SVPLTR 07-0051, Core Operating Limits Report for Unit 2 Cycle 21, Revision 0

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Unit 2 Cycle 21, Revision 0
ML073180460
Person / Time
Site: Dresden Constellation icon.png
Issue date: 11/07/2007
From: Bost D
Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
SVPLTR: #07-0051
Download: ML073180460 (35)


Text

Exelon Generation Company, LLC www.exeloncorp.com Exelkn,. Nuclear Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL60450-9765 SVPLTR: #07-0051 November 07, 2007 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington D.C. 20555-0001 Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License No. DPR-19 NRC Docket No. 50-237

Subject:

Core Operating Limits Report for Unit 2 Cycle 21, Revision 0 The purpose of this letter is to transmit the Core Operating Limits Report (COLR) for Dresden Nuclear Power Station (DNPS) Unit 2 operating cycle 21 (D2C21), Revision 0, in accordance with Technical Specifications Section 5.6.5, "CORE OPERATING LIMITS REPORT (COLR)."

The Unit 2 COLR was revised to utilize Westinghouse methodologies, which are approved by the NRC, for the transition to OPTIMA2 fuel and to support the reload design for Cycle 21.

Should you have any questions concerning this letter, please contact Mr. Jim Ellis at 815-416-2800.

Respectfully, Danny s Site Vic~e President Dresden Nuclear Power Station

Attachment:

COLR for Dresden Unit 2 Cycle 21, Revision 0 cc: Regional Administrator - NRC Region III NRC Senior Resident Inspector - Dresden Nuclear Power Station

Attachment COLR for Dresden Unit 2 Cycle 21 Revision 0

COLR Dresden 2 Revision 5 Page 1 Core Operating Limits Report For Dresden Unit 2 Cycle 21 Revision 0 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 2 Table of Contents

1. Terms and Definitions ............................................................... 4
2. General Information ................................................................. 5
3. Average Planar Linear Heat Generation Rate .......................... 6
4. Operating Limit Minimum Critical Power Ratio ......................... 10 4.1. Manual Flow Control MCPR Limits ................................... 10 4.1.1. Power-Dependent MCPR ............................................. 10 4.1.2. Flow-Dependent MCPR ............................................... 10 4.2. Automatic Flow Control MCPR Limits ............................... 10 4.3. Scram Time ..................................................................... 10 4.4. Recirculation Pump Motor Generator Settings .................. 11
5. Linear Heat Generation Rate .................................................... 19
6. Rod Block Monitor ................................................................ 28
7. Stability Protection Setpoints ................................................... 29
8. Modes of Operation .............................................................. 30
9. Methodology ........................................................................... 32
10. References .......................................................................... 33 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 3 List of Tables Table 3-1 MAPLHGR for bundle(s):

GE1 4-P1 ODNAB418-16GZ-1 OOT-1 45-T6-2646 GE14-Pl ODNAB389-1 8GZ- 1OOT- 145-T6-2650 GE14-Pl ODNAB390-16GZ-1 OOT-145-T6-2851 GE14-P1ODNAB397-1 8GZ-1 OQT-1 45-T6-2852 ................................................. 6 Table 3-2 MAPLHGR for bundle/lattice:

Opt2-3.97-1 1G8.00-4GZS.00-3G6.00/Lattices 81 and 89 Opt2-4.04-10G7.00-2GZ7.00-2G6.00/Lattices 81 and 89 .......................................... 6 Table 3-3 MAPLHGR for bundle/lattice:

Opt2-3.97-1 1G8.00-4GZ8.00-3G6.00/Lattices 82, 83, and 84 .................................... 7 Table 3-4 MAPLHGR for bundle/lattice:

Opt2-3.97- 1G8.00-4GZ8.00-3G6.00/Lattices 85 and 87 .......................................... 7 Table 3-5 MAPLHGR for bundle/lattice:

Opt2-3.97- 1G8.00-4GZ8.00-3G6.00/Lattice 88 ........................................................ 7 Table 3-6 MAPLHGR for bundle/lattice:

Opt2-4.04-10G7.00-2GZ7.00-2G6.00/Lattices 90 and 91 .......................................... 8 Table 3-7 MAPLHGR for bundle/lattice:

Opt2-4.04-10G7.00-2GZ7.00-2G6.00/Lattices 92 and 93 ........................................... 8 Table 3-8 MAPLHGR for bundle/lattice:

Opt2-4.04-10G7.00-2GZ7.00-2G6.00/Lattice 94 ................................................. 8 Table 3-9 MAPLHGR SLO m ultipliers ....................................................................... 9 Table 4-1 Scram Times ..................................................... 11 Table 4-2 MCPR TSSS Based Operating Limits - NFWT and RFWT ............................. 12 Table 4-3 MCPR ISS Based Operating Limits - NFWT and RFWT ................................. 13 Table 4-4 MCPR NSS Based Operating Limits - NFWT .............................................. 14 Table 4-5 MCPR NSS Based Operating Limits - RFWT ............................ 15 Table 4-6 MCPR(P) for GE and Westinghouse Fuel - NFWT ............................. 16 Table 4-7 MCPR(P) for GE and Westinghouse Fuel - RFWT ........................................ 17 Table 4-8 MCPR(F) for GE and Westinghouse Fuel ................................................... 18 Table 5-1: LHGR Limit for GE14-P1ODNAB418-16GZ-100T-145-T6-2646 ........................ 19 Table 5-2: LHGR Limit for GE14-P1ODNAB418-16GZ-100T-145-T6-2646, Lattice 5972 ....... 20 Table 5-3: LHGR Limit for GEl4-PiODNAB418-16GZ-10OT-145-T6-2646, Lattice 5973 ....... 21 Table 5-4: LHGR Limit for GE14-P 1ODNAB389-18GZ-100T-145-T6-2650 ......................... 22 Table 5-5: LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5996 ....... 22 Table 5-6: LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5997 ....... 23 Table 5-7: LHGR Limit for GE14-P10DNAB397-18GZ-100T-145-T6-2852 and GE14-P1ODNAB390-16GZ-1OOT-145-T6-2851, all Lattices ............................... 23 Table 5-8: LHGR Limit for Westinghouse Optima2 Fuel Opt2-3.97- 11 G8.00-4GZ8.00-3G6.00 and Opt2-4.04-1 0G7.00-2GZ7.00-2G6.00 ............................................................ 24 Table 5-9 LHGRFAC(P) for Optima2 Fuel .................................................................... 25 Table 5-10 LHGRFAC(P) for GE14 Fuel - DLO .......................................................... 25 Table 5-11 LHGRFAC(P) for GE14 Fuel - SLO ........................................................... 26 Table 5-12 LHGRFAC(F) for Optima2 Fuel .................................................................... 27 Table 5-13 LHGRFAC(F) for GE14 Fuel .................................................................... 27 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 4

1. Terms and Definitions DLO Dual loop operation EFPH Effective full power hours EOC End of cycle EOOS Equipment out of service FFTR Final feedwater temperature reduction FWHOOS Feedwater heater out of service GEl4 GE14C fuel GNF Global Nuclear Fuel ICF Increased core flow ISS Intermediate scram speed LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum critical power ratio MCPR(F) Flow dependent MCPR MCPR(P) Power dependent MCPR MELLLA Maximum extended load line limit analysis MSIV Main steam isolation valve NFWT Nominal feed-water temperature NSS Nominal scram speed OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PROOS Pressure regulator out of service RFWT Reduced feed-water temperature RWCU Reactor water clean-up RWE Rod withdrawal error SLO Single loop operation TBPOOS Turbine bypass system out of service TBV Turbine bypass valve TCV Turbine control valve TCVOOS Turbine control valve out of service TIP Traversing incore probe TSSS Technical Specification scram speed TSV Turbine stop valve TSVOOS Turbine stop valve out of service Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 5

2. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is analyzed for this cycle.

Licensed rated thermal power is 2957 MWth.

MCPR(P) and MCPR(F) values are independent of scram speed.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow thermal limit values, respectively, can be used unless otherwise indicated in the applicable table.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

For both Base and EOOS DLO/SLO conditions, for operation at NFWT, the OLMCPR limit is applicable to a variation of +10°F/-30*F in feedwater temperature, and an operating steam dome pressure region bounded by the maximum value of 1020 psia and the minimum pressure curve from the Reactor Dome Pressure Operating Domain figure in References 18 and 8. For operation outside of NFWT, a feedwater temperature reduction of up to 120'F (RFWT) is also supported for cycle operation through EOC. This includes, but is not limited to, Feedwater Heaters OOS (FWHOOS) and Final Feedwater Temperature Reduction (FFTR). For a feedwater temperature reduction of between 30°F and 120 0 F, RFWT limits should be applied.

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 6

3. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of the GE14 bundle types as a function of average planar exposure is given in Table 3-1. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 3-9.

For Optima2 bundle types, lattice-specific MAPLHGR values for DLO are provided in Tables 3-2 through 3-8. The MAPLHGR limits for the top and bottom natural uranium lattices (lattices 81 and

89) will be set equal to the most restrictive MAPLHGR limits for the other lattice types. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 3-9.

Table 3-1 MAPLHGR for bundle(s):

GE14-PI1ODNAB418-16GZ-10OT-145-T6-2646 GE14-P1ODNAB389-18GZ-10OT-145-T6-2650 GE14-P1ODNAB390-16GZ-10OT-145-T6-2851 GE14-P1ODNAB397-18GZ-10OT-145-T6-2852 (References 11 and 16)

Avg. Planar Exposure MAPLHGR (GWdIMT) (kW/ft) 0.00 11.68 16.00 11.68 55.12 8.02 63.50 6.97 70.00 4.36 Table 3-2 MAPLHGR for bundle/lattice:

Opt2-3.97-1 1G8.00-4GZ8.O0-3G6.00 Opt2-4.04-1 0G7.00-2GZ7.00-2G6.00 Lattices 81 and 89 (References 3 and 15)

Average Planar DLO Exposure MAPLHGR (MWd/MTU) (kW/tt) 0 9.42 7500 9.28 17500 9.28 24000 9.67 58000 9.67 70000 7.48 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page7 Table 3-3 MAPLHGR for bundle/lattice:

Opt2-3.97-1 1 G8.00-4GZ8.00-3G6.00 Lattices 82, 83, and 84 (References 3 and 15)

Average Planar DLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.42 7500 9.28 17500 9.28 24000 9.67 58000 9.67 70000 7.49 Table 3-4 MAPLHGR for bundle/lattice:

Opt2-3.97-11 G8.00-4GZ8.00-3G6.00 Lattices 85 and 87 (References 3 and 15)

Average Planar DLO Exposure MAPLHGR (MWd/MTU) (kWtft) 0 9.77 7500 9.48 17500 9.48 24000 9.79 58000 9.79 70000 7.50 Table 3-5 MAPLHGR for bundle/lattice:

Opt2-3.97-11 G8.00-4GZ8.O0-3G6.00 Lattice 88 (References 3 and 15)

Average Planar DLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.35 10000 9.89 20000 9.89 24000 10.06 58000 10.06 70000 7.54

/2/

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 8 Table 3-6 MAPLHGR for bundle/lattice:

Opt2-4.04-10G7.00-2GZ7.00-2G6.00 Lattices 90 and 91 (References 3 and 15)

Average Planar DLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.09 10000 9.75 58000 9.75 70000 7.48 Table 3-7 MAPLHGR for bundle/lattice:

Opt2-4.04-10G7.00-2GZ7.00-2G6.00 Lattices 92 and 93 (References 3 and 15)

Average Planar DLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.27 10000 9.83 58000 9.83 77000 7.50 Table 3-8 MAPLHGR for bundle/lattice:

Opt2-4.04-1 0G7.00-2GZ7.00-2G6.00 Lattice 94 (References 3 and 15)

Average Planar DLO Exposure MAPLHGR (MWd/MTU) (kW/ff) 0 10.88 10000 10.13 58000 10.13 70000 7.53 I-Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 9 Table 3-9 MAPLHGR SLO multipliers (References 3 and 11)

.... .... SLO Fuel Type Multiplier GE14 ] 0.77 Optima2 0.86 1')

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 10

4. Operating Limit Minimum Critical Power Ratio 4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCPR For operation at less than 38.5% core thermal power, the OLMCPR as a function of core thermal power is shown in Tables 4-6 and 4-7. For operation at greater than 38.5% core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Tables 4-2 through 4-5 by the applicable MCPR multiplier K(P) given in Tables 4-6 and 4-7. For operation at exactly 38.5% core thermal power, the OLMCPR as a function of core thermal power is the higher of either of the two methods evaluated at 38.5% core thermal power.

4.1.2. Flow-Dependent MCPR Table 4-8 gives the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from this table is the flow dependent OLMCPR.

4.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.

4.3. Scram Time TSSS, ISS, and NSS refer to scram speeds. TSSS is the Technical Specification Scram Speed, ISS is the Intermediate Scram Speed, and NSS is the Nominal Scram Speed.

The scram time values are shown in Table 4-1.

The NSS scram times are based on a conservative interpretation of scram time surveillance measurements. In the event that plant surveillance shows these scram insertion times to be exceeded, the MCPR limits are to default to the values which correspond to the ISS scram time. The ISS times have been chosen to provide an intermediate value between the NSS and TSSS, but interpolation between these values is not supported by Westinghouse methodology. In the event that the ISS times are exceeded, MCPR limits for the TSSS apply.

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 11 Table 4-1 Scram Times (References 3 and 5)

Control Rod Insertion Fraction TSSS (seconds) ISS (seconds) NSS (seconds)

(%)__ _ _ _ _

5 0.48 0.360 0.324 20 0.89 0.720 0.700 50 1.98 1.580 1.510 90 3.44 2.740 2.635 4.4. Recirculation Pump Motor Generator Settings Cycle 21 was analyzed with a maximum core flow runout of 110%; therefore the recirculation pump motor generator scoop tube mechanical and electrical stops must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events (Reference 10). This value is consistent with the analyses of Reference 3.

F "

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 12 Table 4-2 MCPR TSSS Based Operating Limits - NFWT and RFWVT (Reference 3)

Cycle Exposure

< 10700 > 10700 EOOS Combination Fuel Type ,MWd/MT MWdIMT Optima2 1.78 1.89 BASE GE14 1.86 1.90 Optima2 1.82 1.93 BASE SLO GE14 1.90 1.94 Optima2 1.86 1.93 PLUMOS GE14 1.92 1.96 Optim a2 1.90 1.97 PLUMOS SLO GE14 1.96 2.00 Optima2 2.15 2.19 TBPOOS GE14 2.08 2.11 Optima2 2.19 2.23 TBPOOS SLO GE14 2.12 2.15 Optima2 1.91 1.99 TCV SLOW CLOSURE GE14 1.95 1.98 Optima2 1.95 2.03 TCV SLOW CLOSURE SLO GE14 1.99 2.02 Optima2 1.78 1.89 TCV STUCK CLOSED GE14 1.86 1.90 Optima2 1.82 1.93 TCV STUCK CLOSED SLO GE14 1.90 1.94 7,

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 13 Table 4-3 MCPR ISS Based Operating Limits - NFWT and RFWT (Reference 3)

Cycle Exposure 5 10700 > 10700 EOOS Combination Fuel Type MWdIMT MWdIMT Optima2 1.54 1.60 BASE GE14 1.66 1.66 Optima2 1.57 1.63 BASE SLO GE14 1.69 1.69 Optima2 1.59 1.67 PLUMOS GE14 1.70 1.71 Optima2 1.62 1.70 PLUOOS SLO GE14. 1.74 1.75 Optima2 1.77 1.83 TBPOOS GE14 1.84 1.89 Optima2 1.81 1.87 TBPOOS SLO GE14 1.88 1.93 Optima2 1.63 1.71 TCV SLOW CLOSURE GE14 1.73 1.76 Optima2 1.66 1.75 TCV SLOW CLOSURE SLO GE14 1.77 1.80 Optima2 1.54 1.60 TCV STUCK CLOSED GE14 1.66 1.66 Optima2 1.57 1.63 TCV STUCK CLOSED SLO GE14 1.69 1.69 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 14 Table 4-4 MCPR NSS Based Operating Limits - NFWT (Reference 3)

Cycle Exposure

< 10700 > 10700 EOOS Combination Fuel Type MWdIMT MWdIMT Optima2 1.54 1.56 BASE GE14 1.66 1.66 Optima2 1.57 1.59 BASE SLO GE14 1.69 1.69 Optima2 1.56 1.63 PLUOOS GE14 1.67 1.70 Optima2 1.59 1.66 PLUOOS SLO GE14 1.70 1.74 Optima2 1.73 1.80 TBPOOS GE14 1.83 1.87 Optima2 1.77 1.84 TBPOOS SLO GE14 1.87 1.91 Optima2 1.59 1.67 TCV SLOW CLOSURE GE14 1.69 1.72 Optima2 1.62 1.70 TCV SLOW CLOSURE SLO GE14 1.73 1.76 Optima2 1.54 1.56 TCV STUCK CLOSED GE14 1.66 1.66 Optima2 1.57 1.59 TCV STUCK CLOSED SLO GE14 1.69 1.69 Dresden Unit 2 Cycle 21

COLA Dresden 2 Revision 5 Page 15 Table 4-5 MCPR NSS Based Operating Limits - RFWT (Reference 3)

Cycle Exposure 5 10700 > 10700 EOOS Combination FuelType MWd/MT MWd/MT Optima2 1.54 1.59 BASE GE14 1.66 1.66 Optima2 1.57 1.62 BASE SLO GE14 1.69 1.69 Optima2 1.56 1.63 PLUOOS GE14 1.67 1.70 Optima2 1.59 1.66 PLUOOS SLO GE14 1.70 1.74 Optima2 1.73 1.80 TBPOOS GE14 1.83 1.87 Optima2 1.77 1.84 TBPOOS SLO GE14 1.87 1.91 Optima2 1.59 1.67 TCV SLOW CLOSURE GE14 1.69 1.72 Optima2 1.62 1.70 TCV SLOW CLOSURE SLO GE14 1.73 1.76 Optima2 1.54 1.59 TCV STUCK CLOSED GE14 1.66 1.66 Optima2 1.57 1.62 TCV STUCK CLOSED SLO GE14 1.69 1.69 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 16 Table 4-6 MCPR(P) for GE and Westinghouse Fuel - NFWT (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination Flow 0 1 25 1 38.5 38.5.1 50 1 60 1 80 100

(% of rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base < 60 2.89 2.47 2.25 1.37 1.25 1.15 1.07 1.00

> 60 2.77 2.65 2.58 Base SLO <_60

> 60 2.95 2.82 2.52 2.70 2.30 2.63 1.37 1.25 1.15 1.07 1.00 PLUOOS :S 60

> 60 2.89 2.77 2.47 2.65 2.25 2.58 1.61 1.51 1.43 1.07 1.00 PLUOOS SLO :s 60

> 60 2.95 2.82 2.52 2.70 2.30 2.63 1.61 1.51 1.43 1.07 1.00 TBPOOS < 60

> 60 4.28 4.00 3.19 3.33 2.61 2.97 1.37 1.25 1.15 1.07 1.00 TBPOOS SLO _<60

> 60 4.36 4.08 3.25 3.39 2.66 3.03 1.37 1.25 1.15 1.07 1.00 TCV Slow Closure <

60 60 2.89 2.77 2.47 2.65 2.25 2.58 1.58 1.47 1.40 1.07 1.00 TCV Slow Closure SLO <

60 60 2.95 2.82 2.52 2.70 2.30 2.63 _

1.58 1.47 1.40 1.07 1.00 TCV Stuck Closed <60

> 60 2.89 2.77 2.47 2.65 2.25 2.58 137 1.25 1.15 1.07 1.00 TCV Stuck Closed SLO <60

> 60 2.95 2.82 2.52 2.70 2.30 2.63 1.37 1.25 1.15 1.07 1.00 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 17 Table 4-7 MCPR(P) for GE and Westinghouse Fuel - RF'WT (Reference 3)

Core .Core Thermal Power (% of rated)

EOOS Combination Flow

(% Of' 0 1 1 3 8.5 38.5 50 1 60 180 100 rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base < 60 2.89 2.47 2.26 1.45 1.31 1.22 1.08 1.00

> 60 2.77 2.65 2.58 Base SLO <S60 2.95 2.52 2.31 1.45 1.31 1.22 1.08 1.00

> 60 2.82 2.70 2.63 PLUOOS <__ 60 2.89 2.47 2.26 1.61 1.51 1.43 1.08 1.00

> 60 2.77 2.65 2.58 PLUOOS SLO <060

<LQSL 2.95 2.5 2.52

.2 2.31 231 1.61 1 51 1.43 1.08 1.00

  • 60 2.82 2.70 2.63 TBPOOS < 60 4.56 3.37 2.73 1.45 1.31 1.22 1.08 1.00
  • 60 4.00 . 3.33 3.05 TBPOOS SLO *> 60 60 4.65 4.08 3.44 3.39 2.78 3.11 1.45 1.31 1.22 1.08 1.00 TCV Slow Closure <_,60 2.89 2.47 2.26 1.58 1.47 1.40 1.08 1.00

> 60 2.77 2.65 2.58 TCV Slow Closure SLO - 60 2.95 2.52 2.31 1.58 1.47 1.40 1.08 1.00

> 60 2.82 2.70 2.63 TCV Stuck Closed  :> 60 60 2.89 2.77 2.47 2.65 2.26 2.58 1.31 1.22 1.08 1.00 TCV Stuck Closed SLO C 60 60 2.95 2.52 2.31 1.45 1.31 1.22 1.08 2.82 2.70 2.63 Dresden Unit 2 Cycle 21 4

COLR Dresden 2 Revision 5 Page 18 Table 4-8 MCPR(F) for GE and Westinghouse Fuel (Reference 3)

Flow-IDependetit NICiIR fo*r \"arsim's CC~i~ ICf'*VA'*lhlt ',oditiomls EOOS Condition Fuel Type Flow (% of 98 MIb/hr) 0 40 50 55 100 110 Base. PLUOOS, TCV Optima2 2.11 1.75 1.38 1.38 Slow Closure DLO GE14 2.20 1.85 1.47 1.47 Base. PLUCOS, TCV Optima2 2.15 1.78 1.40 1.40 Slow Closure SLO GE14 2.24 1.88 1.50 1.50 Optima2 2.11 1.75 1.75 1.38 1.38 TBPOOSOLO GEl4 2.20 1.85 , '," 1,85 1.47 1.47 Optima2 2.15 1.78 1.78 . 1.40 1.40 T P SL...........GEI4 2.24 1.88 ___ 1.88 1.50 1.50 One TCVfTSV Stuck Optima2 2.11 1.75 1.75 1.38 1.38 Closed DLO GE14 2,20 1.85 1.85 1.47 1.47 One TCVITSV Stuck Optima2 2.15 1.78 1.78 1.40 1.40 Closed SLO GE14 2.24 1.88 1.88 1 50 1,50 4g Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 19

5. Linear Heat Generation Rate The maximum Steady-State LHGR shall not exceed the limit of 13.4 KW/ft for the following fuel bundles (Reference 9).

GE14-P1ODNAB418-16GZ-10OT-145-T6-2646 GE14-P1ODNAB389-18GZ-1OOT-145-T6-2650 GE14-P1ODNAB390-16GZ-10OT-145-T6-2851 GE14-P1ODNAB397-18GZ-10OT-145-T6-2852 The thermal mechanical operating limit at rated conditions for the Optima2 fuel is established in terms of the maximum LHGR given in Table 5-8 as a function of rod nodal (pellet) exposure. The limit applies to all Optima2 bundle designs.

The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 5-1 through 5-8 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), the flow dependent LHGR Factor, LHGRFAC(F); or the single loop operation (SLO) multiplication factor where applicable. The LHGRFAC(P) is determined from Tables 5-9 through 5.11, as applicable. The LHGRFAC(F) is determined from Table 5-12 or 5-13.

Table 5-1: LHGR Limit for GE14-P1ODNAB418-16GZ-100T-145-T6-2646 (Reference 12)

Lattices 5963, 5970, 5971, 5974 and 5975 Composite Limit kW/ft 5963: P10DNAL071-NOG-10OT-T6-5963 5970: P1ODNAL465-16G7.0-1OOT-T6-5970 5971: P1ODNAL465-13G7.0/3G6.0-10OT-T6-5971 5974: P1ODNAL071-NOG-1OOT-V-T6-5974 5975: P1ODNAL071-16GE-10OT-V-T6-5975 U02 Pellet Bumup Composite Limit (GWdIMTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 20 Table 5-2: LHGR Limit for GE14-P1ODNAB418-16GZ-100T-145-T6-2646, Lattice 5972 (Reference 12)

Lattice 5972 Composite Limit kW/ft P1 ODNAL461-12G7.0/3G6.*1 OOT-E-T6-5972 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWlft) 0.0000 13.4000 15.9515 13.4000 17.2857 13.2538 18.1089 13.1602 19.4140 13.0119 20.7050 12.8651 23.2463 12.5762 26.9800 12.1517 33.0780 11.4585 39.0585 10.7786 44.9195 10.0506 50.6634 9.3499 56.3043 8.7427 61.8691 8.1854 67.3941 6.2027 70.0000 5.0000 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 21 Table 5-3: LHGR Limit for GE14-P1ODNAB418-16GZ-100T-145-T6-2646, Lattice 5973 (Reference 12)

Lattice 5973 Composite Limit kWlft P1 ODNAL461-12G7.0/3G6.0-1 OOT-V-T6-5973 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWtft) 0.0000 13.4000 14.6537 13.4000 16.0077 13.3991 17.3409 13.2476 18.1982 13.1501 19.5019 13.0019 20.7905 12.8554 23.3251 12.5672 27.0482 12.1440 33.1306 11.4525 39.0945 10.7607 44.9367 9.9688 50.6595 9.2608 56.2772 8.6476 61.8172 8.1267 67.3169 6.2384 70.0000 5.0000 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 22 Table 5-4: LHGR Limit for GE14-P10DNAB389-18GZ-100T-145-T6-2650 (Reference 12)

Lattices 5963, 5994, 5995, 5998 and 5999 Composite Limit kW/ft 5963: P1ODNAL071-NOG-100T-T6-5963 5994: P1ODNAL430-17G8.0/I1G3.0-10OT-T6-5994 5995: P1ODNAL431-9G8.0/8G6.OI G3.0-10OT-T6-5995 5998: P10DNAL071-NOG-10OT-V-T6-5998 5999: P1ODNAL071-18GE-10OT-V-T6-5999 U02 Pellet Burnup Composite Limit (GWcIIMTU) (kW/tt) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 5-5: LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5996 (Reference 12)

Lattice 5996 Composite Limit kW/ft P1ODNAL430-7G8.0/8G6.O-1OOT-E-T6-5996 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 14.8906 13.4000 16.2580 13.3707 17.6015 13.2179 18.9215 13.0679 19.4423 13.0087 20.7453 12.8605 23.3142 12.5685 27.0881 12.1395 33.2434 11.4389 39.2913 10.5936 45.2308 9.8060 51.0564 9.1014 56.7750 8.4943 61.9432 8.0319 67.9800 5.9323 70.0000 5.0000 Dresden Unit 2 Cycle 21

- ilý

COLR Dresden 2 Revision 5 Page 23 Table 5-6: LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5997 (Reference 12)

Lattice 5997 Composite Limit kW/ft P1ODNAL430-7G8.0/8G6.0-10OT-V-T6-5997 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 14.9485 13.4000 16.3156 13.3641 17.6577 13.1592 18.9752 12.9330 19.3601 12.9427 20.6567 12.8235 23.2117 12.5211 26.9637 12.0810 33.0874 11.3527 39.1088 10.5071 45.0238 9.6894 50.6192 8.9710 56.3453 8.3308 62.0012 7.7843 67.6125 6.1019 70.0000 5.0000 Table 5-7: LHGR Limit for GE14-P10DNAB397-18GZ-100T-145-T6-2852 and GE14-P1ODNAB390-16GZ-10OT-145-T6-2851, all Lattices (Reference 13)

Composite Limit (kWlft), all Lattices U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 24 Table 5-8 LHGR Limit for Westinghouse Optlma2 Fuel Opt2-3.97-11 G8.00-4GZ8.00-3G6.00 Opt2-4.04-1 0G7.00-2GZ7.00-2G6.00 (Reference 3)

Rod Nodal Exposure LHGR Limit (GWdIMTU) (kW/ft) 0.00 13.11 14.00 13.11 72.00 6.48

/ _1 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 25 Table 5-9 LHGRFAC(P) for Optlma2 Fuel (Reference 3)

SVEA-96 Optima2 Power-Dependent Multipliers for the LHGR Limits EOOS Combination Core Thermal Power (% of rated),

0 25 38.5 38.5 50 60 80 100 102 Base 0.45 0.58 0.65 0.72 0.78 0.83 0.93 1.00 1.00 Base SLO 0.45 0.58 0.65 0.72 0.78 0.83 0.93 1.00 1.00 PLUOOS 0.45 0.58 0.65 0.69 0.76 0.83 0.93 1.00 1.00 PLUOOS SLO 0.45 0.58 0.65 0.69 0.76 0.83 0.93 1.00 1.00 TBPOOS 0.37 0,45 0.49 0.71 0.78 0.83 0.93 1.00 1.00 TBPOOS SLO 0.37 0.45 0.49 0.71 0.78 0.83 0.93 1,00 1,00 TCV Slow Closure 0.45 0.58 0.65 0.71 0.78 0.83 0.93 1.00 1.00 TCV Slow Closure SLO 0.45 0.58 0.65 0.71 0.78 0.83 0.93 1.00 1.00 TCV Stuck Closed 0.45 0.58 0.65 0.72 0.78 0.83 0.93 1.00 1.00 TCV Stuck Closed SLO 0.45 0.58 0.65 0.72 0.78 0.83 0.93 1.00 1.00 Table 5-10 LHGRFAC(P) for GE14 Fuel - DLO (Reference 3)

GE14 Power-Dependent Multipliers for LHGR Limits DLO EOOS Combination Core Thermal Power (% of rated) 0 25 38.5 38.5 70 70 80 100 102 Base 0.50 0.56 0.59 0.68 0,86 1.00 1.00 PLUOOS 0.54 0.54 0.54 0.54 0.73 0.78 1.00 1.00 TBPOOS S-60% core flow 0.22 0.48 0.39 0.54 1.00 1.00

>60% core flow 0.33 0.42 TCV Slow Closure 0.54 0.54 0.54 0.54 0.73 0;78 1.00 1.00 TCV Stuck Closed 0.50 0.56 0.59 0.68 0.86 1.00 1.00 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 26 Table 5-11 LHGRFAC(P) for GEl4 Fuel - SLO (Reference 3)

GE14 Power-Dependent Multipliers for the LHGR Limits SLO EOOS Combination Core Thermal Power (% of rated) 0 25 38.5 38.5 70 CP" 100 102 Base SLO 0.50 0.56 0.59 0.68 0.77 0.77 0.77 PLUOOS SLO 0.54 0.54 0.54 0.54 0.73 0.77 0.77 0.77 TBPOOS SLO _60% core flow 0.22 0.48

- 0.39 0.54 0.77 0.77 0.77

>60% core flow 0.33 0.42 TCV Slow Closure SLO 0.54 0.54 0.54 0.54 0.73 0.77 0.77 0.77 TCV Stuck Closed SLO 0.50 0.56 0.59 0.68 0.77 0.77 0.77 CP is the cutoff power level and is equal to 59.25% for Base Case SLO and TCV Stuck Closed SLO, 70% for PLUOOS SLO, 69.25% for TBPOOS SLO, and 70% for TCV Slow Closure SLO.

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 27 Table 5-12 LHGRFAC(F) for Optima2 Fuel (Reference 3)

SVEA-96 Optima2 Flow-Dependent LHGR Multipliers for Various Combined TCV/TBV Availability Conditions Flow (% of 98 Mlb/hr)

EOOS Condition Fuel Type 0 20 40 60 80 100 110 Base, PLUOOS, TCV Optima2 0.27 0.43 0.59 0.80 0.99 1.00 1.00 Slow Closure TBPOOS, One TCV/TSV Optima2 0.27 0.43 0.59 0.80 0.95 1.00 1.00 Stuck Closed Table 5-13 LHGRFAC(F) for GE14 Fuel (Reference 3)

GE14 Flow-Dependent Multipliers for LHGR Limits DLO SLO Flow .4 except DLO All except TCV SLO

[% of 98.0 Mlbmnhr] TCV Stuck Closed TCV Stuck Closed Stuck Closed TCV Stuck Closed 0.00 0.28 0.14 0.28 0.14 30.00 0.55 0.41 0.55 0.41 40.00 0.64 0.50 0.64 0.50 50.00 0.77 0.63 0.77 0.63 68.30 0.77 0.77 80.00 1.00 0.86 0.77 0.77 98.30 1.00 1.00 0.77 0.77 100.00 1.00 1.00 0.77 0.77 Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 28

6. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 6):

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 065 Wd + 55%

Operation Single Recirculation Loop 0.65 Wd + 51%

Operation I I The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr.

-T Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 29

7. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):

T( Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np) 1.18 18 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 30

8. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:

EOOS Options'"2 3, ,%9 Operating Region' Standard ICFlu MELLLA Coastdown' Base, TSSS, ISS, or NSS'2 Yes No Yes Yes Base SLO, TSSS, ISS, or NSS 1 Z Yes No Yes Yes TBPOOS, TSSS, ISS, or NSS 1' Yes No Yes Yes TBPOOS SLO, TSSS, ISS, or NSS" Yes No Yes Yes PLUOOSb `, TSSS, ISS, or NSS Yes No Yes Yes PLUOOS SLOF' *z, TSSS, ISS, or NSS Yes No Yes Yes TCV Slow Closure"- ", TSSS, ISS, or NSS Yes No Yes Yes TCV Slow Closure SLO". ", TSSS, ISS, or NSS Yes No Yes Yes TCV Stuck Closed"',1 2, TSSS, ISS, or NSS Yes No Yes Yes TCV Stuck Closed SLO"'", TSSS, ISS, or NSS Yes No Yes Yes

'Each OOS Option may be combined with up to 18 TIP channels OOS provided the requirements (as clarified in Reference 14) for utilizing SUBTIP methodology are met with all TIPS available at startup from a refueling outage and up to 50% of the LPRMs OOS with an LPRM calibration frequency of 2500 Effective Full Power Hours (EFPH) (2000 EFPH +25%).

2 A single MSIV may be taken OOS (shut) under any of the OOS Options, so long as core thermal power is maintained <75% of 2957 MWth (Reference 3).

3 All analyses support the fastest Turbine Bypass Valve (assumed to be #1) OOS, with the remaining 8 Turbine Bypass Valves meeting the assumed opening profile in Reference 7. The analyses also support Turbine Bypass flow of 29.8% of vessel rated steam flow, equivalent to 1 Turbine Bypass Valve OOS (or partially closed Turbine Bypass Valves equivalent to one closed Turbine Bypass Valve), if the assumed opening profile (Reference 7) for the remaining Turbine Bypass Valves is met. If the opening profile is not met, or if the Turbine Bypass Valve system cannot pass an equivalent of 29.8% of vessel rated steam flow, utilize the TBPOOS condition.

4 Coastdown operation is defined as any cycle exposure beyond the full power, all rods out condition with plant power slowly lowering to a lesser value while core flow is held constant. Coastdown analysis has been performed with bounding assumption of full power operation up to a cycle exposure of 16,860 MWD/MTU.

5 For operation with a Pressure Regulator Out-Of-Service (PROOS), the TCV Slow Closure limits should be applied following recommendations for plant operation in Reference 17. For operation with a PROOS and TCV Slow Closure, the TCV Slow Closure limits should be applied. For operation with a PROOS and PLUOOS, the PLUOOS limits should be applied. For operation with a PROOS and TCV Stuck Closed, the more restrictive of the flow-dependent limits (established by TCV Stuck Closed) and power dependent limits (established by TCV Slow Closure and PLUOOS limits) should be applied (Reference 3). For operation with a PLUOOS and TCV Stuck Closed, the more restrictive of the flow-dependent limits (established by TCV Stuck Closed) and power dependent limits (established by TCV Slow Closure and PLUOOS limits) should be applied (Reference 3).

6 For operation with one Turbine Stop Valve (TSV) Stuck Closed the TCV Stuck Closed limits should be applied. Combination of one TSV Stuck Closed and TCV Stuck Closed is not analyzed (Reference 3).

For TSV Stuck Closed or TCV Stuck Closed, operation above 77% rated core thermal power is not an analyzed EOOS combination.

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 31 7

The cycle specific stability analysis may impose restrictions on the Power-to-Flow map and/or restrict the applicable temperature for a reduction in feedwater temperature (RFWT) (Reference 4).

8 For both Base and EOOS DLO/SLO conditions, for operation at NFWT, the OLMCPR limit is applicable to a variation of +10°F/-30°F in feedwater temperature, and an operating steam dome pressure region bounded by the maximum value of 1020 psia and the minimum pressure curve in Reference 8. For operation outside of NFWT, a feedwater temperature reduction of up to 120°F (RFWT) is also supported for cycle operation through EOC subject to the restrictions in Reference 4 for feedwater temperature reductions of greater than 100 OF (core flows of 100% of rated and less than 100% rod line). This includes, but is not limited to, Feedwater Heaters OOS (FWHOOS) and Final Feedwater Temperature Reduction (FFTR). For a feedwater temperature reduction of between 30°F and 120 0 F, the RFWT limits should be applied.

9 Asymmetric inlet enthalpy distribution produced by RWCU injection does not have a substantial impact on thermal limits; therefore no adjustments to the thermal limits are required (Reference 3).

'0Operation up to 108% rated core flow (ICF) is analyzed but not licensed for Dresden.

11 The TBPOOS condition assumes that All the Turbine Bypass Valves do not trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure. For the analyses to remain applicable, equivalent of 2 of the first 3.5 Turbine Bypass Valves must be capable of opening via the pressure control system while Turbine Bypass Valves #5-9 are allowed to be out of service.

12 For all cases except TBPOOS, 8 of 9 Turbine Bypass Valves are required to trip open on Turbine Control Valve fast closure or on Turbine Stop Valve closure. For these analyses to remain applicable, equivalent of 2 of the first 3.5 Turbine Bypass Valves must be capable of opening via the pressure control system.

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 32

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement 1) and La Salle County Unit 2 benchmarking (Supplement 2),

December 1991, March 1992, and May 1992, respectively.

2. NEDE-2401 1-P-A-15 (Revision 15), "General Electric Standard Application for Reactor Fuel (GESTAR)," September 2005.
3. NEDO-32465-A, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1996.
4. Westinghouse Report WCAP-1 5682-P-A, 'Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application," April 2003.

5. Westinghouse Report WCAP-16078-P-A, 'Westinghouse BWR ECCS Evaluation Model:

Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel,"

November 2004.

6. Westinghouse Report WCAP-16081-P-A, "10x10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.
7. Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.
8. Westinghouse Topical Report CENPD-390-P-A, "The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
9. Westinghouse Topical Report WCAP-15836-P-A, "Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1," April 2006.
10. Westinghouse Topical Report WCAP-15942-P-A, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors Supplement 1 to CENP-287," March 2006.

Dresden Unit 2 Cycle 21

COLR Dresden 2 Revision 5 Page 33

10. References
1. Exelon Generation Company, LLC, Docket No. 50-237, Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License, License No. DPR-19.
2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
3. Westinghouse document NF-BEX-07-187 Rev. 1, "Dresden Nuclear Power Station Unit 2 Cycle 21 Reload Licensing Report", October, 2007 (TODI NF0700236 Rev. 0).
4. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
5. Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, "Control Rod Scram Times"
6. GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod Block Monitor, Commonwealth Edison Company, Dresden 2 & 3," December 15, 1999.
7. Exelon TODI Ops Ltr: 07-15 Revision 2, "OPL-W Parameters for Dresden Unit 2 Cycle 21 Transient Analysis", 8/9/07.
8. Westinghouse document NF-BEX-07-186 Rev. 1, "Dresden Nuclear Power Station Unit 2 Cycle 21 Reload Engineering Report", October, 2007 (TODI NF0700237 Rev. 0).
9. GE Design Basis Document, DB-0012.03 Revision 1, "Fuel-Rod Thermal-Mechanical Performance Limits for GE14C", May 2005.
10. Exelon TODI NF0700135 Revision 1, "Dresden 2 Cycle 21 Reload Licensing Analysis Plan (RLAP),

Revision 2", 9/13/07.

11. GNF Document 0000-0035-6363-SRLR, Rev. 1, "Supplemental Reload Licensing Report for Dresden 2 Reload 19 Cycle 20", October 2005 (TODI NF0500248, Revision 0).
12. GNF Letter, FRL-EXN-EE2-04-002, "Quad Cities Unit 2 Cycle 18 Fresh Fuel Peak Pellet LHGR Limits,"

January 16, 2004.

13. GNF Letter, MJM-EXN-EB2-05-108, 'TSD B263: Dresden Unit 2 C20 LHGR Limits and R-Factors Data",

October 7, 2005.

14. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897-00)
15. Westinghouse document NF-BEX-07-62, "Final Report for Dresden 2 Cycle 21 Bundle Designs",

4/10/07.

16. GNF Document 0000-0016-1235-SRLR, Rev. 0, "Supplemental Reload Licensing Report for Dresden Unit 2 Reload 18 Cycle 19, September 2003 (TODI NF0300089, Rev. 0).
17. Exelon letter, NF-MW:02-0413, "Approval of GE Evaluation of Dresden and Quad Cities Pressure Regulator Out of Service Analysis", Carlos de la Hoz to Doug Wise and Alex Misak, October 22, 2002.
18. "Dresden 2 Cycle 21 Licensing Generic Inputs Report, Revision 0", March 23, 2007 (TODI NF0700069 Rev. 0)

Dresden Unit 2 Cycle 21