ML20031G072
ML20031G072 | |
Person / Time | |
---|---|
Site: | Indian Point |
Issue date: | 05/31/1972 |
From: | QUIRK, LAWLER & MATUSKY ENGINEERS |
To: | |
References | |
NUDOCS 8110210029 | |
Download: ML20031G072 (56) | |
Text
{{#Wiki_filter:r 6 C-l T 'iL I D/O EL !: ISIS 0fl C0fT/d;f OF f!EW YORK, Il!C. Im p ~ i i x n-2 SliPILErr ni/1 STi:DY OF EFFECT OF SUr"rFFE TFSCl!. AE DF li,'DI/J: PnI!:T cng! T;,'c "Ai! n 0:1 r
- n'?. m:,j f)} v~} r,, p'It ' bv '
l "npd' e ri i n i, u r: p "l u. e
- v. i i i b l l o L:
ulo i at i t it.s II AY, 1972 CLL:1 Project "o.: 115-17 O U I R K, L/M L ER T< f %TUSi'Y E!!G li.'EERS El!Virn:,'t', it?T/d. SC I Ef!CE & Ei GIllEET.llM COi!SULT/dlTS ROUTE 303, TAPP/di, flEW YORK 109' 3 J 8110210029 720531 PDR ADOCK 05000003 P ppy )
-. _. _ _. _. _. ~ _ _.. _ _ - - m I j 5 i l s 1 )uirk, T,l y.. I s l. Enercomt:ntot Ocienco G Enninor. Nrm Conco:rt nts I ta s s tb i ( h'd,.g y4 l'Illl!~Ib 7 eo l i hiltrl tocrs m naou _ m. -m,c .m em ') nom st u-moa ta W v o n < s T. r's ut i TsavAsa*ra %.sr. } .s o., e s,. a n c w ,=.u o, m s,u.t i 1:atr 8, 19/2 m va,, a r, w.,.u. l .,c, s u. o n. c <. " c Filc: 115-!7 n mu n,, m an,s. o a f C+# rut [G /PPLCA* 'Fv2 f I 1:r. 31cn Chc!!ct 1 DErice of Environuntal RTfairn Routa 114? Connalida ted Ed!ron Con; :y of 1 c ;r York, Tnc. 4 Irving Placo 1 1;c:1 Yori., !ke York 10003 l Sch-[c_ctL : In<] inn Point Su1=crycd DirchargO ~ St';;pic:rcntal Study a l i, .s l Qj rear ?r. rhciCot? a rutnua;. to u;our roep:c:;t of !!au 5,1972, va arc culvitting hcrewith a j ccwrendun reycrt i>rcccn tine; our u c;onne to the ruh=crgcd discharga j qucstion ; act forth in tLa IL2g 2,1972,10tter fro;n the AEC to Con Edinon. t 5 k For cenwn h n=c of p:esentation and sinco 1:ost of theso qucaticns arc interrciated, our ancecrc appccr in the order of prcscntation givcn in Section III-E-1-g-2 of the "Dra[t Detailcd Statc? cant" of April 13, 1972, I prepared by the U.S. REC, salhar than tha ordar given in the 1:ay 2,1972, l 1ctter. OM:!'s rcapo..se to thcsc questions is given in a set of six itcme, ca outlined Loiow. For convenience, boxover, our specific answeru 1 to the individaal LI:C questions are located in the following outlino. F j AEC Letter i OLc! iten nudar and titic Oucction 1o. t 4 J 1. Sub:ncrged discharge rodel and 1, 6, 7, 9, Evaluation pareretcrs -10 2. Expansion of subrcrgcd dischargo jet inundar'm - litcratura Ii revicv 2 N.. i $ g' s 4.A ' Il b 3 E-b m b8 Ib b -4 E J Yb d [ II I I( b C'w'I [ b b !p l.II U4Y* )
l g s Lett er tot 1:r. Alan C %ifctn b3ter !!ay 8,1972 { 3. Sensitivity analysic of Jct growth prarcters vaing Indian 1% int units 1 & 2 dischars;c conditions 4,6 4. 1:clat foniip hetuccn entrainment coc ficient e:%' slopen of Jct r houndaries 2,3,6 5. Dietribut!*cn of tcnpcraturc tices ovc:: fct cross-sectional arca B, 6 6. Interference Latvcen adjacent jets 5, G Tha thcoratical treatment prnrentcd in this mroratidun report. crricyes l a ncv version of our prcriously c'cyc1cred ruirrrged discharga t.odel. Thic vernien of the voicI in capable n! handling suhmerged slot n as voll ac.torta. 1:cctangular slots as ::vil as circular parts have hccr., n :cd to evaluntc the consitivity of tha trc.cl to study input peranctcrc. \\ Stud; rc cultn have becn computed using this t.oda] and the finn 1 autfall \\ dcsign preveters. In particult.r, thor. rcrulls take tho influence of G' the revived depth of rub =nn;cnro at D tccc and th2 rccirculacton eficcca into bccount. Co; put ed recultc for a condition cf a taxirum at:hicnt tcmporaturc, two unit condenser risc and recirculation condition: ' chowed that tho maxirnm curfacc t empera turc in the imcdiata vicinlty of the outfall can bc expcatcr! to ha los than the ticy York Stata Critcrion of 90*F. l l We vould be pleased to revic;; the report with you if you desiro additional I aiscussion. i l Vcry truly yours, / aum !. gn l 1hrim A. Abood ASDocia t e 1%h gsf cnc. 1 4~- l .7 It Q uirk,I.nwler $'.Ma tusky I:ngi nc urs 1. k
- ~.- ~. -. ~ 4 1 I. Submerged Discharge Modcl' and Evaluation Paremeters* In 1969, Onrk','Lawler & liatusky Engineern (OLtM) developed and i successfully prograrrned for computer solution a three-dimensional j mathematical model describing the behavior of a submerged ci.r-cular jet in.an estuary. Detailed description of this hydraulic l phenorcenon and formulation of the mathematical model.and ca:rputer-progra:a are given in Referenca 1. 1 Additional develop:acnt and modification of this model has occurred i l since 1969. (6) In addition to the-improvements discussed in Ref-j crence 6, the theoretical' analysis has been recently inodified to make the mathematical.odel capable of handling rectangalar slots 1 ac.rcll ac circular pertc. Thic modification permits use of the i model to directly describe the behavior of a submerged rectangular slot without having to convert the slot to an equivalent circular port. i. Since a program deck is not available at present, we are enclosing a listing of the modified subraerged discharge program, used in this study, as an Appendix to this Report. 1 This model was used to evalua.te the expected behavior of the i i reviseu Indian Point outfall slots. Details of the revised design are given in Reference 5. For convenience, a bricf description of the design is given below. i
- g 1
- Dr. Karul is. Konri;;d of QMM for[ owed rang of the calculations and investigations reportcd Lernin and prepared the origital draft of thosc notcs.
vs Quirk,1.awlet STMalusk y "ugincurs m., -a-,n n v --.,.,,,-,,,-.n-y
-.- - ~. I-2 s 4 i i Details of the revised Indian Poin.t'outfall system are shown in ' )- Piqure 1. The system concists of 12 dischargo licrts with rec-tangular openings 4 ft.et high by 15 feet long, spaced 21 feet f apart (contei: to ch:nter) discharging horinontally and normal to the river flow, and located 12 feet at centerline of 1: ort below the U.S.C. & G.S. sea level datum (1929). Ten of these slots are equippca with fully adjustable gates to insure a sahmerged jet velocit,/ of 10 fps for any combination of units in operation. The original 18' deptb of submergence uns changed to 1%' to improve mi::ing of the of fluent with the ambient uator and mini-mize river bottom scour action. Recent hydraulic model tests showed that the revised outfall design produced lower overall temperatures. A s .4 As shown in rigure 1,_ the combined Unit no. 1& 2' effluent will be discharged through seven of the twelve slots of the threo unit outfall. i Indian Point Units 1 & 2 design parnmeters are sumroarized in Table i l 1. As requested by the Arc, Table 2 summarizes the exposure time f predictions corresponding to single and combined unit operation. These values have been computed by Consolidated Edison personnel. s The combined cperation values correspond to tuo unit operation'at p i rated capacity. This study employed the rated capacity summertime I two unit operation values since the objective of this report is to compare the performance of the outf all'with the 90*F criterion. During suntner months, when ar.i>iont temperatures reach a maximum value, this criterion pay contral. Quirk,I.awler S?.\\lat usky Engineerc i -9sv-wep e+v gr ema - -n,- V w w w , ~<- w w ,,a + r -w,- e t e
i i. I 4 s The Tab 30 values corrcsponding to cooling water flow reduction 4. ( are associated with non-summe. periods and may occur during. i some Call and wintez months when the liver ambient temperaturc 4 is equal to or less than 50 F. A wintertimo plant temperature i rise et 25 P would yield maximum' surface temperatures of less l than 75 r, Thereforc, the 90*F criterion is not controlling during such periods. The controlling criterion during flow reduction periods may be .i the 67% aurface width 4 F criterion. IIowever, ovaluation of the offect of two unit operation during 1.intertime conditions indicates that the 57 0 criterion will not be contravened. A summary of I wintertino predictions is given in Figure 2. i ] In addition to the Lvio unlL ruled'cupaclLy opetation oulfall.Lanp-l'J crature rise, this study takes the recirculation effects into t account. l { IIydraulic model thermal recycling studies -indicate that -two unit rated capacity operation may result in recirculation effects ranging from less than 0.1 F to less than 1. 2 F, depending upon j I the prevailing tidal conditions. The tidal average increase in l, ~ i intake temperature rise over the entire water column due to re-i j circulation of heated vator will be about 0.75 F. This value has i been rounded off to 1 F and used in this study to account = for' the recirculation effect. t The maximum naturally occurring river water ambient temperaturc used in this evaluation is 79 F. This value is considertd to be 4 1 v.- l Quirk, Lawler GOhitushy ):ngineers
I-4 the highect water temperature that-can be experienced by the-p ( Indian Point intake at any tt.me. Review of ava'ilable Hudson l River chcnnel temp 2rature data given in Reference 6 shows that. this maximum temperature of 79"P in the Hudson River is reached around mid-Isugust of certain yearr. Ambient temperature does not reach thia value everv year. For cxample, the ma::imum am-bient water temperature observed in the vicinity of Indian Point in 1969 occurred on two days in August and was 77.5 F. i Available temperature causurements, depicted in Figure 3, over l a ten year pericJ from 1956 through 1965 shew that the 79*F l monthly averaga is reached only once in eight years. The values shown in Figure 3 are based on temperature runsurements of intake cooling water at Lovett. Although these temperatures may be '("'; .ccmawhat high.because of rceirculation of effluent' cooling water, v they represent the most extensive survey of arabient river temp-eratures for the Indian Point-Lovett area. These measurements were grouped into monthly averagen and statistical.ly analyzed for the August months. Data subsequent to 1965 were not included in the analysis because they represent a significantly greater degree of heat 1-recirculation as a result of the Lovett Unit No. 4 being oper-i ational. Figure 4 depicts the ambient temperature seasonal variation'at Indian Point for the meteorological conditions of 1964. This I' Figure indicates that the maximum ambient temperature in this e ; \\. area was less than 79*F in 1964. s Q uir k, Lawler E'Ma tusky Enginacts
( o I-5 4 i.C Several Iludson River tempterature profi.les cnd additional support v of the 79 F value are given in Reference 6.. Section III-E -1 g-2 ',ot the Draf t Detailed AZC Statement and i the AEC May 2, 1971 Ictter to Consolidated Edison refer to the 81 F August an.bienL temperature reported by New York University. 4 i As erplained during our several medti 7s with the AEC personnel, 4 these NYU measurements wera conducted in conjunction with a biological survey of the River and ref. lect the effect of recir-4 culation due to Unit No. I operation. Biological surveys.ucually ~ cmploy conventional temperature instruments rather than precision thermometers (since the major objective was the biological activity- .rather than temperature distribution, per sc) using Centigrade
- 1
[ rather than Fahrenheit units (a 101 crror in C is-ccuivalent to ? about 20% error in F). Moreover, the maximum' ambient temperature i + . measured by NYU in the Indian Point vicinity (east bank of the i 11udson River) averaged.26.75'C or about 80 F rather than 81*P. I 1 i T i The 79 F value, used in this study, is based upon the above. i j mentioned observations, does not include any recirculation ' effects 'l I (sinec these are treated separately in this study) and is indi-l .s cative of overall intake water column rather than shore or surface 1 4 j i conditions. 1 4 i j b p i -i Q uirk,I.a wler S'.Wluskr Engin eers I ~1 L. 1
t ' e II. E> mansion of Submerced Discharac' act no.monrics - .\\~ Literature Review The previously develo' ped Quirk, Lawler & Matusky Engineers' submerged discharge mathematical model utilizes jet boundary clopes (C 1, C ) to account for plume growth within the zones 1 2 of flou catablishment (initial zone) and established flow. Numerical values employed in Eeference 1 are given below. Circular Port Slot Zone of flow establishrcnt, C, 0.16 0.15 .L Zone of established flou, C 0.20 0.25 2 f) As indicated in Reference 1, the length of the initial zone has been defined as G.2 x D (initial jet diameter), for a o circular jet, and as 5.3 x W (initial jet width), for a o rectangular jet. A definition diagram of both zones is given in Figure 5. A comprehensive literature review of reported observations of the slopes of expanding jets is given in T.R. Camp's Water and Its Impurities" (2) on pages 238 and 239. For convenience, a cample of these observations is reproduced i below. Albertson and co-workers
- found that the boundarif of the expanding 1
. (
- Alhcrtson, R.L.,
Dai, Y.D., Jensen, R. A. anil ~:oso, Huntcr, Trann. T r:. Sac. Cit-il tr<n.n., 115, 630 (1950). Q u irk,I,awle r T.Tla tus h y 1:ng in em rm t g._ .. ~
II-2 c jet from a circular orifico' diverged at a slope of approximately 1 to 5 (or a slope of 0.2) tror the centerline. Tallmien, working with air, found that the boundary diverged at a slope of-1 to 3.92 (or a slope of 0.25). Rice working with freswater in salt water, with differences in specific gravity ranging from 0.01 to 0.035, found that the boundary ' diverged at a slope of 1 to 4.8 (o a slope of less than 0.21). According to Person *, Folsom and Ferguson, who worked with gasoline, the boundary of the expanCing jet diverged at a slope of 1:4.31 (or a slope of 0.23). Rawn and Palmer, in experiments with freshuater jets in sea vator, found that the boundary of the expanding jet diverged at U a slope of 1 over 6 to 8 (or slopes of 0.17 to 0.13, respcctively). 1 One of the best known investigators in the field of turbulent
- jets, G.N.
Abramovich, has prcacited an analysis of spread of a turbulent submerged jet and its geometric features in his tent, The Theorv of Turbulent Jets. On pages 505 through I 509 of this publication, Abramovich reports a jet boundary slope of 0.158, for the initial zone, and of 0.22 for the zone of established flou. The length of the initial zone used in Reference 3 is equivalent to nine initial radii. Person, r.A "An Investigation of the Efficacy of Submarinc Outfall Dis;x> sal o[ Scwage and Sludge," Publication 1:o.14, State h'ator Pollution ~d Contral T>oard, Sacrcrento, California,195G. Q uirk,I.awler &Ma t us k y I:ngi ncors v
i II-3 i . ir } t 2 Lohn-:;len l'an employes an initial zone 1er,tle of 6.2 diameters for a noz::lc (in referencing Albertson's results). f ~ t The brief literature reviou indicates that the slopes of jet j i i 1 i boundarien, incorporated in the OLE 11 mathematical model agree 4 4 very well with thoce observed and reported by many investigators. t 4 t 4, t h t I 4 j. I t I i ) i (~ '. i q. 4 i T 1 i t I i t i 1 i f ' i l f-I. l I i 1 1 k i-lI
- L i
i t i l Q u irk, l.awle r S'.\\ latus h y 1:ngi ucer.s 5.- t c 1 J = -- - -.,.., ^=-e"ye-94TrNWr Fw W smW'M*wftyv"'WN-whwr v Th-- V ae4'e-M P^ w--wwP-eP-eNNWN~~w wte*'WNhw 6NwM- +-ande W- * -- * = - - ' - = " '"' -' " * - ~---
-t ? i l 1 j t
- p.,
t (, III. Sensitivity Analysis of Jet Growth Pararetern Using Indian Point Discharge Conditions A. Circular Jets i In order to determine the effect of boundary slope on jet l characteristics within the initial zone three computer runs
- were conducted using OL&M aubmergcd discharge model and initial j
jet slopes (C1) of 0.10,.0.16.and 0.25. l'l l i i l Table 3 and Figure 6 cun.narice the variation in jet ' flow. l 1 velocity and dilution ratio corresponding to those three slopcc. 4 i As to be expected, the results indicated that a higher slope of l l boundary results in a higher jet flou and d.4lution ratio and a avcrege vclocity. Thc dif2crencca bet'.:cen the jet charac-j l teristics increase with increasing distance from the outfall. I l l Effects of the jet boundary slope within the zone of _ catab-j lished flow (C ) was evaluated by using three C2 values ( 0.15, 2 0.20, 0.30), while keeping slopc'C1 and length of the initial zonc f (S2) constant. j. Table 4 and Figure' 7 depict the variation of jet flow, velocity i and dilution ratio with jet path distance, for C1 = 0.16 S2'" 6.2 D and C2 = 0.15, 0.20 and 0.30. o is similar to Study results indicate that the effect of slope C2 that o# C i.e., a higher slope C2 results in a higher jet flow \\ and dilution ratio and a lower jet aclocity. All cc::puter runn report gd herein an? after v'cro conducted for watcr alack conditions. ~ Q uirk, Lawler F.f.h'atus h y Engin ee rs } .s t a .1
y_ I l 4, III-2 l. i ] (,... The effect of length of the jet initial zone (or zone of 4 establishment) is shown in Table 5. This table summarines i i j_ the influence of three initial none-lengths (s!0 Do, 6.2 C f e, i 1 j and 8.0 Do).on jet flow, velocity and dilution ratio. Jet j boundary slopes were kept constant during these runs. C1 e and C u lues of 0.16 and 0.20 were used for this purpose.- 2 75 0 to be expected, the above presented results of the sensi-j tivity runs indicate tha t the slopes, C1 and C2 of the jet Imundaries significantly affect the jet growth charact.c;istics. -1 i j The jet characteristics are less sensitive to changes in r l length of the initial zone. i l The main objective of this sensitivity analysis, however, in i i j (3, - to determine variation of dilution rat _tos ana subscqucatly j U j ~ teraperature rises at controlling jet critical rections, -j average i describedtin Reference 1, i.e., upper boundary, interference, lower boundary or centerline controls. 1 l These jet controls have been defined, in Reference 1, as locations where the jet boundary interferes with boundaries of rocciving water l body (such as water surface, river bottom, etc.) or with the 1 adjacent jet boundary. The control resulting in the lowest value of dilution ratio, i.e., the highest temperature rise, has been defined as the critical control. In all sensitivity runs, reported in this study and including rec-tangular jet runs conducted for the revised outfall design, the t.b critical' control was the locat. ion wh' re the upper boundary reaches e Q uirk.Lawler &*.Nintunky l'nginners www,,. -, .--=+r .-,,,.,w,,--r,..n m.,-, _,, y a,,-.-------- y.y,,, p,,w m W w t.9 -y,, w9 p,r y.g ,f g-y
i .III-3 l p i i the water surface. !( s. r 1 Tabic 6 siunmerines dilution ratios and average temperature rices 4 I j at the critical controlu for jetc with different. boundary slopes l 4 and di f forent lengths of the initial 2cne. Although the variable l coefficients spanned large interviils, the variation in dilution t f ratio and average temperature rise was_small. The difference [ j betwcon the highest and lowest calculated tentperature rises was 4 i about 1 F. ~ .f According to the literature cur cey presented in Item I, the 1 uncertaintics in determination of the coefficients C1, C2 and j i S could be expressed by smaller intervals of these coefficients l 2 r than ti.ono used for the above reported sensitivity analyses. () It is concluded, thc;cforc, that thaca uncertaintice have an insignificant effect as f ar as the average jet. temperature rise j at the critical control is concerned. This value is the major-l objeccive of the submerged discharge mode' anelysis. i 4 D. pectangular Jet Sennitivity Analycis and Comparison with 1;quivalent Circular Jets i 1 i I i The length of the initial zone of cubmerged jets used in the QL&M l model han been taken as 5.3 times the initial width of the jet. This relationship has given resu ts similar to those used for i 1 j circular jets. OL&M bad used the jet initial width rather than height for deter-r j, mination of the initial zone of a rectangular jet. This assumption }(- I j in conservative, i.e., yields lower dilution ratios, t.- Q u i rk,1,aw l e r P Ma t u u h r I:n gi n c ors. L
i III-d 6 i i I (r We agree with the AEC's statement and question No. 3 l in the "ay 2, 1972, letter that the jet height instead of l 1 I width is more aan]icabic for determination of the initial I i zone of the Indian Point jets. Table 7 summarizes and comparcs computed jet flow, velocity and dilution ratio for two jets having initial zone lengths deter-i mined using 5.3 widths (5. 3 Wo) and 5.3 beigh ts (S.3 Ho).rcspec-l tively. In both cases, boundary slopes were kept the samt, i.e., i ] C1 = 0.15, C2 = 0.25. The differences between eniculated va3ues of study variables are given in Table 7. i i' Table 8 compares dilution ration and average temperature rises at the critical control of the tuo rectangular jets with threc l i g% carcul'.r jet: ha"ing f.ifferent initial co-o h"gthc. The table } g, l indicates that the dilution ration at the critical controls are I higher for rectangular jets (3.4 and 3.8) than those for circular t jets (2.8, 2.6 and 2.9) and that the dilution ratio at ' he cri-t i tical control of the rectangular jet is higher if the jet initial l zone length is calculated using the jet initial height instead i j of width. e i i i 4 1 (.. m l Qu irk,I.a wler G"Ma tus k y ling i ne e rs ii
. _._ _ _. _ _.. _.. _ _ _._. _._ _ _ _ _ _ _... _ _ _ ~ _ l l 1 IV. Rela tionshio Detween Entrainment Coefficient and Slopes 1. !( of Jet Doundaries l w.e The concept of the ent2 ainment cocflicient, as defined in the following expression, has been introduced by several l authors i l i 00 - = 2nbau ds i in which: - (1) l 1 i 4 l Q jet flow = 5 t distance measured along ihe jet conterline' c = s l b characteristic length = u = characteristic velocity (usually centerline j velocity) - t 1/7
- * -haracterictic lengt.h, b, ic determined ucing jet vclocity
, %) 1 j profiles. Appro::imation of jet velocity profiles by a Gaussian-i function: 2 r a ~2 b f u (r) = ue c 1, 4 ... ( 2) yields a characteristic length determined by the following equation: 1 4 Q2b (2a) R = = ...(3) 1 ( in which, R is assumed to be nominal radius of the jet. (m i 3 t i i 1-j. Quirk,1.nwler t7.Thitunky Engineers te l 1 L n Q. -~"~~*-#
IV-2 s Some of the inves tigators* prefel use of slopes of jet boundaries rather than entrainnent coef ficie:3ts because there slopes are directly observa:>] e during physical <:/noriments and also because the concept of entrainment coefficient requires predeterraination of the type of velocity distribution. Fu r th err'o r o, the type of velocity dist.ribution within the initial zone is not stable and may not be represented by a Gaussian function. The definition of the entrainment a coef ficient given in Equrttu n 1 is nol clear in this region. If the entrainment coefficient e is to be used in this region j then Equal. ion 1 should be changed to: i do' 2r nar,O i ds (* t ...(4) 8 4 in which: i I radius of the jet j 1 R = i initial ^)ct velocity fu -- u = const. throughout u = c a g i the initial region) i l The entrainment coefficients corresponding to the cti.1" jets may be determined by using computer printoat of variables for finite segments of a jet. This is described below. i I l Use of finite jet segments within the flow catablishment zone l requires the following modification to Eq11ation 4. [ I r i \\. For cxrple, Ibrc:mvich dccs not introduce thc cntrainmnt cocificient at n11. Quin k, Lawinr S'.Tln tusky 1:ngincors t .-.~...-v ,,y-,,- m_m.,- ,--m m--___,,..__.. _.,,_._._._-_--__.-.+,m.-_ ...-.e
IV-3 l AO ) 2nR*u AS o ...(5) in which: R* average radius in a given segment = Similarly, for the zone of established ' low, Equation 1 becomes:
- ho
~ a = 2nb*u*AS i c l l ...(G) } i I in which: b* average characteristic length in.a given n segment ym J m, V2 g.
- s. J u%
average concerline velocity in the segment. = I Variation in the centerline velocity uithin a segment (10 ft. segments have been used in this study) is assumed to be lincar. Because the velocity distribution is assumed to follow a l l-Gaussian function, it can be sho*- 'that the relationship between l the centerline velocity and cross-sectional velocity is given by: l l l u = 3.27E l c l l Calculation of entrainment coefficients within the initial zone of a circular jet are shown in Tabic 9 for boundary slopes C = 0.10, 0.16 and 0.25. The table indicates that the values of the entrainment coefficient decrease with increasing distance (, - from the discharge port and that the entrainment coefficients QttirN I.awler Cf.\\httunky Engincors i
1 IV-4 8 l i i i } (. generally are higher for a higher slope-of jet houndary. 4 Calculation of entrainment coefficierts within the zone of
- [
I catablished flow for a circular jet (C1= 0.16, C2 " 0.20, j i 2= 6.2 D ) is shown in Table 10. The table shows the l S g t I variation in the entrainment coefficient along the path of thc 1 i jet. i i t l Figure 8 depicts va':iation in the entraim:'ent coefficient l along the path of a circular jet (C = 0.10, C = 0.16, 2 t r S2= 6.2 D ). The values of the entrainment coefficient shown j in this figure correnpond to QL C's b.;ic coefficients, C), C and S All of theco entrainment coefficient values 2 2 M) are ' lower than the value of 0. 082 report ed in the literaturo [ { '"' as representing an entrainment coefficient for buoyant jets. i J Therefore, the OLEII model given somewhat more conservative i results than those corresponding to reported values of entrain-ment coefficients. i 1 i i I i J t l l 1 i i 2 f* O -l l-4 i. t i j Q u i rk,I.awle r &'.\\la t us h y 1:ng i nee rs 4-i
- h. = = = - - -. -
V-1 6 V. Distribution of Temperature RiseI: over Jet ( Cron:-nectional 1-rea Most mathematical models of submerged jets do not determint. thn crocc-sectional area distribution of velocity and tempera-- ture. Thece distributions are approxirrated by como functions which more or less fit observed data. Many authors have used a Gaurcian function to simtilate velocity distribution and some of them have assumed similarity between I velocity and temperature distributions. Ilowever, many observaticas indicato quite different chapes of l these two distributions as can be seen for examp3e, on three graphs rcproduced in Figure 9 from The Theory of Turbulent b Jets, by G.W. Abrarovich. Thonc throo finuros indicate m that the observed temperature distribution values follow a cosine, rather than a Gaussian, function. Such a cocine function (choun on these figures) can have a form similcr to:* i AT Y v 0.2 + 0.8 cos = hT Y 4 n c ...(7)
- The equation for calculation of maximum surfr.c? tcmporature risc ucca in Reference 1 is:
(LT.'V9 - 3.0)cos *# h;'* = 3.0 + D/2 ,,, (3 oy This function represents an c=pirical approach. OLsn mathematical modcl was applied to the Tovatt Unit #4 and Indian Point Eydraulic r:odel suh=crgcd dis-charges to calculato the average temperature riscs at the critical controls. Equation 10 was dcrivcd in an attcm;>t ta c5};ctt computcd averaya tcmporaturc riscs over jet corss-sectional arca to the surfacc tc=perature distributions obsctved at Lovett Unit #4 and on the Indian ' Point hydraulic model. g, Quirh I.awler L'.\\latush y Engineers v.-
~ _ _ _ _. 4 j V-2 a .!(' in which, v i e I AT = temperature rino above the a:rhient temperature a* } the diLtance Y from the jet conterlire i i l AT = maximrn temporiture rise at given section (at the c i center)ine) I Y = distance bctueen given point and centerline of jet 1 i Y = distance at which the velocity in ecpal to 0.5 V c u i i i ? If we assume th:.t the boundary of the jet is located at 7 =2Ye .i (this in a reasonable accumption conaidering that the velocity at this location is about 0.05 V max,, then the cverage temp-t I' crature over the jet cross-occtional area can be expreused as a l i fraction of ATn in the following manner: l l For a Circular Jet: f l ("h 5 %E 2 y b' Jj {0.2 + 0.8 con (Y".g)J dY*dG ~ avn =oo 7H 2H 2 m l [ [ Y* dy*dO oo i a Where Y* y i i Yc l i 1 2n 2 ava = J- [0.2 + 0.8 cos (Y* 4)) d!*do f c AT ~ 4" oo t l AT avn _ _1_ (0. 2 x o n + 0. 7 4 4 x 2 % ) 0.572 = AT ~ 4" m From this equation we can express the maximum temperature rise as a function of jet cross-sectional average temperature risc in I i 1 the following equation: ] n = AT vg = 1.75 'f ... (8 ). AT n , avg I {s.- 0.572 i I l 1 l l I r/ J Quirl:,I awler TMatusky ):ngineers t t . ww - -, w e-a.-e w> n. ,a--e-~ y w ~ es nm wm-
- m-r r ~- -ws -
V-3 4 For a Pech noular Jet: (( If we asnwe similarity between the temperaturo distributions l in both directions, then the dimensionless croca-sectional averar:e tomparature rise will be: 2 2 [ [ [0. 2 + 0. 9 con (Y *-f) cos (Z * )]Y*dY*d2* .evg = o o n 2 2 [ [ d[d'[ o u 1.11ere : Z*= Z V"c Z and Z are defined in a manner similar to Y and Y e c 2 2 ( Z *l) dY*dZ* RV.F. = 1 4 x 0.2 + 0.8 [ [ [cos (Y *I) cos %t T o o 4
- (,
.f IiR r l_ (4 :. 0.2 + 0.8 lh)=0.524 (,- ~m 4 I!aximum temperaturn risc can be expressed as a function of jet-average ten:perature rise as follows : l ATm " 'TUV9,= 1.91 ATayg ... (9 ) 0324 Applying equations 8 and 9 at the critical control occtions of Ulc study jeto, the maximum temperature rises corresponding to these sections are as indicated in the following tabulation: Description of Avg. Terap. Rice at Max. Temp. Rise !!ax. Tmp. Risc Jet. the Upper Boundary at the Upper at the Upper Cont.rol (3) Ecundary Control Boundary Control
- P (Eq. 8 r. 9)
- F:
Including Effect of Recirculation
- F i.
Circular C =0, M 1 f~ c2=0.20 5.30 9.3 10.3 (.. SyG.2Do Rectangular C g0.15 C =0.25 3.90 7.5 8.5 2 s24.5. 31To Q u i rk, La w l e r i ~'.\\ l a t u s ig-I:n g i n e e rs
V-4 Notes: 1. IIo.is initial' height of discharge slot. v 2. Average temperature rises were calculate.d uning plant temperature rise of 14.8*F. An additional 1*P was added '.o final renults, i c., munit um surface' temperature rises, to account for recir-culation. This is tantamount to adding 1*F X dilution ratio to the plant temperature rise. 3. The values of average temperature rises taken from Table S. 4. The upper boundary control is tho' critical control. Once the upper boundary reaches the surface, entrain;aent ' of ambient water into the jet is limited to the lcwcr boundary and partially to the sides of the jet and the velocity and temperature distribution are distorted. A mathematical determination of the jet behavior af ter jet interference with the surface is beyond the procer.t knowledge of art. (>; ~ kw The maximinn temperature rise at the upper boundary control (scction a-a in the schematic diagram below) shown in the tabulation above occurs at point A. 8 %7 4 o N /\\ / y .\\ ./ y-ec x opeG 90/ g gr dor /FO ' \\ >.~ q ww: gPC f ( The temperature of uator particles at location "A" will be L decreased as thos: particles move upward to the surface :(Location 1 Q u irk,I nwler 5/.\\la t us ky l'ngi nee rs
i V-5 i r 1 "B") by additional dilution of the jet water by arbiont water. Q~ ~ l Decause of uncertainties in determination of such additional e i dilution, the raaximum-temperatura rino at the upper boundary control is used, in this ntudy, an a concervative actir. ate of the rauximura surf ace ter.:i>crature rise. i ] 'ihere fo re, the maximuu surface temperature rise at Indian Point 4 during rated operation of Units 61 and [2 is estimated to be i I approximately U.S F(cce the tabulation above - rectangular jet). Thi.c :aaximum r:urf ace temperatire rice agreen very ucll with tbc i previouuly reported resultn.IO) 1 s h I 1 l is 1 i f e 9 w I l Quirk. I.nwle r ~7 M a t usk y 1:ugin ee rs ~.
h VI. Interference Between Adjacent Jets" .m j As shown on Figure 1, full flow operation of Units 1 & 2 will require 7 of the 12 subracrged slots. The outfall two unit I operation. arrangement depicted in Figure 1 provides a spacing of 42 feet betueen the centerlinea of the jets. 'the interference between jets will occur, wherever the jet widthe reach 42 ft. In all computer rrns made for the I sensitivity analycos, the interference between jets occured at a. greater distance from the diacharge than that where the i l upper boundary reached the surface. Because the ma::imum temperature rise at the upper' boundary control uns shown to he the rnaximum surface temperature rise, the interference control value not controlling in'G out of 7 jets (jets no. j 1, 3, 5, 7, 9 and 11 of Figure 1). More interference-uill occur between the last two jets (no. 11 & 12), since these two slots may be employed. In this case, 4 interference between these jets may occur at a distance of about 20 feet from the discharge slots, where the dilution ratio ^ is about 2.1 and the average temperature rise is 7.5'F. For this case, rquation 9 gives a maximur temperature rise of 14.3 P. i However, use of this temperature as the maximum surface temperature 4 { rise is extremely conservative and somewhat unrealistic. This j temperature occurs at a depth of 11.7 ft. and the additional path of water particles before they reach the surface is about 50 ft. The' additional entrained water, along the 50 foot path t. [ of the jet, will result in additional temperature rise reduction. Quirk,I.awler&.Tintusla l'ngincors t u.1 av*e=.e.g.. 4 ,e y5-m e-- w a w y y,-w.w-g- -m-y- -y-- e -y -c 4 g wv
e
-w +-yew = w
4 GD .J + w s O l W a m-.+ U 'T h. 7. r F.! to t cc
- )
JU --) il, l, Ls I~ l O ') ~) t j llI. CC = 9 \\i b L U) 'i, I (.9 D' [' 4 ii ;' ]-
- f. /i l'
O 0{\\ 1 >: R
- i
?. h, :- c' S I '_j ii 3 w <- c: a -o <> w I 't i. I {\\] L. j >_ a J': C e &lr~ 3 U [3 l O () / O I\\ ..[...- I;./ [f L d l ^
- l n
l_ l 'l;y -',{l=- O 0,-. (f) L_, ^^l _s d
- t..
[f e (.'- . '.), y i \\- s ]i l
- X...
t + I .h ., i [ ou ~.. tw! c1 %? () 'a / ~ ( [ti b N k )~~ CJ b /,' I g 85 O u -- O. 3, t:s <p u 3 u. s i N'1 mg l- -l o gj i; os dj g) C J 7_ .L__ a w s +t--- ,__/-~ j u __ _-d -,,Q' D n,5 7-i om e 9+ c .: e a a c C c.- 6 i.-, .. o ~ ~) O. Q e-.-- L
- n;
- ~
L. CJ L:J y) lh O :.* s O ~7 EH u (4 ; s, ) e e D !\\ ,Y ,_j u s t: c () O LL La. } __. N LU W ~ o A n \\l I O I...______. G3 i CS. t,-
! I . _.i
- 4. _J.._:
SURFACF_ N,Il)T!I AT IirWINiI POINT ...,L 1...+ ^_'. _a, r l ..r q. 'I ..a.,. ,_1- ..,l ; 7. t rit Ef E* r nIeme n r ~rry F Lh. it 01. uiotiiAnCg' Sd' U. t.t itd,10 1,.. '. a i I 1 = .i.. y w...._.. .a 9 .E .* TF.MPF.RATUiRE PsISES Ii4 EA"CEcS OF ll*F F l ~ ..u;. J i.a
- ..... :=.i... :_. !. '..
s n ; !g j a.. r.. I . _: p ' D -RATED CAPACITY OPERATION OF INDIAN' 9' Um TS 182 AND LOVETT UNITS 1-5 ,..._u._,.._. ,a;.._, r.. - _ l L 'g. i t' PT, .f. .l .4 .) - 1 C; - < a t .j j g. .c -. m.. - -.. -.q. jjj t. q... ;.._,..._.,___.:_.__...._..:. _u d --- t--- p r r l _i-. fPlant Temp. Rinc, P U .; q..,.@. ( r ; r_ -, _.7 ~ 10 12 14 16 .t B 20 22 24 26 28 30 . :ll 1 l-... 100 l + ,t .] p - :t m ~ -[
- f
.. a.~,. -. _.. - e i. 70 'C O O ...k ". ! ' O ' ~ 'J .. -l. : S. .. t. ;,..; ; . 3._. ml ~.;,'. -- -- - - 9 0 gc .g a co . j.: ~m - - -~f :. f.
- 7. - - iri..
O '-4 !~ ' ~ * .l/ [ -~ l ..p y g 6 . -) .__u --[Q. 3; _. .....--....[ M U_..JZ.f 8 Aj ./_. L ".b f.I..;.1 7.__L1; el 5- - l l- .!~..'. _ ) ,p ,g -f, } S o- - ' - f
- ~ h f '
L2f ~ ' o*- 5 ,e t i.
- 4.. n}
i .4 e 'n .2-- ~, m. -d . t f o o !- O -- + 2.a -. i R [. h-3 j:,.i ...Jl?d. . 5 0' : j M i zi: -j Ji ~F:"~'~"]-'-'- T d~~~.i~ pi. .rj ~' i _.' 1 - '_...l.i._.-._..._- ., !. _.. I...l.'. ,l.
- 8."'h.JI
- il ' ~ ~- .- j 'd A ' 6 0 ~ 't I O~ i- [m3 j., *p ,. _. ] y , --. j.... p,-t 4 4 0_x 6 if uo .i i 5 - 4 0,1:. %. .L; t.
- 1.. j._e'...1 j
1, . i.
- Flcw,cfG..
- D '.d t.
-] y a g;. 50 -- _20,000 -. z h..!- t, 1.. O:.- o.. ~. TS P 7--p--4=. pc -. E
- % y.cf
'.<- 1 2. (-).. g - P.-
- ..i 1
n4 .c,y ' i, 9 ,~~i,---a J, v.. x,3 0.:,>c... ~~~'T~~! 7; .O rj ~ Tl O -- 1 ~- p ,o o t, + .; J.. -- t-- k; ' -- --- F d; .;..a.a..,10 ---x---- 3.d 20,800 628,000 i Ed. 2 ' L S ' 2. 0 ' '.; I i 1 .. 2 ; r-t ' " 8
- an
_., r3 : 30 ' -.. ~ ' - t i .1 - i..i,j 7 e
- =.==..d - :t cr-- -
s u > UL + A .l: rg y d:. gI __] u -- /- ---.---.-----------m-------,----' / 23,000 l~ {_ l. 5 ' 1 -I ' .c20'i" - r .H _, - o-L2 ,..r., a p i 1. e
- . i..,_
f [., . _d W f..:. . i JI J' i...I ,4" 3 ', l' ._2 0.. .._._,4_._y... t.. l. r- .~# J & ~ I -] 7 }-- }
- i. ;
l. ; k ; _.,.. 3 'g-- r' L.:?....
- ..,.:;.. L -
.'. _ ~.. _z:.: a..,::.2a.;- 10 ml - t.. _ o- -j .t t u. 71 i l, ; :'. } ~ f. i , f.10 -l- { .l .*,b I i l i i a a i _ g,;;. 7 _.. .a , j a +: i s J. + ,1 e 3 i_ ,y p 7 7, 7, ,,, -,y _ p -- ., 7 p ;)_ i .}
- 11. : o..
_-F oc.a_ ;_J__. F.I L 5A _6. 7 _B . 9 10 11 i 12.-i 13-'.14 . -15 :. t r =...-..- _a a-.. ;.a !. _.c.. -.. =.. :. J.. : au= '~: L.. s - '__ 5_i.i ' !. I ' I J.. Maximum Surface Temp. Rice, P . - i f i =... h i_... r. 7. yl...._ _ _ - j.. ' ~j1 I -I I '. I
- 1...' _ ; -_.}..'.
. L... _..
- t: a'
.'i ; ..j. ._f..j' j: 1.;.l . -.{ c 2 ;. _. l.
- l J.'_2 L n, n 4
i i t i !~ g S...._ d.._ : )...-.f..:._L.-:..:...h.._:I.. 2_. i.. _L _../ _'. ..L.S - v r - i F t i l .q.. ..i. v 2 o j -- K=90 nTU/ft day P
.-.J-_.7_J-.--..._1.._..
+ i)ilu t.i cn Ra tio=l: ? t ,. D- - 6,.ed , b' .p.. .....,.._ y _,.. r _.-[- . g' -. - " s 4 g. ._1_. I I L , L ;._i __. i L- _J
- P ITjUR{lj i l l l t i i l l II w ( I s or l I I .r I I a >- 1 O i . -. _..Q' *.C F co liJ _l 'p D l ..} l } g.. g
- c i
i I 4 \\l\\ y i o I-o O l \\. l U) t i \\' o to 10 .J l
- t.,
- i i
l-I \\_,.._...__ g l o o [ 5 b) .a~..~ L g O t..! u h \\ l S a. (' g, ;,,,t ._J ID I o <I E4 ( ; O -j %e io 3 c;. g, f.t l c ts.1 O s.s \\0 8 gEO r m I (.s.. J - to g _ 9M < _ ;-: O . ; 10 .._ _ o _ w D t.. ! [3 (D CC s.. l_J. l (E O. [ o c: ~)
- 7 O {.] O id 4
O-O l-- <9 s-2 O lI m L:J > l.L [d. g p r o.. ~ al er-
- {
r > - l, I _, g t,i o
- o.._.
c a <~ c'. (% N y ]# r -..I e c,. c -\\~ O i C: E= o I (h D C-* n J O m W r. o 47 s* S y O t~ t~ t. t. t~ t. t. g, p
- J o ' 2 @ l S.Liis'n U0:1 SUD.LVU3di'J3.L 3)!V.LIJ i 3DV 83 AV
I N IT p LA L1
- ]
(C M H O ( D D z a N-1- 'S L.:! i <: s <t m,
- 3..x ON (C
t3 8 10 Id f( c3 OG f~r (t' n
- )
I) .J :.: D gn. to O _a .t t' l- ,; to to la O a,,_ .q.
- - l-M E 1
to o IU O < tes O til I US O
- ?
f1 i ( y ', r@r .g m o o
- n. o e e o.
ou 1 i._ a @ o (O ) l~ td to c- / 10 0 e ~ ~ o i / y / a-(g ,/ o D / ,a F. 15.1 <K m b ,'s' D' D f (' . I Id l-P e. n q (3, Q . /, Z Z b [i7 ] Id < l' <t l-h-8 hY ,a z g, Ld - d n h I-~ $ o i (, '6 til 2 IC CU z \\ 3 O I \\ A (~C <'~ n ~; O LU n' tg \\ O CD > 's I" e (r s x sq N 2 H ar-s ~ \\ 4 F5 g N L m @m m s 's CD LU J .c% N I s .s. D E b w O' 's }' Id _ _s 9 .\\ it- )\\ \\ l I y l f t I! l O O O. O O O O O O O On O f~ O 10 V f() N el o ' 3 U n.t.V U 3 d1* G.L
i [ri l l I;! n.".OCZm t 1 J. O ) (c / S1 (u'fC 7 fvj. W. f ~~- h, ~ l{--3 i'{ .I W OL F y D E H C I c L Ny BAT n S f"o E D c F l 4-l O A c W TO U: E iL N F 4 O EF OZ i d i H HD C SE E LS -. _f/ i TI l S A K B: l J TB ON y_ L .N SA }g. v, O ET 'n .T I S TWE WN I O OE LF ? LM I FO h FH F K-S E FE D Oi FI i L OL 0 .h B EZ c, - ~ EA 1 NT 0 = OS Z x, ZE o, w [,. ~_ nc g,r u, _ _ _ /,m v ~ c. Jt;} J. ? O s E
f-i FIGURE 6 1 3 ~ . t t.. F; w-.. .m. .i-W.. __. l.,2 l- _ _.l. ..,i +. _m m. w 3 .g. ,n f - EFFEC,T -OFZO:E-OF : ESTELISHEUT-JETdOUNMRW SLOP, Er(CrF i (- 4 i. 1 i 4 4 __._ E.. 4', 1 .-._ C LJEt D.H.UTI0d..... ._LO.J._._.._ a,__.=--. L _nM-_r. .i t -..l. s.. 4 ] .g...i }. t , ti. i .l... 9..~_ . )'. .l ,i_. .. 4 .[ _. ~.... - .,.-.3_.--. ....--...~,...:-..a: .t.4 l .f.,, i l. L 1. v. n. _a a.. _. _ _, l. _-..._.,i. .,.- ] __.j'. . j. t
- 2...
..g._ -(. ..i. ..q. 7 1 } ,,,, p. d. -. 4-.--4 .l. .g. _4.__~.--. 7 }. .,i;,y. ....t.._. ..... - - +. -. .o, .. [. , - g,.f,,r... l. 4. ..1.. _ _ a.. _ - - _..-__.t,g .., [ ). ;... y ,, g. _._.m. 4 .7,*, g,, jj [h I,/ I',,, * - 3 " i. _. O / 3 C # k-'i. -- "l'
- - - + '~ i. g J
i t.. . A e I ..u .~---a., J,e, #.,.c,_#_..'.-.. x. / ~n .--.,.--../<, .n...2.- - +s. A. a p. l. m. _3 4
- +-
..n
- ~. r,.,.
-1. ~.4 . l .t- ,3 ; t g - e,. ~ : r i >._.._4,.__.._ .2.. i 4. l . g, - g. +y y m .r. 3 e -- u_ 9 f ' D._U TAUC E. _F RO._D I S CH A RG E /..F T !._,. h. ' " __l : ~ _.. _ _ 1 ?'i. i l-i r {l; e. . j ..g ,1 L,, 1 _.' -. ] ; ' - . n. - L - .a}-_ ~. :a- -..
- 1...
EsL 4 y i j .- {. 1 ._ ) :.. 3. w - - . u. f. .ii. y . 1.j ..t l1 > ,4. ...'s L. . }, t 1.! ...s : /. i L. .l. . {.~,~.9..;,..j.~~'."~~~""=~~ ', ' ", ' ', ' g_~~._ ~ ~ ~ ~ ' ' ' ' ~ t T****~~~ ,4
- i-
-.l.. m
- i.,j - *, A ;
, r,1;. t" rl:
- t 7+
I 6 f 7;. l j i s._m.y _ p_ f.,;w. .__.. u..c p_-. _.. w.p m. c _,.. 1+_ ,s r., - -._y . i. .! l-. .l.- j . q-. --.. ] _ _. p. /..,..t : _ _ p. -_ u.. . u - m. _ ; u.. f . ;.4. l._j.., ..o;. t
- i
.i 1; 2 l. .3.. [ ,m. ,,..g.-. .,1; ., ; 4 i 2. }! v.,. .i; 1. t, 4 p 1 p.;
- p o
s
- r
!og Q j+..- J._. m l ,m o'i u . _ m. i,.._-_p_. i .1-I 't. .....I. / 6.j;P' } i - (/..., /. .: 1 .m y, t .a n;
- .a
-.;r a_i _._ '__._ ..}. t2-t
- u o
J.-.,. . */ ~,, -. . g-f--g- .t, 21 . ; t ... _a.-. l .._. l. ; 4 h . r. ~ - t e, -w t
- }-
. + + __ m o' _. y ' _ -_ 7,,.._ p.,. C, p._Jj.. .. I. . i.- 4.- r - o
- .f.
,... / i - u ~. ~ . f_.. ...}Q 2 L:,: I I . 7 w s _ _7_.. y _ _. __. ,/.. . i ;, /,4 - -.-- I.. ... f :. . r L4
- j,<,
u e
- 7.,
R o g.. . l. y w
- z
2-_ ____.p___ _p_ 4 7__ __, jO ' *7 ' . ~,^,., ,'l.'~..'"...' .to j j %2 ,o,/... , g; a ~ .,.....-p,.. ; ,4 . ~p.'.. --{pp. ./. i - p.._ /,.._.~j g / -_.-2. J.' .4 n '- 2 s .f - q. F r f..I a v x u.- p. .L.. 4. f t#4 .e 4 . 2 .,p-e. ../, m v.. - -/..., _ _.. .-a g l._ ..//' a .t ,.c e .,f. *^
- .L.
i v ~ ~ 7 '~ .;gg j g _.. m2 .m y. 2. e,:. .-.i. ]
- 4. ;. '
p y _.._. .2 u. a L o.
- t..
u... __ :
- r;
. c... _..a... aca a .]. us. a. u.- l jr - - ! _..tJ_ _ _ _ I L-1 A . l.. t'o. - t n, 4 1 a. .5 ....e .I. --l! DI ST/WCE' FROM DI SCHAPGE c FT. i,. M,.
- l
e_ 4 L E t__._.- a I- --t 5, t' F f,. e. 'u 4.. ).. ( .g. l. .e . g '. .g- ..I,. 6 I .I.,- -E e; l i 4- -v-v -www,,,..ve,-,..w,.-..--s v-w... ..... m .a ue .-,-.-..---._.._,-...,.4 -..---. m.
k FIGURE 7 2 l a r . q.__ -.J_.. f. c. .,n .4. l
- 4.
i ~- ~. ..,._-.-[ . h.. m .3_ a .,,_1_,. .a l( ~ 71 .__.%EFFEcl 0FESTiaiSHED FLOU JET DCZMRY W OPE (Cp_ "..,. ' - ~ .r0N -JET DILUT10a R/J10 idDR0'd +M. g. j .{ E . g. -].. . g 3< ). .,.. _.. -._.f, _l. . 9, a. _ ___ L_, 3 _m. c. .(. y ..j. .~ f. . f . l. ijt 1 ) _. - -...j l.. -. ~ .{. _. _.. g... f .L
- l
~ % r. . L...-..._-. u. j2 y 1 ---. }. . t.. 6 }- h 3 6 g. ..j. .[-.. _. _. _. p._. a . J. j . j. 1 .. _. _ _ _[.. _... y .g. . ;. f..}. s L ..l. ..,.i.. l. {! . l.-. ;.., ..? p.. _ _ _ i.' l . -._-- _ q ; _.. . _. _ _ _ _qm .-__a__. .~ ~ '9-9 g-,. -l- . l ..j; <f. a4. .i l .J J .Ig j 4 , =. j. -~. ..-.-_.m.. _ g.. ._l.... l j'... ' f.,q 6 .-t*, + i i. . ~,. . {. 1. I Y/. g j I. . 9 _.. _i.____ p._.. .y. i 4 _. _. _. Om.- ,f.g__.. .a .f y,. + s 8 ,.7 . ;.t l..: n.. . l .. j.. {/..% /. - (. ..__i_--._._.~ p f. ,p j; f. 4 4 3, i / g e p t-i f - {_...__....;. l,,. _a...
- - /,,
i. t g7 .l-a 1 ..; g y-4- ..yf 7 l 3 7 1. c .{. . 3 { j. .j e .l. .. - - - s L,. ;. I, */ _ -. L. __,- __ _ . Q .l.. A_._. I 4 1- .2._--. - _ _ _ Q. 9.y + ;.
- i..
/ - i... 2- ... - s.., : m. . p.. ' - y. l -/,((....4.. .!1 h. + . j. q. 4 / -/,. _ _.i.y,_.i. _ ._._t. _.: - .l
- >. _g...
a [ y /_f r_* ~.,i_ _a._,. i-4 - ~, r. _. U. *. P 1.. I ". l T I /,I,_ 7 ". n E. ' 3 . : u. - i - .o f f .l,. .... e ,o /ef - -- j.. 4 . i ..+ . +; j s.. ' 4 ' Q~ "~#,,' ,4; i 5.. ... }*'.".*4'"~~^*' ^~^^'j'**^'~}' ' ' * ^ ~ j j [jl,? j ' l. ,n,, 1 _.'.".'s.s, - l { ..1,iw. [ 'I fg ..4 T, g*4 ,e - _~ -l., }.t ..-l.,- ' {j ,,f ... -.- }.. .i. o-- i t a. j t ,. + }. jf,t 2. i 1. s ,o. ~ C"u 4 ib d v.1ED ' Ro'n' - ~~~~ p i < a,, _.. _ _ (_.' ' j. ___.r p;u W W l l' Z C"* "u I W-td a 1 0,. l -..l sd_ m
- j.,.
a 'j T *
- i. i [ -
7 t 4 l- .._._[.._..__ - f._ [ .} c 2 2 _.. a t J 7 t; ._',3.. +
- I+-
+ 3 t + u o ..f. [yy}. I u d. t. * -,_-4
- ~ [
__ L., _ _ _..,, 'i u .i i.._ - .i. y g .]. s,. 1, l. c o .. \\( . l' ), .._.a. i .I y, n ..F. ... j.. _ q,rl C)__ . r. _ _ y. j _ _. - _. --_a _ _.u._._-_. _.. [ j/. . [. 4 y g 6._ ...I[,1 .f g..,. . ja e .l' 1 .l., I- .j. f 1_, / .. A I .h l
- h*w j
.) .___a....... -.- 9, - _ a.... _,.y..,, e. 3 9.,g_,_ -. a. g. p t_ . 2._, , n; .g. a,,. . ( y/ ,,.rf. ;f. y,s. .. D.,. .,, /n. 3-o x e /, { c E-. p, ) /'_, .,, <.j p D_. _ Jg... __ _.l __ } 4 j J e.g 1. q $,[, /y, y. e ,)/ :./' '-.,s /. - &s - p ,t. Y t -..-- v, r..- ..g. . : + .g .s ,,y...._.I.- .{.* g - - -...c.$., g. f h f. ~ q t 44 ,1-... ? i. l g .. u. ' +.. -. - ~. 4 g 0 f u :L -. y.p 5 i 1 _.[.. .i .J. a + _... _ p j g.J, -.. _ 4 . p. ./,.g 1 -.. .a...,_ g. ....i _ 7.... }' D* '/f ."D '.' C ' JC. 50 : f*D ' /O '60 'S0 . ]: l' j ( i !, \\ z - t - __._L.zi _ J--DI.ST ANCE -F P.OM : D I SC, H ARG. EJ --. .~$ .t.4 s a-3 } l, .1. .j. . j .1- .. I' l f :- ,l. .l. . t.
- i. _ __ J _ __1_... !
....%-._3 J. La
- g
.J j -r { w 4 i i
- /
a b i J ~.. -m
1 i FIGURE 8 i 1 i f d .. i-7.-.- .t .4-.. .ii.' .y. 'I 4.;l
- .G.
+1 ' a3 I b' !.;. 4 ,.i .+,J .' 9.1.h y'. - L4
- a. t l-i
.q.-. .A a.4 4 _.4 ' 7. A ".c., . 3 3 1-. . + -.. Li. .+ r. j ..1 l CALCULATED VAPIATIOT IN Ei:TRAI!EENT COEFFICIENT. p t f I'D ~CEW" I.1 "fliPUIDATA 0[ O!I' CITULAR~J ~ I P R F WlDelT" DC l ... ~.. ..O M hdDEb.I j .x _M. e. M 2 .1. 9-y. .,l...'... .{ l. j. g_. .,. L J ' .i i 4 i- ..7. .2., y ).q a , o. .a : gt.._, _.s. e u. g,.- .. ~. .s. ... -. J -.. -.o.. .m, . L. ~... = l. g C_OE..F F I C I E.NT_..OF ; J ET= c 1. =. 0:.1 _ a
- p.. t.
L._d ~ + c,m,.. o 2 0. .q .y _ J _;._ _.!-.4.} .,I.
- o..n. 6. 9Do!
.i : -....2 .e n. l...; .,1 -. t. -m i I
- j. !
.+-:J~...---..., w-f .' -a. .n. _. LL.... j . i.. .., - 'i.a s _. n.
- a. ;..;,..
i
- a 1
w a, ...a r 3- .,j j .l_...t., ,.i,. 1 p... .,.l- + J q... . -,e 7...
- 7...
2 ,f. t..-.7 , 7 _ i. A;. l J.. t_. 1.4 s, .a.. -4o '.3 j t. - p.. i..;. [ ,,d.
- . 4 i j
i t.. ;- d', 3, 264
- 6F y
Lg ... Q .t!. . 7 t 2 j y-: ,. -. ~ .{p.9 J _t, 3; +i . -; j i .1 4 4 .. [ z, t, 1 7.- <i. '4 ..L p,4 i A e C _.. i 3 / .2 L. ./ o ._.._(4,, .g. L-....w_- . _.h_ ,.} h,_. i .,,-1 t ...-.t. + t - t.; l< l.
- y e
'N.'.}'.4 '. 4, l 1.: s .a._ f t.... q . 12 .U ..4... .s 3 A .~ { ;..
- a, o.;3-7.
j [L;
- 1.,
a -m v._.n. l s... 3 y,,- .{. 6 o 11 +
- 2. L y
- b. j.
." ~ * ' ' ~ _ -t. .. I-P J ; L-.... g' -~.(',i,- .t!{ .t -,. . ' F* t *
- +
lt ~ a -[.,. .p... r j p. 3 a y,a g. .j,. ;. 1 -4
- 1.,;.
,. ;. ; 7, t3+ { t3 .q .%., %, D. r t g -t : -, 3 5. .i_L1J-9../'._. .( 2 .I i s_ e J p;, .~,...,,. g. i.
- 7. f, J %/
Lt. i gi4. g. 1 4; n. y.. 3. i. . r. . i. i.. l .,.4 , +i-.._L_.,. --.j-.- .~ ( :._. ..a.
- si.
. u.. -.4 4 - u. f8. ..i. 4.4 .I-
- 4
-[ i *-
- 1. +n.,
.. F :l e. r,- .c +- f fQd ,m .7. 4-3 .~ 1.
- p. g y.
.j. m. . o. .g 1 ..a gg 4. 4 4
- m.,
.7 . o. e.
- p. 4
.g "% l.... -.. ~.. f. -- i +, I/ ,_a.., .L..*_L., .? ',c
- 4
.,u m u. 1 ..i. y 4: ...u....
- 1. u.
. i,a,. ..a 2 m. s.,. f. - o i. . i. E . VTPAi!S LT I.0f!: ZONE 2.(' SEGMEi!Il' ._ai,_ . -4 ... i,. I-
- 1 W
!,s, 11.!. i _6. i. ~ c_. J.
- m..
.. 3 9 3.,.. 2 l ~~ z. 1.-, 1. .,.6.. v. u ...' (y,. o ..,i i r.+-* L- + I - (- .. j' _ LL., L.f _ ~ _ _ _. _... - -.,., _ *...&.- .g 4 ' It u* t-4 .t 4, y (; ,., 3 e: gx t,. g, u m..t, .;.4.- e i. g,,g y 9 7 .x. a r.. l as. s- $.,..-......L i6.. -- /. .t...! .- s-. J. n$ . }',l p 5 f. -.7 '. .t g : .. 1 3q ._.4
- 1;
.7... ~. _, g i.. a..
- a.._
....._ m .,a_. .p y .. = m 3. .u g.a g4,..p .s n /. l.. 4
- 3 m.
y g ... a 1.g
- 7. +q. q...
y .a 4.. - g ; .1... .i- _u. u_ g _ . Id.ITIAL y0NE:! + ZONE. L E TABLISHED. FLOW lT~n W 4"L,m 17 m._ F: 5 .i. i. E {.I d t i . [.: .3 _.l. .. m u -. f. _ c ._g f., i,,- ..m 4 .6 3.; g. ~.. 1 .i .
- O
!G EO ^D D. ; i:n...'.- .. g._. -10 .rO 'GO.70.6G 7 --- i.; L : l:. '.,," ' ' L__. al. '._.J L1 ,: DISTANCE. FRO,3 DISCHARGE-f1EASURED M '~~k
- i 4
t ~ ~ ' ~ ~ '9i ..l' 'ALONG THE JET CEK 'LINE, F T,' - . l2. M'l '^ i. k.."I~- J I -lt j-I- -~~ W. -[- . {._]_.-. )- -l j - ~[ 9.' i . - - - _, ~.--,-,.,,,,. - _ _ _,..-. _,_. n,n,...,-.._ ,,,--,n..n ,~ --. -.,
-...,a 4 p't %, 4' \\ Y 9 / 0hh $4 M.Q D' 3 O 4 a oC .2 IT ? 1 /' 0 % ".: t. du Q4 y, Ei pt ./ .l r o s
- ct Z 4[/p.
I'*1
- 4 % is 42 bM
.l j 84 o 'U 66-6 ". kL. f ,3 n unnuQ.,FY. /l. l. s t l! E :- / i e a a e u 9 El 44 11 N > f* [ l/' y, w>: oo / O li *54 o .t; ko.<ol1! /l ci
- j -
O g s u i l u
- c. c 5
/ / $z E' / }< q O O Sgho -5 H C / H H /T/ pk M%"C , 7 h' 5 p 8 / / g n k >s/ m-o R s+ % - H k". p,7 /< l oMoS ho N D ] O* h0 y y n $* If 4 - B h g / @S M (f) j -f A H-M - ~[~ M " l a -~ .., o S p S;>it.o- ~.c 4 QU tC L g<u-y* Q 4 f H // h D-
- 3*.t$
0 j i p,'.I 'd g 4 ~ tO*- -,/ l [8g '"y py U.V* /. u m s-d / y o l *. ' o o d dd n-H u- ,39 s o.e i W~ f I .ch i4;. s, y d w qRj ~ 1 t:M
- 1l?
f f ~m M o n -{ C E.E m >4 y u gg D El (-4 e f n> u o []p h {
- O.El ew aq p
e skk jD6 y . b.' 1-t f,'4'4 U! .Hg,{. \\:Q r u U p gd Id r-
- f'*'
=. a .v E4 t/) . a.. ? f-o e l M a N m C: y h$[- !, e P.. og t O m Q l g; M d a o A 04 g t, g .i O g& 46'S 4: f '. go q ., a s, .,,,,,,,,t,,,h_ yjy 3 ~ 3,___A_3 p Q A. g i , 3 y" y
- ,g dy f
4 o 14> K j g;;g bU / .d ., g _,,l_ o. E4 h I / M 4 d b \\ /" h O 2 of D / H iY7 .O 4 8* d* B"4 w \\ 's f X N m M f, u M g s t Oh, D Q O N 3 L< t 1/ - f y w o. u A O 9- / o c G M '% / I g / I 'J i m s 9 fi er; c, 1 i y'/ onu \\s ~S m cO 1 9 l N E tn s 4 f s / s: 1. c: O "O 4: j M.b h O I n Oj O o .,a u r- / O u) o (* 4,0 } O d C3 U) gt C* ~
- 7' O
Ibh % hf0 g-l; 6 i. l / t I / . d, 4J O Y/ I O f* r} } to l et g h ~La I4 *b i an l 14 ~8 tt).b 't1 tn ng E! D-
- (
*O
- - L i
.t. %jt c4 n.,1 g* a es g ;* C) rq e-f *M 1 c (a 4 - O VJ D ha ( 0
- ri h il d 'M -
W4,Q O Ov i 1 i f, c) N 0 i L) .t l O.. 4 40 'h' U2 j O O O f* +<j q St F. d 3,d 4) I I ,Q t-4 44 v 44 V { 1 ~ i 4; 3 .,7 x t 4. I j
p! [!l t ; 8
- [
.i nv 2 8 1 80 0 8 4 2 8 5 s 30 2 6 1 7 6 2 t 12 1 6 1 1 i-n U S P 2 1 2 E T 33 '4 3 1 0 3 2 O 0 5 4 0 5 E t 75 M i 81 8 5 A n R U A P E G RA H 1 4 C 0 S 57 0 8 4 8 8 3 I t 64 8 2 1 6 3 2 D i 2 2 1 n L U A 1 M Mv R E E L H B T A T 2 a 1 e e E r r S W u u T M t t m m c m m c I p p u p p u i y g g r g g r N l t F t F t T i s s SF s s SF N c d d d d l l n n I a n n a a e l, O p a a e l P a s s s ae s s s ae s C u u i fr u u i fr e N o o R tu o o R tu s A d h h ut h h ut s .e n t t e Oa n t t e Oa o I D t o r r o r r l u te u te i N ay i I Ra t r w t ap t w w t ap t d a o o a m a o o a m n @/ r l l r ee r l l r ee a U e F F e sT e F F e sT l tT p p i p p i p uB O r r m Re O r r m Re pB e e e k e e e k n t r t t T ea r t t T ea i u, e a a rt e a a rt O* m W W r un t W W r un o t m e tI n e tI n la u g e s a i g e s a r ac S n c n re W n c n re g e c: i i e cv i i e ev n i t i l l v d. o~ o l l v d po i O-e re a o r mb a o r n mb m m tt c o e o eA c o e o eA u a cs i C S C T i C S C T s c. ea o o s A v a lE y T T P..E 4 !i
- !I
- {t i
-l J' 4i:1]::1i; i 1
- i
TABLE 2 ' / 1 i V i INDIAU PnIriT llNITS 1 P, 2 EXPOSURE TIME CALCULATIONS
- Ansumotions-
- 1. MdW Condition = EL 2.2' l
..j
- 2. Head 0 Discharge Port = 3.5' l
j
- 3. Neglect Ilead Loss Gradient Up to the Canal (Dalanc ed by Flow From Aux. Pumps) i
- 4. Organica Is Discharged at Extreme' Southern Port (Low Flow Conditions) or in Mid-Section of the Outf all -(Normal Flow Conditions)
- l
-i
- 5. Uait 2 Low Flow = 3 Pumps 0 60% Flow f
Unit 1 Low Flow = 60% of 140,000 gpm 'i e 1 l Single Unit Two Unit j l .Oneration-Operation t j. h3j Unit Exposure Exposure i, Flow CondiH on No. Fire,npm t wo, ri n. Flow,onm t.i me, mi n.' i' i Nornal 1 280,000 39 1,120,000 9.5 Nor~a' 2 840,000 14 1,120,000 11-Low (winter) 1 84,000 140 336,000 35 Low (winter) 2 252,000 54 336,000 40 i i l I (i h
- (~
'* Computed by Con Edison Personnel l r.- } } I J p--- _..__,.
) i 9 5 e 1 a e l i ( + %%s 3 4 4 ) 1&
- C
&u o a-v. e t. e4 42 e e 1 ] [ c' e4 e4 N f'1 M h I v3 .s sd 4,2 a O. O. O O. t-1 i e e c (4 e E O 40 4 f'1 fa .a. e-t f d g 4 e i
- 4 O
C V Vi O O. f4 6 f 't e e e 4, C .O g ' CO C ', a r-o n o 4 sO n o o a v vi e4 1 ',o o. v. M. M. N. a 4 o j v.3 \\ a .4 i fa n h. ~ r . W l11 ( bI C. 3 ,c 3 c 5 "-- N (.- II. .4 o,, o. t. O. O. t'1
- t y
g p o o [. [y gJ r" O O O V M
- ~-
O. 3 t. .-4 t1 (4 __e a g 4 H..-. _J, U" 'r, 5 --e gt. ,a = rs _j $9 o t cr: ^ '* 74 R H 9, s..' "4 n. i t-o e = - i; 'o c3 n n n,, F-- o w e _4 M
- 4. I f*
OJ U v l, g. p,,, e u tu txJ (1_ { (L O, ] p u. .-.V' o,_. .- J "Z
- 0 O.
e.s en. (O. O. Qu ga s. e4 e4 e4 r1 f4 i y n 4 4 O e-4 N e 4.4 O. O. a.
- f.
b. e O e, h', O O l'
- O V
M M r4 lI r4 0 O s 1 .i r4 (0 I O. V. tri m e e b (3 f ta (4 t-r3 'N'
- 4.
O t-N f-6 O. O M V 6ft 48 5 O I n 64 4h C I 4'.E' %j h O n.. 4 9 5 O O O O O I; b* g g.t 4 e3 p e-4 N ri V 3# 4a U O.O 4 - o 44 Tj F2 4 f i t'^~ t k-4 5.' 4 1 --en.e, .__--,...g ,,n.-_ .n.,,
,%.~. ....-m... ~. ..=..m ~.-_..- J. - i 4 1 {. t = t e-s i 4 / ' i e t J 6. e I C o s e 1 s p !,j e. V. N. O. ' m. C3 p 2 3 -4 t1 n-v n-n o ~p g j u Q f. i o 4 N . n. p o .e g. e up n. o. en. n. n. u c4 -e n N es et e4 e4 }' - (4 0 i, o > t, i - o. o. n. a. e4 w t y
- '.n.n, 4
o n N e N v v 4. N to t3 t% O We y t, O re en to ce n i H e4. e4 e4 N c4 I N I OJ - LL ICo O v4.c ~ O. m n o e. e. N. n. e. f* c) 1 c4 o L> 1 o i W W ss -4 C4 "l" C j J a ~ O V.> td ) g IL A cra I I O r;c o ~3 H sv N N U"S d" l C/) C4 19 O < w u g; n. ce. v. H. t. e. c) t y =7 3 o r IL -4** c1 re rt u H e4 g,,- h O '5 f' 4 f4 tt C '.) M U O 'm ~ i ' gg [ h LD "j .J ,,' \\ W / o u 5 y, 1 c (G 11
- E.
- 4 n.
- v. -
m. j .o a e-g 4 v4 m C, O .ta t-o ,t : o% t H g ..a
- a. v o
N v o to -4 N H H e4 u t,o C H 4 e4 H H e4 ed it LL J O LL Z h T c la p-r .o o ae o i G 'd a ;j t'. 4 o. Qj m n. t l td 7
- 3 0
9,, a LA. O t. ~' sd f* n n n v 4 r L L. Z g LM C M ] 49 r A t. x H s CU C g$
- bor n.
o. n. o. m. t e: 4 u 4J O 5 oy t4 44 -e n te N N N 4 I 44 0 t"h *> n,4 11 A 0 e4 41 k O,s 4 8 M O ** 4 8.; O. O. N. O. 4%. v. t y [g e4 f. L' ,n v. ,m, r o n v n t> 4 4 e4 t-n 4 O e4 m v o t-i e4 H e4 e4 e-i e4 11 .i C 4J Q g, 4 3 &O s {'4p' .O - .O. t 4 er( p i 4' O O O O 4J y m m o .4 .d,4 W en e o () v C t) O g3 *W<e v4 p y d ta i-f (,O, u e. ma.Ap., n-.mn.--w.--> ~ ~ ~, ~ ,- - - - -- - -~ ~ - - - --~
(a. >-..--u-_nw >+. .->.a r--..a~.-w- . - ~.. ~ ~ ~ -s- ~~.u.a a-n.e--. ,~.w.- -a-.n an. ,nu,a .-e,r.-~~nna. n .O? ~ I' e 44. .{ 4 + 1 j [ t ' -\\./ i C d M;O n. n. t. H. e. 4 n. n. 4 O. e-4 H e4 N N n M V - V e4 e4. [ Q O . Q h j o. u -t'.. O. O. n. O. in. i O. 8%. e4 v4 8 to u ll-O C an w n N t4 te e4 e4 3 .u "* i' s a n o 88 > -[ l 01 l 1' f4. - to. W O, O. to. m. O. tw i F 'e ,o W w N n n n e4 e4 (4 o v i 4 t-V o o ei c) .v o o t-Q f) en t= Q CS e4 F1 O t= O U .s e4 e4 e4 e4 e4 f l i i O i lal F t: hh M,0j o. e. m. fi. i. N. b. n. C). V. M *l [ m
- s,
<4 e4 et (4 N n n 9 9 n ._J o du r 4 - a f e--4 $~ O & O U .-4 J 4 L% *- 44 h e-a O .O. O. 0 O. a to. t* t c r-M C3 V s u" .Q ,o f; O O an sr n N e4 N e4 e4 9 e v4 m 7 < (4 e GO L3 yj if. r-4 N }g p C2 t~ q q o. o.. co. OO ci. e. O. m. t. e. c. x O m .w E e f* n n n O O re t-to I I"~ l-O E D .b %* g r3 ,,,J 4 rw v O. o (4 e4 ee e4 e4 eg .:. g g r.g Q n an t- - su O to o o to O t r4 e4 e4 e4 s4 44 ] y gg h 4 a r r tL M O O M $O .J U Q p og O. O. n. to. V. O. tt.) O. LL -el 4 p] H r;
- 1 c4 e4 e4 N
N n n 4 - en et t Q go,, 1 LL LaJ 'O LL
- ~J f;
p f ELJ U i 2-" O O O .ta n [ U O. p. p O. O. N. tw W r4 (D. .O
- f we O.
F* o [p gg o O an v n et N e4 e1 e4 5 e4 H ga N o O c,3 e 46 tr> O O 'l s is* O. (4.- n. O. n. O. e4 O. 64 e4 O at 44 M e4 {3 f3 (4 M M O 4A 03 O V En t; e4. 'U r-
- e o
b-r* t-f- cd to O (# if) 3, M tn (- CD O f4 af en cJ O u .et e4 e4 e4 e4 ft p i e a r: 4 ouo e %4 .O D J}' th J: = O O O O O O O O O O 64 E i et 0 1 4j G4 be 3e p es c3 I p C,s; ti et te n v n o tw c2 On 44 "'O 'g: si o u & o:. 8 -4 64 m o i Q Q 44 =4 e4 4' D d 8) G t 2 f f l %J ' y .I I' t/ 1 =~. .%-y
- 9" Wee m......
.g e w,w .---S'*Wm D' T , qygI
' TABLE 6 v VARIATIO!l IN DILUTION RATIO ?.:10 AVERAG5TEi'PERATURERISEATTHE CRITICAL CONTROL Dictance of critical lateral control frca Distance Dilution Averago E dircharge of critical Ratio at Torp. IU se I Jct Coefficient port along ( ontrol from Critical at Critical the jet % Diccharge Control-Control Sc Xc 1 2 8 2 ft ft 'P 0.15 55.0 54.9 2.6 5.70 0.10 0.20 0.2 D 53.0 52.9 2.6 5.70 o 0.30 50.5 250.5 2.7 5.50 0.15 43.0 e43.0 2.0' 5.30 t 0.16 0.20 6.2 D 43.0 e43.0 2.8 5.30 o 0.30 43.0 243.0 2.0 5.33 V. / 0.25 0.30 0.2 D 30.0 "30.0 3.1 4,73 g 4.0 D 40.5 e40.5 2.9 5.10 o 0.16 0.20 6.2 Do 43.0 e43.0 2.8 5.30 8.0 Do '43.0 =43.0 2.8 5.30 NOTES: 1. The critical control Vas upper boundary control for all conducted runs. 2. Average tccperaturc riscs varc calculated using plant temperature rise of 14.B*F. 4 D a
i;i:!
- t ll-i!
!r[- !l1l! I i..
- y
~ n o o 2 i 0 1 9 7 4 5 i t t ul a 1 1 2 2 3 4 O i D o H y x t 0 3 4 4 0 1 i 3 n cq on 0 6 4 3 2 2 5 l f 1 e V D S 2 N T S A E J w S o 0 2 0 8 9 3 l E R c 8 6 3 1 7 6 f f A I 7 7 0 9 8 7 c T L t 3 5 0 0 3 6 I U c 1 1 1 C G J O ? i L A E T V C r. E c o i , R i 0 5 5 3 0 9 7 t t S u 1 1 2 2 2 3 )_ E M 0 l m T L 0 M i T L .,5 l B F A s F e T T O o s E W y a J S t c 3 6 7 0 6 O x i 0 h c F I c O T 3 of 0 6 4 3 3 2 t l 1 o A 5 e ;, b t ' t N R V e a O n j j i S t! 2 f f I 0 8 5 o o R I w 2 h h 0 2 0 7 6 7 A T c 0 t t P U l c 8 6 0 3 5 5 d p F f M L 7 7 5 3 0 7 = i e O I t c w d 3 5 7 9 1 2 C D c 1 1 y J C l l a a , i i 5 t t c i i 1 n n n g
- n 0
i i o r l = = = f at t t 0 0 0 0 0 0 C W H, 3 0 e e c j o f 1 2 3 4 5 n l a e s t h e s t e t i h o D t ~ ,1 1 ) i4
- j)if lI!!iII;li l!
!l
m j. .e T/ ELE 8 C0FPARISON OF DlLUTION RATICS AND AVERAGE TEiPEoATURE RlSES AT THE CRITICAL CONTROLS CORRESPONDI F TO RECTANEULAR AND CIRCULAR JETS, FOR DIFFERENT LENGTHS OF THE INITIAL ZONE c / Dict a nce Lateral Dilution Average alon: the Dictance ratio Tenp. Risc C jet L (Sc) X at critical (2 -T =15. S
- F )
e Conditions i t ft centrol "F Rectangular 0.15 0.25 5.3 W 53. 5 251.4 3.4 4.35 o Rectangular 0.15 0.25 5.3 Ho 42.5 e41.5 3.8 3.93 Circular 0.16 0.20 4.0 L 40.5 eJ.C.5 2.9 .5.10 Circular 0.16 0.20 6.2 D 43.0 e43.0 2.8 5.30 o Circular 0.16 0.20 8.0 Do 4~.0 e43.0 2.8 5.30 Z:0,TES: 1. Critical control was uppcr boundaru control for all reportcd jets. 2. it':crage tu.'~'raturc riscs wcre cc:cciatcd =cinq plant tenpcraturc ricc of 15.8'T which includos a re.circulaticn offcct of 1*F.
p i F { + TABLE 9 + CAf_CllLATilt CF ZN E OF FLO'.? ESTATLISI:;'DIT i \\" i DlTCAlic'E!!i 00EFFICIE!;T r j s i a) Slope of boundary C1 = 0.10 [ 1 S LS O LO Uc D k* irt) (ft) (cfr) (cf 4 sf r.)- (.* t ) (ft) t O 378.0 6.9 [ lo c.9. 5 to 3.rc e.can r ft. 9 '[ 10 4*7.5' 97.9 _10_ 4.95 0.C314 10
- 0 575.4 10.9
} 10 96.7 10-5.95 ' O.0259 30 072.1 12.9 r ~~ 10 ~~ ss.7 10 6.ts 0.0220 l 40 767.A 14.9 E a b) Slope of bouMny c1 = 0.16 -f I j s LS O L2 Uc D R* p y i (ft)_ (ft) (cfr) (c f r.) (Ter) ift) (ft) E ) C 37c.0 6.9 l 10 1M.1 lb _4.01 0.C553 la 542.1 M i j i 10 _1 _61.7 10 5.f 5 0.04/0 [ L .s 3 1 2L 7 A.h 13.3 5 10 160.1 m 7.#% 0.A112 30 E63.9 Ir.$ -f 30 159.1 'O 9.05 0.0200 40 1023.0 10.7 [ l i t 4 ( c) Slope of boundary C 2.25 a y i E s Is LQ L2 tte D K+ a _ cft) (cfs) ( f p e.) (ft) (f t) ( (ft) (ft) i 1 i O 370.0 (.9 I 10 200.9 10 4.7
- 0. (M 10 639.9 10.1 10 257.7 10 7.2 0.0570 20 096.6 13.3 5
10 255.0 10 9.7 0.0420 30 4152.4 16.5 10 255.1 lo 12.2 0.0332 40 1207.5 19.7 4 5 1 i 4,.m ik 1 ii 1 1 4
- .-ce_,_.
_ew-._,,
- + - -
-~.-e
l ,3 + t :..l e 9 r TABLE 10 CALCULATION OF Zli!E OF ESTABLISuED FLON Et;TRAINPitlT COEFFICIEf!T ? S AS Q 6Q U U* Uc* .R R* b* (ft) (ft) (cfs) (cfc) (fpc) (fpc) (fcc) (ft) (ft) (f t) 60 1410.9 2.4 13.75 10 201.8 2.25 7.3G 34.75 10.42 0.0418 70 101?.7 2.1 15.75 10 204.7 1.95 6.38 16.75 11.15 0.0433 80 1817.4 1.8 17.75 10 209.2 1.75 5.72 18.75 13.2C 0.0440 90 2026.6 1.7 19.75 10 215.5 1.GC 5.23 20.75 14.68 0.0445 100 2242.1 1.5 2].75 I -**ps. <a-.,e gim g
_. ~ Appendix.C , General Comments on Dissolved Oxygen QLM's measurements of dissolved oxygen in the vicinity of the Lovett Power Plant during summer in 1969 and 1970 and in the vicinity of Bowline Point during summer 1970 indicate that the concentrations are above majority of observed discolved o> 5.0 mg/l (see attached table). QLM analyzed the data and procedu.res of dissolved oxygen (D. 3.) measurement by the Automatic Environmental System at Indian Point. This analysis indicated that the D. O. measure-ment systems from the intake and discharge were not calibrated at the same time, and the calibration was made approximately once a month. This is probably the rcason for 3=rne differences be-tween the intake and discharge readings of D. O. concentr_ cions. QLM made careful simultaneous measurements of the intake and disc:targe dissolved oxygen ccncontrations at Indian Point Unit #1 in December 1971.. The tests and analytical determina-tions of D. O. were made in accordance with the most recent edi-tion of Standard Methods for the Examination of Water and' Waste Water. Water temperatures were measured using precision thermo-meters certified by the National Bureau of Stand $rds. v.-
-.---~N--. 6, -_ ~.,.,. -.,,_ --During the survey, ^ Unit No.' l was operating at rated capacity and the cooling water flow was 204,000
- gpm, i.e.,
thrott. Led to about 95% design flow and average cooling. water. temperature rise was 16.4 F. The observed average intake concentration of D.O. was 10.48 mg/l and corresponding discharge concentration was 10.3 mg/1. This indicated average loss'of D.O. of 0.18 mg/l'in the' Unit #1 cooling system. These mea-surements and QLM's mathematical model for D.O. were used for prediction of the dissolved oxygen loss in the Indian Point Unit No. 1 & 2 cool.tng system. The rtsults of calculations indicate that the loss of oxygen in the system increases with increasing intoke concentra-tion of D.O. while the intake temperature is hold con-stant. For example, during severe summer conditions, wh en ambient temperature is ~ 79"F, the loss ~of oxygen in the water cooling system would be as follows: Loss of D.O. Intake D.O. in the system 'S mg/l mg/l ~ 5. 0 ~~~^ 0. 0 5 6.0 0.13 ._. - --. -7. 0 -- -
- - 0. 2 1 -- - - -- - - - -
The response-of the river to such a " sink" of .__ _ dissolved oxygen was simulated by.a.. mathematical model. e.- em g
which included all major mechanisms affecting the river dissolved oxygen concentrations. Results of this model work were -reported in a document entitled, "Effect of Indian Point Plant on Hudson Riser Dissolved Oxygen." A copy of this report is attached. It was determined, for example, that during summer conditions, with the river 4 temperature of 79 F and D.O. concentration of 6.5 mg/1, the loss of dissolved oxygen in the Indian Point Unit
- 1 & 2 system would be 0.17 mg/1.
This loss of oxygen would decrease the river D.O. at Indian Point by about 0.02 mg/1. If the Hudson River concentration is less than 6.5 mg/1, the loss in the system will be less than 0.17 mg/l and decrease of the river D.O. would bc lower than 0.02 mg/1. Such an effect of the plant on D.O. is practically undetectable, using accepted prace-dures for D.O. measurements in finwing streams and can be neglected. Besides the loss of D.O. in t'..e plant water cool,. ing system, the heat rejected to the river can affect the river concentrations cf D.O. The analysis presented in QLM report entitled "Effect cl Indian Point Cooling Water Discharge on Hudson River Temperature Distribution, January 1969" indicate that the river D.O. concentration for the heated condition can be expected to be approxi-mately 0.3 mg/l lower than that for the unheated condi-e. tion. l
More detailed discussion of the dissolved oxygen effects of plant operation a. e included in testimony on this subject presented by Dr. Lawler to the ASLB on January 11, 1972, (Tr. 4428-4430). ~* r:- e, A s. ,sw w e e d w-em. we%- t 4., - w h ee Wh**
- dw we e
- m-@+
m e A& Wwa o rem -,m-= ee-mM t.' a h
e - - - - - - - HUDSON RIVE 3 DISSOLVED OXYGEN CONCENTRATIONS OBSERVED BY__QUIfK, LAWLER AND MATUS E ENGINEEk_S, A) OBSERVATIONS AT' LOVETT DURING AUGUST AND SEPTEMBER 1969 INTERVAL OF DISSOLVED NUMBER PERCENT OF Ambient Temperature OXYGEN OF TOTAL 0 CONCENTRATION OBSERVATIONS OBSERVATIONS range: 77.5 c-68.3 F mq/1 4.0 0 0 4.0-5.0 0 0 Observed maxinum 9.1 mg/l 5.0-6.0 11 25.50 Observed minimum 5-1 ng,il 6.0-7.0 20 46.50 7.0 12 28.00 TOTAL 43 100.00 B) OBSERVATIONS AT LOVETT DURING AUGUST THROUGH SEPTEMBER 1970 INI'ERVAL OF ~ DISSOLVED NUMBER PERCENT OF OXYGEN OF TOTAL Ambient Temperature 79.0 F-71.0cy 0 CONCENTRATION OBSERVIsTIONS OBSERVATIONS range: mq/1 4.0 3 3.65 4.0-5.0 10 12.15 Observed maximum 7.7 mg/l 5.0-6.0 39 47.55 Observed minimum 3.3 mg/l 6.0-7.0 19 23.2C 7.0 11 13.45 TOTAL 82 100.00 C) OBSERVATIONS AT BOWLINE DURING JULY THROUGH SEPTEMBER 1970 . b, INTERVAL OF DISSOLVED NUMBER PERCENT OF OXYGEN OF TOTAL Ambient Temperature CONCENTRATION OBSERVATIONS OBSERVATIONS range: 80.0 F-69.50r mq/1 4.0 0 0 4.0-5.0 18 17.50 Observed maximum 6.6 mg/l 5.0-6.0 71 68.90 Observed minimum 4.3 mg/l ___ _ 6.0-7.0 _ 14 13.60 7.0 0 0 TOTAL 103 100.00 e.-
Appendix D CHLORINATION AT IhDIAN POINT A sodium hypochlorite system is provided at Indian Point Units 1 and 2 for the specific purpose of preventing the growth of fouling slimes on the inner surfaces of the condencer cooling water system. When sodium hypochlorite is dissolved in water, it dissociates to form sodium ions and hypcchlorite ions. The hypochlorite ions then react to form hypochlorous acid. The ratio of hypochlorous acid to hypochlori+e ion depends upon the pH of the solt tion. Since it'is hypochlorous acid that is +he principal disinfectant in chlorine solutions, the ef ficiency of disinfection will be substantially greater at low pH values where the hypochlorous acid content is greater. If ammonia is present, chloramines will be formed upon the addi-f tion of sodium hypochlorite to the water. The disinfecting properties of chloramines are only a few percent of that of hypochlorous acid. Increasing the araount of ammonia decreases the acid concentr$ tion, increases the pH and thus decreases the rate of kill. Chloramines are more persistent in the natural environment than hypochlorous acid but are not necessarily more toxic, f Chlorine is dissipated in water by reacting with reducing agents as well as with organic substances and organisms. This loss represents the " chlorine demand" of the water. Hypochlorous acid is also decomposed to exposure to daylight (ultra violet rays from the sun). t t.' I 1
s The Unit No. 1 condenser at Indian Point has four condenser sections. Chlorine as sodium hypochlorite, is introduced by manually starting a pump, injecting a sodium hypochlorite solution into the cooling water at a point between the travelling screens and the circulating pumps. It is first introduced into two sections of the condenser for one-half hour during the daylight hours. The ch?orine is then.similarly introduced into the remaining two sections for one-half hour, so that only one-half of the cooling water is chorinated at e - n time. Control of the amount of chlorine in-jected is achieved by adjustment of the hypochlorite pump stroke and observation of the tank level. The water from the chlorinated and un-chlorinated sections mix within seconds after leaving the condenser resulting in a 1:1 dilution. The chlorine residual dissipates quickly from exposure to daylight and the chlorine demand so that the discharge concencrations have usually been 0.1 ppo or less. This is based upon actual measurements taken during chlorinations since 1968. The overall time during which chlorine is added to the condenser is one hour. This procedure is repeated as required on alternate days for a maximum of 3 days each week. The Unit No. 2 condenser has six sections. The chlorination procedure will be similar to Unit No. 1. That is, one-half of the condenser (3 sections) will be chlorinated manually during the et
daylight hours for one-half hour, followed by ch.orination cf the other three sections for one-half hour. Since the procedurcs for chlorination on Unit No. 2 are similar to those used on Unit No. 1, the discharge concentrations during chlorination of Unit No. 2 should also be 0.1 ppm or less. Flow of sodium hypochlorite will be regulated by adjustment of flow control valves and ' observation of tank level. Chemical tests are performed on the condenser outlet as a basis of contrdluychlorination invels in the condenser sections. Tests are also. performed on the discharge canal to insure that compliance with the concentration limit of 0.5 ppm is maintained. Present plans call for chlorination of Unit No. 1 and Unit No. 2 condensers on alternate days so that chlorine would be introduced into the cooling waters of either Units No. 1 or No. 2 for a maximum of six days of the week for one hour each day. During full capacity operation the volumen of water treated with chlorine at a given time would be 140,000 GPM from Unit No. 1 and 420,000 GPM from Unit No. 2. The targets of the chlorine are the fouling organisms gro' ring on the inner surfaces of the condenser cooling system. An exposure time of one-half hour, three days per week has effectively controlled such growths at Indian Point Unit No. 1. In comparison with the target fouling organisms, the organisms passing through the condensers in the cooling water at the time of
i _4 chlcrination are exposed to full application concentration in the ec.ndensers for less than 15 seconds, and exposure to the decreasing i l concentrations in the cooling water discharge for an. additional few minutes, the exact concentration and time depending upon the effective 61]ution and dissipation rates. While it is expected t hat some of these non-target organisms in the cooling water are killed during the chlorination period, studies of the phytoplankton and zooplankton populations have no indicatdd that chlorination had n$ discernible effect on these populations in the river. Of the data in McKee and Wolf (1) on toxicity of free chlorine residual compiled from many muurces, 13 of 1G concentratione reported to be harmful exceeded 0.2 ppm. The five reports of concentrations less than 0.2 ppm that were harmful involved exposure tinies of 7 to 23 days. Three of those reports involved trout and salmon. McKee and Wolf report on thirteen additional observations where concentrations from 0.1 to 5.0 ppm caused no fish mortality. The reported exposure times for these observations ranged from 2 to 100 hours. Laboratory bioassay tests on fish found in the Hudson River near Indian Point by New York University resulted in 100% survival of small white perch and striped bass for three hours when exposed to 0.75 ppm and 0.60 ppm initial chlorine residuals that dissipated to undetectable e.- limits within one and one-half hours.
Although other references quoted in the USAEC Detailed Statement, dated April 13, }972 (Merkens (2), Zillich (3), Basch (4), Arthur and Eaton (5) ) indicated toxic effects at concentrations below C.l ppm, the exposure times encountered were in the order of 96 hours to 15 weeks. Times of exposure in the Hudson River at Indian Point till be 1 much lower. In addition the species quoted by the AEC are not found l in the Hudson River near Indian Point and moreover bioassay tests of the species at Indian Point resulted in no mortality. l Since chlorination practices have not and are not expected to j i cause any measureable damage to the environment, other programs for maintaining condenser cleanliness have not been investigated in detail. I Mechanical and thermal cleaning systems have been used at some locations ) i but only with limited succe'ss. In addition, the alternate systems will not prevent growth on the cooling water pipes and on the walls of the condenser water boxes, At the present time however, a program is underway to reduce further the frequency and duration of chlorination. The Indian Point Unit No. 1 condensers have not been chlorinated since January 11, 1972 Inspection of the condensers have been performed regularly to determine the ef fect of the reduction -in chlorination frequencies. Preliminary results show no appreciable growth of fouling slimes during this winter period. Indications are, therefore, that chlorina-tion frequencies can be reduced during the winter months. u
6-This program will continue throughout 1972 After completion - of this program, the minimum effective amount of hypochlorite per dose will be determined and new operating instructions will be issued for both Indian Point 1 and 2. s e P s.-
y_ Re ferences : (1) Water Quality Criteria. J.E. McKee and H.W. Wolf, Editors. The Resources Agency of California State Water Quality Control Board Publ. No. 3-A (2) Merkens, J. C., " Studies on the Toxicity of Chlorine and Chloramines to the Rainbow Trout, " J. Water Waste Treat. 7, 150-151 (1958) (3) Zillich, J. A., "A Discussion of the Toxicity.of Combined Chlorine to Lotic Fish Populations, ' Michigan Water Resc ces Commission Report, 13pp. (unpublished), 1970. (4)
- Basch, R.
E., "In-situ Investigations of Toxicity of Chlorinated Municipal Waste Water Treatment Plant Effluents to Rainbow Trout (Salmo gap dneri) and Fathead Minnows (Pimephales promelas), " Completed report Grant 38050G22 Environmental Protection Agency, National Water Quality Office, SGpp. (1971). (5) Arthur, J. W., anc*. daton, J. G., " Chloramine Toxicity to the Amphipod. Gammarus pseudolimneaus, and the Fathead Minnow, Pimephales promelas," Environmental Protection Agency, National Water Quality Laboratory, Duluth, Minn. (1971). E k ._}}