ML17345A422: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
(One intermediate revision by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:ATTACHMENT 2 PROPOSED REVISED TECHNICAL SPECIFICATION PAGES TCG4/024/7 (SS09300066 SS0921 PDR ADOCK 05000250 P PDC ATTACHMENT TO LICENSE AMENDMENT AMENDMENT NO.FACILITY OPERATING LICENSE NO.DPR-31 AMENDMENT NO.FACILITY OPERATING LICENSE NO.DPR-31 DOCKET NO.50-250 AND 50-251 Revise Appendix A as follows: Remove Pa es Insert Pa es v vi 3.1.2 3.1.2a Fig.3.1-la Fig.3.1-lb Fig.3.1-1c Fig.3.1-ld Fig.3.1-2c Fig.3.1-2d B3.1-2 B3.1-3 3.1.3~1~Fig.Fig.Fige B3.1-2 B3.1-2a B3.1-2b B3.1-2c B3.1-2d B3.1-3 v Vi 2, 3.1.2a 2b 3%1 1 a 3.1-lb 3.1-1c TCGPTL.PLA Table LIST OF TABLES Title 3.5-1 3.5-2 3.5-3 3.5-4 3.5-5 3.9-1 3.9-2 3.9-3 3.9-4 3~1 3 1 3.14-1 3.14-2 3.16-1 3~1 7 1 3.18-1 4.1-1 4.1-2 4.1-3 4.1-4 4.2-1 4.2-2 4.2-3 4.8-1 4.8-2 4.12-1 4.12-2 4.12-3 4.18-1 Operational Modes Instrument Operating Conditions for Reactor Trip Engineering Safety Features Actuation Instrument Operating Conditions for Isolation Functions Engineered Safety Feature Set Points Accident Monitoring Instrumentation Radioactive Liquid Waste, Sampling and Analysis Program Radioactive Liquid Effluent Monitoring Instrumentation Radioactive Gaseous Waste Sampling and Analysis Program Radioactive Gaseous Effluent Monitoring Instrumentation Deleted Fire Detection System Fire Hose Station Primary Coolant System Pressure Isolation Valves Sent Fuel Burnup Requirements for Storage in Region II of the Spent Fuel Pit Auxiliary Feedwater System Operability Minimum Frequencies for Checks, Calibrations and Test of Instrument Channels Minimum Frequencies for Equipment and Sampling Tests Minimum Frequency for Surveillance of Radioactive Liquid Effluent Monitoring Instrumentation Minimum Frequency for Surveillance of Radioactive Gaseous Effluent Monitoring Instrumentation Deleted Minimum Number of Steam Generators to be Inspected During Inservice Inspection Steam Generator Tube Inspection Diesel Generator Test Schedule Battery Surveillance Requirements Radiological Environmental Monitoring Program Reporting Levels for Radioactivity Concentrations in Environmental Samples Detection Capabilities for Environmental Sample Analysis Minimum Frequencies for Safety Related Systems Flow Path Verification 6.2-1 Minimum Shift Crew Composition B3.1-1 B3.1-2 Reactor Vessel Toughness Data, Turkey Point-Unit 3 Reactor Vessel Toughness Data, Turkey Point-Unit 4 Amendment Nos.and TCGPTL.PLA
{{#Wiki_filter:ATTACHMENT 2 PROPOSED REVISED TECHNICAL SPECIFICATION PAGES TCG4/024/7
~Fi ure 2.1-1 2.1-la 2.1-1b 2.1-2 3~1 1 F 1-la 3.l-lb 3.1-1c 3~1 2 3021 3.2-1a 3.2-1b 3.2-1c 3~2 2 3~2 3 3~2 3a 3.2-4 4.12-1 5.1-1 6.2-1 6.2-2 B3.1-1 B3.1-2 B3.2-1 B3.2-2 LIST OF FIGURES Title Reactor Core Thermal and Hydraulic Safety Limits, Three Loop Operation Deleted Deleted Reactor Core Thermal and Hydraulic Safety Limits, Two Loop Operation DOSE EQUIVALENT I-131 Primary Coolant Specific Activity Limit Versus Percent of RATED POWER with the Primary Coolant Specific Activity>1.0 Ci/gram Dose Equivalent I-131 Reactor Coolant System Heatup Limitations (60'F/hr)Applicable for the First 20 EFPY/Reactor Coolant System Heatup Limitations (100'F/hr)
( SS09300066 SS0921 PDR   ADOCK 05000250 P               PDC
Applicable for the First 20 EFPY Reactor Coolant System Cooldown Pressure Limitations Applicable for the First 20 EFPY Radiation Induced Increase in Transition Temperature for A302-B Steel l Control Group Insertion Limits for Unit 4, Three Loop Operation Control Group Insertion Limits for Unit 4, Two Loop Operation Control Group Insertion Limits for Unit 3, Three Loop Operation Control Group Insertion Limits for Unit 3, Two Loop Operation Required Shutdown Margin K (z)vs Core Height Deleted Maximum Allowable Local KW/FT Sampling Locations FPL Turkey Point Site Area Map Deleted Deleted Effect of Fluence and Content on Shift of RTNDT for Reactor Vessel Steels Exposed to 550'F Temperature Fast Neutron Fluence (E>1MEV)as a Function of Effective Full Power Years Target Band on Indicated Flux Difference as a Function of Operating Power Level Permissible Operating Band on Indicated Flux Difference as a Function of Burnup (Typical)v3.Amendment Nos.and TCGPTL.PLA REACTOR COOLANT SYSTEM 3.1.2 PRESSURE TEMPERATURE LIMITS REACTOR COOLANT SYSTEM LIMITING CONDITION FOR OPERATION 3.1.2a The Reactor Coolant System (except the pressurizer) temperature and pressure shall be limited in accordance with the limit lines shown on Figures 3.1-1a, 3.1-1b and 3.1-1c for both Unit 3 and Unit 4 during heatup, cooldown, criticality, and inservice leak and hydrostatic testing with: a.A maximum heatup of 100'F in any 1-hour period, b.A maximum cooldown of 100'F in any 1-hour period, and c~A maximum temperature change of less than or equal to 5'F in any 1-hour period during inservice hydrostatic and leak testing operations above the heatup and cooldown limit curves.APPLICABILITY:
At all times.ACTION: With any of the above limits exceeded, restore the temperature and/or pressure to within the limit within 30 minutes;perform an engineering evaluation to determine the effects of the out-of-limit condition on the structural integrity of the Reactor Coolant System;determine that the Reactor Coolant System remains acceptable for continued operation or be in at least HOT STANDBY within the next 6 hours and reduce the RCS Tavg and pressure to less than 200'F and 500 psig, respectively, within the following 30 hours.3~1~2 Amendment Nos.and TCGPTL.PLA PRESSURIZER LIMITING CONDITION FOR OPERATION 3.1.2.b a~b.The pressurizer temperature shall be limited to: A maximum heatup of 100'F in any 1-hour period, A maximum cooldown of 200 F in any 1-hour period, and c.A maximum spray water temperature differential of 320'F.ACTION: With the pressurizer temperature limits in excess of any of the above limits, restore the temperature to within the limits within 30 minutes;perform an engineering evaluation to determine the effects of the out-of-limit condition on the structural integrity of the pressurizer; determine that the pressurizer remains acceptable for continued operation or be in at least HOT STANDBY within the next 6 hours and reduce the pressurizer pressure to less than 500 psig within the following 30 hours.,3~1~2a Amendment Nos.and TCGPTL."PLA QFRAT MP Rh 3,1.2,1 The maderator temperature coefficient (MTC)shall bee Less poeitlve than or equal to>0 x 10/Ic/~for all rods withdrawn, beginning of the cycle life (SOL), hat zero THERMAL pOWER (Hgp)conditions!
and b)Less positive than oc'qual to 9A x 10->hk/k/~F from Hgp to 7096 RATED THERMAL POWER conditio~and Less positive than or equal to f.0 x 10-f Sc/Ic/oP fram 70%RATED THERMAL POWER decreasing linearly to less positive than or equal ta 0 Ate/Ic/OP at 100%RATED THERIACAL POWER condition~
and d)Lel negative than-3.f x IM hk/k/~F for the all rods withdrawn, end af cycle lite (EOL>>RATED THERMAL POWER condition.
B!Specification 3.1.2.lg b, and c MODES I and 2>>only>>>>.Specification 3.1.2.ld-MODES I, 2, and 3 only a)With the MC more positive than the limits of Specifications 3.1.2.la, b, or c above, operation in MODES 1 and 2 may proceed pravidedc 1)Control rod withdrawal limits are established and maintained sufficient to restore the MTC to less positive or equal to limits described in 3 1.2.1a, b, and c above<<Ithin 20 hours or be in HOT STANDBY<<Ithln the next C hours.These withdrawal limits shall be in addltian to the insertion limits of specification 3.2 I, 2)The cantrol rods are maintained within the~lthdra~al limits established above until a subsequent calculation verifies that the%f C has been restored to within its llmlt for the ail rods withdrawn candlti~and 3)A Special Report Is prepared and submitted to the Commission pursuant to Specification 6.9.3,<<ithln 10 da~describing the value ot the measured MTC, the interim control rod withdrawal limits, and the predicted average core burnup necessary for restoring the hflC to within its limit for the all rods withdrawn condition.
b)'Wth the VLCC more negative than the limit of Specificatian 3.I.'2.Id above, be In HOT SHUTDOWN<<ithln 12 ho~>>With Keff greater than ar equal to I.>>>>The+bove limits may be suspended during the performance of LO%'OWER PHYSICS TESTS.3.I-2b Amendment Nas..and MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL HELP<>f11 INITIAL RTNPT'OeF RTNP T AFTER 20 EFP Y'/4T 252 5 F 3/IT, 200.4eF CURVES APPLICABLE FOR HEATUP RATES UP TO 60'F/HR FOR THE SERVICE PFRIOP UP TP 20 EFPY.NO MARGINS ARE GIVEN FOR POSSIBLE INSTRUMENT ERRORS.2500 2250 Lect Test Lfrtt 2000 1750 1500 1250 5 o.1000 O 750 I 500 250 Uacceytaile Oyeatlm Qceetehle Oyentlm IIILIIII1 Crt ttcel 1 tF LWt SasN oe.laservtce 11 atettc Teat Tmyeretere
($8D'F)fer the Service~erteete I CRT 0 50'100 150 200 250$00$50'400 450 500 IIIIChTCD TCW'CkATUIC (DCO.F)Reactor Coolant System Heatup Limitations (60'F/Hr)Applicable for the First 20 EFPY Figure 3.1-1a Amendment Nos.and
~'I I I I RRQQQRSEESRRQQHEQQEREESEQERQQkkkkkkkkkk BQQRQREQSRRHS kkkkkkkkkkkkkkkkkkkkkkkkkkkkk QEQESQSEQEREQ 1~kkkkkkkkkkkkkkQ
~ERQHERSEERREERRR
~kkkkkkk')Skk'Ikkkk
~SSEERRERERSEQRSEH QSRQRBkkkskkkk ERSRBRSERSEERQQE
~kkskkkskkkkkkkkk SHRQRREBkkkkskkk
~QESERSQEASEHE QQQRERBESEREEES
~kkflkkkkkkkkkkkkk
~kkkkkkkkkskskkskkkkkkkkkkkkkkskkkkkskkkkkkkskkkkk
...SEERQSEESQQSSREQSSERSSERESERBEREQRERRRHSSB QERSESESEREBSEREERENSSRSRSBESERRRSEEOQE)IBBES EBRQEEQREEERQQSESRESEEEREESQRSQR'4ESSEEQSH kkkkkkkskkkRskkkkkkkkkskkkkkkkskkkkksklkkkskkskkkk
~HSESEEEESRR
~EEREEREREESSE)JNRRSENR
, SEQERSQERSE
~RBHEERE'lQR'ASSESSEE BQRS'EQEEER
~kk'kkskkkkkkkskksEEERS
~SQkkkskkkkk
~QSRQSREQENSSESEESE
~SRSQSERQREESRREREEESQESRSEEEEERSERkkkskkskkkkk
~RQQEQQ RES QERESNSS SERE 1 1 QRSRRSREREFSEBNSESR
~~ESREREQkkkkkkksk
~kkkkkkk)J Rkkskkkkk~RSEEEEQREQENES
~kkkkkkkskkkkkkkkk
~ESEREQEEESRRSER
.~SERT>kksskkkkkkkksk
~RSESEQEEEQEERR
~~~RSQEEUEQRSEEENN
~ESRREERESEESSERE NSRSRQskkskskkkkk
, kkkkkkkskkkskkksk RkkkkkfikkkkkkEESRE
~kkkkkkksskskkkkkkkkkkkkkkkkkSEERS'Lkkkilskkkkkkkkkk
~EQQQRRRERRREEREEQQERREQRREFNSRRSSQSQSSRER
~RRSQQEQQREREREEEESRERSRQSQSQRQSQkkkkkkkk
~QEQQSRRRREEEQEESERREQkkkkkskkkkksk
~~i k k Q Q k k k Q 0 k 1 k k k k H k Q k k E k H k k tJ k Q k Q k~QESRESSSSQQSSRRQESSEQSEREEEEEEEQE k~RSRSkkkkkkkkskkkkkkkkkkkkkkkkE~Jkkkkkksk k~kkkkkkkkRRERSSEkkkkkkkkkkkkkkKSRRREESSE
~kkkkkkkkkkskksskkkkkkkkkkkkkEAkkkskkkkkkkkkk
~~kkkskkkskkRSSSSkkkkkkkkksskk~lkkkkkkkkkk
~SRSRSRRREERSSERkkkkkkkkkskkiskkkkkkkkkks
~kkkkkkkk$$$$$$$$kkkkkkkkkk<ikkkkkkkkkkkk
~kkkkkkkkk$
$$$$$$kkskkkkkk~akkkkkkkkkkkkk SSSESRSRRRSERRRRESRESSRSFBkkkkkkkkkkkksk
~~i Q k k k k k 1 k 1 S R$E 1 1 N k k 1 k k r g 1 E k k k k k B E R 1 Q Q B k Q k k 1 k$k k S k k k k k P.>1 k S k S k$k Q k k E k k 1 E k~RRRRRERN'~~~<<mw~
akkkkkkkkkkkkkkkkkkkks
~RQREESSSEERRERERSRSERESESEQRREERREEER
~SQESRSSRRREEREERERRERESSRRERENERSEEEEE
, SSSERSNRRRSERRERNSRRSRERRRERERSSSRSRRSRR QRERRRSEERRNREEkkkQEEESEREEEEESREEERRR
~kkkkks RREERREESEESSRESSEEESRSEEERQRQR BRERRERERRERRESRREESREQERREEEEEERERRES BSESEEERSSESEREESRSESEEREBSEBERESEENEQQkkkkkk
, BREREQEESREERSEESEEHRRESEEREREEEREQQREERQEEE
~~~~~~~~~~~~~~~~S'i~~
~I~~~'~~~'~II~I I~I'$$$$EQESRSHSSSSSSQQSQQQSSSESSSEHRSQSSQSS
~SSSSSSESSSSSSESSSSSQQSSQSSSSSSSSQHSSSSSSSSES
~SSQSQQSSSSSSSQQSSQSSSSQ$
$$$$$$$$$$$$$$$$$$~SQSQSQESQSSSQSQSESSEESQSSEQSESSQESSSSSSS
~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$$$$$$$$$$SQQSSQESSSSSSSSSSSHSSSSSSEQSSQSQIIQQSSSQS
~SSSSSSESSQSSSSHSSSSESSQSSSSQSSSSSSSSSSSQSSQ QSHQSSHSSHQSEHSQESSSSQRQEHSSHHQSSEQ
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$SgSSSSHSEQSSSSSSEQSSSSSSSSSSSSSSSSSESSSQSSSESS SSSESSSSSSHSSEESSEESSSSSSSESSSSSSSSSEOHSHSQQS
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'$$$$$$$$$$$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$QSSQSQESEQSESSSQSSSQSSSSSQSESSESSSSSSQSSSS
~SSSQSESESS SEE ESSSESSESQSSSSSQSEHSSSSESSSSESQ
~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$>$$$$$$$$$$$$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~ESSSSESSQSQS
~SSSESASSSQSSRSSSES
~ESESSSESSSSESS
~Q S E$')S E S S S E S E$$$S S~SSHSSESSSSQE
~SQHSSESQSSSSSSQ
~SSHSQSQSSSS
~SSSEASHSQSSSSSSSS
~EESSEHSSSHSS SQSSSSHSESSSSQSQ
~ESSSSH$$$$$$$$$$$$$$~Rggtg$$$$$$$$$$$$$$~SSSSSSSSQESESQSSSEQEQESSSSSSE)JSSSSE$
$$$$$$$$$~QESESESQEQSSSSSSESSESSESSESQSSSSSSEQESQQSS
~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~RSSSSHSSSESSSHESSESESSEEQSSSSSSSSSSSSSQSESSSS
~Q$$$$$$$$$$$$$$$$$$$$$$$$$$$$$fIEHSSEEQERSSQH
~QSHSSSHESSSSSEHEHSQSSSSHSSSSESSSQQSSNSS
~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$&#xc3;i$$$$$$$$$$$$$$$$$$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Fig~$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$egg~S HQSEHHESHEHSHHSSESSH:
egg---~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$WI/)$$$~$$~$$$$$$$$$$$$$$$$$$$$$$$$$$/il)SEE~ASS$$$$$$$$$$$$$$$$$8<r Yi')$$$$$$$~$$~SSESEEEEESSSSEFr J/i6$$$$$$$$$$$$$$$$$$$$$$S E$E$E E$$E H$t r~r 5~w)i S S S$R E$S S H S H S$$$H S Q~$$$$$$$$Prit>//4P;$
$$$$$$$$$$$$$$$$$$$$$$$~Ps+~st~P~P>g~ig$$$$$$$$$$$$$$$$$$$$$$$$t~mal>~ilteSB$
$$$$$$$$$$$$$$$$$$$$$$$$$Cieeal>~i>SEPa)$
$$$$$$$$$$$$$$$$$$$$$$$$$$~IassOSSSSSP
~ARESEESESESHSSSEHSSSSESSSHES
~>It+s$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$SSESESESSSSESSEEESSSESSSSSSESEHEEQSSEEES ESS~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~ESSSHSSS SESS ESES ESSESSHSSSSSSSSSSSSHSSSSSSSHS
~SESSEEESSSESSSHSSESSESSSSSSSSSSSESSSHSSESSSQSS
~SHEEEEHSESSSESESESEESESSSSSSSEEESSERSHSSSSSSSS
~~~~~~~~~


2.BASES-PRESSURE TEMPERATURE LIMITS All components in the Reactor Coolant System (RCS)are designed to withstand the effects of cyclic loads due to system temperature and pressure changes.These cyclic loads are induced by normal load transients, reactor trips and startup and shutdown operations.
ATTACHMENT TO LICENSE AMENDMENT AMENDMENT NO.      FACILITY OPERATING LICENSE NO. DPR-31 AMENDMENT NO.     FACILITY OPERATING LICENSE NO. DPR-31 DOCKET NO. 50-250 AND 50-251 Revise Appendix A as  follows:
During RCS heatup and cooldown, the temperature and pressure changes must be limited to be consistent with design assumptions and to satisfy stress limits for brittle fracture.During heatup, the thermal gradients through the reactor vessel wall produce thermal stresses which are compressive at the reactor vessel inside surface and which are tensile at the reactor vessel outside surface.Since reactor vessel internal pressure always produces tensile stresses at both the inside and outside surface locations, the total applied stress is greatest at the outside surface location.However, since neutron irradiation damage is larger at the inside surface location when compared to the outside surface, the inside surface flaw may be more limiting.Consequently for the heatup analysis both the inside and outside surface flaw locations must be analyzed for the specific pressure and thermal loadings to determine which is more limiting.During cooldown, the thermal gradients through the reactor vessel wall produce thermal stresses which are tensile at the reactor vessel inside surface and which are compressive at the reactor vessel outside surface.Since reactor vessel internal pressure always produces tensile stresses at both the inside and outside surface locations, the total applied stress is greatest at the inside surface location.Since the neutron irradiation damage is also greatest at the inside surface location, the inside surface flaw is the limiting location.Consequently, only the inside surface flaw must be evaluated for the cooldown analysis.The fracture toughness properties of the ferritic material in the reactor vessel were determined in accordance with the NRC Standard Review Plan, ASTM E185-73 and in accordance with additional reactor vessel requirements.
Remove Pa es                        Insert    Pa es v                                      v vi                                    Vi
The properties are then evaluated in accordance with Appendix G of the 1983 Edition of Section XIX of the ASME Boiler and Pressure Vessel Code and the additional requirements of 10CFR50, Appendix G and the calculation methods described in Westinghouse Report GTSD-A-1.12,"Procedure for Developing Heatup and Cooldown Curves".B3.l.2 Amendment Nos.and TCGPTL.PLA The heatup and cooldown limit curves, Figures 3.l-la, 3.1-1b, and 3.1-1c are composite curves prepared by determining the most conservative case with either the inside or outside wall controlling, for any heatup rate up to 100 degrees F per hour and cooldown rates of up to 100 degrees F per hour.The heatup and cooldown curves were prepared based upon the most limiting value of predicted adjusted r'eference temperature at the end of the applicable service period (20 EFPY).The reactor vessel materials have been tested to determine their initial RT;the results of these tests as well as other material erties are shown in Tables B3.1-1 and B3.1-2.Reactor operation and resultant fast neutron (E greater than 1 MeV)irradiation can cause an increase in the RTN T.Therefore, an adjusted reference temperature, based upoR the fluence and chemistry factors of the limiting Reactor Vessel material has been predicted using Regulatory Guide 1.99, Revision 2, dated May 1988 (the latest accepted NRC methodology),"Radiation Embrittlement of Reactor Vessel Materials".
: 3. 1.2                            3. 1. 2, 3.1.2a
The heatup and cooldown limit curves of Figures 3.1-1a, 3.1-1b, and 3.1-1c include predicted adjustments for this shift in RTNDT at the end of the applicable service period The actual shift in RT D of the vessel material will be established periodicallPduring operation by removing and evaluating, in accordance with ASTM E185-73 and 10CFR Appendix H, reactor vessel material irradiation surveillance specimens installed near the inside wall of the reactor vessel in the core area.The surveillance specimen withdrawal schedule is shown in Specification 4.20.1.Since the neutron spectra at the irradiation samples and vessel inside radius are essentially identical, the measured transition shift for a sample can be applied with confidence to the adjacent section of the reactor vessel.Since the limiting beltline material (Intermediate to Lower Shell Circumferential Weld)in Unit 3 and 4 is identical, the RV surveillance program was integrated and the results from capsule testing is applied to both Units.The surveillance capsule"T" results from Unit 3 (WCAP 8631)and Unit 4 (SWRI 02-4221)and the capsule"V" results from Unit 3 (SWRI 06-8576)were used with the methodology in Regulatory Guide 1.99 Revision 2 to provide limiting material properties information for generating the heatup and cooldown curves in Figures 3.1-1a, 3.1-lb, and 3.1-1c.The integrated surveillance program along with similar identical reactor vessel design and operating characteristics allows the same heatup and cooldown limit curves to be applicable at both Unit 3 and Unit 4.B3.1-2a Amendment Nos.and TCGPTL.PLA The limitations imposed on the pressurizer heatup and cooldown rates and spray water temperature differential are provided to assure that the pressurizer is operated within the design criteria assumed for the fatigue analysis performed in accordance with the ASME Code requirements.
: 3. 1.2a                            3~1 ~ 2b Fig. 3.1-la                        Fig. 3 1 1 a Fig. 3.1-lb                        Fig. 3. 1-lb Fig. 3.1-1c                        Fige 3.1-1c Fig. 3.1-ld Fig. 3.1-2c Fig. 3.1-2d B3.1-2                              B3.1-2 B3.1-2a B3.1-2b B3.1-2c B3.1-2d B3.1-3                              B3.1-3 TCGPTL.PLA
B3.1-2b Amendment Nos.and TCGPTL.PLA TAKE B 3 1-2 REACIOR VESSEL'lOUGHNESS IRTA LUEKEY EGIN-UNIT 4 Material TYPe 50 ft lb/35 mila, Miniman-lateral BtPansion E~ol'PPer Shelf (F)rang Trans (F)()rang Trans Cl.Hd.Dane A302 Gr.B Cl.Hd.Flange A508 Cl.2 Ves.Sh.Flange A508 Cl.2 Inlet Nozzle A508 Cl.2 Inlet Nozzle A508 Inlet Nozzle A508 Cl.2 Cl.2" Outlet Nozzle A508 Cl.2 Outlet Nozzle A508 Outlet Nozzle A508 Cl.2 Cl.2 Inter.to Inkier SAW Shell Girth Weld Ugper Shell A508 Cl.2 Inter.Shell A508 Cl.2 Zanier Shell A508 Cl.2 Trans.Ring A508 Cl.2 Bot.Hd.Dane A302 Gr.B 0.08 0.054 0.056 0.26 0.72 0.68 0.71 0.84 0 75 0.78 0.68 0.70 0.70 0.69 0.74 0 69 0.60 0.008 0.010 0.010 0.009 0.019 0.008 0.010 0.010 0.010 0.010 0.010 0.010 0.011'.010 0.011-20 4(a)-1(a)6O(a)6O(a)16(a)7(a)38(a)60(a)40 40 60(a)10 lo(b)30 27(a)-11(a)Hh 60 199 176 13(a)-25(a)16(a)42(a)32(a)90(a)38(a)30(a)60 16 38 60 40 40 60 162 165 160 143 143 147 30(a)63 10 NA 1O()NA 129(a)114<<>105<<)1O7(a)-1O4(a)93(a)1O1(a)93<<)97(a)63 0 0 140 (a)Estimated Values Ba.~on NUREG-0800, Branch Technical Position-MZEB 52 (b)~l Value


TABID B3.1-1 REACIQR VESSEL'LOUGHNESS DLTA'LURK'.Y EGIN-UNIT 3 Cu (~)50 ft lb/35 mils Minim Lateral Rl<pBnsion RFg~Upper Shel f (F)~Trans (F)()lang Trans Cl.Hd.Dane A302 Gr.B Cl.85.Flange A508 Cl.2 0.010 0.72 0.010 44(a)36(a)31(a)44>70>118>45.5(>76.5(Outlet Nozzle A508 Outlet Nozzle A508 A Outlet Nozzle A508 Upper Shell A508 Inter.Shell A508?ower Shell A508 Trans.Rirg'A508 Bot.Hd.Dane A302 Cl.2 Cl.2 Cl.2 Cl.2 Cl.2 Cl.2 Cl.2 Gr.B Ves.Sh.Flange A508 Cl.2 Inlet Nozzle A508 Cl.2 Inlet Nozzle A508 Cl.2 Inlet Nozzle A508 Cl.2 0.058 0.079 0.65 0 010-23(a)0.74 0 80 0 79 0.72 0.72 0.68 0.70 0.67, 0.69 0.019 0.019 0.010 0.010 0.010 0.010 0.010 0.010 0.013 6p(a)60(a)27(a)7(a)42(a)40 30 60(a)0.010-10 0.76 0.019 60()-41(a)9(a)-22(a)23(a)44 (a)25(a)2(a)(a)-23 60 60 60 27 42 50 40 30 60 30>120 NA NA>110>140>129>122 163>109>78(a)>71.5(a)>72(a)>91(a)>83.5(>79(a)'06 (a)>7p 5(a)Inter.to Zamr SAW Shell Girth Weld 0.26 0.60 0.011 10()-63 p(a)-10(b)0 63 168 (a)Estimated Values Based on NURHG-0800, Branch Vertical position-HKB 52 ()Actual Value QOOERh'TOR TEQPBRhTt5%
LIST  OF TABLES Table                                Title Operational Modes 3.5-1      Instrument Operating Conditions for Reactor Trip 3.5-2      Engineering Safety Features Actuation 3.5-3      Instrument Operating Conditions for Isolation Functions 3.5-4      Engineered Safety Feature Set Points 3.5-5      Accident Monitoring Instrumentation 3.9-1      Radioactive Liquid Waste, Sampling and Analysis Program 3.9-2      Radioactive Liquid Effluent Monitoring Instrumentation 3.9-3      Radioactive Gaseous Waste Sampling and Analysis Program 3.9-4      Radioactive Gaseous Effluent Monitoring Instrumentation 3 ~ 13 1    Deleted 3.14-1      Fire Detection System 3.14-2      Fire  Hose Station 3.16-1      Primary Coolant System Pressure Isolation Valves 3 ~ 17 1    Sent Fuel Burnup Requirements for Storage in Region Spent Fuel Pit II of the 3.18-1    Auxiliary Feedwater    System  Operability 4.1-1      Minimum Frequencies      for Checks, Calibrations    and  Test of Instrument Channels 4.1-2      Minimum Frequencies    for Equipment and Sampling Tests 4.1-3      Minimum Frequency      for Surveillance of Radioactive Liquid Effluent Monitoring Instrumentation 4.1-4      Minimum Frequency for Surveillance of Radioactive Gaseous Effluent Monitoring Instrumentation 4.2-1      Deleted 4.2-2      Minimum Number of Steam Generators        to  be Inspected  During Inservice Inspection 4.2-3      Steam Generator Tube    Inspection 4.8-1      Diesel Generator Test Schedule 4.8-2      Battery Surveillance Requirements
COP3VICENT The limitations on moderator temperature coefficient (h4TC)are provided to ensue that the value of this coefficien re~ains within the limiting condition assumed in the FSAR accident and transient analyses The 4lTC values of this speciflcati n are appHcable to a specific set of plant conditions accordingly, verification of hffC values at conditions other than those explicitly stated will iequire exttapolatlm to those conditicns in order to permit an accurate co parison The most negative Vf Q value to the most positive moderator density coefficient (H!DCl, wai obtained by incrementally correcting the VIDC used in the FShR analyses to noml ml operating condltiae.
: 4. 12-1    Radiological Environmental Monitoring Program 4.12-2      Reporting Levels for Radioactivity Concentrations in Environmental Samples 4.12-3      Detection Capabilities for Environmental Sample Analysis 4.18-1      Minimum Frequencies      for Safety Related Systems Flow Path Verification 6.2-1      Minimum Shift  Crew Composition B3.1-1      Reactor Vessel Toughness Data, Turkey Point      Unit 3 B3.1-2      Reactor Vessel Toughness Data, Turkey Point      Unit 4 Amendment Nos.      and TCGPTL.PLA
These corrections involved subtracting the incremental change in the%DC associated with a core condition of iLll rods inserted (most positive hIDC)to an all rods withdrawn condlfi(xl and 4 conversion for the rate of change ot moderator density with temperture at RR,TEO THERMAL, POWER conditims*R3.l-)Amendment Nos.~d tv"~I C}}
 
LIST OF FIGURES
~Fi  ure                            Title
: 2. 1-1      Reactor Core Thermal and Hydraulic Safety Limits, Three Loop Operation 2.1-la      Deleted 2.1-1b      Deleted 2.1-2        Reactor Core Thermal and Hydraulic Safety Limits, Two Loop Operation 3 ~ 1 1      DOSE EQUIVALENT  I-131 Primary Coolant Specific Activity Limit Versus  Percent  of RATED POWER with the Primary Coolant Specific Activity > 1.0 Ci/gram Dose Equivalent I-131 F  1-la    Reactor Coolant System Heatup Limitations (60'F/hr)
Applicable for the First 20 EFPY                            /
3.l-lb      Reactor Coolant System Heatup Limitations (100'F/hr)
Applicable for the First 20 EFPY 3.1-1c      Reactor Coolant System Cooldown Pressure          Limitations Applicable for the First 20 EFPY 3 ~ 1 2      Radiation Induced Increase in Transition Temperature for A302-B Steel                                                  l 3021        Control Group Insertion Limits for Unit 4, Three Loop Operation 3.2-1a      Control Group Insertion Limits for Unit 4, Two Loop Operation 3.2-1b      Control Group Insertion Limits for Unit 3, Three Loop Operation 3.2-1c      Control Group Insertion Limits for Unit 3, Two Loop Operation 3 ~2  2      Required Shutdown Margin 3~2  3      K (z) vs Core Height 3~2  3a    Deleted 3.2-4        Maximum Allowable Local KW/FT
: 4. 12-1      Sampling Locations
: 5. 1-1      FPL Turkey Point Site Area    Map
: 6. 2-1      Deleted
: 6. 2-2      Deleted B3. 1-1      Effect of Fluence and Content on Shift of RTNDT for Reactor Vessel Steels Exposed to 550'F Temperature B3.1-2      Fast Neutron Fluence (E > 1MEV) as a Function of Effective Full Power Years B3.2-1      Target Band on Indicated Flux Difference as a Function of Operating Power Level B3.2-2      Permissible Operating Band on Indicated Flux Difference as a Function of Burnup (Typical) v3.
Amendment Nos. and TCGPTL.PLA
 
REACTOR COOLANT SYSTEM 3.1.2  PRESSURE  TEMPERATURE  LIMITS REACTOR COOLANT SYSTEM LIMITING CONDITION    FOR OPERATION 3.1.2a The Reactor Coolant System (except the pressurizer) temperature and pressure shall be limited in accordance with the limit lines shown on Figures 3.1-1a, 3.1-1b and 3.1-1c for both Unit 3 and Unit 4 during heatup, cooldown, criticality,    and inservice leak and hydrostatic testing with:
: a. A maximum heatup of 100'F in any 1-hour period,
: b. A  maximum cooldown of 100'F in any 1-hour period, and c ~   A maximum  temperature change of less than or equal to 5'F in      any 1-hour period during inservice hydrostatic  and leak testing operations above the heatup and cooldown limit curves.
APPLICABILITY: At    all  times.
ACTION:
With any of the above limits exceeded,                restore the temperature and/or pressure to within the limit within 30 minutes; perform an engineering evaluation to determine the effects of the out-of-limit condition on the structural integrity of the Reactor Coolant System; determine that the Reactor Coolant System remains            acceptable for continued operation or be in at least HOT STANDBY within the next 6 hours and reduce the RCS Tavg and pressure to less than 200'F and 500 psig, respectively, within the following 30 hours.
3 ~ 1~2 Amendment Nos.      and TCGPTL.PLA
 
PRESSURIZER LIMITING CONDITION  FOR OPERATION 3.1.2.b    The  pressurizer temperature shall be limited to:
a~    A  maximum heatup of 100'F in any 1-hour period,
: b. A  maximum cooldown of 200 F in any 1-hour period, and
: c. A maximum  spray water temperature        differential of 320'F.
ACTION:
With the pressurizer    temperature        limits in excess of any of the above    limits, restore the          temperature to within the limits within 30 minutes; perform an engineering evaluation to determine the effects of the out-of-limit condition on the structural integrity of the pressurizer; determine that the pressurizer remains acceptable for continued operation or be in at least HOT STANDBY within the next 6 hours and reduce the pressurizer pressure to less than 500 psig within the following 30 hours.
                              ,3 ~ 1 ~ 2a Amendment Nos.      and TCGPTL."PLA
 
QFRAT            MP  Rh 3,1.2,1 The maderator temperature coefficient (MTC) shall bee Less poeitlve than or equal to > 0 x 10 /Ic/~ for all rods withdrawn, beginning of the cycle life (SOL), hat zero THERMAL pOWER (Hgp) conditions! and b)   Less positive than      oc'qual to 9A x      10-> hk/k/~F from Hgp to 7096 RATED THERMAL POWER conditio~ and Less positive than or equal to f.0 x 10-f Sc/Ic/oP fram 70% RATED THERMAL POWER decreasing linearly to less positive than or equal ta 0 Ate/Ic/OP at 100% RATED THERIACAL POWER condition~ and d)  Lel negative than -3.f x      IM  hk/k/~F for the all rods withdrawn, end af cycle lite (EOL>> RATED THERMAL POWER condition.
B       ! Specification 3.1.2.lg b, and c MODES I and 2>> only>>>>.
Specification 3.1.2.ld - MODES I, 2, and 3 only a)   With the MC more positive than the limits of Specifications 3.1.2.la, b, or c above, operation in MODES 1 and 2 may proceed pravidedc
: 1)    Control rod withdrawal limits are established and maintained sufficient to restore the MTC to less positive or equal to limits described in 3 1.2.1a, b, and c above <<Ithin 20 hours or be in HOT STANDBY <<Ithln the next C hours. These withdrawal limits shall be in addltian to the insertion limits of specification 3.2 I,
: 2)    The cantrol rods are maintained within the ~lthdra~al limits established above until a subsequent calculation verifies that the
                        %fC has been restored to within its llmlt for the ail rods withdrawn candlti~ and
: 3)     A Special Report Is prepared and submitted to the Commission pursuant to Specification 6.9.3, <<ithln 10 da~ describing the value ot the measured MTC, the interim control rod withdrawal limits, and the predicted average core burnup necessary for restoring the hflC to within its limit for the all rods withdrawn condition.
b)   'Wth the VLCC more negative than the          limit of Specificatian 3.I.'2.Id above, be In HOT SHUTDOWN <<ithln 12          ho~
>> With Keff greater than ar equal to I.
>>>> The +bove limits may be suspended during the performance of LO%'OWER PHYSICS TESTS.
: 3. I-2b                  Amendment Nas..        and
 
MATERIAL PROPERTY BASIS CIRCUMFERENTIAL HELP< >
f11 CONTROLLING MATERIAL:
INITIAL    RTNPT'OeF RTNP T AFTER  20 EFP Y    '/4T      252 5 F 3/IT, 200.4eF CURVES APPLICABLE FOR HEATUP RATES UP TO              60'F/HR  FOR THE SERVICE PFRIOP UP TP 20 EFPY. NO MARGINS ARE    GIVEN FOR POSSIBLE INSTRUMENT ERRORS.
2500 Lect Test  Lfrtt 2250 2000 1750 Uacceytaile Oyeatlm 1500 1250 5
: o. 1000                                                              Qceetehle O                                                                    Oyentlm 750 IIILIIII1 Crt ttcel 1 tF I                                                                  LWt SasN laservtce    11 oe.
500                                                            atettc Teat Tmyeretere
($ 8D'F) fer the Service 250                                                          I
                                                                  ~ ertee CRT te 0    50    '100  150    200    250      $ 00    $ 50  '400      450        500 IIIIChTCD TCW'CkATUIC (DCO.F)
Reactor Coolant System Heatup Limitations (60'F/Hr)
Applicable for the First    20 EFPY Figure 3.1-1a Amendment Nos.          and
 
~ 'I I    II RRQQQRSEESRRQQHEQQEREESEQERQQkkkkkkkkkk BQQRQREQSRRHS                              kkkkkkkkkkkkkkkkkkkkkkkkkkkkk QEQESQSEQEREQ                      1                              ~ kkkkkkkkkkkkkkQ
              ~ ERQHERSEERREERRR                                                ~ kkkkkkk')Skk'Ikkkk
            ~
SSEERRERERSEQRSEH ERSRBRSERSEERQQE QSRQRBkkkskkkk
                                                                                ~ kkskkkskkkkkkkkk SHRQRREBkkkkskkk QQQRERBESEREEES
                                                                                ~ QESERSQEASEHE
                                                                                ~ kkflkkkkkkkkkkkkk
              ~ kkkkkkkkkskskkskkkkkkkkkkkkkkskkkkkskkkkkkkskkkkk SEERQSEESQQSSREQSSERSSERESERBEREQRERRRHSSB
      ... QERSESESEREBSEREERENSSRSRSBESERRRSEEOQE)IBBES EBRQEEQREEERQQSESRESEEEREESQRSQR'4ESSEEQSH kkkkkkkskkkRskkkkkkkkkskkkkkkkskkkkksklkkkskkskkkk
              ~ HSESEEEESRR                                            ~ EEREEREREESSE)JNRRSENR
          ,  SEQERSQERSE                                              ~ RBHEERE'lQR'ASSESSEE BQRS'EQEEER                                              ~ kk'kkskkkkkkkskksEEERS
              ~ SQkkkskkkkk                                            ~ QSRQSREQENSSESEESE
              ~ SRSQSERQREESRREREEESQESRSEEEEERSERkkkskkskkkkk
              ~ RQQEQQ RES QERESNSS SERE 1 1 QRSRRSREREFSEBNSESR ESREREQkkkkkkksk                                                ~ kkkkkkk)JRkkskkkkk
        ~  ~
              ~ RSEEEEQREQENES                                                ~ kkkkkkkskkkkkkkkk
              ~ ESEREQEEESRRSER
              ~ RSESEQEEEQEERR
                                                        .      ~            SERT>kksskkkkkkkksk
                                                                              ~ RSQEEUEQRSEEENN
              ~ ESRREERESEESSERE kkkkkkkskkkskkksk
                                                            ~ ~
NSRSRQskkskskkkkk
              ~ kkkkkkksskskkkkkkkkkkkkkkkkkSEERS'Lkkkilskkkkkkkkkk RkkkkkfikkkkkkEESRE
              ~ EQQQRRRERRREEREEQQERREQRREFNSRRSSQSQSSRER
              ~ RRSQQEQQREREREEEESRERSRQSQSQRQSQkkkkkkkk
              ~ QEQQSRRRREEEQEESERREQkkkkkskkkkksk
    ~ ~  i                          0 k k QQ kkk Q k 1 k kk k k Q k k E k k k tJ k Q k Q k
              ~ QESRESSSSQQSSRRQESSEQSEREEEEEEEQE H                  H                          k
              ~ RSRSkkkkkkkkskkkkkkkkkkkkkkkkE~Jkkkkkksk                                          k
              ~ kkkkkkkkRRERSSEkkkkkkkkkkkkkkKSRRREESSE
              ~ kkkkkkkkkkskksskkkkkkkkkkkkkEAkkkskkkkkkkkkk                                      ~
              ~ kkkskkkskkRSSSSkkkkkkkkksskk~lkkkkkkkkkk
              ~ SRSRSRRREERSSERkkkkkkkkkskkiskkkkkkkkkks
              ~ kkkkkkkk$$ $ $ $ $ $ $ kkkkkkkkkk<ikkkkkkkkkkkk
              ~ kkkkkkkkk$$ $ $ $ $ $ kkskkkkkk~akkkkkkkkkkkkk SSSESRSRRRSERRRRESRESSRSFBkkkkkkkkkkkksk
      ~  i  Q QB Q    k    k k                            r kk k k k 1 k 1 S R $ E 1 1 N kk 1 k k g 1 E k k k kk E R 1  B      Q 1 k $ k k S k k k k k P. > 1 k S k S k $ k Q k k E kk 1 E k
                                                                                                    ~
              ~ RRRRRERN'~~~<<mw~ akkkkkkkkkkkkkkkkkkkks
              ~ RQREESSSEERRERERSRSERESESEQRREERREEER
              ~ SQESRSSRRREEREERERRERESSRRERENERSEEEEE
          ,  SSSERSNRRRSERRERNSRRSRERRRERERSSSRSRRSRR QRERRRSEERRNREEkkkQEEESEREEEEESREEERRR
              ~ kkkkks RREERREESEESSRESSEEESRSEEERQRQR BRERRERERRERRESRREESREQERREEEEEERERRES BSESEEERSSESEREESRSESEEREBSEBERESEENEQQkkkkkk
          ,  BREREQEESREERSEESEEHRRESEEREREEEREQQREERQEEE
                                  ~  ~              ~ ~                  ~ ~              ~ ~      ~ ~
                        ~      ~  ~
                  ~ ~    ~ S i  ~
                                                                                                ~
 
    ~
I ~    ~
~
    ~
          ~
                      ~
                        '        ~  II                        ~      II                                          ~ I
              $ $ EQESRSHSSSSSSQQSQQQSSSESSSEHRSQSSQSS
        $ $SSSSSSESSSSSSESSSSSQQSSQSSSSSSSSQHSSSSSSSSES
          ~                                                                    $ $$$$$$$$$$$$$$$$$
SSQSQQSSSSSSSQQSSQSSSSQ$
          ~ SQSQSQESQSSSQSQSESSEESQSSEQSESSQESSSSSSS
          ~
          ~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ K$$ $ $ $ $ $ $ $ $
SQQSSQESSSSSSSSSSSHSSSSSSEQSSQSQIIQQSSSQS
          ~ SSSSSSESSQSSSSHSSSSESSQSSSSQSSSSSSSSSSSQSSQ QSHQSSHSSHQSEHSQESSSSQRQEHSSHHQSSEQ
        $SgSSSSHSEQSSSSSSEQSSSSSSSSSSSSSSSSSESSSQSSSESS SSSESSSSSSHSSEESSEESSSSSSSESSSSSSSSSEOHSHSQQS
          ~$$ $$ $$$ $$$ $$$ $$ $ $$$ $ $$ $ $$ $$$ $ $$$ $ $ $ $$$ $$$ $$$$ $$$
QSSQSQESEQSESSSQSSSQSSSSSQSESSESSSSSSQSSSS
          ~ SSSQSESESS SEE ESSSESSESQSSSSSQSEHSSSSESSSSESQ  $ $ $ $ $ $ $ $ $ $ $ $ $ $ >$ $ $ $ $ $ $ $ $ $ $ $
          ~$$$$$ $$$$$$$$$$$$ $$$$$
          ~ $$ $ $ $ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $~ $      $$ $$$ $$$ $$$ $$$$$$$
SSSESASSSQSSRSSSES
          ~ ESSSSESSQSQS                                                  ~ Q  S E $ ') S E S S S E S E $ $ $ S S
          ~ ESESSSESSSSESS                                                ~ SQHSSESQSSSSSSQ
          ~ SSHSSESSSSQE                                                  ~ SSSEASHSQSSSSSSSS
          ~ SSHSQSQSSSS                                                    SQSSSSHSESSSSQSQ
          ~ EESSEHSSSHSS                                                  ~ Rggtg$ $ $ $ $ $ $ $$ $ $ $ $ $
ESSSSH$            $$  $ $ $ $ $$ $
          ~ SSSSSSSSQESESQSSSEQEQESSSSSSE)JSSSSE$$ $ $ $
          ~ QESESESQEQSSSSSSESSESSESSESQSSSSSSEQESQQSS                                            $ $ $ $$ $ $ $ $
          ~                                                  $ $    $ $  $ $ $ $ $ $    $ $ $ $  $ $$$ $ $$$$
          ~$  $ $$ $ $ $ $    $ $  $ $ $ $ $$ $ $$  $ $  $ $      $    $            $
          ~ RSSSSHSSSESSSHESSESESSEEQSSSSSSSSSSSSSQSESSSS
          ~ Q$    $ $ $$ $ $ $ $ $$ $ $$ $ $$ $ $$ $ $ $ $ $ $ $ $$ fIEHSSEEQERSSQH
          ~ QSHSSSHESSSSSEHEHSQSSSSHSSSSESSSQQSSNSS                  $ $ $ &#xc3;i$$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
          ~ $ $ $ $$ $ $ $ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $$ $      $ $ $ $ Fig                                ~$
          ~ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
          ~ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ egg                                      ~S HQSEHHESHEHSHHSSESSH:                                            egg - - -
                                                              $ $ $ WI /)$ $ $
                                                                                                ~            $$
                                                                                                              ~$$
          $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $        $ /il)SEE ~
          ~$$$$$ $$$ $$$ $$$ $$$ $$ $$ $$$                                                                  ASS
                            $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 8<r Yi')$$ $ $ $ $ $                          ~$$
t
                            ~ SSESEEEEESSSSEFr J/i6$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
S E $ E $ E E $ $ E H $ r ~r 5 )iS S S $ R E $ S S H S H S $ $ $ H S Q
                                                                ~w
                            ~ $ $ $ $ $ $ $ $ Prit>//4P;$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
                            ~ Ps+~
t~              st~ P~P>g~ig$
mal>~ilteSB$                  $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $
Cieeal>~i>SEPa)$                  $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $
IassOSSSSSP ~ARESEESESESHSSSEHSSSSESSSHES
                            ~ >It+ s$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $
                    ~
                            ~$$$ $$ $$ $$ $$$$$ $$$ $$$ $$$$$$$$$$$$ $$$$$$$$$
SSESESESSSSESSEEESSSESSSSSSESEHEEQSSEEES ESS ~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
          ~ ESSSHSSS SESS ESES ESSESSHSSSSSSSSSSSSHSSSSSSSHS
          ~ SESSEEESSSESSSHSSESSESSSSSSSSSSSESSSHSSESSSQSS
          ~ SHEEEEHSESSSESESESEESESSSSSSSEEESSERSHSSSSSSSS
                          ~  ~  ~                    ~ ~  ~ ~
                                                                                                                        ~ ~
: 2. BASES  PRESSURE  TEMPERATURE  LIMITS All  components  in the Reactor Coolant System (RCS) are designed to withstand the effects of cyclic loads due to system temperature and pressure changes.      These cyclic loads are induced by normal load transients, reactor trips and startup and shutdown operations.          During RCS heatup and cooldown, the temperature and pressure changes must be limited to be consistent with design assumptions and to satisfy stress limits for brittle fracture.
During  heatup, the thermal gradients through the reactor vessel  wall produce thermal stresses which are compressive at the  reactor vessel inside surface and which are tensile at the  reactor vessel outside surface. Since reactor vessel internal pressure always produces tensile stresses at both the inside and outside surface locations, the total applied stress is greatest at the outside surface location. However, since neutron irradiation damage is larger at the inside surface location when compared to the outside surface, the inside surface flaw may be more limiting. Consequently for the heatup analysis both the inside and outside surface flaw locations must be analyzed for the specific pressure and thermal loadings to determine which is more limiting.
During cooldown, the thermal gradients through the reactor vessel wall produce thermal stresses which are tensile at the reactor vessel inside surface and which are compressive at the reactor vessel outside surface. Since reactor vessel internal pressure always produces tensile stresses at both the inside and outside surface locations, the total applied stress is greatest at the inside surface location. Since the neutron irradiation damage is also greatest at the inside surface location, the inside surface flaw is the limiting location. Consequently, only the inside surface flaw must be evaluated for the cooldown analysis.
The fracture toughness properties of the ferritic material in the reactor vessel were determined in accordance with the NRC Standard Review Plan, ASTM E185-73 and in accordance with additional reactor vessel requirements.
The properties      are then evaluated in accordance with Appendix G of the 1983 Edition of Section XIX of the ASME Boiler and Pressure Vessel Code and the additional requirements of 10CFR50, Appendix G and the calculation methods described      in Westinghouse Report GTSD-A-1.12, "Procedure  for Developing Heatup and Cooldown Curves".
B3. l. 2 Amendment Nos.      and TCGPTL.PLA
 
The heatup and cooldown limit curves, Figures  3.l-la, 3.1-1b, and 3.1-1c are composite curves prepared by    determining the most conservative case with either the inside or outside wall controlling, for any heatup rate up to 100 degrees F per hour and cooldown rates of up to 100 degrees F per hour.           The heatup and cooldown curves were prepared based upon the most limiting value of predicted adjusted r'eference temperature at the end of the applicable service period (20 EFPY).
The reactor vessel materials have been tested to determine their initial RT ; the results of these tests as well as other material        erties are shown in Tables B3.1-1 and B3.1-2. Reactor operation and resultant fast neutron (E greater than 1 MeV) irradiation can cause an increase in the RTN T. Therefore, an adjusted reference temperature, based upoR the fluence and chemistry factors of the limiting Reactor Vessel material has been predicted using Regulatory Guide 1.99, Revision 2, dated May 1988 (the latest accepted NRC methodology),  "Radiation Embrittlement of Reactor Vessel Materials". The heatup and cooldown limit curves of Figures 3.1-1a, 3.1-1b, and 3.1-1c include predicted adjustments for this shift in RTNDT at the end of the applicable service period The actual shift in RT D of the vessel material will be established periodicallPduring operation by removing and evaluating, in accordance with ASTM E185-73 and 10CFR Appendix H, reactor vessel material irradiation surveillance specimens installed near the inside wall of the reactor vessel in the core area.            The surveillance    specimen withdrawal schedule is shown in Specification 4.20.1. Since the neutron spectra at the irradiation samples and vessel inside radius are essentially identical, the measured transition shift for a sample can be applied with confidence to the adjacent section of the reactor vessel.
Since the  limiting beltline material (Intermediate to Lower Shell Circumferential Weld) in Unit 3 and 4 is identical, the RV surveillance program was integrated and the results from capsule testing is applied to both Units. The surveillance capsule "T" results from Unit 3 (WCAP 8631) and Unit 4 (SWRI 02-4221) and the capsule "V" results from Unit 3 (SWRI 06-8576) were used with the methodology in Regulatory Guide 1.99 Revision 2 to provide limiting material properties information for generating the heatup and cooldown curves in Figures 3.1-1a, 3.1-lb, and 3.1-1c.            The integrated surveillance program along with similar identical reactor vessel design and operating characteristics allows the same heatup and cooldown limit curves to be applicable at both Unit 3 and Unit 4.
B3.1-2a Amendment Nos.      and TCGPTL.PLA
 
The  limitations imposed on the pressurizer heatup and cooldown rates  and spray water temperature differential are provided to assure that the pressurizer is operated within the design criteria assumed for the fatigue analysis performed in accordance with the ASME Code requirements.
B3.1-2b Amendment Nos. and TCGPTL.PLA
 
TAKE B      3 1-2 REACIOR VESSEL    'lOUGHNESS    IRTA LUEKEY  EGIN UNIT 4 50 ft lb/35 mila,              Miniman
                                                                              - lateral BtPansion E~ol'PPer        Shelf Material                                                                                            Trans TYPe                                              ( F)      rang    Trans  ( F) ( )  rang Cl. Hd. Dane      A302 Gr. B                          0.008          -20                        30 Cl. 2               0.72      0.010              4(a)            27(a)          199          129(a)
Cl. Hd. Flange    A508 Ves. Sh. Flange     A508 Cl. 2                0.68      0.010          1(a)            -11(a)          176          114<<>
Cl.      0.08      0.71      0.009          6O(a)                Hh    60 Inlet Nozzle        A508    2 Inlet Nozzle       A508 Cl. 2               0.84      0.019          6O(a)                      60 Inlet Nozzle       A508 Cl. 2"              0 75      0.008            16(a)            13(a)  16      162          105<<)
Outlet Nozzle       A508 Cl. 2               0.78      0.010              7(a)          -25(a)          165          1O7(a)
Outlet Nozzle      A508 Cl. 2                0.68      0.010           38(a)              16(a)  38      160        -1O4(a)
Outlet Nozzle      A508 Cl. 2                0.70      0.010          60(a)            42(a)    60    143            93(a)
Ugper Shell        A508 Cl. 2                0.70       0.010          40                32(a)  40                  1O1(a)
Inter. Shell        A508 Cl. 2    0.054      0.69      0.010                             90(a)          143            93<<)
Zanier  Shell      A508 Cl. 2    0.056      0.74      0.010           40                38(a)   40      147          97(a)
Trans. Ring        A508 Cl. 2                0 69      0.011          60(a)             30(a)   60 Bot. Hd. Dane      A302 Gr. B
                                                              '.010 10                30(a)   10      NA Inter. to Inkier  SAW            0.26      0.60       0.011            lo(b)            63      1O( )    NA          63 Shell Girth Weld 0                        0                  140
      ~l (a) Estimated Values (b)        Value Ba.~  on NUREG-0800, Branch Technical Position          - MZEB 52
 
TABID B3. 1-1 REACIQR VESSEL 'LOUGHNESS DLTA
                                                  'LURK'.Y EGIN UNIT 3 50 ft lb/35 mils                Minim Lateral Rl<pBnsion RFg~      Upper Shel f Cu
(~)                            ( F)    ~      Trans    ( F) ( )  lang        Trans Cl. Hd. Dane      A302 Gr. B                          0. 010                     36(a)            > 70      >  45.5(
Cl. 85. Flange    A508 Cl. 2              0.72        0.010      44(a)           31(a)     44      >118      >  76.5(
Ves. Sh. Flange  A508 Cl. 2              0.65        0 010    -23(a)           -41(a)   -23     >120      > 78(a)
Inlet Nozzle      A508 Cl. 2              0.76        0.019      60( )                    60      NA Inlet Nozzle      A508 Cl. 2              0.74        0.019      6p(a)                     60 Inlet Nozzle      A508 Cl. 2              0 80        0.019      60(a)                     60      NA Outlet Nozzle    A508 Cl. 2             0 79        0.010      27(a)           9(a)     27     >110     > 71.5(a)
Outlet Nozzle    A508 Cl. 2              0.72        0.010        7(a)          -22(a)                       > 72(a)
A Outlet Nozzle    A508 Cl. 2              0.72        0.010      42(a)          23(a)    42      >140      > 91(a)
Upper Shell      A508  Cl. 2              0.68        0.010                      44 (a)    50      >129      >  83.5(
Inter. Shell      A508 Cl. 2    0. 058    0.70        0.010      40              25(a)    40      >122      > 79(a)
  ?ower Shell      A508 Cl. 2    0.079    0. 67,      0.010      30              2(a)    30      163      '06 (a)
Trans. Rirg      'A508 Cl. 2              0.69        0.013      60(a)              (a)    60      >109      > 7p 5(a)
Bot. Hd. Dane    A302 Gr. B                          0.010    -10                        30 Inter. to Zamr   SAW           0.26     0. 60       0.011       10( )         63        10(b)                63 Shell Girth Weld p(a)-                     0                 168 (a) Estimated Values Based on NURHG-0800, Branch Vertical position - HKB 52
( ) Actual Value
 
QOOERh'TOR TEQPBRhTt5% COP3VICENT The limitations on moderator temperature coefficient (h4TC) are provided to ensue that the value of this coefficien re~ains within the limiting condition assumed in the FSAR accident and transient analyses The 4lTC values     of this speciflcati n are appHcable to a specific set of plant conditions accordingly, verification of hffC values at conditions other than those explicitly stated will iequire exttapolatlm to those conditicns in order to permit an accurate co parison The   most negative VfQ value to the most positive moderator density coefficient (H!DCl, wai obtained by incrementally correcting the VIDC used in the FShR analyses to noml ml operating condltiae. These corrections involved subtracting the incremental change in the %DC associated with a core condition of iLll rods inserted (most positive hIDC) to an all rods withdrawn condlfi(xl and 4 conversion for the rate of change ot moderator density with temperture at RR,TEO THERMAL, POWER conditims R3. l -)           Amendment Nos.       ~d
 
tv" ~ I C}}

Latest revision as of 23:34, 3 February 2020

Proposed Tech Specs,Incorporating Revised Heatup & Cooldown Limit Curves Applicable Up to 20 EFPYs of Svc Life
ML17345A422
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 09/21/1988
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17345A419 List:
References
NUDOCS 8809300066
Download: ML17345A422 (19)


Text

ATTACHMENT 2 PROPOSED REVISED TECHNICAL SPECIFICATION PAGES TCG4/024/7

( SS09300066 SS0921 PDR ADOCK 05000250 P PDC

ATTACHMENT TO LICENSE AMENDMENT AMENDMENT NO. FACILITY OPERATING LICENSE NO. DPR-31 AMENDMENT NO. FACILITY OPERATING LICENSE NO. DPR-31 DOCKET NO. 50-250 AND 50-251 Revise Appendix A as follows:

Remove Pa es Insert Pa es v v vi Vi

3. 1.2 3. 1. 2, 3.1.2a
3. 1.2a 3~1 ~ 2b Fig. 3.1-la Fig. 3 1 1 a Fig. 3.1-lb Fig. 3. 1-lb Fig. 3.1-1c Fige 3.1-1c Fig. 3.1-ld Fig. 3.1-2c Fig. 3.1-2d B3.1-2 B3.1-2 B3.1-2a B3.1-2b B3.1-2c B3.1-2d B3.1-3 B3.1-3 TCGPTL.PLA

LIST OF TABLES Table Title Operational Modes 3.5-1 Instrument Operating Conditions for Reactor Trip 3.5-2 Engineering Safety Features Actuation 3.5-3 Instrument Operating Conditions for Isolation Functions 3.5-4 Engineered Safety Feature Set Points 3.5-5 Accident Monitoring Instrumentation 3.9-1 Radioactive Liquid Waste, Sampling and Analysis Program 3.9-2 Radioactive Liquid Effluent Monitoring Instrumentation 3.9-3 Radioactive Gaseous Waste Sampling and Analysis Program 3.9-4 Radioactive Gaseous Effluent Monitoring Instrumentation 3 ~ 13 1 Deleted 3.14-1 Fire Detection System 3.14-2 Fire Hose Station 3.16-1 Primary Coolant System Pressure Isolation Valves 3 ~ 17 1 Sent Fuel Burnup Requirements for Storage in Region Spent Fuel Pit II of the 3.18-1 Auxiliary Feedwater System Operability 4.1-1 Minimum Frequencies for Checks, Calibrations and Test of Instrument Channels 4.1-2 Minimum Frequencies for Equipment and Sampling Tests 4.1-3 Minimum Frequency for Surveillance of Radioactive Liquid Effluent Monitoring Instrumentation 4.1-4 Minimum Frequency for Surveillance of Radioactive Gaseous Effluent Monitoring Instrumentation 4.2-1 Deleted 4.2-2 Minimum Number of Steam Generators to be Inspected During Inservice Inspection 4.2-3 Steam Generator Tube Inspection 4.8-1 Diesel Generator Test Schedule 4.8-2 Battery Surveillance Requirements

4. 12-1 Radiological Environmental Monitoring Program 4.12-2 Reporting Levels for Radioactivity Concentrations in Environmental Samples 4.12-3 Detection Capabilities for Environmental Sample Analysis 4.18-1 Minimum Frequencies for Safety Related Systems Flow Path Verification 6.2-1 Minimum Shift Crew Composition B3.1-1 Reactor Vessel Toughness Data, Turkey Point Unit 3 B3.1-2 Reactor Vessel Toughness Data, Turkey Point Unit 4 Amendment Nos. and TCGPTL.PLA

LIST OF FIGURES

~Fi ure Title

2. 1-1 Reactor Core Thermal and Hydraulic Safety Limits, Three Loop Operation 2.1-la Deleted 2.1-1b Deleted 2.1-2 Reactor Core Thermal and Hydraulic Safety Limits, Two Loop Operation 3 ~ 1 1 DOSE EQUIVALENT I-131 Primary Coolant Specific Activity Limit Versus Percent of RATED POWER with the Primary Coolant Specific Activity > 1.0 Ci/gram Dose Equivalent I-131 F 1-la Reactor Coolant System Heatup Limitations (60'F/hr)

Applicable for the First 20 EFPY /

3.l-lb Reactor Coolant System Heatup Limitations (100'F/hr)

Applicable for the First 20 EFPY 3.1-1c Reactor Coolant System Cooldown Pressure Limitations Applicable for the First 20 EFPY 3 ~ 1 2 Radiation Induced Increase in Transition Temperature for A302-B Steel l 3021 Control Group Insertion Limits for Unit 4, Three Loop Operation 3.2-1a Control Group Insertion Limits for Unit 4, Two Loop Operation 3.2-1b Control Group Insertion Limits for Unit 3, Three Loop Operation 3.2-1c Control Group Insertion Limits for Unit 3, Two Loop Operation 3 ~2 2 Required Shutdown Margin 3~2 3 K (z) vs Core Height 3~2 3a Deleted 3.2-4 Maximum Allowable Local KW/FT

4. 12-1 Sampling Locations
5. 1-1 FPL Turkey Point Site Area Map
6. 2-1 Deleted
6. 2-2 Deleted B3. 1-1 Effect of Fluence and Content on Shift of RTNDT for Reactor Vessel Steels Exposed to 550'F Temperature B3.1-2 Fast Neutron Fluence (E > 1MEV) as a Function of Effective Full Power Years B3.2-1 Target Band on Indicated Flux Difference as a Function of Operating Power Level B3.2-2 Permissible Operating Band on Indicated Flux Difference as a Function of Burnup (Typical) v3.

Amendment Nos. and TCGPTL.PLA

REACTOR COOLANT SYSTEM 3.1.2 PRESSURE TEMPERATURE LIMITS REACTOR COOLANT SYSTEM LIMITING CONDITION FOR OPERATION 3.1.2a The Reactor Coolant System (except the pressurizer) temperature and pressure shall be limited in accordance with the limit lines shown on Figures 3.1-1a, 3.1-1b and 3.1-1c for both Unit 3 and Unit 4 during heatup, cooldown, criticality, and inservice leak and hydrostatic testing with:

a. A maximum heatup of 100'F in any 1-hour period,
b. A maximum cooldown of 100'F in any 1-hour period, and c ~ A maximum temperature change of less than or equal to 5'F in any 1-hour period during inservice hydrostatic and leak testing operations above the heatup and cooldown limit curves.

APPLICABILITY: At all times.

ACTION:

With any of the above limits exceeded, restore the temperature and/or pressure to within the limit within 30 minutes; perform an engineering evaluation to determine the effects of the out-of-limit condition on the structural integrity of the Reactor Coolant System; determine that the Reactor Coolant System remains acceptable for continued operation or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and reduce the RCS Tavg and pressure to less than 200'F and 500 psig, respectively, within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

3 ~ 1~2 Amendment Nos. and TCGPTL.PLA

PRESSURIZER LIMITING CONDITION FOR OPERATION 3.1.2.b The pressurizer temperature shall be limited to:

a~ A maximum heatup of 100'F in any 1-hour period,

b. A maximum cooldown of 200 F in any 1-hour period, and
c. A maximum spray water temperature differential of 320'F.

ACTION:

With the pressurizer temperature limits in excess of any of the above limits, restore the temperature to within the limits within 30 minutes; perform an engineering evaluation to determine the effects of the out-of-limit condition on the structural integrity of the pressurizer; determine that the pressurizer remains acceptable for continued operation or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and reduce the pressurizer pressure to less than 500 psig within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

,3 ~ 1 ~ 2a Amendment Nos. and TCGPTL."PLA

QFRAT MP Rh 3,1.2,1 The maderator temperature coefficient (MTC) shall bee Less poeitlve than or equal to > 0 x 10 /Ic/~ for all rods withdrawn, beginning of the cycle life (SOL), hat zero THERMAL pOWER (Hgp) conditions! and b) Less positive than oc'qual to 9A x 10-> hk/k/~F from Hgp to 7096 RATED THERMAL POWER conditio~ and Less positive than or equal to f.0 x 10-f Sc/Ic/oP fram 70% RATED THERMAL POWER decreasing linearly to less positive than or equal ta 0 Ate/Ic/OP at 100% RATED THERIACAL POWER condition~ and d) Lel negative than -3.f x IM hk/k/~F for the all rods withdrawn, end af cycle lite (EOL>> RATED THERMAL POWER condition.

B  ! Specification 3.1.2.lg b, and c MODES I and 2>> only>>>>.

Specification 3.1.2.ld - MODES I, 2, and 3 only a) With the MC more positive than the limits of Specifications 3.1.2.la, b, or c above, operation in MODES 1 and 2 may proceed pravidedc

1) Control rod withdrawal limits are established and maintained sufficient to restore the MTC to less positive or equal to limits described in 3 1.2.1a, b, and c above <<Ithin 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> or be in HOT STANDBY <<Ithln the next C hours. These withdrawal limits shall be in addltian to the insertion limits of specification 3.2 I,
2) The cantrol rods are maintained within the ~lthdra~al limits established above until a subsequent calculation verifies that the

%fC has been restored to within its llmlt for the ail rods withdrawn candlti~ and

3) A Special Report Is prepared and submitted to the Commission pursuant to Specification 6.9.3, <<ithln 10 da~ describing the value ot the measured MTC, the interim control rod withdrawal limits, and the predicted average core burnup necessary for restoring the hflC to within its limit for the all rods withdrawn condition.

b) 'Wth the VLCC more negative than the limit of Specificatian 3.I.'2.Id above, be In HOT SHUTDOWN <<ithln 12 ho~

>> With Keff greater than ar equal to I.

>>>> The +bove limits may be suspended during the performance of LO%'OWER PHYSICS TESTS.

3. I-2b Amendment Nas.. and

MATERIAL PROPERTY BASIS CIRCUMFERENTIAL HELP< >

f11 CONTROLLING MATERIAL:

INITIAL RTNPT'OeF RTNP T AFTER 20 EFP Y '/4T 252 5 F 3/IT, 200.4eF CURVES APPLICABLE FOR HEATUP RATES UP TO 60'F/HR FOR THE SERVICE PFRIOP UP TP 20 EFPY. NO MARGINS ARE GIVEN FOR POSSIBLE INSTRUMENT ERRORS.

2500 Lect Test Lfrtt 2250 2000 1750 Uacceytaile Oyeatlm 1500 1250 5

o. 1000 Qceetehle O Oyentlm 750 IIILIIII1 Crt ttcel 1 tF I LWt SasN laservtce 11 oe.

500 atettc Teat Tmyeretere

($ 8D'F) fer the Service 250 I

~ ertee CRT te 0 50 '100 150 200 250 $ 00 $ 50 '400 450 500 IIIIChTCD TCW'CkATUIC (DCO.F)

Reactor Coolant System Heatup Limitations (60'F/Hr)

Applicable for the First 20 EFPY Figure 3.1-1a Amendment Nos. and

~ 'I I II RRQQQRSEESRRQQHEQQEREESEQERQQkkkkkkkkkk BQQRQREQSRRHS kkkkkkkkkkkkkkkkkkkkkkkkkkkkk QEQESQSEQEREQ 1 ~ kkkkkkkkkkkkkkQ

~ ERQHERSEERREERRR ~ kkkkkkk')Skk'Ikkkk

~

SSEERRERERSEQRSEH ERSRBRSERSEERQQE QSRQRBkkkskkkk

~ kkskkkskkkkkkkkk SHRQRREBkkkkskkk QQQRERBESEREEES

~ QESERSQEASEHE

~ kkflkkkkkkkkkkkkk

~ kkkkkkkkkskskkskkkkkkkkkkkkkkskkkkkskkkkkkkskkkkk SEERQSEESQQSSREQSSERSSERESERBEREQRERRRHSSB

... QERSESESEREBSEREERENSSRSRSBESERRRSEEOQE)IBBES EBRQEEQREEERQQSESRESEEEREESQRSQR'4ESSEEQSH kkkkkkkskkkRskkkkkkkkkskkkkkkkskkkkksklkkkskkskkkk

~ HSESEEEESRR ~ EEREEREREESSE)JNRRSENR

, SEQERSQERSE ~ RBHEERE'lQR'ASSESSEE BQRS'EQEEER ~ kk'kkskkkkkkkskksEEERS

~ SQkkkskkkkk ~ QSRQSREQENSSESEESE

~ SRSQSERQREESRREREEESQESRSEEEEERSERkkkskkskkkkk

~ RQQEQQ RES QERESNSS SERE 1 1 QRSRRSREREFSEBNSESR ESREREQkkkkkkksk ~ kkkkkkk)JRkkskkkkk

~ ~

~ RSEEEEQREQENES ~ kkkkkkkskkkkkkkkk

~ ESEREQEEESRRSER

~ RSESEQEEEQEERR

. ~ SERT>kksskkkkkkkksk

~ RSQEEUEQRSEEENN

~ ESRREERESEESSERE kkkkkkkskkkskkksk

~ ~

NSRSRQskkskskkkkk

~ kkkkkkksskskkkkkkkkkkkkkkkkkSEERS'Lkkkilskkkkkkkkkk RkkkkkfikkkkkkEESRE

~ EQQQRRRERRREEREEQQERREQRREFNSRRSSQSQSSRER

~ RRSQQEQQREREREEEESRERSRQSQSQRQSQkkkkkkkk

~ QEQQSRRRREEEQEESERREQkkkkkskkkkksk

~ ~ i 0 k k QQ kkk Q k 1 k kk k k Q k k E k k k tJ k Q k Q k

~ QESRESSSSQQSSRRQESSEQSEREEEEEEEQE H H k

~ RSRSkkkkkkkkskkkkkkkkkkkkkkkkE~Jkkkkkksk k

~ kkkkkkkkRRERSSEkkkkkkkkkkkkkkKSRRREESSE

~ kkkkkkkkkkskksskkkkkkkkkkkkkEAkkkskkkkkkkkkk ~

~ kkkskkkskkRSSSSkkkkkkkkksskk~lkkkkkkkkkk

~ SRSRSRRREERSSERkkkkkkkkkskkiskkkkkkkkkks

~ kkkkkkkk$$ $ $ $ $ $ $ kkkkkkkkkk<ikkkkkkkkkkkk

~ kkkkkkkkk$$ $ $ $ $ $ kkskkkkkk~akkkkkkkkkkkkk SSSESRSRRRSERRRRESRESSRSFBkkkkkkkkkkkksk

~ i Q QB Q k k k r kk k k k 1 k 1 S R $ E 1 1 N kk 1 k k g 1 E k k k kk E R 1 B Q 1 k $ k k S k k k k k P. > 1 k S k S k $ k Q k k E kk 1 E k

~

~ RRRRRERN'~~~<<mw~ akkkkkkkkkkkkkkkkkkkks

~ RQREESSSEERRERERSRSERESESEQRREERREEER

~ SQESRSSRRREEREERERRERESSRRERENERSEEEEE

, SSSERSNRRRSERRERNSRRSRERRRERERSSSRSRRSRR QRERRRSEERRNREEkkkQEEESEREEEEESREEERRR

~ kkkkks RREERREESEESSRESSEEESRSEEERQRQR BRERRERERRERRESRREESREQERREEEEEERERRES BSESEEERSSESEREESRSESEEREBSEBERESEENEQQkkkkkk

, BREREQEESREERSEESEEHRRESEEREREEEREQQREERQEEE

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~

~ ~ ~ S i ~

~

~

I ~ ~

~

~

~

~

' ~ II ~ II ~ I

$ $ EQESRSHSSSSSSQQSQQQSSSESSSEHRSQSSQSS

$ $SSSSSSESSSSSSESSSSSQQSSQSSSSSSSSQHSSSSSSSSES

~ $ $$$$$$$$$$$$$$$$$

SSQSQQSSSSSSSQQSSQSSSSQ$

~ SQSQSQESQSSSQSQSESSEESQSSEQSESSQESSSSSSS

~

~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ K$$ $ $ $ $ $ $ $ $

SQQSSQESSSSSSSSSSSHSSSSSSEQSSQSQIIQQSSSQS

~ SSSSSSESSQSSSSHSSSSESSQSSSSQSSSSSSSSSSSQSSQ QSHQSSHSSHQSEHSQESSSSQRQEHSSHHQSSEQ

$SgSSSSHSEQSSSSSSEQSSSSSSSSSSSSSSSSSESSSQSSSESS SSSESSSSSSHSSEESSEESSSSSSSESSSSSSSSSEOHSHSQQS

~$$ $$ $$$ $$$ $$$ $$ $ $$$ $ $$ $ $$ $$$ $ $$$ $ $ $ $$$ $$$ $$$$ $$$

QSSQSQESEQSESSSQSSSQSSSSSQSESSESSSSSSQSSSS

~ SSSQSESESS SEE ESSSESSESQSSSSSQSEHSSSSESSSSESQ $ $ $ $ $ $ $ $ $ $ $ $ $ $ >$ $ $ $ $ $ $ $ $ $ $ $

~$$$$$ $$$$$$$$$$$$ $$$$$

~ $$ $ $ $ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $~ $ $$ $$$ $$$ $$$ $$$$$$$

SSSESASSSQSSRSSSES

~ ESSSSESSQSQS ~ Q S E $ ') S E S S S E S E $ $ $ S S

~ ESESSSESSSSESS ~ SQHSSESQSSSSSSQ

~ SSHSSESSSSQE ~ SSSEASHSQSSSSSSSS

~ SSHSQSQSSSS SQSSSSHSESSSSQSQ

~ EESSEHSSSHSS ~ Rggtg$ $ $ $ $ $ $ $$ $ $ $ $ $

ESSSSH$ $$ $ $ $ $ $$ $

~ SSSSSSSSQESESQSSSEQEQESSSSSSE)JSSSSE$$ $ $ $

~ QESESESQEQSSSSSSESSESSESSESQSSSSSSEQESQQSS $ $ $ $$ $ $ $ $

~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$$ $ $$$$

~$ $ $$ $ $ $ $ $ $ $ $ $ $ $$ $ $$ $ $ $ $ $ $ $

~ RSSSSHSSSESSSHESSESESSEEQSSSSSSSSSSSSSQSESSSS

~ Q$ $ $ $$ $ $ $ $ $$ $ $$ $ $$ $ $$ $ $ $ $ $ $ $ $$ fIEHSSEEQERSSQH

~ QSHSSSHESSSSSEHEHSQSSSSHSSSSESSSQQSSNSS $ $ $ Ãi$$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

~ $ $ $ $$ $ $ $ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $$ $ $ $ $ $ Fig ~$

~ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

~ $ $ $ $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ egg ~S HQSEHHESHEHSHHSSESSH: egg - - -

$ $ $ WI /)$ $ $

~ $$

~$$

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ /il)SEE ~

~$$$$$ $$$ $$$ $$$ $$$ $$ $$ $$$ ASS

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 8<r Yi')$$ $ $ $ $ $ ~$$

t

~ SSESEEEEESSSSEFr J/i6$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

S E $ E $ E E $ $ E H $ r ~r 5 )iS S S $ R E $ S S H S H S $ $ $ H S Q

~w

~ $ $ $ $ $ $ $ $ Prit>//4P;$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

~ Ps+~

t~ st~ P~P>g~ig$

mal>~ilteSB$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $

Cieeal>~i>SEPa)$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $

IassOSSSSSP ~ARESEESESESHSSSEHSSSSESSSHES

~ >It+ s$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$ $ $ $

~

~$$$ $$ $$ $$ $$$$$ $$$ $$$ $$$$$$$$$$$$ $$$$$$$$$

SSESESESSSSESSEEESSSESSSSSSESEHEEQSSEEES ESS ~ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

~ ESSSHSSS SESS ESES ESSESSHSSSSSSSSSSSSHSSSSSSSHS

~ SESSEEESSSESSSHSSESSESSSSSSSSSSSESSSHSSESSSQSS

~ SHEEEEHSESSSESESESEESESSSSSSSEEESSERSHSSSSSSSS

~ ~ ~ ~ ~ ~ ~

~ ~

2. BASES PRESSURE TEMPERATURE LIMITS All components in the Reactor Coolant System (RCS) are designed to withstand the effects of cyclic loads due to system temperature and pressure changes. These cyclic loads are induced by normal load transients, reactor trips and startup and shutdown operations. During RCS heatup and cooldown, the temperature and pressure changes must be limited to be consistent with design assumptions and to satisfy stress limits for brittle fracture.

During heatup, the thermal gradients through the reactor vessel wall produce thermal stresses which are compressive at the reactor vessel inside surface and which are tensile at the reactor vessel outside surface. Since reactor vessel internal pressure always produces tensile stresses at both the inside and outside surface locations, the total applied stress is greatest at the outside surface location. However, since neutron irradiation damage is larger at the inside surface location when compared to the outside surface, the inside surface flaw may be more limiting. Consequently for the heatup analysis both the inside and outside surface flaw locations must be analyzed for the specific pressure and thermal loadings to determine which is more limiting.

During cooldown, the thermal gradients through the reactor vessel wall produce thermal stresses which are tensile at the reactor vessel inside surface and which are compressive at the reactor vessel outside surface. Since reactor vessel internal pressure always produces tensile stresses at both the inside and outside surface locations, the total applied stress is greatest at the inside surface location. Since the neutron irradiation damage is also greatest at the inside surface location, the inside surface flaw is the limiting location. Consequently, only the inside surface flaw must be evaluated for the cooldown analysis.

The fracture toughness properties of the ferritic material in the reactor vessel were determined in accordance with the NRC Standard Review Plan, ASTM E185-73 and in accordance with additional reactor vessel requirements.

The properties are then evaluated in accordance with Appendix G of the 1983 Edition of Section XIX of the ASME Boiler and Pressure Vessel Code and the additional requirements of 10CFR50, Appendix G and the calculation methods described in Westinghouse Report GTSD-A-1.12, "Procedure for Developing Heatup and Cooldown Curves".

B3. l. 2 Amendment Nos. and TCGPTL.PLA

The heatup and cooldown limit curves, Figures 3.l-la, 3.1-1b, and 3.1-1c are composite curves prepared by determining the most conservative case with either the inside or outside wall controlling, for any heatup rate up to 100 degrees F per hour and cooldown rates of up to 100 degrees F per hour. The heatup and cooldown curves were prepared based upon the most limiting value of predicted adjusted r'eference temperature at the end of the applicable service period (20 EFPY).

The reactor vessel materials have been tested to determine their initial RT ; the results of these tests as well as other material erties are shown in Tables B3.1-1 and B3.1-2. Reactor operation and resultant fast neutron (E greater than 1 MeV) irradiation can cause an increase in the RTN T. Therefore, an adjusted reference temperature, based upoR the fluence and chemistry factors of the limiting Reactor Vessel material has been predicted using Regulatory Guide 1.99, Revision 2, dated May 1988 (the latest accepted NRC methodology), "Radiation Embrittlement of Reactor Vessel Materials". The heatup and cooldown limit curves of Figures 3.1-1a, 3.1-1b, and 3.1-1c include predicted adjustments for this shift in RTNDT at the end of the applicable service period The actual shift in RT D of the vessel material will be established periodicallPduring operation by removing and evaluating, in accordance with ASTM E185-73 and 10CFR Appendix H, reactor vessel material irradiation surveillance specimens installed near the inside wall of the reactor vessel in the core area. The surveillance specimen withdrawal schedule is shown in Specification 4.20.1. Since the neutron spectra at the irradiation samples and vessel inside radius are essentially identical, the measured transition shift for a sample can be applied with confidence to the adjacent section of the reactor vessel.

Since the limiting beltline material (Intermediate to Lower Shell Circumferential Weld) in Unit 3 and 4 is identical, the RV surveillance program was integrated and the results from capsule testing is applied to both Units. The surveillance capsule "T" results from Unit 3 (WCAP 8631) and Unit 4 (SWRI 02-4221) and the capsule "V" results from Unit 3 (SWRI 06-8576) were used with the methodology in Regulatory Guide 1.99 Revision 2 to provide limiting material properties information for generating the heatup and cooldown curves in Figures 3.1-1a, 3.1-lb, and 3.1-1c. The integrated surveillance program along with similar identical reactor vessel design and operating characteristics allows the same heatup and cooldown limit curves to be applicable at both Unit 3 and Unit 4.

B3.1-2a Amendment Nos. and TCGPTL.PLA

The limitations imposed on the pressurizer heatup and cooldown rates and spray water temperature differential are provided to assure that the pressurizer is operated within the design criteria assumed for the fatigue analysis performed in accordance with the ASME Code requirements.

B3.1-2b Amendment Nos. and TCGPTL.PLA

TAKE B 3 1-2 REACIOR VESSEL 'lOUGHNESS IRTA LUEKEY EGIN UNIT 4 50 ft lb/35 mila, Miniman

- lateral BtPansion E~ol'PPer Shelf Material Trans TYPe ( F) rang Trans ( F) ( ) rang Cl. Hd. Dane A302 Gr. B 0.008 -20 30 Cl. 2 0.72 0.010 4(a) 27(a) 199 129(a)

Cl. Hd. Flange A508 Ves. Sh. Flange A508 Cl. 2 0.68 0.010 1(a) -11(a) 176 114<<>

Cl. 0.08 0.71 0.009 6O(a) Hh 60 Inlet Nozzle A508 2 Inlet Nozzle A508 Cl. 2 0.84 0.019 6O(a) 60 Inlet Nozzle A508 Cl. 2" 0 75 0.008 16(a) 13(a) 16 162 105<<)

Outlet Nozzle A508 Cl. 2 0.78 0.010 7(a) -25(a) 165 1O7(a)

Outlet Nozzle A508 Cl. 2 0.68 0.010 38(a) 16(a) 38 160 -1O4(a)

Outlet Nozzle A508 Cl. 2 0.70 0.010 60(a) 42(a) 60 143 93(a)

Ugper Shell A508 Cl. 2 0.70 0.010 40 32(a) 40 1O1(a)

Inter. Shell A508 Cl. 2 0.054 0.69 0.010 90(a) 143 93<<)

Zanier Shell A508 Cl. 2 0.056 0.74 0.010 40 38(a) 40 147 97(a)

Trans. Ring A508 Cl. 2 0 69 0.011 60(a) 30(a) 60 Bot. Hd. Dane A302 Gr. B

'.010 10 30(a) 10 NA Inter. to Inkier SAW 0.26 0.60 0.011 lo(b) 63 1O( ) NA 63 Shell Girth Weld 0 0 140

~l (a) Estimated Values (b) Value Ba.~ on NUREG-0800, Branch Technical Position - MZEB 52

TABID B3. 1-1 REACIQR VESSEL 'LOUGHNESS DLTA

'LURK'.Y EGIN UNIT 3 50 ft lb/35 mils Minim Lateral Rl<pBnsion RFg~ Upper Shel f Cu

(~) ( F) ~ Trans ( F) ( ) lang Trans Cl. Hd. Dane A302 Gr. B 0. 010 36(a) > 70 > 45.5(

Cl. 85. Flange A508 Cl. 2 0.72 0.010 44(a) 31(a) 44 >118 > 76.5(

Ves. Sh. Flange A508 Cl. 2 0.65 0 010 -23(a) -41(a) -23 >120 > 78(a)

Inlet Nozzle A508 Cl. 2 0.76 0.019 60( ) 60 NA Inlet Nozzle A508 Cl. 2 0.74 0.019 6p(a) 60 Inlet Nozzle A508 Cl. 2 0 80 0.019 60(a) 60 NA Outlet Nozzle A508 Cl. 2 0 79 0.010 27(a) 9(a) 27 >110 > 71.5(a)

Outlet Nozzle A508 Cl. 2 0.72 0.010 7(a) -22(a) > 72(a)

A Outlet Nozzle A508 Cl. 2 0.72 0.010 42(a) 23(a) 42 >140 > 91(a)

Upper Shell A508 Cl. 2 0.68 0.010 44 (a) 50 >129 > 83.5(

Inter. Shell A508 Cl. 2 0. 058 0.70 0.010 40 25(a) 40 >122 > 79(a)

?ower Shell A508 Cl. 2 0.079 0. 67, 0.010 30 2(a) 30 163 '06 (a)

Trans. Rirg 'A508 Cl. 2 0.69 0.013 60(a) (a) 60 >109 > 7p 5(a)

Bot. Hd. Dane A302 Gr. B 0.010 -10 30 Inter. to Zamr SAW 0.26 0. 60 0.011 10( ) 63 10(b) 63 Shell Girth Weld p(a)- 0 168 (a) Estimated Values Based on NURHG-0800, Branch Vertical position - HKB 52

( ) Actual Value

QOOERh'TOR TEQPBRhTt5% COP3VICENT The limitations on moderator temperature coefficient (h4TC) are provided to ensue that the value of this coefficien re~ains within the limiting condition assumed in the FSAR accident and transient analyses The 4lTC values of this speciflcati n are appHcable to a specific set of plant conditions accordingly, verification of hffC values at conditions other than those explicitly stated will iequire exttapolatlm to those conditicns in order to permit an accurate co parison The most negative VfQ value to the most positive moderator density coefficient (H!DCl, wai obtained by incrementally correcting the VIDC used in the FShR analyses to noml ml operating condltiae. These corrections involved subtracting the incremental change in the %DC associated with a core condition of iLll rods inserted (most positive hIDC) to an all rods withdrawn condlfi(xl and 4 conversion for the rate of change ot moderator density with temperture at RR,TEO THERMAL, POWER conditims R3. l -) Amendment Nos. ~d

tv" ~ I C