ML22042A097
ML22042A097 | |
Person / Time | |
---|---|
Site: | Hermes File:Kairos Power icon.png |
Issue date: | 02/10/2022 |
From: | Kairos Power |
To: | Office of Nuclear Reactor Regulation |
Shared Package | |
ML22042A095 | List: |
References | |
KP-NRC-2202-005 | |
Download: ML22042A097 (10) | |
Text
PreliminarySafetyAnalysisReport TheFacility
1.3 GENERALDESCRIPTIONOFTHEFACILITY 1.3.1 GeographicalLocation ThefacilityislocatedwithintheEastTennesseeTechnologyPark(ETTP)inOakRidge,Tennessee.Thefacility latitudeandlongitudeareprovidedinSection2.1.ThesitelocationisillustratedinFigure2.11.
1.3.2 PrincipalCharacteristicsoftheSite ThesiteconsistsofanarealocatedinthenorthwesternportionoftheHeritageCenterwithintheETTP (theETTPconsistsoftheHeritageCenter,siteofformeruraniumenrichmentoperations,andthe HorizonCenterIndustrialPark).ThepropertyisatthesiteoftheformerBuildingsK31andK33ofthe OakRidgeGaseousDiffusionPlant(ORGDP),whereuraniumenrichmentoperationsoccurredfrom1954 untilthemid1980s.Theoverallsiteisanapproximately185acre(74.8hectare)parcelthathadbeen usedasfarmlandpriortotheconstructionoftheORGDP.Thesitehassincebeenrestoredtoabrown fieldsitebyDOEandtheformerabovegradeportionsofthebuildingswereremoved.
ThesiteisentirelycontainedwithintheETTP,OakRidge,Tennessee.Thedominantlanduseinthesite areaisabrownfieldfromtheORGDPsite.OtheroperationsinthesiteareaareassociatedwithDOE facilities,ongoingconversionofformerDOEsitesforcommercialuse,andvariousindustrialactivities.
PrincipalcharacteristicsofthesitearefurtherdescribedinChapter2.
1.3.3 PrincipalDesignCriteria,OperatingCharacteristics,andSafetySystems 1.3.3.1 PrincipalDesignCriteria TheprincipaldesigncriteriaforthefacilityaredescribedinSection3.1.Theprincipaldesigncriteriafor thefacilityarebasedonthecriteriaincludedinKairosPowerTopicalReportKPTR003NPA (Reference1).
1.3.3.2 OperatingCharacteristics Thereactorisdesignedtoachieveareactorpowerof35MWth(designratedthermalpower)anda plannedoperationallicensedlifetimeof104years.ThereactorparametersareprovidedinTable4.11.
1.3.3.3 SafetySystems Thefacilityisafluoridesaltcooled,hightemperaturereactor.Thedesignofthereactorandfuelarediscussed indetailinChapter4.Theprimaryheattransportsystemandprimaryheatrejectionsystemare addressedinChapter5.ThesafetysystemclassificationisprovidedinTable3.61.
1.3.4 EngineeredSafetyFeatures Engineeredsafetyfeatures(ESF)areSSCsofthefacilitydesignedtomitigatetheconsequencesof postulatedevents.Forthenonpowerreactorfacility,theESFsarerelatedtothecontainmentoffission products,andthepassiveremovalofdecayheat.TheESFsaredescribedinChapter6.
1.3.5 Instrumentation,Control,andElectricalSystems Theinstrumentationandcontrol(I&C)systemmonitorsandcontrolsplantoperationsduringnormal operationsandplannedtransients.Thesystemalsomonitorsandactuatesprotectionsystemsinthe eventofunplannedtransients.TheI&Csystemiscomprisedoftheplantcontrolsystemandthereactor protectionsystem.TheI&CsystemisdiscussedinChapter7.
Theelectricalsystemprovidesthenormalandbackuppowertothefacility.Theelectricalsystemis discussedinChapter8.
KairosPowerHermesReactor 16 Revision0 PreliminarySafetyAnalysisReport TheFacility
1.6
SUMMARY
OFOPERATIONS AsnotedinSection1.1,thepurposeofthenonpowerreactorfacilityistotestanddemonstratethekey technologies,designfeatures,andsafetyfunctionsoftheKPFHRtechnologyanditsSSCs.Thefacility willalsoprovidedataandinsightsforthesafetyanalysistoolsandcomputationalmethodologiesused forthedesignandlicensingofaKPFHRcommercialpowerreactor.Themajorprogramstobe performedinthefacilitywillbeprovidedintheapplicationforanOperatingLicenseconsistentwith10 CFR50.34(b)(2).
Thereactorwillbeoperatedfora104yearlifetimeoverthefullrangeofpowertoevaluatethese aspectsofthetechnology.Theprocesssystemdesignsincludethenecessaryfeaturestomonitorand assessplantperformanceinsupportoftheseobjectivesasdescribedelsewhereinthisreport.The activationproductinventoryandfissionproductinventoryfromthenormaloperationofthefacilityand effluentreleasepathwaystotheenvironment,arediscussedinSection11.1andadescriptionofthe radiationsourcesforthefacilitywillbeprovidedintheapplicationforanOperatingLicenseconsistent with10CFR50.34(b)(3).
Ananalysisofpostulatedeventsfromoperationofthefacility,includingtheradiologicalconsequences ofunplannedreleases,isaddressedinChapter13.
KairosPowerHermesReactor 112 Revision0 PreliminarySafetyAnalysisReport SiteCharacteristics
siteboundarywherethereactorsitemanagementhasdirectauthorityoverallactivitiesincluding exclusionorremovalofpersonnelandpropertyfromthearea.
TheEABiscoincidenttothesiteboundary.
TheLowPopulationZone(LPZ)is800metersfromthereactorasshowninFigure2.13.TheEmergency PlanningZone(EPZ)boundaryissetcoincidenttothesiteboundary.TheEPZisanareausedfor emergencyactivitiesintheeventofanemergency(Reference6).ThedosesattheEPZarebelowthe EnvironmentalProtectionAgency(EPA)ProtectiveActionGuide(PAG)Manualguidelinesforprotective action,asrecommendedbyANSI/ANS15.162015(R2020)andpursuanttoRegulatoryGuide2.6, EmergencyPlanningforResearchandTestReactors.Thisapproachisconsistentwiththeallowance forasmallerEPZin10CFR50,AppendixE.I.3.
2.1.2 PopulationDistribution Thissectionprovidespopulationdistributiondataforresidentandtransientpopulationsforthearea within5miles(8km)ofthecenterpointofthesiteforthefollowingyears(Reference9,Reference10):
Beginningoftherequestedlicenseperiod(2026)
Fiveyearsafterthebeginningoftherequestedlicenseperiod(2031)
Approximateendoftherequestedlicenseperiod(2036)
Estimatesandprojectionsofresidentandtransientpopulationsaroundthesitearedividedintofive distancebands(representedbyconcentriccircles).Thedistancesfromthecenterpointofthereactor are:0to0.5miles(0to0.8km),0.5to1mile(0.8to1.6km),1to2miles(1.6to3.2km),2to3miles (3.2to4.8km),and3to5miles(4.8to8km).Thedistancebandsarefurthersubdividedinto16 directionalsectors,eachcenteredononeofthe16compassdirectionsandconsistingof22.5degrees.
Foreachsegmentformedbythedistancebandsanddirectionalsectors,theresidentpopulationwas estimatedusingthemostrecentandcurrentlyavailabledecennialcensusyear(2010)(Reference9).The populationdataisusedintheenvironmentalmonitoringprogramdiscussedinChapter11.
2.1.2.1 ResidentPopulation Thedistributionoftheresidentpopulationfortheareawithin5miles(8km)ofthesiteisshownin Figures2.14toFigure2.178.Themapsillustratetown,city,andcountyboundaries.
Figure2.14showsthepopulationbyblockgroupusingthemostrecentandcurrentlyavailable decennialcensusyear(2010)withinthesite.Figure2.15alsoshowsthepopulationasof2010 decennialcensusbutdistributesthepopulationintofivedistancebandsbasedondistancefromthe centerpointofthereactor.Populationestimateswithineachquadrantandbandwerederivedfrom blockdata,asmallergeographicunitthanblockgroups,alsofromthe2010decennialcensus (Reference9).Todeterminethepopulationwithineachquadrantandband,apopulationdensitywas calculatedforeveryblockwithinthe5mileradius.Thepopulationwasrecalculatedbasedonthearea withinthequadrantsandbands.Foreachsegmentformedbythedistancebandsanddirectional sectors,thepercentageofeachblockareathatfalls,eitherpartiallyorentirely,withinthatsegmentwas calculatedusingthegeographicinformationsystemsoftwareknownasArcMap10.5.Theequivalent proportionofeachblockspopulationwasthenassignedtothatsegment.Ifportionsoftwoormore blocksfallwithinthesamesegment,theproportionalpopulationestimatesfortheblocksweresummed toobtainthepopulationestimateforthatsegment,asillustratedinTable2.11.
Figures2.16,and2.17,and2.18showthepopulationestimatesfor2026(thebeginningofthelicense period);and2031(5yearslater),and2036(approximateendofthelicenseperiod).Projectionsare basedoncountyestimatesforRoaneandMorganCountiesderivedfromtheBoydCenterforBusiness
KairosPowerHermesReactor 23 Revision0 PreliminarySafetyAnalysisReport SiteCharacteristics
andEconomicResearch,Tennesseesstatedemographer(Reference9).Thebasisoftheprojection methodwastheapplicationofagrowthratederivedfromthecountyprojectionstothe2010decennial censusblockdata.Thegrowth(orloss)ratewasdeterminedbycalculatingtheactualyearlypercent changeoftheestimatedpopulationgrowth(orloss)forRoaneandMorgancountiesasprojectedbythe statedemographer.Thesameannualrateswerethenappliedtothebaseyearof2010foreachcounty, whichwasthemostrecentdecennialcensusdataavailable,andprojectedforwardfortheyears2026, and2031,and2036.Thesamerateswereusedtoprojectpopulationchangesineachdistance/direction segmentineachcounty.
Tables2.11and2.12showthehistoricalpopulationfor2010andtheprojectedresidentpopulationfor theyears2026,and2031,and2036thatfallwithinthedistancebandsforRoaneandMorgancounties (Reference9,Reference10).
AsshowninFigure2.12,thenearestpermanentresidencetothereactorisaresidencelocated0.7 milesawaytothenorthwest.Figure2.13demonstratesthatthenearestresidentisoutsidetheLPZ.
2.1.2.2 TransientPopulation Transientpopulationsaretemporaryorseasonalpopulationsresidinginthearea,suchasinlodging accommodations,dormitories,orclassroomsonacollegecampus.Accordingtotheresultsofthe GoogleEarthdesktopresearch,therearenoschoolsorlodgingfacilitieswithin5miles(8km)ofthesite.
Thus,therearenotransientpopulationsinthearea.
2.1.3 References
- 1. EnvironmentalSystemsResearchInstitute(ESRI),TennesseeMap.2021.
- 2. U.S.DepartmentofEnergy(DOE)OakRidgeEnvironmentalManagementProgram,ETTPfactsheet.
2019.Retrievedfrom https://www.energy.gov/sites/default/fil es/2019/01/f58/ETTP%20fact%20sheet_0.pdf.
- 3. OakRidgeOfficeofEnvironmentalManagement,EastTennesseeTechnologyPark.Website:
https://www.energy.gov/orem/cleanupsites/easttennesseetechnologypark.
- 4. Parr,P.D,andHughes,J.F.,OakRidgeReservationPhysicalCharacteristicsandNaturalResources, OakRidgeNationalLaboratory,ORNL/TM2006/110.September2006.
- 5. U.S.DepartmentofEnergy(DOE),EnvironmentalMonitoringPlanfortheOakRidgeReservation, DOE/ORO2227/R5.October2012.
- 6. ANSI/ANS15.162015(R2020),EmergencyPlanningforResearchReactors.
- 7. U.S.GeologicalSurvey(USGS),ElevationsforSiteBuildings,2021.
- 8. NotUsed.
- 9. USCensusBureau,2010CensusBlockMaps.2010.Retrievedfrom https://www.census.gov/geographies/referencemaps/2010/geo/2010censusblockmaps.html.
- 10. TennesseeStateDataCenter,BoydCenterPopulationProjections,PopulationProjectionsfor TennesseeCounties20192070.October22,2019.Retrievedfrom https://tnsdc.utk.edu/estimatesandprojections/boydcenterpopulationprojections/.
KairosPowerHermesReactor 24 Revision0 PreliminarySafetyAnalysisReport SiteCharacteristics
Figure2.18:ResidentPopulationDistribution-2036
Sources:Reference1,Reference9,Reference10
KairosPowerHermesReactor 214 Revision0 PreliminarySafetyAnalysisReport SiteCharacteristics
2.3.1.14 ClimateChange Whileclimaticconditionschangeovertime,suchchangesarecyclicalinnatureonvarioustimeand spatialscales.Thetiming,magnitude,relativecontributionsto,andimplicationsofthesechangesare generallymorespeculative,evenforspecificareasorlocations.Further,themostextremeprojected changesarefortimescalesmuchlongerthantheapproximate410yearplannedoperationperiodfor theHermesreactor.
Projectedchangesaregenerallysmallcomparedtonaturalvariation.Generalpredictionsofglobalor UnitedStatesclimaticchangesexpectedduringtheperiodofreactoroperationareuncertainandare onlyapplicableonamacroclimaticscale.Becausethemaximumdataspanavailablewasusedinthe severeweatheranalysis,accuratesevereweatherphenomenahavebeenprovidedbasedonbest availablehistoricaldata.Projectionsoffuturesevereweatherconditionsatthesitearehighlyuncertain atbest,basedoncurrentunderstandingandmodelingofglobalclimatechange.Predictionsprovidedby theU.S.GeologicalSurvey(USGS)(Reference34)varyconsiderably.Forexample,onemodel(theBNU ESMmodel)givesasummermaximumtemperatureincreasefromapproximately89°Fto93°Fwitha standarddeviationofapproximately3°Fovertheperiodof2025through2049.
TheSouthernClimateImpactsPlanningProgramisaclimatehazardsresearchprogramwhosemissionis tohelpTennesseeresidentsincreasetheirresiliencyandlevelofpreparednessforweatherextremes nowandinthefuture.Theirresearch(Reference35)providesroughlyconsistentpredictionsrelativeto theUSGSofaveragetemperatureincreasesbetween2010and2100of48°F.Thisclimateprediction alsoindicatesmoreextremeprecipitationeventsthatcouldhaveaneffectonthethreatofflooding potentialingeneral.
TheORR,locatedinRoaneandAndersonCountiesineastTennesseeabout25mi(40km)westof Knoxville,ismanagedbytheDOE.ORRissuesAnnualSiteEnvironmentalReports(ASERs),availableat https://doeic.science.energy.gov/ASER/.AppendixBofthemostrecentASER(for2019)containsa substantialreviewoftheregionalclimatefortheORR,includingadiscussionofclimatechangetrendsin SectionB.1.
Althoughthelongtermclimatetrendfrommultiplesourcesindicatesamoderateincreaseinthe averagetemperatureandpossibilityofextremeprecipitationevents,asstatedabove,throughtheend ofthe21stcentury,thetimescaleoftheHermeslicensingperiodisaminorfractionofthisprojection period.
2.3.2 LocalMeteorology 2.3.2.1 LocalMeteorologicalDataOverview TheHermesReactorFacility(ReactorFacility)islocatedatthesoutheastportionofthesiteofthe formerK33buildingoftheEastTennesseeTechnologyPark(ETTP)complex.Sincethe1940s,thissite hasbeenunderthejurisdictionoftheAtomicEnergyCommission(AEC),whichbecametheDepartment ofEnergy(DOE)forthisfunction.Inthelate1940s,attherequestoftheAEC,theUnitedStatesWeather Bureauconducted,forthefirsttime,ameteorologicalsurveyoftheOakRidge,Tennessee,areato providedetailedinformationregardingwindflowpatternsandotherfactorstodeterminedispersionof radioactivecontaminants(Reference36).Thisstudyledtotheestablishmentofanextensivenetworkof meteorologicaltowersandforecastcapabilitythatisstillinexistencetoday.Amorerecentstudyofthe meteorologicalpatternsintheORNLareawascompletedin2011(Reference37).Thenetworkof meteorologicalobservationsprovidesastrongbasisfortheonsitemeteorologicaldataneededforthe siteaswellasthereactorfacility.
KairosPowerHermesReactor 251 Revision0 PreliminarySafetyAnalysisReport ReactorDescription
HeavyloadconsiderationsareaddressedinSection9.8.4,CranesandRigging.Thesefeatures demonstratecompliancewithPDC4.
Corecoolingismaintainedthroughthedesignofthereactorvesselandthereactorvesselinternals.As describedinSection4.3.1.2,thevesselandvesselinternalsdefinethecoolantflowpath.Topreclude degradationtothevesselduetocorrosionofthestainlesssteel,thereflectorblocksandthevesselare baked(i.e.,heateduniformly)toremoveresidualmoisturepriortocomingintocontactwithcoolant.
Thereflectors,whichactasaheatsinkinthecore,arespacedtopreventtheformationoftensileand bendingstressesandaccommodatethermalexpansionandhydraulicforcesduringnormaloperation andpostulatedevents.Thegapsbetweenthegraphiteblockssupportcoolantflowtothereflectorthus maintainingacoolablecoregeometryandprecludingreflectordegradationbyoverheating.Maintaining acoolablecoregeometryandadequatecoolantflowthroughthecoreensuresthevesselwall temperatureisbelowdesignlimitswhichpreventvesselfailure.Dynamicbehaviorofthereactor,its support,anditsinternalsareanalyzedanddesignedtoensurevesselintegrityandcoregeometryare maintainedinadesignbasisearthquaketoadegreesufficienttoensurepassiveheatremoval.The vessel,aspartofthereactorcoolantboundary,ensuresthecontainmentofradionuclidesbyensuring thecoolantisconfinedandtheTRISOparticlesinthefuelpebblesareprotectedfromdamage.These featuresdemonstrateconformancetoPDC10.
TodemonstratecompliancewithPDC14,thereactorvesselisfabricated,erected,andtestedsoasto haveanextremelylowprobabilityofleakage,rapidlypropagatingfailure,andgrossrupture.Thereactor vesselmaterialsandweldmetalwillbequalifiedforuseasdescribedinKairosPowertopicalreport MetallicMaterialsQualificationfortheKairosPowerFluorideSaltCooledHighTemperatureReactor, KPTR013P(Reference3).The316HSSofthereactorvesselasfabricatedandtestedinaccordance withReference1standardshasahighfracturetoughnessatreactoroperatingconditions,thusreducing thelikelihoodofcrackpropagation.Thedesignofthereactorvesselandvesselinternalssupporta410 yearoperatinglifetime.Thisisaccomplishedbyoperatingthereactorvesselwithintheasdesigned operationalandtransientconditionstressesandbymonitoringforchanges(e.g.,irradiationand thermallyinduceddegradation,corrosion,creep)tothereactorvesselduringinserviceinspectionand testing.TheRVSSreactorvesselbottomheadinterfaceisdesignedtoallowaccessforweldinspections.
Thereactorvesseltopheadsupportsinserviceinspectionofattachmentsandpenetrations.
Thereactorvesselshellandbottomheadmaintainacoolantpathwayforcoolingthereactorcoreand ensuresubmergenceoffuelpebblesinthecore.Thereactorvesselisfabricated,erected,andtestedin accordancewithReference1asaClassAcomponenttoaccountforthermalandphysicalstressesduring normaloperationandpostulatedevents.Thevesselisfabricatedfrom316HSSbasemetalandER1682 weldmetalusingagastungstenarcweldingprocess.Reference1providesforweldmentstressrupture factorsuptoatemperatureof650°CforER1682weldmetalwith316Hbasemetal.Testingprovides stressrupturefactorsupto816°Cforweldmaterialwith316Hbasemetal(Reference3).Theplant controlsystemwilldetectleakagefromthereactorvesselandcatchbasinsareusedtodetectleaksin nearbycoolantcarryingsystems.ThesefeaturesdemonstratecompliancewithPDC30.
Reactorvesselstressrupturefactorsaredeterminedupto816°Ctoencompasstransientconditions.
Thestressrupturefactorsaredeterminedbyacreeprupturetestonthevesselbasematerialwithweld metalunderthegastungstenarcweldingprocess.Thevesselprecludesmaterialcreep,fatigue,thermal, mechanical,andhydraulicstresses.Theleaktightdesignofthereactorvesselheadminimizesairingress intothecovergasandprecludescorrosionoftheinternals.Thehightemperature,highcarbongrade 316HSSofthecorebarrelandreflectorsupportstructurehavehighcreepstrengthandareresistantto radiationdamage,corrosionmechanisms,thermalaging,yielding,andexcessiveneutronabsorption.
Vesselfluencecalculations,asdescribedinSection4.5,confirmadequatemarginrelativetotheeffects
KairosPowerHermesReactor Revision0432 PreliminarySafetyAnalysisReport AuxiliarySystems
inspection,thepebblesaredirectedforreinsertionintothecore,ortopebblestorageforremovalfrom thecirculatingpebbleinventory,basedoninspectionresults.
9.3.1.5 PebbleInspection AnautomatedinspectionsystemprovidesinformationtotheprocessingportionofthePHSSfor determiningpebblehealth.Thisincludesinspectionofthephysicalconditionofthepebblefor unacceptablewearordamage,identifyingmoderatorandfuelpebbles,aswellasanevaluationofthe burnupofthefuelrelativetoamaximumburnuplimitusingtheburnupmeasurementsensor(BUMS).
Theburnupmeasurementisdonebymeansofagammaspectrometer.Furtherdetailspertainingto inspectionsforwearanddamagewillbeprovidedwiththeapplicationforanOperatingLicense.
9.3.1.6 PebbleInsertion Pebblesarereceivedfromtheprocessingsystemandplacedinabufferstorageuntilrequiredfor reinsertion.Thepebblebufferstorageissizedandorientatedtopreventacriticalconfiguration.
Individualpebblesarefedintothestepfeederinsertionmachinefromthispebblebufferstorageas showninFigure9.32.Thepebblesareinsertedintothetopofthereactorvesselhead,thenpushed throughtheinsertionlineandenterthereactorcoreviatheinvesselfuelingchuteatthebottomofthe core(seeSection4.3).Thereisasingleactiveinsertionlineintothevessel.
9.3.1.7 PHSSInertGasBoundary ThecomponentsofthePHSSaredesignedtomaintainaninertgasboundaryoutsideofthereactor vesselforpebblehandling.Thefunctionoftheinertgasenvironmentistopreventabsorptionof moistureandoxygenintopebblesforpebblehandlingduringnormaloperations.Theinertgasboundary withinthePHSS(seeFigure9.32)iscreatedbyamechanicalstructurethatenclosesthe aforementionedcomponentswithpenetrationsformotorshafts,storageoutlets,inspectionviewport, datachannels,electricalpower,andpebblesfromtheoffheadconveyancemechanismandfor insertion.Portionsoftheinertgasboundarythatareadjacenttopersonnelaccessareashavethe appropriateradiationshielding.
9.3.1.8 PebbleStorage Pebblestorageisprovidedforpebbledebris,damagedpebbles,spentfuel,andendoflifemoderator pebbles.Thestorageportionofthesystemiscomposedofastainlesssteelstoragecanisterand transporterdevice.Individualstoragecanistersaresizedtoholdapproximately1,9002,100pebbles.
Thedimensionsofthecanisterandquantityofpebblesaresizedtomaintainanoncriticalconfiguration.
Atransporterdeviceisusedtotransfercanisterstoeitherthespentfuelstorageareaduringnormal operationorthefullcoreoffloadareaintheeventofaperiodicmaintenancefullcoreoffloadoran emergentfullcoreoffload.
9.3.1.8.1 SpentFuelStorage Spentfuelisdischargedfromserviceinthecoreundernormaloperatingconditions,placedinsealed storagecanisters,andmovedtothespentfuelstorageareaasshowninFigure9.32.Theinitialstorage areaisacoolingpooldesignedtoholdspentfuelcanisterswhilethedecayheatofthepebblesdrops.
Thepoolisdesignedtolimitradiationexposuretopersonnel.Aftercoolinginpoolstorage,thecanisters aremovedtoaconcretestoragebaywithradiationshieldingandforcedaircooling.Thepoolisactively cooledbytheCCWSusinganinpoolheatexchanger.WaterisrecirculatedinthepoolbytheSFCSand makeupwaterisprovidedbythetreatedwatersystem(seeSection9.7.2).Thepoolandconcrete storagebayaredesignedtopreventacriticalconfiguration.Thestoragebayissizedsizingissufficientto storespentfuelandmoderatorpebblesgeneratedduringthe410yearoperatinglifetimeofthereactor.
KairosPowerHermesReactor 925 Revision0 PreliminarySafetyAnalysisReport AccidentAnalysis
13.2 ACCIDENTANALYSISANDDETERMINATIONOFCONSEQUENCES 13.2.1 MaximumHypotheticalAccident 13.2.1.1 MethodologyandInputs ThecalculationofthedoseconsequencesoftheMHAusesthesourcetermmethodsfordesignbasis accidentspresentedinReference1.Section13.1.1providestheMHAnarrativeandassumptions.This sectionprovidesahighlevelsummaryofthemethodsusedandtheinputstothecalculation.
TheevaluationoftheMHAdoseconsequencesfirstidentifiesandaccountsforthesourcesofMARand thebarrierstorelease.Eachbarrieristhenevaluatedforareleasefractiontoprovidedose consequencesattheexclusionareaandlowpopulationzoneboundaries.
ThefoursourcesofMARandtheassociatedbarrierstoreleaseintheMHA:
TRISOfuelinthereactorcore o Barriers:TRISOlayers,Flibe,andgasspace Circulatingactivity o Barriers:Flibeandgasspace StructuralMAR o TritiumretainedbygraphiteandinFlibe Barriers:Graphitegrains(fornonFlibetritium)andgasspace o Argon41retainedinclosedgraphitepores Barriers:GraphiteporesandGasspace Section13.1.1describesseveralnonphysicalconditionsthatarehypothesizedtoensureabounding MHA:
Pretransientdiffusionofradionuclidesfromthefuelinthereactorcoreisneglected:This conservatismisachievedintheevaluationbyassumingthatthefullradionuclideinventoryofthe fuelisavailableforreleaseattheinitiationoftheMHA.Thecirculatingactivityisstillassumedtobe atanupperboundlevel.Therefore,anyMARoriginatinginthefuelthatcontributestothe circulatingactivityiseffectivelydoublecounted.
Hypotheticaltemperaturehistoriesareappliedtothetransient:thehypotheticaltemperature historiesappliedtotheMHAisprovidedinFigure13.21.Thesetemperaturessetanupperlimitfor thefigureofmerittemperaturesinthepostulatedevents.
ThegasspaceisnotcreditedforconfinementoftheradionuclidesthatreleasefromtheFlibefree surface:radionuclidetransportinthegasspacebarrierismodeledusingtheconservativebuilding transportandoffsitedispersionmethodsdescribedinReference1.
Conservative,unfiltered,groundlevelreleases:thegasspacetransportevaluationassumesa conservativeleakagerateforthereactorbuildingthatreleasestheentirevolumewithina2hour windowtoavoidcreditingthebuildingasaconfinementstructure.Thedispersionevaluation assumesnoradionuclidesarefilteredafterthebuildingtransportisevaluatedtoavoidtakingcredit foranyradionuclidefilteringthatcouldoccurintheHVACsystem.
Initialtritiuminventoriesarecalculatedforanassumed50MWthcorethatoperatesatawithan assumed100%capacityfactorovertenyears.Loweroperatingpowersresultinalowertritium productionrateandlowercapacityfactorsallowforthegraphitegrainstoexperiencetimeperiods oftritiumdesorptioninsteadofsorption.
Aboundingvesselvoidfractionof0.1isassumedtofacilitatethereleaseoflowvolatilityspeciesin thevesselviabubbleburst.
KairosPowerHermesReactor 1317 Revision0 PreliminarySafetyAnalysisReport FinancialQualifications
15.2 FINANCIALABILITYTOOPERATETHEKAIROSPOWERFACILITY KairosPowerexpectstoapplyforaClass104licenseper10CFR50.21(c)(fortesting,research,and developmentactivities),andreceipt,possessionanduseofsourcematerialunder10CFR40,byproduct materialunder10CFR30,andspecialnuclearmaterialunder10CFR70.KairosPowerfinancial projectionsassumea410yearoperatingperiodforthenonpowerreactorfacility.
KairosPowerhasreasonableassuranceofobtainingthenecessaryfundstocoverestimatedfacility operationcostsfortheperiodofthelicense.Operatingcostsforthefacilitywillbecoveredbysustained privateinvestmentfromKairosPowerinvestors,withpotentialsupplementsfromotherfunding sources.Estimatesofthetotalannualoperatingcostsforeachofthefirstfiveyearsofoperationofthe facilitywillbeprovidedwiththeapplicationforanOperatingLicenseconsistentwith10CFR50.33(f)(2).
KairosPowerHermesReactor 153 Revision0