ML20094Q606

From kanterella
Jump to navigation Jump to search
Forwards Nonproprietary Handouts Presented by GE During 951128 & 29 ACRS Thermal Hydraulic Subcommittee Meeting in San Jose,Ca
ML20094Q606
Person / Time
Site: 05200004
Issue date: 11/29/1995
From: Quinn J
GENERAL ELECTRIC CO.
To: Quay T
NRC (Affiliation Not Assigned), NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
MFN-263-95, NUDOCS 9512010282
Download: ML20094Q606 (158)


Text

_ ._.

O GENuclearEnergy t 0 *Ln tSeNSbis*Irais$ni!eT#

November 29,1995 MFN 263-95 Docket STN 52-004 Document Control Desk U. S. Nuclear Regulatory Commission Washington DC 20555 Attention: Theodore E. Quay, Director Standardization Project Directorate

Subject:

SBWR - Non-Proprietary Hsndouts From the November 28 & 29,1995, ACRS Thermal Hydraulic Subcommittee Meeting In San Jose, CA Enclosed are the non-proprietary handouts presented by GE during the November 28 and 29, 1995, ACRS Thermal Hydraulic Subcommittee Meeting in San Jose, CA.

Sincerely,

s. . Quinn O'Jro[ cts Manager i

/

Enclosure:

Non-Proprietary Handouts From the November 28 & 29,1995, ACRS-Thermal Hydraulic Subcommittee Meeting In San Jose, CA cc: P. A. Boehnert (NRC/ACRS) (2 paper copies w/ encl. plus E-Mail w/ encl.)

I. Catton (ACRS) (1 paper copy w/ encl. plus E-Mail w/ encl.)

S. Q. Ninh (NRC) (2 paper copies w/ encl. ple E-Mail w/ encl.)

J. H. Wilson (NRC) (1 paper copy w/ encl. plus E-Mail w/ encl.)

01005g

~

es12oto2e2 esti2, PDR ADOCK 05200004 .

g A _ _ . . ._ , _ PDR ,_.

s 4

4

O j GENuclearEnergy

. t 4

Advisory Conunittee on Reactor Sefeguards l ThermalHydraulic Phenomena Subconnuttee Meeting i >

SBWR Design and Certification Program ,

l Reviewof Test & Analysis Program 4

i i

. November 28-B,1.995  :

1 San Jose, CA l

\

I 1

3 t

l Meeting Objectives f

  • Update S8WR Progrens status.

- Convera sense e(process.

- Deneenstrate that have positively addressed sssues.

  • Progress towardclosure ofscaling. Speci6cally gain...

l,,,-- .' that testlecilities : _' , . , represent the seWK Ackneeviedganent that test results appropriate ter polifying TRACG.

  • kitiate discussion of testresults.
- Eeryin evoluotion process,ineneeldecanente*nen to tellow.

5

- Provide perspectsve en scaling.

i - mostrete ssWRsystem behevier. 1

  • Respond to two speciGc ACMS concerns.

- Reactor startep beherier.

' - Choneney calculationalbasis. l

. * .,si 2

i s

-m v e ,- r- w --_u - - _ . - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

E d

1 4

l Meeting Agends -November 3,1995 J

j 0805 Welcome Quinn 889E heeductreefregranStatus Buchholz 0830 TestPreernm 0verview . Torbeck 1915 Break 1m Scaling Evaluation Overview Moody ClosedSessien l 1115 PCC/SBMSystem Respense Shiralkar 114S Lunch

,. 12\0 Scaling Fennelations/ Application Yadigaregiu/

Gamble 1640 Panthers TestDahVEvaluation Billig/Fitch

. 1800 Recess i

+

4 i

2 Meeting Agends - NovemberB,1995 i

0805 PANDA TestResults Yadigareglu b 1915 Break 1m GIRAFFEHelium TestResults Herzog i 1110 GIRAFFESITTestResults Duncan 1280 Lunch I

1245 SBMStartup Behavier Tang 1380 ChimneyCalculation Basis Shiralkst ,

1415 GEPresentation Closure 9

YifM J .

O GENuclearEnergy Advisory Conunittee on Reactor Safeguards Thermal Hydraulic Phenotnens Subcommittee Meeting l

SBWR Design and Cettification Program TechnologyPhaseUpdate l November 28,1995 San Jose, CA l

TechnologyPhase Overview- Testing

  • Significantprogresssincelastmeeting.
  • Testing being conducted at three facilities in dree countries.

- Italy PANTNERSPCCSandICtesting

- Japan GIRAFFEhelium andsystemsinteractions testing

- Swiuerland- PANDA steedy state and transientintegral systems testing

  • As testing is completed, emphasis shihs to documentation.
  • hiaintaining constant contact with NRCststf. ,
  • Challenges being encountered, but resolving in a timely menner. j eeBrf3d

TechnologyPhase-KeyMilestones

  • GirnNe

- Perform shek:2 . :,'cherecte-ization testing. . 19Ney% (complete)

- Soccesshrily complete NRC QA Inspection . . 1AlunM (complete)

- Perkem single andmined gas testing. . 27Jun95(complete)

- Perkrm tieseck tests . . 16Aeg% (conplete)

- Perform systenn interaction testing. . 310ct95(complete)

  • Pands

- Performincilityshakodewn tests.. 20ApritM(complete)

- Perform steady state tests St-56. . 19NeyM (complete)

- Perform steedy state tests $7-$9. . 10Neys$ (complete)

- PerformsteadystatetestsS10-13.. 4&ap%(complete)

- Perform ist set ofintegral systems tests . . 15 Nee 95 (complete)

- Perform 2nd set ofintegralsystems tests . . . in progress t

- Parkem 3rd set ofintegral systems tests . . . J0JenK Technology Phase - Key Milestones (cont'd)

  • Panthers

- Petterm PCC TM tests.. 20cecN(complete)

- PerformICfacilityshehedown tests. 27Julyn(complete)

- PerformIClowpressure TMtests.. 4AugM(complete)

) - Perform /Chigh pressure TM tests.. 130ctM(complete) j 4

t i

,w.

4

l 1

i

\

1 i l I

Technology Phase Overview - Analysis

  • Campleting blindpre-testpredictiearandtransmining to NRC to support tesong schedule.  ;
  • Thus les resetts consistent wiek testpredicdons.
  • Focus to shik to post-test evalentions to supportissue of preliminary Validaden Repeats
  • SaeeralsigniHeant decanents sehnuned to NRC.

- Revisions B and C to the TAPO.. , ': 'to StaWand ACRS comments

- Larye sapplement to TA90 centeining detailed PtRTinnennetion.

- SigniHcant esponsion of Scaling Report.

-?, ': 'to a meing pestions and RAls.

These actions taken te reselee NRC/ACRS stated concerns, repests, endissues.

Technology Phase - Key niilestones (cont'd)

  • AnalysisRelated

- Issue TAPO Revision R. . 10AprM(conplete)

- Issue TAPD Revision C& PtRTsappleerent.. .JEAapM(complete)

- Issee Scaling Report revision . . 110ctM(complete) '

.- Perienn PANTNERS PCC pe-test analysis . . . JE$eptN (complete) 7

- Pertenn PANTHERSICpre-test enelysis . . 5JulM(complete)

- Pertenn GIRAMEhelium pre-testsnelysis.. 21AerM(complete)

- Periorm GNEAMESITpre-testsnelysis.. 295epts$(complete)

- Perknn PANDA M4 pre-testsnelysis.. 21AngM(complete)

- Pertenn last PANDA transient pre-test snelysis . . 190ecM ,

- Issue TRACG ModelReport opdate.. 31Jan96 w-

l Summaty I

  • Signi!!cantprogresssincelastACRSmeeting. \

l

- Testing programs on-going toward conpletion. i

- Meeting commitments in support of testinglanalysistissue }

resolution >

  • Today's challenges...

- Competent, timely completion of testing and analysis activities.

- Responsiveness, when faced with new technicalissues/ problems.

- Maintaining support from the SRWR Tenn.

- Continue dialogue with NRCand ACRSin support of Technology Phase completion.

Timely, quality execution is essentist to maintain momentum.

MilJEN n

l 4

I l

l e.. a. _.s .

, e w e.e , i n.o nm ,

eaa ., n

.i g q .,.,y .i_, , .

7 II EiTII3713 3 I A I . I O 1. I D JIFITIa1EI.1iTITbTFTrTUm TTVT3I.si.Iif411'6f.T9 l

.s t ae armsh.

l T" eia ia ~i.' s.i

. er a i . n=r.' ' i.i '~ T.

- -~

.avi,a,<,46 I.W ~ di sl di;;;.Tsa L . ... .i

_T a.....

. ._. .. .._ . _ . ...e. _ . g

. T . .i~ a a... .. m

i. i . ~k . .

T

.e. ia ' =.* pgueummm a  :

. ;i w. r. a.. . p

~;i 7 ;;. s 1-~. W i. .i T'-.O.- . 4. '~m. --

1.sco_ . _ _ . . _ _ _ . _ , . _ _ . . mu.ar ar m .

's 'e . , . . i."

w =. a . .. ~i g,,.,,,,,..

ir niiri . ifTsii- ~

T i.i .J.aiu- i; . .Fi.iriir' g,,..,~,,,,,,,

T ... a i- . , . 's.- -

T .. a a. . . a... g

.a..

~~-

is . '..~ . .

W -' . --~

e s '__.. u.s e. '.if v

._. u. s .

-on m =

ms

. .. g,

... '. %m.

muuss

,, -. n _ . _.. .. ,,,,,,,

T g h. - A. 0 T -

i.;. A;;.4%.;;;;.~.,;,;;;,

.W .;.ii

. c s 4 ;sim. a. . . a. m e. ,

' i. am . . si.~ e.; e e.

T ..a ,. .i ee

. ~ _

a~~ . ;. ,4 i e. . . . m e.

iF.~ ;;.i i . .. isc wt c.ca . .. w. .c ,,mme if' .;r,.T .i.ip i a a. s . a.m.' ,e T ,.;,;;T ;;T i.i. . sir.' a. . i.-

, .is 6 i o...'"isi.W g

. s J.e T. " m .- ' ,,,,',,

T  % ... ..

mi.- 2.i - .r.v. , , , ,

T  ;.;.  ; . rec - .. ... ,,,,,.,,.

T

,,.r. w.i . . . . ..- ,,,,,,

. _ , . . . . is.c ,, ,

7 ___

,,3,,,; _ _ . .. ,  ;;.-

. ,, is.;i.. ... i. . .-,,

r.iii,zie.

T .~ d - 4 i.i' lis e.~ g,

n. -

t

--+-"

ain an e ., ,.e. _-s. a. g

-l-

.'. oE".fe.-~ n'.s e.IT."~iiiin si a

.. -. - . .. ~.. .. w ' Q,,,,

. a.,. .. ... ,,

~ ~ ^ ~ ^

7;.Tui '

T m... .

"_. T. e. '. _ . _

_ _ . _ . _ l88m

_ _ . . . _ _ .h.,e e _ . .m.

g. A s5 .8 4 W ... yin E
e. psn a. 6.d e.'~u.Te.~ sens li"g' Augge Jn .t
e. .a.o~~ .i'id e. a .

' of ' au m i.ii --~-' ' i 'ini~'a c . ,,,,

' . i e.wi.~ Iieisii e 'iiss'~.mi

.. . . . . - . .. -, l W .. si. 6a a... .. a . p g or i.s.W4 r-' ' ..

... _' _ _~.s _

eacc

_a .F_i.i__.m._

r...

l

. - . . - .. . . . . s,,,,,,i ,,,

T i.; i==.4

~ , . ,

a siar . 4

_ . sir

].{] [ g ei' . 7,iIii *= i.a si . a. m . 1 T,;- ... .,

i l T ..s s.;.e - .. ., .c  ; rec

,, --,,,,,,,,,,_ . ,p  ;,,; , cq,7gg =

7

. ca c.w w ,.i. w.i.,.

ci ,. , -

y T ' e' seiT T.Te;i4 ^ i.

e,

n. a. m . .

l

,,- ,ii,,,,,,,,4,,.,, 7; -- ,7, c,,, g;c T~~~

v.

.c i; s g. .w;e -

- ..w6a; ru.-

is a.T.I 1.;ur .ir.r si(F 'b

.u.- vii sU.;T."a-.i m a.o a.*e.i. . gg i *^'.sm.c.- ~~ .ii 'e. i . '% in'ii

.7 m

. . me. i., . .i" Esser g

.' ' = . . i ca ii. a4TF i-# mg

~. =m ., s. ..

. a .i cae u.. i.e. e e s'i' oug 7 '--'

sia iT. a..~ ' a.s' F N j T ' ' . ,4 .'i cos ii. .. ..= SNEMB I c

'~

er .n. ewee e. a. . . s. Em ,, GOAL

.. .. g_ 7.- 7 3,,-,-- g- g

. -a, -a ... .

M. a.I . .u Dr .

c o-- s .a c .a.

GENuclearEnergy ACRS Thermal Hydraulic Subcommittee Meeting SBWR Test Program Overview J.E. Torbeck November 28,1995 San Jose, California hiename. ws1023

V PANTHERS Testing Purpose '

~

Demonstrate PCC & IC heat exchangerperformance a

Description
  • Full scale PCC and IC heat exchanger tests Performed by ENENENEL/Ansaldo/SIETin Italy L

l Status l

  • PCC testing and reporting completed IC thermal hydraulic performance testing complete
  • IC structuraltests in progress JET 2

- .- - _ - - - - - - - - _ - _ - - - - - - - . . - .. - - _. _ -. __ .a

E l

PANTHERS Testing (cont'df

\ PCC Results i

  • PCC meets design objectives l - Condenses 10 MW of steam at design conditions l

i

- Condenses with significant fraction of non-condensable gases present

) - Venting of non-condensable gases demonstrated

  • PCC thermal-hydraulic performance is weII behaved I

Difference between performance with lighter-than-steam and i heavier-than-steam gases established 1

IC Results Steady State performance tests preliminary results show it (

JET 3 meets specifications.

..w.9 .. -.-w w +=m- e -w e *m-w=-+w,,w , , - ,- we wwe,,-- --+-epw--,--,,w...--, m.., ,ww,<w,,,__. ,-w, ,

~-e %--ww...w.w. i. ..-..-.ww%.-ew--.w,..ww-,-w vv w---.----+-,ww-w-- -w-- - - , , - - ,--.-=w--=6=-w-w-, * ~ -- - - - -

i i

i PANDA Testing i

l Purpose i

Demonstrate containment systems thermal-hydraulic i

performance Description

' D e 1/25 volumetric scale, full-height facility

  • PerformedbyPaulScherrerInstitut- Switzerland t

JU4 i

.,..,,,,,....-,_,,,,,-,,,...--------w-,-._,

,,--,,_-,_,....,._.,,....,,.....,.% ,, - _ - _ ,. _ _ .. . , . , . . .. . . . . , , _ ,.. ,m_.,,, , . . - - , , , . . . . - . ..m , m , . ,,-- ~,,..., ...

PANDA Testing (cont'df Status 10 Steady-state PCC performance tests complete At scaled conditions corresponding to PANTHERS tests Facility characterization testing complete

- HeatLoss Tests

- Line Flow Loss Tests

  • Transientintegralsystems tests initiatedin October
  • 5 transient tests complete (about half ofplanned tests)

JET 5

--,-o,.....-v,w,,,.~.--w.--w-,--v.- ...w- r .....m.m_,.m...mm.. .. - . - --

i i

PANDA Testing (cont'dj l: Key Results

  • Steady state PCC performance test data trends are consistent with PANTHERS Transient results show drywell and wetwellpressure response consistent with expectations l
  • Data on noncondensible gas concentrations obtainedin drywell and wetwell with oxygen sensors Remaining actions
  • Proceed with transientintegralsystems tests -

JETG ve., , v-w, m.--w ~ - - - -m, < ,-.-. , - --- . .

k i

! GIRAFFE / Helium Testing

Purpose 1

l Demonstrate containment system thermal-hydraulic

\ performance in the presence oflighter-than-steam non-condensable gas (Four H-Series Tests)

Repeat earlier GIRAFFE tests performed without NOA-1 1

Quality Assurance (Two T-Series Tests)

Description 1/400 volumetric scale, full height facility .

l Performed by Toshiba Corp. - Japan Status

.w+. ., -_, --,,,-.,,..3-3-.-*...+--- .--,v,.,-- . - + - -- - - , ---,  %,. . . , - , , , , , , , - , , ,,,e.,4,. . ..,,,-w,,3 . , . - . - . , , ,, , -- , , .,%, - ,,_,,,,,. ... .-ww.,,, . - . . . . . -w,--w, -,-----.,..,,,wvv..i .w ., iv.--.w-

i GIRAFFE / Helium Testing (cont'd) 4 l

Test Results

! Tests show drywell and wetwellpressure response consistent with expectations i Tests demonstrated the purging of non-condensable gases l from the drywell and PCC to the suppression pool l The PCCS maintains containmentpressure wellbelow design i pressure for all tests, with drywell non-condensable gas

concentrations as high as 27% by volume.

- with helium, nitrogen or mixtures of helium and nitrogen. ,

  • Direct sampling and measurement of gases provide further data on the movement of non-condensable gases

., JET 3

. _ _ __- _ __. _ - ___-_ .--._. -_~ ._ _ ---_-,,._--,.._._,-_- _ _ ___ __ _ ___..._ ___-..-_____. ,-_ ._ _ _.~. -

. ---.___,.- ,, .. ,-_ ., .. _ _. _ ~ , .__.....

i ,

l GIRAFFE / SIT Testing i

i l Purpose

  • Provide data for GDCSperiod of LOCA
Focus on RPV water level and potential systems interactions
(IC, PCCS) l l Description l
  • 1/400 volumetric scale, full height facility

+

  • Performed by T&shiba Corp. - Japan 1 Status
  • 4 tests completedin October JETS 4

, -i 3,-, , ., , .3,-,,,mi-..*-we y--= ---,.-ww->,,, ,, - 5rw,,..,,-, ,,w..,,.,-,-yv,--v-e,-,_,w,, , , , .%-, , - - ..,-,-.w., ,,,-my%-_.---m-,,,- , - -, ,-,aw.,+ , - . ,, , , , - , , - , - , - -..-,,....'w, w,. .-- - ,-- . v,~- ,,wi ,

l 1 GIRAFFE / SIT Testing (cont'd) l i Results 4

1

!

  • Tests show RPVlevel response consistent with expectations
  • IC, PCCS have favorable effect on containmentpressure l

i

  • IC, PCCS have no adverse interaction on GDCS i
  • IC has no adverse interaction on RPVlevelrecovery JET 10

l Summary l Testing in progress or completed for all test programs l

  • Large data base obtained

\

  • No significant surprises i
  • International Partners' cooperation has been a key factor in
progress i

l- Tests are demonstrating significantmargins in SBWR design JET 11 i

-__________.___.__.._--._.-.,...-,.e.,_ ..- _. .,.. ._,_-_.,.. .__ ._.... ___,,..,_,._,-. ,. _,,.,.._... _,....._ . ,_... _ ,.. .- _...,,.,_.. ,,,,__-._..

4 l

9 GENuclearEnergy 1

Scaling of the SBWR Related Tests l

Scanerum: Robert Gamue AndyHunssedt l

Fred Moody Neween Parker George Yadiparoght l l

i Presented By: FredMoody

, ACRS Meeeing

. San Jose, CA

November 28,1995 i 8.

I i

l SCALING OF THESBWR RELATED TESTS j e ACRSNRCISSUES ADDRESSEDINSCALING REPORT e Considerable espansion of earlier Scnng Report (Rev. 0) l

  • Discussion of"GlobalSystem Scnng"added e initinicond6 ens and reference values addressed J

e GIRAFFFJHeian and SIT tests included l l

e Menomeinc oscillations between large water volumes analyzed '

  • Sections kom TAPD integratedinto Scnny Report 45 8M4

1

)

1 COMPARISON OF REV. 0 AND REV.10F SCAUNG REPORT e The basic approach and results are the same (except for minor corrections) e Top-down Scaling

  • Ddn/eien ofsternam n nwn6ers k es momenann eguselon metmake eNectofp% kerein evident e Useof(hah)kenergyequationksendof(h a e) e Consideradon of scaling for consmuent mass hacdons e MajorAdditions e lachosion of PIRT for LOCMCCS Phenomena e Considershon and scalin poine importent RPVphenomena o Genenc dynamic model of he enen system

+ Use of eis modello darke sets of"pdo6al* system desen'peions for particular phases of he transients considered COMPARISON OF REV. 0 AND REV.10F SCAUNG REPORT  ;

  • ^z of se mesodotogy to se various (neaees (previous.y coninenedk TAPD)

- Identdes important system parameters regarding top 40wn scahng j

- Identdes any distortsons of the parameters (which can be *wetghted'by I theirimportance e BottorwupScaling

+ Addeonalconsiderations

- Naturalcirculationin SCairspace

- Strat6cabanandmixinginDW

- Expanded discussion on heat transfor from the condensers

- Analysis of oscillations between large hqud pools

- vord distnbution un the RPV l

l

PRESENTATIONOUTLINE e Overview and consistency with H2TS methodology Fred Moody e Analyticalbasis fortop-down andbottom-up scaling George Yadigaroglu e Comparison of SBWR and Test Facility scaling gmups and scaling conclusions foreach facility Robert Gamble OVERVIEW AND CONSISTENCY WITH THE H2TS METHODOLOG Y e APPLICATICN OF THE H2TS METHODOLOGY TO SBWR SAFETY SYSTEMS MAKESITPOSSIBLE TO:

  • Show how well various esperunents represent behavior of SBWR systems

+ Determineifespenmentaldateis sunicientlyrepresentative for veMenon of TRACG code phenomenologicalmodels i

l

1 l

l I

t LOCA ACCIDENTS e NAINSTEAMUNE e GRAWTYDRIVENC00UNGSYSTEMUNE e BOTTOMDRAIN  :

k i SBWR SAFETYSYSTEMS e GRAWTYDRIVEN C00UNG SYSTEM (GDCS)  :

e ISOLATION CONDENSER SYSTEM (ICS) e PASSIVE CONTAINMENT C00UNG SYSTEM (PCCS) 4 9

1 es m b

i h

p b

I l

j l

.l i

IMPORTANTPHENOMENA ,

e SYSTEMPRESSURERATES

  • REACTORPRESSUREVESSEL
  • DRYWELL
  • WE7WELL i e MASS AND ENERGYFLOWRATES
  • REACTORVESSELBLOWDOWN
  • VENTS
  • VACUUMBREAKERS
  • ISOLATIONCONDENSER
  • PASSIVECONTANNENTC00LNGHEATEXCNANGER
  • GRAVITYDRIVENC00LNGSYSTEM .

TESTFACIUTIES e GIST e GIRAFFE e PANDA e PANTHERS I

E 4

H2TS METHODOLOGYAND PIRT 4

e INITIAL PIRT 1

.

  • MMel MRT for the $8WR kciudes phenomena based on current
understandag, }udgement and esperience

,

  • HigMy ranked MRT parameners are useMk guMing the design and scaling of testfacitieies
  • Various MRT;' - :s are ==~w with nondenensionalgroups oblemed kom sopdown or bottong scading i
  • AII higMy ranked MRT quantieles are anidrossed by top 4own or bottom.

4 up scadinglaws 4

t 5

l H2TS METHODOLOGYAND PIRT(Cont'd) e H2TS ANALYSIS

+ Top 4own scaling ana4 sis is podermed at tir e system lovsl(e.g., RPV, DW, hVW)

  • Top 4own scading k combination with MRTMenenes knportant processes for bottommp scaling analysk e Charactenstic eine ratios he& to distinguish between dominant and negiipWe parameters k a MRTassociated whh various processes e Top-Down scaling is addressed in Chapter 2 e Bottom-Up scaling is addressedin Chapter 3 e Time scales are addressedin Chapter 2

CONCLUSIONS e THE UPERIMENTS DESCRIBED, THOUGH NOTPERFECTLY SCALED FOR ALL PHENOMENA, PROVIDE RESULTS WHICH ARE REPRESENTATIVE OF SBWR BEHAVIOR OF SAFETY SYSTEMS THROUGHOUTALL LOCA PHASES e DOMINANTPHENOMENA AREPRESERVED e NONREPRESENTATIVEPHENOMENA ARENOTINTRODUCEDIN THE TESTS e OPERIMENTAL RESULTS ARE SUFFICIENTLYREPRESENTATIVE FOR TRACG CODEMODEL VALIDATION M M4 l

i

\

l 9 GENuclearEnergy ,

i ACRS Thermal Hydraulics Subcommittee Meeting SBWR Containment LOCA Overview l

B. S. Shiralkar November 28,1995

--e-- 6 e 4 ..A,4 - h n ,A- *v,n.---4 4 a- 4- a na wv-- - w--- -w - - - = - --w -

I i

4 I

i e

._ /

-l  % V 8 i yd .

E a?' 0 3 1 Ud g if A

. oj e' l _

! -- S

  • r]

n ' 3-- \

$ 2B i

~Z"fl 94 f gi,,tp, 4  : h: l J 1

\

M .

' ~

o3l&

1

-_,/ I

! u I

~

X

\_/ =__ -= gO l

Q' o f' $

n e

E g ,.

\(O -,

ar L,

( ; "

s e 1

, - - - ~.

~~

o.

"J i 3.

l f D)  :' ,

[I09rb M _H h 1

e (1g a .

J "

W l

E i k

!. - __ /oi

q -

s, . -

-e

__ g g

% .. a g

= a es (~0 m o ta o '

e ._

  • 5 n

es 88

=

e

, I n at a Q o iGEE k a

" [

3 e __

1 D C3 5

t M

4 i ,

'l Break Scenarios

  • Break scenarios generally similar

- Scram, isolation on high dryweIIpressure

- ADS (SRVs + DPVs) on low reactor vessel downcomer level Depressurizes vessel for liquid line breaks and small breaks

  • Large Steam Line Break

- Leads to highest containment pressure

- Break in upper dryweII(UDW)

- Noncondensibles purged rapidly from UDW via main vents

- Noncondensibles from lower drywell (LDW) enter UDW as pressure drops

- Main vents closedpost I hour

- Decay heat removalthrough PCCs

  • Large GDCS Line Break

- Liquid line break in dryweII annulus

- Noncondensibles purged rapidly from UDW via main vents

- Water from GDCS pool with broken GDCS line spills into drywell Steam condensation leads to vacuum breaker openings in first 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />

- Longer term behavior similar to steam line break

_ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . . _ _ _ _ _ . . . - _ ., . . ~ . - . . . - . - . _ _ e__.

b

~

Break Scenarios (contd.)

L

  • Bottom Drain Line Break

- Liquid break in LDW

- LDW noncondensibles purged earlier to UDW 1

- Milder transient than large steam line break

  • Small Break Inside Containment

- Only top horizontal vent and PCC vents clear

- Energy deposition near top of suppression pool

- ADS on pooltemperature '

- 2.5% steam line break worst in small break spectrum forpeak pressure

  • SmallBreak outside Containment

- Break isolated quickly

- SRV discharge to suppression pool

- ADS on low waterlevel; Discharge flow similar to inside containment breaks

- Not a limiting break

1 Break Scenarios (contd.)

  • Conclusions

- Long term response similar for all breaks .

- ~ 85% ofpressure rise due to transfer of noncondensibles to wetwell vapor space

- ~ 15% due to energy deposition in the suppression pool (horizontal vent clearing)in the firsthour

- Pressure rise augmentation by bypass of uncondensed steam through PCCs Need to assure this is small k

i 4

t

- - - - - - - - _ _ . - _ _ _ ___--_______--_-______--____------_----___-------__-_______.-----___-----_---_____-__---__---____--]

PCC " System Response" Characteristics

=

=

p p Decay Heat (

Drywell PCC Pressure Pressure y

u-

" ~

=

  • PCC Heat Removal fD '

? ,

d ,

3+

Wetwell PCC Press + Subm

~/[U 7 N/C o

N/C

1 PCC " System Response" Characteristics

  • PCCS tends to maintain a balance between heat removal and decay heat
- PCCs have excess heat removal capability underpure steam conditions

- Feedbacks on noncondensible holdup and dryweIIpressure stabilize response Reduction in heat removalincreases PCC pressure Noncondensibles are pushed out through vent ATforheat transferincreases Heat removalincreases Blanketing by noncondensibles reduces heat removal DryweIIpressure increases Helps to purge noncondensibles to wetweII

- Normally enough noncondensibles remain in drywell to reduce PCC heat removalto match decay heat PCC volume is 0.16% of dryweII volume i

- Noncondensible accumulation may occur preferentially in one of the PCC units, but overall heat removal matches decay heat i

i Conclusions 1

i

  • Long term pressure response is insensitive to break location
  • PCCs have excess capacity
  • Tests being performed in PANDA to cover various scenarios

- Should verify insensitivity to Wc transients and robustness of design 1

t

)

4 i

I i

I  !

l l i

S.

E

\

\

\ o

\

C \

\

41

\

t N k

i O j 3 t Z

ul O

\ '.

\

1 t

\

\

\

1

\

m& \

og 1

Of GE Nuclear Energy Analytical Basis for Top-down and Bottom-up Scaling Scaling Team: Robert Gamble Andy Hunsbedt Fred Moody Maureen Parker George Yadigaroglu

l Presented By: George Yadigaroglu ACRS Meeting San Jose, CA November 28,1995 me,m ,

t l Outline i

. Top Down Approach (recall)

, Phenomena ofprocesses considered = set of governing equations

. General ApproachRwo parallelprocedures:

^

. Obtain general scaling criteria (ideally scaled facilities) l . Identify / quantify distortions in real test facilities

. Global" Generic"Modelof the SBWR System + a set of governing equations

.i

. Generic modelis specialized for cases considered example: Blowdown Phase flowpath eqs in n/d matrix form

. Examine / compare TI numbers and local factors to identify /quanitty importance of distortions na nam

Top-Down Approach: Phenomena and Processes Considered

  • Thermodynamic state evolution of containment volumes with mass l and energy additions > generic continuity, energy and pressurization rate equations
  • Phase changes at interfaces > defines enthalpy scale Transfers of mass between volumes driven by pressure differences > genericjunction flow rate equation (a) d P1 a 'Ab I I f _ _ _ _ _ _ _ _ _ , e_

l " l h 'W aa l u, l o w l

\ -___&

=

l u, l l___________________i M

1 P2 O Wen ALG -

o wtg ,

b 2 .

= ,

kO 1...

nco im9s u

Thermodynamic Evolution of Containment Volumes with Mass i and Energy Additions - 1 i Q

I l I V P yj i l u l 1 T l ho,i i gg 1 I h I l

Wi l I I l E P l

Yi, j r y l

i l - i l Mf i l__________________J E

e= = e(p, v, y,)

A containment volume receiving mass flow rates Wg with corresponding total enthalpies b ,,,, and heat at rate Q I

REGtt?s% 3 ,

Thermodynamic Evolution of Containment Volumes with Mass and Energy Additions - cont'd - 2 dM' l Mass conservation for constituent j: g,-X%,\=0 ,

i r Energy Conservation:  ? = -pH+q+Ew,h, dt dt ,

~

dP 1 P*

  • d' ~
  • Obtain now dpfdt: 3 = y7, fw,Q,,- w,p %:*3- _

f u dt Short-hand notations for thermodynamic properties of the mixture P' = P + De f, = I de ( nondimensional system com pliance) ~

Dv ,,,, v DP ,,,,

l de -

f,3 = # O (units of energy per unit volume)

, Ys no ,

y, constant means all y, are held constant, and y constant means all y, except the one in the derivative are held constant IEG tiraV954

I Thermodynamic Evolution of Containment Volumes with Mass ,

and Energy Addition - Cont'd - 3 l

l' Alternative sets:

dM i and I dt dt  !

or dM dt

  1. YS#
  • l uy = -P + Q + [ W,(h,,, - h)+ W,

[

enthalpy differences appear in these equations i

REG t v2595 5 i

i i

t l Case of Vessels Containing Only Steam and Water (e.g. RPV)

  • The constituent mass fraction y,is replaced by the vessel-average vapor volume fraction a
  • Combining the continuity and energy equations for the vapor phase:

[ (h,,, - h,) W,',

p* dtb = 1V [ W,,+ ' + + Y E

, h,,V h,,V h,, dt where -

V= l -(1 - a) p,h', - otp,h', - ah,,p',

where the z ,L' are thermodynamic properties i dp ,

REGit/26954

i * ,

r w

m i

s u

i n

1 d e

b

, g .

v r

- I n . u s e .

V e_ H m

~;

b u

P,

_ S 0 l dn = =

y am s L @,

_ - - g a e g b n _ -

m u m n D 4

l o P ,

e

- V bu =

o s .

i v " P 2

P 2

wI I L r r, Tg =

D w i i t

nm c l s - e :

e 5

\ n2 n

oe k

+

n m a I C mu a n u P y I el p o PiV

" D l

o b '

e_ _

, )

a

=

V - -

j

( F, n t s P t

P 2

e e e r e

_ p t

w1 -

t n L 1

s 1 2:-

M2a 2

es Be I

f )a o(

s e

e 7,

l P

o o h t

a E,

c .

o0 p 1 s n s 1 w= r 1

g n Tm sa er t

o P gI I f o p i n -

t n

Me a ieh t

c o t f r n - i E,

ff u ni t

a -

i g i oL u g

- oD s

i f

n P

C=e p n E q

p

+

re Ph ,

o i

er f u C

)

b

(

m u

P, A

=

ss g t n *d ns i n e d t

ae rr i p m o b a.

P TP M E. .

Transfers of Mass Between Volumes Driven by Pressure Differences - cont'd -2

, Generic 1-D momentum equation for path m:

'L' F' W*2 dW" - AP, + p gL, - pogli,, -

t a j, dt (a j,2p.

where, ta >.

=[ a.k=[

. . g

"'" + k ,

D, ,

ha, and

'L' I

<a,. = {

- 2.

. a.

are geometric parameters describing path m.

REG it'2&*354

Summary of System Equations .

For Volumes dM

  • totalmass a, ~ E W. = 0 dM'
  • conservation of constituentj g, - h W., = 0 dV
  • energy Vp de = -P- +Q+ (h, - h)W, + P W,
  • rate of P change =

'("' ~) #' + -"* -V I Vr,

  • Vapor Volume fraClion p* $ = h w,, + [s (h,', - h,)W . +S+ Y #

dt V. Vh,, V h,, dt i

For Flow Paths i

'L'dW I f F'W 2

  • momentum M p (,2 , ^ 9@

(,, a, 2 nm waws

4 General Scaling Approach - 1 i

  • Two ParallelProcedures a) obtain generalscaling criteria (for ideal case of perfectly scaled facilities) u b) detect the scaling distortions and evaluate their importance (for the actual test facilities)
  • For a): A minimal set of unique (global) reference scales is used:

{z,} = i,,v,,w,,Q,,p,, AP,, Ah, non-dimensional variable: z =l

  • z.

i

  • For b): the minimalset {z,} is:

i supplemented by additional specific reference scales: i i M., AM,, P,, Ae,, f 2.. fire , P,*,etc.

  • local factors or n numbers are introduced l

REG 1tW95-10  ;

l 1

General Scaling Approach - cont'd -2  ;

To make all non-dimensional groups of 0(1) and measure the scaling distortions:

b1) local scales z ,,,, or local TI numbers TI, are introduced:

  • global scale z,. (typically the most important value of z)

W ,,,,

U W I,0 -

m W*

7

= w,

  • iocally ccalad variable, z;= *a ,

2n,o l i

  • focal normalizing factor or weight, Zn.o Zr
  • one obtains i f 3 f 3 z=

n Zr *2 If 2n ,, <

z, ,  ;

REG 1v28/95-st

,e e u ..-. - ___---

. General Scaling Approach - cont'd -3 b2) local TI values are defined, e.g., in energy equations:

g_ 0 t,Q, g g"' u , ' ' 3,, '

M, Ae, - P v s < ^h '

_ ,pAV, . 1 I

p, ' ' Ah, ' ' p, AV, '

H.y - =

e a hp (6Es ) (h0 sJ ( M, ;

i t p V' ' IAh' ' ' W'" ' ' Ah'" ' = n,,W*Ah*

n ,, ' = ' W,* Ah'#.

= n, M, ^2, ( M,j <Ae,j ( W,j (Ah,,

g "" ' ~_ . p, W,, H, ' p, ' ' p, V, ' ' Ah, ' _ g."" g,,

t _

- ~

M, Ae,p, H,,, ( Ap, , ( M, j ( Ae, ,

  • where W'" and Ah* si Ah

W* == W, Ah, are local normalizing factors irefers to a particular flowpath

  • The local reference scales for a particular system component can typically be chosen as the initial boundary values of the variable in question for the particular component considered.

HEG 11/2&%12

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . - _ -. _ _. _ , . _ ~ . -. . _

General Scaling Approach - cont'd -4 identification of scaling distortions

. Usually, one can define a variable that is of greatest importance for a particular '

test (e.g., the RPV water level or DW pressure) ,

. Examination of the nid governing equation can show which term (s) dominate the behavior of this most important test variable (s) and identify the corresponding pairs of H number (s) that should be matched.

. The governing equation may, however, contain many terms containing the same type of H number. The relative magnitude of these terms will show which system components should be scaled most carefully.

Procedure:

. By proper choice of scales, all the n/d variables (including the derivatives of variables) appearing in the n/d governing equations are made of 0 (1).

. The dominant terms in the governing equations are identified by comparing the relative magnitude of the H numbers appearing in front of the n/d variables.

. Global system reference scales making the most important and dominant H number (s) also of 0(1) are used: these define global H numbers for the l particularprocess considered.

. This procedure brings local normalizina factors (or weights) multiplying the n/d term and the corresponding global H number into the equation.

. The local normalizing factors will typically be the ratios of the local reference scales for a carticular system comoonent to the global reference scales.

e wass a

Derivation of General Scaling Criteria - 1 e Definition of the minimal set of reference scales {z,}

For time, t, For volume: V, For mass flow rates: W,.

l For heat addition: ,

For densities:p, For pressure, a reference pressure difference: AP, For constituentj fraction: yy For properties involving vapor mass fraction: s For enthalpies and internal energies, a reference specific enthalpy difference: Ah,

, e e4 REG 11/2&%t4

l i

e Comparison of Time Scales e Five time scales produced: t,, t,,,,,, tur,, ,, tg , and t,,, , ,

. The systems considered here are made of large volumes connected by pipes of much lesser volumetric capacity.

e Ap's are not dominated by inertial effects 0(t,)= 0(t.,) 0(t.,)= 0(t.,,)- 0(toa,)

+ the time behavior of the system will be controlled by the pressurization rates.

. Numerical values of these different time scales are reported later.

l i

i l

REG 11/269524

- - _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ __ ______m__ t + +-_ _ - _ _ _ -

___ _ --e 1 m -- - --+ -y-_ . - - - a__- _ _ . _ _ _ _ . _ _ _ _ - - _ _ .__ __

Global " Generic" Model of the SBWR System e Obtained by applying the general conservation eqs derivod for the containment '

volumes and flow paths to the actual SBWR and test facility components:

i

+ a set ofgoverning ens  ;

e Certain non-limiting simplifications can be made to arrive at a tractable model e The result is a set of ODES for dW/dt, dnildt, dpfdt, d-alphafdt, dHidt in terms of the various flowpath and volume W, p, L, h, etc.

+ 11 path flowrates:

govemedby 11 flowpath momentum eqs ,

i

+ 5 volumegasphasepressures: i l

3 dpfdteqs + 2 PCCandICmass balances l + 3 volume masses:

i 1

3 mass balances

+ 2liquidinventories(RPVand WW):

d-alphafdt eq for RPV and energy balance for WW

+ 2liquidleveldifferences:

GDCSandSPliquidmass balances REG H/2&%25

_ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ ~ , _ _ . . _ , , , _ . . . . _ . - _ . . _ . . _ . . . . _ . , _ . . _. ._. .

Giobal Specific Models of the SBWR System r

e The particular behavior of the system during certain scenaria or phases of a scenario can be investigated using subsets of the '

l " generic" model eqs (the eqs for " active" paths only)

e The flow-path eqs can be written in matrix form to show
;

i

+ interactions between the flow paths

+ the relative importance of certain flow paths e Example: Modelfor Blowdown Phase:

+ the system is described as 4 " loops" i

l l

l REG 11a&% 27 a

i Nondimensionalization of the Globas Momentum Eqn Set - cont'd - 3 e Unique TInumbers (defined using the unique global scales) multiply the terms of the matrix e Inside the matrix one finds the local normalizing factors or scales .

i multiplying the nondimensional variables (of O(1))

e When scaling comparisons (SBWR-test facility) are made, the relative magnitude of the local scales is a measure of the importance of,any distortion (the difference in the local values between prototype and model)

i REG 1t/2&95 31

Summary

^

e A set of general scaling laws was derived shows validity of scaling followed for SBWR tests e A global model of the system was used to write the eqs in a matrix l form showing systeminteractions e The nondimensionalization of the " matrix eqs"providedinformation on

+ The relative importance of phenomena l + the importance of any scaling distortions l

l e Several bottom-up scalng issues were identified and addressed mo wass as

GENuclearEnergy

Application of Scaling to SBWR and Major Test Facilities l Scaling Team
Robert Gamble AndyHunsbedt )

FredMoody Maureen Parker George Yadigaroglu i

PresentedBy: RobertGamble l

l ACRSMeeting ,

San Jose, CA l November 28,1995 .

REG 11!28%t l

- - .-. - - -. - . . ~ . - . _ . _ . - - . - _ - - - - -

Outline t a

e Basics ofApplication Method e Example of Scaling of Pressure Rate Equation e SBWRResults e Scaling of Facilities

+ GIRAFFE / SIT (Details)

+ CRAFFE/He(Summary)

+ PANDA (Summary)

+ GIST (Summary)

REG 11/29952

i Selection ofReference Values t

e Pressures, temperatures and mass fractions taken from test initiai conditions e Flows calculated using choked or unchoked flow formulations e Reference flow, pressure and time changes selected to maintain i variables and their derivatives of order one e No code calculations used other than for test initial conditions

+ Tests cover range ofinitial conditions i

i REG M8S53

t EvaluationPoints e Scaling was applied at discrete points in time representing the difforent phases of a LOCA and key transition points

e Point 1 corresponds to late blowdown where the transient was picked up in the GISTandGIRAFFE/SITtests e Point 2 corresponds to the beginning of GDCS initiation when Prpv-Pdw =

pgL e Point 3 represents quasi-steady period when GDCS is flowing into RPV e Point 4 represents quasi-steadyperiod when PCCS is removing decay heat e Pressure rate and va oor fraction equations were evaluated for the primary regions-RPV, DW, V(W e Evaluations were done atpoints ofinterest as shown in the Table e The breaks selected for evaluation were based on the tests for thatphase

+ GDCSL break for late blowdown and GDCS phases

+ MSLbreakforPCCSphase REG 1V28%5

. _ _ . . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ - _ _ _ _ _ - _ _ _ _ . - - _ _ _ _ _ - - - _ - - _ _ _ _ . - - - -- ------' * ~ ' ~ " " ' ' ' - - ' - ~' ~ ' "' -

Example of Application of Pressure Rate Eq.-

GDCSInitiation forRPV

4 Pressure Rate Ex. { cont'd) - System Diagram

_L IC c hg g Vr WADS, hR,g 4

PR WLR

,h ,f WBR,hBR

~

?

t COIC N

\.

hR,f QR KG 11/21it957

i Pressure Rate Ex. (Cont'd; - Numerical Evaluation e The reference conditions are based on simple extrapolation of the '

GIRAFFEISIT and GIST test initial conditions because the evaluation ,

point is not at a test initial condition

+ Pressure DWpressureis based on the expected long-term pressure for the SBWR containment.

RPV pressure is the DWpressure plus the hydrostatic head of the GDCS (the point at which flow would begin)

+ Temperatures are based on saturated conditions

+ Mass fraction are based on simple hand calculations starting from the GIRAFFE / SIT test initial conditions

+ Flow rates are the quasi-steady values (no inertia effects) calculated using choked and unchoked flow equations with the given pressures andlinecharacteristics ,

e Global Hgroups are not presented. Instead the local Hgroups are given. The global Hgroups can be taken as either the largest local Hgroup or the summation of aIIlocal Hgroups of a given type.

REG 11/23%11

Pressure Rate Ex. i Cont'd) - Evaluation of Results l

l e Results are first considered for the SBWR alone to determine which parameters are important to the SBWR behavior i

e By doing this the importance of distortions found in the test facilities

, can be evaluated e Later, the scaling groups for the test facilities are compared with those of the SBWR and conclusions are drawn as to the acceptability of the test facilities for the intended purpose t

i i

a no tirami2 i

i

! l Pressure Rate Ex. { Cont'd; - Numerical Results for SBWR i

e Time constant is selected to normalize the dominant parameter of ADS enthalpy flow, IT_wh(ADS) thus making the nondimensional -

pressure rate 0(1)

\ e Even at this late stage of blowdown, ADS flow is the dominant

contributor to depressurization and RPV averaged void generation i

e Enthalpy associated with inlet and outlet flows are more important i than the mechanical work associated with those flows e The IC and decay heat have only a small effect on pressurization and void generation in the RPV i i

i i

REG 11/28%14

OveraII Application to SBWR and Test Facilities e The process used in the example is repeated for the pressure rate, vapor mass fraction and global momentum equation at different phases of the SBWR LOCA as shown in Table 4.1-1 and Figure 4.1-1 of the report e The tables showing the numerical results are given in chapter 4 (Tables 4.1-3 through 4.1-25) e The results of these evaluations are summarized next l

e ,-,e

- - - - - - - - - - - - - - - - - - _ - - - - - - - - - - - - - _ - - - - - - - _ - - - - - -_- - _ __ -J

I 1

Scaling Results for SBWR - PCCS Phase noo int 4) e RPVandDWpressure rate

+ Decay heat is balanced by PCC heat removal PCC heat removal depends on n/c fraction in DW

+ AII otherprocesses are subordinate in determining pressure rate i

e Important processes to long-term pressure are: i

+ PCC heatremoval

+ Volume ofDWrelative to WW

+ SubmergenceofVents

+ Integratedenergydepositionin SP mo tv2er>2:

- - - , - 4_ew., w .-- - - .__. . _ . .m aa s.a- m-.-_ .---.,*a. hse 4 %. m_an m.e.s -4e m A.ew,- ..4.--. ca.W--sa.amet.;.m_h..a_ ma se.~a_aa..4m. --e-en- _ %,.+4Aa.

i O

4 =

1 e i G3 4

I

! =9 i "C g OE E

N 84

, O i

.o i e 6

o s

I I

i f

i s

J f

i i

Manometric Osciliations Between Water Volumes (Cont'd) e RPVIGDCSPoolLevelMovementCasesConsidered

+ Free LevelMovements with Step Change in RPVPressure he,w :e amplitude equalto 0.75m head Consi - ed for 1 and 3 GDCSlines

+ ForcedHarmonic(Sinusoidal)LevelMovements Reference amplitude / forcing function cycle time (0. 75m head /500s)

Consideredfor3 lines only

+ ParametricEvaluationofUncertainties e RPV/SPPoolLevelMovementCasesConsidered

+ Free levelmovements with step change in RPV Pressures

- Reference amplitude (0.75m head)

Consideredfor3 lines only

+ ForcedHarmonicLevelMovement Reference amplitude / forcing function (0.75m head /500s)

Considered for 3 lines only REG 11/299524

Manometric Oscillations Between Water Volumes \' Cont'd) e CONCLUSIONS

+ The systems considered are significantly overdamped and stable forinput  ;

pressure ditferences greater than about 0.5m head equivalent t i + The systems become more stable for higherinputs orif the system is Rowing i

+ Smallpressure difference changes ofless than 0.3m head equivalent may result i in small amplitude, low frequency level oscillations.

+ The relatively small diameter connecting drain lines act to decouple the liquid masses and to damp-out free oscillations. .

+ Natural cycle times for these systems are relativelylong (Ranged from 91s to i

245s)  ;

+ The liquid level amplitude resulting from a harmonic forcing function input is ,

lower than that of the step forcing function

+ Forinput magnitudes greater than 0.3m head, the magniHcation factoris less than unityeven with a forcin system's natural frequency (g function input frequency equal to that of the i.e., at resonance)

+ RPVliquid levelrate of change is veryslow (~0.005m/s maximum) for 0.75m head pressurechange

+ The only nondimensionalgroup governing the level movements is the average damping ratio for the connecting line and this ratio:should be greater than one (1) forstability.

REG 11/2S%25

M

= ene, mean a ama, W

, LL. 1 I W

} @ I 1

l=@==

4 O

j c:

amuua:n  ;

ammum i

.i i O I

&)

1 1

e k

4 5

8 i

i f

i e

L 4

, GeneralFacilityScaling e AII facilities nominally scaled according to " General Scaling Criteria"

+ Full-vertical-scale

+ Flowarea/Heattransforarea/ Mass / Power /Flowscaledtosystemscale ,

+ Prototypicalfluids

+ Prototypicalinitialconditions i

i I

Comparison ofFacility Non-DimensionaiU groups with SBWR ,

e RPV- Late Blowdown

+ Top-down parameters scaled very close to SBWR values in RPV

+ - Blowdown time constantlongerin GIRAFFE due to increased volume andmass scalein RPV e DW-Late Blowdown l

I

+ Dominantparameters are mechanical work of DPVand Main Vent flow l

andmovementofnoncondensibles

+ Main vent greatly oversized so it can remove any energy additions to DW; thus, DWpressure controlled by main vent submergence ,

+ Referencevaluesused Time constant taken from RPV blowdown Reference pressure change taken from observed results Use of" forced" reference values results in ITs greater than 1 (dp/dt > 1)

EG 11/299533

Comparison of Facility Non-DimensionaliI groups with SBWR l e WW- Late Blowdown l

l + Pressurization dominated by enthalpy flow from main vent and to a lesser degree movement ofnoncondensibles

+ Enthalpy flowin the main ventis based on fulluncovery of the top horizontalvent Distortion represents differences in maximum flow capability

- Actual flow will be driven by need for DW to remove steam and noncondensibles

+ DW to WW volume ratio different in GIRAFFE so some distortion in noncondensible offects

+ Focus of GIRAFFE /SITtestis on RPV WW parameters scaled adequately for this purpose KG 11/299534

j .-

Scaling SummaryforPANDA e Paremeters important to facility behaviorscaled adequately

+ AIIrelevantsystemspresent

+ Line flowresistances scaled adequately i

+ AIIimportanttop-downphenomenaretained e Facility scaled adequately for intended purpose I

.l l

I i

t

CONCLUSIONS e THE EXPERIMENTS DESCRIBED, THOUGH NOT PERFECTLY' SCALED FOR ALL PHENOMENA, PROVIDE RESULTS WHICH ARE i i REPRESENTATIVE OF SBWR BEHAVIOR OF SAFETY SYSTEMS THROUGHOUT ALL LOCA PHASES  ;

e DOMINANTPHENOMENA AREPRESERVED i i e NONREPRESENTATIVE PHENOMENA ARE NOTINTRODUCED IN

. THE TESTS l e EXPERIMENTAL RESULTS ARE SUFFICIENTLY REPRESENTATIVE '

FOR TRACG CODE MODEL VALIDATION REG 11/28f%41

f O GE Nuclear Energy PANTHERS-PCC Test Program P. F. Biiiig, J.R. Fitch SBWR Test Operations and Analysis Presentation to the Advisory Committee on Reactor Safeguards Thennal Hydraulics Subcommittee November 28,1995 filename: acrs1128

Outline

  • PANTHERS /PCC Testing;P.F. Billig

- Objectives and Test Matrix Test Results

  • Steady-State Tests

- Waterlevel

- Non-condensable Gas Buildup

- Applicability of PANTHERS /PCC to SBWR

  • PANTHERS /PCC Analyses;J. R. Fitch

- Inside/outside Heat Transfer Coefficients .

l l i i

l PANTHERS-PCC , ,,

i

. _ . - _ _ - _ - - _ - - - - - - , . . - - - - - - - . . . - - - - < .--,n .----. . -..- . . . - - - , --. - -,- ,,--- -

Objectives and Matrix

  • Thermal-hydraulic performance ofprototypical condenser

- Demonstrate Prototype PCC meets design requirements for heat rejection ,

(Component Performance)

- Provide sufficient data base for TRACG analyses (Separate Effects)

- Determine and evaluate differences in the effects of non-condensable gas buildup in PCC between lighter-than-steam and heavier-than-steam gases (Concept Demonstration)

  • Component test- Not system test .

- Fixed boundary conditions used to study condenser performance .

- PANDA and GIRAFFE study system performance and interactions

  • Test Matrix

- Presented in TAPD (NEDO-32391, Rev. C), Tables A.3-2a-d and A.3-25, and l T/H Data Report (SIET 00393RP95, Rev. 0)

  • 97 steady-state tests

t

. _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ ____ _ _____ _ . - - + - . , _--m -

i NEDO-32391, Revision C STEWTOSWX KCPCCL k L J M*EW

.\

MtCCWESSCR

>. .mp---;- . p

. m.y?i #

.u. Yf H r .kb $

i - T
  • Egg ,

v7 Y k; q 9:> s %hs;p i gzggtsy Q y.:yyf

[

,'.. w..';

. *53r l$..;:m.]

& , .-s y y . ....;

ih'!w ': .&.):;%? .? ;.. .

}'

silbildl IMI l p(s@Ahy@

m:

g%

r i:

eg@;hj(

'gp g g $w$fDE D$fg3 m

. @ M *)$!AT > tiq%%% - F PLET1.FE p

                   " F7                                                                                                                   )
                                                                                                                                         ,/

2% m. . DRAe4 g ,,p > Nk CO M EATE T#K3Em3 TCVSg 'PMW TMK j OD -

7: :.

ski a B;:.<*:: -K.? &.O c.;

                                                                                                                                %?!
m. v: w:s j LD/L FO/f2 o

o ESLMMEATtG i UE F R

    -        i SLF4ty                                                                           VENTTNK                                                                          i I

144m3 mwwe$r: 943:iP d g ; ;p w ye , wrat G

                                                               $                %            ,     =

Lcuri Figure A.3-2 PANTHERS /PCC Test Facility Schematic I A-82 I i l i

                                                                                                                      \

Test Results (Steady-state tests) i Tabulated in T/H Data Report (SIET document 00393 RP 95) ' Tables 7.1 - 7.6 Shown in Data Analysis Report (SIET document 00394 RA 95) Figures 3.1 - 3.15 Saturated and Superheated Steam Tests

                    - Demonstrate that required steam is condensed at required conditions                             '

Test procedure i

  • Purge air from system with steam through vent tank vent
  • Close vent tank vent - condensation driven mode i
  • Bring pool to saturation
  • Increase steam flow to required flowrate and measure pressure
  • Time average data over 15 minutes PANTHERS-PCC -

stass

i Test Results (Steady-state tests, continued) .

  • Saturated Steam Test Results
                                        - Performance is steady and weII behaved
  • Pressure holds constant
  • Heat removal vs. inlet pressure is linear
                                                                - Intercept (no condensation) corresponds to inlet conditions same as saturated conditions in pool Condenser meets design requirement
  • Removes 10 MWof energy at 306 kPa
  • Superheated Steam TestResults
                                       - Results similar to saturated tests
                                       - Except at high flow, steam desuperheats in inlet riser and upper header PANTHERS-PCC                                                                                      '

M Test Results (Steady-state tests, continued)

  • Saturated and Superheated SteanVair Tests
                                            - Provides broad database to characterize PCC at various steam / air mixtures             .
                                            - Range of test conditions above SBWR containment pressures
  • Tests up to 190 kPa
  • S8WR containment pressure is around 330 kPa during LOCA Tests for same steam flow and gas fraction at various inlet pressures l -

Test procedure  ; 1

  • Purge air from system with steam through vent tank vent 1
  • Bring pool to saturation
  • Increase steam flow and initiate air flow to required flowrates i
  • Set inlet pressure with vent tank vent valve i
                                                        - pressure drop driven flow                                                  1
  • Time average data over 15 minutes PANTHERS-PCC *
                                                                                                                                  ,, i

__ _ _ _ _ _ _ _ . _ _ _ _ . _ _ . _ . _ . . _ . . . ~ _ . _ _ Test Results (Steady-state tests, continued) Saturated Steam / air Test Results

           - Smooth transition to complete condensation at high pressures
  • Heat rejection rate tends to asymptote at higher pressures
  • Limit = energy to condense steam and subcool to pool temperature
  • Heat transfer declines in lower tube region
           - Increase in air concentration => decrease in condensation Tests demonstrate that large fraction of steam can be condensed in presence of non-condensable gases
  • Superheated Steam / air TestResults
           - Results similar to saturated tests
           - More than 50% af superheat lost in inlet riser in PCC pool l

PANTHERS-PCC m

y a Test Results (Transient tests)

  • Shown in T/H Data Report (Figures 7.2 - 7.16) and Data  ;

Analysis Report (Figures 3.16 - 3.37) i

  • Water Level
                                                          - Demonstrates change in condenser performance versus pool water level 1

Test procedure

  • Establish steady-state performance '
                                                                     - Steam or steam / air flows fixed                                         i
                                                                     - Steam / air test: Lock vent tank flow area l

l

  • Lower water level and measure change in system pressure l
                                                                     - Decreased pressure means improved performance
                                                                     - Increased pressure means degraded performance                            !

i \

  • Stop at PCC design pressure and refillpool '

PANTHERS-PQC ,, i

1 Test Results (Transient tests, continued)

  • WaterLevel(continued)
                                                                                                                     - Performance improves slightly as levellowers to top of tubes
  • Less head => reduced pool saturation temperature
  • Range of waterlevel for DBA LOCA
                                                                                                                               - SBWR water sufficient to keep tubes covered around 72 hours

, - Performance degrades as tubes uncover  ;

  • Less heat transfer surface => higher pressure needed to maintain condensation
  • Beyond design basis conditions
                                                                                                                               - Demonstrates margin in system design and operator response time l

PANTHERS-PCC umas _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _~ . _ _ _ _ _ _ _ _ . _ _

Test Results (Transient tests, continued) Non-condensable Gas Buildup (Air, Helium, & Air / Helium)

             - Determine and evaluate differences in the effects of non-condensable gas buildup in PCC between lighter-than-steam and heavier-than-steam gases                                                                :

Test procedure *

  • Start with vent pipe flanged off and specified steam flow
                         - condensation induced flow
  • Slowly inject measured amount of gases
  • Pressure rises as gas accumulates in PCC and vent line
  • Airlajection TestResults
            - Gas builds up in vent line, lower header, and lower tube region                                                                           ,

Temperatures in lower regions approach pool temperatures

            - Eventually all condensation occurs in top of tubes
            - Confirms expected stratification of gases in PCC                                                                                          ,

PANTHERS-PCC

                                                                                                                              'Q

_ _ . _ _ _ _ _ _ _ ___ _ _ _ _ _._________________.-r -

                                                                                                                    -_ v. - _    . _ . _ . 4 -, -- __ _

Test Results (Transient tests, continued) 1

  • Helium Injection Tests
                                                                         - Performance differs from air tests
  • Helium remains in PCC unlike air tests
  • Buoyancy prevents stratification in lower regions Temperatures in various regions indicate wide dispersal of helium
  • Somewhat greater condensation occurs in lower than upper tube regions i
  • Nonsymmetric temperature distribution within headers and between headers ,
                                                                         - Significantly less gas than air tests needed to degrade condenser performance
  • No large accumulation in vent line and lower headers
  • Higher accumulation within tubes PANTHERS-PCC ,

ll,

                                                                                                                                                                                              'l,

_ _ _ _ _ _ .- _ ,m __ +____.__o -__ s- =____ _ _ _ _ _ m__ __

Test Results (Transient tests, continued)

  • Air /heliumInjection Tests
                              - Performance more similar to helium tests                                                ;
  • Gases remain in PCC Temperatures in various regions indicate wide dispersal of helium
  • Nonsymmetric temperature distribution within headers and between headers Condensation in tubes vary among tubes
                             - Less gas than air tests needed to degrade condenserperformance                           ,
  • Similar to helium tests .
  • Some accumulation in vent line and headers Overall condenser performance is steady
  • No pressure oscillations seen '
  • Insensitive to tube-to-tube performance variations.
                            - Similar PCC performance seen during GIRAFFE-Helium tests                                  ;

i PANTHERS-PCC R, 5 _ < - - + - -

Test Results - Conclusions ,

  • PANTHERS /PCC achieved thermal-hydraulic test objectives PCC condenses steam at design conditions PCC able to vent non-condensable gases
                 - PCC performance is weII behaved
  • Large database available for TRACG code qualification
                 - Steady-state tests at broad range of steam and air flows, and pressures                                                                                 i Transient performance at various pool water levels Transient performance with gas buildup
  • Difference between performance with lighter-than-steam and heavier-than-steam gases established
                  - Heavier-than-steam gases stratify to lower regions of PCC
                  - For lighter-than-steam gas, buoyancy overcomes downward flow under condensation induced flow conditions PANTHERS-PCC                                                                                                 l]m

v I 1 Applicability of PANTHERS /PCC to SBWR

  • TAPD, Sec. A.3.1.1.4 and Fig. A.3-3 describe PCC operational .

modes and applicability of PANTHERS-PCC data

  • Two main operating modes of PCC
                        - Pressure Drop Driven Mode
  • PCC capacity 1 core decay heat
  • PCC flow is forced by DW/WW AP Condensation Pressure Driven Mode
  • PCC capacity 2 core decay heat -
  • Flow induced DW to PCC AP due to condensation

'

  • PCC tests capture both modes PANTHERS-PCC &

Fig. A.3-3: PCC OperationalModes h PCC capacity = decay heat h Reduced non-condensables [,Pj

         , ,CAne h       Reduceu non-condensables                                               _ _ _

8 ge @ l h Low pressure hmit vacuum breaker opens l g gj h Maximum flow condition o EE " 3s " l I I l I I l f SSbme g nc - - - - - -t - - - - - I - - - - T - ~ 2$ g l l l

 =s b                                                                                                                         Weer head           8h o*                                       l t                       I                                    in vent       l     ii 5 0  - - - - ----                     -------                               -----
 % en                                                                                                                                              oE 3          Vacuum                                                                        l                                                   l    0 a-l                        l Breaker                                                                                                                                           f Setpoint                                               l                      l                                                   l               l l                       1                      I                                                   I       V Drywell               PCC Hx                   PCC Hx              Suppression                                           PCC Vent inlet                    Outlet                Pool                                                  Outlet Surface Distance Along Flowpath PANTHERS-PCC                                                                                                                               lm

Applicability to SBWR(continued)

  • Both PCC operational modes represented by PANTHERS
  • Pressure Drop Driven Mode
                                         - Steady-state steam / air mixture tests model this behavior Test T23 captures high pressure drop through system similar to early blowdown when main vents are open Test T9 captures range of conditions with flow through PCC but not main vent Test T2 demonstrates conditions near crossover to condensation mode      .
  • Condensation Pressure Driven Mode
                                         - Steam only and gas injection tests model this behavior
                                         - Spectacle flange on vent pipe simulates pipe submergence in S/P                -
                                         - Steam only tests (T41, T43) show operation with all N/C gases purged
                                         - Injection tests of air (TSI), helium (T76), and air / helium (T78) demonstrate how DW/WW AP is increased when gases accumulate in condenser PANTHERS-PCC                                                                           &

Applicability to SBWR - Conclusions

  • Conditions tested in PANTHERS /PCC are representative of conditions predicted in SBWR containment analysis for PCC operation (e.g., inlet flows, mass fractions, temperatures, andpressures)

Tests capture both pressure drop driven and condensation pressure driven modes

                            - Steady-state tests cover range of steanVair fractions for SBWR                 i Transient tests demonstrate condensation pressure driven flows both with and without the presence of non-condensable gases in the PCC l
  • SBWR integrated systems tests (PANDA and GIRAFFE) complete the qualification database by demonstrating systemperformance PANTHERS-PCC ,

1

PANTHERS Structural Tests

  • Objective: Be able to qualify the Hx for the life of SBWR Different approaches for PCC and IC
  • PANTHERS /PCC - Verification by test Subject unit to 5 times design number of pressure / temperature cycles In accordance with ASME Code Section III, Appendix II, Article 11-1000, Subarticle Il-1500
  • PANTHERS /IC - Verification by analysis Envelope all T/H Ioads expected to capture the largest temperature gradients and the fastest thermal transients with prototype pressure loads l

Cycle sufficiently to reveal any thermal racheting where elastically calculated stress levels exceed ASME Code shakedown limits

  • Measured deformations can be used to envelop the ASME alternative shakedown analysis approach l

l PIB 1 l

SBWR ACRS TH SC MEETING ATTENDANCE 4 Tuesday,11/28/95 NAME AFFILIATION PHONE t./0Ah Iea Merntsan CE 384)R t'k-4&6L 4M-925- 7D 28 ma Mc/kes/n. TA / R ' O / N / ('i c s's 1 -./15 4 6 W c-V WwerV w u o - $9CT ) Ro bd W 2' 4 A & A A-c. A 5 / co ac 4 ( A. 3 5 (- %H - ii T- s p'r-1LIH1udAOL1- 6sGs 4D C- 925- 4C8 +

       'th a les.a                         ancla u lta s           soi- 4sr. .u90 Gu aluin                         sn'c /^ts// GL A   '

yes- 4/r - its s~- ( l A' &)ano u GE / 408 9zs so;r3 Mamann Ati ae Ga- <+or rzs isv2 I Au $t Naus44 62 408 925 16ss' Bl H' ( )so~ u GE 40B 92C-M60 ' Jetbr fdsc DT/V- G6 408 915-)PI4 Lbu4 CmwMs GC 4 o n 9 2_s !,3s 2. JA< A D M M d9 d left 95~ C 9 4 ~~7 '

        -2 M s    -fo/Zb6 cit                G6                       t'04f 9z5 - 4Io/
     .S i.t s w T. I<- 4 ) a              EPR2/JArc                 4e r prr- P 7 23-           )
   ///- n klkec4 e~         . ~ s         EP:4'// E v r             +t.s '-er3~-2;zo9            l
     %& Ve-ciiofAa                           GP21                   At6 BGC 7724 7"2>sh Atb'tPMA                         EA#7                   4'/S- 8$T .2?A/,,

7L,, Fernnd'e r EMI M sult 4/5-25s - 273% ' Gsaa- C-s cuiCo ~~D oG 3a 1 - vet, .s .s o t CcVfc_ Y4E9 req k ET ff , %Ktt%L tehTeA W(-t - 'll .4419 FRa5tro*W /r/2 (40s 92S-Gusqr i .1im G uitu ra G E. 466 925 1005~ (% a ut- S kNrEW GE 40 9 92r- t we

    #Avi 130 c Htv v <tr-                sv.r2 c /A e17 4         2 o ) J' 'Vi <~ - v o k S ~
   ' M n t'-     t- -  Sexfr             Aus        +f~4-          S-to/29P 'r//P                l
       -- o         Akcu                        AcRS               .#.1s - ts s '7s49            l lJa r, Ca %                                  <<             sto 8'2.r s s' z o Ji n.es c Cct.croIl                            "              rro - : s 4 - G3 2 ;

t rws/ NcA r-e e l-b AC 24 G s2 ths t' 5~/O 6 %S ,2 - f. d 3 /

         // I/wr Ar# '                      $ c ,z c     G~A.o--4  .3 < - - py- ts7 So/ 1 la.N EPAJ        [4 %.Abud'   408 - % 9 - ff"@               '
                         /                                                                       ;

l l

Additional slides used at the end of G. Yadigaroglu presentation on "AnalyticalBasis for Top-down and Bottom-up Scaling" to discuss results of global momentum scaling for GIRAFFE / SIT and PANDA

I l Additional slides used at the end of R. Gamble presentation on " Application of Scaling to SBWR and Major Test Facilities" to discuss detailed scalingresults forPANDA 4 i

Scaling SummariforPANDA e Paremeters important to facility behaviorscaled adequately

                                            + AIIrelevantsystemspresent
                                            + Line flow resistances scaled adequately
                                            + AIIimportanttop-downphenomenaretained e Facility scaled adequately for intended purpose l

REG 11/25%56 l t .

I c-C5hi_3 PAUL SCHERRER INSTITUT , ACRS Thermal Hydraulic Phenomena Subcommittee Meeting  ; SBWR Test and Analysis Program November 28-29,1966 l San Jose, CA l PANDA Test Results PANDA Team: G. Varadi, J. Dreier, M. Huggenberger, J. Healzer, C. Aubert, T. Bandurski, O. Fischer, S. Lomperski, and H.-J. Strassberger 1 presented by G. Yadigaroglu Contents

  • Test Objectives
  • Facility Characterization Tests
  • Steady-state PCC Condenser Characterization Tests
  • First M3 Series of Transient Tests: M3, M3A, M3B
            *  "Startup" Test M7 ACR5.TRN DOCl411.1995.1
          <      h~,                      PAUL SCHERRER INSTITUT                                                                                             .,

i Correspondence between SBWR and PANDA i

                            -                                                                     25m
                         'OitClus,                                          , IC P h

3 alt . 3x0 3 : 10C ' I IC l l

                         -          -          -   'i ,.            , -                                            .                                               ,

a 2  : gy w:' - V - l;. m. s. c w a= J - Lh o L

                                                                        -4            3                                        .

W

                                                                                                      ~

idt:m  %; e J  ; 7,' . VD. VD ,

                                                                  )
  • i *

[ 7, .q ,

                   +

m) u r;; , T5 - - 4.I aj h '

                     <d                    '

g _,_ ,s

                                      !.[                                                 n                                            ,

s

                                                                                                                                   . ;,     4,                     ,
                 -                             J                    N                         _
                                                                  -                                                                                                i
                                                      .; . t{:;

n :2 Scalmg-Height 1:1 Volume 1:25 i Power 1:1

c E2 hi_IE PAUL sCHERRER INSTITuT , i PANDA - Test Objectives In relation to the SBWR certification effort; TAPD objectives

1. Provide additional data to:

(a) support the adequacy of TRACG to predict the quasi-steady heat rejection rate of a PCC heat exchanger, and (b) identify the effects of scale on PCC performance 4 Steady State Performance Tests

2. Provide a sufficient data base to confirm the capability of TRACG to predict SBWR containment system performance, including potential systems interaction effects a IntegralSystems Tests
3. Demonstrate startup and long-term operation of a passive containment cooling system
       -4 Concept Demonstration Additional objectives:
  • Containment performance is similar in a larger-scale, multidimensional system to that previously demonstrated with the smaller-scale GIRAFFE tests.
  • Any non-uniform distributions in the containment do not create significant adverse effects.
  • There are no adverse effects associated with multi-unit PCCS operation and interactions with other reactor systems.

First tests indicate that objectives are being achieved ACRS.TRN DOC.24.II.1995,2

e-1Bh ~_M PAUL SCHERRER INSTITuT , PANDA TESTS - Summary l I Facility Characterization Tests (July 1995)

        . Hydrotests and cold gas leakage tests                                 !
        . Heat loss tests
        . Pressure drop vs. flow rate characteristics
        . Data used as inputs to code calculations Steady-state PCC Condenser Characterization Tests                             i (May through Aug 1995)
        . 10 valid tests
        . Good repeatability and agreement with other data and pre-test calculations M3 Series Transient Tests (M3, M3A, M3B).

(Oct.-Nov.1995)

        . Operability of facility (initial conditions, power decay, etc.)

and quality of instrumentation and equipment demonstrated.

  • Certain difficult PCC flow measurements (range, oscillations, noise) were supplemented by pool heat balances
        . Preliminary conclusions (tests still being analyzed)
    "Startup" Test M7 (Nov.1995) l        . Demonstrated PCCS startup                                             ;
        . Oscillations in the RPV were detected                                 I l

c ' ACRS TRN. DOC.24.ll,1995.3

c- M fus ._ W PAUL SCHERRER INSTITUT , Facility Characterization Tests l 1 1 Cold gas leakage tests I e 62 hr tests

  • Met or exceeded expectations
          . DW, WW, GDCS vessels: < 0.08 % per day i

e RPV: 3.7 % per day (the least important one) , l J 1 Heat loss tests i ! . Do not exceed 7 /o of decay heat at 24 hrs after scram

!
  • Design target was 10 %

i 4 Pressure drop vs. flow rate characteristics 1

          . Allloss coefficients measured for a range of flow rates
          . Alllines found to be properly scaled 1

L , l Acas_tw ooc.:u um.4

1 1 c M,,ima5M PAUL SCHERRER INSTITUT , 1 PANDA Experimental Facility j isolation Condenser (IC) , and Passive Containment Coolers (PCC) j - l , o v: 1 -- , j

                                                                        ,k     .
                                                                                                                                ~.-,

f.

                                            ,             \'

k.- - (- ' i .. [ 1 ( i - t j.a . W .

                                                                                            -                           ~!-         ..                 1
                                                                                                                             ~
                                                               .'[      t i

1:, { ,

                                                                                                                              -;.J        .

E ~ { hi .l . hk . .; gg I

i. . /

Scaled SBWR IC-Unit (left) and two PCC-Units [ PSI-LTH B13*24 April 13,1993] HX42,isolat. doc

                                                                                                                                                              '6 D6 W
                                                                                                                                                                      ]
               ,-EElfa 2 _.3ZE PAUL SCHERRER INSTITUT                                   ,

M3 Series of Tests MSL Break (MSLB) tests e initial conditions: the state of the system 1 hr after scram (the . DW contains mostly steam)

                  . PCC condensers: PCC-1 to DW-1 and PCC-2 and PCC-3 to DW-2
                  . IC condenser valved off I

e identical initial and power decay conditions ,! e initially saturated water in PCC pools

                  . Similar to a GIRAFFE MSLB test with uniform DW conditions Investigated the effect of the water level and inventory in
;                 the PCC pools on system performance:

1

                   . M3: the three PCC pools interconnected - no water makeup.

i At the end of this 20 hr test, the water level in the PCC pools l had dropped about 0.5 m below the top of the tubes.

                   . M3A: three PCC pools isolated - cold water added from the bottom fill line to each pool individually - nominal water level constant within 0.3 m.                                               l i

e M3B: the three pools interconnected - cold water added simultaneously to all three (using the connecting bottom-fill l line) - nominal water level constant within

  • 0.2 m. l a

k ACRS.TRN DOC 24.II.1995,6

i

                   '~                                                                                                                                                                                                                                             1 r- E [um                 B PAUL SCHERRER INSTITUT                                                                                                                                                                                                            , ;
              . #,ge@

PANDA Instrumentation

   - /~- ' PCC1 Condenser Gas _&__ Wall TC Positions
                                                     . . . . .E .
                                                 . V.U1 i

CenterUneGas ! Temperature  ! TubeWall.lempsTalure

                                                  - MTG.P1.1                        i                                               !                                              !                                                         I i V-S=315' I V-0=135'                                 V-0=45'                                 ,                V-0=45'                                   i V-0=225' U                  b               /

_yy . _, _ _ _ . _ _ _ l_,_ MTG.P1.3_ _ _ _ _MTT.P1.1 y _ _ _ _ _l MTT.P1.8 _ , - - - - - _l ,MT__ 7 - _ T. P 1_.1_1 ! _ 7v _203 L _. _ _ _ . , MTG.P1.4 i_MTT._P_1.2_ J ______ __ .1 2MTT.P1.14 _ 3 _ _ _ _ _8 8 ' ' _ t _2_02_ _ _i_MTG.P1.5,' MTT.P1.3 _____ - a______2______2______. iMT M 8 ' ' _3_2_03_ _ _4_ _ TT. P 1.4 .4 _ _ _ _ _ _ a _ _ _ _ _ _ 4 _ _ _ _ _ _ . ____ 8_G.P1.6 21755 i ____t ___ M [ _.{ 20_2_ l _ ' MTG.P1.7 I MTT.P1.5 I M1_T_.P_1.9_i _ ,_ _MTT.P1._12iMTT.P1.15 f _ _ _ + - - - - - I L l 405 i a i __ .E,. _3_ _ _ _ ,_i_MTG.P1.8 i_MTT.P1.6 ,i , i MTT.P1.16 l405 l

   \ CMSt.,         --y' ,X X,_                       - - .      1 ---- ,I MTG.P1.9----- J-----------u-----1------. MTT.P1.7. I MTT.P1.10 i MTT.P1.131 s MTG.P1.2                                   '                                         '

{ ,- , TUBEi NUMBER

                          \

vg MTLP1

                                                                                                     \
                                                                                                                     \
                                                                                                                      \

l

                                                                                                                                                                                                                                               \,

y ke l . p. . .a.kG o O ' {

                                                                                                          ,              7..Of,..-O-----@-------

X: MTT.P1._ positions ' -----

                                                                                                                        -- - O N - O---- - ----                                                                                                        ,'
                                                                                                     -CD-                 db io       lw c o wa                                                                                            cp 0: MTo.ei._ positions                                              '.

cn O

      $ : MTLP1 positions                                                         s,                                                  '                                                                                        I i                                                                                  ,-      ,

Note: details on instrumentation in both drums are given

                                                                                                                ,'~~~l                 ~~~~_

separately. Tolerances: Saphir

                        '270                                                                                                                  Elevadom                                                                                         : 15 mm
                      -j                                                                                                                      Hight difference: :2mm 180            l                                                                                                                     Angle:                                                                                            : 10' Wald - - - - - .-i - - - -.- O' Aare
                        +

i gV-0 - - - - - - - - - r -- 90* f AC 42 / TC_PCOt.!SD Beznau ;14.06.95 / VEPSION 2

       -e@d2 PAUL SCHERRERINSTITUT                                                       ,

I i j Preconditioning: l Establishment of the Proper Initial Conditions  !

l 1

Typical preconditioning procedures: l

          . The various containment volumes are isolated, filled with

) demineralized water, steam from the RPV or air, and further l heated, as necessary, using heat from the RPV via the i preconditioning-system heat exchanger. e Air is eliminated, by purging with steam, when necessary. The RPV is first heated to about 170 C (T3 = 7.5 bar) with a ! sufficiently high water inventory, in anticipation of the heating

needs for the entire facility.

The two SCs are filled with water at the desired (uniform) ! initial T ! . The preconditioning is conducted in a way assuring a uniform i SC air space T; steam is injected to heat up the structure and the air space. On the long term, the partial pressure of the steam in the gas spaces of the two SCs is set by the water temperatum. l The required amount of air is injected to adjust the paitial p of

air in the two SCs at its specified initial value.

To achieve a uniform (air space and wall) T in the GDCS vessel: structure is steam heated. Vessel is initially filled with hot water; this water is then transferred to the PCCS pools. The PCCS (and whenever used, also the ICS) pools are simply filled with hot water to the desired level (s). i Acas m ooc.nmu )

MZ:h 5_ Sfi PAUL SCHERRERINSTITUT , Preconditioning: Establishment of the Proper Initial Conditions cont'd

   . Accurate adjustment of the initial air partial p in the DWs:
       . the vessels are first heated and purged of practically all air by steam injection. (some air accumulates during this time in the PCC condensers)
       . The p in the DWs is then recorded and a sufficient amount of air is injected to increase the vessel p by the amount of the required initial partial p of air (procedure relies upon the measurement of a p difference and is therefore quite accurate) i   . When the required initial conditions are reached, vessel

) connections are opened to bring the system into the required configuration. l . . The tests are started by opening the MSL valves and starting the power transient. m a ACRS TRN DOC.I107S5.8

, . . ~ . c M A PAUL SCHERRER INSTITUT , Test M3 (3/4 Oct 1995) Preliminary Data initial Conditions for Drywell Gas Temperature 1 l ,.--- , ,- --_, ( i ]' eel # '- E 92,1 l _ l l

                                                                                                                                    ]                    .

g_______.___.. __._.,l g. ..___. _.._______ Q ' l 12 9.0 *d_ _ _ _ __,l_ . l19,2 *C

                                                                          ,                                               l      o.____

_ l_ _ _ _ _ _ _l_@

              ^

Q _118.B . . _d _ _ ' _ _ _ _ . l_ . . .

                                                     . . _ _ . ., ,                                                       l      .

129.ioC

                                                                                                                                   ..___. _ _ _ _ __ _ _ _ _ y}

n

                                                                       ,t -

128.1*C ' '

                                                     .___            L .)_ .
                                                                            . .,[ - ,'{ - - - - - - - - - - - - - - - - - ,._._.
                                                                                                                                   - - - - - - 128.8

_. ~l ,-*C,1

                                                                                                                     .      _J ln2e.ec

_ . _ _ _ _ _ _ _ . ~ . . . _ _ _ . , 12s.: =c I ti. ._, Q li28.s*c

                                                                  ,'                                                      !                    iza2 c                  0 l                                                        p.

i l I e O' i l i I I t l 1 ll I Specified Drywell i , I g i i i Mean Gas Temperature

                                                 ~ ~                        ~
                                                                                               ', f - j ,~,~ ~~
                                                                                                                            -              ~ ~ ~
                                                                                                                 ~ ~ ~ ~ 7 )i fi- ~ ~

131 i 2 C -~~ l ~ T- *! 'l'Th'o- - ~ ~ ~ ~' , , I ',

                                                                   ,I,                             '

i

b

o -. - A = -

                                                   }

ea na \ ~

              \' git?
m. -
        .1]p,            ,bW- 1
                                    )
 %l v    a       G       )Q(h N-19 c,c,r G(

([~% , s

i GE Nuclear Energy l GIRAFFE HELIUM SERIES TESTS ACRS Thermal Hydraulic Subcommittee Meeting i Maryann Herzog November 29,1995 San Jose, CA

1 l GIRAFFE Helium Test Obiectives _ 1 i ~ Demonstrate PCCS operation in the presence of noncondensible gases that are lighter than and heavier than steam 1 Demonstrate the purging of noncondensible gases from the Drywell to the Suppression chamber via the PCC condenser Provide a database for TRACG qualification Repeat previous GIRAFFE tests, including appropriate QA documentation l l

J

)

?

,i                                      .

f .. ., i

                                                        .E'                                                               -__                            :=                   _
                                                                                     .- -__ .                                                   ,--                                 i 1                       L

{.

                                        , X . . I' :.                                                                                          l                                      ,

g . 46 ' 1 w' .-

                                          . l',

l

                                                                                           .,i                                                           .

w, .i-j! ;4, _' m: e a __ - ] . I

                                                       .I'           =                                                                                                                               .
g. =

1-

                                              ...                                                                  l                                l
)                                  .

cy= .i , J. s i . Q P == r u l- !L.7 4 ' As . N:.;;:!..g :s d i

                                  %re _-

a _ -

                                                                                                                                      -;                 ~d.          ~=      _:-       if     ; g,
                                    ;$h l                             ,q w

, A'= ' , . e.r. ::: , .e- i l  : M 1 .A = V, Y' . : a l- ~:E C

                                                                    =

ssg..i

                                                                                                                                                                                             -g f
                                                                 .                                                                         ',              . >g ,.                        u. .%   -

M N ' il

                                                                                                                                                                       ,N $

i 35 f 1 O ' EjE__ m,

                                                                ---                                      di                .

L

                                                                                                                                                              ; .3!' N
                                                                                                                                                              ';;                         A f

l MM U S

k. , il )j-
                                                            .-- ma            ligi n*ain.                      y , ;;- + j.i                                 .4.
                                                                                                                                                                        's l                                /
- M ..

j ,, , -. _ = - - _a n _, , g.

n. I- ,p
                                  .%. Sa llllll:: .
                                                                                                    ,i r-                             .
                                                                                                                                                 .,8
                                                                                                                                                           .I           ==.!

'; s 5{;H 4 pli_. j .

                                                                                                                                                             .)_            _

af --d. . M Nh l 4&. -

                               \. in                                    -                          -
                                                                                                                                   -             ri L
                                                                                  ~
                                                                                                                                                                         '~                  ~

4. 3 ., -

                                                                                                                                          .)

l

                                                                                                                   -L --                                                      -_

I l Figure 2.3-1 GIRAFFE Facility Photograph 2-10 t

h GENuclearEnergy esass77 REV. I su so.s r F FLOWRATE T TEMPERATURE P PRESSURE DP DIFFERENTIAL PRESSURE S NON.CONDENSABLE GAS SAMPLING LOCATION PCC POOL l

                                                     ,t.

9

                                                                 ~22:222 22 f

h

                                                                               ^

s GD N -

                                                               -         -              oOCS POOL IO                    ! !=2=

i P  % 0 a m k k O e T OnywEu ij 5 q . i

                                                           .,.                                           l i

l , RPV I Q l i k, .  ; WETWELL FIGURE 3-1. GIRAFFE Test Facility Schematic j i l i

, TEST MATRIX

  • Test H1: Main Steam Line Break, test starts at t=1 hour.

Initial conditions = SBWR conditions calculated by TRACG. (4% Nitrogen in Drywell) Test H2: Same as H1 except Helium used instead of Nitrogen. Tests H1 & 2 results will be used to compare the PCC system performance in the presence of heavier & lighter than steam gases. Test H1 will also be compared to PANDA Test M3 to determine any effects ofscale on test results.

                                                                                                  )

Test H3: Main Steam Line Break plus metal water reaction, test starts at t=1 hour. Maximum initial He concentration, equivalent to 20% of a 100% m-w reaction. (4% N & 23% He in D/W) Test H4: Same as H3 except helium is injected during the first hour. Tests H3 & 4 results will be used to investigate the PCCS system performance for high concentrations of helium.

Direct Measurement of Noncondensible Gas . Concentrations Samples are collected simultaneously at three locations: 1 upper & lower D/W and the S/C. Each location is near a thermocouple to enable comparisons of measured and calculated noncondensible gas concentrations.

  • Samples are collected at 1 hour intervais.
  • Two samples are collected at each location: I
                         - First sample is used to determine ratio of steam to noncondensible gases.                                           .
                         - Second sample is used to measure the ratio of helium to nitrogen.
  • L Samples are measured using a gas chromatograph to determine the concentrations of each gas.
  • The accuracy of the measurement is +/- 3%.

i

                                                                                                                                     *i
          ~f            _

E;

                                                  /
                                                       ^'

i H _fl_f

                                                                            >< c :>c l@ f z

l

se j- , 2s. -- -
                                                                                                   ' ;.d)

Fis-2,1 Equipment and instruments for water sampling i G _ _/ n [__f'

                                                       &                                     > ~              _

no '#* ~ T' ~ <

                                                                                                                ...                      I
                                                                                                              .                          i Fis-2.2 Equipment and instruments for non-condensable gas sampling                                                      j 1

NO. ' Tite Quality Hesarks I' Bass SUS 304 OD:354.ID:15.76 l 2 pipe s. SUS 304 1/2B.SCH:40 l 3 pipe SUS 304 3/8B.SCH:40 l 4 -1,-1 stop valve SUS Bal1 Valve l 5 pressure sage SUS ANU3/BPT.10Kg/cm2 6 pipe SUS 304 3/8B.SCH:40 7 Needle valve SUS 8 absorption Battle Glass Filling up CaC19 and poly-vool 9 Cock Glass 10 Cooling Bath SUS Filling up CaCl9 and Dry-Ice 11 gas sampling Bag i PYF maximum 2 litters 12 gas sampiing Bag 2 PVF maximum 2 1itters f

TEST RESULTS ' During each of the helium tests, purging of noncondensible gases from the PCC condenser occurred.The LOCA vent remained covered during all tests. The helium tests confirm that even for large quantities of noncondensible gases, the PCCS can purge the noncondensibles within less than one hour. j V/B only opened during Test H1, the 4% nitrogen case. The nitrogen present in the PCC condenser tubes was \ concentrated in the bottom 20 % of the tubes (near . thermocouple TEP 28). The PCCC heat removal was thus very high and within approximately one hour it exceeded the RPV decay heat. The D/Wpressure dropped below the S/C pressure and the vacuum breaker valve opened for a few seconds at t= 12,500 sec. & 17,500 sec.

l i l DIRECT GAS SAMPLING RESULTS i

  • Direct gas sampling results show that for each test l approximately 50% of the noncondensible gases were vented by the PCCS to the S/C.

For Tests H3&4,50% of the initial helium volume is equal to 30 times the PCC condenser volume. ' Preliminary review of test data indicates good agreement-between calculated and measured n/c gas concentrations.

   - Tests H-1 and H-4 results compare very well.
   - Tests H-2 and H-3 results do not compare as well.

Test H-2 has a low concentration of helium, therefore the differences may be related to measurement accuracy. H-3 . results require further review to determine reason for differences in calculated and measured concentrations. i

COMPARISON OF MEASUREbt CALCULATEb Co&CENTRAT105)S L.o w ER bRv WGLL TEST H.1 NITROGEN CONCENTRATIONS 40 35 - ------- --.----- ----------

                                                                                              ---,-h...-h,**

30 -- ---- ----- - - -- s'...- 25 ---.--------- 4....

                                                       ,-J-----'-.--;-----;-----F-----

20 ------ 15 ----,-----------4----'----.;----'----f-----

                                                                             *          .             .                  . . + -       H-1 Calculated 10       - ,-.- ....----.-----;-----.--.-.---. 7-....

ggg,

                 ..                                                                                                      --G--

5g r----- ggny H-1 Measured 0: 0 1 2 3 4 5 6 7 8 TIME (HRS) TEST H.2 HELIUM CONCENTRATIONS - + - Catulated (%He)

                                                                                                                        ---G-- Measured (%He)              j l

12

                                                                                            .           . s 10            ------ ----- - --.--                                                  -----...---r----

a.m f 8 --- . ...-........ ------- ,----.,----- -.. z . . . . . ue

 =
                   -- . e. . . . ;.
                                   *         . . .. ,... .+-u:s .+-....+...

l w , l Q- . . l 4 - - . *. . . . . . . . . . - . . 2 .'- - -..---------- --....- ..-------.

               .                                 .                             .                     .     .                                              i 0:                                                                                                                                                 1 0                         t          t             3             4          f             &    7         &

TIME (HRS)

CONPARISON OF MEASVRG t CALCULAT@ wCENMAMM L.oHE/? bRYWELL. TEST H 3 N/C GAS CONCENTRATIONS 60

                                                                                              .            .                g t              a            .                e 50               ....               . .....;.......;...,...
                                      /                                    I               ~
                                                                                                                                          ;- - . caicuiated (%N+He) f 40
                      ..I 4 ..\ -     . .y x-
4. .g.

l 4... + Measured : w (%N+He) i

                            /                              .

3 f +. . . -*- Measured . o 30 x uJ I /

4. _i'. .s,K.
  • N- --K
                                                                                                                           .s l       ,

(%N) e

     '               f.,                                 .                                  l                                               -M-             Measured i f/.t.......--,....'. . . . . . . . .. . . . , .... "
                                                          -                                             i               .

(%He) j 20 J / . . . . . . f . . . . . 10 r

                               .............r......... . . . , .

g *.h..dr..g..g..g..q.,**...-n

                              .                         i                 .               .            .              .

0 1 2 3 4 5 6 7 8 TIME (HRS) TEST H.4 N/C GAS CONCENTRATIONS 45 i V

L s

40 . . . . . ..-.......!...!...L... 0 H-4 l 35 .

                                                      .                 ......4...'..-                                           I              Calculated (%N+He) l r                                                                      .                            ,

l . . . . . j I, 30 . . .......:...;. . . . . ; . . . :. . . . _e _ M i 25 .l... e . * - s. ; ,_ ; .+ :. A , uessu,ed a .

                                                                                                                   '                            (%N+He)               j 1.
     $ 20 .-

g -

                                                                                                                  .                    ,-s.

Ha 15 .

                                        .. ....i...                                              4 . . . '. . .                                 Measured             '

(%N) I  : 10 . .... y . .it. .. &. . .

                                                                                     &.. . K     .... ..
                                                                                                          - M. ~ y                                                  l
                                    ,                                                                                                 .3                            ,
                                                                                                 .               .                              Ha 5             ,/               .. .                      ..
                                                                                        .......;...                                             Measured     (%He) 0/                                                          '                           '

0 1 2 3 4 5 u 7 8 TIME (HRS) l l

TESTS H3 t H l+ UPPER DM t Sk MEAsuREb GAS CONC. i l l Test H 3 UPPER D/W GAS TEST H-4 UPPER DlW GAS CONCENTRATIONS t CONCENTRATIONS ' l I 7 o 3 6 . - -- ...-- - 2.$ .. ... ... . . . . ' . . ' - . 5 - 2 n -- - --- --- - y 4 .

                             .. ...-. .......---.-                                                                      4 g

d -+ - Helium 6 a o e -Hehum w 3 .. .- .... . . -e - Nitrogen 1'5 --- -. - ---. *

c. -...,....

m '

                                                                                                                                                                                                      -G- Ndrogen w

i a, .' , 3 .. .. .. .---_-.....- . 1 -.-- 1 -.---

                                        ......--.--4-...--

1 0.5 - , - - - - h - - f- . - - - s, - - h - - , Ol -

; t -: > ' ' '
                             =
                  -                            =         =         = =             =                                              -

0 1 2 3 4 5 6 7 8 0' o - n n w <n e n e TIME (HRS) TIME (HRS) TEST H.3 SIC GAS CONCENTRATIONS TEST H-4 S/C GAS CONCENTRATIONS 90 90 , I e 80 . - - --... . 80 -- -.... ----- --,.. 70 . - -- - ------.... 70 ------- ---

                                                                                                                                                                ,          ,             l 60              ..           s..s..             ..s.          -

60 -- - --- .- - . .. .- w

  • o 90 -.. - --- - -

_+ Hehum y 50 - u l -+-- Hehum 5 00 ..

                                                                                      *     ""'*9'*'   Y  40              --

i ~9- Nitrogen < i

o. 0-
                                                                                                                                                   -~                     - -..

30 . . . . ,. - .. 30 20 . . . . 20 -- - 10 10 0  : : : : : 0 0- ' O 1 2 3 4 5 6 7 8 " " " * * * *

  • TIME (HRS) T!ME (HRS)

OUTLINE

        -             OBJECTIVE i

TEST MATRIX ^

        -             FACILITY DESCRIPTION
        -             PRELIMINARY RESULTS: FAVORABLE 2

i OBJECTIVE l

  • MAINSTEAM LINE BREAKS LIMITING FOR CONTAINMENT i

PERFORMANCE GDCS (GRAVITY DRIVEN COOLING SYSTEM) AND BDL (BOTTOM  ; DRAIN LINE) BREAKS LIMITING FOR REACTOR VESSEL

RESPONSE

                                    -        NRC CONCLUDED ADDITIONAL INTEGRAL TESTING NEEDED i
                                    -        OBJECTIVE DATA BASE FOR TRACG QUALIFICATION, FOCUS ON POTENTIAL SYSTEM INTERACTIONS i                                                           (IC, PCCS) i 3

l

TEST MATRIX Table A3-21 GIRAFFE /SITTest Matrix t Test Break Single Failure IC/PCCS on? GDL DPV No GS1 GDL DPV Yes GS2 BDL DPV Yes GS3 GDL GDCS Yes GS4 GDL = Gravity Drain Line BDL = Bottom Drain Line DPV = Depressurization Valve GDCS = GDCS Injection Valve , I l i 4 _ ~ - _ _ . - _ _ _ _ _ - _ - - -- _ __ - ___ _ _ _ _ _ _ _ _ _ _ _ _ _

Table A.3-23 Bads for GIRAFFE / SIT Test Conditions Option IC/PCC Objective Break Failure Operation Test ID Worst Break / Single Failure GDL DPV No GS1 Cornbination Benefit ofICIPCC GDL DPV No GSI and GDL DPV Yes GS2 Slow Water Level Recovery GDL GDCS Yes GS4 Fast WaterlevelRecovery BDL DPV Yes GS3 Case showing GDCS void GDL DPV Yes GS2 i quenching and break flow GDL DPV No GS1. l depressurizing drywell l 5

                                                                                             @ l DP     DIFFERENTIAL PRESSURE ATM                                     ATM F        FLOW                                                                               l a                                      4 I

w w e G PCC IC f f

                               )             )                   _
                                                                  =               .-

7 GDCS POOL C W ] DW g

        -       -                                                         Q    TO DW M
                                                        ~

a GD m 4l. lE F DP d

                                                          ~
                +4lh
      -1lH From           -

From RPV GDCS POOL RPV SC

                                                -ilF a

r ul: 4 FIGURE S 1, GIRAFFE Test Facility (System Interaction Tests)

PRELIMINARY RESULTS i i 1

                                                                  -                      PRESSURES                                                                     ;

t

                                                                 -                       GDCS FLOWS
                                                                 -                       RPV WATER LEVELS                                                              :

h j

SUMMARY

i f l 7 i

^ GE Nuclear Energy l SBWR Design & Certification Program Reactor Startup Behavior 4 ACRS Thermal Hydraulic Phenomena Subcommittee Meeting Nov. 29,1995 San Jose, CA C. K. Tang

Natural Circulation BWR Plant Startup Discussion Topics:

  • Dodewaard plant startup
  • SBWR plant startup procedure
  • TRACG analyses of SBWR startup
  • Summary 2

Dodewaard Natural Circulation BWR Dodewaard plant

  • Natural circulation BWR with internal free surface steam separation
  • Rated thermalpower output of 183 MWth
  • Rated generator output of 60 MWe
  • Initial startup in 1969, continuously operation since commercial operation
                                                                                                                                                                                                                                                       )

t 3 l

       ._.     ..                                                   -                                 --                            - , . . .        - .~         .
                                                                                                                                                                     )

j l GKN I IRI l KEMA l swavr or tus r.uotmano xman.cractamos. coots actuwa um arxrom I REACIOR VESSEL AND INTERNALS STIAN OUTLIT MEILE saFtTY v4LW eZZLt3 34F .. ,r N ,  % ad a, p ' j [ e u I, g ! SNtC) g uimum :a 'J f -== l SamDWW C00uN SICTW . l ' [ -mm r x.wn. 'ic n > e. .- y.ww x// ' 4 t[.W *.# ~ ,-E.J.j h . tras2:a m i 4 A 3 - -

                                                                                                                              -mm i
                                                                                   ,,a                   h UOtPS LfvtL N0ZILi%
                                                                                                                  .             u         mm.m,
                                                                                %s
                                                         ',                                                                "EE pgy                           8 f                                                 5)                    rest enu taTTics j

ss,, 4 M .= 19 h

                        * " ' " " "                                                                                             remamass meum
                                =<===                                                            I \,

_-=t = ,munu  ; PUELEugeL1 1

                                                                                                                            "EA                                     I FUEL WPP0ff PULft

___ _ _ . ^ WBft0L ADO esK Tutt f I g E 3 g {f' -en w .. . - 1--

                                                                        ,    i...,,.
                                                                             'F    p. p     p p   p

_.. % Mt 03v1 TlagLg IEfftulENTaTIOR 8l198 TUM wi .-i-i-i.i, i-6 Mgure 1 23

Dodewaard Plant Startup 1 Summary of normal plant startup procedure ,

  • Heat reactor coolant to 95-100 deg. C at atmosphere pressure .
                                                           - Terminate shutdown cooling
                                                           - Operate electric heaters in Reactor Shutdown Cooling system                                                .
                                                           - Terminate temporally CR0 cooling flow                                                                      i a
  • De-aerate reactcr coolant t
                                                           - Establish vacuum at main condenser                                                                       .;

i

                                                           - Open isolation condenser vent line and main steam drain line to main condenser (turbine bypass valves closed)
                                                           - Continue de-aeration to reduce dissolved oxygen to specified limit
  • Withdraw control rods to establish criticality i

t 5

Dodewaard Plant Startup (Cont'd)

  • PlantHeatup
                                                          - Control reactor power with control rods to heatup at < 55 deg. C/h
                                                          - Control reactor pressure with turbine bypass valves                                                                                                                                  ;
                                                          - Terminate electric heating of reactor coolant
                                                          - Place RWCU system into operation to control reactor water level, reduce thermal stratification, and maintain water chemistry
  • Turbine warmup and acceleration
                                                          - Begin warming at approximately 30 bars
                                                          - Accelerate to rated speed
  • Turbine synchronization andloading
                                                          - Synchronized at rated reactor pressure of approximately 70 bars
                                                          - Continued power ascension by control rod withdrawals

_..=_____.__.~.___m_m.m_mm____- -

                                    . _   . _ _ _ _ _ _ _           _________._-__m-.                              -
                                                                                                                             ,__  - .-- - - - - -= --. --- - --< . - --s~ . .. *w . . + - - - , .,. -a----.  - ~ -     v * - - - - - - -= ,%.

s NEDO 32246 l 1 , [44MN3 83M0d

}

e o 2 o S 1 ge

                                   .                               n.

a.a

                                                                                                                                                                                       .                    l
                                                               .                    .                                                                      .                                                j m

n N

                                                .                                                                                                                                      , . =
                                                                                           .                 . g.

o .

                       .                                                                                         3               .                        .
                           .                   .                                   .                         .O                  .

A.........>..........:.......... . m.= .

                                                                                                                                                                                                      ,g u
                                                                                                                                                         .                                              g .
                                                                                                            .                    .                                                                        i
         ..........g..........<..........<...........:.......
                                                                                                         .)..........                   .......p..........                           . m.
                                              .                                   .                e                             .

l . N.

                                                                                                                                                                                     ,s               't
                                                                                                                                                                                     ,          m
                         .                    .                                   .                E                                                                                             W
                                                                                  .                g.                                                    .
                         .                                                                         g                            .

b g

                                                                                                                                                             .........              .O A
: ** t-d o
                                                            .                  .                                                                                                                >=
                                            .       .                                                      .                                                                       .                   6
                      .                     e                                                              .
                                                                                                                               .                                                         m           b
                                                                                                               ............................I...

i ..

                                                                                                                                                                                   .M                 .
                                                                               .                                                                                                                      v gg
                                                           .                   .                                              .                        .                                              U
                                                                                                                                                                                  .                  E
       ..........(..........(...........t...........:...........>..........>.........3...... ....
                                                                                                                                                                                  .g                 a.
                                                                                                                                                                                  ,                  an
                     .                                                        .                                                                                                                       u
                                                                                                                                                                                  ,                   w
       ..........g..........,...........
                                                                                                                                                                                 . m.

g 2 8 2

  • 8 R S 3 S l

[s==/s:g] sunssaud !1 i 1 l l M '

 - - . - . - . . . . .       _   . . . - .       . . . -             _ - - - ~ . . - - -                 . - _ .         .      .        ~. . _ - - .-

30 . . 75 10- - - - P.ressure _ .

                                                                                                                                                                            .. T -        .-        - - - -          -
                                                                                               ~.                                                                .

60- .. . e, . .

                                                                                                                                                                                                                                          -125 u   50-                                                                .
                       %                                                                       t.

t on  :  : t.

                       .M                                                                                                          :                                                         :                                                                              e, w                                         :                             :                                   :.                             :
. -100 .c
                                                                                                                                    .                                                         .                                                                             +a h3                                                                                                                                                                     .

3: 4e.

                                     ...................i...................i........... .......i.................. ..................i..................
                                                                                                                                    .                                                        .                                                                              k
                                                                                                                                                                                              .                                             .                                   g g.

E g ...................}..................(. ........ ..........)..... o 4

                                                                                                                                                   ...P.......:..................I..................

eMee.  : gg, g r. r

                                                                                                                                                                                                                                           -50 l

w w w w g W w w w g W w w w w g w w w g W w w w g y 0 2.5 5 7.5 W W W 10 '12 5 . 15 TIME [ hours] . Figure 5-3. Reactor Pressure and Power dudag theJune 1992 Startup

                                                                                                                                                                                                                                                                                  =

r e s n e d n o

            >Co >

T e e r in t a ,- e s s s s br n n a u e e p d y T d n B in n o a o C Men M C

                                     /                 o ib r                 W                t n

u F T w o d M w lo B u" sw s n y; r e Wt D ia r e F a H e U C D R C g inn r W l m e R a iz t e &la r r S ee d iin lt p Fme

  • t u D r e

g - r ic

                                              )

t a e hn a t a t r rR c aeW t Hcx le eB E S M EH( S r ,' ,., f o , _' n.- - n M s

e. .

s. i o V t m' - a r u g 9 U i u (\ f > n o C r

                        'e g

n n e d a n

                                                                )

dr n i e h E c x i L W r a a w d t w ogmn li uo s t e f F ee h oy i t d l ao e SCS p gH( D i m V y - S

i SBWR Plant Startup , Plant Startup . t

  • Complete prerequisites 1
                                                                  -Systems operable and lined up for startup (e.g., CRD in operation purging drives, RWCU rejecting water to condenser, MSIVs open, one condensate pump in operation, etc.)
                                                                  -Containment clear of personnel
                                                                 -Complete required surveillance tests l
                                                                 -Normal reactor water level
                                                                 - Temperature meets requirements for operation on P/Tlimit curve
  • Commence plantstartup
                                                                 - Seal the main turbine glands with auxiliary steam
                                                                 - Establish a vacuum in the main condenser by vacuum pump
                                                                 - Terminate reactor shutdown cooling to begin warming of RPV coolant by decay heat                                                                                                 ;
                                                                 - Operate RWCU in the reactor coolant heatup mode (electric heaters) to heat coolant to 80 deg. C to de-aerate reactor 10          I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ - - - - - - - - - - - - - - - - - - - - - - - - - -' ~ ~

i Reactor Criticality & Heatup t

  • Approach to criticality
                     - Withdraw control rods in specified sequence to achieve criticality                                                 :
                     -Maintain a reactor period greater 100 seconds (typically 100 to 150                                                 ,

seconds) until the heating range is reached

  • Plant heatup
                     -Maintain turbine bypass valves closed during heatup                                                                 i
                     -Continue rod withdrawal to develop a heatup rate <55*C in any one hour                                              .
                     -Maintain normal reactor water level by rejecting water during heatup using the Reactor Water Cleanup System                                                                             ;
                     - Utilize the Condensate and Feedwater systems to add water to the RPV                                               .

to maintain normal water level as required

                     - At approximately 100 psig, Begin warm-up of steam jet air ejectors Begin warm-up of the main turbine and the off-gas system
                         . Shift turbine gland sealing steam source from auxiliary steam to main steam
                     - At approximately 250 psig,                                                                                         J
                         . Place steam jet air ejectors and off-gas system into operation Shutdown mechanical vacuum pump 11

_-----------u----__ - _ - - - - - - - _ - _ _ --__----r n - - . - - -- -. - -

Plant Heatup (Cont'd)

  • Plant heatup (continued)
                                     - At approximately 600 psig
                                        . Start one reactor feedpump and establish automatic level control Terminate water rejection via RWCU
                                     - As rated reactor pressure is approached, adjust the pressure regulator setpoint to appropriate value (bypass valves will begin to open when rated pressure is exceeded)
                                     -Continue rod withdrawal until approximately 15% power (bypassing steam to main condenser) 12

Turbine Startup and Synchronization

  • Turbine startup and initialloading
                             -Upon completion of turbine warming, roII the main turbine to rated speed
                             -Synchronize the generator to the grid
                             -Increase the turbine load setpoint to raise load on the generator and to close the bypass valves
                             -Start additional circulating water pumps as required to maintain proper condenser vacuum
                             -Start condensate and feedwater pumps as required to continue to maintain proper reactor water level 13 k

m_ ._.___.__ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ ___ _ __ ___ 4 mo- w. ..- ---_.-& -- ----, -- ,- -- ,.w, , , . - e-e---

 .m,u..m--         . . . . . . .-.._m   ..._.__m.-__,      .. ....       m ... . _ , . . ... . . . ..-. . , _

I Power Ascension to Rated Power i

  • Power Ascension Complete inerting the primary containment within 24 hours after reaching 15% power
                                                 - Verify the fuelis maintained within the thermallimits throughout power ascension when above 25% power                                              t
                                                 - Continue control rod withdrawal te r:ach rated power
                                                 - Place additional condensate and feedwater pumps into operation during power ascension 14 i

Startup Trends REACTOR WATER LEVEL (normal) 216,C REACTOR COOLANTTBrERATUM 7 MPa E REACTOR VESSEL PRESSURE R 2 e mg

# _.                                                              TURBINE SPEED                                                       100 %       E ga                                                                                                                                    --

R 5E = 0 88~ E E g NOTE: NOTTO SCALE 2 o h O @ E e REACTOR POWER 4 GEERATOR POWER h E e R e

    --0                                                                                                                              $

t; _ 'l / E

                                                                                                                                       --0--0 HEATUP &       DR M                    TURMNE                           POWER ASCENSION PRESSURIZATION    MPEN                    STARTUP                          [ Neutron Monitoring calibration, (6 HRS.)                              (1.5 HRS.)                       placing additional feedpumps REACTOR                                                                             and related equipment into service, CRmCAL                                                                              heat balance calculations]

(1-2 HRS.)

t TRACG Analysis of SBWR Startup / t Typical startup analyzed, heatup rate 42 *C/hr.

                 - Condens t o ind ced geyser ng osc Ilation is possible during startup only .

when chimney is subcooled and vapor is generated at the exit of the fuel bundles

                 - No geysering is predicted to occur (minimal subcooling)
           - Unstable region                                                                                                                    -
                 - To identify conditions for condensation induced geysering oscillation l                  - Initial conditions of normal startup
                  - Increase reactor suddenly to specified level and hold constant.
                  - Reactor pressure held to lowest possible by fully opening of turbine bypass valves Results.
                  - Unstable region: 100 - 140 MWth and reactor pressure less than 0.3 MPa Unstable region is not attainable during normal heatup process. Entry into unstable region is constrained by Technical Specification requirement on heatup rate.

16

   ._.v,.-                     .~       #     - . -      .r-  .. m. .,  u -
                                                                              . _ . .---.. . ~ . _ . . , . m , , ..    . - , , _ _ _ . ~ . . ,

1 - POWER 2 - PRESSURE 3 - COOLANT TEMP. l 3"" eo 300.0 l l l l l l

                                                                                                                                                                                                                                                .s-
                                                                                                                                                                                                                                                                     -         1 3         v
 ^                                                                                                                                                                                                                                                                   s S

v 200.0 MS $ - 60 g

                                                                                                                                                                                                                                                                     $         (D E                                                                                                                                                                                                                                                                   2         $3 p                                                                                                         '
                                                                                                                                                                                                                                       /-                            x         E8 h                                                                                                                                                                                                                                  i                                         o$

e 2 y

                                                                                                                                                                                                                                                                      <        b*

100.0 - 3.0 g d MO . i a a a a e

                                                                                                  ,,a                                                                                                                     ,
                                             ~'                                                                                                                                                                                                                         ~'

0.0 T.50D05 t .9E et t.25D04 I .50D04 I .74 eos 2.00[ *01 5.00D05 0.000 00 2.5K +05 REACTOR TIME (SECOND) Figiere 4-3. Reactor Power, Pressiere, and Temiperature

. l 1 - COOLANT TEMP. 2 - SATURATION TEMP. 500 m g v 470 - g 440 - O t D - o H h N uJ T A g 410 - i W , 300 - I I i I I 350 8.0E+03 10.0E *03 82.0E e03 0.0 2.0E +03 4.0E+03 6.0E+03 REACTOR TIME (SECOND) Figwe M. Coolant and SaturationTessperatwes at Channel Exk l

n . . _ . - . . - . - . _ _ . - - . ._ . . _ . _ . _ 1 NEDO 32246 8

             \                N     .

a i

                                                          ~

5 1 2

                                                           ~

8n u l z mi I 9 > S w ~ E 4 e w g E I E b = j  ! 4 - 9o gb  !

                                                                           +5x               l cd                                                                              d E                                                                    e          4   ,

w

                                                                                             \

i

y ~

9

         &                                                                  N 5

8U I I o 1 I o o o g 7 e 4

                 %      4 (m)       aunivniadW31 i

hl1

   - -                      +                            .-     -     -                      -           --

NEDO 32246

(Das/W) Alco 13A alnbn
                   .          .             o               ,           ~          o
                   -          o             o               o           o          a        5               !

i i i e i i (i i i k g - , N 4 2 , 1 N 2 l O - i 7 g N-  !.!5> l

                                                                                                            \

1 ! D f e . w

                                                                                                   , I 5                                                                       a         i   F  -

yeO N w -

                                                                                                   % h      i l
             >-                                                                                        e W                                                                                +            1
                    ~

w > , 9 l "o'

                                                                                         \

t i 4 1

               .'         i     i         i            i      i     i      i            .

4 O W W W W W _ . 3 s ~ $. N0113YHd OlOA 4-15

I Summary t SBWR plant startup

  • Follows typical BWR startup procedures
  • Similarto Dodewaardplant .
  • Performance expected to be similar to Dodewaard
  • TRACG analysis of SBWR startup concludes no flow instability for normal startup; instability region not attainable for SBWR

's 21 _ - . - _ _ _ _ _ _ _ _ _ _ - _ . - _ - - _ _ _ _ _ _ _ _ _ _ - _ _ . - _ _ _ _ _ _ _ - _ _ _ _ _ - _ - _ - _ _. - -. , . . . - . - = - ~

l 1 l

                                                                                                                                                                                       ;)

O GENuclear Energy l l l ACRS Thermal Hydraulics Subcommittee Meeting SBWR Chimneyissues B. S. Shiralkar  ; i November 29,1995 t

SBWR Partitioned Chimney .

         ? Geometry
             - 22 partitions covering 732 fuel channels and core bypass region
             - Unit ceII covers 6 x 6 bundle array with associated bypass region
             - Unit cellsize ~ Im x 1m x 9tn high
  • Operating range of conditions
             - Rated operation :

Pressure : 7.2 MPs Mass flux:530 Kg/m'-s Average quality: 0.124 , Average void fraction :0.7 l l.. . --_ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . __ _

ssAsan nov.A samedent sanny AnaNas nepat SBWR i

                            \l 1
                                                                                    >         Steam flow out
                          -- o ~                                               LYA 4

ai 4 ;m no. a '

                                    /

0 4 . . .

q. . . g (mixes with separator
                             .                a retum) 1 c_                                            a      ,,

T l it en-

                          .=ss W""

l

                                     ."    , ......          ".....t             "
                                        "                          '                                                                         i ll l i
                                  '                      f lllll l l      l H l l 1 1 lll
                                          .                     !!p             .
                                     ,,         III                        IIQ 1
                                                         ,                       (\

i:ci Figure 3.9-3 S8WR Racinculation Flow Path M Mecherical5puenme and C-::.: . r - Amendment 1 i

                                                               -                               /                                                                                                  i I

l i i

                                                                                        ,                I
                                                                                       \,

l l s I= 'l

                                                                                                        ;.7 ol l

t l M. \ ._

                                                                                        - [ [Y./
                                                                                                              , r. . .                't              l
                                                                                                                     '             e'.-__._f.                                                                  ,
                                                               ~'

l \ UPPER FLANGE

i. . s s. ;,

i i ( ' i-

s! .0 e CHIMNEY i 0

I' ,

N. F r ,:

l 1 A  !

                                                                           '. . ,l ir . . . li SECT 10N D-D                                                                                                                                                                                  i.l.

80TTOM FLANGE

                                                                                    ,                                                                                                                         l (1                2 SCALE )                     !

l i i l 8 / j s i g m r

                                                                                                                                                                                                                'i
                                                                                                                                                                                                                ', l l

e s ' .: . ,. ..\

                                                                                                                                       /
                                                                  -\ N \;I
                                        -- ------ 4                                                                                                 e r-'-------

l aa t '

                                         -          ,     N                                        ,

i N. N N ,, N N \. l l'5 ( l ' ' N N . .;; ', ,./

            ;.,          g       's      ,                                    -g{                                                                       g j.

l s, N N N -

                                                                                   's                   i 4
            ;.                    N    \         '-     \.                  \.             s        sl                                                                                                          l
                            \,      N      \.        \.    \.         \         \.           'N         l                                                                                                                 I l\ N               N      'N       N        \       \          \           \         s l i
              ._ ~ - - -                   -              "- --     '
                                                                               ^-_.-              w                  -- TOP GUIDE I
                                                                                                                                                                         'b
                                                                                                                                                               /              .

E

                                                                                                   \
                                                                                                    \                         !

i

                                                                                                                                             - - .        5 i

( i a

                                                                                                      '\                                                                                                    w I

t i I

               ,                                                                                             \.

ii  ; l n , , ,= =::pe - j l i j

. ._.I _.:: _ii  . _ _i                                                                                                                                                                                               1 l

l it

l. i I n 1 i  ! I.

. ._ i _ . _4:. _ . y ll . l

                                                                                                                                                                                                          ~

CHIMNEY PARTITIONS I

-=f =:dpe'l a l

((' t y N A., AXONCMETRtC vtEW '

                                                                                                                                \.%e -

N (brintro wtsent 23220 50)

._!         !!         )

,=i._.._. ni ll 7=p=4  !,l

      ;      ii           !

KeyIssues

  • Chimney cell flow regime and void fraction
                                                                             - Average void fraction
                                                                             - Cross sectional variation                                                                                                                                    ;
                                             ^
  • Flow / pressure fluctuations
  • Multi-cellperformance of chimney
                                                                              - Steady state and transient conditions l

I l i

l Ontario Hydro Data

  • Configuration

> - Vertical riser (0.51 m i.d.) downstream of bend from horizontal pipe

                          - Flow straightener atinlet
  • Instrumentation
                          - Multi-beam gamma densitometer for sectional void fraction                      .
                          - Pitot tube rake for dynamic head distribution
                          - Measurements made 4.2 m from flow straightener outlet
  • Test Procedure
                          - Voids createdby draining loop
                          - No direct measurements of mass flow rates                                      ,

Calculated from local dynamic head and void fraction data

  • Results
                          - Data obtained at two pressures up to void fraction of 0.8
                          - Measurement uncertainties: Mass flow rate ~15%, void fraction ~5%
                          - Effects of bend persist in velocity distribution, but not in void distribution
                          - Local void fluctuations small at high pressure, increase at low pressure

Ontario Hydro Data , l m -- m= - ~ - -- _n. == - m--. m mm mammm - q 1.0 . . . . . 5000 . , , , , i ' ' I i * ' i

                           ;          i   ;        i l          l    l    l                               >
                                                                                                                         +      '         +          i                    t     i      s
                           !      i  }    l        l       1           i   !    !                                                                                                                '
                           -                       "-                                               4500  -    ,                ,         ,          ,            .,. -,       ,       , __
                                                                                                                '        '      '         *          *             *      *
  • i Time = 2545 :

w , 7mme @ 0.0 s-> $1HGLE PHASE [ 0.8 - 4000 -- i ,

                                                                                                                              -{          i-         ,                         ,      .j    _
                                      . re. -229o.i                  .                                         ,                         '          '

i ' , 4

                            ;. l   l   6 .              i           i   l    !

I 3500 ]-

                                                                                                                                               - - l .-                                     -

T -ms: . . . s . . . . I z 0.6

                     --                            +-                               -

8 3000 -- - -

                                                                                                                                 -- -i o                              Time- 87s2 s                                           I                                                                                               '
                                      '    '                '          '                         2              '        '       *                --               -      -            -

5  : l ' f h2500 E cm Tune - 1600 s d ..

                                                                                                                          '                 ^                     .'     _'           .,

o 4 Time- tess e:

                                                                                                                                                                         .h-
           > 0.4     --                            - - - - *            +            -

g 2000 - 8 1- .i- - - Tm - ^-- 3 4411 s, j ,,

                                                                                                                           .  ,. n -im

[ , i 1500 '

  • J21
                                                                                                                                                                             ~~ N         -

Tens-2290 ' i - Tinie = 873 s ~

                                                                                      -              1000   -

t j .. - -. . - 0.2 - Time = 691 s ! Tams-34St e. . , 500 - - - 2 . .. .. -._ a .  ; I I I I I I s i e i e 0 0.0 -0.8 -0.4 0.0 0.4 0.8

                          -0.8      -0.4          0.0               0.4        0.8 xm xn Void Distribution at 280 C (6.4 MPa)                                            Local Mass Flux Distribution at 280 C (6.4 MPa)

1 ( Multi-ceIIChimney Performance

  • SBWR steady state chimney parameters compared with Dodewaard Dodewaard Parameter SBWR 1

Average bundlepower 2.73 1.15

                                                                                                                         . . . . _ .(MW) ...                     .     .      ..

ChimneyIJD 9 10 verage voidfruition 0.68 0.57 Liquid velocity (m/s) 1.6 1.1 Vapor velocity (m/s) 2.4 1.9 i

l t

SBWR ACRS TH SC MEETING ATTENDANCE Wednesday, 11/29/95 i

l i NAME AFFILIATION PHONE uoAn l learbrmair GE SAWA l'er?V#cudhn 4c8-925-2023 l

        /M vL (30 &NMkr                            /VM c / A uit                             so! /% f- 8ddf                                   l
          /fid L Sewlt                             Acx 5                                       n o k 97 ~71/8
          -76 11      Merss                          /?CR S                                   ,'n'Mrs - 9sYf                                  l 1

M> i? a. Sfn A.4-- Aer?1 46,2 /yr? 4 T/0 l kiw Ch r-rva.) 'aeas 91Eie27 r 3 z o ' J w a_ , C_. C.oe e e 1 '- Ace 5 Ts ro) c s4- G s14- 1 Wsen. Se,vraw be 2m Co., s ,, t 757oi&sts-t4'si Nov A- t hnak~ 'n-e e a.., t+.,/ ti s i , ' st 2. y - s rre 11 I T k < 'D H tIL he a c  % .a w %i., 2 Lr- c-ec 7 Mc V 4:6%mtN W'9.JQ b CJ h 1 '4 M 'Y9L 7I che,7d2 MJ'n7hd'd d f C Alb?~ ' " &si 4'14 12 Al,' , 5em J/dn Hec. / utL / OR.PM 76 / - 4w - l / 2- ~ \

            //uw law,J                             Mizc/ inia /skga !                         3s /- S'ty ,a 290                               1 fr.s4 S u(de4et2.                           611 '                     '

4os- 915-45d4- /

  • B h A . rJ- f b af)W 6E 46 & -92.T-f M ,

[ . Ts e P# rrti /~ t' d.0% - 915' - b I4 E Jiiv &?uid GE ds8 f.7.r Aes-C Ye.6%w A Wtt- (eCl -t-t - l - 6 h .W 9 )

           -1cJtd      Tok'd6&A'-                     66                                      6foo)12S- G/o/

PM Iris tv'A S4J EPRI 4G - 955 77 oS Esos G or-w Tbe- s a t - v a s .s s m 7%m Fe <na na'n EPAZ %su/ fad 415- Pss - 2 733 70M1 A//21F0#A EMI 4//S- 865 .2 7(o(o S'ALOMrhl WllY E P K 2-' C o stsus.r w r 461- 8 M - S C'e,d

       & s ow *Te, % } ct                         t= 9 R r / T A P C                         4 IC- 87 f- 8 7 25' W/a ,, , W. '.-s a e , w , - ,             K?m/rsvs                                   yis-esr-avsy
         'Th.       %' </, <L s                       l=Ynr                                   A i G' 255 872 4 P,, w+ Ga.wbb                               Gc                                       w s 9 25 3 3 s t                     .

JkC/A Do w ' Or Ack 9. Z$'Yo 96_ l' l'sl,w is = h , 4 E /.TA PC 408 - 725- 2// 9 '~ A vs k 1- b ,. d.e cth GE </ca- 92 r- se gs-N M YA N A J HRZ06 GC 40T(- 92 5~~ l92I J2h/i F181& D TIU' - G-6 405" 9Z L'- l VT4 f:Rr~t) M0004 G E' ' o y - 9 2 y .- wyyy Go 4 h u rJ,~. le GE 2 92s~-Jo'?5 . FM J u. '6 AituuG (d ./ 1

                                                                          /Vaf.iv            y cTF 1.s . jg g L.-._.-..    - .                . . . - . . . . -         . - - - - . - . -.}}