ML22171A017

From kanterella
Jump to navigation Jump to search
Kairos Power, LLC Preliminary Safety Analysis Report
ML22171A017
Person / Time
Site: Hermes File:Kairos Power icon.png
Issue date: 06/20/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22171A015 List:
References
KP-NRC-2206-008
Download: ML22171A017 (8)


Text

PreliminarySafetyAnalysisReport

EngineeredSafetyFeatures

KairosPowerHermesReactor 64 Revision0 6.3 DECAYHEATREMOVALSYSTEM 6.3.1 Description Thedecayheatremovalsystem(DHRS)removesresidualdecayheatfromthereactorcoreduring normalandoffnormalconditions.TheDHRSiscreditedinChapter13fordecayheatremovalduring postulatedeventsthatassumetheprimaryheattransportsystemandprimaryheatrejectionsystemare unavailable,includingthemaximumhypotheticalaccident.TheportionsoftheDHRSthatmustfunction toperformthedecayheatremovalcreditedinChapter13aredesignatedassafetyrelatedandareall passive.TherearenoactivesafetyrelatedportionsoftheDHRS,andtheDHRSdoesnotrequire electricalpowertoperformsafetyfunctionsduringpostulatedevents.TheDHRSisanexvesselsystem thatcontinuouslyoperateswhenthereactorisoperatingaboveathresholdpowerbyremovingenergy fromthevesselwallviathermalradiationandconvectiveheattransfertowaterbasedthermosyphons.

Inventoryinthethermosyphonsisboiledoffandventsdirectlytotheatmosphereoutsideofthereactor building.

TheDHRSconsistsofannularthermosyphonthimblesinthereactorcavity,steamseparators,andwater storagetanks.Thesecomponentsarearrangedintofourindependentcoolingtrainswithinventory sufficienttosustainpassiveoperationoftheDHRSforatleast72hoursupto7daysfollowingasneeded tomitigateapostulatedeventwherenormalcoolingsystemsareunavailable.Eachtrainiscomposedof onewaterstoragetank,onesteamseparator,andsixthimbles.ThegeneralarrangementoftheDHRSis illustratedinFigure6.31.

TheoperationoftheDHRSisgovernedbytwooperationalmodes.Whenreactorpowerislessthana specifiedthresholdpower,parasiticlossesfromthereactorvesselduetoconvectivelossesfromair ingressandparasiticthermalradiationandconductionlossesthroughsolidstructuresaresufficientto maintainvesseltemperaturesbelowthedesignlimitduringapostulatedeventwhenthePHTSis unavailable.Whenthereactorpowerisabovethethresholdpower,supplementalcoolingbytheDHRS isrequired.Thisthresholdpowerdependsonthereactorpowerhistoryduetotheaccumulationof fissionproductsinthecoreasafunctionofpower.Thethresholdpowerisnominally10MWforafresh core.Assuch,theDHRSoperatingmodesaredefinedas:

LowDecayPowerOperation(Reactorpower<thresholdpower)

Thermosyphonthimblesinthereactorcavityaredryandisolatedfromtherestofthesystem.

Waterisheldinfourseparatewaterstoragetanks(oneforeachDHRStrain)locatedabovethe thimblesandoutsideofthereactorcavity.Decayheatremovalisachievedthroughparasitic cavitylosses.

HighDecayPowerOperation(Reactorpower>thresholdpower)

Thethimblesarefilledwithwaterandtheconnectedsteamseparatorcontainsafreesurface belowthethimbleoutletandabovethethimbleinlet.Theseparatoriscontinuouslyand passivelyreplenishedfromthewaterstoragetankaswaterinthethimblesisboiledoffand ventedtoatmosphereoutsidethereactorbuilding,therebyremovingheatfromthereactor vessel.

Theseoperatingstatesrequireatransitionperiod.Thetransitionperiodoccursatthethresholdpower, wheredecayheatloadsexceedtheremovalratebynaturalparasiticlosses.Theisolationvalvesonthe thimblefeedwaterlinesopen,whichallowswatertoflowfromthewaterstoragetanktothethimbles, asindicatedbyapositiveflowrate.Thepeakflowrateislimitedbyfrictionallossesduetothelinesizes andgravitationalheadassociatedwiththewaterstoragetanklocations.Thetemperatureofthe evaporatortubescontainedinthethimblesdecreasesfromstandbytemperature(550°C)duringlow decaypoweroperationtothenominalboiloffoperatingtemperature(100°C)astheevaporatoris

PreliminarySafetyAnalysisReport

EngineeredSafetyFeatures

KairosPowerHermesReactor 65 Revision0 wetted.Thetransientquenchingprocesstimeisdependentonthethimblefeedwaterflowrate.Steady stateconditionsoccuruponcompletionofthefillwithapseudostableliquidlevelintheseparators.

ThecontinuousoperationoftheDHRSdoesnotrequireacontrolactuationtotransitionfromnormal operationtopassiveheatremoval.However,eventmonitoringandthecapabilityforactiveactuation areprovided.TheprimaryinterfacingsystemsthroughwhichtheseoccuraredescribedinChapter7.

TheDHRSislocatedinthereactorbuilding,whichisdescribedinSection3.5andcontainsthereactor cavityandthereactorcell.TheDHRSthimblesandsteamseparatorsarelocatedwithinthereactor cavity,butdonothavedirectcontactwiththereactorvesselshell.Energyistransferredfromthevessel totheDHRSthroughthermalradiationandconvection.Thereactorauxiliaryheatingsystem(RAHS)is locatedinthefreespacebetweenthereactorvesselandthereactorcavityinsulation(seeSection 9.1.5),buttheoverallperformanceoftheRAHSdoesnotadverselyaffecttheDHRSremovalefficiency becauseitisdeactivatedwhiletheDHRSisactivelyremovingheat.Thewaterstoragetanksarelocated outsideofthereactorcavity,withinthereactorcell.Theprimarybiologicalshieldisaconcretestructure whichseparatesthereactorcavityfromthereactorcell.Thisprovidesdirectstructuralsupportforthe DHRSthimbleunitsandseparationandshieldingofthewaterstoragetanksfromthereactorcavity environments.Italsoprovidesthroughportsforthesteamreturnandthimblefeedwaterlines.The primarybiologicalshieldisdescribedinSection4.4.TheDHRSprimarymodeofheatremovalisventing steamproducedinthethimblestotheatmospherethroughthewaterstoragetanks.

TheprimarycomponentsoftheDHRSaredescribedinthefollowingsubsections.

6.3.1.1 WaterStorageTanks TheDHRScontainsfourwaterstoragetankswhichsupplycoolinginventorytotheDHRSthimbles.These tanksarelocatedoutsideofthereactorcavity,withinthereactorcell,atahigherelevationthanother DHRScomponents.Thislocationenablesgravitydrivenflowtothethimblesandsteamseparators.Each waterstoragetankiscoupledtoasetofsixthimblesthroughafeedwaterlineandsteamreturnline whichpassthroughtheprimarybiologicalshield.Theselinesaredistributedtoindividualthimbles throughthesteamseparatorlocatedintheupperreactorcavity.

AtleastthreestoragetanksmustbeavailablefortheDHRStoadequatelyperformitsfunctionduring postulatedeventconditions.Eachtankholdssufficientinventorysuchthatthethimblesconnectedtoit maybeoperatedcontinuouslyforatleast72hoursupto7daysasneededtomitigatepostulatedevents resultinginfollowingalossofthewaterstoragetankfeedwatersupplyduringapostulatedevent.In addition,tankwaterlevelismonitoredtoensureDHRSoperability.Eachstoragetankislocatedinan independentlocationsuchthatdamageatonelocationdoesnotprecludeoperationoftheentireDHRS whenrequiredfordecayheatremoval.Thislocationalsoprovidesadditionalassurancethatfailuresof thewaterstoragetankdonotresultinleakingintothereactorcell,andthatventedorleakedwaterand steamdonotmixwithFlibe.

ThekeywaterstoragetankparametersareprovidedinTable6.31.

6.3.1.2 SteamSeparators Thesteamseparatorsprovideaninterfacebetweenthewaterstoragetanksandtheindividualthimbles thatthetankssupply.Thesteamseparatorachievesthisfunctionbycontrollingthewaterlevelinsideits volumethroughtheuseofapassivefloatvalvelocatedonthethimblefeedwaterline.Thecontrolled freesurfaceintheseparatorislocatedabovethethimblefeedwaterportandbelowthesteamvent port.Thethroughputofwateristhereforeafunctionoftheboiloffrateinthethimbles.

PreliminarySafetyAnalysisReport

EngineeredSafetyFeatures

KairosPowerHermesReactor 68 Revision0 tornadoes,floods,andwindinducedmissileevents.TheDHRSdesignrequirementsforseismicand othernaturalhazardsdemonstrateconformancewiththerequirementsinPDC2.

TheDHRSisdesignedandlocatedtominimizetheprobabilityandeffectoffiresandexplosionsbythe useoflowcombustiblematerialsandphysicalseparation.Thesedesignfeatures,inconjunctionwiththe fireprotectionplandescribedinSection9.4,provideassurancethattheDHRSdemonstrate conformancewiththerequirementsinPDC3.

TheDHRSisdesignedwithmaterialsthatwillwithstandtheradiationenvironmentofthereactorcavity andenvironmentaltemperaturesupto800°CtoensuretheDHRSiscapableofperformingitssafety functionunderconditionsassociatedwithnormaloperation,maintenance,testing,andpostulated events.TheDHRSisdesignedagainstequipmentfailuresthatcouldresultfromFlibespills.Pipewhip andothersimilardynamicfailuresareavoidedbythelowpressuredesignoftheDHRSandtheuseof restraints.EachcomponentoftheDHRSisdesignedsuchthatfailureofonecomponentdoesnot cascadeandcausefailuresofnearbysafetysystems,includingotherDHRScomponents.Thesedesign considerationsdemonstrateconformancewiththerequirementsinPDC4.

Naturalcirculationinthereactorcoretransfersdecayheatfromthefueltothereactorvesselshellwhen normalcoolingisnotavailable,asdescribedinSection4.6.3.Thermalhydrauliccalculations demonstratethattheDHRSiscapableofpassivelyremovingasufficientamountofdecayheatfromthe reactorvesselwithoutrelianceonelectricpowerforatleast72hoursupto7daysfollowingasneeded tomitigatepostulatedevents,suchthatthereactorvesseltemperatureremainsbelowitsdesignlimitof 816°Candisdecreasingbytheendofthe72hourperiod.Inaddition,fueltemperaturesremainbelow theirdesignlimits.TheDHRSisdesignedwithsufficientredundancy,leakdetectioncapability,and isolationtoensurethesafetyfunctioncanbeperformedassumingasinglefailure.Thesystemincludes fourindependentloopsandmaintainstheabilitytoperformitsfunctionwiththelossofasingleloop.

Isolationofthefourwaterstoragetanksfromoneanotherensuresthatdamageatonetanklocation doesnotresultinatotallossofDHRSinventory.Thethimbles,separators,andthimblefeedwaterand steamreturnpipingareallcontainedwithintheleakbarrier.Theleakbarrierprovidesleakdetection capabilityandensuresthatafailureoftheprimaryDHRSpressureboundarydoesnotpreventthe systemfromperformingitsheatremovalfunction.TheseDHRSdesignfeatures,alongwiththenatural circulationcharacteristicsofthereactorcore,demonstrateconformancewiththerequirementsinPDC 34andPDC35.

TheDHRSdesignincludesthecapabilityforonlinemonitoringofleakstomonitorforsystemintegrity andtoensurethatDHRSinventoryremainssufficienttoperformthesafetyrelatedheatremoval function.Thewaterlevelinthestoragetanksisalsocapableofbeingmonitoredtoensurethatsufficient inventoryispresentattheonsetofapostulatedeventtoprovidesufficientcoolingcapacity.TheDHRS isalsosufficientlyaccessibletoperforminspectionsforsystemintegrity.ThesefeaturessatisfyPDC36.

Whenthereactorisabovethresholdpower,theDHRSisanalwaysonoperatingconditionwhich providesanongoingdemonstrationofsystemavailability.Thetransitionfromnormaltopostulated eventoperationcanalsobefunctionallytested.Thesefeaturesdemonstrateconformancewiththe requirementsinPDC37.

6.3.4 TestingandInspection ThedetailsoftheinspectionandtestingprogramforDHRStosatisfytheapplicableportionsofASME SectionXI,Division1and2,RulesforInserviceInspectionofNuclearPowerPlantComponents (Reference2)willbedescribedintheapplicationforanOperatingLicense.

PreliminarySafetyAnalysisReport

EngineeredSafetyFeatures

KairosPowerHermesReactor 610 Revision0 Table6.31:WaterStorageTankParameters Parameter Value Material StainlessSteel DesignPressure[psig]

30 DesignTemperature[°F]

274 MinimumVolumepertank[gal]

17382900 Numberperreactor 4

PreliminarySafetyAnalysisReport

ElectricPowerSystems

KairosPowerHermesReactor 81 Revision0 CHAPTER8 ELECTRICPOWERSYSTEMS 8.1

SUMMARY

DESCRIPTION Thepurposeoftheelectricalsystemistoprovidepowertoplantequipmentforoperation.Theelectrical systemconsistsofthenonClass1Enormalpowersystem(discussedinSection8.2)andthebackup powersystem(discussedinSection8.3).Duringnormaloperations,thelocalutilitysuppliesACelectrical powertothenormalpowersystem.Ifthenormalpowersourcefails,thebackuppowersystemsupplies plantpower.Thebackuppowersystemutilizesbackupgeneratorsanduninterruptiblepowersupplies (UPS)toachievethisfunction.

OwingtothepassivedesignofHermes,safetyrelatedstructures,systems,andcomponents(SSCs)do notrequireelectricpowertoperformsafetyrelatedfunctionsforaminimumof72hoursfollowinga designbasispostulatedevent.Therefore,ACpowerfromoffsiteorbackuppowersourcesisnot requiredtomitigateadesignbasispostulatedevent.Asimplifieddiagramofthemajorelectricalsystem componentsisprovidedinFigure8.11.

PreliminarySafetyAnalysisReport

ElectricalPowerSystems

KairosPowerHermesReactor 83 Revision0 8.2 NORMALPOWERSYSTEM 8.2.1 Description Thenormalpowersystemissuppliedbyanoffsitepowersourcefromthelocalutility.Thelocalutility providesamediumvoltagefeeder.Fromthepointofconnection,anappropriatestepdowntransformer reducesthevoltagetothenominalbusvoltageof480V,whichisdistributedtoplantloadsasdepicted inFigure8.11.Alossofvoltageordegradedvoltageconditiononthenormalpowersystemdoesnot adverselyaffecttheperformanceofsafetyrelatedfunctions.

8.2.1.1 ACElectricalPower ACpowerisdistributedtotheplantelectricalloadsduringstartupandshutdown,normaloperation,and offnormalconditions.TheACelectricalpowercomponentsincludethefollowing:

Asingleincomingfeederfromtheutilitytothenormalpowersystemwithnominalfeedervoltageof 4.16kV, A4.16kV/480Vstepdowntransformer,and ThelowvoltageACelectricalpowerdistributionwithnominalbusvoltagesof480Vand120V.

SelectedloadsaresuppliedwithcontinualACelectricalpowerviauninterruptiblepowersupplies(UPS).

EachUPSprovidesahighlyreliablepowersupplyduringnormaloperationsandisautomatically configuredtoprovidebackuppowerduringalossofnormalelectricalpowerevent.Thebackupfunction oftheUPSisdescribedinSection8.3.1.2.

8.2.1.2 DCElectricalPower DCelectricalpowersupplyislimitedtoinstrumentationandcontrolfunctionsthatrequire24VDC electricalpowerforoperation.Thecabinetsassociatedwiththesefunctionsareequippedwith120VAC to24VDCpowersupplies,asshowninFigure8.11.ACelectricalpowerissuppliedtothesecabinetsvia UPStoensurecontinuous,failuretolerantDCpowerduringnormaloperationandforaspecified minimummaximumdutycyclefollowingatotallossofACelectricalpower.

8.2.2 DesignBases Thenormalpowersystemdoesnotperformanysafetyrelatedfunctionsandisnotcreditedforthe mitigationofpostulatedevents.Thesystemisalsonotcreditedwithperformingsafeshutdown functions.

8.2.3 SystemEvaluation ThenormalpowersystemisprovidedtopermitfunctioningofplantSSCsthatrequireelectricalpower.

Thepassivedesignfeatures,basedonfundamentalphysicsprinciples,donotrelyonelectricalpowerfor safetyrelatedSSCstoperformtheirsafetyfunctionsduringpostulatedevents.Thesefeatures demonstrateconformancewiththerequirementinPDC17.

Asdiscussedabove,thenormalpowersystemisnotreliedonforsafetyrelatedSSCstoperformtheir safetyfunctionsforaminimumof72hoursfollowingpostulatedevents.Therefore,therearenosafety relatedportionsofthenormalpowersystem,andnotestsorinspectionsarerequiredtodemonstrate conformancewiththerequirementinPDC18.

Thedesignofthenormalpowersystemissuchthatmalfunctionofthesystemwillnotcausereactor damageorpreventsafereactorshutdown.Thenormalpowersystemensuresthatadequate independenceismaintainedbetweenthenonsafetyrelatedequipmentandcircuitsofthenormal powersystemandClass1Einstrumentationandcontrol(I&C)equipmentandcircuits(seeSection8.3.3).

PreliminarySafetyAnalysisReport

ElectricalPowerSystems

KairosPowerHermesReactor 85 Revision0 8.3 BACKUPPOWERSYSTEM 8.3.1 Description Thepurposeofthebackuppowersystem(BPS)istoprovideACelectricalpowertotheessentialfacility loadswhenthenormalACpowersupplyisnotavailable.Thesystemincludesbackupgeneratorsand uninterruptiblepowersupplies(UPS),aswellaselectricalequipmentandcircuitsusedtointerconnect thebackupgeneratorstothelowvoltageACelectricalpowerdistribution.Inaddition,thefacilityis equippedwithapluginconnectionforusewithaportable480VACgeneratortoprovidepowerto essentialloadsintheeventthebackupgeneratorsareunavailable.

8.3.1.1 BackupGenerators Thebackupgeneratorsautomaticallystartintheeventofalossofoffsitepowerandprovidebackup electricalpowertotheessentialfacilityloads.Therewillbeatleastoneredundantgeneratorbydesign (n1contingency),whichensuresthatsufficientbackuppowerwillbesuppliedintheeventofasingle generatorfailure.Thebackupgeneratorsarelocatedonanenclosedskidinstallationoutsidethereactor buildingandincludeconventionalcomponentssuchas:

Enginestarter Combustionairintakeandengineexhaust Enginecooling Enginelubricatingoil Enginefuel(includingfuelstorageandtransfer)

Generatorexcitation,protectiverelaying,andassociatedinstrumentationandcontrols Thebackupgeneratorsareprovidedwithcontrolstofacilitatemanualstartupandshutdown,either locallyorfromatransferswitchinthemaincontrolroom(MCR)(seeSection7.4),andtoprovidefor monitoringandcontrolduringbackupgeneratoroperation.

Thebackupgeneratorswitchgearisconnectedtoadistributionswitchgearwhichprovidespowerto 480Vmotorcontrolcenters(MCCs)anddistributionpanels.Onalossofnormalpower,thebackup generatorsstartupandtheautomatictransferswitch(ATS)transferspowersupplyfromthenormal utilityfeedtothebackupgeneratorfeed.Aloadsheddingschemeisemployedtoensurethatonly essentialloadsaresuppliedwithbackuppower.Alistofthespecificessentialloadsthatreceivebackup powerwillbeprovidedintheapplicationforanOperatingLicense.

8.3.1.2 UninterruptiblePowerSupplies SelectedloadsaresuppliedwithcontinuousACelectricalpowerviauninterruptiblepowersupplies(UPS),

asdepictedinFigure8.11.EachUPSprovidesahighlyreliablepowersupplyduringnormaloperations andisautomaticallyconfiguredtoprovidebackuppowerduringalossofnormalelectricalpowerevent.

TheUPSaresizedtoprovidesufficientpowertothoseselectedloadstomaintainfunctionalityduring backupgeneratorstartup,andfortheirrespectivespecifiedminimummaximumdutiesasdescribedin Section8.3.3.

8.3.2 DesignBases TheBPSdoesnotperformanysafetyrelatedfunctionsandisnotcreditedforthemitigationof postulatedevents.Thesystemisalsonotcreditedwithperformingsafeshutdownfunctions.

8.3.3 SystemEvaluation Thenormalandbackuppowersystemsaredesignedtopreventinterferencewithsafetyrelated functions.Ifthebackupgeneratorsfailduringalossofnormalpowerevent,theUPSsupplyingthe

PreliminarySafetyAnalysisReport

ElectricalPowerSystems

KairosPowerHermesReactor 86 Revision0 reactorprotectionsystem(RPS)blockloads(asshowninFigure8.11)willfailbydesigntoensure properfailsafefunctions.ThisUPSissizedtoprovideshorttermbackuppowertotheRPSblockloads, andtolosepoweronfailureofthebackupgenerators.Thefailsafefunctionsaredescribedinfurther detailinthefollowingparagraphsandinSection7.3.

ToensurefailtosafetyintheeventofacompletelossofACelectricalpower,thereactivitycontroland shutdownsystem(RCSS)isequippedwithasafetyrelatedclutchthatrequires24VDCtoremainclosed.

Onalossofpower,therelayopens,andthecontrolelementsdropintothereactorbygravity.

ToensurefailtosafetyintheeventofacompletelossofACelectricalpower,theprimarysaltpump (PSP)andintermediatesaltpump(ISP)powersuppliesareequippedwithrelaysrequiring24VDCto remainclosed.Onalossofpower,therelaysopentopreventinadvertentpumprestartonpower restoration.Amanualresetisrequiredtorestartthepumps.

Onactivationofthedecayheatremovalsystem(DHRS),thereactorprotectionsystemwillremove24 VDCfromtheactivationcircuitrelaytopreventinadvertentshutdownoftheDHRSbyoperatorerror.

EquipmentformonitoringreactorstatuswillbesuppliedbyUPSuntilthenormalpowersupplyor backupgeneratorsarerestored.

TheBPSisprovidedtopermitfunctioningofSSCsfollowingalossofnormalpower.Thepassivedesign featuresoftheHermesreactor,basedonfundamentalphysicsprinciples,donotrelyonACorDC electricalpowerforsafetyrelatedSSCstoperformtheirsafetyfunctionsduringpostulatedevents.Safe shutdownofthereactordoesnotrelyonACelectricalpowerfromtheBPS.Thesefeaturesdemonstrate conformancewiththerequirementsinPDC17.

Asdiscussedabove,theBPSisnotreliedonforsafetyrelatedSSCstoperformtheirsafetyfunctionsfor aminimumof72hoursfollowingpostulatedevents.Therefore,therearenosafetyrelatedportionsof theBPS,andnotestsorinspectionsarerequiredtodemonstrateconformancewiththerequirementin PDC18.

Thebackuppowersystemisnotsafetyrelated,butportionsofthesystemmaycrosstheisolationmoat discussedinSection3.5.SSCsthatcrossabaseisolationmoatmayexperiencedifferential displacementsasaresultofseismicevents.Thebackuppowersystemisdesignedsothatpostulated failuresofSSCsinthesystemfromdifferentialdisplacementsdonotprecludeasafetyrelatedSSCfrom performingitssafetyfunction.Designfeaturesaddressingdifferentialdisplacementarediscussedin Section3.5.ThesefeaturesdemonstrateconformancewiththerequirementinPDC2.

ThebackuppowersystemisdesignedinaccordancewithNFPA70,NationalElectricalCode (Reference8.31).

8.3.4 TestingandInspection TheBPSdoesnotperformanysafetyfunctions.Periodicinspectionandtestingareperformedonthe BPSforoperationalpurposes.

8.3.5 References

1. NationalFireProtectionAssociation,NFPA70,NationalElectricalCode.2020.