4
~ '\
II
                                                          \
                                                          \
I I                          \
I Pressurizer              II                                                Containment Level                                                                      Pressure I              (Value) psi (Value) %
II I I
II rr
                                              ~r R. V.                                                Radiation Level                  Steam Gen                    Contmt (Value) %              Level                        Bid dn (Value) %                    Air Eject Figure 4-K Sample Plant Safety Status Display Mitigate Mode Primary Coolant System Leak to Containment mx-46
 
                                'EVESTlNQHOOSE PROPRIETARY CLASS 2
: 5. 0 . BYPASSED ANO INOPERA8LE STATUS INDICATION FOR.
PLANT SAFETY SYSTEMS 5.1    PURPOSE The purpose    of the  Bypassed    and Inoperable Status Indication (BISI) system is to provide the control room operator with a continuous systems level indication of a bypassed or inoperable condition for the systems comprising the engineered safety features. The system considers the, actual status of individual components including systems level bypasses and control room operator entered inputs for components removed from service.
5 ~2    INPUT OETERNINATION Bypassed    and  inoperable status indication is provided for the systems comprising the engineered safety features and their critical supoort systems. These systems are identified in Table S .        l. This table also identifies the types of components for which monitoring is required, the approximate number of each type of component, and the type of status
.information needed. This list is generic in nature and will be revised to meet individual plant specific designs.
Ie the evaluation of system inputs, the components in each systan are.
considered in the light of being in a proper state to perform or supoort the operation of a safety function. The systems level bypass functions that must also be considered are listed in Table: 5.2. In addition to automatically monitored inputs, the system also considers the effect of component or sys.em out of service inputs manually entered by the control room oper ator.
: 5. 3  MAN-MACHINE INTERFACE The    interface between the operator and this system is provided by redun-dant CRT displays and keyboard consoles located in the control room.
Personnel    located in the Onsite Technical Support Center        will  also be AEP-47
 
                              ~ Ve'FSTlhGHOUSE PRO?RlH'hI1Y CLASS 2 able to access      the same information. The 6IGl uti1izes a structured display hierarchy for the operator '.'nterface. The display hierarchy is shown    in Figure 3.1.
The  primary display, an example of which is shown in Figure 3.2p con-tains the following information for each of the systems comprising the engineered    safety features:
L    Sypassed  or inope~able statu" indication for each affected subsystem on  either a systems level and/or train level basis.
Z. identification of    whether the condition is due to the inoperable status of a    component or auxiliary support such as cooling water, power supply,    tc.
Other levels of displays such as shown in Figure.3 . 3 provide supporting information    on  individual components within each subsystem and support system. Lnn additional display provides a ".abulation of all control room operator entered inputs ror inoperable components for which automatic monitoring can not be accommodated or for which monitoring does not currently exist whenever the      status of a system becomes inoperable or bypassed, the ontrol roan operator will be alerted by an audible alarm and the primary display will indicate via video highlighting (e.g., flashing, color change, reverse video, etc.) the affected systen and subsys.em.
The operator can then access supporting displays tc determine the cause the bypassed or inoperable condition. The ontrol room operator must tionss of acknowledge the abnormal condition in order to silence the audible alarm. Reinstatement of normal systen function wi 11 also generate a different audible signal.
Two  additional capabilities of the SISI are the timing            and test func-AEP 48
 
WESTltsGHQUSE PI'.OPHl~iARY CL".SS g
/The  timing i'unction enab'les the control rom aperator ta set up a count-  (a,c down timing function for a system which is bypassed or inoperable.      An audible alarm would be generated at the expiration of the operator specified time limit. -This feat'ure would aid the control room operator in complying with Technical Specification time limits for systems unavailable for service.
The  test function  enables  the control room operator to test the ef ect on systems level status of a change in component, status prior to chang-ing the component's status.      In response to the control room operator entered input, simulating the affect of changing a component's or sys-tem's status, the system determines tne resultant effect on system operability and indicates the result to the central racm operator 3~3 AEP-4 9
 
I TABLE    S.l
                                                  ~
BYPASSED At10 ItsOP RABL        STATUS ItsOICATIOt1 COMPOttEHT INPUTS
                            ~Sstem                                          Comoonents                        Status
('.c)
Emergency core                    cooling            Yalves                                Open/Shut
                                                                    =
Pumps                                Operable
                                                                    ~
                                                                      .Process                              High/L'o~, etc.
(level, pressure)
~ t$
y,'I
              .Auxiliary feedwater                                    Valves                                Open/Shut
~'a o
"a                                                            .      Pumps                              . Operable
                                                                  . Process                              Nigh/Low, etc.
Containment                                            Valves                              Open/Shut Pumps                                Oper able Process                            =
High/Low, etc 0                      spray'ontainment i so ation          1                  Valves                                Open/Shut Auxiliary power                      system          Breakers                              Open/Closed/Out
                                                                'enerators                                  Operab.l e Voltages                              High/Low
              'Containment    ventilation                            Yalves                                Open/Shut Motors                                Operable Containment hydrogen                                  Valves                                Open/Shu recombiners                                          Motors                                Operable Component coo1ing                                    Valves                                Open/Shut Pumps                                Oper able Service water                                          Yalves                                Open/Shut Pumps                                Operable 3~
AEP-50
  ~
      .            ~ ~ o                                                    ~ ~  ~ ~    4    ~
 
A WESTINGHOUSE PROPRjETARY CL4SS 2 TABLE  5.2 Y
rq BYPASSED AND INOPERABLE STATUS,    INOICATION-SYSTEM LEVEL BYPASS FUNCTIONS Safety injection Low pressurizer pressure Low steamline pressure Manual  reset Steaml inc  isolation
~
s4 4
Steam dump  interlock Steam generator    blowdown  isolation 3-5 AEP-51 5251A
 
IESTINGHOUSF. PROPRIETARY CLASS 2 Systems Level Status cCCS Hl Head Sl      Prfrnary Qteplay Accumulators Operator                              Etc.
Inputs Safety              Continent              lOtnersl lntecuon                Spray Pump 1 Ready Pump 2 Out      Stthsystern Cont ponent Valve t Open    Level Qtapksy Containment Spray Suc pot Comoonent Cooling    Support Systornl ESP Power      Component Lovel Pisplay Etc.
Figure  5. 1 Display Structure 8ypasseC and inoperable Status indication AEP-52
 
IESTINGHpUSE pRppRIETARY CLASS 2 8YPASSED AND INOPERABLE STATUS DISPLAY SYSTEMS Emergency Core Cooling-High Head SI                    Operable Intermediate Head Sl            Operable Low Head SI                    Operable Accumulators                    Operable Auxiliary Feedwat r                Operable Containment Isolation              Operable Containment Spray                  Inoperable - Train A Component Contaioment Ventilation            Operable Safeguards Power Source            Operable Figure. 5. 2Primary Disofay Bypaued and inoperable Status indication AZP 53
 
WESTINGHOUSE PROPRlETARY CLAS) g CONTAINMENTSPPAy Train A                      Train 8                      Train C VLY101                        VLV201                      VLV301 Pump A Suet      Open        Pump 8 Suet    Open        Pump C Suet  Open YLV111                        VLV21 1                      VLV31 1 NAOH Supply Open              NAOH Supply    Open        NAOH Supply Open Pump A          Operable    Pump 8          Operable    Pump C        Operable VLY102                        VLV202                      VLV302 Pump A Outlet Closed          Pump 8 Outlet  Open          Pump C Outlet Open VLY103                        VLV203                      VLV303 Headr A Outlet Closed        Headr 8 Outlet  Closed      Headr C Outlet Closed VLV121                        VLV221                      VLY321 Recirc A        Closed      Recirc 8        Closed      Recirc C      Closed Refueling Water Storage Tank LS1 CO Level    Normal LS101 Level      Normal LS1 02 Levei    Normal LS103 Level      Normal NAOH Spray Additive LS200 Level      Normal      TS200 Temp    Normal LS201 Level      Normal      TS201 Temp    Normal LS202 Level      Normal      TS202 Temp    Normal Figure  5. 3 Secondary Display  Bypassed  and Inoperable St-tus Information AEP-54
 
6    TSC ZNSTRUiiENTATZON As described in Section 2, most of the input signals t  t ie TSC computer are taken from the existing instruments which also provide signals for the Control Room indicators. This approach will provide consistent data in both the control room, Onsite Technical Support Center and the EOF. The input signals to the TSC computer therefore have the same high quality, accuracy and reliability as the control room signal. Znputs to the TSC computer provide transformer isolation for all analog input signals and all digital input signals are optically isolated. Zn addition, all signals from the Reactor Protection Channels are taken after the existing safety grade isolators. The interfacing of the TSC Computer to the existing plant instrumentation was designed so as not to result in any degradation of the control room, protection system, controls or other plant functions. Any degre'dation that isq noted during checkout and integrated systems testing will be corrected.
AEP-55
 
7.. TSC KWER SUPPLY SYSTEPS 7.1  POWER YO THE TSC CCMPUPER SYSTl24:
1  b g      ~y (UPS). This  UPS  system  will provide    the  TSC  c~ezs      arB pexiphexal egal@~< with a high quality, transient fxe power source.
7.1.1  THE UPS SYSTEM:
Figuxe 7.1 shows a one-line diagram (schematic)            for the UPS system.
    -The system the battezy consists of xedundar&
invextexs, and static txansfer switches.
charger converts    AC  to  CC
                                                            ~
battezy chairs,. battezy, static and ruxmal conditions, supplies  it to the imaxter.      'Ihe battexy    charger  also kems        the battezy at,    fiQl charge. The  invexter. converts the    CC  to AC  in order to  supply the 7.1.2 COHSHQ~S          CF PCNER SUPPLY INTERRUPTIGH:
thexe    is a power xeduction (dip or degradation) or loss (failure) of the AC pcwer souxce, the UPS battezy ?eccnes t".w pr'unary source of D" to &a umexter, rather than 51m battezy charger which has lost its normal          s~        of AC power supply. Tt~
h      F                                                                  for a pexicd of    30  minutes. This allows a      sufficient tine interval in which a diesel. genexator      (badmp  AC  source) can be    made  available to provide    power  to the inverter. In the unli3cely event of loss or AEP-56
 
TSC POWER SUPPLY SYSTEM (CONCEPTUAL OESIGN)
I EMERGENCY SOURCE                  NORMAL SOURCE                BACK-UP'OURCE I NOEP ENOENT                      INOEPENOENT                  INOEP ENOENT 600    VOLT BUS                    600 VOLT BUS                600 VOLT BUS O'C.C.                      M.C.C.
BREAKER                    BREAKER 225A                        225A M.C,C.                                        AUTOMATIC BREAKER                                          TRANSFER 225A                                              SWITCH 260A 600                  ~700 I
A~MP 700 AMP
                '5KVA                  BATTERY CHARGER        BATTERY 120                  I                      CHARGER (ALTERNATE}
BATTERY 927A 40KVA                        40KVA INVERTER                    INVERTER STATIC                      STATIC SNITCH                      SWITCH FIGURE 7. I UNIT W    I                UNIT W2 TSC                          TSC COMPUTER        8            COMPUTER    8 P 'ERIPHERALS                P ERIP HERA LS AEP  -56o
 
unavailability af both the rurmal  and badcup AC sources,  the static swi~ will beused for transfer,    if necessary,  to the  enaxcpncy AC source~
7;2  PONER TO THE TSC CDMPLZX:
Standard balan-plant      (BOP)  sources  will provide  the TSC with power for lighting    and cowmnience    receptacles. For additional protection,, the lightizq fixtures are provided with battery      pactum for continued operation  in the event  of loss af the  EOP  pamr supply. The PRC  equitant will be supplied frcm    an Essential  Services System bus QC source) .
AEP-57
 
Section 8.0 Original pages AEP-58 through AEP-62 have been deleted from this submittal. The descriptive information that was contained therein can be found in the OCCNP Emergency Plan.
AEP-58 L
?af IC 5 ~
C
 
Section 9.0 Original pages AEP-63 through AEP-65 have been deleted from this submittal. Listings of plant records, plant specific reference material, general technical reference material, plant procedures and reports that are available to personnel working in the TSC are provided in general company internal documents which pertain to the subject matter.
AEP-63
 
Attachment  1 to AEP:NRC:0916I REASONS AND 10 CFR  50.92 ANALYSES FOR CHANGES TO THE DONALD C. COOK NUCLEAR PLANT UNIT 2 TECHNICAL SPECIFICATIONS
 
I I
I j,r I /                I 1
rr e
                                                                      'I t
4 I )
                                                                            . r
                                          .,      g~A rtl 4~ '1 11      I IC      jI Ip I
                                          )1    .,
j I
I'I 'I 1 11 IJ I
                                                ,4  i        I,        I rt '
                                                  >> jar        '
lr rjh    /
+ktr'fl g I P Jf en rr ~
Ab::        .,i.j f",",1;i,'j,-';:;,,;
I tr Il
 
AEP:NRC:0916I                        Attachment  1                    Page 1 of      18 The Technical Specification (T/S) changes included in this letter are, in general, those necessary to support the safety analyses performed by Exxon Nuclear Company (ENC) for the Unit 2 Cycle 6 reload.        In addition to these changes, however, we have included additional changes which are intended to make the T/Ss clearer, easier to use, or more consistent with the Standard Technical Specifications (STSs) for Westinghouse Pressurized Water Reactors, NUREG-0452, Rev. 4 (or Draft Rev. 5, where applicable).
A summary  of the  changes has been included as Attachment 10 to this letter. It  includes a brief description of each change, as well as the reason for the change, and, where applicable, references to the safety analyses the change is based on. This attachment includes an overview of the changes, as well as our 10 CFR 50.92 justifications for no significant hazards consideration.      Please note that the changes will be referred to by their numbers, which are given in the "Description of Change" column in 0.
We  have grouped the changes into 12 separate    types for ease  of discussion.      These changes are discussed below.
: 1. Editorial  Changes The first group of changes to be discussed consists of those that are purely editorial in nature. These changes are numbered 1, 2, 5, 6, 12, 20/
21'4'5'6'5'0~
105  in Attachment 10.
60~ 62~  69'4'1~
These changes 83~ 84'8'" 90'3J 94'7/
are proposed to enhance the 98'nd readability of the T/Ss, to achieve consistency between the Unit 1 and 2 T/Ss, or to achieve consistency with the STSs, as described in Attachment 10.
Per 10 CFR 50.92, a proposed amendment will involve a no      significant hazards consideration      if the proposed amendment does not:
involve a significant increase in the probability or consequences of  an accident previously evaluated,
      '(2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
Criterion    1 These changes,    being editorial in nature and intended to improve the readability of the T/Ss, will not reduce in any way requirements or commitments in the existing T/Ss. Thus, no increase in the probability or consequences of a previously evaluated accident would be expected.
Criterion    2 These  purely editorial changes will not create the possibility of a new or different kind of accident from any previously evaluated, because all accident analyses and nuclear design bases remain unchanged.
 
AEP:NRC:0916I                        Attachment  1                    Page 2 of 18 Criterion  3 The proposed    amendment  will not  involve  a  significant reduction in margin of safety,    because, as  discussed above,  all  accident analyses and nuclear design bases remain unchanged.
Lastly,    we  note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.      The first of these examples refers to changes. that are purely administrative in nature: for example, changes to achieve consistency throughout the T/Ss, correction of an error, or a change in nomenclature.      This group of proposed changes is intended to achieve consistency between the Unit 1 and 2 T/Ss, to achieve greater consistency with the STS format, or to improve the overall readability of the T/S document. As these changes are purely editorial and do not impact safety in any way, we believe the Federal Register example cited is applicable and that the changes involve no significant hazards consideration.
: 2. Removal    of 3-Loo Technical    S  ecifications A second category of changes involves removal of Technical Specification provisions for 3 reactor coolant loop operation in Operational    Modes 1 and 2. These are changes numbered 3, 7, 16, 29, 30, 31, 46, 56, 59, 61, 67, 91, 99, and 100 in Attachment 10. This category includes all changes involving removal of 3-loop provisions except for those associated with Functional Unit l.e. (Differential Pressure Between Steam Lines-High) on Engineered Safety Features (ESF) Actuation Instrumentation Table 3.3-3. Three-loop changes associated with this ESF signal are discussed in Category        5 of this Attachment.
License Condition 2.C.3(j)      for Unit  2  prohibits operation with less than 4 pumps at power levels above the P-7 permissive (approximately 11%          of rated thermal power). As a matter of practice, we have extended this restriction to cover all of Modes 1 and 2. As T/Ss covering 3-loop operation in Modes 1 and 2 are therefore not necessary, we propose to remove them to streamline the document.
Included in this group of changes is the deletion of T/S 3/4.4.1.4.
Although this specification contains provisions for less than 4-loop operation in modes other than 1 and 2, the requirements for other modes which remain applicable are addressed identically in other T/Ss, as specified below:
Action Statement (Below P-7)                          Where Addressed a                                T/S 3 '.1.1 b                                T/Ss 3.4.1.2 and 3.4.1.3 c                                Not needed, since 3-loop operation in  Modes 1 and 2 will be  prohibited.
 
AEP:NRC:0916I                    Attachment  1                  Page 3 of 18 Per 10 CFR 50.92, a proposed amendment will involve a no  significant hazards consideration  if the proposed amendment does not:
involve a significant increase in the probability or consequences of an accident previously evaluated, (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
Criterion  1 This group of changes will extend the license condition prohibiting 3-loop operation above the P-7 permissive to include all of Modes 1 and 2. Thus, the changes would be expected, as a minimum, to reduce the probability, or consequences of a previously evaluated accident.
Criterion  2 Since these changes place additional restrictions on plant operation, they would not be expected to create the possibility of a new or different kind of accident from any previously analyzed or evaluated.
Criterion  3 Since 3-loop operation in all of Modes 1 and 2 will be prohibited, additional margin to DNB under accident conditions should result. Thus, margin of safety should be increased rather than decreased.
Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The second of these examples refers to changes that impose additional limitations, restrictions, or controls not presently included in the T/Ss. Since prohibition of 3-loop operation in Modes 1 and 2 constitutes a restriction which the current T/Ss do not have, we believe this example is applicable and that the changes involve no significant hazards consideration.
: 3. Additional Restrictions  Because  of Safety Analyses A third group of changes involves inclusion of proposed new requirements in the T/Ss. The new requirements are proposed to make the T/Ss consistent with the safety analyses performed by ENC in support of the Cycle 6 reload, or to achieve consistency with the STS. These changes are numbered 9, 22, 51, 52, 55, 63, 64, 70, 72, 73, 80, 82, 86, 92, and 102 in 0. The applicable references to the safety analyses are included there also.
Per 10 CFR 50.92, a proposed amendment will involve a no  significant hazards consideration  if the proposed amendment does not:
(1)  involve a significant increase in the probability or consequences of  an accident previously evaluated,
 
AEP:NRC:0916I                      Attachment  1                    Page 4  of 18 (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
Criterion  1 These changes    constitute additional restrictions on the plant in terms of T/S mode  applicability, surveillance requirements, or Action Statement requirements. Since none of these changes reduce in any way previous safety requirements, they would not be expected to result in an increase in the probability or consequences of an accident previously evaluated.
Criterion  2 These changes  will place additional restrictions    on plant operation  and will increase, rather than reduce, requirements for safety. Therefore, they should not create the possibility of a new or different kind of accident from any previously analyzed or evaluated.
Criterion  3 These changes    add additional safety requirements, and in no way reduce any existing  requirements.      Thus, no reduction in margin of safety will occur because of  these  changes.
Lastly,  we  note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.      The second of these examples refers to changes that impose  additional limitations, restrictions, or controls not presently included in the T/Ss. These changes impose additional restrictions on the plant for consistency with the Cycle 6 safety analyses or the STSs. Thus, we believe that this example is applicable and that the changes involve no significant hazards consideration.
: 4. Refueling Water Storage Tank      Chan es A fourth group of changes involves T/Ss 3.1.1.3, 3.1.2.3, 3.1.2.5, 3.4.1.2, 3.4.1.3, and 3.9.8.1 specifically as they apply to borated water addition or positive reactivity addition from the Refueling Water Storage Tank (RWST) . These are changes    numbered 25, 26, 27, 87, 89, and 104  in 0.
T/S 3.1.1.3 requires reactor coolant flow of at least 3000 gpm during dilution of the    Reactor Coolant System (RCS) boron concentration in any mode. T/Ss 3.4.1.2 and 3.4.1.3 require at least one coolant loop to be in operation during boron dilution in Modes 3, 4, and 5. T/S 3.9.8.1 requires 3000 gpm of coolant flow via the Residual Heat Removal System during boron dilution in Mode 6. T/Ss 3.1.2.3 and 3.1.2.5 prohibit positive reactivity addition in Modes 5 and 6 with charging pumps or boric acid transfer pumps inoperable, respectively. Because of concerns with literal T/S compliance, questions have arisen as to the applicability of these specifications during the times when we add water to the RCS from an operable RWST, specifically when the boron concentration of the RWST is lower than the RCS.
 
AEP:NRC:0916I                        Attachment  1                      Page 5    of 18 The RWST minimum boron    concentrations stated in the T/Ss were established to ensure that adequate shutdown margin is maintained, and are consistent with numbers assumed by ENC in their Cycle 6 reload analyses.
Because of this,    it is our belief that the boron dilution restrictions of the T/Ss listed above were not meant to be applicable during water addition from the RWST, provided the boron concentration in the RWST exceeds the minimum requirements stated in the T/Ss. We have documented this interpretation in the past (see our letter AEP:NRC:0975A, dated February 28, 1986); this change is submitted only to formalize this interpretation.
Per 10 CFR 50.92, a proposed amendment will involve a no          significant hazards consideration      if the proposed amendment does not:
involve a significant increase in the probability or consequences of  an accident previously evaluated; (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)    involve a significant reduction in a margin of safety.
Criterion    1 Our review has determined      that the T/S RWST minimum boron concentrations are  sufficient to    ensure that adequate shutdown margin is maintained throughout the entire core life. Additionally, the RWST boron concentrations are consistent with those assumed in the LOCA analyses performed by ENC. Thus, we conclude that these changes will not significantly increase the probability or consequences of an accident previously evaluated.
Criterion    2 The proposed    amendment will not create the possibility of a new or different kind of accident from any previously evaluated. It has been determined that the RWST boron concentration is sufficient to ensure adequate shutdown margin from all expected operating conditions. The consequences of adding water from an operable RWST which is at a lower boron concentration than the RCS is therefore bounded, and no new or different kind of accident from those previously evaluated would be expected.
Criterion    3 Because  these changes lessen operating restrictions,        it can be expected that a reduction    in safety margin may    occur. However, because  the RWST minimum boron    concentrations  are  sufficient  to  provide adequate    shutdown margin  from    all expected  operating  conditions,  this reduction  in  safety margin would be insignificant.
Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.      The sixth of these examples refers to changes which may result in some increase to the probability of occurrence or consequences of a previously analyzed accident, but where the, results are
 
AEP:NRC:09161                        Attachment  1                  Page 6 of  18 clearly within limits established as acceptable. As discussed above, these changes relax requirements related to boron dilution or positive reactivity addition, but are clearly bounded by our shutdown margin analyses. Thus, we conclude that the example cited is applicable and that the changes involve no significant hazards considerations.
: 5. Changes    to the Differential Pressure Between    Steam Lines-High ESF Actuation Signal The fifth group of proposed changes involve Functional Unit l.e (Differential Pressure Between Steam Lines-High) under the Engineering Safety Feature (ESF) Actuation System Instrumentation Table 3.3-3. These changes  are numbered 67, 68, and 71 in Attachment 10. Specifically, we are proposing to change the footnote designator for the Channels to Trip column of the 3-loop section to a quadruple pound sign, and to add a corresponding new footnote to the Table 3.3-3 notations on T/S page 3/4 3-21.
Additionally, we propose to revise the functional unit to prohibit 3-loop operation in Modes 1 and 2, consistent with Category 2 of this attachment.
The  Differential    Pressure Between Steam Lines-High actuation differs from other    ESF actuation signals in that a signal from one loop is compared to signals in the other loops. The current footnote associated with this signal for the 3-loop case states: "The channels associated with the protective functions derived from the out of service Reactor Coolant Loop shall be placed in the tripped mode." This could be construed to mean that all channels in the out of service loop should be tripped. This in turn would result in an ESF actuation.        It is our belief that the footnote as applied to this functional unit means to trip the bistables which indicate low active loop steam pressure relative to the idle loop. This action reduces the ESF actuation logic for the active loop differential pressures from 2 out of 3 to 1 out of 2, and thus permits 3-loop operation in Mode 3 since  2 channels per steam    line are  necessary for a  trip.
Per 10 CFR 50.92, a proposed amendment will involve a no      significant hazards consideration      if the proposed amendment does not:
involve a significant increase in the probability or consequences of  an accident previously evaluated, (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
The  prohibition of 3-loop operation in Modes 1 and 2 is consistent with the changes included in Category 2 of this attachment. The 10 CFR 50.92 analysis is thus identical and will not be repeated here. The 10 CFR 50.92 analyses included in this category are therefore only those involved in rewriting the Differential Pressure Between Steam Lines-High footnote in T/S Table 3.3-3.
Criterion    1 The changes    included in this group are editorial in nature, intended only to clarify    the ESF Actuation System Instrumentation Table (3.3-3) as    it
 
AEP:NRC:0916I                        Attachment    1                          Page 7  of  18 applies to the Differential Pressure Between Steam Lines-High actuation signal. Thus, no significant increase in the probability or consequences of a previously evaluated accident should occur.
Criterion  2 The proposed amendment      will not    create the    possibility of    a new    or different kind of accident from any previously            evaluated because      these changes, being editorial in nature, will not impact existing safety analyses or the nuclear design bases.
Criterion  3 The proposed    amendment  will not    involve  a  significant reduction in margin of safety because,    as  discussed above,    all  accident. analyses and nuclear design bases remain unchanged as a        result of these      proposed T/S changes.
Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.      The first of these examples refers to changes that are purely administrative in nature: for example, changes to achieve consistency throughout the T/Ss, correction of an error, or a change in nomenclature.      This group of proposed changes is intended only to clarify the T/Ss, to avoid the possibility that they may be misread. As these changes are editorial and do not impact safety in any way, we believe that the Federal Register example cited is applicable and that the changes involve no significant hazards consideration.
: 6. Changes    to the Power-0 crated Relief Valve          (PORV) S  ecification, 3/4. 11. 4 The  sixth group of    proposed changes involve a redraft of T/S 3/4.11.4, concerning the Pressurizer Power-Operated Relief Valves (PORVs). These changes are number 95 in Attachment 10. Specifically, we are proposing to change T/S 3/4.11.4 to require that at least 2 PORVs be available in Modes 1, 2, and 3. For purposes of this specification, "available" means that the PORV is operable with its solenoid deenergized and that the block valve is operable and energized. This differs from the present T/S, which allows all 3 PORVs to be inoperable, provided their associated block valves are closed. The proposed changes are intended to ensure that PORV relief capability is available to assist in          RCS depressurization        following a steam generator tube rupture      without  offsite  power,    and  to  respond    to comments made by members of your      staff  at  a  meeting  held  with  us  in  Bethesda,    MD on December 13, 1984.
Per 10 CFR 50.92, a proposed amendment will involve a no                  significant hazards consideration      if  the proposed amendment does not:
involve a significant increase in the probability or consequences of  an accident previously evaluated, (2)  create the possibility of new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
 
AEP:NRC:0916I                    Attachment  1                    Page 8  of  18 Criterion  1 This group of changes constitutes additional restrictions placed on PORV (and associated block valve) operability requirements.      Since no restrictions associated with the PORVs are reduced in any way by this group of changes, we conclude that these changes will not increase the probability or consequences of a previously analyzed accident.
Criterion  2 Since these changes place additional restrictions 'on plant operation and        in no way reduce present safety restrictions, they would not be expected to create the possibility of a new or different kind of accident from any previously analyzed or evaluated.
Criterion  3 These changes  add additional restrictions on the PORVs, designed primarily to ensure that  PORV relief valve capability is available to assist in RCS depressurization following a steam generator tube rupture. Thus, these changes would be expected to increase, rather than decrease, safety margins.
Lastly, we note that the Commission has provided guidance concerning the  determination  of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The second of these examples refers to changes that impose  additional  limitations,  restrictions, or controls not presently included in the T/Ss. Since this group of changes will require PORVs to be operable in Modes 1 through 3 (where previously no operability requirement existed), they clearly constitute additional restrictions. Thus, we conclude that the example cited is applicable and that no significant hazards are involved.
: 7. Addition of T/S 4.0.4  Exem  tions The seventh group of proposed changes are those which add T/S 4.0.4 exemptions to existing T/Ss. These changes are numbered 44, 65, 66, and 103 in Attachment 10. For the first of these changes, a T/S 4.0.4 exemption has been proposed for the flow measurement performed after each refueling and for all flow surveillances for the DNB T/S, 4.2.5.1 (see numbers 44 in Attachment 10).      (The flow specification has been moved from the F H specification (3/4.2.3) to the DNB specification (3/4.2.5.1) for consistency with Unit 1 specifications.) This exemption is required because flow is measured using secondary calorimetric and primary temperature measurements, which can only be performed at or near full power. The flow instrumentation is calibrated based    on this  measurement.
Exemptions have also been provided for several Nuclear Instrumentation System (NIS) calibrations (see numbers 65 and 66 in Attachment 10) in T/S Table 4.3-1. Of these, those proposed for source range and intermediate range detector calibrations appear in STS, Rev. 4. STS, Rev. 4 also provides this exemption for the incore detector, excore power range
 
AEP:NRC:09161                  Attachment  1                  Page 9  of 18 detector cross-calibration performed after refueling. Our proposal extends this exemption to the quarterly incore detector, excore power range detector cross-calibration in order to address the situation where an unscheduled outage of significant duration causes the surveillance interval for this calibration to lapse. This exemption is proposed for the daily power range, neutron flux heat balance because  it is required to be performed above 15% rated thermal power by T/S. It is also proposed for the monthly incore-excore axial offset comparison for the same reason. These exemptions are needed to address unscheduled outages for which the surveillance interval has lapsed. An exemption from T/S 4.0.4 for the source range channel functional test is proposed. This exemption addresses the situation that results from a reactor trip after continuous power operation of more than 1.25 times 31 days. This surveillance cannot be performed at power without damaging the source range detectors.
Exemptions from T/S 4.0.4 are proposed for the single-loop and two-loop loss-of-flow trip calibrations of T/S Table 4.3-1. These are required because these calibrations are based on the primary flow measurement taken at or near full power which was discussed above in relation to flow instrumentation. These changes are numbered 65 and 66 in 0.
Exemptions from T/S 4.0.4 are proposed for the f(D, I) penalties associated with the Overpower 5 T and Overtemperature b,T trips. These exemptions are required because the f(5 I) module is calibrated to data obtained from the incore detector, excore power range detector cross-calibration. As is implied by the exemption of this calibration from T/S 4.0.4 on a refueling frequency, which is already available in STS, Rev.
4, this calibration must be performed at power, in the applicable mode.
The calibration is performed at power so that an appreciable signal can be obtained on the incore detectors and the excore detectors. These changes are numbered 65 and 66 in Attachment 10.
Lastly, an exemption from T/S 4.0.4 is proposed for Surveillance 4.7.1.5 (see  number 103 in Attachment 10.) This exemption is required because T/S 3.7.1.5, Steam Generator Stop Valves, is applicable to Mode 3, and Surveillance 4.7.1.5, which measures stop valve closure time, must be performed in Mode 3. In order to demonstrate the required closure time for the steam generator stop valves, steam pressure must be in the normal operating range corresponding to primary temperature above the P-12 setpoint. Therefore, secondary pressure for this test must be above approximately 800 psig for which saturation temperature is well above the 350 F Mode 3 boundary. An exemption is also proposed for Beginning of Cycle to enter Mode 2 for physics testing provided the steam generator stop valves are closed. This provision allows continuation of the startup program with steam generators isolated in the event that secondary side work is not complete.
Per 10 CFR 50.92, a proposed amendment will involve a no  significant hazards consideration  if the proposed amendment does not:
(1)  involve a significant increase in the probability or consequences of an accident previously evaluated,
 
AEP:NRC:0916I                      Attachment  1                  Page 10      of 18 (2)  create the possibility of new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
Criterion  1 The changes    in this section are necessary to make the T/Ss accurately reflect limitations associated with surveillances which must be performed in the applicable mode. Additionally, the changes are needed to address the fact that unscheduled outages can and do occur, and when they do surveillances can expire with no way to correct the situation until the unit returns to power. Where possible we have followed the guidance given by the STSs, expanding it as necessary to address the situations just described. As  these changes are consistent with the guidance provided by the STSs,  we  believe that any increase in the probability of occurrence or consequences of an accident previously analyzed, or any reduction in margins of safety, would be insignificant.
Criterion  2 Since these changes require    neither physical changes to the plant nor changes  to the safety analyses,  it  is concluded that they will not create the possibility of a new or different kind of accident from any previously evaluated.
Criterion  3 Please see our discussion on    Criterion 1,  above.
Lastly,  we  note that the Commission has provided guidance concerning the determination of significant, hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.      Example 6 refers to changes which may result in some increase to the probability or consequences      of a previously analyzed accident, but where the results of the change are clearly within acceptable limits. It  is our belief that these changes are necessary to reflect limitations inherent in surveillance testing methods employed by the Cook Plant, and the changes reflect further clarification of the intent of the original T/S as is indicated by the type of T/S in these areas that is permitted by later revisions of the STS. In light of this, we believe the reasons for this group of changes to be consistent with Example 6.
: 8. Changes  to Existing T/S Values The  eighth group of proposed changes involve values of parameters presently included in the T/Ss that are being revised to reflect the assumptions used in the various safety analyses performed in support of the Unit 2 Cycle 6 reload. These changes are numbered 4, 8, 10, 11, 13, 17, 18, 19, 23, 28, 34, 40, 42, 47, 48, 49, 54, 76, 78, 79, and 101 in 14'5, Attachment 10. That attachment also includes references to the specific sections of the accident analyses on which the changes are based.
 
AEP:NRC:0916I                          Attachment  1                    Page 11  of  18 Two  types of changes included in      this  group need  further explanation.
The  ~ first  are changes to allowances to permit operation with RdF RTDs.
These are included in the changes numbered 8, 10, 14, 19, 42, 47, 48, 76, and 78 in Attachment 10. During the Unit 2 Cycle 6 refueling outage, we will    be replacing    all  of our existing Rosemount RTDs with RTDs manufactured by the RdF Corporation.          Because the uncertainties associated with these new RTDs      are different from those associated with the older Rosemount RTDs, it  is necessary to revise some T/S values accordingly. We used the revised uncertainties to obtain Technical Specification setpoints from the analysis values calculated by Exxon Nuclear Company. Certain setpoints were affected by both a change in analysis value and the revised allowances.
For your convenience, we have included the Westinghouse Electric Corporation safety evaluation for the RdF RTD installation (WCAP-11080) as  to this letter.
The second group of changes needing clarification are changes involved with the      f(  5 I) penalty which is applied to the Overtemperature 5 T and Overpower 5 T reactor        trip  setpoints. (These are changes numbered 15 and 18 in Attachment 10.)          There is only one    f( ~ I) module, which serves both of these trips. This module places a penalty on these              trip  functions in the event of an axial imbalance in neutron flux between the top and bottom halves of the core. The          f( ~ I) penalty was not required as an input to the Overpower L T        trip  for previous Unit 2 cycles, and thus f  ( L I) is presently set equal to zero in T/S Table 2.2-1.            The new analyses performed by ENC apply the f( 5 I) penalty to both Overpower and 2
Overtemperature 5 T. The ENC analyses resulted in different f( 5 I) functions for these two trips. However, because they share the same f( ~                I) module, a single f( 5 I) function that conservatively bounds these two functions was chosen for the proposed T/Ss.
Per 10 CFR 50.92, a proposed amendment will involve a no          significant hazards consideration        if the proposed amendment does not:
(1)  involve a significant increase in the probability or consequences of  an accident. previously evaluated, (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or
        '(3)    involve a significant reduction in a margin of safety.
The changes included in this group are necessary to support safety analyses performed by ENC and Westinghouse Electric Corporation (as referenced by Attachment 10) in support of the Cycle 6 reload. These analyses have not yet been accepted by the Commission. Our conclusion of no significant hazards considerations, which is supported below, is therefore contingent upon Commission acceptance.
Criterion      1 The    safety analyses performed for Cycle 6 addressed all previously analyzed accidents. The analyses, which are referenced in Attachment 10, demonstrated that no sig'nificant increase in the probability or consequences of a previously evaluated accident is expected to occur.
 
AEP:NRC:0916I                          Attachment    1                      Page 12  of  18 Criterion    2 The  safety analyses performed for Cycle 6 addressed all applicable accidents found in the Standard Review Plan for relevancy to Cook. Many of those addressed had not previously been evaluated for D. C. Cook Unit 2.
Therefore, we conclude that, to the best of our knowledge, this group of changes will not create the possibility of a new or different kind of accident from any accident previously analyzed.
Criterion    3 The  safety analyses performed for Cycle            6  (as referenced by Attachment 10) have  demonstrated that acceptable margins of safety are maintained for                  all accidents which were addressed.
Lastly,    we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.        The second of these examples refers to changes resulting from a nuclear reactor core reloading,                if no fuel assemblies significantly different from those found previously acceptable to the NRC for a previous core at the facility in question are involved. These changes are similar to this example in that the Cycle 6 reload is very similar to previous reloads in terms of enrichment, power distribution, and fuel type. Although minor changes have occurred (e.g., F was increased from 2.04 to 2.10), the changes were analyzed and found n8t to significantly impact applicable margins to safety. Thus, we conclude that the example cited is relevant and that no significant hazards consideration is involved.
N
: 9. Se  aration of Flow Rate      and F The  ninth group of    changers involve revisions to T/S 3/4.2.3, Nuclear Enthalpy Hot Channel Factor (F hH ). These changes are numbered 41, 42, 43, 48 in Attachment 10.        In the present T/Ss, RCS flow rate and F may be "traded off" against one another            (i.e.,  a lower measured RCS flow rate is acceptable provided      F hH is also acceptably lower). In the          proposed TgS 3/4.2.3,    we have  eliminated    the  ability to    trade off flow for F . F is now defined in T/S      3.2.3  only  as  a  function    of rated thermal power. RS flow rate in    Mode  1  has  been  moved    to  proposed  T/S 3/4.2.5.1, which contains the Mode 1 DNB parameters.              Although the Action Statements and surveillance requirements have been revised to reflect this separation, no requirement appropriate for either of the two has been deleted or made less severe. No flux mapping is requiged in the DNB Action'tatement,                because flux mapping is used to measure F< , not flow.
The proposed changes included in )his group are only those changes involved in separating flow rate and F in the T/S. Changes to existing T/S values for flow are included in Category      fH      8 of this attachment.
Per 10 CFR 50.92, a proposed amendment will involve a no                significant hazards consideration        if the proposed amendment does not:
(1)  involve a significant increase in the probability or consequences of  an accident previously evaluated,
 
AEP:NRC:0916I                      Attachment    1                    Page 13  of  18 (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
Criterion  1 This group of proposed changes in no way removes or reduces any safety requirements, nor does    it require physical changes to the plant. Thus,        it is not expected to involve a significant increase in the probability or consequences of a previously evaluated accident.
Criterion  2 These proposed changes    will not  create the    possibility of a new  or different kind of accident, from any previously analyzed, because, being primarily editorial in nature, they impact neither the accident analyses nor the nuclear design bases.
Criterion  3 The proposed changes    will not  involve    a significant reduction in margin of safety, because, as    discussed above, all accident analyses and nuclear design bases remain unchanged.      Since these changes actually represent additional restgictions (in that we will no longer be able to trade off RCS flow rate for F AH)  it  could be anticipated that an increase, rather than decrease, in the margin to DNB under accident conditions might actually result.
Lastly,  we  note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.      The first example refers to purely administrative changes to the T/S: for example, changes to achieve consistency throughout the T/Ss, correction of an error, or a change in nomenclature. These changes are similar to this example in that RCS flow rate and F            are being separated with no reduction in requirements,        primarily to make  Ke  Unit 2 T/Ss more similar to    those  for  Unit  1.
The second example published in the Federal Register refers to changes that constitute additional limitations, restriction's, or controls not presently included in the T/Ss: for example, more stringent surveillance requirements. These changes are similar to this example ig that we will be prohibiting ourselves from trading off RCS flow rate for F<
For the reasons provided above, we conclude that the examples cited are xelevant and that this group of proposed changes involves no significant hazards consideration.
: 10. Chan es  to the P-12 Interlock Descri tion The tenth group of proposed changes involves the P-12 Interlock description included in T/S Table 3.3-3. These changes are numbered 75 and 77 in Attachment 10. The P-12 Interlock receives input from the T
ave low-low bistables. These  0 bistables are calibrated to trip when the temperature  decreases to 541 F as specified in T/S Table 3.3-4.
 
AEP:NRC:0916I                          Attachment  1                      Page 14 of  18 With 2 out of 4 bistables tripped, P-12 permits the manual block of the Low Steam Line Pressure Safety Injection, causes steam line isolation under conditions of high steam flow, and removes the arming signal to condenser steam dump. With 3 of 4 Tave channels above the reset point, 0
which is greater than 541 F, the manual. block of Low Steamline Pressure Safe'ty Injection is defeated or prevented and the condenser steam dump is enabled.
The  present T/S description of the P-12 Interlock is confusing in that it neglects    the trip and reset points, and instead describes P-12 in terms of conditions above 544 0 F and below 540 0 F. If this description is read it literally, could be inferred that P-12 is established when o Tave is greater than or equal to 544 0 F and when Tave is less than 540 F.
Additionally, the manual block  0 of safety xn3ection actuation would0 not be permitted    until  below  540  F,  when  in fact  the 0
setpoint is  541  F. We propose to rewrite P-12 in terms of the 541 F setpoint, which is similar to the methodology utilized in Rev. 4 of the STS, in order to better reflect the functioning of this interlock.
In addition to the changes described above, we have revised the P-12 function description. The current, description states that the Safety Injection associated with P-12 occurs on high steam line flow and low steam line pressure. The D. C. Cook Unit 2 ESF design provides a Safety Injection on Low Steam Line pressure which does not require a coincident signal from P-12 Low Low Tave . This particular Safety Injection may be blocked    if  the P-12 Low Low ave  f.'ignal    is present. High steam line flow it coincident    with  P-12  Low  Low  T ave does not  provide a Safety Injection; does  however    cause  a steamline    xsolation.
Per 10 CFR 50.92, a proposed amendment will involve a no              significant hazards consideration      if  the proposed amendment does not:
involve a significant increase in the probability or consequences of  an accident previously evaluated, (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
Criterion    1 These changes,      being editorial in nature and intended only to more accurately describe the functioning of the P-12 interlock, will not, reduce in any way requirements or commitments which are presently included in the T/Ss. Thus, no increase in the probability or consequences of a previously evaluated accident would be expected.
Criterion    2 These changes,      being purely editorial, will not create the possibility of a new  or different kind of accident from any previously evaluated because all accident analyses and nuclear design bases remain unchanged.
 
AEP:NRC:09161                        Attachment    1                    Page 15          of 18 Criterion  3 The proposed  amendment    will not  involve    a  significant reduction in margin of safety, because, as discussed        above,  all  accident analyses and nuclear design bases remain unchanged.
Lastly,  we  note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not, likely to involve significant hazards consideration.      The first of these examples refers to changes which are purely  administrative    in nature: for example, a change to achieve consistency  throughout    the  T/Ss, correction of an error, or a change in nomenclature. This  group  of  proposed changes is similar to this example in that  the changes    are  purely  editorial,    intended to make the T/Ss more accurately reflect the functioning of the P-12 interlock. No physical changes to the plant or its procedures will be necessary because of these changes. Thus, we conclude that the example cited is applicable and that this group of changes involve no significant hazards consideration.
: 11. Sim lifications to    Power  Distribution      and APDMS T/S The purpose    of the eleventh group of proposed changes is to delete reference to the Axial Power Distribution Monitoring System (APDMS) from the T/Ss and to simplify the Power Distribution Limits T/Ss. These changes are numbered 32, 33, 37, 38, 39, 53, and 85 in Attachment 10.
The APDMS  is  an  option currently provided in the T/Ss. It is required to be operable by T/S 3.3.3.7 when        it  is being used for monitoring axial power  distribution.      Power  operation    is  permitted above the Allowable Power Level (APL)  and  below  Rated  Thermal  Power    provided additional surveillance is performed using    the  APDMS  in  accordance    with T/S 4.2.6.1. In practice, however, the APDMS can be somewhat more limiting than APL. More importantly, experience has shown that APDMS causes extensive wear and tear on the Movable Incore Detector System, which the APDMS uses for data acquisition. This effect results in serious maintenance problems on a system which contains parts which are highly radioactive. For these it  was decided not to operate with APDMS. Therefore, we are delete T/S 3/4.3.3.7, and to revise T/Ss 3/4.2.2 (F (Z)) and
                                                                                  'easons, proposing  to 3/4.2.6 (Axial Power Distribution) to remove material related to APDMS.
In conjunction with the above,        we have rewritten T/S 3/4.2.6.      The proposed T/S contains the      limits  and surveillances required to establish and maintain APL, and has also been renamed accordingly. Most of the surveillance requirements of T/S 4.2.2 have been moved to T/S 4.2.6 in order to further simplify these T/Ss.            It  should be noted that the 2%
penalty applied to F (Z) for increasing F by T/S 4.2.2.2.e has been incorporated into the Qdefinition of APL in%he proposed T/S 3.2.6. No requirements or limits currently in T/Ss 3/4.2.2 or 3/4.2.6, other than those related to APDMS and those discussed in the next paragraph, have been removed or reduced in our proposed revisions.
In addition to the changes described above, T/S 3.2.2 has also been revised to eliminate the need to place the reactor in Hot Standby to perform the Overpower hT trip setpoint reduction when this setpoint is
 
AEP:NRC:0916X                    Attachment 1                  Page 16  of  18 required to be reduced by Action Statement a. Our review of this requirement has determined that the reduction can be performed while the reactor is at power. The change in setpoint can be accomplished one channel at a time with bistables on the affected channel in the tripped configuration; therefore, there is no need to impose a transient on the reactor systems, which is inherent in changing from Nodes 1 to 3. This change is consistent with guidance provided in Draft Rev. 5 of the STS.
Per 10 CFR 50.92, a proposed amendment will involve a no  significant hazards consideration    if the proposed amendment does not:
involve a significant increase in the probability or consequences of  an accident previously evaluated, (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
Criterion  1 The changes  included in this group (with the exception of the Overpowers T trip setpoint  reduction) should not involve a significant increase in the probability or consequences of an accident previously evaluated. These changes are administrative in nature and do not delete any requirements other than those associated with APDMS. As described earlier, APDMS is an option and is not required by T/Ss. For the Overpower 5 T trip setpoint reduction, the change is consistent with guidance provided by the Commission through the issuance of Draft Rev. 5 to the STSs. Although the changes may increase the probability or consequences of an accident, the results should be no worse than those previously accepted by the Commission through their issuance of Draft Rev. 5 to the STSs.
Criterion  2 The changes  other than the Overpower L T trip setpoint reduction are administrative in nature. They do not introduce any new modes of plant operation, nor do they require physical changes to the plant. The changes associated with the Overpower 5 T trip setpoint are consistent with guidance provided by the Commission through the issuance of Draft Rev. 5 of the STSs and are presumed to be acceptable on that basis. Thus, we conclude that the changes will not create the possibility of a new or different kind of accident from any previously analyzed or evaluated.
Criterion  3 The changes  included in this group (other than the Overpower ~ T trip setpoint reduction) should not involve a significant reduction in safety margins, since they are purely administrative and in no way reduce previous requirements for safety. Changes associated with the Overpower ~ T trip setpoint reduction may involve reductions in safety margins, but the results of the change are clearly within limits found acceptable to the Commission through their issuance of Draft Rev. 5 of the STSs.
 
AEP:NRC:0916I                        'ttachment    1                    Page 17  of 18 Lastly,    we  note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.        The first of these examples refers to changes which are purely administrative in nature: for example, to achieve consistency throughout the T/Ss, to correct an error, or to make a change in nomenclature.      The changes in this group (other than the Overpower 6 T trip setpoint reduction) are purely administrative in nature. They are intended
'to improve T/S readability by eliminating the APDMS option not currently exercised, and by rearranging the T/Ss to make them easier to use. No reductions in safety requirements will occur as a result of these changes.
As  for the  Overpower 6 T trip setpoint reduction, this change is similar to Example 6 published in the Federal Register. This example refers to changes which may result in some increase to the probability or consequences of a previously analyzed accident or may reduce in some way a safety margin, but where the results of the change are clearly within all acceptable    criteria. The elimination of the requirement to place the reactor in Hot Standby to perform the reduction does constitute a relaxation of a pr'evious requirement, but the results of the change have been found acceptable by the Commission through their issuance of Draft Rev. 5 to the STSs.
Based on the above, we conclude that the examples cited are applicable and  that the    changes involve no significant hazards consideration.
: 12. Changes    for Consistenc    With  STS The  twelfth group of proposed changes consist of those that are requested'o make our T/Ss more consistent with Rev. 4 of the STS. These are the changes numbered 57, 58, and 96 in Attachment 10, which also includes a description of the changes.
Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration      if the  proposed amendment does not:
involve  a significant increase in the probability or consequences of an accident, previously evaluated, (2)  create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3)  involve a significant reduction in a margin of safety.
Criterion    1 As  these changes in general represent relaxation of current T/S requirements, they may involve an increase in the probability or consequences of an accident previously analyzed.            The results of the changes,    however,  have  been  reviewed  and  found acceptable  by the Commission through    their  issuance  of Rev. 4 to the  STSs. Thus,  we  conclude  that any increase in probability or consequences would not be significant.
 
1 4
 
AEP:NRC:0916I                        Attachment 1                  Page 18 of  18 Criterion    2 As these    changes  will involve  no physical plant changes and no T/S changes
. which are not consistent with Rev. 4 of the STSs, we conclude that they should not create the possibility of a new or different kind of accident.
from any previously evaluated.
Criterion    3 Because    these changes represent relaxation of present T/S requirements, they could potentially involve a reduction in safety margin. However, these changes are all consistent with those found acceptable by the Commission in Rev. 4 of the STSs. Thus, we conclude that any reduction in margins of safety are insignificant.
Lastly,    we  note that the Commission has provided guidance concerning the determination of significant, hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration.        The sixth example refers to changes which may result in some increase to the probability or consequences of a previously analyzed accident or may reduce in some way a safety margin, but where the results of the change are clearly within all acceptable criteria. The changes included in this group are consistent with Rev. 4 of the STSs.
Although they may reduce safety requirements, the results of this change have been evaluated and found acceptable by the Commission.
Based on the above, we conclude that the example cited is applicable and that the change involves no significant hazards consideration.
Chan es    to the  Bases In addition to the changes to the T/Ss described above, we have also proposed changes to the Bases section to reflect both changes in the safety analyses and changes in the T/Ss. Descriptions of these changes have been included in Attachment 10.
Conclusion In conclusion,      we believe that the proposed changes do not involve significant    hazards  consideration because operation of D.C. Cook Unit 2  in accordance with      these  changes would not:
(1)  involve  a  significant increase in the probability of occurrence or consequences  of an accident previously analyzed, (2)  create the possibility of a new or different kind of accident. from any accident previously evaluated, or (3)  involve a significant reduction in a margin of safety.
This conclusion is based on our evaluation of the changes, which has determined that all proposed changes which are not administrative in nature, consistent with the STS, or consistent with the design basis of the plant are clearly traceable to the Cycle 6 safety analyses, as referenced by Attachment 10. Assuming Commission acceptance of these analyses,          it is our belief that they successfully demonstrate that applicable safety limits and margins to safety will be maintained.


AEP:NRC:09161 Attachment 1Page15of18Criterion 3Theproposedamendment willnotinvolveasignificant reduction inmarginofsafety,because,asdiscussed above,allaccidentanalysesandnucleardesignbasesremainunchanged.
Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered not,likelytoinvolvesignificant hazardsconsideration.
Thefirstoftheseexamplesreferstochangeswhicharepurelyadministrative innature:forexample,achangetoachieveconsistency throughout theT/Ss,correction ofanerror,orachangeinnomenclature.
Thisgroupofproposedchangesissimilartothisexampleinthatthechangesarepurelyeditorial, intendedtomaketheT/Ssmoreaccurately reflectthefunctioning oftheP-12interlock.
Nophysicalchangestotheplantoritsprocedures willbenecessary becauseofthesechanges.Thus,weconcludethattheexamplecitedisapplicable andthatthisgroupofchangesinvolvenosignificant hazardsconsideration.
11.Simlifications toPowerDistribution andAPDMST/SThepurposeoftheeleventhgroupofproposedchangesistodeletereference totheAxialPowerDistribution Monitoring System(APDMS)fromtheT/SsandtosimplifythePowerDistribution LimitsT/Ss.Thesechangesarenumbered32,33,37,38,39,53,and85inAttachment 10.TheAPDMSisanoptioncurrently providedintheT/Ss.ItisrequiredtobeoperablebyT/S3.3.3.7whenitisbeingusedformonitoring axialpowerdistribution.
Poweroperation ispermitted abovetheAllowable PowerLevel(APL)andbelowRatedThermalPowerprovidedadditional surveillance isperformed usingtheAPDMSinaccordance withT/S4.2.6.1.Inpractice, however,theAPDMScanbesomewhatmorelimitingthanAPL.Moreimportantly, experience hasshownthatAPDMScausesextensive wearandtearontheMovableIncoreDetectorSystem,whichtheAPDMSusesfordataacquisition.
Thiseffectresultsinseriousmaintenance problemsonasystemwhichcontainspartswhicharehighlyradioactive.
Forthese'easons,itwasdecidednottooperatewithAPDMS.Therefore, weareproposing todeleteT/S3/4.3.3.7, andtoreviseT/Ss3/4.2.2(F(Z))and3/4.2.6(AxialPowerDistribution) toremovematerialrelatedtoAPDMS.Inconjunction withtheabove,wehaverewritten T/S3/4.2.6.TheproposedT/Scontainsthelimitsandsurveillances requiredtoestablish andmaintainAPL,andhasalsobeenrenamedaccordingly.
Mostofthesurveillance requirements ofT/S4.2.2havebeenmovedtoT/S4.2.6inordertofurthersimplifytheseT/Ss.Itshouldbenotedthatthe2%penaltyappliedtoF(Z)forincreasing FbyT/S4.2.2.2.e hasbeenincorporated intothedefinition ofAPLin%heproposedT/S3.2.6.NoQrequirements orlimitscurrently inT/Ss3/4.2.2or3/4.2.6,otherthanthoserelatedtoAPDMSandthosediscussed inthenextparagraph, havebeenremovedorreducedinourproposedrevisions.
Inadditiontothechangesdescribed above,T/S3.2.2hasalsobeenrevisedtoeliminate theneedtoplacethereactorinHotStandbytoperformtheOverpower hTtripsetpointreduction whenthissetpointis AEP:NRC:0916X Attachment 1Page16of18requiredtobereducedbyActionStatement a.Ourreviewofthisrequirement hasdetermined thatthereduction canbeperformed whilethereactorisatpower.Thechangeinsetpointcanbeaccomplished onechannelatatimewithbistables ontheaffectedchannelinthetrippedconfiguration; therefore, thereisnoneedtoimposeatransient onthereactorsystems,whichisinherentinchangingfromNodes1to3.Thischangeisconsistent withguidanceprovidedinDraftRev.5oftheSTS.Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(2)(3)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Criterion 1Thechangesincludedinthisgroup(withtheexception oftheOverpowers Ttripsetpointreduction) shouldnotinvolveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated.
Thesechangesareadministrative innatureanddonotdeleteanyrequirements otherthanthoseassociated withAPDMS.Asdescribed earlier,APDMSisanoptionandisnotrequiredbyT/Ss.FortheOverpower 5Ttripsetpointreduction, thechangeisconsistent withguidanceprovidedbytheCommission throughtheissuanceofDraftRev.5totheSTSs.Althoughthechangesmayincreasetheprobability orconsequences ofanaccident, theresultsshouldbenoworsethanthosepreviously acceptedbytheCommission throughtheirissuanceofDraftRev.5totheSTSs.Criterion 2ThechangesotherthantheOverpower LTtripsetpointreduction areadministrative innature.Theydonotintroduce anynewmodesofplantoperation, nordotheyrequirephysicalchangestotheplant.Thechangesassociated withtheOverpower 5Ttripsetpointareconsistent withguidanceprovidedbytheCommission throughtheissuanceofDraftRev.5oftheSTSsandarepresumedtobeacceptable onthatbasis.Thus,weconcludethatthechangeswillnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously analyzedorevaluated.
Criterion 3Thechangesincludedinthisgroup(otherthantheOverpower
~Ttripsetpointreduction) shouldnotinvolveasignificant reduction insafetymargins,sincetheyarepurelyadministrative andinnowayreducepreviousrequirements forsafety.Changesassociated withtheOverpower
~Ttripsetpointreduction mayinvolvereductions insafetymargins,buttheresultsofthechangeareclearlywithinlimitsfoundacceptable totheCommission throughtheirissuanceofDraftRev.5oftheSTSs.
AEP:NRC:0916I
'ttachment 1Page17of18Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thefirstoftheseexamplesreferstochangeswhicharepurelyadministrative innature:forexample,toachieveconsistency throughout theT/Ss,tocorrectanerror,ortomakeachangeinnomenclature.
Thechangesinthisgroup(otherthantheOverpower 6Ttripsetpointreduction) arepurelyadministrative innature.Theyareintended'toimproveT/Sreadability byeliminating theAPDMSoptionnotcurrently exercised, andbyrearranging theT/Sstomakethemeasiertouse.Noreductions insafetyrequirements willoccurasaresultofthesechanges.AsfortheOverpower 6Ttripsetpointreduction, thischangeissimilartoExample6published intheFederalRegister.
Thisexamplereferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously analyzedaccidentormayreduceinsomewayasafetymargin,butwheretheresultsofthechangeareclearlywithinallacceptable criteria.
Theelimination oftherequirement toplacethereactorinHotStandbytoperformthereduction doesconstitute arelaxation ofapr'evious requirement, buttheresultsofthechangehavebeenfoundacceptable bytheCommission throughtheirissuanceofDraftRev.5totheSTSs.Basedontheabove,weconcludethattheexamplescitedareapplicable andthatthechangesinvolvenosignificant hazardsconsideration.
12.ChangesforConsistenc WithSTSThetwelfthgroupofproposedchangesconsistofthosethatarerequested'o makeourT/Ssmoreconsistent withRev.4oftheSTS.Thesearethechangesnumbered57,58,and96inAttachment 10,whichalsoincludesadescription ofthechanges.Per10CFR50.92,aproposedamendment willinvolveanosignificant hazardsconsideration iftheproposedamendment doesnot:(2)(3)involveasignificant increaseintheprobability orconsequences ofanaccident, previously evaluated, createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Criterion 1Asthesechangesingeneralrepresent relaxation ofcurrentT/Srequirements, theymayinvolveanincreaseintheprobability orconsequences ofanaccidentpreviously analyzed.
Theresultsofthechanges,however,havebeenreviewedandfoundacceptable bytheCommission throughtheirissuanceofRev.4totheSTSs.Thus,weconcludethatanyincreaseinprobability orconsequences wouldnotbesignificant.
14 AEP:NRC:0916I Attachment 1Page18of18Criterion 2AsthesechangeswillinvolvenophysicalplantchangesandnoT/Schanges.whicharenotconsistent withRev.4oftheSTSs,weconcludethattheyshouldnotcreatethepossibility ofanewordifferent kindofaccident.
fromanypreviously evaluated.
Criterion 3Becausethesechangesrepresent relaxation ofpresentT/Srequirements, theycouldpotentially involveareduction insafetymargin.However,thesechangesareallconsistent withthosefoundacceptable bytheCommission inRev.4oftheSTSs.Thus,weconcludethatanyreduction inmarginsofsafetyareinsignificant.
Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant, hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthexamplereferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously analyzedaccidentormayreduceinsomewayasafetymargin,butwheretheresultsofthechangeareclearlywithinallacceptable criteria.
Thechangesincludedinthisgroupareconsistent withRev.4oftheSTSs.Althoughtheymayreducesafetyrequirements, theresultsofthischangehavebeenevaluated andfoundacceptable bytheCommission.
Basedontheabove,weconcludethattheexamplecitedisapplicable andthatthechangeinvolvesnosignificant hazardsconsideration.
ChanestotheBasesInadditiontothechangestotheT/Ssdescribed above,wehavealsoproposedchangestotheBasessectiontoreflectbothchangesinthesafetyanalysesandchangesintheT/Ss.Descriptions ofthesechangeshavebeenincludedinAttachment 10.Conclusion Inconclusion, webelievethattheproposedchangesdonotinvolvesignificant hazardsconsideration becauseoperation ofD.C.CookUnit2inaccordance withthesechangeswouldnot:(1)involveasignificant increaseintheprobability ofoccurrence orconsequences ofanaccidentpreviously
: analyzed, (2)createthepossibility ofanewordifferent kindofaccident.
fromanyaccidentpreviously evaluated, or(3)involveasignificant reduction inamarginofsafety.Thisconclusion isbasedonourevaluation ofthechanges,whichhasdetermined thatallproposedchangeswhicharenotadministrative innature,consistent withtheSTS,orconsistent withthedesignbasisoftheplantareclearlytraceable totheCycle6safetyanalyses, asreferenced byAttachment 10.AssumingCommission acceptance oftheseanalyses, itisourbeliefthattheysuccessfully demonstrate thatapplicable safetylimitsandmarginstosafetywillbemaintained.
h}}
h}}

Latest revision as of 01:33, 24 February 2020

Facility Conceptual Design Description for Technical Support Ctr & Emergency Operations Facility.
ML17334A523
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 09/15/1982
From:
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML17334A522 List:
References
NUDOCS 8404030229
Download: ML17334A523 (106)


Text

INDIANA & MICHIGAN EXZCTRIC CCMPMY CONALD C. QXK NKXZRR PLANT KE THE TSZBGCAG SUPPORT CENTER MD THE KF.

ATTAGBKÃT K) AEP:NRC: 0533A Revised: September 15, 1982 and incorporated as Attachment 2 to AEP: NRC: 0531E are indicated by bar in the

'hanges a

right-hand margin.

'Ihis dccun nt contains iafornation pxcpxietazy to Westinctmuse Elect~

Co~zation and An~can Elec"~ Power Sezv'ce Cozpozaticn; it is which Is fuz2LLshed ~

suhnitted in confidence ard is to he used sole+ for Nw purpose for it dccQm'.?It and such infozIGaticn Ls not to he zepzoduced, tzananitted, disclosed or used at2~vtse in whole or in par" 8404030229 820929 F

PDR ADOCK 050003l5 PDR

gESTtr<grOUSE PROPRIETARY CLASS 2

'his. document contains material that is proprietary to the Mestinghouse Electric'orporation. The proprietary information has been marked by means of brackets. The basis for marking the material proprietary is identified by marginal notes referring tb the standards in Section 8 of the affidavit of R. A. Miesemann of record "In the Matter of Acceptance Criteria for Emergency Core Cooling Systems for Light Mater Cooled Nuclear Power Reactors (Oocket No. RH-50-1)" at transcript pages 3706 through 3710 (February 24, 1972).

Oue to the proprietary nature of the material contained in this report:

which. was obtained at considerabIe Mestinghouse expense and the release-of which would seriously affect our competitive position, we request this information to be withheld from public disclosure in accordance with the Rules of Practice, 10 CFR 2.790, and that the information pr e-sented therein be safeguarded in accordance with 10 CFR 2.903. Me believe that- withholding this information will not adversely affect the public. interest.

This information is for your internal-use only and should not be released to persons or organizations outside the Oirec.orate of Regula-tion and the ACRS without prior approval of Westinghouse Electric Corporation. Should it become necessary to release this information to .

such persons as part of the review procedure, please contact Mesting-house Electric Corporation and they will make the necessary arrangements required to protect their proprietary interests.

4RRl A

Section Title ~cC Zntzxduction AEP-1 System Ful~ions AEP-1 1.1.1 'Zechnical Support Center AEP 1 1.1.2 Safety Parm~xs Display System AEP-2 1.1.3 Nuclear Data Link AEP-2 1.1.4 Bypass 6 Znoperable Status AEP-3 Zr~tion. System 1.2 Eb~rt Basis

2. ~ Data Acquisition a Display System 2.1 Cat@uter System 2.2 System 2.3 Ehta Display System 2.3.1 Cnsite Technical Support Center 2.3;2 Contxol Hocm 2.3.3 Btarger~ Cpezating Facilities
3. Cnsite Technical support Center AEP-9 3e1 Desian Basis AEP-9 3.2 Znput Detexminatian AEP-10 3.3 OTSC Ccexator Zntex ace AEP-11 4 Safety Pazaratexs Display System AEP-30 4.1 Purpose AEP-30 4.2 Znput Detemunation AEP-30 4.3 Man-<~hixm Zntexface AEP-33
5. Bypass & Jr~able Status Zndication System AEP-47 571 Purpose AEP-47 5.2 AEP 47 5.3 ManW~>e Zntexface AEP-47 6.

Section Title 7.

7.1 TSC ~~ Supply Systems to the TSC Catguter AEP-56 AEP-56 7.1.1 ~ UPS System AEP-56 7.1.2 Cons~Ra of Pm'upply AEP-56 7.2 Pamr to the TSC Complex AEP-57

8. AEP-58 8.1 Task Functions Perfoznad by EnLLviduals AEP-58 in the TSC.

8.1.1 AEP-58 8.1.2 AEP-58 8.1.3 AEP 58 8.1.4 Technical Support AEP-59 8.1.5 8.2 Yanageaant ~zt AEP-59 Emergency Functions Pexfozmed in the AEP 59 TSC/ECP for each Erargency Class.

8.2.1 Chusual Event AEP-59 8.2.2 Alert AEP-60 8.2.3 Site and Genial Bmzgehcy AEP-61 8.3 Functions of Individuals Reporting AEP-62 to the ECF.

9. TSC Record and Data Availabil'ty AEP-63 9.1 Controlled Plant Specific Beferer~ i<wterial AEP-63 9.2 Chca~lled Enfozma~ and Tec.'nical AEP-64 Referer~ Ywtexial.

9.3 Other Mta, Records, arZ Znfonraticn ~5

1. ZBZEGDKZICH 1 1 SYST124 FCKTECNS:

The D.C. Cook Plant Technical ~xt Center Data System is being developed and designed using the guidelines of NUB'696 to pzovide the plant cpexating and technical ~xt pezsannel with tM pm~nt plant information to facilitate the end~nay response to an accident. 'Ibis System, which utilizes the - Westinc~se P2500 TSC Can@uter Systans, can also be used duxing nozmal plant agezaticn for ather fhrctians such as- plant pezfonmxa analysis, pezsonnel Dmin~

etc.

system cansists af ~ similar caagutezized data acquisition, pzccessing and display systems, ere for each D.C. Cook Unit. The= four navar functions pzavided by this ccmputer system are:

1.1.1 TZGKXCAL SGPPORC CENTER (TSC):

The ccnguter system will receive, stoze, prccess and display on color ~ tmanix~ and/or cn hard-copy teaninals the real time data acquixed fxcm vaxious plant syst~. Pre-trip and post-~

data are also collected ard can be pzocessed and displayed by the cancuter. This system will facilitate the assessnant af ttm plant's condition by p1ant operating ard technical smpoxt cexsonrml.

The data displays af th Te&nical ~xt Cmzter fur~ion will pzenride suf icient infozmation to deterrnirw:

~

Plant steady state cgamting- canditians. prior ta Nm unit trip Transient conditions pxcducing Nm initiating event and system 1x8zavior duz~ the ~e af the accident.

- Pxesent conditions af the plant.

The TSC data dzsp1ay systan may he used for.

- Reviewing the accident secnzence..

- Detezznizuz@ apprcpxiate mitigating actions.

- Evaluating the e'xtmzt af any damage.

- Detezznizzizg plant status during recovery cgexaticm.

function will he desc~R in details in Section 3.

1 1.2 ~ M~FETY STATIC DISPLAY (PSSD):

0 This PSSD systen was designed in accordance with the guidelines for This in the Safety PSSD system, ~

Paxam a faxmat that. can he te Disp1ay System (SOS )

easily xeax~ed hy +~ contxol of NGREG displays the safety status af Nm plant 0696.

roam operators, will help the operators to detect any ahnoznnal ccnditian in a ~ly tnanmr. Pdditiar~l features af this PSSD system will he1p the operators and technical support personnel to chtaiz>

detailed information an &~ safety systems af Nm plant. Detailed descriptions af this systan are plaided in Secticn 4.

1 1 3 NXZZAR DATA LINK (NDL)

The TSC cartcuter system has a huilt-in aff-site data txazmnissian capahili.ty which can he used for izztexfacing with a future Nuclear Data Link (NDL) Sub-Syst m.

l1 AZP 2

1.1.4 am' rmeZWBrZ STATta INDICATE Swam (BISI):

The BISX system provides the operators and technical support personnel with a clear indicatian af. the availability oC Nu plant safety systems (ESF Systems). Detailed descrq~ns of this system aze provided in Section 5.

1.2 REPCBT BASIS:

This report is ~ on the proprietary Westingbmxse KRP Hegort 9725 "Westinghouse Technical Support Camlex," which was submitted to the HRC.'- Appropriate mxiifiaatians wexe ttede to reflect the specific design of D.C. Ccak M.ts 1 aeR 2.

2. THE DOZE ACQUISITZCH & DISPEL SYSTEM 2.1 GSE COMP~ SYSTEM:

F~ 2.1 shows the canguter system haxdwaxe for each Ccok Unit. Multiple 16-bit high speed minicomputer and ttenaxy devices are used to process plant data, generate displays and pexfoxm other man~chine interface functions. The system is configured in a fault ~

tolerant chsign. Zf a cantxal processing unit (CPU) or a ~rtion of aamxy fails, the system will automatically reconf'uxe itself to perform its chsignated functions.

2.2 ZNPOZ SYSTEM Figure 2.2 shows Nn schematic diagram for the TSC computer System. Input signals frcm the contxol xccm ard other plant locations are taken to the xemote Input/Output (I/O) cabinets. Signal isolation is provided in the I/O cabinets so that no failure on the output side of the I/O cabinets will affect the input signals. In addition to J~se isolators, all signals conung from the safety systara are taken after the existing amlified isolators on these syst~. 'Ihe input signals, after going +~gh the isolators, will be converts to bina~

information on the i~ cards and then axe rultiplexed to the computer.

Each analog signal channel has its cwn Analog/Digital Conver~, thus providing a high degree of reliability for the input system.

J 4Ap S L&4 se (,

  • 's s. 4 as, t A 1-. Ssr C,

Pp s

s CI 2.3 DATA DZSPIAY SYSTEM 2.3.1 Technical rt Center Rxxn Each D.C. Cbok Unit has a dedicated corrrrrand console located in

'the Onsite Technical Support Center. Each cormend console is ecgupped with two color CRC displays and a video hard copier (which can be used to obtain a hard copy of tt~ screen image).

One CRT is dedicated to the PSSD function and the second CRP is a general purpose display. Three satellite stations, each with a color CRP display, are also provided. 'Ihe satellite stations can be connected to either Ccok Unit 1 or Unit 2 TSC I

Ccaguter System. A shared video hard ccpier is provided for s

I s

the three satellite Cps.The satellite stations are arranged so that visual access from the ccrmrand station can be maintained while still providing sufficient xccm to minimize noise and distrutanoe. For printing lengttF reports, a line h

printer is provided.

2.3. 2 Control Rnn.

Two redundant PSSD display CRTs and two redundant BISZ Cps are provided in ea& control room. A video hard copier is also provided to cbtain had ccpy output frcm the CRT screen image.

2.3.3 EE Ooeratin Facilities (EOP):

hs A color CRT terminal, which can be connected to either Ccok unit TSC ccmputer, is provided in the Emergency Qgemtirg Facilities. 'Qm remote CRT can be used to display all of the displays available on AEP-5 s

~

~

the PSSD, TSC and BZSZ functions except for the top level iconic display af the PSSD functian. This iconic display was designed for early xeaxpu.tion af an event by tie contxol nxxn cpamtors and therefoxe is not included in N~ EOF.

~ pr@ele'<<e~qt ~ Ie~ gag gef>>e~y Ct AS I  !.I.I, ~ AOeeeeoees I 00 e A'I OII Aef ~ Ae<<OS IS5SIOI 5 IIISLSII I Ilet II@

Ae ccottelt

~ eeet lA CA<<II S

I I

t I

~ I ~ et IIO I AS I SAt AIIQOO ttA<<SIOO S At AASIOO I I I I I I

~ OSO I SI4AACC I ~

I I~F I I

j ~ ye000r I

t I

I ZOP CH 3S2$ 2 00 HDL',

I I

(shared by I I

<<(CS Er'v0 5 I

I l + I I

~ I l I OlltLA~ OettlAr Of PlAe 0l etc Ar I

I Ctll I <<e<<O ctle I CI << 5 5 l l04elc IOOISC I CCr CAI Cef 'IIOI0 I SISI IIII Jr40 Ccthl 1 I

I Stf SOIAO ~ e' SOAAO ee eeOAAO ~ I eeQAAO teSO I

5 COIISOOL LA 5 OOSA f aos aAA I ~

t I

I

'Ir I swlAr wlAr oveAr CIA ~ CCR ~ CIAO COI I l e

I

~ I A

f I I I IO' I teOI 0 I h<<heO OI ~ IAI I I af 4 Ah%A I OII 4tel A I I I I ~ I <<II<<el ~~ e0lh<<e ~ f e<<ehe0 ~ I heOhe0 I

t I

I I I I I tete I I I eeeeA 55CIIIIIL'OLIltfretflI CIIIII0

~

' I \Set tt I 5 t 0 &%<<h&W<<

Figurc 2.1. Tt.'chnical SUpport Complex SYstcm Configuration

Sensor Signals non-'safety Sa ety syst.

syst., sianals sianals iso lato rs

<<I

~Control Board I

Indication I Plant Isolator tors Process I Computer I GISX Displays X/0 Canine - ~</O Ca@inc.l IPSSD I

Displays rain A Train B I

<< CONTROL ROO14 I I I I I I

l I I L

~

t r

'PSSD L

Displays CO><PUTTER I

IBISI Displays I

TSC r Tsc I Displays I SYS E.'l e

I TECsi SUPPOFT CENTER site 8 oundary E'igu e 2.2: TSC Computer System Schematic.

TSC BXSI PSSD NUCLEAR (non- DATA iconic) LID K AEP-8

3 ONSITE TE'CHNICAL SUPPORT CENTER 3.1 DESIGN BASIS:

Tt~ Qnsite Technical Support Center (OTSC) saves as the focal point for post-accident recovery manageaant. As such, it must have the chili~ to access, display and transmit pertinent plant status information independent of actions in the contxol zccm.

Technica1 Support Center Su~ion of the TSC Canpxter Systan was j

1. Pexmnnel in the OTSC mat have access to the real time information definix~ the jument status of critica1 plant systans and functions.
2. Tfu TSC fur~i mmt have the capability to store historical

~vent and post-event data in order to enab1e a diagncsis and evaluation af th event to deteanine t!m extent af any possible plant system dana<a.

3. The TSC Qzmticn nust have the capability to acorns and display plant gararetezs irdependent of actions in th contxol room.
4. The interface of tbe TSC system equipment with exisiting plant protection system, control roan or ~~ func~
5. Pazanatars to t?m extent possible should be fran <w sana ~e that is used for control rocm irZications to ensure data cons~cy~
6. Tlm TSC systan nust have the capability of interfacing with camrnnication equizztant for the offmite tzansaussicn of pertinent.

plant data.

'. 'Ihe users mast be able to cr~te or modify displays to naet; tom needs as conditions may dictate.

In order to define the information which nust: he available in the OTSC, a generic study af critical plant systems and key safety 8uwtions (as Listed in Table 3.1) was conducted by Westinghouse. This study resulted in a. List af pazanaters to be monitored by the carputer for the Technical Support Center Suction. This West~ouse paraaater list was reviewed and made ~ Plant specific by AEP. Table 3.2 Lists the pmnaipal paranatms and Table 3.3 lists the basis for input selection.

Bedtm3ancy and diversity af process ir~tions are utilized to satisfy concerns associated with unavailable signals due to sensor failure.

Sana. refixmaent af th input paranaters List may he made after the suhnittaL of'his conceptual design report AEP-10

MESHN6HOUSK NOPRHYARY CIJ55 2 3.3 OTSC OPERATOR INTERFACE The ability of the OTSC to be an effective Mo] fn post-accfdent recovery management is a function of the inputs provided and the abf1fty to present information in a meaningful and organized manner. As stated previously, the man-machine interface fs through the use of fnteractfv'e

~aphic color CRT displays. The interface Anctions fn the OTSC consist of displays and console functions.

.The display types available for OTSC personnel use consist of graphi'c and alphanumeric displays which are both preformatted and user construc-tible. Examples of the types of dfsp1ays avaf1able are shown fn Figures 3 li 3 2 and 3-3 Figure 3.l. fs an examp]e of a preformatted system status display, g~thering important system and loop parameters onto a sfngle page of display. Figure 3.2 shows more detailed information on individual parameters such as information on sensor status, current

~

value, and high and low limits.. Figure 3 . 3 is an example of a graphic trend display showing a time history of re] ated parameters. Highlight-

-ing techniques for ind~cating parameters vr conditions of )nterest util-.

4ze both color and achraaatfc means.

By providing a combination of both preformatted and user constructible displays the OTSC personnel are provided with prearranged quickly acces-sfble sys em information and the flexibility to permit the tailoring of information prmentation to meet specific needs as conditions. dictate.

The specific content of preformatted displays will be determined by malyzing pos accident data requirements in terms of event evaluation, the safety situs of the plant, and long-term recovery planning. Ois-plays will also. be designed to ref lee. plant specific design details.

8 ~

Oisplay access is provided both by dedicated functional console push-buttons and standard keyboard entries. Ocdicated keys provide access to the most frequently used displays or functions. For other functions access can be either direct by entering short codes or by utilizing ~n instruction func.ion to determine the identification code for a display if it is unknown.

2 7

~51A

0 1

gESTI~IGHOUSE PROPRIETARY CLASS 2 ~

Other types of information is available through the console keyboard.

.These consist of functions such as point revie~, logs, post-trip histor-1cal data review, and offsite data transmission.

The paint review functions enable the console operator,to 'review plant sensor information. The types of review functions available are:

Values of individual points.

~

2. Points removed from scan.
3. Points removed fran limit checking.

4 Points failed under quality checking routines.

$. Points whose'can frequencies have been changed fmn the normal scan frequencies.

There are log <unctions available to the OTSC personnel which can be displayed on CRTs with periodic updates or output onto a hard copy device such as a line printer. These functions can be preprograrmed and automatically initiated or specified and initiated hy console operator input.

I

~

The post-trip review function provides the capability to review histor-y ical data to aid in an event evaluation. This function continuously stores in memory an updated table of preassigned sensor values for a, predefined per iod. Upon the occurrence of a disturbance {e.g., plant trip) the system continues to store data for a defined time period.

After this period, the entire, data record can be reviewed by the OTSC personnel on CRTs and/or output to hard copy devices for permanent record storage purposes.

'=8 CAC1 1 AEP-12

Ip-.,iNGHOJSE PROPRIETARY CLASS Z

, The offsite data transmission function enables QTSC personnel to'trans-

.mit plant data to offsite ',ocations via owner supplied comnunications systems. The OTSC operator can initiate transmission of data either on a "one-shot" or periodic "asis. The transmitted data can be arranged hnto four edited versions for the specific needs of separate offsite

.ccnmunications receivers such as the NRC.

\

2-9

5YZGHGHOUSE PROPRlEFARY CLASS 2 iI 4

II "5 TABLE 3.1

- CRITICAL P'LANT SYSTEMS/FUNCTIONS

,4

.Reactivity Control

,Vrimary System Inventory 5 55 5 Core Heat Removal Capabilities rI 5 Availability and Capacity of Heat Sinks hg 5 c;3

~, Containment Integrity 5

5

.5 5

- 'Primary System Pressure and Temperature Availability and Capacity of Alternate Rater Sources Availability and Operability of Critical Support Systems Radioactivity Control 4

5 4~

I

'5 h

'5 5

  • 10 AEP 14

, Table 3.2 TSC Paxarratmrs List Variables Min. No af Signals bet leg tarp 0-700 deg F

-RCS cold leg tarp 0-700 deg F

-BCS pressuxe 0-3000 psig

-Beactor water Level 0-100  %

-KS lxxcn concentxation 0-5000 pcm

-Pressurizer water Level 0-100 0

-Steam generator Level Wide xange 0-100 0 Nanna'ancp 0-100 0

-Steam Line pressure O-a4OO psig

~ntainFient pxess suxe +36 psig 589 '-599 'lev.

599 '-614 'lev.

0-100 0

~denote storacp tank level 2 0-100 0

-2oxic acid tank level o-aoo ~

-Aux feed warm flac'eed 0-250 KLbs/hr water flow

~gh ~ injection f1cw 0-5000 K1bs/hr 0-200 cpm AEP-15

"4

~ TSC Table 3.2 Paranaters List Vaziab les Min. No of Signals

-Low head injection flew 4 0-5500 gptn 16 0-2500 deg F 44 anent cooling water flow 2 0-10000 gptn

~agormnt ccoling water temp. 2 32-200 deg F 0-30  %

-Contaimnent targerature 8 0-100 deg F 4

'4

~Neutron flux 0-120  % pram

-Contml rod position 53 Pall in or rot e -Prirrary system

-Sec. syst.

relief relief valves

. 4 Closed-not closed 4 Closed-not closed Closed-not closed

-P2R relief ~ pressure 1 0-100 psig O-10O S

-PZR relief ~3c 1m'. 1 50-350 deg F

-BCS degre of subcooling N/A 200 sub-5 super

-Accunulator level 0'-100 8

-Accunaxlator pressure 0-700 psig

-AcaxaQator isolation valves 4 Closed-r~ clcsed

-Aux building sump level 0-flccd level

-BHR system flow 0-7000 apn

,4

Table 3.2 TSC Paxarretars List Variables Min. No of Sicnmls

~ heat, ex. outlet temp. 0-400 deg F

~ric acid chaupir@ flaw 0-10 pe

-KS let-dawn flaw 0-200 gpn

-BCS nake-up flaw 0-200 cd

~xg

-Status af standby ~

vBDtilatich dcntKer

-Kigh radioactivity liquid closed-nat closed Emxgized 0-100 8 or not tank level

-Badiaactive gas decay tk press 4 0-150 psig

-Beactor Coolant Punps status 4 0-1200 anps

-PZR neater bank status 0-200 anps

<<Wtmrolcxy Mind dizection 0-360 deg 0-100 miles/hr Atm. delta temp. 0-50 Peg F

-Badiation 2 Car~ant area xadia~ 1 . 1-10E4 mR/hr 1 10-10E6 ~~

Containmzt air auriculate 10-10E6 axn QCit Vent radio gas 1O-1OE6 ~

Chit Vent iodine 10-10E6 cd AEP-17

Table 3.2 TSC Pazaneters List Variables Min. No. of Si ls

- Radiation (continued)

Steam gen. blow down 10-10E6 cpn Condenser air ejector . 1-10E4 mR/hr Cooling water East . 10-10E6 cpn Ccoling water West 10-10E6 cpn Service water East 10-10E6 cpn Service water West 10-10E6 cpn Waste Ziquid off-gas 10-10E6 cpn Waste gas decay 10-10E6 cpn Control rccm area . 1-10E4 mR/hr Spent fuel area .1-10E4 mR/hr ClarLzg pp room area .1-10E4 mR/hr Ncrta 1: Degree of subcooling will he independently calculated by the detectors.

TSC ccnauter.

Note 2: We radiation signals listed above are signals from the

'I existirg radiation AEP is in the process of irmlementing a new Radiation Ronitor System at Cook Units 1 and 2, and will provide a separate Radiation Data Display System for the TSC and EOF.

AEP-18

h Jrh 'A~Ah 8 hhr 4~

tYES1'INAllOUSE PltOPAlEfAQ'LASS 2 TABLE 2 3 I'SC INSTRUHENT BASIS PARAHETER INITIAL EVENT DIAGNOSIS+ u BASIS .(b,c)

Containment Pressure - Determine if break is inside or outside - Honitor containment conditions of contairunent Steaml ine Press.ure - Determine if hiqh energy secondary l)ne - Haintain an adequate reactor rupture occurred heat sink

- Honitor secondary side pressure to:

.- verify operation of pressure control steam dump system

- monitor RCS cooldown rate Narrow Range Steam Generator - Determine if malfunction of secondary side - Honitor heat sink Water Level system has occurred

- Haintain steam generator water level Wide Range Steam Generator Water None - Determine if heat sink is being Level maintained Boric Acid Tank Level - None - Verify RCS boration system functions for adequate reactivity control Condensate Storage Tank Level - None - Haintain adequate water supply for auxiliary feedwater pumps Refueling Water Storage Tank None - Verify adequate supply of Leve I emergency core cooling water

- Verify ECCS and containment spray system are functioning

>Certain .indications on this table are used as secondary diagnoses as the operator proceeds through Post-Incident Recovery, 525lh YIF~SIlNMl""'E I'"ONIFJARY'LASS 2 h

'PfYiTIHGNONE PAOPAIHAN VMS 2 IAOLE 2-3 (Continued3 I

TSC INSTRUHENT OASIS I PARAHETER INITIAL EVE NT DIAGNOSIS* OASIS (b,c) I Wide Range Th and Tc - None - Haintain adequate reactor heat sink

- Haintain the proper relationship between RCS pressure and temperature

- verify vessel NDTT criteria

- maintain primary inventory subcooled

- maintain safe shutdown con-dition

- maintain RHR considerations for cooldown

- monitor RCS heatup and cooldown rate Pressurizer Hater Level - None - Confirm if plant is in a safe shutdown condition

- Determine ability to control RCS pressure

- Honitor RCS inventory

- Haintain pressurizer water level

  • Certain indications on this table are used as secondary diagnoses as the operator proceeds through Post-Incident Recovery.

5251A Qf'Slla<n<IQI<t ~ ~no~nI~4n<< n~ "c<< 2

ICSTIHGIIOUSE I AOPRIDARY CIASS 2 0

TABLE 2-3 (Continued)

TSC INSTRUMENT OASIS PARAMETER INITIAL EVENT DIAGNOSIS* BASIS (b,c)

System Wide Range Pressure - None - Determine if plant is in a safe ,

shutdown condition

- Maintain the proper relationship between RCS oressure apd tempera-ture

- verify vessel NDTT criteria maintain primary inventory subcooled (particularly with loss of ol'fsite power)

- maintain l?NR considerations for cooldown Containment Building Water Level - ')etermine whether h'igh energy 'line rupture - Determine NPSll for recirculation

>as occurred inside or outside containment mode cooling

- Determine which equipment in con-tainment is submerged Condenser Air Ejector Radiation Determine if steam generator tube leak - Monitor radioactivity release

. has occurred path to environment Steam Generator Blowdown Radiation - Determine if steam generator tube leak - Monitor radioactivity release has occurred path to environment Contaienent Radiation Determine if high energy line break or fuel - Moni tor radi oactivi ty release mishandling accident path to environment

- Determine accessibility to con-tainment building

  • Certain indications on this table are used as secondary diagnoses as the operator proceeds through Post-Incldpnt Recnvery.

525lA lVBTlHG!lOUSE .",".A."."I:.'.r; Cr PSS P

MSIIHCIIOIISE PIIOPIIIHAW CLASS 2 TABI.E 2-3 (Continued)

TSC IHSTRIINENT BASIS PARAHETER IHITIAL EVENT DIAGHOSIS*

(b,c)

- Determine if significant fuel damage has occurred

- Honitor environmental conditions around equipment in containment Auxiliary Feedwater Flow Hone - Determine if sufficient flow exists to maintain heat sink Iligh tlead Safety Injection Flow - Hone - Determine that ECCS is deliyer-ing flow

- Honitor ability to keep core covered Low llead Safety Injection Flow - Hone - Determine that ECCS is deliver-pl&

ing flow I

hJ h)

- Honitor ability to keep core covered

- Infer spray operation Area Radiation Honltoring in -'etermine if source of accident is outside', - Honitor accessibility to plant Auxiliary Building and Control cont a I runent bu i l ding zones/equipment Room

- Honitor radioactivity release path to environment

- Honitor effectiveness of cleanup holdup systems

- Honitor integrity of .long-term cooling system I

  • Certain.indications on this table are used as secondary diagnoses as the operator proceeds through Post-Incident Recovery.

5251A WESTIHOIIOUSE PIIOPAIETARY CLASS 2

gf.'f tttQIIOUSE I AOPNITARY CLASS g TABLE 2-3 (Continued)

[

TSB IRSTRBMBRT BASIS II A PARAMETER INITIAL EVENT DIAG1IOSIS+ BASIS (b,c)

- Honitor habitability of the control room 7

Core Exit Thermocouples - None Determine if core is being cooled I

Neutron I'lux - None - Monitor ability of reactivity control systems to keep the core subcritical I Determine if plant is in a safe shutdown condition Degree of SuLcooling of - None Haintain adequate reactor heat Primary Coolant sink

- Haintain safe shutdown condi-tions I

Primary System Safety and - None - Haintain primary system inventory Relief Valve Position

- Monitor radioactivity release paths into the containment Pressurizer Relief Tank - None - Monitor capacity to relieve Pressure, Temperature, and Level primary coolant pressure

- Monitor radioactivity release paths into the containment Containment Isolatton Valve - None - Monitor radioactivity release Position paths to the environment

- Monitor status of containment isolation I

  • Certain tndtcattcns on this table are used as secondary diagnoses as the operator proceeds through Post-Incident Recovery.

5251A 5f SIINGIIOIISE Pl'OPIllETNY ClASS 2

0 WESTINGIIOUSE PROPRIETARY CUSS 2 TA""E ~. 3 (Continued)

TSC INSTRUHENT BASIS PAR AHETER INITIAL EVENT DIAGNOSIS* BASIS (b,c)

)

Secondary Safety, Reliefs, - Hone - Honitor. radioactivity release and Atmospheric Dump Valves paths to the environment

- Honitor secondary system integrity Accumulator Tank Level - None - Honitor primary system inventory

- Determine whether the accumulator tanks have in5ected into the RCS Accumulator Isolation Valve - None - Determine system operation Position RllR System Fits - None - Hopitor primary system inventory

- Honitor core heat removal capabilities RllR Ileat Exchanger Outlet - None - Honitor core heat removal Temperature capabilities Component Cooling Mater Flw - None - Honitor system operation of and Temperature a critical support system

  • Certain indications on this table are used as secondary diagnoses as the operator proceeds through Post-Incident Recovery.

SESTINGIIOUSE PROMJETAB'LASS 2

551A

WESIINGIIOIISE PROPRIETARY CQSS g TABLE 3 3 (Continued3 TSC IHSTRUHfHT OASIS PARAHfTER INITIAL fVftIT DIAGtlOSIS* BASIS (b,c)

Boric Acid Charging Flow - tlone - Honitor pr imary system inventory

- Determine boron concentration for reactivity control

- Honitor ability to control RCS pressure Letdown flow - None or pri~~ry system inve,,or

- Honitor ability to contr ol RCS pressure

- Honitor core heat removal capab ili ty

- Determine boron concentration for reactivity control Water Level - ttone - Honitor environmental conditions in Closed Spaces Around Safety around required safety equipment fquipmcnt )n Auxiliary Building outside of containment Emergency Ventilation Damper - Hone - Ensure proper ventilation to Position vital areas under post-accident conditions ltigh Level Radioactive Liquid ,

- tlone - Honitor capacity to contain Tank Level and store radioactive liquids I

'Certain indications on this table are used as secondary diagnoses as the operator proceeds through Post-Incident Recovery.

5251A gfg]NIIOIISE P.".".0" IQ'ARY Clh.S 2

~

~

Vlf."TltlGllOUSE PROPAIETAAY CLASS 2 TABLE 2-3 (Continued)

TSC INSTRUMENT BASIS PARAMETER INITIAL EVENT DIAGNOSIS* BASIS (b,c)

Radioactive Gas lloldup Tank - tlone - Honitor capacity to contain Pressure and stare radiaactive gases of All Electric

'tatus Power - None - Ensure adequate electric power Supplies and Systems ta safety and suppart systems Effluent Radioactivity Noble - Honitor radioactivity release Gases, Radiohalogens, and paths to the enviranment Particulates Plant and Environs Radioactivity - None - Monitor release of radioactive (Permanent and Portable materials not covered by Instruments) effluent monitors Sampling System - tlone - Oetermine RCS chemistry for reactivity control and extent of fuel clad damage Meteorology (wind speed and - None - Monitor radioactive effluent direction temperature prof lie, transportation for emergency and precipitation) planning, dose assessments, and source estimates Containment Atmosphere temperature - None - Monitor containment integrity and ttydrogen Concentration

- Honitor environmental conditians around equipment in containment

  • Certain indications on this table are used as secondary diagnoses as the operator proceeds through Post-Incident Recovery.

CLASS 2 VIESTlrlcttOUSE PROP;;tETNW 5251A

iNgiiNGHOUSi PROPRIEMRY CLASS 2 Systems Status - Reactor Coolant System Loop 1 Loop 2 Loop 3 Loop 4 T average ('F) 595.2 595,2 595.2 595.2 Overpower DT PoPWR) 110.0 110.0 110,0 110.0 Overtemp. DT (%PWR) 110.0 110.0 110.0 110.0 Cold leg temp. (narrow range) ('F) 559.8 559.8 559.8 559.8 Hot leg temp. (narrow range) )'F) 624.0 624.0 624.0 624.0 Reactor coolant flow (%) 100 0 'G~ 0 100.0 1GO.O Reac'.or coolant pressure - WR (PSlG) 2250.0 2250.0 2250.0 2250.0 Pressurizer pressure (PSlA) 2250.0 Pressurizer vapor temp. (') 563.8 Pressurizer liquid temp. ('F) 565.2 Pressurizer relief tank pr.ssure (PSlG) 1.5 Pressurizer relief tank level ('h) 77.6 Pressurizer relief tank temp. ('F) 110.3 Pressurizer safety relief temp. ('F) 120.0 Figure 3. 1'System Status Display at Qnsite Technical Support Center (Example)

AZP-27

yIggHGHOUSE PROPRIETARY CUSS Z Parameter Summary Point Qescription Yaiue .. Range Units Status TO400 RCS Loop 1 Hot Leg T 593.4 0:700 . OEGF Normal

. TO406 RCS Loop 1 Cold Leg T 5472 0:700 OEGF . Normal PO480 RCS Pressure 2234.1 OOOO PSlG Normal LO421 Stm Gen 2 Narrow Range Level 39.1 0:100 PC Low PO549 Steamline Pressure 893.0 0:1100 PSlG Normal LO103 RWSi Level 100.0 0;100 PC Normal LO114 Boric Acid Tank Level 98.8 0:100 PC Normal LO119 Condensate Storage Tank Level 58.4 0:100 PC Normal LO947 Containment Bldg.'Vater Level 3.3 0:160 PC High Figure 3. 2: Parameter!n'ormation Oisplay at Onsite Technical Support Center (Example)

AEP-28

16108-2 WEST)HGHQUSE ?ROPRlETARY CLASS 2 RCS COLD LEG TElNP (oF) 100 700 RCS HOT LEG TEMP (4R

'100 100 PRZR LEYEL (~o) 40 2500 PRZR PRESSURE (PSlG) 1900 0 2 4 6 8 10 12 14 16 18 20 T)ME (SECONDS)

Rgure 3. 3Graphic Display at Onsite Technical Support Canter (Example)

AEP-29

/

<< '. s 'wxA'aa<<~P 4ai r w<<<<<<.,'/<<./ <<-.ms<<w~ - /t: . '/ga. ~<<aa sm/~as,a/~ wt'<<<<4iv~ wm/ weaww'<<c4~

V/Ella(GHOIJSK PROFRIEfARY CLASS 2

'.0 PLAI'lT SAFETY STATUS DISPLAY 4.S PURPOSE The functian of the Plant Safety Status Display (PSSD) is to present a succinct account of the overall plant safety status to the control room operator (or supervisor). The entire data base should be available to the operator arranged in a format that will enhance his response to events and the diagnoses of the cause of the event. Because the PSSD serves as an i~a ortant interface between the plant process and the operator, the information presentation should be defined in terms of parameters and logic supportive of defined operating. procedures for dealing with abnormal events.

4.2 INPUT DETERMINATION In urdar tu determine the ".squired cperatinna1 mades fnr the PSSD gene (b,c,e) must first consider'he various types of transients which may occur. A review af postulated plant transients (events) indicated that they can be divided into two basic categories:

1. Slaw transienats wnich da not result in imnediate protection systems actuation and for which the control room operator has an opportunity to react to possibly terminate the event before safety systems are required to function.

Z. Fast transients which result in almost immediate reactor trip and poss'.bly safeguards ac uation and for which the control r oom operator's resporsse is to react to ensure that appropriate safety measures have been taken and to diagnose the event(.

Because cf the fact that Ldi-;-erect parameters and signal ranges ara (b,c,e) associated with the two potential event typegs the PSSO incorpar ates Ltwo !b,c,e) cperating mades. The ',ir't made (TERMIRATE MODE) is itive whi1e:hge 4-1 5435A AEP-30

I IIESTll'lGHGUSE PRQPRlEl'nRY CL(SS 2 At (b,c.e) LpIant is 1n a normal operating cond1tion and the second mode (MITIGATE MDOE) is active following a reactor trgp , The parameters available for

'3 (b.c -) Leach mode were chosen to maximize the useful amount of 1nformat1on to be (btc.e) displayed to the operate The role for which the:pSSD providesLsupport t

for each of the operating mode/a 1s as foll'ows:

(b c e) cEMIMATE MODE l

1. Monitor the plant process for abnormalities indicative of slow transients that do not result in imediate reactor trips and for which the control room operator might take corrective or protective action.
2. Monitor the integrity -of the various boundaries to radioactive release.

MITIf)ATE KOOE

1. Monitor the safety statu" of the as tripped condition.
2. Monitor for conditions which might lead to a breach of any of the levels of defense against radioactive release.
3. Monitor the condition of the barriers to radioactive release.

For any event, the safety status of the plant can be evaluated in terms of six basic safety conc ms. These concerns can be stated as follows;

1. Saturation of Reactor Coolant
2. Reactivi y Excursion
3. Loss of Primary Coolant Inventory
a. Loss of Pressure and Temperature Contre/1 4 2 AEP-31

(VESTNGHQUSE PRQPRlETARy CLASS 2 LB. Radioactive Release (b,c,e)

5. Containment Environmengt By addressing Lacy safety concerns, the consequences of abnormal events (b,c,e) can be limited or mitigatgd, tThe tey safety concerns can be related to specific abnormal occur- (b,c,e)-

rences.. Tables 4-I and 4-2 indicate key safety goals for some typical postulated events in terms of the PSSD operating mode. It must be noted that these events are typical and it is conceivable for multiple events to occur in undefinable sequences. For these reasons, the PSSD must be designed on the basis of key safety concerns rather than specific scenario/a

/

In defining the inputs for the PSSQ, ttuo requirements have to be me+~tias (b,c,e) fo 1 1 ows:.

Ll. The inputs selected must represent a minimum sat sufficient for (b,c,e) monitoring all possible events including those which might not have been anticipated.

2. The selection of inputs must address conditions with potentially erroneous signals, conflicting indications, and parameters out of range (I.e., redundancy and diversity)g In response to the Lfirst requirement, the function of the PSSO has been (b,c,e) considered in two ways. The primary function is to monitor the plant proc ss in terms of satisfying the key safety concerns. As stated above, by guaranteeing that these concerns are addressed, the conditions of unanticipated events or event sequenc s can be satisfied. The second function of the PSSD is to support the monitoring function of the plant for postulated events and to provide a man-machine interface design that supports a. defined evaluation process and procedures for responding to abnormal events 4-3 "43"8 AEP-32

'NEST!!1B!HOUSE PROPRIETARY CLA$$ 2 fn order to satisfy the Lsecond consideration of evaluating erroneous signals and the need for redundancy and"diversity, the PSSO must perform-operations upon multi-sensor inputs to evaluate erroneous signals and be able to provide the operator with a diverse method of indicating the plant process. The inputs to the PSSO are chosen upon the basis of their direct relevance to the key safety concerns. Tables 4-3 and 4-4 list some specific inputs related to key safety concerns for several events 4.3 MAN-i%CHINE INTERFACE The PSSO system will- process the defined input data set of plant param<<,

(a,b,c) stere atftwo second interval/sand generate displays for redundant PSSD (a,c) dedicated CRTs located in the control room. QA dedicated CRT will also be located in the Onsite Technical Support Centaur In order to achieve an effective man-machine interface, the display system must be designed to provide a logical and human engineered dis-play structure and selection process in a manner which supports defined roles in which the operator is expected to perform during an abnormal occurrence.

(b,c) The role of the control room operator inLdatecting and reacting ".o an abnormal occurrence is expected to follow the rour basic activitieQs depicted in Figure 4-1. The display system structure should be. defined such that it Lsupports an identifiable goal for each of the general activities shown in the figure The.se goalgs are defined as follows:

IActi vity: Detection Goal: The control room operator should be in a state of readiness to make a rapid detection of incipient threats or actual events which may affect plant safety. The response of the operator would be based upon his knowledge of expected plant performance and his skill in controlling the plant process!.

4 a Nay. " 4 Jvsaa's 'w V'-"S IflGHGUSE PROPS!EERY CLASS 2 Activity: Reacti on (b,c)

Goal: The control room operator must immediately react to the detection of an event. His irst objective is to assure that appropriate safety system responses have been taken and that key safety concerns are being addressed by observing critical plant parameters.

Activity: Diagnosis Goal: Following the control room operator's inmediate reaction it is then necessary to diagnose the cause{s) of the event and determine if any damage to the various barriers to r adioactive release has occurred. The operational mode at this time would be based on the operator's knowledge supported by reference to various abnormal and emergency operating procedures.

0 Activity:

Goal:

Terminate/Mitigate At the later stages of the event the control room opera-tor will need to implement the rules or strategies that have been identified as a result of the diagnosis activ-ity. The operator's goal is to verify that corrective actions ara satisfying the key safety concern/a The display structure shovtn in Figure 4-s /supports the specified control (a,c,f) room operator activities and goals. The displays are structured into three levels of information ranging from general plant systen sumary information with a broad field of at.ention, secondly to a level of information with a narrower field of attention and more definitive information on subsystems and functions, and finally to a level of information containing irdividual sensor values and statuQs 4 g r,3 AEP-3 4

'hil 'G~JSC P Q, la TAR( CLASS QLeveI 1 would contain information in the form of a continuous graphic display for each of the two operating modes of the PSSO. Information contained in the display would support the detection activityI A major problem associated with the man-machine interface is the

/requirement that the plant operator sample and process a 'large number of plant parameters and perform what are termed multi-parameter decision processes. An advanced concept in graphic CRT display designed to aid the operator,, is employed for Level 1 information in the PSST Figure 4-3 is an illustration of the display. IEach ray in the figure repre-sents the scale for a process parameter. When the normal operating values for the parameters are plotted on the scales and lines are drawn connecting the points, a geometric pattern is developed. Positive deviations from the normal values result in points further away from the cente~ of the figure while negative deviations result in points closer to the center of the figure. When the actual values of parameters are different from the normal or reference values, the result is a geometric pattern different from the original patter/a Figures 4-4 and 4-5 are preliminary versions of[Level 1 displays for each of the PSSD operationaI mode/a for two sample events: Primary to Secondary Coolant System Leak and Primary Coolant Systan Leak to Containment. The parameters chosen for the displays were chosen to

/permit an evaluation of the tey safety concern/a

/This advanced graphic dispIay provides two distinct advantaoes over conventional control rocm indicators: a concise, systems level oriented, integration of parameters and secondly, a graphic display format. The detection of an abnormal condition is enhanced as the oper ator task is now based upon the discrimination of two geometric figures. NuIti-parameter decisions and event evaluation is facili-tated by the integrated nature of the display and the fact that only differences in parameters are highlighted by the display. The operator upon detecting abnormalities is then able to se k more specific informa-tion at other information levels to support the reaction, diagnosis, and terminate/mitigate activitiegs 4-6 AEP-35 5435A

)';-ST!,'su,",OUSE PROPrltTAnY CLASS 2 The'inforaation atfLeve1 2 is an expansion of each of the key safety (a,c,f) concerns and systems. blare detailed information is provided on the status of the process. For example, the 'values of pressures and water levels in individual steam generators could be provided at this level.

In addition, trend displays for the previous 5 minutes of operation of Level 1 primary display parameters are prov',ded. Diversity in process indications at this level will be employed to enable the operator to verify conclusions. At Level 3, the data is detailed further to provide information on the status of individual sensors, multiple measurement points, and data anomalies. The sensor values are annotated to include

'such things as data-out-of-range and process limits. Information on suspect data qua11ty is carried into upper disp1ay leve1@

4~7 543""A AZP-3 6

e 'e e j

ÃESTlHQHOUSE P!OPRfET'qY Ct ~SS Z TASLE 4-1 PLANT SAFETY STATUS..OISPLAY>> SAFETY GOALS - TERMINATE MOOE TRANSIENTS (b,c,e)

Reactor Control Systems Malfunction ee e4 e

Stop rod motion

.'*C

'~1

-+i C- Maintain core thermal and nuclear parameters within limits A

Reactor Coolant System Makeup Control Prevent core thermal and nuclear parameters from exceeding limits e'

Maintain- pressurizer pressure and level Inadvertent Oepressurization (Slow)

Terminate depressurization Restore systan pressure Reactor Coolant System Leak Limit radioactive release Maintain pressurizer pressure and level eg

'e 0 4-8 AEP-37 54351

V/EST1HGHOUSE PRCPRluARY CLASS 2 TABLE 4-2 PLANT SAFETY STATUS OISPLAY - SAFETY GOALS - MITIGATE MOOE TRANSIENTS (b,c,e)

Reactor Trip Maintain heat sink via steam generators

-,. Maintain subcooling by controlling steam pressure Maintain pressurizer level Station Blackout Provide secondary heat sink Maintain subcooling Maintain pressurizer level Emergency Eor ation Prevent return to criticality Operation with Natural Circulation Provide heat sink Control subcoo 1 ing Maintain pressurizer level Spur ious Safety Injection Oetermine safety injection is not required and terminate action Loss of Reactor Coolant Verify and establish short term core cooling Maintain long term shutdown and cooling 4-9 AEP-38 5435A

V<ESTtfsGHOUSE P OPHIET: RY CLASS 2 TABLE 4-2.(Continued)

PLANT SAFETY STATUS DISPLAY -

SAFETY'OALS

- MITIGATE MODE TRANSIENTS',

Loss of'econdary Coolant Establish stabilized reactor coolant system and steam generator conditions Minimize energy release Prevent lifting of. pressurizer safety valves Isolate, auxiliary feed to affected steam. generator Borate to maintain reactor shutdown margin Steam Generator Tube Rupture Minimize radioactive material release Establish feedwater to unaffected steam generators and isolate.

faulted unit Maintain residual heat removal capability

-* -Maintain RCS'ubcooling Prevent over-flooding of faulty steam generator VV C'43GA 4-10 AEP-3 9 QV C'C

IYBOllCHG"SE FROPRtci~7l'LASS 2 TABLE 4-3 PLANT SAFETY STATUS OISPLAY TERMINATE MOOE PARAMETERS (b,c,e)

Variable Transient Reactor Coolant Reactor Reactor Control 'akeup Coolant System Control System Inadvertent System Malfunction Malfunction Oepressurization Leak avg X X ref X X Rod position X X Oelta T X Startup rate X Count rate X Pzr. pressur 0

Charging flow X Pzr. level X Comp. cool X H20 rad Containment rad X Air eject rad. X Blowdown r ad. .X Cont. humidity X Cont. temperatures X Cont. oressure X Prz. discharge X piping temps PRT pressure X X PRT level X X PRT temps X X RCP seal tempera- X ture RCP seal flow RCP seal level YCT flow 4-11.

jJ imp AEP-4 0

Y~wRCHOVSE PRCPRIETAC CLASS 7 PLANT SAPPY STATUS OISPLAY "IlTTGATE WOE PARAvETERS VWable Trans1cnt Steam Operation loss of Loss af Generator Reactor Station Gnergency with 'latural Ceo lant Secondary Tube Trip Blackout Bar'ation Clrcul atlon Accident Coolant Ruature.

Reactar trip breaker X Startup rate X Reutran flux X X Rod pos1tfon X X Turbine tHp X Blackout signal X Tavg ( thermacoup 1 es ) X Rad bottom 3nd. X Primary pressure X Stcam flex X X Feed flow X X Pressurf ter level X X X Care thcrmacoup les X X X Cont. radar at<an X Afr Qectar rad$ at5an X Slowdown radiation X

Cont. pressure X X" Pri. M.R. tanp. X X Stcam pressure I ~

X X Cant. sump level X Cant. temperature-Cant. huahdl ty Charging flaw X S.G. level X X B.A. tank levei X Aux. fmd flaw X Sa 'law X RMST level X X CST level X X a-lZ.

AEP-4 1

)cSBA

16708-1 ygggtfGHOUSE PROPRtH'ARY CLOS 2 (a,c)

CONDITIONS NORMAL DETECTION

?

YES SAP ETY IMPLEMENT IDENTIFY LIMITS REACTION RESPONSE RESPONSE VIOLATED NO DIAGNOSE PROBLEM DIAGNOSIS TAKE COR R ECTIV'E TERMINATE ACTION /MITIGATE Figure 4-1. Operator Response Madel AEP-42

16643 10 WESTINGHOUSE PROPRIETARY, CLASS 2 T p Qrepftie, LEVEL 1 OISP LAY Olsplay C'y X Loop, TSAT Reactor TAVQ TH TC Coolant PR. Press Inventory STIjf/FO Flow Przr Level P Steam RCP's Cte. Leatown

, LEVEL 2 OISP'LAYS Pressure Relief Vlv. W.R. TH. TC.

Safety Vlv. Core TC's Spray TSAT. Etc.

Heaters PER. TCS Sensors, Comparisons LEVEL 3 of Redurufant OISPLAYS IVleasurernent Error Ctteeks j Inputs Figure 4-2. Display Structure of Plant Status Display AEP-43

WESTlHGHOUSE PROPRlETARY CLASS 2 Primary Tavg (Value) F Startup Pressurizer Rate Pressure (Value) Oec/Min (Value) psi

/

/

/

/ Containment Pressurizer /

Level Humid (Value) o/o (Value) 4k / Temp (Value) 'F

/

/

/

Charging Radiation Flow Contmt (Value) GPM Blwdn Air Eject Steam Gen Level (Value) Io Fig"~ 4-3. S~pie Display plant Safety St tus Dl~tay AEp-44

NESTINGHOUSE PROPRIETARY CLASS 2 Primary T avg (Value) 'F Pressurizer Startup Pressure Rate (Value) psi (Value) Dec/Min

- ~

k 4

Pressurizer Containment Level Humid (Value) '6 (Value) % I I 'emp (Value)'F I

I I

II Charging Radiation Flow Contmt (Value) GPM Btwdn Steam Gen Air Eject Level (Value) %

Figure 44. Sample Plant Safety Status Display Terminate Mode Primary to Secondary Coolant Sys;em Leak (SG Tube l ak)

AEP-45

WESTINGHOUSE PROPRIETARY CLASS 2 RCS W.R.

(a,c,f)

Temp (Value) oF (Value) 'F Tsat Startup Rate RCS W.R.

Pressure (Value) Dec/Min (Value) psi 4

~ '\

II

\

\

I I \

I Pressurizer II Containment Level Pressure I (Value) psi (Value) %

II I I

II rr

~r R. V. Radiation Level Steam Gen Contmt (Value) % Level Bid dn (Value) % Air Eject Figure 4-K Sample Plant Safety Status Display Mitigate Mode Primary Coolant System Leak to Containment mx-46

'EVESTlNQHOOSE PROPRIETARY CLASS 2

5. 0 . BYPASSED ANO INOPERA8LE STATUS INDICATION FOR.

PLANT SAFETY SYSTEMS 5.1 PURPOSE The purpose of the Bypassed and Inoperable Status Indication (BISI) system is to provide the control room operator with a continuous systems level indication of a bypassed or inoperable condition for the systems comprising the engineered safety features. The system considers the, actual status of individual components including systems level bypasses and control room operator entered inputs for components removed from service.

5 ~2 INPUT OETERNINATION Bypassed and inoperable status indication is provided for the systems comprising the engineered safety features and their critical supoort systems. These systems are identified in Table S . l. This table also identifies the types of components for which monitoring is required, the approximate number of each type of component, and the type of status

.information needed. This list is generic in nature and will be revised to meet individual plant specific designs.

Ie the evaluation of system inputs, the components in each systan are.

considered in the light of being in a proper state to perform or supoort the operation of a safety function. The systems level bypass functions that must also be considered are listed in Table: 5.2. In addition to automatically monitored inputs, the system also considers the effect of component or sys.em out of service inputs manually entered by the control room oper ator.

5. 3 MAN-MACHINE INTERFACE The interface between the operator and this system is provided by redun-dant CRT displays and keyboard consoles located in the control room.

Personnel located in the Onsite Technical Support Center will also be AEP-47

~ Ve'FSTlhGHOUSE PRO?RlH'hI1Y CLASS 2 able to access the same information. The 6IGl uti1izes a structured display hierarchy for the operator '.'nterface. The display hierarchy is shown in Figure 3.1.

The primary display, an example of which is shown in Figure 3.2p con-tains the following information for each of the systems comprising the engineered safety features:

L Sypassed or inope~able statu" indication for each affected subsystem on either a systems level and/or train level basis.

Z. identification of whether the condition is due to the inoperable status of a component or auxiliary support such as cooling water, power supply, tc.

Other levels of displays such as shown in Figure.3 . 3 provide supporting information on individual components within each subsystem and support system. Lnn additional display provides a ".abulation of all control room operator entered inputs ror inoperable components for which automatic monitoring can not be accommodated or for which monitoring does not currently exist whenever the status of a system becomes inoperable or bypassed, the ontrol roan operator will be alerted by an audible alarm and the primary display will indicate via video highlighting (e.g., flashing, color change, reverse video, etc.) the affected systen and subsys.em.

The operator can then access supporting displays tc determine the cause the bypassed or inoperable condition. The ontrol room operator must tionss of acknowledge the abnormal condition in order to silence the audible alarm. Reinstatement of normal systen function wi 11 also generate a different audible signal.

Two additional capabilities of the SISI are the timing and test func-AEP 48

WESTltsGHQUSE PI'.OPHl~iARY CL".SS g

/The timing i'unction enab'les the control rom aperator ta set up a count- (a,c down timing function for a system which is bypassed or inoperable. An audible alarm would be generated at the expiration of the operator specified time limit. -This feat'ure would aid the control room operator in complying with Technical Specification time limits for systems unavailable for service.

The test function enables the control room operator to test the ef ect on systems level status of a change in component, status prior to chang-ing the component's status. In response to the control room operator entered input, simulating the affect of changing a component's or sys-tem's status, the system determines tne resultant effect on system operability and indicates the result to the central racm operator 3~3 AEP-4 9

I TABLE S.l

~

BYPASSED At10 ItsOP RABL STATUS ItsOICATIOt1 COMPOttEHT INPUTS

~Sstem Comoonents Status

('.c)

Emergency core cooling Yalves Open/Shut

=

Pumps Operable

~

.Process High/L'o~, etc.

(level, pressure)

~ t$

y,'I

.Auxiliary feedwater Valves Open/Shut

~'a o

"a . Pumps . Operable

. Process Nigh/Low, etc.

Containment Valves Open/Shut Pumps Oper able Process =

High/Low, etc 0 spray'ontainment i so ation 1 Valves Open/Shut Auxiliary power system Breakers Open/Closed/Out

'enerators Operab.l e Voltages High/Low

'Containment ventilation Yalves Open/Shut Motors Operable Containment hydrogen Valves Open/Shu recombiners Motors Operable Component coo1ing Valves Open/Shut Pumps Oper able Service water Yalves Open/Shut Pumps Operable 3~

AEP-50

~

. ~ ~ o ~ ~ ~ ~ 4 ~

A WESTINGHOUSE PROPRjETARY CL4SS 2 TABLE 5.2 Y

rq BYPASSED AND INOPERABLE STATUS, INOICATION-SYSTEM LEVEL BYPASS FUNCTIONS Safety injection Low pressurizer pressure Low steamline pressure Manual reset Steaml inc isolation

~

s4 4

Steam dump interlock Steam generator blowdown isolation 3-5 AEP-51 5251A

IESTINGHOUSF. PROPRIETARY CLASS 2 Systems Level Status cCCS Hl Head Sl Prfrnary Qteplay Accumulators Operator Etc.

Inputs Safety Continent lOtnersl lntecuon Spray Pump 1 Ready Pump 2 Out Stthsystern Cont ponent Valve t Open Level Qtapksy Containment Spray Suc pot Comoonent Cooling Support Systornl ESP Power Component Lovel Pisplay Etc.

Figure 5. 1 Display Structure 8ypasseC and inoperable Status indication AEP-52

IESTINGHpUSE pRppRIETARY CLASS 2 8YPASSED AND INOPERABLE STATUS DISPLAY SYSTEMS Emergency Core Cooling-High Head SI Operable Intermediate Head Sl Operable Low Head SI Operable Accumulators Operable Auxiliary Feedwat r Operable Containment Isolation Operable Containment Spray Inoperable - Train A Component Contaioment Ventilation Operable Safeguards Power Source Operable Figure. 5. 2Primary Disofay Bypaued and inoperable Status indication AZP 53

WESTINGHOUSE PROPRlETARY CLAS) g CONTAINMENTSPPAy Train A Train 8 Train C VLY101 VLV201 VLV301 Pump A Suet Open Pump 8 Suet Open Pump C Suet Open YLV111 VLV21 1 VLV31 1 NAOH Supply Open NAOH Supply Open NAOH Supply Open Pump A Operable Pump 8 Operable Pump C Operable VLY102 VLV202 VLV302 Pump A Outlet Closed Pump 8 Outlet Open Pump C Outlet Open VLY103 VLV203 VLV303 Headr A Outlet Closed Headr 8 Outlet Closed Headr C Outlet Closed VLV121 VLV221 VLY321 Recirc A Closed Recirc 8 Closed Recirc C Closed Refueling Water Storage Tank LS1 CO Level Normal LS101 Level Normal LS1 02 Levei Normal LS103 Level Normal NAOH Spray Additive LS200 Level Normal TS200 Temp Normal LS201 Level Normal TS201 Temp Normal LS202 Level Normal TS202 Temp Normal Figure 5. 3 Secondary Display Bypassed and Inoperable St-tus Information AEP-54

6 TSC ZNSTRUiiENTATZON As described in Section 2, most of the input signals t t ie TSC computer are taken from the existing instruments which also provide signals for the Control Room indicators. This approach will provide consistent data in both the control room, Onsite Technical Support Center and the EOF. The input signals to the TSC computer therefore have the same high quality, accuracy and reliability as the control room signal. Znputs to the TSC computer provide transformer isolation for all analog input signals and all digital input signals are optically isolated. Zn addition, all signals from the Reactor Protection Channels are taken after the existing safety grade isolators. The interfacing of the TSC Computer to the existing plant instrumentation was designed so as not to result in any degradation of the control room, protection system, controls or other plant functions. Any degre'dation that isq noted during checkout and integrated systems testing will be corrected.

AEP-55

7.. TSC KWER SUPPLY SYSTEPS 7.1 POWER YO THE TSC CCMPUPER SYSTl24:

1 b g ~y (UPS). This UPS system will provide the TSC c~ezs arB pexiphexal egal@~< with a high quality, transient fxe power source.

7.1.1 THE UPS SYSTEM:

Figuxe 7.1 shows a one-line diagram (schematic) for the UPS system.

-The system the battezy consists of xedundar&

invextexs, and static txansfer switches.

charger converts AC to CC

~

battezy chairs,. battezy, static and ruxmal conditions, supplies it to the imaxter. 'Ihe battexy charger also kems the battezy at, fiQl charge. The invexter. converts the CC to AC in order to supply the 7.1.2 COHSHQ~S CF PCNER SUPPLY INTERRUPTIGH:

thexe is a power xeduction (dip or degradation) or loss (failure) of the AC pcwer souxce, the UPS battezy ?eccnes t".w pr'unary source of D" to &a umexter, rather than 51m battezy charger which has lost its normal s~ of AC power supply. Tt~

h F for a pexicd of 30 minutes. This allows a sufficient tine interval in which a diesel. genexator (badmp AC source) can be made available to provide power to the inverter. In the unli3cely event of loss or AEP-56

TSC POWER SUPPLY SYSTEM (CONCEPTUAL OESIGN)

I EMERGENCY SOURCE NORMAL SOURCE BACK-UP'OURCE I NOEP ENOENT INOEPENOENT INOEP ENOENT 600 VOLT BUS 600 VOLT BUS 600 VOLT BUS O'C.C. M.C.C.

BREAKER BREAKER 225A 225A M.C,C. AUTOMATIC BREAKER TRANSFER 225A SWITCH 260A 600 ~700 I

A~MP 700 AMP

'5KVA BATTERY CHARGER BATTERY 120 I CHARGER (ALTERNATE}

BATTERY 927A 40KVA 40KVA INVERTER INVERTER STATIC STATIC SNITCH SWITCH FIGURE 7. I UNIT W I UNIT W2 TSC TSC COMPUTER 8 COMPUTER 8 P 'ERIPHERALS P ERIP HERA LS AEP -56o

unavailability af both the rurmal and badcup AC sources, the static swi~ will beused for transfer, if necessary, to the enaxcpncy AC source~

7;2 PONER TO THE TSC CDMPLZX:

Standard balan-plant (BOP) sources will provide the TSC with power for lighting and cowmnience receptacles. For additional protection,, the lightizq fixtures are provided with battery pactum for continued operation in the event of loss af the EOP pamr supply. The PRC equitant will be supplied frcm an Essential Services System bus QC source) .

AEP-57

Section 8.0 Original pages AEP-58 through AEP-62 have been deleted from this submittal. The descriptive information that was contained therein can be found in the OCCNP Emergency Plan.

AEP-58 L

?af IC 5 ~

C

Section 9.0 Original pages AEP-63 through AEP-65 have been deleted from this submittal. Listings of plant records, plant specific reference material, general technical reference material, plant procedures and reports that are available to personnel working in the TSC are provided in general company internal documents which pertain to the subject matter.

AEP-63

Attachment 1 to AEP:NRC:0916I REASONS AND 10 CFR 50.92 ANALYSES FOR CHANGES TO THE DONALD C. COOK NUCLEAR PLANT UNIT 2 TECHNICAL SPECIFICATIONS

I I

I j,r I / I 1

rr e

'I t

4 I )

. r

., g~A rtl 4~ '1 11 I IC jI Ip I

)1 .,

j I

I'I 'I 1 11 IJ I

,4 i I, I rt '

>> jar '

lr rjh /

+ktr'fl g I P Jf en rr ~

Ab:: .,i.j f",",1;i,'j,-';:;,,;

I tr Il

AEP:NRC:0916I Attachment 1 Page 1 of 18 The Technical Specification (T/S) changes included in this letter are, in general, those necessary to support the safety analyses performed by Exxon Nuclear Company (ENC) for the Unit 2 Cycle 6 reload. In addition to these changes, however, we have included additional changes which are intended to make the T/Ss clearer, easier to use, or more consistent with the Standard Technical Specifications (STSs) for Westinghouse Pressurized Water Reactors, NUREG-0452, Rev. 4 (or Draft Rev. 5, where applicable).

A summary of the changes has been included as Attachment 10 to this letter. It includes a brief description of each change, as well as the reason for the change, and, where applicable, references to the safety analyses the change is based on. This attachment includes an overview of the changes, as well as our 10 CFR 50.92 justifications for no significant hazards consideration. Please note that the changes will be referred to by their numbers, which are given in the "Description of Change" column in 0.

We have grouped the changes into 12 separate types for ease of discussion. These changes are discussed below.

1. Editorial Changes The first group of changes to be discussed consists of those that are purely editorial in nature. These changes are numbered 1, 2, 5, 6, 12, 20/

21'4'5'6'5'0~

105 in Attachment 10.

60~ 62~ 69'4'1~

These changes 83~ 84'8'" 90'3J 94'7/

are proposed to enhance the 98'nd readability of the T/Ss, to achieve consistency between the Unit 1 and 2 T/Ss, or to achieve consistency with the STSs, as described in Attachment 10.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

involve a significant increase in the probability or consequences of an accident previously evaluated,

'(2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 These changes, being editorial in nature and intended to improve the readability of the T/Ss, will not reduce in any way requirements or commitments in the existing T/Ss. Thus, no increase in the probability or consequences of a previously evaluated accident would be expected.

Criterion 2 These purely editorial changes will not create the possibility of a new or different kind of accident from any previously evaluated, because all accident analyses and nuclear design bases remain unchanged.

AEP:NRC:0916I Attachment 1 Page 2 of 18 Criterion 3 The proposed amendment will not involve a significant reduction in margin of safety, because, as discussed above, all accident analyses and nuclear design bases remain unchanged.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The first of these examples refers to changes. that are purely administrative in nature: for example, changes to achieve consistency throughout the T/Ss, correction of an error, or a change in nomenclature. This group of proposed changes is intended to achieve consistency between the Unit 1 and 2 T/Ss, to achieve greater consistency with the STS format, or to improve the overall readability of the T/S document. As these changes are purely editorial and do not impact safety in any way, we believe the Federal Register example cited is applicable and that the changes involve no significant hazards consideration.

2. Removal of 3-Loo Technical S ecifications A second category of changes involves removal of Technical Specification provisions for 3 reactor coolant loop operation in Operational Modes 1 and 2. These are changes numbered 3, 7, 16, 29, 30, 31, 46, 56, 59, 61, 67, 91, 99, and 100 in Attachment 10. This category includes all changes involving removal of 3-loop provisions except for those associated with Functional Unit l.e. (Differential Pressure Between Steam Lines-High) on Engineered Safety Features (ESF) Actuation Instrumentation Table 3.3-3. Three-loop changes associated with this ESF signal are discussed in Category 5 of this Attachment.

License Condition 2.C.3(j) for Unit 2 prohibits operation with less than 4 pumps at power levels above the P-7 permissive (approximately 11% of rated thermal power). As a matter of practice, we have extended this restriction to cover all of Modes 1 and 2. As T/Ss covering 3-loop operation in Modes 1 and 2 are therefore not necessary, we propose to remove them to streamline the document.

Included in this group of changes is the deletion of T/S 3/4.4.1.4.

Although this specification contains provisions for less than 4-loop operation in modes other than 1 and 2, the requirements for other modes which remain applicable are addressed identically in other T/Ss, as specified below:

Action Statement (Below P-7) Where Addressed a T/S 3 '.1.1 b T/Ss 3.4.1.2 and 3.4.1.3 c Not needed, since 3-loop operation in Modes 1 and 2 will be prohibited.

AEP:NRC:0916I Attachment 1 Page 3 of 18 Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

involve a significant increase in the probability or consequences of an accident previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 This group of changes will extend the license condition prohibiting 3-loop operation above the P-7 permissive to include all of Modes 1 and 2. Thus, the changes would be expected, as a minimum, to reduce the probability, or consequences of a previously evaluated accident.

Criterion 2 Since these changes place additional restrictions on plant operation, they would not be expected to create the possibility of a new or different kind of accident from any previously analyzed or evaluated.

Criterion 3 Since 3-loop operation in all of Modes 1 and 2 will be prohibited, additional margin to DNB under accident conditions should result. Thus, margin of safety should be increased rather than decreased.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The second of these examples refers to changes that impose additional limitations, restrictions, or controls not presently included in the T/Ss. Since prohibition of 3-loop operation in Modes 1 and 2 constitutes a restriction which the current T/Ss do not have, we believe this example is applicable and that the changes involve no significant hazards consideration.

3. Additional Restrictions Because of Safety Analyses A third group of changes involves inclusion of proposed new requirements in the T/Ss. The new requirements are proposed to make the T/Ss consistent with the safety analyses performed by ENC in support of the Cycle 6 reload, or to achieve consistency with the STS. These changes are numbered 9, 22, 51, 52, 55, 63, 64, 70, 72, 73, 80, 82, 86, 92, and 102 in 0. The applicable references to the safety analyses are included there also.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

(1) involve a significant increase in the probability or consequences of an accident previously evaluated,

AEP:NRC:0916I Attachment 1 Page 4 of 18 (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 These changes constitute additional restrictions on the plant in terms of T/S mode applicability, surveillance requirements, or Action Statement requirements. Since none of these changes reduce in any way previous safety requirements, they would not be expected to result in an increase in the probability or consequences of an accident previously evaluated.

Criterion 2 These changes will place additional restrictions on plant operation and will increase, rather than reduce, requirements for safety. Therefore, they should not create the possibility of a new or different kind of accident from any previously analyzed or evaluated.

Criterion 3 These changes add additional safety requirements, and in no way reduce any existing requirements. Thus, no reduction in margin of safety will occur because of these changes.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The second of these examples refers to changes that impose additional limitations, restrictions, or controls not presently included in the T/Ss. These changes impose additional restrictions on the plant for consistency with the Cycle 6 safety analyses or the STSs. Thus, we believe that this example is applicable and that the changes involve no significant hazards consideration.

4. Refueling Water Storage Tank Chan es A fourth group of changes involves T/Ss 3.1.1.3, 3.1.2.3, 3.1.2.5, 3.4.1.2, 3.4.1.3, and 3.9.8.1 specifically as they apply to borated water addition or positive reactivity addition from the Refueling Water Storage Tank (RWST) . These are changes numbered 25, 26, 27, 87, 89, and 104 in 0.

T/S 3.1.1.3 requires reactor coolant flow of at least 3000 gpm during dilution of the Reactor Coolant System (RCS) boron concentration in any mode. T/Ss 3.4.1.2 and 3.4.1.3 require at least one coolant loop to be in operation during boron dilution in Modes 3, 4, and 5. T/S 3.9.8.1 requires 3000 gpm of coolant flow via the Residual Heat Removal System during boron dilution in Mode 6. T/Ss 3.1.2.3 and 3.1.2.5 prohibit positive reactivity addition in Modes 5 and 6 with charging pumps or boric acid transfer pumps inoperable, respectively. Because of concerns with literal T/S compliance, questions have arisen as to the applicability of these specifications during the times when we add water to the RCS from an operable RWST, specifically when the boron concentration of the RWST is lower than the RCS.

AEP:NRC:0916I Attachment 1 Page 5 of 18 The RWST minimum boron concentrations stated in the T/Ss were established to ensure that adequate shutdown margin is maintained, and are consistent with numbers assumed by ENC in their Cycle 6 reload analyses.

Because of this, it is our belief that the boron dilution restrictions of the T/Ss listed above were not meant to be applicable during water addition from the RWST, provided the boron concentration in the RWST exceeds the minimum requirements stated in the T/Ss. We have documented this interpretation in the past (see our letter AEP:NRC:0975A, dated February 28, 1986); this change is submitted only to formalize this interpretation.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

involve a significant increase in the probability or consequences of an accident previously evaluated; (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 Our review has determined that the T/S RWST minimum boron concentrations are sufficient to ensure that adequate shutdown margin is maintained throughout the entire core life. Additionally, the RWST boron concentrations are consistent with those assumed in the LOCA analyses performed by ENC. Thus, we conclude that these changes will not significantly increase the probability or consequences of an accident previously evaluated.

Criterion 2 The proposed amendment will not create the possibility of a new or different kind of accident from any previously evaluated. It has been determined that the RWST boron concentration is sufficient to ensure adequate shutdown margin from all expected operating conditions. The consequences of adding water from an operable RWST which is at a lower boron concentration than the RCS is therefore bounded, and no new or different kind of accident from those previously evaluated would be expected.

Criterion 3 Because these changes lessen operating restrictions, it can be expected that a reduction in safety margin may occur. However, because the RWST minimum boron concentrations are sufficient to provide adequate shutdown margin from all expected operating conditions, this reduction in safety margin would be insignificant.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The sixth of these examples refers to changes which may result in some increase to the probability of occurrence or consequences of a previously analyzed accident, but where the, results are

AEP:NRC:09161 Attachment 1 Page 6 of 18 clearly within limits established as acceptable. As discussed above, these changes relax requirements related to boron dilution or positive reactivity addition, but are clearly bounded by our shutdown margin analyses. Thus, we conclude that the example cited is applicable and that the changes involve no significant hazards considerations.

5. Changes to the Differential Pressure Between Steam Lines-High ESF Actuation Signal The fifth group of proposed changes involve Functional Unit l.e (Differential Pressure Between Steam Lines-High) under the Engineering Safety Feature (ESF) Actuation System Instrumentation Table 3.3-3. These changes are numbered 67, 68, and 71 in Attachment 10. Specifically, we are proposing to change the footnote designator for the Channels to Trip column of the 3-loop section to a quadruple pound sign, and to add a corresponding new footnote to the Table 3.3-3 notations on T/S page 3/4 3-21.

Additionally, we propose to revise the functional unit to prohibit 3-loop operation in Modes 1 and 2, consistent with Category 2 of this attachment.

The Differential Pressure Between Steam Lines-High actuation differs from other ESF actuation signals in that a signal from one loop is compared to signals in the other loops. The current footnote associated with this signal for the 3-loop case states: "The channels associated with the protective functions derived from the out of service Reactor Coolant Loop shall be placed in the tripped mode." This could be construed to mean that all channels in the out of service loop should be tripped. This in turn would result in an ESF actuation. It is our belief that the footnote as applied to this functional unit means to trip the bistables which indicate low active loop steam pressure relative to the idle loop. This action reduces the ESF actuation logic for the active loop differential pressures from 2 out of 3 to 1 out of 2, and thus permits 3-loop operation in Mode 3 since 2 channels per steam line are necessary for a trip.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

involve a significant increase in the probability or consequences of an accident previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

The prohibition of 3-loop operation in Modes 1 and 2 is consistent with the changes included in Category 2 of this attachment. The 10 CFR 50.92 analysis is thus identical and will not be repeated here. The 10 CFR 50.92 analyses included in this category are therefore only those involved in rewriting the Differential Pressure Between Steam Lines-High footnote in T/S Table 3.3-3.

Criterion 1 The changes included in this group are editorial in nature, intended only to clarify the ESF Actuation System Instrumentation Table (3.3-3) as it

AEP:NRC:0916I Attachment 1 Page 7 of 18 applies to the Differential Pressure Between Steam Lines-High actuation signal. Thus, no significant increase in the probability or consequences of a previously evaluated accident should occur.

Criterion 2 The proposed amendment will not create the possibility of a new or different kind of accident from any previously evaluated because these changes, being editorial in nature, will not impact existing safety analyses or the nuclear design bases.

Criterion 3 The proposed amendment will not involve a significant reduction in margin of safety because, as discussed above, all accident. analyses and nuclear design bases remain unchanged as a result of these proposed T/S changes.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The first of these examples refers to changes that are purely administrative in nature: for example, changes to achieve consistency throughout the T/Ss, correction of an error, or a change in nomenclature. This group of proposed changes is intended only to clarify the T/Ss, to avoid the possibility that they may be misread. As these changes are editorial and do not impact safety in any way, we believe that the Federal Register example cited is applicable and that the changes involve no significant hazards consideration.

6. Changes to the Power-0 crated Relief Valve (PORV) S ecification, 3/4. 11. 4 The sixth group of proposed changes involve a redraft of T/S 3/4.11.4, concerning the Pressurizer Power-Operated Relief Valves (PORVs). These changes are number 95 in Attachment 10. Specifically, we are proposing to change T/S 3/4.11.4 to require that at least 2 PORVs be available in Modes 1, 2, and 3. For purposes of this specification, "available" means that the PORV is operable with its solenoid deenergized and that the block valve is operable and energized. This differs from the present T/S, which allows all 3 PORVs to be inoperable, provided their associated block valves are closed. The proposed changes are intended to ensure that PORV relief capability is available to assist in RCS depressurization following a steam generator tube rupture without offsite power, and to respond to comments made by members of your staff at a meeting held with us in Bethesda, MD on December 13, 1984.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

involve a significant increase in the probability or consequences of an accident previously evaluated, (2) create the possibility of new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

AEP:NRC:0916I Attachment 1 Page 8 of 18 Criterion 1 This group of changes constitutes additional restrictions placed on PORV (and associated block valve) operability requirements. Since no restrictions associated with the PORVs are reduced in any way by this group of changes, we conclude that these changes will not increase the probability or consequences of a previously analyzed accident.

Criterion 2 Since these changes place additional restrictions 'on plant operation and in no way reduce present safety restrictions, they would not be expected to create the possibility of a new or different kind of accident from any previously analyzed or evaluated.

Criterion 3 These changes add additional restrictions on the PORVs, designed primarily to ensure that PORV relief valve capability is available to assist in RCS depressurization following a steam generator tube rupture. Thus, these changes would be expected to increase, rather than decrease, safety margins.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The second of these examples refers to changes that impose additional limitations, restrictions, or controls not presently included in the T/Ss. Since this group of changes will require PORVs to be operable in Modes 1 through 3 (where previously no operability requirement existed), they clearly constitute additional restrictions. Thus, we conclude that the example cited is applicable and that no significant hazards are involved.

7. Addition of T/S 4.0.4 Exem tions The seventh group of proposed changes are those which add T/S 4.0.4 exemptions to existing T/Ss. These changes are numbered 44, 65, 66, and 103 in Attachment 10. For the first of these changes, a T/S 4.0.4 exemption has been proposed for the flow measurement performed after each refueling and for all flow surveillances for the DNB T/S, 4.2.5.1 (see numbers 44 in Attachment 10). (The flow specification has been moved from the F H specification (3/4.2.3) to the DNB specification (3/4.2.5.1) for consistency with Unit 1 specifications.) This exemption is required because flow is measured using secondary calorimetric and primary temperature measurements, which can only be performed at or near full power. The flow instrumentation is calibrated based on this measurement.

Exemptions have also been provided for several Nuclear Instrumentation System (NIS) calibrations (see numbers 65 and 66 in Attachment 10) in T/S Table 4.3-1. Of these, those proposed for source range and intermediate range detector calibrations appear in STS, Rev. 4. STS, Rev. 4 also provides this exemption for the incore detector, excore power range

AEP:NRC:09161 Attachment 1 Page 9 of 18 detector cross-calibration performed after refueling. Our proposal extends this exemption to the quarterly incore detector, excore power range detector cross-calibration in order to address the situation where an unscheduled outage of significant duration causes the surveillance interval for this calibration to lapse. This exemption is proposed for the daily power range, neutron flux heat balance because it is required to be performed above 15% rated thermal power by T/S. It is also proposed for the monthly incore-excore axial offset comparison for the same reason. These exemptions are needed to address unscheduled outages for which the surveillance interval has lapsed. An exemption from T/S 4.0.4 for the source range channel functional test is proposed. This exemption addresses the situation that results from a reactor trip after continuous power operation of more than 1.25 times 31 days. This surveillance cannot be performed at power without damaging the source range detectors.

Exemptions from T/S 4.0.4 are proposed for the single-loop and two-loop loss-of-flow trip calibrations of T/S Table 4.3-1. These are required because these calibrations are based on the primary flow measurement taken at or near full power which was discussed above in relation to flow instrumentation. These changes are numbered 65 and 66 in 0.

Exemptions from T/S 4.0.4 are proposed for the f(D, I) penalties associated with the Overpower 5 T and Overtemperature b,T trips. These exemptions are required because the f(5 I) module is calibrated to data obtained from the incore detector, excore power range detector cross-calibration. As is implied by the exemption of this calibration from T/S 4.0.4 on a refueling frequency, which is already available in STS, Rev.

4, this calibration must be performed at power, in the applicable mode.

The calibration is performed at power so that an appreciable signal can be obtained on the incore detectors and the excore detectors. These changes are numbered 65 and 66 in Attachment 10.

Lastly, an exemption from T/S 4.0.4 is proposed for Surveillance 4.7.1.5 (see number 103 in Attachment 10.) This exemption is required because T/S 3.7.1.5, Steam Generator Stop Valves, is applicable to Mode 3, and Surveillance 4.7.1.5, which measures stop valve closure time, must be performed in Mode 3. In order to demonstrate the required closure time for the steam generator stop valves, steam pressure must be in the normal operating range corresponding to primary temperature above the P-12 setpoint. Therefore, secondary pressure for this test must be above approximately 800 psig for which saturation temperature is well above the 350 F Mode 3 boundary. An exemption is also proposed for Beginning of Cycle to enter Mode 2 for physics testing provided the steam generator stop valves are closed. This provision allows continuation of the startup program with steam generators isolated in the event that secondary side work is not complete.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

(1) involve a significant increase in the probability or consequences of an accident previously evaluated,

AEP:NRC:0916I Attachment 1 Page 10 of 18 (2) create the possibility of new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 The changes in this section are necessary to make the T/Ss accurately reflect limitations associated with surveillances which must be performed in the applicable mode. Additionally, the changes are needed to address the fact that unscheduled outages can and do occur, and when they do surveillances can expire with no way to correct the situation until the unit returns to power. Where possible we have followed the guidance given by the STSs, expanding it as necessary to address the situations just described. As these changes are consistent with the guidance provided by the STSs, we believe that any increase in the probability of occurrence or consequences of an accident previously analyzed, or any reduction in margins of safety, would be insignificant.

Criterion 2 Since these changes require neither physical changes to the plant nor changes to the safety analyses, it is concluded that they will not create the possibility of a new or different kind of accident from any previously evaluated.

Criterion 3 Please see our discussion on Criterion 1, above.

Lastly, we note that the Commission has provided guidance concerning the determination of significant, hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. Example 6 refers to changes which may result in some increase to the probability or consequences of a previously analyzed accident, but where the results of the change are clearly within acceptable limits. It is our belief that these changes are necessary to reflect limitations inherent in surveillance testing methods employed by the Cook Plant, and the changes reflect further clarification of the intent of the original T/S as is indicated by the type of T/S in these areas that is permitted by later revisions of the STS. In light of this, we believe the reasons for this group of changes to be consistent with Example 6.

8. Changes to Existing T/S Values The eighth group of proposed changes involve values of parameters presently included in the T/Ss that are being revised to reflect the assumptions used in the various safety analyses performed in support of the Unit 2 Cycle 6 reload. These changes are numbered 4, 8, 10, 11, 13, 17, 18, 19, 23, 28, 34, 40, 42, 47, 48, 49, 54, 76, 78, 79, and 101 in 14'5, Attachment 10. That attachment also includes references to the specific sections of the accident analyses on which the changes are based.

AEP:NRC:0916I Attachment 1 Page 11 of 18 Two types of changes included in this group need further explanation.

The ~ first are changes to allowances to permit operation with RdF RTDs.

These are included in the changes numbered 8, 10, 14, 19, 42, 47, 48, 76, and 78 in Attachment 10. During the Unit 2 Cycle 6 refueling outage, we will be replacing all of our existing Rosemount RTDs with RTDs manufactured by the RdF Corporation. Because the uncertainties associated with these new RTDs are different from those associated with the older Rosemount RTDs, it is necessary to revise some T/S values accordingly. We used the revised uncertainties to obtain Technical Specification setpoints from the analysis values calculated by Exxon Nuclear Company. Certain setpoints were affected by both a change in analysis value and the revised allowances.

For your convenience, we have included the Westinghouse Electric Corporation safety evaluation for the RdF RTD installation (WCAP-11080) as to this letter.

The second group of changes needing clarification are changes involved with the f( 5 I) penalty which is applied to the Overtemperature 5 T and Overpower 5 T reactor trip setpoints. (These are changes numbered 15 and 18 in Attachment 10.) There is only one f( ~ I) module, which serves both of these trips. This module places a penalty on these trip functions in the event of an axial imbalance in neutron flux between the top and bottom halves of the core. The f( ~ I) penalty was not required as an input to the Overpower L T trip for previous Unit 2 cycles, and thus f ( L I) is presently set equal to zero in T/S Table 2.2-1. The new analyses performed by ENC apply the f( 5 I) penalty to both Overpower and 2

Overtemperature 5 T. The ENC analyses resulted in different f( 5 I) functions for these two trips. However, because they share the same f( ~ I) module, a single f( 5 I) function that conservatively bounds these two functions was chosen for the proposed T/Ss.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

(1) involve a significant increase in the probability or consequences of an accident. previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or

'(3) involve a significant reduction in a margin of safety.

The changes included in this group are necessary to support safety analyses performed by ENC and Westinghouse Electric Corporation (as referenced by Attachment 10) in support of the Cycle 6 reload. These analyses have not yet been accepted by the Commission. Our conclusion of no significant hazards considerations, which is supported below, is therefore contingent upon Commission acceptance.

Criterion 1 The safety analyses performed for Cycle 6 addressed all previously analyzed accidents. The analyses, which are referenced in Attachment 10, demonstrated that no sig'nificant increase in the probability or consequences of a previously evaluated accident is expected to occur.

AEP:NRC:0916I Attachment 1 Page 12 of 18 Criterion 2 The safety analyses performed for Cycle 6 addressed all applicable accidents found in the Standard Review Plan for relevancy to Cook. Many of those addressed had not previously been evaluated for D. C. Cook Unit 2.

Therefore, we conclude that, to the best of our knowledge, this group of changes will not create the possibility of a new or different kind of accident from any accident previously analyzed.

Criterion 3 The safety analyses performed for Cycle 6 (as referenced by Attachment 10) have demonstrated that acceptable margins of safety are maintained for all accidents which were addressed.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The second of these examples refers to changes resulting from a nuclear reactor core reloading, if no fuel assemblies significantly different from those found previously acceptable to the NRC for a previous core at the facility in question are involved. These changes are similar to this example in that the Cycle 6 reload is very similar to previous reloads in terms of enrichment, power distribution, and fuel type. Although minor changes have occurred (e.g., F was increased from 2.04 to 2.10), the changes were analyzed and found n8t to significantly impact applicable margins to safety. Thus, we conclude that the example cited is relevant and that no significant hazards consideration is involved.

N

9. Se aration of Flow Rate and F The ninth group of changers involve revisions to T/S 3/4.2.3, Nuclear Enthalpy Hot Channel Factor (F hH ). These changes are numbered 41, 42, 43, 48 in Attachment 10. In the present T/Ss, RCS flow rate and F may be "traded off" against one another (i.e., a lower measured RCS flow rate is acceptable provided F hH is also acceptably lower). In the proposed TgS 3/4.2.3, we have eliminated the ability to trade off flow for F . F is now defined in T/S 3.2.3 only as a function of rated thermal power. RS flow rate in Mode 1 has been moved to proposed T/S 3/4.2.5.1, which contains the Mode 1 DNB parameters. Although the Action Statements and surveillance requirements have been revised to reflect this separation, no requirement appropriate for either of the two has been deleted or made less severe. No flux mapping is requiged in the DNB Action'tatement, because flux mapping is used to measure F< , not flow.

The proposed changes included in )his group are only those changes involved in separating flow rate and F in the T/S. Changes to existing T/S values for flow are included in Category fH 8 of this attachment.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

(1) involve a significant increase in the probability or consequences of an accident previously evaluated,

AEP:NRC:0916I Attachment 1 Page 13 of 18 (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 This group of proposed changes in no way removes or reduces any safety requirements, nor does it require physical changes to the plant. Thus, it is not expected to involve a significant increase in the probability or consequences of a previously evaluated accident.

Criterion 2 These proposed changes will not create the possibility of a new or different kind of accident, from any previously analyzed, because, being primarily editorial in nature, they impact neither the accident analyses nor the nuclear design bases.

Criterion 3 The proposed changes will not involve a significant reduction in margin of safety, because, as discussed above, all accident analyses and nuclear design bases remain unchanged. Since these changes actually represent additional restgictions (in that we will no longer be able to trade off RCS flow rate for F AH) it could be anticipated that an increase, rather than decrease, in the margin to DNB under accident conditions might actually result.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The first example refers to purely administrative changes to the T/S: for example, changes to achieve consistency throughout the T/Ss, correction of an error, or a change in nomenclature. These changes are similar to this example in that RCS flow rate and F are being separated with no reduction in requirements, primarily to make Ke Unit 2 T/Ss more similar to those for Unit 1.

The second example published in the Federal Register refers to changes that constitute additional limitations, restriction's, or controls not presently included in the T/Ss: for example, more stringent surveillance requirements. These changes are similar to this example ig that we will be prohibiting ourselves from trading off RCS flow rate for F<

For the reasons provided above, we conclude that the examples cited are xelevant and that this group of proposed changes involves no significant hazards consideration.

10. Chan es to the P-12 Interlock Descri tion The tenth group of proposed changes involves the P-12 Interlock description included in T/S Table 3.3-3. These changes are numbered 75 and 77 in Attachment 10. The P-12 Interlock receives input from the T

ave low-low bistables. These 0 bistables are calibrated to trip when the temperature decreases to 541 F as specified in T/S Table 3.3-4.

AEP:NRC:0916I Attachment 1 Page 14 of 18 With 2 out of 4 bistables tripped, P-12 permits the manual block of the Low Steam Line Pressure Safety Injection, causes steam line isolation under conditions of high steam flow, and removes the arming signal to condenser steam dump. With 3 of 4 Tave channels above the reset point, 0

which is greater than 541 F, the manual. block of Low Steamline Pressure Safe'ty Injection is defeated or prevented and the condenser steam dump is enabled.

The present T/S description of the P-12 Interlock is confusing in that it neglects the trip and reset points, and instead describes P-12 in terms of conditions above 544 0 F and below 540 0 F. If this description is read it literally, could be inferred that P-12 is established when o Tave is greater than or equal to 544 0 F and when Tave is less than 540 F.

Additionally, the manual block 0 of safety xn3ection actuation would0 not be permitted until below 540 F, when in fact the 0

setpoint is 541 F. We propose to rewrite P-12 in terms of the 541 F setpoint, which is similar to the methodology utilized in Rev. 4 of the STS, in order to better reflect the functioning of this interlock.

In addition to the changes described above, we have revised the P-12 function description. The current, description states that the Safety Injection associated with P-12 occurs on high steam line flow and low steam line pressure. The D. C. Cook Unit 2 ESF design provides a Safety Injection on Low Steam Line pressure which does not require a coincident signal from P-12 Low Low Tave . This particular Safety Injection may be blocked if the P-12 Low Low ave f.'ignal is present. High steam line flow it coincident with P-12 Low Low T ave does not provide a Safety Injection; does however cause a steamline xsolation.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

involve a significant increase in the probability or consequences of an accident previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 These changes, being editorial in nature and intended only to more accurately describe the functioning of the P-12 interlock, will not, reduce in any way requirements or commitments which are presently included in the T/Ss. Thus, no increase in the probability or consequences of a previously evaluated accident would be expected.

Criterion 2 These changes, being purely editorial, will not create the possibility of a new or different kind of accident from any previously evaluated because all accident analyses and nuclear design bases remain unchanged.

AEP:NRC:09161 Attachment 1 Page 15 of 18 Criterion 3 The proposed amendment will not involve a significant reduction in margin of safety, because, as discussed above, all accident analyses and nuclear design bases remain unchanged.

Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not, likely to involve significant hazards consideration. The first of these examples refers to changes which are purely administrative in nature: for example, a change to achieve consistency throughout the T/Ss, correction of an error, or a change in nomenclature. This group of proposed changes is similar to this example in that the changes are purely editorial, intended to make the T/Ss more accurately reflect the functioning of the P-12 interlock. No physical changes to the plant or its procedures will be necessary because of these changes. Thus, we conclude that the example cited is applicable and that this group of changes involve no significant hazards consideration.

11. Sim lifications to Power Distribution and APDMS T/S The purpose of the eleventh group of proposed changes is to delete reference to the Axial Power Distribution Monitoring System (APDMS) from the T/Ss and to simplify the Power Distribution Limits T/Ss. These changes are numbered 32, 33, 37, 38, 39, 53, and 85 in Attachment 10.

The APDMS is an option currently provided in the T/Ss. It is required to be operable by T/S 3.3.3.7 when it is being used for monitoring axial power distribution. Power operation is permitted above the Allowable Power Level (APL) and below Rated Thermal Power provided additional surveillance is performed using the APDMS in accordance with T/S 4.2.6.1. In practice, however, the APDMS can be somewhat more limiting than APL. More importantly, experience has shown that APDMS causes extensive wear and tear on the Movable Incore Detector System, which the APDMS uses for data acquisition. This effect results in serious maintenance problems on a system which contains parts which are highly radioactive. For these it was decided not to operate with APDMS. Therefore, we are delete T/S 3/4.3.3.7, and to revise T/Ss 3/4.2.2 (F (Z)) and

'easons, proposing to 3/4.2.6 (Axial Power Distribution) to remove material related to APDMS.

In conjunction with the above, we have rewritten T/S 3/4.2.6. The proposed T/S contains the limits and surveillances required to establish and maintain APL, and has also been renamed accordingly. Most of the surveillance requirements of T/S 4.2.2 have been moved to T/S 4.2.6 in order to further simplify these T/Ss. It should be noted that the 2%

penalty applied to F (Z) for increasing F by T/S 4.2.2.2.e has been incorporated into the Qdefinition of APL in%he proposed T/S 3.2.6. No requirements or limits currently in T/Ss 3/4.2.2 or 3/4.2.6, other than those related to APDMS and those discussed in the next paragraph, have been removed or reduced in our proposed revisions.

In addition to the changes described above, T/S 3.2.2 has also been revised to eliminate the need to place the reactor in Hot Standby to perform the Overpower hT trip setpoint reduction when this setpoint is

AEP:NRC:0916X Attachment 1 Page 16 of 18 required to be reduced by Action Statement a. Our review of this requirement has determined that the reduction can be performed while the reactor is at power. The change in setpoint can be accomplished one channel at a time with bistables on the affected channel in the tripped configuration; therefore, there is no need to impose a transient on the reactor systems, which is inherent in changing from Nodes 1 to 3. This change is consistent with guidance provided in Draft Rev. 5 of the STS.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

involve a significant increase in the probability or consequences of an accident previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 The changes included in this group (with the exception of the Overpowers T trip setpoint reduction) should not involve a significant increase in the probability or consequences of an accident previously evaluated. These changes are administrative in nature and do not delete any requirements other than those associated with APDMS. As described earlier, APDMS is an option and is not required by T/Ss. For the Overpower 5 T trip setpoint reduction, the change is consistent with guidance provided by the Commission through the issuance of Draft Rev. 5 to the STSs. Although the changes may increase the probability or consequences of an accident, the results should be no worse than those previously accepted by the Commission through their issuance of Draft Rev. 5 to the STSs.

Criterion 2 The changes other than the Overpower L T trip setpoint reduction are administrative in nature. They do not introduce any new modes of plant operation, nor do they require physical changes to the plant. The changes associated with the Overpower 5 T trip setpoint are consistent with guidance provided by the Commission through the issuance of Draft Rev. 5 of the STSs and are presumed to be acceptable on that basis. Thus, we conclude that the changes will not create the possibility of a new or different kind of accident from any previously analyzed or evaluated.

Criterion 3 The changes included in this group (other than the Overpower ~ T trip setpoint reduction) should not involve a significant reduction in safety margins, since they are purely administrative and in no way reduce previous requirements for safety. Changes associated with the Overpower ~ T trip setpoint reduction may involve reductions in safety margins, but the results of the change are clearly within limits found acceptable to the Commission through their issuance of Draft Rev. 5 of the STSs.

AEP:NRC:0916I 'ttachment 1 Page 17 of 18 Lastly, we note that the Commission has provided guidance concerning the determination of significant hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The first of these examples refers to changes which are purely administrative in nature: for example, to achieve consistency throughout the T/Ss, to correct an error, or to make a change in nomenclature. The changes in this group (other than the Overpower 6 T trip setpoint reduction) are purely administrative in nature. They are intended

'to improve T/S readability by eliminating the APDMS option not currently exercised, and by rearranging the T/Ss to make them easier to use. No reductions in safety requirements will occur as a result of these changes.

As for the Overpower 6 T trip setpoint reduction, this change is similar to Example 6 published in the Federal Register. This example refers to changes which may result in some increase to the probability or consequences of a previously analyzed accident or may reduce in some way a safety margin, but where the results of the change are clearly within all acceptable criteria. The elimination of the requirement to place the reactor in Hot Standby to perform the reduction does constitute a relaxation of a pr'evious requirement, but the results of the change have been found acceptable by the Commission through their issuance of Draft Rev. 5 to the STSs.

Based on the above, we conclude that the examples cited are applicable and that the changes involve no significant hazards consideration.

12. Changes for Consistenc With STS The twelfth group of proposed changes consist of those that are requested'o make our T/Ss more consistent with Rev. 4 of the STS. These are the changes numbered 57, 58, and 96 in Attachment 10, which also includes a description of the changes.

Per 10 CFR 50.92, a proposed amendment will involve a no significant hazards consideration if the proposed amendment does not:

involve a significant increase in the probability or consequences of an accident, previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously analyzed or evaluated, or (3) involve a significant reduction in a margin of safety.

Criterion 1 As these changes in general represent relaxation of current T/S requirements, they may involve an increase in the probability or consequences of an accident previously analyzed. The results of the changes, however, have been reviewed and found acceptable by the Commission through their issuance of Rev. 4 to the STSs. Thus, we conclude that any increase in probability or consequences would not be significant.

1 4

AEP:NRC:0916I Attachment 1 Page 18 of 18 Criterion 2 As these changes will involve no physical plant changes and no T/S changes

. which are not consistent with Rev. 4 of the STSs, we conclude that they should not create the possibility of a new or different kind of accident.

from any previously evaluated.

Criterion 3 Because these changes represent relaxation of present T/S requirements, they could potentially involve a reduction in safety margin. However, these changes are all consistent with those found acceptable by the Commission in Rev. 4 of the STSs. Thus, we conclude that any reduction in margins of safety are insignificant.

Lastly, we note that the Commission has provided guidance concerning the determination of significant, hazards by providing certain examples (48 FR 14870) of amendments considered not likely to involve significant hazards consideration. The sixth example refers to changes which may result in some increase to the probability or consequences of a previously analyzed accident or may reduce in some way a safety margin, but where the results of the change are clearly within all acceptable criteria. The changes included in this group are consistent with Rev. 4 of the STSs.

Although they may reduce safety requirements, the results of this change have been evaluated and found acceptable by the Commission.

Based on the above, we conclude that the example cited is applicable and that the change involves no significant hazards consideration.

Chan es to the Bases In addition to the changes to the T/Ss described above, we have also proposed changes to the Bases section to reflect both changes in the safety analyses and changes in the T/Ss. Descriptions of these changes have been included in Attachment 10.

Conclusion In conclusion, we believe that the proposed changes do not involve significant hazards consideration because operation of D.C. Cook Unit 2 in accordance with these changes would not:

(1) involve a significant increase in the probability of occurrence or consequences of an accident previously analyzed, (2) create the possibility of a new or different kind of accident. from any accident previously evaluated, or (3) involve a significant reduction in a margin of safety.

This conclusion is based on our evaluation of the changes, which has determined that all proposed changes which are not administrative in nature, consistent with the STS, or consistent with the design basis of the plant are clearly traceable to the Cycle 6 safety analyses, as referenced by Attachment 10. Assuming Commission acceptance of these analyses, it is our belief that they successfully demonstrate that applicable safety limits and margins to safety will be maintained.

h