ML22181B159

From kanterella
Jump to navigation Jump to search
Enclosure 1 - Changes to PSAR Chapters 3, 4, and 6 (Non-Proprietary)
ML22181B159
Person / Time
Site: 99902069, Hermes  File:Kairos Power icon.png
Issue date: 06/30/2022
From:
Kairos Power
To:
Document Control Desk, Office of Nuclear Reactor Regulation
Shared Package
ML22181B157 List:
References
KP-NRC-2206-014
Download: ML22181B159 (6)


Text

KP-NRC-2206- 014

Enclosure 1 Changes to PSAR Chapters 3, 4, and 6

(Non-Proprietary)

PreliminarySafetyAnalysisReport DesignofStructures,Systems,andComponents

SSCsthatarenonsafetyrelatedareclassifiedasSDC2.SDC2SSCsaresubjecttotheseismicdesign requirementsofthelocalbuildingcode,ASCE/SEI710(Reference3).

3.6.2.2.1 SeismicQualificationbyAnalysis SeismicqualificationbyanalysisfollowsSection8.2ofASCE4319.Dependingonthecharacteristicsand complexitiesofthesubsystemorequipment,qualificationbyanalysisisaccomplishedbyeither equivalentstaticanalysismethodsordynamicanalysismethods.

Therearelimitationstoqualificationbyanalysis.PerASCE4319:

Qualificationofactiveelectricalequipmentbyanalysisisnotperformed.

Qualificationofactivemechanicalequipmentbyanalysismaybepermittedifthecomponentissuch thatthefunctionalityduringanearthquakecanbeestablishedandamarginoflossoffunctionality duringanearthquakecanbequantified.

Qualificationofactivemechanicalcomponentsbyanalysisshallbejustified.

Seismicqualificationbyanalysisistypicallyimplementedforsubsystemsandequipmentstructural integrityrelatedcapacities(e.g.anchorage,pressureboundary/rupture,serviceabilitydeformations, etc.).

3.6.2.2.2 SeismicQualificationbyTesting SeismicqualificationbytestingfollowsSection8.3ofASCE4319.Qualificationbytestistypicallyused forSSCsforwhichqualificationbyanalysisisnotpermittedandforSSCswheredynamicbehaviorsare notsufficientlyunderstoodtosupportqualificationbyanalysis.

3.6.2.3 QualityClassification ThequalityclassificationforSSCsconformswiththerequirementsofKairosPowersQualityAssurance ProgramfortheHermesReactor,whichisdiscussedinSection12.9.SafetyrelatedSSCsareclassifiedas QualityRelated,whilenonsafetyrelatedSSCsareclassifiedasNotQualityRelated.Theseclassifications areshowninTable3.61.

3.6.3 References

1. KairosPower,LLC,RegulatoryAnalysisfortheKairosPowerSaltCooled,HighTemperature Reactor,KPTR004P,Revision2.July2020.
2. AmericanSocietyofCivilEngineers,SeismicDesignCriteriaforStructures,Systems,and ComponentsinNuclearFacilities,ASCE4319.2019.
3. AmericanSocietyofCivilEngineers,SeismicEngineeringInstitute,MinimumDesignLoadsfor BuildingsandOtherStructures,ASCE/SEI710.2011.
4. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,SectionIII, Division5,HighTemperatureReactors.20179.
5. ASME,BoilerandPressureVesselCode,SectionVIII,Divisions1and2,RulesforConstructionof PressureVessels,NewYork,NY.July2017.
6. ASMEStandardB31.1,PowerPiping,1999Edition,NewYork,NY.A9.
7. ASMEStandardB31.3,ProcessPiping,2016Edition,NewYork,NY.
8. AmericanPetroleumInstitute,610,CentrifugalPumpsforPetroleum,HeavyDutyChemical,and GasIndustryServices,1995.
9. AmericanPetroleumInstitute,674,PositiveDisplacementPumpsReciprocating.1995.
10. AmericanPetroleumInstitute,675,PositiveDisplacementPumpsControlledVolume.1994.
11. AmericanPetroleumInstitute,650,WeldedSteelTanksforOilStorage.1998.

KairosPowerHermesReactor 332 Revision0 PreliminarySafetyAnalysisReport ReactorDescription

ofirradiation.Thefastneutronfluencereceivedbythereactorvesselfromthereactorcoreandpebble insertionandextractionlinesisattenuatedbythecorebarrel,thereflector,andthereactorcoolant.

Coolantpuritydesignlimitsarealsoestablishedinconsiderationoftheeffectsofchemicalattackand foulingofthereactorvessel.ThesefeaturesdemonstrateconformancewithPDC31.

TheMSSutilizescouponsandcomponentmonitoringtoconfirmthatirradiationaffectedcorrosionis nonexistentormanageable.The316HSSreactorvesselandER1682weldmaterial,asapartofthe reactorcoolantboundary,willbeinspectedforstructuralintegrityandleaktightness.Asdetailedin Reference3,fracturetoughnessissufficientlyhighin316HSSunderreactoroperatingconditionsthat additionaltensileorfracturetoughnessmonitoringandtestingprogramsareunnecessary.These featuresdemonstrateconformancetoPDC32.

Fluidicdiodesareusedtoestablishaflowpathforcontinuousnaturalcirculationofcoolantinthecore duringpostulatedeventstoremoveresidualheatfromthereactorcoretothevesselwall.Duringand followingapostulatedevent,thehotcoolantfromthecoreflowsfromtheupperplenumthroughthe lowflowresistancedirectionofthefluidicdiodetothecoolerdowncomervianaturalcirculation, therebycoolingthecorepassively.Continuouscoolantflowthroughthereactorcorepreventspotential damagetothevesselinternalsduetooverheatingtherebyensuringthecoolablegeometryofthecoreis maintained.Theantisiphonfeaturealsolimitsthelossofreactorcoolantinventoryfrominsidethe reactorvesselintheeventofaPHTSbreach.ThesefeaturesdemonstratecompliancewithPDC35.

Thereactorvesselreflectorblockspermitinsertionofthereactivitycontrolandshutdownelements.The ETU10gradegraphiteofthereflectorblocksiscompatiblewiththereactorcoolantchemistryandwill notdegradeduetomechanicalwear,thermalstressesandirradiationimpactsduringthereflectorblock lifetime.ThegraphitereflectormaterialisqualifiedasdescribedintheKairosPowertopicalreport GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHighTemperatureReactor, KPTR014(Reference4).Toprecludedamagetothereflectorduetoentrainedmoistureinthegraphite, thereflectorblocksarebaked(i.e.,heateduniformly)priortocomingintocontactwithcoolantand thereactorvesselisdesigntoprecludeairingress.Thereflectors,whichactasaheatsinkinthecore, arespacedtoaccommodatethermalexpansionandhydraulicforcesduringnormaloperationand postulatedevents.Thegapsbetweenthegraphiteblocksalsoallowforcoolanttoprovidecoolingtothe reflectorblocks.Thereactorvesselpermitstheinsertionofthereactivitycontrolandshutdown elementsaswell.ThevesselisclassifiedasSDC3perASCE4319andwillmaintainitsgeometryto ensuretheRCSSelementscanbeinsertedduringpostulatedeventsincludingadesignbasisearthquake.

ThesefeaturesdemonstratecompliancewithPDC74.

4.3.4 TestingandInspection Thereactorvesselandinternalswillbeincludedinaninserviceinspectionprogramwhichwillbe submittedatthetimeoftheOperatingLicenseApplication.

4.3.5 References

1. AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII,Division 5(2019),HighTemperatureReactors.2017.
2. ASCE4319,SeismicDesignCriteriaforStructures,Systems,andComponentsinNuclearFacilities.
3. KairosPower,LLC,MetallicMaterialsQualificationfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR013P,Revision1.
4. KairosPower,LLC,GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR014P,Revision1.

KairosPowerHermesReactor Revision0433 PreliminarySafetyAnalysisReport ReactorDescription

4.7 REACTORVESSELSUPPORTSYSTEM 4.7.1 Description Thereactorvesselsupportsystem(RVSS)providesstructuralsupporttothereactorvesselsupportthe fullweightofthereactorvesselwithfuelandcoolant,vesselinternals,andallheadmounted components.Thesystemtransmitspressure,seismic,andthermalloadstothecavitystructuresduring normaloperationanddesignbasisearthquakes.TheRVSSprovidesadequatethermalmanagementto supportthevesselsthermalexpansionwhiletransitioningfromroomtemperatureatassemblyto nominaloperatingtemperatureforprimarycoolantfill.TheRVSSalsosupportsthevesselsthermal expansionduringpostulatedevents.

TheRVSSinterfaceswiththereactorvessel(seeSection4.3),thereactorthermalmanagementsystem (RTMS)(SeeSection9.1.5),andthesafetyrelatedportionoftheReactorBuilding(seeSection3.5).The safetyrelatedportionoftheReactorBuildingisseismicallyisolatedtoreduceseismicloads(seeSection 3.5.3).

Thebottomsupportconsistsofasupporttray,ledge,supportcolumns,supportpads,baseplate,vessel connector,andanchoringconnectorasshowninFigure4.71.Allthecomponentsaremadeof316H stainlesssteel.Thereactorvesselbottomheadsitsdirectlyontopofthetrayandisconnectedtothe traybythevesselconnectortopreventupliftandshear.Theledgearoundtheedgeofthetraycontains spilledFlibeincaseofleakage.Thetrayisreinforcedby316HSSsupportcolumnswhicharesizedand spacedappropriatelytoprovidestructuralsupportforthetotalweightofthevessel,vesselinternals, headcomponents,coolant,andfuel.Thesupportcolumnsareweldedontothesupportpadwhich allowsrelativeslidingwiththeunderlyingbaseplatetoaccommodatethermalexpansion.Thesupport padshaveslottedholestoallowrelativeslidingwiththeanchoringconnectors.Theanchoring connectorspreventthereactorvesselandRVSSfromupliftandshear.TheRVSSisdesignedand fabricatedperASMEBPVCSectionIII,Division5(20179)(Reference1).

TheRTMSprovidesthermalmanagementforthebottomsupportwithaloadbearingmetallicinsulation materialwhichactsasathermalbreakthatreducesheatlossandcoolingloadfortheRVSSsupport columns.ThebottominsulationoftheRTMS,asshowninFigure4.71,protectsthereactorbuilding cavityconcretefromthermaleffects.TheRVSSisalsoverticallyanchoredtothefoundationthroughthe bottominsulation.Thebottomsupportinsulationinterfaceaccommodatesrelativethermalexpansion betweenthesupportcolumnsandtheinsulationmaterial.

Therearenolateralseismicrestraintsforthereactorvesselandtheheadmountedcomponents.The RVSSisdesignedtokeepthereactorvesselfromupliftandshearduringseismicevents.Thedesignalso leveragesseismicisolationoftheReactorBuildingtoreduceseismiceffectsonthereactorvessel,RVSS, andtheheadmountedcomponents(seeSection4.3).

4.7.2 DesignBasis ConsistentwithPDC2,theRVSScanwithstandtheeffectsofnaturalphenomenaandtoperformits safetyfunctionintheeventofadesignbasisearthquake.

ConsistentwithPDC4,theRVSSaccommodatestheenvironmentalconditionsassociatedwithnormal operation,maintenance,testing,andpostulatedevents.

ConsistentwithPDC74,thedesignofthereactorstructuralsupportsystemensurestheintegrityofthe reactorvesselduringpostulatedeventstosupportthegeometryforpassiveremovalofresidualheat fromthecoreandtopermitsufficientinsertionofthecontrolandshutdownelementsprovidingfor reactorshutdown.

KairosPowerHermesReactor Revision0457 PreliminarySafetyAnalysisReport ReactorDescription

4.7.3 SystemEvaluation TheRVSSsupportsthereactorvesselintheeventofanearthquakeorothernaturalphenomenonthus ensuringtheintegrityofthereactorvesselanditsabilitytoretainreactorcoolant.Thebottomsupport meetsASCE4319(2019)(Reference2)andprecludeslinearbucklinginthevesselsupportcolumns understaticanddesignbasisearthquakeloads.Thebottomsupportisalsoverticallyanchoredtothe cavitytopreventthevesselfromupliftduringadesignbasisearthquake.Thevesselconnectorsmeet Reference2andprovidesufficientlateralandupliftsupporttothevesselandthevesseltophead components.Thereactorcavityisalsoseismicallyisolatedtoreduceseismicloads.Thesedesign featuresdemonstratecompliancewithPDC2fortheRVSS.

TheRVSSisprotectedfromdischargingfluidsbycatchbasins.Sensorsandprobesinstalledoncatch basinsincludingthebottomsupporttraycanbeusedasameansofleakdetectiontoprecludedamage totheRVSS.TherearenopressurizedpipingsystemsinproximitytotheRVSSthusprecludingbydesign anyimpactsfromhighenergylineconsiderations.TheRVSSaccommodatesthereactorvessel temperatureloadingcyclesincombinationwithrelevantmechanicalloadingcyclestoensurecreep fatiguedamagesareprecluded.TheRVSScanalsoaccommodatethegrowthofthereactorvesseldueto thermalexpansionbetweenstartupandequilibriumconditions.ThesedesignfeaturessatisfyPDC4for theRVSS.

PDC74statesrequiresthedesignofthereactorvesselandreactorsystemshallbesuchthattheir integrityismaintainedduringpostulatedevents(1)toensurethegeometryforpassiveremovalof residualheatfromthereactorcoretotheultimateheatsinkand(2)topermitsufficientinsertionofthe neutronabsorberstoprovideforreactorshutdown.TheRVSSmaintainstheintegrityofthereactor vesselbyremovingheatviatheRTMS,activelyduringnormaloperationandpassivelyduringpostulated events.Fissionproductdecayheatandotherresidualheatfromthereactorcoreistransferredtothe reactorvessel;thentotheanchoredsurfacebytheRVSS.ThesupportcolumnsoftheRVSSaresizedand spacedtomaximizeheattransferbetweenthebottomsupportandtheenvironment.Thethermalbreak betweentheRVSSandthereactorbuildingprovidedbythebottomsupportinsulationensuresthe concreteintegritymeetsACI34913tosupportmaintenanceandinspectionofthevesselbottom head/vesselshellweldandtoensureconditionsinthesurroundingcavitydonotexceedmaximum allowableparameters.ThisdemonstratescompliancewithPDC74fortheRVSS.

4.7.4 TestingandInspection TheRVSStemperaturewillbemonitoredduringoperationforconformancewithdesignlimits.TheRVSS willbeincludedinaninserviceinspectionprogramwhichwillbesubmittedatthetimeoftheOperating LicenseApplication.

4.7.5 References

1. AmericanSocietyofMechanicalEngineers,ASMEBoiler&PressureVesselCode,SectionIII, Division5,(2019)HighTemperatureReactors.2017.
2. ASCE4319,SeismicDesignCriteriaforStructures,Systems,andComponentsinNuclear Facilities.
3. ACI34913,CodeRequirementsforNuclearSafetyRelatedConcreteStructuresand Commentary

KairosPowerHermesReactor Revision0458 PreliminarySafetyAnalysisReport EngineeredSafetyFeatures

6.3.5 References

1. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,Sec.IIIDiv.5, BPVCSectionIIIRulesforConstructionofNuclearFacilityComponentsDivision5High TemperatureReactors,20179.
2. AmericanSocietyofMechanicalEngineers,ASMEBoilerandPressureVesselCode,Sec.XIDiv.1and 2,BPVSSectionXIRulesforInserviceInspectionofNuclearPowerPlantComponents,2019.
3. AmericanSocietyofCivilEngineers,ASCE/SEI4319,SeismicDesignCriteriaforStructures,Systems, andComponentsinNuclearFacilities,2020.
4. AmericanSocietyofCivilEngineers,ASCE/SEI416,SeismicAnalysisofSafetyRelatedNuclear Structures,2017.
5. AmericanConcreteInstitute,ACI34913,CodeRequirementsforNuclearSafetyRelatedConcrete StructuresandCommentary,2014.

KairosPowerHermesReactor 69 Revision0