ML22285A229

From kanterella
Jump to navigation Jump to search
Enclosure 1: Changes to PSAR Chapter 4
ML22285A229
Person / Time
Site: Hermes File:Kairos Power icon.png
Issue date: 10/12/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22285A227 List:
References
KP‐NRC‐2210‐006
Download: ML22285A229 (4)


Text

KPNRC2210006 ChangestoPSARChapter4 (NonProprietary)

PreliminarySafetyAnalysisReport ReactorDescription KairosPowerHermesReactor

Revision1 410 Thecontrolelementsarepositionedviaacounterweightedwinchsystem(Figure4.28).Theshutdown elementsarealsopositionedbyacounterweightedwinch,buttheyaretypicallyonlyfullyinsertedor fullywithdrawn.Inthecounterweightedwinchsystem,awireropeisconnectedtotheelement,and travelsuparoundthesheaveanddowntoacounterweight.Thecounterweightallowsthewireropeto wraparoundthesheavewithouthavingtoanchorthewirerope,similartoacapstan.Thesheave, commonlyknownasawinchdrum,isrotatedbyanelectricmotor.Thereisanelectricclutchbetween themotorandthesheave.Themotorallowssmallandcontrolledmovementsoftheelement.The maximumwithdrawalandinsertiontimefortheshutdownandcontrolelementsis100secondsoverthe fullrangeofmotionformotordrivenoperations.

Onareactortrip,theelectricclutchopens,whichallowsthesheavetorotatefreely.Withthesheave rotatingfreely,theshutdownandcontrolelementsarereleasedfromtheirdrivesanddropintothecore andreflector,respectively,asaresultofgravity.Thecontrolandshutdownelementsreach90 percentfullinsertionbygravityinnomorethan10seconds.Althoughboththecontrolelementsandthe shutdownelementsreceiveareactortripsignal,thereleaseoftheclutchfortheshutdownelements providestheprimarysafetyrelatedreactortripreleasemechanism.

Controlandshutdownelementpositionismonitoredusingtwoindependentanddiversemethods.The motorpositionismeasuredusinganabsoluteencoderallowingthedeterminationoftheanglethe sheavehassweptfromaknownreferencepoint,whichdirectlycorrelatestotheelementposition.The secondpositionmeasurementdeviceisahighdensityreedswitcharray.Similartoexistingreedswitch positionmeasurementdesigns,thisinstrumentmeasuresthepositionofthecounterweightoveritsfull rangeofmotion.Thereedswitcharrayprovidesananalogsignal,andtheencoderprovidesadigital signalandthetwousedtogetherprovidestheabilitytodeterminetheelementposition,whileallowing realtimefunctionalchecks.

ThematerialsusedintheRCSSareshowninTable4.24.TheprimarymaterialsaretheB4Cabsorber materialandthestainlesssteel316Hcladding.Theoperatingconditionsaresuchthatthecontroland shutdownelementsareimmersedinreactorcoolantandexperiencetemperaturesupto700°Cduring operation.Theupperportionsofthecontrolandshutdownelementsareexposedtoreactorcovergas abovethereactorcoolantfreesurface.Thecontrolandshutdowndrivemechanismsabovethevessel aremaintainedattemperaturesbelowtheirmechanicallimits.TheB4Cneutronabsorbermaterialis containedinpellets,whicharestackedinSS316Hcylindricaltubes(pressurizedwithinertgas).The controlandshutdowndrivemechanismsarealsomadeofstainlesssteel.

4.2.2.2 DesignBasis ConsistentwithPDC2,thesafetyrelatedportionoftheRCSSperformstheshutdownfunctionunder designbasisnaturalphenomenaevents.

ConsistentwithPDC4,thesafetyrelatedportionoftheRCSSaccommodatestheeffectsofthe environmentalconditionsduringnormalplantoperationaswellasduringpostulatedeventsasaresult ofequipmentfailures.

ConsistentwithPDC23,thesafetyrelatedportionoftheRCSSfailsintoasafestateintheeventof adverseconditionsorenvironments.

ConsistentwithPDC26,theRCSSprovidesanindependentanddiversemeansofcontrollingreactivityto assurethatshutdownmarginismaintainedandthatSARRDLsarenotexceededunderconditionsof normaloperation.Inaddition,theRCSSprovidesameansofinsertingnegativereactivityatasufficient ratetoassurewithappropriatemarginformalfunctionsandalsoprovideameanstomaintainthe reactorshutdownforfuelloading,inspectionandrepair.

PreliminarySafetyAnalysisReport ReactorDescription KairosPowerHermesReactor

Revision1 411 ConsistentwithPDC28,theRCSShasappropriatelimitsonthepotentialamountandrateofreactivity increasetoensuretheeffectsofpostulatedreactivityeventscanneitherdamagethesafetyrelated elementsofthereactorcoolantboundaryordisturbthecoreandinternalssuchtheabilitytocoolthe coreisimpaired.Thesystemallowsonlyoneelementtomoveatagiventime.

ConsistentwithPDC29,theRCSS,inconjunctionwithreactorprotectionsystems,assuresanextremely highprobabilityofaccomplishingitssafetyrelatedfunctions.

4.2.2.3 SystemEvaluation TheRCSSmeetsthedesignbasesasdescribedbelow:

PDC2 AsnotedinSection4.2.2.1,theshutdownelementsareinsertedintoguidestructuresintheupper reflectorandthendirectlyintothepebblebed.Theguidestructuresandreflectorblocksensurethe abilityoftheshutdownelementstoinsertunderconditionsofreflectorblockmisalignmentthatcould potentiallyoccurinadesignbasisearthquake.ThedesignbasisearthquakeisdescribedinSection3.4.

Thisseismicanalysisdeterminesthemaximumdeflectionoftheinsertionpath.Insertioncapabilitywill beassessedinaonetime,outofpile,atscaletestpriortoinitialoperation,withandwithoutmaximum deflectionofthatdeflectstheshutdownelementguidestructuresconsistentwiththemaximum misalignmentcausedbysuchaneventandaccountsfortheexpectedchangesinpebblebedpacking fractionandconcurrentinsertionofallthreeshutdownelementsintothepebblebed.Thethree shutdownelementinsertiontimesandinsertiondepthsisaremeasuredandcomparedtotheinsertion timetestingperformedwithnodeflectionoftheupperreflectorguidestructures.Thetestingis performedtoconfirmthattheelementinsertiontimeiswithintheinsertiontimeassumedinthe postulatedeventanalysisinChapter13undertheconditionofmaximumexpectedmisalignmentofthe upperreflectorguidestructuresfromadesignbasisearthquake.Thetestswillalsoconfirmthatthe shutdownelementsfullyinserttothedepthassumedintheshutdownmargincalculationsinTable4.5

5. Additionally,thereflectorblocksmaintaintheelementinsertionpathwayasdescribedinSection4.3.

TheseshutdownelementdesignfeaturesprovideconformancetoPDC2.

PDC4 ThesafetyrelatedportionsoftheRCSSarecompatiblewiththeenvironmentalconditionsthattheywill besubjectedtoduringnormaloperation,maintenance,testing,andpostulatedevents.

TheRCSSshutdownelementsaremadewithstainlesssteelcladding.Wearratesduetoflowinduced vibrationareexpectedtobelowincomparisontothoseoftypicaloperatingreactorswithstainlesssteel claddinggiventhelowercoreflowrates(<0.13meter/second)inthedesign.Theneutronabsorbing materialisenclosedintwostainlesssteelbarrierstomitigatethelossofneutronabsorbingmaterialin theshutdownelements.Theshutdownelementsare qualificationtestedoutofpilepriortooperationandaconservativewearlimitisestablishedtoensure thatwearduringshutdownelementmovementisacceptable.Theshutdownelementscanberemoved forinspectionorreplacedifnecessary.Inaddition,theshutdownelementsarenotadverselyaffectedby neutronandgammaheating.

Analysisisperformedontheshutdownelementstodeterminetheinternalgasreleaseandswellingof theB4Cduringnormaloperationovertheirdesignlifetime.Theresultingincreaseingaspressureis analyzedtoensurethatstressesontheshutdownelementtubesarewithinallowablestresslimitsforSS 316H.Inaddition,theeffectsofirradiationonSS316Handcladwearareaccountedforinthestress analysis.

PreliminarySafetyAnalysisReport ReactorDescription KairosPowerHermesReactor

Revision1 413 Theshutdownelementpositionandreactivityinsertionversustimewillbeprovidedintheapplication foranOperatingLicense.Aconservativeshutdownelementdroptimeandreactivityinsertionvalueis usedinChapter13.ThesefeaturesdemonstrateconformancetoPDC29fortheRCSS.

4.2.2.4 TestingandInspection Theshutdownelementsareperiodicallyinspectedtoensurethatthereisnounacceptablewearorother damagetothecladdingthatencapsulatestheB4Cabsorbermaterial.Inaddition,thereactorcoolantis periodicallyexaminedforanincreaseinboronfromB4Cabsorbermaterial,whichprovidesanindication ofshutdownelementcladdingfailure.

RCSSshutdownelementinsertiontimesandshutdownmarginareperiodicallyconfirmedtobewithin safetyanalysislimitsbysurveillancerequirementsprovidedinthetechnicalspecifications(seeChapter 14).

4.2.3 NeutronStartupSource Aneutronstartupsourceisusedtoprovideanadequateneutronfluxtothesourcerangeexcore detectorsduringinitialandsubsequentplantstartups.Thestartupneutronsourceallows monitoringofthechangeinneutronmultiplicationduringtheadditionoffuelandtheapproachto criticality.Theneutronstartupsourcedoesnotperformanysafetyrelatedfunctions.

Theneutronsource(s)willbelocatedinthereflectorregionofthereactorneartheoutsideedgeof thecoreandoptimallylocatedrelativetoanexcoresourcerangedetectorforbestdetectabilityof criticality.Thesourcewillhavesufficientstrengthtoprovideadetectablecountrate.

Thesourcematerialisencasedinametalsheath.Theneutronstartupsourceiscompatiblewiththe chemical,thermal,andirradiationconditionsexpectedinthereflector.Theneutronstartupsource canberemovedandreplacedduringthelifeoftheplant,ifneeded.

4.2.4 References 1.

ElectricPowerResearchInstitute,UraniumOxycarbide(UCO)TristructuralIsotropic(TRISO)Coated ParticleFuelPerformance,TopicalReportEPRIAR(NP)A,3002019978,November2020.

2.

KairosPower,LLC,FuelQualificationMethodologyfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor(KPFHR),KPTR011P,Revision2.July2022.

3.

KairosPower,LLC,KPFHRFuelPerformanceMethodology,KPTR010PA,May2022.

4.

NuclearRegulatoryCommission,ElectricPowerResearchInstitute-SafetyEvaluationforTopical Report,UraniumOxycarbide(UCO)TristructuralIsotropic(TRISO)CoatedParticleFuelPerformance:

TopicalReportEPRIAR1(NP),August11,2020.

5.

Fryger,B.,Gosset,D.,&Escleine,J.M.,IrradiationPerformancesoftheSuperphenixTypeAbsorber Element,AbsorberMaterials,ControlRodsandDesignofBackupReactivityShutdownSystemsfor BreakevenandBurnerCoresforReducingPlutoniumStockpiles,1995.

6.

Pitner,A.L.,&Russcher,G.E.,IrradiationofBoronCarbidePelletsandPowdersinHanfordThermal Reactors,1970.

7.

Demars,R.V.,Dideon,C.G.,Thornton,T.A.,Tulenko,J.S.,Pavinich,W.A.,&Pardue,E.B.S.,

IrradiationBehaviorofPressurizedWaterReactorControlMaterials,NuclearTechnology,62(1),

7580,1983.

8.

AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII,Division 5,HighTemperatureReactors.2017.