ML22181B159
ML22181B159 | |
Person / Time | |
---|---|
Site: | 99902069, Hermes File:Kairos Power icon.png |
Issue date: | 06/30/2022 |
From: | Kairos Power |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
Shared Package | |
ML22181B157 | List: |
References | |
KP-NRC-2206-014 | |
Download: ML22181B159 (6) | |
Text
KP-NRC-2206- 014
Enclosure 1 Changes to PSAR Chapters 3, 4, and 6
(Non-Proprietary)
PreliminarySafetyAnalysisReport DesignofStructures,Systems,andComponents
SSCsthatarenonsafetyrelatedareclassifiedasSDC2.SDC2SSCsaresubjecttotheseismicdesign requirementsofthelocalbuildingcode,ASCE/SEI710(Reference3).
3.6.2.2.1 SeismicQualificationbyAnalysis SeismicqualificationbyanalysisfollowsSection8.2ofASCE4319.Dependingonthecharacteristicsand complexitiesofthesubsystemorequipment,qualificationbyanalysisisaccomplishedbyeither equivalentstaticanalysismethodsordynamicanalysismethods.
Therearelimitationstoqualificationbyanalysis.PerASCE4319:
Qualificationofactiveelectricalequipmentbyanalysisisnotperformed.
Qualificationofactivemechanicalequipmentbyanalysismaybepermittedifthecomponentissuch thatthefunctionalityduringanearthquakecanbeestablishedandamarginoflossoffunctionality duringanearthquakecanbequantified.
Qualificationofactivemechanicalcomponentsbyanalysisshallbejustified.
Seismicqualificationbyanalysisistypicallyimplementedforsubsystemsandequipmentstructural integrityrelatedcapacities(e.g.anchorage,pressureboundary/rupture,serviceabilitydeformations, etc.).
3.6.2.2.2 SeismicQualificationbyTesting SeismicqualificationbytestingfollowsSection8.3ofASCE4319.Qualificationbytestistypicallyused forSSCsforwhichqualificationbyanalysisisnotpermittedandforSSCswheredynamicbehaviorsare notsufficientlyunderstoodtosupportqualificationbyanalysis.
3.6.2.3 QualityClassification ThequalityclassificationforSSCsconformswiththerequirementsofKairosPowersQualityAssurance ProgramfortheHermesReactor,whichisdiscussedinSection12.9.SafetyrelatedSSCsareclassifiedas QualityRelated,whilenonsafetyrelatedSSCsareclassifiedasNotQualityRelated.Theseclassifications areshowninTable3.61.
3.6.3 References
- 1. KairosPower,LLC,RegulatoryAnalysisfortheKairosPowerSaltCooled,HighTemperature Reactor,KPTR004P,Revision2.July2020.
- 2. AmericanSocietyofCivilEngineers,SeismicDesignCriteriaforStructures,Systems,and ComponentsinNuclearFacilities,ASCE4319.2019.
- 3. AmericanSocietyofCivilEngineers,SeismicEngineeringInstitute,MinimumDesignLoadsfor BuildingsandOtherStructures,ASCE/SEI710.2011.
- 4. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,SectionIII, Division5,HighTemperatureReactors.20179.
- 5. ASME,BoilerandPressureVesselCode,SectionVIII,Divisions1and2,RulesforConstructionof PressureVessels,NewYork,NY.July2017.
- 6. ASMEStandardB31.1,PowerPiping,1999Edition,NewYork,NY.A9.
- 7. ASMEStandardB31.3,ProcessPiping,2016Edition,NewYork,NY.
- 8. AmericanPetroleumInstitute,610,CentrifugalPumpsforPetroleum,HeavyDutyChemical,and GasIndustryServices,1995.
- 9. AmericanPetroleumInstitute,674,PositiveDisplacementPumpsReciprocating.1995.
- 10. AmericanPetroleumInstitute,675,PositiveDisplacementPumpsControlledVolume.1994.
- 11. AmericanPetroleumInstitute,650,WeldedSteelTanksforOilStorage.1998.
KairosPowerHermesReactor 332 Revision0 PreliminarySafetyAnalysisReport ReactorDescription
ofirradiation.Thefastneutronfluencereceivedbythereactorvesselfromthereactorcoreandpebble insertionandextractionlinesisattenuatedbythecorebarrel,thereflector,andthereactorcoolant.
Coolantpuritydesignlimitsarealsoestablishedinconsiderationoftheeffectsofchemicalattackand foulingofthereactorvessel.ThesefeaturesdemonstrateconformancewithPDC31.
TheMSSutilizescouponsandcomponentmonitoringtoconfirmthatirradiationaffectedcorrosionis nonexistentormanageable.The316HSSreactorvesselandER1682weldmaterial,asapartofthe reactorcoolantboundary,willbeinspectedforstructuralintegrityandleaktightness.Asdetailedin Reference3,fracturetoughnessissufficientlyhighin316HSSunderreactoroperatingconditionsthat additionaltensileorfracturetoughnessmonitoringandtestingprogramsareunnecessary.These featuresdemonstrateconformancetoPDC32.
Fluidicdiodesareusedtoestablishaflowpathforcontinuousnaturalcirculationofcoolantinthecore duringpostulatedeventstoremoveresidualheatfromthereactorcoretothevesselwall.Duringand followingapostulatedevent,thehotcoolantfromthecoreflowsfromtheupperplenumthroughthe lowflowresistancedirectionofthefluidicdiodetothecoolerdowncomervianaturalcirculation, therebycoolingthecorepassively.Continuouscoolantflowthroughthereactorcorepreventspotential damagetothevesselinternalsduetooverheatingtherebyensuringthecoolablegeometryofthecoreis maintained.Theantisiphonfeaturealsolimitsthelossofreactorcoolantinventoryfrominsidethe reactorvesselintheeventofaPHTSbreach.ThesefeaturesdemonstratecompliancewithPDC35.
Thereactorvesselreflectorblockspermitinsertionofthereactivitycontrolandshutdownelements.The ETU10gradegraphiteofthereflectorblocksiscompatiblewiththereactorcoolantchemistryandwill notdegradeduetomechanicalwear,thermalstressesandirradiationimpactsduringthereflectorblock lifetime.ThegraphitereflectormaterialisqualifiedasdescribedintheKairosPowertopicalreport GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHighTemperatureReactor, KPTR014(Reference4).Toprecludedamagetothereflectorduetoentrainedmoistureinthegraphite, thereflectorblocksarebaked(i.e.,heateduniformly)priortocomingintocontactwithcoolantand thereactorvesselisdesigntoprecludeairingress.Thereflectors,whichactasaheatsinkinthecore, arespacedtoaccommodatethermalexpansionandhydraulicforcesduringnormaloperationand postulatedevents.Thegapsbetweenthegraphiteblocksalsoallowforcoolanttoprovidecoolingtothe reflectorblocks.Thereactorvesselpermitstheinsertionofthereactivitycontrolandshutdown elementsaswell.ThevesselisclassifiedasSDC3perASCE4319andwillmaintainitsgeometryto ensuretheRCSSelementscanbeinsertedduringpostulatedeventsincludingadesignbasisearthquake.
ThesefeaturesdemonstratecompliancewithPDC74.
4.3.4 TestingandInspection Thereactorvesselandinternalswillbeincludedinaninserviceinspectionprogramwhichwillbe submittedatthetimeoftheOperatingLicenseApplication.
4.3.5 References
- 1. AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII,Division 5(2019),HighTemperatureReactors.2017.
- 2. ASCE4319,SeismicDesignCriteriaforStructures,Systems,andComponentsinNuclearFacilities.
- 3. KairosPower,LLC,MetallicMaterialsQualificationfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR013P,Revision1.
- 4. KairosPower,LLC,GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR014P,Revision1.
KairosPowerHermesReactor Revision0433 PreliminarySafetyAnalysisReport ReactorDescription
4.7 REACTORVESSELSUPPORTSYSTEM 4.7.1 Description Thereactorvesselsupportsystem(RVSS)providesstructuralsupporttothereactorvesselsupportthe fullweightofthereactorvesselwithfuelandcoolant,vesselinternals,andallheadmounted components.Thesystemtransmitspressure,seismic,andthermalloadstothecavitystructuresduring normaloperationanddesignbasisearthquakes.TheRVSSprovidesadequatethermalmanagementto supportthevesselsthermalexpansionwhiletransitioningfromroomtemperatureatassemblyto nominaloperatingtemperatureforprimarycoolantfill.TheRVSSalsosupportsthevesselsthermal expansionduringpostulatedevents.
TheRVSSinterfaceswiththereactorvessel(seeSection4.3),thereactorthermalmanagementsystem (RTMS)(SeeSection9.1.5),andthesafetyrelatedportionoftheReactorBuilding(seeSection3.5).The safetyrelatedportionoftheReactorBuildingisseismicallyisolatedtoreduceseismicloads(seeSection 3.5.3).
Thebottomsupportconsistsofasupporttray,ledge,supportcolumns,supportpads,baseplate,vessel connector,andanchoringconnectorasshowninFigure4.71.Allthecomponentsaremadeof316H stainlesssteel.Thereactorvesselbottomheadsitsdirectlyontopofthetrayandisconnectedtothe traybythevesselconnectortopreventupliftandshear.Theledgearoundtheedgeofthetraycontains spilledFlibeincaseofleakage.Thetrayisreinforcedby316HSSsupportcolumnswhicharesizedand spacedappropriatelytoprovidestructuralsupportforthetotalweightofthevessel,vesselinternals, headcomponents,coolant,andfuel.Thesupportcolumnsareweldedontothesupportpadwhich allowsrelativeslidingwiththeunderlyingbaseplatetoaccommodatethermalexpansion.Thesupport padshaveslottedholestoallowrelativeslidingwiththeanchoringconnectors.Theanchoring connectorspreventthereactorvesselandRVSSfromupliftandshear.TheRVSSisdesignedand fabricatedperASMEBPVCSectionIII,Division5(20179)(Reference1).
TheRTMSprovidesthermalmanagementforthebottomsupportwithaloadbearingmetallicinsulation materialwhichactsasathermalbreakthatreducesheatlossandcoolingloadfortheRVSSsupport columns.ThebottominsulationoftheRTMS,asshowninFigure4.71,protectsthereactorbuilding cavityconcretefromthermaleffects.TheRVSSisalsoverticallyanchoredtothefoundationthroughthe bottominsulation.Thebottomsupportinsulationinterfaceaccommodatesrelativethermalexpansion betweenthesupportcolumnsandtheinsulationmaterial.
Therearenolateralseismicrestraintsforthereactorvesselandtheheadmountedcomponents.The RVSSisdesignedtokeepthereactorvesselfromupliftandshearduringseismicevents.Thedesignalso leveragesseismicisolationoftheReactorBuildingtoreduceseismiceffectsonthereactorvessel,RVSS, andtheheadmountedcomponents(seeSection4.3).
4.7.2 DesignBasis ConsistentwithPDC2,theRVSScanwithstandtheeffectsofnaturalphenomenaandtoperformits safetyfunctionintheeventofadesignbasisearthquake.
ConsistentwithPDC4,theRVSSaccommodatestheenvironmentalconditionsassociatedwithnormal operation,maintenance,testing,andpostulatedevents.
ConsistentwithPDC74,thedesignofthereactorstructuralsupportsystemensurestheintegrityofthe reactorvesselduringpostulatedeventstosupportthegeometryforpassiveremovalofresidualheat fromthecoreandtopermitsufficientinsertionofthecontrolandshutdownelementsprovidingfor reactorshutdown.
KairosPowerHermesReactor Revision0457 PreliminarySafetyAnalysisReport ReactorDescription
4.7.3 SystemEvaluation TheRVSSsupportsthereactorvesselintheeventofanearthquakeorothernaturalphenomenonthus ensuringtheintegrityofthereactorvesselanditsabilitytoretainreactorcoolant.Thebottomsupport meetsASCE4319(2019)(Reference2)andprecludeslinearbucklinginthevesselsupportcolumns understaticanddesignbasisearthquakeloads.Thebottomsupportisalsoverticallyanchoredtothe cavitytopreventthevesselfromupliftduringadesignbasisearthquake.Thevesselconnectorsmeet Reference2andprovidesufficientlateralandupliftsupporttothevesselandthevesseltophead components.Thereactorcavityisalsoseismicallyisolatedtoreduceseismicloads.Thesedesign featuresdemonstratecompliancewithPDC2fortheRVSS.
TheRVSSisprotectedfromdischargingfluidsbycatchbasins.Sensorsandprobesinstalledoncatch basinsincludingthebottomsupporttraycanbeusedasameansofleakdetectiontoprecludedamage totheRVSS.TherearenopressurizedpipingsystemsinproximitytotheRVSSthusprecludingbydesign anyimpactsfromhighenergylineconsiderations.TheRVSSaccommodatesthereactorvessel temperatureloadingcyclesincombinationwithrelevantmechanicalloadingcyclestoensurecreep fatiguedamagesareprecluded.TheRVSScanalsoaccommodatethegrowthofthereactorvesseldueto thermalexpansionbetweenstartupandequilibriumconditions.ThesedesignfeaturessatisfyPDC4for theRVSS.
PDC74statesrequiresthedesignofthereactorvesselandreactorsystemshallbesuchthattheir integrityismaintainedduringpostulatedevents(1)toensurethegeometryforpassiveremovalof residualheatfromthereactorcoretotheultimateheatsinkand(2)topermitsufficientinsertionofthe neutronabsorberstoprovideforreactorshutdown.TheRVSSmaintainstheintegrityofthereactor vesselbyremovingheatviatheRTMS,activelyduringnormaloperationandpassivelyduringpostulated events.Fissionproductdecayheatandotherresidualheatfromthereactorcoreistransferredtothe reactorvessel;thentotheanchoredsurfacebytheRVSS.ThesupportcolumnsoftheRVSSaresizedand spacedtomaximizeheattransferbetweenthebottomsupportandtheenvironment.Thethermalbreak betweentheRVSSandthereactorbuildingprovidedbythebottomsupportinsulationensuresthe concreteintegritymeetsACI34913tosupportmaintenanceandinspectionofthevesselbottom head/vesselshellweldandtoensureconditionsinthesurroundingcavitydonotexceedmaximum allowableparameters.ThisdemonstratescompliancewithPDC74fortheRVSS.
4.7.4 TestingandInspection TheRVSStemperaturewillbemonitoredduringoperationforconformancewithdesignlimits.TheRVSS willbeincludedinaninserviceinspectionprogramwhichwillbesubmittedatthetimeoftheOperating LicenseApplication.
4.7.5 References
- 1. AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII, Division5,(2019)HighTemperatureReactors.2017.
- 2. ASCE4319,SeismicDesignCriteriaforStructures,Systems,andComponentsinNuclear Facilities.
- 3. ACI34913,CodeRequirementsforNuclearSafetyRelatedConcreteStructuresand Commentary
KairosPowerHermesReactor Revision0458 PreliminarySafetyAnalysisReport EngineeredSafetyFeatures
6.3.5 References
- 1. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,Sec.IIIDiv.5, BPVCSectionIIIRulesforConstructionofNuclearFacilityComponentsDivision5High TemperatureReactors,20179.
- 2. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,Sec.XIDiv.1and 2,BPVSSectionXIRulesforInserviceInspectionofNuclearPowerPlantComponents,2019.
- 3. AmericanSocietyofCivilEngineers,ASCE/SEI4319,SeismicDesignCriteriaforStructures,Systems, andComponentsinNuclearFacilities,2020.
- 4. AmericanSocietyofCivilEngineers,ASCE/SEI416,SeismicAnalysisofSafetyRelatedNuclear Structures,2017.
- 5. AmericanConcreteInstitute,ACI34913,CodeRequirementsforNuclearSafetyRelatedConcrete StructuresandCommentary,2014.
KairosPowerHermesReactor 69 Revision0