ML22181B113

From kanterella
Jump to navigation Jump to search
Enclosure 1: Changes to PSAR Chapter 3
ML22181B113
Person / Time
Site: 99902069, Hermes  File:Kairos Power icon.png
Issue date: 06/27/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22181B111 List:
References
KP-NRC-2206-001
Download: ML22181B113 (16)


Text

KPNRC2206001

ChangestoPSARChapter3 (NonProprietary)

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 316 Revision0 3.4 SEISMICDAMAGE ThissectiondiscussesthedesignanddesignbasesofSSCsthatarerequiredtomaintainfunctioninthe eventofanearthquakeatthefacility.Thefacilityisdesignedsuchthatthereisreasonableassurance thatapotentialdesignbasisearthquakewillnotprecludethereactorfromshuttingdownandbeing maintainedinasafeshutdowncondition.Theconsequencesofapotentialdesignbasisearthquake wouldbewithinthedoselimitsdefinedinChapter13andarethereforeboundedbythemaximum hypotheticalaccidentanalysispresentedinChapter13.AsdiscussedinChapter13,therequirementsin 10CFR100areusedtodefinethedoselimitcommitmentsforsafeperformanceofthefacilityina designbasisearthquake.

AgradedperformanceapproachoutlinedinASCE4319,SeismicDesignCriteriaforStructures, Systems,andComponentsinNuclearFacilities(Reference1),isusedtodesignthesafetyrelatedSSCs inthefacilitytoprotectagainstseismicdamagefromthedesignbasisearthquake.Asstatedinthe introductionofASCE4319,Theintent[ofthisStandard]istocontrolthedesignprocesssuchthatthe performanceoftheSSCrelatedtosafetyandenvironmentalprotectionisacceptable.Safetyrelated SSCsdesignedtothisstandardprovidereasonableassurancethatthereactorcanbeshutdownand maintainedinasafecondition.TheperformancegradationsinASCE4319arebasedontheradiological hazardsofthefacilityandthespecificsafetyfunctionsoftheSSC.

SSCsaredesignatedbasedontheirsafetyclassification.inoneoftwoThesafetyrelatedSSCsare designedtoSeismicDesignCategoryies(SDC)3perconsistentwithASCE4319,basedontheirsafety classification.SafetyrelatedSSCsareclassifiedasSDC3.SSCsbecausetheyarecreditedrequiredto maintaintheirsafetyfunctionforintheeventofadesignbasisearthquake.aresubjecttomorestringent seismicrequirementsunderASCE4319SSCsthatarenonsafetyrelatedareclassifiedasSDC2designed tolocalbuildingcode,the2012InternationalBuildingCode(IBC,Reference2),whichisconsistentwith NUREG1537.SafetyrelatedSSCsareclassifiedasSDC3.SSCscreditedtomaintainsafetyfunctionfora designbasisearthquakearesubjecttomorestringentseismicrequirementsunderASCE4319thanSDC 2SSCswhicharesubjecttotherequirementsoflocalbuildingcode,the2012InternationalBuilding Code(IBC,Reference2).

UseofaperformancebasedapproachforgradedclassificationofSSCsisconsistentwiththeguidance fromNUREG1537,includingIAEATECDOC403(Reference4)andIAEATECDOC348(Reference7,now effectivelysupersededbyIAEATECDOC1347,Reference8)referencedtherein.Thatguidancepermits theselectionofdesignbasisearthquakesandcorrespondingSSCseismicdesigncriteriabasedontheir relativesafetysignificance.ForHermes,thereturnperiodassociatedwithdesignbasisgroundmotion correspondingtoASCE4319SDC3issimilartothemaximumconsideredearthquakespecifiedin buildingcodeswith2%probabilityofexceedancein50years,aswereconsideredandapprovedbyNRC fordesignofothernonpowerreactornuclearfacilities.Additionally,duetoitsrelativelyshorter operatinglifetime,theprobabilityofexceedingthedesigngroundmotionleveloveritsoperatinglifeis lessforHermesthanotherfacilitieswithdesignbasisgroundmotionswithsimilarreturnperiods.

3.4.1 SeismicDesignforSafetyRelatedSSCs 3.4.1.1 SeismicDesignCriteria Thefacilityisdesignedtobecapableofshuttingdownandofbeingmaintainedinasafeconditionora conditionwithinacceptablelimits(seeChapter13)intheeventofadesignbasisearthquake.Acceptable seismicperformanceofsafetyrelatedSSCsisdefinedbasedontheselectedASCE4319limitstate, whichisinformedbytheperformancelimitsorfunctionalsafetyrequirementsoftheSSC.Thatis,inthe eventofadesignbasisearthquake,SSCsaredesignedtoperformtheirrequiredsafetyfunctionsthatare creditedinthepostulatedeventanalysesofChapter13.Acceptancecriteriaareafunctionoftheseismic

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 317 Revision0 hazard(groundmotionintensity),adesignfactor,andcontrolofSSCcapacity.Thisdesignapproach definesseismiccriteriaforcreditedSSCsusinggradationbasedonlimitingdosebelowspecified thresholds.

SSCsusedforthispurposearedesignedtotheSDC3DesignResponseSpectra(DRS)toensure:

Integrityofthereactorvesseltosupportthefunctionalcontainmentprovidedbythepebblesand theFlibeinthecore Capabilitytoshutdownthereactorandmaintainitinasafeshutdowncondition Capabilitytopreventormitigatetheconsequencesofpostulatedeventstopotentialoffsite exposures AcceptableseismicperformancecriteriatomeetthisintentaredescribedinAmericanNational StandardsInstitute(ANSI)andAmericanNuclearSociety(ANS)Standard15.7(Reference3).

Section3.2(2)ofANSI/ANS15.7states,reactorsafetyrelatedstructuresandsystemsshallbe seismicallydesignedsuchthatanyseismiceventcannotcauseanaccidentwhichwillleadtodose commitmentsinexcessofthosespecifiedin3.1."

Thephraseanyseismicevent"fromANSI/ANS15.7isdefinedasthemaximumhistoricalintensity earthquakeinaccordancewiththeguidanceonthedesignbasisearthquakeinSection3.1.2.1of InternationalAtomicEnergyAgencydocumentIAEATECDOC403(Reference4).Thehistorical seismicity,aswellasprobabilisticseismichazardconsiderations,arecapturedinthehazardanalysis summarizedinSection2.5.ThedesignbasisearthquakegroundmotiondevelopmentinSection2of ASCE4319isusedtodevelopaDRSappropriateforSDC3SSCsbasedonsiteseismichazard.

ForSDC3SSCs,theDRSdeterminedbySection2ofASCE4319isbasedonameanannualhazard exceedancefrequency,HP,of1E4reducedbyascalefactorinformedbytheslopeofthesiteseismic hazard.DesignprovisionsofASCE4319arecalibratedtoachievedualcriteria:(1)lessthanabout1%

probabilityofunacceptableperformanceforadesignbasisgroundmotion,and(2)lessthanabout10%

probabilityofunacceptableperformancefor150%ofthedesignbasisgroundmotion.PerTable11of ASCE4319,whentheSDC3DRSisusedwiththestructuraldesignprovisionsinASCE4319,SSCs achieveatargetperformancegoal,PF,ofapproximately1E4.

3.4.1.2 DesignResponseMotion SitehazardanalysisdetailedinSection2.5isusedtodeveloptheDRS,asdescribedbelow.

3.4.1.3 DesignResponseSpectra Usingthedevelopedhorizontalandverticaluniformhazardresponsespectra(UHRS),the5%damped horizontalandverticalDRSforSDC3aredeterminedfollowingSection2.2ofASCE4319.SSCsdesigned tothisDRSachievethetargetseismicperformancegoalsoutlinedinSection3.4.1.1.Thehorizontaland verticalDRSareillustratedinFigure3.41.

3.4.1.4 SeismicResponse SeismicresponseofthesafetyrelatedportionoftheReactorBuildingsubjectedtothedesignground motiondescribedinsection3.4.1.2tocharacterizeseismicdemandsfordesignofSDC3SSCsis determinedassummarizedinthesubsectionsbelow.

3.4.1.5 StructuralModel ThesafetyrelatedportionoftheReactorBuildingisrepresentedbyathreedimensionalfiniteelement modeldevelopedinaccordancewithChapter3ofASCE416(Reference5).Themodelcapturesthe primaryelementsofthelateralloadresistingsystemaswellassecondaryelementsthatmayinfluence

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 318 Revision0 theseismicresponse(e.g.,gravitymembersforverticalresponse).Theresultsofthefiniteelement modelwillbesummarizedintheOperatingLicenseapplication.

Structuralmassisassignedtothemodelstocapturetheselfweightofthestructuralelementsandthe weightofpermanentlyattachedheavyequipment(e.g.,reactor).Themassalsoaccountsforaportion ofthedesignliveloads(25%oftheliveloadforloadslessthan200psf,50psfotherwise)and25%ofthe designuniformsnowload.Assignmentofthestructuralmassinthemodelswillbedescribedinthe OperatingLicenseapplication.

Acrackinganalysisisperformedusingthe5%dampedDRStodetermineifcrackingoccursinthe structuralelementsatthedesignlevel.Elementsjudgedtobecrackedatthedesignlevelhave stiffnessesmodifiedperTable32ofASCE416.StructuraldampingisassignedperTable31of ASCE416consistentwiththeresponseleveldeterminedfromthelevelandextentofcracking anticipatedatthedesignlevel.

3.4.1.6 ResponseAnalysis Thestructuralmodelsaresubjectedtoathreecomponentseismicinput,discussedinSection2.5and Section3.4.1.2,todevelopstructuralforcesandinstructureresponsespectra(ISRS)usedforSDC3 structuralandequipmentqualification,respectively.Responseanalysisisperformedattheseismic levelsnecessarytodemonstratetheSDC3SSCsachievetheirtargetperformancegoal.

SeismicresponseanalysisisperformedfollowingChapter4ofASCE416usingdeterministic,linear analysis.Therelativeimportanceofsoilstructureinteractioneffects,usingthecharacterizationofthe subsurfacematerialssupportingtheSDC3structures,definedcompatiblewiththosedescribedin Section2.5,areconsideredbasedontheguidanceinChapter5ofASCE416.Additionaldetailsabout thesoilstructureinteractionanalysisresultsandmodelingmethodsandassumptionswillbe summarizedintheOperatingLicenseapplication.Modelingmethodsandassumptionsaswellasresults oftheseismicresponseanalysis,includingstructuralforcesandISRS,willalsobesummarizedinthe OperatingLicenseapplication.

3.4.1.7 SeismicQualification LimitstatesforSDC3SSCsareassignedbasedonthetargetseismicperformancegoalsofASCE4319 (seeSection3.4).Specificcriteriaforthequalificationofstructuresandsystemsandcomponentsare outlinedinSection3.6.

3.4.2 NonSafetyRelatedSSCsandSeismicDesign(SDC2SSCs)

Withrespecttoseismicdesign,NonnonSafetysafetyRelatedrelatedSeismicDesign(SDC2)SSCsare designedaccordingtothelocalbuildingcode,the2012IBC.FortheSDC2seismicinput,thedesignbasis groundmotionisdefinedinaccordancewiththedeterministicprocessesoflocalbuildingcode,the2012 IBC,whichreferstoASCE/SEI710(Reference6).

SitespecificgroundmotionparametersaredeterminedperChapter21ofASCE/SEI710.Thesite responseanalysisusedtoinformtheSDC3(Section2.5)inputwillbeusedtodeterminetherisk targetedmaximumconsideredearthquake(MCER)forthesite.

SeismicanalysisandqualificationofSDC2nonsafetyrelatedSSCsisalsoperformedinaccordancewith the2012IBC.SeismicdesignrequirementsforSDC2nonsafetyrelatedstructuresfollowChapter12of ASCE/SEI710.SeismicdesignfornonsafetyrelatedSDC2systemsandcomponentsfollowChapter13 ofASCE/SEI710.ExceptionstoASCE/SEI710forSDC2nonsafetyrelatedstructures,asrequiredbythe Tennesseebuildingcode,areappliedasneeded.

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 319 Revision0 3.4.3 SeismicInstrumentation Seismicinstrumentationthatenablesthepromptprocessingofthedataatthesiteisinstalledfor monitoring.

Thepurposeoftheinstrumentationisto(1)permitacomparisonofmeasuredresponsesofthesitewith estimatedresponsescorrespondingtothedesignbasisgroundmotion,(2)permitfacilityoperatorsto understandthepossibleextentofdegradedperformancewithinthefacilityimmediatelyfollowingan earthquake,and(3)beabletodeterminewhenadesignbasisearthquakeeventhasoccurredthat warrantsinspectionandmaintenanceactivities.

3.4.3.1 LocationandDescriptionofSeismicInstrumentation Theseismicinstrumentationconsistsoftriaxialtimehistoryaccelerometerslocatedinthefreefield andinthesafetyrelatedportionoftheReactorBuilding.Thefreefieldinstrumentismountedonrock orcompetentgroundgenerallyrepresentativeofthedynamicsitecharacteristics.Theinstrumentation recordstimehistorydataattimeincrementssuitabletocapturetherangeofvibrationfrequenciesin thedesignbasisearthquakespectra.Seismicinstrumentationisdesignedsuchthatifthereisalossof power,recordingstilloccurs.Instrumentationishousedinappropriateweatherandcreatureproofed enclosures.

3.4.3.2 SeismicInstrumentationOperabilityandCharacteristics Theseismicinstrumentationoperatesduringallmodesoffacilityoperation.Plantproceduresprovide forkeepingaminimumrequirednumberofseismicinstrumentsinserviceduringfacilityoperation.The seismicinstrumentationdesignincludesprovisionsforinservicetesting.Theseismicinstrumentsare capableofperiodicchannelchecksduringnormalfacilityoperationandinplacefunctionaltesting.

3.4.4 References

1. AmericanSocietyofCivilEngineers,SeismicDesignCriteriaforStructures,Systems,and ComponentsinNuclearFacilities,ASCE4319.2019.
2. InternationalCodeCommittee,InternationalBuildingCode.2012.
3. AmericanNationalStandardsInstitute,AmericanNuclearSociety,ResearchReactorSite Evaluation.ANSI/ANS15.7.1977
4. InternationalAtomicEnergyAgency,SitingofResearchReactors,IAEATECDOC403.1987.
5. AmericanSocietyofCivilEngineers,SeismicAnalysisofSafetyRelatedNuclearStructures, ASCE416.2017.
6. AmericanSocietyofCivilEngineers,SeismicEngineeringInstitute,MinimumDesignLoadsfor BuildingsandOtherStructures,ASCE/SEI710.2011.
7. InternationalAtomicEnergyAgency,EarthquakeResistantDesignofNuclearFacilitieswithLimited RadioactiveInventory,IAEATECDOC348.1985.

6.8. InternationalAtomicEnergyAgency,ConsiderationofExternalEventsintheDesignofNuclear FacilitiesOtherThanNuclearPowerPlants,withEmphasisonEarthquakes,IAEATECDOC1347.

2003.

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 326 Revision0 NosafetyrelatedSSCscrossthemoatthatsurroundsthesafetyrelatedportionoftheReactorBuilding.

NonsafetyrelatedSSCsthatcrossthemoattothesafetyrelatedportionoftheReactorBuildinguse designfeaturestoaccommodatedifferentialdisplacementsofthetwopartsoftheReactorBuilding.

Designfeaturesincludeflexiblefeaturesforpiping,ductingandconduit,isolationvalves,sprayanddrip shielding,orothersimilardesignsolutions.Thesefeaturesminimizethestressesontheelements crossingthemoatduetodifferentialmotionbetweenthepartsofthebuildingduringadesignbasis earthquake.Thisisnotasafetyrelatedfunction,butthefeaturesreducethelikelihoodthatduringan earthquakenonsafetyrelatedSSCswouldadverselyaffectasafetyrelatedSSCsabilitytoperformits safetyfunction.

3.5.3.3.2 SeismicIsolationSystem ThesafetyrelatedportionoftheReactorBuildingdesignusesaseismicisolationsystemtolimitseismic demandsonSDC3SSCs.Thisincludesboththestructureitselfandthesystemsandcomponentshoused within.Theseismicisolationsystemispartofthelateralforceresistingsystemofthesafetyrelated portionoftheReactorBuildingandissubjecttodesignrequirementsuniquetotheisolationsystem.

ThebaseisolationsystemdesignimplementsChapter9ofASCE4319.Theisolatorsandtheir connectionstothesuperandsubstructuresaredesignedfortheforcesanddisplacementscomputed bytheresponseanalysisoutlinedinSection3.4.1.Furtherdetailsofthedesignofthebaseisolation systemandassociatedstructuralanalysiswillbeprovidedintheapplicationforanOperatingLicense.

WinddesigneffectsforthesafetyrelatedportionoftheReactorBuildingareaccountedforinthe designasdescribedinSection3.5.3.1,includinghighwindevents.Underthesedemands,thelateral displacementoftheisolationsystemduetowindisverifiednottoexceedthedisplacementfroma designbasisearthquake,withmargin.

Amoatisprovidedaroundtheseismicallyisolatedsuperstructuretoaccommodatedisplacementofthe isolationsystemduringaseismiceventandavoidinteractionofthesuperstructurewiththeadjacent nonisolatedportionofthebuilding.Themoatissizedtohaveadisplacementcapabilitylargeenough suchthatimpactwiththemoatwillnotimpedetheseismicisolationsystemfrommeetingtheSDC3 targetperformancegoalof1E4/year.

LimitstatesforSDC3SSCsareassignedbasedonthetargetseismicperformancegoalsofASCE4319.

DesigncriteriaforthequalificationofspecificSSCsareoutlinedinSection3.6.

3.5.3.4 ConformancewithPDC2forOtherHazards Accidentalexplosionsoutsidethefacility(seeSection2.2)andaccidentalexplosionsinsidethefacility areconsideredinthedesignofthesafetyrelatedstructures.ThesafetyrelatedportionoftheReactor Buildingisconstructedofrobustreinforcedconcretesuchthatcredibleaccidentalexternalexplosions donotresultinhazardstosafetyrelatedSSCslocatedinthatportionofthebuilding.Internalexplosions areconsideredinthefirehazardsanalysis(seeSection9.4).

Accidentalaircraftimpact(AAI)fromtheproposednearbyairport,asdiscussedinSection2.2,isalso consideredinthedesignofthesafetyrelatedportionoftheReactorBuilding.Thedesignofthesafety relatedportionoftheReactorBuildingisevaluatedforglobalandlocaleffectsofAAIhazardsfromlight generalaviationaircraft.

TheglobalimpactresponseisanalyzedusinganenergybalancemethodconsistentwithDepartmentof Energy(DOE)StandardDOESTD30142006(Reference5).Thepermissibleductilitylimitsforreinforced concreteelementsandtrussmembersareconsistentwithAppendixFofACI349andChapterNBof AISCN690,respectively.Fromthesereferences,theavailableenergyabsorptioncapacityofthe

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 327 Revision0 structureatthecriticalimpactlocationsisdetermined.Section2.2providesaprojectionofthetypeof aircraftthatwillbeusedattheproposednearbyairport.Theanalysisofglobalimpactresponseuses aircraftmodelsrepresentativeoftheprojectedtypeswithrespecttomassoftheaircraft,speed,and fuelcapacity.AttachmentEofLawrenceLivermoreNationalLaboratoryUCRLID123577(Reference6)is usedintheanalysistodeterminetheprobabilisticdistributionsofhorizontalandverticalimpact velocitiescorrespondingwiththe99.5percentoftheimpactvelocityprobabilitydistribution.The analysisincludesimpactsatlocationsthatboundtheeffectofAAIonthesafetyrelatedportionofthe ReactorBuildingwithrespecttotheglobalimpactresponse.

ThelocalimpactresponseonthesafetyrelatedportionoftheReactorBuildingisanalyzedconsistent withDOESTD30142006.Thestructureisdesignedtoaddresscrediblefailuremodesbasedon AppendixFofACI349.Usingthecrediblefailuremodes,DOESTD30142006isusedtocalculatewall andceilingsizingrequirementsforthesafetyrelatedportionoftheReactorBuilding.Theanalysisof localimpactresponseusesaircraftmodelsrepresentativeoftheprojectedtypes(seeSection2.2)with respecttomassoftheengine,speed,andfuelcapacity.Theanalysisincludesimpactsatlocationsthat boundtheeffectofAAIonthesafetyrelatedportionoftheReactorBuildingwithrespecttothelocal impactresponse.

AdditionaldetailaboutthestructuraldesignfeaturesforthesafetyrelatedportionoftheReactor BuildinginformedbytheresultsoftheanalysiswillbeprovidedintheapplicationfortheOperating License.

3.5.4 TestingandInspections TestingandinspectionsofseismicisolatorunitsisconductedconsistentwithASCE4319.Priorto installation,testingisperformedonbothprototypeandproductionisolatorsconsistentwiththe guidancesetforthinSection9.5ofASCE4319.Testingrequirementsandproceduresfollow Section9.5.2ofASCE4319.Prototypetestingisusedtoverifythedisplacementcapacityoftheisolators uptothatnecessaryfordemonstratingtheisolationsystemmeetsitstargetperformancegoalof 1E4/year.Productionisolatorsaremanufacturedinthesamemannerandwiththesamematerialsof theprototypeisolators.Eachproductionisolatoristestedpertherequirementsandproceduresof Section9.5.3ofASCE4319fortheSDC3DRS.Amonitoringandinspectionprogramfortheisolators meetsSection9.2.1.6ofASCE4319.

3.5.5 References

1. AmericanSocietyofCivilEngineers,SeismicEngineeringInstitute,MinimumDesignLoadsfor BuildingsandOtherStructures,ASCE/SEI710.2011.
2. AmericanConcreteInstitute,CodeRequirementsforNuclearSafetyRelatedConcreteStructures andCommentary,ACI34913.2013.
3. AmericanNationalStandardsInstituteANSI/ASCIN69018,SpecificationforSafetyRelatedSteel StructuresforNuclearFacilities.2018.
4. AmericanSocietyofCivilEngineers,SeismicDesignCriteriaforStructures,Systems,and ComponentsinNuclearFacilities,ASCE4319.2019.
5. DepartmentofEnergy,AccidentAnalysisforAircraftCrashintoHazardousFacilities,DOESTD 30142006.2006.
6. DepartmentofEnergy,Structures,SystemsandComponentsEvaluationTechnicalSupport DocumentfortheDOEStandardonAccidentAnalysisforAircraftCrashintoHazardousFacilities, UCRLID123577.1996.

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 331 Revision0 3.6.2 ClassificationofStructures,Systems,andComponents SSCsareassignedsafety,seismic,andqualityclassificationsconsistentwiththeirsafetyfunctions.These classificationsaredescribedbelow.Table3.61providesasummaryoftheseclassificationsforallSSCs.

3.6.2.1 SafetyClassification SSCshavetwopossiblesafetyclassifications:safetyrelatedornonsafetyrelated.ASSCisclassifiedas safetyrelatedifitmeetsthedefinitionofsafetyrelatedfrom10CFR50.2(withexceptionsasdescribed inSection1.2.3).FortheKPFHRtechnology,thedefinitionofsafetyrelatedismodifiedfrom10CFR 50.2,tobe:

Safetyrelatedstructures,systems,andcomponentsmeansthosestructures,systems,and componentsthatarereliedupontoremainfunctionalduringandfollowingdesignbasisevents toassure:

(1)Theintegrityoftheportionsofthereactorcoolantboundaryreliedupontomaintaincoolant levelabovetheactivecore; (2)Thecapabilitytoshutdownthereactorandmaintainitinasafeshutdowncondition;or (3)Thecapabilitytopreventormitigatetheconsequencesofaccidentswhichcouldresultin potentialoffsiteexposurescomparabletotheapplicableguidelineexposuressetforthin10CFR 50.34(a)(1)or10CFR100.11 NotethatfortheKPFHRtechnology,thedefinitionabovereflectsanexemptionfromthedefinitionsin 10CFR50.2thatincludetheterminologyintegrityofthereactorcoolantpressureboundary.As describedinSection1.2.3andtheRegulatoryAnalysisfortheKairosPowerSaltCooled,High TemperatureReactorTopicalReport(Reference1),thisexemptionisnecessarybecausethetechnology associatedwiththeKPFHRisbasedonanearatmosphericpressuredesignandthereactorcoolant boundarydoesnotprovideasimilarpressurerelatedorfissionproductretentionfunctionaslightwater reactorsforwhichthesedefinitionswerebased.

SSCsthatdonotmeetthedefinition,asmodifiedabove,areclassifiedasnonsafetyrelated.

3.6.2.2 SeismicClassification SSCsareclassifieddesignedinoneofaccordingtotheirsafetyclassificationtwoSeismicDesign Categories(SDC)consistentwithASCE4319(Reference2).SafetyrelatedSSCsareclassifiedasSDC3 consistentwithASCE4319(Reference2).Section3.4discussestheSDC3classificationandSection3.5 discussesrequirementsforSSCsthatarerequiredtomaintaintheirfunctionintheeventofadesign basisearthquake.AllsafetyrelatedSSCsarelocatedinthesafetyrelatedportionoftheReactor Building,whichisdiscussedinSection3.5.1.

ThecreditedsafetysystemsdesignedtofunctioninapostulatedeventaredescribedinChapter13.For adesignbasisearthquake,theSDC3SSCsthatarereliedupontoperformaspecificcreditedsafety functionarelistedinTable3.61.

Safetyrelatedsystemsandcomponentsarequalifiedtomaintaintheirsafetyfunctionduringadesign basisearthquake,afteradesignbasisearthquake,orboth,dependingonthefunctionperformed.For example,thereactorvesselisrequiredtoperformitssafetyfunction(i.e.,maintainstructuralintegrity) bothduringandafteradesignbasisearthquake,whereasthedecayheatremovalsystemisrequiredto performitssafetyfunctiononlyaftertheevent,andnotduring.Thespecificsafetyfunction,therefore, isusedtodefinetheASCE4319LimitStatethatisusedtoqualifytheSDC3SSCs.

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 332 Revision0 Seismicqualificationisaccomplishedthroughanalysis,testingoracombinationofthosemethods.

AcceptancecriteriaisdefinedinaccordancewithASCE4319,Chapter8,and/oritsreferences.

SSCsthatarenonsafetyrelatedareclassifiedasSDC2designedinaccordancewithlocalbuildingcode (IBC2012,Reference12)asdiscussedinSection3.4.2.SDC2NonsafetyrelatedSSCsaresubjecttothe seismicdesignrequirementsofthelocalbuildingcode,ASCE/SEI710(Reference3).

3.6.2.2.1 SeismicQualificationbyAnalysis SeismicqualificationbyanalysisfollowsSection8.2ofASCE4319.Dependingonthecharacteristicsand complexitiesofthesubsystemorequipment,qualificationbyanalysisisaccomplishedbyeither equivalentstaticanalysismethodsordynamicanalysismethods.

Therearelimitationstoqualificationbyanalysis.PerASCE4319:

Qualificationofactiveelectricalequipmentbyanalysisisnotperformed.

Qualificationofactivemechanicalequipmentbyanalysismaybepermittedifthecomponentissuch thatthefunctionalityduringanearthquakecanbeestablishedandamarginoflossoffunctionality duringanearthquakecanbequantified.

Qualificationofactivemechanicalcomponentsbyanalysisshallbejustified.

Seismicqualificationbyanalysisistypicallyimplementedforsubsystemsandequipmentstructural integrityrelatedcapacities(e.g.anchorage,pressureboundary/rupture,serviceabilitydeformations, etc.).

3.6.2.2.2 SeismicQualificationbyTesting SeismicqualificationbytestingfollowsSection8.3ofASCE4319.Qualificationbytestistypicallyused forSSCsforwhichqualificationbyanalysisisnotpermittedandforSSCswheredynamicbehaviorsare notsufficientlyunderstoodtosupportqualificationbyanalysis.

3.6.2.3 QualityClassification ThequalityclassificationforSSCsconformswiththerequirementsofKairosPowersQualityAssurance ProgramfortheHermesReactor,whichisdiscussedinSection12.9.SafetyrelatedSSCsareclassifiedas QualityRelated,whilenonsafetyrelatedSSCsareclassifiedasNotQualityRelated.Theseclassifications areshowninTable3.61.

3.6.3 References

1. KairosPower,LLC,RegulatoryAnalysisfortheKairosPowerSaltCooled,HighTemperature Reactor,KPTR004P,Revision2.July2020.
2. AmericanSocietyofCivilEngineers,SeismicDesignCriteriaforStructures,Systems,and ComponentsinNuclearFacilities,ASCE4319.2019.
3. AmericanSocietyofCivilEngineers,SeismicEngineeringInstitute,MinimumDesignLoadsfor BuildingsandOtherStructures,ASCE/SEI710.2011.
4. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,SectionIII, Division5,HighTemperatureReactors.2019.
5. ASME,BoilerandPressureVesselCode,SectionVIII,Divisions1and2,RulesforConstructionof PressureVessels,NewYork,NY.July2017.
6. ASMEStandardB31.1,PowerPiping,1999Edition,NewYork,NY.A9.
7. ASMEStandardB31.3,ProcessPiping,2016Edition,NewYork,NY.
8. AmericanPetroleumInstitute,610,CentrifugalPumpsforPetroleum,HeavyDutyChemical,and GasIndustryServices,1995.

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 333 Revision0

9. AmericanPetroleumInstitute,674,PositiveDisplacementPumpsReciprocating.1995.
10. AmericanPetroleumInstitute,675,PositiveDisplacementPumpsControlledVolume.1994.
11. AmericanPetroleumInstitute,650,WeldedSteelTanksforOilStorage.1998.
12. AmericanPetroleumInstitute,620,DesignandConstructionofLarge,Welded,LowPressure StorageTanks.1990.
13. InternationalCodeCommittee,InternationalBuildingCode.2012.

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 334 Revision0 Table3.61:Structures,Systems,andComponents SSCName Safety Classification Seismic ClassificationDesig n

QualityProgram SARSection PlantArea ReactorSystem FuelPebbles Safetyrelated N/A QualityRelated 4.2.1 SRarea1 ModeratorPebbles Nonsafetyrelated N/A NotQualityRelated 4.2.1 SRarea ReactivityControlandShutdownSystem(RCSS)

ControlElementsand ShutdownElements Safetyrelated SDC3 QualityRelated 4.2.2 SRarea RCSSdrivesystems,except latchingmechanisms Nonsafetyrelated SDC2LocalBuilding Code5 NotQualityRelated 4.2.2 SRarea NeutronStartupSource Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 4.2.3 SRarea ReactorVesselSystem Safetyrelated SDC3 QualityRelated 4.3 SRarea BiologicalShield2 Safetyrelated SDC3 QualityRelated 4.4 SRarea ReactorVesselSupport System Safetyrelated SDC3 QualityRelated 4.7.3 SRarea ReactorThermalManagementSystem(RTMS)

ReactorAuxiliaryHeating System Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.1.5 SRandNSRareas EquipmentandStructure CoolingSystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.1.5 SRandNSRareas DecayHeatRemovalSystem(DHRS)

DHRScomponents4except forsteamventdischarge andmakeupwater components Safetyrelated SDC3 QualityRelated 6.3 SRarea

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 335 Revision0 SSCName Safety Classification Seismic ClassificationDesig n

QualityProgram SARSection PlantArea DHRSsteamventdischarge outsidethesafetyrelated portionoftheReactor Building Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 6.3 NSRarea3 DHRSMakeupWaterSSCs Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 6.3 SRandNSRareas PebbleHandlingandStorageSystem(PHSS)

NewPebbleInsertionSSCs Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.3 SRandNSRareas PebbleExtractionMachine Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.3 SRarea PebbleProcessingSSCs Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.3 SRarea PebbleInspectionSSCs Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.3 SRarea DebrisRemovalSSCs Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.3 SRandNSRareas PebbleInsertionMachine Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.3 SRarea FullCoreOffloadandSpent FuelStorageRack Safetyrelated SDC3 QualityRelated 9.3 SRarea CanisterTransporter Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.3 SRarea SpentFuelAirCooled StorageRack Safetyrelated SDC3 QualityRelated 9.3 SRarea SpentFuelStorage Canisters Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.3 SRarea PrimaryHeatTransportSystem(PHTS)

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 336 Revision0 SSCName Safety Classification Seismic ClassificationDesig n

QualityProgram SARSection PlantArea PrimarySaltPump Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.1.1 SRarea PrimaryHeatExchanger Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.1.1 SRarea PrimaryLoopPiping System Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.1.1 SRarea PrimaryLoopAuxiliary Heating Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.1.1 SRarea ReactorCoolant Safetyrelated N/A QualityRelated 5.1.1 SRarea PrimaryHeatRejectionSystem(PHRS)

IntermediateSaltPump(s)

Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.2 NSRarea IntermediateLoopPiping System Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.2 SRandNSRareas HeatRejectionSystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.2 NSRarea IntermediateLoop AuxiliaryHeatingSystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.2 SRandNSRareas IntermediateCoolant InventoryManagement SSCs Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.2 SRandNSRareas IntermediateCoolant ChemistryControlSSCs Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 5.2 SRandNSRareas IntermediateCoolant Nonsafetyrelated N/A NotQualityRelated 5.2 SRandNSRareas ReactorAuxiliarySystems ChemistryControlSystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.1.1 SRarea

PreliminarySafetyAnalysisReport DesignofStructures,Systems,andComponents KairosPowerHermesReactor 337 Revision0 SSCName Safety Classification Seismic ClassificationDesig n

QualityProgram SARSection PlantArea InertGasSystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.1.2 SRandNSRareas TritiumManagement System Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.1.3 SRandNSRareas InventoryManagement System Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.1.4 SRarea InstrumentationandControlSystems ReactorProtectionSystem, includingfieldsensors, cabinetsandassociated wiring Safetyrelated SDC3 QualityRelated 7.1 7.5 SRarea PlantControlSystem, includingfieldsensors, cabinetsandassociated wiring Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 7.2 7.5 SRandNSRareas MainControlRoom Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 7.4 AuxiliaryBuilding RemoteOnsiteShutdown Panel Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 7.4 SRarea PlantAuxiliarySystems RemoteMaintenance System Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.8 SRandNSRareas FireProtectionSystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.4 SRandNSRareas RadioactiveWaste HandlingSystems Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 11.2.2 SRandNSRareas PhysicalSecuritySystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 12.8 SRandNSRareas Note that a row was added to the Instrumentation and Control Systems section of this table (See letter dated 6/10/2022, ML22161B014.

Conforming changes to refer to "Local Building Code" would also be applied to that new row.

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 338 Revision0 SSCName Safety Classification Seismic ClassificationDesig n

QualityProgram SARSection PlantArea SpentFuelCoolingSystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.8 SRandNSRareas PlantWaterSystems Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.7 SRandNSRareas CompressedAirSystem Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.8 SRandNSRareas RadiationMonitoring System Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 11.1 SRandNSRareas ReactorBuildingHVAC System Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.2.3 SRandNSRareas ReactorBuildingCraneand Rigging Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.8 NSRarea AuxiliarySiteServices Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 9.8 NSRarea PlantCommunications System Nonsafetyelated

LocalBuilding CodeSDC2 NotQualityRelated 9.5 SRandNSRareas ElectricalSystems ElectricalSystems Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 8.2 SRandNSRareas BackupPowerSystems Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 8.3 SRandNSRareas CivilStructures SafetyRelatedPortionof theReactorBuilding Safetyrelated SDC3 QualityRelated 3.5 SRarea NonSafetyRelatedPortion oftheReactorBuilding Nonsafetyrelated

LocalBuilding CodeSDC2 NotQualityRelated 3.5 NSRarea

PreliminarySafetyAnalysisReport

DesignofStructures,Systems,andComponents

KairosPowerHermesReactor 339 Revision0 SSCName Safety Classification Seismic ClassificationDesig n

QualityProgram SARSection PlantArea PlantSite,including AuxiliaryBuildingsandthe AccessBuilding Nonsafetyrelated LocalBuilding CodeSDC2 NotQualityRelated 3.5.1 Site Notes:

1.SRareaforthepurposesofthistablemeansthesafetyrelatedportionoftheReactorBuilding.

2.Theshieldingfunctionoftheprimaryandsecondarybiologicalshieldisnotsafetyrelated,however,thestructureitselfisasafetyrelated elementforReactorBuildingstructuralsupportandexternaleventprotectionreasons.

3.NSRareaforthepurposesofthistablemeansthenonsafetyrelatedportionoftheReactorBuilding.

4.Includesthewaterstoragetank.

5.AsstatedinSection3.4.2,localbuildingcodefortheHermessiteisthe2012IBCwhichreferstoASCE/SEI710.