ML17320A123

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Unit 2 Cycle 26
ML17320A123
Person / Time
Site: Dresden Constellation icon.png
Issue date: 11/13/2017
From: Karaba P
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
17-0046
Download: ML17320A123 (91)


Text

Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL 60450 SVPLTR # 17-0046 November 13, 2017 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License Nos. DPR-19 NRG Docket No. 50-237

Subject:

Core Operating Limits Report for Unit 2 Cycle 26 The purpose of this letter is to transmit the Core Operating Limtts Report (COLR) for Dresden Nuclear Power Station (DNPS) Unit 2 operating cycle 26 (D2C26} in accordance with Technical Specifications Section 5.6.5, "CORE OPERATING LIMITS REPORT (COLR)."

There are no regulatory commitments contained in this submittal.

Should you have any questions concerning this letter, please contact Mr. Bruce Franzen at (815) 416-2800.

Respectfully, Peter J Karaba Site Vice President Dresden Nuclear Power Station Attachments: Core Operating Limits Report for Dresden Unit 2 Cycle 26, Revision O cc: Regional Administrator- NRG Region Ill NRG Senior Resident Inspector - Dresden Nuclear Power Station

COLR Dresden 2 Revision 17 Core Operating Limits Report For Dresden Unit 2 Cycle 26 Revision O Page 1 of 90

COLR Dresden 2 Revision 17 Table of Contents Page Record of Dresden 2 Cycle 26 COLR Revisions ............................................................................. 3

1. Terms and Definitions ............................................................................................................................... 6
2. General Information ................................................................................................................................... 7
3. Average Planar Linear Heat Generation Rate .......................................................................................... 8
4. Operating Limit Minimum Critical Power Ratio .......................................................................................47 4.1. Manual Flow Control MCPR Limits .................................................................................................. 47 4.1.1. Power-Dependent MCPR ......................................................................................................... 47 4.1.2. Flow-Dependent MCPR ............................................................................................................ 47 4.2. Scram Time ...................................................................................................................................... 48 4.3. Exposure Dependent MCPR Limits .........................................................................................:........ 49 4.4. Recirculation Pump ASD Settings .................................................................................................... 49
5. Linear Heat Generation Rate .................................................................................................................. 75
6. Control Rod Block Setpoints ................................................................................................................... 83
7. Stability Protection Setpoints .................................................................................................................. 84
8. Modes of Operation ................................................................................................................................. 85
9. Methodology ............................................................................................................................................ 88
10. References .................................................................*....................................... :................................... 90 Page 2 of 90

COLR Dresden 2 Revision 17 Record of Dresden 2 Cycle 26 COLR Revisions Revision Description 0 Initial issuance for D2C26 Page 3 of 90

COLR Dresden 2 Revision 17 List of Tables Page Table 3-1: MAPLHGR SLO Multipliers .......................................................................................................... 8 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89 ............................................................................... 8 Table 3-3: MAPLHGR for OPTIMA2 Lattice 131 .......................................................................................... 9 Table 3-4: MAPLHGR for OPTIMA2 Lattice 132 ........................................................................................ 10 Table 3-5: MAPLHGR for OPTIMA2 Lattice 133 ........................................................................................ 11 Table 3-6: MAPLHGR for OPTIMA2 Lattice 134 ........................................................................................ 12 Table 3-7: MAPLHGR for OPTIMA2 Lattice 135 ........................................................................................ 13 Table 3-8: MAPLHGR for OPTIMA2 Lattice 136 ........................................................................................ 14 Table 3-9: MAPLHGR for OPTIMA2 Lattice 137 ........................................................................................ 15 Table 3-10: MAPLHGR for OPTIMA2 Lattice 138 ...................................................................................... 16 Table 3-11: MAPLHGR for OPTIMA2 Lattice 139 ...................................................................................... 17 Table 3-12: MAPLHGR for OPTIMA2 Lattice 140 ...................................................................................... 18 Table 3-13: MAPLHGR for OPTIMA2 Lattice 141 ...................................................................................... 19 Table 3-14: MAPLHGR for OPTIMA2 Lattice 142 ...................................................................................... 20 Table 3-15: MAPLHGR for OPTIMA2 Lattice 143 ...................................................................................... 21 Table 3-16: MAPLHGR for OPTIMA2 Lattice 144 ...................................................................................... 22 Table 3-17: MAPLHGR for0PTIMA2 Lattice 145 ...................................................................................... 23 Table 3-18: MAPLHGR for OPTIMA2 Lattice 146 ...................................................................................... 24 Table 3-19: MAPLHGR for OPTIMA2 Lattice 147 ...................................................................................... 25 Table 3-20: MAPLHGR for OPTIMA2 Lattice 148 ...................................................................................... 26 Table 3-21: MAPLHGR for OPTIMA2 Lattice 149 ...................................................................................... 27 Table 3-22: MAPLHGR for OPTIMA2 Lattice 150 ...................................................................................... 28 Table 3-23: MAPLHGR for OPTIMA2 Lattice 151 ...................................................................................... 29 Table 3-24: MAPLHGR for OPTIMA2 Lattice 152 ...................................................................................... 30 Table 3-25: MAPLHGR for OPTIMA2 Lattice 153 ...................................................................................... 31 Table 3-26: MAPLHGR for OPTIMA2 Lattice 154 ...................................................................................... 32 Table 3-27: MAPLHGR for OPTIMA2 Lattice 155 ...................................................................................... 33 Table 3-28: MAPLHGR for OPTIMA2 Lattice 156 ...................................................................................... 34 Table 3-29: MAPLHGR for OPTIMA2 Lattice 157 ...................................................................................... 35 Table 3-30: MAPLHGR for OPTIMA2 Lattice 158 ...................................................................................... 36 Table 3-31: MAPLHGR for OPTIMA2 Lattice 159 ...................................................................................... 37 Table 3-32: MAPLHGR for OPTIMA2 Lattice 160 ...................................................................................... 38 Table 3-33: MAPLHGR for OPTIMA2 Lattice 161 ...................................................................................... 39 Table 3-34: MAPLHGR for OPTIMA2 Lattice 162 ......................................................................................40 Table 3-35: MAPLHGR for OPTIMA2 Lattice 163 ......................................................................................41 Table 3-36: MAPLHGR for OPTIMA2 Lattice 164 ...................................................................................... 42 Table 3-37: MAPLHGR for OPTIMA2 Lattice 165 ......................................................................................43 Table 3-38: MAPLHGR for OPTIMA2 Lattice 166 ...................................................................................... 44 Table 3-39: MAPLHGR for OPTIMA2 Lattice 167 ...................................................................................... 45 Table 3-40: MAPLHGR for ATRIUM 10XM ................................................................................................ 46 Table 4-1 : Scram Times .............................................................................................................................. 48 Table 4-2: Exposure Basis for Transient Analysis ...................................................................................... 49 Table 4-3: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, BOC to NEOC (34,977 MWd/MTU CA VEX) ........................................................................................................................ 50 Table 4-4: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX) .......................................................................................................................................... 51 Table 4-5: ATRIUM 1OXM TLO MCPRp Limits for TSSS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX) ........................................................................................................................ 52 Table 4-6: ATRIUM 1OXM TLO MCPRp Limits for NSS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CA VEX) ........................................................................................................................ 53 Table 4-7: ATRIUM 1OXM TLO MCPRp Limits for ISS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX) .............................._. ......................................................................................... 54 Page 4 of 90

COLR Dresden 2 Revision 17 Page Table 4-8: ATRIUM 1OXM TLO MCPRp Limits for TSSS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CA VEX) ........................................................................................................................ 55 Table 4-9: ATRIUM 1OXM TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX) ........................................................................................................................ 56 Table 4-10: ATRIUM 10XM TLO MCPRp Limits for 188 Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX) ..................................................... .'.................................................................. 57 Table 4-11: ATRIUM 10XM TLO MCPRp Limits forTSSS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CA VEX) ........................................................................................................................ 58 Table 4-12: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX) .......................................................................................................................................... 59 Table 4-13: OPTIMA2 TLO MCPRp Limits for 188 Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX) .......................................................................................................................................... 60 Table 4-14: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX) .......................................................................................................................................... 61 Table 4-15: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX) ........................................................................................................................ 62 Table 4-16: OPTIMA2 TLO MCPRp Limits for 188 Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX) .......................................................................................................................................... 63 Table 4-17: OPTIMA2 TLO MCPRi> Limits for TSSS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX) ........................................................................................................................ 64 Table 4-18: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (37,934 MW d/MTU CAVEX) ........................................................................................................................ 65 Table 4-19: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX) ........................................................................................................................ 66 Table 4-20: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CA VEX) ........................................................................................................................ 67 Table 4-21: ATRIUM 10XM SLO MCPRp Limits for NSS Insertion Times, All Exposures .......................... 68 Table 4-22: ATRIUM 10XM SLO MCPRp Limits for 188 Insertion Times, All Exposures ........................... 69 Table 4-23: ATRIUM 10XM SLO MCPRp Limits for TSSS Insertion Times, All Exposures ........................ 70 Table 4-24: OPTIMA2 SLO MCPRp Limits for NSS Insertion Times, All Exposures .................................. 71 Table 4-25: OPTIMA2 SLO MCPRp Limits for 188 Insertion Times, All Exposures .................................... 72 Table 4-26: OPTIMA2 SLO MCPRp Limits for TSSS Insertion Times, All Exposures ................................ 73 Table 4-27: ATRIUM 10XM and OPTIMA2 MCPR, Limits .......................................................................... 74 Table 5-1: LHGR Limits for OPTIMA2 Lattices 137, 138, 139, 143, 144, 145, 146, 147, 148, 156, 157, 158, 159, 163, 164, 165, 166, 167 ................................................................................................. 76 Table 5-2: LHGR Limits for OPTIMA2 Lattices 135, 141 ............................................................................ 76 Table 5-3: LHGR Limits for OPTIMA2 Lattices 131, 132, 133, 136, 140, 142 ............................................ 77 Table 5-4: LHGR Limits for OPTIMA2 Lattice 134 ...................................................................................... 77 Table 5-5: LHGR Limits for OPTIMA2 Lattices 154, 161 ............................................................................ 78 Table 5-6: LHGR Limits for OPTIMA2 Lattices 150, 151, 152, 155, 160, 162 ............................................ 78 Table 5-7: LHGR Limits for OPTIMA2 Lattices 149, 153 ............................................................................ 79 Table 5-8: LHGR Limits for OPTIMA2 Lattices 81, 89 ....................... .,........................................................ 79 Table 5-9: LHGR Limits for ATRIUM 10XM ................................................................................................ 79 Table 5-10: ATRIUM 10XM LHGRFACp Multipliers .................................................................................... 80 Table 5-11 : OPTIMA2 LHG RFACp Multipliers ............................................................................................ 81 Table 5-12: ATRIUM 10XM LHGRFAC, Multipliers ..................................................................................... 82 Table 5-13: OPTIMA2 LHGRFAC1 Multipliers ............................................................................................. 82 Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints ................ :............................................. 83 Table 7-1: OPRM PBDA Trip Settings ........................................................................................................ 84 Table 8-1: Modes of Operation .................................................................................................................. 85 Table 8-2: Core Thermal Power Restriction for 008 Conditions ............................................................... 87 Page 5 of 90

COLR Dresden 2 Revision 17

1. Terms and Definitions AOO Anticipated operational occurrence ASD Adjustable speed drive CAVEX Core average exposure CPR Critical power ratio CRWE Control rod withdrawal error CTP Core thermal power EFPD Effective full power day EFPH Effective full power hour EOC End of cycle EOCLB End of cycle licensing basis EOFPL End of full power life EOFPLB End of full power licensing basis EOOS Equipment out of service FHOOS Feedwater heater out of service FWT Feedwater temperature ICF Increased core flow ISS Intermediate scram speed LHGR Linear heat generation rate LHGRFAC1 Flow dependent linear heat generation rate multiplier LHGRFACp Power dependent linear heat generation rate multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum critical power ratio MCPR1 Flow dependent minimum critical power ratio MCPRp Power dependent minimum critical power ratio MELLLA Maximum extended load line limit analysis MSIVOOS Main steam isolation valve out of service MWd/MTU Megawatt days per metric ton Uranium NEOC Near end of cycle NRC Nuclear Regulatory Commission NSS Nominal scram speed OLMCPR Operating limit minimum critical power ratio oos Out of service OPRM Oscillation power range monitor PBDA Period based detection algorithm PCOOS Pressure controller out of service PLUOOS Power load unbalance out of service SLMCPR Safety limit minimum critical power ratio SLO Single loop operation TBV Turbine bypass valve TBVOOS Turbine bypass valves out of service TCV Turbine control valve TIP Traversing in-core probe TLO Two loop operation TMOL Thermal mechanical operating limit TRM Technical Requirements Manual TSSS Technical Specification scram speed TSV Turbine stop valve Page 6 of 90

COLR Dresden 2 Revision 17

2. General Information This report is prepared in accordance with Technical Specification 5.6.5. The D2C26 reload is licensed by AREVA. However, some legacy analyses by Westinghouse are still applicable for OPTIMA2 fuel as described in Reference 12.

Licensed rated thermal power is 2957 MWth. Rated core flow is 98 Mlb/hr. Operation up to 108% rated core flow is licensed for this cycle; however, core flow cannot exceed 103.4% rated core flow due to unit specific limitations. For allowed operating regions, see applicable power/flow map.

The licensing analysis supports full power operation to EOCLB (37,934 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The transient analysis limits are provided for operation up to specific CAVEX exposures as defined in Section 4.3.

Coastdown is defined as operation beyond EOFPL with the plant power gradually reducing as available core reactivity diminishes. The D2C26 reload analyses do not credit this reduced power during coastdown and the EOCLB limits remain valid for operation up to rated power. The minimum allowed coastdown power level is 40% rated CTP per Reference 1.

Power and flow dependent limits are listed for various power and flow levels. Linear interpolation on power and flow (as applicable) is to be used to find intermediate values. Linear interpolation is also to be used for table items intentionally left blank, as indicated by boxes which are grayed out.

Only MCPRp varies with scram speed. All other thermal limits are analyzed to remain valid with NSS, ISS, and TSSS.

LHGRFAC1 is independent of feedwater temperature and EOOS conditions.

For thermal limit monitoring above 100% rated core flow, the 100% core flow values can be used unless otherwise indicated in the applicable table.

For thermal limit monitoring above 100% rated power or 108% rated core flow, the 100% rated power or the 108% core flow thermal limit values, respectively, shall be used. Steady state operation is not allowed in this region. Limits are provided for transient conditions only.

Page 7 of 90

COLR Dresden 2 Revision 17

3. Average Planar Linear Heat Generation Rate Technical Specifications Sections 3.2.1 and 3.4.1 Table 3-1 provides the MAPLHGR SLO multipliers for ATRIUM 10XM and OPTIMA2 fuel. For OPTIMA2 natural uranium lattices, TLO and SLO MAPLHGR values are provided in Table 3-2. For all other OPTIMA2 lattices, lattice-specific MAPLHGR values for TLO are provided in Tables 3-3 through 3-39.

For ATRIUM 10XM fuel, the MAPLHGR values applicable for all lattices can be found in Table 3-40.

During SLO, the limits in Tables 3-3 through 3-40 are multiplied by the fuel-specific SLO multiplier listed in Table 3-1. The ATRIUM 1OXM multiplier may be applied to OPTIMA2 for SLO conditions, as the ATRIUM10XM multiplier is more limiting.

Table 3-1: MAPLHGR SLO Multipliers (References 7, 10, and 12)

Fuel Type Multiplier ATRIUM 10XM 0.80 OPTIMA2 0.86 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89 (Reference 6, 7, 9, and 10)

All OPTIMA2 Bundles Lattices 81 : Opt2-BO. 71 89: 0pt2-T0.71 Average Planar Exposure TLO and SLO MAPLHGR (MWd/MTU) (kW/ft) 0 7.50 75000 7.50 Page 8 of 90

COLR Dresden 2 Revision 17 Table 3-3: MAPLHGR for OPTIMA2 Lattice 131 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 131: Opt2-84.44-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.21 2500 9.53 5000 9.45 7500 9.38 10000 9.49 12000 9.50 15000 9.55 17000 9.61 20000 9.80 22000 9.89 24000 9.83 30000 9.77 36000 9.71 42000 9.67 50000 9.70 60000 9.81 72000 10.07 75000 10.07 Page 9 of 90

COLR Dresden 2 Revision 17 Table 3-4: MAPLHGR for OPTIMA2 Lattice 132 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 132: 0pt2-BE4.54-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.34 2500 9.62 5000 9.51 7500 9.43 10000 9.55 12000 9.57 15000 9.64 17000 9.73 20000 9.89 22000 10.02 24000 9.94 30000 9.86 36000 9.81 42000 9.74 50000 9.77 60000 9.80 72000 10.10 75000 10.10 Page 10 of 90

COLA Dresden 2 Revision 17 Table 3-5: MAPLHGR for OPTIMA2 Lattice 133 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 133: 0pt2-M4.54-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.33 2500 9.62 5000 9.57 7500 9.43 10000 9.56 12000 9.62 15000 9.67 17000 9.75 20000 9.98 22000 9.99 24000 9.93 30000 9.85 36000 9.81 42000 9.74 50000 9.75 60000 9.78 72000 9.90 75000 9.90 Page 11 of 90

COLR Dresden 2 Revision 17 Table 3-6: MAPLHGR for OPTIMA2 Lattice 134 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 134: Opt2-M E4.50-18G7 .50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.46 2500 9.77 5000 9.62 7500 9.52 10000 9.72 12000 9.73 15000 9.83 17000 9.93 20000 10.19 22000 10.19 24000 10.11 30000 10.04 36000 9.97 42000 9.92 50000 9.85 60000 9.88 72000 10.39 75000 10.39 Page 12 of 90

COLR Dresden 2 Revision 17 Table 3-7: MAPLHGR for OPTIMA2 Lattice 135 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 135: 0pt2-T4.50-18G7.50 Average Planar TLO Exposure MAPLHGR

{MWd/MTU) {kW/ft) 0 9.48 2500 9.76 5000 9.56 7500 9.45 10000 9.55 12000 9.72 15000 9.78 17000 9.94 20000 10.19 22000 10.16

  • 24000 10.11 30000 10.05 36000 9.97 42000 9.93 50000 9.81 60000 9.84 72000 10.25 75000 10.25 Page 13 of 90

COLR Dresden 2 Revision 17 Table 3-8: MAPLHGR for OPTIMA2 Lattice 136 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 136: Qpt2-T4.52-14G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.21 2500 10.47 5000 10.28 7500 10.05 10000 10.09 12000 10.11 15000 10.22 17000 10.27 20000 10.26 22000 10.29 24000 10.22 30000 10.16 36000 10.09 42000 10.00 50000 9.87 60000 9.90 72000 10.26 75000 10.26 Page 14 of 90

COLR Dresden 2 Revision 17 Table 3-9: MAPLHGR for OPTIMA2 Lattice 137 (References 6 and 7)

Bundle Opt2-4.01-16GZ7.50-14GZ5.50 Lattice 137: Qpt2-B4.41-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.47 2500 9.76 5000 9.66 7500 9.57 10000 9.64 12000 9.54 15000 9.57 17000 9.60 20000 9.76 22000 9.90 24000 9.84 30000 9.79 36000 9.75 42000 9.70 50000 9.70 60000 9.79 72000 10.07 75000 10.07 Page 15 of 90

COLA Dresden 2 Revision 17 Table 3-10: MAPLHGR for OPTIMA2 Lattice 138 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 138: Opt2-BE4.51-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.63 2500 9.85 5000 9.81 7500 9.63 10000 9.70 12000 9.70 15000 9.70 17000 9.75 20000 9.89 22000 10.00 24000 9.95 30000 9.89 36000 9.85 42000 9.77 50000 9.70 60000 9.69 72000 10.02 75000 10.02 Page 16 of 90

COLR Dresden 2 Revision 17 Table 3-11: MAPLHGR for OPTIMA2 Lattice 139 (References 6 and 7)

Bundle Opt2-4.01-16GZ7.50-14GZ5.50 Lattice 139: 0pt2-M4.51-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.62 2500 9.87 5000 9.91 7500 9.63 10000 9.72 12000 9.74 15000 9.73 17000 9.77 20000 9.91 22000 10.00 24000 9.95 30000 9.88 36000 9.85 42000 9.77 50000 9.68 60000 9.68 72000 10.06 75000 10.06 Page 17 of 90

COLR Dresden 2 Revision 17 Table 3-12: MAPLHGR for OPTIMA2 Lattice 140 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 140: Oot2-ME4.46-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.78 2500 10.04 5000 9.96 7500 9.80 10000 9.89 12000 9.89 15000 9.89 17000 9.94 20000 10.17 22000 10.19 24000 10.14 30000 10.08 36000 10.01 42000 9.92 50000 9.80 60000 9.84 72000 10.25 75000 10.25 Page 18 of 90

COLR Dresden 2 Revision 17 Table 3-13: MAPLHGR for OPTIMA2 Lattice 141 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 141: 0pt2-T4.46-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.80 2500 10.02 5000 9.87 7500 9.76 10000 9.84 12000 9.84 15000 9.83 17000 9.95 20000 10.16 22000 10.15 24000 10.13 30000 10.08 36000 10.00 42000 9.88 50000 9.77 60000 9.71 72000 9.91 75000 9.91 Page 19 of 90

COLR Dresden 2 Revision 17 Table 3-14: MAPLHGR for OPTIMA2 Lattice 142 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 142: Opt2-T4.47-14G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU} (kW/ft}

0 10.22 2500 10.45 5000 10.32 7500 10.07 10000 10.01 12000 10.11 15000 10.23 17000 10.25 20000 10.23 22000 10.23 24000 10.19 30000 10.14 36000 10.07 42000 9.96 50000 9.84 60000 9.87 72000 10.26 75000 10.26 Page 20 of 90

COLR Dresden 2 Revision 17 Table 3-15: MAPLHGR for OPTIMA2 Lattice 143 (References 6 and 7)

Bundle Opt2-4.04-14G5.50-2GZ5.50 Lattice 143: 0pt2-84.44-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.48 2500 9.78 5000 9.79 7500 9.59 10000 9.69 12000 9.63 15000 9.75 17000 9.83 20000 10.01 22000 9.95 24000 9.90 30000 9.84 36000 9.79 42000 9.74 50000 9.72 60000 9.77 72000 9.85 75000 9.79 Page 21 of 90

COLA Dresden 2 Revision 17 Table 3-16: MAPLHGR for OPTIMA2 Lattice 144 (References 6 and 7)

Bundle Opt2-4.04-14G5.50-2GZ5.50 Lattice 144: Opt2-BE4.54-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.55 2500 9.87 5000 10.02 7500 9.74 10000 9.78 12000 9.76 15000 9.89 17000 10.00 20000 10.15 22000 10.07 24000 10.02 30000 9.94 36000 9.91 42000 9.87 50000 9.84 60000 9.94 72000 10.19 75000 10.19 Page 22 of 90

_I

COLA Dresden 2 Revision 17 Table 3-17: MAPLHGR for OPTIMA2 Lattice 145 (References 6 and 7)

Bundle Opt2-4.04-14G5.50-2GZ5.50 Lattice 145:0pt2-M4.54-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.54 2500 9.87 5000 10.06 7500 9.85 10000 9.80 12000 9.80 15000 9.91 17000 10.04 20000 10.13 22000 10.07 24000 10.02 30000 9.94 36000 9.91 42000 9.87 50000 9.82 60000 9.94 72000 10.19 75000 10.19 Page 23 of 90

COLR Dresden 2 Revision 17 Table 3-18: MAPLHGR for OPTIMA2 Lattice 146 (References 6 and 7)

Bundle Opt2-4.04-14G5.50-2GZ5.50 Lattice 146: Oot2-ME4.50-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.70 2500 10.04 5000 10.15 7500 9.87 10000 9.96 12000 9.96 15000 10.18 17000 10.32 20000 10.34 22000 10.26 24000 10.23 30000 10.15 36000 10.09 42000 10.04 50000 9.88 60000 9.88 72000 10.30 75000 10.30 Page 24 of 90

COLR Dresden 2 Revision 17 Table 3-19: MAPLHGR for OPTIMA2 Lattice 147 (References 6 and 7)

Bundle Opt2-4.04-14G5.50-2GZ5.50 Lattice 147: Opt2-T4.50-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.74 2500 10.06 5000 10.08 7500 9.84 10000 9.92 12000 9.93 15000 10.14 17000 10.31 20000 10.25 22000 10.24 24000 10.20 30000 10.14 36000 10.07 42000 10.00 50000 9.85 60000 9.87 72000 10.25 75000 10.25 Page 25 of 90

COLR Dresden 2 Revision 17 Table 3-20: MAPLHGR for OPTIMA2 Lattice 148 (References 6 and 7)

Bundle Opt2-4.04-14G5.50-2GZ5.50 Lattice 148: Opt2-T4.51-14G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.14 2500 10.42 5000 10.48 7500 10.06 10000 10.08 12000 10.07 15000 10.15 17000 10.27 20000 10.26 22000 10.30 24000 10.23 30000 10.17 36000 10.10 42000 9.98 50000 9.84 60000 9.77 72000 10.39 75000 10.39 Page 26 of 90

COLR Dresden 2 Revision 17 Table 3-21: MAPLHGRfor OPTIMA2 Lattice 149 (References 9 and 10)

Bundle Opt2-4.02-18GZ7 .50-14GZ5.50 Lattice 149: 0pt2-B4.31-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.51 2500 9.85 5000 9.92 7500 9.84 10000 10.09 12000 10.18 15000 10.32 17000 10.37 20000 10.43 22000 10.39 24000 10.41 30000 10.24 36000 10.12 42000 9.99 50000 9.89 75000 9.89 Page 27 of 90

COLR Dresden 2 Revision 17 Table 3-22: MAPLHGR for OPTIMA2 Lattice 150 (References 9 and 10)

Bundle Opt2-4.02-18GZ7 .50-14GZ5.50 Lattice 150: 0pt2-B4.44-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.42 2500 9.75 5000 9.65 7500 9.57 10000 9.69 12000 9.72 15000 9.77 17000 9.84 20000 10.04 22000 10.14 24000 10.08 30000 10.02 36000 9.97 42000 9.93 50000 9.97 75000 9.97 Page 28 of 90

COLR Dresden 2 Revision 17 Table 3-23: MAPLHGR for OPTIMA2 Lattice 151 (References 9 and 10)

Bundle Opt2-4.02-1 BGZ7.50-14GZ5.50 Lattice 151: Opt2-BE4.54-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.55 2500 9.83 5000 9.72 7500 9.62 10000 9.75 12000 9.78 15000 9.87 17000 9.96 20000 10.12 22000 10.26 24000 10.19 30000 10.11 36000 10.07 42000 10.01 50000 10.04 75000 10.04 Page 29 of 90

COLR Dresden 2 Revision 17 Table 3-24: MAPLHGR for OPTIMA2 Lattice 152 (References 9 and 10)

Bundle Opt2-4.02-18GZ7 .50-14GZ5.50 Lattice 152: Opt2-M4.54-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.54 2500 9.84 5000 9.79 7500 9.62 10000 9.75 12000 9.82 15000 9.90 17000 9.98 20000 10.20 22000 10.24 24000 10.17 30000 10.10 36000 10.06 42000 10.00 50000 10.02 75000 10.02 Page 30 of 90

COLR Dresden 2 Revision 17 Table 3-25: MAPLHGR for OPTIMA2 Lattice 153 (References 9 and 10)

Bundle Opt2-4.02-18GZ7 .50-14GZ5.50 Lattice 153: Oot2-M E4.50-18G7 .50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) {kW/ft) 0 9.67 2500 10.00 5000 9.83 7500 9.72 10000 9.92 12000 9.94 15000 10.05 17000 10.16 20000 10.45 22000 10.43 24000 10.36 30000 10.30 36000 10.23 42000 10.19 50000 10.13 75000 10.13 Page 31 of 90

COLR Dresden 2 Revision 17 Table 3-26: MAPLHGR for OPTIMA2 Lattice 154 (References 9 and 10)

Bundle Opt2-4.02-18GZ7 .50-14GZ5.50 Lattice 154: Opt2-T4.50-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.70 2500 9.98 5000 9.77 7500 9.64 10000 9.75 12000 9.93 15000 10.00 17000 10.16 20000 10.43 22000 10.40 24000 10.35 30000 10.30 36000 10.23 42000 10.19 50000 10.09 75000 10.09 Page 32 of 90

COLR Dresden 2 Revision 17 Table 3-27: MAPLHGR for OPTIMA2 Lattice 155 (References 9 and 10)

Bundle Opt2-4.02-18GZ7 .50-14GZ5.50 Lattice 155: Oot2-T4.52-14G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.40 2500 10.71 5000 10.55 7500 10.25 10000 10.30 12000 10.32 15000 10.45 17000 10.52 20000 10.51 22000 10.52 24000 10.47 30000 10.41 36000 10.35 42000 10.27 50000 10.16 75000 10.16 Page 33 of 90

COLR Dresden 2 Revision 17 Table 3-28: MAPLHGR for OPTIMA2 Lattice 156 (References 9 and 10)

Bundle Opt2-3.98-16GZ7 .50-14GZ5.50 Lattice 156: Opt2-B4.27-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.78 2500 10.09 5000 10.14 7500 10.04 10000 10.20 12000 10.25 15000 10.34 17000 10.38 20000 10.41 22000 10.44 24000 10.45 30000 10.19 36000 10.07 42000 9.94 50000 9.84 75000 9.84 Page 34 of 90

COLR Dresden 2 Revision 17 Table 3-29: MAPLHGR for OPTIMA2 Lattice 157 (References 9 and 10)

Bundle Opt2-3.98-16GZ7 .50-14GZ5.50 Lattice 157: 0pt2-B4.41-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.69 2500 9.99 5000 9.88 7500 9.76 10000 9.83 12000 9.76 15000 9.79 17000 9.83 20000 10.00 22000 10.13 24000 10.09 30000 10.04 36000 10.00 42000 9.95 50000 9.95 75000 9.95 Page 35 of 90

COLR Dresden 2 Revision 17 Table 3-30: MAPLHGR for OPTIMA2 Lattice 158 (References 9 and 10)

Bundle Opt2-3.98-16GZ7 .50-14GZ5.50 Lattice 158: 0pt2-BE4.51-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.84 2500 10.08 5000 10.02 7500 9.82 10000 9.90 12000 9.92 15000 9.92 17000 9.98 20000 10.13 22000 10.24 24000 10.20 30000 10.14 36000 10.10 42000 10.04 50000 9.71 75000 9.71 Page 36 of 90

_j

COLA Dresden 2 Revision 17 Table 3-31: MAPLHGR for OPTIMA2 Lattice 159 (References 9 and 10)

Bundle Opt2-3.98-16GZ7.50-14GZ5.50 Lattice 159: 0pt2-M4.51-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.84 2500 10.09 5000 "10.12 7500 9.83 10000 9.91 12000 9.96 15000 9.95 17000 10.00 20000 10.14 22000 10.24 24000 10.19 30000 10.13 36000 10.10 42000 10.03 50000 9.93 75000 9.93 Page 37 of 90

COLR Dresden 2 Revision 17 Table 3-32: MAPLHGR for OPTIMA2 Lattice 160 (References 9 and 1O}

Bundle Opt2-3.98-16GZ7 .50-14GZ5.50 Lattice 160: Opt2-M E4.46-16G7 .50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.01 2500 10.27 5000 10.19 7500 10.00 10000 10.10 12000 10.11 15000 10.11 17000 10.17 20000 10.42 22000 10.42 24000 10.39 30000 10.33 36000 10.27 42000 10.19 50000 10.08 75000 10.08 Page 38 of 90

____ _ _ _ _ J

COLA Dresden 2 Revision 17 Table 3-33: MAPLHGR for OPTIMA2 Lattice 161 (References 9 and 10)

Bundle Opt2-3.98-16GZ7 .50-14GZ5.50 Lattice 161: Opt2-T4.46-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.03 2500 10.26 5000 10.09 7500 9.97 10000 10.04 12000 10.05 15000 10.06 17000 10.18 20000 10.40 22000 10.40 24000 10.37 30000 10.33 36000 10.26 42000 10.15 50000 10.00 75000 10.00 Page 39 of 90

COLR Dresden 2 Revision 17 Table 3-34: MAPLHGR for OPTIMA2 Lattice 162 (References 9 and 10)

Bundle Opt2-3.98-16GZ7 .50-14GZ5.50 Lattice 162: 0Dt2-T4.47-14G5.50 Average Planar TLO Exposure MAPLHGR

{MWd/MTU) {kW/ft) 0 10.41 2500 10.69 5000 10.54 7500 10.28 10000 10.20 12000 10.32 15000 10.46 17000 10.49 20000 10.48 22000 10.47 24000 10.44 30000 10.39 36000 10.33 42000 10.22 50000 10.12 75000 10.12 Page 40 of 90

COLR Dresden 2 Revision 17 Table 3-35: MAPLHGR for OPTIMA2 Lattice 163 (References 9 and 10)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 163: Opt2-B4.50-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.47 2500 9.81 5000 9.71 7500 9.58 10000 9.68 12000 9.73 15000 9.89 17000 10.00 20000 10.18 22000 10.21 24000 10.18 30000 10.12 36000 10.07 42000 10.00 50000 10.02 75000 10.02 Page 41 of 90

COLR Dresden 2 Revision 17 Table 3-36: MAPLHGR for OPTIMA2 Lattice 164 (References 9 and 10)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 164: 0pt2-BE4.60-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.53 2500 9.89 5000 9.85 7500 9.83 10000 9.76 12000 9.82 15000 10.01 17000 10.16 20000 10.33 22000 10.34 24000 10.31 30000 10.23 36000 10.18 42000 10.14 50000 10.09 75000 10.09 Page 42 of 90

_J

COLR Dresden 2 Revision 17 Table 3-37: MAPLHGR for OPTIMA2 Lattice 165 (References 9 and 10)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 165: 0pt2-M4.60-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.51 2500 9.91 5000 9.89 7500 9.85 10000 9.78 12000 9.85 15000 10.02 17000 10.18 20000 10.36 22000 10.36 24000 10.31 30000* 10.23

.36000 10.18 42000 10.14 50000 10.09 75000 10.09 Page 43 of 90

COLR Dresden 2 Revision 17 Table 3-38: MAPLHGR for OPTIMA2 Lattice 166 (References 9 and 10)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 166: Qpt2-ME4.57-16G5.50 Average Planar TLO Exposure MAPLHGR

{MWd/MTU) {kW/ft) 0 9.68 2500 10.09 5000 10.04 7500 9.93 10000 9.95 12000 10.03 15000 10.31 17000 10.47 20000 10.62 22000 10.56 24000 10.51 30000 10.44 36000 10.37 42000 10.28 50000 10.22 75000 10.22 Page 44 of 90

COLR Dresden 2 Revision 17 Table 3-39: MAPLHGR for OPTIMA2 Lattice 167 (References 9 and 10)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 167: Opt2-T4.58-14G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.13 2500 10.45 5000 10.44 7500 10.17 10000 10.08 12000 10.10 15000 10.29 17000 10.44 20000 10.56 22000 10.56 24000 10.52 30000 10.46 36000 10.39 42000 10.31 50000 10.17 75000 10."17 Page 45 of 90

COLR Dresden 2 Revision 11 Table 3-40: MAPLHGR for ATRIUM 10XM (Reference 12)

I All ATRIUM 10XM Lattices I Average Planar Exposure TLO MAPLHGR (MWd/MTU) (kW/ft) 0 11.50 20000 11.50 25000 10.70 67000 7.01 Page 46 of 90

COLA Dresden 2 Revision 17

4. Operating Limit Minimum Critical Power Ratio Technical Specification Sections 3.2.2, 3.4.1, and 3. 7. 7 The OLMCPRs for D2C26 were established so that less than 0.1 % of the fuel rods in the core are expected to experience boiling transition during an AOO initiated from rated or off-rated conditions and are based on the Technical Specifications SLMCPR values (Reference 12).

Tables 4-3 through 4-27 include MCPR limits for various specified EOOS conditions. The EOOS conditions separated by "f' in these tables represent single EOOS conditions and not any combination of conditions. Refer to Section 8 for a detailed explanation of allowable combined EOOS conditions.

4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCPR The OLMCPR as a function of core thermal power (MCPRp) is shown in Tables 4-3 through 4-26. MCPRp limits are dependent on scram times as described in Section 4.2, exposure as described in Section 4.3, fuel type, FWT, and whether the plant is in TLO or SLO. TLO limits for ATRIUM 10XM fuel are given in Tables 4-3 through 4-11 and SLO limits for ATRIUM 10XM are given in Tables 4-21 through 4-23. TLO limits for OPTIMA2 fuel are given in Tables 4-12 through 4-20 and SLO limits for OPTIMA2 fuel are given in Tables 4-24 through 4-26.

4~ 1.2. Flow-Dependent MCPR Table 4-27 gives the OLMCPR limit as a function of the flow (MCPR1) based on the applicable plant condition. These values are applicable to both ATRIUM 10XM and OPTIMA2 fuel.

Page 47 of 90

COLR Dresden 2 Revision 17 4.2. Scram Time TSSS, ISS, and NSS refer to scram speeds. The sqram time values associated with these speeds are shown in Table 4-1. The TSSS scram times shown in Table 4-1 are the same as those specified in the Technical Specifications (Reference 2).

To utilize the OLMCPR limits for NSS in Tables 4-3, 4-6, 4-9, 4-12, 4-15, 4-18, 4-21, and 4-24, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the NSS time shown in Table 4-1 below.

To utilize the OLMCPR limits for ISS in Tables 4-4, 4-7, 4-10, 4-13, 4-16, 4-19, 4-22 and 4-25, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the ISS time shown in Table 4-1 below.

The "Average Control Rod Insertion Time" is defined as the sum of the control rod insertion times of all operable control rods divided by the number of operable control rods. Conservative adjustments to the NSS and ISS scram speeds were made to the analysis inputs to appropriately account for the effects of 1 stuck control rod and one additional control rod that is assumed to fail to scram (Reference 12).

To utilize the OLMCPR limits for TSSS in Tables 4-5, 4-8, 4-11, 4-14, 4-17, 4-20, 4-23, and 4-26, the control rod insertion time of each operable control rod at each control rod insertion fraction must be less than or equal to the TSSS time shown in Table 4-1 below. The Technical Specifications allow operation with up to 12 "slow" and 1 stuck control rod. One additional control rod is assumed to fail to scram for the system transient analyses performed to establish MCPRp limits (Reference 12). Conservative adjustments to the TSSS scram speeds were made to the analysis inputs to appropriately account for the effects of the slow and stuck rods on scram reactivity (Reference 12).

For cases below 38.5% power (Pbypass), the results are relatively insensitive to scram speed, and only TSSS analyses were performed (Reference 12).

Table 4-1: Scram Times (References 2 and 12)

Control Rod Insertion NSS (seconds) ISS (seconds) TSSS (seconds)

Fraction (%)

5 0.324 0.36 0.48 20 0.700 0.72 0.89 50 1.510 1.58 1.98 90 2.635 2.74 3.44 Page 48 of 90

COLA Dresden 2 Revision 17 4.3. Exposure Dependent MCPR Limits Exposure-dependent MCPRp limits were established to support operation from BOC to NEOC (CAVEX of 34,977 MWd/MTU), NEOC to EOFPLB (CAVEX of 37,071 MWd/MTU), and EOFPLB to EOCLB (CAVEX of 37,934 MWd/MTU) as defined by the CAVEX values listed in Table 4-2.

Note that the thermal limits are based on CA VEX. The limits at a later exposure range can be used earlier in the cycle as they are the same or more conservative.

Table 4-2: Exposure Basis for Transient Analysis (Reference 12)

Core Average Exposure (CAVEX) Description (MWd/MTU)

Break point for exposure-dependent 34,977 MCPRo limits (NEOC)

Design basis rod patterns to EOFPL 37,071

+ 25 EFPD (EOFPLB)

EOCLB - Maximum licensing core 37,934 exposure, includina coastdown 4.4. Recirculation Pump ASD Settings Technical Requirement Manual 2.1.a.1 Dresden 2 Cycle 26 was analyzed with a slow flow excursion event assuming a failure of the recirculation flow control system such that the core flow increases slowly to the maximum flow physically permitted by the equipment, assumed to be 110% of rated core flow (Reference 12);

therefore, the recirculation pump ASD must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events.

Page 49 of 90

COLR Dresden 2 Revision 17 Table 4-3: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX)

. (Reference 12)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated} 0 25 S 38.5 >38.5 70 100

t Base/TCV Stuck
;; 60 2.55 2.55 2.20 1.96 1.47 Closed/MSIVOOS >60 2.61 2.61 2.31 I' \,/:... <;

S60 3.50 3.50 2.66 TBVOOS 2.01 1.50

> 60 3.50 3.50 2.78 :i*.\ti :,

TCV Slow Closure/ s 60 2.55 2.55 2.31 2.30 1.94 1.47 PLUOOS/PCOOS > 60 2.61 2.61 2.31 FHOOS Core Flow Core Power (% rated EOOS Condition I I (% rated) 0 25 S38.5 > 38.5 70

L' 100 Base/TCV Stuck S60 2.74 2.74 2.31 '. ~~

2.09 ,* 1.47 Closed/MSIVOOS >60 2.76 2.76 2.31 ,.,

s 60 3.63 3.63 2.77 TBVOOS 2.10 ,. 1.50

> 60 3.63 3.63 2.88 .i'*

TCV Slow Closure/ s 60 2.74 2.74 2.31 2.30 1.94 1.47 PLUOOS/PCOOS >60 2.76 2.76 2.31 Page 50 of 90

COLR Dresden 2 Revision 17 Table 4-4: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT Core Flow Core Power (% rated EOOS Cona1 -

(% rated) 0 25 S 38.5 > 38.5 70 100 Base/TCV Stuck S60 2.55 2.55 2.20  :).

Closed/MSIVOOS > 60 2.61 2.61 2.31 1.96 r. , ,,, 1.47 s 60 TBVOOS

> 60 3.50 3.50 3.50 3.50 2.66 2.78 2.01 (:: ')y):i} 1.50 TCV Slow Closure/ s 60 2.55 2.55 2.31 2.30 1.94 1.47 PLUOOS/PCOOS > 60 2.61 2.61 2.31 FHOOS Core Flow Core Power (% rated EOOS Condition

(% rated) 0 25 S38.5 >38.5 70 100 Base/TCV Stuck s 60 2.74 2.74 2.31 1.,,\<, " ,/

Closed/MSIVOOS > 60 2.76 2.76 2.31 2.09 [c (,,  :.J\. . 1.47 TBVOOS s 60 3.63 3.63 2.77 2.11

\ *.

1.50

> 60 3.63 3.63 2.88 k\ *,*:, . . :,,:

TCV Slow Closure/ s 60 2.74 2.74 2.31 2.30 1.94 1.47 PLUOOS/PCOOS > 60 2.76 2.76 2.31 Page 51 of 90

COLR Dresden 2 Revision 17 Table 4-5: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 >38.5 70 100 Base/TCV Stuck S60 2.55 2.55 2.20 . '

2.00 ' . 1.47 Closed/MSIVOOS >60 2.61 2.61 2.31 ' ...,:, ',:.* '.:.'.

TBVOOS S60 3.50 3.50 2.66 2.03

!( ' . )<,/,.,. 1.51

> 60 3.50 3.50 2.78 >*.. *:o,. .. '

TCV Slow Closure/ s 60 2.55 2.55 2.31 2.31 1.97 1.49 PLUOOS/PCOOS > 60 2.61 2.61 2.31 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25  :$ ~O * ..J ;; ,;,, 38.5 70 100 Base/TCV Stuck Closed/MSIVOOS S60

>60 2.74 2.76 2.74 2.76 2.31 2.31 2.14 J~;:i(, . :\1 1.48

,.., . r*,,**

TBVOOS s 60 3.63 3.63 2.77 2.14 iJ]':> ; : 1.53

>60 3.63 3.63 2.88 TCV Slow Closure/ S60 2.74 2.74 2.31 2.31 1.97 1.49 PLUOOS/PCOOS > 60 2.76 2.76 2.31 Page 52 of 90

COLR Dresden 2 Revision 17 Table 4-6: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT Core Flow Core Power (% rated)

EOOS Cnnrl

(% rated) 0 25 S 38.5 > 38.5 70 100 Base/TCV Stuck s 60 2.55 2.55 2.20 1.96 1.47 Closed/MSIVOOS > 60 2.61 2.61 2.31 . ,.

TBVOOS s 60 3.50 3.50 2.66 2.01 1.50

> 60 3.50 3.50 2.78  ::s'< /

TCV Slow Closure/ s 60 2.55 2.55 2.31 2.30 1.94 1.47 PLUOOS/PCOOS > 60 2.61 2.61 2.31 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 >38.5 70 100 Base/TCV Stuck S60 2.74 2.74 2.31 2.09 1.47 Closed/MSIVOOS > 60 2.76 2.76 2.31 S60 3.63 3.63 2.77 TBVOOS 2.10 1.50

>60 3.63 3.63 2.88 TCV Slow Closure/ s 60 2.74 2.74 2.31 1.94 1.47 2.30 PLUOOS/PCOOS > 60 2.76 2.76 2.31 Page 53 of 90

COLR Dresden 2 Revision 17 Table 4-7: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT I I Core Flow Core Power (% rated)

EOOS Condition I I (% rated) 0 25 :S 38.5 >38.5 70 100 Base/TCV Stuck S60 2.55 2.55 2.20 Closed/MSIVOOS >60 2.61 2.61 2.31 1.96 t)t\::~:uri/ 1.47 S60 3.50 3.50 2.66 TBVOOS 2.01 1.50

>60 3.50 3.50 2.78 1JtliJG&t:;

TCV Slow Closure/ S60 2.55 2.55 2.31 2.30 1.94 1.47 PLUOOS/PCOOS > 60 2.61 2.61 2.31 FHOOS I I Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 r - - - - 70 100 Base/TCV Stuck S60 2.74 2.74 2.31 Closed/MSIVOOS >60 2.76 2.76 2.31 2.09  ;:f1\)-]{;~::~'. 1.47 TBVOOS s 60

>60 3.63 3.63 3.63 3.63 2.77 2.88 2.11 ,y tt

A~1{f~)1\177,,{ 1.50 TCV Slow Closure/ s 60 2.74 2.74 2.31 1.94 1.47 2.30 PLUOOS/PCOOS >60 2.76 2.76 2.31 Page 54 of 90

COLR Dresden 2 Revision 17 Table 4-8: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX)

( Reference 12)

Nominal FWT "ore Flow Core Power (% rated)

EOOS Conr1 -

1 ,% rated) 0 25 S38.5 >38.5 70 100 Base/TCV Stuck s 60 2.55 2.55 2.20 2.00 1.47 Closed/MSIVOOS >60 2.61 2.61 2.31 S60 3.50 3.50 2.66 TBVOOS 2.03 1.51

> 60 3.50 3.50 2.78 TCV Slow Closure/ s 60 2.55 2.55 2.31 2.31 1.97 1.49 PLUOOS/PCOOS > 60 2.61 2.61 2.31 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 >38.5 70 100 Base/TCV Stuck S60 2.74 2.74 2.31  :;c/'*

2.14 1.48 Closed/MSIVOOS > 60 2.76 2.76 2.31 TBVOOS s 60 3.63 3.63 2.77 2.14 1.53

> 60 3.63 3.63 2.88  :

TCV Slow Closure/ s 60 2.74 2.74 2.31 1.49 2.31 1.97 PLUOOS/PCOOS > 60 2.76 2.76 2.31 Page 55 of 90

COLR Dresden 2 Revision 17 Table 4-9: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S 38.5 >38.5 70 100

';j Base/TCV Stuck  :,; 60 2.55 2.55 2.20 1.96 1.47 Closed/MSIVOOS > 60 2.61 2.61 2.31

'C ,>

,; 60 3.50 3.50 2.66

TBVOOS 2.01 ... 1.50

> 60 3.50 3.50 2.78 TCV Slow Closure/  :,; 60 2.55 2.55 2.31 2.30 1.94 1.47 PLUOOS/PCOOS > 60 2.61 2.61 2.31 FHOOS

" Core Power (% rated)

EOOS Cond;. - ' V I 'I.ii" I 0 25 c:::: ""'"' ,.. 38.5 70 100 Base/TCV Stuck  :,; 60 2.74 2.74 2.31 *,,. *'

2.09 _,

1.47 Closed/MSIVOOS >60 2.76 2.76 2.31

,; 60 ' .

3.63 3.63 2.77 TBVOOS 2.10 ,, ,, ,, 1.50

> 60 3.63 3.63 2.88 *',), '

TCV Slow Closure/  :,; 60 2.74 2.74 2.31 2.30 1.94 1.47 PLUOOS/PCOOS > 60 2.76 2.76 2.31 Page 56 of 90

COLR Dresden 2 Revision 17 Table 4-10: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX)

(Reference 12) .

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 >38.5 70 100 Base/TCV Stuck Closed/MSIVOOS s 60

>60 2.55 2.61 2.55 2.61 2.20 2.31 1.96 R~t:te 1.47 TBVOOS TCV Slow Closure/

S60

>60 S60 3.50 3.50 2.55 3.50 3.50 2.55 2.66 2.78 2.31 2.01

  • ~~tf?~i:ifi 1.50 2.30 1.94 1.47 PLUOOS/PCOOS >60 2.61 2.61 2.31 FHOOS Core Flow Core Power (% rated)
Condition

(% rated) 0 25 S38.5 >38.5 70 100 Base/TCV Stuck S60 2.74 2.74 2.31 2.09 1.47 Closed/MSIVOOS >60 2.76 2.76 2.31 TBVOOS s 60 3.63 3.63 2.77 2.11 1.50

>60 3.63 3.63 2.88 ,.

TCV Slow Closure/ S60 2.74 2.74 2.31 2.30 1.94 1.47 PLUOOS/PCOOS >60 2.76 2.76 2.31 Page 57 of 90

COLA Dresden 2 Revision 17 Table 4-11: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT Core Flow Core Power (% rated

-:..,s Condition (% rated) 0 25 :S 38.5 > 38.5 70 100 II Base/TCV Stuck s 60 2.55 2.55 2.20 1 Closed/MSIVOOS >60 2.61 2.61 2.31 2.00 l ?::/;;;1,{ff 1.47 S60 3.50 3.50 2.66.

TBVOOS

>60 3.50 3.50 2.78

t\).;;;!'-Jf; 2.03 S)f ., 1.51 TCV Slow Closure/ s 60 2.55 2.55 2.31 1.49 2.31 1.97 PLUOOS/PCOOS > 60 2.61 2.61 2.31 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 :S 38.5 > 38.5 70 100 Base/TCV Stuck s 60 2.74 2.74 2.31 r;,:.:*~ 1.48 2.14 ':(iii: \?\}{'.

Closed/MSIVOOS >60 2.76 2.76 2.31 s 60 3.63 3.63 2.77 ;A TBVOOS

>60 3.63 3.63 2.88 2.14

'<: ;t~:*f/}i 1.53 TCV Slow Closure/ S60 2.74 2.74 2.31 2.31 1.97 1.49 PLUOOS/PCOOS >60 2.76 2.76 2.31 Page 58 of 90

COLR Dresden 2 Revision 17 Table 4-12: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 :S 38.5 > 38.5 70 100 Base/TCV Stuck s; 60 2.46 2.46 2.08 1.97 1.46 Closed/MSIVOOS > 60 2.61 2.61 2.32 I ',

s; 60 ':,

3.24 3.24 2.48 TBVOOS 2.03 1.49

> 60 3.40 3.40 2.75 '"

TCV Slow Closure/ s; 60 2.46 2.46 2.32 2.30 1.96 1.47 PLUOOS/PCOOS > 60 2.61 2.61 2.32 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 :S 38.5 >38.5 70 100 Base/TCV Stuck s; 60 2.61 2.61 2.18 ,'

2.09 ',,

1.46 Closed/MSIVOOS > 60 2.70 2.70 2.32 s; 60 3.35 3.35 2.55 TBVOOS 2.14 .. .. .,, 1.49

> 60 3.50 3.50 2.82 __. , ,

TCV Slow Closure/ s; 60 2.61 2.61 2.32 2.30 1.96 1.47 PLUOOS/PCOOS > 60 2.70 2.70 2.32 Page 59 of 90

COLA Dresden 2 Revision 17 Table 4-13: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX)

( Reference 12)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition  :$ 38 i::. II ~ 38.5

{% rated) 0 25 70 100 Base/TCV Stuck S60 2.46 2.46 2.08 1.97 1.46 Closed/MSIVOOS > 60 2.61 2.61 2.32 s 60 3.24 3.24 2.48 ,,,

TBVOOS 2.03 1.49

> 60 3.40 3.40 2.75 "

TCV Slow Closure/ s 60 2.46 2.46 2.32 2.31 "1.96 1.47 PLUOOS/PCOOS > 60 2.61 2.61 2.32 FHOOS Core Flow Core Power {% rated)

EOOS Condition

(% rated) 0 25  :$ 38.5 >38.5 70 100

/',

Base/TCV Stuck S60 2.61 2.61 2."18 2.09 *,.'

1.46 Closed/MSIVOOS > 60 2.70 2.70 2.32 s 60 3.35 3.35 2.55 TBVOOS 2.15 1.49

>60 3.50 3.50 2.82 ,; '",, ,,i' TCV Slow Closure/ S60 2.61 2.61 2.32 2.31 1.96 1.47 PLUOOS/PCOOS >60 2.70 2.70 2.32 Page 60 of 90

COLR Dresden 2 Revision 17 Table 4-14: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, BOC to NEOC (34,977 MWd/MTU CAVEX)

(Reference 12)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 S38.5 >38.5 70 100 s 60 Base/TCV Stuck Closed/MSIVOOS > 60 2.46 2.61 2.46 2.61 2.08 2.32 1.99 .i~J,;;i;{; 1.46 S60 3.24 3.24 2.48  ?;:/<;,,: 't. TBVOOS 2.05 i:\i:1l}l\ x;; 1.51

                                > 60       3.40        3.40      2.75 TCV Slow Closure/       S60       2.46         2.46      2.32 2.32      2.00        1.49 PLUOOS/PCOOS           > 60      2.61         2.61      2.32 FHOOS Core Flow                     Core Power (% rated)

EOOS Condition (% rated) 0 25 S38.5 >38.5 70 100 s 60 Base/TCV Stuck Closed/MSIVOOS >60 2.61 2.70 2.61 2.70

  • 2.18 2.32 2.13 ~}f)1,f[Jz}!J's J,

1.48 s 60 3.35 3.35 2.55 TBVOOS

                                >60        3.50        3.50      2.82 2.17  rt:;l~j.~t:JJ   1.52
  • TCV Slow Closure/ S60 2.61 2.61 2.32 2.32 2.00 1.49 PLUOOS/PCOOS > 60 2.70 2.70 2.32 Page 61 of 90 L _ _ __

COLR Dresden 2 Revision 17 Table 4-15: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX) (Reference 12) Nominal FWT Core Flow Core Power (% rated) EOOS Condition (% rated) 0 25 :S 38 i:: i - ~o.5 70 100 Base/TCV Stuck s 60 2.46 2.46 2.08 1.97 1.46

  • y Closed/MSIVOOS > 60 2.61 2.61 2.32 "

TBVOOS s 60 3.24 3.24 2.48 2.03 ' . ', 1.49

                          > 60       3.40        3.40      2.75 TCV Slow Closure/        s 60       2.46        2.46      2.32 2.30        1.96       1.49 PLUOOS/PCOOS            > 60       2.61        2.61      2.32 FHOOS Core Flow                      Core Power (% rated)

EOOS Condition - I I (% rated) 0 25 < 38."' TI 70 100 Base/TCV Stuck s 60 2.61 2.61 2.18 2.09 e: 1.46 Closed/MSIVOOS > 60 2.70 2.70 2.32 TBVOOS s 60 3.35 3.35 2.55 2.14 1.49

                          > 60       3.50        3.50      2.82             '!* .., .

TCV Slow Closure/ s 60 2.61 2.61 2.32 2.30 1.96 1.49 PLUOOS/PCOOS > 60 2.70 2.70 2.32 Page 62 of 90

COLR Dresden 2 Revision 17 Table 4-16: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times,, NEOC to EOFPLB (37,071 MWd/MTU CAVEX) (Reference 12) Nominal FWT Core Flow Core Power (% rated) EOOS Condition (% rated) 0 25 :S 38.5 >38.5 70 100 Base/TCV Stuck s 60 2.46 2.46 2.08 1.97 1.46 Closed/MSIVOOS >60 2.61 2.61 2.32

560 3.24 3.24 2.48 TBVOOS 2.03 1.50
                         >60       3.40        3.40      2.75 TCV Slow Closure/       :560      2.46        2.46      2.32 2.31    1.96 1.49 PLUOOS/PCOOS           >60       2.61        2.61      2.32 FHOOS I                                                                                   I Core Flow                    Core Power (% rated)

EOOS Condition (% rated) 0 25 :S 38.5 >38.5 100 Base/TCV Stuck :560 2.61 2.61 2.18 2.09 1.46 Closed/MSIVOOS >60 2.70 2.70 2.32

560 3.35 3.35 2.55 TBVOOS 2.15 1.50
                         >60       3.50        3.50      2.82 TCV Slow Closure/       :560      2.61        2.61      2.32 2.31    1.96 1.49 PLUOOS/PCOOS           >60       2.70        2.70      2.32 Page 63 of 90

COLA Dresden 2 Revision 17 Table 4-17: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, NEOC to EOFPLB (37,071 MWd/MTU CAVEX) (Reference 12) Nominal FWT Core Flow Core Power (% rated) EOOS Condition (% rated) 0 25  :$ 38.5 >38.5 70 100 Base/TCV Stuck S60 2.46 2.46 2.08 1.99 1.49 Closed/MSIVOOS > 60 2.61 2.61 2.32 '* .. I'.,,; ,. ,., .. TBVOOS s 60 3.24 3.24 2.48 2.05 1.52

                       > 60       3.40        3.40      2.75          1,:..,:::.            -

TCV Slow Closure/ s 60 2.46 2.46 2.32 2.32 2.00 1.52 PLUOOS/PCOOS > 60 2.61 2.61 2.32 FHOOS Core Flow Core Power (% rated) EOOS Condition (% rated) 0 25  :$ 38.5 >38.5 70 100 Base/TCV Stuck Closed/MSIVOOS S60

                       >60 2.61 2.70 2.61 2.70 2.18 2.32 2.13    '{i: -: ':'. ,,         1.49 s 60       3.35        3.35      2.55             )'.      ,'     ..*

TBVOOS 2.17 /\.;.  : 1.52

                       > 60       3.50        3.50      2.82                         ;.

TCV Slow Closure/ s 60 2.61 2.61 2.32 2.32 2.00 1.52 PLUOOS/PCOOS > 60 2.70 2.70 2.32 Page 64 of 90

COLR Dresden 2 Revision 17 Table 4-18: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX) (Reference 12) Nominal FWT Core Flow Core Power (% rated) EOOS Condition I I (% rated) 0 25 S 38.5 > 38.5 70 100 Base/TCV Stuck s 60 2.46 2.46 2.08 1.97 -- 1.47 Closed/MSIVOOS > 60 2.61 2.61 2.32

S:60 3.24 3.24 2.48 ' :'

TBVOOS 2.03 1.50

                          >60       3.40         3.40     2.75 TCV Slow Closure/        s 60      2.46         2.46     2.32 2.30         1.96              1.49 PLUOOS/PCOOS            > 60      2.61         2.61     2.32 FHOOS I                                                                                                       I Core Flow                      Core Power (% rated)

EOOS Condition (% rated) 0 25 S 38.5 >38.5 70 100

S:60 2.18
                                                                         ;,Uc Base/TCV Stuck                     2.61        2.61                      "" ,,      

2.09 1.47 Closed/MSIVOOS > 60 2.70 2.70 2.32 TBVOOS s 60 3.35 3.35 2.55 2.14 1.50

                          > 60       3.50        3.50     2.82             "-' . *-*     ,',;

TCV Slow Closure/ s 60 2.61 2.61 2.32 2.30 1.96 1.49 PLUOOS/PCOOS >60 2.70 2.70 2.32 Page 65 of 90

COLR Dresden 2 Revision 17 Table 4-19: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX) (Reference 12) Nominal FWT Core Flow Core Power (% rated) EOOS Condition (% rated) 0 25 S 38.5 >38.5 70 100 Base/TCV Stuck S60 2.46 2.46 2.08 1.97 1.47 Closed/MSIVOOS > 60 2.61 2.61 2.32 TBVOOS s 60 3.24 3.24 2.48 2.03 1.50

                       > 60      3.40        3.40     2.75 TCV Slow Closure/       s 60      2.46        2.46     2.32 1.96        1.50 2.31 PLUOOS/PCOOS           > 60      2.61        2.61     2.32 FHOOS Core Flow                    Core Power (% rated)

EOOS Condition (% rated) 0 25 :538.5 >38.5 70 100 Base/TCV Stuck S60 2.61 2.61 2.18 2.09 1.47 Closed/MSIVOOS > 60 2.70 2.70 2.32 TBVOOS s 60 3.35 3.35 2.55 2.15 .. ... .. 1.50

                       > 60      3.50        3.50     2.82 TCV Slow Closure/       s 60      2.61        2.61     2.32 2.31     1.96        1.50 PLUOOS/PCOOS           > 60      2.70        2.70     2.32 Page 66 of 90

COLR Dresden 2 Revision 17 Table 4-20: OPTIMA2 TLO MCf:lRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (37,934 MWd/MTU CAVEX) (Reference 12) Nominal FWT l'n

                               -    - --                  Core Power (% rated)
... :ios Condmu11        In/      .  *"    0          25     S 38.5   >38.5     70      100 Base/TCV Stuck              :;; 60      2.46        2.46     2.08 1.99             1.49 Closed/MSIVOOS               > 60        2.61        2.61     2.32
5 60 3.24 3.24 2.48 TBVOOS 2.05 1.52
                             > 60        3.40        3.40     2.75 TCV Slow Closure/             :;; 60      2.46        2.46     2.32 2.32    2.00     1.53 PLUOOS/PCOOS                 >60         2.61        2.61     2.32 FHOOS Core Flow                         Core Power (% rated)

EOOS Condition (% rated) 0 25  :$38.5 > 38.5 70 100 Base/TCV Stuck  :;; 60 2.61 2.61 2.18 2.13 1.49 Closed/MSIVOOS > 60 2.70 2.70 2.32

5 60 3.35 3.35 2.55 TBVOOS 2.17 1.52
                             >60         3.50        3.50     2.82 TCV Slow Closure/             :5 60       2.61        2.61     2.32 2.32    2.00     1.53 PLUOOS/PCOOS                 >60         2.70        2.70     2.32 Page 67 of 90

COLR Dresden 2 Revision 17 Table 4-21: ATRIUM 10XM SLO MCPRp Limits for NSS Insertion Times, All Exposures (Reference 12) Nominal FWT EOOS Condition Core Power (% rated) (all include SLO) 0 25 s 38.5 II > 38.5 50 Baserrcv Stuck 2.57 2.57 2.22 2.17 2.15 Closed/MSIVOOS TBVOOS 3.52 3.52 2.68 2.17 2.15 TCV Slow Closure/ 2.57 2.57 2.33 2.32 2.19 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated) (all include SLO) 0 25 S 38.5 >38.5 50 Baserrcv Stuck 2.76 2.76 2.33 2.17 2.15 Closed/MSIVOOS TBVOOS 3.65 3.65 2.79 2.17 2.15 TCV Slow Closure/ 2.76 2.76 2.33 2.32 2.19 PLUOOS/PCOOS Page 68 of 90

COLR Dresden 2 Revision 17 Table 4-22: ATRIUM 10XM SLO MCPRp Limits for ISS Insertion Times, All Exposures (Reference 12) Nominal FWT EOOS Condition Core Power (% rated) (all include SLO) 0 25 S38.5 >38.5 50 Base/TCV Stuck 2.57 2.57 2.22 2.17 2.15 Closed/MSIVOOS TBVOOS 3.52 3.52 2.68 2.17 2.15 TCV Slow Closure/ 2.57 . 2.57 2.33 2.32 2.19 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated) (all include SLO) 0 25 S38.5 >38.5 50 Base/TCV Stuck 2.76 2:76 2.33 2.17 2.15 Closed/MSIVOOS TBVOOS 3.65 3.65 2.79 2.17 2.15 TCV Slow Closure/ 2.76 2.76 2.33 2.32 2.19 PLUOOS/PCOOS Page 69 of 90

COLR Dresden 2 Revision 17 Table 4-23: ATRIUM 1OXM SLO MCPRp Limits for TSSS Insertion Times, All Exposures (Reference 12) Nominal FWT EOOS Condition Core Power (% rated) (all include SLO) 0 25 S 38.5 >38.5 50 Base/TCV Stuck 2.57 2.57 2.22 2.17 2.15 Closed/MSIVOOS TBVOOS 3.52 3.52 2.68 2.17 2.15 TCV Slow Closure/ 2.57 2.57 2.33 2.33 2.21 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated) (all include SLO) 0 25 S 38.5 > 38.5 50 Base/TCV Stuck 2.76 2.76 2.33 2.17 2.15 Closed/MSIVOOS TBVOOS 3.65 3.65 2.79 2.17 2.15 TCV Slow Closure/ 2.76 2.76 2.33 2.33 2.21 PLUOOS/PCOOS Page 70 of 90

COLR Dresden 2 Revision 17 Table 4-24: OPTIMA2 SLO MCPRp Limits for NSS Insertion Times, All Exposures (Reference 12) Nominal FWT EOOS Condi11u11 " Core Power (% rated) (all include SLO) 0 25 S 38.5 >38.5 50 Base/TCV Stuck 2.48 2.48 2.19 2.19 2.17 Closed/MSIVOOS TBVOOS 3.26 3.26 2.50 2.19 2.17 TCV Slow Closure/ 2.48 2.48 2.34 2.32 2.20 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated) (all include SLO) 0 25 S38.5 >38.5 50 Base/TCV Stuck 2.63 2.63 2.20 2.19 2.17 Closed/MSIVOOS TBVOOS 3.37 3.37 2.57 2.19 2.17 TCV Slow Closure/ 2.63 2.63 2.34 2.32 2.20 PLUOOS/PCOOS Page 71 of 90

COLR Dresden 2 Revision 17 Table 4-25: OPTIMA2 SLO MCPRp Limits for ISS Insertion Times, All Exposures (Reference 12) Nominal FWT EOOS Condition Core Power (% rated) (all include SLO) 0 25 S 38.5 >38.5 50 Base/TCV Stuck 2.48 2.48 2.19 2.19 2.17 Closed/MSIVOOS TBVOOS 3.26 3.26 2.50 2.19 2.17 TCV Slow Closure/ 2.48 2.48 2.34 2.33 2.21 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated) (all include SLO) 0 25 S 38.5 > 38.5 50 Base/TCV Stuck 2.63 2.63 2.20 2.19 2.17 Closed/MSIVOOS TBVOOS 3.37 3.37 2.57 2.19 2.17 TCV Slow Closure/ 2.63 2.63 2.34 2.33 2.21 PLUOOS/PCOOS Page 72 of 90

COLR Dresden 2 Revision 17 Table 4-26: OPTIMA2 SLO MCPRp Limits for TSSS Insertion Times, All Exposures (Reference 12) Nominal FWT I I EOOS Condition Core Power (% rated) (all include SLO) 0 25 s 38.5 > 38.5 11 50 Base/TCV Stuck 2.48 2.48 2.19 2.19 2.17 Closed/MSIVOOS TBVOOS 3.26 3.26 2.50 2.19 2.17 TCV Slow Closure/ 2.48 2.48 2.34 2.34 2.23 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated) (all include SLO) 0 25 S 38.5 > 38.5 50 Base/TCV Stuck 2.63 2.63 2.20 2.19 2.17 Closed/MSIVOOS TBVOOS 3.37 3.37 2.57 2.19 2.17 TCV Slow Closure/ 2.63 2.63 2.34 2.34 2.23 PLUOOS/PCOOS Page 73 of 90

COLR Dresden 2 Revision 17 Table 4-27: ATRIUM 10XM and OPTIMA2 MCPRt Limits (Reference 12) EOOS Condition* Core Flow (% rated) MCPRt Limit 0 1.70 Base Case/ FHOOS / PCOOS I PLUOOS / TCV Slow Closure/ PLUOOS + PCOOS in 35 1.70 TLO and SLO 108 1.19 0 1.88 Any Scenario** with One .MSIVOOS 35 1.88 108 1.19 0 1.90 Any Scenario** with TBVOOS 35 1.90 108 1.35 0 1.70 Any Scenario** with 1 Stuck Closed 35 1.70 TCV/TSV 108 1.19

  • See Section 8 for further operating restrictions.
    • "Any Scenario" implies any other combination of allowable EOOS conditions that is not otherwise covered by this table.

Note that the MCPRr limits for any scenario with 1 stuck closed TCV/TSV are identical to base case MCPRr limits. This is reflected in the thermal limit sets presented in Table 8-1. Page 74 of 90

COLR Dresden 2 Revision 17

5. Linear Heat Generation Rate Technical Specification Sections 3.2.3, 3.4.1, and 3.7.7 The TMOL at rated conditions for the OPTIMA2 and ATRIUM 10XM fuel is established in terms of the maximum LHGR as a function of peak pellet (rod nodal) exposure. The LHGR limits for OPTIMA2 fuel are presented in Tables 5-1 through 5-8. The limits in Table 5-1 apply to OPTIMA2 lattices that do not require Gadolinia set down penalties. The limits in Tables 5-2 through 5-7 apply to OPTIMA2 lattices that do require Gadolinia set down penalties. The limits in Table 5-8 apply to the OPTIMA2 natural U blankets in lattices 81 and 89. The LHGR limits for ATRIUM 10XM fuel are presented in Table 5-9.

The power- and flow-dependent LHGR multipliers (LHGRFACp and LHGRFAC1) are applied directly to the LHGR limits to protect against fuel melting and overstraining of the cladding during an AOO (Reference 12). In all conditions, the margin to the LHGR limits is determined by applying the lowest multiplier from the applicable LHGRFACp and LHGRFAC, multipliers for the power/flow statepoint of interest to the steady state LHGR limit (Reference 12). LHGRFACp and LHGRFAC, multipliers were established to support base case and all EOOS conditions for all Cycle 26 exposures and scram speeds. The LHGRFACp multipliers for ATRIUM 10XM and OPTIMA2 are presented in Table 5-10 and Table 5-11, respectively. The LHGRFAC1 multipliers for ATRIUM 10XM and OPTIMA2 are prese'nted in Table 5-12 and Table 5-13, respectively. Page 75 of 90

COLR Dresden 2 Revision 17 Table 5-1: LHGR Limits for OPTIMA2 Lattices 137,138,139,143,144,145,146,147,148,156, 157, 158,159,163,164,165,166,167 (References 6, 8, 9, and 11) Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14,000 13.11 23,000 12.22 57,000 8.87 62,000 8.38 75,000 3.43 Table 5-2 LHGR Limits for OPTIMA2 Lattices 135, 141 (References 6 and 8) Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14,000 13.11 22,000 12.32 22,001 12.20 23,000 12.10 35,000 10.93 35,001 11.04 57,000 8.87 62,000 8.38 75,000 3.43 Page 76 of 90

COLR Dresden 2 Revision 17 Table 5-3: LHGR Limits for OPTIMA2 Lattices 131, 132, 133, 136,140,142 (References 6 and 8) Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14,000 13.11 14,001 12.85 23,000 11.98 46,000 9.75 46,001 9.95 57,000 8.87 62,000 8.38 75,000 3.43 Table 5-4: LHGR Limits for OPTIMA2 Lattice 134 (References 6 and 8) Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14,000 13.11 14,001 12.72 23,000 11.85 35,000 10.71 35,001 11.04 57,000 8.87 62,000 8.38 75,000 3.43 Page 77 of 90

COLR Dresden 2 Revision 17 Table 5-5: LHGR Limits for OPTIMA2 Lattices 154, 161 (References 9 and 11) Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14,000 13.11 23,000 12.22 23,001 12.10 33,000 11.12 33,001 11.23 57,000 8.87 62,000 8.38 75,000 3.43 Table 5-6: LHGR Limits for OPTIMA2 Lattices 150,151,152, 155, 160, 162 (References 9 and 11) Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14,000 13.11 14,001 12.85 23,000 11.98 46,000 9.75 46,001 9.95 57,000 8.87 62,000 8.38 75,000 3.43 Page 78 of 90

COLR Dresden 2 Revision 17 Table 5-7: LHGR Limits for OPTIMA2 Lattices 149, 153 (References 9 and 11)

  .      "-llet Exposure                LHGR Limit (MWd/MTU)                           (kW/ft) 0                              13.72 14,000                            13.11 15,000                            13.01 15,001                            12.62 23,000                            11.85 33,000                            10.90 33,001                            11.23 57,000                             8.87 62,000                            8.38 75,000                             3.43 Table 5-8: LHGR Limits for OPTIMA2 Lattices 81, 89 (References 6, 9, and 11)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 11.96 14,000 11.43 23,000 10.66 57,000 8.87 62,000 8.38 75,000 3.43 Table 5-9: LHGR Limits for ATRIUM 10XM (Reference 12) Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 14.1 18,900 14.1 74,400 7.4 Page 79 of 90

COLA Dresden 2 Revision 17 Table 5-10: ATRIUM 10XM LHGRFACp Multipliers (Reference 12) Nominal FWT Core Flow Core Power (%rated) EOOS Condition (% rated) 0 25 <38.5 >38.5 60 90 100 Baserrcv Stuck S60 0.51 0.51 0.61 0.63 0.72 0.93 1.00 Closed/MSIVOOS > 60 0.51 0.51 0.61 S60 0.39 0.39 0.54 TBVOOS 0.63 0.72 0.93 0.96

                    > 60       0.39       0.39      0.50 TCV Slow Closure/    S60        0.51       0.51      0.61 0.63    0.72 0.93 1.00 PLUOOS/PCOOS        >60        0.51       0.51      0.61 FHOOS Core Flow                        Core Power (%rated)

EOOS Condition (% rated) 0 25 <38.5 >38.5 60 90 100 Baserrcv Stuck S60 0.47 0.47 0.55 0.63 0.72 0.93 1.00 Closed/MSIVOOS > 60 0.46 0.46 0.55 S60 0.37 0.37 0.50 TBVOOS 0.63 0.72 0.93 0.96

                    >60        0.36       0.36      0.48 TCV Slow Closure/    s 60       0.47       0.47      0.55 0.63   0.72  0.93 1.00 PLUOOS/PCOOS        > 60       0.46       0.46      0.55 Page 80 of 90

COLR Dresden 2 Revision 17 Table 5-11: OPTIMA2 LHGRFACp Multipliers (Reference 12) Nominal FWT Core Flow Core Power (%rated) EOOS Condition (% rated) 0 25 <38.5 >38.5 50 60 70 80 100 BasefTCV Stuck s 60 0.55 0.55 0.64 0.68 0.72 0.75 0.88 1.00 Closed/MSIVOOS >60 0.55 0.55 0.64 s 60 0.42 0.42 0.53 TBVOOS 0.68 0.72 0.75 1,. 0.84 0.98

                    > 60      0.42    0.42      0.52                                  .,

TCV Slow Closure/ s 60 0.55 0.55 0.64 0.64 0.69 0.74 0.88 1.00 PLUOOS/PCOOS > 60 0.55 0.55 0.64 FHOOS Core Flow Core Power (%rated) EOOS Condition (% rated) 0 25 <38.5 >38.5 50 60 70 80 100 BasefTCV Stuck S60 0.51 0.51 0.59 ('

_,,,r.,

0.64 0.71 0.75 *, 0.85 1.00 Closed/MSIVOOS >60 0.51 0.51 0.59 s 60 0.40 0.40 0.52 I* TBVOOS 0.64 0.71 0.75 0.84 0.98

                    >60       0.40    0.40      0.49 ITCV Slow Closure/   S60       0.51    0.51      0.59 0.64 0.69                     0.74               0.85 1.00 PLUOOS/PCOOS       >60       0.51    0.51      0.59                  "{','

Page 81 of 90

c------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - COLA Dresden 2 Revision 17 Table 5-12: ATRIUM 10XM LHGRFAC, Multipliers (Reference 12) Core Flow {% rated) LHGRFAC, 0.0 0.57 35.0 0.57 80.0 1.00 108.0 1.00 Table 5-13: OPTIMA2 LHGRFAC, Multipliers (Reference 12) Core Flow {% rated) LHGRFAC, 0.0 0.27 20.0 0.43 40.0 0.60 60.0 0.80 80.0 1.00 100.0 1.00 108.0 1.00 Page 82 of 90

COLR Dresden 2 Revision 17

6. Control Rod Block Setpoints Technical Specification Sections 3.3.2.1 and 3.4.1 The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown in Table 6-1:

Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints (Reference 3) ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 55% Operation Single Recirculation Loop 0.65 Wd + 51% Operation Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr. The setpoint may be lower/higher and will still comply with the CRWE analysis because CRWE is analyzed unblocked (Reference 12). Page 83 of 90

COLR Dresden 2 Revision 17

7. Stability Protection Setpoints Technical Specification Section 3.3.1.3 The OPRM PBDA Trip Settings are provided in Table 7-1.

Table 7-1: OPRM PBDA Trip Settings (Reference 12) Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np) 1.12 14 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system (Methodology 2). The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power/flow dependent MCPR limits. Any change to the OLMCPR values and/or the power/flow dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings. The OPRM PBDA trip settings are applicable when the OPRM system is declared operable and the associated Technical Specifications are implemented. Page 84 of 90

COLR Dresden 2 Revision 17

8. Modes of Operation The allowed modes of operation with combinations of EOOS are as described in Table 8-1. The EOOS conditions separated by"/" in these tables represent single EOOS conditions and not combinations of conditions.

Note that the following EOOS options have operational restrictions: all SLO, all EOOS options with 1 TCV/TSV stuck closed, and MSIVOOS. See Table 8-2 for specific restrictions. Table 8-1: Modes of Operation (Reference 12) EOOS Option Thermal Limit Set BASE CASE Base Case > TLO or SLO

                                                          > Nominal FWTor FHOOS TBVOOS TBVOOS                                                 > TLO or SLO
                                                          > Nominal FWT or FHOOS BASE CASE 1 TCV/TSV Stuck Closed                                 > TLO or SLO
                                                          > Nominal FWT or FHOOS MSIVOOS One MSIVOOS                                            > TLO orSLO
                                                          > Nominal FWT or FHOOS PLUOOS/TCV SLOW C TCV Slow Closure                                       > TLO or SLO
                                                          > Nominal FWT or FHOOS PLUOOS/TCV SLOW C PLUOOS                                                 > TLO or SLO
                                                          > Nominal FWT or FHOOS PLUOOS/TCV SLOW C PCOOS                                                  > TLO or SLO
                                                          > Nominal FWT or FHOOS PLUOOS/TCV SLOW C PLUOOS and 1 TCV/TSV Stuck Closed                      > TLO for Nominal FWT or FHOOS
                                                          > SLO for Nominal FWT*

PLUOOS/TCV SLOW C PCOOS and PLUOOS > TLO for Nominal FWT or FHOOS

                                                          > SLO for Nominal FWT*

PLUOOS/TCV SLOW C PCOOS and 1 TCV/TSV Stuck Closed > TLO for Nominal FWT or FHOOS

                                                          > SLO for Nominal FWT*
  • FHOOS cannot be applied to SLO for the cases of PLUOOS and 1 TCV/TSV Stuck Closed, for the case of PCOOS and PLUOOS, and for the case of PCOOS and 1 TCV/TSV Stuck Closed.

Page 85 of 90

COLA Dresden 2 Revision 17 Common Notes:

1. All modes are allowed for operation at MELLLA, ICF (up to 108% rated core flow but subject to the restrictions in Section 2), and coastdown subject to the power restrictions in Table 8-2 (Reference 12).

The licensing analysis supports full power operation to EOCLB (37,934 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The minimum coastdown power level cannot exceed 40% per Reference 1. Each OOS Option may be combined with each of the following conditions (Reference 12):

a. Up to 40% of the TIP channels OOS or the equivalent number of TIP channels, using the guidance in Reference 4 for startup with TIP machines OOS
b. Up to 50% of the LPRMs OOS
c. An LPRM calibration frequency of up to 2500 EFPH
2. Nominal FWT results are valid for application within a +10°F/-30°F temperature band around the nominal FWT curve (Reference 12). For operation outside of nominal FWT, a FWT reduction of between 30°F and 120°F is supported for all FHOOS conditions listed in Table 8-1 for cycle operation through EOCLB (Reference 12). At lower power levels, the feedwater temperature reduction is less (Reference 12). Per Reference 5, there is a restriction which requires that for a FWT reduction greater than 100°F, operation needs to be restricted to less than the 100% rod line. For a feedwater temperature reduction of between 30°F and 120°F, the FHOOS limits should be applied.
3. The base case and EOOS limits and multipliers support operation with 8 of 9 turbine bypass valves operational (i.e., one bypass valve out of service) with the exception of the TBVOOS condition in which all bypass valves are inoperable (Reference 12). Use of the response curve in TAM Appendix H supports operation with any single TBV OOS. TAM Appendix H facilitates analysis with one valve OOS in that the capacity at 0.5 seconds from start of TSV closure is equivalent to the total capacity with eight out of the nine valves in service (References 13 and 15). The analyses also support Turbine Bypass flow of 29.8% of vessel rated steam flow (References 13 and 15), equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), if the assumed opening profile for the remaining TBVs is met. If the opening profile is NOT met, or if the TBV system CANNOT pass an equivalent of 29.8% of vessel rated steam flow, utilize the TBVOOS condition.
4. TBVOOS assumes that ALL the TBVs do not trip open on TCV fast closure or TSV closure and that ALL the TBVs are not capable of opening via the pressure control system (Reference 14). Steam relief capacity is defined in References 13 and 15.
5. Between 25% and 50% of rated thermal power, the PLUOOS/TCV Slow Closure thermal limit set ensures that the AOO acceptance criteria are met for a load rejection event if the 86 Device is OOS (Reference 12). Therefore, use the PLUOOS/TCV Slow Closure thermal limit set between 25% and 50% of rated thermal power if the 86 Device is OOS.

Page 86 of 90

COL R Dresden 2 Revision 17 Table 8-2: Core Th ermal Power Restriction for OOS Conditions (Reference 12) Core Fl ow(% of Core Thermal Power (% EOOS Condition Rod Line(%) Ra ted) of Rated Power) 1 TCVfTSV Stuck Closed PCOOS and 1 TCVrrsv Stuck Closed N/A < 75 < 80 PLUOOS and 1 TCVrrsv Stuck Closed One MSIVOOS N/A < 75 N/A SLO < 51 < 50 N/A All requirements for all applicable condi tions listed in Table 8-2 MUST be met. Page 87 of 90

COLR Dresden 2 Revision 17

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. GE Topical Report NEDE-24011-P-A, Revision 15, "General Electric Standard Application for Reactor Fuel (GESTAR)," September 2005.
2. GE Topical Report NED0-32465-A, Revision 0, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1996. *
3. Westinghouse Topical Report CENPD-300-P-A, Revision 0, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.
4. Westinghouse Report WCAP-15682-P-A, Revision 0, "Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application," April 2003.

5. Westinghouse Report WCAP-16078-P-A, Revision 0, "Westinghouse BWR ECCS Evaluation Model:

Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel," November 2004.

6. Westinghouse Report WCAP-16865-P-A, Revision 1, "Westinghouse BWR ECCS Evaluation Model Updates: Supplement 4 to Code Description, Qualification and Application," October 2011.
7. Westinghouse ReportWCAP-16081-P-A, Revision 0, "10x10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.
8. Westinghouse Topical Report WCAP-15836-P-A, Revision 0, "Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1," April 2006.
9. Westinghouse Topical Report WCAP-15942-P-A, Revision 0, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENPD-287," March 2006.
10. Westinghouse Topical Report CENPD-390-P-A, Revision 0, The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
11. Exxon Nuclear Company Report XN-NF-81-58(P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," March 1984.
12. Advanced Nuclear Fuels Corporation Report ANF-89-98(P)(A), Revision 1 and Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
13. Siemens Power Corporation Report EMF-85-74(P), Revision O Supplement 1 (P)(A) and Supplement 2 (P)(A), "RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model," February 1998.
14. AREVA NP Topical Report BAW-10247PA, Revision 0, "Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors," February 2008.
15. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 1 Revision O and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.

Page 88 of 90

COLR Dresden 2 Revision 17

16. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology for BWR Reloads,"

June 1986.

17. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERM EX: Thermal Limits Methodology Summary Description," January 1987.
18. Siemens Power Corporation Topical Report EMF-2158(P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASM0-4/MICROBURN-B2," October 1999.
19. Siemens Power Corporation Report EMF-2245(P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel," August 2000.
20. AREVA NP Report EMF-2209(P)(A}, Revision 3, "SPCB Critical Power Correlation," September 2009.
21. AREVA Topical Report ANP-10298P-A, Revision 1, "ACE/ATRIUM 10XM Critical Power Correlation,"

March 2014.

22. AREVA NP Topical Report ANP-10307PA, Revision 0, "AREVA MCPR Safety Limit Methodology for Boiling Water Reactors," June 2011.
23. Exxon Nuclear Company Report XN-NF-84-105(P)(A}, Volume 1 Revision O and Volume 1 Supplements 1 and 2, "XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis," February 1987.
24. Advanced Nuclear Fuels Corporation Report ANF-913(P)(A), Volume 1 Revision 1 and Volume 1 Supplements 2, 3, and 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses," August 1990.
25. Framatome ANP Report EMF-2361 (P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model,"

May 2001.

26. Siemens Power Corporation Report EMF-2292(P)(A), Revision 0, "ATRIUM'-10: Appendix K Spray Heat Transfer Coefficients," September 2000.
27. Framatome ANP Topical Report ANF-1358(P)(A), Revision 3, "The Loss of Feedwater Heating Transient in Boiling Water Reactors," September 2005.
28. Siemens Power Corporation Topical Report EMF-CC-074(P)(A), Volume 4 Revision 0, "BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2," August 2000.

Page 89 of 90

COLR Dresden 2 Revision 17

10. References
1. Exelon Generation Company, LLC, Docket No. 50-237, Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License, License No. DPR-19.
2. Exelon Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, "Control Rod Scram Times."
3. Exelon Design Analysis GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation Rod Block Monitor," July 30, 2012.
4. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004.

(Exelon EC 348897-000)

5. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
6. Westinghouse Document NF-BEX-13-66, Revision 0, "Bundle Design Report for Dresden 2 Cycle 24,"

May 3, 2013.

7. Westinghouse Document NF-BEX-13-111-NP, Revision 0, "Dresden Nuclear Power Station Unit 2 Cycle 24 MAPLHGR Report," September 2013.
8. Westinghouse Document NF-BEX-15-12, Revision 0, "Linear Heat Generation Rate Limits for Fresh and Once-Burned Fuel Loaded in Dresden Unit 2 Cycle 24," January 14, 2015.
9. Westinghouse Document NF-BEX-15-72, Revision 0, "Bundle Design Report for Dresden 2 Cycle 25,"

April 17, 2015.

10. Westinghouse Document NF-BEX-15-101-NP, Revision 0, "Dresden Nuclear Power Station Unit 2 Cycle 25 MAPLHGR Report," September 2015.
11. Westinghouse Document NF-BEX-15-157, Revision 0, "Linear Heat Generation Rate Limits for Fresh Fuel Loaded in Dresden Unit 2 Cycle 25," October 28, 2015.
12. AREVA Report ANP-3605P, Revision 0, "Dresden Unit 2 Cycle 26 Reload Safety Analysis," September 2017.
13. Exelon TODI ES 1700005, Revision 1, "Dresden Unit 2 Cycle 26 Plant Parameters Document," March 17, 2017.
14. Exelon TODI ES1500011, Revision 0, "Equipment Out of Service Description for Transition to AREVA Fuel - Dresden," May 20, 2015.
15. Exelon TODI ES1700017, Revision 0, "AREVA Input Request for Dresden Units 2 and 3 Reload Analysis," August 29, 2017.

Page 90 of 90}}