SVPLTR 06-0006, Core Operating Limits Report for Plant Cycle 20 Revision 1

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Plant Cycle 20 Revision 1
ML060600395
Person / Time
Site: Dresden Constellation icon.png
Issue date: 02/17/2006
From: Bost D
Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
GL-88-016, SVPLTR: #06-0006
Download: ML060600395 (31)


Text

Exelkr5n, Exelon Generation Company, LLC www.exeloncorp.com Nu1 Dresden Nuclear Power Station uclear 6500 North Dresden Road Morris, IL 60450-9765 February 17, 2006 SVPLTR: #06-0006 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington D.C. 20555-0001 Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License No. DPR-19 NRC Docket No. 50-237

Subject:

Core Operating Limits Report for Unit 2 Cycle 20 Revision 1 The purpose of this letter is to transmit Revision 1 of the Core Operating Limits Report (COLR) for Dresden Nuclear Power Station (DNPS) Unit 2 operating cycle 20 (D2C20) in accordance with Technical Specifications Section 5.6.5, "CORE OPERATING LIMITS REPORT (COLR)."

In accordance with Generic Letter 88-16, these limits in the COLR are being modified to contain the cycle-specific parameter limits for DNPS Unit 2. The limits were determined using NRC-approved methodologies and are consistent with applicable limits of the plant safety analysis that are addressed in the Updated Final Safety Analysis Report.

Should you have any questions concerning this letter, please contact Mr. P. Salas at (815) 416-2800.

Respectfully, Danny Bost Site Vice President Dresden Nuclear Power Station

Attachment:

COLR for Dresden Unit 2 Cycle 20, Revision 1 cc: Regional Administrator - NRC Region IlIl NRC Senior Resident Inspector - Dresden Nuclear Power Station

-A l

COLR Dresden 2 Revision 4 Pagel 1l Core Operating Limits Report For Dresden Unit 2 Cycle 20 Revision 1 I Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 2 Table of Contents

1. Terms and Definitions ....................................... , , . 4
2. General Information . . . 5
3. Average Planar Linear Heat Generation Rate ... 6
4. Operating Limit Minimum Criltical Power Ratio ... 7 4.1. Manual Flow Control MCPR Limits . . 7 4.1.1. Power-Dependent MCPR .7 4.1.2. Flow-Dependent MCPR .7 4.2. Automatic Flow Control MCPR Limits . . 7 4.3. Scram Time .. 8 4.4. Recirculation Pump Motor Generator Settings . . 8
5. Linear Heat Generation Rate ...................................... 12
6. Rod Block Monitor . . ..............................26
7. Stability Protection Setpoints . . .........................27
8. Modes of Operation . . .28
9. Methodology............................................................................... 29
10. References . . .30 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 3 l List of Tables Table 3-1 MAPLHGR for bundle(s):

G El4-Pi OHNAB4O8-l 6GZ-l OOT-l 45-T6-2483 GE14-Pl OHNAB4l1 -4G7.0/9G6.0-10OT-145-T6-2484 GE14-Pl ODNAB418-16GZ-10OT-14.5-T6-2646 GE14-Pl ODNAB389-18GZ-10OT-14 5-T6-2650 GE14-Pl ODNAB390-16GZ-10OT-14 5-T6-2851 GE14-Pl ODNAB397-18GZ-10OT-145-T6-2852 .................................................... 6 Table 3-2 MAPLHGR SLO multiplier ..................................................................... 6 Table 4-1 MCPR Option A Based Operating Limits ........................................................... 9 Table 4-2 MCPR Option B Based Operating Limits ........................................................... 9 Table 4-3 MCPR(P) for GE Fuel ..................................................................... 10 Table 4-4 MCPR(F) Limits for GE Fuel All EOOS except TCV Stuck Closed DLO or SLO Operation.............................................................................................................. 11 Table 4-5 MCPR(F) Limits for GE Fuel with rcv Stuck Closed DLO or SLO Operation ......... 11 Table 5-1: LHGR Limit for GE14-PlOHNAB411-4G7.0/9G6.0-100T-145-T6-2484 ................ 12 Table 5-2: LHGR Limit for GE14-PlOHNAB411-4G7.0/9G6.0-100T-145-T6-2284, Lattice 5154 ..................................................................... 13 Table 5-3: LHGR Limit for GE14-P1OHNAB4-11-4G7.0/9G6.0-10OT-145-T6-2484, Lattice 5155 ..................................................................... 14 Table 5-4: LHGR Limit for GE14-PlOHNAB408-16GZ-10OT-145-T6-2483 ........................ 15 Table 5-5: LHGR Limit for GE14-PlOHNAB408-16GZ-100T-145-T6-2483, Lattice 5147 ........ 15 Table 5-6: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 51413 ........ 16 Table 5-7: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 5149 ........ 17 Table 5-8: LHGR Limit for GE14-P1OHNAB408-16GZ-10OT-145-T6-2483, Lattice 5150 ........ 18 Table 5-9: LHGR Limit for GE14-PlODNAB4 18-16GZ-10OT-145-T6-2646 ........................... 19 Table 5-10: LHGR Limit for GE14-P1ODNAEI418-16GZ-100T-145-T6-2646, Lattice 5972 ....... 20 Table 5-11: LHGR Limit for GE14-P1ODNAEB418-16GZ-100T-145-T6-2646, Lattice 5973 ....... 21 Table 5-12: LHGR Limit for GE14-PiODNAEB389-18GZ-10OT-145-T6-2650 ......................... 22 Table 5-13: LHGR Limit for GE14-P1ODNAEB389-18GZ-100T-145-T6-2650, Lattice 5996 ....... 22 Table 5-14: LHGR Limit for GE14-P1ODNAEB389-18GZ-100T-145-T6-2650, Lattice 5997 ....... 23 Table 5-15: LHGR Limit for GE14-P10DNAEB397-18GZ-100T-145-T6-2852 and GE14-P1 ODNAB390-16GZ-10OT-145-T6-2851, all Lattices ....................................................... 23 Table 5-16 LHGRFAC(P) for GE Fuel ......................................................................... 24 Table 5-17 LHGRFAC(F) Multipliers for GE Fuel All EOOS except TCV Stuck Closed DLO or SLO Operation ..................................................................... 25 Table 5-18 LHGRFAC(F) Multipliers for GE Fuel with TCV Stuck Closed DLO or SLO Operation 25 Table 5-19 LHGR SLO Multiplier ..................................................................... 25 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 4 l

1. Terms and Definitions APLHGR Average planar linear heat generation rate APRM Average power range monitor BOC Beginning of cycle DLO Dual loop operation ELLLA Extended load line limit analysis EOC End of cycle EOOS Equipment out of service EOR End of rated conditions (i.e. cycle exposure at 100% power, 100% flow, all-rods-out)

FFTR Final feedwater tern perature reduction FWHOOS Feedwater heater out of service GE14 GE14C fuel GNF Global Nuclear Fuel ICF Increased core flow LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPFAC(F) Flow dependent MAPLHGR multiplier MAPFAC(P) Power dependent MAPLHGR multiplier MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum critical power ratio MCPR(F) Flow dependent MC'PR MCPR(P) Power dependent MCPR MELLLA Maximum extended load line limit analysis MSIV Main steam isolation valve OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PROOS Pressure regulator out of service RBM Rod block monitor RWCU Reactor water clean-up RWE Rod withdrawal error RPTOOS Recirculation pump trip out of service SLMCPR Safety limit minimum critical power ratio SLO Single loop operation SRVOOS Safety-relief valve cut of service TBPOOS Turbine bypass system out of service TCV Turbine control valve TCVOOS Turbine control valve out of service TIP Traversing incore probe TSV Turbine stop valve TSVOOS Turbine stop valve out of service Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 5 l

2. General Information Power and flow dependent limits are listed fr various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is analyzed for this cycle.

Licensed rated thermal power is 2957 MWth.

MCPR(P) and MCPR(F) values are independent of scram time.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 6 1

3. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of each fuel type as a function of average planar exposure is given in Table 3-1. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 3-2.

Table 3-1 MAPLHGR for bundle(s):

GE14-PIOHNAB418-1 6GZ-1OOT-145-T6-2483 GE14-Pl OHNAB411 -4G7.0/9G6.0-10OT-145-T6-2484 GE14-Pl ODNAB4l18-16GZ-1OOT-145-T6-2646 GE14-PlODNAB3159-18GZ-1OOT-145-T6-2650 GE14-PI ODNAB3!9O-16GZ-1OOT-145-T6-2851 GE14-PlODNAB3!97-18GZ-10OT-145-T6-2852 (References 3 and 17)

Avg. Planar t Exposure MAPLHGR (GWd/IVIT) (kW/ft) 0.00 11.68 16.00 11.68 55.12 8.02 63.50 . 6.97 70.00 4.36 Table 3-2 MAIPLHGR SLO multiplier (Reference 3)

Multiplier GE140 0.77 l Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 7 1

4. Operating Limit Minimum Critical Power Ratio 4.1. Manual Flow Control MACPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCIPR For operation at less than 38.5% of rated core thermal power, the OQLCPR as a function of core thermal power (MCPR(P)) is shown in Table 4-3. For operation at greater than 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Table 4-1 or 4-2 by the applicable MCPR multiplier K(P) given in Table 4-3. For operation at exactly 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is the maximum of either of the two aforementioned methods evaluated at 38.5% of rated core thermal power.

4.1.2. Flow-Dependent MCPR Tables 4-4 and 4-5 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

4.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 8 I 4.3. Scram Time Option A and Option B refer to scram speeds.

Option A scram speed is the Improved Technical Specification scram speed. The core average scram speed insertion time for 20% insertion must be less than or equal to the Technical Specification scram speed to utilize Option A MCPR limits. Reload analyses performed by (GNF) for Cycle 20 Option A MCPR limits utilized a 20% core average insertion time of 0.900 seconds (Relerence 7).

To utilize the MCPR limits for the Option B scram speed, the core average scram insertion time for 20% insertion must be less than or equal to 0.694 seconds (Reference 7). If the core average scram insertion time does not meet the Option B criteria, but is within the Option A criteria, the appropriate MCPR value may be determined from a linear interpolation between the Option A and B limits with standard mathematical rounding to two decimal places. When performing a linear interpolation to determine MCFPR limits, ensure that the time used for Option A is 0.900 seconds.

4.4. Recirculation Pump Motor Generator Settings Cycle 20 was analyzed with a maximum core flow runout of 105%; therefore the recirculation pump motor generator scoop tube mechanical and electrical stops must be set to maintain core flow less than 105% (102.9 Mlb/hr) for all runout events (Reference 11 and 21). This value is bounded by the analyses of References 3 and 4.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 9 Table 4-1 MCPR Option A Based Operating Limits (References 3 and 4)

Cycle Exposure

< EOR - 1707 > EOR - 1707 EOOS Combination Fuel Type MWd/MT MWd/MT BASE GE14 1.56 1.67 BASE SLO GE14 1.57 1.68 TBPOOS GE14 1.74 1.76 TBPOOS SLO GE14 1.75 1.77 TCV SLOW CLOSURE GE14 1.60 1.67 TCV SLOW CLOSURE SLO GE14 1.61 1.68 PLUOOS GE14 1.64 1.67 PLUOOS SLO GE14 1.65 1.68 TCV STUCK CLOSED GE14 1.56 1.67 TCV STUCK CLOSED SLO GE14 1.57 1.68 Table 4-2 MCPR Option B Based Operating Limits (References 3 and 4)

Cycle Ex posure

< EOR - 1707 > EOR - 1707 EOOS Combination Fuel Type MWdWMT MWdVIMT BASE GE14 1.45 1.50 BASE SLO GE14 1.46 1.51 TBPOOS GE14 1.57 1.59 TBPOOS SLO GE14 1.58 1.60 TCV SLOW CLOSURE GE14 1.45 1.50 TCV SLOW CLOSURE SLO GE14 1.46 1.51 PLUOOS GE14 1.47 1.50 PLUOOS SLO GE14 1.48 1.51 TCV STUCK CLOSED GE14 1.45 1.5(1 TCV STUCK CLOSED SLO GE14 1.46 1.51 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 10 I Table 4-3 MCPR(P) for GE Fuel (Reference 4)

Core Core Core Thermal Power (% Rated)

Flow 0 25 1 38.5 1 38.5 l 45 l 60 l 70 _f 70 l 100 EOOS Combination Operating Limit Operating Limit IMCPR Multiplier, Kp Rated) MCPR Base Case 3.19

-60 2.61 2.29 1.32 1.28 1.15 iM 1.00

>60 3.81 3.01 2.59 Base Case SLO 3.20 2.62 2.30

-60 1.32 1.28 1.15 1.00

>60 3.82 3.02 2.60

<60 5.60 3.81 2.84 1.37 1.28 1.15 TBPOOS - 1.00

>60 6.85 4.66 3.48

  • 60 5.61 3.82 2.85 TBPOOS SLO . 1.37 1.28 1.15 1.00

>60 6.86 4.67 3.49 TCV Slow Closure 3.19

-60 2.61 2.29 1.64 1.45 1.26 1 1.11 1.00

>60 3.81 3.01 2.59 TCV Slow Closure SLO -60 3.20 2.62 2.30 1.64 1.45 1.26 1.11 1.00

>60 3.82 3.02 2.60

  • 60 3.19 2.61 2.29 PLUOOS - - - 1.64 1.45 1.26 1.11 1.00

>60 3.81 3.01 2.59

<60 3.20 2.62 2.30 PLU>OS SLO _ 1.64 1.45 1.26 1.11 1.00

>60 3.82 3.02 2.60

  • 60 3.19 2.61 2.29 TCV Stuck Closed 1.32 _1.28 1.15 1.00

>60 3.81 3.01 2.59 TCV Stuck Closed SLO 60 -3. 2.62 -2.30- 1.32 1.28 1.15 1.00

>60 1 3.82 3.02 2.60 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 11 l Table 4-4 MJCPR(F) Limits for GE Fuel All EOOS except TCV Stuck Closed DL- or SLO Operation (Reference 9)

Flow [ MCPR(F)

(% rated) Limit 110.0 1.22 100.0 1.22 03.0 1.86 Table 4-5 FACPR(F) Limits for GE Fuel with TCV Stuck Closed DLO or SLO Operation (Reference 9)

Flow MCPR(F)

(% rated) Limit 110.0 1.27 108.9 X 1.27 0.0 1.97 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 12

5. Linear Heat Generation Rate The maximum Steady-State LHGR shall not exceed the limit of 13.4 KW/ft for the following fuel bundles (Reference 8).

GE14-Pl OHNAB408-16GZ-1 OOT-145-T6-2483 GE14-Pl OHNAB411 -4G7.0/9G6.0-l OOT-145-T6-2484 GE14-PIODNAB41E8-16GZ-1 OOT-145-T6-2646 GE14-Pl ODNAB3891-18GZ-1 OOT-145-T6-2650 GE14-Pl ODNAB39C-1 6GZ-1 OOT-145-T6-2851 GE14-Pl ODNAB397'-18GZ-1 OOT-145-T6-2852 The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 5-1 through 5-15 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), the flow dependent LHGR Factor, LHGRFAC(F), or the single loop operation (SLO) multiplication factor where applicable. The LHGRFAC(P) is determined from Table 5-16. The LHGRFAC(F) is determined from Table 5-17 or 5-18. The SLO multiplication factor can be found in Table 5-19.

Table 5-1: LHGR Limit for GEl 4-P1 OHNAB411-4G7.0/9G6.0-1 OOT-1 45-r6-2484 (Reference 5)

Lattices 5146, 5153, 5151, and 5156 Composite Limit kWMft 5146: P1 OHNAL071 -NOG-1 OOT-T6-5146 5153: P1OHNAL458-4G7.O/9G6.0-1 OOT-T6-5153 5151: P1 OHNAL071 -NOG-1 OOT-V-T6-5151 5156: P1 OHNAL071 -13GE-1 OOT-V-T6-5156 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 -- 8.0 70.0 5.0 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 13 l Table 5-2: LHGR Limit for: GE14-P1OHNAE1411-4G7.0/9G6.0-1OOT-145-T6-2484, Lattice 5154 (Reference 5)

Lattice 5154 Composite Limit kWMft P1 OHNAL453-4G7.O/9G6.0-1 OOT-E-T6-5154 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.1155 13.40 16.4055 13.3539 17.6796 13.1694 18.9383 13.0139 20.1833 12.8740 22.2507 12.5985 25.9250 12.1329 31.9779 11.3724 37.9426 10.6460 43.8088 9.9638 49.5729 9.3308 55.2416 8.7448 60.8333 8.1967 66.3754 6.6729 70.00 5.00 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 14 l Table 5-3: LHGR Limit for: GE14-P1 OHNAE1411-4G7.0/9G6.0-100T-145-T6-2484, Lattice 5155 (Reference 5)

Lattice 5155 Composite Limit kWMft P1 OH NAL453-4G7.0/9G6.0-1 OOT-V-T6-5155 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.0231 13.40 16.3045 13.1997 17.5697 12.8942 18.8192 12.7533 19.6777 12.6793 22.1391 12.3631 25.7931 11.9027 31.8166 11.1486 37.7552 10.4255 43.5974 9.7428 49.3382 9.1060 54.9830 8.5136 60.5487 7.9572 66.0623 6.6464 70.00 4.8953 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 15 l Table 5-4: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483 (Reference 5)

Lattices 5146, 5151, and 5152 Composite Limit kWlft 5146: P1OHNAL071-NOG-10OT-T6-5146 5151: P1 OHNAL071 -NOG-10OT-V-T6-5151 5152: P1 OHNAL071 -16GE-10OT-V-T6-5152 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 5-5: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 5147 (Reference 5)

Lattice 5147 Composite Limit kWtft P1 OH NAL453-6G7.0/1 OG6.0-1 OOT-T6-5147 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.1029 13.40 16.3915 13.3555 17.8387 13.1910 19.0967 13.0480 20.3425 12.9063 22.8024 12.6267 26.4384 12.0410 32.4022 11.2075 38.2538 10.4682 42.7774 9.9945 48.5585 9.4147 54.2876 8.8630 59.9673 8.4016 66.2463 6.7325 70.00 5.00 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 16 l Table 5-6: LHGR Limit for GE14-P1OHNAB408-16GZ-1OOT-145-T6-2483, Lattice 5148 (Reference 5)

Lattice 5148 Composite Limit kWlft P1 OHNAL453-4G7.0/1 OG6.0-1 OOT-T6-5148 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWft) 0.00 13.40 15.1091 13.40 16.4011 13.3544 17.5754 13.2209 18.8411 13.0770 20.0941 12.9346 22.5665 12.6535 26.2178 12.2384 32.2045 11.4033 38.0774 10.5818 42.5631 9.9920 48.3669 9.3715 54.1169 8.7856 59.8150 8.2252 66.1438 6.7798 70.00 5.00 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 17 l Table 5-7: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 5149 (Reference 5)

Lattice 5149 Composite Limit kWtft P1 OHNAL449-4G7.0/1 OG6.0-1 OOT-E-T6-5149 U02 Pellet Burnup Composite Limit (GWd/IMTU) (kWlft) 0.00 13.3349 0.2995 13.3904 1.4867 13.40 2.9450 13.3896 4.3716 13.3335 5.7199 13.3052 7.0940 13.3190 8.3865 13.3625 9.7191 13.40 14.6797 13.40 15.9349 13.1347 17.1752 12.7239 18.4013 12.5086 19.6149 12.3467 22.0145 11.9721 25.5738 11.4887 31 .4239 10.7236 36.1209 10.1987 41.9286 9.6294 47.6904 9.0846 53.4002 8.5554 59.0576 8.0299 64.6690 6.6179 68.5288 4.3146 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 18 I Table 5-8: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 5150 (Reference 5)

Lattice 5150 Composite Limit kWlft P1 OHNAL449-4G7.0/1 OG6.0-1 OOT-V-T6-5150 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.2336 0.3021 13.2853 1.4995 13.3007 2.9694 13.2651 4.3763 13.2094 5.7878 13.2221 7.1749 13.2302 8.5372 13.2351 9.7588 13.2502 10.9018 13.3145 12.2024 13.40 14.7592 13.40 16.0142 13.1015 17.2530 12.6893 18.4767 12.4795 19.6874 12.3406 22.0815 11.9671 25.6334 11.4807 31.4698 10.7081 36.2217 10.1947 42.0217 9.6164 47.7731 9.0632 53.4702 8.5267 59.1133 7.9955 64.7098 6.6069 68.6043 4.3130 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 19 I Table 5-9: LHGR Limit for GE1 4-P1 ODNAB418-16GZ-1 OOT-1 45-T6-2 646 (Reference 14)

Lattices 5963, 5970, 5971, 5974 and 5975 Composite Limit kWtft 5963: P1 ODNAL071 -NOG-1 OOT-T6-5963 5970: P1 ODNAL465-16G7.0-1 OOT-T6-5970 5971: P1 ODNAL465-13G7.0/3G6.0-1 OOT-T6-5971 5974: P1 ODNAL071 -NOG-I OOT-V-T6-5974 5975: P1 ODNAL071 -16GE-1 OOT-V-T6-5975 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 20 Table 5-10: LHGR Limit for: GE1 4-P1 ODNA.B418-1 6GZ-1 OOT-1 45-T6-2646, Lattice 5972 (Reference 14)

Lattice 5972 Composite Limit kWtft P1 ODNAL461-1 2G7.0/3G6.0-1 OOT-E-T6-5972 U02 Pellet Burnup Composite Limit (GWdIMTU) (kW/ft) 0.0000 13.4000 15.9515 13.4000 17.2857 13.2538 18.1089 13.1602 19.4140 13.0119 20.7050 12.8651 23.2463 12.5762 26.9800 12.1517 33.0780 11.4585 39.0585 10.7786 44.9195 10.0506 50.6634 9.3499 56.3043 8.7427 61.8691 8.1854 67.3941 6.2027 70.0000 5.0000 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 21 Table 5-11: LHGR Limit for: GE14-P1ODNAB418-16GZ-100T-145-T6-2646, Lattice 5973 (Reference 14)

Lattice 5973 Composite Limit kWMfM P1 ODNAL461 -12G7.013G6.0-1 OOT-V-T6-5973 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 14.6537 13.4000 16.0077 13.3991 17.3409 13.2476 18.1982 13.1501 19.5019 13.0019 20.7905 12.8554 23.3251 12.5672 27.0482 12.1440 33.1306 11.4525 39.0945 10.7607 44.9367 9.9688 50.6595 9.2608 56.2772 8.6476 61.8172 8.1267 67.3169 6.2384 70.0000 5.0000 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 22 Table 5-12: LHGR Limit for GE14-P1ODNAB389-18GZ-1OOT-145-T6-2650 (Reference 14)

Lattices 5963, 5994, 5995, 5998 and 5999 Composite Limit kWlft 5963: P1 ODNAL071 -NOG-10OT-T6-5963 5994: P1 ODNAL4301-17G8.O/l G3.0-10OT-T6-5994 5995: P1 ODNAL431 -9G8.0/8G6.0/1 G3.0-1 OOT-T6-5995 5998: P1 ODNAL071-NOG-100T-V-T6-5998 5999: P1 ODNAL071 -18GE-1 OOT-V-T6-5999 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWlft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 . 5.0 Table 5-13: LHGR Limit for GE14-P1ODNAIB389-18GZ-1OOT-145-T6-2650, Lattice 5996 (Reference 14)

Lattice 5996 Composite Limit kWlft P1 ODNAL430-7G8.0/fIG6.0-1 OOT-E-T6-5996 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 14.8906 13.4000 16.2580 13.3707 17.6015 13.2179 18.9215 13.0679 19.4423 13.0087 20.7453 12.8605 23.3142 12.5685 27.0881 12.1395 33.2434 11.4389 39.2913 10.5936 45.2308 9.8060 51.0564 9.1014 56.7750 8.4943 61.9432 8.0319 67.9800 5.9323 70.0000 5.0000 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 23 Table 5-14: LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5997 (Reference 14)

Lattice 5997 Composite Limit kWtft P1 ODNAL430-7G8.0/,BG6.0-1 OOT-V-T6-5997 U02 Pellet Burnup Composite Limit (GWd/IMTU) (kW/ft) 0.0000 13.4000 14.9485 13.4000 16.3156 13.3641 17.6577 13.1592 18.9752 12.9330 19.3601 12.9427 20.6567 12.8235 23.2117 12.5211 26.9637 12.0810 33.0874 11.3527 39.1088 10.5071 45.0238 9.6894 50.6192 8.9710 56.3453 8.3308 62.0012 7.7843 67.6125 6.1019 70.0000 5.0000 Table 5-15: LHGR Limit for GEl 4-P1 ODNAB397-18GZ-1 OOT-1 45-T6-2852 and GE14-Pl ODNAB390-16GZ-10OT-145-T6-2851, all Lattices (Reference 16)

Composite Limit (kWtft), all Lattices U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 24 I Table 5-113 LHGRFAC(P) for GE Fuel (Reference 4)

Core Thermal Power (% Rated) row' EOOS Combination zore

(% Rated) 0 l 25 l 13 8.5 70 l 70 l 80 l 100 LHGRFAC(P) Multiplier Base Case All 0.50 0.56 0.59 0.68 0.86 l 1.00 Base Case SLO All 0.50 0.56 0.59 0.68 0.86 T 1.00 T60 0.22 0.39 0.48 TBPOOS 05

>60 0.33 0.39 0.42 J 1.00 TBPOOS SLO s60 0.22 0.39 0.48 0.54

>60 0.33 0.39 0.42 TCV Slow Closure All 0.54 C0.54 0.54 i5, 1-00 TCV Slow Closure All 0.54 0.54 0 54 SLO J ~1.000 PLUOOS All 0.54 C0.54 0.54 PLUOOS SLO All 0.54 0.54 0.54 ^ 1.00 TCV Stuck Closed All 0.50 .56 0 68 0.86 l1.00 l TCV Stuck Closed All 0.50 C'.56 0.59 0.68 0.86 l 1.00 SLO I I I I Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 25 Table 5-17 LHGRFAC(F) Multipliers for GE Fuel All EOOS except TCV Stuck Closed DLO or SLO Operation (Reference 4)

Flow LHGRFAC(F)

(% rated) Multiplier_]

I i 110.0 1.00 100.0 1.00 80.0 1.00 50.0 0.77 40.0 0.64 30.0 0.55 0.0 0.28 Table 5-18 LHGRFAC(F) Multipliers for GE Fuel with TCV Stuck Closed DLO or SLO Operation (Reference 4)

Flow LHGRFAC(F)

(% rated) Multiplier 110.0 1.00 l 100.0 1.00 98.3 1.00 80.0 0.86 50.0 0.63 40.0 0.50 30.0 0.41 0.0 0.14 -

Table 5-19 I-HGR SLO Multiplier (Reference 3)

IFElType I Multiplier 1 GE14 I 0.77 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 26 l

6. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 6):

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 55%

Operation 0.65____+_51%

Single Recirculation Loop 0.65 Wd + 51 %

Operation __ _ _ _ _ __ _ _ _ _

The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 27 1

7. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):

Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np)

< 1.13 < 15 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCIPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 28 l

8. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:

Equipment1 Out of Service Standard ICF MELLLA Coastdown 4 Options ' 2, 3,5,7,8,9,10 Sadr C EIL osdw I

Base Case Yes Yes Yes Yes Base Case SLO Yes No Yes Yes TBPOOS Yes Yes Yes Yes TBPOOS SLO Yes No Yes Yes TCV Slow Closure Yes Yes Yes Yes TCV Slow Closure SLO Yes No Yes Yes PLUOOS Yes Yes Yes Yes PLUOOS SLO Yes No Yes Yes TCV Stuck Closed6 Yes Yes Yes Yes TCV Stuck Closed SLO6 Yes No Yes Yes

1. Each OOS Option may be combined with up to 1S TIP channels OOS (provided the requirements for utilizing SUBTIP methodology are met as clarified in Reference 18) with all TIPS available at startup from a refueling outage and up to 50% of the LPRMs OOS with an LPRM calibration frequency of 2500 Effective Full Power Hours (EFPH) (2000 EFPH +25%).
2. A single MSIV may be taken OOS (shut) under any and all OOS Options, so long as core thermal power is maintained S75%

of 2957 MWth (Reference 4).

3. Each EOOS option except TBPOOS requires the opening profile for the Turbine Bypass Valves provided in Reference 7 to be met. These conditions also support 1 Turbine Bypass Valve OOS (TBPOOS) if the assumed opening profile (Reference 7) for the remaining 8 Turbine Bypass Valves is met. If the opening profile is not met with 8 or 9 operating Turbine Bypass Valves, or if two Turbine Bypass Valves are OOS, utilize the TBPOOS condition.
4. Coastdown operation is defined as any cycle exposure beyond the full power, all rods out condition wi :h plant power slowly lowering to a lesser value while core flow is held constant (Reference 10 Section 4.3.1.2.8). Up to a 15% overpower is analyzed per Reference 4.
5. For operation with a pressure regulator out-of-senrice (PROOS), the TCV Slow Closure limits should te applied. For operation with a PROOS and TCV Slow Closure, the TCV slow closure limits are applicable. For operation with a PROOS and PLUOOS, the PLUQOS limits are applicable References 12 and 19).
6. Operation with one Turbine Stop Valve out-of-service (TSVOOS) is allowed as evaluated in Reference 15. Combination of one TSVOOS and TCV Stuck Closed is not allowed.
7. The cycle specific stability analysis may impose restrictions on the Power-to-flow map and/or restrict the applicable temperature for feedwater temperature reduction (FWVTR).
8. Each EOOS option allows operation with up to a 120'F reduction in feedwater temperature (final feedwater temperature reduction or feedwater heaters OOS) throughout tne cycle and is subject to the restrictions in Reference 13.
9. Asymmetric inlet enthalpy distribution produced by RWCU injection does not have a substantial impact on thermal margins; therefore no adjustments to the thermal margins are required (Reference 20).
10. For operation with a Pressure Regulator Out-Of-Service (PROOS) and TCV Stuck Closed, apply the more restrictive of the two limits, as applicable, for the TCV Stuck Closed flow dependent limits provided in Tables 4-5 and 5-18 and the TCV Slow Closure or PLUOOS power dependent limits provided in Tables 4-3 and 5-16 (Reference 4).

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 29

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. NEDE-24011 -P-A-14, June 2000 and the U.S. Supplement NEDE-24011 -P-A-US, June 2000, "General Electric Standard Application for Reactor Fuel".
2. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/

MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronic Licensing Analysis (Supplement 1) and La Salle County Unit 2 benchmarking (Supplement :2), December 1991, March 1992, and May 1992, respectively.

3. NEDO-32465-A, "BWR Owner's Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 30 1

10. References
1. Exelon Generation Company, LLC, Docket No. 50-237, Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License, License No. DPR-19.
2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
3. GNF Document, 0000-0035-6363-SRLR, Rev. 1, "Supplemental Reload Licensing Report for Dresden 2 Reload 19 Cycle 20," October 2005 (TODI NF0500248, Revision 0).
4. GE Document, GE-NE-J1 1-03912-00-01-R3, 'Dresden 2 and 3 Quad Cities 1 and 2 Equipment Out-Of-Service and Legacy Fuel Transient Analysis," September 2005 (TODI NFM01 00091 Sequence 03).
5. GNF Letter, FRL02EX-013, "Quad Cities Unit 1 Cycle 18 and Dresden Unit 3 Cycle 18 Pellet Based LHGR Limits",

September 30, 2002.

6. GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod Block Monitor, Commonwealth Edison Company, Dresden 2 & :3," December 15,1999.
7. Dresden TODI Ops Ltr: 05-23, "OPL-3 Parameters for Dresden Unit 2 Cycle 20 Transient Analysis," July 15, 2005.
8. GE Design Basis Document, DB-0012.03, Revision 1, 'Fuel-Rod Thermal-Mechanical Performance Limits for GE14C," May 2005.
9. NF Calculation, BNDG:02-001, Revision 0, "Determination of Generic MCPRF Limits," May 17, 2002.
10. GE Document, NEDE-2401 1-P-A-1 4, "General Electric Standard Application for Reactor Fuel," June 2000.
11. Nuclear Fuels TODI NF0500098, Revision 1, "Dresden 2 Cycle 20 FRED Form," July 5, 2005.
12. Nuclear Fuels Letter, NF-MW:02-0413, "Approval of GE Evaluation of Dresden and Quad Cities Pressure Regulator Out of Service Analysis," October 22, 2002.
13. Nuclear Fuels Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," August 27, 2002.
14. GNF Letter, FRL-EXN-EE2-04-002, "Quad Cities Unit 2 Cycle 18 Fresh Fuel Peak Pellet LHGF1 Limits," January 16, 2004.
15. Nuclear Fuels Letter, NF-MW:03-069, "Dresden and Quad Cities Operation with One TSV 008<," July 28, 2003.
16. GNF Letter, MJM-EXN-EB2-05-108, "TSD B263: Dresden Unit 2 C20 LHGR Limits and R-Factors Data", October 7, 2005.
17. GNF Document 0000-0016-1235-SRLR, Rev. 0, "Supplemental Reload Licensing Report for Dresden Unit 2 Reload 18 Cycle 19", September 2003 (TODI NF0300089, Revision 0).
18. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897-00)
19. GE Document, GE-NE-0000-0040-2860-RO, "Dresden Units 2 and 3 and Quad Cities Units 1 and 2 Off rated Analyses Below the PLU Power Level", July 2005.
20. GE Document, GE-NE-0000-0036-4343-RO, "Evaluation of Dresden Asymmetric Reactor Water Cleanup Flow Injection", August 2005.
21. GE Document, GE-NE-0000-0044-3030-RO, "Evaluation of New Maximum Combined Flow Limiter Setting of 107%

for Dresden 2", October 2005.

Dresden Unit 2 Cycle 20

Text

Exelkr5n, Exelon Generation Company, LLC www.exeloncorp.com Nu1 Dresden Nuclear Power Station uclear 6500 North Dresden Road Morris, IL 60450-9765 February 17, 2006 SVPLTR: #06-0006 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington D.C. 20555-0001 Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License No. DPR-19 NRC Docket No. 50-237

Subject:

Core Operating Limits Report for Unit 2 Cycle 20 Revision 1 The purpose of this letter is to transmit Revision 1 of the Core Operating Limits Report (COLR) for Dresden Nuclear Power Station (DNPS) Unit 2 operating cycle 20 (D2C20) in accordance with Technical Specifications Section 5.6.5, "CORE OPERATING LIMITS REPORT (COLR)."

In accordance with Generic Letter 88-16, these limits in the COLR are being modified to contain the cycle-specific parameter limits for DNPS Unit 2. The limits were determined using NRC-approved methodologies and are consistent with applicable limits of the plant safety analysis that are addressed in the Updated Final Safety Analysis Report.

Should you have any questions concerning this letter, please contact Mr. P. Salas at (815) 416-2800.

Respectfully, Danny Bost Site Vice President Dresden Nuclear Power Station

Attachment:

COLR for Dresden Unit 2 Cycle 20, Revision 1 cc: Regional Administrator - NRC Region IlIl NRC Senior Resident Inspector - Dresden Nuclear Power Station

-A l

COLR Dresden 2 Revision 4 Pagel 1l Core Operating Limits Report For Dresden Unit 2 Cycle 20 Revision 1 I Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 2 Table of Contents

1. Terms and Definitions ....................................... , , . 4
2. General Information . . . 5
3. Average Planar Linear Heat Generation Rate ... 6
4. Operating Limit Minimum Criltical Power Ratio ... 7 4.1. Manual Flow Control MCPR Limits . . 7 4.1.1. Power-Dependent MCPR .7 4.1.2. Flow-Dependent MCPR .7 4.2. Automatic Flow Control MCPR Limits . . 7 4.3. Scram Time .. 8 4.4. Recirculation Pump Motor Generator Settings . . 8
5. Linear Heat Generation Rate ...................................... 12
6. Rod Block Monitor . . ..............................26
7. Stability Protection Setpoints . . .........................27
8. Modes of Operation . . .28
9. Methodology............................................................................... 29
10. References . . .30 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 3 l List of Tables Table 3-1 MAPLHGR for bundle(s):

G El4-Pi OHNAB4O8-l 6GZ-l OOT-l 45-T6-2483 GE14-Pl OHNAB4l1 -4G7.0/9G6.0-10OT-145-T6-2484 GE14-Pl ODNAB418-16GZ-10OT-14.5-T6-2646 GE14-Pl ODNAB389-18GZ-10OT-14 5-T6-2650 GE14-Pl ODNAB390-16GZ-10OT-14 5-T6-2851 GE14-Pl ODNAB397-18GZ-10OT-145-T6-2852 .................................................... 6 Table 3-2 MAPLHGR SLO multiplier ..................................................................... 6 Table 4-1 MCPR Option A Based Operating Limits ........................................................... 9 Table 4-2 MCPR Option B Based Operating Limits ........................................................... 9 Table 4-3 MCPR(P) for GE Fuel ..................................................................... 10 Table 4-4 MCPR(F) Limits for GE Fuel All EOOS except TCV Stuck Closed DLO or SLO Operation.............................................................................................................. 11 Table 4-5 MCPR(F) Limits for GE Fuel with rcv Stuck Closed DLO or SLO Operation ......... 11 Table 5-1: LHGR Limit for GE14-PlOHNAB411-4G7.0/9G6.0-100T-145-T6-2484 ................ 12 Table 5-2: LHGR Limit for GE14-PlOHNAB411-4G7.0/9G6.0-100T-145-T6-2284, Lattice 5154 ..................................................................... 13 Table 5-3: LHGR Limit for GE14-P1OHNAB4-11-4G7.0/9G6.0-10OT-145-T6-2484, Lattice 5155 ..................................................................... 14 Table 5-4: LHGR Limit for GE14-PlOHNAB408-16GZ-10OT-145-T6-2483 ........................ 15 Table 5-5: LHGR Limit for GE14-PlOHNAB408-16GZ-100T-145-T6-2483, Lattice 5147 ........ 15 Table 5-6: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 51413 ........ 16 Table 5-7: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 5149 ........ 17 Table 5-8: LHGR Limit for GE14-P1OHNAB408-16GZ-10OT-145-T6-2483, Lattice 5150 ........ 18 Table 5-9: LHGR Limit for GE14-PlODNAB4 18-16GZ-10OT-145-T6-2646 ........................... 19 Table 5-10: LHGR Limit for GE14-P1ODNAEI418-16GZ-100T-145-T6-2646, Lattice 5972 ....... 20 Table 5-11: LHGR Limit for GE14-P1ODNAEB418-16GZ-100T-145-T6-2646, Lattice 5973 ....... 21 Table 5-12: LHGR Limit for GE14-PiODNAEB389-18GZ-10OT-145-T6-2650 ......................... 22 Table 5-13: LHGR Limit for GE14-P1ODNAEB389-18GZ-100T-145-T6-2650, Lattice 5996 ....... 22 Table 5-14: LHGR Limit for GE14-P1ODNAEB389-18GZ-100T-145-T6-2650, Lattice 5997 ....... 23 Table 5-15: LHGR Limit for GE14-P10DNAEB397-18GZ-100T-145-T6-2852 and GE14-P1 ODNAB390-16GZ-10OT-145-T6-2851, all Lattices ....................................................... 23 Table 5-16 LHGRFAC(P) for GE Fuel ......................................................................... 24 Table 5-17 LHGRFAC(F) Multipliers for GE Fuel All EOOS except TCV Stuck Closed DLO or SLO Operation ..................................................................... 25 Table 5-18 LHGRFAC(F) Multipliers for GE Fuel with TCV Stuck Closed DLO or SLO Operation 25 Table 5-19 LHGR SLO Multiplier ..................................................................... 25 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 4 l

1. Terms and Definitions APLHGR Average planar linear heat generation rate APRM Average power range monitor BOC Beginning of cycle DLO Dual loop operation ELLLA Extended load line limit analysis EOC End of cycle EOOS Equipment out of service EOR End of rated conditions (i.e. cycle exposure at 100% power, 100% flow, all-rods-out)

FFTR Final feedwater tern perature reduction FWHOOS Feedwater heater out of service GE14 GE14C fuel GNF Global Nuclear Fuel ICF Increased core flow LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPFAC(F) Flow dependent MAPLHGR multiplier MAPFAC(P) Power dependent MAPLHGR multiplier MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum critical power ratio MCPR(F) Flow dependent MC'PR MCPR(P) Power dependent MCPR MELLLA Maximum extended load line limit analysis MSIV Main steam isolation valve OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PROOS Pressure regulator out of service RBM Rod block monitor RWCU Reactor water clean-up RWE Rod withdrawal error RPTOOS Recirculation pump trip out of service SLMCPR Safety limit minimum critical power ratio SLO Single loop operation SRVOOS Safety-relief valve cut of service TBPOOS Turbine bypass system out of service TCV Turbine control valve TCVOOS Turbine control valve out of service TIP Traversing incore probe TSV Turbine stop valve TSVOOS Turbine stop valve out of service Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 5 l

2. General Information Power and flow dependent limits are listed fr various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is analyzed for this cycle.

Licensed rated thermal power is 2957 MWth.

MCPR(P) and MCPR(F) values are independent of scram time.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram speed.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 6 1

3. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of each fuel type as a function of average planar exposure is given in Table 3-1. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 3-2.

Table 3-1 MAPLHGR for bundle(s):

GE14-PIOHNAB418-1 6GZ-1OOT-145-T6-2483 GE14-Pl OHNAB411 -4G7.0/9G6.0-10OT-145-T6-2484 GE14-Pl ODNAB4l18-16GZ-1OOT-145-T6-2646 GE14-PlODNAB3159-18GZ-1OOT-145-T6-2650 GE14-PI ODNAB3!9O-16GZ-1OOT-145-T6-2851 GE14-PlODNAB3!97-18GZ-10OT-145-T6-2852 (References 3 and 17)

Avg. Planar t Exposure MAPLHGR (GWd/IVIT) (kW/ft) 0.00 11.68 16.00 11.68 55.12 8.02 63.50 . 6.97 70.00 4.36 Table 3-2 MAIPLHGR SLO multiplier (Reference 3)

Multiplier GE140 0.77 l Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 7 1

4. Operating Limit Minimum Critical Power Ratio 4.1. Manual Flow Control MACPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCIPR For operation at less than 38.5% of rated core thermal power, the OQLCPR as a function of core thermal power (MCPR(P)) is shown in Table 4-3. For operation at greater than 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Table 4-1 or 4-2 by the applicable MCPR multiplier K(P) given in Table 4-3. For operation at exactly 38.5% of rated core thermal power, the OLMCPR as a function of core thermal power is the maximum of either of the two aforementioned methods evaluated at 38.5% of rated core thermal power.

4.1.2. Flow-Dependent MCPR Tables 4-4 and 4-5 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

4.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 8 I 4.3. Scram Time Option A and Option B refer to scram speeds.

Option A scram speed is the Improved Technical Specification scram speed. The core average scram speed insertion time for 20% insertion must be less than or equal to the Technical Specification scram speed to utilize Option A MCPR limits. Reload analyses performed by (GNF) for Cycle 20 Option A MCPR limits utilized a 20% core average insertion time of 0.900 seconds (Relerence 7).

To utilize the MCPR limits for the Option B scram speed, the core average scram insertion time for 20% insertion must be less than or equal to 0.694 seconds (Reference 7). If the core average scram insertion time does not meet the Option B criteria, but is within the Option A criteria, the appropriate MCPR value may be determined from a linear interpolation between the Option A and B limits with standard mathematical rounding to two decimal places. When performing a linear interpolation to determine MCFPR limits, ensure that the time used for Option A is 0.900 seconds.

4.4. Recirculation Pump Motor Generator Settings Cycle 20 was analyzed with a maximum core flow runout of 105%; therefore the recirculation pump motor generator scoop tube mechanical and electrical stops must be set to maintain core flow less than 105% (102.9 Mlb/hr) for all runout events (Reference 11 and 21). This value is bounded by the analyses of References 3 and 4.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 9 Table 4-1 MCPR Option A Based Operating Limits (References 3 and 4)

Cycle Exposure

< EOR - 1707 > EOR - 1707 EOOS Combination Fuel Type MWd/MT MWd/MT BASE GE14 1.56 1.67 BASE SLO GE14 1.57 1.68 TBPOOS GE14 1.74 1.76 TBPOOS SLO GE14 1.75 1.77 TCV SLOW CLOSURE GE14 1.60 1.67 TCV SLOW CLOSURE SLO GE14 1.61 1.68 PLUOOS GE14 1.64 1.67 PLUOOS SLO GE14 1.65 1.68 TCV STUCK CLOSED GE14 1.56 1.67 TCV STUCK CLOSED SLO GE14 1.57 1.68 Table 4-2 MCPR Option B Based Operating Limits (References 3 and 4)

Cycle Ex posure

< EOR - 1707 > EOR - 1707 EOOS Combination Fuel Type MWdWMT MWdVIMT BASE GE14 1.45 1.50 BASE SLO GE14 1.46 1.51 TBPOOS GE14 1.57 1.59 TBPOOS SLO GE14 1.58 1.60 TCV SLOW CLOSURE GE14 1.45 1.50 TCV SLOW CLOSURE SLO GE14 1.46 1.51 PLUOOS GE14 1.47 1.50 PLUOOS SLO GE14 1.48 1.51 TCV STUCK CLOSED GE14 1.45 1.5(1 TCV STUCK CLOSED SLO GE14 1.46 1.51 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 10 I Table 4-3 MCPR(P) for GE Fuel (Reference 4)

Core Core Core Thermal Power (% Rated)

Flow 0 25 1 38.5 1 38.5 l 45 l 60 l 70 _f 70 l 100 EOOS Combination Operating Limit Operating Limit IMCPR Multiplier, Kp Rated) MCPR Base Case 3.19

-60 2.61 2.29 1.32 1.28 1.15 iM 1.00

>60 3.81 3.01 2.59 Base Case SLO 3.20 2.62 2.30

-60 1.32 1.28 1.15 1.00

>60 3.82 3.02 2.60

<60 5.60 3.81 2.84 1.37 1.28 1.15 TBPOOS - 1.00

>60 6.85 4.66 3.48

  • 60 5.61 3.82 2.85 TBPOOS SLO . 1.37 1.28 1.15 1.00

>60 6.86 4.67 3.49 TCV Slow Closure 3.19

-60 2.61 2.29 1.64 1.45 1.26 1 1.11 1.00

>60 3.81 3.01 2.59 TCV Slow Closure SLO -60 3.20 2.62 2.30 1.64 1.45 1.26 1.11 1.00

>60 3.82 3.02 2.60

  • 60 3.19 2.61 2.29 PLUOOS - - - 1.64 1.45 1.26 1.11 1.00

>60 3.81 3.01 2.59

<60 3.20 2.62 2.30 PLU>OS SLO _ 1.64 1.45 1.26 1.11 1.00

>60 3.82 3.02 2.60

  • 60 3.19 2.61 2.29 TCV Stuck Closed 1.32 _1.28 1.15 1.00

>60 3.81 3.01 2.59 TCV Stuck Closed SLO 60 -3. 2.62 -2.30- 1.32 1.28 1.15 1.00

>60 1 3.82 3.02 2.60 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 11 l Table 4-4 MJCPR(F) Limits for GE Fuel All EOOS except TCV Stuck Closed DL- or SLO Operation (Reference 9)

Flow [ MCPR(F)

(% rated) Limit 110.0 1.22 100.0 1.22 03.0 1.86 Table 4-5 FACPR(F) Limits for GE Fuel with TCV Stuck Closed DLO or SLO Operation (Reference 9)

Flow MCPR(F)

(% rated) Limit 110.0 1.27 108.9 X 1.27 0.0 1.97 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 12

5. Linear Heat Generation Rate The maximum Steady-State LHGR shall not exceed the limit of 13.4 KW/ft for the following fuel bundles (Reference 8).

GE14-Pl OHNAB408-16GZ-1 OOT-145-T6-2483 GE14-Pl OHNAB411 -4G7.0/9G6.0-l OOT-145-T6-2484 GE14-PIODNAB41E8-16GZ-1 OOT-145-T6-2646 GE14-Pl ODNAB3891-18GZ-1 OOT-145-T6-2650 GE14-Pl ODNAB39C-1 6GZ-1 OOT-145-T6-2851 GE14-Pl ODNAB397'-18GZ-1 OOT-145-T6-2852 The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 5-1 through 5-15 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), the flow dependent LHGR Factor, LHGRFAC(F), or the single loop operation (SLO) multiplication factor where applicable. The LHGRFAC(P) is determined from Table 5-16. The LHGRFAC(F) is determined from Table 5-17 or 5-18. The SLO multiplication factor can be found in Table 5-19.

Table 5-1: LHGR Limit for GEl 4-P1 OHNAB411-4G7.0/9G6.0-1 OOT-1 45-r6-2484 (Reference 5)

Lattices 5146, 5153, 5151, and 5156 Composite Limit kWMft 5146: P1 OHNAL071 -NOG-1 OOT-T6-5146 5153: P1OHNAL458-4G7.O/9G6.0-1 OOT-T6-5153 5151: P1 OHNAL071 -NOG-1 OOT-V-T6-5151 5156: P1 OHNAL071 -13GE-1 OOT-V-T6-5156 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 -- 8.0 70.0 5.0 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 13 l Table 5-2: LHGR Limit for: GE14-P1OHNAE1411-4G7.0/9G6.0-1OOT-145-T6-2484, Lattice 5154 (Reference 5)

Lattice 5154 Composite Limit kWMft P1 OHNAL453-4G7.O/9G6.0-1 OOT-E-T6-5154 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.1155 13.40 16.4055 13.3539 17.6796 13.1694 18.9383 13.0139 20.1833 12.8740 22.2507 12.5985 25.9250 12.1329 31.9779 11.3724 37.9426 10.6460 43.8088 9.9638 49.5729 9.3308 55.2416 8.7448 60.8333 8.1967 66.3754 6.6729 70.00 5.00 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 14 l Table 5-3: LHGR Limit for: GE14-P1 OHNAE1411-4G7.0/9G6.0-100T-145-T6-2484, Lattice 5155 (Reference 5)

Lattice 5155 Composite Limit kWMft P1 OH NAL453-4G7.0/9G6.0-1 OOT-V-T6-5155 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.0231 13.40 16.3045 13.1997 17.5697 12.8942 18.8192 12.7533 19.6777 12.6793 22.1391 12.3631 25.7931 11.9027 31.8166 11.1486 37.7552 10.4255 43.5974 9.7428 49.3382 9.1060 54.9830 8.5136 60.5487 7.9572 66.0623 6.6464 70.00 4.8953 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 15 l Table 5-4: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483 (Reference 5)

Lattices 5146, 5151, and 5152 Composite Limit kWlft 5146: P1OHNAL071-NOG-10OT-T6-5146 5151: P1 OHNAL071 -NOG-10OT-V-T6-5151 5152: P1 OHNAL071 -16GE-10OT-V-T6-5152 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 5-5: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 5147 (Reference 5)

Lattice 5147 Composite Limit kWtft P1 OH NAL453-6G7.0/1 OG6.0-1 OOT-T6-5147 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.1029 13.40 16.3915 13.3555 17.8387 13.1910 19.0967 13.0480 20.3425 12.9063 22.8024 12.6267 26.4384 12.0410 32.4022 11.2075 38.2538 10.4682 42.7774 9.9945 48.5585 9.4147 54.2876 8.8630 59.9673 8.4016 66.2463 6.7325 70.00 5.00 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 16 l Table 5-6: LHGR Limit for GE14-P1OHNAB408-16GZ-1OOT-145-T6-2483, Lattice 5148 (Reference 5)

Lattice 5148 Composite Limit kWlft P1 OHNAL453-4G7.0/1 OG6.0-1 OOT-T6-5148 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWft) 0.00 13.40 15.1091 13.40 16.4011 13.3544 17.5754 13.2209 18.8411 13.0770 20.0941 12.9346 22.5665 12.6535 26.2178 12.2384 32.2045 11.4033 38.0774 10.5818 42.5631 9.9920 48.3669 9.3715 54.1169 8.7856 59.8150 8.2252 66.1438 6.7798 70.00 5.00 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 17 l Table 5-7: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 5149 (Reference 5)

Lattice 5149 Composite Limit kWtft P1 OHNAL449-4G7.0/1 OG6.0-1 OOT-E-T6-5149 U02 Pellet Burnup Composite Limit (GWd/IMTU) (kWlft) 0.00 13.3349 0.2995 13.3904 1.4867 13.40 2.9450 13.3896 4.3716 13.3335 5.7199 13.3052 7.0940 13.3190 8.3865 13.3625 9.7191 13.40 14.6797 13.40 15.9349 13.1347 17.1752 12.7239 18.4013 12.5086 19.6149 12.3467 22.0145 11.9721 25.5738 11.4887 31 .4239 10.7236 36.1209 10.1987 41.9286 9.6294 47.6904 9.0846 53.4002 8.5554 59.0576 8.0299 64.6690 6.6179 68.5288 4.3146 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 18 I Table 5-8: LHGR Limit for GE14-P1OHNAB408-16GZ-100T-145-T6-2483, Lattice 5150 (Reference 5)

Lattice 5150 Composite Limit kWlft P1 OHNAL449-4G7.0/1 OG6.0-1 OOT-V-T6-5150 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.2336 0.3021 13.2853 1.4995 13.3007 2.9694 13.2651 4.3763 13.2094 5.7878 13.2221 7.1749 13.2302 8.5372 13.2351 9.7588 13.2502 10.9018 13.3145 12.2024 13.40 14.7592 13.40 16.0142 13.1015 17.2530 12.6893 18.4767 12.4795 19.6874 12.3406 22.0815 11.9671 25.6334 11.4807 31.4698 10.7081 36.2217 10.1947 42.0217 9.6164 47.7731 9.0632 53.4702 8.5267 59.1133 7.9955 64.7098 6.6069 68.6043 4.3130 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 19 I Table 5-9: LHGR Limit for GE1 4-P1 ODNAB418-16GZ-1 OOT-1 45-T6-2 646 (Reference 14)

Lattices 5963, 5970, 5971, 5974 and 5975 Composite Limit kWtft 5963: P1 ODNAL071 -NOG-1 OOT-T6-5963 5970: P1 ODNAL465-16G7.0-1 OOT-T6-5970 5971: P1 ODNAL465-13G7.0/3G6.0-1 OOT-T6-5971 5974: P1 ODNAL071 -NOG-I OOT-V-T6-5974 5975: P1 ODNAL071 -16GE-1 OOT-V-T6-5975 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 20 Table 5-10: LHGR Limit for: GE1 4-P1 ODNA.B418-1 6GZ-1 OOT-1 45-T6-2646, Lattice 5972 (Reference 14)

Lattice 5972 Composite Limit kWtft P1 ODNAL461-1 2G7.0/3G6.0-1 OOT-E-T6-5972 U02 Pellet Burnup Composite Limit (GWdIMTU) (kW/ft) 0.0000 13.4000 15.9515 13.4000 17.2857 13.2538 18.1089 13.1602 19.4140 13.0119 20.7050 12.8651 23.2463 12.5762 26.9800 12.1517 33.0780 11.4585 39.0585 10.7786 44.9195 10.0506 50.6634 9.3499 56.3043 8.7427 61.8691 8.1854 67.3941 6.2027 70.0000 5.0000 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 21 Table 5-11: LHGR Limit for: GE14-P1ODNAB418-16GZ-100T-145-T6-2646, Lattice 5973 (Reference 14)

Lattice 5973 Composite Limit kWMfM P1 ODNAL461 -12G7.013G6.0-1 OOT-V-T6-5973 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 14.6537 13.4000 16.0077 13.3991 17.3409 13.2476 18.1982 13.1501 19.5019 13.0019 20.7905 12.8554 23.3251 12.5672 27.0482 12.1440 33.1306 11.4525 39.0945 10.7607 44.9367 9.9688 50.6595 9.2608 56.2772 8.6476 61.8172 8.1267 67.3169 6.2384 70.0000 5.0000 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 22 Table 5-12: LHGR Limit for GE14-P1ODNAB389-18GZ-1OOT-145-T6-2650 (Reference 14)

Lattices 5963, 5994, 5995, 5998 and 5999 Composite Limit kWlft 5963: P1 ODNAL071 -NOG-10OT-T6-5963 5994: P1 ODNAL4301-17G8.O/l G3.0-10OT-T6-5994 5995: P1 ODNAL431 -9G8.0/8G6.0/1 G3.0-1 OOT-T6-5995 5998: P1 ODNAL071-NOG-100T-V-T6-5998 5999: P1 ODNAL071 -18GE-1 OOT-V-T6-5999 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWlft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 . 5.0 Table 5-13: LHGR Limit for GE14-P1ODNAIB389-18GZ-1OOT-145-T6-2650, Lattice 5996 (Reference 14)

Lattice 5996 Composite Limit kWlft P1 ODNAL430-7G8.0/fIG6.0-1 OOT-E-T6-5996 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0000 13.4000 14.8906 13.4000 16.2580 13.3707 17.6015 13.2179 18.9215 13.0679 19.4423 13.0087 20.7453 12.8605 23.3142 12.5685 27.0881 12.1395 33.2434 11.4389 39.2913 10.5936 45.2308 9.8060 51.0564 9.1014 56.7750 8.4943 61.9432 8.0319 67.9800 5.9323 70.0000 5.0000 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 23 Table 5-14: LHGR Limit for GE14-P1ODNAB389-18GZ-100T-145-T6-2650, Lattice 5997 (Reference 14)

Lattice 5997 Composite Limit kWtft P1 ODNAL430-7G8.0/,BG6.0-1 OOT-V-T6-5997 U02 Pellet Burnup Composite Limit (GWd/IMTU) (kW/ft) 0.0000 13.4000 14.9485 13.4000 16.3156 13.3641 17.6577 13.1592 18.9752 12.9330 19.3601 12.9427 20.6567 12.8235 23.2117 12.5211 26.9637 12.0810 33.0874 11.3527 39.1088 10.5071 45.0238 9.6894 50.6192 8.9710 56.3453 8.3308 62.0012 7.7843 67.6125 6.1019 70.0000 5.0000 Table 5-15: LHGR Limit for GEl 4-P1 ODNAB397-18GZ-1 OOT-1 45-T6-2852 and GE14-Pl ODNAB390-16GZ-10OT-145-T6-2851, all Lattices (Reference 16)

Composite Limit (kWtft), all Lattices U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 24 I Table 5-113 LHGRFAC(P) for GE Fuel (Reference 4)

Core Thermal Power (% Rated) row' EOOS Combination zore

(% Rated) 0 l 25 l 13 8.5 70 l 70 l 80 l 100 LHGRFAC(P) Multiplier Base Case All 0.50 0.56 0.59 0.68 0.86 l 1.00 Base Case SLO All 0.50 0.56 0.59 0.68 0.86 T 1.00 T60 0.22 0.39 0.48 TBPOOS 05

>60 0.33 0.39 0.42 J 1.00 TBPOOS SLO s60 0.22 0.39 0.48 0.54

>60 0.33 0.39 0.42 TCV Slow Closure All 0.54 C0.54 0.54 i5, 1-00 TCV Slow Closure All 0.54 0.54 0 54 SLO J ~1.000 PLUOOS All 0.54 C0.54 0.54 PLUOOS SLO All 0.54 0.54 0.54 ^ 1.00 TCV Stuck Closed All 0.50 .56 0 68 0.86 l1.00 l TCV Stuck Closed All 0.50 C'.56 0.59 0.68 0.86 l 1.00 SLO I I I I Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 25 Table 5-17 LHGRFAC(F) Multipliers for GE Fuel All EOOS except TCV Stuck Closed DLO or SLO Operation (Reference 4)

Flow LHGRFAC(F)

(% rated) Multiplier_]

I i 110.0 1.00 100.0 1.00 80.0 1.00 50.0 0.77 40.0 0.64 30.0 0.55 0.0 0.28 Table 5-18 LHGRFAC(F) Multipliers for GE Fuel with TCV Stuck Closed DLO or SLO Operation (Reference 4)

Flow LHGRFAC(F)

(% rated) Multiplier 110.0 1.00 l 100.0 1.00 98.3 1.00 80.0 0.86 50.0 0.63 40.0 0.50 30.0 0.41 0.0 0.14 -

Table 5-19 I-HGR SLO Multiplier (Reference 3)

IFElType I Multiplier 1 GE14 I 0.77 Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 26 l

6. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 6):

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 55%

Operation 0.65____+_51%

Single Recirculation Loop 0.65 Wd + 51 %

Operation __ _ _ _ _ __ _ _ _ _

The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 27 1

7. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):

Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np)

< 1.13 < 15 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCIPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 28 l

8. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:

Equipment1 Out of Service Standard ICF MELLLA Coastdown 4 Options ' 2, 3,5,7,8,9,10 Sadr C EIL osdw I

Base Case Yes Yes Yes Yes Base Case SLO Yes No Yes Yes TBPOOS Yes Yes Yes Yes TBPOOS SLO Yes No Yes Yes TCV Slow Closure Yes Yes Yes Yes TCV Slow Closure SLO Yes No Yes Yes PLUOOS Yes Yes Yes Yes PLUOOS SLO Yes No Yes Yes TCV Stuck Closed6 Yes Yes Yes Yes TCV Stuck Closed SLO6 Yes No Yes Yes

1. Each OOS Option may be combined with up to 1S TIP channels OOS (provided the requirements for utilizing SUBTIP methodology are met as clarified in Reference 18) with all TIPS available at startup from a refueling outage and up to 50% of the LPRMs OOS with an LPRM calibration frequency of 2500 Effective Full Power Hours (EFPH) (2000 EFPH +25%).
2. A single MSIV may be taken OOS (shut) under any and all OOS Options, so long as core thermal power is maintained S75%

of 2957 MWth (Reference 4).

3. Each EOOS option except TBPOOS requires the opening profile for the Turbine Bypass Valves provided in Reference 7 to be met. These conditions also support 1 Turbine Bypass Valve OOS (TBPOOS) if the assumed opening profile (Reference 7) for the remaining 8 Turbine Bypass Valves is met. If the opening profile is not met with 8 or 9 operating Turbine Bypass Valves, or if two Turbine Bypass Valves are OOS, utilize the TBPOOS condition.
4. Coastdown operation is defined as any cycle exposure beyond the full power, all rods out condition wi :h plant power slowly lowering to a lesser value while core flow is held constant (Reference 10 Section 4.3.1.2.8). Up to a 15% overpower is analyzed per Reference 4.
5. For operation with a pressure regulator out-of-senrice (PROOS), the TCV Slow Closure limits should te applied. For operation with a PROOS and TCV Slow Closure, the TCV slow closure limits are applicable. For operation with a PROOS and PLUOOS, the PLUQOS limits are applicable References 12 and 19).
6. Operation with one Turbine Stop Valve out-of-service (TSVOOS) is allowed as evaluated in Reference 15. Combination of one TSVOOS and TCV Stuck Closed is not allowed.
7. The cycle specific stability analysis may impose restrictions on the Power-to-flow map and/or restrict the applicable temperature for feedwater temperature reduction (FWVTR).
8. Each EOOS option allows operation with up to a 120'F reduction in feedwater temperature (final feedwater temperature reduction or feedwater heaters OOS) throughout tne cycle and is subject to the restrictions in Reference 13.
9. Asymmetric inlet enthalpy distribution produced by RWCU injection does not have a substantial impact on thermal margins; therefore no adjustments to the thermal margins are required (Reference 20).
10. For operation with a Pressure Regulator Out-Of-Service (PROOS) and TCV Stuck Closed, apply the more restrictive of the two limits, as applicable, for the TCV Stuck Closed flow dependent limits provided in Tables 4-5 and 5-18 and the TCV Slow Closure or PLUOOS power dependent limits provided in Tables 4-3 and 5-16 (Reference 4).

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 29

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. NEDE-24011 -P-A-14, June 2000 and the U.S. Supplement NEDE-24011 -P-A-US, June 2000, "General Electric Standard Application for Reactor Fuel".
2. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/

MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronic Licensing Analysis (Supplement 1) and La Salle County Unit 2 benchmarking (Supplement :2), December 1991, March 1992, and May 1992, respectively.

3. NEDO-32465-A, "BWR Owner's Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.

Dresden Unit 2 Cycle 20

COLR Dresden 2 Revision 4 Page 30 1

10. References
1. Exelon Generation Company, LLC, Docket No. 50-237, Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License, License No. DPR-19.
2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
3. GNF Document, 0000-0035-6363-SRLR, Rev. 1, "Supplemental Reload Licensing Report for Dresden 2 Reload 19 Cycle 20," October 2005 (TODI NF0500248, Revision 0).
4. GE Document, GE-NE-J1 1-03912-00-01-R3, 'Dresden 2 and 3 Quad Cities 1 and 2 Equipment Out-Of-Service and Legacy Fuel Transient Analysis," September 2005 (TODI NFM01 00091 Sequence 03).
5. GNF Letter, FRL02EX-013, "Quad Cities Unit 1 Cycle 18 and Dresden Unit 3 Cycle 18 Pellet Based LHGR Limits",

September 30, 2002.

6. GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation, Rod Block Monitor, Commonwealth Edison Company, Dresden 2 & :3," December 15,1999.
7. Dresden TODI Ops Ltr: 05-23, "OPL-3 Parameters for Dresden Unit 2 Cycle 20 Transient Analysis," July 15, 2005.
8. GE Design Basis Document, DB-0012.03, Revision 1, 'Fuel-Rod Thermal-Mechanical Performance Limits for GE14C," May 2005.
9. NF Calculation, BNDG:02-001, Revision 0, "Determination of Generic MCPRF Limits," May 17, 2002.
10. GE Document, NEDE-2401 1-P-A-1 4, "General Electric Standard Application for Reactor Fuel," June 2000.
11. Nuclear Fuels TODI NF0500098, Revision 1, "Dresden 2 Cycle 20 FRED Form," July 5, 2005.
12. Nuclear Fuels Letter, NF-MW:02-0413, "Approval of GE Evaluation of Dresden and Quad Cities Pressure Regulator Out of Service Analysis," October 22, 2002.
13. Nuclear Fuels Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," August 27, 2002.
14. GNF Letter, FRL-EXN-EE2-04-002, "Quad Cities Unit 2 Cycle 18 Fresh Fuel Peak Pellet LHGF1 Limits," January 16, 2004.
15. Nuclear Fuels Letter, NF-MW:03-069, "Dresden and Quad Cities Operation with One TSV 008<," July 28, 2003.
16. GNF Letter, MJM-EXN-EB2-05-108, "TSD B263: Dresden Unit 2 C20 LHGR Limits and R-Factors Data", October 7, 2005.
17. GNF Document 0000-0016-1235-SRLR, Rev. 0, "Supplemental Reload Licensing Report for Dresden Unit 2 Reload 18 Cycle 19", September 2003 (TODI NF0300089, Revision 0).
18. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897-00)
19. GE Document, GE-NE-0000-0040-2860-RO, "Dresden Units 2 and 3 and Quad Cities Units 1 and 2 Off rated Analyses Below the PLU Power Level", July 2005.
20. GE Document, GE-NE-0000-0036-4343-RO, "Evaluation of Dresden Asymmetric Reactor Water Cleanup Flow Injection", August 2005.
21. GE Document, GE-NE-0000-0044-3030-RO, "Evaluation of New Maximum Combined Flow Limiter Setting of 107%

for Dresden 2", October 2005.

Dresden Unit 2 Cycle 20