ML20151R886

From kanterella
Jump to navigation Jump to search
Rev 2 to Qualification for Conversion Curve for Inner Diameter Discontinuities
ML20151R886
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 10/31/1985
From: Barley R, Rhedrick G, Torborg M
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20151R847 List:
References
TDR-642, TDR-642-R02, TDR-642-R2, NUDOCS 8602060299
Download: ML20151R886 (76)


Text

l

APPEA/ DIX E 7 642

g TDR NO. REVISION NO.

8UDGET TECHNICAL DATA REPORT ACTivrTY NO. 123125 pagg 3 op is PROJECT: Ouality Assurance DEPARTMENT /SECTION OTSG EDDY CURRENT PROGRAM RELEASE DATE _ . REVISION DATE DOCUMENT TITLE:

Qualification of Conversion Curve for Inner Diameter Discontinuities ORIGINATOR SIGNATURE DATE APPROVAL (S) SIGNATURE DATE M.T. Torborc N N b / l-2N-95 R.O. Barlev /M If26M G.E. Rhedrick [ [ N ef/ 4[f [

l-2M-95 N.C. Kazanas M N Q.* m _ 1]29k_t"

~

APPROVAL F)R EX]ERNAL DISTRl8UTION DATE VF O----.

3

'h h.

Does this TDR include recommendation (su Oves GNo if yes.TFWR/TR #

  • DISTRIBUTION A8STRACT: STATEMENT OF PROBLEM During eddy current examinations of the TMI-l OTSCs the percent B.E. Ballard thru wall penetration of a discontinuity is deter =ined by R.O. Earley measuring the signals phase angle and using a conversion curve t determine the percent thru wall. The traditional curves G.R. Capodanno used for this purpose are designed for outside diameter dis-J.J. Colitz e ntinuities. For inside diameter discontinuities the percent B.D. Elam I.R. Finfrock thru wall determinations are obtained by extrapolation from the outside diameter curve. This traditional extrapolation tenc F.S. Giacobbe M.J. Graham t vercall small volume inner ciameter discontinuities. The presence of inner diameter initiated, intergranular stress H.D. Hukill J.J. Janiszewski assisted cracks (ICSAC) in the IMI-l CTSCs has required CPCI N.C. Kazanas e develop a more accurate means of assigning the percent thru wa 1 v mes.

R.L. Long METHOD

. s trows M The traditional inner dia: heter conversion curve was enhanced R re using supplemental data f rom EDM notches with various known depths. This data was used to develop a conversion curve which T.A. Richter m re accurately represents small volume, inner diameter M.T. Torborg initiated discontinuities. The accuracy of the enhanced curve D.F. Wilson S.J. McGoey was verified through metallurgical correlations using actual QA Library ICSAC samples.

THIRD PARTY REVIE'4

{y' rg 9.g g In order to confirm the technical adequacy of the methodology used in establishing the CPUN inner diameter curve, an indepen-v7 dent third party review was performed. This review was per-W formed by a Level III certified individual and concluded the methodology utilized was accurate and satisfactory for CPC1's application. A copy of this report is included as attachment I to this TDR.

CONCLUSION The traditional eddy current conversion curves overcall the percent thru wall of small volume inner diameter initiated defects such as the ICSAC present in the TMI-l OTS';s. The use of the enhanced inner diameter cor. version curve permits CPUN to more accurately determine the percent thru wall of the ICSAC which is detected during eddy current examinations.

cCOVER PAGE ONLY 8602060299 060204 acooccao 4.s.

PDR ADOCK 05000237 P PDH ,

l DOCUMENT Ng-

=-u 2 Nuclear m

i Quaitf tcation of conversion Curve for Discontinuf tfes \

for Innet Ofaaeter .

    • -**Y OF CHANGE APMIOVAL Daft legy "Re ort of Third Party Review of GPUN Report b N[/J' i 1
  • #64 " has been furnished as Attachment 1 N.C. Kazanas

. y finhs ,

Revised TDR to incorporate additional data from d 2

TDR 686 and to provide statistical evaluations. ,)-7,k Page 5,6, Added paragraph to describe outer diameter discontinuities.

[ Q Ic h g/ g 4 10-Z1.t.s Page 6, Clarified wording for paragraph 2. O ,.2?-?

Page 10, Added re ferences to Appendix E and g L],,%

Figure 3a.

Appendix C, Page 1, Added reference to TDR 686 e

and clarified wording; Appendix C, Page 2, Added data from TDR 686.

Added Appendix E Metallurgical Versus Eddy Current Examination Statistical Evaluation.

Appendix 0, Page 15, Corrected typo.

Page 14 and 15 updated figures.

1 I

O i

I. -

T;R 642 Rev. 2 Page 2 of 17 TABLE OF CCNTENTS

1. Introduction II. Method of Curve Development III. Method of Carve Verification IV. Conclusion Effective Pages Appendices 7

A. Eddy Current Standards and Equipment Used for Qualification 7

B. Data Interpretation Using the COA 4 14 C. Metallurgical Correlattens Metrod of Data Analysis 23 0.

4 E. Metallurgical Versus Ecdy Current Examination. Statistical Evaluation

I TOR 642

  • Rev. 2

- Page 3 c' 17 INTRODUCTION

~

GPU Nuclear utill:es a stancard differential eddy Currelt technique to examine the tubing in the TMI Once Through Steam Generators (OTSGs).

Discontinuities present in the tube wall distort the eddy current field and produce signals which are analyzed to charactert:e the extent of tute wall degradation.

The analysis of the eddy current signals is performed by evaluating :ne amplitude and orientation of tne signal. The amolitude of tne signal The indicates the volu e of the discontinuity and is measured in volts.

orientation of the signal is measured as a phase angle and indicates the t origin (inner diameter or Outer diameter) and :ercent througn aall cenetration of the disc:nttruity. ints method of analyzing the e:3y cu re :

signals is called Phase Analysis. :n :nis cc::ess. a ce-ttfied cata analyst measures the chase angle of the eddy current signal in degrees. ine onase angle measurement is tren acclied to a c:nsers' r :;rve anc tne cr' gin a-:

cercent tnrough wall cenetration of the discontinutty are cetermined.

~"e The basis of the traditional c:nversten carve -as ceen t e ASME code.

ASME code delineates tne carameters ':r estaclishin; a :arve for

!n0;st ,e discontinuities originating on tne cutside diameter of the tucing.

practice has Ceen to entrapolate this Cutside diameter curve to provide a linear curve for discontinuities of 0 100 cercent througn wall ortginatte; on the inside diameter of the tute wall (See Figure 1),

i 11 T < :3

?CR 642 Ree. 2 Page 4 of 17 The discontinuities present in tne TMI OTSGs are very tign:. intergranular stress assisted cracks (IGSAC) originating en the inner diameter of tne tute wall and are therefore nct well represented by the traditional curse wnicn tends to over call small volume inner diameter discontinuities.

In order to establish a more accurate conversion curve for the scecific discontinuities present in the TMI OTSGs. the tradttlonal curve was enhance:

througn the use of supplemental reference points. These succlemental reference points were based On the eddy cur ent responses from synthetic defects (ECM nottnes) : laced on tne inner diameter of ine:nel tubing representative cf the actual CTSG tubing. The analysis of the ed:/ cu* ent responses from tne ECM netches provided known and measured interme:iate points for defining the inner dtameter converston curve. This data crevides intermediate reference ::tnts cf ;]. ). 63. aad 30?. tnrcugn . ail (ne:rtnati permitting the develecment of a mult':ctnt tarve e: resenting inner ciatete-celginated discentinuities.

r Tne use cf this ennanced conversion curve e94:tes GD'JN to more acca ate'j determine tne percent thrcugn wall cenetrati:n of inner diameter discontinut:1es wnich e9sures indicati :ns of 40*. througn all or greater are properly dispositioned. In.idd' tion, discontinuities Of test tnan.J~~.

through wall can :e monitored fo'r future enange.

e e

TCR 642

- Ree. 2 Page 5 cf 17 As part of this analysis, the accuracy of the curve was verified using actual IG$aC samples. This verification w&S made by correlating tne actual percent through wall, as determined by metallegraphy. .itn the assigned ed0y current percent through wall, as cetermined from the : nase angle measuretent.

METH00 0F CURVE DEVELCPMENT using phase analysis techniques for eddy current analysis, the cectn of penetrati:n (cercent througn aall) and ortgtn (inner diameter or cuter diameter) of a discontinuity :an ce determined. This determinatien is made ey analyzing the :nate angle (crientation) of tne eddy current signat and converting tne enase angle into a cercent througn wall ceterminati0n.

During the esamination of CISG tuting, inner :t ateter Originated disc 0ntinuttles credu:e ecdj curren: rescense st yals itn :Pase angles whicn cccur over a 30 degree range. This range Of enate angles is cour:ed re: resents tag by 3 ICC". tnrcugn wall hole which is set for 40 Oegreet aa:

uCCer. limit. The lower limit is DCunded Oy Croce *Ctt0n a*d nOn-relevant tute noise anicn represents the inside surface of the tsce. inis Or:ce motion and tact noise hat teen melsured at aCDr stmately 1) Cejrees.

By contrast, disc 3nt' u t *, inich crtginate en tne outer stameter :d te tube result in eedy c trrer > ;onses with onase angles fr:m tne 100'.

through wall hole at 41 v/ 'is to agorcsimately 110 tegrees 'or a T.

't;i, a

TCR 642 Ree. 2 Page 6 of 17 tnrough wall discontinuity. This chase relationsnia all ws the cata analyst to determine the origin of part through wall discontinuities up to approximately 80% thrcugn wall. Above this point, the influence of otner factors such as dise:ntinuity shape and volume pronibit making accurate determinations of the discontinuities origin. GPUN therefore administratively dispositions discontinuities aeove 80% through wall as 100*.

thrcugh wall.

The narrcw pnase spread for the inner diameter discentinuities is relativel y constant and no significant imcrevement was ncted curing a review of tre existing 200, 400 and 800 0 : data. The innerent limitations of tnis narrCw phase spread require the use of conversion curves and evaluation technicues capable of providing the nignest degree cf atturac/ and rectatacility wnien can te cbtained.

The development of a conversion curve cacat,le of Droviding accurate cercent tnrcugn wall determinations recuires ustng staccarcs unitn accurately represent the actual discontinuities. The discentinuities crevicusly identified in tne TMI OTSGs are charactert:ed as ceing very tignt, intergranular stress assisted cract.s (IGSAC) originating on the inner diameter of the tube and precagatin; 'n a ciet sferent'al manner (See *:R 341).

f II31' !)

704 642 Ree. 2 Page 7 of 17 Utilizing the EDM notch stancards which were originally used to cualify tre e ad at TMI (See TOR 423),

eddy current test program presently being impleme a conversion curve reDresenting small volume inner diameter originated discontinuities was develocec. (See Figure 2). This initial curve was developed by plotting the 'Least Squares Fit" of the eddy current signal phase angles from ECM notches of 20, 40, 60, and 807. through wall (nominal) with are lengths ranging frem .060 to 1.00 inches. (See appenetr A).

This EOM notch curve revealed tnat the traditional conversion curve for inner clameter originated discontinuities nas overly Conservative and did not provide accurate cercent through wall determinations. The E04 net:n conversion curve offered a substantial increase in the accuracy of cercent through wall determinaticn, Mcwever. the hypercolic shace of the curve prevented using the esisting autcmated data evaluation system.

The existing data evaluation system, the Zetec 00A 4, offers computerized phase analysis of ecdy current sigrais and cc: vites a mecnanism f:r accurately and efficiently determining percent tnrough wall values.

However, the 00A 4 is limited to a linear inner ciateter c:nverst:n cur,e and, therefore, could not reactly utilize the ECM notch c:nversion curve.

(See Appendl* B).

  • l :a

TCR 642 Rev. 2 Page 3 of II The benefits of utilizing the 00A-4 warranted further investigatien to develop a conversion curve which could combine tne accuracy of the ECM noten curve with the data analysis capabilities of tne.00A 4 In orcer to provtce a means of implementing an accurate inner diameter curve using the 00A 4 a linear approximation of the EDM notch curve was deveicped. This approximation was develoced as a linear function using the 100' througn wall hole in the ASME calibraticn stancard to bound tre uccer limit at 40 degrees. The lower Ilmit was establisned using the signals frcm pr:ce motion and tube noise whicn occur at accrontmately 10 degrees. (See Figure 2).

In addition to providing a means of utilizing the 00A 4, the linear approntmation also provides an adcitional level cf conservatism over the E:9 noten curve for incications 40?. nrougn wall ce greater. This accitional conservatism accounts for variaticos in sizing actual discontinuities versus sizing uniform geometry synthetic defects and assures discontinuities from 40 to 100?. througn wall will te crocerly discesitione:.

For discontinuities which are identifiec as cetng 'est than 40'. nr ug9 wall, no further disposition is required. Tuces witn dis:0ntinuities in r

this range are categorizec a.s "cegracec" tates arc are monit:eec cu ';

subsecuent esaminations.

    • 31f :n
CR 60 Rev. 2 Page 9 of 17 The assigned percent through wall values for this subset tend to te tc.er than the actual percent through wall penetration, however, the assignea values are utilized for data base management only. Although tre assigned percent through wall values are lower than the actual values, the assigned values can be used to effectively monitor indicaticns for cnanges in chase angles.

METH00 OF CURVE VER!FICai:CN The accuracy and repeatability of the GPUN tr.ner diameter convers10n curve .

was verified using two different tyces of data. These verifications were based on data obtained fecm metallurgical correlations and from tne Dreviously identified EOM cotenes.

The accuracy of the GouN Inner diameter conversion curve for tne specific discontinuities in the TMI OTSGs was vertfled thrcugh metallurgical correlations of actual IGSAC samples. These tetallurgical ccrrelaticns .ere performed by ccmcaring the actual IGSAC cercent tnr0ugn wall, as determined by metallography, with the asslgned eddy current Cercent thrcugn wall, as determined by the GPUN inner diameter conversion curve.

The ccrrelation incluced actual *GSAC samples wnich were creviously remcvec The sample of removed from the OTSGs and lateratcrj induced IGSAC samples.

tubes included all availacle samoles from below the upcer tube sheets, 11!

9

  • 3 ;)

ICR 642 Rev. 2 Page 10 of 17 available cart through wall samoles and additional 100% tnrougn aall sarcles from within the uccer tube sheet. In addition, to these removed samples, two samples of TMI archive tubing with laboratory induced cart tnrcugh wall IGSAC were included. (See Accendices C and E).

To grapnically illustrate this correlation, the eddy current assigned percent through walls were pictted against the actual cercent :nrcugn walls.

as determined by metallograchy as shown in Figures 3 and 3a. These clots verify the GPUN inner clameter curve provides a more accurate means f determining percent inrcugn wati fer actual IGSAC samples than traditional conversion curves. Accendin E nas been acced to crevfde the statistical evaluation of this correlation.

The GPUN inner diameter curve was further analyzed using t9e previcusly

.rentioned EDM noten standares to ierify tne reltactitty and receatacitt:y of the overall examination techniques. The analysis was cerformed ';y esamining the same ECM notch standards used to deve10c t9e "ECM N0rc7" curse.

The examinations consisted of scanning eacn of :he stancaras fcur tires, rotating the standard 90* between eacn scan. This metnod of scanning subjected each notch to " test case anc "~cest case' orcce orientatt:- ::

simulate the effects of cr0te cassage during in-situ esamina:lons. Ine examinations were tnen receated using a different prcce to account for

'i3: e :3

70R 642 Rev. 2 Page 11 of 17 variations in proces. The prebes were designated S and C and the data Data set A was used for the collected was identified as Data Sets B and C.

initial screening as described in Appendia A.

The eddy current percent through wall ceterminations were then plotted against the actual percent through walls to determine the repeatability of The resulting data plots showed an average overcall for the examinations.

indications 40% tnrcugn wall er greater. This average overcall indicates the conservatism GPUN added by using the linear aDDrontmation can ce maintained during receat esaminattens. (See Figures 4 & 5 and Accendix 0)

CONCLUSIONS The inner diameter c nverstCn curve qualified nerein crasides a more initiated, intergranular accurate means of dis:ositioning inner diameter The stress assisted cracks (IGSAC) than traditicnal ccnversica curves.

imclementation of this curve will enrance GPUN's eddy current :acactlities l

and ensure the IGSAC indications identified du-feg 075G edd/ current examinaticns will te properly dispositionec.

In addition to providing the acilitj : or0ce 'j afs;os'tten discontinuities, the conversion curve can ce implemented using tre e<lsting data analysis techniques. Maintaining tnis c ntinutty in analysis indications (Oegraded tutes) techntaues, enacles GPUN to monitor tubes with during subsequent evaminations, i

I 'I)I' la t

TOR 642 Ree. 2 Page 12 of 17 FIGURE 1 TYPICAL E00Y CURRENT CONVERSICN CURVE too i 1[ - (

I 3 [ i i i i . .

Se U 100% THRU- i

't i OUTSIDE DIAMETER PORTION OF CllRVE .t WALL .052" / .

, i (Based on Flat Botton Holes) 88 ** Dia. HOLE y i

4

. 1

'( i . t ] I i i 4 7e !; . ..

.  : I I  ! i /i .

6e '; ,

i i I i tj i t

y i I 1

^

58 'c s ,

i l i i f.

5 t . I\l se s;

/ ' INNER DIAMETER PORTION

\! -I '

l 3'

  • OF CURVE (Based on I \1 8  ! I '

i I I i Extrapolation FL 3 4

2' T .

?

100*. Thru 'a'all Hole) I i '\ j.

}

i , i I

i

/i t e '. ,

l i

, \1, 4 i

. .,/  : .

+ t.w its las tw t*e 15*

t+ ;e :e 4+ *e sa  :'e se 23 '.

. %suoi at a w at tEcstIs>

1 DEG % GES X DEG : DEG % DEG % DEG L DEG % OEG % DEG %

7 ?20 00 140 c6
6v C2 000 00 020 50 040 39 060 84 000 64 t00 15 121 00 tot 00 ist 30 001 03 021 53 04 99 061 83 081 62 tot 002 05 022 55 042 99 062 82 082 6f !O2 54 122 00 00 14314200 00163 '62 00 00 003 08 023 57 043 99 063 et 083 60 103 .2 123

~,0 '24 00 14e OC '6e c:

004 10 024 60 044 97 064 80 084 59 106 005 13 025 63 045 96 065 79 385 58 105 .9 125 00 145 30 165 30

'006 15 026 65 046 96 066 18 086 56 106 27 126 00 146 00 166 Un 007 18 027 63 047 95 067 17 087 55 107 254 127 123 00 00 147t48 00 00 f167 6s 10 L; 000 20 029 10 048 94 068 16 089 54 106 009 010 23 25 029 03073 15049 05093 92069 0707574089 0905251109 110 2221 129 00 149 130 0J 00 169 OJ Off 28 03t 78 351 92 07f 73 091 50 ill '9 f31 0000 151 150 00 17!t/cJO  ;;

012 30 032 80 052 91 072 12 092 49 112 *i !30 13300 00?$2 15] 00 00 113 !72 00 JJ 013 33 033 83 053 90 073 71 093 47 f t 3 'l t 34 00 154 au :7. O.

014 35 034 85 054 89 074 70 094 46 114 'O 135 00 ISS 00 175 JO 015 38 035 88 055 88 075 69 095 44 ff5 O 016 40 036 90 056 87 076 68 096 43 116 U3 136 00 !56 00 '16 3

OIT 43 037 93 057 87 077 67 097 of !!1 J6 137 00 tS7 00 177 00 018 45 038 95 058 86 078 66 098 40 179 04 138 00 158 00 :73 01 019 48 039 98 059 85 079 65 099 38 119 02 139 00 153 00 179 00 i

  • ' ' *I

i

! TCR 642 Rev. 2 Page 13 of 17

]

1 1

CIGURE 2

]

)

l l

l 1

l l- INNER DIAMETER CONVERSION CURVES

! iiiiiiiiiiiiiiiiiiiiiiiii

.................................=,g. Ta ........'

{ ,,,

P 80 TRADITIONAI. INNER / OUTSIOE l

E DI A.'ETER CURVE .

  • DI A.WTER 1 I

gg / CCRVE M

j

  • l *

/  ! l l g .

i E s0 CPUN QUAI.IFIED INNER

  • DIAMETER CURVE N EDM NOTCH CURVE l . <t....e sq.. rIt) :

j g gg n '

/ -

u  :

- 4o W

A INDICATIONS <40% - MONITORED 30 DURINC SUBS ERAMINATIONS l

l a0 REQUIRED THRESH 01.D OF DECTECTION l

{ lo ao a4 as 3a 3s ao 44 4:

o 4 s la is PHASE ANQl.E

. m l

TCR 642 Rev. 2 Page 14 of 17 FIGURE 3 GMI (IfMISim OffNE VS. ACTl'fL IGSf.C StiRES I I I I I i I I I I 1

10 Data Pt M -

8 100 -

t 90 - MTALLURGICAL SAMPLES 8 -

C '

0 80 -

EDDT " " tooY ctnuttwT M OWR M ACUR EQUALS ACTUAL -

U 3 g 70 -

R -

I s 80 -

0 N

50 -

C

~

U 8

- tooY cauttNT l40 g

t:NDERCALLS ACTL'AL 30 -

l 8 -

i -

to -

i 10 -

I I ' '

I I I I I I I 0 SO 80 100 0 to 40 ACTUAL THRU-WALL FROM MTALLURGICAL SAMPLE DATA SET "R", APPENDIX E NLL IGSAC SAMPLES (18 POINTS

-  ; * :a l

~

TCR 662 Rev. 2 Page 15 of 17 FIGURE 3a GPUN C0fNEPS101 OJINE VS. ACTUfL IGSt.C S#RES l I I I l l I I I l l 1 100 90 - RETALLURGICAL sanPLEs  : -

C ,

0 80 -

,,,, ,y, 3, root cu u rwT R ovrncuts ACTUn tQUALS ACTUAL ,

g

{ 70 -

R -

I s so -

o N

50 -

C u 8

'~~

- tooY cUuENT h 40 UNDERCALLS ACTUAL l

g -

I 30 -

t

' 30 -

10 -

I I I I I I I I I I O

I so so too o ao 40 ,

ACTUAL THRU-WALL FROM RETALLURGICAL sARPLE DATA SET I APPENDIX E 20 - 70% TW IGSAC SAMPLES (6

.u

TCR 642 Rev. 2 Page 16 of 17 FIGURE 4 GPUN CONVERSION CURUE US NOTCH SAMPLES I I I I I I i i i l l 100 -

gf  ! _

DATA FROM SET 3 90 -

s /

C 0 80 M

EDDY CLT. RENT ovERCALLS ACTUAL *

$[ EDDY CURRENT

~

  • '/ EQUALS ACTUAL E 70 - f s R * ,

5 * / _

g I 80 0

- MEAN DEVIATION cREATER THAN 40% g g/

g g M THRU 'a'ALL REGION g S0 -

/ g _

U f EDDY CURRENT h 40 UN ERCALLS ACTUAL E u 30 - * -

3 20 -

3 l

10 -

I I I I I I I I '

I I 0 80 100 0 20 40 60 ACTUAL THRU-WALL FROM NOTCH SAMPLE 1131Y ca

TCR 662 RQv. 2 Page 17 of 17 FIGURE 5 GPUN CONVERSION CURVE US NOTCH SAMPLES l l l l l l l l l l I

100 - n t /

90 - DATA FROM SET C gg . -

1 I '

3 C EDDY CURRENT 7 -

0 80 -

OVERCALLS ACTUAL ,

N I

/ I EDDY CURRENT

' E@ALS ACTUAL _

E 70 - s R EAN DEVIATION s cREATER TilAN 40% 3 3 /

I 60 -

THRu tJALL RECION 0 *

/ s N s -

50 - * .

C sy U  :

-

  • EDDY CURRENT h 40 g UNDERCALLS ACTUAL E gg -

30 - **

20 -

a ss -

i 10 -

l **

I I I I I I I I l' I 0 80 100 o 20 40 60 ACTUAL THRU-WALL FROM NOTCH SAMPLE Il31Y ca

APPENDIX A ECDY CURRENT STANDARCS AND EQUIPMENT USED FOR QUALIFICAi!CN

_ . - _ .- - _ =

CR 6a2

' Rev. 2 Appendis A EDDV CURRENT STANDARDS AND EQUIPMENT USED FOR QUaLIFICA !ON The standard differential esamination technique used to examine tne TMI-l OTSG tubing utilizies a Zetec MIZ-12 test system operated at a base frecuency of d 400 KHZ. The eddy current probes can be either a .510" or .540" diameter operating at normal or high gain.

To reduce the number of examinations required to Qualify the inner cianeter conversion curve for use with the different probes and gain settings, the noten techniques were compared using toth an A.S.M.E. standard and a E.D.M. .

standard. The resJ1ts as shown on Figure A-1 confirm that the chase angle of the eddy current signal is nct affected by varying gains or proce clameters.

As a result of this c mparis:n. the remainder of the cualift:Ati0n was cerfctmed using tne a:ctica le porticns of tne existing .540' High Gain enamination precedure (1300 48/42-EC-063). .

The qualift:ation program used nine standards having electro-discharged The depth of :ne not:9es varied between 17?. to 1:0*.

machined (EDM) notches.

through wall cenetration with a nominal widtn of .005" the nottmes ere

n
trcumferentially orientatec with arc len;tes frcm .06C" :: 1. 200 ,

addition, one stan:ae3 (THI-ET 110) :0ntained .060" tengitudinal not:res.

(See Figure A-2) t 4

A- '33r 23

TOR 642 Ree. 2 Appendia A

~

Prior to using the fabricated tube standards for establishing a cualification program, it was necessary to review the eddy current responses to ensure the eddy current signal was not being influenced by tube abnormalities. This review was conducted on each of the 31 notches. As a result of this review the following notches were deleted.

1. E.T. Std. No. - TMI-ET-il2 - .100 < 56%

.100 x 79?.

2. E.T. Std. No. - TMI-ET-111 - .060 x 17%
3. E.T. Std. No. - THI-ET-113 - .187 57%

The above notenes were deleteo due to signal distortion caused by tute noise, manufacturing, ana/or handling. F,,jguresA-3.A4,A-5arephotosoftneed:y current presentation.

4-: ~32 :3

TCR 542 Ree. 2 Accendis A f

i figure A-1

(

P4ASE ANGLE COMPARISON AT 400KHZ EDDY CURRENT PHASE ANGLE STANDARD (Measured in Degrees)

.510 .510 .540 I ASME Standtra (0.0.) High High S/N 92311 Normal Gain Gain Gain Flat Bottom Holes _

40 40 20 100% T.W.

i i e 75 75 75 80% T.W.

92 92 92 60% T.W.

113 113 113 40: T.W. ,

121 122 121 20% T.W.

.510 .510 .540 E.D.M. NotCn Stancard (I.D.) Hign Hign S/N TMI-ET-114 Normal Gain Gain Gain Circumerential Nettres 33 38 38 80% T.W.

30 30 30 60% T.W.

26 27 27 40% T.W.

9 9 9 20*. T.W.

d

'3 - ' ' 3 3 - :.

. ~ . - - . ,, - - _. .- . _ _ _ __ -

70R e42 Rev. 2 Appenais A figure A-2 LIST OF TUBE STANDARDS NOTCW LENGTH NOTCH DEPTH COMMENTS STANDAR05

.250 C 39% 0.0. 4 Notches 90* Acart

' TMI-ET-101 4 Notches 90* Acar:

.250 C 38% I.D.

TMI-ET-110 .060 L 20% !.0.

.060 L 36% I.D.

.060 L 62% I.O.

.060 L 79% I.D.

.060 C 17% I.D. Delete THI-ET-111

.060 C 37% I.D.

.060 C 51% I.D.

.060 C 74% I.D.

TMI-ET-112 .100 C 18% I.D.

.100 C 39% I.O.

.100 C 56% I.D. Delete

.100 C 79% I.D. Delete TMI-ET-113 .187 C 17". I.O.

187 C 36~. I.D.

.187 C 57'. !.0. Delete

.187 C 74~ !.0.

TMI-ET-114 .250 C 18~. I.D.

.250 C 40% I.O.

.250 C 58% I'.0

.250 C 79'. I.O.

.250 C 100'.

TMI-ET-115 .520 C 65*. I.D.

.520 C 76% I.D.

.520 C 100%

.750 C al'. I.D.

THI-ET-116

.750 C 62' I.D.

.750 C 787. I.O.

THI-ET-117 1.000 C 22". I.O.

1.000 C 38". I.0.

C - Circumferential L - Longitudinal Eddy Current Standard Certification caczages are :n file at :ne !MI 51:e.

4 33r :3

b ICR 642 l -

Rev. 2 i

Appendix A l

i i

J Figure A-3 Eddy Current Tube Sample S/N TMI-ET-il2 i.

- *& I l

.. I l

I i

i i

l l

l Notch .100 < 56; ID Notch .100 = 7 9~. ID The above flaw lissajous catterns are distorted :y interfering sigrals. 's trace does not cross over at the zero point ano also forms in reverse on :e trailing lobe.

2-5 '133' :.4

J TCR 642 Res. 2 Accendix A I Figure a4

=

l l

Eddy Current Tuoe Sample S/N THI-ET-111 l

, Q . l l

1 i l l

.r- l i

l l

i i  !

t

, l l

l Noten .060" 4 17% ID i i

1"rCi

'he above 17% no::n is celow~the cualifiec thresnold of :etect' n ac:

be isolated fecm :ne tuce noise.

i I

33' 23 4-6 1

l l_ _ _ _ _ _ _ _ . _ _ _ _ _

. ._ _ _ _ - _ . . __ . _ . . _ _ _ _ _ _ . _ - - . - . - .__. .______- - _ .. - -- . _ . . .. ._~._ ._

i

'CR 642 l

Rev. 2 I Accendia A l

l I

Figure A-5 j Eddy Current Tute Sample S/N TMI-ET-113

)

i

-l S

1 l

l 1

i 1

t xc l i

- I

- wm l i

O ~

Notch .187" x 57. ID  !

The above flaw lissajous pattern is being distorted due to interference from a cent. l i

i i

1 il 1

- 4 I

APPENDIX B CATA INTERPRETATION USING THE CDA 4 s

TCR 642 Rev. 2 Appendix B Introduction The eddy current data collected during TMI OTSG tueing examination is recorced on magnetic tape and analyzed "off line" by a certified Data Analyst.

The data analysis process is carried out using both the conventional Zetec In this process. tne Mlz 12 analog system and the Zetec 00A 4 digital system.

data analyst reviews the eddy current Sata on an oscilloscope and identifies potential defect signals.

Once a potential defect is icentified, the portion of the data ccntaining tne signal is entered into the DCA 4 analysis system for further evaluation.

The purpose of using this two stec metnoc of cata analysis is to maintain :ne sensitivity of the analog oscillosccce #ce icentification of cotential cefe:ts antle providing the additional analysis cacabilities of tne ODA 4 s

Methec Prior to starting tne review of the eddy c';rrent cata. :Fe data analyst reviews the calibration standard whicn 's recorded at the start of eacn magnetic tace. The analyst enters the chase angles from the calicration.

standard into the 00A 4 and the onase angle versus cercent through wall conversion curve for outsice ciameter ciscontinuities is automatically develoced. The deveiccment :f this ccnversion curve is precrogrammed and ':

E  ;.

. . . _ . ~ - -

TDR 642 Rev. 2~

Appendix 8 based on the cutside diameter flat cott:m roles c:ntained in tne 'a5ME

standard. The inner diameter portion of thi curve is automatically extrapolated from the 1001 througn wall hole to zero. By snifting the location of the through wall. phase spread of tne extrapolated :ortlen can te varied.

The proper orientation of tne through wall hole is determined by tne angle cf tne probe Etion, which should cccur horizontally. During esamination of tre TMI OTSGs, the secaration cf the prebe motion and the 100% througn al' nc'e is 30* and therefore inner diameter discontinuities will nave enase angles in this range. (Figure S-1 snows a typical conversion curve for the TMI OTSGs.)

With the calibration stan0ard information entered into the DDA 4 the conversion of phase angles to :ercent througn aall can ce accomplished automatically using tre crecr:grammec se:: r analyzer.

!n order to determine tne percent t9r:ugn aa: 1Of a OiscOntinuity, tne :ata The si;.61 cs' tren analyst isolates the eddy current sigral on t9e s:reen.

be expanded to permit the analyst to more ac:arately se;e:: tre accrc:rlate points for signal measurements.

Once the apprcpriate coints are selected, the ; nase angie meascre ent. 3:; a' amplitude and percent througn wall are cisplayed. The eccy cur ent sigaai 1 :

all pertinent information can then ce printed as a hard c:cy cr tre 3.; ';: - :5

ICR 642 Rev. 2 Accendl* B information, including the eddy current signal can also ce reccr3ed en a data diskette. (Figures B-2, B-3, and B 4 show tyolcal eddy current signals as analyzed using the DOA 4.)

At present the eddy current signals anc evaluations are being maintained ustrg data sheets and are supplemented by the hard copy printouts. The data is then manually input into the TMI Eddy Current Data Base System.

Should GPUN decide to utilize a direct input data base in the future the OCA

  • generated diskettes can Orcvide the direct input mechanism.

i i

t 3-3 14: :3

700 642 Rev. 2 Accendtx B Figure 8_1

. a tes

/P 1007. THRU 'a'ALL }. .

Se :q I I

/I j

{ i i I '

  • w: .< .

L

./ . .

-( -

. . i  !

I ' ' '

,. 1 i '

i + t I  ! k OUTSIDE DIAMETER CURVE Wi e [ ,

M:4 i i i i i l

'{ ,

i i  : i i . .

.e ::

I

.f i I

i i . 6 \, . j l j .  ;

/ INSIDE DIAMETER CURVE \ i i i i 4

M '$ i; I ,/ I l i I ,

i i  ! . \ i i i i i Mw j , , ., ,

i ' I l / I r . i . . . .\ , I I i g g .; j t .

, 1\l 1 i .

,)i i

  • i .

t # t t ,

a a m .. 2 e . . . . . i i.e is

. ~5-@000H M vs. **4rSE .:NA.E . 0E'JtEES i DEG .

w e . t is tee

. iG LEG NaTE I' H mr i tro .a. is i. 3 ai a sta r. stu . .i: 9

. .. t , . ;to .. . . . , . Jtu .. stu / w.- .

000 00 020 69 040 32 060 75 030 53 :0( __ 20 00 i40 UC 'i .

00t 03 02t 72 041 ?r 06: 74 OGt 5: 'L' _9 :2' 00 '41 00 '6' 'O 002 07 022' 76 042 91 062 73 082 50 10_ 6 ~2_ 00 : 4_ e.. :6. . >..

003 t0 023 79 043 90 063 72 083 a9 *:) 3 '6 :23 >0 *al 00 6:. '.u 47 'Oc 60c 14 024 83 04c 89 064 71 064 c '2c *e- '

'6- .

005 '7 025  ?.6 045 83 065 70 085 a6 2 % 2 '25 00 ta5 30 'f3 UU 006 21 026 90 046 87 066 69 086 cc 106 a :_i O f. :c6 '

ii 007 24 027 3? 047 87 067 63 067 a ;; '07 3 '27 .0 *a7 Ju 'iT

U 008 23 029 97 043 86 063 67 036 4' '0
.i *_i 'ci '

009 31 029 39 049 35 069 66 089 40 109 ,a ' :9 . .0 !a9 ou ' -3 00 010 34 030 99 050 84 070 65 090 26 1*'i  : lu 00 :5' '

w O!! 38 031 39 051 83 071 63 09'  :;7 11: 0 '1: 00 :5: 00 '7' 00 012 41 032 98 052 82 072 62 092 35  :.  :.  :: 00 '5 0 "~_ 4 013 45 033 97 053 32 073 61 091 34 ::3 10 i33 00 '53 .

0 014 48 034 97 054 8' 074 60 094 32 *1c 0 ~ ic 00 i~c OC - -

015 52 035 96 055 30 0/5 59 095 3! !15 ;0 '15 00 '55 20 /5 N

016 55 036 95 056 73 076 52 096 29 : 6 ~

2 0 16 00 M . F.

017 59 037 94 057 73 077 56 097 27 ::7 0 :27 'O :57  :: 0 * ' ' 0 018 62 033 94 058 77 078 55 098 25 116 ..i G ' :.'- U.: 'Si '.

019 66 039 93 059 76 079 54 099 24 119 00 139 00 :53 00 ; JO Typical 00A 4 Conversion Curve. Curve was ciotted after rctating : nase :

olace prece motion horizontal nnicn cuts 1007. Hole at 30*

54 :124- :a

TCR 642 Rev. 2 Appendix B l

figure S-2 l

,l. CM t @l2 .I ' M 4 ~~ L 10 10 O *99 T'E bl g 1, cu g 67 i i om1 O!Fr

  1. ,g FstEQ 480 kMz i P
3PCM E l

+ l i ROTATICH - 347 DEG l j ;OpeEL 2 O!FF l

, FPEG --- 29s kMz 1

, j (3 M ~~3 7

' i rcTATION - 359 CEG }

I f f' ' %.

OeeEL 3 O!FF ,

t - . regg - 3ee mMz i

$ 'm M lY l

! k+

l D" $ ' !

! c1tEQ 4* kM:: I

a.e9 eJLT5 m aus 39 E i' vsee 217 l l OE52Suf +0.a 3"3 CEG I j [ i , ( i ROTETION -

'M!x 1 (5) <- I l

~ cAweELs 12 l

, i :# sed 3*4 i l l EOTATION - 22 CEG l j ,

L. ,msix 2 .o .-

coe(L3 12 n

g -

n a 4 -

' 0074 TION - 317 OEGl "v 0 LEG OATE ZETEC Im. - 1983 40 GT ste t T o Tnt t iTD wa t 2. t 4. s4 E sis im 12.a sew 1 Typical 00A 4 Printout showing 1007. thru-wall nele in ASME calf tra:t:n

, standard. Hole is set at 30' as would occur during ::r: duction esamina:+cns.

l s-5 'm n l

ICR 642 Rev. 2 AC Cencis B Figure S-3 CMDSEL 4 - 1 llD 19 810M 88 Tts 1291

. CH S W3tf ,l_ CH t toftl2 ,

OW44EL 1 W FREQ em ktta Srste 354

" " ROTATICD4 - 351 OEG g Om0EL 2 DIFT

"" , g 290 ktta j w --- J FREQ

< SP544 1798 I E POTATION - 39 DEG l CweeEL 3 O!FT

~

.[ g reEc m um i

y 57584 312 M ROTQTION - 319 CKG

~ ~

g CN44EL 4 rnEQ -

DIFT 45 kHz I* '3 E s 127

_ .- ,a ".I,I, , " " i irset E ,

j acTATION -

29OEDl g 1 l

MIX 1 (5)

!CMD#ELS 12 l

l l

l I  ! SPf44 (38 i l _

kL WOTATION -

3DEGf y_ ,

I

-nix 2 < 6>

c>e4ELs 32

$ PED 4 1M i

" DOTATION - 316DEG{

SA3 LEG OATE ITEC Ire. - 1983 N PUMT t.DelTe TMI 30 DEG C3L CIAlv i 4 Itt.ET N 29 82 EJttlan 12.4 Gew 1 Typical 00A 4 Printout showing a 43% thru-wall (:D). 1.52 volts eddy current signal. The corresocnding discontinuity is locate: i .J" cei: :9e a::cer

acesheet.

3-5 II24/ ld

_ - _ _ -~

l TSR 642 Rev. 2 A:cenclx B Figure 6 4 Ct#*EL 4 - t ,ID to aos S 7tm 5l

!.CH t67 .l_CH SHORIZ.h 4ee ketr n, -

eOfattaw - 34s OEG j k ;owedt 2 OIFT f lrnEs 2se aux

'I

}/ 467 g SPCM M Mint!0M - 353 NG l 1 L F { cwee(L 3 O!FT rare tce kwr i E spop 3ee

= DOTATION - 311 DEG Ope 4L 4 01FT I  ! FnEQ 45 mH21 4 **

  • 30s 5 L I l g3 q -10.0 !SPSD4 f i h j 20TATICM - 29 OEG 1 P < M!x 1 (5) (-

r S 12 l

[- _

\. TPC#4 29e '

}< hl b l ' Et0TATION -

2DEGl

~ t l h!x2(6) <- ,

, L .- d OeeELS 32  !

' F l l ' span 3ae

.( h ,

l f90TATION- 112 DE.G j 48 Pt se47 UNITE LG LEG DATE .T EC Inc. - 1983 TM1 280EG Ca. clave t G IG 9 21,83 Edi t i re 12.0 eev i l

l Typical DDA 4 Printout showing a 43*. thru-nall (00). 57 iolt eddy current signal. The corres;cncing alscontinuit/ ts located ').:' :el d t'e '3t' " :e .

sucport clate.

37 31' :1

1 l

l I

i APPENDIX C METALLURGICAL CCRRELATIONS i

4 1

TOR 642 Rev. 2 Accendix C Metallurgical Correlations GPUN utilized metallurgical correlations to verify the accuracy of the The metallurgical data uses for enhanced inner diameter conversion curve.

Tne these correlations was extracted from TDR 423, Appendix A and TDR 686.

I eddy current percent through wall determinations were made by re-analyzing existing eddy current data using the present data aralysis techniques and the GPUN inner diameter conversion curve.

The eddy current analysis was comcleted using tne techniques described in appendix S. In using these technicues the data was recorded on a curve which extends from 0-30' The data was tnen normalized by adding 10* to cermit correlations with data wnich was recorded on a curve frem 10 40' This normalization maintains consistency with the remainder of the analysis which was recorded on a 10 40* curve as snewn On Figure #2 in the tedy cf this report.

~

The IGSAC samoles utilized for tne correlations consisted of lacoratory inouced IGSAC samples and tutes which were crevicusly removed fr0m the ~VI l OTSG's. The IGSAC was cnaracterized in TOR 3 1 as teing very tignt, incer diameter initiated and proca' gating in a circumferential manner.

Figure C-1 is a summary cf the eday current sersus metallurgical correlation. Figures C-2 tnrcugn C-13 are examples of nard ccpy print:uts detailing the eddy current signal analysis as cerformed using tne Zetec 00A 4 C! ':32< :3

TOR 642 Rev. 2 Accenalx C Figure C-1 Correlation of Eddy Current Percent Throughwall Versus Actual Percent Throughwall Data from TOR 423 Metallurgical Eddy Current Eddy Current Tube Location From Depth Phase Angle Numeer Top (Inches) Death Obs (Normallred)

Laboratory Induced IGSAC 41% 22*

Sample 23 4.0 38?.

1 54; 51% 25' 2 Sample 24 4.8 OT5G Pulled Tubes 68% 30' 10.7 66%

3 A-112-7 82% 34' 4.0 70%

4 A 146-8 100% 39' 12.8 70%

5 A-24-94 100%* 46' 34.0 100%

6 A-24-94 90% 37' 32.0 100%

7 A-133-74 100%* 51' 33.0 1007 44*(min) 8 A-133 74 100%*

11.6 100%

9 A-11-66 100?.* 62*

8.5 100%

10 A-146-6 100%* 58*

26.8 100%

11 A-13-63 93% 38*

7.6 100%

12 A-10-29 Data fecm TDA 686 Metallurgical Eddy Current Eddy Car-ent-Tube Location Frem Deptn Ceptn Phase ' ;!e Number Top (inches) (Norma't:ed) 23% 17' 1.2 20%

13 A-111 13 130?.* 53*

1.4 100%

14 A-112-05 100;* 68*

2.4 100%

15 A-112-05 100% 100'.* 5:*

16 A-112-05 2.9 1007.* 55*

4.1 - 100%

17 A-112-05 10C?.* 57' 5.8 100%

18 A-112-05

  • The measured phase angles identify these signals as ceing outer ciameter GPUN administratively Ccnst:eri 83 to 971 througn wall ciscontinuities.

indications greater than 80'. througn wall, inner clameter Or cuter diameter, to be at or aea  ::G". througn wall.

132 :a I

.".A 542 Rev. 2 Acce,dtx C Figure C-2 CHAreEL HO - t 10 e kOW 0 TW 23' e i ., CH S WRT .i_ CH I HOR I . . 9 a i ICWe#EL 1 M i

n j

! FREQ 400 kHz i 1 l SPR4 429 l l

l ROTATION - 358 KG l l"_q l

{Cwe+EL 2 O!FF FWQ 298 kHz q I"

,j l r  ;

- 6%j j EOTATION C9 OEG

. ' cme *EL 3 0[FF ,

t 1 i,

, nTQ GM nH2-I.  ;

  • iMo4 1222

'~ '

RUTATION 313 DEG l c L i Icweegt 4 OtFF 6 l l FREQ 45 k Hz l 12 m 4i W j

' 1.25 A TS TE et m 13 7 h'i 4.0 m 6 00TATICe8 - M3 CEO I I i + 1 1 fMIX1(5) (- I i 3'-

! l lNS 12 l

~

i i$ I

' $P544 W j l . ' j DGTATION 7 CEG l j [  :-

,M!x 2 (6) chm *ELS R j

\ l m .

jir5*4 678 l

( }. I kOT AT ION - 317 CTG l t

t

[- u 29 Ft.pHT UNIT * 'v 0 LEG DATE ITEC Ire. - l '.w3 TMI GEVIEW 9/29/82 1 A IG 14'15/94 Edi t i ert 12.0 Rev I Samate 23 - Loca:ica 4.0 E3dy Current Signal ana!ys ;

l ' ', ~5r:ygh Wall .))

.23 f;it-i l

.- 2

ss .6 Rev. 2 200enclu C 1

l l

i Figure C-3 1

l

' MetEL HO - 1 ;10 0 904 0 tr e 24l

j. CH 56T .l_ CH 1 MORIZ .I: .

_i l De*EL 1 M i j l .rnEQ 400 k m '

TION DE G

' ,P -

De#EL 2 O!FF 1 rua ae = =

i , ,

ROT TICH 35 OEG

'064EL 3 O!FF l 800 nH2 FREG l ,

SPEtt 1222 4

ROTRTIDH - il3 DEG '

h De#EL 4 01FF

' ' I i

I FDEQ 45 kHz l

, m m 51 e 3m

..[5 %T j 00TATIOpe - itS3 CEG !

j i I

j MIX 1 (5) <-

i j Q e4ELS 12 i j

i l lN W l t i ' ROTATION i

H , MIX 2 i6's <--

7 OEG l i

j l

, \ m, =+ns ip w _

32 6:e I

n p \ } l70TATION- 317 [( O {

29 PLMT IJ41T

  • S/G LEG CGTE ZETEC Inc. - IW3

'MI GEVIE'.4 9/29 M 1 A  ! RET :2 IS94 E di t ion 12.4 Gev i Satole 24 '.cca ticn a.3 Eddy Current Sigral Anal /sts

~

3 I *. 9FCcg7 na!! )) 2 . 4 3 '/ ") } * *

-- '3

~3R 602 Rev. 2 Accencix C Figure C a

  • NL MO - 1 ,10 10 ROW 112 Tte 71
l. CH 5 VERT .l. CH 1 HORIZ .(

I -

- ,cwee(L 1 g i l FREQ die kHz I i ! l  ;

ll h l sesN - 2a l ROTATION- 349DEGl l

= s -

i iCMME1. 2 O!FF

.; i l {FREQ 290 kHz j l

i i i kLM lSPCN 737 j j

i jROTATION- 359 NG l l

- cHu(L 3 c:rr g FREQ 200 k H: I

! TP5N 1222

'  ; ROTATION - 313 CEO' l

I , ' 'CMMEl. 4 DIFF

!l i

g l l

6 l

3 d.47 (Ct.T 5 mM 68 f

'FREQ N I3U

    • kM;:3 j

l . i ip -10.6 l ROTATION - 353 DEG l i l I 4J i j i ll MIX 1 (5)

I l l {  !

j i L I C M M E1.S 12 l l [

! I i l \ i 3PcN 23e i l l l - - ! ROTATION - 16 DEGi j

, p  !

jMIX2'6) --- ,

N

! i i i

]

o i

~I; cPCN I 670 e , ,

' ' 4 ECTATION - 317 DEGl l

29 PtJ4*T i.e41 T e LG LEG 34TE .ETEC Ire. - lins 3 TMI REVIEW 1/16/82 1 4 IM.ET 12 '15/*A Edition 12.0 Eev i abe A-112 Locat'en 10.5 E3dy Current Location: UP-10.7 'his area corre:a:e5 !C 10.6 identifiec in 'DR : 3 E3dy Curren- it;nal anal,,2 i is?, Througn Wall (ID) 47 '/::ti

.: ).-  :;

'I,R 642 6.2 Accencia C Figure C-5 CH 1 NGil: .{ i. tfe+( L **> -- t .!D te ROu 146 Ti.e 31

j. CH 5'dRT ,l.

h

  • lCHANDEL 1 M  !

iFREQ 480 kttz i i

l SPm 229 l

' ,J 349 DEG l ls?OTATION f ' lO@ EEL 2 DIFF

[l g{ 7

' f *

' ,FEEQ 290 kHz l

' . e  : g 55'm -- - 199 ,

i '# I 359 C(G l

' ROTATION i

i d%hs s

,CHAreEL 3 DIFF l t

! N lg j

FREQ We u'wr l' - 1' l w<ee 1222

{ '! i

, .  ! ecTATION 313 OEG

' i

! ICNeeEL 4 O!FF I

! l

- rete 45 kHz l1 < j I 4E Iw i) ' , 4. ,1 19 '%I[ - M 33p

%3 CEO T I C i e0TaTION i i  !

! MIX 1 (5) s-l '  ! \ J OpeELS 12 i

e W

I

, I M

! I k ,

6 CEG ROTATION j , ,

MIX 2 (6 5 '.-- l i , j

( 32 e

+

, ) -- i.> PEELS

' e'0 iFEe4 [

. 4

', MiTATION - 117 CEG i fl k,' l

&G LEG CGTE 'ITEC Inc. - 1983 29 Pt.fe4T UNIT 8 a D(ET 12 !! 94 Edition 12.0 Rei 1 T'91 EEVIEW 1 1992 1 Tube Numter: A 146-3 (4.0)

Eddy Current Location: UP-2.1 - Inis area c;res a Mi n 4.)

iden:tftes in G C 3 E:Cy Car: int $i;nal Ana' / ,1; 32'. ThroLgh dall (IC) :9 loit; m

W-

~;R 542 Rev. 2 Accencia C Figure C-6

,10 te RCad 24 fl_E Ml OWd%-1 1 i. CH SVERT .}_ CH 1 EOR t" .1 IC:L 1 M l i

l1 F

-=""""" l FREQ -

400 k&tz 170 I SPm -

.t . 3 347 CEG

-= , <' i j ROTATION i

jC M 2 01FF q,.

l l- ,

FREQ 2te kHz ji , KN D \ g7 f spm g <,4 L

g

, j  !

i '# 359 CEG l

r J g 'l ROTATION

. ,?; ;CuseetL 3 0trr f 7 i

[

D 5 REQ - Me kt42 TMed 1022 l

l IeoTATicH 3!3 EG {

i l i. l

!CHAs*EL

' I FREQ - 45 k **z I e

+

M e.56 ATS -II,5 m M 189 E l IPC'4 I??7

' . 4:

. _I ROTQTIted - N CG 8 i ,

. [ [

l Intx 1 (5) <-- l i i

. cupeeE1.s ta 't

' f -

I i. a jN 100 i I i j '

j ,

y ECTATION 5 OEG g 1 <-

q

[ , g '

, MIX 2 '6) . 1 j 32 j ' . -

t CHAreELS I t

PQ4 6e%

1 l r 1 ( i ECTi.T IUt4 - ?!? CEG l g

M LEG CATE .ETEC Ire. - 1983 29 Pt.mT t.NI T *

.3 Itt.ET :21544 Em s t m 12.0 Eev I TMI REV164 1'19 82 1 Tuce Numcer: 2-22-3a (12.3) riaw Location: UP 12.5 *nis area corre'a:es :o !:.3

'jent:'iec n *;R a:3 E h C;:'rer* .- 'gra: 'na;ji ;

'C07. Ihrougn Wall 36 '!C'*3

. . e w b O

ICR 6d2 Rev. 2 Accen:!i n C rigure C 7 5 i . C14 SVERT . . CH 6 12 ,1 >@e(L NO -- 1 10 10 E04 24 ft.e SI 1 .QO*EL t M iFREQ 480 k Hz 298 j d I & i iN 350 DEG 4 }N i l

l ROTATION lCHR4El. 2 DIFF I A i 98 kHz

]l7 >

-i . ,

FDEQ

' <P44 467 l '

h '4 liOT AT ICH - 359 DEG l l '

OGeEL 3 DIFF Wh l '

FWQ 900 k Hz i  :

! I TAH ?se

' EOTATIO4 - 311 CE G .

l i Op0EL 4 OIFF [

g ' FREQ 45 kHz a f

+1 4. 24, A TS 16 m 95 E i

f '!S ~+ 6 W H l l 1

j 4 ROTATION - 327 CEG l i <-

I j l t imix <5) l I l l Op4ELS 12  ;

i l i 1

- , 7 24 200 i

!I 1 t l C g ECTAT10H 16 CEG l i

NIX 2 6) s-l}

1 Oe*ELS 2 i

' I / iffe4 Zse GOTATIO4 - 312 CEG l j ,.. f

! MTE ;ETEC Inc. - 1983 35 PtM UNITE TMI 30CEG Cft. CISvE 1  ? 91 Edition 12.0 Gev 1 i

TJDe Nu*0er. A-24.}J Ja : )

'o Flha Location: 05-3.5 Ini; 3 ea :;r e;3:es :: 34.0

en 32 9] *e ~_a ;;2 i;b ! +~! '. t ;" 1 3-W. ~nreagn aa i
: > M .: M a  :. 2

a

- a.

4e /. 2 AC0en01x C Figure C-8  ;

i i

^

l c.HsaeEL .o -- 1 10 le Kee 113 Tte T4' j j CH 5 VERT d CH 1 MORIZ .6

.C:Om1 M i L I i lFREQ 400 kH7 i 3 L I 298 i

%  ! sPQH

~ ' "

, j g ROTATION - 349 OEG I j g

,CJ44 EEL 2 O!FF j q m- 200 kHz!

g leREQ

s., ' 5Pted 467 l

I '

X N ROTATION - 359 CEG -

9 6 i '.' 4 OpeEL 3 DIFF I

! i l FDEQ W kHz l i L ' - ' }Spg w I

! I I & ROTATICH - 311 OEG .

. .
OpeEL 4 01F
) '

I  ! FREQ 45 kMz l

l. l l

J g 1. M va.T S 27 m 90 W g _. w i l ! 4 y * E -6.6 ,

I, j 9 i >

j ( l ROTATION - 127 OEG I l ! a L

i 4 J . MIX 1 *.5s (--

l

' I CHseeELS 12 i I - w -

. r i vcee -- Lie ,

. s I 4 l ' w r

t M C

~

ROTATICH -

16 CEG!

  • l M!x 2 67 j

-' O PEELS M '

.N' I

I sPc --- 29e POTATION - !!2 (CG

' i '

DATE CETEC Ire. - 1 M3 35 PLindT l.NI Te S ,G LEG TN! MOEG CAL CtRYE 1 4 IHLET - 12 ::9 91 Editice 12.0 Fev i i

l IL e Number: A-133-7 (32.3)

E'aw Location: US-6.6 ~ni; 3re3 ;0rrei3:e; :. 32.2 dentifiec ', r;R ::3

~c)

Cur"
5';ra' - c. a . , ; ' :

30'. inr ugn aal; .:0) . 25 /c' : 1

.-: . :a

  • ~,4 542 Rev. 2 Accencin C Figure C-9

$10 idEOd 133 700 ~4)

'WL%- 1 f!_CH S WRT .l. CH I POE12 .i l

- ICJ4e#EL 1 m

i 400 kHz ;

lFREQ g ( g j $P544 M t

-  ! >M ,

j ROTATION - 349 DEG l OlF8 l 4 jCMMEl.2 3

i j FREQ - 2 06* k Hz i e " k.e l t 47 I l

j ROTATION - M9 CEG i f q i

g C)4e#EL 3 O!FF

' !FREQ W k Hz '

! f I

.m. --- w

! k ROTATION - Bil CEG i I I l

' f A> 9

!CtTM41. 4 O!FF l l l ' I FREQ -- 45 IrHz l I  :

j L ,

  1. '9 M I E NI lm_ 3pg '

4 1 l J p l l ROTATION - 327 N Gl i 4 lntx 1 (5) j

] p,- l ,

lCteeELS he 12 i

' - SP0H I

! ,, a

, s g , i I - y u POTATION -

ntx 2 si -

16 DEGl i

fj ll t f __

jg4 __-

l l fROTATION - 312 DEG

!ETEC Inc. - 1983 35 P'AT i.NI T e 9G LEG CATE A IM_ET ti ;ee 91 Ici t i m 12.0 Gw I TN! 380EG C5L CURW 1 Tube Numcer: A 133-7; ',33.0)

Elad Location: US-8.2 This area c;rre:ates to 33.3

':entified in 'D; :]

E$yCurre: 3i;na! ;r.a',; .

n.Tmugnaan em .29 m n

I:R di:

Rev. 2 Accencix C l

Figure C-10 l

1 a :. CH S WRT .j CH t HORII .) O W 4 El. *() -- 5 .ID 19 90d !! T1JB +4-l f

iOML 1 O!FF i f'  !

e l FREQ --- 400 kHzi f+

. SPAN 2M 1

'pissa stw. H l ROTATION - 349 CEO

-  % l Qe4EL 2 DIFF l j 291R kHz

, ) i lFREQ Tm 467 i j l ROT ATICH - 359 CEG

. .g 1 7

! ' 'O @ EEL 3 DIFF l

,FREQ 800 kHz j '

i e p l . - - w

ECTATION - 111 DEG M

'C444EL 4 DIFF r

l FREQ 45 =Hz

      1. 8 TS

, i ,3 . i2. 3 SPm - M

> , DOTATION - M7 DEG l )

3, ) I ,

MIX 1 (5) E l {  ! ICm 4ELS 12 I i f f '

l l SPM 2W I _ -

ROTATION - 16 DEG

! = - - m l F ,

~ MIX 2 (6) <-

. t

i. 1
OO#El.S 32 J

l i IPQH 290 f y f l

[

'l ,

ROTQTION - 312 CEG -

96 CATE CETEC Inc. - 1983 J PLWT LHIT* LEG TMI Ns0EG cit. CURVE 1 4 (M.ET 12'23,81 Editica 12.0 Rev 1

'u e nut.0er: 2 11-56 ('I.6)

~1aw Location: 05+12.3 This area ::rrelates to : 1.5 t

I icentified in T: R :3 I E0cy Current Signal Analyt's 37'. Througn dal' <OD) . ;3 .c'  :

1

  • his inci:stien was ce'ng infi;ence ty - e 'er- ; .;a: .-

NOTE-

  • he tuce Sneet. :nere Ine evaluat'On mai suc0ieten!a: d'g:e Upper mi .

1

-  :. .3 l

I l

l l

TCR 642 Rev. 2 Appenaix C Figure C-Il

-1 .ID 10 Ethe 146 rue 6 l j. CH SsT .j. CH 1HORI ICMMEL 1 M i M

  • 6 1

~

lFREQ 400 kttz I

- & 9spcm - . 298

' t  ; ROTATICH 349 CEC OpeEL 2 01FF 1

(

l w r-l

g\'\ mQ

- SPEN e==

46;'

  • l i f i ROTATION - :l59 DEG

, L 8

' 'CHANDEL 3 OIFT l

N s

\ N ,FREQ 300 m etz

~$ I5PGH M l

'  ; { ECTATICH - ill CEG w e

'CMMEL 4 DIFF l I FREQ 45 kH2 I' r

. 1. 32 ATS 52 m 83 E  !

N M '

' US 15.5  !

j -

- i l ROTATICH - 327 DEG I I

! s I

! . j , Mix 1 (5) .-

12 l l

i'

^

I i

{l -

-am lO# EELS ROTATION -

IX 2 (6) 298 16 CEG l

' M LS 32 iP5H 200 l g _.

ESTATICH - 312 DEG ,1 I XTEC Irr. - 1983 5 UNITE TMI eeOEG CAL CURVE 1 '91 Edition 12.0 Eev 1

'uce Numcer: A la6-5 (3.5)

Flaw Location: US+15.5 This area :arre; ares :: 3.5 identiftec  :-) CR l 3 l ~

i:0/ '.urrent 1.; a. -r3:jit; f

337. ThrCugn WaiI ICD) 1. }2 /CI ti l

- . 3 ' :d

704 642 Rev. 2 Accenais C 1

I igure C 12 CNetfI 4 -- 1 ID 10 O 13 Tte $31

. CH S 'dRT .._ CH 1 HOR IZ .,

i

.Z,..

CM1 1 M I i iFREQ eve kHz 1

', q7 j ,s= ne i

-  : i  ! n0TOTICH - 350 TG j A

j CKHEL 2 DIFF ,

f ,

s

.s s

? ,

, FRE Q --- Lte .Hz 1

\

-)

!; 9 F 467 j 7W4

, j i

I. ROTATION -  :-S'4 DEG I i, J,  ;

x [ CHAP *EL 3 O!FT

; ' D ' FREQ - See ="z l '

y f

% y ree h

! 7 1 ROTETION - 311 DE G 1

i O!FF i CMMEL 4 y

IFREQ 45 kHz A*N E O i sy -- W i ROTATICH - 127 MG

~

' ' ' i i [

<s)  ;-

) nix i i

!6 L ' CHFe*ELS 12

k 6 l svaH --- 2cs s

, P ~

26 DEG Q ROTATION

- IX 2 '6) <-

l l CWe*1EL3 E ,

-iPre4

-- .N l

a EOTATION - 312 CEG p

l 2TEC Inc. - IM UNIto NTE 15 st;mi M 91 E P ' ' on 12.* Gev 1 TMI NOEG CA CURVE t ,

~u ce Numcer: 2 3-63 (26.3)

Fian Location: US-2.3 Th's area :orre a:es :o 26.3

ent'#*e] ia ~24 2_'3 8 a

, d 8

CC> ii ,O'T3 5:'. Ihf0UQD naI

.. :3

m 0 4, 6 Rev. 2 Accenci C Figure C-13 c mL NO -- t 10 49 we ta Tte 29 a

j. CH 1 VERT . . CH 5 Hcst! .i I 1
  • __

! ,CHAPeEL 1 M i FREQ 400 kHz

,,l '

' 944 ~~ 299 p ,

, ROTATION - ?53 OEG

( ,

[ j >

l iCNfteEL 2 DIFF l .

I J

i ,

( \,'

,FEQ WAN 212 1917 kHz f .

I'

  • i 5 r ROTATION - 0 CEG

! j i l " CH4 EEL 3 DIFF cWe kHz l

If j d

h

! N FREQ IN I

l ,

lf l > jECTATION - W DEG !

i

<[ '

CateEL 4 DIFF l l 1 F r ' I 45 kttz i I I d

! ' FREQ r '

r FM 33 I I j '

-j t- ,j ' d' "[jg,p S l SPQH - M 4CEG' j

jj i

% g ROTATICN -

MIX 1 (5) "--

. 1

  • i

, CHiteELS 12 l :r . ,

i SPCD4 414

! l l[ f ECTATION - 4 CEG l

I

~-.

PttX 2 (6s -

j L 4 >"' CHseeELS 13 l* ,P MYe4 -- 1674 P

OTAT10H - 40 CEG :

i J 4._

i

- - ~

2 TEC Ire. -

1*83 40 pt;HT UNITE 91 FJntSon 12.0 **v 1 TMI 200EC CA CtsrvE 1 Tube Num0er: 1 ':-;9 (7.5) flaw LCCation: US+16.6 ~h+1 area gr e:a!d5 00 7.6 23entif e: 6 CR C3 i:[. :.: : *: . : a : 1,a e: 3 l

W. *nrougn Wai' E. 1.' !:;e-

.- * .2

APPENDIX 0 METFC0 0F DATA ANALYSIS G. E. ane:rt:(

TCR 642 Rev. 2 Appendix 0 Method of Data Analvsts - Introduction In performing Eddy Current Examinations on tubing similar to wnat is installed in the Three Mile Island Unit 1 Once Through Steam Generators (OTSGs) the analysis of the standard differential eddy current response signal ' indicates the magnitude of a flaw that may De present in the case material. The eddy current signal analysis is Quantified by recording the signals amplitude in voltage and the onaso angle measurement in degrees.

The voltage is related to the flan's total volume and the phase angle is related to the flaw's oenetration in the Dase material. It is the dectn of the flaw that ultimately determines the disposition to remove steam generator tubing from coerating service.

The Engineers at GPUN have recognized that the traditional formula used t0 determine the flaw's penetration, derived from the phase angle measurement, consistently overcalls tne depth of small volume inner diameter flaws. In order'to understand the degree of overcall that has Oeen reported during Eddy Current Examinations using the traditicnal phase angle to ::ercent through wall conversion process, a control test was cerformed to correlate the actual values of small. volume inner Jiameter flaws and the torres: Orc' g Eddy Current 39ase angles.

This data frcm EDM Notenes was used to uncerstand the true relatiensnic between chase angle and cercent tnrcugn wal! cenetratten for steam generat:r

- tubes and to mccify tae crocess tnat ceterinnel flaw ceptn during the D_. 1:36f 3

. TDR 542 Rev. 2 Appendit D standard differential Eddy Current Examinations on the TMI ! OTSGs. ints report discusses the method of data analysis that was used in the qualification of the modified conversion curve.

Data Sets The data recorded for EDM notches, percent through walls and the corresponding phase angles, was collected in two data sets lacelled B and C. These sets were run indecencent of each other while the control of tne process for the two sets was identical. (See Table 0-1)

The data recorded for the metallurgical samples was octained by reanalyzing prior data and was labelled data set D.

A scattered plot snowing the relationsnic ce een percent tnrougn wail and the standard differential phase angle was crecared from data in sets B and C.

The data values for the 100% through wall not:nes .ere a!!minated frcm the the plot because the notches were machined from tne tute's outrr diameter.

phase angle response from outer diameter machined nettnes was influenced cy the resulting geometry and O' lased the data set.

By eliminatir.g the 100% through wall notch data, the plots crovided a graphical illustration of the function that relates inner diameter cercent

    • e through walls at various dectns to corresponding signal chase angles.

pattern of the scattered clots 'or tat B and C formed a nyaercolic snace.

(1ee ;'gures 3 ' L C-:)

. ' 25  :.*

l TOR 642 )

Rev. 2 l Ap;endin D Line of Best Fit For each cercent through wall less than 1007. the average pnase angle value was calculated. The metnod of least sauares for a nonlinear relationshic was applied in order to determine and plot the line of best fit to the data represented by the percent through wall vs average paase angle values.

The line of best fit served as a reference curve to the predicted values.

The two lines of best fit for data set " and C exhibited close agreement in the ecuations that satisfy the lines data set B y 7.778 . 6442(v) + .034925(r)2 data set C y - 8.0516 + .7213H z) + .032784(<>2 i

A linear relations .ic was ::eveloced by virtue of the 40 cegree, ICC% thr:ugr wall recuirements on the upper bound and tqe 10 degree, eddy current crcte motion as tne Icwer bound. This linear function was ccmcared to tre reference curve for Oest fit in order to esta:iish :ne degree of cer ainty of maintaining coierage. (See Figures 0-1 & 0-2.)

rrelation To show the variant in tne agreement between cercent thr ugn wall determination made f cm the croposed linear line and the eddy current assigned percent througn wail from the EOM retches, a correlation as established. :or : nase angle measurements recorded during the e:cy current
-l '!35* :s

TOR 642 Rev. 2 Appgnoix 0 analysis of data sets 8 and C, the corresponding percent t. rough wall fecm Shown in Ta'ble 0-2, " phase" represents the the linear line was determined.

measured phase angle from the inspection of EDM Notches from data sets B&C.

"TWl" represents the corresponding percent through wall calculated from the "TWB" and "TWC" GPUN conversion curve by using the measured phase angle.

represent the actutal percent through walls from data sets B and C, respectively. A plot of the GPUN conversion curve assigned through wall values vs the actual percent througn wall is snewn in Figures 0-3 ar.c D a.

The 45' line represents 100% correlation.

For GPUN to demonstrate the procosed conversion curve is conservative, the The conversion curve must overcall the actual percent through wall values.

average overcall for indica'tiens 40% thrcugn aall or greater was 3.9 and 4.3 for-data sets B and C respectively.

The above average values were determined by calculating the mean for the differences between the actual anc GPLN conversicn curve assigned Jalues.

(See Figures 0-5 and 0-6)

Note Because percent tnrougn walls less tt:an 20 are considerec nonre'eva :

Indications during production examinations, the data for less 91n 20% was deleted.

'-:,u

vd 4 -

, Ree. 2 Appendix 0 FIGURE 0-1 LEAST SQUARE FIT THRU-UALL US PHASE ANGLE l l l 1 I i i i i i i l i i l I i I l l

goo ._............................... . ....

/ l p 90 - -

E / '

R -

< C 30 -

3 /g - -

E * '

/

N .

T 70 - DATA FROM SET B .

n / -

G  :

E s0 - -

/* / .

T /

  • H 50 - -

R' / . -

U -

l 40 -

/*

  • Id g I
  • l 30 -

20 - */ -

  • 9 3 . .

i

/ ',

10 -

j  :

0 I ' ' I YI I I I I I I ' I ' I I I I I ' I I O 4 8 12 16 20 24 28 32 36 40 44 48 PHASE ANGLE 0-5 1136Y ca

ee. L l Appendix 0 l

1 1

FIGURE 0-2 4

LEAST SQUARE FIT THRU-WALL US PHASE ANGLE I I i i i I i i l I I t I e I i i 1 i i l i i l l 100 -----------------------------y

/ : -

p 90 -

E -

/ .

n .

C 50 ~

/ ,

E 5 '

N /

T 70 - DATA FROM SET C . -

A / -

G g

  • E GO -

/s T -

/ I H 50 -

  • R / .

U 40 -

W I A / .

L 30 L / .

  • / I -

20 -

I

/  :

10 -

/ .

O I I I ' YI '  ! I I ' I I I I I ' I '  ! I I I ' I O 4 8 12 16 20 24 28 32 36 40 44 48 PHASE ANGLE 0-6 Il36Y ca

Rev. 2 Appendix 0 FIGURE 0-3 COMPARISON OF GPL3 CURVE VS EDDY CURRENT RESULTS ON EDM NOTCH SAMPT.F.R 1.Ectme : A = 1 mes a = 2 car. ETC.

. Pt.or osr Tunerus I I I I I I I I

I 1 1

l I I A A

I I 1

160 + 8 I /

i I i aC I I I AA I i i  ;

99 e i A I I I I A C l /

ge i l A i I I 3

I I I 0 I t A i Tri+ I I I l AI A l AI A 1 C 3 P l i l A R 64

  • l I A '8 C l I A l 6

D I i 1 A

I I 5 i

C 54 + 8 I

T l I DSC C I 1 Al D 1 I

44

  • I I

6 I I I I K1 I i D I 3, e C 1 I

I I 8

1 a

l I 3 I 20 + IB l I l 1 l l I i 1 1

i lo + C I I I

  • I I BA I I EI I oe I I I INDICATIONS IBELOW THRESHOLD I INDICATIONS I DISPOSITIONED l MONITORED l -* -- ---*~~~*

l .e--- ---+-------s-

.~ --+.----~ *= ~~---+--~~---*-------*----

46 Te 96 94 833 34 40 Se g gg :p ALTh le0TCH Con 4EIPOM0!MG TO ECT 1136Y ca 0-7

I:R 54.'

Ree 2 kpcendtx D FIGURE 0 4 COMPARISON OF GP"N CURVE VS EDDY CURRENT Kr.5ULIS ON EDM NOTCH SAMPLES LEGEus: A= 1 est, s = 2 oss, ETC.

Plot or,rulerwC I I i 1 1 8

8 i 1

i I l I I I A I I 1e4

  • I
  • I I A I

i 6 C

I I I i 9A to

  • I i i A C I i i l A 1 I 1 e I I So
  • I I 3 1

i s e i I e C i f A I I 70

  • I I

I l I I A1 O 6 P l i i 3 R 6e

  • I I I E I AI C l i D I E l

I l 1

9 C "3+ i r I i I A9 C I Ael 9 f I I A M* 1A I

i I I I 90 1 I i i B Al 3e e S I i I I I I l I I A I

)
  • I I '

/s A I I I 4A 1 i i le e iA 4 5 1 l

  • 1 I i l'

AA ,

I I o* i I l INDICA!!ONS I BELOW THRESHOLD 1 INDICATIONS I3 DISPOSITIONED I I MONITORED I I

1

o 3e -44

....+.......

Se 64 ..................

7e se .......

to ........

les e le ACTUAL NOTCM CluthEIPONell8G TO ECT I

2-8 1136Y ca ,

"3R D Ree. 2 Appendix 0 FIGURE 0-5 GPUN COMUERSION CURVE US NOTCH SAMPLES I i i I i l I i I l 1 100 -

90 - DATA FROM SET 5 g!

t /

C 0 80 EnDY CURRENT OVERCALLS ACTUAL I

$[ EDDY CURRENT M $,/

U EQUALS ACTUAL -

7 3 E 70 -

3 R s -

S s t Y -

- MEAN DEVIATION 3 .

g I 50 g/ g O cREATER THAN 40* g M THRU 'a*ALL REGION p' g -

90 - ,- 3 C 9 u -

- EDDY CURRENT h40 gg 15DERCALLS ACTUAL E

30 -

20 -

t 10 -

t

" I I I I I I I "" I I I 0 60 80 100 0 20 40 J

ACTUAL THRU-WALL FROM NOTCH SAMPLE 1136( =a 0-9

TCR 042 Rev. 2 hopenata D FIGURE D-6 GPUN COMUERSION CURUE US NOTCH SAMPLES I I I I i I I I I I I 100 -

a s <

/ -

gg 30 - DATA FROM SET C ss a/ '

\3 ,

EDDY CURRENT C ,

0 30 - OVERCALLS ACTUAL I EDDY CURRENT M *'/ I EQUALS ACTUAL _

!70 -

MEAN DEVIATION R

S CREATER THAN 40% 3 s '

/ ~

I S0 -

THRU WALL RECION t

/ s 0 ,

M t 50 - .

C sy U ss

- t EDDY CL'RRENT h40 g UNDERCALLS ACTUAL E

gg -

30 - s:

30 -

ss -

10 - * .

ss

" l I I I I I I I I I 100 0 40 60 so O 20 ACTUAL THRU-UALL FROM NOTCH SAMPLE 1136( oa C !0

. 704 642

' Ree. 2 Appendix D TABLE 0-1 SHEET 1 of 5 COnPtETE D D4TA ICT 083 TE T JTS lEST fWS FMAJE VLT400 i B El 100 t 26 et 4.99 2 3 El 110 1 36 13 2. 44 3 3 ET tie 1 e2 27 3.92 4 9 ET 100 t 79 39 5.64 5 9 ET 190 2 29 42 0.99 6 P EI 110 2 36 18 2.44 7 9 ET 114 2 42 26 3.94 9 3 ET tto 2 79 Jt 5.65 9 8 ET tte 3 24 32 1.00 to b ET 810 3 34 te 2.35 il B ET s to 3 42 24 3.93 12 9 ET 160 3 79 36 5.74 13 h ET 990 4 24  :: 1.4%

to D ET 140 4 34 t9 2.37 -

'S 9 ET tte 4 42 25 3.F5 16 9 ET tte 4 79 39 5.62 17 8 ET tts t 37 29 e.40 13 D E( til 4 51 29 0.65 99 3 ET til t 74 34 e.'6

2) 9 Et tti 2 51 28 0.44 21 B ET tti 2 37 30 0.39 22 B ET til 2 74 33 0. ?5 23 9 ET tot 3 51 26 0.65 24 k ET tt) 3 37 27 4.**

4 25 9 ET tte 3 74 34 0.

26 D Ef tti 4 St 27 0.42 27 8 ET til 4 37 30 0.82 28 9 ET tti 4 74 34 0.72 29 9 ET 142 e is to e.49 se a ET tt: 1 39 22 e.7e 31 9 ET 112 2 '9 to 4.49 32 8 ET 1 2 2 39 24 6.78 33 5 ET 112 J se eo 4.*6 34 b ET t t: 3 39 23 0. 16 35 t FT 10 2 4 1C to 0.*3 le D ET 112 4 39 24 0.75 17 3 E! 18 l* 1 *7 9 o. 2 3a > Et it3 t 34 20 '.49 39 D ET tt3 t 78 40 9.42 40 0 ET st3 2 67 to v.74 48 9 ET 183 2 3e 21 1.39 42 > ET 6:3 2 74 38 2.?2 43 9 TT tt 3 3 47 18 u. /.

44 h LT 113 3 34 24 f.44 45 9 ET 413 3 74 37 2.26 46 B ET tt3 4 17 tt 0 . 75 47 D ET til 4 36 19 9. 38 es > TT tt3 4 74 34 2.35 49  ? ET 114 1 18 8 t.00 Se & ET t t4 0 40 24 t.87 59 5 ET 104 I $8 28 2.55 52 9 ET 114 1 79 34 3.04 53 3 ET tte 2 '8 e 5.00 9 ET 144 2 44 f.04 54 s e. ... 2. *4 = e.

I 0-11 1136Y ca

iws c42 Ree. 2 Appendix 0 TABLE 0-1 SHEET 2 of 5 COWLETE 8 Deto IET ST9 TEXT Tist FtMIE ET434 OSK KET ET 114 3 Le a 1.02 57 8 f.92 3 ET 994 3 to 24 58 SS 29 2.52 59 5 ET 614 3 3 79 34 3.04 44 e ET 894 4.92 4 16 7 el e ET 114 8.99 9 ET 1 s 4 4 to 24 62 27 2.50 43 6 ET lie 4 54 4 79 35 3.01 44 b ET 114 5.29 3 ET 115 t 65 32 45 34 5.55 ET 995 t 76 64 9 34 5.23 ET 115  ? 65 47 3 76 30 5.44 6a b ET 115 2 ET tt5 3 65 33 5.25 69 8 37 5.57 76 9 ET 105 3 74 g ET 145 4 e5 32 5.25 75 5.55 ET 195 4 74 38 72 6 24 5.44 E T 114 1 41 71 0 S.12 5 ET 114 1 62 27 74 35 S.79 ET tie i 70 75 3 41 24 5.95 76 3 ET 114 2 ET 514 2 42 29 S.04 77 h 8.71

[T t t s 2 78 35 70 9 5.82 9 ET tie 3 41 23 79 9.24 So B ET ile 3 42 28 3 78 34 9.90 Of 3 EF 114 5.74 ET tte 4 41 24 82 3 28 8.23 83 3 ET tie 4 62 4 78 35 8.98 84 S ET tte 5.14 85 3 EE 197 1 22 .

f5

[T 197 1 3e 20 10.t4 86 3 14 5.12 87 3 ET 117 2 22 p ET 117 2 38 26 10.77 es 5.89 99 9 ET 517 3 22 te ET 117 3 38 29 10.99 90 9 5.28 CT 117 4 22 45 99 D 10.74 9 ET 18 7 4 38 2t 92 i

e C 12 1136( ca

Nto, 4 Appendl: 0 TABLE 0-1 SHEET 3 of 5 ConPLETE C teTA ![TK OBJ SET KTD TEXT TWC FMAKE WLT404 1 C ET 110 0 24 14 4.07 2 C ET tte t 34 18 2.11 3 C ET tte t 62 26 3.59 4 C ff n'0 t 79 34 4.54 5 C Et sto 2 29 11 .

4 C Et 110 2 Ja 19 .

7 C ET tio 2 t2 26 .

8 C El 110 2 79 32 .

9 C ET 110 3 24 12 0.64 14 C ET 110 3  ?& 20 2.17 11 C ET 114 3 62 26 3.44 12 C ET ite 3 79 32 5.i e 13 C ET tte 4 29 12 6.84 to C Ei sto 4 34 17 2.20 65 C ET 160 4 62 24 3.4e C [T 150 4 PT 32 4.97 to ET til 37 24 9.47 97 C t se C [T 151 t St 29 0.64 ET sts 74 39 4.68 99 C t 0.44 20 C ET Itt 2 37 23 2t C LT til 2 56 29 S.64 2 F4 37 4.44 22 C ET Its 4.44 23 C ET 8 44 3 37 29 ET tti 3 14 32 4 . 75 24 C 25 C ET til 3 59 33 0.55 4 37 27 4.42 24 C CT tti 27 C ET til 4 74 31 0.49 ET 199 4 56 33 4.54 28 C El 492 18 32 4.48 29 C 4 ET 192 1 39 21 4.04 34 C C ET 19 2 2 'S 9 0.54 38 ET 19 2 2 39 24 0.54 32 C 0.49 33 E ET 192 3 *C 8 c ET 112 3 39 23 4.40 34 El 112 4 te IL 0.58 35 C ET 112 4 39 19 4.31 36 C 0.A6 ET tt3 1 11 8 17 C 38 C Et st3 1 14 21 6.27 39 C ET tt 3 4 74 17 2.84 49 C ET 193 2 91 0 0.64 C ET 19 3 2 14 22 f.27 41 ETtil 2 74 44 2.18 42 C 43 C ET tt3 3 IT 9 0.75 ET 413 3 34 18 1 46 44 C 40 45 C Et it) 3 74 34

  • 46 C ET t t 3 4 IT 8 a.7e ET tt3 4 3e 20 9.44 47 C 48 C ET tt3 4 74 35 2.43 49 C ET 194 I id 5 0.84 Et sie 40 25 f.7F 50 C i 2.33 St C ET 184 9 30 29 52 C ET 194 1 79 36 2.74 53 C ET994 2 18 1 e.se 54 C ET 164 2 40 24 1.79
    • e FT sta 2 18 28 2.26

-

  • 43 0 13 Il36Y a4

Rev 2 Accendlx 0 TABLE D-1 SHEET 4 of i CDeeu.1E C BATA SCTI TEXT TWC PHArt VLt404 ODI JET JTD is 7 6.91 C ET 144 3 1 . 79 57 3 49 24

58 C ET 114 SW 29 2.33 L ET lie 3 2.75 59 3 79 34 64 C ET ste e 0.9 A ET 114 4 08 61 C 4 40 25 t . 79 62 C ET tie 4 Se 29 2.39 63 C ET 184 34 2.74 CT 18 4 4 79 64 C 65 32 5.57 65 C ET 885 1 37 5 .98 ET 195 t 76 64 C 2 65 32 5.38 67 C ET 145 76 38 5.65 C ET 195 2 5 .31 64 3 65 32 67 C ET tt5 7!. 33 5.7%

3 70 C (T tt5 6 65 32 5.29 71 C ET 385 74 38 5.74 ET 115 4 72 C 4 4 64 49 7.JA 73 C ET 115 48 22 6.18 C ET 18. t 8.64 74 42 27 75 C ET tte 1 Ta 33 9.4T ET 11. t 4.24 74 C

? 49 22 77 C ET tte 62 26 8.64 C ET tie 2 9.47 70 2 76 33 79 C CT (16 of 28 6.05 C CT 116 3 8. '4 89 3 6? 27 St C ET tio 78 34 9.13 C CT 886 3 6.13 02 4 4l 22 83 C ET tit 4 62 27 8.45 04 C El Sto 34 9.J5 4 78 SS C ET tid 22 13 5.30 Se C ET 147 1 21 11.13 ET tt* 1 38 87 C 2 22 84 5.09 SS C ET 117 20 10.68 2 25 89 C ET tti 22 to 4.93 ET tli 3 90 C la 20 FC.31 e

91 C CT lti 15 5.44 ET 'll 4 22 92 C 38 28 >0.t6

+3 C ET sti 4 I

\

v 0-14 Il36Y ca

m 2..

Rev. 2 Appendix D TABLE 0-1 SHEET 5 of 5-CupW:.E1C erTLab DATA [TK 38! TE T 77B TW1 Ttf1 F44KE E TDP T toe :4 e.

> A-alt-64 t i

e s 4-oi; 63 t a<- t 4e er A-024-*g 70 -- 600 3  !* t 4 > e-024-*4 tew  ? :s 95 A-s l -r ? sn ce 69 5 D 94.

a l' A-t J *<4 the t 24 7 D A-133-74 .09 2 4 92 6 > A-tas-06 the t e 33

  • S A-tde-SS 70 t .. : 83 "r tid fe 9,t to l- H -+ t - 1 1 E nn' '. - 3C 12 46 St B i I? f I48W*. E .
  • 54 i 15 .se 51 M 0-15 ll36Y ca

Rev. 2

, Appenci 0 TABLE 0-2 SHEET 1 of 3 CEAEEL/.Tip.C FFsEEEhr TMhu-utAL e mon SLis a ..a0 C TO THE CosevERIIDh ClifNE FOsr TK Aff0Cf ATES PleAJE AseGLEI 093 PHATE TW) TW4 TMC ITS TEXT 4 5 -16.5 . 18 ET 114 t 2 6 -93.2 18 . ET 114 2 3 6 -13.2 09 . ET s t4 3 4 e -13.2 . 18 ET 414 4 5 7 -9.9 . 88 ET 144 2 6 7 -9.9 . 18 FT 114 3

/  ? -9.9 la . ET 114 4

-6.e 18 El 112 3 8 8 .

9 8 -6.6 . 17 Er 113 1 9 -6.6 . 17 Ef 10 3 2 te 11 8 -6.6 . '7 ET 143 4 12 9 -6.6 19 . ET 114 1 9 -3.3 . 18 ET 142 2 1.s 14 9 -3.3 17 . ET s t 3 t 9 -3.3 17 ET tt3 3 35 .

16 to 0.0 10 . ET 112 1 ET 18 2 2 17 .'. 0.0 te .

3 18 to 0.0 te . CT 112 19 10 0.9 IS Er 112 4 20 la 0.0 17 . Ef 113 2 to J.3 20 . ET too t 29 3.3 20 ET 110 2 22 88 .

23 11 3.3 . t8 ET 142 4 3.3 tt . ET S t3 3 24 tt 25 ft 3.3 1? . ET (13 4 6.6 20 ET tte 2 26 12 .

1 2/ 92 6.6 20 2e ET llo 20 ET tte 4 29 12 6.6 20 29 12 6.6 IS Ef It2 1 22 ET tt7 t 34 13 9.9 .

34 14 13.2 . 20 ET t to 1 32 14 13.2 . 22 ET t t7 2 33 15 16.5 22 . E T 19 7 e 22 ET t'7 4 34 IS 86.5 22 19.0 22 . ET 117 2 35 to 16 16 *t?.3 22 22 ET st7 3 37 IS 26.4 36 3e ET t te 1 26.4 36 Er sto 2 38 18 .

39 IS 26.4 3e . ET 180 3 60 98 26.4 . 36 Ef 803 3 29.F . 36 ET tie 2 48 t' ,

4 42 19 29.7 36 36 ET tte 39 (T st2 4 43 19 2? . * .

44 17 27.T 36 . ET (13 4 20 J3.0 36 (T tte 3 45 .

66 20 33.0 36 . ET t t3 t 47 20 33.0 36 . ET f t i 3 20 33.0 36 ET

  • t 3 4 4e .

I 49 29 33.0 3e . :r it ?

33.0 34 34 ET *t? 2 50 29 3 26 33.0 3R 30 ET sti 56 52 21 36.3 JW L. .i ...

i t .' .t 3

9.

t 0-16 1136Y ca

A .;;

Rev. 2 Appendir 0 TABLE 0-2 SHEET 2 of 3 ,

CORRELATitIG F1tECENT THf.0-WALL FA0rt SETJ D A80 C TO TlE CONVERI30:0 CL%VE FDR Tif A3XOCIATED IPteAIE assGLEI Tist TWC KTD TEXT OSI FMAKE 1Wt 34 ET 513 2 55 21 34.3 .

3 34.3 48 LT tte 54 21 .

ET f t 7 1 29 34.3 . 38 57 ET 117 4 29 34.3 38 38 58 [T 912 8 59 22 39.6 39 .

34 ET 183 2 64 22 37.4 .

t 22 39.6 . 44 ET tte et 2 22 37.4 41 ET tia 62 .

4 63 22 39.4 . 44 ET t te 42.9 37 ET tti 2 64 23 .

3 23 42.9 39 39 ET tt2 65 3 64 23 42.9 41 . ET tto 67 24 46.2 . 37 ET tti e 58 24 44.2 39 . ET f t2 2 ET tt2 4 49 24 44.2 39 .

70 24 4e.2 44 . ET 984 1 40 40 ET 114 2

?! 24 44.2 72 24 46.2 to 40 ET (14 3 ET 114 4 73 24 16.2 to .

1 24 14.2 49 . ET tio 14 2 75 24 14.2 41 . ET 116 ET 144 4 76 24 24.2 41 .

4 77 25 19.5 42 . r.T 110 78 25 29.5 . 44 ET 114 1 44 ET 114 4 79 25 49.5 .

84 24 52.8 . 62 ET 190 1 42 62 ET tte 2 84 24 32.8 3 92 24 52.8 42 42 ET 419 42 ET 844 4 83 24 52.5 .

84 26 52.8 51

. ET t ti 3 42 ET 106 2 55 26 52.8 .

27 54.t 42 . ET 993 1

&& J 54.0 37 . Er Sti 87 27 4 27 54.9 54 37 ET lit De 27 56.1 42 e2 ET tio 1 89 e2 CT tes 3 90 27 *4.1 4

27 94.1 62 Et '96 99 .

ET tt' 2 92 29 59.4 58 .

59.4 54 . ET 114 1 91 OS ET 114 2 94 OS 59.4 58 58

'.9. 4 58 . FT 114 2 95 OS ET 114 4 96 29 ,

59.4 . 50 Et 11e 3 97 OS 59.4 42 .

ET tte 4 98 28 59.4 62 .

e2.7 37 in ET til l 99 29 I

  • 2.7 54 51 ET til 100 29 2 62.7 50 ET tt' tot 29 .

3 e 2. 7 37 Et ett te2 29 .

  1. 2.7 . Se ET 194 9 103 2*

58 ET 844 3 904 29 d2.7 .

4

  1. 2.7 58 . ET tt4 195 29 2 42.7 62 . ET tte 106 29 1136Y ca 0-17

70R 642 Rev. 2 Appendix 0 TABLE 0-2 SHEET 3 of 3 CORRELATItsG F RECENT Iselu-teALt. FRovt IETI & AseD C 10 THE CDesvtRIIDW Ct:Tevt F0E THE A320CI ATED P9tASE Af8GLE!

ODI PHAKE TW4 TWD TWC ITD TE3r I D9 39 69.3 't? . Er sie 2 tie 38 4*.* 79 . ET tle 3 ett 30 V- 79 . ET 110 4 412 14 t' .17 . El til 2 tt3 11 av.4 . 74 ET tte 4 tt4 22 72.6 . 79 ET 110 2 115 32 72.6 . 79 ET tie 3 tie 32 72.6 . 79 ET 190 4 tt? 32 72.4 . 74 ET tti 3 818 32 72.6 65 6S ET 115 4 119 32 72.4 . 45 ET tt5 2 1 20 32 72.6 . 45 ET 595 3 l?t 32 72.6 45 45 ET t .5 4 122 33 75.9 74 . Et 111 2 123 33 75.9 . 58 ET til 3 124 3.4 75 .9 . 51 ET 16 4 4 125 33 75.9 45 . El 185 3 124 33 75.9 . 78 ET tie i 127 33 73.9 . 78 El tio 2 928 34 79.2 . 79 ET 180 t 129 34 79.2 74 . ET tit t 1 34 34 79.2 74 . ET lts J 139 34 79 . 2 74 . Er tte 4 132 34 79.2 79 . ET 114 1 133 34 7*.2 79  ?? ET tl4 3 134 34 77.2 65 . ET 145 2 635 34  ??.2 78 78 ET 116 3 136 *4 19.2 . 73 LT to6 4 137 IS 82.5 . 74 ET 113 4 8 38 35 82.5 79 . ET tt4 2 139 35 52.5 79 . FT 114 4 14e 35 92.5 78 . ET tie t 14: 35 0.'. 5 78 . ET tte 2 142 35 82.5 78 . ET tto 4 143 34 05.8 . 74 Er 113 I tot *4

. G5.9 74 . ET 843 4 145 14 35.A . 79 ET lie t 4 44 34 85.8 . 79 ET tse 2 147 La 85.8 . 79 ET tte 4 940 37 99.1 74 ET tti 2 349 37 99.0 .

ya Er its .

154 17 39.f 74 . ET 113 3 151 37 89.9 . 74 ET 115 t 15? 37 89.1 Fa . FT 115 1 153 33 9 ?. 4 74 . LT 9 91 2 154 14 9 .' . 4 76 . ET 995 t 155 1.1 92.4 74 74 CT 115 2 156 il 97.4 . 74 Et its 3 157 *i 92.4 76 74 ET 115 4 l 153 95.7 . 74 ET til I 859 19.0 74 . ET 18 3 4 9 60 *. 99.8 . 74 El 11J 2 0-18 ll36Y Qa

-1 .

I.R u b42 Rev. 2 Appendix 0 TABLE 0-3 SHEET 2 of 3, TabuLGitK. TE MLide v4 LUCK F144 n F N.21 tut itse MLf 8 Tesc ML TC 24 04 44.2 48 S.2 . .

  • '4

. 24 4*...' 4e s.2 . .

74 ~4 4a.2 41 5.2 . .

24 24 *e . 2 41  !.2 . .

"J e *4 4<. 2 41 S.2 . .

  • 4 4 4*.2 . . 3r v.2 24 24 4e 2 . . 40 4.2 24 24 44.2 . . 4J 6.;

25 25 **.* 42 -t2.5 . .

2?  ?? 4*.S . . 40 v.5

.5 75 4 9.* . . 40 v.5

. ** >  ! *. i2.9 42 -9. 2 .

.'e . . . *2.R

. .2 -* /. .

' 'o , i;.R 56 t.9 .

'*. L al -9.2

?% .e . .

26 ?A * ?.8 . . 42 -5.2 i Je 24 *) .* 8 . e2 ** 2.

26 2e 52.s . . 62 *2.

i

.4 24 's2 n . . e2 -? 2

?? .' 7 '0.1

, o2 -0.9 . .

??  ?? 5n.' 3? 19.1 .

e7 2' "e.t

, 54  ?.t . .

I 27  ?.s . e2 -5.* . .

27 *1 "c.t . . 3? 19.4 27 27 54.t . e2 -5.9 27  ?? 'd . t . . c2 -S.Y

?? .7 tu.i . . =2 -S.9 28 25  !>.4 't

. F.4 . .

?S 29 "* 4 50 9.4 . .

74 89.4 *e 1.4 . .

. t6 28 '9.4 58 i 4 . ,

. ' .*  ??  ??.4 e? ~~.s . .

Ib

  • fs 5V 4 62 -2.e . .

'e 23 iS.4 . 5;t t.4 I

. ts 2d 54 4 . . SS 4.4

'. 29 F.' . 7 37 25.7 . .

?* ?9 4J.7 5: 81.7 . .

+ '? c2.7 fu 4.7 . .

  • 9

. 79 61.7 42 w i . .

j t' e'.? . . ?1 19.7 2+ .

    • .2.7 . . 58 st.7 2# 22 62.1 . . 17 2'.7 24 '. u e2.7 . . SS 4.7

~$ 9 42.7 . . 58 4.7 3e 10 ee.0 J/ 2*.0 . .

.n

  • 79 e9.3 79 -7.7 . .

At 11 4*.3 79 -9.1 . .

  • t 71 47 . .L 79 -9.7 . .

2t le cS.a  ?? **.7 . .

I 3 As vv.* 31 3?.3 . .

31 .t e e?.5 . . 74 -4.7 i

? '.* *2 '2.4 d5 7.6 . .

32 37 72.6 64 7.4 . .

32 9? 22.6 . . 79 4.4 3:* 32 .  ?? *e.4 1 y,. v. 7.

~~ . e. *- ,e I

i 0-20 1136Y aa

.i. .

  • Accendix 0 TABLE 0-3 SHEET 1 of 3 l

TMetEN. . E TMr. MLTA VALUEJ S W.SE Frm31 twt IWS MLib TE MLTC to. 1e  %.3 20 -le.7 . .

tt it '.3 . . 29 it. 7 12 42 t.6 24 -t3.4 . .

l .1 n2 4.. 24 -13.4 . .

42 12 a.6 2e -43.4 . .

12 12 f.6 . . 20 .4 12 12 e.e . 2e -83.4

'T 13 '.9 . . 22 -12.5

'J ** i. 2 . . ;w -4.8

  • -0.8 14 14 t'.2 . . .2

te.5 "J -4.4 . .

t '.i -

?% 15 6. 5 22 3.5 . .

35 'S  : *i . 22 ". 3

's **.  : .a '.*- -2.* .

1s 1e e'.. . '.2 .

to to ev.3 . . 22 .S . 2 i se in 2a.4 le -0.6 tu 9 .4 21 .4 b. -9.6 .

ed 18 ?6.4 Ja -9.e . .

SW td 2c.4 . . 34 -9.6 t9 99 2a.4 . . 36 -9.4 49 49 2'/. 7 It -o.2 . .

19 19 22.1 ts -e.1 . .

19 45 **.7 . . 36 .w . 3 to to 29. 2' . . 36 -'.3 .

19 19 28.7 35 -<.3 N, '.' a 11. 3 to -3.0 . .

20 ?G T. 0 34 -3.0 .

20 23 3*.) '4 -5.4 . .

?S 20 02.3 d  !.0 . .

  • d 21 33. r 38 -4 0 .

?:e

  • 4. 2*.r .

7,3 . *o .

20 Ou 14.6 . . 26 - '.4-2n 20 23. > . :3 '.o 20 29 33.4 . 38 2.0

  • t 21 St . % 3e .h .

Ji 21 3..i Jn '.7 . .

25 Ut 3>.1 39 .'..

21 ~t la.4 . . 39

.?

  • 9

. 2)

..1 . . 34 0.t Ji 2t 3s.3 .

4 **./

21 2t J , .1 . . 38 -0.'

21 ** t 13.] . . 34 -4.7 22 22 *

.t'.6 39 v.e . .

22 22 .16.6 . . 36 3.6-

.' ? 22 te.a . . 44 -l.4 22 39.6 49 t.4 22 . .

22 2v.s 94 -l.4 2.* . .

1 21 at 42.9 39 *9 . . .

. 23 21 4. 9 44 1.9 . .

23 2t a2.4 . . 17 '. . 9 23 25 42.9 . . 37 3.Y 24 24 46.2 19 7.2 . .

.' 4 Je 4. 2 't . .

7. .]

j 1

0 19 1136( aa 4

. ,_ _ . _ _ _ , _ _ .- - .,._., .~.__,--y _ , . . . _ ,

I ICR 642 Rev. 2 s

Appencix 0 TABLE 0-3 SHEET 3 of 3 TA8ULATlWG THE DELTA vattE3 N1 TWB BELTb FMC KL TC PtnT. FtenrE 72.6 74 -0.4 32 32 . .

72.. 65 7.6 32 32 . .

7.4 i2 32 72.6 . . 45 32 32 72.6 . . 45 7.4 32 32 72.4 . . s5 7.a 33 33 75.V 74 f.9 . .

33 33 75 . 9 45 to.9 .

33 75.7 55 24.9 33 . .

24.9 33 33 75 .9 . . 58 33 33 7". 9 . . 7e - 2.1 33 33 75.9 . . 76 -2.1 34 34 7+.2 74 '. 2 . .

34 14 7" 2 74 5.2 .

34 7'  ??.2 74  !.2 . .

34 34 7*.2 79 0.2 . .

34 14 79.2 ?9 =~. 2 . . ,

14 34 79 .2 45 64.2 . .

34 34 7V.2 ?P 1.2 . .

79.2 79 4.2 14 34 . .

'9.2  ?? 4.2 14 34 . .

34 34 79. 2 . . 79 1.2 34 34 7?.2 . . 78 4.2 35 25 9?.5 79 3.5 . .

15 3% e2.5  ?? 3.5 . .

35 35 82.5 79 4.5 .

35 15 8?.5 78 4.5 . .

35 15 42.5 78 4.5 . .

35 82.5 74 C.5 35 . .

3a 3. 85.0 74 It.S . .

36 c5.8 74 ti.F 34 . .

4.8 14 3e 99.8 . . 79 34 C5.d . 79 4.9 le .

1h n' . 8 79 6.8 36 . .

37 37 06.4 .' 4 15.t .

37 37 88.4  ?& 13.) . .

37 99 .4 . 74 45.0 37 .

l's . t 37 37.8 74 37 . .

17 37 d'.9 . . 74 63.t 33 3P 92*.4 74 48.4 . .

le 33 92.4 74 e6.4 . .

35 30 92.4 74 16.4 . .

38 38 92.4 76 16.4 . .

38 33 92.4 . . 'a 16.*

35 30 .f2.4 . 74 86.4 38 92.4 76 86.4 33 . .

39 39 '5.7 . . 74 24.7 to 40 99.0 74 25.0 . .

44 40 99.0 . . 74 25.0 0-21 1136Y ca

..s .

Ree. P Appendix 0 C

ee

~~

s g **

y ::

i= 55 y

i=

s,i ** l sf .

y

!ri

_: : ss i

5 5* i>

_ =i ::  ;:

I 1

5

'l -

5 l.l. j*Il'5l 11 55 33

__ f~:9l 3~~ ..

22 N e

., B y :: 8 83 :g

~

3 ~

=g~ ..

g33 n

,, a
-t ~e  : - ~

3

-1 3:

.s .

3

!E'::s s :=

, Sa _ _ - "a g -

. . "3 _~_~

e ~9_7 =mSW _t_  ::a a

. s, _. - _

a i- i

- 1

==

  • 1  :* .  !  ! ..

E

  • 1:isig:

i -

?

s -~ l :is= ..

la

= ~~l

- Iw

=
In 8::
: I:

.4 1* ~4 1 *. a ;

3_ =1

  • 44 , 19 44
  • 1 * ;;

f :;  :

-~

,~~_

,  ;-~ .

~~

a  :- ..

- i.. 1 i

- = - - 1 I !:

:. = --

e c -1 I s,. ::  ::

~~ -r I s,: -~

,1, 9 ,:, ::  : In. li ! ls, ,i,l a um se a ;-r ~.-

3 5 sq ss e

2, ,,

1- ~- , ;m u a s s .

- t a _. -

-- i ,_

s! :s  ::

i~_

ze sa au s: s8 :ss:

2 ::

a s8 s :=

s8 r==:

h2 p -9 52 -*

Is 99 a ::

II ." g 95 a s. s e as -- as -- -

a s, - - -

s.

sg 3 ~

!==

. :3 l~8 3z_j l 2:

E:

l I~:::

4_

e i

, .e

("

l 44

s v as l

4_

I :: ,  ;;

l

! l I , l

9~

s 9 ::

  • 9 :: I l W W h W i

!*W *W

$S.W. ,I 2_. W 3, !S.W.

l 1 Es > Es > Es > as > Es i

l l

r l

l l

s C-22 1136Y ca

  • APPENDIX E METALLURGICAL VERSUS EDDY CURRENT EXAMINATION STATISTICAL EVALUATION 4

e

TCR 642

'

  • Rev. 2 Accendin E Neta11urcical Versus Eddy Current E<aminatien. Stat stical Evaluation i

Included in this appendix are the statistical results for the comcarlson of the actual depths of IGSAC as determined by metallograchy. Io the eddy current assigned deaths as determined by phase analysis. This statistical evaluation, which includes a total of eighteen (18) data points is intended to confirm the accuracy of the GPUN inner diameter conversion curve f:r sizing inner diameter initiated IGSAC.

"R" and "I" The 18 data ceints are evaluated in 2 data sets identified as Data set "R" includes all the data coints contained in Accendia C.

which contains the samples Figure C-1. Data set "I" is a subset of "R" This which were reported cy metallograony to ce 20% to 70% through wall.

subset represents the greatest area of interest for dispositioning tne OT5G tubes.

The analysis was performed to quantify the difference :etween the actuai-percect tnrougn wall values (Actual Ceoth) and the ec?y current asst;nec percent througn wall values (ECT Death). The analysis was cerformed us'n; "R" and "I" the values shown in tables E-1 and E-2 for data sets respectively. .

The analysis includes a determination of *ne "Mean' difference and the These values are summart:ec celcw along with a standard deviation.

comparison of the same values which were e<tracted fr:m Accendia D f r E:"

netches.

' I
sa I-

TOR 642 Rev. 2

- Appendix E Cemcarison of Statistics for 20-100% Through Hall Discontinuities Actual IGSaC Samples ECM Notches Extracted from App. 0 Data Set R No. Mean One No. Mean One Data OPTS Offferen.ce Standard Set ' DPTS Olfference Standard (Percent) Olviation (Percent) Olviation 2.4 10.13 Delt B 80 10.010 18 . 1.67 8.31 Delt C 80 + 1.8 Comparison of Statistics for 20-70% Through Wall Discontinuities Actual ICSAC Samples ECM Notches Cata Set I Extracted from App. O No. Mean One No. Mean One Data DPTS Olfference Standard Olfference Standard Set OPTS (Percent) Otviation (Percent) Olviation

+ 2.76 9.74 Delt B 48 9.34 6 7.83 11.89 Celt C 48 + 1.59 Note: A positive mean indicates the Eddy (urrent overcalls the actual depth. A negative mean would indicate an undercall by Edcy Current.

The result of this comparison demonstrate the GPUN I.D. Conversion overcalls The ccmparison further the depth of coth EDM notches and actual IGSAC.

demonstrates additional conservatt m is included for the 20-70?

Jata region as is indicated by a 7.8% mean overcall for the 6 data points ir set "I".

213/ 23 E-:

TCR 662 Rev. 2 Appendix E Figure E-1 Comparison of Metallur.]Ical Results To the Eddv r u ccent predicted Data Set R Inc'uces All Data Points From Figure C-1 ACTUAL ECT SAMPLE OIFF.

LOCATION DEPTH OEPTH 085 ID 41% + 3".

1 Samole 23 4.0 38%

54; 51% - 3*.

2 Samole 24 4.8 66" 68% + 2'.

3 A-112-7 10.7 82% + 12*.

4 A-146-8 4.0 70%

70% 100% +30.

A-24-94 12.8 5

100% 100% 0'.

6 A-24-94 34.0 10".

32.0 100% 90%

7 A-133-74 0' 33.0 100* 100% '

8 A-133-74 0*.

11.6 100% 100%

9 A-11-66 C".

3.5 100* 100%

10 A-146-6 0%

26.8 100% 100%

11 A-13-63 - 7 ".

A-10-29 7.6 100% 93' 12 3'.

1.2 20% 23%

13 A-111-13 0'.

1.4 100". 100%

14 A-112-05 0".

2.4 100% 100?.

15 A-112-05 0%

2.9 100". 100%

16 A-112-05 O',

4.1 100*. 100*

17 A-112-05 0" 5.8 100' 100%

la A-112-05

. ([ Di f f g .1.67 n no. of ooservations Mean of Di f f*'"" "

Olfference Standard 3 Sample - f[0ifft n-1

- Diffmean - 8.31 Deviation of Sample E-3 ,

'2'3( :a

  • TOR 642 Rev. 2 Appendix E Figure E-2 Comparison of Metallurgical Results To tbs Fddv rorrent predic*od Data Set I Includes Data Points With Metallurgical Depths GE 20% and LE 70%

ACTUAL ECT SAMPLE LOCATION DEPTH OEPTH DIFF.

085 ID 4.0 38% 41% 3%

I Sample 23 4.8 54% 51% - 3%

2 Sample 24 10.7 66% 63% + 2?.

3 A-112-7 +12".

4.0 70% 82%

4 A-146-8 +30%

12.3 70% 100%

5 A-24-94 +3%

1.2 20% 23%

6 A-111 13 d[Dif.fi = 47 - +7.83 n - no. Of c:servations Mean of Olffmean n 6 Difference _

Standard e 53,,;, = ifDiffi

"-l

- Diffmean . 11,gg Deviation of Sample

- e EJ '2'3 :a