ML18318A303

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Unit 3 Cycle 26
ML18318A303
Person / Time
Site: Dresden Constellation icon.png
Issue date: 11/09/2018
From: Karaba P
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
18-0033
Download: ML18318A303 (70)


Text

Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL 60450 November 9, 2018 SVPLTR: #18-0033 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Dresden Nuclear Power Station, Unit 3 Renewed Facility Operating License No. DPR-25 NRC Docket No. 50-249

Subject:

Core Operating Limits Report for Unit 3 Cycle 26 The purpose of this letter is to transmit the Core Operating Limits Report for Dresden Nuclear Power Station (DNPS) Unit 3 operating cycle 26 (D3C26) in accordance with Technical Specifications Section 5:6.5, "CORE OPERATING LIMITS REPORT (COLA)."

There are no regulatory commitments contained in this submittal.

Should you have any questions concerning this letter, please contact Mr. Bruce Franzen, Regulatory Assurance Manager, at (815) 416-2800.

Respectfully,

  1. ~'?J.i/ lf.wdf of'UKI°""' D'l redo<

~Peter J. Karaba Site Vice President Dresden Nuclear Power Station

Enclosures:

Core Operating Limits Report for Dresden Unit 3 Cycle 26, Revision 16 cc:

Regional Administrator, NRC Region Ill NRC Senior Resident Inspector, Dresden Nuclear Power Station

CCLR Dresden 3 Revision 16 Core Operating Limits Report For Dresden Unit 3 Cycle 26 Prepared By. , ~ hen orie Glenn - Nudear Fuels Date:~

RewewedBy.~ ~ Dale:~

  • Jsepheemhardt - Reactor Engineering tt1/'1/1Jf Dale: ,,s/Jc,4';1' "Tv/

1,-9**111 Independent Review By:

eeler- Nuclear Fuels Cale: IO/f/18 120CT18 Approved By: ~-:--:-~~-~~i:>::-. ~~~--- Date: _ _ __

Annando Johnson - NF Senior Manager SQRBy:

Page 1 of69

COLR Dresden 3 Revision 16 Table of Contents Page Record of Dresden 3 COLR Revisions ............................................................................ 3

1. Terms and Definitions ................................................................................................. 6
2. General Information ..................................................................................................... 7
3. Average Planar Linear Heat Generation Rate ............................................................ .-8
4. Operating Limit Minimum Critical Power Ratio .......................................................... 28 4.1. Manual Flow Control MCPR Limits ...................................................................... 28 4.1.1. Power-Dependent MCPR .............................................................................. 28 4.1.2. Flow-Dependent MCPR ....................................._. .......................................... 28 4.2. Scram Time ......................................................................................................... 29 4.3. Exposure Dependent MCPR Limits ..................................................................... 30 4.4. Recirculation Pump ASD Settings ....................................................................... 30
5. Linear Heat Generation Rate .................................................................................... 56
6. Control Rod Block Setpoints ..................................................................................... 62
7. Stability Protection Setpoints ..................................................................................... 63
8. Modes of Operation ................................................................................................... 64
9. Methodology .............................................................................................................. 67
10. References .............................................................................................................. 69 Page2 of69

COLR Dresden 3 Revision 16 Record of Dresden 3 COLR Revisions Revision Description 16 Initial issuance for D3C26 15 Initial issuance for D3C25 14 Revision for D3C24A for transition to POWERPLEX-XD 13 Initial issuance for D3C24A 12 Revision for D3C24 to implement revised MAPLHGR values and LHGR curves 11 Initial issuance for D3C24 10 Revision for D3C23 to Modes of Operation section and other formatting changes 9 Revision for D3C23 to include proper wording for entry into Increased Core Flow (ICF) region on the. power to flow map 8 Initial issuance for D3C23 **

7 Revision for D3C22 to remove applicability restriction of

<10,000 MWd/MTU cycle exposure for the OLMCPR limits 6 Initial issuance for D3C22 5 Revision for D3C21 for transition to the Westinghouse Core Monitoring System (WCMS) 4 Initial issuance for D3C21 3 Revision for D3C20 to implement revised MAPLHGR and OLMCPR values and Modes of Operation section 2 Initial issuance for D3C20 1 Revision for D3C19 to update Stability Protection Setpoints and Modes of Operation section 0 Initial issuance for D3C19 Page 3 of69

COLR Dresden 3 Revision 16 List of Tables Page Table 3-1: MAPLHGR SLO Multipliers ........................................................................................................., 8 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89 .............................................................................. 8 Table 3-3: MAPLHGR for OPTIMA2 Lattice 149 .......................................................................................... 9 Table 3-4: MAPLHGR for OPTIMA2 Lattice 150 ........................................................................................ 10 Table 3-5: MAPLHGR for OPTIMA2 Lattice 151 ........................................................................................ 11 Table 3-6: MAPLHGR for OPTIMA2 Lattice 152 ........................................................................................ 12 Table 3-7: MAPLHGR for OPTIMA2 Lattice 153 ........................................................................................ 13 Table 3-8: MAPLHGR for OPTIMA2 Lattice 154 ........................................................................................ 14 Table 3-9: MAPLHGR for OPTIMA2 Lattice 155 ........................................................................................ 15 Table 3-10: MAPLHGR for OPTIMA2 Lattice 156 ...................................................................................... 16 Table 3-11: MAPLHGR for OPTIMA2 Lattice 157 ...................................................................................... 17 Table 3-12: MAPLHGR for OPTIMA2 Lattice 158 ...................................................................................... 18 Table 3-13: MAPLHGR for OPTIMA2 Lattice 159 ...................................................................................... 19 Table 3-14: MAPLHGR for OPTIMA2 Lattice 160 ...................................................................................... 20 Table 3-15: MAPLHG.R for OPTIMA2 Lattice 161 ...................................................................................... 21 Table 3-16: MAPLHGR for OPTIMA2 Lattice 162 ...................................................................................... 22 Table 3-17: MAPLHGR for OPTIMA2 Lattice 163 ...................................................................................... 23 Table 3-18: MAPLHGR for OPTIMA2 Lattice 164 ...................................................................................... 24 Table 3-19: MAPLHGR for OPTIMA2 Lattice 165 ...................................................................................... 25 Table 3-20: MAPLHGR for OPTIMA2 Lattice 166 ...................................................................................... 26 Table 3-21: MAPLHGR for ATRIUM 10XM ................................................................................................. 27 Table4-1: Scram Times .............................................................................................................................. 29 Table 4-2: Exposure Basis for Transient Analysis ...................................................................................... 30 Table 4-3: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX) ........................................................................................................................ 31 Table 4-4: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX) .......................................................................................................................................... 32 Table 4-5: ATRIUM 1OXM TLO MCPRp Limits for TSSS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX) ........................................................................................................................ 33 Table 4-6: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX) ........................................................................................................................ 34 Table 4-7: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX) ........................................................................................................................ 35 Table 4-8: ATRIUM 10XM TLO MCPRp Limits forTSSS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX) ........................................................................................................................ 36 Table 4-9: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX) ........................................................................................................................ 37 Table 4-1 O: ATRIUM 1OXM TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX) ........................................................................................................................ 38 Table 4-11: ATRIUM 10XM TLO MCPRp Limits forTSSS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX) ........................................................................................................................ 39 Table 4-12: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX) .......................................................................................................................................... 40 Table 4-13: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX) .......................................................................................................................................... 41 Table 4-14: OPTIMA2 TLO MCPRp Limits forTSSS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX) .......................................................................................................................................... 42 Table 4-15: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX) .................. :..................................................................................................... 43 Table 4-16: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX) .......................................................................................................................................... 44 Page4 of 69

COLR Dresden 3 Revision 16 Table 4-17: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX) ........................................................................................................................ 45 Table 4-18: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX) ........................................................................................................................ 46 Table 4-19: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX) ........................................................................................................................ 47 Table 4-20: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX) ........................................................................................................................ 48 Table 4-21: ATRIUM 10XM SLO MCPRp Limits for NSS Insertion Times, All Exposures ......................... 49 Table 4-22: ATRIUM 10XM SLO MCPRp Limits for ISS Insertion Times, All Exposures ........................... 50 Table 4-23: ATRIUM 10XM SLO MCPRp Limits forTSSS Insertion Times, All Exposures ....................... 51 Table 4-24: OPTIMA2 SLO MCPRp Limits for NSS Insertion Times, All Exposures .................................. 52 Table 4-25: OPTIMA2 SLO MCPRp Limits for ISS Insertion Times, All Exposures ................................... 53 Table 4-26: OPTIMA2 SLO MCPRp Limits for TSSS Insertion Times, All Exposures ................................ 54 Table 4-27: ATRIUM 1OXM and OPTIMA2 MCPR, Limits .......................................................................... 55 Table 5-1: Steady-State LHGR Limits for OPTIMA2 Lattices 155, 156, 157, 161, 162, 163, 164, 165, 166

....................................................................................................................................................... 57 Table 5-2: Steady-State LHGR Limits for OPTIMA2 Lattices 153, 159 ...................................................... 57 Table 5-3: Steady-State LHGR Limits for OPTIMA2 Lattices 149, 150, 151, 154, 158, 160 ...................... 57 Table 5-4: Steady-State LHGR Limits for OPTIMA2 Lattice 152 ................................................................ 58 Table 5-5: Steady-State LHGR Limits for OPTIMA2 Lattices 81, 89 .......................................................... 58 Table 5-6: Steady-State LHGR Limits for ATRIUM 1OXM .......................................................................... 58 Table 5-7: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, All Exposures .............. 59 Table 5-8: OPTIMA2 LHGRFACp Multipliers for All Scram Insertion Times, All Exposures ....................... 60 Table 5-9: ATRIUM 10XM LHGRFACt Multipliers for All Cycle 26 Exposures, All EOOS ......................... 61 Table 5-10: OPTIMA2 LHGRFACt Multipliers for All Cycle 26 Exposures, All EOOS ................................ 61 Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints ............................................................. 62 Table 7-1: OPRM PBDA Trip Settings ........................................................................................................ 63 Table 8-1: Modes of Operation ................................................................................................................... 64 Table 8-2: Core Operational Restrictions for EOOS Conditions ................................................................. 66 Page 5 of69

COLR Dresden 3 Revision 16

1. Terms and Definitions AOO Anticipated operational occurrence ASD Adjustable Speed Drive
  • CAVEX Core average exposure CPR Critical power ratio CRWE Control rod withdrawal error CTP Core thermal power EFPD Effective full power day EFPH Effective full power hour EOC End of cycle EOCLB End of cycle licensing basis EOFPL End of full power life EOFPLB End of full power licensing basis EOOS Equipment out of service FHOOS Feedwater heater out of service FWT Feedwater temperature ICF Increased core flow ISS Intermediate scram speed LHGR Linear heat generation rate LHGRFAC, Flow dependent LHGR multiplier LHGRFACp Power dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum critical power ratio MCPR, Flow dependent MCPR MCPRp Power dependent MCPR MELLLA Maximum extended load line limit analysis MSIVOOS Main steam isolation valve out of service MWd/MTU Megawatt days per metric ton Uranium NEOC Near end of cycle NRC Nuclear Regulatory Commission NSS Nominal scram speed OLMCPR Operating limit minimum critical power ratio oos Out of service OPRM Oscillation power range monitor PBDA Period based detection algorithm PCOOS Pressure controller out of service PLUOOS Power load unbalance out'of service SLMCPR Safety limit minimum critical power ratio SLO Single loop operation TBV Turbine bypass valve TBVOOS Turbine bypass valves out of service TCV Turbine control valve TCVSLOWC TCV Slow Closure TIP Traversing incore probe TLO Two loop operation TMOL Thermal mechanical operating limit TRM Technical Requirements Manual TSSS Technical Specification scram speed TSV Turbine stop valve Page 6 of 69

COLR Dresden 3 Revision 16

2. General Information This report is prepared in accordance with Technical Specification 5.6.5. The D3C26 reload is licensed by Framatome. However, some legacy analyses by Westinghouse are still applicable for OPTIMA2 fuel as described in Reference 9.
  • Licensed rated thermal power is 2957 MWth. Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is licensed for this cycle. For allowed operating regions, see applicable power/flow map.

The licensing analysis supports full power operation to EOCLB (38,384 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The transient analysis limits are provided for operation up to specific CAVEX exposures as defined in Section 4.3.

Coastdown is defined as operation beyond EOFPL with the plant power gradually reducing as available core reactivity diminishes. The D3C26 reload analyses support a conservative power coastdown rate after EOFPLB (Reference 9). The minimum allowed coastdown power level is 40% rated CTP per Reference 1.

Power and flow dependent limits are listed for various power and flow levels. Linear interpolation on power or flow (as applicable) is to be used to find intermediate values. For cases where an entry in a table is blank and grayed out, values should be determined using linear interpolation between the values on either side of the grayed box.

Only MCPRp varies with scram speed. All other thermal limits are analyzed to remain valid with NSS, ISS, and TSSS.

LHGRFACp and LHGRFAC, are independent of scram speed. LHGRFAC, is independent of feedwater temperature and EOOS conditions.

For thermal limit monitoring above 100% rated power or 108% rated core flow, the 100% rated power and the 108% core flow thermal limit values, respectively, shall be used. Steady state operation is not allowed in this region. Limits are provided for transient conditions only.

Page 7 of 69

COLR Dresden 3 Revision 16

3. Average Planar Linear Heat Generation Rate Technical Specification Sections 3.2.1 and 3.4.1 Table 3-1 provides the MAPLHGR SLO multipliers for ATRIUM 10XM and OPTIMA2 fuel. For OPTIMA2 natural uranium lattices, TLO and SLO MAPLHGR values are provided in Table 3-2. For all other OPTIMA2 lattices, lattice-specific MAPLHGR values for TLO are provided in Tables 3-3 through 3-20.

For ATRIUM 1OXM fuel, the MAPLHGR values applicable for all lattices can be found in Table 3-21.

During SLO, the limits in Tables 3-3 through 3-21 are multiplied by the fuel-specific SLO multiplier listed in Table 3-1. The ATRIUM 10XM multiplier may be applied to OPTIMA2 for SLO conditions, as the ATRIUM 10XM multiplier is more limiting.

Table 3-1: MAPLHGR SLO Multipliers (References 7 and 9)

Fuel Type Multiplier ATRIUM 10XM 0.80 OPTIMA2 0.86 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89 (References 6 and 7)

All OPTIMA2 Bundles Lattices 81: Opt2-B0.71 89: 0pt2-T0.71 Average Planar Exposure TLC and SLO MAPLHGR (MWd/MTU) tkW/ft) 0 7.50 75000 7.50 Page 8 of69

COLR Dresden 3 Revision 16 Table 3-3: MAPLHGR for OPTIMA2 Lattice 149 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 149: 0pt2-B4.44-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.14 2500 9.45 5000 9.41 7500 9.35 10000 9.48 12000 9.50 15000 9.55 17000 9.62 20000 9.82 22000 9.90 24000 9.85 30000 9.78 36000 9.72 42000 9.68 50000 9.70 60000 9.80 62000 9.85 64000 9.92 72000 10.05 75000 10.05 Page 9 of69

COLR Dresden 3 Revision 16 Table 3-4: MAPLHGR for OPTIMA2 Lattice 150 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 150: 0pt2-BE4.54-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.29 2500 9.57 5000 9.48 7500 9.39 10000 9.54 12000 9.56 15000 9.65 17000 9.74 20000 9.90 22000 10.02 24000 9.95 30000 9.86 36000 9.82 42000 9.75 50000 9.77 60000 9.80 62000 9.89 64000 9.95 72000 10.10 75000 10.10 Page 10 of 69

COLR Dresden 3 Revision 16 Table 3-5: MAPLHGR for OPTIMA2 Lattice 151 (References 6 and 7)

Bundle Opt2-4.04-18GZ7.50-14GZ5.50 Lattice 151: 0pt2-M4.54-18G7 .50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.28 2500 9.57 5000 9.55 7500 9.41 10000 9.54 12000 9.60 15000 9.68 17000 9.76 20000 10.00 22000 9.99 24000 9.93 30000 9.86 36000 9.82 42000 9.74 50000 9.75 60000 9.78 62000 9.87 64000 9.94 72000 10.10 75000 10.10 Page 11 of 69

COLR Dresden 3 Revision 16 Table 3-6: MAPLHGR for OPTIMA2 Lattice 152 (References 6 and 7)

Bundle Opt2-4.04-1 BGZ7.50-14GZ5.50 Lattice 152: 0pt2-ME4.50-1 BG7 .50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.40 2500 9.72 5000 . 9.58 7500 9.49 10000 9.70 12000 9.72 15000 9.82 17000 9.93 20000 10.19 22000 10.17 24000 10.11 30000 10.03 36000 9.98 42000 9.91 50000 9.83 60000 9.89 62000 9.98 64000 10.11 72000 10.34 75000 10.34 Page 12 of 69

COLR Dresden 3 Revision 16 Table 3-7: MAPLHGR for OPTIMA2 Lattice 153 (References 6 and 7)

Bundle Opt2-4.04-18GZ7 .50-14GZ5.50 Lattice 153: 0pt2-T4.50-18G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.43 2500 9.70 5000 9.52 7500 9.42 10000 9.52 12000 9.70 15000 9.77 17000 9.94 20000 10.18 22000 10.15 24000 10.10 30000 10.04 36000 9.97 42000 9.92 50000 9.80 60000 9.85 62000 9.95 64000 10.09 72000 10.34 75000 10.34 Page 13 of 69

COLR Dresden 3 Revision 16 Table 3-8: MAPLHGR for OPTIMA2 Lattice 154 (References 6 and 7)

Bundle Opt2-4.04-18GZ7.50-14GZ5.50 Lattice 154: 0Dt2-T4.52-14G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 10.17 2500 10.41 5000 10.26 7500 10.02 10000 10.06 12000 10.09 15000 10.22 17000 10.26 20000 10.26 22000 10.28 24000 10.22 30000 10.15 36000 10.09 42000 9.98 50000 9.86 60000 9.91 62000 10.01 64000 10.15 72000 10.40 75000 10.40 Page 14 of 69

COLR Dresden 3 Revision 16 Table 3-9: MAPLHGR for OPTIMA2 Lattice 155 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 155: 0pt2-B4.41-16G7.50 Average Planar TLC Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.40 2500 9.68 5000 9.63 7500 9.53 10000 9.61 12000 9.54 15000 9.58 17000 9.61 20000 9.78 22000 9.90 24000 9.86 30000 9.81 36000 9.76 42000 9.70 50000 9.69 60000 9.71 62000 9.79 64000 9.88 72000 10.05 75000 10.05 Page 15 of 69

COLR Dresden 3 Revision 16 Table 3-10: MAPLHGR for OPTIMA2 Lattice 156 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 156: 0pt2-BE4.51-16G7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.58 2500 9.81 5000 9.78 7500 9.60 10000 9.68 12000 9.70 15000 9.71 17000 9.76 20000 9.91 22000 10.00 24000 9.96 30000 9.90 36000 9.86 42000 9.78 50000 9.70 60000 9.70 62000 9.79 64000 9.91 72000 10.09 75000 10.09 Page 16 of 69

COLR Dresden 3 Revision 16 Table 3-11: MAPLHGR for OPTIMA2 Lattice 157 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 157: 0pt2-M4.51-16G7.50 Average Planar TLC Exposure MAPLHGR (MWd/MTU} (kW/ft) 0 9.57 2500 9.82 5000 9.87 7500 9.60 10000 9.70 12000 9.74 15000 9.73 17000 9.78 20000 9.92 22000 10.01 24000 9.96 30000 9.89 36000 9.85 42000 9.78 50000 9.68 60000 9.68 62000 9.77 64000 9.91 72000 10.09 75000 10.09

'\ ,...

Page 17 of 69

COLR Dresden 3 Revision 16 Table 3-12: MAPLHGR for OPTIMA2 Lattice 158 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 158: Opt2-ME4.46-16G7 .50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.72 2500 9.98 5000 9.92 7500 9.77 10000 9.86 12000 9.87 15000 9.88 17000 9.95 20000 10.17 22000 10.18 24000 10.13 30000 10.07 36000 10.01 42000 9.91 50000 9.79 60000 9.84 62000 9.95 64000 10.10 72000 10.34 75000 10.34 Page 18 of 69

COLR Dresden 3 Revision 16 Table 3-13: MAPLHGR for OPTIMA2 Lattice 159 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 159: 0pt2-T4.46-1SG7.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.75 2500 9.96 5000 9.83 7500 9.73 10000 9.80 12000 9.80 15000 9.83 17000 9.95 20000 10.16 22000 10.15 24000 10.12 30000 10.08 36000 10.00 42000 9.87 50000 9.76 60000 9.73 62000 9.74 64000 9.79 72000 10.29 75000 10.29 Page 19 of 69

COLR Dresden 3 Revision 16 Table 3-14: MAPLHGR for OPTIMA2 Lattice 160 (References 6 and 7)

Bundle Opt2-4.01-16GZ7 .50-14GZ5.50 Lattice 160: Oot2-T4.47-14G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTUl (kW/ftl 0 10.18 2500 10.39 5000 10.27 7500 10.04 10000 10.01 12000 10.09 15000 10.23 17000 10.24 20000 10.23 22000 10.22 24000 10.19 30000 10.14 36000 10.07 42000 9.94 50000 9.82 60000 9.88 62000 9.99 64000 10.13 72000 10.40 75000 10.40 Page 20 of 69

COLR Dresden 3 Revision 16 Table 3-15: MAPLHGR for OPTIMA2 Lattice 161 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 161: 0pt2-B4.50-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.25 2500 9.56 5000 9.49 7500* 9.38 10000 9.49 12000 9.53 15000 9.68 17000 9.79

    • "l~ .~

20000. 9:96 22000 9.99 24000 9.94 30000 9.87 36000 9.82 42000 9.74 50000 9.76 60000 9.85 62000 9.88 64000 9.97 72000 10.10 75000 10.10 Page 21 of 69

COLR Dresden 3 Revision 16 Table 3-16: MAPLHGR for OPTIMA2 Lattice 162 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 162: 0pt2-BE4.60-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.31 2500 9.66 5000 9.62 7500 9.62 10000 9.56 12000 9.62 15000 9.80 17000 9.94 20000 10.13 22000 10.11 24000 10.06 30000 9.98 36000 9.94 42000 9.88 50000 9.83 60000 9.85 62000 9.93 64000 9.99 72000 10.14 75000 10.14 Page22 of69

COLR Dresden 3 Revision 16 Table 3-17: MAPLHGR for OPTIMA2 Lattice 163 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 163: Oot2-M4.60-16G5.50 Average Planar TLO Exposure MAPLHGR

  • (MWd/MTU) (kW/ft) 0 9.30 2500 9.67 5000 9.66 7500 9.63 10000 9.58 12000 9.64 15000 9.82 17000 9.96 20000 10.17 22000 10.12 24000 10.06 30000 9.98 36000 9.94 42000 9.89 50000 9.80 60000 9.82 62000 9.92 64000 9.99 72000 10.15 75000 10.15 Page23 of 69

COLR Dresden 3 Revision 16 Table 3-18: MAPLHGR for OPTIMA2 Lattice 164 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 164: 0pt2-ME4.57-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.46 2500 9.83 5000 9.80 7500 9.71 10000 9.74 12000 9.83 15000 10.09 17000 10.24 20000 10.41 '

22000 10.29 24000 10.24 30000 10.18 36000 10.11 42000 10.00 50000 9.93 60000 9.95 62000 10.04 64000 10.17 72000 10.39 75000 10.39 Page 24 of69

COLR Dresden 3 Revision 16

  • Table 3-19: MAPLHGR for OPTIMA2 Lattice 165 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 165: 0pt2-T4.57-16G5.50 Average Planar TLC Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.50 2500 9.85 5000 9.81 7500 9.60 10000 9.70 12000 9.78 15000 10.04 17000 10.24 20000 10.28 22000 10.27 24000 10.23 30000 10.16 36000 10.09 42000 10.02 50000 9.89 60000 9.91 62000 10.01 64000 10.16 72000 10.39 75000 10.39 Page 25 of 69

COLR Dresden 3 Revision 16 Table 3-20: MAPLHGR for OPTIMA2 Lattice 166 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 166: 0pt2-T4.58-14G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU) (kW/ft) 0 9.88 2500 10.18 5000 10.18 7500 9.94 10000 9.87 12000 9.89 15000. 10.06 17000 10.20 20000 10.29 22000 10.32 24000 10.26 30000 10.19 36000 10.12 42000 10.02 50000 9.88 60000 9.91 62000 10.01 64000 10.15 72000 10.39 75000 10.39 Page 26 of 69

COLR Dresden 3 Revision 16 Table3-21: MAPLHGRforATRIUM 10XM (Reference 9)

All ATRIUM 10XM Lattices Average Planar Exposure TLOMAPLHGR (MWd/MTU) (kW/ft) 0 11.50 20000 11.50 25000 10.70 67000 7.01 Page 27 of69

COLR Dresden 3 Revision 16

4. Operating Limit Minimum Critical Power Ratio Technical Specification Sections 3.2.2, 3.4.1, and 3.7.7 The OLMCPRs for D3C26 were established so that less than 0.1 % of the fuel rods in the core are expected to experience boiling transition during an AOO initiated from rated or off-rated conditions and are based on the Technical Specifications SLMCPR values (Reference 9).

Tables 4-3 through 4-27 include MCPR limits for various specified EOOS conditions. The EOOS conditions separated by"/" in these tables represent single EOOS conditions and not any combination of conditions. Refer to Section 8 for a detailed explanation of allowable combined EOOS conditions.

4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCPR The OLMCPR as a function of core thermal power (l\!ICPRp) is shown in Tables 4-3 through 4-26. MCPRp limits are dependent on scram times as described in Section 4.2, exposure as described in Section 4.3, fuel type, FWT, and whether the plant is in TLO or SLO. TLO limits for ATRIUM 1OXM fuel are given in Tables 4-3 through 4-11 and SLO limits for ATRIUM 10XM fuel are given in Tables 4-21 through 4-23. TLO limits for OPTIMA2 fuel are given in Tables 4-12 through 4-20 and SLO limits for OPTIMA2 fuel are given in Tables 4-24 through 4-26.

4.1.2. Flow-Dependent MCPR Table 4-27 gives the OLMCPR limit as a function of the flow (MCPR,) based on the applicable plant condition. These values are applicable to both ATRIUM 10XM and OPTIMA2 fuel.

Page 28 of69

COLR Dresden 3 Revision 16 4.2. Scram Time TSSS, ISS, and NSS refer to scram speeds. The scram time values associated with these speeds are shown in Table 4-1. The TSSS scram times shown in Table 4-1 are the same as those specified in the Technical Specifications (Reference 2).

To utilize the OLMCPR limits for NSS in Tables 4-3, 4-6, 4-9, 4-12, 4-15, 4-18, 4-21, and 4-24, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the NSS time shown in Table 4-1 below.

To utilize the OLMCPR limits for ISS in Tables 4-4, 4-7, 4-10, 4-13, 4-16, 4-19, 4-22, and 4-25, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the ISS time shown in Table 4-1 below.

The "Average Control Rod Insertion Time" is defined as the sum of the control rod insertion times of all operable control rods divided by the number of operable control rods. The analysis inputs account for the effects of 1 stuck control rod and one additional control rod that is assumed to fail to scram (Reference 9).

To utilize the OLMCPR limits for TSSS in Tables 4-5, 4-8, 4-11, 4-14, 4-17, 4-20, 4-23, and 4-26, the control rod insertion time of each operable control rod at each control rod insertion fraction must be less than or equal to the TSSS time shown in Table 4-1 below. The Technical Specifications allow operation with up to 12 "slow" and 1 stuck control rod. One additional control rod is assumed to fail to scram for the system transient analyses performed to establish MCPRp limits (Reference 9). The analysis inputs account for the effects of the slow and stuck rods on scram reactivity (Reference 9).

For cases below 38.5% power (Pbypass), the results are relatively insensitive to scram speed, and only TSSS analyses were performed (Reference 9).

Table 4-1: Scram Times (References 2 and 9)

Control Rod Insertion Fraction NSS (seconds) ISS (seconds) TSSS (seconds)

(%}

5 0.324 0.36 0.48 20 0.700 0.72 0.89 50 1.510 1.58 1.98 90 2.635 2.74 3.44 Page 29 of 69

COLR Dresden 3 Revision 16 4.3. Exposure Dependent MCPR Limits Exposure-dependent MCPRp limits were established to support operation from BOC to NEOC (CAVEX of 35,413 MWd/MTU), NEOC to EOFPLB (CAVEX of 37,520 MWd/MTU), and EOFPLB to EOCLB (CAVEX of 38,384 MWd/MTU) as defined by the CAVEX values listed in Table 4-2.

Note that the thermal limits are based on CAVEX. The limits at a later exposure range can be used earlier in the cycle as they are the same or more conservative.

Table 4-2: Exposure Basis for Transient Analysis (Reference 9)

CAVEX (MWd/MTU) Descriotion Break point for exposure-dependent 35,413 MCPRo limits (NEOC)

Design basis rod patterns to EOFPL 37,520

+ 25 EFPD (EOFPLB)

EOCLB - Maximum licensing core 38,384 exposure, includinQ coastdown 4.4. Recirculation Pump ASD Settings Technical Requirement Manual 2.1 :a.1 Dresden 3 Cycle 26 was analyzed with a slow flow excursion event assuming a failure of the recirculation flow control system such that the core flow increases slowly to the maximum flow physically permitted by the equipment, assumed to be 112% of rated core flow (Reference 9);

therefore, the recirculation pump ASD must be set to maintain core flow less than 112% (109. 76 Mlb/hr) for all runout events.

Page 30 of 69

COLR Dresden 3 Revision 16 Table 4-3: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition o/o rated 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.64 2.64 2.26 2.00 1.44 Closed/MSIVOOS > 60 2.71 2.71 2.37 s 60 3.59 3.59 2.73 TBVOOS 2.03 1.50

>60 3.64 3.64 2.87 TCV Slow Closure/ S60 2.64 2.64 2.37 2.36 1.44 PLUOOS/PCOOS > 60 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition o/o rated) 0 25 S38.5 > 38.5 100 Base/TCV Stuck S60 2.86 2.86 2.39 2.16 1.47 Closed/MSIVOOS > 60 2.89 2.89 2.39 s 60 3.70 3.70 2.84 TBVOOS 2.16 1.50

> 60 3.75 3.75 2.96 TCV Slow Closure/ S60 2.86 2.86 2.39 2.36 1.47 PLUOOS/PCOOS > 60 2.89 2.89 2.39 Page 31 of 69

COLR Dresden 3 Revision 16 Table 4-4: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.64 2.64 2.26 2.00 1.44 Closed/MSIVOOS > 60 2.71 2.71 2.37 S60 3.59 3.59 2.73 TBVOOS 2.03 1.50

> 60 3.64 3.64 2.87 TCV Slow Closure/ S60 2.64 2.64 2.37 2.36 1.44 PLUOOS/PCOOS > 60 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.86 2.86 2.39 2.16 1.47 Closed/MSIVOOS >60 2.89 2.89 2.39 S60 3.70 3.70 2.84 TBVOOS 2.16 1.50

> 60 3.75 3.75 2.96 TCV Slow Closure/ S60 2.86 2.86 2.39 2.36 1.47 PLUOOS/PCOOS >60 2.89 2.89 2.39 Page 32 of 69

COLR Dresden 3 Revision 16 Table 4-5: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 :S 38.5 >38.5 100 Base/TCV Stuck S60 2.64 2.64 2.26 2.07 1.44 Closed/MSIVOOS >60 2.71 2.71 2.37 TBVOOS s 60 3.59 3.59 2.73 2.07 1.50

>60 3.64 3.64 2.87 TCV Slow Closure/ S60 2.64 2.64 2.37 PLUOOS/PCOOS 2.37 1.45

>60 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 :S 38.5 >38.5 100 Base/TCV Stuck s 60 2.86 2.86 2.39 Closed/MSIVOOS 2.22 1.47

>60 2.89 2.89 2.39 S60 3.70 3.70 2.84 TBVOOS 2.22 1.50

> 60 3.75 3.75 2.96 TCV Slow Closure/ s 60 2.86 2.86 2.39 PLUOOS/PCOOS 2.37 1.47

>60 2.89 2.89 2.39 Page 33 of 69

COLR Dresden 3 Revision 16 Table 4-6: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck s 60 2.64 2.64 2.26 2.00 1.44 Closed/MSIVOOS > 60 2.71 2.71 2.37 TBVOOS s 60 3.59 3.59 2.73 2.03

> 60 1.50 3.64 3.64 2.87 TCV Slow Closure/ s 60 2.64 2.64 2.37 2.36 1.44 PLUOOS/PCOOS > 60 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated 0 25 :S 38.5 >38.5 100 Base/TCV Stuck s 60 2.86 2.86 2.39 2.16 Closed/MSIVOOS 1.47

> 60 2.89 2.89 2.39 TBVOOS s 60 3.70 3.70 2.84 2.16 1.50

> 60 3.75 3.75 2.96 TCV Slow Closure/ S60 2.86 2.86 2.39 2.36 1.47 PLUOOS/PCOOS > 60 2.89 2.89 2.39 Page 34 of 69

COLR Dresden 3 Revision 16 Table 4-7: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 > 38.5 100 Base/TCV Stuck s 60 2.64 2.64 2.26 2.00 1.44 Closed/MSIVOOS >60 2.71 2.71 2.37 S60 3.59 3.59 2.73 TBVOOS 2.03 1.50

> 60 3.64 3.64 2.87 TCV Slow Closure/ S60 2.64 2.64 2.37 2.36 1.44 PLUOOS/PCOOS > 60 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 S38.5 >38.5 100 Base/TCV Stuck s 60 2.86 2.86 2.39 2.16 1.47 Closed/MSIVOOS > 60 2.89 2.89 2.39 S60 3.70 3.70 2.84 TBVOOS 2.16 1.50

>60 3.75 3.75 2.96 TCV Slow Closure/ S60 2.86 2.86 2.39 2.36 1.47 PLUOOS/PCOOS >60 2.89 2.89 2.39 Page 35 of69

COLR Dresden 3 Revision 16 Table 4-8: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 :S 38.5 >38.5 100 Base/TCV Stuck S60 2.64 2.64 2.26 2.07 1.44 Closed/MSIVOOS >60 2.71 2.71 2.37 S60 3.59 3.59 2.73 TBVOOS 2.07 1.50

> 60 3.64 3.64 2.87 TCV Slow Closure/ S60 2.64 2.64 2.37 PLUOOS/PCOOS 2.37 1.45

> 60 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 :S 38.5 >38.5 100 Base/TCV Stuck s 60 2.86 2.86 2.39 Closed/MSIVOOS 2.22 1.47

> 60 2.89 2.89 2.39 S60 3.70 3.70 2.84 TBVOOS 2.22 1.50

> 60 3.75 3.75 2.96 TCV Slow Closure/ s 60 2.86 2.86 2.39 PLUOOS/PCOOS 2.37 1.47

> 60 2.89 2.89 2.39 Page 36 of 69

COLR Dresden 3 Revision 16 **- .

Table 4-9: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.64 2.64 2.26 Closed/MSIVOOS > 60 2.00 1.44 2.71 2.71 2.37 S60 3.59 3.59 2.73 TBVOOS 2.03 1.50

>60 3.64 3.64 2.87 TCV Slow Closure/ S60 2.64 2.64 2.37 PLUOOS/PCOOS >60 2.36 1.44 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 S 38.5 >38.5 100 Base/TCV Stuck S60 2.86 2.86 2.39 Closed/MSIVOOS 2.16 1.47

> 60 2.89 2.89 2.39 s 60 3.70 3.70 2.84 TBVOOS 2.16 1.50

>60 3.75 3.75 2.96 TCV Slow Closure/ S60 2.86 2.86 2.39 PLUOOS/PCOOS 2.36 1.47

> 60 2.89 2.89 2.39 Page 37 of69

COLR Dresden 3 Revision 16 Table 4-10: ATRIUM 10XM TLC MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.64 2.64 2.26 2.00 1.44 Closed/MSIVOOS > 60 2.71 2.71 2.37 S60 3.59 3.59 2.73 TBVOOS 2.03 1.50

> 60 3.64 3.64 2.87 TCV Slow Closure/ s 60 2.64 2.64 2.37 2.36 1.44 PLUOOS/PCOOS > 60 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

% rated) 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.86 2.86 2.39 2.16 1.47 Closed/MSIVOOS > 60 2.89 2.89 2.39 TBVOOS s 60 3.70 3.70 2.84 2.16 1.50

>60 3.75 3.75 2.96 TCV Slow Closure/ s 60 2.86 2.86 2.39 2.36 1.97 1.47 PLUOOS/PCOOS >60 2.89 2.89 2.39 Page 38 of 69

COLR Dresden 3 Revision 16 Table 4-11: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 >38.5 100 Base/TCV Stuck s 60 2.64 2.64 2.26 Closed/MSIVOOS 2.07 1.44

>60 2.71 2.71* 2.37 S60 3.59 3.59 2.73 TBVOOS 2.07 1.50

>60 3.64 3.64 2.87 TCV Slow Closure/ S60 2.64 2.64 2.37 PLUOOS/PCOOS 2.37 1.45

>60 2.71 2.71 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

% rated) 0 25 S38.5 > 38.5 100 Base/TCV Stuck S60 2.86 2.86 2.39 Closed/MSIVOOS 2.22 1.47

>60 2.89 2.89 2.39 S60 3.70 3.70 2.84 TBVOOS 2.22 1.50

> 60 3.75 3.75 2.96 TCV Slow Closure/ S60 2.86 2.86 2.39 PLUOOS/PCOOS 2.37 1.47

>60 2.89 2.89 2.39 Page 39 of 69

COLR Dresden 3 Revision 16 Table 4-12: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck s 60 2.54 2.54 2.13 2.00 1.63 Closed/MSIVOOS > 60 2.67 2.67 2.37 S60 3.31 3.31 2.55 TBVOOS 2.06 1.74

>60 3.51 3.51 2.82 TCV Slow Closure/ S60 2.54 2.54 2.37 2.35

  • 1.63 PLUOOS/PCOOS > 60 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

% rated) 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck S60 2.74 2.74 2.31 2.15 1.63 Closed/MSIVOOS > 60 2.79 2.79 2.37 S60 3.43 3.43 2.62 TBVOOS 2.17 1.74

>60 3.63 3.63 2.90 TCV Slow Closure/ S60 2.74 2.74 2.37 2.35 1.63 PLUOOS/PCOOS > 60 2.79 2.79 2.37 Page40 of69

COLR Dresden 3 Revision 16 Table 4-13: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.54 2.54 2.13 Closed/MSIVOOS >60 2.01 1.63 2.67 2.67 2.37 S60 3.31 3.31 2.55 TBVOOS

>60 2.07 1.74 3.51 3.51 2.82 TCV Slow Closure/ S60 2.54 2.54 2.37

> 60 2.36 1.63 PLUOOS/PCOOS 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 S38.5 > 38.5 100 Base/TCV Stuck S60 2.74 2.74 2.31 Closed/MSIVOOS 2.15 1.63

>60 2.79 2.79 2.37 S60 3.43 3.43 2.62 TBVOOS

>60 2.18 1.74 3.63 3.63 2.90 TCV Slow Closure/ S60 2.74 2.74 2.37 PLUOOS/PCOOS 2.36 1.63

>60 2.79 2.79 2.37 Page 41 of 69

COLR Dresden 3 Revision 16 Table 4-14: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, BOC to NEOC (35,413 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck s 60 2.54 2.54 2.13 2.02 1.63 Closed/MSIVOOS >60 2.67 2.67 2.37 TBVOOS s 60 3.31 3.31 2.55 2.09 1.74

> 60 3.51 3.51 2.82 TCV Slow Closure/ s 60 2.54 2.54 2.37 2.37 1.63 PLUOOS/PCOOS >60 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck s 60 2.74 2.74 2.31 2.18 Closed/MSIVOOS 1.63

>60 2.79 2.79 2.37 S60 3.43 3.43 2.62 TBVOOS 2.20 1.74

> 60 3.63 3.63 2.90 TCV Slow Closure/ s 60 2.74 2.74 2.37 2.37 1.63 PLUOOS/PCOOS >60 2.79 2.79 2.37 Page42 of 69

COLR Dresden 3 Revision 16 Table 4-15: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck S60 2.54 2.54 2.13 Closed/MSIVOOS 2.00 1.63

>60 2.67 2.67 2.37 S60 3.31 3.31 2.55 TBVOOS 2.06 1.74

>60 3.51 3.51 2.82 TCV Slow Closure/ S60 2.54 2.54 2.37 PLUOOS/PCOOS 2.35 1.63

> 60 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

% rated) 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck S60 2.74 2.74 2.31 Closed/MSIVOOS 2.15 1.63

>60 2.79 2.79 2.37 S60 3.43 3.43 2.62 TBVOOS 2.17 1.74

>60 3.63 3.63 2.90 TCV Slow Closure/ S60 2.74 2.74 2.37 PLUOOS/PCOOS 2.35 1.63

> 60 2.79 2.79 2.37 Page43 of69

COLR Dresden 3 Revision 16 Table 4-16: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck S60 2.54 2.54 2.13 2.01 1.63 Closed/MSIVOOS > 60 2.67 2.67 2.37 S60 3.31 3.31 2.55 TBVOOS 2.07 1.74

> 60 3.51 3.51 2.82 TCV Slow Closure/ S60 2.54 2.54 2.37 2.36 1.63 PLUOOS/PCOOS > 60 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 :S 38.5 > 38.5 100 Base/TCV Stuck S60 2.74 2.74 2.31 2.15 1.63 Closed/MSIVOOS > 60 2.79 2.79 2.37 S60 3.43 3.43 2.62 TBVOOS 2.18 1.74

> 60 3.63 3.63 2.90 TCV Slow Closure/ s 60 2.74 2.74 2.37 2.36 1.63 PLUOOS/PCOOS > 60 2.79 2.79 2.37 Page 44 of69

COLR Dresden 3 Revision 16 Table 4-17: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, NEOC to EOFPLB (37,520 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.54 2.54 2.13 Closed/MSIVOOS 2.02 1.63

> 60 2.67 2.67 2.37 S60 3.31 3.31 2.55 TBVOOS 2.09 1.74

>60 3.51 3.51 2.82 TCV Slow Closure/ s 60 2.54 2.54 2.37 PLUOOS/PCOOS 2.37 1.63

> 60 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.74 2.74 2.31 Closed/MSIVOOS 2.18 1.63

>60 2.79 2.79 2.37 S60 3.43 3.43 2.62 TBVOOS 2.20 1.74

> 60 3.63 3.63 2.90 TCV Slow Closure/ S60 2.74 2.74 2.37 PLUOOS/PCOOS 2.37 1.63

> 60 2.79 2.79 2.37 Page 45 of 69

COLR Dresden 3 Revision 16 Table 4-18: OPTIMA2 TLC MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 ~38.5 >38.5 100 Base/TCV Stuck s 60 2.54 2.54 2.13

> 60 2.00 1.63 Closed/MSIVOOS 2.67 2.67 2.37 s 60 3.31 3.31 2.55 TBVOOS 2.06 1.74

> 60 3.51 3.51 2.82 TCV Slow Closure/ S60 2.54 2.54 2.37

> 60 2.35 1.63 PLUOOS/PCOOS 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated 0 25 ~38.5 >38.5 100 Base/TCV Stuck s 60 2.74 2.74 2.31 Closed/MSIVOOS 2.15 1.63

> 60 2.79 2.79 2.37 S60 3.43 3.43 2.62 TBVOOS 2.17 1.74

> 60 3.63 3.63 2.90 TCV Slow Closure/ S60 2.74 2.74 2.37 PLUOOS/PCOOS 2.35 1.63

> 60 2.79 2.79 2.37 Page 46 of69

COLR Dresden 3 Revision 16 Table 4-19: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 > 38.5 100 Base/TCV Stuck s 60 2.54 2.54 2.13 2.01 1.63 Closed/MSIVOOS > 60 2.67 2.67 2.37 S60 3.31 3.31 2.55 TBVOOS 2.07 1.74

> 60 3.51 3.51 2.82 TCV Slow Closure/ s 60 2.54 2.54 2.37 2.36 1.63 PLUOOS/PCOOS > 60 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.74 2.74 2.31 2.15 1.63 Closed/MSIVOOS > 60 2.79 2.79 2.37 S60 3.43 3.43 2.62 TBVOOS 2.18 1.74

>60 3.63 3.63 2.90 TCV Slow Closure/ s 60 2.74 2.74 2.37 2.36 1.63 PLUOOS/PCOOS > 60 2.79 2.79 2.37 Page47 of 69

COLR Dresden 3 Revision 16 Table 4-20: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (38,384 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT Core Flow Core Power % rated EOOS Condition

% rated 0 25 S38.5 > 38.5 100 Base/TCV Stuck s 60 2.54 2.54 2.13 2.02 1.63 Closed/MSIVOOS >60 2.67 2.67 2.37 S60 3.31 3.31 2.55 TBVOOS 2.09 1.74

> 60 3.51 3.51 2.82 TCV Slow Closure/ S60 2.54 2.54 2.37 2.37 1.63 PLUOOS/PCOOS >60 2.67 2.67 2.37 FHOOS Core Flow Core Power % rated EOOS Condition

(% rated) 0 25 S38.5 >38.5 100 Base/TCV Stuck S60 2.74 2.74 2.31 2.18 1.63 Closed/MSIVOOS >60 2.79 2.79 2.37 TBVOOS s 60 3.43 3.43 2.62 2.20 1.74

>60 3.63 3.63 2.90 TCV Slow Closure/ s 60 2.74 2.74 2.37

.2.37 1.63 PLUOOS/PCOOS >60

  • 2.79 2.79 2.37 Page48 of69

COLR Dresden 3 Revision 16 Table 4-21: ATRIUM 1OXM SLO MCPRp Limits for NSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5 >38.5 50 Base/TCV Stuck 2.66 2.66 2.28 2.18 2.16 Closed/MSIVOOS TBVOOS 3.61 3.61 2.75 2.18 2.16 TCV Slow Closure/

2.66 2.66 2.39 2.38 2.26 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5 >38.5 50 Base/TCV Stuck 2.88 2.88 2.41 2.18 2.16 Closed/MSIVOOS TBVOOS 3.72 3.72 2.86 2.18 2.16 I

i TCV Slow Closure/

2.88 2.88 2.41 2.38 2.26 PLUOOS/PCOOS Page 49 of69

COLR Dresden 3 Revision 16 Table 4-22: ATRIUM 10XM SLO MCPRp Limits for ISS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 :S 38.5 > 38.5 50 Base/TCV Stuck 2.66 2.66 2.28 2.18 2.16 Closed/MSIVOOS TBVOOS 3.61 3.61 2.75 2.18 2.16 TCV Slow Closure/

2.66 2.66 2.39 2.38 2.26 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 :S 38.5 > 38.5 50 Base/TCV Stuck 2.88 2.88 2.41 2.18 2.16 Closed/MSIVOOS TBVOOS 3.72 3.72 2.86 2.18 2.16 TCV Slow Closure/

2.88 2.88 2.41 2.38 2.26 PLUOOS/PCOOS Page 50 of69

COLR Dresden 3 Revision 16 Table 4-23: ATRIUM 10XM SLO MCPRp Limits for TSSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5 > 38.5 50 Base/TCV Stuck 2.66 2.66 2.28 2.18 2.16 Closed/MSIVOOS TBVOOS 3.61 3.61 2.75 2.18 2.16 TCV Slow Closure/

2.66 2.66 2.39 2.39 2.27 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5 > 38.5 50 Base/TCV Stuck 2.88 2.88 2.41 2.24 2.16 Closed/MSIVOOS TBVOOS 3.72 3.72 2.86 2.24 2.16 TCV Slow Closure/

2.88 2.88 2.41 2.39 2.27 PLUOOS/PCOOS Page51 of69

COLR Dresden 3 Revision 16 Table 4-24: OPTIMA2 SLO MCPRp Limits for NSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5 >38.5 50 Base/TCV Stuck 2.56 2.56 2.17 2.17 2.15 Closed/MSIVOOS TBVOOS 3.33 3.33 2.57 2.17 2.15 TCV Slow Closure/

2.56 2.56 2.39 2.37 2.25 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5 > 38.5 50 Base/TCV Stuck 2.76 2.76 2.33 2.17 2.15 Closed/MSIVOOS TBVOOS 3.45 3.45 2.64 2.19 2.15 TCV Slow Closure/

2.76 2.76 2.39 2.37 2.25 PLUOOS/PCOOS Page 52 of 69

COLR Dresden 3 Revision 16 Table 4-25: OPTIMA2 SLO MCPRp Limits for ISS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5 >38.5 50 Base/TCV Stuck 2.56 2.56 2.17 2.17 2.15 Closed/MSIVOOS TBVOOS 3.33 3.33 2.57 2.17 2.15 TCV Slow Closure/

2.56 2.56 2.39 2.38 2.26 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5 >38.5 50 Base/TCV Stuck 2.76 2.76 2.33 2.17 2.15 Closed/MSIVOOS TBVOOS 3.45 3.45 2.64 2.20 2.15 TCV Slow Closure/

2.76 2.76 2.39 2.38 2.26 PLUOOS/PCOOS Page 53 of69

COLR Dresden 3 Revision 16 Table 4-26: OPTIMA2 SLO MCPRp Limits for TSSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 :S 38.5 >38.5 50 Base/TCV Stuck .

2.56 2.56 2.17 2.17 2.15 Closed/MSIVOOS TBVOOS 3.33 3.33 2.57 2.17 2.15 TCV Slow Closure/

2.56 2.56 2.39 2.39 2.27 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 :S 38.5 > 38.5 50 Base/TCV Stuck 2.76 2.76 2.33 2.20 2.15 Closed/MSIVOOS TBVOOS 3.45 3.45 2.64 2.22 2.15 TCV Slow Closure/

2.76 2.76 2.39 2.39 2.27 PLUOOS/PCOOS Page 54 of69

COLR Dresden 3 Revision 16 Table 4-27: ATRIUM 10XM and OPTIMA2 MCPRt Limits (Reference 9)

EOOS Condition* Core Flow (% rated) MCPRtLimit 0 1.70 Base Case/ FHOOS / PCOOS / PLUOOS /

TCV Slow Closure/ PLUOOS + PCOOS in 35 1.70 TLO and SLO 108 1.20 0 1.88 Any Scenario** with One MSIVOOS 35 1.88 108 1.20 0 1.90 Any Scenario** with TBVOOS 35 1.90 108 1.35 o 1.70 Any Scenario** with 1 Stuck Closed 35 1.70 TCV/TSV 108 1.20

  • See Section 8 for further operating restrictions.
    • i,Any Scenario" implies any other combination of allowable EOOS conditions that is not otherwise covered by this table.

Note that the MCPRt limits for any scenario with 1 stuck closed TCV/TSV are identical to base case MCPRt limits. This is reflected in ~he thermal limit sets presented in Table 8-1.

Page 55 of69

COLR Dresden 3 Revision 16 .

5. Linear Heat Generation Rate Technical Specification Sections 3.2.3, 3.4.1. and 3.7.7 The TMOL at rated conditions for the OPTIMA2 and ATRIUM 10XM fuel is established in terms of the maximum LHGR as a function of peak pellet (rod nodal) exposure. The LHGR limits for OPTIMA2 fuel are presented in Tables 5-1 through 5-5. The limits in Table 5-1 apply to OPTIMA2 lattices that do not require Gadolinia set down penalties. The limits in Tables 5-2 through 5-4 apply to OPTIMA2 lattices that do require Gadolinia set down penalties. The limits in Table 5-5 apply to the OPTIMA2 natural U blankets in lattices 81 and 89. The LHGR limits for ATRIUM 10XM fuel are presented in Table 5-6.

The power- and flow-dependent LHGR multipliers (LHGRFACp and LHGRFACt) are applied directly to the LHGR limits to protect against fuel melting and overstraining of the cladding during an AOO (Reference 9). In all conditions, the margin to the LHGR limits is determined by applying the lowest multiplier from the applicable LHGRFACp and LHGRFAC, multipliers for the power/flow statepoint of interest to the steady state LHGR limit (Reference 9).

LHGRFACp and LHGRFAC, multipliers were established to support base case and all EOOS conditions for all Cycle 26 exposures and scram speeds. The LHGRFACp multipliers for ATRIUM 10XM and OPTIMA2 are presented in Table 5-7 and Table 5-8, respectively. The LHGRFAC, multipliers for ATRIUM 10XM and OPTIMA2 are presented in Table 5-9 and Table 5-10, respectively.

Page 56 of 69

COLR Dresden 3 Revision 16 Table 5-1: Steady-State LHGR Limits for OPTIMA2 Lattices 155,156,157,161,162,163,164,165, 166 (Reference 8)

Peak Pellet Exposure LHGRLimit (MWd/MTU) (kW/ft) 0 13.72 14000 13.11 23000 12.22 57000 8.87 62000 8.38 75000 3.43 Table 5-2: Steady-State LHGR Limits for OPTIMA2 Lattices 153, 159 (Reference 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14000 13.11 23000 12.22 23001 . 12.10 33000 11.12 33001 11.23 57000 8.87 62000 8.38 75000 3.43 Table 5-3: Steady-State LHGR Limits for OPTIMA2 Lattices 149, 150, 151, 154,158,160 (Reference 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 13.72 14000 13.11 14001 12.85 23000 11.98 46000 9.75 46001 9.95

  • 57000 8.87 62000 8.38 75000 3.43 Page 57 of69

COLR Dresden 3 Revision 16 Table 5-4: Steady-State LHGR Limits for OPTIMA2 Lattice 152 (Reference 8)

Peak Pellet Exposure LHGRLimit (MWd/MTU) (kW/ft) 0 13.72 14000 13.11 15000 13.01 15001 12.62 23000 11.85 33000 10.90 33001 11.23 57000 8.87 62000 8.38 75000 3.43 Table 5-5: Steady-State LHGR Limits for OPTIMA2 Lattices 81, 89 (Reference 12)

Peak Pellet Exposure LHGR Limit (MWd/MTU) (kW/ft) 0 11.96 14000 11.43 23000 10.66 57000 8.87 62000 8.38 75000 3.43 Table 5-6: Steady-State LHGR Limits for ATRIUM 10XM (Reference 9)

Peak Pellet Exposure LHGRLimit (MWd/MTU) (kW/ft) 0 14.1 18900 14.1 74400 7.4 Page 58 of69

COLR Dresden 3 Revision 16 Table 5-7: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, All Exposures (Reference 9)

  • Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 .S 38.5 > 38.5 60 90 100 Base/TCV Stuck S60 0.50 0.50 0.58 0.58 0.76 0.90 1.00 Closed/MSIVOOS >60 0.48 0.48 0.58 S60 0.38 0.38 0.54 TBVOOS 0.58 0.76 0.90 0.98

>60 0.36 0.36 0.48 TCV Slow Closure/ S60 0.50 0.50 0.58 0.58 0.76 0.90 1.00 PLUOOS/PCOOS > 60 0.48 0.48 0.58 FHOOS Core Flow Core Power(% rated)

EOOS Condition

(% rated) 0 25 .S 38.5 > 38.5 60 90 100 Base/TCV Stuck S60 0.44 0.44 0.52 0.58 0.76 0.90 0.98 Closed/MSIVOOS >60 0.42 0.42 0.52 s 60 0.34 0.34 0.48 TBVOOS 0.58 0.76 0.90 0.98

> 60 0.34 0.34 0.44 TCV Slow Closure/ S60 0.44 0.44 0.52 0.58 0.76 0.90 0.98 PLUOOS/PCOOS >60 0.42 0.42 0.52 Page 59 of69

COLR Dresden 3 Revision 16 Table 5-8: OPTIMA2 LHGRFACp Multipliers for All Scram Insertion Times, All Exposures (Reference 9)

Nominal FWT Core Flow Core Power (% rated)

EOOS Condition

(% rated) O* 25 ~38.5 > 38.5 50 80 100 Base/TCV Stuck S60 0.56 0.56 0.63 Closed/MSIVOOS 0.66 0.74 0.84 1.00

>60 0.54 0.54 0.62 S60 0.41 0.41 0.52 TBVOOS 0.65 0.72 0.77 0.99

>60 0.40 0.40 0.49 TCV Slow Closure/ S60 0.56 0.56 0.63 PLUOOS/PCOOS 0.63 0.67 0.83 1.00

>60 0.54 0.54 0.62 FHOOS Core Flow Core Power (% rated)

EOOS Condition

(% rated) 0 25 ~38.5 > 38.5 50 80 100 Base/TCV Stuck S60 0.50 0.50 0.58 Closed/MSIVOOS 0.60 0.69 0.84 0.99

> 60 0.49 0.49 0.58 S60 0.38 0.38 0.50 TBVOOS 0.60 0.68 0.77 0.97

>60 0.37 0.37 0.47 TCV Slow Closure/ S60 0.50 0.50 0.58 PLUOOS/PCOOS 0.60 0.67 0.83 0.99

> 60 0.49 0.49 0.58 Page60 of 69

COLR Dresden 3 Revision 16 Table 5-9: ATRIUM 10XM LHGRFAC, Multipliers for All Cycle 26 Exposures, All EOOS (Reference 9)

Core Flow (% rated) LHGRFAC, 0.0 0.57 35.0 0.57 80.0 1.00 108.0 1.00 Table 5-10: OPTIMA2 LHGRFAC, Multipliers for All Cycle 26 Exposures, All EOOS (Reference 9)

Core Flow (% rated) LHGRFAC, 0.0 0.27 20.0 0.43 40.0 0.60 60.0 0.80 80.0 1.00 100.0 1.00 108.0 1.00 Page 61 of 69

COLR Dresden 3 Revision 16

6. Control Rod Block Setpoints Technical Specification Sections 3.3.2.1 and 3.4.1 The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown in Table 6-1:

Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints (Reference 3)

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop o.65 wd + 55.0%

Operation Single Recirculation Loop 0.65 Wd + 51.0%

Operation Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr.

The setpoint may be lower/higher and will still comply with the CRWE analysis because CRWE. is analyzed unblocked (Reference 9).

Page 62 of69

COLR Dresden 3 Revision 16

7. Stability Protection Setpoints Technical Specifications Section 3.3.1.3 The OPRM PBDA Trip Settings are provided in Table 7-1.

Table 7-1: OPRM PBDA Trip Settings (Reference 9)

Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp)

Confirmation Count Setpoint (Np) 1.10 13 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system (Methodology 2).

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power/flow-dependent MCPR limits. Any change to the OLMCPR values and/or the power/flow-dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

  • Page 63 of 69

COLR Dresden 3 Revision 16

8. Modes of Operation The allowed modes of operation with combinations of EOOS are as described in Table 8-1. The EOOS conditions separated by "/" in these tables represent single EOOS conditions and not combinations of conditions.

Note that the following EOOS options have operational restrictions: all SLO, all EOOS options with 1 TCV/TSV stuck closed, and MSIVOOS. See Table 8-2 for specific restrictions.

Table 8-1: Modes of Operation (Reference 9)

EOOS Option Thermal Limit Set BASE CASE Base Case > TLO orSLO

> Nominal FWT or FHOOS TBVOOS TBVOOS > TLO orSLO

> Nominal FWT or FHOOS BASE CASE 1 TCV/TSV Stuck Closed > TLO orSLO

> Nominal FWT or FHOOS MSIVOOS OneMSIVOOS > TLO orSLO

> Nominal FWT or FHOOS PLUOOSITCV SLOW C TCV Slow Closure > TLO orSLO

> Nominal FWT or FHOOS PLUOOSITCV SLOW C PLUOOS > TLO orSLO

> Nominal FWT or FHOOS PLUOOSITCV SLOW C PCOOS > TLO orSLO

> Nominal FWT or FHOOS PLUOOSITCV SLOW C PLUOOS and 1 TCVITSV Stuck Closed > TLO for Nominal FWT or FHOOS

> SLO for Nominal FWT*

PLUOOSITCV SLOW C PCOOS and PLUOOS > TLO for Nominal FWT or FHOOS

> SLO for Nominal FWT*

PLUOOSITCV SLOW C PCOOS and 1 TCVITSV Stuck Closed > TLO for Nominal FWT or FHOOS

> SLO for Nominal FWT*

  • FHOOS cannot be applied to SLO for the case of PLUOOS and 1 TCV/TSV Stuck Closed, for the case of PCOOS and PLUOOS, or for the case of PCOOS and 1 TCV/TSV Stuck Closed.

Page 64 of 69

COLR Dresden 3 Revision 16 Common Notes:

1. Per Reference 9, all modes are allowed for operation at MELLLA, ICF (up to 108% rated core flow), and coastdown subject to the power restrictions in Table 8-2. The licensing analysis supports full power

&iiil~ ~g~~ ~:!h~ ~~!,t r

, m'> ....** a,'"" *up to 40% of the TIP channels OOS or the equivalent number of TIP channels, using the guidance in Reference 4 for startup with TIP machines OOS

b. Up to 50% of the LPRMs OOS
c. An LPRM calibration frequency of up to 2500 EFPH
2. Nominal FWT results are valid for application within a +10°F/-30°F temperature band around the nominal FWT curve (Reference 9). For operation outside of nominal FWT, a FWT reduction of between 30°F and 120°F is supported for all FHOOS conditions listed in Table 8-1 for cycle operation through EOCLB (Reference 9). At lower power levels, the feedwater temperature reduction is less (Reference 9). Per Reference 5, there is a restriction which requires that for a FWT reduction greater than 100°F, operation needs to be restricted to less than the 100% rod line. For a Feedwater temperature reduction of between 30°F and 120°F, the FHOOS limits should be applied.
3. The base case and EOOS limits and multipliers support operation with 8 of 9 turbine bypass valves operational (i.e., one bypass valve out of service) with the exception of the TBVOOS condition in which all bypass valves are inoperable (Reference 9). Use of the response table in TRM Appendix H supports operation with any single TBV OOS. TRM Appendix H facilitates analysis with one valve OOS in that the capacity at 0.5 seconds from start of TSV closure is equivalent to the total capacity with eight out of the nine valves in service (Reference 10). The analyses also support Turbine Bypass flow of 29.8% of vessel rated steam flow (Reference 10), equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), if the assumed opening profile for the remaining TBVs is met. If the opening profile is NOT met, or if the TBV system CANNOT pass an equivalent of 29.8% of vessel rated steam flow, utilize the TBVOOS condition.
4. TBVOOS assumes that ALL the TBVs do not trip open on TCV fast closure or TSV closure and that ALL the TBVs are not capable of opening via the pressure control system (Reference 11 ). Steam relief capacity is defined in Reference 10.
5. Between 25% and 50% of rated thermal power, the PLUOOS/TCV Slow Closure thermal limit set ensures that the AOO acceptance criteria are met for a load rejection event if the 86 Device is OOS (Reference 9). Therefore, use the PLUOOS/TCV Slow Closure thermal limit set between 25% and 50% of rated thermal power if the 86 Device is OOS.

Page 65 of 69

COLR Dresden 3 Revision 16 Table 8-2: Core Operational Restrictions for EOOS Conditions (Reference 9)

Core Flow (% of Core Thermal Power (%

EOOS Condition Rod Line(%)

Rated) of Rated Power) 1 TCV/TSV Stuck Closed PCOOS and 1 TCV/TSV Stuck Closed N/A < 75 < 80 PLUOOS and 1 TCV/TSV Stuck Closed OneMSIVOOS N/A < 75 N/A SLO < 51 < 50 N/A Page 66 of69

COLR Dresden 3 Revision 16

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. GE Topical Report NEDE-24011 -P-A, Revision 15, "General Electric Standard Application for Reactor Fuel (GESTAR)," September 2005.
2. GE Topical Report NED0-32465-A, Revision 0, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1996.
3. Westinghouse Topical Report CENPD-300-P-A, Revision 0, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.
4. Westinghouse ReportWCAP-15682-P-A, Revision 0, "Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application,* April 2003.

5. Westinghouse ReportWCAP-16078-P-A, Revision 0, "Westinghouse BWR ECCS Evaluation Model:

Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel,"

November 2004.

6. Westinghouse Topical Report WCAP-15836-P-A, Revision 0, "Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1," April 2006.
7. Westinghouse Topical Report WCAP-15942-P-A, Revision 0, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors Supplement 1 to CENP-287," March 2006.
8. Westinghouse Topical Report CENPD-390-P-A, Revision 0, "The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
9. Exxon Nuclear Company Report XN-NF-81-58(P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," March 1984.
10. Advanced Nuclear Fuels Corporation Report ANF-89-98(P)(A), Revision 1 and Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
11. Siemens Power Corporation Report EMF-85-74(P), Revision O Supplement 1 (P)(A) and Supplement 2 (P)(A), "RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model," February 1998.
12. AREVA NP Topical Report BAW-10247PA, Revision 0, "Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors,* February 2008.
13. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 1 Revision O and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.
14. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology for BWR Reloads,*

June 1986.

15. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description," January 1987.

Page 67 of 69

COLR Dresden 3 Revision 16

16. Siemens Power Corporation Topical Report EMF-2158(P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASM0-4/MICROBURN-B2," October 1999.
17. Siemens Power Corporation Report EMF-2245(P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel," August 2000.
18. AREVA NP Report EMF-2209(P)(A), Revision 3, "SPCB Critical Power Correlation," September 2009.
19. AREVA Topical ReportANP-10298P-A, Revision 1, "ACE/ATRIUM 10XM Critical Power Correlation,"

March 2014.

20. AREVA NP Topical ReportANP-10307PA, Revision 0, "AREVA MCPR Safety Limit Methodology for Boiling Water Reactors," June 2011.
21. Exxon Nuclear Company Report XN-NF-84-105(P)(A), Volume 1 Revision O and Volume 1 Supplements 1 and 2, "XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis," February 1987.
22. Advanced Nuclear Fuels Corporation Report ANF-913(P)(A), Volume 1 Revision 1 and Volume 1 Supplements 2, 3, and 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses," August 1990.
23. FramatomeANP Report EMF-2361(P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model,"

May 2001.

24. Siemens Power Corporation Report EMF-2292 (P)(A), Revision 0, "ATRIUM'-10: Appendix K Spray Heat Transfer Coefficients," September 2000.
25. Framatome ANP Topical Report ANF-1358(P)(A), Revision 3, "The Loss of Feedwater Heating Transient in Boiling Water Reactors," September 2005.
26. Siemens Power Corporation Topical Report EMF-CC-074(P)(A), Volume 4 Revision 0, "BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2," August 2000.

Page68 of69

COLR Dresden 3 Revision 16

10. References
1. Exelon Generation Company, LLC, Docket No. 50-249, Dresden Nuclear Power Station, Unit 3, Renewed Facility Operating License, License No. DPR-25.
2. Exelon Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, "Control Rod Scram Times."
3. Exelon Design Analysis GE DRF C51-00217-01, Revision 0, "Instrument Setpoint Calculation Nuclear Instrumentation Rod Block Monitor," July 30, 2012.
4. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004. (Exelon EC 348897-000)
5. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
6. Westinghouse Letter NF-BEX-14-50 "Bundle Design Report for Dresden 3 Cycle 24", April 8, 2014.
7. Westinghouse Report NF-BEX-14-77-NP Revision 0, "Dresden Nuclear Power Station Unit 3 Cycle 24 MAPLHGR Report", September 2014.
8. Westinghouse Letter NF-BEX-15-82, Revision 0, "Linear Heat Generation Rate Limits for Fuel Loaded in Dresden Unit 3 Cycle 24," May 12, 2015.
9. Framatome Report ANP-3709P Revision 0, "Dresden Unit 3 Cycle 26 Reload Safety Analysis,"

August 2018.

10. Exelon TODI ES1800002 Revision 0, "Dresden Unit 3 Cycle 26 Plant Parameters Document,"

February 7, 2018.

11. Exelon TODI ES1500011 Revision 0, "Equipment Out of Service Description for Transition to AREVA Fuel- Dresden," May 20, 2015.
12. Westinghouse Report NF-BEX-14-94, Revision 0, "Dresden Nuclear Power Station Unit 3 Cycle 24 Reload Licensing Report," September 2014.

Page 69 of69