ML23115A395
ML23115A395 | |
Person / Time | |
---|---|
Site: | Hermes File:Kairos Power icon.png |
Issue date: | 04/25/2023 |
From: | Kairos Power |
To: | Office of Nuclear Reactor Regulation |
Shared Package | |
ML23115A393 | List: |
References | |
KP-NRC-2304-005 | |
Download: ML23115A395 (1) | |
Text
KP-NRC-2304- 005
Enclosure 1 Changes to Hermes PSAR Chapters 2, 3, 4, 7, 8, 9, 13, and 14
(Non-Proprietary)
Preliminary Safety Analysis Report Site Characteristics Figure 2.1-2: Prominent Features in Site Area
Kairos Power Hermes Reactor 2-9 Revision 2 Preliminary Safety Analysis Report Site Characteristics
Source: Reference 1
Kairos Power Hermes Reactor 2-10 Revision 2 Preliminary Safety Analysis Report Site Characteristics Figure 2.1-3: Project Site Area and Zones Associated with the Facility
Kairos Power Hermes Reactor 2-12 Revision 2 Preliminary Safety Analysis Report Site Characteristics
Source: Reference 1
Kairos Power Hermes Reactor 2-13 Revision 2 PreliminarySafetyAnalysisReport DesignofStructures,Systems,andComponents
Table3.51:LoadCombinationsfortheSafetyRelatedPortionoftheReactorBuilding ServiceLevelLoad LoadCombination*
Category ANormal D+FL+To+Ro D+F+To+Ro+L+H+Ccr+Lr BSevereEnvironmental D+L+ToF+Ro+Eo+H D+L+TiF+Roi+EoH+W CExtremeEnvironmental D+L+H+F+Ccr+To+Ro+Ess D+F+H+L+Tos+Ros+WEtss DAbnormal D+F+L+H+Ta+Ra+CWcrt D+F+H+L+Ta+Ra+Ess
- Loadcombinationreferstothetypesofloadsconsideredactingsimultaneously.Applicationof loadfactorsandspecificdetailsofloadcombinationeffectsarepertheapplicabledesign standard.
LoadNomenclature:
D Deadloads L Liveloads Lr Roofloads,includingsnoworrainasapplicable F Fluidloads S Soilloads Ccr Craneloadratedcapacity W Normalwindloads Wt Highwindloads(tornadoandhurricane),includingcorrespondingmissiles To Thermalloadsduringstartup,normaloperatingand,orshutdownconditions Ti ThermalloadsduringServiceLevelBloadings Ta ThermalloadsasaresultofaccidentconditionsandincludingToduringServiceLevelD loadings Ts ThermalloadsduringServiceLevelCloadings Ro Pipeandequipmentreactionsduringstartup,normaloperatingand,orshutdown conditions Ri PipereactionsduringServiceLevelBloadings Ra PipeandequipmentreactionsasaresultofaccidentconditionsandincludingRoduring ServiceLevelDloadings Rs PipereactionsduringServiceLevelCloadings Eo Loadsgeneratedby1/3ofdesignbasisearthquake(DBE)(thedesignbasisearthquakeis alsothesafeshutdownearthquake[SSE])
Ess LoadsgeneratedbySSEDBE Wt Accidentalloadsduetomissileimpacteffects
KairosPowerHermesReactor 329 Revision2 PreliminarySafetyAnalysisReport DesignofStructures,Systems,andComponents
3.6.2 ClassificationofStructures,Systems,andComponents SSCsareassignedsafety,seismic,andqualityclassificationsconsistentwiththeirsafetyfunctions.These classificationsaredescribedbelow.Table3.61providesasummaryoftheseclassificationsforallSSCs.
3.6.2.1 SafetyClassification SSCshavetwopossiblesafetyclassifications:safetyrelatedornonsafetyrelated.AnSSCisclassifiedas safetyrelatedifitmeetsthedefinitionofsafetyrelatedfrom10CFR50.2(withexceptionsasdescribed inSection1.2.3).FortheKPFHRtechnology,thedefinitionofsafetyrelatedismodifiedfrom10CFR 50.2,tobe:
Safetyrelatedstructures,systems,andcomponentsmeansthosestructures,systems,and componentsthatarereliedupontoremainfunctionalduringandfollowingdesignbasisevents toassure:
(1)Theintegrityoftheportionsofthereactorcoolantboundaryreliedupontomaintaincoolant levelabovetheactivecore; (2)Thecapabilitytoshutdownthereactorandmaintainitinasafeshutdowncondition;or (3)Thecapabilitytopreventormitigatetheconsequencesofaccidentswhichcouldresultin potentialoffsiteexposurescomparabletotheapplicableguidelineexposuressetforthin10CFR 50.34(a)(1)or10CFR100.11 NotethatfortheKPFHRtechnology,thedefinitionabovereflectsadeparturefromthedefinitionsin10 CFR50.2forlightwaterreactorsthatincludetheterminologyintegrityofthereactorcoolantpressure boundary.AsdescribedinSection1.2.3andtheRegulatoryAnalysisfortheKairosPowerSaltCooled, HighTemperatureReactorTopicalReport(Reference1),thisdepartureisnecessarybecausethe technologyassociatedwiththeKPFHRisbasedonanearatmosphericpressuredesignandthereactor coolantboundarydoesnotprovideasimilarpressurerelatedorfissionproductretentionfunctionas lightwaterreactorsforwhichthesedefinitionswerebased.
SSCsthatdonotmeetthedefinition,asmodifiedabove,areclassifiedasnonsafetyrelated.
3.6.2.2 SeismicClassification SSCsaredesignedaccordingtotheirsafetyclassification.SafetyrelatedSSCsareclassifiedasSDC3 consistentwithASCE4319(Reference2).Section3.4discussestheSDC3classificationandSection3.5 discussesrequirementsforSSCsthatarerequiredtomaintaintheirfunctionintheeventofadesign basisearthquake.Thedesignbasisearthquakeisalsothesafeshutdownearthquake(SSE).Allsafety relatedSSCsarelocatedinthesafetyrelatedportionoftheReactorBuilding,whichisdiscussedin Section3.5.1.
ThecreditedsafetysystemsdesignedtofunctioninapostulatedeventaredescribedinChapter13.For adesignbasisearthquake,theSDC3SSCsthatarereliedupontoperformaspecificcreditedsafety functionarelistedinTable3.61.
Safetyrelatedsystemsandcomponentsarequalifiedtomaintaintheirsafetyfunctionduringadesign basisearthquake,afteradesignbasisearthquake,orboth,dependingonthefunctionperformed.For example,thereactorvesselisrequiredtoperformitssafetyfunction(i.e.,maintainstructuralintegrity) bothduringandafteradesignbasisearthquake,whereasthedecayheatremovalsystemisrequiredto performitssafetyfunctiononlyaftertheevent,andnotduring.Thespecificsafetyfunction,therefore, isusedtodefinetheASCE4319LimitStatethatisusedtoqualifytheSDC3SSCs.
KairosPowerHermesReactor 333 Revision2 PreliminarySafetyAnalysisReport ReactorDescription
ConsistentwithPDC2,thereactorvesselandreactorvesselinternalsperformtheirsafetyfunctionsin theeventofasafeshutdowndesignbasisearthquakeandothernaturalphenomenahazards.
ConsistentwithPDC4,thereactorvesselandreactorvesselinternalsaccommodatetheenvironmental conditionsassociatedwithnormaloperation,maintenance,testing,andpostulatedevents.
ConsistentwithPDC10,thereactorvesselandinternalsmaintainageometryandcoolantflowpathto ensurethatthespecifiedacceptablesystemradionuclidereleasedesignlimits(SARRDLs)willnotbe exceededduringnormaloperationincludingpostulatedevents.
ConsistentwithPDC14,thereactorvesselisfabricatedandtestedtohaveanextremelylowprobability ofabnormalleakageorsuddenfailureofthereactorcoolantboundarybygrossrupture.
ConsistentwithPDC30,reactorvesselisfabricated,andtestedtoqualitystandards,andpreandin serviceinspections,aswellastestingwherepracticable,willbeusedtodetectandidentifythelocation ofcoolantleakage.
ConsistentwithPDC31,thereactorvesselhassufficientmargintowithstandstressesunderoperating, maintenance,testing,andpostulatedeventssuchthatthereactorcoolantboundarydoesnotdegrade duetotheeffectsofneutronembrittlement,corrosion,materialwear,fatigue,stressrupture,thermal loads,orfailureduetostressruptureandfracture.Thedesignshallaccountforresidual,steadystate, andtransientstressesandconsiderflawsize.
ConsistentwithPDC32,thereactorvesselpermitsinspection,monitoring,orfunctionaltestingof importantareasandfeaturestoassessstructuralintegrityandleaktightnessofthesafetyrelated portionsofthereactorcoolantboundary.
ConsistentwithPDC33,thecorebarreldesignincludesantisiphonfeaturestolimitreactorcoolant inventorylossintheeventofbreaksinthePHTScoldleg.
ConsistentwithPDC34,theflowpathestablishedbythereactorvesselinternalsisdesignedtosupport theremovalofdecayheatduringnormaloperationandpostulatedevents,suchthatSARRDLsandthe designconditionsofthesafetyrelatedelementsofthereactorcoolantboundaryarenotexceeded.
ConsistentwithPDC35,thereactorvesselinternalsaredesignedtomaintainstructuralintegrityto assuresufficientcorecoolingduringpostulatedeventsandtosupportremovalofdecayheat.Thesafety functionofthefluidicdiode,reflectorblocks,anddowncomeristomaintainaflowpaththatsupports naturalcirculationandtotransferheatfromthereactorcoreduringandfollowingpostulatedeventsto preventfuelandreactorinternalstructuredamagethatcouldinterferewithcontinuedeffectivecore cooling.
ConsistentwithPDC36andPDC37thefluidicdiodesaredesignedtopermitperiodicmonitoringand inspectiontoprovideassurancethattheintegrityofthenaturalcirculationflowpathfordecayheat removalismaintained.Thedesignofthedecayheatremovalnaturalcirculationflowpathprovidedby thedowncomer,graphitereflector,hotwell,diodepathwayandfluidicdiode,isalsocapableofbeing periodicallyconfirmedtoprovideassurancethattheintegrityofthenaturalcirculationflowpathfor decayheatremovalismaintained.
ConsistentwithPDC74,thedesignofthereactorvesselandreflectorblocksshallbesuchthattheir integrityandgeometryaremaintainedduringpostulatedeventstopermitsufficientinsertionofthe controlandshutdownelementsprovidingforreactorshutdown.
KairosPowerHermesReactor Revision2432 PreliminarySafetyAnalysisReport ReactorDescription
4.3.3 SystemEvaluation The316HSSstructuresofthereactorvesselsystemarefabricatedandtestedtomeettheintentof Reference1standardsasshowninTable3.62.The316HSSvesselinternalsalsosatisfythechemistry restrictionsoftheASMESectionIIIcodeinDivision5,ArticleHGB2000.PertheASMEstandard,ER168 2weldmetalwillbeusedinfabricationofthe316Hstructures.Commensuratewiththesafetyrelated functionofthereflectorblockinensuringacceptabledesignlimitsandmaintainingthereactorcoolant flowpath,qualityrelatedcontrolswillbeplacedontheET10graphite.Thegraphitereflectorwillbe designedtomeettheintentofReference1standardsshowninTable3.62.KPFHRspecificationsand procurementdocumentsincorporateandreferencetheapplicableguidanceandASMEstandards.The qualityassuranceprogramisdescribedinSection12.9.Thesecontrolsdemonstrateconformancewith PDC1.
Thereactorvesselsystemmakesupaportionofthereactorcoolantboundary.Thereactorvesseland graphitereflectorblocksarethereforedesignedtomaintaingeometryduringasafeshutdowndesign basisearthquaketoensurethevesselintegrity,insertionofnegativereactivityviatheRCSS,andto maintaintheflowpath.Thereactorvesselandvesselinternalswillhavedynamicbehaviorsduringa designbasisearthquake.Theseincludefluidstructureinteractionwithinthevessel,oscillatoryresponse ofcomponentsmountedtothereactortophead,i.e.,headmountedoscillators,andrelativemovement ofgraphitereflectorblockswithrespecttooneanotherwithinthecoolant.Thesedynamicbehaviorsare accountedforinthedesignofthereactoranditsinternals,toensurecontinuedfunctionalityduringand afteradesignbasisearthquake.Modelsareusedtounderstandfluidmigrationtendenciesconsidering thepebblebed,reflectorblocks,corebarrel,andotherreactorvesselinternalfeatures.Theinsights gainedfromtheanalysisofthesemodelsareusedtodesignthereactortopreventdamagetothevessel duringadesignbasisearthquake.Thereactorvessel,vesselinternals,andvesselattachmentssuchas theRCSSareclassifiedasSDC3perASCE4319SeismicDesignCriteriaforStructures,Systems,and ComponentsinNuclearFacilities(Reference2).Thereactorvesselwillalsobeprotectedfromthe failureofnearbynonsafetyrelatedSSCsduringadesignbasisearthquakebyseismicallymounting, physicallyseparating,orusingabarriertoprecludeadverseinteraction,andfromfailureofattached nonsafetyrelatedSSCs,suchasattachedpiping(e.g.,bydesignforpreferentialfailureofthenonsafety componentisawaythatdoesnotimpactthevessel).Thesefeaturesdemonstratecompliancewith PDC2.
Thereactorvesselcanaccommodateinternalandexternalstaticanddynamicloads.Thethermal expansionofthereactorvesselshellandbottomheadissupportedbythereactorvesselsupportsystem (RVSS)(seeSection4.7)duringreactorstartup,normaloperation,andpostulatedevents.Mechanical loadingsfromstaticweight,seismicload,andforcesfromthepebblebed,coolant,andcore componentsaretransferredtothevesselshell,tothebottomhead,andthentotheRVSS.Thelateral loadpathofthevesselsupportisdesignedtoprecludedamagetothedecayheatremovalsystemand ensurethevesselmaintainsitsintegrityandremainsinanuprightposition.Thedesignofthevessel shellresistshoopstressesfromthepressureinthedowncomerandsupportsthetransferofstaticand dynamicloadsbetweenthevesseltopheadandthevesselbottomheadtotheRVSS.Therearealsono pressurizedpipingsystemsinoraroundthereactorvessel,thusprecludingpipewhiphazards.Heavy loadconsiderationsareaddressedinSection9.8.4,CranesandRigging.Thesefeaturesdemonstrate compliancewithPDC4.
Corecoolingismaintainedthroughthedesignofthereactorvesselandthereactorvesselinternals.As describedinSection4.3.1.2,thevesselandvesselinternalsdefinethecoolantflowpath.Topreclude degradationtothevesselduetocorrosionofthestainlesssteel,thereflectorblocksandthevesselare baked(i.e.,heateduniformly)toremoveresidualmoisturepriortocomingintocontactwithcoolant.
KairosPowerHermesReactor Revision2433 PreliminarySafetyAnalysisReport ReactorDescription
Table4.32:LoadCombinationsfortheReactorVesselSystem ServiceLevel LoadCombination*
A D+L+To+Po+Ro B D+L+To+Po+Ro+Eo D+L+Ti+Pi+Ri+Eo C D+L+To+Po+Ro+Ess D+L+Ts+Ps+Rs+Ess D D+L+Ta+Pa+Ra+Wt D+L+Ta+Pa+Ra+Ess
- Loadcombinationreferstothetypesofloadsconsideredactingsimultaneously.Applicationof loadfactorsandspecificdetailsofloadcombinationeffectsarepertheapplicabledesign standards.
LoadNomenclature:
D Deadloads L Liveloads To Thermalloadsduringstartup,normaloperating,orshutdownconditions Ti ThermalloadsduringServiceLevelBloadings Ta ThermalloadsduringServiceLevelDloadings Ts ThermalloadsduringServiceLevelCloadings Po Pressureloadsduringstartup,normaloperating,orshutdownconditions Pi PressureloadsduringServiceLevelBloadings Ps PressureloadsduringServiceLevelCloadings Pa PressureloadsduringServiceLevelDloadings Ro Pipereactionsduringstartup,normaloperating,orshutdownconditions Ri PipereactionsduringServiceLevelBloadings Ra PipereactionsduringServiceLevelDloadings Rs PipereactionsduringServiceLevelCloadings Eo Loadsgeneratedby1/3ofdesignbasisearthquake(DBEthedesignbasisearthquakeis alsothesafeshutdownearthquake[SSE])
Ess LoadsgeneratedbyDBESSE Wt Accidentalloadsduetomissileimpacteffects
KairosPowerHermesReactor Revision2438 Preliminary Safety AnalysisReport ReactorDescription
Table4.71: Load CombinationsfortheReactorVessel SupportSystem ServiceLevel Load Combination*
A D+L+To+Ro B D+L+To+Ro+Eo D+L+Ti+Ri+Eo C D+L+To+Ro+Ess D+L+Ts+Rs+Ess D D+L+Ta+Ra+Wt D+L+Ta+Ra+Ess
- Loadcombinationrefers tothetypesofloadsconsidered actingsimultaneously.Applicationof loadfactorsandspecificdetailsofloadcombinationeffectsarepertheapplicabledesign standard.
Load Nomenclature:
D Deadloads L Liveloads To Thermalloadsduringstartup,normaloperating,orshutdownconditions Ti ThermalloadsduringServiceLevelBloadings Ta ThermalloadsduringServiceLevelDloadings
Ts ThermalloadsduringServiceLevelCloadings Ro Pipereactionsduringstartup,normaloperating,orshutdownconditions Ri PipereactionsduringServiceLevelBloadings Ra PipereactionsduringServiceLevelDloadings Rs PipereactionsduringServiceLevelCloadings Eo Loadsgeneratedby1/3 SSEofdesignbasisearthquake(DBE)
Ess LoadsgeneratedbySSEDBE Wt Accidentalloadsduetomissileimpacteffects
Kairos PowerHermesReactor Revision2466 PreliminarySafetyAnalysisReport InstrumentationandControls
PHTSthermalmanagement Controloftheheatrejectionsubsystem Primaryloopdraining,filling,andpipingmonitoring,includingPHTSexternalpiping ThepurposeofthePHTCSistocontrolthetransportofprimarycoolantthroughthePHTS,tomaintain theprimarycoolantinaliquidstate,tocontroltherejectionofheatfromthePHTS,andtomonitorthe inventoryofprimarycoolantinthePHTS.ThePHTCSmaintainstheparametersinthePHTSwithinthe normaloperatingenvelope.ThePHTCScontrolstheprimarysaltpump(PSP),theprimaryloopthermal managementsubsystem(PLTMS),andtheheatrejectionsubsystem.ThesensorsusedbythePHTCSare discussedinSection7.5.
ThePHTCSprovidescontrolsignalforthePSP(seeChapter5).Thecontrolsystemmanipulatesthe primarycoolantflowratebyvariablefrequencytomaintainPHTSparameterswithinthenormal operatingrange.ThePHTCSdoesnotprovideasafetyfunction;however,asdiscussedinSection7.3,the RPStripsthePSPonareactortrip,asaprotectionfeatureforthereactorsystemrelatedtothepump.
ThePHTCSmaintainstheprimarycoolantinliquidphasethroughoutthePHTStopreventlocalizedover orunderheating.ThecontrolsystemusestemperatureasinputtoprovidecontrolsignaltothePHTS auxiliaryheaters.
ThePHTCSprovidescontrolsandmonitoringofthecomponentsthatsupporttheoperationoftheheat rejectionsubsystem.
7.2.2 DesignBases ConsistentwithPrincipalDesignCriteria(PDC)13,thePCSisdesignedtomonitorvariablesandsystems overtheiranticipatedrangesfornormaloperation,andovertherangedefinedinpostulatedevents.
7.2.3 SystemEvaluation ThePCSisdesignedtomonitorplantparametersandmaintainsystemswithinnormaloperatingrange.
ThePCSisalsodesignedtocontrolplannedtransientsassociatedwithanticipatedoperational occurrencesandmaintainthereactorinashutdownstate.ThesefunctionsareconsistentwithPDC13.
ThePCSdoesnotperformasafetyrelatedfunction.Finally,thePCSisdesignedsothatitcannot interferewithRPSsabilitytoperformitssafetyfunctions;seeSection7.3formoreinformationabout theisolationoftheRPSfromthePCS.
ThePCSisadigitalsystemthatcontrolsthereactorpoweraboutapointsetbytheoperator.Thecontrol systemuseslinearaveragetemperatureandflowrateintheprimarysystemasvariableinputsto controlpowerlevelsothatitremainswithinthenormaloperatingenvelope.Thesystemdesignmeets theapplicableportionsInternationalElectrotechnicalCommission(IEC)standard61131forindustrial controllers(Reference1),andtheapplicableportionsofthecybersecuritystandardIEC62443 (Reference2).Table7.22listsotherstandardsappliedtothePCS.ApplicableportionsofIEEE1012 2017(Reference3)areusedforverificationandvalidationofPCScomponents,whichisconsistentwith thenonsafetyrelatedclassificationofthePCS.
ActioninthePCSisdesignedtoaccuratelyandreliablyprovidecontrolsignalforallmodesofnormal operation.ThePCSisalsodesignedtoprovidetimelycontrolsignals,withfurtheranalysisoftimeliness tobeprovidedinanapplicationfortheOperatingLicense.
KairosPowerHermesReactor 77 Revision2 PreliminarySafetyAnalysisReport InstrumentationandControls
7.3 REACTORPROTECTIONSYSTEM 7.3.1 Description TheRPSprovidesprotectionforreactoroperationsbyinitiatingsignalstomitigatetheconsequencesof postulatedeventsandtoensuresafeshutdown.TheRPSistheonlyportionoftheI&Csystemthatis safetyrelatedandthatiscreditedfortrippingthereactorandactuatingengineeredsafetyfeatures.The purposeoftheRPSistoactuateuponreceiptofatripsignalinresponsetooutofnormalconditionsand provideautomaticinitiatingsignalstoprotectionfunctions.Therearethreepossibletripsourcesthat cancausetheRPStoactuateandthreeprotectionfunctionsthatresultfromRPSactuation,shown belowinFigure7.31.Thethreepossibletripsourcesare:
Processvariablesreachorexceedspecifiedsetpoints,asmeasuredbyRPSsensors Manualinitiationfromthemaincontrolroomorremoteonsiteshutdownpanel Plantelectricpowerislost(withatimedelay)
ThethreeKPFHRprotectionfunctionsthatresultfromRPSactuationare:
ActuatetheRCSSthatinsertscontrolandshutdownelementsintothereactorcore InhibitactionsfromthePCSsothatitdoesnotinterferewiththefunctioningoftheRPS Ensureanactuationofthedecayheatremovalsystem(DHRS)thatpassivelyremovesheatfromthe PHTStotheatmosphere ActuationoftheRPStotripthereactorincludesseveralactuationsthatstopspecificnonsafetyrelated SSCs,normallycontrolledbyPCS,toensurethatthosenonsafetyrelatedSSCstodonotpreventa safetyrelatedSSCfromperformingitssafetyfunction.Thenonsafetyrelatedfunctionsthatare stoppedareshowninFigure7.117.31.RCSSelementwithdrawalisinhibitedafteralossofpower,to preventinadvertentpositivereactivityinsertionwhenpowerreturns(seealsoTable7.32).ThePSPis stoppedtomaintainFlibeinventoryinthecore.Theheatrejectionsubsystemblowerisstoppedto preventpotentialforcedairingressintothePHTSandinadvertentovercooling.Pebbleextractionand insertioninthePHSSisstoppedtopreventremovingpebblesfromthecoreintheeventofaPHSS extractionlinebreak.Finally,RTMSandPLTMSactuationsisareprohibitedtopreventachallengetothe heatremovalcapabilityoftheDHRS.Theseinhibitionsareaccomplishedthroughsafetyrelatedtrip devicesasshowninFigure7.11.
TheRPSisbuiltonalogicbasedplatformthatdoesnotutilizesoftwareormicroprocessorsfor operation.Itiscomposedoflogicimplementationusingdiscretecomponentsandfieldprogrammable gatearray(FPGA)technology.TheRPSisisolatedfromotherI&Csystems,includingthemaincontrol roomandtheremoteonsiteshutdownpanel,usingsafetyrelatedisolationhardware.Isolationis achievedatthepointofsignalgenerationeitherthroughfeaturesbuiltintothehardwareplatformor throughseparateisolationdevices.TheRPSincludesthefollowingsafetyrelated(exceptasnoted otherwise)elements:
Separatechannelsofsensorelectronicsandinputdevices Redundantandseparategroupsofsignalconditioning Redundantandseparategroupsoftripdetermination Manualreactortripswitchesinthemaincontrolroom(switchesarenonsafetyrelated)
Safetyrelatedcomponentstoprovideelectricalisolationfromthenonsafetyrelatedhighlyreliable DCpowersystempowersupply Multiplereactortripdevicesandassociatedcabling(cablingisnonsafetyrelated)
RPSisolationhardware Twodivisionsofreactortripsystem(RTS)votingandactuationequipment
KairosPowerHermesReactor 712 Revision2
PreliminarySafetyAnalysisReport AuxiliarySystems
removethedecayheatproducedbyindividualpebblesduringtheirtransitthroughthePHSS.Also, oxidationassociatedwithairormoistureingressintothePHSSisnegligibleforpebblesat temperaturesexperiencedinthesystem.Thesystemalsominimizespebblewear.ThelimitingPHSS malfunctionevent,whichisdiscussedinSection13.1.5,doesnotcausetemperatureexcursions, oxidation,ormechanicalstressesontheTRISOparticles.Therefore,containmentandconfinement ofradioactivityismaintainedbytheTRISOparticles.
FuelandmoderatorpebblesaremanufacturedtospecificationsasdescribedinSection4.2.1and arebakedpriortointroductiontothereactortoremoveresidualmoisture.Afterthepebblesexit thecore,theinspectionsystem,asdescribedinSection9.3.1.5,isusedtoinspectthephysical conditionofthepebbleandmeasurethefuelburnup.Theinspectionisperformedtoidentify abnormalwear,cracking,andmissingsurfacesduetopebblechipping.Gammaspectrometryisalso usedtodeterminetheburnupbymeasuringgammarayactivityfromfissionproducts.Pebblesator approachingtheburnuplimitaresenttostorageinlieuofbeingreturnedtothecore.Pebblesthat showindicationsofwear,cracking,ormissingsurfacesarealsoremovedfromserviceandplaced intostorage.
ThePHSSisadequatelyshieldedtolimitworkerdose,inaccordancewith10CFR20andthe radiationprotectionprogram,asdescribedinChapter11.
ThestoragepartofPHSSisdesignedtotransferexvesseldecayheattotheCCWSandtheSFCSfrom afullcoreoffloadandpebbleoffloadduetonormaloperation.ThePHSSisdesignedtoensure decayheatloadsfrompebblesinthespentfuelstoragepoolarepassivelycooledbythewaterof thepoolandspacingofthestoragecanistersintheeventofalossofpower.Thecanistersinthe storagebayarecooledduringpostulatedeventsbynaturalconvectionduetothespacingwhich allowssufficientairflow.
PDC62requirescriticalityinafuelstorageandhandlingsystembepreventedbyphysicalsystemsor processes,preferablybyuseofgeometricallysafeconfigurations.Thedesignfeatureswhichaddress PDC62forthePHSSaredescribedbelow:
ThePHSSisdesignedtoprecludecriticalitybymaintainingasubcriticalgeometryduringhandling.
ThePHSSremovespebblesfromthecoreataratethatprohibitstheformationofacritical configurationoffuelpebblesoutsidethereactor.IntheeventofaPHSSlinebreach,thenumberof spilledpebblesislimitedandacriticalgeometryisprecludedbydesign.Theoffheadconveyance, processing,inspection,pebbleinsertion,storageareas,andinertgasboundarymaintainaninertgas environmentprecludingmoistureintrusionintothosehandlingareas,furtherreducingtheriskof criticality.Fuelhandlingequipmentmaintainsasubcriticalgeometryviaphysicalconstraintsand/or systeminterlocks.
Thespentfuelstorageareaconsistsofawatercooledpool,anaircooledstoragebay,seismic restraintsmaintainingthecanistersphysicallocation(i.e.,spacing),andthesurroundingconcrete structure.Thepreliminarycriticalityanalysisdeterminingthespacingrequirementsforeachcanister inthespentfuelstorageareaconservativelyassumesthestoragecontainersarenotfloodedand completelysubmergedunderwater.
Thetransportconfiguration,inwhichastoragecanisterisbeingmovedusingacanistertransporter toeitherthestoragebayorthefullcoreoffloadsystem(i.e.,fuelpool),willbeanalyzedtoensurea subcriticalgeometryismaintained.Asummaryofthecriticalityanalysesconfirmingthesystem designmaintainsageometricallysafeconfigurationwillbeprovidedwiththeapplicationforan OperatingLicense.
PDC63requiresdetectionofconditionsthatcouldresultinexcessiveradiationlevelsinhandlingareas andameansbywhichtoinitiateappropriatesafetyactions.ThePHSSisdesignedtoassurethat
KairosPowerHermesReactor 929 Revision2 PreliminarySafetyAnalysisReport AuxiliarySystems
9.8 OTHERAUXILIARYSYSTEMS Thefollowingsubsectionsprovidedescriptionsandfunctionalrequirementsofotherauxiliarysystems.
Theseotherauxiliarysystemsinclude:
Remotemaintenanceandinspectionsystem Spentfuelcoolingsystem Compressedairsystem Cranesandrigging Auxiliarysiteservices Theseauxiliarysystemsarenotsafetyrelatednoraretheycreditedwithperformingasafetyfunction.
9.8.1 RemoteMaintenanceandInspectionSystem Theremotemaintenanceandinspectionsystem(RMIS)providesthecapabilitytoremotelyhandle componentsinthereactorsystem,PHTS,andPHSS.Thesystemalsoprovidesthecapabilitytoconduct inspectionsofhazardousequipment.ComponentsoftheRMISincluderemotemanipulators,tooling, cameras,monitors,cranesandrigging.Thesystemislocatedinthereactorbuildingandcontainstooling tosupportthefollowingmaintenanceactivities:
Disassembleflangesandsubassemblies Removesubassemblies ClearfuelandresidualcoolantbeforeremovalofSSCsformaintenance Transportofequipmenttohotmaintenancecells(viauseofshieldedcasks)
Activitiesperformedinstandalonehotcells Useofthroughwallelectromechanicalmanipulatorsforhotcells Useofcranesforhotcellandpostirradiationexaminationfacilities.
Thesystemisdesignedinaccordancewithlocalbuildingcodes.Thesystemdoesnotperformsafety relatedfunctionsandisdesignedsothatitcannotinterferewithasafetysystemsabilitytoperforma safetyfunction.Theremotemanipulationcapabilitiesprovidedbythesystemfacilitatelimiting personneloccupationalexposurestobelow10CFRPart20limitsduringmaintenanceofthereactor system,PHTS,andPHSS.
Consistentwith10CFR20.1406,theremotemaintenanceandinspectionsystemisdesigned,tothe extentpracticable,tominimizecontaminationofthefacilityandtheenvironment,andtofacilitate eventualdecommissioning.
PortionsoftheRMISthatmaycrosstheisolationmoatincludeflexibledesignfeaturestoaccommodate maximumdesigndisplacementsfrompostulatedseismicevents.Thedesignfeaturesfunctionwouldbe topreventthedamagefromtheSSCsintheRMISfromaffectingasafetyrelatedSSC'sabilitytoperform asafetyfunction.SpecificdesignfeaturesandtheSSCstowhichtheyareapplied,willbeprovidedinthe operatinglicenseapplication.
9.8.2 SpentFuelCoolingSystem TheSFCSprovidesforcedaircoolingforspentfuelstoragecanistersinthestoragebayofthePHSS(see Section9.3)andrecirculateswaterinthespentfuelpool.Thesystemissizedtocoolstoredspentfuel andmoderatorpebblesgeneratedduringthe104yearlifetimeofthereactor.TheSFCSconsistsoffans andpipingthatremoveheatduringnormaloperation,tomaintaindesiredoperationaltemperaturesin thestoragebay.TemperaturesinandaroundtheSSCsservedbytheSFCS,includingthestorage
KairosPowerHermesReactor 943 Revision2 PreliminarySafetyAnalysisReport AccidentAnalysis
evaluatethesurrogatefiguresofmeritthatensuretheeventconsequencesareboundedbytheMHA areprovidedinReference2.
13.1.5.1 InitialConditionsAssumptions ConservativeinitialvaluesareassumedfortheamountsofFlibe,tritium,andgraphitedustavailableto bemobilizedwithinthePHSS.
Theeventinitiatorisassumedtobeabreakinafueltransferlineduringextraction,allowingpebblesto spilloutofthesystemandontothefloor.
13.1.5.2 StructuresSystemsandComponentsMitigationAssumptions ThissectiondescribestheSSCsperformingafunctiontomitigatetheconsequencesoftheevent.
TheRPSiscreditedwithinitiatingaPHSStrip.ThePHSStripstopspebbleextractionandinsertion followingthereactortriptopreventadditionalpebblesspillingoutofthebreakandtoprecludeany damagetopebblesfromfaultsduringtheevent.ThedesignbasesoftheRPSarediscussedinSection 7.3.TheRPSdetectionandactuationcapabilitiesareautomaticanddonotrelyonmanualactionto performthesefunctions.
TheTRISOfuellayersandtheFlibearecreditedwiththeradionuclideretentionpropertiesdescribedin Reference1.Thestructuralintegrityofthefuelpebblesiscreditedwhenthespilledpebbleshitthefloor tomaintaintheTRISOconfinementfunction.Thelowfissileinventoryofthepebblesprecludescriticality concernsofthespilledpebbles.
13.1.5.3 TransientAssumptions Thissectiondescribestheassumptionsassociatedwiththetransientanditseffectsonthesurrogate figuresofmerit.
Thepostulatedeventanalysisassumesconservativetripandactuationdelaystoaccountforuncertainty inthesignaltimeassociatedwiththeRPS.
Theamountofheatinthepebblesisconservativelymodeled.
ThekeyfiguresofmeritforthiseventandtheacceptancecriteriaareprovidedinTable13.11.
Asafestateisestablishedwhen:
Themovementofpebblesoutsideofthecorehasstoppedandcriticalitysafetyisassured.
Decayheatisbeingremovedfrompebblesoutsideofthecoreandlongtermcoolingisassured, wherefigureofmerittemperaturesaresteadilydecreasing.
13.1.6 RadioactiveReleasefromaSubsystemorComponent Aradioactivereleasefromasubsystemorcomponentcouldresultfromthefailureofasystemor componentcontainingradioactivematerial.However,thelimitingeventforthiscategoryisassumedto beaseismiceventthatresultsinthefailureofallsystemscontainingradioactivematerialthatarenot qualifiedtomaintainstructuralintegrityinasafeshutdowndesignbasisearthquake.Theonlyfigureof meritforthiseventistheamountofradioactivematerialcontainedinsubsystemsandcomponents.To ensurethatthiseventgroupisboundedbytheMHA,thereisadesignrequirementontheamountof MARforreleaseinsubsystemsandcomponentstoremainbelowtheamountofMARforrelease assumedintheMHA.Thesystemsexpectedtoaccumulateradionuclidesasafunctionofoperation include:
KairosPowerHermesReactor 1311 Revision2 PreliminarySafetyAnalysisReport TechnicalSpecifications
Table14.11:ProposedVariablesandConditionsforTechnicalSpecifications
Section SectionName LCOorCondition Basis
2.0 SafetyLimits(SL)andLimitingSafetySystemSettings(LSSS)
SafetyLimitsarethoselimitsonprocessvariablesthatarenecessarytoreasonably protecttheintegrityofcertainphysicalbarriersthatarecreditedtoprecludeapotential uncontrolledreleaseofradioactivity.
LimitingSafetySystemSettingsaresettingsforautomaticprotectivedevicesrelatedto thosevariableshavingsignificantsafetyfunctions.Thesesettingsensurethatautomatic protectiveactionwillcorrecttheabnormalsituationbeforeaSafetyLimitisexceeded.
ThisTableconsistsoftheproposedsubjectsofSafetyLimitsandLimitingSafetySystem Settings.Theseareprovidedbelow.
2.1 SLThefueltemperaturesshallnotThemaximumfueltemperatures exceedanupperbound SafetyLimitisestablishedtoensure operatingrangeunderany fuelintegritybasedontemperatures operatingconditions. assumedinthesafetyanalysis.
2.1 SL ThereactorvesselsurfaceThemaximumreactorvesselsurface temperaturesshallnotexceed temperatureSafetyLimitisthe anupperboundtemperature maximumtemperaturethatcanbe underanyconditionof permittedwithconfidencethatvessel operation. integritywillbemaintained.
2.2 LSSS ThecoreexitreactorcoolantLimitingthemaximumcoreexit temperature(s)shallnot coolanttemperaturewillensurethat exceedanupperbound theSafetyLimitsarenotexceededand temperatureunderany thatthereactorwilltrippriorto conditionofoperation. reachingaSafetyLimit.
2.2 LSSS ThecoolantlevelshallnotfallLimitingthecoolantlowlevelwill belowalowerboundlimit ensurethatadequatecorecoolingis underanyconditionof availablesothattheSafetyLimitsare operation. notexceeded.
2.2 LSSS TherateoffluxtripfunctionLimitingtherateofpower/flux shallnotexceedanupper increasewillensurethatthereactor boundlimitasspecifiedinthe willtrippriortochallengingthe safetyanalysis. integrityoffuel(oralimitationsetin fuelperformancemethodology).
KairosPowerHermesReactor 143 Revision2