ML18017A260

From kanterella
Jump to navigation Jump to search
Forwards Response to NRC 910725 Request for Addl Info Re Proposed Amends 145 & 99 to Licenses NPF-14 & NPF-22, Respectively on Turbine Bldg Steam Tunnel Temp Isolation Setpoints
ML18017A260
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 11/04/1991
From: Keiser H
PENNSYLVANIA POWER & LIGHT CO.
To: Butler W
Office of Nuclear Reactor Regulation
References
PLA-3657, NUDOCS 9111150187
Download: ML18017A260 (359)


Text

ACCELERATED DIS UTION DEMONS TlON SYSTEM REGULATORY INFORMATION 'DISTRIBUTION SYSTEM (RIDS)

ACCESSION NBR: 9111150187 DOC. DATE: 91/11/04 NOTARIZED: NO DOCKET g FACIL:50-387 Susquehanna Steam Electric Station, Unit 1, Pennsylva 05000387 50-388 Susquehanna Steam Electric Station, Unit 2, Pennsylva 05000388 AUTH. NAME AUTHOR AFFILIATION KEISER,H.W. , Pennsylvania Power 6 Light Co.

RECIP.NAME RECIPIENT AFFILIATION BUTLER,W.R. Project Directorate I-2

SUBJECT:

Forwards response to NRC 910725 request for addi info re Proposed Amends 145 6 99 to Licenses NPF-14 & NPF-22, D respectively on turbine bldg steam tunnel temp isolation setpoints.

DISTRIBUTION CODE: AOOID TITLE: OR COPIES RECEIVED:LTR Submittal: General Distribution

$ ENCL g SIZE: 3+ CD NOTES:LPDR 1 cy Transcripts. 05000387 A .

LPDR 1 cy Transcripts. 05000388

~4 D RECIPIENT. COPIES RECIPIENT COPIES D ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD1-2 LA 1 1 PD1-2 PD 1 1 RALEIGH,J. 2 2 INTERNAL: ACRS 6 6 NRR/DET/ECMB 7D 1 1 NRR/DET/ESGB 1 1 NRR/DOEA/OTSB11 1 1 NRR/DST 8E2 1 1 NRR/DST/SELB 7E 1 1 NRR/DST/SICB8H7 1 1 NRR/DST/SRXB 8E 1 1 NUDOCS-ABSTRACT 1 1 OC/LFMB 1 0 OGC/HDS2 1 0 01 1 1 RES/DSIR/EIB 1 1 EXTERNAL: NRC PDR 1 1 NSIC 1 1 NOTES 2 2 R D

D D

NOTE TO ALL "RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE! CONTACT THE DOCUMENT CONTROL DESK, ROOM P 1-37 (EXT. 20079) TO ELIMINATEYOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!

TOTAL NUMBER OF COPIES REQUIRED: LTTR 26 ENCL 24

\

4I

ennsylvania Power & Light Company Two North Ninth Street ~Allentown, PA 18101-1179 ~ 215/774-5151 Harold W. Keiser Senior Vice President-Nuclear 215/774-4194 Nov 0 4 1~9>

Director of Nuclear Reactor Regulation Attention: Dr. W. R. Butler, Project Director Project Directorate I-2 Division of Reactor Projects U.S. Nuclear Regulatory Commission Washington, D.C. 20555 SUSQUEHANNA STEAM ELECTRIC STATION RESPONSE TO REQUEST FOR ADDITIONALINFORMATION ON PROPOSED AMENDMENTNOS. 145 TO LICENSE NO. NPF-14 AND 99 TO LICENSE NO. NPF-22:

REVISIONS TO THE TURBINE BUILDINGSTEAM TUNNEL TEMPERATURE ISOLATION SETPOINTS Docket Nos. 50-387 PLA-3 57 FIL R41-2 A17-2 and 50-388

Dear Dr. Butler:

This letter is in response to the NRC staff's request for additional information regarding our requested revisions to the Technical Specifications for Susquehanna SES related to the Turbine Building Steam tunnel temperature isolation setpoints. The following material provides specific responses to the staff questions contained in a letter dated July 25, 1991.

RE ET 1 For completeness, the submittal should make reference to any previous discussions with the staff pertaining to this matter and should include a,summary of the major points of discussion and any conclusions that were reached.

R~es pygmy On February 5, 1991, PP&L and NRC staff held a meeting in the NRC office in White Flint, Maryland to discuss issues related to PP&L steam leak detection system.

The following are excerpts which discuss the Turbine Building Steam Tunnel issues from PP&L's summary of that meeting:

i 9iiil50137 9iii04 OsaOO337 g)i r P APOCK PDR

f *w 4g

.N U

'f

~I 1 'i A

t C

I

'i

FILES R41-2, A17-2 PLA-3657 Dr. W. R. Butler The purpose of this meeting was to discuss PP&L actions taken to close the steam leak detection issue and to obtain NRC's preliminary concurrence on the action taken.

Copies of the slides used during the presentation are attached as Attachment A.

The detailed topics discussed were:

The change in the design basis leakage rate from 5 gpm to 25 gpm in the HPCI, RCIC, and RWCU areas. (Tech Spec change submitted)

2. The deletion of the ambient temperature isolation in the turbine building main steam tunnel.
3. The deletion of the ambient and delta temperature isolation in the RHR rooms.

(Tech Spec change submitted)

4. Not changing the allowable value in the Technical Specification for the Reactor Building main steam tunnel.

The NRC staff was not totally receptive to the PP&L proposed deletion of the ambient temperature isolation in the Turbine Building main steam tunnel. They were not convinced that relying on alarms and operator action for protection for small breaks was equivalent to an automatic isolation at a leakage rate less than the critical crack size. It was the staff's opinion that the deletion of the temperature isolation was a generic issue and would be treated as such. They also stated that if PP&L felt the isolation setpoint based on 25 gpm was too low to prevent inadvertent isolations, the NRC would consider raising the setpoint as long as we provided technical justification and the setpoint basis garger leakage rate) was below the critical crack size for the main steam line. PP&L said that we would get back to the staff in about 2 weeks with either additional justification for the deletion or tell them we would raise the setpoint and give them a ball park figure.

Approximately 2 weeks after the 2/5/91 meeting, PP&L and NRC staff held a telephone call at which time PP&L stated that they would not pursue the deletion of the ambient temperature isolation setpoint as originally proposed. Instead of the deletion, PP&L would pursue raising the existing setpoint which would correspond to a steam leak of greater than 25 gpm but less than 100 gpm. A leak rate of 100 gpm can be seen from FSAR Table 5.2-10 to be less than the leak rate associated with the onset of unstable pipe rupture. The NRC staff was receptive to this proposal and stated that they would review the technical specification change.

t

't I

e a~

P '5

FILES R41-2, A17-2 PLA-3657 Dr. W. R. Butler RE ET 2 It is not clear why the current margin of 30 degrees is not adequate. Explain.

In order to assess the adequacy and use of margins it is important to review the actual conditions found in the steam tunnel and logic used to establish the proposed settings.

The maximum operating temperature in the Turbine Building Main Steam Tunnel under non-accident summertime plant conditions can reach 150'F. The present trip setpoint is 177'F allowing a 27'F margin between the ambient and the Technical Specification trip setpoint. Because the as-installed setpoint is always provided with additional margin to avoid instrument drift beyond the allowable value, actual margin is further reduced to 24'F or less.

The CORI'AP thermal model assumes a uniform temperature throughout the main steam tunnel volume and calculates the rise in average temperature resulting from a leak. Actual data obtained during normal. operation shows.a,large temperature gradient, increasing from the reactor end to the turbine end of the tunnel. The HVAC air supply enters at the reactor end, is heated as it travels the length of the tunnel and is exhausted at the turbine end. A temperature gradient may also exist vertically in the tunnel. The leak detection temperature elements (TE's) are installed at the outlet end where they are consistently exposed to higher temperatures. The data show the temperature at the TE's to be 20'F to 25'F higher than the average temperature. The gradient is expected to remain the same or increase in the presence of a leak. The setpoint calculation accounts for a fixed 20'F gradient to be additive to the average temperature rise developed by the COITAP analysis.

In addition to requiring that the system provide early detection of a leak, the FSAR requires that the setpoints be high enough to preclude inadvertent main steam line isolation. Although no Main Steam Line isolations have occurred at SSES to date due to high Turbine Building ambient temperature, the high summertime temperatures which reduce actual margin to trip, and the potential sensitivity of the margin to HVAC or instrument system transients raise concern over the possibility of an unnecessary MSIV closure from full power.

Within the program to establish the design basis of steam leak detection, it was decided that a non-leak failure such as loss of ventilation or small (packing sized) leaks should not isolate the main steam line and cause a full power reactor scram. In order to meet this design requirement, a calculation was performed to determine the increase in temperature within the steam tunnel for loss of HVAC. Under worst case

4~

~ ~

Si

, l

FILES R41-2, A17-2 PLA-3657 Dr. W. R. Butler summer conditions we concluded that the temperature reaches 182'F after eight hours.

The temperature gradient within the steam tunnel was assumed to disappear with loss of air flow. The proposed trip setpoint of 197'F (based on a 65 gpm leak rate) provides sufficient margin above the 182'F temperature to prevent unnecessary main steam isolation.

RE ET Details of the turbine building steam tunnel temperature analysis must be provided for staff review. Detailed information related to the application of computer codes should also be provided unless the staff has previously reviewed and approved the code for the specific application in question. In any case, all assumptions used in the analysis should be identified and fully explained.

~R~gg~

PP&L's submittal to the NRC, PP&L letter PLA-3630,dated August 19, 1991 on Temperature Leak Detection RWCU/HPCI/RCIC contained the user's manual for the CORI'AP computer code and a copy. of a paper recently. published in Nuclear Technology which describes the methodology used in the CORI'AP program and presents some of the verification calculations which have been performed. The user's manual presents some of the calculations which were performed against problems that have exact analytical solutions. The referred paper presents the methodology along with calculations which have been benchmarked against calculations performed with the CONTEMPT computer program. In addition, the program and computation package have been independently reviewed by Gilbert Associates. PP&L also maintains a Quality Assurance file/package for the COTTAP computer code. The NRC is presently reviewing the COTTAP documentation. PP&L has not resubmitted this information with this request for additional information.

Attachment B contains a summary of the calculations which were performed for the Turbine Building main steam tunnel and upon which the revised temperature setpoints were based. Calculations were performed under a variety of conditions (for example, summer and winter initial conditions and loss of HVAC) and have been independently reviewed. The attachment presents a summary which includes the methodology and assumptions for each calculation along with the representative results which were used to calculate the revised setpoint.

'I

.4 X A

'J l 4 , 1

'4 V

FILES R41-2, A17-2 PLA-3657 Dr. W. R. Butler RE

~ET'he licensing basis assumes that leaks from the reactor coolant system (RCS) willbe isolated in a short period of time. The staff has generally accepted RCS leak rates of up to 25 gpm outside containment for satisfying this condition. For leak rates that exceed the 25 gpm.

threshold, a detailed analysis of the radiological consequences of a coolant leak outside primary containment must be completed and submitted for staff review.

b The analysis provided below in conjunction with supporting calculation FX-C-DAM-010 defines the radiological consequence of a 65 gpm leak outside primary containment for a period of 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> (FX-C-DAM-010 was previously submitted for Staff review in PP&L's letter PLA-3630 concerning response to NRC questions on RWCU/HPCI/RCIC technical specification setpoint changes).

For normal operating conditions, the radiation release limits are defined by 10CFR20:

The turbine building exhaust vent stacks are equipped with SPING (system particulate, iodine & noble gas) monitors. The monitors are set to alarm at a release rate'that corresponds to 10CFR20 limits.

The release rates of iodine and noble gases for a 65 gpm leak would exceed the rates corresponding to 10CFR20 limits, based on a conservative analysis (comparable to the FSAR) which assumes 100% of the activity reaches the vent stack. Realistically, a steam leak in the turbine building steam line tunnel will not produce any significant radiation release to the outside. The exhaust air from the tunnel is recirculated within the building which dilutes any iodine and noble gas releases and delays radioactivity from reaching the vent stack. In this process, the radioactivity would be detected and alarmed by area radiation monitors in the H&VEquipment Room or Feedwater Heater Area (RI-13720 & RI-13723) and eventually by the stack SPING monitors. Iffor any reason the release caused by a main steam line leak exceeds the 10CFR20-limits, it would be alarmed by SPING monitors and corrective action taken.

Calculation FX-C-DAM-010 analyzes the radiological effects of a steam leak using methodology and assumptions similar to the FSAR Chapter 15 steam line break (design basis) accident analysis. The calculation determines the off-site dose for 25 and 50 gpm water equivalent steam leaks. The results are evaluated against the steam line break accident consequences listed in FSAR Table 15.6-9 and the Standard Review Plan (SRP) acceptance criteria (10CFR100 limit).

E lq l'

r

~ Pf .

  • ~

'I

  • t ~

l'

FILES R41-2, A17-2 PLA-3657 Dr. W. R. Butler The dose for a 65 gpm leak for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> was linearly extrapolated from the results of FX-C-DAM-010. The 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> site boundary doses are linear with leak rate. The 65 gpm dose is simply 1.3 times the 50 gpm dose. The 30 day low population zone (LPZ) doses are also linear with leak rate. The analysis used a varying dispersion factor (X/Q) over the dose period, similar to that used for the FSAR accident analysis.

The radiological consequences of a 65 gpm leak fall well below the SRP acceptance criteria and below the dose for the steam line break accident analysis in the FSAR and SER (Table 15.6-9). A 65 gpm leak does not, therefore, increase the consequences of an accident as previously evaluated.

Dose Category Calculated Dose (Rem) FSAR Steam Line SRP Acceptance Break Dose (Rem) Criteria (Rem) 2 HR Site Boundary 4.91x101 3.07 Tllyfold 2 HR Site Boundary 2.48x10~ 2.98x104 Whole Body 30 Day Low Population 1.41x101 6.98x101 Zone Thyroid 30 Day Low Population 7.09x10~ 6.77x10~

Zone Whole Body RE ET The methodology used in establishing the temperature setpoints must be described in detail, including consideration for instrument errors. The description should discuss to what extent industry standards were used in establishing the temperature setpoints.

The setpoints are calculated using the method in PP&L Design Guide, "Instrumentation and Control Setpoint Calculation Methodology". This safety related setpoint process utilizes the General Electric methodology and was used by General Electric in the calculation of the Susquehanna SES Technical Specification values.

4

)p e4'-

Cf

FILES R41-2, A17-2 PLA-3657 Dr. W. R. Butler Generic setpoint calculations based upon the PP&L Design Guide were prepared to establish the process for calculation of isolation setpoints. An analytical limit was defined based upon the thermal response curves determined from COTTAP transient calculations. The Allowable Value, Trip Setpoint (Tech Spec Setpoint), and Process Setpoint (as-installed setpoint) were defined starting from the Analytic Limit. The margin between the Analytic Limit and the Allowable Value accounts for instrument and calibration inaccuracy. The margin between Allowable Value and Trip Setpoint accounts for instrument drift. Driftvalues are derived from manufacturer's specified drift accuracy or from historical plant data. The margin between Trip Setpoint and Process (as-installed) Setpoint, usually based on the drift value, provides additional assurance that actual setpoints would not drift above Technical Specification Allowable Values.

Five individual COTTAP thermal response curves were developed based on consecutively increasing leak rates to determine the average temperature in the turbine building main steam tunnel at the end of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The leaking fluid was assumed to be main steam at the pressure and temperature corresponding to full reactor power.

A separate CORI'AP calculation based on loss of main steam tunnel HVAC assuming no leak was also evaluated. The intent of this analysis was to establish that a non-leak failure such as loss of HVAC would not cause an unnecessary MSIV closure and full power reactor SCRAM.

The thermal response curves were calculated for winter conditions. The winter model produces lower final ambient temperatures because the initial winter ambient is less than that found with summer conditions and is therefore more conservative.

The CO'ITAP program utilizes a single node thermal model which produces a uniform temperature throughout the main steam tunnel volume and calculates the rise in average temperature resulting from a leak. Actual field data obtained during normal operation show a substantial temperature gradient, increasing from the reactor end to the turbine end of the tunnel. The HVAC air supply enters at the reactor end, is heated as it travels the length of the tunnel and is exhausted at the turbine end. The leak detection temperature elements (TEs) are installed at the tunnel outlet end, upstream of the HVAC exhaust ducts, where they are exposed to exhaust temperatures typically 20 to 25 degrees F higher than tunnel average temperature. Including the gradient in the setpoint calculation reflects the actual field condition, permits definition of a more realistic leakage rate as the basis for setpoint selection, and permits setpoint selection with sufficient margin for both the maximum summertime non leak temperature distribution, and the temperature rise resulting from loss of HVAC.

P

~P Ver t

'I ti,l

FILES ER41-2, A17-2 PLA-3657 Dr. W. R. Butler RE ET Current operating problems may be indicative of degraded air conditioning/ventilation performance. What assurance is there that this is not a contributing factor't

~Re gnse The high temperatures in the Turbine Building main steam tunnel are not indicative of degraded air conditioning/ventilation performance. The statement that the air conditioning/ventilation performance has not degraded is based on the fact that the range of the inlet air temperature has not changed (except for seasonal variations) since the plant began service in 1982.

As shown in Attachment C, the turbine building steam tunnel is a long, narrow, L-shaped room which is open at the end facing the turbine-generator. The HVAC supply duct is located at the Reactor Building end of the tunnel and the exhaust duct is located at the turbine-generator end. The design intent was that the cool air would travel down the length of the tunnel picking up heat along the way. However, the actual heat loads that exist in this area were greater than the original design considered. This condition resulted in an unacceptably, high temperature gradient along the length of the tunnel, sometimes as great as 90'F. The performance of the HVAC system was optimized to the extent possible to reduce this problem. The actions taken included air balancing, fan performance monitoring, chiller monitoring, and installation of free standing fans to provide better mixing.

The requested setpoint changes were not intended as a solution for the present heat load. The requested setpoint changes are required to provide sufficient margin above normal operating temperatures and to provide sufficient margin above expected HVAC system transients including loss of HVAC. During this type of transient, it would not be prudent to cause an MSIV isolation and a full power reactor scram.

~RE UE II'side from the automatic isolation function,.the ASME Code states certain requirements relative to degraded components and piping. How is compliance with the ASME Code assured when a crack develops that does not exceed the criteria for automatic isolation?

kr CI f

~ Iff

+W ~

f, fI' I

~I PI If

~ 'I

~ V4

FILES R41-2, A17-2 PLA-3657 Dr. W. R. Butler

~Re The Susquehanna SES ISI Manual which is based on ASME Section XI, defines the plant specific piping and component. inspection requirements and the frequency with.

which the ISI is performed. For the main steam line a leak test is performed every other outage to identify potential areas of pipe degradation. A surface and volumetric weld exam is also performed every ten years to identify potential weld defects. If a crack had developed the ISI procedures would provide a high degree of assurance that a flawed section would be identified prior to a crack developing with a leak rate and temperature below the automatic isolation trip setpoint.

If a leak were to be found,'the faulty pipe would be repaired in accordance with the ASME Section XI repair and replacement requirements. The repair willbe inspected in accordance with ASME Section XI. Prior to startup, an evaluation of the leaks effect on other area equipment will be conducted and appropriate action taken.

The steam leak detection system (ambient temperature) at Susquehanna SES is not required by the ASME Code, nor is it used to show compliance with the ASME Code; RE E T What effect would the increased temperature setpoint have on environmental qualification of Explain. 'quipment'l

~R~i~

The only design basis event which affects the environment in the Turbine Building main steam tunnel is a HELB. Since the thermocouples used for steam leak detection in the Turbine Building main steam tunnel are not used to isolate a HELB, they are not in our environmental qualification program. However, the thermocouples are a Type T thermocouple manufactured by PYCO and are identical to thermocouples environmentally qualified for in-containment use under LOCA conditions. The cables used for the thermocouples are also qualified for in containment use. The steam leak detection thermocouple and cables are the only safety related components in the TB MST. The increased-temperature setpoint will-therefore have no effect-on:the environmental qualification of safety related equipment in the TB MST.

Ifyou have any questions, please contact Mr. C.T. Coddington at (215) 774-7915.

Very y yours, H. eiser Attachments

FILES R41-2, A17-2 PLA-3657 Dr. W. R. Butler CC: ~document Control-Des'(oiiginal)~

NRC Region I Mr. G. S. Barber, NRC Sr. Resident Inspector Mr. J. J. Raleigh, NRC Project Manager

ATTACHMENT A 150187

Susquehanna Steam Electric Station Steam Leak Detection Issues

AGENDA Infroducti on C. T. Coddington Management Perspective F. G. Butler Discussion of Issues D. J. Cardinale and J. C. Knight

GENERIC WALKDOWNS Rx Bldg MODS NOTIFICATION MS Tunnel dT lnop PROB CORR CODE DVLPMT~

t MNGMNT PLAN DESIGN BASIS ROOT CAUSE QUESTIONAIRE CHANNEL CHK 7/27/88 8/88 9/88 3/89

ROOM THERMAL STEAM TUNNEL MODELS COOLER MODEL LEAK RATE SETPOlNT TECH SPEC ASSMNTS CALCS FSAR CHANGES PRESSURE TEMP ERATURE PLANT MODS J

RESPONSE

3/89 6/90 9/90 1/91 2/91

GENERIC WALKDOWNS ROOM THERMAL STEAM TUNNEL Rx Bldg NOTIFICATION MODS MODELS COOLER MODEL MS Tunnel dT lnop PROB CORR i ICODE DVLPMT t

MNGMNT PLAN DESIGN BASISl LEAK RATE SETPOINT TECH SPEC ASSMNTS CALCS FSAR CHANGES ROOT CAUSE QUESTIONAIRE PRESSURE CHANNEL CHK TEMPERATURE PLANT MODS J

RESPONSE

7/27/88 8/88 9/88 3/89 6/90 9/90 1/91 2/91

'tg

\

A, 1

lg

'V J/

D >W'

MANAGEMENT ACTION TEAM MANAGEMENT DESIGN I &C MAINTENANCE SSES TECHNICAL STAFF COMPLIANCE LICENSING ANALYSIS OTHERS AS REQUIRED - RADIOLOGICAL EQ PARTS RESOURCES APPLIED BECHTEL ORIGtNAL A/E THERMAL CALCULATION ORIGINAL SETPOINT CALCULATION GEERAL ELECTRIC DESIGN BASIS CONFIRMATION CRITICAL CRACK SIZE ANALYStS GILBERT COMMONWEALTH - TUNNEL THERMAL MODEL VERIFICATION AtR COOL TUNNEL COOLER MODEL

'lP ORIGINAL DISCOVERY: July 27, 1988 CONDITION DISCOVERED:

REACTOR BUILDING MAIN STEAM TUNNEL BOTH UNITS AFFECTED FOUR TRIP CHANNELS PER UNIT DIFFERENTIAL TEMPERATURE ISOLATION TRIP FUNCTION INOPERABLE "HOT" AND "COLD" LEG TEMPERATURE ELEM ENT L'OCATIONS REVERSED

I'p 1<

IMMEDIATEACTIONS:

PROMPT MANAGEMENTATTENTION AND ACTION PLANNING PROMPT NRC NOTIFICATION INSTRUMENTS REWIRED TO REVERSE DIRECTION OF DELTA-T SIGNAL RESTORE INSTRUMENT OPERABILITY DEFINE A MANAGEMENTTEAM TO

- DETERMINE CAUSE (S)

- REVIEW THE DESIGN, AND WALKDOWNALL OTHER SLD TEMPERATURE SENSORS FOR RELATED PROBLEMS

- IMPLEMENT CORRECTIVE ACTIONS FOR SHORT TERM PROBLEMS

- IMPLEMENT ACTION PLANS FOR LONGER TERM PROBLEMS PARTICIPANTS IN TEAM TO INCLUDE:

MANAGEMENT DESIGN STATION TECHNICAL STAFF OPERATIONS LICENSING AND COMPLIANCE MAINTENANCE OTHERS AS REQUIRED

'+ L%

CORRECTIVE ACTION ITEMS:

- PERFORM DESIGN BASIS ANALYSES OF ROOM THERMAL RESPONSE TO STEAM LEAKS AS IDENTIFIED IN FSAR.

- ASSESS LOCATIONS OF OTHER TEMPERATURE ELEMENTS AND CORRECT PROBLEMS WHERE FOUND.

- ENSURE ADEQUATE INSTALLATION INSTRUCTIONS ARE PROVIDED IN MODIFICATION PACKAGES FOR TEMPERATURE ELEMENT INSTALLATION

- ASSESS VALUE OF DELTA-TINSTRUlVIENTS FOR ISOLATION OF STEAM LEAKS, AND COORDINATE THIS ACTIVITYWITH THE BWROG.

QUESTIONNAIRE SURVEY, OPERATIONS AND I&C MAINTENANCESTAFF.

- ROOT CAUSE ANALYSIS

- CLEARLY ASSIGNED SLD SYSTEM RESPONSIBILITIES

- IDENTIFY NORMAL VALUES FOR VARIANCE CHECKS

- EVALUATE RECORDING AND RETENTION OF DATA DURING DAILYCHANNEL CHECK ACTIVITIES.

\~

tali 4

P 4 1

4

OTHER CONSIDERATIONS

- PROMPT NRC REPORTING

- ENFORCEMENT CONFERENCE 88-226, DATED 9/30/88

- REGULAR AND ONGOING COMMUNICATIONWITH NRC

- INDUSTRY FOREFRONT IN PROBLEM IDENTIFICATION AND RESOLUTION

- EARLY AND CONTINUOUS DIALOG WITH NSSS SUPPLIER

- INDUSTRY FOREFRONT IN ROOM THERMALRESPONSE CODE DEVELOPMENT COTTAP:. COMPARTMENT TRANSIENT TEMPERATURE ANALYSIS PROGRAM

- FORMAL SETPOINT CALCULATION METHODOLOGY' ALL INCLUSIVE PROGRAM, DESIGN ANALYSES COMPLETED, WITH. RECOMMENDATIONS DEFINED, JUSTIFIED, AND DOCUMENTED.

l C'

t'l il 2

SENSOR PLACEMENT STEAM LEAK DETECTION SYSTEM PROBLEIVIS SYSTEM/AREA PROBLEM ACTION UNIT 2 Rx BLDG MAIN SENSORS INSTALLED SOOR 1-88-205.

STEAM TUNNEL REVERSED DCP 88-9023 CORRECTED PROBLEM BY REVERSING LEADS DELTA-T MONITORED NCR 88-0554.

ACROSS COOLERS DCP 88-9024 RELOCATED TE'S TO VENT INLETS.

UNIT 2 HPCI ROOM DELTA-T INLET TE'S NCR 88-6062.

NOT FULLY IN COLD DCP 88-6057 RELOCATED HVAC AIR INLET. INLET DUCT FLANGE. (ECO) .

NIT 1 Rx BLDG MAIN SENSORS INSTALLED SOOR 1-88-0598.

STEAM TUNNEL REVERSED. DCP 88-9022 CORRECTED THE PROBLEM BY REVERSING WIRES.

UNIT 1 RWCU AREA PUMP ROOM Hl AMB NCR 88-0598.

TE LOCATED DCP 88-9030 RELOCATED TE, INCORRECTLY.

PUMP RM DELTA-T TE DESIGN BASIS THERMAL CALCS.

LOCATED IN LESS DCP 90-9036 RELOCATED TE TO SENSITIVE AREA THAN MEASURE ONLY PUMP ROOM DESIRED. EXHAUST TEMPERATURE.

PENETRATION RM NCR 87-0484.

SENSOR LOCATED IN DCP 87-9215 RELOCATED TE.

PUMP ROOM.

STEAM LEAK DETECTION DESIGN BASIS REGULATORY REFERENCES GDC 30: REQUIRES THAT MEANS BE PROVIDED FOR DETECTING AND .... IDENTIFYING LOCATION OF REACTOR COOLANT LEAKAGE.

REG GUIDE 1.45 LEAKAGE IDENTIFICATIONA MEASUREMENT DRY WELL SUMP LEVEL OR FLOW TWO OF THREE OTHER TYPES PARTICULATE NOBLE GAS II TEMPERATURE BASED ISOLATION SYSTEMS NOT SPECIFICALLY DISCUSSED SRP (5.2.5)

REFERENCES GDC 30 AND R.G. 1.45 AS CONTROLLING DOCUMENTS FOR DETECTION, IDENTIFICATIONAND MONITORING OF REACTOR COOLANT LEAKAGE.

~ '

) .b S

KCCS ROOM SLD DESIGN BASIS

'SES REFERENCES FSAR:

5.2.5.1.3 defines the basis for HPCI, RCIC, and RHR SLD systems

- setpoints are kept low enough to allow timely detection of a 5 gpm leak. (does not define the basis for RWCU, nor the Main Steam Tunnel)

- setpoints include sufficient margin above post LOCA maximum area temperatures to preclude inadvertent isolation signals.

SER:

5.2.5 - notes that temperature sensing systems are installed.

- concludes that leakage detection systems provide reasonable assurances TECH SPECS BASIS 3/4.3.2 - Isolation Actuation Instrumentation Setpoints are established at a level away from normal operating range to prevent inadvertent operation.

ESTABLISHING DESIGN BASIS FSAR SEARCHES

- Narrow window for setpoint selection BECHTEL (A/E) CALCULATIONREVIEWS:

- Simplified Model

- No Heat Loss, Rapid Heat Up

- Setpoints selected:

- with large tolerances

- similar to previous BWRs

- below fire protection system setpoints GE Company (NSSS) Study Effort

- 5 gpm vs 25 gpm basis

- 25 gpm current design, BAR 4 design

Y 4, v C@f

INITIALDEVELOPMENT

1. RECONCILIATION OF FSAR OBJECTIVES

'. ROOM THERMM ANALYSES

- Winter Conditions

- Summer Conditions

3. COTTAP CODE DEVELOPMENT

- Energy Balance

- Mass Balance

- Single Node Model

SLD THERMAL MODEL ORIGINAL DESIGN

SLD THERMAL MODEL COTTAP DESIGN

.a 4i h (A

COTTAP Compartment Temperature Transient Analysis Program A computer code to predict environmental conditions in compartments separated by uniform walls.

The code solves transient heat and mass balance equations to determine temperature, pressure and relative humidity.

The one-dimensional heat conduction is calculated for each slab to compute heat flow between rooms.

User inputs include physical and geometric data, steam leak conditions, flow path data and initial conditions.

~ ~

DESIGN BASIS LEAKAGE RATE Problem tatement:

FSAR Requires

~ Setpoints have sufficient margin to preclude inadvertent isolation

~ Setpoints be low enough to allow timely detection of a 5 gpm leak Calculations show e Setpoints consistent with detection of 5 gpm could cause inadvertent isolation

HPCI ROOM TEMPERATURE RESPONSE (WINTER) 250 200 (3

.CI CC 150 I

CC 100 Legend

~ 5 GPM Q 25 GPM ISOLATION SETPOINT 50 0 10 15 20 25 TIME (HRS)

TKMPKRATURK SKTPOINT CALCULATIONRESULTS HPCI Room AMBIENT DIFFERENTIAL Existin<r Calculated ~Existin Calculated Analytical Limit N/A 201 N/A 121 Allowable Value 174 194 98 116 Trip Setpoint 167 188 89 113 Process Setpoint 160 182 86 107 RCIC Room Analy'tical Limit Allowable Value N/A 174 230 223 N/A, 98 147 142 Trip Setpoint 167 217 89 139 Process Setpoint 159 211 86 135 HPCI/RCIC Piping Area Analytical Limit N/A 191 N/A 105 Allowable Value 174 184 98 100 Trip Setpoint 167 178 89 97 Process Setpoint 160 172 86 93

PROPOSED LEAK DETECTION SKTPOINT CWWGES HPCI Room AMBIENT COOLER INLET

~Existin Existino ~Pro osed Allowable Value 174 154 174 Trip Setpoint 167 147 167 Process Setpoint 160 140 160 RCIC Room Allowable Value 174 154 174 Trip Setpoint 167 147 167 Process Setpoint 160 140 160

$,a A

1y

~ Og

~s

SAFETY ASSE SMENT 25 gpm leak rate basis allows timely detection of leakage without risk of inadvertent isolation 25 gpm basis is consistent with GK design Spec and with basis used for other BAR's and accepted by NRC Leak Detection System continues to conform to requirements of GDC 30 and Reg. Guide 1.45 Tech Spec changes provide additional margin to assure HPCI, RCIC and RWCU systems will not inadvertently isolate Other redundant leak detection systems continue to perform their safety function

(

44

(('W

'I

(~'(

I I(

DELETION OF STEAM LEAK DETECTION SLD ISOLATION FUNCTION - RHR ROOM (TS CHANGE 4'220)

PROBLEM STATEMENT:

Design Philosophy of SLD is Not Consistent in RHR Room

~ Existing RHR Room Temperature SLD Isolates Shutdown Cooling (SDC)

~ Setpoints Based on Leakage from Steam Condensing Mode

~ SLD in RHR Room Not Evaluated as Part of Removal of Steam Condensing Mode Lowering Setpoints Create Possibility Of Inadvertent Isolation of SDC Conflicting Design Documents

~ GE Design Spec - Alarm Only

~ FSAR - Alarm Only/Alarm -Isolation

~ TS - Alarm - Isolation

RHR PUMP ROOM (I14,104) HEATUP EVALUATION (25 GPM WATER LEAK/WINTER) 160 140 (3

LJ 120 I

100 CL I

80 60 10 15 20 25 TIME (HRS)

~ I TEMPERATURE SETPOINT CALCULATIONRESULTS RHR Room AMBIENT DIFFERENTIAL

~Existin Calculated Existing Calculated Analytical Limit N/A 147 N/A 75 Allowable Value 170.5 140 90.5 70 Trip Setpoint 167 134 89 67 Process Setpoint 156 128 86 63

t

\

t f

4 1

gp~~ ~.

SAFET Y ASSESSMENT Redundant Systems Adequate to Detect Leaks in SDC Temperature Alarms, Flood Alarms and Manual Isolations Satisfy ¹ed to Detect/

Control Leakage in RHR Room

~ Manual Isolation Reduces Net Risk of Isolating System Under Non-Leak Conditions Consequence of Operating SDC with Small Leak May be Lower Than Consequence of Losing Decay Heat Removal

I Ql

'1 rg I J~ t jp I

I I,

REACTOR BUILDING IKAJN STEAM TUNNEL PROBLEM STATEMENT:

Original calculations showed existing Tech Spec setpoints are inconsistent with the design basis conditions.

Cooler performance is difficultto model due to variations in relative humidity and latent heat removal.

Latest calculations produce setpoints consistent with the design basis.

I tw

CALCULATIONPROCESS IJ Original model used simple cooler model (neglecting latent cooling) and no room pressurization.

Model was refined to integrate cooler model (vary latent heat removal) and to include pressurization.

Conservative interpretation of "25 gpm water equivalent" was changed to match basis used for drywell leakage.

~ '

~ ~

STEAM TUNNEL TEMPERATURE RESPONSE (WINTER) 200 180 (3

.Cl 160 LLI l-140 l-120 Legend A 40 CPM Q 25 CPM

~ ISOLA'IIOII SETPOINT 100 10 15 20 25 0

TIME (HRS}

0 14

STEAM TUNNEL HEATUP EVALUATION (25 GPM EQUIVALENT STEAM LEAK/WINTER) 200 180 (3

LIJ 160 CL 140 CL LIJ 120 100 10 15 20 25 TIME (HRS)

INITIALCALCULATIONRESULTS Ambient Temperature Setpoints 25 gpm 50 gpm

~Existin Calculated Calculated Analytical Limit N/A 166 191 Allowable Value 184 159 184 Trip Setpoint 177 153 178 Process Setpoint 174 150 175 Differential Temperature Setpoints 25 gpm 50 gpm

~Existin Calculated Calculated Analytical Limit N/A 90 109 Allowable Value 108 85 104 Trip Setpoint

'2 99 101 Process Setpoint 96 80 99

~l lt y4~

PRESENT CALCULATIONRESULTS Ambient Temperature Setpoints

~Existin Calculated'alculated"-

Analytical Limit N/A 184 187 Allowable Value 184 177 180 Trip Setpoint 177 174 177 Process Setpoint 174 168 171 Differential Temperature Setpoints

~Existin Calculated'alculated-Analytical Limit N/A 109 109 Allowable Value 108 104 104 Trip Setpoint 99 102 102 Process Setpoint 96 97 97

1. Interpolated temperature from 9300 & 14,800 lb/hr calculations.
2. Calculated temperature for 12,500 lb/hr leak.

I ASSESSMENT Calculated setpoints confirm the existing setpoints are consistent with detection of leaks 25 gpm or greater.

Results are within the margin of error of the model.

No change is required to the existing Tech Spec setpoints.

d'g C

vT> a~

l'C a'v

TURBINE BUILDING MAIN STEAM TUNNEL DELETION OF HIGH TEMPERATURE ISOLATION PROBLEM STATEMENTS

~ Exisitin set pints are not adequate to detect and isolate a 25 gpm leak.

~ The existing system does not provide sufficient protection against false isolation.

~ Detection capability is highly dependent on leak location.

I The steam tunnel is not a closed volume and does not fit the basis for temperature measurement.

~ Analyzing the tunnel to establish reliable setpoints requires a complex 3D model beyond the modellin ca abili of available computer codes.

~ Temperature alarms and leak detection methods used elsewhere in the turbine building are adequate to detect and control leakage.

TURB BLDG STM TUNNEL EVALUATION (25 GPM EQUIV STM LEAK/WINTER) 150 140 C3 LLI C)

LIJ 130 LIJ CL LLI 120 110 10 15 20 25 TIME (HRS)

RISK OF FALSE ISOLATION The existing setpoints provide insufficient margin (less than 25'F) above the normal maximum temperature.

Temperature increases along the length of the tunnel and TE's are located in the highest temperature area of the tunnel.

Temperatures up to 150'F have been observed with normal, non-leak conditions.

Temperatures have reached the 157'F alarm setpoint due to small packing leaks and ventilation system disturbances.

HVAC FxhauSt HVAC Supply 0 G 2 .

1 Q8 83.3 Q695.8 Q4 107 3 125.6 128.3 Q784.7 Q5 95.0 Q3 124.2 REACTOR BLDG 0 LEAK DETECTICIN TEMPERATURE ELEMENTS

LEAK LOCATION Leakage at the far end of the tunnel from the TE's will be diluted and masked.

Leakage near the TE's is undiluted and has an amplified effect on measured temperature.

Leaks downstream of the TE's will not be detected.

1 p

CLOSED VOLVME The open end of the tunnel allows uncontrolled flow into and out of the tunnel.

The effect of this flow path on temperature measurement and leak detection capability is unknown.

.Temperature measurement should be used in a closed volume to effectively detect leakage.

FSAR 5.2.5.1.3 - "piping ... is installed in compartments or rooms ... so that leakage may be detected by area temperature measurement."

j ks I>> "I -I ~ l l ~

'l k

TEMPERATURE MODELLING CAPABILITY The configuration of the tunnel causes difficulty in creating a temperature model.

COTTAP is limited. to calculating average temperature for the room volume.

The temperature gradient and Qow patterns cannot be accurately modelled with available computer codes.

Qez LEAK DETECTION METHODS Main steam lines elsewhere in the turbine building are not montitored by leak detection instruments.

Radiation alarms, visual observation provide adequate detection capability.

Temperature alarms for the steam tunnel will be retained.

Y t

SAFETY ASSESSMENT

~ Deleting the automatic high temperature isolation signal reduces the risk of inadvertent main steam line isolation.

~ Reliable isolation setpoints cannot be established to provide sufficient protection against inadvertent isolation.

~ Temperature alarms provide adequate leak detection capability in the main steam tunnel.

~ The radiological consequences of a 25 gpm leak are well within safety limits.

4, RADIOLOGICALCONSEQUENCES 25 GPM STEAM LEAK FOR 24 HOURS Dose Category 25 gpm FSAR Steam SRP Calculated Line Break Acceptance Dose (rem) Dose (rem) Criteria 2 HR Site Boundary 3.07 300 Thyroid 1.89x10'.55x1 2 HR Site Boundary 0 25 Whole Body 2.98x10',98x10 30 Day Low Population 2.17x1 0 300 Zone Thyroid 30 Day Low Population 1.09x1 0 6.77x10 25 Zone Whole Body

OBSERVATIONS- DESIGN BASIS DESIGN BASIS FLOW RATE

- ECCS and RWCV Rooms

- 5 gpm ---- 25 gpm RWCV PENETRATION ROOM..... Raise setpoints HPCI, RCIC Rooms ......... Raise setpoints of Cooler Inlet Hi Ambient Trip

go

'pl Ac l1A I

z

OBSERVATIONS - RHR ROOMS

1. STEAM LEAK SETPOINT BASIS
2. ABSENCE OF STEAM SUPPLY
3. ISOLATION OF SHUTDOWN COOLING SUCTION
4. NO REQUIREMENT FOR SLD IN COLD SHUTDOWN
5. MINIIWQ OVERLAP IN HOT SHUTDOWN
6. PROPOSAL - ELIMINATEISOLATION FUNCTION OF SLD

- REPLACE WITH TEMPERATURE BASED FUNCTION FOR SDC LEAKAGE

\~

Yf,

'Ikey 4'I A!

p kl p S

', ~

~,

OBSERVATIONS - Rx BLDG IN%IN STEAM TUNNEL

1. FSAR - 25 GPM DESIGN BASIS
2. ROOM COOLER MODELING DIFFICULTY Fraction of sensible vs latent heat removal under steam leak conditions Auto start of 2nd cooler at 130F
3. INITIALSTUDIES - LEAICAGE AT REACTOR TEMPERATURE
4. FINAL STUDIES - 12,500 LBS-M/HR
5. APPLICATION OF SKTPOINT CALCULATION METHODOLOGY

t

~'i i>> '

A+@

OBSERVATIONS - TURB BLDG IKON STEAM TUNNEL

1. ABSENCE OF CLOSED GEOMETRY
2. TEMPERATURE GRADIENT ALONG TUNNEL--
3. SENSITIVITY OF TEMPERATURE TO LEAK LOCATION
4. INADEQUACY OF 25 GPM AS SETPOINT BASIS
5. PRESENT OPERATION SUBJECT TO SPURIOUS ISOLATION DVK TO SMu.L iVauGIN
6. SYSTEM COVERS ONLY A Sl&u L PORTION OF MAIN STEAM PIPING IN TURBINE BUILDING.
7. PROPOSAL - CO&PM,RT ISOLATION FUNCTIONS TO FUNCTIONS

ATTACHMENT B ATTACH E T B Calculation No. M-'SLD-008 - Steam Leak Detection Calculation -

Building Steam Tunnel 'urbine g-300) - Unit 1 Only (pages 1 thru 24j, to Calculation No. M-SLD-008 (pages1 thru 5)

Appendix A to Calculation No. M-SLD-008 (pages1 tluu 20)

Appendix B to Calculation No. M-SLD-008 (pages1 thru S)

Appendix C to Calculation No. M-SLD-008 (pages 1 thtu 6)

Appendix D to Calculation No. M-SLD-008 (pages1 tluu 10)

Appendix E to Calculation No. M-SLD-008 (pages I tluu 10)

Appendix F to Calculation No. M-SLD-008 (pages1 tluu 13)

Appendix G to Calculation No. M-SLD-008 (pages1 tluu 41)

Appendix H to Calculation No. M-SLD-008 (pages1 thru 2)

l g5

<I I

~ l

~ f

CALC. NO. iN '~15-I'Y)8 "AFOOT'f -,RELATEQ Pg

~ 9 ~

CALCULATION COVER SHEET FILE NO. ASK'HI';OR XI f ]

0)2 sf SUPERSEDED BY h) J A OTHER QUALITY

'ON QUALITY P R0 J ECT ~7 g g pj L E ('i p( p i r. e, ) p A'- ER/CTN NO.

eflux DESIGN ACTIVITY/PMR NUMBER PAGE 1 OF TITLE/DESCRIPTION S i f=c~ L.g )q QP ~(=<~(o ~ CAL( L&glQ I "I =

>>c Li I~Ci .>7CA+ Tuhlki.=l T'( 'o'v( I owl SYSTEMS AFFECTED Lf'-0 0 5 l990

<AfraS Cele(i e PQte i f(C~ f fI f oa w(((-" i>v a. pu.; ~,

g,g(.cQ. To RT A &C.l>FD QES,i(' (MP(FT'5. APPii("-~O>X 8 g(epg~p pc I'Ac 5 5, I A~e 5 FQIK I~eeeeFMceA g.eeei>> vo PRGe (.-0P Rcsvi-TS I/ Co<c.( u~(Q y ' f / ..

(ETO) BINDER AFFECTED? t' YES-If Yes enter: Binder I Calc. File Pg'.

NO REV. NO. DATE PREPARED BY REVItAED/CHECKED BY DATE RO ED Y IfATE f0-I'j-9o g+p + Q/"

~~ ee m.c~mm~ee~er. n ml s/ frb006i (12)

4 ll e

e

~ ~ ~

REVlSIGN DESCRlpTIGN INDEX Rev. Revised Affected No. Pages Sections Description/Purpose of Revision iOw boa Qd~ed 3e~a'ip~ o~ ~ r~a-<r - Woe rl Jdi t<o<~ ~

) g. ~iP Added Loss oV H ~<< ra~@ n>> i+

'res 4 0 t I7'tia I7 R JJQ Cases p(~ breaK J~ka gaol P8 l9+ tSa g. 0 C)ader )~ rp~~lt~ for App.-a;x r- Give, r~m f4@ Sot l)ppQi~ ~

4'~.x H "IH

)

Ch O

I aI

~4 ~

E g~ t

SUBJECT IOENTIF IER PAGE QyPqg LEAK ~ AL.C.TVai+I~E E'Lbi'. M-~LO-O08 Gilbert/Commonwealth OF REV 0 ENGINEERS/CONSUI.TANTS MICROFILMEO PAGES 2 /I CALCULATION ORIGINATOR GF i OATE 5 'H 'a 7 i L- F ~ruTF &'TS

/.0 I OR. POSE 2.g REFEQPOCE<

3 0 ASSVMPTmm5 "0 H ET/IO Do LOG Y S.O ~ESVi TS// t Oi C.L.VS>ow A>>RCH~V ~IT I I I < < ROCLF/4FE QgaVICCS PamC'Cm 7H~K 5~PE /~vms~

Rqx~'Ir<F>>w 2A: CO~<FIP OL/TOU< I-Oe. T'8 S~CFI~ ~u~<EL 25 QPA I Fgt4 / 'SII~+Fti AWIPC~<WF~T 2E: CDI VAI OVrrVr FOa- T'8 SvenPII TI/Zm/;/ - 25

'GPf1 LCiGIK / L)t&TF/%.

AVfPICHWF/t4T 2+ C 077Pi'I Oii TFVT I OIE. M STEAM TV/h/HE L - 100 5'~l QF.FIIi // I/JI %TEIL r

P P j>g/hI Pi~ P): Si IGIFtt OFITR TI/r2P I~/ PgiLOIItIC r

Qi>I+F <~t,~ i IPItu6, PATP/- / LIRTsi+P SVILI>i~4 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY GAI-446 7-84 THIS IS 4 PERMANENT RECORD DO NOT DESTROY

~ ar i <<

j I (7 C ~ I 4 Sea C

a Sl

SUBJECT IDENTIFIER PAGE Gilbert/Gemmeetteeltb OF RE V.

SNOINSEAS/CONSULTANTS MICROFILMED PAGES gI CALCULATION ORIGINATOR CFV DATE Q.la.4O TAi3LG C/F CONTE AJTS COI T'b)

Ro<<>Oix C,: I QOPFI2 I IE'g QIIig TOGItl/~E GVII-AIVQ iJ G bIQt+ PI VF4'T IIPt'TILb< DPI' LIQ9%<6 PQILQ'LHQ AIOPFWQ<X EI PG I FITIVr. ]IL//eIIO'T'Y OA i 6 76/ft PIA4F P V Ii~ I ~~

GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

1 V

~t W I

gJ

SUBJECT IDENTIFIER PAGE Gilbert/aemmeeweelth SrC)qe LEFI g CnLS. -7V eq)WL- I LnC OF REV.

ENGINEERS/CONSULTANTS MICROFILMED PAGES ~ /

CALCULATION ORIGINATOR C F 3 DATE CI 2'". 'IQ

/.0 Porc use:

+)I E PL)i? POSE Qp 7'. ) )s nIOppg) @CD C ALCLtL/IT)4)tu Is TL) OC TE'<Hl NC TERAI)PL ARTCC pPOF)L.)=- Q)4pEC,TE' 4 )I pH rI, STp R~ L F Fl K gag>p~ "z 7//F 7VCr.)~F Bu)I D)~C STri>> 'TV A)A) FC. (7 8S7 ). kg 7P~ST I-BOO. Vi/c aEs<<n or- rf))s CllLcoLN.)o~ ~)LL Ts<<

Qg VsE4) gS Go)nEL<<E rO oE7c ar I~E'S Too ~a= rO)2 GF C-3I sTfy)H LEAK DF7 EC7)OM Sysrzn.

9.0 RE F F)2 EMC.E5:

O)2~~ ~<s:

E - IOSOo./ SHT g, REV. y, E,

- IL)SOOq Sul )/, REV. $2 E-I05 t03 SNT l eEv. 9 F - los'IQ 3 suz q, I2Ev. Ib I=- IuS'/C 7 SHl' )

RE V. 6 E ICtS')at 7 SNT $ ) QEV F-l05V68 Ser/, CCEV.

F - l05'<10/ PEI/, 8 E - I O5'I7 Z 5HTI) QEV. 5 E -I L)5'LI72. SAT 2 I2'E V. 1 C-IOSLIlZ SHIIT 2) a,ev, 6 E. lo5'LI73 SH7 3 R,EV.

)

E-l05 4)7 LI SHT I REMI. 0 E -l05'598 SHT I) I2.EV. l I05866) 5'ZEV.

C I E-lo5'SE,7, IZEV.

F-lo5872.-I, REV, 9 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY GAI-446 1-84 THIS IS A PERMANENT RECORD DO NOT DESTROY

4

. ~4 w P'lgi

=C =-5 ~ J ~, ~ gQ WI 0

SUBJECT IDENTIFIER PAGE QgcP~ L(qg (I ~,

- IuaIZIAIZ 8I.(.g, Q- 5LQ- OOe)

Gilbert/Cemmenwealth OF REV 0 ENGINEERS/CONSULTANTS M I C R 0 F I L ME D PAGES g 1 CA LCULATIOH ORIGINATOR QF <

DATE 8-Z I lO AI )I/VC 5 CCO~T'0 f- I05'879, l2.cv. ~-IO62Ob 1~@:V. ]5 F-1g5'875, SAT I 5'.pv.

t E- lÃZo7 REV. I5 Q Qj3

- ICOl - l I PEg IZ p -106Zio I2Ev. 20 DQ,i3- I02.- I t

IZFV. II P -IO62II IZE Y. I6 Peg- IOZ-I REI/. 11 E -106219 Rf V.

I 065- lo'I- I / R7V, 12 I:" - I 06 2, 15 a<<. Ie OI2 g> -,V5'- I R,EV,2 -10& 235 KEY. 3 I

IQBR- 129- I, QEU. 3 P - I0621( g~v 8 E EQ - II O-I, PSv. l F -I76'/7 I gE t/. 3 CPQ "113-I lZEV. <

E59- Il"I- Z I IZFl/. 3 GSQ. IIX- I) Q.CV. Il I

Hl30. I27-1, REv,2 HI 0-I66- It PE'V. LI

)At)-12.- I, RI=.II. P

)g)-P- I I Q.EV. 3 QtZQ- I02- 2 @~II.S JR'- 118-2, PEII, LI JRD - Il I-2, IZEV LI Ja,n-I~Z-I, 'tlI.

f1-II- S, 5'E.V.

PPQ - IOI-I)

'll 2.2 HOL~Pt& 3.P. ~T er>> .,56.

23 gQIh4( F, K, EY/4ItItb A. I4,) CCOtl tT nJ, E.) ROI i, F,) CI COO F S E>< CJDAL Conc e.at'E 19$ 3.

1'VPb llo~E', A 5FIQH<I&mt E R.r T Hn n ~ ~on. cc>>nomic.~

E&C.I~V'.-P. / t~ Iti EJECT ION, I 8 I.

GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

Ilt

'1I 1

SUBJECT IOENTIFIER PAGE

~TI'/'n I =/4g n

~/4t/ /4'2'" I. l I'/~~

Gilbert/Commonwealth OF REV 0 ENGINEERS/CONSULTANTS MICROFILMEO PAGES' CALCU LAY I OH ORIGINATOR Q,g T(O C~r t. t ( OMT'4b w

ASIA ~nb4QFhtXQ C 5 3+~ 85/ I /ttLC.tun CILIA.>~8. BLOCI< A/ g L Zl>..vc/,, /4//4 FIL g 28'/-M/OS'~ PF//, 6 5 E IS P>PF L I'VE Qf h/Erg' Lola 6 I l I PtpI~g Qggcac'pI/ g, w. P>> V I'l, I

GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

b,lf' I~

I'C'

SUBJECT IOENTIFIER PAGE Gilbert/Gemmeewealth ~rEcl~ UErlg. CALC. - GIZRIQE 0- SLb. ooB OF REVP 0 ENGINEERS/CONSULTANTS MICROFILMEO PAGES >~

CALCU LATI OH oRIGINAToR CF T DATE 9 Z'/9o

~.Q r i-= L)n~iI,Ou

/) 7//p pf A e4 T /g /le) +Otic +PbL Q Pl IZFITIQI'I (I I/L'04e)F IX),

PIPE / Ipe) IIIC /l I 52 PP I <DIRAC'TF2 AN I>U~>EI Z,< I LL.

t4QT p<ggtI)p Q QICG>IFIC,AWAIT IIEri- LOAi) OCZ //<<1< 'SIPe)K CO~IPFIa: E T-O 7//F LeeC.E BO/2g PIPE, n~I) C.FIN r-E CONS+EREb MEGLICGIGLE . &I/IS lh R CONS6.2.VFITii/E. APP>>oFIC K.

~) TIIE'>< I s <Ql g slgg/F/cgh)2- RNQ(3~ c)/= coLID Piro

1'I2FZF,A)< 7//P. TC'Ft/n TVI.I/t)fL To gf I=f<T 7 /I/S AN/4L'/51~.

CC'L4) PtteC lS PIIoI. I )IT Pi OI)E'ILATINC, y LUIO TFMPEiZI'blutle~~

pit LOL) I>>04)~ TE~>>I=I>b;T>>2r, Tins /s n No<-coNsvavlixlva FII~P I2-OAC.H,

~) QL/01RCb QQQ/APiL OPEC2/ICTIL)H PI/If SuPPORTS ACT F}S flT//E<2. Fl DU>>INCOG SOui~C.E OIZ Fi tlat AT SINK.. SINC E T>I( QECKRNICRL QQOLINCP AND I/FA/TILRT/ON S'ISrEW cAH FIAlhJTPIIN 7IIE rlnxII Ilail TI/NNe'L 'DESlE/bI 2 Erii E>>FIT<<F- OF gfzlr4cb +o>>++L +I+IE Yr ++/ 7/IEAI 7//I= P/f E s4)P o+7s +ILL +OT H Pg E R 5ICINI F ICAL T E F FECT Qrt) rills TL/It/NEL TfHPE +FITuA C STE'Fl& LEAK, 7ll/S I g Np'ITIIE'g. FI Co/t)sgRVFI'TII/6 NOA, Fl HQN-CO/'ISC>>VFITII/E:

APi~>>4)FIC.K. ZT Is I/N/)Ep STOOD 7 1(FIT TERRE>>rbTLI>E. t jZOPjgs C)ITIIIN 7 IIE 5TEAw TuNNEL I2$ I-"It) I IO f I /6vT I~ pEALOT Y TIII s TE~r aR FITvnc ls NOT co GoQio GPI+Actc ltrI1 0N el PIIPcehoE. UNIPII TEni. (Scc APPc ber A,IG 203

5) I/IE Roe~PL OI~IiFI<<>C wIHTc'Z. 7EnPE/Et)<<RFS C)F T//F.RDGACF<T rEOOP1S Fll>E 6>~5rp ov Tn /:- Sv/)7a z Fl>> T F I'I GF 7//6'I//I/OINK /<<'OIL/)IN'IE4>ILFI T Io N SY 'rE'rl. QN PIDOITIONFIL 7Er4i~ /hXRE RSE OF S' Is FII)os>> 7o 7/lE /4>rlr'FIL CPPFalTl INC'G u/BOITE>>, TF/IP TO PICCOI/NT FOR FIIt/Y EQUIPMENT 11E/II GRIN TIIE SPFICE, jiIIS IS Pi COIt)SE/EVAN IIJE'I P/20'AC.II,

~') ~lreILE TH( Al2EFI QF Tiff'PFP >l<Ce FRIIIe TIIE STrFIPt TC//t/AIEL 'TO TIIE (ONI)FASE Ir Nri ls so I Pac E. T>>E all//: Fir)i)ITION/iL oIPF<lh>F5 I/t/ 7//E STEFIM TI/hlNFL LJFILL cAN N covsi/)I I2rb NCC LIC,I'LL~, io/S /S pvg N-CoA)SITPZ.I/FIT I L/E'.

GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USEONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

SUBJECT IDENTIFIER PAGE Gilbert/Cemmeeweeltb QE~M L E g y, ( ~LC. -l V air.Wg I~ OC 5 aL 5 oOB OF REV 0 ENGINEERS/CONSULTANTS MICROF ILMED PAGES Z CALCULATION ORIGINATOR DATE Ac~ IJPPYLQN (

Vi/C OPF~LILQ. ~ttiil~ 7/IF STERN YVMNFL, P't7t>TV'/~70 Y/IF PLO-.

OVT f20gR, CIRCE Tilo'LOW 0IJT'oo& i~ I I> 77lg V~/LP 'PFLP(RATLJ/Ef n'5 T/If ETEFLti Yv/4IJEL, /T'5 Co~st/?ri?a P P/iILT oF T/I/E STf IIH TL//tIAJE L.

7//EE&FD>>E, 1'/IE, 51 nlrb AR(-'A LOFTI-b I OQTnl~f i) F/?Oat TIIE /200~S Fg)ioiCCWT TO THE PL~OVT IZ4boal ~ TIIFSL iZOQMS ~F '7//E OIei=~ f7<2FI I A<A THE 7AIt/t'- Pi 6 ROO~. /II/5 t S COIOSFa ilnTiuE A<5 L4LLL FAISO R~

ui? /-i(.v, (SgF A~i'git4 I3, PQ, g )

8) DVE. IL? 'Tiled. TILL(-KNF-"- PI'>0 LOM TILE>>MAL. COI4PUCTit//TY QF 7//E SLPIL'SSI 'T IF PFHPE>>FbYVOEP OP Y//F S>LtlgOIVINC, PO~ f To QE CowSTAN T I& YilF Ft/FNT OF H'EFLUX IZE'IssvaIEL?

FL. I E el)4,. I LLLQ A NQkl- C QN SE'iT.VCb E iV f-'il'bPiZORC ii.

r

9) VF~VF'5 f1LQ~Ea 7 f/~ DFQ CA~ QK HEGLE4.7Eb DUFTO T'IIFIC IMSLi" NL FL C A~T AUwi'.ER. CLWFt SVIZFRCE /7/4lrFI 4) IIFtJ C~PAREO 70 7 //E PIPE soizFFLC It FL><A~ Aai) ALIT I'.c/ks, I I]ls ls Fl co<sElz LIFLTI vE APPI?oILE.M.
10) A'E gR OiL CO~TJE~S<TZ P>>ESE "IT IW 7 llE STe'i>n '70bINEL I 0 FL SSL/rig 3t 7o I3/= AT OQ C'EQQF TQ 7 /le'TMvl YvN/tie L TfaiPE/4nTV/Ec A<i) I'S ~(?T (O<giQCi? r. O Q 5lg+I F @Am 7 //fH'7 SOV/LCE OQ. IIF/lT SINK.

VILLs IS FI coMSL=QvnTtvE'IP/ RoFIcll, 11'I I IIE YLIRISLNl= IALLQL~ QTEAI~ TD~~:i h)ILg. vOT PAPZt2/+FACE /=I PRESSVlIF-I~IZEFLSC DUIZI~G P STEF/e I-EFLI4/ PLJE 'TO gila Ln>>GE OPR~I~C>> 7O 7 /Ia CQQOEW>i.iY AREA OF Tllis TVQEim4E. PU/LQLtu&. Et?fN LbIIEtJ & SW'Al I.Ei2. Oi F"Ilr4Et LIs/ 'ID ( RTTAc Hrt< t'T 2 Ai Et ltt) TILER E I Q 54ob sl(IN I Pic fl 4T 'P06 ssoR c I 4CR C A E, Till5 IS FI COPSE i? t/I>T ivE, FIPt t'LOFLC.H.

PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY EAI-446 7-84 THIS IS A PERMANENT RECORD DO NOT DESTROY

1 C)

-4 If ~

u~

SUBJECT IDENTIFIER PAGE Gilbert/Cemmeeweelth BFAHUWPiK CALC. +"R<'~E ~LD+ h- ~~DU- C)QQ OF REV 0 ENQINEEAS/CONSULTANTS MICROFILMED PAGES 2 "I CALCULATIOH ORIGINATOR CF5 DATE 0 SSUHPT'tpm 'C4) )>'I))

7/i+ VOLVAC O . 1 //E STE/I~ Tu/Iac. L I ~ C FILE OLn i ~pi WiTH I2 g g'PFC + 'T Q +If+ I/t)Tff2io fthm 5VIl FRCE C)F 1 I'IE W<LL NOT F IlQ/4, QEA)TEQ.LIt4E OIHE~aIL)H - C) F TtfE L)t-il LS, 7/tg VOLVMr- OF 3 IIE. PLOW-OI/T I2ooM Ig ~LIT /~C LVggg I~ T IIE Q.Fisc L)L x 0 ~ AIR voLv Es t) Lnc.F-L) P I Ib Pf s Ab4II) oTt4 E OP-'cT

&Et).E, ~OT CO~5 OEQ.I=0. 1tttS FIPI gOFICtt IS I'.O~S>>Ee.F f) TO RPI i7OYIt4/ITE.

. jig PIC:fLt/)L VC)'LVt E pp <IIE

='tr-I"ltA TL/Hl)F L,.

Fo< FIEC IICbt4lcril Cctol i t4Ce PINj0 VC< MILFI Ttotu T'tJE, FlcQ. FLOW f2T C Is FlssvHE '9 Tc) GE. + IO /o oF TIIE QEstc bv Fg()~ I2.FIT Es s)4aM' TIIF I L(o 9Irlt RFiw'tt. ( ~FG A~ f~f) +Fc. IQ) Vills I s R CQu SEA.VFI Tii g flPPROnC.H.

IW) L)lip~ DETEILnigit4c, TttK M< Pole~ Fok pELarlvl= Ilut4I'biTT.'7 IS RsaorIELI 7 t//= SVPPLl'l>t2 TO TIIE STFFIPL TL)NNi: L /5 I-ERI/ IMC 'Tt/8 4 QQLIMC COILS Fi T 67'F DIE/ 55 F, uR, (SI=F RI~Pc'wt)t g g, PC .

3 )

I~) LJHftg OETEQQI)) lttlC, 7 t/E /4 ITIAL !2II I/PLI/gQ FQI2 T///:- STF/IA4 70NMEI IT'S FISSV/4E Q THPt T Q~ Ly SEtt) SI FtLF //ERTIebce Oke SE<SIPL E CC)OI IWC IQ OCC.VA.IM, QQ Y & F'FEcTt'QK TL) Lri TIGHT, IIEFITIeg QIZ ( ffVEQ'T COL)Ll~C QQ.S /( ~LIE.F 5, 7 tttS IS R CC)HS gV FITIIit- RP/'t2ORCt/4 f IQ QLII2I~Ce 1 ttE Rh)<LYSIS P'g FISsoeCQ TI<Fbg ptIE f4FIIN STELA t

LI>K LEFII4. +ITIlhN 7/tE STEAH 7uw~tEL I s Tt/E G ovEI28 list, QREF)K, Pr=t2- 7/IE ptzoJEc1 Pt?c)Pose L. (SE'E ATTY.IIHI.~T, Ii Pf I13 It/E wi Tr+, TEtIPEIZATvtzc oF TIIE IZEAcToz. ISL)it Ql~ $TElw QL/Nhl 6 I l5 QE T~ EE+ I/Z.'F h<t) I/5 F, 7 H6 P//G//FiZ, Et4PfPA'TV I2E. l I4 E C n s (S r= O'F I) Il, 'G IS)

GAI-446 7 84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

lit

~~, ~

C

'h

SUBJECT IDENTIFIER PAGE Gilbert/Cemmeewee!th STEAM Qg FIK CAL(. TVI2P/>>F- DLOG. B SLQ >O8 OF REVe 0 ENGINEERS/CONSULTANTS MICROFILMED I AGES Z //

CALCULATIOH ORIGINATOR, 4 F 3 DATE 2'I e!Q ASSV~P'T!VM~ COwTtb~

)g) I IIE C OI.O p<PF Fits'IIE O'4J!//P/44:Mrr pRE S/- MT I 4 QQIQQIQ('g IQ (O ++11'Of IP i ih tt JE FLIC IteL8 R 5 /// /)T'l/ttIKS. ~it( 5

~os- cause'a I/tITIvrb RPprzoFIc.44. SSF SECT to~

I) ) F~li MIIE Poa Posh oc 7t>>G /I>>A<v"I pl.IE voLvnE LJ>><<i~ 7 IIE

/ OQ It iiiIC lwVIL!hit)g C if/im i Ubi/JF'

'7

! l CQWg It/I'Pr!3 70 AE IIQMOQ[ /iFOV- I!I < ~ J e . ~F Pl!- Fte 5 STI l'tg, IPJ: QO~ I/Jtt//A Jii 7'0 wttrTN" ~ " ".i 0Qt4'5 - /'JtbT>'/E <!2. /t4O~- ConDbE!2utl III4t'!!Et'c rl v I2'('LQQ E t) 'To TtIc Loc,Fbgio& DF TIIE s>I <M I EI'I'K,

'2 5!mc!"= 7'IIE ILIAD.x~c 1 UILIii~G 57sr ~ ><>>wcL mILL Amor PIE PRE:~g!2,IZt= tl (F3Iaunt TIV~ NO. Il) THE EFrfc7; OF, Opf~!~GZ BF T cFM + II E, gIEALTOR ROID git4g STEI>Mt vmbJF L flt40 T/IF rF/t PEgt IIVIIE f L,FH E ~TS ( Tf IOIOO FI Q ) IN T'//C +EST >Et= /4 I~I+I tt CQ, f t/rtT>/E>2.

! I'IE oPF~Iacs IH'Tcb 7/IE PLonol/7 I20QM QQQ 2 ssf< TIALLI'PFILEB IT.'f 7t/E Pi OLJ-ou~ I2oo& IT.SE I 0, ZT Is tiLso co~st!iE2E,II Tl!FT 0~F t!~G CQt TN/OE>0 1< TIIF- POIKIL AI~P>OXI>>TE.S TIIE,FF'rE<<

QF 7'ttE FxtsT'/~G WAI4 LORY I+ 7 tlF +K%,;~< ls TtIE>s ro'2E C O~'S ID F k Cn >fit'!7 jttE rhQ~E\ I+ I2$ I Fil Ivp V A((VIOLA E, I-0/2, STFFIM I I-:FIK~ I F7~~It hl jftE RP~'O~ POV M~ny FI~O T//p jFnrra. t~!Vt2C ELE'/4E/JTS. Tfff HOIIEI I 5 CONSIQE i2 F b 7Q f3c NDN Co&SQ A-vFI7tvf FQQ- 5T'CRY. LE6gQ PET& r= I- Q TIIE 7E/tI!F rtrriTUl2r- FLEAM'T5 w>I E, 1 viLQI~ c I-!JILD<<g IT5E L. F.

PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY GAI-446 7-84 THIS IS A PERMANENT RECORD DO NOT DESTROY

~ is~

II ~Q I' 4 u, l+S . It Y p

P,

SUBJECT IOENTIFIER PAGE Gilbert/Commonwealth QQI2QI+f IIELD('y, 0-Sub-005 OF REV 0 ENGINEERS/CONSIILTAttTS MICROFILMEO PAGES CALCULATIOH ORIGINATOR CF '7 DATE g ze9o 9.Q Hts THOOOCOC F 7iip ~plmgfuv 7jznusie~v 7+ ps p<~ >'= ~ n us I<> '

(COTTA&) IS uSF > TO FIWFiLYKE. T'tte gFFECTs OF R STFFtn LF/TK Otst TttE TQ/It t5i S uT 7 F/1tsr.'GTITV/LF PltOFIL E5 W ITtIIH TttE ST/.=FIFi 1 VNhJEI . 7t>>s niuFi LYSIS dNLT CQ~SIOEI2g 9 I EAK ltst TtIF VnLN S'TEAN I I+ES (IQI5 PSiA/ SV5 F), VA4DEt2 lq>2rtAL ODET.FftitsKt CONDI<ut45

( ~EE i2EFI=<ZF sC.E 2.iZ) AI I O'TtiEi2 LlHES CQQSIS 7 OF LoLIER.

E'uEi2(,y'LVIA CO~DiT itp~E, A~i> CAtu GE FI55Vt4Ef) TQ 134=

UtGOE T E( T/ii LE I3V 'THE GE'-3 I 57$ AH LEAK QKTEQ'figs) 5$ 5TE'F/

CaT7RP >ILL PRFOICT 7lfE '7FRPP'TI1TvQ+ 7/ ANStf JOT PIZOFILES FOI2 p 25 C PQ Wri'Ten. CgVIVgLE s4T STe'Fin LER II, IN TIIE SVFiME.~i QQQ TtIE HIWTEi2 l FitsIA FtLSO R IOO CiP/l MrlT$i~

EQVII/ALEN'TIE/IHI LA7K IM TttE MINTER. 5CC, Pg4 10 CI Rev, Sat Oddi+ional CagC5.

PE(Lti qg OP 7 ltl S QgqL y c I5 +ILL (QNSIS< OI= 7tlE VRItlOVS ouTou s I QLQ~Q LAIT I4 <IIE PLOTS oF w)E vAAIoits TI2Fit4siFssTF HPE i? A t vQF PEQF ILE Q Fot2 it/a sTERFI LEAK cotst'DITiuN+ ANPiL'fKGQ.

( SFF PQ. I9-29 qlvD FIT fpCftHFuT5 2Ag 2'un 2C.)

7ttE 5LFil3 PIPING QuA I/EwvILFITioM ~A t*oI2 7 tt6. INQIUIOUPIL RooNLs .RI2F PIQUE'LOPED Ust<c, sovi2CE ItvFo>/4F4TIQAj Pi's QoTED IN SECTIQ~,. 2.0,.ef FEiZEM&g. +IIE SI ATL OAltq IS FQVAi5 LA SEC TIGRS l.5 ~ 5 '.,EL~. FIP/tZHDI x g, Tne Pi>I~(. TIA'T Pi lQ Iss4 5ECTIO v / 'V A< 0 L

<>P'watt)j,. E. TttF vFtuTtt 97to& f)ATR ls PoLINrI. IN se4TIotus l.2, I

I, E~iu~P+~NDIIt h [ZEF Et2 TU, 7-tIESl= SEC.TING> 5 P'OI2 AOA6 P4TFIIL Q tu TtIE IAIDIV<t)IttIL.IlvPVT PAVQ, 7-84 PROPRIETARYINFORMATIONOFGILBERT/COMMONWEALTH - FORINTERNALUSEONLY GAI 446 THIS IS A PERMANENT RECORD DO NOT DESTROY

lf$

f1

PP8,L Form 2454 n0/83)

Cat, 4973401 Dept.

Date ~t 19~ PENNSYLVANIAPOWER 8 LIGHT COMPANY CALCULATION SHEET ER No.

Designed by RA PROJECT Sht. No. JQa of Approved by l Xn aolJI&ior +o +44 25'nd lOG gpss wo~er gu'ivy(en+ ~4a~ I CaK CaMS Cage a wt rt E~luafed kl a 2D gp ~KQgp~, lOQ gym and /5Q e%p~

wa+er epiualer+ e>ec )eaKs (a+ ST'P5 . 7 heoe Qdd>+i>net r

~ vs ere eMoluQ+4 m<~ '1NIAQC'.Cpndr4 iona, A lS,O oval~ boas a case in whiz/ H VRC <a~

loaf. T4ig c~ was. evalua& usig~u~w4r co&'~iohs R0 Br~K ~cd pter n+

7 hesc, ca~ex ~ere z~ to defers;nc. the. carin+

ertpat,lt+ A thee'a.4a~ to Je+eeh leo<< A Iso ~~ea~

aazas vu re c ddt gg defer~lr e rl<vJ kl lP e3Ad teola+ion eegow+e w't+h enough onarSin abotre cl /O<g 0 F HVRl- inciden+ +o avo d a Fa l>e IGolakon of 7 /7< MQZV S,

SUBJECT IDENTIFIER PAGE II Gilbert/Commonwealth Srr-r)~ LFr)/4CP u:. OF REVe 0 ENOINEEAS/CONSULTANTS MICROFILMED PAGES 2 CALCULATION ORIGINATOR Ci 5 DATE. Q-'2'I-~O

~IEAI/I TI/h4viI VoivnE': l/c;ONI I/oLI/ng 1$ OP,TrlltuE;0 p"RoM f2Erz"G.;I<X 2,I, (SEE APPF'~Dl~ 9 Q~, I)

RO) IlC.F~T /gory UO~Vng +/E'Sg POOD L)OI-LF/4ES f1fiE SET /1T /2/ LI" 0 E' VOLL)nE, (IX/O F

rr') ~IIFpl CO/PI RF'FQ TCP TIIF STFPrl 7'0/tlNfI. VILLI//4E. T)415 FILI-LILwbS PI>E eb/ILE, 7 E/4B PE L+qtvE ))UMIAK I TY TQ l2enrtl/4 coh4t FlruM 2 h4 I I I Fbg pig I-. F-'u g F ALL P,QQhnI< QI2F R'5SVnl=Q TV /36 F) j Flh4 Ih)l I/Al PI2E5%VITF QP I I. I PSI Fl, Zh4nlr L Ye+Ibe7.FITvlLK: QQL2Mcb Qg E c FT Q7" 7 IIFlt2 f<AxltwvPL QF5l(A/

7 F/r)P5 f 4/l2. SVn/4F't2CO%i)tT II/n FIIIn 7 F/rl/2.

PIN I/4 VM DE s ICeN TEg pc re, 4)lnTq t2 coQQIt& w'K.

( EC AvF/4DIx A, F c, I 3,) lL() I /IE oL/Tsb/)r. r)IR 75/'P 7rl)4F.A) F)s, &3'r (sUHAlER) rv n 26"r (I t~FIc..g IZ2 gE;FRF~<<2.IO. A~ RI/FRFIC,E. QOTDQOl RII2

-DF slGN 7F/4/ /-I7F4IVEEc. or 1Z.Q 'F fOE TF D/4IA>CD QT A~ INDE c PEtbll Cl ILCVLRT/>nJ.

( I2 . f I nalJcr I1. P FIF -02el) Til Fat Qtlrotolb .I Fl Fa PQ Ie)CFT F) F P~C T TIIF- STE'ANI TI/<<= I- Fl ItiFIL'/5IS,

+MD F)Q.Q I/eICL.VOF N PQA (MFQQIA>l<GII ONLY.

FEhb'Abdal TIiE POLbi>>vz IIUMIDITT or- >>F. STFnM7u~NEL tw FVLI/ D t/5)ting 7 tip CQQLI&(j QQIL LPIIVI+Ca Alg 'TEI4/

r) Decl'5, 7/IE / F/IVI c. rlIFE 7EOT Is 67'F PP/

5'5 F ~~ (+( EI PCe 3), USI/eICF TIII5, 'pleCII/IpGrg F)II2 TFAtP FIIF igl7 I/)L PELqllt/g II4/IltDnv OF TIIE 51 Et'IM T++//E L IS CFILC.VL/lTF5> 70 GE i (% (EVF'>6 >)

I /% (>I4TEE). AI-5Cb T/IC I2FLFl7/VE )III/4/0/TY 0<

5vP/Pc,IF /gl2 I g FL)ge> gL/ I+ E $ 0 "let (~E E 9 I>PF~F>>X E )

GAI-446 7-84 PROPRIETARYINFORMATIONOFGILBERT/COMMONWEALTH - FORINTERNALUSEONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

~ 4 4n" tel

SUBJECT IOENTIFIER PAGE Gilbert/Oemmeewealth SnFitA LEAK CRL4.. TI/RQIIVF I LOC,. 0- ~i' I-II-I8 IZOF REVe 0 ENGINEERS/CONSULTANTS MICROFILMEO PAGES 2 CALCULATIOH ORIGINATOR CF3 OATE 8 -EP't-'lO POO )l g IC O'T:

7 IILh VALUE IS NO LOS+6 't Lt+F- ~

HOOFLI~C7I/FZri~az R~ REF.ITerlgi'/ILLF OF IO FT I PLQE'D IEt4 7I/F %06/Ie. I/IS, I//ILus'IRS NO EFFEC7 QM 7//P CRLC-Ltl-FIT ION Al TIIOLIGH/ M/IF/ZE TtlE VOLUND OF 7 HE STEII H Tl/hlAIf'I IS CAl C VLFI TF Lt/ 'TII g Q(,T()N fZOQ>

Hf//.In /5 V Swig.

LI. 2 m AihID LEAK E PFI'T I4 DRT GQTH TtIE SVPPLV A~D FA'tl/IQST: PAIZFLOWS HPE 4 't L 't S40mm I ~ APPI=~QZ 0/ /6. 2. TIZRWSFEIZ AI7 FQ,0M Tile TEAR 7L/Nt46'L 'TO TIIE. C'4lt'IIIFV5E(Z REER I9 Q g~ NOTE>i. SINCE QIRFLO~ QfiL~CE RCE'-EPT/I Pl LI TY /S -+ IO % rlL I OF 7///- AI/FC.m IZ ATE S IIAI/E KFN IttII'<AND IQ% r Ii/CSE AQ JUST/T P'PhoT I/f)LVE5 FISC SII~ Iht I N PFII/ENTIIESLP.

(5th RPPtee>a Ii Pc'), gohr FetpG reV. C'a foP addikionaI lrhfoEerapion.

LERNER~~ PATH DATFI: SI~C,Z TtIE DOm~STQ.VFin EI 0 OF V.IIS TVEGI~E BVILIOIM~ STEAM TLIEhIHEL I5 OPI..PhS 70 TIIE TVQ.BI~P l3VIQ)l~ CO~QENSEIZ FIEFR QLI OTHFIZ.

I LEFIKFICZ oFTt4Z RIZE CQmSIOLP/ZEO NfCLICII3LE.

t e

h

(.%Et- 8 'SatVMIP TiOH l2. )

FLUf SHFIl-L oPFthilihiiwQ f <<T ftht 7ttE Lhl+LL 5 0F 7/IE'TEA/vl TVNAIEL. FOLIIL OF 7//&FIVE / OCFIT5 ft /ILO<G CQt, / IPhIE. H i /rolling H EnPTY'Eht 70 F} QLINJ- OuT IZd(OM. 7IIE FIFTH OPEmlaC FErVS HLO~ Cut ~

Qtt)f) l5, Fl QQLI~FIY lthJTCE FI )>IZQ SSVRE REkfloIM PIE4EI1. TNP OPEhelrhroottott nv PtevaTIUAl 7/4 ~

( EEa ASoLIHPT IG~ 7)

GAI-446 7-84 PROPRIETARYINFORMATIONOFGILBERT/COMMONWEALTH - FORINTERNALUSEONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

p pat. Form 2454 (10t83)

Cat, 497340 1 Dept. PENNSYLVANIAPOWER & LIGHT COMPANY ER No.

Dere 2-ie reise CALCULATION SHEET Designed by ~Riy pROJECT Ca Sht. No. ~I of Approved by T

~OS r uC'AQ g r r aP 4r T'ne 'R+ia)

<~eddy a4a+e Oi~e = < K hre). The 'ad bl 'an)a le K ~=-a: 4~~+ >der~ Evatu8eJ u~~ +pe

~g'l i Il

~ I 0

L 0

f<<

lh

SUBJECT I 0 EN T IF IER PAGE STEAn LCAIC CAI.C 7C/@PILI C l LDCb. N ~4~ Oj-IS Gilbert/Ge mme n wee I tb OF REV 0 ENGINEERS/CONSUI.TANTS MI C R 0 F I L ME 0 PAGES 2 j CALCULATION ORIGINATOR C F 'T DATE Q-N. lo A'Env. Lon lcm-/=I IIEET LOFIO TYPE: ll!E. ~PC OF //E'RT I.OAQ IN TIIC 4)AS IN<7ifxCD ggaC 7//F. fOI//pC ~eC QNJPLS.

~TYP DESCIZI PTION LIC I4TIMC 3 I /4~ II'C/Ir PIPI mC; 8 ~IS . AECIIII !C/L K~V ~

QTvj IIP/If ATE ZNPOT 'HE I4I'fl T', I~ FITF I W PV T'l~ I4, / II(~ fol~

Tll& IbISSOC:I/G/TED HG/4T LO&i0.

T~IE VRLVE:5 FOR PIF. II/-/T LOAD I P~ I,ARE Fo>~rl F<o~ I~Ppp rc.e.ucz 2. l ~, t olg 7 I./<

IMPvT'FYLVE, fOQ, PIIQ 7-YPP. E IIP'fiT C.OAb S EE r

RPPE/O'Dig Q / /YIOTF (I). FOfZ. TYPE'S g l 9 IIEFIT Lop/p rlaTq SEE. Appfngl/4 0 .

ROTE: 7/IE lj'F/lT /~POT BEFIT'E, FoQ TYPE ~ IIF/IT LOFIOS PiQ t IhhPV T FlS Ie I ttl5 OIQECl S COT'TFI> TO CPTW~ SPEC.IFIC. PIPI~ DA>R 70 oc1%Q.I4i~c IIFfjT LQFIos.(&E'ppa'Noix C).

OSYA<w R~ Ifel 11 IAL STEADY- ST(i TF CO~rIIT IQA I Q PIKELLA<EO4IS IICAT LOB D PIDOITi3 Tco rIIE UTAH TVHWKL. IHls Lof4Q SE'QV E5, Tc/ /'OI/mTEA - ftFILAINCC ALL OTIIEQ IN I TIRL

>I F f4T t.O nO 5 err rlas. Rc RO. This MLS'.FLLAI4E<VS II Ffl I.OFI 5 Ot'I, /'l IS hOOFLI RS, TYPC GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

'l~ 4 ~

% =e ~

1

SUBJECT IOENTIF IER PAGE Gilbert/Commonwealth ~=gg Ls I'g CrILC 7LIZQIAIF: LLC/g f1 C LQ - CO@ Q /q OF R EV. 0 ENGINEEASTCONSULTANTS MI C R 0 F I L ME 0 PAGES CALCULATION ORIGINATOR ( F 3 OATE 8-2~I.AO IfF.nT Z~TUT PmC CO T>

~o~iFIP ~EE L Ec'TQ CoLTI 'PIPF RwQ EQulPrlr~T Ihl - K, 7 A o - . E FbPP?OI -" .a l-III C,h LC.L/LnT/OW. TtIE oflSIS l=OIE.

FIPP+op+H Ig FQQ&Q) I ~ S EC.TIVE I, 3 C/F PI f L CALC.uLFITIC)W H. SI QOC. (SLC Q ~t'yMI>> I t/> I.I ~O)

~o-,

'I.r CLED QI'ILY PIP+ COITII FI P/ Ir ~ I f, nPF/r rITVI? G' T?.ErI?r.rr 1 //A'r4 QOQhh PFI PI PhTVCL E IS CO~'SIQFI> l O I/nl rII F QhkCVI RT IC/hJ. Pl PIPC Mid I Fix ovT'IoE GIANT iro OF gf -

T)/rim TMU Ilocilrs,

&E CT E'h

+IIP C. 04 7Ilr QV I .

tII ~ Vlf)~ElFP rIF .rIIE'Ib I&E lh ylang'tg pr?O~ pf'.,rr ia r~c r- 2.l.

PIPr- Z0 7tt f +~IIF'QOLE QV/" QEk I 8 I i've)% /H'll:fr//E~CE.

2.IS. Faun g///s q iiro chai/<spoeol~)c. OSTrl Sznuo/boo

+~ ULlIT IO W QQ 'II I f

vsf D 'To oL/T Io <

8 C7~TFIIIog Q r/MD TIId'~WE 9 PIIlM G '7I 7 t?o~

/4

% EF'Ekt=.

Q<nrncTr Q, oF T,IIE 'I< vier>>l igia Ac E 2.II>>

+DEFI-~E' PIPE LF %G TH rIIE PIPE I F<GT/4 I$ oibTFIlaEO. FriurT J~erF'?r/vir-2.[,

>Freya~

~n GSIV TY 7i/E Frll "-iviTI Ig QPTEll~FD FT?o'

><. (s ~ a ~ ~ c,; . a) 7~rtlI/I/ILCUIuOUCTIt/ITY 6F 7>lf 2/oEULpTiu/tl I SV<RT 'O/" TIIi.I?dfiL. C ONOUCt iI//Ty (I4)

<PTnl~EO ra~~ qE PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY EAI-446 7-S4 THIS IS A PERMANENT RECORD DO NOT DESTROY

SUBJECT IOENTIFIER PAGE SrEnn LFOI( CFILI", I L/I2<IAJ< ~<0~

Gilbert/Cemmeeweeltb OF REV 0 ENGINEEAS/CONSULTANTS MICROFILMED PAGES 2$

CALCULATION ORIGINATOR CF Y OATE 9.21.90 Pl&WG Dnltbt XMC'O r (CO "JT'0)

PIPZ Fi uIO 7ZVPE/2FITLIIZE I III'OYAL-OPEIZFITl<Gt FLUID TF/4P+I2hTVAIt I 5 OiIbT AINE i) F Qg/et /ZEFE/ZC "i4-r= Z. I 2.

1 Lulg 7IlFI5= ~ TilE F -'/Ib I"I(AQ f IE Q P 'TEIII lE '4 I- I/IO/4 I2EFE/ZEAL-6 2.l Z. I II/I< E I I< Dsri~cLJ p5, ~rFI7M gi/nvol2) I plNQ pltn r > I( i)..rl<gig FI> AMITIE.Q.

/ LIQVI:.). C~EE i

Flptp~ox 8 /:o,z nL~ Ppt~c IOrvn)

I 5 WZOI EIT~ rpiZ 7k II',K. SI.P I S SEE HAPP/ AIOlgt I QO~g/ZFFF/ZFAE.E. LI'7/AA aF goo~ gun,r4 caw I IIICxwC SS: +IIK 7 >IICK~ESS OP 'T//8 SLFIQ lh Ol3TFIINE LI FROM RE F EQ.ENCE 2. I .

7/IE FII2Fij OF 77/E 5LFIIbr IS OQTAIt4fQ F tZOM Q,EFFIZFAJC,E Q,I, CENTER) ling ~QLL DIFIEAJSIQ&g QQF VS,F Q +0 NE<SVaC G-FIB AIZt=/4 7//F~n~ COb4DucTiv n.y: THE TIIF/7nAL COMPVC-TWITY OF TIIE CONC/ZETA SLFttQS IK OQl Fll ItifIb FQOAA f EFF/2 L ~E, P,Z, BPI>E~Oe Pl, 7aaLC 8 3 7 I: K ""<<E

/ OI2 Til /= SEAt. PL ATE /6 OP TFII/tI E Lb /- QO5 RE FEIZF ~t'g 2,Z,"(~BE API~EWOIX C/ PG 2 I P)

GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

>h~ C 1 '1

~5 1 I V

SUBJECT IDENTIFIER PAGE Gilbert/Gemmeeweelth STCAM LEFIK CnLC 7Vae<<C I~L~C' -Sip)- <0 jd OF REVe 0 ENOINEEIIS/CONSULTANTS MICROFILMEO PAGES 2 CALCULATION ORIGINATOR CFY DATE 8 - Z1-cIO GF~ O ne FOb Ti %trt -. (CobeT'TSQ DENS I T Y '//g r T,) IT y gF FlL'Q~/2 f7j L IRK+ Q<)l

+II F Qf/IP PL +1 g .

E F/II2Pi1 Iai+ 7//$ QF/ETC?i~

ICOIL QI A ~ 5 TFFIM I VPJhJFL. FI2Om QIIF 7VQ IEI Tee

/2VILI IAIE, ~>FFIW Tutu CL lg FOL/ED[> Ie PEFEQEATCE APIif-elQiX + T/lb'IS A'w (M6 ~ ~l IIF >rrV' P 8 2 ~

)

SPEctFIc, /tFAT 7]IE 5I'E'cIFIG /"</IT oF foal.L ~cl?F'rE SI'/IB8 rtIE. 5FOL PLAT E Jtb. FQVItAP ..I ~. I2EF FI2r<<E ~ 2r APPENI?'IX ~, 7FIBLE R.-3, (SE( APITFuf/iYCl PlbC 2 t 6)

EM ISSlv n T +HE ff1I'SS)V ITY CIF fII I COToC.I2GTQ 5I fIPwS, I 5 FOV~b FI?.OM f2C FE CENCE 2 Sj 7FI6/.E 7 I/ <P6,

)Ll-/5-, (SEE'lPPF~T)vc C PG,,5)

(SEE Flr Prrtrote R'oe rrtL St.r G Dntre) i0 IL M- COEFFIC.I eOT DA'TCb VOI?. TIIICK SL.RP G>>

r SL~g Y,pcs, SL~< TVPE IJEFiMTIOP4 I ~LFIS 15 fj I/flTTICAL MALL

~LE'Fb Ib Itt rLOQI2 IrOtTP I?$ 5p/CT'g TIIE CIVIC,E T eT'I rT"NT 3 SC/UFO IS q CEILS~Q LGIIN QE FFCf TU'I rr'rfl'M l>trrrL ~

FILn COE'fF ICIfmTD ALL rILM CoErF ICIF T FoI2 Tub ID4slrlc I )nLLS QI? E QRLC.VLFITELS 'Ib,'f CO~A~, TIIE.

7VZOINTM'UIL' lEG I D ItloT I e C.oNITFIc.l ~ nII fiw ooTsin<

+IIE OVTSIOE FILM COF FF Ioil >Th FOI2 SQ~PIP.'2 AWO WIm TLik FlqFA Nur HCEnrrb.

GAI-446 ?-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

SUBJECT ID ENT I F I ER PAGE ST frt& FlIK Chic.. 7<<BI~F ~LB~ M-Sl 4- OOG OF Gilbert/Ce mme n wealth REV.

ENOINEEAS/CONSULTANTS MICROFILMED PAGES 2 /

CALCULATION ORIGINATOR C FQ DATE 8-29 IQ PIDF PIZZA ne OFT FLiJ ID Pgg z~cgI2F: 7ttB P't.Q Io PgE ~BOOTEE 43I'7 Ill~ 7 IIE PIPE (PODIA)

I'EIZ aVFFIZr~( - 2.12.

/OTAL- NA.S I-LO~ EXITI~C THE, Hill~ STFnM Pip+ /FLAK, (

i Lal4g tIIR) IS CQLEOLtlIEII FIS FOLLOWER.

2 5'P4 MAT'ER QQLPUFILflVi Sly)H LFRt( IOI5pstv/5Y5"F IeAI l7 / I "1

/HI% X 7r+Q iG<L ~ 63 /IIS 8 O?IQP~

ping, L6tng

/HiZ O I OQ GPrl MhjfQ. FQV II/fILFNT 'Slg gt1 LEAK, IOISF'4in/5'l5'F f 0 /t(a Q I QQQ /IIR Fao~ 6F STfRH ~FII3LESI +vl~TII QI0(TIVE, I I I'I P IOI5 PSIFI /5'll P, sr 31 Ug = .OLID LIS'I'I 2 Go "'".i i>~

TIIF f'-PFRI: QC('IRS FIT f =0. 5 IIIZS. TIIIS ItILLDLOQ 7 llc lzoctw Tct IzHAc.I4 EQQ.tILIEIUH PgEFotzE THF- I-EAK I'8 IttI'TIFITFO 7& FILL POQM MoiOE LSl 7 IIK LYRIC MesrLO~ IS ALLO~ZO 7O tM<<at4S< LINEnIZ<<

LlIr 1 FI20m 0 /lHZ TO IrS Hhrtr V~ Vnc.Le OVF a.

ttas.

SAI-446 r 84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

a. *a

-l 4

  • I

'i~

, ~

q,7 la k

+4

Gilbert/Commonwealth 5r~

REV.

Lme MLE.-TIIaeWa 8 0

Pf-5t Q-d08 ENGINEERS/CONSULTANTS M I C R 0 F I L ME 0 PAGEE 2'/

CALCULATION ORIGIIIATOR OAT F. 0 /iivI - gO ZmLluS ~Ale L.05/Ohl

<e [vooiale. 4ke. 4'vuiooua4)oc fi /es (in yiapkcal an J y,

QIloolinoI ixicIes

~,.I4~~ y ~ 4 > 4i.c .I.ling ~k ~ ~-el J.l ~J,A,~s SAAJ l l~:

l) 25 gpyp apaicv uivaleiol sleaioi ID (svoiiucr) z) 25 opIiio iu r uiv le oAaiio lea/ (iuiw4 )

s) /cd c/Piol lva r eguiualeii7 sfeaiio led (blinder)

CorrAIo ooibou7 r each dj 48. 4W caseS Clio )c uiio as AT'raclIMealT5 i ZZI Z i lees ueg/. Each /ou rovi Jes Ja iii~1 auool pe rioJic xesulk P vogllovl a suiniuavoI 4c Z4 g iIovi>>

e Moiea sac'age

. Ieco For addi+ion lo I ~%or~+ o~.

<7l..i ski.lk>, 4 l-~ ~ (=288/) ~<<

(Z-2/I

//lJ> sW 7. l leJ af w-a a lea ~aoIc, 8 u /alia~ Alas iuo ale p/m area (4 < p p /Ii aiv g Ju=

gc gap~~ l, 4 v sc). s~

~,

25+'on vJueag>>

4s a ll ~

.v,dl. (c9.; l~4p. a s J g zxio ~

values I xio ) auc/ ke 4e f icP',

iooo)ii viol

<.5 re ooliue e iuaxiiouioo j~)

o Perooaoilile s

4,J

~oioafs'

~ /+ g~

A@ilaiial ao us 4iioie. c rves f r a///rode,/iilg

~e 'oe

$e

'w8V84 pg~8a accoiiip/islie J $~

coseI cao c/

jnueJ variagooI

/~ &C.

g dos4

, alovlc/ incurreJ PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

PPal Form 2454 (10/83>

Cat, 497340i Dept. PENNSYLVANIAPOWER & LIGHT COMPANY ER No.

Date ~2- 199/ CALCULATION SHEET Designed by ~4U PROJECT ~le. Sht. No. ~l of ~2 Approved by 7 I appendix F ) +he p<gi l4 +or 4h/ >QJQQQ

/Dig/ /50 gp~ ~rais r e ~ttieeien+ seas )mK (5TP) ert aho<n The. +e~pl mture, pro-'it~ appar in bO&h tabular and g~ph'ical for~. X~ a&i+;on 4o 4hz.

+Ra loe5 of HURD corn io also pt ~nb~

The- lope alee.< for M~ caw~ are, showa i< ~pp nd o G and +< CO~RP ou+puW

<PPCQM 0A ~ic.rof)c.ht ard a NuM~ry can fOund In Apped x H.

TURB BLDG STM TUNNEL EVALUATION (25 GPM EQUIV STM LEAK/SUMMER) 155 150 145 (3

140 LLI I

135 130 125 120 10 15 20 25 TIME (HRS)

0 I C

TURB BLDG STM TUNNEL EVALUATION (25 GPM EQUIV STM LEAK/WINTER)

NIAl ER EQVlV ~ Pg coNDn lOQS q2gg )J~/g 150 140 C3 130 l Ca=.g CL 120 h3 110 O 10 15 20 25 0 TIME (HRS)

II ~

~ ~ 8

) ~ ~0 I~

~ ~

~ ~ "f~

I II I

'a~

'r 0

J~

TURB BLDG STM TUN NEL EVALUATION (25 GPM EQUIV STM LEAK/SUMMER)

TEMPERATURE (DEG F)

OM>> TIME ROOM>> ROOMs ROOM>> ROOM>> ROOMs ROOM>> ROOM>> ROOMs ROOM>> ROOMs ROOMs ROOMs ROOM>> ROOM>>

(HR) 1 0.000 120.00

0. 100 '120.00 0.200 120.00 0.300 120. 01 0.400 120.00 0.500 120.00 0.550 134.97 0.600 139. 17 0.700 142. 62 0.800 144. 14 0.900 I45.87 1.000 146. 33
1. 500 l47. 95 2.000 148. 60 2.500 148. 36 3.000 148. 88 3.500 149.07 4.000 149.23 4.500 'l49.33 5.000 149. 21 5.500 149. 36 6.000 149. 39 6.500 149.17 7.000 149.48 7.500 149.64 8.000 149.55 9.000 149.69 10.000 149.44 11.000 149.60 12.000 149.77 13.000 149. 60 14.000 149.75 15.000 149. 76 16.000 149.73 17.000 149. 45 18.000 149. 80 19.000 149.80 20.000 149.82
21. 000 150.00 22.000 149. 80 23.000 150.20 24.000 149. 86

~ 0

jcK TURB BLDG STM TUNNEL EVALUATION (25 GPM EQUI V STM LEAK/WINTER) ~ ~+K J~ w TEMPERATURE (DEG F)

I kv 2 ~ H/~ I ROOM>> ROOM>> ROOM>> ROOM>> ROOM>> ROOM>> ROOM>> ROOM>> ROOM>> ROOM>> ROOM>>

OM>> TIME ROOM>> ROOM>> ROOMs (HR) 1 0.000 111.00

0. 100 111.00 0.200 \ 'I1.00 0.300 111. 00 0.400 111.00 0.500 111. 00 0.550 127. 22 0.600 133. 03 0.700 136. 52 0.800 137. 69 0.900 138.68 1.000 139. 69 1.500 142.63 2.000 144. 67 F 500 145.94 3.000 'I46.51 3.500 146. 76 4.000 146. 98 4.500 147. 10 5.000 147. 23 5.500 147. 36 6.000 147.50 6.500 147.45 7.000 147.50 7.500 148. 27 8.000 147. 56 9.000 147. 63 10.000 11.000 147. 68 147. 79 C-p 12.000 147. 84 13.000 147. 67 14.000 147.86 15.000 147.93 16.000 147. 95 17.000 147.78 18.000 148.05 19.000 147.8E, 20.000 148. 09
21. 000 148 09 22.000 148. 12 23.000 148. 16 24.000 148 ~ 15

JCIC TURB BLDG STM TUN NEL EVALUATION(100 GPM EQUIV STM LEAK/WINTER) ~~> + ~ ~+ ~(< I/5(

TEMPERATURE (DEG F).

OMt TIME ROOMP ROOMt ROOMt ROOMt ROOMt ROOMt ROOMt ROOMt ROOMt ROOMt ROOMt ROOMt ROOM>> ROOMt (HR) 1 0.000 111.00

0. 100 111.00
0. 200 111.00 0.300 111.01 0.400 11'1.01 0.500 111.01 0.550 167. 'l4 0.600 179. 14 0.700 188.43 0.800 189.88 0.900 190.62 1.000 191. 15
1. 500 191. 75 2.000 192.04 2.500 192.25 3.000 192.29 3.500 192.44 4.000 192.45 4.500 192.58 5.000 192. 5'I 5.500 192.62 6.000 192.72 6.500 192. 78 7.000 192. 57 7.500 192. 60 8.000 192. 68 9.000 192. 69

'I0.000 192. 69 11.000 192. 35 12.000 192.71 13.000 192.72 14.000 192. 70 15.000 192.70 16.000 192. 74 17.000 192. 66 18.000 192. 80 19.000 192.88 20.000 192.75

21. 000 '192.80 22.000 192. 74 23.000 '92 84 24.000 lo2 84

'I ~

I

SUBJECT I 0 ENTIF IER PAGE Gilbert/Commonwealth P<OZLC~ F'~OI'nL M-SLO-oog I OF REV 0 ENGINEERS/CONSULTANTS MICROFILMEO PAGES CALCULATION ORIGINATOR C F 3 DATE TTRCHPENT GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

Lt

~'

)

iPg

'Qr, lp j K E

GCf013A Page 2 of 5 PPEL NUCLEAR SERVICES PROJECT TASK SCOPE DOCUMENT SERVICES RELEASE NO. 0-27424-4/GC013A Steam Leak Detection Temperature Analysis for Turbine Bldg. Hain Steamline Tunnel E Validation of Inputs for Reactor Bldg. Hain Steamline Tunnel.

A. ~Sco e Prepare a formal temperature response calculation for the Turbine Building (TB) Main Steamline Tunnel using the Compartment Transient Temperature Analysis Program (COTTAP). Prepare design inputs for the Reactor Building (RB) Main Steamline Tunnel as a means of validating the inputs for the existing PPEL calculation. This work supports the PPEL effort to evaluate leak detection setpoints for various systems which interface with the reactor coolant pressure boundary.

TASKS Specific activities to be performed include the following:

l. Identify and obtain pertinent heat source and heat sink data from original PPEL source design documents such as piping and structural drawings for the Turbine Building and Reactor Building Hain Steamline Tunnel areas.
2. Perform calculations, as necessary, to determine analysis input parameters such as surface area, piping lengths, and ventilation flow rates.
3. Tabulate the data in the form of design inputs for use in performing COTTAP analysis.
4. Identify appropriate assumptions which apply to both the Turbine Building and Reactor Building Steamline Tunnel analyses.
5. Submit the design inputs and assumptions for the RB Hain Steamline Tunnel to PPEL for use in validating the inputs for the existing PPEL calculation.
6. Utilizing the design inputs developed for the TB Main Steamline Tunnel area, perform the COTTAP analysis for this area including program data entry and execution.

I, A'g*

1$

GCf013A Page 3 of 6 B.

1. All necessary drawings, calculations and supporting documentation will be readily retrievable from PP8L.
2. The analysis will be performed for the plant normal condition (full-power).
3. PPLL will perform the comparison between the G/C prepared Reactor Building Steamline Tunnel design inputs against the previous PPEL generated COTTAP analyses.
4. The scope of this work is safety - related and the Huclear guality Assurance Program applies. Calculations will be performed in accordance with the requirements of PPEL procedure EPM-RA-216.
5. Access to PPEL computer facilities will be arranged for G/C use.
6. Detailed analysis of the cooling coil performance characteristics of the R.B. steamline tunnel cooling system is not within this scope of work.
7. For the T.B. Steamline Tunnel Analysis:

a) T.B. Steam Tunnel will be modeled as a single volume.

b) Adjoining room with leakage flow paths to the TBST will not be modeled as separate volumes.

c)'-..Main Steam Leak (25 gpm), Summer/Winter (Max/Min) conditions will

.be run on COTTAP>f d) Engineering judgment will be used to approximate the large leakage from the T.B. Steam Tunnel to the Turbine Building.

Parametric studies concerning this leaka'ge path will not be performed at this time.

C.~RA d I

1. All applicable drawings for the R.B. and T.B. Steamline Tunnel.
2. R.B. and T.B. Steamline Tunnel Bechtel design calculations.
3. Specification M-199, "Piping Class Sheets, Line Index and Standards"

GCf013A Pageos ofS D. Deliverables

1. Verified package for the Reactor Building Steamline Tunnel design inputs (walls, piping, ventilation, etc.)
2. Verified package containing the Turbine Building Steamline Tunnel design inputs and G/C performed COTTAP analysis.

E. Schedule The work effort was started on August 7, 1990. Completion of the G/C scope of work is scheduled for September 14, 1990. The following milestones are established:

~ Data Gathering Complete 08-28-90

~ T.B. COTTAP Analysis Begin 08-29-90

~ Issue Calculation Package for R.B. 09-05-90 o Issue Calculation Package for T.B. 09-14-90 Scheduled Meetin s:

At PPKL August 30, September 6, September 19 At G/C August 21 F. MANHOURS

1. Manhours St. Time Hours TARGET MAXIMUM Mechanical Engineering 409 481 Mechanical Design 140 160 Applied Eng. Analysis 133 155 Project Management/Admin. 68 80 TOTAL THIS CHANGE 750 876 INITIAL SCOP ING EFFORT 45 60 TOTAL TASK EFFORT 795 936

GCf013A Page g of 5

2. Key Personnel Consultant's Project Manager: J. loannidi Additional Key personnel: J. Holton, Task Engineer P. Witman, Analytical Engineer
3. Overall Schedule START: August 7," 1990 COMPLETE: September 14, 1990
4. Travel Expenses 12 Trips to NPE Fifteen (15) Mandays
5. Manloading (Estimated MH per month)

~Au ~Se t.

Mechanical Engineering 312 97 Mechanical Oesign 106 34 Applied Eng. Analysis 100 33 Project Management/Admin. 34 34 TOTAL 552 198

SUBJECT IDENTIFIER PAGE

+UIZQ/A//= ~I/-L/I~& SLAP OAT'H g-SLY- 089 I Gilbert/Commonwealth OF REVe 0 ENGINEERS/CONSULTANTS M I C R 0 F I L ME D PAGES 20 CALCULATION ORIGINATOR QF J DATE Q 2 I'Q PROPRIETARYINFORMATIONOFGILBERT/COMMONWEALTH - FORINTERNALUSEONLY GAI 446 7-84 THIS IS A PERMANENT RECORD DO NOT DESTROY

~e f

33 VOL U~ E C f)CCut l)1iDN OF T tlE ST FFlrl VOH33 F l 0

m Ta i~ RL

~pl-UMC CFlCC l.ATCOM N07c;-. Q CT z

z Q Qfi~)N( ~l 1 H PCSPPC.T To 1 +~ y.g O Ill Ax( SUC2.FP C,~ OF Til F h3(iLL c Z n 00 0

= PlS 3'3')(37") +(/35'.2K')(l9') +(2q')(32.5')][l3 g7g) lO C 2

+ 0 X

0 Z V =V3~ V9 g tn 0 ln 0

% r=

~ CD 0 0 7EMl i LR O ( VL Pl gC Rn W 0 l UA l= Cl 0

Cl p)

'n -W' ZK r I 0

Z 02 T= ILo lu 'F 3'l 0

tb l H f" rn 0 I

C.

Q 0 Il r, 0 e C

0 Om Q

QcI z

CO 2p~~e I C~l 3z'4" Q fll rn 0z (n ~ g'lClg'rcviow Q

C .. 0 Pl (p Pl 0

C CP

'D '0 le'3" CI 0 Pn o~

Co 4

Ak 1 d ) 4 &t

D SLFlS FA ~

L l-ATI CIF K1FdM TUNVFL CFICluC~

0 m Q D o 0 2 SWaP Akron TALC.LILATIOPJ:

o B~

iO Z TIIf TFMI fR fl7<IIES LlfgC F'OV~Q 0 I h)Ci, 5PC,7 I() i J 0 0

00 Fr'.

9= A~A, A, q i.<<.i DC~Ig+ gR ~ fOR f64 TVRGl~l PVi'l)IWf iO C 2 2 0z

~0 I

R -A@~

R,'(((.4q')-0~'K(g)j

= (20,33)(3L5') + (IOI')(23') ~ (3(')(II'1') OF TilE FSRfl.

I O 0 En Pi Q.E'R A~ C0rif'lfvATIQH Nf A Gfi~fanL hg r 1% Fi Om AQ.f A flN5) Egi-c.illcnL Rvv~. 0 0 frl DI Pi P= R n R n. Hfdf I-"I 4~ ls p, Mgc.sln~lcflL AQ.> ~. Cl Q 0

% 0 Z 0 ~mn Z K = (li.S')(7') + (I I')(C.5') L DAAmlg( ~iVII +F5i~fCT Tu Q 0f 'Q<LI. r 0 X ZO2 A~ 'l Il.5 m 0

I gr 0X 4 I FMPE(2A QF 0 s G fO 0

T = ~lQ't F si.i l7 2

OmD DeflmluC I O

Oc Tfl = AO ~hi F (Q

l I OI (0 Om tn rz I ~

O 0 c Pi 2G z 3 'ii

&&IREELL V' m L,

IO I/i C

C IC 35 ~II/5- C'6 '

C'

SLAG A<<<I1 CQLCULATIQW F KTERt1 TOMa FLO fLS 0

m

~<OK AQF CALCOLW I N NOYES~: O Cl DI C

0' Z 1 TEI Sn5) 1va<>>>Z Vai ~G Se'c7'io u O

m (20 6')(1~.5') = 27'/. 5- A. f.'t.l, DcsiGM B<<35ss Foi2. 7.llf 7URLI~F-C m I>> 0 0

zCl BVI,+ih)C. QP. T.t!C FURR. P 3

~0 (225')(23') .-~ll'tl3 5 1

fl (2033)(25') pgz @ac e A, 3 A~ <<Ia; Gr~rgfIL Anr~

"3 h aI=

A, i RG qgI f1EC~n~lCOL A~eO= 0

~ CD = (39 )(23 ) = 8 "1 I. QQQLI) N G LI I' 'H QL2 SL~E CT T 0 (L Qt 4JI)LLS. 0 0 3 rII %

(

m

<<T'~

R o n' 0 W 0 0

'll Z K =A~~A< I Z0~Z rII

= (5>.S')(ZX') (24'>(i8') + ('19')(>8'4 0 3 m

0 Cb 255 l.5 I+

gO r << eJ 0'

O ~

7 I ZalFIW e Z 0

z Om T< "I /gPoP Om T<<,c rII 0 ln rZ I I

O I 0

C m 2( 3 I

I 6 32 6 A

99 r V

n 20 'f A,

~I-211

)

I l"212 A~

52'6" >,6 I

I I

I

~ ~r-2 a 3< ,(

I I

I R~

~2~ 9 52'5" I

~'~/S l

I-215

~ 'D n

0 C

'D n

6 Eli

~ ->> I ~-Z7 I I2 II

~ - ->I m

m 0~ m CO 4 EL. 0'l9 0

SLAll, Pf'S4 A (I(nwrC>M". Of 7 l 'TFi?I t2 QflLL A COL. Id 0

2m SLPlh AefA CO ATION Ne e g z 0' z 7'eflPCa.nvuae Rl-iCl2r~<< l. I."/.I 0F T<ie A Z

0 F Sgg, 0 0 lO l

g 215 i. n WCClln~iC.~L Aaf i>,

0

>z 0 tn 0 DPRul+C. ~ lTg RESPECT TD 4 Of MAL.('-.

Cl "l g~ nPCi2A tu(2E: 0

% r=

Om 0 0 X Al M Rn T = I'20'F/12 F n 0 (

Pl

% 0 z 0'n rK ZQ~Z Al 0 g7 Pl

+ (9 0 rn% pl 0Z I

Ib (2AWlN 0 0 s 0

Z Om Q

>r oc HM

~m m0

+r 'I 2IS O 7- Zoo 727'I" I

0 C

Pl QPf HlNQ t2'0'/g lie'6'Oel( 0 C

(P Cot ",l6 X.Sl-C<

CO 4

0 Z~~ER.(OQ. DA ~ g (.OL.L(~E m

(

NOT CS: Q

r. O z AL4 SI AQUA P(gs ft(P SAN( 1 rHPEFi'<<(v((F- I5 0 Ir Et Bgj cA A=A, A,-A -R~ 7rIFATr-.o /-'IS ONf liar~. Z Sl 0 0 n

= [(2'I "l+ (zs.s "> (<<ss"I (ss'Ij (is.ssvs')

~

Roc(M<<F(ip! Carta( Q rI(. 4 (c's r.I~~

3 3

I Z 0z tn I

l12I.OS O 7 FrtI' i2FITovc'~( f Fact ice l C

S(cT(v N Ar ~ I. ~'lf > rrF R a 0

"l n Q

% r= F7'EM)~E(2@TV bm BI %

C((

RI=: DECALS<<MG <(T(( RESPECT TO (t, OF LJAu.<<>,

0 0 X

(

n m Ro 7((e 5(.qZ APr 5 Or rr OrFV HAFsl e n g TA m W 0 Z 0 T= IO"I'F/7Z Aae Use occnuse w ((p I-(.~c-s- o rr I-own (=

ZO ( 0 F(T f (1E -AM~ TEHI'FQF( f(ri'gs I."I Z ~+Q. 7!rr'rrt m 0

43VV(-i~ GE mO Ten( (:.((.eiZee GaA(>>C.> s'7 (( 7>><<Pa(.OLJ-gOg I I'RAW(W Roc(N (s Usrr>

D ~

0 I QPfg(wQS z L>

D m I O~z A,

oc Do cn I Ol m

~Z

~'I' I I

>>s'6~ < 3s' >

I + I O 0 m

X 5f CT(o~ Q~

g3.G m

$- 500 I V

'UtJOI<< F (M E il g-2IS B~~-OVT BOO~

<OOFI

'(I '(I QPEV 0 n fla<n m

0~ m

<<0 s

X ~ A'1F<ZIOR k)AI-I RT< CQI ~ LINE Lb ~Cnl- PiA I C 0

2m 5 I A8 Alai >> CFI< CVcnTIOW 4 TC. Q 0

z R,OOW I- "> <I I 70F AFAR'TOIc L VII-Qlr<C- O

= '<BZ.Q r~' C Z0 n Q = (K8 X.r<)(IZ.SCZG ) STFAH TV<NI I A<7lt 7I<F 7fP<i+FQi<lluaC <41 0 0 P. 2 l30 F /II5 < ~

g P 2 Zz tn I

0 PQA~IlVQ 4<I7H g fgPggT 70 't QP ~ flLlQ. Z (n g~ SEC'i <>i<<<D<~ A/ PQ /g FOG Z <LW7l:ig II<

% I=

b m GNP E'R.Ar VIZl:: TFNP. 0 0 X n C

>o

% 0 n

Z 0 ZK I= 13.0 /II5 i 0 rX 4 n (I< ~

Z0 i

O I ~ II 0 I 0 I OF2A~i~

0 z I ~

Om3)

Q 257 23.6 -l

~ I I <<j I ci< II Om n) 0 ln ~z

)8'6" >

(

O 0 C

3 J.- 300 r

Ir<

C OZI EC.Tl&N 0

n I

0~

Ol 4

e TM<l: cLIOC'L 'MAC.CT COL . 2G.1 0

m m Cl

~I AS ARE'A CALCUI.A1 IQ W O n O I m C;3C00 A EC-EC TltlChC- QOOK, an Ic (Omah I Z

0 8 = (2O ~Z')(I>.r6ZS') = 25< 'IO p-,< OQAWl~~ L) fl H PGSih r 70 4 Of VOI.I.S. 0 0

00 TE Q>> I= gl +1 VlC, C. )gg, y;, ~,: q. /.l.l. I O

2 2

O

~I 0 oF T II+ FM A R. Z Cn 0 m O

Cn El r

bm 0 0 X Rn l

T= 80/ IQ" F m Z 0 m

% 0 Z K rX ZO~Z 0 ITI m

H 0 Co ri 0 rn I

Qz C O

0 ~

0 OOFCmtuC 7 Z

Cll Q

Q z~

QcOl I

Q Pl Iii 0 tn ~Z L

Q 0 C

20 'C > 3' ID ~/~"

Q-Boo g- 3oo r Cl P l2. 4 /g 0

0 Co 1 lq 6 n n m

4 -' m 4

CD 4

~ P' I

F I t tW 1

37 Zh37ft~t 4AI.I 13 V COL . Lant= L 0

III 5L5+ ATZg~ Ch).(.gt.qTI0 ~ TE'MP Ei? Ag I?, E 5I OT ES' p rv-'Q%> zm 0' 33 z 7FnPEkR>ct11e RI: I <<A.q t ICC . m 0, = (1'35 )(12.5a25') = J6'l.l'1 F Qt c. I ltt< = (3 I')(12,5<Z5') = qadi.9qI-> Tg, = IO'I'/12 F QP<t(t WIC~IAnrR5 0 0 m

Rn0 Oi?RCJIAlt': 4)ITII AESPI:CT 7 O m Z 0

(~'l.5')(I'2.5425') "I~~ "II FT 12D%2' W n

=

+a, = It. QF Wn.i=. 0 X r

ZQZ m

+ 0 0 rII 5 gC Og

'O I 0

De ~1~ 8 0

z Om I O

Zc

'72l'y.,'1 A

Oc tt)

I grII m0 52'6" ( 3'I'<<" IX'O'I," ~i cn cz I +

O I'6" 0 X

SEC:TIQM I

m P

j.-2I 9 ,2 12 $ -2,15 r .2.IS C

C O?

93 93 n n Pn 0 l8 l6 4

0

~rI)I a <<r.~ Cu~. is 2

m Q v'A AL ~o~eS: o p C z tT z Roon X-2I I Is n HecIIawlcnl QceII A A = ( 'j( . '3 = ~326.< 2. lFMI Ei2+'[VII@ RLI CQI;-n)C.P I g,~f.c/. ( 0P Zf- c B~

Z o

0 nO I

lfFS. 0 Po c 3 O

+Z

~0 3 DQ.nwINg ~IVII l2GSPEC.T" 'TO g 0~ 43k'ILI.S. 2 TEMPLE 9-PjTVQEI r=

bm IlI X 0 0 3 Rn T- 12.&" F /l2,"I-- 0 m

O

% 0 Z 0 0 Z K I=

p.O Ill K 0 3 ZOZ m I

0 III

~0 rn I

Oz ~r 0 ~ 0 0

z anwI~C 9, O Ill Oz

/8 0

I Ch 2d-~

Om rn 0 cn Z I +

O c 0 l?1 l/~,

II m X

j-2lg 7-300 m V

0 G'>

SI'.C. T IO V lI 0 0 m ~m G

00 D

+0

, ~

~ ~

t)

ZMTE'II.IOli QAI.I. Q t 01.. LIAME 0

m Pt I a. CAI.C.V LlIVI0M N~T==-: n AI2 n Ca lITeg /'I OrCV i

~n z A 0 Mop SLAQ, c Ztl FI 0 RQQA 2- 2 II IS q Ht CHA~II't, BI?<IL 0

I Zz // X tn 0

~. TFMrf Q./till/?F 126'FP'ltguCg: SEC.TIOm / /.

Vl TFM r'Ei2.ATUA.E; OF Tris FSRZ 5 r=tD

~

ftl %

~l2Amlr C 4) ITII IZGSiVC T TO Z WTt:<Ctol2 0 0 3 n

Wn 7= l2Q" I=/7z'r- Sv 12f'a<c Qr- L3nt.t. ~ . m Z 0 Q I

% 0 9 n ZK 0 3 r +h.

Z 0Z Pl 0 I (ATE rI 5C rII (g5 Og r Zr 0 s DA.ALJIHQ I CI +I 0

z Om 0

zt=t Om rII 0 O

n ~z

~~

C I 01 I +

'I27 g 66".~ 32 0

z I

Q ID/g Pl g-2)l V r

0 O

$ -GOO

'll SEC.T Io m 0 Pl Cl m

4 4>>

%@V ~

~ tt 4h

SUBJECT IDENTIFIER PAGE Gilbert/Cemmenweelth Pl i L R~ lOFbaa 7V/4PI/4c M- SLQ. OOB OF REV 0 ENGINEEA8/CONSULTANTS M I C R 0 F I L ME D PAGES 20 CALCULATION ORIGINATOR Qr DATE Q ~

Pj }Q

'QO~ CIZOSS- RrrF IZF~iCE LI+V ImC.

R~~ zg ~ RCmw DE~C.QtPl IO RuII ni~ R'E TQ C S

/ g. 30Q g.P/S ', Sl/IIa4>rI.<

3 "I T- 2IQ

'I- ZIX g- 213 7 Z -2ly/2 I5' 8 2IQ/OItEu Ag/n /T/INg PIT 9 Z-LI ll R,p,

/o C-3OO II 1

7 -2)l TQ l2 HVAC. SuPPI.Y TE GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

~ i D

0 4 AQ RC.ENY R.o u~ /-Sl AP ',DATP,

~ ~

j i j

1 I

h p D 4 I s<<

Z RQQN DEgm7i~P S<n(3 S.ng I

j Gina Ae.ER; Ae.EP DPA~Ing h

<<4<<

0't 0D DEEDA IP.

S<<ZF<<<<I(uj Lzw Q'<<I, 7iPP('.K~ED, Ty pe HIITErclnL C,~iCuI.~~IOUS 1

i (I-V') <<4 \

<<NL)Mf C RS c

I Iz 0 0 0 2.-9' 10 f/ I (z<<jz4'P(se.p4()<<17(zz) ~ <<R<<

2 F 7ZI'F Cop(zcRj r~ fG'f5.;2( O 2

~0 I STA IZMEI.I l (za<<('<<l7 (II <<7(17 (1'I (5) = E405cl7g 5lIy 2 Z Irz 0 N SIITZ 0

% F

- T- II6- 120)  !,F Cil.S)(i) ~,(I~>(4'Q'=-:. j iO E/IQ~e"<I73 72j f11 D F 'I050~/'IIT I 0 0 X Il n I

si r Z

>>< ~O a-,Io5;Vg7 Mn 0

% 0 T-Zl t- ~j)(1~A-- '

I Cl z 0'll I<<l n

Z Ill K E I-=- jot J((',7 sIIT 3 I=

0 I ZOZ lkv 4 I C -l<<IQ5H(,5 S >n I X

I<<l T-ZI Q /72 "F Iz<<lzs)'+(zzsf(zz) = 1 0

Q) c>

i/90.75I g-!I05oop slrr p hBl I

0Z I C7

/'72 0 1 F

)(y>):=, -j I.go 0 I

0 y-Zlq' D

.-6 -'7.-'-=- 12o'oF j cH Z KRI71(u)(<<e71 25'.7.;ZO Om I

7-'2.15 I j Q Z 1

Zc~

oc .7 =-g; 2iS 120'7z .r l)(12.s4425'] = GI5. S4

/08'/7Z e<<Iv

~

I 02 m

1

~

1 I

IO5j972 $ >>r 2 j

r(V rn 0 r-ZIE I ~ 6 'I 5

P.~

'zz 1 F

t.( 9) tf?C.Sj) t (

=

(>(')j

!1lal. O6 4 Shr 3I:

IF O u<< 0. (I .s'(.tr.d I (iz.s's<<j Qm Zt "I Il Qo//V5', F .s)')

X't HfX. k6 I 1 f P<<7 1 I

-/o --vo- "/(
.

<< <<4<<

C-.'zoo= Co~y 255. 'IPO I F 0 1

G Qw g-Zl> l 10~

ji 7Z

'F 8" "r

.L I<9.

1 i1 E;,I'051.6'o>

I siir <<f

/2 Z-'212 12<<R/

s)(<<zj <<55 .5) s4 4

I RO I i I 4

~' A

@\

~l

'e MJ L,

I I

I 0

'0 Dl AC.L MT RQQM SLAI3 DAl'P,.

m p

0' Z

0 SLA Q R~M ZD ZDN 400m DESK+ TEIiP.

S~C)l/

i~i41lk

~} Ilg S no S}-A B TII'Pg 5 A1EPIRL SLF}Q AREA 'lAE F} D}th~imG O o)

DE~mail> TII}COYNESS C a CVLaiiOIIiS HOPLAEQ5 0 0 0 I 0Z

'3 ZING I-2IS }WJ IZ,'F H8" IATE. r (Z9)(lZ.SS2S.) -;- y0 2 2 0 ~0 I I OI 0 0

                                                                    'll l "I    7         g-                                pa                                  -(Se.S')( }2.SG2S')        =                                                            Ct Om                                                                                                   I 0 0   X ilt XI                                                                                                                                                                              n            C Ro0                 7         2-219            }2>/   ) oF      Qz"                                    t (2G) (,l2.5 G 25')     =                                                    0 Z 0 I

I I 0 3: Z 0Z 1=-I05 tOZ SIIr I I)I

         .i6                  Z-2 II            /VZ 0F       O~< <

I (~l:~)(S II1S) = 2P P,.,lS 0 ~0 rti I I I OE ) O e ) Nv'T E'R: 0 1} SUHHE}II TEAPKQ.R'}gPPS: }l~g 7Fl KEN SR%,, cIijq g Z O fll AI ti(,I5')- \ O I O

2) L)iex<R; TE'MP EiI-RTVQFS ARE '(SC. .aN. 7gg sop;).Y,'n)
                                                                          )

TF<pE)',nTo))E oF,'7)IE, 7K'/~E ~C Om pu)).o)r)c,:vt))T)).AT)ok st~))1I ( SUHf&}op 6, 0 API I>06. 81 }}.< Ih)I rii 0 I }

                                                                                                                    .(X SOQ)./5 8ASF..O.O})

ln ~Z l + 5 TIIE WIMTER TEP1PEkAt)QO}= I'

                                                                        .F'DP-:   XI F }ST, N)) 1VN))r.t'L
                                                                                       'r O                          TFrt PP}zhTvRE PATA Fcli2..              7.~tP,    TISs7t   (Sg I-     Ar I~E< C i<   )
                                                                                                                   ~,  I "1 } C,. l'7, k: IC.)                                                 ~0

( )

                    ..f):.Tl/E   TFn PE 'Z   RTI <E 5     FOP-,    C. ~OCP            4   TR KF H        Sa~     '/-S',RIZ .PE ETIO~                                                          I (p  ~
                        '(Szs      A F).e~p)x.Ar;)~r;:            I'}).   ',    )
                                                                                                                       )

I I 4 I)I

                                  ~~vg,2. TFf1'PE'Q,g tORE I 0 E'TH b. 'ee icrab                                                                      ( J-9}Q'. is, 1

S) TjIg }+QiLlj'ImQ, >TFI.".I~ 7 gAJME'g

                                                                                                                                       )

I

                                                                                                                 }

I 8 l7 f l8i Q I SQ5F ii O~, TF~},a(sIl'tvA.g f)P'tR, l=g A. I'7 Il R ging Ig R(~g~y~ig F'I)G r Ql I i I II 0 ~0

                                                                                                                                                                                              ~
                                                                                                        }

I)I I)I cr) 0 l

f A Sf 44 I< y I' I'>

      )

i)) t 't

SSES-PSAR A temperature sensor is provided at the supply system outside air intake plenum which automatically operates the radwaste building chilled water systems (See Subsection 9. 2. 12) . q 4. 4. 1 De sian Basis The turbine buildinq 'heatinq, ventilating, and air conditioning (HVAC) systems have no safety related functions. The turbine building HVAC systems are designed to operate during normal-operation and accomplish the following objectives: a) Provide a supply of filtered and tempered air to all areas of the buildinq b) Maintain ai flow from areas of lesser to areas of greater potential contamination c) Maintain buildinq spaces below the following maximum'emperatures: General Areasj 1044P; Electrical Rooms~ 1044P.> Mechanical Areas 120oP." d) Maintain the building minimum temperature of 40 F e) ."taintain the Tu bine Buildinq except the generator bay area, at a sliqhtly negative pressure to minimize exfiltration to the outside atmosphere . f) Recirculate and cool space air to reduce exhaust volume q) Exhaust air from potentially contaminated spaces through particulate and charcoal filters h) Discharge all exhaust air through the turbine building exhaust vent i) P"ovide coolinq air to the motor qenerator sets Rev. 35, 07/84 9.4-36

l6 2o p~pg ggC j ULATlON SHEET z/28 gn CALC. NO. /~ i REV. NO. ~i D~ OR IG INATOR DATE i CHECKED DATE PROJECT 7<<> ~< //- /g/'ALt /1'/o/ a +8 JOB NO. ~, SUBJECT

                                                                                                               ",,22'-ZI:I j'.64551
            ~gA lr~e cprg                     Ig                  p c,E&          ysunc   p,   i'     P   .e~  88$ C- <7<>-          I  8)-i 8 pF>

4 r ~ 5 I P 5 5EE CALc /74-5 5'h'7Z Corr//c Tlp + Sic~ g$ gg$ 4 ~ y i'aa 'p C fe Q. yp ~f (<f5 / v Ie'+ 8 0 8 CAW I1& 10~ yp (/87$ go cF-< - Ip9 ]ac ~a~ ) = aE': /n op~ 8 - F i.v.-./ol ~ S8" 'P'/ v'/oP hA ~ 7 g 13

                                             / /4 i'/

7/ fN1 C.

                                         /p    /irp       g  +P +    gg     g X+A     $               0 15 CO                                                     /:WfI +1p
         ~   i gg5           g~~       g 8     Kf l3    =     6-I+5 r           OPO     81 i/ >4 19
                                                              +6 n    A "Ih'e
                        .g )SB                                                    4,j
                                          /~g     r  iSQS<

21 C mrs

.23                     4V& 4 g/

24 25

                          ~p,g      iS,      g<<ZW ra               WS   . S'7~>>    ~V ++~           ~v~<,]C                            /s 26 H'SASSY         gl t/;            g Zr p'.~         p. 7 x $ 4- l 8 -       'S,9'75, 475
                                                                  'g 27.

s</~w g~(f~ g475 y/g aP 30

                                      /Pg r /gy halo c,r- ~

32 7i~.+ <oem 33 idPC4uj'Id~ 'H'6 C6i L fiti~i.ii'-~ 7 i1< J2><'>< R S4'uS/+ 4 < ( ) C> L$ Apg g pp,~is~ fp g NrA ~g/ 4/gA gfioN puf (i) cp)L i'5 / sag V gyp p pg MAIS ypv+w6 4 gk]Abc fee-/'iaaf I Sf P 20768 Rev. {6/76) 6066I

TEMPS Q R TSH-IOI00A,B,C,D FROM 5 89TQ8 90 DEGREES F 7f~p SQHMclh +E~P Q t 150 130 110 90 70 5 6 7 8 TSH-10100A 89 9 10 if

                        "+" TSH-10100B f2
                                           !90~
                                            ~

1 2 3 TSH-10100C 4 5 6 7 TSH-10100D 8 SH83-228/328

TEMP R S 2 600ABCD F QM 89T06 90 DEGREES F 120 ioo

           /+, ~-

80 + ~ ~

                                         -~
                                          ~   ~ ~
                                                      ~
                                                        ~

60 5 6 7 8 9 10 H i2 2 3 4 5 6 t 89  ! 90 I TSl+82i-iN600A "+" TSH-B2i-iN6008 TS}+82l-iN600C ~ TSH-821-iN6000 Sl-1B3-2iO/310

rP p V Aa C Ã. pf pk

9.4 AIR CONP1TtnNING, ltFATI NG, CnOLING, AND VFNTILATXON SYSTEMS 9.4.1 CON7ROL ROBIN /AD CONTROL STRUCTURE HVAC SYSTFHS The followinq systems a"e covered under this subsection. a) Control !?oom Floo" Coolinq System h) Computer Boom Floor Coolinq System c) Control Structure HF'V System I) ( >11' <'>l ':tru< t>>t <; I m r <l ~

                                                      >>< y  <>>>t.:i<l<   hi  >,   .'>>i>p) y ".y.;> < m (CSEOA Ss) e)       SGTS     Equipment      Room    HG V    Systems f)       Bat+cry       Rooms   Pxhaust System q)       Smoke       Pemo va 1 Syst  em h)       Access Con+rol and Lah Area Supply Sys+em i)       Lab Fume Hood makeup and Exhaust Systems All   HVAC systems in the control structure are common systems which ar~ shared hy t wo power plant units {U>:it and Unit 2).                   l
9. 4. 1. 1 Desian Basis 9 4. 1,1 1 Control~ R'oom:-Floor Coolina'" Syst<'m: (OV-11 I)

>his y. tern provides ventilation, coolinq, and ccntrol of environmental conditions in the control room and associated areas nn +he 728 .f+ elevation, and in the Technical Support Center on

.h~ 741 ft. elevation of. the control structure.                                  The system is de..iqned to accomplish the following ob electives durinq "normal plant operation as woll as under emerqency conditions:

a)'aintain the space temperature movement for at 75 P' 5~F; to control

              +he     air                      personnel comfort and to ensure                         the operability of control room equipment and instruments under normal and desiqn hasis accident conditions Used     70     e Sv~~<< QC>"~

43LMTCA. loa Cc)MMA.dr ti~~ Rev. 35, 07/R4 4-1

g( FILE G I L B E R T/C 0 M M 0 N W E A L T H IC, 20 OF 2O TELEPHONE AND CONFERENCE MEMORANDUM DA T E Se tember 26, 1990 BY, Charles F ~ Johnson III WORK ORDER NO. TELEPHONE CALL ~x'CONFERENCE WITH . Bradle Rari COMPANY: PP&L - SSES

SUBJECT:

Maximum Desi n 0 erat'em er NOTES, Per our discussion on the avera e maximum desi n tern erature within the turbine buildin it was determined that 120 F the avera e tern erature within the steam tunnel. The reasons the tern erature robes are indicating a higher temperature of 140 F are:

1. The tern erature robes are located in the hottest end of the steam tunnels
2. The tern erature robes are located in a sta nant air mass which has hi her tern erature because of little ventilation.

Therefore there is no justification of using 140 F as the average temperature during COTTAP anal sis. Also throu h our discussion it was found that the ran e of tern erature found throu haut the steam tunnel is 95 F to 155 F. This sup~orts the FSAR's value of an avera e tern erature of 120 Charles F. Johnson, III epics To: D.J. Cardinale - PP&L B. Rarig - PP&L J.C. Knight PP&L J. Holton - G/C M.R. Mjaadvedt - PP&L P. M. Witman - G/C R.A. Vaz uies - PP&L GAI ~ 203 9/84

~ l+P SUBJECT IDENTIFIER PAGE

                                                          '7 Gilbert/Commonwealth        7LIRPI/ttE EVILOI/ted&  t IPIIa/< DFll A OF R EV.        0 ENGINEERS/CONSULTANTS MICROFILMED                                              PAGES CALCULATION              ORIGINATOR     Q+ IrtJ DATE P         N PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH -          FOR INTERNAL USE ONLY              GAI-446 7-84 THIS IS A PERMANENT RECORD                   DO NOT DESTROY

I 0 D OK I I I I F'WAIVE Cl D PlPE T.n. O.D. 'LgS.O.Q L, P4 74F I m O 0 oa8- hlOTE'- n C Z Z 0 jA II I-n 0 zN 2 C 9 2 0z I a88- O ~n /O Z O N r= cf ~ Ol

                                                 /  I I
                                           /g5-a                                                     0  0 X o

R 0 n g CI ZK 0 D88- I gyes

                                                                                                        ? 0         ~m C"

ZQZ /o+ )IIIQ -d 0 I X il Pl 0 I Z88- i OI O C jo 0 yO5 ~x f ~ C 0 z8D- 0 Z gf

    ~

r 0 /I/g fi4 Q7 8~ fll Z 5r Om D aBD- D 0 I

         //5 C

0 I co m a88- OP z En Z

   ~
        /u5 0C I <

z8D- ./ o-/' 0

         //Q    r                                                              -I I

I

                                                                                                                           ?

I I

                  /y z5d                              .78      /PS      ~

p Pl V 0 0

                                    /Sg               .7g                                                  'll            'll n              n d80-                                                                                               Pl CA     0~      m
          //A

~ Y 4

             ~ I~

~ 44 ~ 4~ ~I 4

     ~  I 0'
                  ' ~

w4 ~ 4I ~4 4

D 0 D '.IPlNQ m Q h R n Z O. C5. '7 0F NOTED 0'f hc g.oc . ~gD -r'Z7 -,/ n n 00 5C 2 3 >z0 I 5I 0 0 ~0 5'ED-g I/ 78'7g y-+5 z "l a B Om r= 5 I/

                                           /Pg'4'-0                                                                                 Ol Ct
           /g   7, fE/           8                                                                                  0 0 X

>n n 0 ( m ID Z K JN >- >0 // 5'" >> ! m Z 0 ~C" Q Pl Z 0Z 7, g8'/ g8 /4- 0 .787d'38 .O~4 0 X Pl 0 0 /4 488 . ~x

           $ 0- ISi$58                                      .7g .oa~

z Pl 0 . r&/ 8I Z Om G Oz /D-D, .'78 , 433 Z r~ oc JXS- t'Hg-i'dZ.-',2

                                                                                                               '~                       C z

~ I Ol lll w ITI 0 Z rDZ I" pl- Q ~r<I 0 r4z g/-0 P7 2 0 I Q ~x JQO-rod Z'< /4+ gg-d Pl C') zSV- ~ 0

                                                                                   -z
                                       ~

g3, &oo Q"- o . o34 G I Oo Cr.OD . 9, 741 o9Z 4Pn 'll n n 4 P g9Z Iw>> //-3 Pl Ol 0~ Pl 258' rC/ 5Z. 0 g>War zeal

I Ci

0 D PIPING PI-ITR m Cl ( 0. D. O' Z L (Ft) K 7 'F) F'wPsE oCI III 0D '3RD- Z 0 130 23.00 N/e .13 .03'f /05 g 0 0 2 g I O 0 ~ tn 0 'n a % r=

                  ~N
            ~

0 0 3 Ro n 0 ( ~C Q P. >0 Z 0

                                                                                                                                              .~

ZK )l EHi~& iQA Y FI~O ZNS'QLKTEOh) TtlERHAL C QN~MGTIVITY FOR. 7IIE PIPIT& DRTFI lg r3 nm BI ~ 0 ZO m I I I OE~RI~e C FROM REFERS NC.E $ 2. I AND 0 i$ AC~PFCTIVFL.Q. 0 nr~ Oz TI< O'E geog R NOal~~L 0 s ll OI~E<~'Ti<G CO~DIZiOMQ mQ FLO~ ECI~T' W TtlE P>>E. (SE~ Pl C ~ 8) 0 z I Om O D

                                    ~ 0E    NORrlna. OPt Pnli<G FLOIO TE-HPL=Q A1 Ll2 E    Qlvlll4    Tl'M F II E I ~ LQWEi2 Zr OC TH~w     w+ewnL    ar -:a, RWI <6 Ruad    TEYPFRATUQ.I=,f SO     gtli> piPL l%                              C Z
~                                  NEC   I EC.TEQ.

Om rli 0 II En r+ I g O 0 Z (P m

                                                                                                                                              'V l

C G D 'D n n m

                                                                                                                                              ~   m

l OF 8 ~ memorandum Gilbert/Commonwealth Date: August 24, 1990 To! J. Holton From: J. Shollenberger

Subject:

SSES Piping Operating Temperature Boundary Determination Task No. G/C-013A Listed below are the lines or portion of lines that do have flow in them during normal power operation. Those designated as "All"have flow through them and willbe at their appropriate operating temperature. Those designated as "None" have no flow and should be considered as being at ambient temperature. Portions of lines have their boundaries defined by valves or distance. This information was based on a review of the system P&ID included in the list. Line No. P&ID Portions With Flow Remarks DBB-101 i>I-141 All DBB-102 M-141 All DBB-103 iif-141 All DBB-104 M-141 All DBB-105 i%I-101 Up to Bypass Valves XV10140A, B, C, D, E DBB-129 M-101 All F80 SBB-110 M-101 None EBD-110 is Downstream of HV 10111 E60 EBB-113 M-101 None EBD-113 is Downstream of HV 10109 L60 EBB-114 M-141 All MSIV Inlet Drains EIBD-166 M-102 All Extr. Steam to Steam Seal Evap. H8D-127 M-105 None DBD-101 i%I-106 All 18"8 and 24" 8; 16"8 is not hot

'4 goF 8 MEiiIO to J. Holton August 24, 1990 Page 2 Line Ne. PAID Portions With Flow Remarks GBD-113 M-106 None JRD-12 M-109 All JRD-13 M-109 All JRD-102 M-109 All JRD-103 M-109 All JRD-118 iM-109 All JRD-119 M-109 All JRD-130 i%I-110 All JRD-142 i8-109 All GBD-158 iiI-171 All GBD-258 M-2171 All DBB-108 M-141 All DBB-118 i%I-141 All DBB-120 M-155 iVone DBB-121 i'-141 Only the portion from the main feedwater line out to the valve should be considered as being hot DBD-106 M-105 None GBB-107 M-151 None JBD-185 i%I-141 iVone JRD-133 M-110 All

iVIEiXIOto J. Holton August 24, 1990 Page 3 Line Ne. PAID Portions With Flow Remarks JRD-136 M-110 All DBA-108 M-141 All DLA-103 M-141 DBB-119 M-141 All Assumed attached 5 ft. of 14 in.8 was same temperature as main line Allof the above line number evaluations were based on the inputs identified in the attached work sheets. Shollenberger JS/cvb

'7 Ai g'f wa

   '1 k r   W 4,-

I

  ~   m X'

C>> " 2s 4 P

1 I I

                                                                                                             ~  I
                                                                                                               ~

I

      -fiP$

1 l zu8=+4! r =/rr rj ~l>4 F4~ Z4'7

                                                                                                                          'I      I i/50:!

I I Od I I -@06 P/4 ~~uwP 5 r~

                                                                                                                              !   I  ~l
                                                    ),,'s    ) I   I (7'+               '    s   I    )     gg    s,        ~

r

                                   !       (                 I I                                            s i        I    I    I  j       (

I a-iu>Z/ I  ! rà I I  ! I  ! I I I I! i I I l I p- /l log J'~ I  ! I I I I I  ! Eg-l5o I I I I

                                                                                                           <7id I

I I  ! I I  ! r/VS-rr~~

                     ~+~              ~        ~      ~  I
                                               ~
                                                  !   !  i  I I    !           ~

s I~ ~ ~ ~ ~ ~

                                                                                                                                ~

l.. I I! 'I ~

                                                                     'I   ~    ~ 'I '     ~

I ~ I I ~ I  ! I

                                                                                  ~   I         ~

I I I ~ I

                                                                          ~

I I ~ ~ I

4$ / ~ Nt 'I Ig Sa~'

~ memorandum Gilbert/Commonwealth Date: September 5, 1990 To J. Holton From: J. Shollenberger

Subject:

SSES Piping Operating Temperature Boundary Determination Task No. G/C 013A As a result of discussions with Dave Hunt who is verifying the calculation which used input provided in my August 24, 1990 memo, the following clarifications should be added to the information provided in my previous memo: DBD-101 Add 30"8 to the 18" and 24"8 already listed as hot; the 16"8 is hot from the feedwater pipe to valve HV10569 (approx. 3 ft.) DBB-122 This line is the RWCU system return to the feedwater line and all segments are hot (this item was omitted from my memo list but was included in my draft review list). DBB-119 The 14"8 piping is hot from the feedwater lines back to valves HV155F006 and 155038. The above information should help to interpret the intent of my original review results or provide information that was omitted from it.

                                              . Shollenberger

4

 ~ r V

SUBJECT IOENTIF IER PAGE Gilbert/Commonwealth I ORGltuE BLIII QIgg t QLIPgq TIERS DATR Q-5LQ - OO 8 OF REV 0 ENGINEERS/CONSULTANTS MICROFILMEO PAGES CALCULATION ORIGINATOR C F5 OATE 3- 29.9O PP ENDI X PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY GAI-446 7-84 THIS IS A PERMANENT RECORD DO NOT DESTROY

SUBJECT IDENTIFIER PAGE P( L 5 ATE'A.IAI Pt2l'vIEt2Ti t='j g- S,L.i0-098 2 Gilbert/Commonwealth OF REV 0 ENGINEERS/CONSULTANTS MICROFILMED PAGES CALCULATIOH ORIGINATOR DATE 8-29 9o 8&,'TVQICtL Pi2+VctZTIKQ DF}TR: R,E F E Q,E It>C.ES 0 < ~ ~ 't r 'I 2,2. Sl>EC Sr IC Hrrl r 2.2 CO ~,~.,~ 2.2 E~I~swlrp O.lo 2.S 5-fnI Pl nl T.- (~+>isa~ +TF.E C .-OS% DE~= ITT OSO,Oi /F" 22 ETU/ SPrcirlc. Ily/lr 0 Il /LE-'P 2,2, IT TV/ CDI4IIvc.rlvl) y 3L 20 /I4II-Fr 0 2.2 EIAI<<SIVITV O.78 GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

V lf

                                                                                                                                              ~   Pt          I J It I4 4~

X%K IR

                                                                                                                                            =jl Table A-2 Proper)y Values lor Melals)

I I I'riIpir)iiw n) 20 (') -'I'hrrma I crinduc llvI(y k . 1V/nl

                                                                                                                             ~"
                                                                                                                                                                           ~ '('

I ri, I k, ul'/w I 00"(" 0'(' 00" ( 3IN)'('00'( M)0 (' IOIN I/rra/ ," Lghu'.l/Lg '(')V/ul "(' ~ x Io' I 48" I' ) lair v I vvi 200'('i) I~I, 572 "I: 752" I I I2"I'IN)( ('8)v I. I I I rlluiuinuiil: I I'ui 0 2.707 I I).896 2(4 8.4)8 2 I5 202 2)NI 'I5 'll8 v4 i) Al C 0 I l)ul llunlinl. I I

      ')4-')6l..l-5)!r                                                                       I           i                                                                  )472"I'16

( u. Iran hlg 2.787 j 0.883 6.676 ,' lych IS9 I I8v , l94 Al 8i (8ilunun. I I I eiippcl III'll'ulg), 86.5'r Al. ~ I Iil ('u v 6SI) I 0 8/I7 I37 S 9)1 I I9 I37 l44 I S2 l6l AI.!Si lhluiil). 78-8IVr'l. vo-ver( 8i 2,627 0.854 I 6l 7. I 72 I44 IS7 I 68 17S I78 Al.hlg.!ii. 97'I'l. I I I"I hlg. ILI 8i. i I'I hln 2.707 l 0.89v l77 7.3 I I l75 I 89 "(4 I .I:;III ii.373 l o.l.lo 3S 2.343 '16 9 35.I 33.4 .) I. S 29.8 I Il iin: i I'urn 7.897 l 0.452 7.1 2.014 73 67 S5 40 ,1S 16 SVruugln irun. 7.849, 0.46 Si) I.626 S9 57 36 .13 ,1,1 ,1.1 O.S'rIIOI:I I('u;Iv, . I.5rri); ("u linn v(eel ('~ 0.S'I 7.833 0.465 S4 I 474 52 48 4S 3l 'II) I.o':r'. 7 801 0.473 I. I72 43 40 l(i ll vi) 28 S'I 7.753 0.486 lh 0.970 36 36 .1S ,13 3I 28 i I Nil, Lel v)eel Nl - Iyr'0'I 7 897 I 0.452 73 2.026 7,9.13 t 0.46 l9 0.52(i Cx3

                                                                                                                                                                                                           . e

1 t l r I 4

          ~,;"]$4'   I 1l
                ~  ~

038 Appendix A QF fiREM4E 2.2 Table A.3 Properties of Nonmetalst a, Temperature.. k. P r. m's Substance 'C Wtm 'C ka kJtktt 'C x and heat-resistant tnateriafs m'tructural Asphalt 20-55 0.24-0.26 Brick: Building brick, 20 0.69 0.84 5 1 common Face 1.32 2000 Carborundum brick 600 18.5 1400 I I. I Chrome brick 200 2.32 0.84 9 1 10'3iatomaceous SSQ 2,47 9.8 900 1.99- 7.9 earth. molded and fired 200 0.24 Fireclay brick. burnt 2426'F 870 500 800 0.31 I.Q4 1.07 2000 '.96 I 1100 1.09 Burnt 2642'F 500 1.28 2300 0.96 5.8 800 1.37 1100 1.40 Missouri 200 1.00 0.96 4.0 600 1.47 1400 1.77 Magnesite 200 3.81 1.13 650 2.77 1200 1.90 Cement. portland 0.29 1500 Mortar 23 1.16 Concrete, cinder 23 0.76 Stone. I-2A mix aQ 1.37t 1900-2300 s 0.88~ 8.2-6.8 Glass. window 20 0.78 Iavg) 2700 O.S4 3.4 Corosilicate 30-75 1.09 2200 Plaster. gypsum 20 0.4S 1440 0.84 4.0 Metal lath 20 0.47 Wood lath nQ 0.2& Stone: Granite 1.73-3.98 2640 0.82 8-18 Limestone 100-300 1.26-1.33 2500 0.90 5.6-5.9 Marble 2.07-2.94 2500-2700 0.80 10-13.6 Sandstone 1.83 2160-2300 0.71 11.2-11.9 Wood lacross the grain): Balsa. 8.8 30 0.055 140 ib/ft'ypress 30 0.097 460 Fir 23 O.ll 420 2.72 0.96 Maple or oak 3Q 0.166 540 1.28 Yellow pine 23 0. 147 640 2.8 0.82 White pine 30 0.112 430 E e

eq II t II k.

  %4 g   i

prgi2EncE. 2 3 Environmental design 24-t5 al thickness of concrete performs as Table 7-1 ReAectivity and absorptivity of solar radiation, and emissivity of ttest time of the day is reduced by the long-wavelength radiation (From [6] p. 98: [13] p. 108l e 're must be accepted. This is a

            .ase. a good. if somewhat more    hfaterial                       Retlecticity     Absorpticity     Emlssluiry of tving quarters. and a bedroom built                                     of solar         of solar         iantt-wat:elengrh radiation        radiation,       radiation
   .)f sunshades. and to the utilization of
    ~ors by sunlight penetration in winter    Bright galvanized steel                        0.75             0.25             0.25 ween the maximum daytime and the          Bright aluminium foil           0.95             0.05             0.05 smaller. and a structure with a high      Aluminium paint                 0.50             0.50             0.50 d environment during the hottest time       White paint                     0.70             0.30             0.90 gh night temperature and very high        Green paint                     0.30             0.70             0.90 thermal inertia is undesirable.           Black paint                     0.10             0.90             0.90 rmal comfort in hot-humid climates         White marble                    0,55             0.45             0.95 be produced by designing a building    Grey, concrete                  0.35             0.65             0.90 dely used in countries such as China      Brick                           0.40            ,0.60             0.90
  'V.

t a high thermal inertia are useful tor

  .door temperature by heating or air d climates for buildings which are not
  ,s undesirable when heating is only 8    'Passive'olar energy t-humid climates which are not air should be restricted to a frame.           In the fast-growing literature on solar energy. its applications are divided into active'nd 'passive'ses. depending on whether a solar collector is used to convert solar energy into hot water, hot air, steam or electricity, or whether the building itself is used as a solar collector. The active applications of solar energy are outside, the scope of this book, because the use of this energy is the same for buildings of any structural material. However, passive solar energy could be integrated into the design of structural concrete because of the high thermal
~

of 'ilding is partly absorbed and inertia of concrete. radiation emitted by it has As far as the authors are aware. no building has been designed so far (1982) in surfaces on which it falls. but as which structural concrete has been utilized for the passive collection of solar of the sun.'the radiation emitted by energy. Indeed. the number of buildings designed for this purpose, including all ton 4). For the same wavelength. the methods of construction, remains less than 1000, and for many the extra cost of

~     the same. but the absorptivity and      utilizing passive solar energy will not be compensated by fuel savings for many
ngths. Thus the absorptivity of solar years.

avelength radiation are not the same. Passive solar buildings have been described and their design discussed in many papers and several books (for example [16] pp. 65-107; [17]). t all have the same emissivity. that is. However, as the cost of energy increases relative to other commodities, passive to the sky. However. the proportion solar buildings may become more common. Passive solar design employs the same luring the day is quite different. A principle as the sunshaded window illustrated in Fig. 4-1, which admits the sun in in a sunny day than a surface painted winter and excludes it in summer: however, the heat or coolness is stored for later e two. Evidently. the reAectivity of use. This requires a large volume of material with high thermal inertia. The simpler designs employ a wall of adobe. concrete blocks. or site-cast concrete by using exposed white aggregate or limate whether a high reAectivity is behind a large area of glass (Fig. 8-1). Evidently, if reinforced concrete is used, n reduces the demand for heating, if this thermal storage wall. which has appreciable load-bearing capacity. can be used to support the building in the same way that the service core containing the

      '$ a C'
  ,'I I

4 4 (l

 ~ '

N e P4 II, y

2. l d'or (3, R IE P E,QFM C.te RAOIAHT.HEATTRANSFER their tempcraturcs are alike, it follows that AiFis ~ AtFtt. Table *3.2 En4Iaaivtty ot Suc(acne From the definition of F and Eq. (43.I),

Surface Temp.,'C f dAI, cos8, dA, J Ai D Metals and thar oxides dA, cos8, dent cos8i Sf Aluminum: Ai At Highly pohshed 230-580 0.039-03 The product A,F,t, having the dimensions of area, will be Polished 23 0.040 called thc diect.bitecehange area and bc designated by s,s,, Rough plate 26 Q.QS 5-0.( Oxidized st 600'C 200-600 O. I IA.; Oxide 280-830 0.63-0.: Alloy 7SST 24 0.10 Temperature. K 75ST, repealed healing 23~80 0.22&.l 500 5.000 2,0(m 3,000 5.000 Brass: 1.0 Highly polished 260-380 0.03-0.( Rolled plate, natural 22 0.06 Rolled. coarse~met! ed 22 0.20 09 Oxidized at 600'C 200-600 0 61-0 Chromium 40-540 '.08-0.2 Copper. Electrolytic. polbbed 80 - 0.02 08 Comm'I phtc, polished 2Q 0.030 Heated at 600'C 200-600 0.57&.5 Thick oxide costing 25 0.78 0.7 Cuprous oxide 800-1100 0.66-0.5 Molten copper 1080-1280 0.16-0.1 Dow metal, clcancd. heated 230-400 0.244.2 Gold, highly polished 230-630 0.02-0.C 0.6 Iron and steel: Pure Pe, polished 180 980 O.OS-0.3 Wrought icon, polished 40 150 0.28 Aa 0.5 Smooth sheet iron 700-1040 0.55-0.6 12 S Rusted plate 0.69 13 Smooth cddized boer 0.7~.8 0.4 Strongly oxidized 0.95 Molten iron and steel 1500 "1770 0.40-0.4 14 Lead: 99.96%, unoxidized 1304230 0.06-0.0 0.3 Gray oxidized 14 0.28 Oxidized st 190'C 190 0.63 Mercucy, pure clean 0-100 0.09-0.1 0.2 Molybdenum 6lsment 730-2590 0.10-0.2 Monel metal, K5700 Washed, abrasive soap 24 0.17 Repeated heating 230-875 0.46-0.6, 01 Nickel and alloys: Electrolytic, polished 23 0.05 Electroplated. not polished 20 O.II Wim 190-1010 O.l~.l! o838 $ $ $ 3 PIste. Dxid. at 600'C Nickel oxide 200-600 650-1250 0.37&.45 0.59-0.8i Copper.nickel, polished 100 0.06 Tcmncrotuce,4 R Nickel<liver polished 100 0.14 Fig. 43.1 Variation of absorptivity with temperature of radiation Nickelin, gray oxide 21 0.26 Nichrome wire, bright 50-1000 0.65-0.79 source. (I) Slate composiuon roo6ng: (2) linoleum, red-brown: (3) Nichrome wire. oxid 50 500 0.95-0.98 asbestos slate; (4) soft rubber, gray; (5) concrete: (6) porcelain; (7) vit-reous enamel, white: (8) red brick: (9) cock; (10) white Dutch tile; (I I) ACI-HW (60Ni. 12Cc): 6rm white chamottr. (12) MgO, cvspocate4 (13) anodized aluminum; (14) black ox. cost 270-560 0.8%4.82 aluminum paint; (15) polished aluminum; (16) graphite. The two Platinum, polished plate 230-1630 0.05-0.1. dished lines bound thc limits of data on gray paving brick, asbestos Silver, pure polished 23~30 0.02-0.0: Stainless stec!5 paper, wood, various clothes, plaster of paris. Iithopone, and paper. Type 316. cleaned 24 0.28 316, repeated heating 230 870 0.57&.6( 304, 42 hr at 520'C 220-530 0.62-0.7:. sometimes for brevity by JT(ms T?). Clearly, II + 12+ 310, furnace service 220-S30 0.~.9: 9+ ... ~ At)and when'< cannot "sce" itself, ll ~ 0. Val- Allegheny sac, polished Tantalum filament 100 1330 3000 0.13 0.194-0.3:- ues of F have been calculated for various surface arrangements Thorium oxide 2~30 0.58-0.21 and appear for opposed parallel rectangles and disks of equal Tin. bright 24 0.04-0.0t site as linea I to 4 of Fig. 4.3.2, for perpendicular adjacent Tungsten. aged filament 25 3320 0.03-0 3'

~i ANIt e

SUBJECT I D EN T I F I E R PAGE Gbbert/Commeeweeltb I uEEIVE HUILOII4g Ue~rILF,TIDE DZZ V H. SLO 008 I OF REVo 0 ENGINSEAS/CONSULTANTS MICROFILMED PAGES ) 0 CALCULATION ORIGINATOR DATE Q 29 ~O PPEN Oi X PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY GAI-446 7-84 THIS IS A PERMANENT RECORD DO NOT DESTROY

C

   .4 e

(

SUBJECT IDENTIFIER PAGE Gil()eraiCammaawealah TLJgg1'(~g P>LQQ, COTTFP ZcnsPVT UF I(U(~<<> /7 5/ J) QQQ OF REV. ENGINEERS/CONSULTANTS MICROF ILMED PAGES io CALCULATIOH ORIGINATOR PQQ DATE g FI- IO Ups(ua G( M. WT-.p ~ ~mp~ - 4e.>+'(o>(o~ t, Qe.S(gn A(r'Vl~ o So( rc.e. QEr F'Io~ CCI=& 5 Vlefcre mQ A I B Roc,(m Sys>e~ ( I2,@San FSaR.,~9. I, Fl~. gA-lG C.Supp(g> B. (B Rec(rc. Qys~ ii,goo C IZ, ~<<3 FSCZ 5~.9.LI F,~. g,q- I~

                                        <eh

(=g 'I.'(-(3 de ("~ < coda(')r m lcico.caw o)r supp(u cu,(r( os (ae,~

             %reasoner     ed   'S)arn QQ. pi(cu'n Q'eo)tuPII)e~ (o '(()e ConcIenaer                            (Sess g   --ZiI ).

A(c@c lae/KM i~ ~~~su ( > '~ de.<<gn 4 ~'iW o- +lO% Gx'I(o~ ~1 e Zo QES<gn I~Pe,ro 4~ Ve ~ Vv~ t:-e3 Ace WP 4 C,('(C.le. ladle. Stan)nTunne( lSoonaagi 'lo(uuu ) FS p(e Sec- l A (F$ (os c,c~ O'LIs~5 70.2 Lec~ ~c.. Aii~e -Ii (u(o(;e,'. C(u((ed cciaker to the TB '(Iee)rc Qs)e)tu eoo()ng coils is

                    ~u(a(ec(        (o~     cx     3 -cup       valve, ln e)ra!or Q rnn)n(aun &e.

lO F weave)n% . R&erenee (oia(e) Sec..I c() F))I. Q S. -I2. We~% Lous . QgO+ LOCLd C8< hr 5 Ref'e~e~c,e pI ~hM L2( z9D Vne.i C~c. ~)VS -Io Q. ~Ra'r Q/Gco Sea Mo>e. C.t5

~'re. CA>       ~~
                   *one,l ac& d cpu) J&
e. Vo (oc(

P~~ becxb 4(ns 4)a(o.( TB '(us"

                                                                     '(s   ~~
                                                                          ~ .I or o.

Mo 1Sop 61G~ 0< 6n: Ke PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNALUSE ONLY GAI-446 7-84 THIS IS A PERMANENT RECORD DO NOT DESTROY

1 P~ 4t f t

SUBJECT IDENTIFIER PAGE Gilbert/Commonwealth IVRi3Ih(E L>I OC'QT1TIPZ>>>IIr -V.->>> LITTI ~ AO OF REVe 0 ENGINEERS/CONSULTANTS MICROFILMEO PAGES /Q CA LCULATIOH ORIGINATOR 5 LI OATE Q Z') IO (WAUGH' TLIiZEiIIeIQ Ql-~ . CO TTiA~t COI44 d (I,g~cs~< 'c~ Hem, -' p5 Ivii, ooo vtvo/aia CFafaranwz.: Carr<ac ih/C C O 4 L

         '<C W  IIr i'.(Q 5'gd          Ct-IaN
                                                                                                                 ~~i(~          %mooed,        )

f3 9~O BTt/HR c~( Cu(c. I'I'441't - (I Rr ~4I- he~ <cia~ Io'le>4;W e cL. <qLLc->" g (to7 H.F'. S.n mok~. For o. ro7H i* nv.ok.o, Cpo ~ l7o, 7gB tIvo/ttta C. kfamnca G ~ar t4/c. 'ihv harv 4ACIAtI<4Q. ) QS = ~9, Q 7O STujI4R

                                                    ~~,  5>o             >7,     2~           =

furr 0 I'-I>p r OTOrv TO C.nu.LILI4TE p St)(ai L'V F444Z Lf FIUIMG 7 FMPFILFII VRE 0F 70 X oF. Zin4 T>IIS FHhJ tfkAT LOAO CF44CULW4O~ P 75'P MOTOR \5 USEAI CRER~4eb FIN FIDOITIONFIl II4 V I A~ IIEF4 T CiF I 66 0 j>IIL ~ 7fli'5 Q4 RI4onIOht444 I4ECtLIC IGLI= ~I)F a4 COMPAITr- Q T0 7/Ig rlISC FLLFI~EGV5 HFf4T LOF4r (IP,OOL4 l<<) FIDDFt> It Y CO>TAP (ATTggIIrIjAJ7 28'6 6) 1O FILLOm T IIE TUEPINF BUILI)Iwc sTFFIm TumeE I To AFRLII THE II4II TIRL CONDIT rod Ov I20'F. PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY GAI-446 7-84 THIS IS A PERMANENT RECORD DO NOT DESTROY

           't C

p It( 4 P

   'll t ~

k e

 'h

~ g'i<

~ uf~>i.,~- SSES PSAR temperature sensor is provided at the supply system outside air intake plenum which automatically operates the radwaste building chilled water systems (See Subsection 9. 2. 12) . 4.4 TllRUT NF B(llLI)IN('FNTILATIONSYSTFN 9 4. 4. 1 Desian Basis The turbine buildinq heatinq, ventilating, and air conditioninq (HVAC) systems have no safety related functions. The turbine building HVAC systems are designed to operate during normal operation and accomplish the following objectives: tern a) Provide a supply of filtered and tempered air to all areas of the building b) Maintain ai"flow from areas of lesser to areas of qreater potential contamination c) Maintain buildinq spaces below the following maximum pera tures: General Areas 104oF Electrical Rooms 104~F Mechanical Areas 120~F d) Naintain the building minimum temperature of 40~P e) .'faintain the Turbine Building except the qenerator bay area, at a slightly negative pressure to minimize exfiltration to the outside atmosphere f) Recirculate and cool space air to reduce exhaust volume q) Exhaust air from potentially contaminated spaces through particulate and charcoal filters h) Discharqe all exhaust air throuqh the turbine building exhaust vent i) Provide coolinq air to the motor qenerator sets Rev. 35 ~ 07/84 F 4-36

Page I of 2 TABLE 9.4-7 TLPZ>INE BUILDING HVAC SYSTEMS DESIGN PARAMETERS HG SET COND PP COND BATT RM SUPPLY SYS CLNG SUPP RETURN SYS RECIRC SYS FILT EXHAUST RM CLNG UNIT CLRS EXH ITEM V-101 V-103 V-104 V-105 V-106 V-112 V-113 V-114 e Type Built-up unit Built-up unit Built-up unit Built-up unit Built-up unit Unit coolers Unit coolers Fan Number of units Flow rate each, cfm 137.470 70,337 109,100 50,000 42,760 (1) fan 20,000 24,000 2,600 21,380 filter Fan Type Centrif. Centrif. Centrif. Centrif. Centrif. Centrif. Centrif. Centrif. Drive Belt Belt Belt Belt Belt Belt Belt Belt No. of fans per unit 1 1 1 1 1 1 1 1 No. of running fans 1 1 1 1 1 2 2 1 Static pressure each, in wq 5.5 4 4 6 18 2 2.5 2.5 Motor hp, each 200 100 125 75 200 20 20 5 Cooling Coil N/A N/A N/A N/A No. of coils per unit 8 6 2 2 Cooling cap. each, Btu/hr 600,800 430.000 1,080,000 1,040,000 Heating Coils N/A N/A N/A N/A N/A N/A N/A No. of coils pcr unit 8 Heating cap. each, Btu/hr 765,000 (225 RM) Prefilters (Filters) 2 filter housings, each containing Rev. 35, 07/84

~ 4 I'

~C A I

   ~

S

      'I r

J f lp 4%

goo IO CALCU LATlON SHEET CALC. NO. REV NO S/ /7 TT'OB t OR IG INATOR DATE GHEGKED DATE PROJECT U NO. SUBJECT C FH SHEET ND. 1

   ,   Pgc/~I-W 5laT~                           I I/- tVG          COIL     LA RMf, 47'I=

FeJ HoToe I'inc-ut' 4aH P~~K p,y'F. zgyLy Alp,T@t.7-o; 4 Soococvwv t O4

                                                           .cF,   ~lcd        googTENP.         IJo&~
                                                       )JAN S. C..F.H,    w FEZ. cd KC  lb 4Ch&flCTttrKL-R           /go     $ a oO'        7/i Lu@ DIL ~PIRlgQ                 0/7         ooc
                                                          /8>

9 10~ t".CHAL Mt<. FUgP

                                     ~ I-5z Am@ Uz~ PDHrs r-sl
                                       &ZA I-2,o'op
                                                       >'5 te 2 I oo 2 f88 3)oo 73 2-
                                                                                'fe'5
                                                                                /00 bR @i) Io 'I/lot 5'.,
                        <~z I'uHt~                    28'f 3 )0OO /r2 ELEt'-,H (0 7t4JER   I-Iz4     II08 l 2o~ / o/

hENIIJ EWIY; T.-Ized bo I'BJP,Q 1AzpE pH. T yo- /4'-7 4' +a gus, g L.O. RpoERAt[ I-24 I t7 2 GoO

f. 'H. H67K CELL t-2I5 rS /5 4Ooo ttb Sel5 oooo II&
j. 2I2. 38 I5 oooo tt/4 21-NA III <TII:VE'TIQE300 Steak ) 5oo Q2 D OCO 34,4 5$

5c), 2QV FIT IJ cINF'~IT'/ <Roy p>>7- la(7 -2 scocc J-F" 28 I'Eu I" Sl~ 36 SFP 20768 Aev. I6/76I ~~ A>i 7H-i~

r i II, p,4

CALCULATION SMEET j 0/= lO DESIGN BY W~ I ufJ DATE I I CHECKED BY SHEET NO. PROJECT c. Uf75 f ~ If UON

                                                                                                                                                      / 7 e SUBJECT n

LoA P' CALCULATION NO. NO.~~'rv'q 5 UWKec . gqR.I). l" FM 87ulg

                                                        / G+ X      (RoorlTAP.-7S'L uPi'Ly 2.

cog ggJ T

                      /-/i'll                                     ca/d                           Tw~P,'hM.

P1Aa QFH A7 S/STEg 74K l-53@ E:au!P gq 44SI3q ./O4 g/oo . c-Qo /,mc&T~e ll 73%, /o+ sgqz. /o I. gaa X.. 3- I 8 TDSRIQE LA(>if

                                        ~~ 8z-/'!J&!/JC J I t 45/030'4'.Q8 f

imp

                                                                                                    /0f        if   2q/ 57 5

I 2.

                      /Iol SVDP-E iCP                      /=)    /5'7z8-                           /2.w         PBZ       oJ         TE
                                                          /L/)    2IS7~> /> M.                                     7I'82, o            /  E       Iy 4AM Ee~<                            i/E/I                     2P> //~~ w                                         I  E,      /s i-4Il EVAi" RiITuR.                                               5lot ~ /izo                        flop                   I  E       /7 X-J.I5 /Vusol 4EN. SE7 A~D1                             /2SZPsk                           It'-+      4rsaf 5TE                          /F c.3o I //I'f~r-.

wà /lH (!-+ g7 8$ S 1 z 2/ g c-Z Iy ~/l./cX +g4g '/+93/8 /c+ +7 pg. STE zw S-EIO IR PNSM'us /,Pr> aa&zPB lo4 q/&/ S~E 2& g-v.l I ct/b.T'L/IIP FllTCg /I!IE/I 28/74 /op RPI sTE 2Cf. FNTaAL //A!/!. /IQX Iud LUA ./nl/(" on8. Pub l/~ h'AT go(LER. /boa I-/ /D+ 5'5 f 7- sTE F H //E/I/CK.A/ZA lq$ f 75 /2O r-u4 Il ~ II (e

                                                                                                   /2.o T. ~ 2 IK    II      (e        //                                        (f           /go                           5"7 E

(/;/lb . P//-2Z.,. - 7ACl c. (.o M)CM EX A/.cR 2/- g%

                                                                                                                                  ~j~ I-
           'I- bio /dt<l//     l/=1~/'/i/P/: Tw'/. g.k5oq7                                         /za                          ~

C '('I

                      &w. CtL gQZKV.'1f 57 /5I                                                   l~            /     88         5       t-      PO

CA LC ULATI O N S H E ET 8 oF lo DATE DESIGN BY DATE '~7 CHECKED BY SHEET NO.Z~+Q 2 EROJECT S L3EI AQ fJ le .... e~@ SUB JECT TL I 5 CALCULATION NO.~I/0 OI NO. HA1k1 KTE~ 7 l~ ~gag~,~ I 7 I-3m LI C, H T~ Q L +~5 r. III I LAgPX'PE IAl 15'W 2.4C>4I~ R 4- 8Tu~~ . l22~0 AREA x LI x <t, 24 0 EBB I~I~ IDZi l>'&glG+yl~ . laq~4q

                    > >' 2 5'%-' 6 'x 2c I

P".,Wb.(I,kT, .

                        >C    l oS1T 'x.             l Mpc       Zc'+

72.5 7 C7b ltO N'x I II'"ll ~ lW .45ob

                         ,8     EKh         l I  b tQ K     ~       )5& M~&                                         5&49
                        ,tl    c,  pD 2-2-xl 2<         K   w       l    g~w.         fg'"

I 3~> EP~h

                    'LQ'         WII ~           I    4 <               Z.aI l66q
                              ])Sb lip Fb~~              I
                                                       ~     < 2-G IFI=   5~FPo          k Wc~m 3'f M'Po+       ~M          ZPr~ ER. g 27 gg.<~P.

x 2.S ~ (ZqS-'lie) 2.<

           , 8 ~1~Z pEuoEp ~~RS                    pLLDw        I~L)pgggg~gf' 3O Z mix +2      .5'        (2BD-g,D)                                                   20~
          + gEeP~.5 Q                                                                          Z&~0$      7 R<~ +l-' L~ kv>

~I

  ~t 'd

qadi/( CHAPTER 7. INTERNAL AND SYSTEstrI HEAT GAIN 1-105 When readings are obtained directly in watts and conditioned space, multiply thc watts by one minus when both motors and driven machines are in the the motor efficiency and by the factor 3.4. air conditioned space, the heat gain is equal to the Although the results are less accurate, it may be number of Tvatts times the hctor 3.4 Btu/(watt)(hr). expedient to obtain power input measurements TsVhcn the machine is in the conditioned space and using a clamp on ammeter and voltmctcr. Tlicsc the motor outside, multiply the watts by thc motor instruments permit instantaneous readings only. efficiency and by the factor 3.4 to dctcrmine heat They afford means for determining thc load factor gain to the space. AVhen the machine is outside the but the usage factor must be obtained by a careful investigation of the operating conditions. TABLE 53 HEAT GAIN FROM ELECTRIC MOTORS CONTINUOUS OPERATION LOCATION OF EQUIPMENT WITH RESPECT TO CONDITIONED SPACE OR AIR STREAMfv NAMEPLATEf FULL LOAD Motor In ~ Motor Out ~ Motor In-OR MOTOR Driven Mochine In Driven Machine in Driven Machine ovt SRAKE EFFICIENCY HORSEPOWER PERCENT HP x 2545 HP x 2545 HP x 2545 Il -% EH)

                                                                                %    Eft                                               ,o Eft Stv per Hour I/20                         40                                320                         130                         190 I/t2                         49                                430                         '210                        220
                       '/s                        55                                580                         320                         260
                      '/s                         eo                                7'Io                        430                         280 s/c                        64                             1,000                          640                         360
                      '/>>                         dd                             1,290                          850                         440
                       >>A                         70                             1,820                        1,280                         540
                       >>/c                        72                             2,680                        1,930                         750 I                             79                             3,220                       2,540                          680 ly                            80                             4/70                        3,820                          950 2                             so                             6,380                       $ ,100                       1,280 81                             9,4$ 0                      7,6$ 0                       1,800 5                             81                            15AOO                       12,800                        2,800 7>>/>>                          8$                            22,500                      19,100                        3,400
                  'IO                             85                           30,000                       25,500                        4,500 15                              86                           44,$ 00                      38,200                        6,300 20                              87                           58,500                       51,000                        7,500 25                              88                           72,400                       6S,600                        8,800 30                              89                            85,800                      76,400                        9,400 40                              89                          115,000                      102,000                     13,000 50                              89                          143,000                      127,000                     16,000 60                              89                          172,000                      1$ 3,000                    'I 9,000 75+                             90                          212,000                      191,000 w                   21,000 100                               90                         284,000                      255,000                     29,000.
                '125                              90                         354,000                      318,000                     36,000 150                               91                          420,000                      381,000                     38,000 200                         ,~    91                          $ 60,000                     510,000                     $ 0,000 250                               91                         700,000                       6se,ooo                     64.000 For hstermittent operation, an appropriate usage factar should be used, preferably measvred.

fit motors are overloaded and amount at overlooding Is vnhnown, multiply the obove heal gain factors by the following ma>>imum service loctorsi Ma>>imvm Service Factors Horsepower I /20's r/s -V>> s/>>.y. I I ys 2 3.250 AC Open Type 1,4 1.35 1.25 1.25 '1.20 1.15 DC Open Type 1.15 I.I S 1.1$ No overlood is allowabl ~ with enclosed motom. IFor a ton or pvmp in air conditioned space, eehovsting air and pvmping Iield to ovtslde ot space, use values in last column.

4 I l' J'

10 or lO oIVORNII L..

                           ~
                                      -             Nvetel                                                                                                                        evwt
                                                                                                                                                                                                                                                                                       ~ vt J CNW
                                                                                                                                                                                                                   ~o                                                                 )vr
                                                                                                     ~ eeoc      I No ~

ON

                                                                                                                                                                                                                                                   'MV,
                                                                                                                                                                                                   ~ rletcvorvo vor                                           ~ overt ocr      Iot Nto CNO Otvraeovwo         j    ~

w &He 8 ' 0 I Il<<o ~

                                                                            ~       Ilvvev I\N Ol elc vvvvel
                                                                                                                                                                                                                              ~ ItV  I till lotto                                                                                           ~ Nl CC eccell tvo                       ~

o v Q)r 'I wev litle lct llc ~ Avtv tl II !I

                                                                          ~  'i.'r=
                                                                                    ~

I O ~ WN WVO C eccll ~ l vvo N voo I [vol g t ~ ~ orv' ICNO NW ' lT Ib

                                                                                                                                                                          ~f gQ
               -=:-'pL                                                                                                                                                 Otlllw IIINS t(II RRV I

Ct eloge ll I

                                                                                                                                                                        .~  ~ .I IOOI i
                   ~i-
                                                                                                                             ~

u I'I'll I~ II" l O A+coo lill j tIl

                                                                                                                                          ~          ~

I e.I IrRI 'Il~ tv~

                                                                                                                                                           ~
                                                                                                                                                       ~1~1~
                                                                                                                                                                                                                                                   ~ H>>NNOV ww                                                              VOCN ~
                                                                                                                                          ~          ~

I ~ ON

                                                                                                                                                                                                                                       ~

Ir?g Iv w.ceccev,w.reccev ~I~i~ 1 I~

                                                                  ~

reel ~ eoc NWCN Nct ecv ~ oov

                                                                                                                                                                                                                         ~!c
                                                                                                                                                                                   ~                          ~

ave l% I ecv Ict ~ I eV gg PI3 rm) VZV IGBM CZQ GRV VRV I I Z4rrelwvv INV NC Ilt ~I IT1 1 ~ g~ c ~ J q I If'l I" ~ evert CNNWO vo tvvJ oocY I t;:,IthT:,"RI":iti pl<l [ '.~J

                                                                                                                                                                                                                            <<vtyeloc ) ~ INNN
 ~ pl-""

mJ m -~J'rj( ~C NW W

                                                                                                                           ~      OIVONNI QO Gil KIS G33 N             CON   lc novvet         I~ vvtv, oeowov
                                                                                                                                                                                                 ~

ewv f I~ I~ oo Iowv

                                                                                                                                                                                                                        )         Nwl owt eter tow          ISARREY. 41I 05/B9 c  VSq VENANNASTEAM ELECIRIC STATION IINIIS I AND R t tvvol~ett.                     IYNALSAY EIY ANALYSISREPORT Ioleeor                                                                                                                                                                  I W'Cm -"VNZt 1 TVRBIRE BVXLDIRG AIR IYARI DIAGRAH ISAR PIGURE 9 4 13
                                                                                                                                                                                         .~

I

~ P I'lV" 't. 4 1

             ~ IO

SUBJECT IOENTIF IER PAGE Gilbert/Cemmenweaith pic I A'Tll/E'tVr>IOITY PFITI-, 0- <cb- oo 8 l OF REV 0 ENGINEERS/CONSULTANTS MICROFILMEO PAGES /0 CALCULATIOH ORIGINATOR QP' DATE Q Pl CIQ PPL ND IA'ROPRIETARYINFORMATIONOFGILBERT/COMMONWEALTH

                                              - FORINTERNALUSEONLY                                                         QI-446 7-84 THIS IS A PERMANENT RECORD                                                      DO NOT DESTROY

I lt

    ,II 4I I

l

SUBJECT IDENTIFIER PAGE Gilbert/Commonwealth f'T I)/f." J)OHIf)IT I'F)TI-I Q- QLI) - QQQ OF RE V. 0 ENGINEERS/CONSULTANTS MICROFILMED I AGES lO CALCULATION ORIGINATOR CF $ r DATE

                                 )p                                                                   S'W FM I Ur/'&iw)c'       G   IL)7)by       REC.iit'.C                          t tni.)           ~

C<<L. ' IEt5 3/ RPP~//f)i( D] Pf 2 L F..i= 47ot Di3/58 I= L>B @ SQ 000 .:FM CSE oig 3) 7FKf EI7r)TL/Ql= fh)Clf Fcl r- DUF 7 Q f=qg IIPRT 4)x 25/5 o Q T <<0:'~ v/D6 RP 1- P T I t/ 6 ) 1UM I P'7 F IQ STF/4 F) 7')hih/t" L gF)hog QggY (EI) ) L ~ I Ig QC,CVff 7>> QH 0 / pr)< 7"I/AI gf L QT'29'F (sot )AER) I< f I /o A<i~ THE (kH QF 7 IIF ~+7 /'ill+ T)/I'I/'"F L I )> III F ~~'~ <") p //II/g/ I ,f)lc, / ffffff7/ (t))T'. Q or IO FOG C'"4 "-'=)

                                              ~     g    .  >>I=        "Ji "'

C'hLFtliuF'/yMiD AIA.

                    ~5SVM)~G                Qfql tf      5CMS)OGLE                           fff'I )l <<IC       OC.CuaS        7/ <    I2 8 Ol Tfft     SL)PPLy F)if              IS      50                   '//     /17- R     7e~/i~eIZ-/74/ne'/=            70.2 F,

( Scg. f)7Tpt')f: ini pt)Yc110MFT'rc/c 6 I!Ila7 / 5)IT g or /Q / FOi~ PF7<IL-~ GAI-446 7-84 PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY THIS IS A PERMANENT RECORD DO NOT DESTROY

)

t;ALt;ULAlIUN sHEET 3 lO ORIGINATOR

                              /   7   cg                         DATE
                                                                                  ~/ ZE 6

go CHECKED, DATE PROJECT JOB NO. 8's~

                        %7p~hy 5 N;8".-/5'ih~~~4.. ~41%".iEv 8- A i-8;"                                SHEET NO.

0 C ODli 6 C 6/X<f~~+A"'""" - V 5< /'o /, D 6 76 ( I/ P 5 565 IDDEN 6 gr P gg > ly gals; @//5", fD6j751fj6 //tg /"'-e(7gAll/gafVI/6 i f/// 5'DP' Ql/6 )CI +IVI 4C 3.a'Z+, m~; $ <bht'~ 1 5g 3 x r 5'$ 7 g.5 w ( = g(g.3.6p n/~vZ:Ao

                                                                                                   <~ ~esp rkng ~ vg>

6+-

               /DED c      ~      e.f~     =   ya ////// (C<<C /76                       -/I     5//l    5' Bg                            cp~=

9 10 pzuAL, g8$ / 4'M ~ 'A /Ig 4'r PS I- 55.7+ 11~ r pip 6/// 55 ~f ~6 g5, I 0

  >>iW                                                                                                                ~l - pl.d~

13~ 14

           ,g r~4     L,   DE5r & H           701'         .P8  4 /r Trace 4'5/v r<~l+6 LohD,'6I 15                                              6DD 6     +66      <           /I 56      =     5  55l     5 7r hl 5

~ o 19 a~cgur,ro~g,'rrr ( g 8 ty6, err ~ Is gg 1r j gee fir@( & 7+~ < r C. 20 21 pp pAci 7 f (ggg$ ' HIh') ggc c~4py PH'E c ~L~ Lr>o ~ 22

                                               >585', +s'o                           /H8.              ~9oP 23 24 5~    (5P,S CL/Pt/) $ cviLII 25 E4 56 a t5'= &5                                    P-.L      VD 26 27.

28 29 30 31 32 33 5'yggg6 5 gp (upog <8 7r<+; P' I0 8 I 7+ 30 36 SFP.20168 Rev, (6/76) 60 69 (6/7

tl' l,

                          ~ 'l 1

p

      ,t ~ ~ v. l~

r

5RRIWRSRh~S%55EI h~<~ h~a."'-'~~: Sllhlgl < 55llilh

                            'llh5M            Ra~If@

50 a 's~~I l

                           ~ II       aelaa1mwm
         ~4  (~%~gpilfp~'g         ~~g~g~g a
               '(,QiF'                 gw~-
  ~~~ V F  + >4 ~g=.5p M$~gp~='.
  ~<<4~4,~S        4~~      ---<< 'We>~"+-

gF@~W p iy~gQ~'@Q yggp+ q " -.:@ATE, g~j~4~%g)~~44.~@~~~~WMQh I~I~ --h~P4 '~~~+'~ys~p~+jg~g)g@~' - ~+'g

    <<l

$c

SUBJECT IOENTIFIER PAGE Gilbert/Commonwealth PFLFIYIUE /4/4IOIT Y DATR M-SI Q- O(S OF REV 0 ENGINEERS/CONSULTANTS MICRO F ILMEO PAGES Ito CALCULATION ORIGINATOR F3 DATE Q. L-"I l3 gp.nT>>/I, ', IIIat".ITT rO<a, Q Ft) I2OQW TErlPF/?Ihtl0rtE C F) H ('i. P, mt'/tJ>urban SccwrtCg,/ u)ureter SV> 2-3QD I 2.a/I I I /I /IJ/ g- II5 ~r S]FIIecIPLL tbc/// 1 2. 33/ JII

                      ~-"IIS                                            Izo/ a~                                  gI  / <I/

Z -Z,IQ Ocl 33/ LI/

l. -212. l20/ 72. 2I/ q] SG'K Pp<E
g. 2 I 3 IO// lZ 33//LII 10 OF T'II<<

Ja2/q j Z 2/S 120/ 72 Z(j LII RPPcND<x. Z'/s/oP!N APFII/TnfvK RT IOLI/a2 33/w/ E'I II I 3oiI// < I 6/4Y C -'O 70//Bo 7O/WS

                    $ -2 I     I                                        lzojgZ,                                   gt/'I/
              //VRC. S       P<<<                                       70.2/7o.z.                                S  O/50 vt
               )I             Ig /g0         Sec    PaGE CoII- LEnvINc. TF                   Peg'I2S             +     7/    5   'I-,

AQSVHE OhILY SFItJEJ l3LC /IF/ITIhJC OCCLII2S IN T IIE /2OQ~5, COI I- /E IS I / SEE FFIQE

         ~OII       Lp+VI~< Tr.rcPEij fjIQI2+ -)                         0 7   op

( Scc P tctt bM o> aiccialli<oi r ant 7 on lor falL Pa mnc) PROPRIETARY INFORMATION OF GILBERT/COMMONWEALTH - FOR INTERNAL USE ONLY GAI.446 7.S4 THIS IS A PERMANENT RECORD DO NOT DESTROY

7 gl 1' g

Or- tQ 0510 II ~ ~ 7B CALCULATION 5HEET g'gu8 OBBIGN BY

              ~
              ~P
                 ~       D 5u DATE ~        CNECKED 8Y               SHEET NO JOB  NO.~~+

o oE ~CALCLILATIONNO. NO. ~? ZufP// WR. ph,v r rv N'O Z~TG' P,+ ZW@USTi) Hi

                                                                       /bk ~icu9H

(/'Viol )

                                                                                                )

Xa~-~ 2.M+K

    'Q ICl
                 /Ebf p',       pp/5+    .
                                                       /

Co/L - - ~Mvidc 7~ 5/? 7/'..t'".'<-(~4? Su/"/'(-p &I i~<P - 75:OS F J//EAI JAW 8Tu.iH x ZCCIPC'IhLVHEdF+'JJ

                                                   <PEcici cHIGII.T(Cpj x bo<nd 8     5f   l=

6ILi I-Ix /5

                                                    -2$ x I o X 5b'F 5(/        / MviQg         7/=H/.         47 /=            (/6       /5'E
                  /I(Ore&       ~7        g+AJ 715          5@&(V Z5gyp;ZS~Sqiu/jP J   Y i Y/OS ieeP, 5v pPLy'h R          7~/?

5 s>otd(,Srf N(V Aka do Oknod Nld nto (u) AdlVHlH3 sr>> 5Uclll /I oil der Ol 0 I 0% o 03 I 0 10 10 te v0 8te~ 0$

                         ~         ~                                                               ~ \

I ~ I

           $ 00       ..
                   <<<<.       1++1 N

I P OL C I <<~<<lh t<< lr5 I I 5

            -I
                      ~
                                                                                             ~ tg                                                                                    ~~  ~ I        0                                       s<<NI3 g 08
                                                                                                                                                                     'R.
                                                                                                                                                                             ~

L

                  ~  t<<                                                                                                                                                  Q
                                  <<    ~

e .II I I

                                                                                                                                            .t<<
                               <<<<                                                                                                      e4-
                                                                                                                                                                                             <<W              t                           5(OS(3l  '0 "I OEO                                                                                                                                                    Vh<<t hvv r

OO IV

                                                                                                                                                    .. d4d ep 06                                                                          v tv<<
           .)10 Z,

C N Ie

                  ~5.                                                                                                                                                            4           I I t           I I ~      ~

Ol l h 0

       --     :S                                                                                                                                                                     ~~    W       t lLV
                                                                                                                                                                                                                  +>0 Oll
                     ~  (3 It                       I     ~
                                                                                                                                                                                                      ~ I t

Nf D C'f O V 0 A/so.->: O

                                                                     ~-O L.'.,r
                          ~~                                                                                                                          <<<<    ~

r O/( ~ V

                                                                           ~   I                                               I         5'
                                                                           . 3                                                      "-Zl.

I ~ V

               $ 90 0A    '=t II~                                                                                                                                                    OOI 0'                                   y
           .    $                                                                                                                                           1 tv 1<<0<<t                                                                         ~       ~   ~

OLO I Oo 1 Ol 1 1

                                                                                                                   ~   Iw    r I
                                                                                                                                                          ~     ~
             ~   ~    (I I

1 . Ool pe <<- " 03K 700' I

                                                               ~

g<<-l- << e 4 ~ LI* <<

                                      >>I J ) VOAVV1/NJA>>I          NlltM No Sino               11M
                                                                                                  ~ I C

O Z r

                                                                                                                                                                           ~ etl
                                                                                                                                                                                      ~*

OIIVN JJ(O(

                                                                                                                                                                                       ~   ttII tt (

4

                                                                       /00                                                0
                                                                 / ~
                                                                                                                     >>t ~ 3
                                                            'I
                                              ~
                                               /e
                                                      /

1/e

                                                        ~

5/1 I //~ ~ p I/ II // ~ ~ I X 0

                                                                                                                                    'ONI'SV11NION1 DNINOIAIONOONIVONVDNIAVNOOIV(lk'DNIAVJNJo A11IOO1 NVOIN1NV lt
                                                                                                                                                  '               Aknostk Jo CSJI ANOIVAJOO ttkokl IINJc 1Vn551NJ          OIVaNONVO 38nlv83dw3L HDIH
                                     ~~           ~ ~                ~~              ~   ~               p~   ~ I                                   S 'ON IUVHO OIUL3WOHHOASd 3VUHSV.

NIV AVO Ol N1J nt 1(VM JO AJ1VNAN1

                     <y$ i                               vAlt;U LA l j 0 N         SHEET                                 ~ ~i lO
               ~~("
                                            <T                           4/pa     g0 C*LC. NO. i~ i       REV. NO. ~~

DATE I CHECKED DATE Sv< +C 8 H 8 ~ I A

                                                                                +S,g PROJECT                                                                   ~Os NO 7   z~  ~  c      SLo&       <y'5     I      ~/   A                            o/- ~q.
                                                                                                        <",;:,22".'24164551 HrA ri~~            coif       I 8 I gg,;- 8, ~, E;t'          V~~>>a (V, P. n~ SP5/'--             PTV~S-   /(~)-a 3

rr f H 4 d4= -5'~ 5

      '.g,          5' 5EE    CALc /7p - g A

gg S/yy Spy/ 7]p u f

                                                                                     /'SyS         / v <<+  Z C S  C~C    lrp - //    I 1~~

0/l =(37P70'c/a - /F$ 'pP a/-~.) =' g pro <>~ p

                          ...   "+y< /.v.-,'/n/h s8'"...: <yt'/v /op RA.
                                  ~g 4g / /g I/ fplf l 13 I                                      wf /g.

14

                                        /P   f /Pa  p(+P +     gg/-gS<8 -5
     ~                                                /:TlI + lP t

16 ~ C ~ 1

       ": . jvsA re@        '$/s8           f g.5   g  vv ~ 8 x       g f   I3 =    Q./y.g.p     y.gr~  gyu/ ~p, 19
                        /g as@              C, X~ S +~C         //rv/a~

21 /, pg P'g7ygCr 24 4<& 4/g 4l g /rf((c = $ ++I = li 29 dN> C/) ~4 gdtCA</ ilS . 5'Tl nay'+S TC. y,< PA/ 7 Cn/L j5 HSA Mg 5/i 8; f2'Cw P.1 x $ 4/5 - 5 )75, yp'g P1>/Hh S</pry 7//i' %i< 75 +15 qg rp 30

                                      /p'g r /g7 gyes Cf.<

31 32 +Lv& p ///t 7gp + 7g/q~ = Wl q S( = C7 33 C//PClvgip~: OH'. ~p/L S~/1$ F/a5 gee PAS'/4N P cS Wa/l+ <>>~ 0'4~~~ (1) pdIL5 A/ g fv r r-zai jar f

                                                      / pg AA +Wl 4 bA A ripe               Oak (I) C p)L /5, ffd Sb g. you A5 5/

SPP 20768 Rev.{6176) 87' /$ 'JS8 P QA f 4 // i 4 p sgn'Id', EO 66 (5

~ 4

~ ' N I e 1 D 1

'J ~

llRRSKW>xNQSXR55 g 1

                                                         'QM%5iK%h~M
                                                             %RR
                                                  ~lkhlg5 hplh  ~

3klu p <58,aa~+Ih Ikdk[a aSg~RRlh

           ,-"  l+~'.~'%-                                  WSk%
      <a+~%,,;.
                     ~'%gj;.,~gal'~~X P)
              ~- <  j~aC p'-                      .
                                                     +     ".,(i',,+~
                                       )p%4@p4p'           'aa  /Vg.-

mw~e Pwkik~ W~~ PP<<'=- '~5>w%

   '~~gh+P~)      p               j'     .

j4)V)gyg~sg 0 45~~s==~1 ~a~%%-q @%akt>'~lfkM~~+h L@~h

%! "Q 4~AP@klp

g~ ~ ( h 4 ~ 0 IQ or lO F IL E 0 I L B E R T/C 0 M M 0 N W E A L T 8 TELEPHONE AND CONFERENCE MEMORANDUM August 29, 1990 DATE BY: P. M. Witman WORK ORDER NO 04-6204-013 TELEPHONE CALL X CONFERENCE Ron Vasquies COMPANY: SUBJECT'urbine Building Steam Tunnel Steam Leak Detection COTTAP Analysis SSES iI1 NOTES: Per our discussion, for purposes of the sub)ect ZOTTAP analysis, ( all "infinitely large" rooms ad)acent to the. Turbine Building Steam Tunnel will be assumed to have a constant relative humidity of 50K throughout the 24 hour transient calculations. P. M. Witman t :opies To: R, Vasquies J. Knight PP&L J. Holton - G/C - PP&L C. Johnson - G/C GAI - 203 9/84 PP81. Form 2a54 (10/83) Car. <<973401 Dept. PENNSYLVANIAPOWER & LIGHT COMPANY ER No. Date 19 CALCULATION SHEET Designed by PROJECT Sht. No. '.L of Approved by a PPEL Form 2454 (10I83) Cat. <<973401 Dept. Dere Designed by Z- LL ig~ ~Flv PENNSYLVANIAPOWER & LIGHT COMPANY pRQJEGT CALCULATION SHEET D7 K ER No. Sht. No. 2 of Ia Approved by I (' if ~ ~he. +e.mp~ra~ure tO r a 4 5 o,o-rn I raapO(;>e v' aier eyavaleaT gk~ le K r-~T' is aha~~ ) n /a'Ole I- K. I 'p',-. aOI" t Jz a +c~p~hra. y> OV IK>. S 7 V WWp cpu('Z C Zt~r- Wrr le K ) aad i57.24 i- after 23.5 hrz Wro~ rhe. )mK in'kiaT,on ~ 7/i~ 44I IQ p(~U Ln F'ipb(c.+. 3 4 Thee.raIb-rarur r capon'e. par ar <Q gFrrn waiel pc+'.vo,'. S sea~ iCaK C~' ". a&Own <ac.'- yi~kIa a Tempera ~('e o-', I7R.~I F'ao how(a a~Ier %ha leaK, and l7 f.9H 'F asker P3, ~ ~L(' IO~ ~he. 44K IAiTIQ$ c)h, I h.~ Wahoo;=- pro~ --3;~ Fl~~re FZ. > h ke~np~(-z-,~r upon-~ for c IQQ ~@~ Waar g~.~oie.>< ~4m~n 1<ok, C<TP) i= ~'no~n <h I a'ale F3. 7 4 ig WabIr y irr re 0 rdsm~4'rO>~4 4' 20+, f > tvuo Rogers a4 ter kki )cap ) a+ eiQ" . re9 'i a 6'er 23 5 hrs Cra~ leal( ln.iliaTion . +h,~ ia Qlr IO p/ps+eJ I/ Flgurr Z. PPaL Form 2454 nG'83) Cat. a973401 Dept. PENNSYLVANIAPOWER & LIGHT COMPANY ER No. Date 'ig CALCULATION SHEET Designed by PROJECT Approved by f1~ Te.~~a~ur I i f ~epos'~ ~ or a I 40 gp~ caT'-r pu voIeF< r T&~ ~ MA ~~+9) IQ $ 4+ oj P ~~ i (+p' Q h~, f o~ TI, l~4 iFii ictiiQh. Th'i > P Iong in F"rara. 4a LID I w I I ~ ~foehn +~o kovr. I in' le'aW ir it ia&iar, IQ,- f,~ tg P Jfl i iF'J~ + induc~ r ~. tM La Tobll- F1 SM l u~ve.l ve~perafzre Roon~ 25'pss gaea K (~~b P egos ~ye go TURB BLDG STM TUNNEL EVALUATION (25 GPM SThl LEAK/MINTER) )3'+ TURE (DEG F) TIME ROOM¹ 5+ ibm-lkv. (HR) 1 0.000000 111.00 0.100000 111.00 0.200000 111.00 0.300000 111.00 0.400000 110.99 0,500000 111.00 0.550000 134.76 0.600000 141.13 0.700000 145.13 0.800000 146.43 0.900000 147.52 1.000000 148.42 1.500000 152.03 F 000000 154.17 2.500000 155.57 3.000000 156.33 3.500000 156.02 4.000000 156.34 4,500000 156.43 5.000000 156.47 5.500000 156.44 6.000000 156.86 6.500000 156.68 7.000000 156.86 7.500000 156 '5 8.000000 157.00 9.000000 157.00 10.000000 157.07 11.000000 157.07 12.000000 156.98 13.000000 157.13 14.000000 156.64 15.000000 157.21 16.000000 157.20 17.000000 157.49 18.000000 157.18 19.000000 157.21 20.000000 157.33 21.000000 157.34 22.000000 157.29 23.000000 157.40 24.000000 157.22 ' 'J TURB BLDG STM TUNNEL EVALUATION (25 GPM STM LEAK/WINTER) STD COW Pl7 toNS - I2.,<OO Jt /l, 2-I lR/9 ( 160 150 C3 140 130 CL J 120 0D 110 (b 10 15 20 25 TIME (HRS) O~

f. w c a*

al le &2 . T. B. 5tea~ Tunnel >e~peroture R~po<>~ 50 gp~ ieaK (~) TURB BLDG STM TUNNEl EVALUATION (50 GPM EQUIV STM LEAK/WINTER) e (DEG F) JCA. p~O ~ ( gv ('EhPERATURE TIhK ROOMS )g (HR) 1 0.000000 111.00 0.100000 111.00 0.200000 111.00 }'! 0.300000 111.01 jt, 0.400000 111.01 0.500000 111.01 0.550000 155.11 0.600000 162.91 0.700000 167.73 0.800000 170.98 0.900000 173.65 1.000000 175.24 1.500000 178.29 2.000000 178.65 2.500000 179.31 3.000000 179.06 3.500000 179.16 4.000000 180.23 4.500000 179.37 5.000000 179.16 5.500000 179.49 6.000000 179.58 6.500000 179.44 7.000000 179.38 7.500000 179.55 8.000000 179.63 9.000000 179 '8 10.000000 179.63 11.000000 179.65 12.000000 179.63 13.000000 179.70 14.000000 179.76 15.000000 179.69 16.000000 179.75 17.000000 179.76 18.000000 179.68 19.000000 179.74 20.000000 179.68 21.000000 179.78 22.000000 179.75 23.000000 179.84 24.000000 179.84 TURB BLDG STM TUNNEL EVALUATION (50 GPM EQUIV STM LEAK/WINTER) ~A7 t=R ~QUI V C> ~T'D ~APlTtz)g( >S;ooc) lb~/i, "i,(~( 200 180 (3 LLI 160 LLI QZW I gg4 t3 140 pr waA'egg CL gg~~Jcal I 120 100 10 15 20 25 TIME (HRS) V Wa ir \'ll Table p 3 Q Qt~~ DU~ 1 Ic~pcca~re, Rc5poA5Q IQO qp~ i<a K (.Gap) TURB BLDG STM TUNNEL EVALUATION (100 GPh) STM LEAK/MINTER) TEhPERATURE (DEG F) Pagi ~~4'3 TIhK ROOM¹ <o ooo 1t~/ l ~ Ntqrst (HR) 1 0.000000 111.00 0.100000 111.00 Q 0.200000 111.00 4 lg 0.300000 111.00 0.400000 110.99 0.500000 111.00 0.550000 179.19 0.600000 197.16 0.700000 200.09 0.800000 201.01 0.900000 201.47 1.000000 201 '8 1.500000 201.92 2,000000 202.27 2.500000 202.39 3.000000 202.41 3.500000 202.41 4.000000 202.45 4.500000 202.54 5.000000 202.61 5.500000 202.56 6.000000 202.83 6.500000 202.63 7.000000 202.60 7.500000 202.64 8.000000 202.61 9.000000 202.62 10.000000 202.72 11.000000 202.86 12.000000 202.66 13.000000 202.70 14.000000, 202.90 15.000000 203.07 16.000000 203.31 17.000000 203.52 18.000000 203.98 19,000000 204.23 20.000000 204.55 21.000000 204.86 22.000000 205.12 23.000000 205.39 24.000000 205.68 l~ 4 'V Xy ~, TURB BLDG STM TUNNEL EVALUATION (100 GPM STM LEAK/WINTER) MATER Eputv @ sTD coNDtT ioN+ - <c,coo i4~/l ~ 220 200 180 LIJ C) LLI 160 I CL LLI ~g~ yaw $5g CL 140 I 120 100 10 15 20 25 TIME (HRS) l E 's Tc ble p'q gg S~~ Tunnel Te~pe<~>use ReS,PO~ 150 ~p TURB BLDG STM TUNNEL EVALUATION (150 GPM STM LEAK/MINTER) TEMPERATURE (DEG F) 7<coo IL~/l.~ 3 C.lC, P~gp~lO TIME ROONN (HR) 1 0.000000 111.00 0.100000 111.00 0.200000 111.00 0.300000 111.00 0 '00000 110.99 0.500000 111.00 0.550000 0.600000 204.62 213.98 4 0.700000 215.26 0.800000 216.33 0.900000 215.75 1.000000 215.85 1.500000 216.03 2.000000 216.05 2.500000 216.21 3.000000 216.19 3.500000 216 '2 4.000000 216.28 4.500000 216.27 5.000000 216.26 5.500000 216.23 6.000000 216.24 6.500000 216.37 7.000000 216.59 7.500000 216.90 8.000000 217.28 9.000000 218.04 10.000000 218.82 11.000000 219.54 12.000000 220.23 13.000000 220.90 14.000000 221.49 15.000000 222.05 1'6.000000 222.63 17.000000 223.11 18.000000 223.60 19.000000 224.06 20,000000 224.47 21.000000 224.91 22.000000 225.28 23.000000 225.66 24.000000 226.01 I> fl 4'- ~" J . Lph l TURB BLDG STM TUNNEL EVALUATION ('l50 GPM STM LEAK/WINTER) HA~ER EQUllf @ STD c~N fo(WI Cog/ 7Q,~~ fQ /Q ~ ( ( 240 220 'I 200 C9 LLI O 180 CL I 160 LJ CL 140 120 100 10 15 20 25 TIME (HRS) ! g" y l 1l Tab le. I 5 f. 5. 5~+A +4nn8.l Tempc.uvre Rcs,ponse. d'or Lo55 o4 H VR C LOSS OF HVAC (SUMMER) TEMPERATURE (DEG F) TIME (HR) ROOMS 1 Page i~~ iZ 0.000000 120.00 0.100000 120.00 0.200000 120.02 0.300000 120.00 0.400000 120.01 0.500000 120.00 0.550000 151.15 0.600000 157,31 0.700000 160.18 0.800000 161.30 0.900000 162.10 1.000000 162.83 1.500000 165.66 2.000000 167,66 2.500000 169.46 3.000000 171.06 3.500000 172.39 4.000000 173.60 4.500000 174.78 5.000000 175.82 5.500000 176.82 6.000000 177.82 6.500000 178,71 7.000000 179.53 7.500000 180.40 8.000000 181.15 9.000000 182.61 10.000000 184.04 11.000000 185.28 12.000000 186.59 13.000000 187.80 14.000000 188.96 15.000000 190.00 16.000000 191.03 17.000000 191.97 18.000000 192.93 19.000000 193.88 20.000000 194.75 21.000000 195.65 22.000000 196.48 23.000000 197.26 24.000000 198.11 LOSS OF HVAC SUMMER CONDITIONS 200 180 (3 LLI CL 160 Q CL I 140 120 10 15 20 25 TIME (HRS) PP8 L Form 2454 (lor83) Cat. r 973401 Dept. PENNSYLVANIAPOWER 8 LIGHT COMPANY ER No. Date Designed by Approved by 19 PROJECT CALCULATION SHEET Sht. No. ~~ of upper 3 x & CQ7 TAP ~np~ 9~K 4>> 2 ~P ~1 ,J' 1 z 'Ra 'll II 'V. g,>> Ail I~ ~ I>> I COTTAP p~pu+ 'DacK Nor 25 gp~ ca~ (S~t) TURB BLDG SThl TUNNEL EVAUJATION (25 GPM STM LEAK/WINTER) Page PROBLEM DIMENSION CARD CARD ¹ 1 ~ Wl-I NROOM = NUMBER OF ROOMS COiNTAINED IN hSDEL (h9V< VALUE IS 300). NROOh/ DOES NOT INCLUDE TIhm-DEPENDENT ROOMS. ~ W2-I NSLB1 = NUMBER OF THICK SLABS (AX VALUE IS 1200). THESE 'ARE SLABS FOR WHICH THE ONE-DIMENSIOiNAL TIME DEPENDENT HEAT CONDUCTION EQ IS SOlVED. ~ W3-I NSLB2 = NUMBER OF THIN SLABS (MAX VALUE IS 1200). THESE ARE SLABS WHICH HAVE LIT1LE THERMAL CAPACITANCE. ~ W4-I NFLOW = NUMBER OF AIR FLOW PATHS (h9V< VALUE IS 500). ~ WS-I NHEAT = NUMBER OF HEAT LOADS (hK< VAIUE IS 750). ~ W6-I NTDR = NUhSER OF TIhK-DEPENDENT ROOMS (MAX VALUE IS 50). ~ W7-I NTRIP = NUMBER OF HEAT LOAD TRIPS (MAX VALUE IS 500). ~ W8-I NPIPE = NUhSER OF PIPE DEFINITIONS (MAX VAlUE IS 500) ~ W9-I NBRK = NUMBER OF STEAM LINE BREAKS (hbQ< VALUE IS 20) > W10-I NlZAK = NUMBER OF IZAKAGE PATHS (AX VALUE IS 500) < Wll-I NCIRC = NUMBER OF CIRCULATION PATHS (MAX VALUE IS 500) ~ W12-I NEC = NUMBER OF EDIT CONTROl CARDS. CARD ¹ 2 ~ Wl-I NFTRIP = NUhSER OF FLOW TRIPS(MAX VALUE IS 300) ~ W2-I hSSSTR = ASS-TRACKING FLAG (0=OFF,1=ON) ~ W3-I MF = NUMERICAL FLAG SOLUTION ~ W4-R CP1 = lZAKAGE FLOW PAIMMETFA (SUGGESTED VALUE IS 1.D4) ~ WS-R CP2 = IZNRGE FLOW PAIRMETH4 (SUGGESIED VALUE IS 150.) ~ W6-R CRl = RAINOUT CALCULATION PAIMMETER (SUGGESTE) VALUE IS 10.) ~ W7-I INPUTF = FLAG COiVXROLLING PRINTING OF INPUT DATA (0=NO DATA PRINTED, 1=DATA PRINTED) ~ W8-I IFPRT = VENTILATION FLOW EDIT FLAG ~ W9-R RTOI = ERROR CONTROL PARAMEZI& (SUGGESTED VALUE IS 1.D-5) NROOM NSLAB1 NSLAB2 NFLOW NHEAT NIDR NTRIP NPIPE NBRK NL1M< NCIRC NEC 12 15 0 2 13 0 0 10 1 1 0 5 NFTRIP hQSSTR MF CP1 CP2 CR1 INPUTF IFPRT RTOL 0 1 13 1.D5 150.DO 10. 1 1 2.D-6 NSH TFC 0 1.D-S PROBLEM TIME AND TRIP TOLERANCE DATA ~ Wl-R T = PROBLEM START TIME (HR) ~ W2-R TEND = PROBLEM END TIME (HR) W3-R TIPTOL- TRIP TOLERANCE (HR). AU TRIPS WILL BE EI(ECUXKD AT THE TRIP SET POINT PLUS OR h/INUS TRPTOI . THE VAUJE OF THIS PAIMMETER SHOUU) BE SET AS LARGE AS POSSIBLE BECAUSE AN EXCESSIVELY SMALL VALUE MILK SIGNIFICANILY INCREASE COMPUTATION TIME. T TEND TRPTOL TRI PEND 0.0 24.5 3.D-4 25.0 %44000000080%%000%4840404%4440404%44000440444444'444C80044444444'44400444% TOIZIRNCE FOR COMPARThKNT-AIR-FLOW MASS BALANCE ~ Wl-R DELFLO = MAXIMUM ALLOWABLE COMPARThKNT FLOW IMBALANCE (CFM) e g I kt I ~p I 'K CP. I; ~ c ~ 4 l* 4 ~w (OMIT THIS CARD IF NFLOW=O) Page~~~ +I ~ Wl-R PREF = PRESSURE (PSIA) USED BY CODE TO CALCULATE REFERENCE DENSITY FOR AIR. TREF PREF 100. 14.7 >t>44>54044404>X>I>>t:004%444404>>>44%~i404440444>24>4444 X44@4444OOOO444444>XOC444444 ROOM DATA CARDS (DO NOT INCLUDE TIME-DEPENDENT ROOMS) ~ Wl-I IDROOM = ROOM ID NUMBER. THE ID NUMBERS hSST START WITH 1 AND %HEY hSST BE SEQUENTIAL. UP TO 300 ROOMS CAN BE SPECIFIED. e W2-R VOL = ROOM VOLUhm (FT3). TO hQINTAIN CONSTANT PROPERTIES IN A ROOM THROUGHOUT THE CALCULATION, ENTER A LARGE VALUE FOR VOL (E.G. VOL=1.D15). ~ W3-R PRES INITIALROOM PRESSURE (PSIA). < W4-R TR = INITIALROOM TEMPERATURE (DEG F). ~ IDROOM VOL 1 35749.DO 14.7DO 111.0 .14DO 10.0 ~ ROOM I-300 2 1.0D15 14.7DO 72.0 .SDO 10.0 + ROOM I-415/STR WEU 3 1.0D15 14,7DO 72.0 .5DO 10.0 ~ ROOM I-416 4 1.0D15 14.7DO " 72.0 .SDO 10.0 ~ ROOM I-219 5 1 OD15 ~ 14.7DO 72.0 .5DO 10.0 ~ ROOM I-212 6 1.0D15 14.7DO . 72.0 .SDO 10.0 ~ ROOM I-213 7 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-214/215 8 1.0D15 14.7DO 72.0 .SDO 10.0 '" ROOM I-218/OPEN/TNK 9 1.0D15 14.7DO , 115.0 .5DO 10.0 + ROOM I-411 10 1.0D15 14.7DO 80.0 .5DO 10.0 ~ ROOM C-300 11 1.0D15 14.7DO 72.0 .5DO 10.0 '" ROOM I-211 12 1.0D15 14.7DO 70.2 .SDO 10.0 + HVAC SUPPLY COO."FOO884%444444040>>>>t'CO>ti>N'4>0444044>t>4800>NO4404>t"-t>444404444~i444>>>4>>i44440'44>>i44 AIR FLOW DATA CARDS ~ Wl-I IDFLOW = ID¹ FOR THE AIR FLOW PATH. VALUES MUST START WITH 1 AND BE SEQUENTIAL. ~ W2-I IFROM = ID¹ OF ROOM THAT SUPPLIES AIR >x W3-I ITO = ID¹ OF ROOM THAT RECEIVES AIR ~ W4-R VFLOW = AIR FLOW (CU FT/MIN). THESE VOLUME'TRIC FLOWS ARE BASED ON %HE REFERENCE TEMPERATURE AND REFERENCE PRESSURE SUPPLIED ABOVE. IDFLOW IFROM ITO VFLOW 1 12 1 12650. 2 1 12 12650. LEÃ(AGE PATH DATA ~ Wl-I IDLEAK = ID NUMBER OF LEAKAGE PATH = 1,2,3,....NLEAK ~ W3-R @TEAK = FLOW AREA OF LEAKAGE PATH (FT2) ~ W4-I LRMl = ID OF ROOM CONNFCHH) TO LEAKAGE PATH + W5-I LRM2 = ID OF ROOM CONNECTED TO LEAKAGE PATH IDLEAK APEAK AKLEAK LRM1 ' UN2 U)IRN 1 S.OODO 1 ~ ODO 11 1 AIR FLOW TRIP DATA 'e 4 r e 4.> Pj I ~V er eK Wl-I W2-I. IDFTRP = TRIP ID NUh93ER KFTYPl = TYPE OF FLOW PATH (1=VENT,2=LEAK,3=CIRC) Page~%'I < W3-I KFTYP2 = TYPE OF TRIP (1=TRIP OFF,2=TRIP ON) < W4-R FTSET = TIME OF TRIP ACTUATION (HR) < W5-I IDFP ID NUMBER OF FLOW PATH UPON WHICH THE TRIP ACTUATES IDFIHP KFTYPl KFTYP2 FTSET IDFP <<THIS CARD NOT REQUIRED << <<<<<<ee<<<<%<<<<<<>7<<<<<<e<<<<4<<<<<<>><<<<<<<<<<<<<<<<<<4<<<<Aik<<<<<<<< HEAT LOAD DATA CARDS ~ Wl-I IDHEAT = ID¹ OF HEAT LOAD. VALUES MUST START WITH 1 AND BE SEQUENTIAL. MAX NUMBER OF HEAT LOADS IS 750. '" W2-I NUhm = THE ROOM NUMBER WHICH CONTAINS THE HEAT LOAD. e W3-I ITYP = TYPE OF HEAT LOAD 1 => LIGHTING 2 => ELECTRICAL PANELS 3 => MOTORS 4 => ROOM COOLERS (VALUE OF QDOT IS NEGATIVE) 5 => HOT PIPING " W4-R QDOT = hlAGNITUDE OF HEAT LOAD (BTU/HR) ~ W5-R TC = TEMPERATURE (F) OF COOlING WATER ENTERING COOIZR IF ITYP=4. IF ITYP IS NOT EQUAL TO 4 ENTER A VALUE OF -1. ~ IDHEAT NUMR ITYP QDOT TC, WCOOL 1 1 1 12240. -1. 0. ~ LIGHTING (NORMAL) 2 1 3 4660. -l. 0. ~ FAN MOTOR 3 1 5 0. -1. 0. ~ 24"DBB-101 4 1 5 0. -1. 0. 4 24"DBB-102 5 1 5 0. -1. 0. ~ 24"DBB-103 6 1 5 0. -1. 0. ~ 24 "DBB-104 7 1 5 0. -1. 0. < 24"DBB-105 8 1 5 0. -1. 0. ~ 8-5/8"DBB-105(MOV) 9 1 5 0. -1. 0. ~ 8-5/8"HBD-166 10 1 5 0. -1. 0. > 4-1/2"EBD-114 11 1 5 0. -1. 0. ~ 6-5/8"DBB-129 12 1 5 0. -1. 0. ~ 18"DBD-101 13 1 8 113175.4 -1. 0. ~ MISC HEAT LOAD + ~g Q Q Q g g g( OgC Oj( ~g Q Q Q Q QQ Q Q g Q Q g ~~ Q Q Q Q Q g + + Q Q Q Q Q + Q g Q Q Q + Q Q Q Q 5g g Q Q Q + g Q + Q Q Q Q Q Q + g Q Q Q Q Q ~ )p'. e PIPING DATA CARDS ~ Wl-I IDPIPE = PIPE ID NUMBER. VALUES MUST START WITH ONE AND e INCREASE CONSECUTIVELY. ~ W2-I IPREF = ASSOCIATED HEAT LOAD NUhSER ~ W3-R POD = OUTSIDE DIAhETER OF PIPE (INCHES) ~ W4-R PID = INSIDE DIAhETER OF PIPE (INCHES) ~ WS-R AIODN = OUTSIDE DIAMEZER OF INSULATION (INCHES) IF THE PIPE IS UNINSULATED SET AIODN EQUAL TO POD. < W6-R PLEN = PIPE LENGTH (FT) ~ W7-R PEM = PIPE EMISSIVITY ~ W8-R AINK = INSUlATION THERh9K CONDUCTIVITY (BTU/HR-FT-F) OgC IF THE PIPE IS UNINSUlATED SET AINK=O.DO W9-R FIEXP = INITIALPIPE FLUID TEhPERATURE (DEG F) W10-I IPHASE = 1 IF PIPE IS INITIALLYFILLED WITH STEAM = 2 IF PIPE IS INITIALLYFILLED WITH LIQUID ~ IDPIPE IPREF POD'ID AIODN PLEN PEM AINK PTEhP IPHASE 1 3 24.0 22..118 30.0 193. 0.8 0.052 545.0 1 2 4 24.0 22.118 30.0 194. 0.8 0.052 545.0 1 t 'k 4 W .n 91 K ')z. 1 C-4p+ Page 4 3 5 24.0 22.118 30.0 195. 0.8 0.052 545.0 1 4 6 24.0 22.118 30.0 194. 0.8 0.052 545.0 1 5 7 24.0 22.118 30.0 42. 0.8 0.052 545.0 1 6 8 8.625 7.437 14.625 5. 0.8 0.052 545.0 1 7 9 8.625 7.981 13.625 77. 0.78 0.041 293.0 1 8 10 4.5 3.624 10.5 23. 0.8 0.052 545.0 2 9 11 6.625 5.501 12.625 14. 0' 0.052 545.0 1 10 12 18.0 15.250 24.0 42. 0.79 0.045 387.0 2 4>i'440444>t>4440>i>>t>4>t:444>804040>i>0>i>44444404>8>144>5>t>4>i:4>N444404404800444>t>44>t>44>N>F44 HEAT LOAD TRIP CARDS < Wl-I IDTRIP = TRIP ID NUMBER. IDTRIP MUST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. UP TO 500 TRIPS CAN BE SPECIFIED. < M2-I IHREF = ID NUMBER OF HEAT LOAD THAT IS TO BE TRIPP ~ M3-I ITMD = 1 IF HEAT LOAD IS INITIALLYOiV I TRIPPED OFF AT T=TSET. = 2 IF HEAT LOAD I W TRIPPED ON AT T-TSET. = 3 IF HEAT LOAD IS I iV AND WILL EXPONENTIALLY DECAY AWAY STARTING AT T=TSET MITH TIME CONSTANT TCON. ~ W4-R TSET = TIME AT WHICH TRIP IS ACTIVATED (HR) ~ ~ W5-R TOON = VALUE OF TIME CONSTANT (HR) FOR EXPONENTIAL DECAY. IF ITMD IS NOT EQUAL TO 3 BEER A VALUE OF 0. IDTRIP IHREF ITM TSET TCON STEAM LINE BREAK DATA CARDS ~ Wl-I IDBRK = BREAK ID NUMBER IDBRK MUST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL ~ W2-I IBRM = ROOM NUMBER IN WHICH BREAK OCCURS ~ M3-I BFLPR = INITIALPIPE FI,UID PRESSURE (PSIA) W4-I IBFLG = 1 IF FIUID IN PIPE IS INITIALLYSTEAM 2 IF FlUID IN PIPE IS INITIALLYWATER. ~ W5-I BDOT = BREAK MASS FLOW RATE (LBh)/HR) ~ W6-I TRIPON = TIhK THAT BREAK FLOW IS INITIATED (HR) ~ W7-I TRIPOF = TIME THAT BREAK FLOM IS TERMINATED (HR) ~ IDBRK IBRM BFLPR IBFLG BDOT TRIPON TRIPOF . RAMP 1 1 1015. 1 12500. .50 125.000000 0.01 %>i>40400>t>4%>t:4>i>044444%>i>4>i>>i>>i>4044>i>44444%%4>t:0%440%4%0+>t>>X>i>44404>i>440>t>04440%4840 THICK SLAB DATA CARD (CARD 1 OF 3) ~ Wl-I IDSLB1 = SLAB ID NUMBER. IDSLB1 MUST START WITH 1 AND ALL VALUES hKJST BE SEQUENTIAL. UP TO 1200 THICK SLABS CAN BE SPECIFIED. ~ M2-I IRM1 = ID NUMBER OF ROOM ON SIDE 1 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. IF SIDE 1 OF THE SLAB IS IN CONTACT WITH OUTSIDE GROUND ENTER e A VALUE OF ZERO. ~ W3-I IRM2 = ID NUMBER OF ROOM ON SIDE 2 OF SLAB. A REGULAR ROOM OR A TIME DEPENDENT ROOM CAN BE SPECIFIED. IF SIDE 2 OF THE SlAB IS IN CONTACT WITH OUTSIDE GROUND KITER A VAUJE OF ZERO. ~ W4-I ITYPE = 1 IF SLAB IS A VERTICAL WALL. 2 IF SLAB IS A FLOOR WITH RESPECT TO ROOM¹ IRM1. 3 IF SLAB IS A CEIlING WITH RESPECT TO ROO>M¹ IRMl. 3 j4 "I I SLAB ( IF ITYPE=l ) . (BTU/HR-FT2-F) Page a c = COiVTTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT BETWEEN SLAB AND ROOM¹ IRM2 (IF ITYPE=2 OR 3), (BTU/HR-FT2-F). = 0.0 IF IRM2=0 'x W4-R HIC1(2) = 0.0 IF ITYPE=1 = COiWECTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT BETWEEN SLAB AND ROOh/¹ IRM1 (IF ITYPE=2 OR 3). (BTU/HR-FT-F) = 0.0 IF IRM1=0 'x WS-R HTC2(2) = 0.0 IF ITYPE=1 = O)i%FICTIVE HEAT TRANSFER COEFFICIENT FOR DOWiitARD HEAT FLOW BETWEEN SLAB AND ROOM¹ IRM2 (IF ITYPE=2 OR 3). (BTU/HR-FT-F) = 0.0 IF IRM2=0 'x IDSLB1 HTC1(1) HTC2(l) HTCl(2) HTC2(2 THIS CARD NOT REQUIRED x>x'x'x eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eL eeeeeeeeeee THIN SLAB DATA CARD (CARD 1 OF 2) 'x Wl-I IDSLB2 = THIN SLAB ID NUhSER. IDSLB2 MUST START WITH 1 AND ALL VAlUES MUST BE SEQUENTIAL. UP TO 1200 THIN SLABS CAN BE SPECIFIED, 'x W2-I JRM1 = ID NUMBER OF ROOhf ON SIDE 1 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. 'x W3-I JRM2 = ID NUMBER OF ROOM ON SIDE 2 OF SLAB. A REGULAR ROOhl OR A TlhK-DEPENDENT ROOM CAN BE SPECIFIED. 'x W4-I JTYPE = 1 IF SLAB IS A VERTICAL WALL, = 2 IF SLAB IS A FLOOR WITH RESPECT TO ROOM¹ JRM1. = 3 IF SLAB IS A CEILING WITH RESPECT TO ROOh)¹ JRM1. 'x W5-R AREAS2 = SLAB HEAT TRANSFER AREA (FT2). IDSLB2 JRM1 JRM2 JTYPE AREAS 2 'Jjc <<THIS CARD NOT REQUIRED << THIN SLAB DATA CARD (CARD 2 OF 2) 'x Wl-I IDSLB2 = THIN SLAB ID NUMBER. IDSLB2 hSST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. 'x W2-R UHT(1) = OVERAU HEAT TRANSFER COEFFICIENT FOR SLAB (IF JTYPE=1). = OVERAU HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). 'x W3-R UHT(2) = 0.0 IF JTYPE=1 = OVERALL HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). <<THIS CARD NOT REQUIRED << Q ix g Q Q Q Q + ix g Q Q Q ix Q Q Q Q Q Q Q + Q Q + g Q Q Q + Q g + Q g >x Q Q Rx ixixQ Q ++ g g ix Q Q Q )gC + )gC + ix Q ixQ Q Q + Q g + Q Q + Q Q g Q TIME-DEPENDENT ROOM DATA + Wl-I IDTDR = ID NUMBER OF TIME-DEPENDENT ROOM. IDTDR MUST START WITH -1 AND PROCEED SEQUENTIALK.Y (I.E. IDTDR = -1,-2,-3,...,-NTDR). < W2-I IRMFLG = 1 IF TIME VERSUS TEMPERATURE DATA WILL BE BGKRED. = 2 IF A SINUSOIDAL TEMPERATURE VARIATION WILL BE USED FOR THIS ROOM. 'x W3-I NPIS = NUhSER OF TIME VS TEMPERATURE DATA POINTS THAT WILL BE SUPPl IED IF IRhPLG=l 4k+ 'P" 1 0 IF IRMFLG=2 ~ N4-R TDRTO = INITIALROON TIEIPEPATORE (DEO P>IP IIEIPLO=2 = 0.0 IF IRMFLG=1 ~ W5-R AMPITD = AMPLITUDE (DEG F) OF TE%'ERATURE OSCILLATION IF IRhPLG=2 = 0.0 IF IRMFLG=1 ~ W6-R FREQ = FREQUENCY (RAD/HR) OF TEhPERATURE OSCIlLATION IF IRhPLG=2 = 0.0 IF IRMA%=1 'E IDTDR IRhFIZP NPTS TDRTO AhPLTD FREQ TIhK VERSUS TEhPERATURE DATA ~ SUPPf Y THE FOLlOWING CARD FOR EACH TIME-DEPENDENT ROOhl WITH IRhFIZ=1 'R Wl-I IDTDR = ID NUMBER OF TIME DEPENDENT ROOh) (IRMFla MUST BE 1) '" W2-R TTIhK = TIhK (HR) ~ W3-R TTEhP = TEMPERATURE (F) '" W4-R TTIhK = TIME ~ W5-R TTEMP = TEMPERATURE ~ USE AS MANY LINES AS NECESSARY FOR INPUT OF THE DATA. UP TO 500 ~ DATA POINTS CAN BE ENTERED FOR EACH ROOM. ~ IDTDR TTIME TTEMP TfUKM TPRES <<THIS CARD NOT REQUIRED N'E' ~ 'lR' X m~ ~ s'a I 1f C )It 4 1a f7 '4 COTTA P Zap'er-'K for 50 pp case. CS~) TURB BLDG STh) TUNNEL EVALUATIOiV (50 GPh) STM LEAK/WINTER) Page <o o4 q/ PROBLEM DIhKNSION CARD CARD ¹ 1 e)c Ml-I NROOM = NUMBER OF ROOMS CONTAI I 300). NROOM DOES NOT INCLUDE TIhK-DEPENDENT ROOMS. ~ W2-I NSLBl = NUMBER OF THICK SLABS (h9V< VALUE IS 1200). THESE ARE SLABS FOR WHICH THE ONE-DIMENSIONAL TIhK DEPENDENT HEAT COiVDUCI'ION EQ IS SOLVED. ~ M3-I NSLB2 = NUh93ER OF THIN SLABS (MAX VALUE IS 1200). THESE ARE SLABS WHICH HAVE lITILE THERMAL CAPACITANCE. ~ W4-I NFLOW = NUMBER OF AIR FLOW PATHS (h90< VALUE IS 500). ~ W5-I NHEAT = NUMBER OF HEAT LOADS (hK< VALUE IS 750). ~ W6-I NTDR = NUMBER OF TIhK-DEPENDENT ROOMS (MAX VALUE IS 50). ~ W7-I NTRIP = NUMBER OF HEAT LOAD TRIPS (MAX VALUE IS 500). ~ W8-I NPIPE = NUMBER OF PIPE DEFINITIONS (MAX VALUE IS 500) 'x W9-I NBRK = NUMBER OF STEAM LINE BREAKS (MAX VALUE IS 20) ~ M10-I NLEAK = NUMBER OF LEAKAGE PATHS (hhQ< VALUE IS 500) ~ Wll-I NCIRC = NUhSER OF CIRCULATION PATHS (MAX VALUE IS 500) ~ M12-I NEC = NUMBER OF EDIT CONTROL CARDS. CARD ¹ 2 '" Wl-I NFTRIP = NUMBER OF FLOW TRIPS(MAX VALUE IS 300) ~ W2-I MASSTR = hfASS-TRACKING FLAG (0=OFF,1=0iV) ~ M3-I MF = NUMERICAL FLAG SOLUTION ~ W4-R CPl = lZAKAGE FLOW PAINE:IIX (SUGGESTED VALUE IS 1.D4) ~ W5-R CP2 = IZAKAGE FLOW PARAM'TEt (SUGGESTED VALUE IS 150.) ~ W6-R CR1 = RAINOUT CALCULATIOiV PAIQMETER (SUGGESTED VALUE IS 10.) ~ W7-I INPUTF = FLAG CONTROLLING PRINTING OF INPUT DATA (0=NO DATA PRINTED, 1=DATA PRINTED) ~ W8-I IFPRT = VENTILATION FLOW EDIT FLAG ~ M9-R RTOL = ERROR CONTROL PARAhKTER (SUGGESTED VALUE IS 1.D-5) ~ NROOh) NSLAB1 NSLAB2 NFLOW NHEAT NTDR NTRIP NPIPE NBRK NLEAK NCIRC NEC 12 15 0 2 13 0 0 10 1 1 0 5 NFTRIP hRSSTR MF CP1 CP2 CR1 INPUTF IFPRT RTOL 0 1 13 1.D5 150.DO 10. 1 1 2.D-6 NSH TFC 0 1.D-S PROBLEM TIhK AND TRIP TOLERANCE DATA ~ Wl-R T = PROBLEM START TIME (HR) ~ M2-R TEND = PROBLEM END TIME (HR) ~ W3-R TRFIOl TRIP TOLHVNCE (HR). ALL TRIPS WILL BE EXFKUTED AT THE TRIP SET POINT PlUS OR MINUS TRPTOL. THE VALUE OF THIS PARAhKIER SHOULD BE SET AS LARGE AS POSSIBLE BECAUSE AN EXCESSIVELY SMALL VALUE WILL SIGNIFICANILY INCREASE COMPUTATION TIME. T TEND TIPTOL TRIPEND 0.0 24.5 3.D-4 25.0 444444 4>WNAA4444444444C44iiiii:0 F4400404444'4OO4Oii:4480404044444448>I~i:44M s TO~CE FOR COMPARTM&ÃZ-AIR-FLOWASS BALANCE '~ Ml-R DELFLO = hhV<IMUM ALLOWABLE COMPARThKNT FLOW IMBALANCE (CFM) DELFLO Page 1.D-5 e e e e e e e e e e e e e e e e e e e e e e e e >r e e e e e e e e e e e e e e e e e e e e e e e >r e e e e e e e e e e e e e e e e e e e e e e e EDIT CONTROI DATA CARDS e NEC CARDS MUST BE SUPPLIED. EACH CARD MUST CONTAIN THE FOLLOWING e DATA. e Wl-I IDEC = ID NUMBER OF THE EDIT CONTROl PNVNEHK SET. e W2-R TLAST = TIhK (HR) UP TO WHICH THE EDIT PARAMETER APPIY. e W3-R THUfZ = PRINT INTERVAL FOR ROOM AND SLAB EDITS (HR). IDEC 0.5 0.1 0.6 0.05 1.0 0.1 4 8.0 0.5 5 125.0 1.0 eeeeeeeeeeee>reeeee>}ieeee>r>ree>ree>re>re>re re>}ieeeeeeeeeeeeeeeeeeeeee>reeee>ree>ree EDIT DIMENSION CARD e Wl-I NRED = TOTAL NUhSER OF ROOMS TO BE EDITED. THIS INCLUDES REGULAR ROOh1S AND TIME-DEPENDENT ROOMS. e W2-I NS1ED = NUMBER OF THICK SLABS TO BE EDITED. e W3-I NS2ED = NUMBER OF THIN SLABS TO BE EDITED. NRED NSlED NS2ED 12 15 0 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee>} ee>reeeeeeeeeeeeeeeeeeeeeeeeeeeeee ROOM EDIT DATA CARD(S) e ENTER THE ID NUMBERS OF THE ROOMS TO BE EDITED. INCLUDE BOTH REGULAR e AND TIME-DEPENDENT ROOMS (NOTE THAT TIME-DEPENDENT ROOiMS HAVE NEGATIVE e ID NUMBERS). ENT&X THE DATA ON AS MANY LINES AS NECESSARY AND ENTER e ANY NUMBER OF ITEMS ON EACH LINE. DATA MUST NOT BE SEPARATED BY e COMMENT LINES.. ROOM EDITS WILL BE PRINTED OUT IN THE ORDER THAT THEY e ARE LISIKD. OMIT THIS CARD IF NRED=O. 1 2 3 4 5 6 7 8 9 10 11 12 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee EDIT CARD(S) FOR THICK SLABS e EÃTER THE ID NUMBERS OF THE THICK SLABS TO BE EDITED. THE ID e NUhSERS CAN BE ENTERED ON AS hbQK LINES AS NECESSARY AND ANY NUMBER OF e ITEhS CAN BE ENTERED ON A LINE. THE ID NUMBERS ARE POSITIVE INTEGER. e SLAB EDITS WILL BE PRINTED IN THE ORDER THAT THEY ARE ENTKKD HERE. e OMIT THIS CARD IF NS1ED=O. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 EDIT CARDS FOR THIN SLABS e ENTER THE ID NUMBERS OF THE THIN SLABS TO BE EDITED. THE ID NUMBERS e CAN BE ENTEKU) ON AS MANY LINES AS NECESSARY AND ANY NUMBER OF ITEMS e CAN BE ENTERED ON A lINE. THE ID NUhSERS ARE POSITIVE INIEGERS. e THIN SLAB EDITS WILL BE PRINTED IN THE ORDER THAT THEY ARE LISTED e HERE. Oh/IT THIS CARD IF NS2ED=O. THIS CARD NOT REQUIRED eeeeeeeeeeeeeeeeeeeeeeeeee>reeeeeeeeeeeeeeeeeeee>reeeeeeeeeeeeeeeeeeeeeeee REFERENCE PRESSURE FOR AIR FLOWS l yg M,1 a, 5 4

tlt 4A Il g

~ ' (OMIT THIS CARD IF NFLOW=O) Page~zok +I ~ Ml-R PREF = PRESSURE (PSIA) USED BY CODE TO CALCULATE REFERENCE DENSITY FOR AIR TREF PREF 100. 14.7 iggg+0ii'gQ+giiiQii'g+QgggiiiQ+iiiggQgQgiiiiiiQQgQiii++QQ+gggggggiic+iii+QiiiQ+gggQggQiiiiiiiiigQ+QggQ ROOM DATA CARDS (DO NOT INCLUDE TIME-DEPENDENT ROOhS) ~ Wl-I IDROOM = ROOM ID NUMER. THE ID NUhSERS MUST START WITH 1 AND THEY MUST BE SEQUENTIAL. UP TO 300 ROOMS CAN BE SPECIFIED. ~ W2-R VOl = ROOM VOlUME (FT3) . TO MAINTAIN CONSTANT PROPERTIES IN A ROOM THROUGHOUT THE CALCULATION, ENTER A LARGE VALUE FOR VOl (E.G. VOL-l.D15). ~ W3-R PRES = INITIALROOhl PRESSURE (PSIA). ~ W4-R TR = INITIALROOM TEhPEHATURE (DEG F). >i( ~ IDROOiM VOL PRES TR RELHUM RM HT 1 35749.DO 14.7DO 111.0 .14DO 10.0 ~ ROOM I-300 2 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-415/STR MELL 3 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-416 4 1.0D15 14.7DO 72.0 .5DO 10.0 ~ ROOM I-219 5 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-212 6 1.0D15 14.7DO 72.0 .5DO 10.0 ~ ROOM I-213 7 1.0D15 14.7DO 72.0 .5DO 10.0 ~ ROOM I-214/215 8 1.0D15 14.7DO 72.0 .5DO 10.0 ~ ROOM I-218/OPEN/TNK 9 1.0D15 14.7DO 115.0 .5DO 10.0 ~ ROOM I-411 10 1.0D15 14.7DO 80.0 .5DO 10.0 ~ ROOM C-300 11 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-211 12 1.0D15 14.7DO 70.2 .5DO 10.0 ~ HVAC SUPPlY AIR FLOW DATA CARDS ~ Wl-I IDFLOW = IDO FOR THE AIR FLOW PATH. VALUES MUST START WITH 1 AND BE SEQUENTIAL. ~ W2-I IFROM = IDO OF ROOM THAT SUPPI IES AIR ~ W3-I ITO = IDO OF ROOM THAT RECEIVES AIR W4-R VFLOW = AIR FLOW (CU FT/MIN). THESE VOlUMETRIC FLOWS ARE BASED ON THE REFERl2lCE TEMPERATURE AND REFERENCE PRESSURE SUPP'ED ABOVE. IDF LOW IFROM ITO VFLOW 1 12 1 12650. 2 1 12 12650. LFAKAGE PATH DATA ~ Wl-I IDLEAK = ID NUMBER OF lEAKAGE PATH = 1,2,3,...,NUMK ~ W3-R ARLEAK = FLOM AREA OF LEAKAGE PATH (FT2) ~ W4-I LRM1 = ID OF ROOM CONNECTED TO UM(AGE PATH ~ M5-I LRM2 = ID OF ROOM CONNECTED TO LEAKAGE PATH IDLEAK ARLEAK AKl,EAK LRMl LRM2 U) IRN 1 5.00DO 1.0DO 1 11 1 AIR FLOW TRIP DATA Q4 f J 0 4' p't 'J a E E I ~ Wl-I IDFTRP = TRIP ID NUMBER Page ~%'i < W2-I KFTYP1 = TYPE OF FLOW PATH (1=VENT,2=LEAK,3=CIRC) < W3-I KFTYP2 = TYPE OF TRIP (1=TRIP OFF,2=TRIP ON) ~ W4-R FTSET = TIME OF TRIP ACTUATION (HR) < W5-I IDFP = ID NUhSER OF FLOW PATH UPON WHICH THE TRIP ACTUATES IDFTRP KFIYP1 KFTYP2 FTSET IDFP ~~ THIS CARD NOT REQUIRED ~~ 4444O44>t:444>/<4>N>t>>NO>F44."8444>X4>W44'5>~484444>t>>54>t>44>W444848>NAACAOO:XO>N444804484444 HEAT LOAD DATA CARDS < Wl-I IDHEAT = ID¹ OF HEAT LOAD. VALUES MUST START WITH 1 AND BE SEQUENTIAL. MAX NUMBER OF HEAT LOADS IS 750. ~ W2-I NUMR = THE ROOM NUMBER WHICH CONTAINS THE HEAT LOAD. ~ W3-I ITYP = TYPE OF HEAT LOAD 1 => LIGHTING 2 => ELECTRICAL PANELS "3 => MOTORS 4 => ROOM COOLERS (VALUE OF QDOT IS NEGATIVE) 5 => HOT PIPING < W4-R QDOT = MAGNITUDE OF HEAT LOAD (BTU/HR) < W5-R TC = TEMPERATURE (F) OF COOLING WATER ENTERING COOLER IF ITYP=4. IF ITYP IS NOT EQUAL TO 4 DUKR A VALUE OF -1. ~ IDHEAT NUMR ITYP QDOT TC WCOOL 1 1 1 12240. -1. 0. ~ LIGHTING (NORMAL) 2 1 3 4660. -1. 0. ~ FAN MOTOR 4 7 8 3 5 6 1 1 1 1 1 1 5 5 5 5 5 5 '. 0. 0. 0. 0. 0. -1. -1. -1. -1. -1. -1. 0. 0. 0 0. 0. 0. ~ ~ 24"DBB-101 '" 24"DBB-102 ~ 24"DBB-103 ~ 24"DBB-104 ~ 24"DBB-105 *" 8-5/8"DBB-105(MOV) 9 1 5 0. -1. 0. ~ 8-5/8"HBD-166 10 1 5 0. -1. 0. ~ 4-1/2"EBD-114 11 1 5 0. -1 ~ 0. 4 6-5/8 "DBB-129 12 1 5 0. -1. 0. ~ 18"DBD-101 13 1 8 113175.4 -1. 0. ~ MISC HEAT LOAD >i>C44444>i>44884>X40C8444444844%444444>N>t:48444>N44444444>W444488%444>tc4484>t:O4444 PIPING DATA CARDS + Wl-I IDPIPE = PIPE ID NUMBER. VALUES MUST START WITH ONE AND INCREASE CONSECUTIVELY. ~ W2-I IPREF = ASSOCIATED HEAT LOAD NUMBER < W3-R POD = OUTSIDE DIAMETER OF PIPE (INCHES) ~ W4-R PID = INSIDE DIAMETER OF PIPE (INCHES) ~ WS-R AIODN = OUTSIDE DIAMETER OF INSULATION (INCHES) IF THE PIPE IS UNINSULATED SET AIODN EQUAL TO POD. > W6-R PLEN = PIPE LENGTH (FT) < W7-R PEM = PIPE EMISSIVITY > W8-R AINK = INSULATION THEINAL CONDUCTIVITY (BTU/HR-FT-F) IF THE PIPE IS UNINSULATED SET AINK=O.DO ~ W9-R PTER = INITIALPIPE FLUID TEMPERATURE (DEG F) ~ W10-I IPHASE = 1 IF PIPE IS INITIALLYFILLED WITH STEAM = 2 IF PIPE IS INITIALLYFILLED WITH IQUID l ~ IDPIPE IPREF POD'ID AIODN PLEN PEM AINK PTEhP IPHASE 1 3 24.0 22,118 30.0 193. 0.8 0.052 545.0 1 2 4 24.0 22.118 30.0 194. 0.8 0.052 545.0 1 t ~ C+ l~ f 3 5 24.0 22.118 30.0 195. 0.8 0.052 545.0 1 4 6 24.0 22.118 30.0 194. 0.8 0.052 545.0 1 5 7 24.0 22,118 30.0 42, 0.8 0.052 545.0 1 6 8 8.625 7.437 14.625 5. 0.8 0.052 545.0 1 7 9 8.625 7.981 13.625 77. 0.78 0.041 293.0 1 8 10 4.5 3.624 10.5 23. 0.8 0.052 545.0 2 9 11 6.625 5.501 '12.625 14. 0.8 0.052 545.0 1 10 12 18.0 15.250 24.0 42. 0.79 0.045 387.0 2 g~y~ggggg~~~g~>gggg+ggyggg+<g<gggy~z)c<yvtcg~gggyy~ggygg<ggggg~g~gory~~ HEAT LOAD TRIP CARDS Ml-I IDTRIP = TRIP ID NUMBER. IDTRIP hmST START WITH 1 AND AU VALUES MUST BE SEQUENTIAL. UP TO 500 TRIPS CAN BE SPECIFIED. ~. M2-I IHREF = ID NUMBER OF HEAT LOAD THAT IS TO BE TRIPPED. M3-I IThS = 1 IF HEAT LOAD IS INITIAlLYON AND MILL BE TRIPPED OFF AT T=TSET. = 2 IF HEAT LOAD IS INITIALLYOFF AND WIU BE TRIPPED ON AT T-TSET. = 3 IF HEAT LOAD IS INITIALLYON AND MIU EXPONENTIALLY DECAY AWAY STARTING AT T=TSET WITH TIME CONSTANT TCON. ~ M4-R TSET = TIME AT WHICH TRIP IS ACTIVAXH) (HR) ~ W5-R TCON = VALUE OF TIME CONSTANT (HR) FOR EXPONENTIAL DECAY. IF ITMD IS NOT EQUAL TO 3 ENTER A VALUE OF 0. IIHRIP IHREF ITMD TSET TCON 9 '>< THIS CARD NOT REQUIRED ++ STEAM I INE BREAK DATA CARDS ~ Ml-I IDBRK BREAK ID NUMBER IDBRK hmST START WITH 1 AND AU VALUES hSST BE SEQUENTIAl < W2-I IBRM ROOM NUMBER IN WHICH BREAK OCCURS ~ W3-I BFLPR INITIALPIPE FLUID PRESSURE (PSIA) < W4-I IBFLG 1 IF FLUID IN PIPE IS INITIALLYSTEAM 2 IF FlUID IN PIPE IS INITIAlLYMATER < W5-I BDOZ BREAK MASS FLOW RATE (LBM/HR) '" W6-I TRIPON TIME THAT BREAK FLOW IS INITIATED (HR) ~ W7-I TRIPOF TIME THAT BREAK FLOW IS TERMINATED (HR) ~ IDBRK IBRM BFLPR IBFLG BDOT TRIPON TRIPOF RAMP 1 1 1015. 1 25000. .50 125.000000 0.01 THICK SLAB DATA CARD (CARD 1 OF 3) ~ Ml-I IDSLBI SLAB ID NUMBER. IDSLB1 MUST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. UP TO 1200 THICK SLABS CAN BE SPECIFIED. < M2-I IRM1 ID NUMBER OF ROOM ON SIDE 1 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. IF SIDE 1 OF THE SLAB IS IN CONTACT MITH OUTSIDE GROUND ENTER A VALUE OF ZERO. < M3-I IRM2 ID NUMBER OF ROOM ON SIDE 2 OF SLAB. A REGULAR ROOM OR A TIME DEPENDENT ROOM CAN BE SPECIFIED. IF SIDE 2 OF THE SLAB IS IN CONTACZ MITH OUTSIDE GROUND ENTER A VALUE OF ZERO. < W4-I ITYPE 1 IF SLAB IS A VERTICAL WALL. 2 IF SLAB IS A FLOOR WITH RESPECT TO ROOM¹ IRM1. 3 IF SLAB IS A CEILING WITH RESPECT TO ROOM¹ IRMl. $l Z CI 4 'J J, r Page~i5' W5-I NGRID = NUhSER OF GRID POINTS PER FOOT USED IN THE FINITE-DIFFERENCE SOlUTION OF THE HEAT CONDUCTION EQUATION. A hIINIMUM VALUE OF 7 GRID POINTS PER SLAB IS USED BY THE CODE. ~ IDSLB1 IRM1 IRM2 ITYPE NG RID IHFLAG CHARL 10 0 0. 1 3 10 3.' 0. 2 1 3 0, 3 1 4 2 10 0 0. 4 1 5 2 10 0 0. 5 1 6 2 10 0 0. 6 1 7 2 10 0 0, 7 1 7 1 10 0 0. 8 1 8. 1 10 0 0 ~ 9 1 9 1 36 0 0. 10 1 10 1 10 0 0. 11' 4 1 10 0 0. 12 1 5 1 10 0 0. 13 1 6 1 10 0 0. 14 1 7 1 10 0 0. 15 1 7 1" 10 0 0. THICK SLAB DATA CARD (CARD 2 OF 3) ~ Wl-I IDSLB1 = SLAB ID NUhSER. IDSLB1 MUST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. + W2-R ALS = THICKNESS OF SLAB (FT). ~ W3-R AREPB1 = SLAB HEAT TRANSFER AREA (FT2). ~ W4-R AKS = TIIERMAL CONDUCTIVITY OF SLAB (B ) 'Eglt ~ WS-R ROS = DENSITY'OF SlAB (LBM/FT3). ~ W6-R CPS = SlAB SPECIFIC HEAT (BTU/LBM-F) ~ IDSLB1 ALS AREAS1 AKS ROS CPS EMIS 1 3 '75 4698.21 0.79 131.10 0.21 0.90 2 3.875 171.50 0,79 131.10 0.21 0,90' 3.5 274.50 0.79 131.10 0.21 0.90 4 3.5 1140.75 0.79 131.10 0.21 O.SO 5 3.5 897.00 0.79 131.10 0.21 0.90 6 3.5 2557.50 0.79 131.10 0.21 0.90 7 3.5 615.56 0.7S 131.10 0.21 0.90 8 4.0 1721.06 0.79 131.10 0.21 0.90 9 0.167 483.66 31.20 489.01 0.11 0.78 10 3.0 '55.40 0.79 131.10 0.21 0.90 11 4.0 169.59 0.79 131.10 0.21 0.90 12 4.0 659,53 0.79 131.10 0.21 0.90 13 4.0 489.94 0.79 131.10 0.21 0.90 14 4.0 433.41 0.79 131.10 0.21 0.90 15 3.5 326.63 0.79 131.10 0.21 0.90 ++gggygy++g+Qgggggg+ggQ~ggQ+4gQ+gggQ+QvtcQgygyg~y~+gggg++++Q+Qg+gg4QQggg THICK SlAB DATA CARD (CARD 3 OF 3) ~ Wl-I IDSLB1 = THICK SLAB ID NUMBER. IDSLB1 MUST START WITH 1 AND ALL VALUES hSST BE SEQUENTIAL. ~ W2-R HTC1(1) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR SIDE 1 OF SLAB ( IF ITYPE=1) . (BTU/HR-FT2-F) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT BETWEEN SLAB AND ROOMO IRM1 (IF ITYPE=2 OR 3). (BTU/HR-FT2-F) = 0.0 IF. IRM1=0 ~ W3-R HTC2(l) = CONV&XTIVE HEAT TRANSFER COEFFICIENT FOR SIDE 2 OF g. )~E  ;) ~\ Page~~~k +/ SLAB ( IF ITYPE=l) . (BTU/HR-FT2-F) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT BETWEEN SIAB AND ROOM¹ IRM2 (IF ITYPE=2 OR 3). (BTU/HR-FT2-F), = 0.0 IF IRM2=0 e M4-R HTC1(2) = 0.0 IF ITYPE=1 = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT BETWEEN SLAB AND ROOM¹ IRM1 (IF ITYPE=2 OR 3). (BTU/HR-FT-F) = 0.0 IF IRM1=0 e MS-R HTC2(2) = 0.0 IF ITYPE=l = COiVTTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD HEAT FLOW BEZMKN SlAB AND ROOM¹ IRM2 (IF OR 3). (BTU/HR-FT-F) 1~2 = 0.0 IF IRM2=0 'Q, e IDSLB1 HTC1(1) HTC2(1) HTC1(2) HTC2(2) THIS CARD NOT REQUIRED eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee>xeeeeeeeeeeeeee>) ee eeeeeeeeee>x THIN SlAB DATA CARD (CARD 1 OF 2) e Wl-I IDSLB2 = THIN SIAB ID NUMBER. IDSLB2 hSST START WITH 1 AND VALUES MUST BE SEQUENTIAL. UP TO 1200 THIN SlABS CAN BE SPECIFIED. e W2-I JRM1 = ID NUMBER OF ROOhl ON SIDE 1 OF SLAB. A REGULAR ROOh) OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. e W3-I JRM2 = ID NUMBER OF ROOhf ON SIDE 2 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. e M4-I JTYPE = 1 IF SLAB IS A VERTICAL WALI. = 2 IF SlAB IS A FLOOR WITH RESPECT TO ROOM¹ JRM1. = 3 IF SIAB IS A CEIlING WITH RESPECT TO ROOM¹ JRM1. e W5-R AREAS2 = SlAB HEAT TRANSFER AREA (FT2). IDSLB2 JRM1 JRM2 JTYPE, AREAS 2 ee THIS CARD NOT REQUIRED ee ixeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee>xe THIN SIAB DATA CARD (CARD 2 OF 2) e Wl-I IDSLB2 = THIN SIAB ID NUMBER. IDSLB2 hKJST START WITH 1 AND ALL VAIUES MUST BE SEQUENTIAL. M2-R'HT(1) = OVEIRLL HEAT TRANSFER COEFFICIENT FOR SIAB (IF JTYPE=1). = OVERitKL HEAT TRANSFER COEFFICIENT FOR UPWARD FloW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). e W3-R UHT(2) = 0.0 IF JTYPE=1 = OVEIML HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOM OF HEAT THROUGH SIAB (IF JTYPE=2 OR 3). TIME-DEPENDENT ROOM DATA e Wl-I IDTDR = ID NUMBER OF TIME-DEPENDENT ROOM. IDTDR MUST START WITH -1 AND PROUD SEQUENTIALIY (I.E. IDTDR = -1,-2,-3,...,-NTDR). e W2-I IRMFLG = 1 IF TIME VERSUS TEhPERATURE DATA WILL BE ENTERED. = 2 IF A SINUSOIDAL TEMPERATURE VARIATION WILL BE USED FOR THIS ROOh). e M3-I NPTS -= NUMBER OF TIME VS TEhPERATURE DATA POINTS THAT MILL BE SUPPI IED IF IRhFLG=1 = 0 IF IRMFLG=2 Page~I ~ W4-R TDRTO = INITIAL ROOM TEMPERATURE (DEG F)IF IRMFLG=2 = 0.0 IF IRhPLG=1 ~ W5-R AMPLTD = AhPLITUDE (DEG F) OF TEhPERATURE OSCILLATION IF IRhFLG=2 = 0.0 IF IRMFLG=1 ~ W6-R FREQ = FREQUENCY (RAD/HR) OF TEMPERATURE OSCILLATION IF IRhFLG=2 = 0.0 IF IRhPLG=1 ~ IDTDR IRMFLG NPTS TDRTO AhPLTD FREQ <<THIS CARD NOT REQUIRED << <<>}:<<<<<<g>)(7g<<<<<<<<}:>g<<<<<<<<g<<gb)()j(lg<<<<<<<<<<<<<<<<<<<<<<Q<<<<<<<<<<<<')c TIME VERSUS TEMPERATURE DATA < SUPPIY THE FOLLOWING CARD FOR EACH TIhK-DEPENDENT ROOM WITH IRMFLG=1 ~ Wl-I IDTDR = ID NUMBER OF TIME DEPENDENT ROOM (IRMFLG hfUST BE 1) W2-R TTIME = TIhK (HR) ~ W3-R TTDP = TEhPERATURE (F) "F W4-R TZIME = TIME ~ W5-R TTEhP = TEMPERATURE ~ USE AS MANY LINES AS NECESSARY FOR INPUT OF THE DATA. UP TO 500 ~ DATA POINTS CAN BE ENHUKD FOR EACH ROOM. ~ IDIDR TTIhK TTEhP Tf&UM TPRES <<THIS CARD NOT REQUIRED << <<<<<<<<<<COO>X4C>}:44:W<<44<<>WC<<44444<<44<<<<4>}'A4<<<<<<4<<444O44:}'<<444<<4<< 'p '1 l ~ ~ 'A tM Vl% J yf QO~AP Tnpu+ Dca'K for 100 g~ case, CS~) J'age~aoF +i TURB BLDG STM TUNNEL EVALUATIOiV (100 GPM STM LEAK/MINTER) PROBlZM DIhKNSIOiV CARD CARD ¹ 1 ~ Ml-I NROOM = NUMBER OF ROOhfS CONTAINED IN hfODEL (MAX VALUE IS 300). NROOM DOES NOT INCLUDE TIME-DEPENDENT ROOMS. ~ W2-I NSU31 = NUMBER OF THICK SLABS (hfAX VALUE IS 1200). THESE ARE SLABS FOR WHICH THE ONE-DIMENSIOiVAL TIhK DEPENDENT HEAT CONDUCTION EQ IS SOLVED. ~ W3-I NSU32 = NUhfBER OF THIN SLABS (hfAX VALUE IS 1200). THESE ARE SLABS WHICH HAVE lITILE THERhlAL CAPACITANCE. ~ W4-I NFLOW = NUMBER OF AIR FLOW PATHS (MAX VALUE IS 500). ~ WS-I NHEAT = NUMBER OF HEAT LOADS (MAX VALUE IS 750). ~ W6-I NTDR = NUMBER OF TIhK-DEPENDENT ROOMS (MAX VALUE IS 50). ~ W7-I NTRIP = NUMBER OF HEAT LOAD TRIPS (hfAX VALUE IS 500). ~ W8-I NPIPE = NUMBER OF PIPE DEFINITIONS (MAX VALUE IS 500) ~ M9-I NBRK = NUMBER OF STEM LINE BREAKS (hfAX VALUE IS 20) ~ M10-I NLEAK = NUMBER OF lZAKAGE PATHS (MAX VALUE IS 500) Mll-I NCIRC = NUMBER OF CIRCULATION PATHS (hfAX VALUE IS 500) e W12-I NEC = NUMBER OF EDIT CONTROL CARDS CARD ¹ 2 < Wl-I NFTRIP = NUMBER OF FLOW TRIPS(MAX VALUE IS 300) '" W2-I hfASSTR = MASS-TRACKING FLAG (0=OFF,1=ON) ~ W3-I MF = NUMERICAL FLAG SOLUTION + W4-R CP1 = IZAIDGE FLOW PAHAMI'TER (SUGGESTED VALUE IS 1.D4) ~ W5-R CP2 = LEAKAGE FLOW PARAMETER (SUGGESTED VALUE IS 150. ) ~ W6-R CRl = HAINOUT CALCULATIOiV PARAMET&K (SUGGESTED VALUE IS 10. ) ~ W7-I INPUTF = FLAG CONTROLLING PRINTING OF INPUT DATA (0=&F0 DATA PRINIH), 1=DATA PRINTED) M8-I IFPRT = VENTILATIOiVFLOM EDIT FLAG 'x M9-R RTOL = ERROR CONTROL PARAhKTER (SUGGESTED VALUE IS 1.D-5) ~ NROOM NSLABl NSLAB2 NFLOW NHEAT NTDR NTRIP NPIPE NBRK NlZAK NCIRC NEC 12 15 0 2 13 0 0 10 1 1 0 5 NFTRIP hfASSTR hfF CPl CP2 CR1 INPUTF IFPRT RTOL 0 1 13 1.DS 150.DO 10. 1 1 2.D-6 NSH TFC 0 1.D-S PROBlZM TIME AND TRIP TOLERANCE DATA ~ Wl-R T = PROBlZM START TIME (HR) < M2-R TEND = PROBlZM END TIME (HR) + W3-R TRPTOf TRIP TOLERANCE (HR). ALL TRIPS WILL BE EXECUTED AT THE TRIP SET POINT PLUS OR hfINUS TRPTOL. THE VALUE OF THIS PARAhKTER SHOULD BE SET AS LARGE AS POSSIBLE e BECAUSE AN EXCESSIVELY SMALL VALUE WILL SIGNIFICANTLY INCREASE COhfPUTATION TIME. T TEND TRPTOL TRIPEND 0.0 24.5 3.D-4 25,0 sjc + >)( >)( g >jl Q + Q A + Q + Q Q Q Q Q >g Q Q Q 5g Q Q + Q >)( 2)c Q + g + 5g ++ Q Q Q Q g Q Q Q g g Q Q >)c Q g Q Q Q Q Q Q Q + >jan 'Jgc TOLERANCE FOR COMPARTMENT-AIR-FLOW MASS BALANCE ~ Ml-R DELFLO = MAXIMUM ALLOWABLE COhfPARThKNT FLOW IhfBALANCE (CFM) Q1 nq 'F> t Pl' j j(eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee EDIT CARD(S) FOR THICK SLABS e FRfER THE ID NUMBERS OF THE THICK SLABS TO BE EDITED. THE ID e NUMBERS CAN BE ENTERED ON AS MANY lINES AS NECESSARY AND ANY NUMBER OF e ITEMS CAN BE ENTERED ON A LINE. THE ID NUMBERS ARE POSITIVE INTEGER. e SLAB EDITS WILL BE PRINTED IN THE ORDER THAT THEY ARE IMXERED HERE." e OhiIT THIS CARD IF NS1ED=O. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 EDIT CARDS FOR THIN SLABS e ENIER THE ID NUhSERS OF THE THIN SLABS TO BE EDITED. THE ID NUMBERS e CAN BE DKlERED ON AS MANY LINES AS NECESSARY AND ANY NUMBER OF ITEMS e CAN BE ENTFJKD ON A LINE. THE ID NUhSERS ARE POSITIVE INTEGERS. e THIN SLAB EDITS WIU BE PRINTED IN THE ORDER THAT THEY ARE LISTS) e HERE. OMIT THIS CARD IF NS2ED=O. THIS CARD NOT REQUIRED eeeeeeeeeeee¹eeeeeeeeee¹ee¹eeeeeeeeeeeeeee¹eee¹eeeeeeeee¹eee¹eeeeeeeeee¹ REFERENCE PRESSURE FOR AIR FU)WS (OMIT THIS CARD IF NFLOW=O) Page~~f +y < Wl-R PREF = PRESSURE (PSIA) USED BY CODE TO CALCULATE REF DENSITY FOR AIR. TREF PREF 100. 14. 7 ROOM DATA CARDS (DO NOT INCLUDE TIME-DEPENDENT ROOMS) ~ Wl-I IDROOM = ROOhE ID NUMBER. THE ID NUMBERS MUST START WITH 1 AND THEY MUST BE SEQUENTIAL. UP TO 300 ROOMS CAN BE SPECIFIED, ~ W2-R VOL = ROOM VOLUME (FT3). TO MAINTAIN CONSTANT PROPERTIES IN A ROOM THROUGHOUT THE CALCULATION, ENTER A LARGE VALUE FOR VOL (E.G. VOL-1.D15). ~ W3-R PRES = INITIALROOiM PRESSURE (PSIA). ~ W4-R TR = INITIALROOhE TEhPERATURE (DEG F). ~ IDROOhE VOL PRES TR RELHUM RM HT 1 35749.DO 14.7DO 111.0 .14DO 10.0 ~ ROOM I-300 2 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-415/STR WELL 3 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-416 4 1.0D15 14.7DO 72.0 .5DO 10.0 ~ ROOM I-219 5 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-212 6 1.0D15 14.7DO 72.0 .SDO 10.0 < ROOM I-213 7 1.0D15 14.7DO ,72.0 .SDO 10.0 4 ROOM I-214/215 8 1.0D15 14.7DO 72.0 .SDO 10.0 + ROOM I-218/OPEN/TNK 9 1.0D15 14.7DO 115.0 .SDO 10.0 "~ ROOM I-411 10 1.0D15 14.7DO 80.0 .5DO 10.0 + ROOM C-300 11 1.0D15 14.7DO 72.0 .SDO 10.0 '> ROOM I-211 12 1.0D15 14.7DO 70.2 .5DO 10.0 < HVAC SUPPlY QQgQgg+++Qgg>ggQQQQ+Q~)jc+QgQQ )(Q+QQ+gQQQ+QQigQQQQ+Q++QQQ AIR FLOW DATA CARDS + Wl-I IDFLOW = IDO FOR THE AIR FLOW PATH. VALUES MUST START WITH 1 7gC AND BE SEQUENTIAL. ~ W2-I IFROM = ID0 OF ROOM THAT SUPPLIES AIR ~ W3-I ITO = ID0 OF ROOM THAT RECEIVES AIR ~ W4-R VFLOW = AIR FLOW (CU FT/MIN). THESE VOIUMETRIC FLOWS ARE BASED OiV THE REFEEKNCE TEMPERATURE AND REFERENCE PRESSURE SUPPI IED ABOVE. IDFLOW 'FROM ITO VFLOW 1 . 12 1 12650. 2 1 12 12650. +ggy~ggggggggg+ggggggggggggg+gg>gggggggggygyygg~+gga)cg+gg~gggggggggg+g<ggg LEAKAGE PATH DATA ~ Wl-I IDLEAK = ID NUhSER OF LEAKAGE PATH = 1,2,3,...,NLEAK ~ W3-R ARUM( = FLOW AREA OF LEAKAGE PATH (FT2) ~ W4-I LRM1 = ID OF ROOM CONNECIZD TO LEAKAGE PATH ~ W5-I LRM2 = ID OF ROOM CONNECTED') TO LEAKAGE PATH IDLEAK AEKZN( AE(LEAK LRM1 LRM2 U) IRN 1 5.00DO 1.0DO 1 11 1 %48%040444444040%%%444%44400%444004444%44%444444'O44444444OO>X44444%44>7OC4 AIR FLOW TRIP DATA i OH'y it W p.'t 5 ~ W5-I NGRID = NUhSER OF GRID POINTS PER FOOT USED IN THE  ;'Jpp ~20~ Wl FINIIE-DIFFERENCE SOLUTION OF THE HEAT CONDUCTION EQUATION. A MINIMUM VALUE OF 7 GRID POINTS PER SLAB IS USED BY THE CODE. ~ IDSLB1 IRM1 IRM2 ITYPE NG RID IHFlAG CHARL 1 1 2 3 10 0 0., 2 1 3 3 10 0 0. 3 1 4 2 10 0 0. 4 1 5 2 10 - 0 0. 5 1 6 2 10 0 0. 6 1 7 2 10 0 0. 7 1 7 1 10 0 0. 8 1 8 1 10 0 0. 9 1 9 1 36 0 0. 10 1 10 1 10 0 0. 11 1 4 1 10 0 0. 12 1 5 1 10 0 0. 13 1 6 1 10 0 0. 14 1 7 1 10 0 0. 15 1 7 1 10 0 0. THICK SLAB DATA CARD (CARD 2 OF 3) ~ Wl-I IDSLB1 = SlAB ID NUh63ER. IDSLB1 MUST START WI VALUES MUST BE SEQUENTIAl. ~ W2-R ALS = THICKNESS OF SLAB (FT). < W3-R ARK%1 = SlAB HEAT TRANSFER AREA (FT2). ~ W4-R AKS = 'IHERMAL CONDUCTIVITY OF SlAB (BTU/HR-FT-F) . ~ W5-R ROS = DENSITY OF SlAB (LBM/FT3). '" W6-R CPS = SLAB SPECIFIC HEAT (BTU/LBM-F) ~ IDSLB1 ALS AREASl AKS ROS . CPS EMIS 1 3.875 4698.21 0.79 131,10 0.21 0.80 2 3.875 171.50 0.79 131.10 0.21 0.90 3 3.5 274.50 0.79 131.10 0.21 0.90 4 3.5 1140.75 0.79 131.10 0.21 0.90 5 3.5 897.00 0.79 131.10 0.21 0.90 6 3.5 2557.50 0.79 131 10F 0.21 0.90 7 3.5 615.56 0.79 131.10 0.21 0.90 8 4.0 1721.06 0.79 131.10 0.21 0.90 9 0.167 483.66 31.20 489.01 0.11 0.78 10 3.0 255.40 0.79 131.10 0.21 0.90 ll 12 4.0 . 4.0 169.59 659.53 0.79 0.79 131.10 131.10 0.21 0.21 0 '0 0.90 13 4.0 489.84 0.79 131.10 0.21 0.90 14 4.0 433.41 0.79 131.10 0.21 0.90 15 3.5 326.63 0.79 131.10 0.21 0.90 7gC THICK SlAB DATA CARD, (CARD 3 OF 3) ~ Wl-I IDSLB1 = THICK SlAB ID NUMBER. IDSLB1 MUST START WITH 1 AND AU'ALUES MUST BE SEQUENTIAL. ~ W2-R HTCl(1) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR SIDE 1 OF SLAB ( IF ITYPE=l) . (BTU/HR-FT2-F) = CONV&XTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT BETWEEN SLAB AND ROOhf¹ IRM1 (IF ITYPE=2 OR 3). (BTU/HR-FT2-F) = 0.0 IF- IRM1=0 ~ W3-R HTC2(l) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR SIDE 2 OF t A4. h 1, Page~2w SLAB ( IF ITYPE=1) . (BTU/HR-FT2-F) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT BEZ4HM SLAB AND ROOM¹ IRM2 (IF ITYPE=2 OR 3). (BTU/HR-FT2-F). = 0.0 IF IRM2=0 'x W4-R HTC1(2) = 0.0 IF ITYPE=1 = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT BEDEW) SLAB AND ROOM¹ IRM1 (IF ITYPE=2 OR 3). (BTU/HR-FT-F) = 0.0 IF IRM1=0 WS-R HTC2(2) = 0.0 IF ITYPE=1 = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD HEAT FLOW BETWEEN SLAB AND ROOM¹ IRM2 (IF ITYPE=2 OR 3). (BTU/HR-FT-F) = 0.0 IF IRM2=0 'x IDSLB1 HTCI(1) HTC2(1) HTC1(2) HTC2(2) THIS CARD NOT REQUIRED <<<<<<<<4<<%@:x<<<<<<-'x>x<<o:x<<o>x<<8<<<<>x<<<<<<<<<<<<:xo>x4 THIN SLAB DATA CARD (CARD 1 OF 2) 'x Wl-I IDSLB2 = THIN SLAB ID NUhSER. IDSLB2 MUST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. UP TO 1200 THIN SLABS CAN BE SPECIFIED. ~ W2-I JRM1 = ID NUhSER OF ROOM ON SIDE 1 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. 'x W3-I JRM2 = ID NUMBER OF ROOM ON SIDE 2 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. 'x W4-I JTYPE = 1 IF SLAB IS A VERTICAL WALL. = 2 IF SLAB IS A FL(mR WITH RESPECT TO ROOhN JRM1. = 3 IF SLAB IS A CEILING WITH RESPECT TO ROOM¹ JRM1. 'x W5-R AREAS2 = SLAB HEAT TRANSFER AREA (FT2). IDSLB2 JRM1 JRM2 JTYPE AREAS 2 <<THIS CARD NOT REQUIRED x'x Q g Q Xx Q Q lx Q Q Q Q + g >x Q Q Q Q + Q + Q Q >x g g + g g g Q g g Q Q Q + Q Q )jC ++ g g g g Q Q Q Q ++ Q Q g + g Q g Q g Q Q Q Q Q Q Q Q >x g g THIN SLAB DATA CARD (CARD 2 OF 2) e 'x Wl-I IDSLB2 = THIN SLAB ID NUMBER. IDSLB2 MUST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. 'x W2-R UHT(1) = OVEIMLL HEAT TRANSFER COEFFICIENT FOR SLAB (IF JTYPE=1) . = OVERALL HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). W3-R UHT(2) = 0.0 IF JTYPE=l = OVERALL HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). <<THIS CARD NOT REQUIRED x'x <<<<<<O:x<<<<<<<<<<<<e~x<<<<<<<<e>x<<<<<<<<<<<<e<<<<<<<<ee<<<<<<<<<<<<>x<<<< TIME-DEPENDENT ROOM DATA + Wl-I IDTDR = ID NUMBER OF TIhK-DEPENDENT ROOM. IDTDR MUST START WITH -1 AND PROCEED SEQUENTIALLY (I.E. IDTDR = -1,-2,-3,...,-NTDR). ~ W2-I IRhFLG = 1 IF TIhK VERSUS TEMPERATURE DATA WILL BE E¹fERED. = 2 IF A SINUSOIDAL TEhPERATURE VARIATION WILL BE USED FOR THIS ROOM. 'x W3-I NPTS = NUMBER OF TIME VS TEMPERATURE DATA POINTS THAT e WILL BE SUPPLIED IF IRMFLG=l = 0 IF IRhFLG=2 Page~~~ '>> W4-R IDRTO = INITIAL ROOM TEhPERATURE (DEG F)IF IRh(FLG=2 = 0.0 IF IRMFLG=1 '>> W5-R AMPLTD = AMPI ITUDE (DEG F) OF TEhPERATURE OSCILLATION IF IRMFLG=2 = 0.0 IF IRhFLG=1 '>> W6-R FREQ = FREQUENCY (RAD/HR) OF TEMPERATURE OSCILLATION IF IRMFLG=2 = 0.0 IF IRMFLG=1 '" IDTDR IRMFLG NPTS TDRTO AhPLTD FREQ '>>'>> THIS CARD NOT REQUIRED >>'>> TIhK VERSUS TEMPERATURE DATA '>> SUPPIY THE FOLLOWING CARD FOR EACH TIME-DEPENDENT ROOM WITH IRMFLG=1 '>> Wl-I IDTDR = ID NUhSER OF TIME DEPENDENT ROOM (IRhPLG MUST BE 1) '>> W2-R TTIhK = TIME (HR) '>> W5-R ~ W3-R TT1MP = TEMPERATURE (F) W4-R TTIME = TIhK = TEMPERATURE '>> USE AS hVWY LINES AS NECESSARY FOR INPUT OF THE DATA. UP TO 500 ~ DATA POINTS CAN BE ENTERED FOR EACH ROOM. > IDTDR TTIhK THMP TRHUM TPRES >:>> THIS CARD NOT REQUIRED << <<<<4 <<<<<<>>> <<4 <<<<<<<<8 0 0 <<4 <<>>> <<>>> <<<<<<<<<< << <<<<<<<<<<0 >>> ~>> ~>> >>> >>> 4 >>> >>> <<<<<<<< S ll , I f'%i k 'K x 'I' k. A A'T 4g b Co~~F z TURB BLDG STM ~ J<~K for TEKEl )GO gp case C>~F'~. EVALUATION (150 GPM STM LEAK/WINTER) Page >('< +/ PROBLEM DIMENSION CARD CARD ¹ 1 ~ Wl-I NROOM NUMBER OF ROOMS CONTAINED IN hSDEL (MAX VALUE IS 300) . NROOM DOES NOT INCLUDE TIME-DEPENDENT ROOMS. ~ W2-I NSLB1 NUhSER OF THICK SLABS (MAX VALUE IS 1200). THESE ARE SLABS FOR WHICH THE ONE-DIMENSIONAL TIME DEPENDENT HEAT CONDUCTION EQ IS SOlVED. ~ W3-I NSLB2 NUMBER OF THIN SLABS (MAX VALUE IS 1200). THESE ARE SLABS WHICH HAVE LITILE THE1NAK CAPACITANCE. ~ W4-I NFLOW NUMBER OF AIR FLOW PATHS (MAX VALUE IS 500). ~ W5-I NHEAT NUMBER OF HEAT LOADS (hlAX VALUE IS 750). '" W6-I NTDR NUMBER OF TIME-DEPENDENT ROOMS (MAX VALUE IS 50). ~ W7-I NTRIP NUhSER OF HEAT LOAD TRIPS (MAX VALUE IS 500). ~ W8-I NPIPE NUMBER OF PIPE DEFINITIONS (MAX VALUE IS 500) ~ W9-I NBRK NUhSER OF STEAM LINE BREAKS (MAX VALUE IS 20) ~ W10-I NUMC NUhSER OF LEA1(AGE PATHS (MAX VALUE IS 500) ~ Wll-I NCIRC NUMBER OF CIRCULATION PATHS (MAX VALUE IS 500) W12 I NEC NUMBER OF EDIT CONTROL CARDS. CARD ¹ 2 ~ Wl-I NFTRIP = NUMBER OF FLOW TRIPS( lALUE IS 300) ~ W2-I hfASSTR = ASS-TRACKING FLAG (0=OFF,1=ON) ~ W3-I MF = NUhKRICAL FLAG SOLUTION ~ W4-R CP1 = LEAKAGE FLOW PAIVNEIER (SUGGESTED VALUE IS I.D4) ~ W5-R CP2 = LEAKAGE FLOW PARAMETER (SUGGESTED VALUE IS 150.) ~ W6-R CRl = RAINOUT CALCULATION PA1MMET1R (SUGGESTED VALUE IS 10. ) ~ W7-I INPUTF = FLAG CONTROLLING PRINTING OF INPUT DATA (0=NO DATA PRINTED, 1=DATA PRINTED) ~ W8-I IFPRT = VENTILATION FLOW EDIT FLAG '" W9-R RTOL = ERROR CONTROL PARAMEHR, (SUGGESTED VALUE IS 1.D-S) ~ NROOM NSLAB1 NSLAB2 NFLOW NHEAT NIDR NTRIP NPIPE NBRK NLEAK NCIRC NEC 12 15 0 2 13 0 0 10 1 1 0 5 NFTRIP MASSTR MF CP1 CP2 CRl INPUTF IFPRT RTOL 0 1 13 1.D5 150.DO 10. 1 1 '.D-6 NSH - TFC 0 1.D-S PROBLEM TIME AND TRIP TOLERANCE DATA ~ Wl-R T = PROBLEM START TIhK (HR) W2-R TEND = PROBLEM END TIhK (HR) ~ W3-R TfPXOE TRIP TOLERANCE (HR). ALL TRIPS WILL BE EXECUTED AT THE TRIP SET POINT PLUS OR MINUS TRPTOL. THE VALUE OF THIS PARAMET1% SHOULD BE SET AS LARGE AS POSSIBLE BECAUSE AN EXCESSIVELY SMALL VALUE WILL SIGNIFICANTLY INCREASE COMPUTATION TIhK. T TEND TfPTOL TRI PEND 0.0 24. 5 3.D-4 25.0 TOLE1VXCE FOR COMPARTMENT-AIR-FLOW MASS BALANCE ~ Wl-R DELFLO = MAXIMUM ALLOWABLE COhPARTMEÃZ FLOW IMBALANCE (CFM) lp 1 j I l IIt a R 4~i 1 ~

  • k I*

DELFLO pygmy gv oF'l 1.D-5 e e e e e e e e e e >g e e e e e e e e e e e e e e >)( >)c e e e e >g e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e EDIT CONTROL DATA CARDS e NEC CARDS MUST BE SUPPLIED. EACH CARD hSST CONTAIN THE FOLLOWING '" DATA. e Wl-I IDEC = ID NUh93ER OF THE EDIT CONTROL PA%METER SET. e W2-R TLAST = TIME (HR) UP TO WHICH THE EDIT PAMMETE% APPLY. e W3-R TPRNT = PRINT INTERVAL FOR ROOM AND SLAB EDITS (HR). IDEC OBLAST TPIKZ 0.5 0.1 0.6 0.05 1.0 0.1 4 8.0 0.5 5 125.0 1.0 eeeeeeeeeeeeeeeee>teeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee EDIT DIhKNSION CARD '" Wl-I NRED = TOTAL NUMBER OF ROOMS TO BE EDITED. THIS INCLUDES REGULAR ROOMS AND TIME-DEPENDENT ROOh/S. e W2-I NS1ED = NUMBER OF THICK SLABS TO BE EDITED. e W3-I NS2ED = NUhSER OF THIN SLABS TO BE EDITED. NRED NS1ED NS2ED 12 15 0 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ROOM EDIT DATA CARD(S) e ENTER THE ID NUMBERS OF THE ROOMS TO BE EDITED. INCLUDE BOTH REGULAR e AND TIME-DEPENDENT ROOhlS (NOTE THAT TIME-DEPENDENT ROOMS HAVE NEGATIVE e ID NUMBERS). ENTER THE DATA ON AS MANY LINES AS NECESSARY AND ERAL e e l ANY NUMBER OF ITEMS ON EACH INE. DATA MUST NOT BE SEPARATED BY COMhKNT lINES. ROOM EDITS WILL BE PRINTED OUT IN THE ORDER THAT THEY e ARE I ISED, OMIT THIS CARD IF NRED=O, 1 2 3 4 5 6 7 8 9 10 11 12 eeeeeeeeeeeeeeee EDIT CARD(S) FOR THICK SLABS e ENTER THE ID NUMBERS OF THE THICK SLABS TO BE EDITED, THE ID e NUMBERS CAN BE DGKRED ON AS MANY LINES AS NECESSARY AND ANY NUhSER OF ITEhS CAN BE EÃXKRED ON A LINE. THE ID NUMBERS ARE POSITIVE INTEGERS. e SLAB EDITS WILL BE PRINTED IN THE ORDER THAT THEY ARE ENTERED HERE. e OMIT THIS CARD IF NSlED=O. 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee EDIT CARDS FOR THIN SLABS e DGKR THE ID NUMBERS OF THE THIN SLABS TO BE EDITED. THE ID NUMBERS e CAN BE ENTERED OiN AS MANY LINES AS NECESSARY AND ANY NUMBER OF ITEhS e CAN BE ENIZRE) ON A LINE. THE ID NUhSERS ARE POSITIVE INTEGERS. e THIN SLAB EDITS WILL BE PRINTED IN THE ORDER THAT THEY ARE LISTED e HERE. OMIT THIS CARD IF NS2ED=O. THIS CARD'OT REQUIRED eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee REFERENCE PRESSURE FOR AIR FLOWS , e J 4 I V l I (OMIT THIS CARD IF NFLOW=O) ~ Wl-R PREF = PRESSURE (PSIA) USED BY CODE TO CALCULATE REFERENCE DENSITY FOR AIR. TREF PREP 100. 14.7 4:X>844-N>WOO4444440>t>44%>t>%4444>t>>i>>XV>X44444>84448>XNAN>4>N4444440444444>5444>t>444+OOC ROOM DATA CARDS (DO NOT INCLUDE TlhK-DEPENDENT ROOiMS) < Wl-I IDROOM = ROO M ID NUMBER. THE ID NUhSERS MUST START WITH 1 AND THEY hSST BE SEQUENTIAL. UP TO 300 ROOMS CAN BE SPECIFIED. '" W2-R VOL = ROO M VOLUhK (FT3). TO MAINTAIN CONSTANT PROPERTIES IN A ROOM THROUGHOUT THE CALCULATION, ENTER A LARGE VALUE FOR VOL (E.G. VOl 1.D15). ~ W3-R PRES = INITIALROOiM PRESSURE (PSIA), + W4-R TR = INITIALROOM TEhPERATURE (DEG F). ~ IDROOM VOL PRES 1 35749.DO 14.7DO 111.0 .14DO 10.0 ~ ROOM I-300 2 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-415/STR WELL 3 1.0D15 14.7DO 72.0 .SDO 10 ' ~ ROOM I-416 4 1.0D15 14.7DO 72.0 .5DO 10.0 ~ ROOM I-219 5 1.0D15 14.7DO 72.0 .5DO 10.0 ~ ROOM I-212 6 1.0D15 14.7DO 72.0 .5DO 10.0 ~ ROOM I-213 7 1.0D15 14.7DO 72.0 .5DO 10.0 > ROOM I-214/215 8 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-218/OPEN/TNK 9 1,0D15 14.7DO 115.0 .5DO 10.0 ~ ROOM I-411 10 1,0D15 14 'DO 80.0 .SDO 10.0 '"'ROOM C-300 11 1.0D15 14.7DO 72.0 .SDO 10.0 ~ ROOM I-211 12 1.0D15 14.7DO 70.2 .5DO 10.0 ~ HVAC SUPPLY AIR FLOW DATA CARDS < Wl-I IDFLOW = ID¹ FOR THE AIR FLOW PATH. VALUES MUST START WITH 1 AND BE SEQUENTIAL. + W2-I IFROM = ID¹ OF ROOM THAT SUPPLIES AIR ~ W3-I ITO = ID¹ OF ROOM THAT RECEIVES AIR < W4-R VFLOW = AIR FLOW (CU FT/hlIN). THESE VOLUhKTRIC FLOWS ARE BASED ON THE REFERENCE TEMPERATURE AND REFERENCE PRESSURE SUPPLIED ABOVE. IDFLOW IFROM ITO VAN 1 12 1 12650. 2 1 12 12650. USAGE PATH DATA + Wl-I IDLZAK = ID NUMBER OF LEAKAGE PATH = 1,2,3,...,NLEAK ~ W3-R ARLENC = FLOW AREA OF LEAl(AGE PATH (FT2) < W4-I LRM1 = ID OF ROOM CONNECIEB TO USAGE PATH > W5-I LRM2 = ID OF ROOM CONNECTED TO LEAKAGE PATH IDLBK ARUAK AKLEAK LRM1 UN2 U) IRN 1 5.00DO 1.0DO 1 11 1 >g&4%4%444444>t:440444>N4444044444044804044444444444>t>4>t:4>I>444-r >t>444>t:4O4444444>W AIR FLOW TRIP DATA Vvl L, 1 t' L p, l~ 'F" ~,iI PP i n Page~~> +t < Wl-I ~ M2-I < W3-I ~1 IDFTRP = TRIP ID NUMBER = TYPE OF FLOW PATH (1=VENT,2=LEAK,3=CIRC) KFTYP2 = TYPE OF TRIP (1=TRIP OFF,2=TRIP ON) ~ W4-R FTSEZ = TIME OF TRIP ACTUATIOiN (HR) ~ WS-I IDFP = ID NUMBER OF FLOW PATH UPON MHICH THE TRIP ACTUATES IDFTRP KFTYPl KFTYP2 FTSET IDFP << THIS CARD NOT REQUIRED << + g + >g g ++ Q Q Q g + Q Q g ~~ Q + >g g Q + Q Q Q Q Q + ~+ Q Q g g Q Q g i' OgC ~g Q Q Q g g g g Q g )yC Q Q Q Q + + Q 'g g + HEAT LOAD DATA CARDS ~ Wl-I IDHEAT = ID¹ OF HEAT LOAD. VALUES hKJST START MITH 1 AND BE SEQUENTIAL. MAX NUMBER OF HEAT LOADS IS 750. ~ W2-I NUhK = THE ROOM NUh93ER WHICH CONTAINS THE HEAT LOAD. ~ M3-I ITYP = TYPE OF HEAT LOAD 1 => LIGHTING 2 => ELECTRICAL PANELS 3 => hQTORS 4 => ROOM COOLERS (VALUE OF QDOT IS NEGATIVE) 5 => HOT PIPING < W4-R QDOT = MAGNITUDE OF HEAT LOAD (BTU/HR) ~ W5-R TC = TEMPERATURE (F) OF COOLING WATER ENTERING COOLER IF ITYP=4. IF ITYP IS NOT EQUAL TO 4 ENTER A VALUE OF -1. ~ IDHEAT NUMR ITYP" QDOT TC WCOOL 1 1 1 12240. -1. 0. ~ I IGHTING (NORMAL) 2 1 3 4660. -1. 0. ~ FAN hKHOR 3 1 5 0. -1. 0. 4 24"DBB-101 4 1 5 0. -1. 0. ~ 24"DBB-102 5 1 5 0. -1. 0. ~ 24"DBB-103 .6 1 5 0. -1. 0. "F 24"DBB-104 7 1 5 0. -1. 0. 4 24"DBB-105 8 1 5 0. -1. 0. ~ 8-5/8"DBB-105(MOV) 9 1 5 0. -1. 0. ~ 8-5/8"HBD-166 10 1 5 0. -1. 0. ~ 4-1/2"EBD-114 11 1 5 0. -1. 0. ~ 6-5/8"DBB-129 12 1 5 0. -1. 0. ~ 18"DBD-101 13 1 8 113175.4 -1. 0. ~ MISC HEAT LOAD <<<<<<<<<<<<<<<<<<<<<<<<4<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<4>N<<<<<<<<4 PIPING DATA CARDS ~ Wl-I IDPIPE = PIPE ID NUMBER. VALUES hfUST START WITH ONE AND INCREASE CONSECUTIVELY. W2-I IPREF = ASSOCIATED HEAT LOAD NUMBER ~ M3-R POD = OUXSIDE DIAMETER OF PIPE (INCHES) < M4-R PID INSIDE DIAMETER OF PIPE (INCHES) ~ M5-R AIODN = OUTSIDE DIAhKTER OF INSULATION (INCHES) IF THE PIPE IS UNINSULATED SET AIODN EQUAL TO POD. ~ W6-R PLEN = PIPE LENGTH (FT) ~ W7-R PEM = PIPE EMISSIVITY ~ W8-R AINK =. INSULATION TMRMAL CONDUCTIVITY (BTU/HR-FT-F) IF THE PIPE IS UNINSULATED SEZ AINK=O.DO ~ M9-R PIKMP = INITIALPIPE FlUID TEhPERATURE (DEG F) ~ W10-I IPHASE = 1 IF PIPE IS INITIALLYFILLED WITH STEAM = 2 IF PIPE IS INITIALlYFILLED MITH lIQUID ~ IDPIPE IPREF POD'ID AIODN PLEN PEM. AINK PTEhP IPHASE 1 3 24.0 22.118 30.0 193. 0.8 0.052 545.0 1 2 4 24.0 22 '18 30.0 194. 0' 0.052 545.0 1 Page~~o 4 +( 3 5 24.0 22.118 30 ' 195. 0.8 0.052 545.0 1 4 6 24,0 22.118 30.0 194. 0,8 0.052 545.0 1 5 7 24.0 22.118 30.0 42. 0.8 0.052 545.0 1 6 8 8.625 7.437 14.625 5. 0.8 0.052 545.0 1 7 9 8.625 7.981 13.625 77. 0 '8 0.041 293.0 1 8 10 4.5 3.624 10.5 23. 0.8 0.052 545.0 2 9 11 6.625 5.501 12.625 14. 0.8 0.052 545.0 1 10 12 18.0 15.250 24.0 42. 0.79 0.045 387.0 2 y>>>g~>t>ygy~y~gyyggyy>t>ggg<g+g:)(+++>Zg>>>>>.'gg~~>gg><~>t(yy~~~ggg>gg~~.~yyyy>y~ HEAT LOAD TRIP CARDS '" W1-I IDTRIP = TRIP ID NUMER. IDTRIP, hSST START WITH 1 AND AKL VALUES MUST BE SEQUENTIAL. UP TO 500 TRIPS CAN BE SPECIFIED. + M2-I IHREF = ID NUMBER OF HEAT LOAD THAT IS TO BE TRIPPED. W3-I ITMD = 1 IF HEAT LOAD IS INITIAKLYON AND WILL BE TRIPPED OFF AT T=TSET. = 2 IF HEAT LOAD IS INITIALLYOFF AND MILL BE TRIPPED ON AT T-TSET. 3 IF HEAT LOAD IS INITIALLYON AND MIlL EXPOiiTIALLY DECAY AWAY STARTING AT T=TSET MITH TIME CONSTANT TCON. < M4-R TSET = TIME AT WHICH TRIP IS ACTIVATED (HR) ~ W5-R TCON = VALUE OF TIME CONSTANT (HR) FOR EXPOiiTIAL DECAY. IF ITMD IS NOT EQUAL TO 3 ENTER A VALUE OF 0. IDTRIP IHREF ITh6) TSET TCO e ee THIS CARD NOT REQUIRED ee 404444444804>W48404>8480>i>4800>i>844>XAAOO>>e444400>t 4 STELA K INE BREAK DATA CARDS 'x W1-I IDBRK BREAK ID NUhSER - IDBRK hSST START MITH 1 AND ALL VALUES MUST BE SEQUENTIAL ~ W2-I IBRM ROOM NUMBER IN WHICH BREAK OCCURS < W3-I BFLPR INITIAK PIPE FlUID PRESSURE (PSIA) 0 W4-I IBFLG 1 IF FLUID IN PIPE IS INITIAKLYSTEAM 2 IF FlUID IN PIPE IS INITIAlLYWATER < M5-I BDOT BREAK MASS FLOW RATE (LB'/HR) < W6-I TRIPON TIME THAT BREAK FLOW IS INITIATED (HR) < W7-I- TRIPOF TIME THAT BREAK FLOW IS TERMINATED (HR) ~ IDBRK IBRM BFLPR IBFLG BDOT TRIPON TRIPOF RAMP 1 1 1015. 1 75000. .50 125.000000 0.01 >t>444444440>t>>>>4444>t>444>t:48444>t'0444>t>44404044048>148>>:0>i:4444444%40'444'40 THICK SLAB DATA CARD (CARD 1 OF 3) < Ml-I IDSLB1 = SLAB ID NUMBER. IDSLB1 hSST START WITH 1 AND AU VAKUES MUST BE SEQUENTIAL. UP TO 1200 THICK SLABS CAN BE SPECIFIED. < M2-I IRM1 = ID NUMBER OF ROOM ON SIDE 1 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. IF SIDE 1 OF THE SLAB IS IN CONTACT MITH OUTSIDE GROUND ENTER A VALUE OF ZERO. < M3-I IRM2 = ID NUMBER OF ROOM ON SIDE 2 OF SLAB. A REGULAR ROOM OR A TIME DEPENDENT ROOM CAN BE SPECIFIED. IF SIDE 2 OF THE SLAB IS IN COiNTACT MITH OUTSIDE GROUND ENHA A VALUE OF ZERO. ~ W4-I ITYPE = 1 IF SLAB IS A VERTICAL WAU . 2 IF SLAB IS A FLOOR MITH RESPECT TO ROOMO IHM1. 3 IF SLAB IS A CEILING WITH RESPECT TO ROOMS IRM1. P~ V L A I ~ w ef' > WS-I NGRID .= NUMBER OF GRID POINTS PER FOOT USED IN -THE Page~I o0 9i FINITE-DIFFERENCE SOlUTION OF THE HEAT CONDUCTIOiN EQUATIOiN. A h/INIMUM VALUE OF 7 GRID POINTS PER SLAB IS USED BY THE CODE. ~ IDSLBl IRM1 IRM2 ITYPE NGRID IHFLAG CHARL 1 1 "2 3 10 0 0. 2 1 3 3 10 0 0. 3 1 4 2 10 0 0. 4 1 5 2 10 0 0. 5 1 6 2 10 0 0. 6 1 7 2 10 0 0. 7 1 7 1 10 0 0., 8 1 8 1 10 0 0. 9 1 9 1 36 0 0, 10 1 10 1 10 0 0. 11 1 4 1 10 0 0. 0. 12 5 1 10 0 13 1 6 1 10 0 0. ,14 1 7 1 10 0 0. 15 1 7 1 10 0 0. THICK SLAB DATA CARD (CARD 2 OF 3) < Wl-I IDSLB1 = SLAB ID NUMBER. IDSLB1 hSST S VALUES MUST BE SEQUENTIAL', ~ W2-R ALS = THICKNESS OF SLAB (FT). ~ W3-R AREAS1 = SLAB HEAT TRANSFER AREA (FT2). < W4-R AKS = THERMAL CONDUCTIVITY OF SLAB (BTU/HR-FT-F) . ~ W5-R ROS = DENSITY OF SLAB (LBM/FT3). ~ W6-R CPS = SLAB SPECIFIC HEAT (BTU/LBM-F) ~ IDSLB1 ALS AREAS1 AKS ROS CPS EMIS 1 3.875 4698.21 0.79 131.10 0.21 0.90 2 3.875 171.50 0.79 131.10 0.21 0.90 3 3' 274.50 0.79 131.10 0.21 0,90 4 3.5 1140.75 0.79 131.10 0.21 0.90 5 3.5 897.00 0.79 131.10 0.21 0.90 6 3.5 2557.50 0.79 131.10 0.21 0.90 7 3.5 615.56 0.79 131.10 0.21 0.90 8 4.0 1721.06 0.79 131.10 0.21 0.90 9 0.167 483.66 31.20 489.01 0.11 0.78 10 3.0 255.40 0,79 131.10 0.21 0.90 11 4.0 169.59 0.79 131.10 0.21 0.90 12 4.0 659.53 0.79 131.10 0.21 0.90 13 4.0 489.94 0.79 131.10 0.21 0,90 14 4.0 433.41 0.79 131.10 0.21 0.90 15 3.5 326.63 0.79 131.10 0.21 0.90 44444%%%%4404444444444444404%444ik4444444044%44%4444444444>Z%44480404 THICK SLAB DATA CARD (CARD 3 OF 3) ~ Wl-I IDSLBl = THICK SLAB ID NUMBER. IDSLB1 MUST START WITH 1 AND ALL VALUES hfUST BE SEQUENTIAL. ~ W2-R HTC1(l) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR SIDE 1 OF SLAB ( IF ITYPE=1) . (BTU/HR-FT2-F) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT BETWEEN SLAB AND ROOM¹ IRMl (IF ITYPE=2 OR 3). (BTU/HR-FT2-F) = 0.0 IF. IRM1=0 ~ W3-R HTC2(l) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR SIDE 2 OF o P~ 1 1/, isa SLAB (IF ITYPE=1). (BTU/HR-FT2-F) Page~~zr" 0) = COiVTTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FU)W OF HEAT BETWEB4 SLAB AND ROOM¹ IRM2 (IF ITYPE=2 OR 3). (BTU/HR-FT2-F). = 0.0 IF IRM2=0 W4-R HTC1(2) = 0.0 IF ITYPE=1 = COiVTTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT BE'TWERP SLAB AND ROOM¹ IRM1 (IF ITYPE=2 OR 3). (BTU/HR-FT-F) = 0.0 IF IRM1=0 W5-R HTC2(2) = 0.0 IF ITYPE=1 = COiVfECTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD HEAT FLOW BETWEEN SLAB AND ROOM¹ IRM2 OR 3) . (BTU/HR-FT-F) >> IDSLB1 = 0.0 IF IRM2=0 HTCl(1) HTC2(1) HTC1(2) A:,I '),, HTC2(2) THIS CARD NOT REQUIRED >> THIN SLAB DATA CARD (CARD 1 OF 2) >> Wl-I IDSLB2 = THIN SLAB ID NUMBER. IDSLB2 MUST START WITH 1 AND >> AU VALUES MUST BE SEQUENTIAL. UP TO 1200 THIN SLABS CAN BE SPECIFIED. W2-I JRM1 = ID NUhSER OF ROOM ON SIDE 1 OF SLAB. A REGULAR ROOM OR A TlhK-DEPENDENT ROOM CAN BE SPECIFIED. '" W3-I JRM2 = ID NUMBER OF ROOM ON SIDE 2 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. >> W4-I J1YfK = 1 IF SLAB IS A VERTICAL WALL. >> = 2 IF SLAB IS A FL(IR WITH RESPECT TO ROOM¹ JRM1. = 3 IF SLAB IS A CEIlING WITH RESPECT TO ROOM¹ JRMl. >> W5-R AREAS2 = SLAB HEAT TRANSFER AREA (FT2). IDSLB2 J1Wl JRM2 JTYPE AREAS 2 >>>> THIS CARD NOT REQUIRED>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>~)>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> THIN SLAB DATA CARD (CARD 2 OF 2) >> Wl-I IDSLB2 = THIN SLAB ID NUMBER. IDSLB2 MUST START WITH 1 AND AU'ALUES MUST BE SEQUENTIAL. >> W2-R UHT(1) = OVERALL HEAT TRANSFER COEFFICIENT FOR SLAB (IF JTYPE=1). = OVERALL HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). W3-R UHT(2) = 0.0 IF JTYPE=l = OVHMX HEAT TK-"8SFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). >> THIS CARD NOT REQUIRED>>>> TIME-DEPENDENT ROOM DATA >> Wl-I IDTDR = ID NUMBER OF TIME-DEPENDENT ROOM. IDTDR MUST START >> WITH -1 AND PROCEED SEQUENTIAlLY (I.E. IDTDR = -1,-2,-3,...,-NTDR). W2-I IRhSLG = 1 IF TIME VERSUS TEhPERATURE DATA WILL BE ENTERS). >> = 2 IF A SINUSOIDAL TEhPERATUHE VARIATION WIU BE USED FOR THIS ROOM. >> W3-I NPTS = NUMBER OF TIME VS TEhPERATURE DATA POINTS THAT WILL BE SUPPLIED IF IRMFLG=1 Ni 1 1 R I = 0 IF IRhFLG=2 Page~~< ~l ~ W4-R TDRTO = INITIALROOM TEMPERATURE (DEG F) IF IRhFLG=2 = 0.0 IF IRMFLG=1 < W5-R AhPLTD = AMPLITUDE (DEG F) OF TEhPERATURE OSCILLATIOiV IF IRhtFLG=2 = 0.0 IF IRMFLG=1 '" W6-R FREQ = FREQUENCY (RAD/HR) OF TEMPERATURE OSCILLATION IF IRMFLG=2 = 0.0 IF IRMFL6=1 ~ IDTDR IRhFLG NPTS TDRTO AMPI TD FREQ <<THIS CARD NOT REQUIRED << <<<<<<<<<<<<<<>g<<<<>)(<<<<<<<<~ y<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>t><<<<<<<<<<g TIME VERSUS TEhPERATURE DATA '> SUPPIY THE FOLLOWING CARD FOR EACH TIhK-DEPENDENT ROOiM WITH IRMFLG=1 ~ Wl-I IDTDR = ID NUhSER OF TIhK DEPENDENT ROOM (IRMFLG htUST BE 1) ~ W2-R TTIhK = TIME (HR) ~ ~ ~ W3-R TTDP = TEMPERATURE (F) W4-R TTIhK = TIhK W5-R = TEMPERATURE p ~ USE AS MANY LINES AS NECESSARY FOR INPUT OF THE DATA. UP TO 500 ~ DATA POINTS CAN BE ENTERED FOR EACH ROOM. ~ IDTDR TZIME TTEhP TRHUM TPRES '"~ THIS CARD NOT REQUIRED << +g>g<<<<g:g<<<<<<g<<>g<<<<<<<<<<<<<<>yegg>yg>g<<<<g>g<<gg>g<<>y<<g>g<<<<<<<<<<<<<<g+ ~ Ly CO~>AP Znpuk DecK for Lo~ o4 HVgC. Page Z1 ~f 9i LOSS OF HVAC ( SUMMER CONDITIOiNS ) PROBLEM DIMENSION CARD CARD ¹ 1 e Wl-I NROOM = NUMBER OF ROOMS COiNTAINED IN hGDEL (MAX VALUE IS 300). NROOM DOES NOT INCLUDE TIhK-DEPENDENT ROOMS. e W2-I NSLB1 = NUMBER OF THICK SLABS (MAX VALUE IS 1200). THESE ARE SLABS FOR WHICH THE ONE-DIMENSIONAL TIME DEPENDENT HEAT CONDUCZIOiV EQ IS SOLVED. W3-I NSLB2 = NUhSER OF THIN SLABS (MAX VALUE IS 1200). THESE ARE SLABS WHICH HAVE LITTIZ TONAL CAPACITANCE. e W4-I NFLOW = NUMBER OF AIR FLOW PATHS (hK< VALUE IS 500). e W5-I NHEAT = NUMBER OF HEAT LOADS (MAX VALUE IS 750). e W6-I NTDR = NUhSER OF TIME-DEPENDENT ROOMS (MAX VAIUE IS 50). e W7-I NTRIP = NUMBER OF HEAT LOAD TRIPS (MAX VALUE IS 500). W8-I NPIPE = NUMBER OF PIPE DEFINITIONS (MAX VALUE IS 500) e W9-I NBRK = NUhSER OF STEAM LINE BREAKS (MAX VALUE IS 20) e W10-I NLRB = NUMBER OF LEAKAGE PATHS (MAX VALUE IS 500) e Wll-I NCIRC = NUMBER OF CIRCULATION PATHS (hhV< VALUE IS 500) e W12-I NEC = NUMBER OF EDIT COiiROL CARDS. CARD ¹ 2 e Wl-I NFTRIP = NUMBER OF FLOW TRIPS(NV< VALUE IS 300) e W2-I MASSTR = MASS-TRACKING FLAG (0=OFF,1=ON) e W3-I MF = NUhKRICAL FLAG SOLUTION e W4-R CPl = lEAKAGE FLOW P/I%METER (SUGGESTED VALUE IS 1.D4) e WS-R CP2 = LEAKAGE FLOW PAIVMETER (SUGGESTED VALUE IS 150.) e W6-R CR1 = RAINOUT CALCULATION PARAMETER (SUGGESTED VALUE IS 10.) e W7-I INPUTF = FLAG CONTROLLING PRINTING OF INPUT DATA (0=NO DATA e PRINTED, 1=DATA PRINTED) e W8-I IFPRT = VENTILATION FLOW EDIT FLAG e W9-R RTOL = ERROR CONTROL PARAMETER (SUGGESTED VALUE IS 1.D-5) e NROOM NSLABl NSLAB2 NFLOW NHEAT NIDR NTRIP NPIPE NBRK NLZAK NCIRC NEC 12 15 0 2 13 0 0 10 0 1 0 5 NFTRIP MASSTR MF CP1 CP2 CR1 INPUTF IFPRT RTOL 2 1 13 1.D5 150.DO 10. 1 1 2.D-6 NSH TFC 0 1.D-5 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee PROBLEM TIME AND TRIP TOLERANCE DATA e Wl-R T = PROBLEM START TIME (HR) e W2-R TEND = PROBLEM END TIME (HR) e W3-R TRFKL- TRIP TOLERANCE (HR). ALL TRIPS WILl BE EXECUTED AT THE TRIP SET POINT PlUS OR MINUS TIPTOL. THE VALUE OF THIS PARAMEHW, SHOULD BE SET AS LARGE AS POSSIBLE BECAUSE AN EXCESSIVElY SOU VALUE WILL SIGNIFICANTLY INCREASE COhPUTATION TIME. TDR Tf&1UL TRIPEND 0.0 '4.00 1.D-3 25.0 TOLERANCE FOR COMPARTMENT-AIR-FLOW MASS BALANCE e Wl-R DELFLO = MAXIMUM ALLOWABLE COhPARTMENT FLOW IMBALANCE (CFM) l P'I s~ I IP Wl P Pp P gO JIE 4 ~ \ ,a ,I DELFLO Page~s 1.D-5 EDIT COiVRROL DATA CARDS ~ NEC CARDS MUST BE SUPPLIED. EACH CARD MUST CONTAIN THE FOLLOWING ~ DATA. < Wl-I IDEC = ID NUhSER OF THE EDIT CONTROL PARAhKTER SET. ~ W2-R TLAST = TIME (HR) UP TO WHICH THE EDIT PARAhKTERS APPLY. ~ W3-R TPRNT = PRINT INTERVAL FOR ROOM AND SLAB EDITS (HR). IDEC TLAST TPRNT 0.5 0.1 0.6 1.0 8.0 01 o.s . g P('ie,, Pa V,> 125.0 1.0 EDIT DIhKNSION CARD ~ Wl-I NRED = TOTAL NUMBER OF ROOhS TO BE EDITED. THIS INCLUDES REGULAR ROOhS AND TIME-DEPENDENT ROOhS. < W2-I NS1ED = NUMBER OF THICK SLABS TO BE EDITED. ~ W3-I NS2ED = NUMBER OF THIN SLABS TO BE EDITED. NRED NSlED NS2ED 12 15 0 ROOM EDIT DATA CARD(S) '~ ENTER THE ID NUMBERS OF THE ROOMS TO BE EDITED. INCLUDE BOTH REGULAR ~ AND TIME-DEPENDENT ROOMS (NOTE THAT TIME-DEPENDENT ROOMS HAVE NEGATIVE < ID NUMBERS). ENTER THE DATA ON AS MANY LINES AS NECESSARY AND ENTER ~ ANY NUhSER OF ITEMS ON EACH LINE. DATA MUST NOT BE SEPARATED BY ~ COMMENT LINES. ROOM EDITS WILL BE PRINTED OUT IN THE ORDER THAT THEY ~ ARE LISTED. OMIT THIS CARD IF NRED=O. 1 2 3 4 5 6 7 8 9 10 ll 12 EDIT CARD(S) FOR THICK SLABS . + ~ EN'HE ID NUMBERS OF THE THICK SLABS TO BE EDITED. THE ID NUMBERS CAN BE ENTEIUH) ON AS ANY LINES AS NECESSARY AND ANY NUMBER OF ~ ITEMS CAN BE ENTEMH) ON A lINE. THE ID NUMBERS ARE POSITIVE INTEGERS. ~ SLAB EDITS WILL BE PRINTED IN THE ORDER THAT THEY ARE ENTEMU) HERE. ~ Oh)IT THIS CARD IF NSlED=O. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 EDIT CARDS FOR THIN SLABS + ENHK THE ID NUMBERS OF THE THIN SLABS TO BE EDITED. THE ID NUMBERS + CAN BE ENTERED ON AS hbQK LINES AS NECESSARY AND ANY NUMBER OF ITEMS ~ CAN BE ENTERED ON A LINE. THE ID NUhSERS ARE POSITIVE INTEGERS. ~ THIN SLAB EDITS WILL BE PRINTED IN THE ORDER THAT THEY ARE LISTED ~ HERE. OMIT THIS CARD IF NS2ED=O. THIS CARD'OT QUIRED Q g )gc Q Q Q Q Q Q ++ Q ~ ~ g g ++ Q Q g )gc g Q g Q g 'g Q Q gc g + g Q Q )gc Q )gc Q Q Q )gc Q Q Q + g )gc g g Q Q g Q Q )p' Q Q Q )gc Q Q >ac i' 4 i' 4 4 PRESSURE FOR AIR FLOWS it'EFERENCE I I 4 ~ 4U 4e P %a nw (OiMIT THIS CARD IF NFLOW=O) page~a(. N'l-R PREF = PRESSURE (PSIA) USED BY CODE TO CALCULATE REFERENCE DENSITY FOR AIR. TREF PREF 100. 14.7 ~~4~00i>>.~i>>(i>>(N(E(i>>(i>>('4i>>(i>>(4ijj(E(M(44PA'iI( ARM(iRi>>(i>>('4i>>(M(ijj('4i>>(M(i>>(N(SRi>>(iRiNAiMiRi>>(M(PAi>>(iMCM(N(ON(4i>>(i>>:~M('Oi>>(4i>>(M(0404~N ROOM DATA CARDS (DO NOT INCT UDE TlhK-DEPENDEÃ1'OOMS) < Ml-I IDROOM = ROOM ID NUhSER. THE ID NUhSERS MUST START MITH 1 AND THEY hfUST BE SEQUENTIAL. UP TO 300 ROOMS CAN BE SPECIFIED. < W2-R VOL = ROOM VOLUhm (FT3). TO MAINTAIN CONSTANT PROPERTIES IN A ROOM THROUGHOUT THE CALCULATION, ENTER A LARGE VALUE FOR VOL (E.G. VOL=1.D15). W3-R > W4-R PRES TR = INITIAL ROOM PRESSURE (PSIA) . INITIAL ROOM TE(IPERATORE (DEO PPI $ >>: >>P ~ %y 'i)>> MR IDROOhf VOL PRES TR REUKM RM HT 1 35749.DO 14.7DO 120.0 .11DO 10.0 M'OOM I-300 2 1.0D15 14.7DO 104.0 .5DO 10.0 ~ ROOM I-415/STR MELL 3 1.0D15 14.7DO 120.0 .5DO 10.0 + ROOM I-416 4 1.0D15 14.7DO 104.0 .5DO 10.0 M ROOM I-219 5 1.0D15 14.7DO 120.0 .5DO 10.0 ~ ROOM I-212 6 1.0D15 14.7DO 104.0 .5DO 10.0 M'OOM I-213 7 1.0D15 14.7DO 120.0 .5DO 10.0 M'OOM I-214/215 8 1.0D15 14.7DO 104.0 .5DO 10.0 + ROOM I-218/OPEN/XÃK 9 1.0D15 14.7DO 130.0 .5DO 10.0 M'OOM I-411 10 1.0D15 14.7DO 70.0 .5DO 10.0 M'OOM C-300 ll 12 1.0D15 1.0D15 14.7DO 14.7DO 120.0

70. 2

.SDO . 5DO 10.0

10. 0 MR MR ROOM I-211 HVAC SUPPLY AIR FlOW DATA CARDS

~ Ml-I IDFLOW = ID¹ FOR THE AIR FlOW PATH. VALUES MUST START WITH 1 AND BE SEQUENTIAL. ~ W2-I IFROM = ID¹ OF ROOhl THAT SUPPLIES AIR MR W3-I ITO = ID¹ OF ROOM THAT RECEIVES AIR M4-R VFLOW = AIR FlOW (CU FT/hlIN). THESE VOLUhETRIC FLOWS ARE e BASED ON THE REFERENCE TEMPERATURE AND REFERENCE PRESSURE SUPPLIED ABOVE. IDFlOW IFROM ITO VFLOW 1 12 1 12650. 2 1 12 12650. LEAKAGE PATH DATA M'l-I IDLEAK = ID NUMBER OF USAGE PATH = 1,2,3,...,NLEAK 'N W3-R %TEAK = FLOW AREA OF lEAKAGE PATH (FT2) + W4-I LRM1 = ID OF ROOM CONNECTED TO LEAKAGE PATH N'5-I LRM2 = ID OF ROOM CONNECTED TO LEAKAGE PATH IDLEAK ARUMK A1(UAK LRM1 LRM2 LDIRN 1 10.00DO 1.0DO 1 11 1 AIR FLOW TRIP DATA 4* ~t < Wl-I IDFTRP = TRIP ID NUMBER Page 97 H 0/ > W2-I KFTYP1 = TYPE OF FLOW PATH (1=VENT,2=LEAK,3=CIRC) > W3-I KFTYP2 = TYPE OF TRIP (1=TRIP OFF.2=TRIP ON) ~ W4-R FTSET = TlhK OF TRIP ACTUATION (HR) < WS-I IDFP = ID NUMBER OF FLOW PATH UPON WHICH THE TRIP ACTUATES IDFTRP K1HYP1 KFTYP2 FTSET IDFP 1 1 1 0.5 1 2 - 1 1 0.5 2 ~~ THIS CARD NOT REQUIRED ~+ +Q+QgcQQQ+Qg+QQQ+Q+Q+QQ+QQQQ++~~~c@g+~+QQgQQggg(QQQQ~+QQQg++++QQQgQ+QQ+QggggQQ HEAT LOAD DATA CARDS ~ Wl-I IDHEAT = IDO OF HEAT LOAD. VALUES hmST START WITH 1 AND BE SEQUENTIAL. MAX NUMBER OF HEAT LOADS IS 750. ~ W2-I NUMR = THE ROOM NUhSER WHICH CONTAINS THE HEAT LOAD. ~ W3-I ITYP = TYPE OF HEAT LOAD 1 => LIGHTING 2 => ELECTRICAL PANELS Vj 3 => hK)TORS 4 => ROOM COOLERS (VALUE OF QDOT IS NEGATIVE) 5 => HOT PIPING > W4-R QDOT = MAGNITUDE OF HEAT LOAD (BTU/HR) < W5-R TC = TDPERATURE (F) OF COOLING WATER ENTERING COOLER IF ITYP=4. IF ITYP IS NOT EQUAL TO 4 ENTER A VALUE OF -1. > IDHEAT NUhm ITYP QDOT TC WC(IL 1 1 1 12240. -1. 0. < LIGHTING (NORMAL) 2 1 3 4660. -1. 0. ~ FAN MOTOR 3 1 5 0. -1. 0. ~ 24"DBB-101 4 1 5 0. -1. 0. ~ 24"DBB-102 5 1 5 0. -1. 0. ~ 24"DBB-103 6 1 5 0. -1. 0. A 24"DBB-104 7 1 5 0. -1. 0. 4 24"DBB-105 8 1 5 0. -1. 0. ~ 8-5/8"DBB-105(MOV) 9 1 5 0. -l. 0. ~ 8-5/8"HBD-166 10 1 5 0. -l. 0. > 4-1/2"EBD-114 ll 12 1 1 5 5 0. 0. -1. -1. 0. 0. ~ 6-5/8"DBB-129 ~ 18"DBD-101 13 1 8 189232.8 -l. 0. ~ MISC HEAT LOAD PIPING DATA CARDS < Wl-I IDPIPE = PIPE ID NUMBER. VALUES MUST START WITH ONE AND INCRFASE CONSECUTIVELY. < W2-I IPREF = ASSOCIATED HEAT LOAD NUMBER < W3-R POD = OUTSIDE DIAMETER OF PIPE (INCHES) ~ W4-R PID INSIDE DIAMETER OF PIPE (INCHES) < W5-R AIODN = OUTSIDE DIAMETER OF INSULATION (INCHES) IF THE PIPE IS UNINSULATED SET AIODN EQUAL TO POD. < W6-R PLEN = PIPE LENGTH (FT) ~ W7-R PEM = PIPE EMISSIVITY ~ W8-R AINK = INSULATION THERhQL CONDUCTIVITY (BTU/HR-FT-F) IF THE PIPE IS UNINSULATED SET AINK=O.DO W9-R PTEhP = INITIAL PIPE FLUID TEhPERATURE (DEG F) ~ W10-I IPHASE = 1 IF PIPE IS INITIALLYFIlLED WITH STEAM = 2'F PIPE IS INITIALLYFILLED WITH LIQUID ~ IDPIPE IPREF POD PID AIODN PLEN PEM AINK PTEhP IPHASE T( ~pl II 1 3 24.0 22.118 30.0 193. 0' 0.052 545.0 1 2 4 24.0 22.118 30.0 194. 0.8 0.052 545.0 1 3 5 24.0 22.118 30.0 195. 0.8 0.052 545.0 1 4 6 24.0 22.118 30.0 194. 0.8 0.052 545.0 1 5 7 24.0 22.118 30.0 42. 0.8 0.052 545.0 1 6 8 8.625 7.437 14.625 5. 0.8 0.052 545.0 1 7 9 8.625 7.981 13.625 77. 0.78 0.041 293.0 1 8 10 4.5 3.624 10.5 23. 0.8 0.052 545.0 2 9 11 6.625 5.501 12.625 14. 0.8 0.052 545.0 1 10 12 18.0 15.250 24.0 42. 0.79 0.045 387.0 2 HEAT LOAD TRIP CARDS < Wl-I IDTRIP = TRIP ID NUhSER. IDTRIP hSST START WITH 1 AND Au VALUES hSST BE SEQUENTIAL. UP TO 500 TRIPS CAN BE SPECIFIED. > W2-I IHREF = ID NUMBER OF HEAT LOAD THAT IS TO BE TRIPPED. > W3-I ITMD = 1 IF HEAT LOAD IS INITIALLYON AND WILL BE TRIPPED OFF AT T=TSET. = 2 IF HEAT LOAD IS INITIALLYOFF AND WIU BE TRIPPED ON AT T-TSET. = 3 IF HEAT LOAD IS INITIAUYON AND WILL EXPONENTIAUY DECAY AWAY STARTING AT T=TSET WITH TIME CONSTANT TCON. ~ W4-R TSET = TIhK AT WHICH TRIP IS ACTIVATED (HR) '~ W5-R TCOiV = VALUE OF TIME CONSTANT (HR) FOR EXPONENTIAL DECAY. IF ITMD IS NOT EQUAL TO 3 ENTER A IDTRIP IHREF IThS TSET ~~ THIS CARD NOT REQUIRED ~+ STEAM lINE BREAK DATA CARDS ~ Wl-I IDBRK = BREAK ID NUMBER IDBRK MUST START WITH 1 AND ALL e VALUES MUST BE SEQUENTIAL ~ W2-I IBRM = ROOM NUMBER IN WHICH BREAK OCCURS ~ W3-I BFLPR = INITIAL PIPE FLUID PRESSURE (PSIA) < W4-I IBFLG = 1 IF FlUID IN PIPE IS INITIALLYSTEAM 2 IF FLUID IN PIPE IS INITIALLYWATER ~ W5-I BDOT = BREAK MASS FLOW RATE (LBM/HR) ~ W6-I TRIPOVi = TIME THAT BREAK FLOW IS INITIATED (HR) ~ W7-I TRIPOF = TIME THAT BREAK FLOW IS TERMINATED (HR) ~ IDBRK IBRM BFLPR IBFLG BDOT TRIPON TRIPOF RAMP 1 1 1015. 1 18530. .50000000 125.000000 0.01 THICK SLAB DATA CARD (CARD 1 OF 3) < Wl-I IDSlBl = SLAB ID NUMBER. IDSLB1 hSST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. UP TO 1200 THICK SLABS CAN BE SPECIFIED. < W2-I IRM1 = ID NUMBER OF ROOM ON SIDE 1 OF SLAB. A REGULAR ROOM OR A TIhK-DEPENDENT ROOM CAN BE SPECIFIED. IF SIDE 1 OF THE SLAB IS IN CONTACT WITH OUTSIDE GROUND ENGR A VAIUE OF ZERO. ~ W3-I IRM2 = ID Vii3ER OF ROOM ON SIDE 2 OF SM3. A REGULAR ROOM OR A TIhK DEPENDENT ROOM CAN BE SPECIFIED. IF SIDE 2 OF THE SLAB IS IN CONTACT WITH OUTSIDE GROUND EN' VALUE OF ZERO. + W4-I ITYPE = 1 IF SLAB IS A VERTICAL WALL. gW* ELl 'I ~ t$ L rP 1 2 IF SLAB IS A FLOOR WITH RESPECT TO ROOk!F IRMI. p 'E SR < /l 3 IF SLAB IS A CEILING WITH RESPECT TO ROOM¹ IRhn.. ~ W5-I NGRID = NUhSER OF GRID POINTS PER FOOT USED IN THE FINITE-DIFFERENCE SOLUTION OF THE HEAT CONDUCTION EQUATION. A MINIMUM VALUE OF 7 GRID POINTS PER SLAB IS USED BY THE CODE. 'E IDSLBl IRM1 IRM2 ITYPE NGRID IHFLAG CfIARL 1 1 2 3 10 0 0. 2 1 3 3 10 0 0. 3 1 4 2 10 0 0. 4 1 5 2 10 0 0. 5 1 6 2 10" 0 0. 6 1 7 2 10 0 0. 7 1 7 1 10 0 0. 8 1 8 1 10 0 0. 9 1 9 1 36 0 0. 10 1 10 1 10 0 0. 11 1 4 1 10 0 0. 12 1 5 1 10 0 0. 13 1 6 1 10 0 0. 14 1 7 1 10 0 0. 15 1 7 1 10 0 0. THICK SLAB DATA CARD (CARD 2 OF 3) IDSlBl = SLAB ID NUMBER IDSLB1 hSST ST W VALUES hSST BE SEQUENTIAL. + W2-R ALS = THICKNESS OF SLAB (FT). 'R W3-R AREASl = SLAB HEAT TRANSFER AREA (FT2). > W4-R AKS = THERMAL COi%)UCTIVITY OF SLAB (BTU/HR-FT-F). < W5-R ROS = DENSITY OF SLAB (LBM/FT3). ER W6-R CPS = SLAB SPECIFIC HEAT (BTU/LB'-F) 'R IDSLBl ALS AREAS1 AKS ROS CPS EMIS 1 3.875 4698.21 0.79 131.10 0.21 0 '0 2 3.875 171.50 0.79 131.10 0.21 0.90 3 3.5 274.50 0.79 131.10 0.21 0.90 4 3.5 1140.75 0.79 131.10 0.21 0.90 5 3.5 897.00 0.79 131.10 0.21 0.90 6 3.5 2557.50 0.79 131.10 0.21 0.90 7 3.5 615.56 0.79 131.10 0.21 0.90 8 4.0 1721.06 0.79 131.10 0.21 0.90 9 0.167 483.66 31.20 489.01 0.11 0.78 10 3.0 255.40 0.79 131.10 0.21 0.90 ll 12 4.0 4.0 169.59 659.53 0.79 0.79 131.10 131.10 0.21 0.21 0.90 0.90 13 4.0 489.94 0.79 131.10 0.21 0.90 14 4.0 433.41 0.79 131.10 0.21 0.90 15 3.5 326.63 0.79 131.10 0.21 0.90 THICK SLAB DATA CARD (CARD 3 OF 3) < Wl-I IDSLB1 = THICK SlAB ID NUh63ER. IDSLB1 hSST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. ~ W2-R HTC1(1) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR SIDE 1 OF SLAB (IF ITYPE=1). (BTU/HR-FT2-F) = CONV&XTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT BETWEEN SLAB AND ROOhf¹ IRM1 (IF ITYPE=2 OR 3). (BTU/HR-FT2-F) K a~ A = 0.0 IF IRM1=0 Page~@ < W3-R HTC2(l) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR SIDE 2 OF SLAB ( IF ITYPE=1) . (BTU/HR-FT2-F) = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT BETWEEN SLAB AND ROOM¹ IRM2 (IF ITYPE=2 OR 3). (BTU/HR-FT2-F). = 0.0 IF IRM2=0 ~ W4-R HTC1(2) = 0.0 IF ITYPE=1 = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT BEQttEEN SLAB AND ROOiM¹ IRM1 (IF ITYPE=2 OR 3). (BTU/HR-FT-F) = 0.0 IF IRM1=0 < WS-R HTC2(2) = 0.0 IF ITYPE=1 = CONVECTIVE HEAT TRANSFER COEFFICIENT FOR DOWNWARD HEAT FLOW BETWEEN SLAB AND ROOhf¹ IRhf2 (IF ITYPE=2 OR 3) . (BTU/HR-FT-F) e = 0.0 IF IRM2=0 ~ IDSLB1 HTC1(1) HTC2(1) HTC1(2) e THIN SLAB DATA CARD (CARD 1 OF 2) ~ Wl-I IDSLB2 = THIN SLAB ID NUMBER. IDSLB2 hfUST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. UP TO 1200 THIN SLABS CAN BE SPECIFIED, ~ W2-I JRM1 = ID NUMBER OF ROOM ON SIDE 1 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. ~ W3-I JRM2 = ID NUMBER OF ROOM ON SIDE 2 OF SLAB. A REGULAR ROOM OR A TIME-DEPENDENT ROOM CAN BE SPECIFIED. ~ W4-I JTYPE = 1 IF SLAB IS A VERTICAL WALL. = 2 IF SLAB IS A FLOOR WITH RESPECT TO ROOM¹ JRM1. = 3 IF SLAB IS A CEIlING WITH RESPECT TO ROOiif¹ JRM1. ~ WS-R AREAS2 = SLAB HEAT TRANSFER AREA (FT2). IDSLB2 JRM1 JRM2 JTYPE AREAS2 THIN SLAB DATA CARD (CARD 2 OF 2) + W1-I IDSLB2 = THIN SLAB ID NUMBER. IDSLB2 MUST START WITH 1 AND ALL VALUES MUST BE SEQUENTIAL. ~ W2-R UHT(1) = OVEfRLL HEAT TRANSFER COEFFICIENT FOR SLAB (IF JTYPE=1). = OVERALL HEAT TRANSFER COEFFICIENT FOR UPWARD FLOW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). > W3-R UHT(2) = 0.0 IF JTYPE=1 e = OVERALL HEAT TRANSFER COEFFICIENT FOR DOWNWARD FLOW OF HEAT THROUGH SLAB (IF JTYPE=2 OR 3). e TIME-DEPENDENT ROOM DATA ~ Wl-I IDTDR = ID NUMBER OF TIME-DEPENDENT ROOM. IDTDR MUST START WITH -1 AND PROCEED SEQUENTIALLY (I.E. IDTDR = -1,-2,-3,...,-NTDR). ~ W2-I IRhfFLG = 1 IF TIME VERSUS TEhfPERATURE DATA WILL BE ENTERED. = 2 IF A SINUSOIDAL TEMPERATURE VARIATION WILL BE USED FOR THIS ROOM. <'Pt n ~ W3-I NPTS* = NUMBER OF TIME VS TE%'ERATUHE DATA POINTS THAT WILL BE SUPPlIED IF IRMFLG=1 = 0 IF IRMFLG=2 ~ W4-R TDRTO, = INITIALROOM TEMPERATURE (DEG F) IF IRhPLG=2 = 0.0 IF IRhPLG=1 ~ W5-R Ah%LTD = AMpf ITUDE (DEG F) OF TEhPERATURE OSCILLATION IF IRMFLG=2 = 0.0 IF IRhFLG=1 ~ W6-R FREQ = FREQUENCY (RAD/HR) OF TEMPERATURE OSCILLATIOiV IF IRhPLG=2 = 0.0 IF IRMFLG=1 ~ IDTDR IRhFLG NPTS TDRTO AhPLTD FREQ TIhK VERSUS TEhPERATURE DATA ~ SUPPf Y THE FOlLOWING CARD FOR EACH TIME-DEPENDENT ROOM WITH IRhFLG=1 > Wl-I IDTDR = ID NUhSER OF TIME DEPENDENT ROOM (IRMFLG MUST BE 1) ~ W2-R TTIME = TIME (HR) < W3-R TTEMP = TEhPERATURE (F) ~ W4-R TTIME = TIhK ~ WS-R TTEMP = TEMPERATURE ~ USE AS MANY LINES AS NECESSARY FOR INPUT OF THE DATA. UP TO 500 ~ DATA POINTS CAN BE ENTHUSE) FOR EACH ROOM. ~ IDTDR TTIME TTEhP QufUM TPRES ~~ THIS CARD NOT REQUIRED ~~ tateKL Form 2454 (10r83) Cat. 9973a0i Dept. PENNSYLVANIAPOWER 8 LIGHT COMPANY ER No. Date ~~t 193J CALCULATION SHEET Designed by Approved by PROJECT I Sht. No. ~of R ppwn1 iy. H CQ~Pukr r CQ4K SummCtry ~ IP ~ I ' >e b, p Page~~< 2-COMPUTER CASE

SUMMARY

CASE COMPUTER ID CODE MICROFICHE HARO COPY DESCRIPTION I IO'i3. Io is COTTAP2. T:8. Te~p. $ 4zpo~ 2s gp~ I~K (5TP) hJir&r Corditiona IOWA. IOZZ CoTTR pg 1 T'5. 7e~p. ReSponse 50 gp~ leal(, (STP) Win4r C.ordi+ibns. 9I083. IO38 C.O T'TAP2, T. B. Te~p. Resp~a laos ImK CSTP) Win+ac C-0ndi>to 9 IOWA. I03 I COl TQPg, T S. Te~p. Response J50> le K CSTP3 WinM Gn41io I I Owe. i~q T.B. T~~p. ~ponce Loss HVAR Sumpter Conditio/ ,2

ATTACHMENT C UNIT 1 TURBINE BUILDING MAIN STEAM TUNNEL TURBINE BLDG. HVAII EXHAUST HVAC SUPPLY REACTOR BLDG. LEAK DETECTION TEMPERATURE ELEMENTS

4 J}}