SVPLTR 08-0063, Core Operating Limits Report for Cycle 21, Revision 0

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Cycle 21, Revision 0
ML083300414
Person / Time
Site: Dresden Constellation icon.png
Issue date: 11/14/2008
From: Wozniak D
Exelon Corp, Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
SVPLTR: #08-0063
Download: ML083300414 (46)


Text

Exelkn.

Exelon Generation Company, LLC www.exeloncorp.com Nuclear Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL60450-9765 SVPLTR: #08-0063 November 14, 2008 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington D.C. 20555-0001 Dresden Nuclear Power Station, Unit 3 Renewed Facility Operating License No. DPR-25 NRC Docket No. 50-249

Subject:

Core Operating Limits Report for Unit 3 Cycle 21, Revision 0 The purpose of this letter is to transmit the Core Operating Limits Report (COLR) for Dresden Nuclear Power Station (DNPS) Unit 3 operating cycle 21 (D3C21), Revision 0, in accordance with Technical Specifications Section 5.6.5, "CORE OPERATING LIMITS REPORT (COLR)."

The Unit 3 COLR was revised to support the reload design for D3C21.

Should you have any questions concerning this letter, please contact Mr. Stephen Taylor at 815-416-2800.

Respectfully, David B. Wozniak Site Vice President Dresden Nuclear Power Station

Attachment:

Core Operating Limits Report for Dresden Unit 3 Cycle 21, Revision 0 cc: Regional Administrator - NRC Region III NRC Senior Resident Inspector - Dresden Nuclear Power Station

Attachment Core Operating Limits Report for Dresden Unit 3 Cycle 21 Revision 0

COLR Dresden 3 Revision 4 Page 1 Core Operating Limits Report for Dresden Unit 3 Cycle 21 Revision 0 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 2 Table of Contents

1. Terms and Definitions .................................................................. 5
2. General Information .................................................................... 6
3. Average Planar Linear Heat Generation Rate ............................ 7
4. Operating Limit Minimum Critical Power Ratio ......................... 18 4.1. Manual Flow Control MCPR Limits ..................................... 18 4.1.1. Power-Dependent MCPR ............................................. 18 4.1.2. Flow-Dependent MCPR ............................................... 18 4.2. Automatic Flow Control MCPR Limits .................................. 18 4.3. Scram Time ........................................................................ 19 4.4. Recirculation Pump Motor Generator Settings ................... 19
5. Linear Heat Generation Rate .................................................... 28
6. Rod Block Monitor ................................................................... 38
7. Stability Protection Setpoints .................................................... 39
8. Modes of Operation ................................................................. 40
9. Methodology ............................................................................. 42
10. References ............................................................................ 43 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 3 List of Tables Table 3-1 MAPLHGR for bundle(s):

GE14-P1ODNAB396-18GZ-1 00T-145-T6-2808 GE14-PlODNAB406-18GZ-1 OOT-145-T6-2809 ............................................................................ 7 Table 3-2 MAPLHGR SLO multiplier for GE Fuel ................................................................................. 7 Table 3-3 MAPLHGR for bundle/lattice:

Opt2-3.90-1 0G8.00/6.00-4GZ8.00-2G6.00 Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2G6.00 Opt2-3.93-14GZ6.00/Lattices 081 and 089 .................................................................................... 8 Table 3-4 MAPLHGR for bundle/lattice:

Opt2-3.90-10G8.00/6.00-4GZ8.00-2G6.00/Lattice 082 ................................................................ 8 Table 3-5 MAPLHGR for bundle/lattice:

Opt2-3.90-1 0G8.00/6:00-4GZ8.00-2G6.00/Lattices 083 and 084 ................................................. 9 Table 3-6 MAPLHGR for bundle/lattice:

Opt2-3.90-10G8.00/6.00-4GZ8.00-2G6.00/Lattices 085 and 086 ................................................. 9 Table 3-7 MAPLHGR for bundle/lattice:

Opt2-3.90-10G8.00/6.00-4GZ8.00-2G6.00/Lattice 087 ................................................................ 10 Table 3-8 MAPLHGR for bundle/lattice:

Opt2-3.90-10G8.00/6.00-4GZ8.00-2G6.00/Lattice 088 .............................................................. 10 Table 3-9 MAPLHGR for bundle/lattice:

Opt2-3.88-1OG8.00/6.00-6GZ8.00-2G6.00/Lattice 090 ................................................................ 11 Table 3-10 MAPLHGR for bundle/lattice:

Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2G6.00/Lattices 091 and 092 ................................................. 11 Table 3-11 MAPLHGR for bundle/lattice:

Opt2-3.88-10G8.00/6.00-6GZ8.00-2G6.00/Lattices 093 and 094 ................................................. 12 Table 3-12 MAPLHGR for bundle/lattice:

Opt2-3.88-10G8.00/6.00-6GZ8.00-2G6.00/Lattice 095 .............................................................. 12 Table 3-13 MAPLHGR for bundle/lattice:

Opt2-3.88-10G8.00/6.00-6GZ8.00-2G6.00/Lattice 096 ................................................................ 13 Table 3-14 MAPLHGR for bundle/lattice:

Opt2-3.93-14GZ6.00/Lattices 097 and 098 ................................................................................. 13 Table 3-15 MAPLHGR for bundle/lattice:

Opt2-3.93-14GZ6.00/Lattices 099 and 100 ................................................................................. 13 Table 3-16 MAPLHGR for bundle/lattice:

O pt2-3.93-14G Z6.00/Lattice 101 ..................................................... ........................................ 14 Table 3-17 MAPLHGR for bundle/lattice:

Opt2-3.93-16GZ8.00-2G6.00/Lattices 081, 089, and 102 ............................................................ 14 Table 3-18 MAPLHGR for bundle/lattice:

Opt2-3.93-16GZ8.00-2G6.00/Lattice 103 .............................. ........................................................ 15 Table 3-19 MAPLHGR for bundle/lattice:

Opt2-3.93-16GZ8.00-2G6.00/Lattices 104 and 105 ..................................................................... 15 Table 3-20 MAPLHGR for bundle/lattice:

Opt2-3.93-16GZ8.00-2G6.00/Lattices 106, 107, and 108 ............................................................ 16 Table 3-21 MAPLHGR for bundle/lattice:

Opt2-4.03-13G8.00/Lattice 081, 089, and 109 ............................................................................. 16 Table 3-22 MAPLHGR for bundle/lattice:

Opt2-4.03-13G8.00/Lattices 110 and 111 ................................................................................... 17 Table 3-23 MAPLHGR for bundle/lattice:

Opt2-4.03-13G8.00/Lattices 112 and 113 .................................................................................... 17 T a b le 4-1 S cra m T im e s ............................................................................................................................ 19 Table 4-2 MCPR TSSS Based Operating Limits - NFWT and RFWT .............................................. 20 Table 4-3 MCPR ISS Based Operating Limits - NFWT ..................................................................... 21 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 4 Table 4-4 MCPR ISS Based Operating Limits - RFWT ..................................................................... 22 Table 4-5 MCPR NSS Based Operating Limits - NFWT ................................................................... 23 Table 4-6 MCPR NSS Based Operating Limits - RFWT ................................................................... 24 Table 4-7 MCPR(P) for GE and Westinghouse Fuel - NFWT ............................................................ 25 Table 4-8 MCPR(P) for GE and Westinghouse Fuel - RFWT ............................ 26 Table 4-9 MCPR(F) Limits for GE Fuel, DLO or SLO Operation ....................................................... 27 Table 4-10 MCPR(F) Limits for Westinghouse Fuel, DLO or SLO Operation .................................... 27 Table 5-1 LHGR Limit for GE 14-P 10DNAB396-18GZ-10OT-145-T6-2808 ......................................... 28 Table 5-2 LHGR Limit for GE14-P1ODNAB396-18GZ-100T-145-T6-2808, Lattice 6740 ................... 29 Table 5-3 LHGR Limit for GE14-P1ODNAB396-18GZ-100T-145-T6-2808, Lattice 6742 ................... 30 Table 5-4 LHGR Limit for GE14-P1ODNAB396-18GZ-100T-145-T6-2808, Lattice 6743 ................... 31 Table 5-5 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809 ......................................... 32 Table 5-6 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809, Lattice 6748 ................... 32 Table 5-7 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809, Lattice 6749 ................... 33 Table 5-8 LHGR Limit for Westinghouse Optima2 Fuel Opt2-3.90-1 0G8.00/6.00-4GZ8.00-2.00G6.00 Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2.00G6.00 Opt2-3.93-14GZ6.00 Opt2-3.93-16GZ8.00-2G6.00 O pt2-4 .03-13G 8 .00 ............................................................................................................................ 33 Table 5-9 LHG RFAC(P) for G E Fuel, DLO ....................................................................................... 34 Table 5-10 LHG RFAC(P) for G E Fuel, SLO ........................................................................................ 34 Table 5-11 LHGRFAC(P) for Westinghouse Fuel ............................................................................... 35 Table 5-12 LHGRFAC(F) Multipliers, GE Fuel, DLO, All Cases Except TCV Stuck Closed ............... 36 Table 5-13 LHGRFAC(F) Multipliers, GE Fuel, DLO, TCV Stuck Closed ........................................... 36 Table 5-14 LHGRFAC(F) Multipliers, GE Fuel, SLO, All Cases Except TCV Stuck Closed .............. 36 Table 5-15 LHGRFAC(F) Multipliers, GE Fuel, SLO, TCV Stuck Closed ............................................ 37 Table 5-16 LHGRFAC(F) Multipliers, Westinghouse Fuel ................................................................. 37 Table 8-1 Core Thermal Power Restriction for TBPOOS ............................................ ............................ 41 Table 8-2 Core Thermal Power Restriction for One TCV/TSV Stuck Closed with TBV's Credited to Prevent System Pressurization .................................................................................................... 41 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 5

1. Terms and Definitions APLHGR Average planar linear heat generation rate DLO Dual loop operation EFPH Effective full power hours EOC End of cycle EOOS Equipment out of service FFTR Final feedwater temperature reduction FWHOOS Feedwater heater out of service FW Feedwater GE14 GE14C fuel GNF Global Nuclear Fuel ISS Intermediate scram speed LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MELLLA Maximum extended load line limit analysis MCPR Minimum critical power ratio MCPR(F) Flow dependent MCPR MCPR(P) Power dependent MCPR MSIV Main steam isolation valve NFWT Nominal feedwater temperature NRC Nuclear Regulatory Commission NSS Nominal scram speed OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PCOOS Pressure controller out of service RBM Rod block monitor RFWT Reduced feedwater temperature RWE Rod withdrawal error RWCU Reactor water cleanup SLMCPR Safety limit minimum critical power ratio SLO Single loop operation TBPOOS Turbine bypass valve out of service TBV Turbine bypass valve TCV Turbine control valve TIP Traversing incore probe TSSS Technical Specification scram speed TSV Turbine stop valve TSVOOS Turbine stop valve out of service Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 6

2. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is analyzed but not licensed for this cycle. Licensed rated thermal power is 2957 MWth. For allowed operating regions, see applicable power/flow map.

Coastdown is defined as any cycle exposure beyond the full power, all rods out condition with plant power slowly lowering to a lesser value while core flow is held constant.

MCPR(P) and MCPR(F) values are independent of scram speed.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed.

All thermal limits are analyzed to either NSS, ISS, or TSSS. Only MCPR limits vary with scram speed.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow thermal limit values, respectively, can be used unless otherwise indicated in the applicable table.

Asymmetric inlet enthalpy distribution produced by RWCU injection does not have a substantial impact on thermal limits; therefore no adjustments to the thermal limits are required (Reference 3).

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 7

3. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of the GE14 bundle types as a function of average planar exposure is given in Table 3-1. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 3-2.

For Optima2 bundle types, lattice-specific MAPLHGR values for DLO and SLO are provided in Tables 3-3 through 3-23. The MAPLHGR limits for the top and bottom natural uranium lattices (lattices 081 and 089) will be set equal to the most restrictive MAPLHGR limits for the other lattice types.

Table 3-1 MAPLHGR for bundle(s):

GE14-P1ODNAB396-18GZ-10OT-145-T6-2808 GE14-P1ODNAB406-18GZ-10OT-145-T6-2809 (Reference 9)

Average Planar Exposure MAPLHGR (GWd/MTU) (kW/ft) 0.00 11.68 16.00 11.68 55.12 8.01 63.50 6.97 70.00 4.36 Table 3-2 MAPLHGR SLO multiplier for GE Fuel (Reference 9)

Fuel~ype SLO Fuel Type Multiplier GE14 0.77 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 8 Table 3-3 MAPLHGR for bundle/lattice:

Opt2-3.90-10G8.00/6.00-4GZ8.00-2G6.00 Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2G6.00 Opt2-3.93-14GZ6.00 Lattices 081 and 089 (References 6 and 7)

Lattice 081: Opt2-B0.71 089: ODt2-TO.71 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 9.57 8.23 7500 9.30 8.00 17500 9.30 8.00 24000 9.74 8.38 58000 9.74 8.38 70000 8.37 7.20 Table 3-4 MAPLHGR for bundle/lattice:

Opt2-3.90-1 0G8.00/6.00-4GZ8.00-2G6.00 Lattice 082 (References 6 and 7)

Lattice 082: Opt2-B4.28-12G8.00-2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ff) (kW/ft) 0 10.19 8.76 10000 9.59 8.25 20000 9.59 8.25 24000 9.74 8.38 58000 9.74 8.38 70000 8.37 7.20 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 9 Table 3-5 MAPLHGR for bundle/lattice:

Opt2-3.90-10G8.00/6.O0-4GZ8.O0-2G6.00 Lattices 083 and 084 (References 6 and 7)

Lattices 083: Opt2-B4.26-14G8.00-2G6.00 084: Oot2-BE4.37-13G8.00-2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 9.89 8.50 7500 9.47 8.15 17500 9.47 8.15 24000 9.75 8.38 58000 9.75 8.38 70000 8.37 7.20 Table 3-6 MAPLHGR for bundle/lattice:

Opt2-3.90-1 0G8.00/6.00-4GZ8.00-2G6.00 Lattices 085 and 086 (References 6 and 7)

Lattices 085: Opt2-M4.37-13G8.00-2G6.00 086: Opt2-ME4.36-11G8.00-2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 10.16 8.74 7500 9.64 8.29 17500 9.64 8.29 24000 9.88 8.49 58000 9.88 8.49 70000 8.50 7.31 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 10 Table 3-7 MAPLHGR for bundle/lattice:

Opt2-3.90-1 0G8.00/6.00-4GZ8.00-2G6.00 Lattice 087 (References 6 and 7)

Lattice 087: Opt2-T4.36-11G8.00-2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 10.80 9.29 10000 9.95 8.56 20000 9.95 8.56 24000 10.15 8.73 58000 10.15 8.73 70000 8.78 7.55 Table 3-8 MAPLHGR for bundle/lattice:

Opt2-3.90-1 0G8.00/6.00-4GZ8.00-2G6.00 Lattice 088 (References 6 and 7)

Lattice 088: 0 pt2-T4.37-12G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 11.16 9.60 7500 10.15 8.73 58000 10.15 8.73 70000 8.78 7.55 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 11 Table 3-9 MAPLHGR for bundlellattice:

Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2G6.00 Lattice 090 (References 6 and 7)

Lattice fl9fl:Oot2-R4.26.144GS.00.2G6.00

..... O2 ....................

Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 9.83 8.45 7500 9.43 8.11 17500 9.43 8.11 24000 9.76 8.39 58000 9.76 8.39 70000 8.39 7.21 Table 3-10 MAPLHGR for bundle/lattice:

Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2G6.00 Lattices 091 and 092 (References 6 and 7)

Lattices 091: Opt2-B4.24-16G8.00-2G6.00 092: Opt2-BE4.36-14G8.00-2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/f) (kW/ff) 0 9.57 8.23 7500 9.30 8.00 17500 9.30 8.00 24000 9.76 8.39 58000 9.76 8.39 70000 8.39 7.22 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 12 Table 3-11 MAPLHGR for bundle/lattice:

Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2G6.00 Lattices 093 and 094 (References 6 and 7)

Lattices 093: Opt2-M4.36-14G8.00-2G6.00 f94: Ont2-ME4.3-1 2GB.00-2G6.fl0 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 9.92 8.53 7500 9.51 8.18 17500 9.51 8.18 24000 9.89 8.50 58000 9.89 8.50 70000 8.51 7.32 Table 3-12 MAPLHGR for bundle/lattice:

Opt2-3.88-1 0G8.0016.00-6GZ8.00-2G6.00 Lattice 095 (References 6 and 7)

Lattice 095: Opt2-T4.35-12G8.00-2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/iMTU) (kW/ft) (kW/ft) 0 10.51 9.03 7500 9.87 8.49 17500 9.87 8.49 24000 10.17 8.74 58000 10.17 8.74 70000 8.79 7.56 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 13 Table 3-13 MAPLHGR for bundle/lattice:

Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2G6.00 Lattice 096 (References 6 and 7)

Lattice 096: Oot2-T4.37-1 2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) jkW/ft) (kW/ft) 0 11.04 9.50 7500 10.22 8.79 58000 10.22 8.79 70000 8.84 7.61 Table 3-14 MAPLHGR for bundle/lattice:

Opt2-3.93-14GZ6.00 Lattices 097 and 098 (References 6 and 7)

Lattices 097: Opt2-B4.31-14G6.00 098: Opt2-BE4.41-14G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/iMTU) (kW/ft) (kW/ft) 0 10.24 8.80 7500 9.77 8.40 58000 9.77 8.40 70000 8.40 7.22 Table 3-15 MAPLHGR for bundle/lattice:

Opt2-3.93-14GZ6.00 Lattices 099 and 100 (References 6 and 7)

Lattices 099: Opt2-M4.41-14G6.00 100: Opt2-ME4.41-12G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 10.40 8.94 7500 9.85 8.47 58000 9.85 8.47 70000 8.48 7.29 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 14 Table 3-16 MAPLHGR for bundle/lattice:

Opt2-3.93-14GZ6.00 Lattice 101 (References 6 and 7)

Lattice 101: Ont2-T4.41 -1 2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 11.04 9.50 7500 10.16 8.73 58000 10.16 8.73 70000 8.78 7.55 Table 3-17 MAPLHGR for bundle/lattice:

Opt2-3.93-16GZ8.00-2G6.00 Lattices 081, 089, and 102 (References 3 and 5)

Lattices 081: Opt2-B0.71 089: Opt2-TO.71 102: Opt2-B4.30-16G8.00-2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 9.59 8.25 7500 9.44 8.12 17500 9.44 8.12 24000 9.69 8.33 58000 9.69 8.33 70000 8.32 7.15 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 15 Table 3-18 MAPLHGR for bundle/lattice:

Opt2-3.93-16GZ8.00-2G6.00 Lattice 103 (References 3 and 5)

Lattice

-03 Average Planar

-0 O2 311G DLO 002G T SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/)

0 9.75 8.39 7500 9.44 8.12 17500 9.44 8.12 24000 9.71 8.35 58000 9.71 8.35 70000 8.34 7.17 Table 3-19 MAPLHGR for bundle/lattice:

Opt2-3.93-16GZ8.00-2G6.00 Lattices 104 and 105 (References 3 and 5)

Lattices 104: Opt2-BE4.41-14G8.00-2G6.00 105: Opt2-M4.41-14G8.00-2G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 9.84 8.46 7500 9.52 8.19 17500 9.52 8.19 24000 9.84 8.46 58000 9.84 8.46 70000 8.47 7.28 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 16 Table 3-20 MAPLHGR for bundle/lattice:

Opt2-3.93-16GZ8.00-2G6.00 Lattices 106, 107, and 108 (References 3 and 5)

Lattice 106: Opt2-ME4.39-14G8.00-2G6.00 107: Opt2-T4.39-14G8.00-2G6.o00 108: ODt2-T4.39-16G6.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 10.01 8.61 7500 9.71 8.35 17500 9.71 8.35 24000 10.14 8.72 58000 10.14 8.72 70000 8.77 7.54 Table 3-21 MAPLHGR for bundle/lattice:

Opt2-4.03-13G8.00 Lattices 081, 089, and 109 (References 3 and 5)

Lattice 081: Opt2-B0.71 089: Opt2-TO.71 109: Opt2-B4.42-13G8.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 10.16 8.74 10000 9.69 8.33 58000 9.69 8.33 70000 8.31 7.15 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 17 Table 3-22 MAPLHGR for bundle/lattice:

Opt2-4.03-13G8.00 Lattices 110 and 111 (References 3 and 5)

Lattice 110: Opt2-BE4.52-13G8.00 111: Oot2-M4.52-13G8,00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 10.27 8.83 10000 9.80 8.42 58000 9.80 8.42 70000 8.42 7.24 Table 3-23 MAPLHGR for bundle/lattice:

Opt2-4.03-13G8.00 Lattices 112 and 113 (References 3 and 5)

Lattice 112: Opt2-ME4.51-13G8.00 113: Opt2-T4.51-13G8.00 Average Planar DLO SLO Exposure MAPLHGR MAPLHGR (MWd/MTU) (kW/ft) (kW/ft) 0 10.53 9.06 10000 10.04 8.63 58000 10.04 8.63 70000 8.67 7.45 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 18

4. Operating Limit Minimum Critical Power Ratio The Operating Limit Minimum Critical Power Ratios (OLMCPRs) for D3C21 were established to protect the Safety Limit Minimum Critical Power Ratio (SLMCPR) for the abnormal operational occurrences. The SLMCPR values for DLO and SLO for D3C21 were determined to be 1.12 and 1.14 (Reference 3), respectively, which are unchanged from the NRC-approved values for the previous operating cycle (i.e., D3C20). Likewise, the conservative OLMCPR adder applied to the GE14 fuel for D3C21 remains unchanged at the NRC-approved value of 0.934 (Reference 3).

In determining the SLMCPR values for D3C21, Westinghouse applied the methodologies from CENPD-300-P-A, consistent with the manner specified in Limitations 1 through 6 and 8 of the NRC Safety Evaluation Report (SER) approving CENPD-300-P-A (References 19 and 21). The application of these methodologies was previously approved by the NRC for D3C20 in license amendment 213 to Renewed Facility Operating License DPR-25 (Reference 17).

Similarly, in both the determination and justification of the conservative adder applied to the GE14 fuel for D3C21, Westinghouse complied with Limitation 7 of the SER approving CENPD-300-P-A (References 20 and 21). The NRC previously approved Westinghouse and Exelon compliance with Limitation 7 (i.e., for determination and justification of the conservative adder) in Reference 17.

In that the conservative adder for D3C21, and its justification, have not changed from previously-approved operating cycles, the NRC has already approved this determination and justification, as stated in Reference 18.

4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCPR For operation at less than 38.5% core thermal power, the OLMCPR as a function of core thermal power is shown in Tables 4-7 and 4-8. For operation at greater than 38.5% core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Tables 4-2 through 4-6 by the applicable MCPR multiplier K(P) given in Tables 4-7 and 4-8. For operation at exactly 38.5% core thermal power, the OLMCPR as a function of core thermal power is the higher of either of the two methods evaluated at 38.5% core thermal power.

4.1.2. Flow-Dependent MCPR Tables 4-9 and 4-10 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

4.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 19 4.3. Scram Time TSSS, ISS, and NSS refer to scram speeds. TSSS is the Technical Specification Scram Speed, ISS is the Intermediate Scram Speed, and NSS is the Nominal Scram Speed.

The scram time values are shown in Table 4-1.

The NSS scram times are based on a conservative interpretation of scram time surveillance measurements. In the event that plant surveillance shows these scram insertion times to be exceeded, the MCPR limits are to default to the values which correspond to the ISS scram time. The ISS times have been chosen to provide an intermediate value between the NSS and TSSS, but the interpolation between these values is not supported by Westinghouse methodology. In the event that the ISS times are exceeded, MCPR limits for the TSSS apply.

Table 4-1 Scram Times (References 3 and 16)

Control Rod Insertion Fraction TSSS (seconds) ISS (seconds) NSS (seconds)

(M) 5 0.48 0.360 0.324 20 0.89 0.720 0.700 50 1.98 1.580 1.510 90 3.44 2.740 2.635 4.4. Recirculation Pump Motor Generator Settings Cycle 21 was analyzed with a maximum core flow runout of 110%; therefore the recirculation pump motor generator scoop tube mechanical and electrical stops must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events (Reference 13). This value is consistent with the analyses of Reference 3.

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 20 Table 4-2 MCPR TSSS Based Operating Limits - NFWT and RFWT (Reference 3)

Cycle Exposure (MWd/MTU)

> 12,500 EOOS Combination Fuel Type 12,500 S<15,000 > 15,000 Optima2 1.74 1.86 1.94 BASE GE14 1.67 1.72 1.75 Optima2 1.78 1.90 1.98 BASE SLO GE14 1.70 1.76 1.79 Optima2 1.81 1.95 2.03 PLUOOS GE14 1.75 1.80 1.82 Optima2 1.85 1.99 2.07 PLUOOS SLO GE14 1.79 1.84 1.86 Optima2 1.90 2.01 2.07 TBPOOS GE14 1.80 1.84 1.85 Optima2 1.94 2.05 2.11 TBPOOS SLO GE14 1.84 1.88 1.89 Optima2 1.87 2.01 2.10 TCV SLOW CLOSURE GE14 1.77 1.81 1.83 Optima2 1.91 2.05 2.14 TCV SLOW CLOSURE SLO GE14 1.81 1.85 1.87 Optima2 1.74 1.86 1.94 TCV STUCK CLOSED GE14 1.67 1.72 1.75 Optima2 1.78 1.90 1.98 TCV STUCK CLOSED SLO GEl4 1.70 1.76 1.79 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 21 Table 4-3 MCPR ISS Based Operating Limits - NFWT (Reference 3)

Cycle Exposure (MWd/MTU)

<512,500 > 12,500 > 15,000 EOOS Combination Fuel Type 10 15,000 Optima2 1.50 1.58 1.65 BASE GE14 1.59 1.59 1.60 Optima2 1.53 1.61 1.68 BASE SLO GE14 1.62 1.62 1.63 Optima2 1.56 1.67 1.74 PLUOOS GE14 1.59 1.61 1.66 Optima2 1.59 1.70 1.78 PLUOOS SLO GE14 1.62 1.64 1.69 Optima2 1.64 1.73 1.84 TBPOOS GE14 1.60 1.64 1.68 Optima2 1.67 1.77 1.88 TBPOOS SLO GE14 1.63 1.67 1.71 Optima2 1.59 1.69 1.75 TCV SLOW CLOSURE GE14 1.59 1.62 1.66 Optima2 1.62 1.73 1.79 TCV SLOW CLOSURE SLO GE14 1.62 1.65 1.69 Optima2 1.50 1.58 1.65 TCV STUCK CLOSED GE14 1.59 1.59 1.60 Optima2 1.53 1.61 1.68 TCV STUCK CLOSED SLO GE14 1.62 1.62 1.63 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 22 Table 4-4 MCPR ISS Based Operating Limits - RFWT (Reference 3)

Cycle Exposure (MWd/MTU)

E512,500 > 12,500 > 15,000 EOOS Combination Fuel Type < 15,000 Optima2 1.54 1.61 1.65 BASE GE14 1.59 1.59 1.60 Optima2 1.57 1.64 1.68 BASE SLO GE14 1.62 1.62 1.63 Optima2 1.56 1.67 1.74 PLUOOS GE14 1.59 1.61 1.66 Optima2 1.59 1.70 1.78 PLUOOS SLO GE14 1.62 1.64 1.69 Optima2 1.69 1.78 1.84 TBPOOS GE14 1.62 1.66 1.68 Optima2 1.73 1.82 1.88 TBPOOS SLO GE14 1.65 1.69 1.71 Optima2 1.59 1.69 1.75 TCV SLOW CLOSURE GE14 1.59 1.62 1.66 Optima2 1.62 1.73 1.79 TCV SLOW CLOSURE SLO GE14 1.62 1.65 1.69 Optima2 1.54 1.61 1.65 TCV STUCK CLOSED GE14 1.59 1.59 1.60 Optima2 1.57 1.64 1.68 TCV STUCK CLOSED SLO GE14 1.62 1.62 1.63 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 23 Table 4-5 MCPR NSS Based Operating Limits - NFWT (Reference 3)

Cycle Exposure (MWd/MTU) 12,500

5 > 12,500 > 15,000 EOOS Combination Fuel Type 1 15,000 Optima2 1.48 1.55 1.59 BASE GE14 1.59 1.59 1.59 Optima2 1.51 1.58 1.62 BASE SLO GE14 1.62 1.62 1.62 Optima2 1.55 1.64 1.68 PLUOOS GE14 1.59 1.59 1.62 Optima2 1.58 1.67 1.71 PLUOOS SLO GE14 1.62 1.62 1.65 Optima2 1.63 1.70 1.76 TBPOOS GE14 1.59 1.61 1.64 Optima2 1.66 1.74 1.80 TBPOOS SLO GE14 1.62 1.64 1.67 Optima2 1.56 1.66 1.70 TCV SLOW CLOSURE GE14 1.59 1.59 1.63 Optima2 1.59 1.69 1.74 TCV SLOW CLOSURE SLO GE14 1.62 1.62 1.66 Optima2 1.48 1.55 1.59 TCV STUCK CLOSED GE14 1.59 1.59 1.59 Optima2 1.51 1.58 1.62 TCV STUCK CLOSED SLO GE14 1.62 1.62 1.62 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 24 Table 4-6 MCPR NSS Based Operating Limits - RFWT (Reference 3)

Cycle Exposure (MWd/MTU) 12,500 > 12,500 > 15,000 EOOS Combination Fuel Type 1,0015,000 Optima2 1.53 1.60 1.60 BASE GE14 1.59 1.59 1.59 Optima2 1.56 1.63 1.63 BASE SLO GE14 1.62 1.62 1.62 Optima2 1.55 1.64 1.68 PLUOOS GE14 1.59 1.59 1.62 Optima2 1.58 1.67 1.71 PLUOOS SLO GE14 1.62 1.62 1.65 Optima2 1.67 1.75 1.79 TBPOOS GE14 1.61 1.63 1.66 Optima2 1.70 1.79 1.83 TBPOOS SLO GE14 1.64 1.66 1.69 Optima2 1.56 1.66 1.70 TCV SLOW CLOSURE GE14 1.59 1.59 1.63 Optima2 1.59 1.69 1.74 TCV SLOW CLOSURE SLO GE14 1.62 1.62 1.66 Optima2 1.53 1.60 1.60 TCV STUCK CLOSED GE14 1.59 1.59 1.59 Optima2 1.56 1.63 1.63 TCV STUCK CLOSED SLO GE14 1.62 1.62 1.62 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 25 Table 4-7 MCPR(P) for GE and Westinghouse Fuel - NFWT (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination Flow 0 1 25 1 38.5 38.5 50 60 80 100

(% of 3E rated Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base <60 2.88 2.41 2.16 1.36 1.23 1.15 1.06 1.00

> 60 2.94 2.64 2.48 Base SLO <60

> 60 2.95 2.99 2.46 2.69 2.20 2.53 1.36 1.23 1.15 1.06 1.00 PLUOOS < 60

> 60 2.88 2.94 2.41 2.64 2.16 2.48 1.58 1.48 1.39 1.06 1.00 PLUOOS SLO < 60

> 60 2.95 2.99 2.46 2.69 2.20 2.53 1.58 1.48 1.39 1.06 1.00 TBPOOS <_60

> 60 4.26 3.90 3.14 3.27 2.54 2.93 1.36 1.23 1.15 1.06 1.00 TBPOOS SLO <60

> 60 4.33 3.96 3.20 3.33 2.59 2.99 1.36 1.23 1.15 1.06 1.00 TCV Slow Closure _<60

> 60 2.88 2.94 2.41 2.64 2.16 2.48 1.58 1.48 1.39 1.06 1.00 TCV Slow Closure SLO  :< 60

> 60 2.95 2.99 2.46 2.69 2.20 2.53 1.58 1.48 1.39 1.06 1.00 TCV Stuck Closed < 60

  • 60 2.88 2.94 2.41 2.64 2.16 2.48 1.36 1.23 1.15 1.06 1.00

< 60 2.95 2.46 2.20 TCV Stuck Closed SLOC 1.36 1.23 1.15 1.06 1.00

> 60 2.99 2.69 2.53 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 26 Table 4-8 MCPR(P) for GE and Westinghouse Fuel - RFWT (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination Flow 0 1 25 1 38.5 38.5 50 60 1 80 1 00

(%of I rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base <60 2.88 2.41 2.16 1.43 1.28 1.19 1.07 1.00

> 60 2.94 2.64 2.48 Base SLO < 60

> 60 2.95 2.99 2.46 2.69 2.20 2.53 1.43 1.28 1.19 1.07 1.00 PLUOOS < 60

> 60 2.88 2.94 2.41 2.64 2.16 1.58 1.48 1.39 1.07 1.00 2.48 PLUOOS SLO < 60

> 60 2.95 2.99 2.46 2.69 2.20 1.58 1.48 1.39 1.07 1.00 2.53 TBPOOS  :< 60

> 60 4.55 3.90 3.32 3.32 2.66 3.03 1.43 1.28 1.19 1.07 1.00 TBPOOS SLO _<60

> 60 4.63 3.96 3.38 3.38 2.71 3.09 1.43 1.28 1.19 1.07 1.00 TCV Slow Closure <601.58

> 60 2.94 2.64 2.48 1.48 1.39 1.07 1.00 TCV Slow Closure SLO < 60 2.95 2.46 2.20 1.58 1.48 1.39 1.07 1.00

> 60 2.99 2.69 2.53 TCV Stuck Closed _<60

> 60 2.88 2.94 2.41 2.16 E .43 1.28 1.19 1.07 1.00 2.64 2.48

< 60 2.95 2.46 2.20 TCV Stuck Closed SLO - 1.43 1.28 1.19 1.07 1.00 I > 60 2.99 2.69 2.53 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 27 Table 4-9 MCPR(F) Limits for GE Fuel, DLO or SLO Operation (Reference 3) low DLO SLO

(% rated) MCPR(F)Lii MCPR(F)Lii 110.0 1.27 1.29 100.0 1.27 1.29 80.0 1.44 1.47 60.0 1.64 1.67 40.0 1.81 1.84 20.0 2.01 2.04 0.0 2.21 2.24 Table 4-10 MCPR(F) Limits for Westinghouse Fuel, DLO or SLO Operation (Reference 3)

FlowDLO MCPR(F)

(% rated)

[ SLO MCPR(F)

Limit Limit 110.0 1.17 1.19 100.0 1.17 1.19 80.0 1.34 1.36 60.0 1.49 1.52 40.0 1.56 1.59 20.0 1.63 1.66 0.00 1.70 1.73 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 28

5. Linear Heat Generation Rate The maximum LHGR shall not exceed the zero exposure limit of 13.4 (kW/ft) for the following fuel bundles (Reference 11):

GE14-P1 ODNAB396-18GZ-1 OT-1 45-T6-2808 GE14-Pl ODNAB406-18GZ-1 OT-145-T6-2809 The thermal mechanical operating limit at rated conditions for the Optima2 fuel is established in terms of the maximum LHGR given in Table 5-8 as a function of rod nodal (pellet) exposure. The limit applies to all Optima2 bundle designs.

The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 5-1 through 5-8 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), or the flow dependent LHGR Factor, LHGRFAC(F). The LHGRFAC(P) is determined from Tables 5-9 through 5-11. The LHGRFAC(F) is determined from Tables 5-12 through 5-16.

Table 5-1 LHGR Limit for GE14-P1ODNAB396-18GZ-10OT-145-T6-2808 (Reference 8)

Lattices 6739, 6741, 6744, and 6745 Composite Limit kW/ft 6739: P1ODNAL071-NOG-1OOT-T6-6739 6741: P1ODNAL439-18G8.0-1OOT-T6-6741 6744: P1ODNAL071-NOG-10OT-V-T6-6744 6745: P1ODNAL071-18GE-1OOT-V-T6-6745 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 29 Table 5-2 LHGR Limit for GE14-PIODNAB396-18GZ-10OT-145-T6-2808, Lattice 6740 (Reference 8)

Lattice 6740 Composite Limit kW/ft P1 ODNAL444-18G8.0-1 OOT-T6-6740 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ff) 0.00 13.40 14.9712 13.40 16.3671 13.3583 17.7446 13.2017 19.1037 13.0472 20.4441 12.8948 21.7653 12.7446 24.3496 12.4508 28.0911 12.0254 34.0754 11.3451 39.8832 10.6849 43.7852 10.2413 49.5509 9.5858 55.2590 8.9369 60.9131 8.2573 67.5734 6.12 70.00 5.00 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 30 Table 5-3 LHGR Limit for GE14-P1ODNAB396-18GZ-10OT-145-T6-2808, Lattice 6742 (Reference 8)

Lattice 6742 Composite Limit kW/ft P1ODNAL432-15G7.0-1OOT-E-T6-6742 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 14.9724 13.40 16.3337 13.3621 17.67 13.2101 18.9818 13.0610 20.2701 12.9146 21.5365 12.7706 24.0097 12.4894 27.6101 12.0801 33.4510 11.4161 37.3371 10.9656 43.1851 10.2911 48.9751 9.6432 54.7013 9.0003 60.3647 8.3033 66.4877 6.6211 70.00 5.00 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 31 Table 5-4 LHGR Limit for GE14-P1ODNAB396-18GZ-10OT-145-T6-2808, Lattice 6743 (Reference 8)

Lattice 6743 Composite Limit kW/ft PIODNAL432-15G7.0-10OT-V-T6-6743 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.1007 13.40 16.4658 13.347 17.8038 13.1949 19.1156 13.0458 20.4024 12.8995 21.6658 12.7559 24.1307 12.4757 27.7186 12.0678 31.5674 11.4927 37.4588 10.7989 43.2994 10.1306 49.0786 9.4878 54.7906 8.8678 60.4375 8.2591 66.3941 6.6642 70.00 5.00 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 32 Table 5-5 LHGR Limit for GEl 4-PIODNAB406-18GZ-10OT-145-T6-2809 (Reference 8)

Lattices 6739, 6746, 6747, 6750, and 6751 Composite Limit kW/ft 6739: P1ODNAL071-NOG-10OT-T6-6739 6746: P1ODNAL451-12G5.0/6G2.0-10OT-T6-6746 6747: P1ODNAL451-12G5.0/6G2.0-10OT-T6-6747 6750: PIODNAL071-NOG-10OT-V-T6-6750 6751: P1ODNAL071-18GE-10OT-V-T6-6751 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 5-6 LHGR Limit for GEl4-P1ODNAB406-18GZ-10OT-145-T6-2809, Lattice 6748 (Reference 8)

Lattice 6748 Composite Limit kW/ft P1 ODNAL446-12G5.0/5G2.0-1 OOT-E-T6-6748 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.3938 13.40 16.6632 13.3246 17.9126 13.1826 19.1444 13.0425 20.3618 12.9041 22.9022 12.6153 26.4710 12.2096 32.3475 11.5415 36.7448 11.0416 42.5408 10.3827 48.2824 9.6914 53.9658 8.9586 59.5939 8.2802 65.1764 7.2263 70.00 5.00 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 33 Table 5-7 LHGR Limit for GE14-P1ODNAB406-18GZ-10OT-145-T6-2809, Lattice 6749 (Reference 8)

Lattice 6749 Composite Limit kW/ft P10DNAL446-12G5.015G2.0-1 OOT-V-T6-6749 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.7107 13.40 16.9856 13.2880 18.2402 13.1453 19.4771 13.0047 20.6999 12.8657 23.1169 12.5909 26.7017 12.1834 32.6038 11.5124 38.4063 10.8528 42.6488 10.3705 48.3802 9.6379 54.05 8.9110 59.6619 8.2408 65.2274 7.2027 70.00 5.00 Table 5-8 LHGR Limit for Westinghouse Optima2 Fuel Opt2-3.90-1 0G8.0016.00-4GZ8.00-2.00G6.00 Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2.00G6.00 Opt2-3.93-14GZ6.00 Opt2-3.93-16GZ8.00-2G6.00 Opt2-4.03-13G8.00 (Reference 3)

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 34 Table 5-9 LHGRFAC(P) for GE Fuel, DLO (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination Flow (% 0 125 138.5 38.5 170 170 180 100 of rated) LHGRFAC(P) Multiplier

<60 Base 0.50 0.56 0.59 0.68 0.86 1.00

  • 60

_<60 PLUOOS 0.54 0.54 0.54 0.54 0.73 0.78 1.00

> 60 1 < 60 T0.22 10.48 [ S1.00 TBPOOS 60 0 0.39 0.54 0.33 1 0.42

> 60

_<60 TCV Slow Closure 0.54 0.54 0.54 0.54 0.73 0.78 S1.00

> 60

_<601 TCV Stuck Closed 0.50 0.56 0.59 0.68 U.86 1.00

> 60 Table 5-10 LHGRFAC(P) for GE Fuel, SLO (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination Flow (% 0 25 38.5 38.5 1 70 CP* 100 of rated) LHGRFAC(P) Multiplier

< 60 Base SLO 0.50 0.56 0.59 0.68 0.77 0.77

> 60

< 60 PLUOOS SLO 0.54 0.54 0.54 0.54 0.73 0.77 0.77

> 60

< 60 0.22 0.48 TBPOOS SLO - 0.39 0.54 0.77 0.77

> 60 0.33 0.42

< 60 TCV Slow Closure SLO 0.54 0.54 0.54 0.54 0.73 0.77 0.77

> 60

<60 TCV Stuck Closed SLO -

> 60 0.50 0.56 0.59 0.68

!* i 0.77 0.77

  • CP is the cutoff power level and is equal to 59.25% for Base Case SLO and TCV Stuck Closed SLO, 70% for PLUOOS SLO, 69.25% for TBPOOS SLO, and 70% for TCV Slow Closure SLO.

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 35 Table 5-11 LHGRFAC(P) for Westinghouse Fuel (Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 138.5 38.5 50 1 60 1 80 100 102 LHGRFAC(P) Multiplier Base 0.52 0.62 0.67 0.72 0.77 0.80 0.81 1.00 1.00 Base SLO 0.52 0.62 0.67 0.72 0.77 0.80 0.81 1.00 1.00 PLUOOS 0.52 0.62 0.67 0.67 0.69 0.72 0.80 1.00 1.00 PLUOOS SLO 0.52 0.62 0.67 0.67 0.69 0.72 0.80 1.00 1.00 TBPOOS 0.31 0.44 0.51 0.67 0.70 0.71 0.72 1.00 1.00 TBPOOS SLO 0.31 0.44 0.51 0.67 0.70 0.71 0.72 1.00 1.00 TCV Slow Closure 0.52 0.62 0.67 0.67 0.69 0.72 0.80 1.00 1.00 TCV Slow Closure SLO 0.52 0.62 0.67 0.67 0.69 0.72 0.80 1.00 1.00 TCV Stuck Closed 0.52 0.62 0.67 0.72 0.77 0.80 0.81 1.00 1.00 TCV Stuck Closed SLO 0.52 0.62 0.67 0.72 0.77 0.80 0.81 1.00 1.00 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 36 Table 5-12 LHGRFAC(F) Multipliers, GE Fuel, DLO, All Cases Except TCV Stuck Closed (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 100.00 1.00 80.00 1.00 50.00 0.77 40.00 0.64 30.00 0.55 0.00 0.28 Table 5-13 LHGRFAC(F) Multipliers, GE Fuel, DLO, TCV Stuck Closed (Reference 3)

Flow LHGRFAC(F)

(%rated) Multiplier 100.00 1.00 98.30 1.00 80.00 0.86 50.00 0.63 40.00 0.50 30.00 0.41 0.00 0.14 Table 5-14 LHGRFAC(F) Multipliers, GE Fuel, SLO, All Cases Except TCV Stuck Closed (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 100.00 0.77 80.00 0.77 50.00 0.77 40.00 0.64 30.00 0.55 0.00 0.28 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 37 Table 5-15 LHGRFAC(F) Multipliers, GE Fuel, SLO, TCV Stuck Closed (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 100.00 0.77 80.00 0.77 68.30 0.77 50.00 0.63 40.00 0.50 30.00 0.41 0.00 0.14 Table 5-16 LHGRFAC(F) Multipliers, Westinghouse Fuel (Reference 3)

SFlow LHGRFAC(F)

(% rated) Multiplier 110.00 1.00 100.00 1.00 80.00 1.00 60.00 0.80 40.00 0.59 20.00 0.43 0.00 0.27 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 38

6. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 12):

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 55%

Operation Single Recirculation Loop 0.65 Wd + 51%

Operation I _I The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98 MIb/hr.

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 39

7. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):

Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np) 1.17 17 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 40

8. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:

EOOS Options Thermal Limit Sets Base Base (DLO or SLO)

PLUOOS PLUOOS (DLO or SLO)

TBPOOS TBPOOS (DLO or SLO)

> See Table 8-1 for power restrictions TCV Slow Closure TCV Slow Closure (DLO or SLO)

TCV Stuck Closed TCV Stuck Closed (DLO or SLO)

> Not applicable to combination of one TCV and one TSV stuck closed

> See Table 8-2 for power restrictions TSV Stuck Closed TCV Stuck Closed (DLO or SLO)

> Not applicable to combination of one TCV and one TSV stuck closed

> See Table 8-2 for power restrictions PCOOS TCV Slow Closure (DLO or SLO)

PCOOS and PLUOOS PLUOOS (DLO or SLO)

PCOOS and TCV Slow Closure TCV Slow Closure (DLO or SLO)

PCOOS and TCV Stuck Closed > Operation is only allowed at or below rated thermal power as specified in Table 8-2 and

> The more restrictive of the flow-dependent limits (established by TCV Stuck Closed) and power-dependent limits (established by TCV Slow Closure and PLUOOS limits) apply.

PLUOOS and TCV Stuck Closed > Operation is only allowed at or below rated thermal power as specified in Table 8-2 and

> The more restrictive of the flow-dependent limits (established by TCV Stuck Closed) and power-dependent limits (established by TCV I Slow Closure and PLUOOS limits) apply.

Common Notes - Applicable to all EOOS Combination

1. All modes are allowed for operation at MELLLA and coastdown (full power operation up to a cycle exposure of 15801 MWD/MTU + 8.3 EFPD, or approximately 16129 MWD/MTU, subject to the restrictions in Tables 8-1 and 8-2). Each OOS Option may be combined with up to 18 TIP channels OOS provided the requirements (as clarified in Reference 15) for utilizing SUBTIP methodology are met and up to 50% of the LPRMs OOS with an LPRM calibration frequency of 2500 EFPH (2000 EFPH +25%).
2. All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 Turbine Bypass Valves meeting the assumed opening profile in Reference 10.

The analyses also support Turbine Bypass flow of 29.8% of vessel rated steam flow, equivalent to one Turbine Bypass Valve OOS (or partially closed Turbine Bypass Valves equivalent to one closed Turbine Bypass Valve), if the assumed opening profile (Reference

10) for the remaining Turbine Bypass Valves is met. If the opening profile is NOT met, or if the Turbine Bypass Valve system cannot pass an equivalent of 29.8% of vessel rated steam flow, utilize the TBPOOS condition.

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 41

3. For both Base and EOOS DLO/SLO conditions, for operation at NFWT, the OLMCPR limit is applicable to a variation of +10°F/-30*F in feedwater temperature, and an operating steam dome pressure region bounded by the maximum value of 1020 psia and the minimum pressure curve in Reference 4. For operation outside of NFWT, RFWT of up to 120'F is also supported for cycle operation through EOC subject to the restriction in Reference 14 for feedwater temperature reductions of greater than 100 OF. The restriction is to maintain less than 100% rod line. This includes, but is not limited to FWHOOS and FFTR. For a feedwater temperature reduction of between 30OF and 120°F, the RFWT limits should be applied.
4. For all cases, equivalent of 2 of the first 3.6 Turbine Bypass Valves must be capable of opening via the pressure control system while Turbine Bypass Valves #5-9 are allowed to be out of service. For all cases except TBPOOS, the equivalent of 8 of 9 Turbine Bypass Valves (as stated in Note 2 above) are required to trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure. The TBPOOS condition assumes that all of the Turbine Bypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure.
5. A single MSIV may be taken OOS (shut) under all OOS Options, as long as core thermal power is maintained < 75% of 2957 MWth (Reference 3).

Table 8-1 Core Thermal Power Restriction for TBPOOS (Reference 3)

Core Thermal Power Depletion (MWdIMTU) Number of Safety Valves Restriction (% of Rated Power) _________________U Available

_<100.00 < 15,998 9 of 9

< 98.00 > 15,998 9 of 9

  • 95.00 Entire Cycle 8 of 9 Table 8-2 Core Thermal Power Restriction for One TCVITSV Stuck Closed with TBV's Credited to Prevent System Pressurization (Reference 3)

Core Thermal Power Restriction Number of TBV's Required to

(% of Rated Power) Prevent System Pressurization 80.00 3 85.00 6 90.00 7 Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 42

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods," Revision 0, December 1991.
2. NEDE-24011-P-A (Revision 15), "General Electric Standard Application for Reactor Fuel,"

September 2005.

3. NEDO-32465-A, "BWR Owners' Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1996.
4. Westinghouse Report WCAP-15682-P-A, "Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application," April 2003.

5. Westinghouse Report WCAP-16078-P-A, "Westinghouse BWR ECCS Evaluation Model:

Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel,"

November 2004.

6. Westinghouse Report WCAP-16081-P-A, "10x10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.
7. Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.
8. Westinghouse Topical Report CENPD-390-P-A, "The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
9. Westinghouse Topical Report WCAP-15836-P-A, "Fuel RodDesign Methods for Boiling Water Reactors - Supplement 1," April 2006.
10. Westinghouse Topical Report WCAP-1 5942-P-A, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENP-287," March 2006.

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 Page 43

10. References
1. Exelon Generation Company, LLC, Docket No. 50-249, Dresden Nuclear Power Station, Unit 3, Facility Operating License, License No. DPR-25.
2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; "Removal of Cycle-Specific Parameter Limits from Technical Specifications," October 3, 1988.
3. Exelon TODI, ES0800030, Revision 0, "Dresden Unit 3 Cycle 21 Reload Licensing Report (RLR)," October 15, 2008. (Attachment 17 of FCP 368721)
4. Exelon TODI, ES0800029, Revision 0, "Dresden Unit 3 Cycle 21 Reload Engineering Report (RER)," October 15, 2008. (Attachment 13 of FCP 368721)
5. Westinghouse Letter, NF-BEX-08-061, "Final Report for Dresden Unit 3 Cycle 21 Bundle Designs," George K. Roberts (Westinghouse) to C. de la Hoz, May 8, 2008. (Attachment 3 to FCP 368721)
6. Exelon TODI, NF0600300, Revision 2, "Dresden Unit 3 Cycle 20 Reload Licensing Report (RLR), Revision 3," August 1, 2007. (Attachment 6 of FCP 363433-000)
7. Exelon TODI NF0600186, Revision 0, "Dresden 3 Cycle 20 Bundle Designs," July 13, 2006. (Attachment 4 to FCP 358366)
8. GNF Letter, MJM-EXN-EB3-04-015, "Transmittal of the Dresden 3 C19 SRLR/ LHGR Limits and R-factors," Mark J. Mneimneh (GNF) to Haksoo Kim, October 12, 2004.

(Attachment 8 to FCP 352743)

9. Exelon TODI, NF0400258, Revision 1, "Dresden 3 Cycle 19 SRLR," December 8, 2004.

(Available in EDMS)

10. Exelon TODI, Ops Ltr:08-13, Revision 0, "OPL-W Parameters for Dresden Unit 3 Cycle 21 Transient Analysis," March 14, 2008. (Attachment 6 to FCP 368721)
11. GE Design Basis Document, DB-0012.03, Revision 1, "Fuel-Rod Thermal-Mechanical Performance Limits for GE14C," May 2005. (Applicable pages included in Attachment G of Design Analysis DRE07-0043)
12. GE Document, GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation Rod Block Monitor Dresden 2 & 3," December 15, 1999.
13. Exelon TODI, ES08001, Revision 0, "Dresden Unit 3 Cycle 21 Licensing Generic Input Report," February 4, 2008. (Attachment 5 to FCP 368721)
14. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
15. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897).
16. Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, "Control Rod Scram Times."

Dresden Unit 3 Cycle 21

COLR Dresden 3 Revision 4 PPage 44

17. NRC Letter, "Dresden Nuclear Power Station, Unit 3 - Issuance of Amendment RE:

Minimum Critical Power Ratio Safety Limit (TAC No. MD2706)," John Honcharik (NRC) to Christopher M. Crane, November 7, 2006. (Available in EDMS)

18. NRC Memo, "Staff Position Regarding the Use of Methods Described In ABB/Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," for Safety Limit Minimum Critical Power Ratio Determinations," Benjamin T. Parks (NRC) to Gregory Cranston (NRC), August 13, 2008.

(Attachment 23 to FCP 368721)

19. Exelon Letter RS-05-078, "Request for Licensing Amendment Regarding Transition to Westinghouse Fuel," Patrick R. Simpson to U.S. Nuclear Regulatory Commission, June 15, 2005. (Available in EDMS)
20. Exelon Letter RS-06-009, "Additional Information Supporting Request for Licensing Amendment Regarding Transition to Westinghouse Fuel," Patrick R. Simpson to U.S.

Nuclear Regulatory Commission, January 26, 2006.

21. Westinghouse Letter NF-BEX-08-75, "Dresden Unit 3 Cycle 21 SLMCPR," G.K. Roberts (Westinghouse) to Carlos de la Hoz, July 2, 2008. (Attachment 11 to FCP 368721)

Dresden Unit 3 Cycle 21