ML22095A282

From kanterella
Jump to navigation Jump to search
Enclosure 1: Changes to the PSAR (Non-Proprietary)
ML22095A282
Person / Time
Site: Hermes File:Kairos Power icon.png
Issue date: 04/05/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22095A280 List:
References
KP-NRC-2204-002
Download: ML22095A282 (11)


Text

Enclosure 1 Changes to the PSAR (Non-Proprietary)

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 41 CHAPTER4 REACTORDESCRIPTION 4.1

SUMMARY

DESCRIPTION Thereactorisdesignedwithafunctionalcapabilitytoachievearatedthermalpowerofupto35MWth atamaximumreactorcoolantoutlettemperatureof620650°C.Thenormalreactorinlettemperatureis 550°C.Thereactordesignemploysahightemperaturegraphitematrixcoatedtristructuralisotropic (TRISO)particlefuelandachemicallystable,lowpressuremoltenfluoridesaltcoolant(Flibe).TRISOfuel andFlibeconstitutethefunctionalcontainmentwhichisreliedonasameansofretainingfission productsandpreventingradionuclidereleasetotheenvironmentduringnormaloperationsand postulatedevents.

Thischapterprovidesadescriptionofthereactorwhichincludes:

ReactorCore(Section4.2)

ReactorFuel(Section4.2.1)

ReactivityControlandShutdownSystem(Section4.2.2)

NeutronStartupSource(Section4.2.3)

ReactorVesselandtheReactorVesselInternals(Section4.3)

BiologicalShield(Section4.4)

NuclearDesign(Section4.5)

ThermalHydraulicDesign(Section4.6)

ReactorVesselSupportSystem(Section4.7)

ThereactorgeneratesheatbythecontrolledfissionofmaterialcontainedwithintheTRISOfuel.The reactortransfersheattothereactorcoolantandprovidesforcirculationofreactorcoolantthroughthe reactorcore.Controlelementsareprovidedtocontrolthereactivityofthecore.Aseparateand independentsetofshutdownelementsprovidesforsafeshutdownofthereactorduringoffnormal conditions.Aneutronsourceisprovidedduringinitialprecriticaloperationstoassistwithinitialstartup ofthereactorcore.Theonlinerefuelingcapabilityofthereactorcompensatesforchangesinreactivity duetodepletionoffuelandaccumulationoffissionproducts.Thedesignofthereactorvesseland internalsensuresthatacoolablegeometryismaintainedforthereactorcoreunderallnormal operationsandpostulatedevents.Thereactordesignincludesprovisionsforonlinemonitoringto supportcontrolandprotectionfunctions,aswellasthecapabilityforinserviceinspection, maintenance,andreplacementactivities.Shieldingisincludedtolimitradiationdosestoworkersand equipment.

Table4.11providesasummaryofkeyparametersforthereactor.

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 42 Table4.11:ReactorParameters Parameter Value ThermalPower(MWth) 35 ReactorCoolantOutletTemperature(°C) 65020 ReactorCoolantInletTemperature(°C) 550 ReactorVesselOperatingPressure(bar)

<2 ReactorCoolantType Flibe FuelType TRISOparticle;UCOkernel FuelMatrix Pebble EquilibriumFuelEnrichment(wt%)

<19.75 ReflectorType ETU10Graphite ControlMaterial B4C NeutronSpectrum Thermal

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 441 ThemethodologyfordeterminingshutdownmarginisdescribedintheKPFHRCoreDesignand AnalysisMethodologytechnicalreport(Reference1).

Hotshutdownisdefinedasthestatewherereactorissubcriticalatatemperatureof550°C.The shutdownmarginisdefinedforthemostlimitingcoreatthereactorcoolantfreezingtemperature.The shutdownmargindesigncriterionisthatkeffectivemustbelessthan0.99.

4.5.1.5 NuclearTransientParameters Thekeykineticparametersthatareusedintransientanalysisare:

Promptneutronlifetime Delayedneutronfractiongroupsandtheirdecayconstants Inaddition,corepowerdistributionandreactivitycoefficientsarealsoprovidedasinitialcondition inputstothetransientanalysis.Themethodologyforcalculatingthesecoefficientsisprovidedin Reference1.

4.5.1.6 AnalyticalMethods ThecoredesignmethodsarecomprisedoftheSerpent2,StarCCM+,KPACS,andKPATHcomputer codes.TheSerpent2codeisamultipurpose,threedimensionalcontinuousenergyMonteCarlo particle(neutronsandgammas)transportcode.STARCCM+isadiscreteelementmodelofpebbleflow throughthecoreandisthethermalhydraulicenginewiththeporousmediaapproximation.STARCCM+

isacomputationalfluiddynamicssimulationsoftwarethatusesdiscreteelementmodelingandporous mediaapproximationcapabilitiesforthermalhydrauliccharacterizationofpebblebedflowand temperature.KPACSisafuelcycleanalysiscode.KPATHisusedforcouplingSerpent2andStarCCM+.

Themethodforvalidationandverificationofthesecodesincludingthemethodfordetermining uncertaintyfactorsisdescribedinReference1.

4.5.2 DesignBases Thedesignbasesrelatedtonucleardesignareasfollows:

ConsistentwithPDC10,thereactorcorehasappropriatemargintoassurethatthespecifiedacceptable systemradionuclidereleasedesignlimits(SARRDLs)arenotexceeded.SARRDLsaredescribedinSection 6.2.

ConsistentwithPDC11,thereactorcoreisdesignedsothatinthepoweroperatingrangetheneteffect ofpromptinherentnuclearfeedbacktendstocompensateforrapidincreaseinreactivity.

ConsistentwithPDC12,thereactorcoreassuresthatpoweroscillationswhichcanresultinconditions exceedingSARRDLsarenotpossibleorcanbereliablyandreadilydetectedandsuppressed.

ConsistentwithPDC26,thenucleardesignanalysisisperformedtoconfirmthatthereactorcontroland shutdownsystem(RCSS)provideameansfor(1)insertingnegativereactivitysuchthatSARRDLs,are notexceededandsafeshutdowncanbeachievedduringnormaloperation;(2)reliablycontrolling reactivitychangesduringnormaloperation;(3)insertingnegativereactivityofasufficientamountto coolthecoreandmaintainsafeshutdownfollowinganaccident;and(4)holdingthereactorshutdown duringfuelloading,inspection,andrepair.

4.5.3 NuclearDesignEvaluation Thissectionprovidesanevaluationofthenucleardesignanddescribeshowthenucleardesignbasesin Section4.5.2aremet.Inaddition,thissectionalsodiscussesnucleardesignanalysesthatareprovided asinputtootherpartsofthedesign.

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 445 Table4.51:ComparisonofKPFHRTestReactorwithLightWaterReactor NuclearParameter KPFHRReactor SmallLightWaterReactor PowerLevel(MWth) 35 200 ReactorInlet/Outlet Temperature(°C) 550/65020 258/310 PowerDensity(MWth/m3) 17.5 58.9 CoreVolume(m3) 2 3.4 NumberofReactivityControl Elements 7

16 ShutdownMarginatEquilibrium (pcm) 4997 2696 DischargeBurnup(%FIMA) 6 4.3 Enrichment(%U235)

<20

<5

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 453 4.6 THERMALHYDRAULICDESIGN 4.6.1 Description Thethermalhydraulicdesignofthereactorisacombinationofdesignfeaturesthatenableeffective heattransportfromthefuelpebbletothereactorcoolantandeventuallytotheheatrejectionsystem ofthereactor,consideringtheeffectsofbypassflowandflownonuniformity.Thedesignfeaturesthat playakeyroleinthethermalhydraulicdesignofthereactorsystemincludethefuelpebble(seeSection 4.2.1),reactorcoolant(seeSection5.1),reactorvesselandreactorvesselinternalstructures(see Section4.3),theprimaryheattransportsystem(PHTS)(seeSection5.1),andtheprimaryheatrejection system(PHRS)(seeSection5.2).

4.6.1.1 CoreGeometry Thecoregeometryismaintainedinpartbythereactorvesselinternalsincludingthereflectorblocks whichkeepthepebblesinageneralcylindricalcoreshape.Coolantinletchannelsinthegraphite reflectorblocksareemployedtolimitthecorepressuredrop.Theuseofpebblesinapackedbed configurationalsocreateslocalvelocityfieldsthatenhancepebbletocoolantheattransfer.Thereactor thermalhydraulicdesignusesthefollowingheattransfermechanismstoextractthefissionheat.

Pebbletocoolantconvectiveheattransfer Pebbleradiativeheattransfer Pebbletopebbleheattransferbypebblecontactconduction Pebbletopebbleheattransferbyconductionthroughthereactorcoolant Heattransfertothegraphitereflectorbymodesofconduction,convection,andradiation.

4.6.1.2 CoolantFlowPath Duringnormaloperation,reactorcoolantatapproximately550°Centersthereactorvesselfromtwo PHTScoldlegnozzlesandflowsthroughadowncomerformedbetweenthemetalliccorebarrelandthe reactorvesselshellasshowninFigure4.61.Thecoolantisdistributedalongthevesselbottomhead throughthereflectorsupportstructure,upthroughcoolantinletchannelsinthereflectorblocksandthe fuelingchuteandintothecorewithaportionofthecoolantbypassingthecoreviagapsbetweenthe reflectorblocks.Thecoolanttransfersheatfromfuelpebbleswhicharebuoyantinthecoolantand providescoolingtothereflectorblocksandthecontrolelementsviaengineeredbypassflow.Coolant travelsoutoftheactivecorethroughtheupperplenumviathecoolantoutletchannelsandexitsthe reactorvesselviathePHTSoutlet.Themaximumnominalcorevesselexitoutlettemperatureis620°C anddependentontheamountofcorrespondingbypassflowthroughthereflectorblocks.

DuringpostulatedeventswherethenormalheatremovalpaththroughthePHTSisnolongeravailable, includingwhenthePHTSisdrained,afluidicdiode(seeSection4.3),isusedtocreateanalternateflow path.Duringsuchevents,forcedflowfromtheprimarysaltpump(PSP)isalsonotavailable.Thefluidic diodethendirectsflowfromthehotwelltothedowncomerasshowninFigure4.61.Thisopensthe pathforcontinuousflowvianaturalcirculation.Duringnormaloperation,whilethePSPisinoperation, thefluidicdiodeminimizesreverseflow.

4.6.2 DesignBasis ConsistentwithPDC10,thethermalhydraulicdesignprovidesadequatetransferofheatfromthefuel tothecoolanttoensurethatthespecifiedacceptablesystemradionuclidereleasedesignlimits (SARRDLs)willnotbeexceededduringnormaloperationandunplannedtransients.

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 455 Table4.61:SummaryofThermalHydraulicParameters Parameter NominalValue CorePower(MWth) 35 ReactorInletTemperature(°C) 550 MaximumCoreExitOutletTemperature(°C) 6206501 MaximumCoreReactorMassFlowRate(kg/s) 2101 MaximumCorePressureDropatMaximumFlowRate(kPa) 2121 CoreVolume(m3) 2.0 CorePackingFraction(%)

60 TotalPebbles(FuelandModerator) 36,000 PowerDensity(MW/m3) 17.5 Notes:

1. Valuedoesnotaccountforbypassflow

PreliminarySafetyAnalysisReport

InstrumentationandControls

KairosPowerHermesReactor 76 Revision0 TheRCScontrolsreactivityfornormaloperationsandnormalshutdownusingreactorcontrolelements andreactorshutdownelementsinthereactivitycontrolandshutdownsystem(RCSS)(seeSection4.2).

TheRCSiscapableofincrementallychangingthepositionofreactorcontrolelementsandofreleasing thecontrolandshutdownelements.TheRCSisonlycapableofwithdrawingelementsoneatatimeand theRCSincludesalimitontherateatwhichacontrolelementcanbewithdrawn,asalsodiscussedin Section4.2.2.Inthiswaythedesignprecludes,withmargin,thepotentialforpromptcriticalityand rapidreactivityinsertions.TheRCSinputsincludecorereactoraveragecoolantoutlettemperaturesand reactorinlettemperaturesensorsandsourceandpowerrangeneutrondetectors.TheRCSalsoprovides areactormonitoringfunctiontomonitorplantcomponentsthatareassociatedwithreactorfunctions.

TheRCSusessourceandpowerrangesensorsthatarelocatedoutsidethereactorvesselforreactor control.

TheRCScontrolspebbleinsertionandextraction,invesselpebblehandling,andexvesselpebble handlinginthepebblehandlingandstoragesystem(PHSS)(seeSection9.3).TheRCSiscapableof countinglinearizedpebblesexternaltothevessel,controllingtherateofpebbleinsertionandremoval fromthevessel,andcontrollingpebbledistributionwithinthePHSS.

TheRCScontrolsthereactorthermalmanagementsystem(RTMS)(seeSection9.1.5)tomonitorthe temperatureoftheprimarysystemtomaintainitwithinthenormaloperatingenvelopeandto implementplannedtransients.TheRCScontrolsexternalheatingelementsintheRTMStoprevent overcooling.

7.2.1.2 ReactorCoolantAuxiliaryControlSystem TheRCACScontrolsandmonitorssystemsandcomponentsthatsupportnormaloperationinthecore.

Thesystemsupportsthefollowingcapabilitiesinthecore:

Chemistrycontrolintheprimarysystem Inventorymanagementsystemcontrol Inertgassystemcontrolintheprimaryloops Tritiummanagementsystemmonitoringandcontrol TheRCACScontrolsthechemistrycontrolsystem(seeSection9.1.1)tomonitorreactorcoolant chemistry.Themonitoringsystemsprovideinformationtofacilitatemaintainingcoolantpurityand circulatingactivitywithinspecificationsforthesystem.

TheRCACSreceivesinputfromtheinventorymanagementsystem(seeSection9.1.4)whichmonitors primarycoolantlevelduringnormaloperations.Thesystemalsoprovidescontrolforchangestoprimary inventoryduringplannedprimaryfillinganddrainingoperations.

TheRCACSalsocontrolstheinertgassystem(seeSection9.1.2).Duringnormaloperation,thesystem providescontrolsignaltomaintaincovergaspressureandflow,monitorsventinggasforimpurities abovespecifiedlimitsinthegasspaceoftheprimarysystem.Duringstartup,thesystemmonitorsand controlsinertgasflowandtemperaturetosupportinitialheatingoftheprimarysystem.

TheRCACSreceivesinputfromthetritiummanagementsystem(seeSection9.1.3)andprovidescontrol signaltoremovetritiumfromthecovergasintheprimarysystem.

7.2.1.3 PrimaryHeatTransportControlSystem ThePHTCScontrolsandmonitorssystemsandcomponentsthatsupportnormaloperationofthe primaryheattransportsystem(PHTS).Thesystemsupportsthefollowingcapabilities:

ControloftheflowratethroughthePHTS

PreliminarySafetyAnalysisReport

InstrumentationandControls

KairosPowerHermesReactor 710 Revision0 Table7.21:PlantControlVariables ControlVariables(Inputs)

PrimaryLoop PSPspeed Controlroddriveposition Loopandvesseltemperatures Inertgaspressure IntermediateLoop ISPspeed Valvepositions Looptemperatures ControlledVariables(Outputs)

PrimaryLoop Neutronflux(selfpoweredneutron detectorsandioncambers)

Coreinlettemperature CoreReactoroutlettemperature CoolantCoremassflowrate IntermediateLoop IntermediateLoopflowrate IHXinlet/outlettemperature HeatRejectionRadiatorInlet/outlet temperature ConstrainedVariables(Outputs)

PrimaryLoop Excessreactivitymargin ReactoriInlettemperature

PreliminarySafetyAnalysisReport

InstrumentationandControls

KairosPowerHermesReactor 715 Revision0 Thewatertankisolationvalvesalsofailopenuponlossofpower.Thedecayheatremovalportionofthe RPScanreceivetheactuationsignalfromeitheranautomaticormanualsource.

ThedecayheatremovalportionoftheRPSusescoretemperatureandneutrondetectorsasinputs throughhardwired,analog,safetyrelatedsignalwirewaysthatareterminatedatlocalcabinets.Section 7.5providesadditionalinformationaboutthesensorsthatprovideinputtotheRPS.

ThedecayheatremovalportionoftheRPSalsoincludesamanualactuationcapabilityfromthemain controlroomandtheremoteonsiteshutdownpanel.Section7.4includesadiscussionofthehuman interfacewiththedecayheatremovalportionoftheRPS.

Table7.32providesalistofinterlocksimplementedforRPSsystems.Beforesufficientfissionproducts andsubsequentdecayheatisproducedinthecore,forexampleduringstartup,DHRShasnosafety function.Duringthisperiod,thedecayheatremovalportionoftheRPSincludesamanualinhibitionof theDHRSthatisavailabletoplantoperatorstoallowforadditionalthermalmanagementcapabilities.

Oncedecayheatisproducedatasufficientrateinthecore,theRPSblocksthemanualinhibition capabilityutilizingsafetyrelatedactuations.Aftershutdown,oncefissionproductdecayheat productionhasdroppedtolevelsnotrequiringDHRS,theRPSremovestheblockonthemanual inhibitioncapability.TheparameterstheRPSusestodetermineifthemanualinhibitionistobe permittedorblockedareneutrondetectors(sourceandpowerrange)andreactorcorevessel temperature.

7.3.2 DesignBases ConsistentwithPDC1,theRPSisdesignedusingrelevantindustrycodesandstandardsandthe QualityAssuranceprogram.

ConsistentwithPDC2,theRPSisdesignedtowithstandandbeabletoperformduringnatural phenomenaevents.

ConsistentwithPDC3,theRPSisdesignedandlocatedtominimize,consistentwithothersafety requirements,theprobabilityandeffectoffiresandexplosions.

ConsistentwithPDC4,theRPSisdesignedfortheenvironmentalconditionsassociatedwithnormal operation,maintenance,testing,andpostulatedevents.

ConsistentwithPDC10and20,theRPSprovidesreactortripanddecayheatremovalactuationthat ensureradionuclidereleasedesignlimitsarenotexceededduringnormaloperation.

TheRPSimplementsPDC13inthatthesystemincludessensorsthatmonitorcoretemperature, vessellevel,andpowerlevel.Thesensorsmonitorvariablesandsystemsovertheiranticipated rangesfornormaloperationandforpostulatedeventconditions.

ConsistentwithPDC15,theRPSprovidesreactortripanddecayheatremovalactuationtoensure thatthedesignconditionsofthereactorcoolantboundaryarenotexceededduringnormal operation.

ConsistentwithPDC20,theRPSprovidesautomaticreactortripanddecayheatremovalactuation toensureradionuclidereleasedesignlimitsarenotexceededasaresultofpostulatedevents.The RPSisalsodesignedtoidentifypostulatedeventconditionsandinitiatepassiveinsertionof reactivityshutdownelementsandpassivedecayheatremoval.

ConsistentwithPDC21,theRPSisdesignedwithsufficientredundancyandindependencetoassure thannosinglefailureresultsinlossofitsprotectionfunction.IndividualcomponentsoftheRPSmay beremovedfromservicefortestingwithoutlossofrequiredminimumredundancy.TheRPSis designedtopermitperiodictesting.

ConsistentwithPDC22,theeffectsofnaturalphenomena,andofnormaloperating,maintenance, testing,andpostulatedeventconditions,donotresultinlossoftheprotectionfunctionfortheRPS.

PreliminarySafetyAnalysisReport

InstrumentationandControls

KairosPowerHermesReactor 716 Revision0 TheRPSisdesignedwithsufficientfunctionalandcomponentdiversitytopreventthelossof functionfortheRPS.

Uponlossofelectricalpowerordetectionofadverseenvironmentalconditions,theRPSfailstoa safestate,consistentwithPDC23.

TheRPSsystemfunctionallyindependentfromthecontrolsystems,consistentwithPDC24.

ConsistentwithPDC25,theRPSisdesignedtoensurethatradionuclidereleasedesignlimitsarenot exceededuponreactortripactuation,includingintheeventofasinglefailureofthereactivity controlsystem.

ConsistentwithPDC28,theRPSsetpointsaredesignedtolimitthepotentialamountandrateof reactivitytoensuresufficientprotectionfrompostulatedeventsinvolvingreactivitytransients.The limitsaresetsuchthatreactivityeventscannotresultindamagetothereactorcoolantboundary greaterthanlimitedlocalyielding,andcannotsufficientlydisturbthecore,itssupportstructures,or otherreactorvesselinternalstoimpairsignificantlythecapabilitytocoolthecore.

TheRPSisdesignedtoberedundantanddiversetoassurethereisahighprobabilityof accomplishingitssafetyrelatedfunctionsinpostulatedevents,consistentwithPDC29.

Consistentwith10CFR50.55(i),RPSisdesigned,fabricated,erected,constructed,tested,and inspectedtoqualitystandardscommensuratewiththesafetyfunctiontobeperformed.

Consistentwith10CFR50.55a(h)(3),theRPSisdesignedinaccordancewithIEEEStd6032018 (Reference1).TheRPSimplementsthe2018editionofIEEEStd603asanalternativecodetoIEEE Std6031991(Reference2)andthecorrectionsheetdatedJanuary30,1995.

7.3.3 SystemEvaluation TheRPSprovidesautomaticreactortrip(1)ifplantparametersexceedthenormaloperationenvelope (PDC20),(2)intheeventofstationblackout,and(3)manuallyusingsignalfromthemaincontrolroom orremoteonsiteshutdownpanel.TheRPSalsoensuresthattheDHRSisrunningwhenthereactortrips.

TheRPSisconsistentwith10CFR50.55a(h)(3)andNUREG1537,GuidelinesforPreparingand ReviewingApplicationsfortheLicensingofNonPowerReactors,bymeetingIEEE6032018.Table7.31 providesalistoftheconsensusstandardstowhichtheRPSisdesigned.

Chapter13describesthepostulatedeventstowhichtheRPSisdesignedtorespond.TheRPSusesthe samesetofoperatingparametersinthetripandactuationlogicforallmodesofreactoroperation.The setpointsareestablishedtoensurethatthedesignconditionsofthereactorcoolantboundaryarenot exceededduringoperationwithinthedesignbasis.ThisisconsistentwithPDC25becausemaintaining thereactorcoolantboundarywithindesignbasisboundswillensurethatradionuclidereleasedesign limitsarenotexceeded.Thesetpointsareestablishedandcalibratedusingthemethoddescribedin Section7.1.2.

Consistentwith10CFR50.55a(h)(3),reactortripsimplementedbytheRPSmeetIEEE6032018, Section4.Theprimaryplanttripsignalisbasedonaveragecoretemperaturemeasurements.In addition,theplantwillalsohaveatripsignalforhighfluxratebasedoninputfromtheneutrondetector sensorsandatripofthereactorupondetectionofabreakinthePHSSextractionline.Whenthe temperatureorfluxrateareoutsidethenormaloperatingrangeorwhenaPHSSextractionlinebreakis detected,theprimaryplanttripdeenergizestheRSStripdevice,theDHRSlooptripdevice,andthePCS inhibitortripdevice.Redundanttripdevicesareprovidedforeachsignalpathway.SeeFigure7.31fora schematicoftheRPStriplogic.Tripsetpointsareestablishedandcalibratedusingthemethods describedinSection7.1.2.ThePCSinhibitortripdevicefunctionallyisolatestheRPSfromthePCS.This includestrippingthePSP,discussedinSection7.2.1.3.TheRPSalsoprovidesalarmsignalstothemain controlroom,whichwillbedescribedintheOperatingLicenseapplication.