L-17-074, Steam Generator Inspection Reports - Spring 2017 Refueling Outage

From kanterella
Jump to navigation Jump to search

Steam Generator Inspection Reports - Spring 2017 Refueling Outage
ML17221A034
Person / Time
Site: Beaver Valley
Issue date: 08/08/2017
From: Bologna R
FirstEnergy Nuclear Operating Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-17-074
Download: ML17221A034 (87)


Text

{{#Wiki_filter:FEIUOC- Beaver Valley Power Sfafion PO. Box 4 Shrppingporf, PA 15077 FrsfEre6ly Mtclear Wmting Canpany Richard D. Bologna 724-682-5234 Sffe Vrba Presdenf Fax:72.d+643-8069 August 8,2017 L-17-074 ATTN: Document Control Desk U. S. Nuclear Regulatory Commission Washington, DC 20555-0001

SUBJECT:

Beaver Valley Power $tation, Unit No. 2 Docket No. 50-412, License No. NPF-73 Steam Generator lnsnection Reports - Sprinq 2017 Befuqling Outage ln accordance with Beaver Valley Power Station, Unit No. 2 Technical $pecifications 8.6.6.2.2 and 5.6.6.2.4, FirstEnergy Nuclear Operating Cornpany herehy submits two reports containing steam generator inspection results. Since no steam generator tubes uuere removed during the spring 2017 metallurgical examinations were not performed. The enclosed reports provide information required by the technical specifications that were obtained during inspections conducted during the spring 2017 refueling outage. There are no regulatory commitments contained in this submittal. lf there are any questions or if additional information is required, please contact Mr. Thomas A. Lentz, Manager - Fleet Licensing, at (330) 315-6810. Sincerely, Richard D. Bologna

Enclosures:

A. Beaver Valley Unit 2 End-of-Cycle 19 Analysis and Prediction for End-of-Cycle 20 Voltage-Based Repair Criteria 90-Day Repoft, Revision 0 B. Unit #? - 2R19 Steam Generator F* (F Star) Repoil

Beaver Valley Pourer Ststion, Unit No. 2 L17-074 Page E ot 2 cc: HRC Region lAdministrator HRC Besident lnspector NRC Project Manager DirectOr BRP/DEP Site BRP/DEP Reprcsentative

Enclosure A L-I7-074 Beaver Valley Unit 2 End-of-Cycle 19 furalyeis and Prediction for End-of-Cycle 20 Voltage*Based Repair Criteria 90-Day Report, Revision 0 (71 Pages Follow)

Westinghouse Non-Proprietary Class 3 SG-SGMP-17-21 July 2017 Revision 0 Beaver Valley Unit 2 End-of-Gycle 19 Analysis and Prediction for End-of-Cycle 20 Voltage-Based Repair Griteria 90-Day Report WEstinghouse

Westinghouse Non-Prop,rietary Class 3 sG-sGMP-l7-21 Revision 0 Beaver Valley Unit 2 End-of-Cycle 19 Analysis and Prediction for End-of-Cycle 20 Voltage-Based Repair Criteria 90-Day Report William R. LaMAntia*, Senior Engineer Steam Generator Management Programs JuIy 2017 Reviewer: William K. Cullen*, Fellow Engineer Steam Generator Ivlanagement Programs Approved: David P. Lytle*, Manager Steam Generator Management Programs Owner Accepted: o+ IT' Scrviccs EnSiEEtriEg Orvner Accepted: S, Hovanoc, Tcchnical

    *Electronically approvd records are authenticared fu the Elec*pnic Doanment lt{anogement Sstem.

Westinghouse Electric Company LLC P.0. Box 158 Madisou, PA 15663 g 2017 Westinghouse Elecric Company LLC A[ Rights Reserved sG-sGMP-17-21 July 2017 Revision 0

ll RECORI} OFREYISIONS Revieion Ilate Ilescrintion See 0 Original EDMS SG-SGMP-17.21 Iuly 2017 Revision 0

llt TABLE OF COFITENTS RECORD OF REVISIONS TABLE OF CONTENTS til LIST OF TABLES iv LIST OF FIGURES v I INTRODUCTION l-l 2

SUMMARY

AI{D CONCLUSIONS 2-l 3 2RI9INSPECTION RESUI.XS AhID VOUTAGE GROWTI{ RATES.. 3-t 3.1 2Rl9InspectionRmults 3-1 3.2 Voltage Grourth Rates 3-3 3.3 Prohe Wear Criteria.. 3r4 3.4 NDE Uncertainties........... 34 4 DATABASEAPPLIED FOR LEAKA}.ID BI.JRST CORRELATIONS 4-l 4.1 Tube Material Properties 4-l 4.2 Burst Correlation.......... +l 4.3 Leak Rate Correlation...,...... 4-l 4.4 Probability ofLeak Conelation........... 4-1 4.5 NDEUncertainties........... 4-t 4.6 Upper Voltage Repair Limit 4-l 5 SLB A}-IALYSIS METIIODS...... 5-l 6 BOBBIN VOUTAGE DISTRIBUTIONS 6-t 6.1 Calculation ofVoltsge Distibutions,...,.... 6-l 6.2 Probability of Detection (POD).... 6-2 6.3 Limiting Growth Rate Distribution.......... 6-2 6.4 Cycle Operating Period G2 6.5 Projected EOC-20 Voltage Distribution........... G2 7 SLts LEAK RATEAI*ID TUBE BURST PROBABILITYAI{ALYSES....... 7-1 7.L 2R19 Condition Monitoring Leak Rate and Ttrbe Burst Probability............ 7-t 7.2 Cycle 20 Operational Assessment Leak Rate and Tube Burst kobability 7-1, 8 REFERENCES 8-l sG-sGMP-t7-2t July 2017 Revision 0

tv LIST OT'TABLES Table 3- l 2Rl9 DSI Voltage Distribution for SG-A Table 3-2 2Rl9 DSI Voltage Disribution for SG-B .3-6 Table 3-3 zRl9 DSI Voltage Distribution for SG-C .3-7 Table 34 Indication Distribution as Function of Tube Support Plate. .3-8 Table 3-5 Voltage Growth Curnulative Distribution. .....3-9 Table 3-6 Growth Rate as Function of BOC Voltage Range. ......3-10 Thble 3-7 IndicationswiththeLargestGroqrthinCycle 19... .....3-ll Table 4-1 7/8 Inch Tube Burst Pressure vs. Bobbin Amplitude Correlation Parameters. . . ". . .4-3 Thble 4-2 Tnbe Leak Rate vs. Bobbin Amplitude Correlation Parameters. . ...44 Thble 4-3 7/8 Inch Tube Probability of Leak Correlation Parameters.... .......4-5 Table 6-l Predicted Voltage Disribution at EOC-20 .....6-3 Table 7-l Condition Monitoring Leak and Brust Results for 2Rl9 ......7-2 Thble 7-2 OperationalAssessmentLeakandBurstResultsforEOC-20(POD:0.6).........7-z Table A-l DSI Indieations for 2R[9 in SG-A Thble A-2 DSI Indications for 2R19 in SG-B .A-10 Thble A-3 DSI Indications for 2Rl9 in SG-C A-22 SG.SGMP-17-21 July 2017 Revision 0

Y LIST OT'FIGURES Figure 3-l Measured Bobbin DSI Volage, 2Rl9 SG-A. .3-12 Figure 3-2 Measured Bobbin DSI Voltage, 2Rl9 SG-B .3-13 Figure 3-3 Measured Bohbiu DSI Voltage, 2Rl9 SG-C .3- 14 Figure 34 Number of Measured Bobbin DSI as a Function of TSP . . . . .3- I5 Figure 3-5 Volage Growth during Cycle 19... ......3-16 Figure 3-6 Expansion of Figure 3-5 at Extreme Voltage Gronth during Cycle 19... 3-17 Figure 3-7 Voltage Grourth in Cycle 19 vs. BOC Voltage. .... 3-18 Figure 6-l Predicted Volmge Distribution at EOC-20, SG-A 64 Figure 6-2 Predicted Volage Distribution at EOC-20, SG-B 6-5 Figure 6-3 Predicted Volage Distribution at EOC-20, SG-C 6-6 SG-SGMP.I7.21 Iuly 2017 Revision 0

l-l I INTRODUCTION This report a srunmary of the Beaver Valley Unit 2 steam generator (SG) bobbin and probe inspections at tube $ryport plate (TSP) intersections from the Spring 2017, 2Rl9 outage, together with postulated Steam Line Break (SLB) leak rate and tube burst probability analyses. The 2Rl9 outage represenE the fourth application of the Generic Letter (GL) 95-05 (Reference l) voltage based repair criteria, snd implementation of its requirements, to the Beaver Valley Unit 2 Model 5lM SGs. The critsia were implemented during the 2Rl6 outage. Information requird by the GL 95-05 is provided in this report, including SLB leak rates and tube brust probabilities calculated using the end-of-cycle (EOC) conditions for the recently completed Cycle 19, re.presenting a condition monitoring assessment of bobbin coil sisnal arrplitudes for observed possible indications. In addition, a projection of EOC-20 bobbin coil volage disfiibutions, as well as the associated SG tube leak rates and burst probabilities through EOC-20 conditions is provided-The conditiou monitoring analysis at End-of-Cycle 19 (EOC-lg) was carried out using the actual bobbin coil voltage distributions measured during the 2Rl9 outage. These results show that the zRtg condition monitoring leak rates and conditional burst probabilities for all three SGs are well within their respective allowable limits. A comparison with the projections made in the previous 90-Day Report at the 2Rl8 outage (Reference 2) shows that the predictions were very conservative. These evaluations utilized the Westinghouse generic methodology that uses Monte Carlo analysis techniques (Reference 3). The operational assmsment analysis was performed to project leak rates and tube burst probahilities for postulated SLB conditions at the end of the upcoming cycle (EOC-20) based on the 2.0 volt repeir criteria for 7/8-inch diameter tubes. These analyses utilized bobbin voltage disnibutions measured during the recent (2R19) inspection and a growth rate distibution bounding the last trno irspections (2R18 and 2Rl9). Iak and burst qnelyses for the operational assessment were performed using the Reference 4 defrult value primary-to-secondary prcssure differential of 2560 psi" The Cycle 20 operational nssessment predicts that SG-B urill be the limiting SG for projected leakage. With a Cycle 20 period of operation estimated at 525 effective firll power days (EFPD), the limiting EOC-20 maximnm leak rate for SG-B is projected to be 0.220 H)m (room temperature), which is well below the allowable limit of 2.2 gpm for the faulted SG. The corresponding maximum tube burst probability for the limiting SG (SG.B) of 2.67 x l0-5 is well below the GL 95-05 limit of 1.0 x 102. Thus, the GL 95-05 requirements are predicted to be satisfied at the EOC-20. l +POINT is a tradentark of futec, Inc., in the llnited .Slates andlor olher counties. Oths ndmes may be trademarlu of their respective owners. sG-sGMP-t7-2r July 2017 Revision 0

2-l 2 STIMII{ARY AI{D CONCLUSIONS A total of 1098 distortd support indications (DSD in all three SGs combined were reported &ring the Beaver Valley Power Smtion Unit 2 (BVPS2) 2Rl9 bobbin coil inspection. Per GL 95-05, orly those DSI signals with a bobbin coil signal amplitude of 2.0 volts or greater are required to be i.spected using a +POINT (or equivalent) probe. AII DSI signals reported during 2Rl9 were less then 2.0 volts, so no indications were required to be tested with the +POINT probe. However, some indications were tested with the +POINT probe to confirm the minimal botrbin coil voltage grourth condition. These indications u/ere confirmed as axial outside diameter stress corrosion cracking (ODSCC) usine the +POINT probe during the 2Rl6 and have been inspected with a +POINT probe at each successive outage. In addition, in response to a prior Nuclear Regulatory Commission (NRC) question all DSIs greater than one (l) volt were inspected with a +POINT probe. The murimum bobbh coil volage indication in all three SGs was 1.45 volts on R2l C54 at the 02H tube support plate in SG-B. SLB leak rate and tube hurst probability analyses were performed using the actual 2Rl9 bobbin voltage distributions (condition monitoring analysis) as well as the projected EOC-20 bobbin voltage distributions (operational assessment). The SLB leak rates from the condition monitoring analysis show significant margins relative to the faulted SG allowable limit of 2.2 gpm (room temperature), Reference I l. The corresponding condition monitoring tube burst probability 2. values are well below the allowabte limit of I .0 x l0 At 2R19, the largest SLB leak rate in the condition monitoring analysis is calculatd for SGB, with a magnitude of 0.067 gpm, which is well below the allowahle SLB leakage limit of 2.2 Hlm in the faulted SG. All leak rate values Eroted are equivalent volumetric rates flt room temperaflre. The Iimitine conditional tube bunt probability from the condition monitoring analysis, l.44xl0'5 also predicted for SG-8, is well below the Nuclear Regulatory Commission (NRC) reportine guideline of 1.0 x l0-2. Thus, the condition monitoring results are well within the allowable limiilreporting guideline. SLB leak rate and tuhe burst probahility projections at the EOC-20 conditions were performed using the latest alternate repair criteria (ARC) database available for 7/8 inch outside diameter (OD) tubing (Addenduur 7 update), which is docrunented in Reference 4. Leak snd burst analyses for the Cycle 20 operational assessment were performed rsing the Reference 4 default primary+o-secondary pressure differential of 2560 psi. SG-B is predicted to be the limiting SG. For a projected Cycle 20 duration of 525 EFPD, the EOC-20 leak rate projected for SG-B using the GL 95-05 constant probability of detection (POD) of 0.6 is 0.220 H)m (at room temperature), which is less than the current limit of 2.2 g1)m in the faulted SG. This leak rate projection utilized the leak rate calculation methodology of References 5 and 6. The limiting EOC-20 burst probability of 2.67 x 105 is calculated for SG-B and is well below the allowable limit of 1.0 x l0-2. Therefore, all acceptance criteria of Reference I will be satisfied throughout Cycle 20. I SG.SGMP-17-21 July 2017 Revision 0

3-l 3 2RTg INSPECTION RESI]LTS AND VOLTAGE GROWTII RATES 3.1 2Rfg Inspection Results For outages prior to 2R16, the alternate repair criterion per GL 95-05 had been approved for BVPS2, but was not implemented. FirstEnergy Nuclear Operating Company (FENOC) had not implemented the criterion due to the small number of bobbin indications at TSP intersections which were confirmed to contain axial outside diameter stress corrosion cracking (ODSCC) using a +POINT probe. The criterion was implemented at 2Rl6 due to an increase in the number of DSIs confirmed to contain axial ODSCC from +POINT probe exaurination. It should he noted, for 2Rl6 and prior outages, the bobbin probe analysis utilized the guidance and requirements of GL 95-05. Since the initial 2Rl6 (and prior outages) inspection plan did not assume that GL 95-05 would be implemented, all bobbin coil DSIs were inspected using a +POINT probe. Note that under GL 95-05, only DSI signals with a 400/100 mix (hereafter referred to simply as the mix channel) signal amplirude of greater than 2.0 volts are required to be inspected using a +POINT probe. In accordance urith the guidance provided by GL 95-05, the 2Rl9 inspection of the Beaver Valley Unit 2 SGs consisted of a 100% eddy current (EC) bobbinprobe full length examination of the tube bundles in all three SGs. All hot and cold leg TSP intersections were inspected using 0.720 inch diarneter bobbin probes, with the exception of those hot leg TSP intersections in Rows 3 and 4 which contain SG tube sleeves at the hot leg top-of-tubesheet. In these two (2) tubes, a 0.630 inch diameter wide groove bobbin prohe was used for DSI detection. If a DSI was ohserved using the 0.630 inch wide groove bobbin probe, an attempt was made to obtain an inspection of these locations using a0.720 inch diameter bobbin probe from the cold leg side. tf this prohe could not pass over the U-bend, the tube was to be plugged as FENOC has not received NRC approval to utilize the reduced diameter probe results in the analysis. Prior evaluation of DSIs from other plants, which were inspected using both the 0.640 inch wide groove and 0.720 standard bobbin probe show that the voltage response from the 0.640 inch wide groove, is conservative comparedto the voltage response of the 0.720 inch staldflrdbobbin probe. A 0.630 diameter wide groove bobbin probe was used at 2Rl7 thru 2R19. The performance characteristics of the 0.630 and 0.640 inch wide groove probe were reviewed and confirmed to be consistent- During the 2R17 outage only one such indicatiotr was reported, and during the 2Rl8 and 2Rl9 outage Rone were reported using the 0.630 inch wide groove probe. To assess depth growth, the 2Rl8 DSIs with +POINT probe eonfirmation were also inspected at 2R19, even though none were required to be inspected with a +POINT probe due to the low bohbin amplitudes. This inspection showed little or no change in the +POtrNT probe signal character was observe{ thus implying little or no depth grourth of the indication. The largest

+POINT probe sigual amplitude in the 300 kHz channel from the confirmed DSI indications is only 0.2 volt, which represents a depth of 51% through-wall (TW) uslng the sizing protocol of Electric Power Research Instirute (EPRI) Examination Technique Specification Sheet (ETSS)

ETSS 128431. Long term Eending of the Unit 2 DSI population has shown a limited growth potential. For Cycles l0 through 19, the mean DSI voltage grorvth has been essentially zero. Additionally, the +POINT probe amplitrrdes for DSI signals confirmed as axial ODSCC have sG-sGMP-t7-2t Iuly 2017 Revision 0

3-2 been much less than 1.0 volt, suggesting that a shallow depth of penetration exists. This in turn suggests the DSI volage grourth will remain minimal and not move to "exteme" over the next operating cycle. Thus, it can be concluded that, the character of DSI indications reported to date has been associated with a depth of penetration well below 100% TItr In addition, the EOC-19 eddy current inspection plan included 100% +POINT probe inspectiou of all hot leg and cold leg dents >5 volts (as measured from the bobbin probe), which exceeds the GL 95-05 requirement for testing of said dents of dourn to the lowest cold leg TSP with DSI reports. The 2Rl9 eddy current inspection plan also included 100% +POINT probe inqpection of dents with indication (DNI) and 25% of support plate residuals (SPR). The DNI call can be generated by manual analysis or hy using a tertiary auto analysis. As can be seen in the table below, 1,223 total DNI indications were tested using RPC; however, neither P\ilSCC nor ODSCC was detected during any of these tests. SPRs are defined as bohbin coil signals which do not contain flaw-like compotrents but have a signal amplitude of >1.5 volts and phase angles >55 degrees. Axial ODSCC indications were not reported in these populations based on the +POINT probe analysis. No axial P1VSCC or circumferential stress corrosion eracking (SCC) was neported at any TSP intersection. The +POINT probe inspection program for den*, DMs, and SPRs was extensive. The follouring table provides the number of +POINT probe exams perfonned at TSP intersections during 2R19. DNI SPR SG >5V Dents RPC RPC Total Total Tested Tested A t7 713 7t3 740 231 B 37 175 r75 238 73 C l2 335 335 164 50 sG-scMP-r7-21 July 2017 Revision 0

3-3 The requirements of the GL 95-05 methodology in Section l.b of Reference I are all satisfied. Tube intersections with the flow distribution baffle are exeluded from this GL 95-05 analysis. There are no other excluded tube support plate intersections (Reference 7). None of the indications included in this analysis were detected in dents >5.0 volts, as measured by bobbin. Atl SPR indications >2V were tested with the +POINT probe so that no ODSCC indications >1.0 volt would be missed or misread, as discussed earlier No copper signal interference was detected. Thbles 3-l through 3-3 present the 2Rl9 bobbin voltage data for the TSP intersections in the three SGs with distorted support indications (DSIs). A total of 1098 TSP locatious had DSI indications in all three SGs combined, of which only 19 indications had arnplitudes g[eater than 1.0 volt and no indications were greater than 1.5 volts. Note that the numeric value of the bin represents the upper range of the bin. That is, the 1.0 volt hiu contains DSI voltages from 0.91 to 1.00 volt- No DSI voltage exceeded the GL 95-05 lower volage repair limit of 2.0 volts. For 2R19, all DSIs with a voltage amplitude greater than or equal to 1.0 volt were automatically tested using +POINT probe, which exceeds the requirement by GL 95-05 to test all DSIs with a voltage amplitude greater thm or equal to 2.0 volts. Comparing the inspection results from 2Rl8 to 2R19, there were eight (8) new SAUMAI indications. Of those eight (8) new indications, none had a voltage arnplitude greater than or equal to 1.0 vslt. Tables 3-l through 3-3 tabulate the number of field bobbin indications, the number of those indications that were +POINT probe RPC inspected, the nurnber of +POINT probe RPC confimred indications, and the number of indications removed from service. No tubes were deplugged in the current inspection with the intent of retuming them to service after inspection in accordance with the alternate repair eriteria. The distribution of 2Rl9 indieations is alss shown in Figures 3-1 ,3-2, and 3-3 for SG-4" SG-B, and SG-C, respectively. The distribution of 2Rl9 indications as a function of support plate location is summarized in Table 3-4 and shown in Figure 3r4. The data show a strong predisposition of ODSCC to occur in the first few hst leg TSPs although the mechanism extended to higher TSPs. Only 17 indications were detected on the cold leg side; four (a) of these exceeded 0.5 volt, but do not exceed 0.75 volt. This distribution is consistent with that obsenred at other plants and is commonly attrihuted to the temperature dependence of ODSCC. Appendix A provides a listing of all DSIs reported at the BVPS 2R I 9 outage in the fonn of tables (Tables A-1, A-2, and A-3), rvhether axial ODSCC was confirmed (SAI/I{AI in Comment column), whether the tube containing the indication(s) was plugged (Comment column), and whether the indication was tested and no defect was found INDF in Comment column). 3.2 Voltage Growth Rates For projection of leak rates and tube burst prohabilities at EOC-20, voltage gpurth rates were developed from the 2R18 and 2R19 inqpection bobbin data. Grourth is determined when the same indication can be identified in nvo successive inspeetions. Since there can be new indications in one outage, the number of indications for which a growth can be defined is less than the number of indications detected- Table 34 shows a distribution of grourth as a function of TSP number. sG,sGMP-17-2t July 2017 Revision 0

3-4 Table 3-5 shows the frequency and cumulative probahility distrihution of grourth as a function of voltage change in each BYPSZ steam generator during Cycle 19 on a per EFPY basis. The average bobbin coil voltage grourth rates for each SG during Cycle 19 are grven in Tahle 3-6. The average grourth rates over the entire voltage range are negative indicating essentially no voltage growth. The Cycle 19 growth rates on an EFPY basis for each SC are shown in Figure 3-5. A magnification of the upper tail of this grourth distribution is shorrm in Figure 3-6. Also shown in Figure 3-5 and in Figure 3-6 is a flrrve which bounds all of the grouth curves for both Cycle 19 and Cycle l8 (Reference 2). Thble 3-7 lists the top 15 indications based on Cycle 19 growth rate in descending order. The average glourth rates over the entire voltage mnge for Cycle lg are negative indicating essentially no voltage grourth, but Table 3-7 shows that in cases of positive growth rates, that Cycle 19 had only modest grourth. The growth during Cycle 19 for all indications was under 0.5 volts. To determine if BVPS2 growth rates exhibitd a potential de,pendency on the BOC voltage, the growth rate data for Cycle 19 was plotted against BOC voltage, and the resulting plot is shown in Figrue 3-7. The Cycle 19 grourth daa do not show any tendency to increase with the BOC voltage; if at all, the grourth seertrs to decrease with increasing Bffi volt4ge. Thereforg grourth can be assumed independent of voltage in the Monte Carlo analysis for the operational assessment. 3J Prcbe Wear Criteria The probe wear criteria approved hy the NRC (Reference 8) was applied during the 2Rl9 inspection. When a prohe does not pass the lSols wear limit, this altemate criteria requires ttrat only tubes with indications ahove 75% of the repair limit inspected since the last successful probe wear check be r+inspected with a good probe. As the repair limit for Beaver Valley Unit 2 is 2 vole, all tubes containing indications for which the wom proh voltage is above 1.5 volts are to be inspected with a new probe. Since no indications had aurplinrdes over 1.5 vole no tubes were retested due to the probe we&r criteria being exceeded-3.4 NDE Uncertrinties The NDE uncertainties applied for the Cycle 19 voltage distributions in the Monte Carlo analyses for leak rate and burst probabilities are the same as those in the NRC Generic Lefier 95-05 (Reference U. The probe wear uncertainty has a strndard deviation of 7 .0% about a mean of zero and has a cut-offat 15% based on implementation of the probe wear standard. If the random sample of probe wear selected during the Monte Carlo simulations exceeds l5o/0, sampling of the probe wear distribution is continued until a value less than 15% is pickd. The analyst variability uncertainty has a standard deviation of 10.3% about a mear of zero with no cut-off. These nondestuctive examination [NDE) ucrtainty distributions are included in the Monte Carlo aualyses for SLB leak rates and tube burst probabilities based on the 2Rl9 acnral volage distrihutions as well as for the EOC-20 projections. sG-sGMP-t7-21 July 2017 Revision 0

3-5 Table 3-1 2R19 DSI Vottage Distribution for SG-A

                                        +PIOINT Not
                              +POINT      Probe Number of                               +POINT          Returued to Voltage Bin                   Probe     Tested                Plugged lndicrtions                              Probe            Service Conlirmed   But Not Tested Confirmed 0.t            I            I         0              I      0         I 0.2           58            I         0             57       I       57 0.3           93           6          0             87       I       92 0.4           56            I         2             53      0        56 0.5           36           3           I            32      0        36 0.6           2l            I         0             2A      0        2t 0.7           18           3          0             l5      0         l8 0.8           l0            I         0              I      0         l0 0"9            7           0           I             6      0          7 I             3           0           I             2      0          3 l.l            I           0           I             0      0          I 1.2            3            I          2             0      0          3 1.3            0           0           0             0      0          0 1.4            0           0           0             0      0          0 1.5            2           0           2             0      0          2 1.6            0           0           0             0       0         0 1.7            0           0           0             0       0         0 1.8            0           0           0             0       0         0 1.9            0           0           0             0       0         0 2             0           0           0             0       0         0 Total         317           18         l0           289       z       315 Average voltage = 0.383 volts SG-SGMP.I7-21                                                                  Iuly 2017 Revision 0

3-6 Table 3-2 2R19 IISI Voltage Distribution for SG-B

                                          +POtNT
                              +POINT                    Not Probe Number of                             +POINT          Retumed to Voltrge Bin                   Probe       Testtd             Plugged Indications                             Probe            Serrlce Confirrned    But Not Tested Confirmed 0.1           ll            0           0          l1       I        l0 0.2           79            3           0          76      0        79 0.3          100            4           0          96      0        100 0.4           89            3           0          86      2        87 0.5           65            4           0          6I      0        65 0.6           38            I           0          37      0        38 0.7           t9            0           0          l9      0         19 0.8           l4            I           0          l3      0         I4 0.9            7            0           0           7      0          7 I             7            I           I           5      0          7 l.l            3            I           2           0      0          3 t.2            I            0           I           0      0          I 1.3            2            0           2           0      0          7, 1.4            I            0           I           0      0          I r.5            I            0           I           0      0          I 1.6            0            0           0           0      0          0 t.7            0            0           0           0      0          0 1.8            0            0           0           0      0          0 1.9            0            0           0           0      0         0 2.0            0            0           0           0      0         0 Total          437           l8           I         4ll      3        434 Average voltage - 0.380 volts sG-sGMP-t7-2t                                                                 July 2017 Revision 0

3-7 Table 3-3 2Rl9 IISI Voltage Ilistrihution for SG-C

                                           +FOINT
                               +POINT                    Not Probe Number of                              +POtNT          Returned to Voltage Bin                    Probe       Tected             Plugged lndications                              Probe            Service Confirmod     But Not Tected Confirmed 0.1           3             0            0           3      0          3 0.2           7t            2            0          69      0        7t 0.3           80            5            0          75      0        80 0.4           59            2            2          55      0        59 0.5           52            3            3          46      2        50 0.6           3l             t           'l         28      0        31 4.7           20             I           0          l9      0        20 0.8           l0            2            0           I      0         IO 0.9            9            0            0           9      0          I I            4             0            0           4      0          4 l.l            2             I            I          0      0          2 t.2            2            0            7           0      0          2 1.3            0            0            0           0      0          0 1.4            I             0            I          0      0          I 1.5            0             0           0           0      0          0 I.6            0             0           0           0      0          0 1.7            0             0           0           0      0          0 t.8            0             0            0          0      0          0 1.9            0             0            0          0      0          0 2.0            0             0            0          0      0          0 Total         344            t7           il        316      2        342 Average voltage  : 0.384 volts SG.SGMP-17-27                                                                  July 2017 Revision 0

3-8 Table 34 Indication Distribution as Function of Tbhe Support Plate SG.A SG.B Largest Average Largest Average Number of Max. Average Number of Max. Average TSP Growth, Growth, TSP Growth, Crowth, Indications Volts Volts Indications Volts Volts Volts Volts Volts Volts 02H l13 Ll5 0.36 CI.42 -0.04 02H 179 1.45 0.41 0.37 -0.02 03H E9 1.42 0.40 0.39 -0.02 03H t32 r.24 0.40 0.4 -0.03 04H M 1.42 0.34 0.26 -0.03 04H 58 0.99 0.32 0.31 -0.05 05H 43 0.8s 0.37 0.46 0.0r 05H 36 0.77 0.34 0.37 0.03 06H I 0.6 0.27 0.0r -0.0s 06H 7 0.6 0,33 0.33 0.06 07H 5 0.71 0.43 CI.14 0.02 07H I 0.66 0.32 0.38 0.04 08H I 0.84 0.33 0.M 0.07 08H 7 0.48 0.24 0.t2 -0.06 03c 0 03c I 0.25 0.25 04c 0 04c I 0.12 0.12 -0.02 -0.02 0sc 0 05c I 4.24 4.24 06c 2 0.32 0.26 0.02 0_02 06c 3 0.5 0.38 0.25 0.18 07c 0 07c 0.71 0.62 08c 3 0.27 0.17 0 -0.01 08c 2 0.33 0.27 0 -0.03 Total 3r7 Total 437 SG-C Composite Largest Average Largest Average Numher of Max. Average Number of Max. Average TSP Growth, Growth, TSP Crowth, Growth, Indications Volts Volts Indications Volts Volts Volts Volts Volts Volts 02H 136 1.33 0.43 0.46 -0.08 02H 428 1.45 0.40 0.46 -0.05 03H r02 1.13 0.39 0.46 -0.0r 03H 323 1.42 0.40 0.46 -0.02 04H M 0.82 0.27 0.36 -0.03 04H 146 1.42 0"3 r 0.36 -0.04 05H 3l 0.93 0.35 0.3 -0.02 05H It0 0.93 0.36 0.46 0.0t 06H 14 0.68 0.26 0.46 0.03 06H 30 0.68 0.29 0.46 0.0r 07H 7 0.64 0.34 0.18 0.08 07H 20 0.71 0.36 0.38 0.05 08H E l.l4 0.36 0.06 -0.06 08H 24 r.l4 0.3 r 0.44 -0.02 03c 0 03c I 0.25 0.25 04c 0 04c I 0.r2 0.12 -0.02 -0.02 05c I 0.55 0.55 05c 7 0.55 0.40 CI6C 0 06c 5 0.5 0.32 0.25 0.10 07c 0 07c 7 0.71 4.62 08c I 08c 6 0.33 0.22 0 -0.02 Total 14 Total 1098 sG-sGMP-t7-21 July 2017 Revision 0

3-9 Table 3-5 Voltnge Growth Cumulstive Distribution SG.A SC,-B SG.C Comnosite Voltage Changer CumulatiYe Cumuletive Cumulative Cumulative Nurnber of Numher of Number of Number of EOC-19 mlnus Probahillty Probabillty Prohability Probebtllty Indications Indicationr Indications Indientions EOC-I8 per EFPY Dirfifbution Dlstrlbution Dlstribution Dlsffibution

  -0.?g<av+0.7               0            0.0000          0            0.0000          0            0.0000          0           0.0000
   -0.69<AV5-0.6             0            0,0000          0            0.0000          0            0,0000          0           0.0000
  -0.59<AV5i0,5              0            0.0000          0            0.0000          I            0.0030          I           0.0010
   -0.49<AV_<-0.4            0            0.0000          0            0.0000          0            0.0030          0           0.0010
   -0.39<AV5-0.3             7            0.0066          5            0.0120          2            0.0091          9           0.CI096
   -0.29<AV5-0.2             6            0.0266         IO            0.0361         t2            0.0456         28           0.0363
   -0.19<Av5-0.1            39            0.1561        48             0.t514         44            0.r 793       l3l           0.1616
  -0.09 <avs-0.0           r39            0.6179        t85            0.5962        153            0.6444        477           0.6176 0.0t  <avs0.l           86            0.9037        t27            0,9014         97            0.9392        310           0.9t40
0. t l<avs0.2 t9 0.9668 23 0.9591 l3 0.9787 55 0.9675 0.21<Avs0.3 I 0.9934 t6 0.9976 4 0.9909 28 0.9943 0.31<Av50"4 1 r.0000 0 l.0000 3 1.0000 5 1.0000 0.41<avso.5 0 1.0000 0 1.0000 0 1.0000 0 r.0000 0.51<AvS0.6 0 r.0000 0 r.0000 0 1.0000 0 1.0000 0.61<avs0.7 0 1.0000 0 1.0000 0 1.0000 0 1.0000 0.71<av<0.8 0 1.0000 0 r.0000 0 1.0000 0 1.0000 Number of Indications with 301 414 329 r044 Growth SG-SGMP.I7.2I July 2017 Revision 0

3-10 Tahle 3-6 Growth Rate as Function of BOC Voltaqe Rnnge Number of Averege Voltege Avernge Voltage Average BOC Voltage Renge Indications for Growth per Growth per Voltege Growth Cycle 19 EFPY Composlte Entire Range 1044 0.403 -0.0251 -0.0174 Vboc<0.75 960 0.359 -0.0r86 -0.0r29 Vboc30.75 E4 0.915 -0.0985 -0.0685 SG.A Entire Range 301 0.386 -0.022r -0.01s4 Vboc<0.75 277 0.341 -0.0152 -0.0106 VbocZO.75 24 0.904 -0.10r 7 -0.0707 SG.B Entire Range 414 0.401 -0.0174 -0.0121 Vboc<0.75 384 0.360 -0.0133 -0.0092 Vbop0.75 30 0.931 -0.0710 -0.0494 SG.C Entire Range 329 0.422 -0.0379 -0.0264 Vboc<0.75 299 0"374 -0.0284 -0.0198 VboP_O.75 30 0.907 -0.1320 -0.0919 sG-sGMP-r7-2r July 2017 Revision 0

3-t I Table 3-7 Indicrtions with the Largest Growth in Cycle 19 TSP EOC-IE EOC-19 Cl9 Growth, +POINT SG Row Col No. Voltr Voltr Volts Probe Tested 2C I 65 06H fr.22 0.68 0.46 No 2C I 54 02H 0.43 0.89 0.46 Yes 2A l6 lt 05H 0.15 0.61 0.46 Yes 2C 26 70 03H 0.67 t.l3 0.46 Yes 2A II 48 08H 0.4 0.84 0.44 No 2A 24 l6 02H fr.27 0.69 fr.42 No 2B 22 IE 03H 0.7 l.r 0.4 Yes 2A 6 35 03H 0.49 0.88 0.39 No 2A I 34 03H 1.03 t.42 0.39 Yes 2B ll 9 07H 0.28 0.66 0.38 No 2B 37 57 05H 0.15 0.52 0.37 No 2B 7 56 02H 0.s8 0.95 0.37 No 2B 7 54 02H 0.07 0.43 0.36 No 2B l0 t7 02H 0.39 0.75 0.36 No 2C t9 57 04H 0.46 0.82 0.35 No SG-SGMP.I7-21 July 2017 Revision 0

3-t2 2Rtg Marsursd ut. ProdlcEd ttbltagc DlEtdbrfion $G A I lhrund r FrGdict?d lm 90 g, 70 60 H) 40 30 20 to 0 0-t o-2 0s 0-4 0-5 0.6 0.7 0-8 0^s 1 1.1 1.1 lJ 1.4 1-5 L-6 1.7 1.8 l.s 2 YoltIG lh Figure 3-1 Meesurcd Bobbin Ii$I Yottege 2R19 SG-A sG-sGMP-17-21 July 2017 Revision 0

3-13 IE19 Mcaeurad w. PrcdlcGd tbhryc Dlstdbuton 56 E I f,i*erurtd r PrEdXAd ljlo lm I EtrI E60 IE L I

 -40 70 0

0.1 0J o"3 0.4 0"5 0.6 0.7 03 0.3 I 1.1 1.1 ts 1.4 t"5 1.6 L.7 l-t t.9 2 Y!ftrtE Itr Figure 3-2 Measured Bobhin Il$ Voltege, 2Rl9 SG-B SG.SGMP.T7.2L July 2017 Revision 0

3-14 tR19 Musurcd vu. Prcdlctd Ubltagc Dlctdbuton SE C I tiltrultd I Prcdictcd 90 80 70 850

 ,I I*

i* b a E I 236 20 1o 0 o.1 0.2 0"3 0.4 0-5 0.5 0.7 0.8 0.9 I l.r 1.2 1.3 l_4 1_5 1.6 L.7 1_r 1-9 2 Uoltrt= th Figure 3-3 Meaeured Bobbin IISI Vottagc, 2Rf9 SG-C sG-sGMP-17-2t Iuly 2017 Revisiou 0

3-15 Humbcr of lldlcatlsrs rE, Srpport filumhsr ISG-A ISE-E ISG{ roo lto teo a I 140 Ia 120 I

 .E h   100 g

L

 .[   EO E

I t 60 {o t0 o oeH ostfi 0{}t 05H o6H oTFt ffiH OBC 04c 05c ffic o?c offi srppsrt ifmbcr Figune 3*{ Number of Measursd Bobbin I}SI ffi n F'unction of T$P sG-sGMP-t7-2r July 2017 Revisio,n 0

3-16 CIdG l9 DSI Uoltage GrowthlEFPY x t&,ccu . 5E{f19 - sc.Ecll] . 56{ cl9 ;IT{ Eo{rl$ s #';{ v F

                                                                         '/
                                                                            -Ee[ofrrffi'l*d pt-I't H {
                                                              /

r1 E J E 5 E E El  : I E t .t I ll

   =

E l E dr J il r tr t-s rllt

  • s{ >0* tE
                                  ,-ft F
    -{r? {6    {s     +t     +,      {.t    {"1         o        0.1   o:       05    o.tt     0-f      0.c     oJ Etur&ttshlffr Figurt  3-5 Yolt*ge Growth during Cyde 19 s$-sGMP-t?-21                                                                                               July ?017 Revieiotr 0

3-r7 Cytile 19 DEI Uoltage Growth/EFPY - Upppr Prqbsbilitiec x gG{Cl8 . 5G*Cl9 . SG{CUI . S6{C19 I -Eou}dhgcur1f, rx t { I a I 0-9s I t o3t Y X

                                                                             /

I X o9? l\

!E  036 I

a a

                                                                     ,/
                                                                        /

T T X t

!EI                           X                       + I I
                                                                   /

o.9E E X I= a X t a

                                                              /

f o-94 E I X I l

 =

TJ a

                                             +

X a a o-gs /\ I a Y, r o-91 I a

                                                        /

x + X

                                                    /

l 09r x l t

                                  +
                                                 /

t X I ( l o-9 o OT OT o.3 [t f,-5 erotndt tt*ryUfY X'igune 3{ Erpenrion of FrSurc 3-S et Ertreme llottage Gmwth during Cycte 19 sG-sGMP-r7-21 Iuly 2017 Revision 0

3-18 Grorrnth in Volts ln Cycle 19 us. BOC Uolts

                                 + sG+ ISG-B     l sG{

o.6

              +r         1l           ^t o-4 I     l E*                                      +*

tI a_2

  • I I I L 3

T o o

                                                                +

r -o-2 I I E E A qr^+ rrr I {1.4 t {-6

    -oa
      -1 o     o.2       o.4      o.6         o_E       I    1.1     1"4      1.6 EGC  Yoltr E'iguru 3-7 Voltage Growth in Cycle 19 ys. BOC Voltage sG-sGMP-t7-2r                                                              July 2017 Revision 0

4-l 4 IiATABASE APPLMD FOR LEAK AND BTIRTT CORRELATIONS 4.1 Thbe Material Properties The ruhe material properties are provided in Table 4- l of Reference 4 for 718-inch diameter tubes at 650"F. The parameters used in the analysis are the flow stress mean (sum of yield and ultimate sfiengths divided by 2) of 68.78 ksi and the flow stress standard deviation of 3.1725 ksi. 4.2 Burst Corrrclation The burst pressure, P5, is normalized to a material with a flow sffess of 68.78 ksi, which is the mean of the Westinghouse 7/8-inch tube data. The actual material propertry values for Beaver Valley Unit 2 we slightly higher than the average of all Westinghouse data. The correlation parameters shown in Table 4-l are taken from Reference 4. 43 Leak Rnte Correletion The steam line break pressure to be applied is 2560 psi unless a lower pressure can be justified. Therefore, the leak correlation for pressure of 2560 psi from Reference 4 is used for the leakage predictions. The parameters are shown in Thble 4-2. The leak rate criterion is given in terms of gallons per minute as condensed liquid at room temperature. 4.4 Pnobahility of Leak Correlation The probability of leak as a function of indication voltage is taken from Reference 4. The parameters are shown in Table 4-3. In the Monte Carlo analysis, leakage is quantified only if the indication is computed to be a leaker, based on the probability of leak correlation. 4.5 NDE Uncertainties The NDE uncertainties applied for the EOC-lg and EOC-20 voltage projections are described in Reference 1. The probe wear uncertsinty has a standard deviation of 7To about a mean of zero and has a cut-off at 15% based on implementation of the probe wear standard. The enalyst variability uncertainty has a standard deviation of 10.3% about a mean of zero with no cut-off. These NDE uncertainty distributions are used in the Monte Carlo analysis to predict the brrst probabilities and accideut leak rates at EOC-19 and EOC-20. The voltages reported were adjusted to account for differences between the laboratory standard and the standard used in the field. 4.6 Upper Voltage Repair Limit Per Table 5.4-20 of Reference 12, the BVPSZ Updated Final Safety Analysis Report (UFSAR), the pressurizer safety relief valves have a nominal setting of 2485 psig, or the Reactor Coolant System (RCS) design pressrue. Applying a 3% allowance for accumulation per Section 2 of I Attachment to GL 95-05, the applicahle SLB conditions pressure differential across the SG tubes is then 2560 psig, which is the traditional pressure differential used for prior GL 95-05 sG-sGMP-r7-2r July 2017 Revision 0

4-2 analyses. The upper voltage repair limit of 4.57 volts is based on the structural limit in lhble 4-1 for a pressure differential of 2560 psi with a safety factor of 1.4 applied to the differential pressure. The upper voltage repair limit considers the projected voltage gowth during the next cycle and NDE uncertainty. The maximum average percentage gowth rate as a percentage of BOC voltage values for any steam generator is seen from Thble 3-6 to be very small. According to Reference l, the mininurm growth adjustrnent is 30% per EFPY (43.2% per cycle for the bounding 525 EFPD Cycle 20). Therefore, the specific murimum growth value of 43.2% and 20o/o for NDE uncertainty was used to estimate the upper voltage repair limit. This results in an upper voltage repair limit of 7.51 / (l + 0.432 + 0.20):4.60 volts. No indications greater than this voltage were left in service; the largest DSI voltage reported at 2R I 9 was I .45 volts. The analysis takes no credit for power operated relief valve (PORV) actuation even though the power operated relief valves (PORVs), block valves, and associated testing programs have been shown to satisfu the requirements of GL 90-06, as indicated in the NRC Safety Evaluation Report dated May 15, 1995. Crediting the PORVs would effectively increase the upper voltage repair limit by limiting the maximum pressure differential during a postulated SLB event and would reduce the calculated SLB conditions by limiting the maximum pressure differential. Considering the inspection history of the BVPS2 SGs, it is unlikely that a bobbin coil DSI voltage of >4.5 volts will be observed within the BVPS2 SGs. sG-sGMP-t7-2t Iuly 2017 Revision 0

4-3 Thble 4-1 7/8 Inch Tirhe Burst Pressure vs. Bobbin Amplitude Comelation Parameterr P, = no

  • ilrlog( Volts )

Prrrmeter Addendum 7 Detebme Value lntercept, ao 7.4801 Slope, a, -2.4W2 2 Index of Deter., r 79.67n/o Std. Deviation, or,,o" 0.8802 Mean of Log(P) 0.31I I SS of Ing(I/) 51.6595

   /V(dnta pairs)                                                          r00 Sr. Limil (2560 psi)(t)                                                7.5IV Str. Limit (2405 psi)                                                  9.40V p Value for a,  G) 5.60.10'36 Reference o6                                                       69.79 61(r)

Notes: (l) Value reported correspond to applying a safety factm of 1.4 on the differential pressure associated with a postulated SLB event. (2) Numerical values are reported only to dernonstrate compliance with the requirement that the value be lms than 0.05. (3) This is the flow stress value to which all data wef,e normalized prior to performing the regression *nalysis" This affects the coefficient and standard error values. The correqponding values for a flow strffis of 75.0 ksi can be obtained from the above values by multiplying by 1.0904. SG-SGMP-17.21 July 2017 Revisiou 0

4-4 Thhle 4-2 Tirhe Leak Rate vs. Bobbin Amplitude Correlation Parameters tog(rrofis )] A=10 [D, *Do Parameter Addendum 7 Database Value SLB AP = 2560 psi Intercept, &3 -0.33476 Slope, Da 0.9531l Index of Determination, I 12.4o/o Residuals, osr"o,' (Ds) 0.8175 Mean of Log(p) 0.7014 SS oflog(p) 22"8754 p Value for br 2.4% SLB AP = 2405 Fgi lntercept, D3 -0.8039 Slope,6a t.207v Index of Determination, I 20.0% Residuals, or,,,.", (Ds) 0.7774 Mean of Log(Q) 0.5090 SS of Log(p) 22.6667 p Value for &a 0.5% Common Ilatr Data Pairs,.lf, 32 Mean of Log(P) 1.0871 SS of Log([) 3.1 I t6 SG.SGMP.I7.zL July 2017 Revision 0

4-5 Table 4-3 7/8 Inch Ttrbe Probability of Leak Correlation Parameters

                                                    -I+

1 Pr( Leak'1 log( votts )l e-14+fu Parameter Addendum 7 Database Value Logistic Intercept D1 4.9847 Logistic Slope, &2 7.61l0 (') Intercept Variance, 4, 1.2904 CovariancE, Yn -1"7499 Slope Variance, Ir22 2.8181 Number of Data, Jf 120 Deviance 33.66 Pearson SD 62"90/a MSE 0.285 Note: (l) Parameters I/y are the elernents of the covariance matrix of the coeffieients, ps, of the regression equation. sG-sGMP-t7-2r July 2017 Revision 0

5-l 5 SLB AT,IALYSIS METHOI}S A Monte Carlo analysis technique is used to calculate the SLB leak rates and nrbe burst probabilities for both actual 2Rl9 and projected EOC-20 volage distributions. The Monte Carlo analysis accounts for parameter uncertainty. The analysis methodology is described in the Westinghouse generic methods report of Reference 4 as supplemented by References 5 and 6. The Monte Cado computer program used to implement this method is documented in Reference 9. Essentially the same methodology was applied to leak and burst qnalyses performed for the original Beaver Valley Unit I SCrs, Referenoe l0-In general, the methodology involves application of conelatiors for burst pressure, probability of leakage and leak rate to a measured or calculated EOC voltage distibution to estimate the likelihood of tube burst and primary-to-secondary leakage during a posf,rlated SLB event. Uncertainties associated udth burst pressure, leak rate probability and leak rate correlations parameters are e4plicitly included by sampling distributions for the parameter uncertainties through the Monte Carlo sampling prccess. NDE uncertainties are also included- The voltage distributions used in the leak and burst projetions for the next operating cycle are obained by applying growth data to the BOC disnibution. The probahility of detection (POD) used to generate the BOC voltage distibutions considers both detmtion uncertainty and the likely occrurence of new indications. Comparisons of projected EOC voltage distributions with acfual distributions after a cycle of operation for a number of plants have shown that the Monte Carlo analysis technique yields consenrative estimates for EOC voltage distribution as well as leak and burst results based on those distributions. sG-sGMP-17-2r July 2017 Revision 0

6-t 6 BOBBIN VOLTAGE DISTRIBUTIONS This section describes the input data usd to calculate EOC bobbin voltage distibutions and presents results of calculations to project EOC-20 voltage distributions. 6.1 Calculation of Voltage llistributions The analysis for EOC-20 voltage distribution starts with an initial voltage distribution which is projected to the end-of-rycle conditions based on the grourth rate and the anticipated cycle operating duration. The number of indications assumed in the analysis to project EOC voltage distributions, SLB leak rates and tube burst probabilities is obained hy adjusting the number of reported indications using a POD, which accounts for both the detection uneertainty and the development of new indications over the projection period- This is accomplished by using a probability of detection (POD) fuctor, which is defined as the ratio of the actual number of indications detected to toal number of indications present. A conservative value is assigned to POD based on historical data, and the value used herein is discussed in Section 6.2. The calculation of projected bobbin voltage frequency distribution is based on a net total number of indications retumed to service, defined as follows. Nro,nrs: N/ POD - N'"p";.u + N*pr,ggeu

where, Nr* nrs : Number of bobbin indications being returned to service for the next cycle, Ni Number of bobbin indications (in nrbes in service) identified by inspection affer the previous cycle, POD  : Probebility o f detecti or1 Ntq*tta = Number of N which are repaired (plugged) after the last cycle, No"pr.rggpd  : Number of indications in tubes deplugged after the last cycle and retumed to service in accordance with volag+based repair criteria.

There are no deplugged tubes returned to service at the beginnhg of Cycle 20 (BOC-20); therefore, Na.pm,"a  : 0. Seven (7) tuhes with seven (7) indications at the TSPs were plugged, therefore, Nrq**a: These tubes were plugged for reasons other tlun the presence of the DSI signal. 2Rl9 7. RPC "no degradstion found" tItIDF) indications were included in establishing the BOC-20 indication distibutions shown in Table 6-1. During the Monte Carlo simulations, voltages for bins with several indications are selected by randomly sampling the volage bins. For a few higher voltage indications in each SG, each indication is considerd to be in a separate bin, and the actual indication voltage is utilized in the calculations. SG.SGMP.I7.2L Iuly 2017 Revision 0

6-2 The methodology used in the projection of EOC-20 bobbin volage frequency disributions is described in Reference 3, and it is essentially the same as that used in the original Beaver Valley Unit I SGs, Reference I0. 6.2 Probebility of lletection (POD) The Generic Letter 95-05 (Referenc.e l) requires the application of a constant POD value of 0.6 to define the BOC distribution for EOC volage projections unless an alternate POD is approved by the NRC. A POD value of 1.0 represents the ideal situation where all indications are detected. In this report the Reference I POD value of 0.6 is used for the EOC-20 projection. 63 Limiting Growth Rate llistribution As discussed in Section 3.2, the NRC guidelines in Generic Letter 95-05 stipulate that the more conservative growth rate distihutions from the past trro inspections should be utilized for projecting EOC distributions for the next cycle. For conserratisrn, a grourth rate cunre which bounded the growth rates of both cycles was used. Grourth distributious used in the Monte Carlo calculations are specified in the form of a histograrn, so no interpolation is performed between grourth bins. This assures that the largest grourth value in the distribution is utilized in the Monte Carlo simulations. 6.4 Cycle Operating Period The operating perids used in the grourth rate/EFPY calculations and voltage projections are a$ follows. Cycle 19 524.7 EFPD or 1.436 EFPY (actual) Cycle 20* 525 EFPD or 1.437 EFPY (projected)

 *The crurent maximum fuel burn up that Cycle 20 is analyzed for is 517 EFPD 6.5     Prcjected EOC-20 Voltage Distribution Calculations for the EOC-20 bobbin voltage projections were perforrred for all three SGs hased on the 2Rl9 distributions shown in Table 6-1. The BOC-20 distributions were adusted to account for probabiliry of detection as described above, and the adjusted number of indications at BOG20 is also shown in Table 6-1. Calculations were performedusing a constant POD of 0.6 and 1,000,000 Monte Carlo rials. The distribution of indications at BOC-20 and the distribution of indications projected to EOC-20 are shown in Figures 6-1, 62, and 6-3 for SG-A, SG-B, ard SG-C, respectively. SG-B has the largest nurnber of indications at BOC-20. Reporting the maximum predicted voltage is not required by GL 95-05, but it is artitarily chosen to be the voltage where the integration of the upper tail of the voltage distribution reaches a 0.3 fractional indication.

SG-SGMP-17.21 Juty 2017 Revision 0

6-3 Table 6-1 Predicted Voltage Distribution at EOC-20 SG-A Number of Indicetlont SG-B Numher of Indlcafions SG{ Number of Indlcstlons Volt Bins Mersured Input Predicted Mesrured Input Prrdtcted Measured Input Predicted EOC-I9 BOC-20 EOC-20 EOC-I9 BOC-20 E(}c-20 EOC-I9 BOC-20 EOC-20 0.1 I l5 I0.28 II 17.33 t2.25 3 5 4.97 0.2 5E 95.67 60.8 79 r31.67 81.03 7t I 18.33 69.69 0.3 93 154 r06,44 r00 166.67 t25.17 80 133.33 101.49 0.4 56 93.33 97.1r 89 146.33 131.83 59 98.33 97.71 0.5 36 60 74.29 65 108.33 I14.71 <,} 84.67 86.49 0.6 2t 35 54.95 38 63.33 86.06 3l 51.67 68.04 0.7 I8 30 40.58 t9 3t.67 59.29 20 33.33 48.96 0.8 t0 16.67 28.9 t4 23.33 40.18 l0 t6.67 33.95 0.9 7 l1.67 19.28 7 I I.67 26.72 9 t5 27.76 I 3 5 12.frl 7 I I.67 17.42 4 6.67 14.71 I.t I t.67 7.54 3 5 I1.08 7. 3.33 9.18 t.2 3 5 4.8r I 1.67 6.97 2 3.33 5.58 r.3 0 0 3.13 2 3.33 4.52 0 0 3.36 I.4 0 0 2.t I 1.67 3.01 I r.67 r.99 1.5 2 3.33 t.47 I r.67 1.99 I.I5 1.6 l.0I r.26 0.31 t.7 0.s? 0.64 4.7 r.8 0 0 0 I_9 0.7 0.7 0.3 7 0.3 0.3 Total 3t7 526 526 417 ?25 725 34 571 57t SG-SGMP.I7.2I July 2017 Revision 0

6-4 2RlO Predlctcd tft]tr3c trFtrlhttbn SG-A IEtr.frI I EOC-2O lg] 160 140 3 r20 I Ir* I 5 i80 I I 250

     /m 20 o

o.l 0.2 0.5 o.rt 0.5 0.6 0.7 0.t o-9 I 1.1 1.I 1.3 1.4 1.5 1.5 1.7 1.8 1.9 2 VofrIE l*r Figure 61 Predicted Voltage llistribution ft EOC-20, SC-A sG-sGhdP-17-2r July 2017 Revision 0

6-5 2R2O Prcdletrd Uoltrgc Dlgtfibutbn SG-B r Etr-n) r Boc-?o 18{} lEO 1jto g rzo

 .t J

E

 =lm bg iBo E

E

 ;E6{}

4{} TO 0 o_1 0: o-3 0-4 0-5 0"6 0J o.8 0-s 1 1.1 1-2 1.3 1.4 1.5 1.6 1-7 1.8 1"9 I voltraG Eh F'igure 6-2 Predicted Voltege Distribution at EOC-20, SG-B SG.SGMP.T?.2I July 2017 Revision 0

6-6 lR20 PrGdlctcd lblt4r Dlstrlhutbn $G{ r Eff-m r Boc-20 140 120 1m I I "t T I!Eo b c b .tE 60 I z {o 20 o 0.1 a2 0-3 0.4 0.3 0-6 0-7 0"8 09 I 1.1 1: 1-5 1.4 t.5 l-6 LJ l.t 1.9 2 UsltIG th Figure fr3 Prcdicted Voltage llirtribution at EOC-10, SG-C July 2017 Revision 0

7-l 7 SLB I,EAK RATE AND TUBE BTIRST PROBABILITY ANALYSES This section presents the results of the analyses carried out to predict leak rates and tube burst probabilities at the postulated SLB conditions using the actual voltage disrihutions ftom the 2Rl9 inspection (condition monitoring assessment) as well as for the projected EOC-20 voltage distributions (operational assessment). The methodology used in these analyses is described in Section 6. 7.1 2R19 Condition Monitoring Leak Rate and ltrbe Burst Prubability Analyses to calculate the 2Rl9 SLB leak rates and tr,rbe brust probabilities were perfonned using the actual bobbin voltage disrihutions presented in Tables 3-l to 3-3. The resule of the Monte Carlo calculations are sunmarized in Table 7-1. The SLB leak rates and tube burst probabilities, calculated using the actual measured 2Rl9 voltage distributions using 1,000,000 Monte Carlo trials, are shown in Thble 7- l. The methodology used for these calculations is documented iu WCAP-14277, Rev. l. The probability of leak, leak rate, ffid burst pressure correlations for 7/8 inch tubes presented iu the latest addendum to the EPRI Altemate Repair Criteria (ARC) Database, Reference 3, were used. The SLB primary-to-secondary pressure differential applied in the analysis is 2560 psi. The maximum 2Rl9 leak rate of 0.067 gpm and the maximum conditional burst probability of I.44 x l0'5 are well below their respective allowable limits (2.2 gpm per Reference ll, and 1.0 x 10-2 per Reference l, respectively). Therefore, the condition monitoring performance criteria are satisfied. 7.2 Cycle 20 Operational Asscasment L,eak Rate and Ttrbe Burst Prohability The SLB leak rate and tube burst probability projection for the Cycle 20 operational assessment was carried out usrng the latest update to the ARC database documented in Refuence 4, the POD of 0.60, and 1,000,000 Monte Carlo tials. The EOC-20 leak and burst analyses were performed using a primary-to-secondary presilre diffterential of 2560 psi, even though it is likely that PORV actuation will occur prior to the pressurizer safety relief valve lift seting. The EOC-20 projections, considering a 525 EFPD operation cycle, using POD : 0.6 are shown in Table 7-2. Both the maximum projected EOC-20 leak rate of 0.220 $)m and the manimum conditional burst probability of 2.67 x l0'5 are well below their respective allowable limits (2.2 gpmand 1.0 x l0'2, respectively). Therefore, the operational assessmentperformance criteria for the DSI indications are satisfied for Cyele 20. SG.SGMP.LT-21 July 2017 Revision 0

7-2 Table 7-l Condition Monitoring Leak and Burst Results for 2Rl9 Number of Meximum Probebility of 1 or SLB Leak Rrte Indicrtions rt Volts rt More Burst et et 95195 E(}c-19 EOC-19 959/o Confidence (gpm) SG.A 3t7 1"42 l.l8 x 10"5 0"043 SG.B 417 1.45 1.44 x l0'r 0.067 SG.C 3+{ 1.33 l.l8 x l0'r 0.045 Table 7-2 Operational Assessment Leak and Burst Results for EOC-20 (POD = 0.6) Growth Rete Number of SLB Leek Rrte Marimum Volts ProbrbiHty of I Used ln lndlcrfions rt et EOC-20 or More Burct at I5I95 Projec{ion EOC-20 Gpm) SG-A Cycle 19 Bound 526 2.0 2.31 x 10'5 0.149 SG-B Cycle 19 Bound 72s 2.0 2.67 x l0'5 0.220 SG-C Cycle 19 Bound 57t 1.9 2.31 x l0'5 0.r58 Note: The growth rate for Cycle lg bounds the growth rate observed during Cycle 18. SG.SGMP-17.21 Iuly 2017 Revision 0

8-l I REFERENCES I NRC Generic Lefter 95-05, "Voltage-Based Repair Criteria for lilfestinghouse Steam Generator Tubes Affected by Outside Diameter Sfiess Corrosion Cracking," USNRC Offrce of Nuclear Reactor Regulation, August 3, 1995. 7 Westinghouse Report SG-SGMP-I5-22, Rev. 5, "Beaver Valley Unit 2 End-of-Cycle 18 Analysis and Prediction for End-of-Cycle 19 Voltage-Based Repair Criteria 90-Day Report," October 2016. 3 Westinghouse Report WCAP-14277, Revision l, "SLB Leak Rate and Tube Burst Probability Analysis Methods for ODSCC at TSP Interseetions," rillrestinghouse Nuclear Services Division, December 1996. 4 EPRI Report 1018047, Addendum 7 to NP-7480-L Database, "Steam Generator Tubing Outside Diameter Stress Corrosion Cracking at Tirbe Support Plates Database for Alternate Repair Limits," September 2008. 5 Letter from A. Marion, Nuclear Energy Research Institute, to B. Sheron, Nuclear Regulatory Commission, "Refining the Leak Rate Sampling Methodology for ODSCC ARC Applications (Generic Letter 95-05)," March 15, 2002.

6. Letter from W. Bateman, Nuclear Regulatory Commission, to A. Marion, Nuclear Energy Research Institute, "Refining the Leak Rate Sampling Methodology for Generic Letter 95-05 Voltage-Based Alternate Repair Criteria Application," March 27 ,2002.

7 Westinghouse Letter DLC-96-184, "Duquesne Light Cornpany Beaver \t'alley Power Station Unit 2 Steam Generator LOCA Plus SSE I",oads,' June 17, 1996.

8. Letter from B.W. Sheron, Nuclear Regulatory Commission, to A. Marion, Nuclear Energy Research Institute, February 9, 1996.

I \Ubstinghouse Letter LTR-CDME-08-I67, "Software Release Letter for CycleSim Version 3.2," July 2008.

10. Westinghouse Repofi SG-SGDA-05-1, Rev. l, "Beaver Valley Unit I Cycle 17 Voltage-Based Repair Criteria 90-Day Report,'o January 2005.
11. FENOC Letter BWS-0109, *2R16 Steam Generator 90 Day Alternate Repair Critena Report Input Data Validation," JanuarSl 2,2013.
12. Beaver Valley Power Station Unit 2, Updated Final Safety Analysis Report, Revision 22.

sG-sGMP-t7-21 July 2017 Revision 0

A-l APPENI}IX A Table A-1 IISI Indications for 2R19 in SG-A 2Rt9 SG Row Col Locn Comment Volte 2A 2 24 07H 0.46 NDF 2A 2 88 02H 0.22 2A 2 92 03H 0,37 2A 3 l5 03H 0.63 2A 3 59 02H 0.54 2A 3 65 07H 0.71 2A J 77 08H 0.48 SAI 2A 3 79 07H 0.53

             ?A        3       8l        03H       0.47 2A        3       84        03H       0.51 2A        3       85        04H       0.74 2A        3       92        02H       0.26 2A        4        9        03H       0.85 2A        4        I        04H       0.31 2A        4       l8        05H       0.48 2A        4       2t        03H       0.46 2A        4       24        02H       0.24 2A        4       26        02H       0.25 2A        4       28        03H       0.37 2A        4       34        03H       0.32      NDF 2A        4       39        02H       0.r5 2A        4       50        02H        0.3 2A        4       50        03H       0.74 2A        4       50        04H       0.36 2A        4       54        02H       0.25 2A        4       54        04H       0.26 2A        4       54        05H        0.3 2A        4       60        02H        0.3 2A        4       60        06H       0.34 2A        4       63        02H       0,38 2A        4       70        03H       0.24 2A        4       78        05H       0.23 2A        4       85         08c      0.27 2A        4       85        03H       0.16 2A        5       10        02H       0.94 2h        5       l0        03H       0.97 2A        5       10        04H       0"27 sG-sGMP-t7-2r                                                        July 2017 Revision 0

A-1 2Rr9 SG Row Col Locn Comment Volts 2A 5 ll 04H 0.21 2A 5 l8 06H 0.6 SAI 2A 5 25 05H 0.61 2A 5 26 02H 0.54 2A 5 26 03H 0.43 2A 5 28 04H t.42 NDF 2A 5 29 02H l.t5 SAI 2A 5 30 03H 0.52 2A 5 53 02H 0.37 2A 5 80 05H 0.24 2A 5 82 03H 0.28 2A 6 t5 02H 4.22 2A 6 20 04H 0.4 2A 6 27 06H 0.21 2A 6 12 02H 0.2 2A 6 34 02H 0.36 2A 6 35 02H 4.72 2A 6 35 03H 0,88 2A 6 35 05H 0.39 2A 6 35 08H 0.48 2A 6 40 03H 0"34 2A 6 40 04H 0.3 2A 6 4l 08H 0.1l SAI 2A 6 43 02H 0.37 2A 7 l4 03H 0.25 2A 7 l8 03H l.l4 NDF 2A 7 l8 05H 0.41 2A 7 l9 03H 0.35 2A 7 27 05H 0.46 2L 7 49 02H 0.r3 2A  ? 5l 02H 0.22 2A 7 5l 05H 0.42 2A 7 58 03H 0.4r 2A 7 7t 03H 0.27 plug 2A 7 94 02H 0.36 2A I l9 02H 0.35 2A I 28 02H 0.25 2A I 79 02H 0.29 2A I 32 03H 0.39 sG-sGMP-17-21 July 2017 Revision 0

A-3 2Rr9 SG Row Col Locn Comment Volts 2A I 32 05H 0"75 SAI 2A 8 34 03H 1.42 NDF 2A I 42 02H 0.19 2A I 69 02H 0.31 2L 8 76 05H 0"13 2A I 85 02H 0.04 2A I 9l 04H 0"46 2A I l0 02H r.1 NDF 2A 9 t3 02H 0.51 2A I t4 03H 0.2 2A 9 l6 02H 0.42 2A 9 l6 03H 0.64 2A I l6 04H 0.52 2A I 34 02H 0.28 SAI 2A I 35 02H 0.38 2A I 38 05H 0.7 7A I 40 03H 0.31 2A 9 5l 04H 0.61 SAI 2A I 56 02H 0.29 2A 9 56 04H 0.21 2A I 57 02H 0.23 2A I 57 03H 0.64 2A I 74 03H 0.22 2A l0 7 02H 0.87 2A l0 7 03H 0.32 2A l0 I 03H 0.24 2A l0 l9 04H 0.3r 2A l0 26 04H 0.21 2h t0 3X 03H 0.I4 2h ll 2 03H 0.53 2A ll 48 02H 0.81 2h ll 48 08H 0.84 2A ll 77 05H 0.38 2A ll 78 06H 0.18 2A 12 I6 02H 0.65 SAI 2A t2 34 02H 0.26 2A t2 48 05H 0.32 2A t2 69 03H 0.33 2A t3 70 03H 0.45 SG-SGMP-17-21 July 2017 Revision 0

A-4 2R19 SG Row Col Locn Comment Volts 2A t2 72 02H 0.23 2A t2 73 05H 0.17 2A t2 74 02H 0"53 2A t2 74 03H 0.58 2A l3 32 02H 0.2 2A l3 39 05H 0.42 2A t3 49 04H 0.17 2A l3 60 02H 0.5 2A l3 67 06c 0.32 2A l3 7t 04H fr.22 2A l3 80 03H 0.33 2A l3 84 02H 0.43 2A l3 85 02H 0.54 2A l3 86 03H 0.27 2A l3 9l 05H 0.77 2A t3 92 04H 0.54 2A t4 l5 04H 0.23 2A l4 20 03H 0.31 NDF 2A t4 25 05H 0.36 2A t4 27 05H 0.46 2A l4 31 02H 0.18 2A l4 40 05H 0.21 SAI 2A t4 48 05H 0.36 2A l4 50 03H 0.21 2A l4 53 02H 0.09 2A l4 54 02H 0.32 2A l4 58 02H 0"3s 2A l4 59 02H 0.23 2h t4 59 03H 0.21 2A l4 59 06H 0.45 2A l4 65 03H 0.34 2A l4 68 02H 0.35 2A l4 70 03H 0.48 2A r4 80 03H 0.r8 2A t4 86 04H 0.4 2A l5 2? 05H 0.14 2A l5 3l 04H 0.3 SAI 2A l5 63 02H 0.12 2A l5 67 02H 0"29 sG-sGMP-t7-2t July 2017 Revision 0

A-5 2R19 SG Row Col Locn Comment Volts 2A l5 7t 02H 0,t 2A r5 72 02H 0.18 2A l5 73 03H 0.54 2A l5 73 05H 0.21 2A t5 74 03H I NDF 2A r5 75 02H 0.72 2A l5 75 08H 0.43 SAI 2A l6 lt 05H 0.61 SAI 2A l6 52 02H 0.57 2A 16 53 03H 0.22 2A t6 62 08H 0,05 2A l6 66 03H 0.25 2A l6 70 03H 0.49 2h l6 72 02H 0.12 2A l6 76 02H 4.27 2A l6 77 05H 0.13 2A t7 l0 03H 0.32 2A l7 27 04H 0.25 2A l? 32 05H 0.28 2A 17 46 02H 0.76

             ?A   t7  59   02H  0.38 2A   l7  59   05H  0.r9 2A   t7  8r   03H  0.26 2A   17  8t   04H  0.r7
             ?,A  l7  84   03H  0.16 2A   t8    7  04H  0.24 2A   l8   l0  03H  0.66 2A   l8   l0  04H  0-25 2A   l8  27   07H  0.21 2A   t8  30   04H  0.09 2A   l8  47   02H  0.22 2A   l8  47   05H  0.55 7A   l8   57  02H  0.66 2A   l8   88  05H   0.1
24. l9 7 02H 0.51 2A t9 7 03H 0.31 SAI 2A l9 I 03H 0.15 2A l9 l5 03H 0.24 2A l9 l5 04H 0.13 SG-SGMP-17.21 July 2017 Revisiou 0

A-6 zRr9 SG Row Col Locn Comment Volts 2A l9 56 03H 4.47 2A l9 57 02H 0.44 zh t9 57 04H 0.4 2A l9 60 02H 0"18 2L 20 7 08c 0.r2 2h 20 I 03H 4.27 2A 20 l0 04H 0"25 2A 20 t2 02H 0.1 2A 20 22 02H 0.2 2A 20 22 03H 0.23 2A 20 22 08H 0.31 2A 20 57 02H 0.14 2A 20 62 05H 0.36 2A 20 75 05H 0.39 2A 20 78 04H 0.42 2A 20 85 03H 0.26 2A 2l l8 04H 0.34 2A 2t 25 03H 0.22 2A 2t 26 05H 0.48 2A 2l 34 02H 0.26 2A 2t 43 02H 0.2 2A  ?.r 46 02H 0.17 2A 2t 55 02H 0.13 2A 2t 72 03H 0.33 2A 2l 71 03H 0.89 2A 2l 78 08H 0.15 2A 2t 87 08c 0. r3 2A 22 7 02H 0.22 2A 22 2l 02H 0.19 2A 22 2l 03H 0.34 2A 22 23 02H 0.22 2A 22 35 02H 0.26 7,A 23 ll 02H 0.44 2A 23 ll 03H 0.16 2A 23 l9 02H 0.7 2A 23 20 02H 0.23 2A 23 2t 03H 0.15 2A 23 53 02H 0.24 SAI 2A 23 87 04H 4.27 sG-sGMP-17-2r July 2017 Revision 0

A-1 zRr9 SG Row Col Locn Comment Volts 2A 24 t6 02H 0.69 2A 24 l6 03H 0.42 2A 24 23 05H 0.85 NDF 2A 24 24 02H 0.14 2A 24 33 03H 0.25 2A 24 52 02H 0.15 2A 24 63 05H 0.36 2A 25 2t 02H 0.1 2A 25 22 02H 0.57 2A 25 30 04H 0.29 2A 26 l5 03H 0.ll 2A 26 l9 04H 0.16 2A 26 42 02H 0.66 2A 26 80 05H 0.16 2A 27 32 02H 0.22 2A 27 33 03H 0.35 2A 27 34 04H 0.26 2A 2l 42 04H 0.29 SAI 2A 27 42 05H 0.53 2A 27 47 02H 0.28 2A 27 il 02H 0.12 2A 27 75 05H 0.28 2A 28 l3 03H 0.33 2A 28 26 04H 0.5I 2A 28 41 02H 0.3 2A 28 45 02H 0.62 2A 28 46 03H 0.13 2A 28 54 02H 0.21 2A 28 56 03H 0.64 2A 28 66 04H 0.09 SAI 2A 29 24 04H 0.65 2A 29 30 0sH 0.35 2A 29 54 03H fr"24 [,IAI 2A 29 65 02H 0.58 2A 30 l9 02H 0.39 2A 30 22 02H 0.r9 2h 30 28 03H 0.27 2A 30 38 02H 0.13 2A 30 58 04H 0.25 SG.SGMP-17-21 July 2017 Revision 0

A-8 2Rr9 SG Row Col Locn Comment Volts 2A 30 63 08H 0.11 2* 30 68 02H 0.29 2A 3t l4 04H 0.29 2A 31 l8 02H 0.64 2A 3l l8 03H 0.4r 2A 3t 74 02H 0.44 SAI 2A 32 17 02H 0.19 2A 32 27 03H 0.38 2A 32 38 03H 0.19 2A 32 45 02H 0.41 2A 32 5l 05H 0.26 2A 32 53 03H 0.36 2A 33 l8 02H 0.14 2h 33 l8 03H 0.38 2A 33 42 05H 0.25 2A 33 45 07H 0"23 2A 33 54 06H 0.24 2A 33 57 04H o_27 2A 33 66 02H 0.27 2A 34 40 03H 0.25 2h 34 52 02H 0.3 2A 34 53 02H 0.28 2A 34 56 05H 0.45 24' 35 45 02H 0.48 2A 36 28 03H 0.55 2A 36 28 04H 0.r2 2A 36 M 03H 0.23

             ?,A  36 46  06H  0.13 2A   37 39  03H  0.32 2A   37 42  03H  0.36 2A   37 54  05H  0.18 2A   37 56  02H  0.22 2A   37 56  03H  0.48 2A   38 40  05H  0.35 2A   38 44  02H  0.28 2A   39 23  02H   l.ll   NDF 2A   39 42  02H  0.46 2A   39 46  02H  0.78 2A   39 47  02H  0.25 sG-sGMP-17-2r                                 July 2017 Revision 0

A-9 2Rr9 SG Row Col Locn Comment Volts 2A 39 57 03H 0.r8 plug 2A ,10 37 03H 0.72 2A 40 44 06c 0.2 2A 42 64 04H 0.43 2A 44 35 03H 0.r I 2A 44 58 06H 0.12 2A 46 52 06H 0.16 sG-sGMP-t7-2t July 2017 Revision 0

A-10 Ihhle A-2 IISI Indicationo for 2R19 in SGB 2Rr9 SG Row Col Locn Comment Volts 2B I 43 02H 0.46 2B t 52 02H 0.29 2B I 56 02H 0.21 2B I 57 04H 0.25 2B 2 24 02H 0.36 2B 2 28 02H 0.29 2B 2 54 04H 0.12 2B 7 62 03H 0.36 plug 2B 2 63 04H 0.2 2B 2 67 06H 0.3 2B 2 ?0 05H 0.77 2ts 2 73 03H 0.39 2B 2 73 04H 0.18 2B 2 94 04H 0.33 2B 3 32 03H 0.27 2B 3 54 02H 0.53 2B 3 55 02H 0.72 2B 3 60 02H 0.45 2B 3 60 03H 0.38 2B 3 6l 06H 0.6 2B 3 62 03H 0.38 2B 3 62 04H 0.r8 2B 3 63 02H 0.51 2B 3 63 03H 0.56 2B 3 72 03H 0.41 2B 3 88 04H 0.37 2B 3 89 04H 0.36 2B 4 23 02H 0.35 2B 4 23 06H 0.36 2B 4 32 03H 0.24 2B 4 36 04H 0.39 SAI 2B 4 41 04H 0.15 2B 4 43 02H 0.r3 2B 4 M 02H 0.2 2B 4 48 03H 0.r7 2B 4 52 03H 0.87 2B 4 54 02H 0.8 2B 4 56 04H 0.3 sc-sGMP-r7-2t July 2017 Revision 0

A-ll 2R19 SG Row Col L,ocn Comment Volb 2B 4 57 02H 0.36 28 4 57 04H 0.23 2B 4 58 02H 0.55 2B 4 59 02H 0.23 2B 4 59 03H 0.27 2B 4 63 04H 0.4 28 5 t0 02H 0.33 2B 5 t2 03H 0"16 2B 5 t4 03H 0.43 2B 5 20 03H 0.3r 2B 5 22 04H 0.44 2B 5 28 02H 0.51 2B 5 52 02H 0.9 2B 5 54 02H 0,26 2B 5 54 03H 0.32 2B 5 54 07c 0.71 2B 5 56 03H 0.8 2B 5 58 02H 0.4 2B 5 60 02H 4.27 2B 5 62 03H 4.24 2B 5 63 04H 0.17 2B 5 il 02H 0.51 2B 5 64 03H 0.21 2B 5 68 02H 0.48 2B 5 7t 02H 0.51 2B 5 71 06c 0.5 2B 5 73 02H 0.38 2B 5 75 04H 0.17 2B 5 8l 05H 0.09 2B 5 92 02H 0.23 2B 5 93 03H 0.43 2B 6 l6 03H 0.19 2B 6 23 04H 0.22 2B 6 26 02H 0.r8 2B 6 27 03H 0.27 SAI 2B 6 52 02H 0.18 2B 6 53 02H 0.58 2B 6 53 03H 0.41 2B 6 58 02H 0.67 sG-sGMP-17-Zt July 2017 Revision 0

A-12 2Rl9 SG Row Col Locn Cornment Volts 2B 6 58 03H 0.35 2B 6 6l 08H 0.r8 2B 6 63 02H 0.27 2B 6 66 03H 0,98 2B 6 70 05H 0.76 2B 7 s2 02H 0.65 2B 7 54 02H 0.43 2B 7 56 02H 0.9s 2B 7 56 06c 0.4 2B 7 63 07H 0.36 2B 7 70 04H 0.47 2B 7 70 05H 0.35 2B 7 75 02H 0"26 2B I 03H 0.15 2B I I 02H 4.27 2B I I 03H 0.23 2B I l8 02H 0.28 2B I l8 03H 4.24 2B 8 20 02H 0.34 2B I 22 02H 0.39 2B I 37 03H 0.32 2B 8 53 02H 0.53 2B I 56 03H 0.48 2B I 57 08H 0.25 2B I 59 02H 0.39 2B I 63 MH 0.6 2B I 4 03H 0.34 SAI 2B I 5 03H 0.17 2B 9 I 03H 0.16 2B I lt 02H 0.43 2B I II 03H 0.46 2B I l6 CI3H 0.14 2B I l7 02H 0.47 2B I t7 03H 0.3 2B I l8 02H 0.65 28 I l8 03H 0.57 2B I 26 02H 0.43

             ?B  I  26   03H  0.66 2B  I  52   02H  0.29 sG-sGMP-t7-21                                  July 2017 Revision 0

A-t3 2Rl9 SG Row Col Locn Comment Volts 2B 9 52 03H 0.32 2B I 59 03H 0.6 2B 9 59 05H 0.42 2B I 6l 07c 0.52 2B I 64 04H 0.49 SAI 2B I 70 03H 0.r8 2B I 70 05H 0.47 2B 9 72 04H 0.39 2B 9 77 04H 0.19 2B I 80 02H 0.36 2B 9 85 02H I NDF 2B I 92 02H 0.31 2B I 93 02H 0.55 2B t0 6 02H 0.63 2B l0 l0 02H 0.02 2B t0 t4 02H 0.36 2B l0 l5 02H 0.35 2B l0 t7 02H 0.75 28 l0 l8 02H 0.27 2B r0 26 02H 0.37 2B l0 37 03H 0.17 2B l0 4r 07H 0.1 29 r0 50 02H 0.31 2B l0 50 03H 0.23 2B 10 50 04H 0.ll 2B l0 52 02H 1.37 NDF 2B l0 52 04H 0.38 2B l0 53 02H 0.59 2B l0 54 02H 0.14 2B l0 56 02H 0.31 2B l0 58 05H 0.25 2B l0 63 02H 0.5 2B l0 7t 05H 0.64 2B l0 76 03H 0.46 SAI 2B l0 78 04H 0.r8 2B l0 80 03H 0.21 2B l0 82 03H 0.22 2B l0 88 04c 0.12 2B l0 89 02H 0.37 SG-SGMP.I7.2L July 2017 Revisior 0

A-t4 2R19 SG Row CoI Locn Comment Volts 2B It I 03H 0.23 2B u I 04H 0.15 2B ll I 06H 0.08 2B ll I 07H 0.66 2B ll l8 02H 0.49 2B ll 20 02H 0.63 2B ll 2t 03H 0.34 2B ll 25 03H 0"43 SAI 2B 1I 35 02H 0.13 2B lt 42 03H 0.16 2B ll 5t 02H 0"t 2B 1l 53 02H 0.43 2B il 53 08c 0.33 2B It 57 03H 0.37 2B ll 58 03H 0.32 2B ll 58 04H 0.22 2B ll 6l 02H 1.12 NDF 28 ll 6r 03H 0.74 2B ll ffi 03H 0.29 2B ll 75 02H 0.56 2B ll 75 03H 0.24 2B ll 83 03H 0.27 2B ll 83 04H 0.31 2B tz r0 02H 0.39 2B t2 r5 02H 0.39 2B t2 l5 03H 0.s3 2B x2 l6 03H fr.27 2B I2 22 02H 0.52 2B I2 24 02H 0.54 2E t2 24 04H 0.33 2B r2 5l 02H 0.14 2B 12 52 02H 0.34 2B r2 52 03H 0.65 2B t2 6t 03H 0.84 2B 13 37 03H 0.28 2B l3 39 07H 0.17 2B l3 47 02H 0.23 SAI 2B r3 53 02H 0.69 2B l3 56 03H 0.28 SG.SGMP-17-21 July 2017 Revision 0

A-15 Col tRl9

             $G  Row     Locn       Comment Volts 2B   l3 7r   05c  0.24 2B   r3 73  02H   0.37 2B   l3 7?  03H   0.59 2B   t3 78  02H   0.19 2B   l3 85  02H   0.33 2B   r3 86  02H   0.17 2B   I3 9l  02H   0.46 2B   l4   I 03H   0.39   plug 2B   l4  l3 02H   0.21 2B   l4  l5 03H   0.33 2B   t4  l8 02H   0.39 2B   l4 25  02H   0.47 2B   l4 27  03H   0.21 2B   l4 28  05H   0.12 2B   l4 3X  02H   0.29 2B   l4 35  06H   0.37 2B   l4 36  03H   0"21 2B   l4 39  02H   0.36 2B   l4 54  02H   0.64 2B   l4 54  03H   0"42 2B   t4 57  02H   0.68 2B   l4 57   03H  0.37 2B   l4 6l   02H  0.34 2B   l4 6l   03H  0.51 2B   l4 6l   0sH  0.45 2B   l4 63   03H  0.43 2B   l4 70   02H   0.5 2B   14 83   03c  0.25 2B   I4 84   04H  0.r7 2ts  l4 8E   02H  0.28 2ts  l5  l2  03H  0.19 2B   l5 26   03H  0.39 2B   l5 26   07H  0.r4 2B   t5 27   02H  0.25 2B   l5 36   02H  0.31 2B   l5 52   02H  0.49 2B   t5 7t   05H  0.34 2B   l5 75   02H  0.06 2B   l5 75   04H  0.32 sG-soMP-t7-2t                                 July 2017 Revision 0

A-16 2Rl9 SG Rom Col Locn Comment Volt* 28 l5 80 04H 0.42 2B r5 87 02H 0.24 2B l5 89 02H 0.25 2B t6 27 03H 0.32 2B I6 29 02H 0.17 SAI 2B r6 3l 02H 0.33 2B t6 3l 07H 0.3 2B l6 36 04H 0.1? 2B l6 17 02H 0"36 2B l6 17 04H 4.22 SAI 2B l6 u 02H 0.34 2B l6 55 05H 0.26 2ts l6 6l 02H 0.43 2B l6 7t 02H 0.26 2B t7 35 03H 0.54 2B 17 42 03H 0.46 28 l7 42 04H 0"44 2B t7 44 02H 0.26 SAI 2B 17 62 05H 0"44 2B l7 64 02H 0.1 2B t7 68 02H 0.34 2B t7 68 03H 0.46 2B l7 68 04H 0.8 SAI 2B t7 83 06c 0.23

             ?B   l8  t2  03H  0.14 2B   l8  t8  02H  0.21 2B   18 28   04H  0.4?

28 18 29 02H 0.49 2B t8 30 04H 0.r7 2B l8 36 03H 0.9 2B t8 37 03H 0.43 2B l8 38 03H 0.68 2B l8 42 02H 0.25 2B ls 53 03H 0.36 2B l8 53 04H 0.31 2B l8 54 02H 0.73 2B l8 57 03H 0.18 2B l8 58 02H 0.45 2B l8 61 03H 0.3 sG-sGMP-t7-2t July 2017 Revision 0

A-17 2Rr9 SG Row Col Locn Comment Voltr 2B l8 il 03H 0.58 2B l8 69 04H 0.22 2B l8 69 05H 0.41 2B t8 76 03H 0.48 2B 19 l5 02H 0.19 2B I9 I5 04H 0.14 2B t9 29 02H 0.95 2B l9 29 03H 0.98 2B l9 36 02H 0.45 2B l9 39 03H 0.52 2B I9 39 04H 0.42 2B l9 40 03H 0.4 2B t9 45 02H 0.3 2B t9 50 03H 0.58 2B t9 5l 02H 0.68 2B l9 5l 03H 0.64 2B l9 69 02H 0.56 2B l9 7t 05H 0.38 2B l9 74 02H 0.13 2B l9 76 02H 0.31 2B l9 ?8 02H 0.1I 2B l9 85 02H 0.14 2B 20 ll 02H 1.02 NDF 2B 20 l6 03H 0.3 2B 20 l9 04H 0.06 2B 20 23 02H 0.17 SAI 2B 20 70 02H 0.1 2B 20 8l 02H 0.3 2B 20 89 02H 0.47 2B 2t 45 04H 0"41 2B 2t 53 03H 0.57 2B 2t 53 05H 0.25 2B 2l 54 02H 1.45 NDF 2B 2t 75 02H 0.21 2B 22 t2 03H 0.1 pluE

             ?B  22    l8 03H    t.l   SAI 2B  22   36  03H  0"17 2B  LL   52  02H  0.25 2B  22   52  03H  0.31 SG.SGMP.I7.2T                                  July 2017 Revision 0

A-18 2R19 SG Row Col Locn Comment VolA 2B 22 53 02H 0.13 2B 6l 05H 0.23 2B 22 62 03H 0.39 2B 22 64 02H 0.32 2B 23 33 03H 0"35 2B 23 17 04H 0.99 SAI 2B 23 56 02H 4.24 2B 23 6l 02H 0.3 2B 23 63 03H 0,25 2B 23 63 05H o.22 2B ?3 67 05H 0.22 2B ?3 86 02H 0.15 2B 24 29 05H 0.26 2B 24 30 03H 0.35 2B 24 32 03H 0.19 2B 24 42 02H 0.98 2B 24 5r 08H 0"r6 2B 24 52 02H 0.49 2B 24 56 02H 0.25 2B 24 58 03H 0.23 2B 24 62 03H 0.47 2B 24 63 03H 0.61 2B 24 65 02H 0.r l 2B 24 6E 08H 0.12 2B 24 7r 05H CI.38 2B 24 84 05H 0.3r 2B 25 r7 02H 0.r r 2B 25 24 03H 0.5r 2B 25 29 02H 0.I7 2B 25 64 06H 0.41 2B 25 79 08H 0.48 2B 26 30 03H 0.75 2B 26 39 03H 0.15 2B 26 78 02H 0.25 2B 27 46 06H 0.25 2B 27 52 04H 0"43 2B 2',1 53 03H 0.28 2B 27 68 02H 0.22 2B 28 4t 02H 4.24 sc-schilP-17-2r July 2017 Revision 0

A-t9 2Rt9 SG Row Col Locn Comment Voltr 2B 28 59 04H 0.45 2B 28 63 03H 0.4 2B 28 67 03H 0.34 2B 28 8l 02H 0.12 2B 29 20 03H 0.43 2B 29 2t 03H 0.55 28 29 3l 05H 0.23 2B 29 12 03H 0.1I 28 29 32 05H 0"28 2B 29 14 03H 0.43 2B 29 35 04H 0.32 SAI 2B 29 37 03H 0.58 2B 29 38 02H 0.52 il,IAI 2B 29 40 03H 0.E3 2B 29 4I 02H 0.29 2B 29 56 02H 1"23 NDF 2B 30 16 04H 0.17 2B 30 20 04H 0"19 2B 30 27 02H 0.28 2B 30 32 03H 4.24 2B 30 50 04H 0.64 2B 30 55 03H 0.46 2B 30 56 MH 0.5E 2B 30 59 04H 0.54 2B 30 78 02H 0.27 2B 30 78 04H 0.22 2B 30 79 02H 0.35 2B 30 8l 03H 0.23 2B 3t 2l 07H 0.58 2B 3l 23 02H 0.8 2B 3l 32 03H 0.48 2B 3l 12 05H 0.47 2B 3l 37 03H 0.39 2B 3l 39 02H 0.18 2B 3l 39 03H 0.52 2B 3l 48 02H 0.89 2B 3l 52 02H 0.52 2B 3r il 02H 0.12 2B 3l 'n 05H 0.13 sG-sGMP-17-2t July 2017 Revision 0

A-20 2Rl9 SG Row Col Locn Comment Volts 2B 3t 75 04H 0.[5 2B 3r 76 02H 0.38 2B 3l 78 02H 0.39 ZB 3l 78 03H r.24 NDF 2B 32 t6 08H 0.2 2B 32 29 05H 0.3s 2B 32 3l 02H 0.18 SAI 2B 32 53 02H 0.74 2B 32 55 02H 0.76 2B 32 55 05H 0.28 2B 32 6l 02H 0.4 2B 32 6l 05H 0.62 2B 32 77 02H 0.43 2B 33 3l 07H 0.22 2B 33 32 02H 0.23 2B 33 3? 04H 0.2? 2B 33 44 02H 0.4? 2B 33 60 03H 0.16 2B 33 62 02H 0.68 2B 34 l8 08H 0.26 2B 34 32 02H 0.19 2B 34 35 03H 0.16 2B 34 37 03H 0.3r 2B 34 48 02H 0.43 SAI 2B 34 48 03H 0.4 2B 34 48 04H 0.21 2B 34 5l 02H t.1 NDF 2B 34 5l 03H 0.47 2B 34 57 02H 0"5 2B 35 40 02H 0.17 2B 36 25 05H 0.34 2B 36 42 03H 0.16 2B 36 58 0sH 0.2 2B 36 &4 02H 0.05 2B 37 24 05H 0.26 2B 17 32 03H 0.86 2B 17 5'.1 02H 0.29 2B 37 57 0sH 0.s2 2B 38 35 02H 0.44 SG-SGMP-17.21 July 2017 Revision 0

A-21 2Rl9 SG Row Col Locn Comment Volts 2B 38 63 03H 0.2 2B 39 3t 05H 0.16 2B 39 33 03H 0.23 2B 40 3l 05H 0.r3 2B 40 42 02H 0"47 2B 4l 3l 05H 0.26 2B 4l 52 08c 0.2 2B 42 5l 0dlH 0.1l 2B 44 48 02H 0"29 sG-sGMP-17-2t July 2017 Revision 0

A-22 Table A-3 IISI Indications for 2R19 in SG-C 2Rl9 SG Row CoI Locn Comment Volts zc 2 78 03H 0.32 2C 2 80 03H 0.16 2C 2 85 03H 0.36 2C 3 I 04H 0.4 2C 3 I 06H 0"15 2C 3 l8 03H 0.34 2C 3 35 0sH 0.25 2C 3 39 04H 0.16 2C 3 39 07H 0.55 2C 3 45 02H 0.43 2C 3 58 02H 0.45 2C 3 60 02H 0.36 2C 3 60 03H 4.27 2C 3 64 02H 0.16 2C 3 il 03H 0.54 2C 3 80 02H 0.51 2C 3 90 06H 0.29 2C 3 93 04H 0.36 2C 4 3 04H 0.1t 2C 4 26 03H 0.79 2C 4 28 06H 0.33 2C 4 33 02H 0.47 2C 4 39 07H 0.64 SAI 2C 4 48 02H 0.25 2C 4 49 03H 0"42 2C 4 69 03H 0.23 2C 4 76 03H 0.3 2C 5 6 03H 0.65 2C 5 6 04H 0.18 2C 5 7 02H 0.34 2C 5 7 03H 0.88 2C 5 l5 03H 4.22 2C 5 l8 02H 0.4 2C 5 l9 02H 0.33 2C 5 l9 03H 0.28 2C 5 29 03H 0.2 2C 5 62 02H 0.3 2C 5 66 03H 0.48 NDF SG.SGMP-17.21 Iuly 2017 Revision 0

A-23 2Rl9 SG Row Col Locn Comment Volts 2C 5 70 05c 0.55 2C 5 7l 02H 0.54 2C 5 76 03H 0.67 2C 5 86 08H t.t4 NDF 2C 5 89 02H 0.53 2C 6 23 02H 0.r6 2C 6 30 02H 0.lE 2C 6 30 03H 0.28 2C 6 54 03H 0.53 2C 6 55 02H 0.26 2C 6 63 02H 0.33 NDF 2C 6 7E 03H 1.06 NDF 2C 6 84 03H 0.46 2C 6 92 04H 4.22 2C 7 t2 08c 0.25 SAI 2C 7 40 03H 0.38 2C 7 40 04H 0.24 2C 7 49 02H 0.31 2C 7 49 03H 0.2 2C 7 58 02H 0.3 2C 7 67 02H 0.34 2C 7 80 03H 0.18 2C I 2 08H 0.4r 2C I 23 02H 0.54 2C I 24 02H 0.65 2C I 43 03H 0.23 2C 8 63 06H 0.21 2C I 72 03H 0.29 2C I 84 03H 0.29 2C I l3 03H 0.18 2C I 20 04H 0"52 2C 9 26 03H 0.3 2C I 30 02H 0"18 2C I 32 02H 0.75 2C I 35 02H 0.7 2C I 37 02H 0.37 2C I 38 03H 0.23 2C 9 39 0sH 0"23 2C I 4l 02H 0.37 sc-schilP-17-21 July 2017 Revision 0

A-24 2Rt9 SG Row Col Locn Comment Volts 2C I 44 03H 0.18 2C I 45 05H 0.41 2C I 45 06H 0.22 2C 9 47 02H 0.45 2C I 54 02H 0.89 2C 9 54 04H 0.31 2C I 65 06H 0.68 2C l0 I 02H 0.68 2C l0 I 03H 0.23 2C l0 l0 02H 0.64 2C l0 l0 03H 0.53 2C l0 IE 04H 0.u 2C l0 14 03H 0.59 2C t0 36 02H 4.24 2C l0 37 02H 0.5 2C t0 38 07H 0.43 2C l0 43 02H 0.35 2C l0 44 02H 0.26 2C l0 5l 02H 0.96 2C l0 5l 05H 0.35 2C l0 54 02H 0.66 2C t0 54 03H 0.3t 2C l0 72 02H 0.26 2C l0 72 03H 0.12 2C l0 76 04H 0.17 2C 10 78 03H 0.13 2C 1l 7 02H 0.42 2C ll I 03H 0.59 2C ll l7 02H 0.32 2C 1l 36 02H 0.5 NDF 2C ll 42 02H 0.46 plug 2C n 49 02H 0.61 2C ll 62 03H 0.47 2C ll 70 03H 0.37 2C ll 72 03H 0.37 2C ll 88 05H 0.39 2C t2 9 02H 0.67 2C l2 30 02H 0.51 2C t2 35 04H 0.22 sG-sGMP-17-21 July 2017 Revisiou 0

A-25 2Rr9 SG Row Col Locn Comment Volts 2C t2 55 02H 0.55 2C 12 70 02H 0.28 2C t2 70 03H 0"23 2C t2 83 03H 0.14 2C t3 32 02H 0.2r 2C r3 35 02H fr.74 SAI 2C l3 35 05H 0.36 SAI 2C l3 43 02H 0.18 2C l3 43 03H 0"31 2C l3 59 03H 0.29 2C l3 63 02H 0.19 2C l3 ffi 02H 0.54 2C l4 29 04H 0.29 SAI 2C l4 38 02H 0.25 2C l4 39 05H 0.26 2C l4 50 02H 0.54 2C l4 54 02H 0"4 2C l4 59 03H 0.16 2C l4 70 08H 0"14 2C l5 5 04H 0.59 2C l5 l4 03H 0"34 2C l5 35 02H 0.13 2C t5 35 03H 0"4r 2C l5 38 04H 0.28 SAI 2C l5 39 02H 0.6 2C l5 39 03H 0.45 2C l5 6t 02H 0.26 2C l5 62 02H 0.36 2C l5 80 03H 0.2 2C l5 87 03H 0.3 2C l6 l5 03H 0.61 2C l6 t7 02H 0.35 2C l6 46 02H 0.65 2C 16 46 04H 0.17 2C t6 55 06H 0.36 2C l6 57 03H 0.59 2C l6 63 02H 0"13 2C l6 73 02H 0.28 2C t7 I 04H 0.2 SAI sG-sGMP-r7-21 July 2017 Revision 0

A-26 2Rl9 SG Row Col Locn Comment Volts 2C t7 t4 04H 0.19 2C t7 l7 02H 0.2 2C t7 l8 02H 0.41 2C t7 24 04H 0.07 2C t7 26 03H 0.22 2C t7 35 03H 0.76 SAI 2C t7 38 02H 0.38 2C t7 43 02H 0.45 plu8 2C t7 48 02H 0.58 2C t7 49 02H 0.3t 2C t7 50 03H 0.45 MAI ZC t7 6l 02H 0.58 2C t7 6I 03H 0.26 2C l"l 63 02H 0.48 2C l7 66 02H 0"13 2C 17 67 02H 0.48 2C t7 68 02H 0.35 2C l8 l5 06H 0.19 2C I8 47 03H 0.51 2C l8 48 02H 0.51 2C l8 48 03H 0.63 2C l8 48 04H 0.48 2C r8 50 02H 0.26 2C t8 5l 02H 0.46 2C l8 53 02H 0.7 2C l8 54 02H 0.4 2C l8 54 03H 0.16 2C l8 55 02H 0.44 NDF 2C l8 56 03H 0.45 2C l8 62 02H 0.37 NDF 2C 18 62 03H 0.73 2C l8 62 04H 0.r9 2C 18 66 03H 0.43 2C r8 67 02H 0.39 2C l8 67 03H 0.69 2C l8 't1 03H 0.21 2C I9 26 03H 0.28 2C l9 29 02H 0"41 2C l9 48 02H 0.43 sG-sGMP-17-2t July 2017 Revision 0

A-27 SG Row Col Locn tRl9 Comment Volts 2C l9 48 03H 0.67 2C t9 54 02H 0.18 2C I9 57 04H 0.82 2C I9 57 05H 0.93 2C l9 79 02H 0.83 2C 20 75 02H 0.47 2C 20 76 02H 0"55 SAI 2C 20 76 03H 0.82 2C 20 78 04H 0.36 2C zfi 85 03H 0.26 2C 2l l8 02H 0.37 2C 2l l8 03H 0.45 2C 2t 25 04H 0.09 2C 2t 62 02H 0.46 2C 2l 67 07H 0.18 2C 22 l8 02H 0.46 2C 22 t8 05H 0.35 2C 22 20 02H 0.79 2C 22 24 03H 0.16 2C 22 33 02H 0"3 2C 22 6t 03H 0.3 2C 22 64 03H 0.2'l 2C 22 75 04H 0.27 SAI 2C 22 77 03H 0.19 2C 23 l0 02H 0.29 2C 23 28 03H 0"3 2C 2X 37 02H 0.8s 2C 23 39 02H 0.32 2C 23 39 05H 0.26 2C 23 42 02H 0.5 2C 23 42 03H 0.32 2C 23 69 03H 0.18 2C 23 77 02H 0.28 2C 24 ll 03H 0.28 2C 24 34 08H 0.38 2C 24 48 03H 0.88 2C 24 50 02H 0.23 2C 24 56 03H 0.27 2C 24 57 02H 0.15 sG-sGMP-r7-2t July 2017 Revision 0

A-28 2Rr9 SG Row Col Locn Comment Volts 2C 24 6l 02H 0.54 2C 24 63 04H 0.18 2C 25 t7 03H 0.3 2C 25 26 04H 0.12 2C 25 3l 02H 0.55 2C 25 33 08H 0.26 2C 25 34 02H 0.8 2C 25 34 03H 0.76 2C 25 34 05H 0.49 2C 25 47 03H 0.5 2C 25 47 08H 0.24 2C 25 54 02H 0.18 2C 25 60 02H 0.41 2C 25 6l 02H 0.33 2C 25 6l 05H 0.42 2C 25 62 04H 0.45 2C 25 65 02H 0.37 2C 25 74 02H 0.28 SAI 2C 25 76 02H 0.64 2C 25 76 05H 0.16 2C 25 "19 02H 0.27 ZC 26 24 06H 0.19 2C 26 38 0sH 0.13 2C 26 39 05H 0.37 2C 26 42 02H 0.52 2C 26 44 06H 0.22 2C 26 65 03H 0.23 2C 26 70 03H 1.13 NDF 2C 26 72 08H 0.1? 2C 27 20 02H 0.57 NDF 2C 2? 22 02H 0.22 2C 2t 24 04H 0.23 2C 27 3l 02H 0.81 2C 27 60 02H 0.58 NDF 2C 27 69 02H 0.26 2C 27 76 03H 0.43 2C 28 27 05H 0.34 2C 28 35 02H 0.99 2C 28 42 02H 0.46 SG-SGMP.I7-21 July 2017 Revision 0

A-29 2R19 SG Row Col Locn Comment Volts 2C 28 42 04H 0.19 2C 28 44 02H 0.41 2C 28 50 03H 0.24 2C 28 73 03H 0.14 2C 28 85 02H 0.48 2C 29 ll 05H 0.43 2C 29 26 05H 0.7 2C 29 29 03H 0.98 2C 29 37 02H 0.42 2C 29 38 05H 0.35 2C 29 43 03H 0.34 2C 29 47 02H 0.29 2C 29 48 05H 0.33 2C 29 57 05H 0.18 2C 29 63 05H 0.8 2C 30 t2 03H 0.3 2C 30 24 02H 0.38 2C 30 25 04H 0.1 2C 30 3l 03H 0.23 2C 30 3l 04H 0.35 2C 30 4l 02H 0.r7 2C 30 60 02H 0,35 2C 30 5l 02H 0.75 2C 30 6I 04H 0.47 SAI 2C 3l l4 05H 0.19 2C 3l 17 04H 0.2 2C 3l 22 02H 0.r9 2C 3l 29 04H 0.4 2C 3l 49 02H 0.16 2C 3l 60 02H 0.31 2C 3l 6l 03H 0.29 ZC 3l 6l 04H 0.2 2C 3l ffi 04H 0.44 SAI 2C 3l 66 02H 0.43 2C 3l 66 05H 0.23 2C 3l 75 02H 0.17 SAI 2C 3l 77 06H 0.18 2C 3l 8l 02H 1.33 NDF 2C 3l 8l 03H 0.42 sG-sGMP-17-2t July 2017 Revision 0

A-30 zRl9 SG Row Csl Locn Comment Voltc 2C 32 l9 05H 0.43 2C 32 25 03H 0.25 2C 32 63 03H 0.31 SAI 2C 33 34 06H 0.28 2C 33 60 07H 0.29 2C 34 24 07H 0.13 2C 34 39 05H 0.16 2C 34 55 03H 0.32 2C 34 58 02H 0.49 2C 34 58 04H 0.r7 2C 34 58 05H 0.24 2C 34 59 02H 0.55 2C 35 22 02H 0.14 2C 35 34 03H 0.19 2C 35 34 04H 0.17 2C 35 38 07H 0.r5 2C 35 53 06H 0.22 2C 36 20 03H 0.85 2C 36 26 05H 0.58 2C 36 27 05H 0.33 2C 36 53 02H 1.07 SAI 2C 37 26 0sH 0.14 2C 37 35 03H 0.67 2C 37 52 06H 0.13 2C 38 42 0sH 0.14 2C 39 27 04H 0.19 2C 40 25 03H 0.12 2C 40 39 03H 0.39 2C 40 53 04H 0.43

             ?C  4t 27  04H  0.26 2C  4l M   04H  0.23 2C  4l 50  08H  0.12 2C  42 32  04H  0.25 SG.SGMP-I7.2I                                July 2017 Revision 0

Enclosure B L-17-074 Unit #2- 2R19 Steam Generator F* (F Star) Report (12 Pages Follow)

FIRST ET{ERGY HUCLEAR OPERATIiIG COTilPANY Technical Servi()Be Engineering Department Nuclear Engineering Programr Secilion Beaver Valley Poruer Statlon lEsue DaE: July 12, 2017

$ubfeet: Unit #2 - 2R19 steam Generator         F  (F star) Report Pmpared by:                                                   Dete: O     +

Steam Program Onrner Reviewed by: Daile: "7 d Supervisor, Nuclear E Programs Approved by: Manager- Technical Services Engineerlng Date: dLL/r?

                       \

uNlT#2 -2R19 STEAM GENERATOR p (F STAR) REPORT Technical Specification 5.6.6.2.4 Equirs that a report be submitH b the Nudear Regulatory Commbsion (NRC) wilhin 90 days after the initial 6ntry into MODE 4 foilowing an outage in $fiich the F. (F Star) mBthodology was utilized during steam genorator (SG) inspeclions. For fte spring 2017 refueling 6utage (2R19), the inilial entry into MODE 4 occuned on inay 1@,2011. Per Tecfinical Specification 5.6.6.2.4, the follovying information is to be submittd to thE NRC: (a) Totel number of indications, loBtion of each indication, orientation of eaoh indication, sewrity of each indication, and whether the indications iniliatsd fom the inside or outsiie surface. This information can be found in Tables 2RCSSG21A, 2RCS-SG21B and 2RCS-SG2.lC. (b) The cumulative number of indications detected in the tubeshet reglon as e func{ion of eleveton within the tubesheet. This information can be found in Atlachmer A: "Unil 2 - cumulative Listing of Tubesheet lndicdions (All Outages)". (c) The projected end-of+l/cle accr'dant-induced leakago frcm tubesheet indicafions. This information can be found in the right-hand column of Tables 2RCSG2iA 2RCSG21B and 2RCSG21C. lt is also oelained in lEm 4 under lnformation for All Tables on page 3. Discussion: During 2R19, the Ptus Point probe wa8 utilized to inspect the top of tubesheet region in bottr the hot and cold legs. The 2R19 inspedion scope indudad 100 percent of the inservice hot leg tubes in all three SGs plus a tu/Bnty percent random sample of the insErvice cold leg tubes in 2RCSG21C. The inspectinn distance for either leg was from 6.0 inches above the top of trbesheet to 3.0 indres below the top of tubeshet. This inspedion dislance bounds the required F examination distance (that ie, the expanded porlion of the tube below the bottom of roll expansion transition) of 2.22 inches below the bottom of the mll expansion transition. Thero ar ten tubes looated on the hot leg side of the SGB that have roll expanslon transitions at lorrcr than nominal elevations. Th ten hot leg tubes with the deoper roll hansition locations were inspecled to a depth of S,O t1{eq ltoy the bp of tubesheet to ensurE thc F* dbtance was adequalely examined, ln the cold leg side or 2RCSG21C, there is one lube with a lorer than nominal roll bansition location. This tubB was not included in the 2R19 tlenty percent random sample in8pection because it was previously inspected in the 2R16 tu,enty prcent random samdg. The morphology for the majority of the indications being reported from the hot leg top of tubesheet region is believed to be oulside diameter stress @rro6ion cracking (ODSCC). This is bassd on sbnal nacognition and the location of the reported indications. Both axial and circumferentially orientated indications rvere ob3erved. Circ mferenthl indications located abovts the top of tubesheet remain bounded by thg expansion transilion. None ofthe indications that were reported during the 2R19 SG examinations represented a (Cycle 19) leakage potential at postulated main steam line braak (MSLB) conditions nor did the 2R19 indications cfiallenge th6 - structural integrity perfornance cdteria. The proJected accident induced leakage from all combined sources (steeves, plugs, indications left in-servioe under Generic Letler 95-05 and olher degradation within the tube bundle) remains well below the 2.2 gallons per minute (gpm) per SG allowed by the Technical Specifications. Page 2 of 12

The following information and Tables summarize the degradation observed during lhe 2R19 top of tubEsheet region examinations. lnformation for all Tables:

1) Elovation column: TSH - Top of tubesheet (Hd teg). 0.00" is located at the scondary aide tubesheel hce. A negativ measurement is the distance inb the tub$heEt ftom tho secondary side face. All other elevations ar above secondary side tubesheet Ece.
2) Orientalion column: SAI - Single axial indication; SCI/MCI - Single or multiple circumferential indications.
3) Severitv columns: Thie data hae been le-analyzed utilizing the Plus Point probe 3@ kHz channel. The 300 kHz channel providee the most ac@rate 3izing technique and is used fur assssing thc levcrity ofthe indications. The rsported arc leng fis are taken from the dda reaolulion proccas. Profile analyris shons these measuremenb to be generally conservatiro.
4) Prolec{ed EOC Leakaoe column: lndications reportod within th 3.O' (5.0'for particular tube locationa) ircpection distance belo lhe topof-tubsheet urer ither removEd frorn eervice via plugging or repaired with the Alloy 800 sleerre during 2R19. Th projec{ed end of cycle (EOC) accident induced leekage from indicetions lhat were rernored from service via plugging is consftlered zero. See Note I afler each tabls ior informatim on tubes wilh Bleeves installed.
5) For tubes w'th multiplo enhiss, th6 data represents (a) the individual crack data for multiple circumftrenthl indications (MCl's) or (b) the individual cmck data for mixed mode indications. Not all MCI'S aru lisbd with individual crack data as lhe profiling of theso indications for the percent of degraded area produced a value less than the condition moniloring limit even when the arc length for both flaws was summod as the totat arc length.

2RCS-SG2iA Hot Leo Tubesheet: There uvere one hundrcd forty-five indications in one hundred thirtpnine tubes. One hundred twentyrne indications WBIB located at or slightly belorv the bp of fubesheet (Ninety vvere singb circumferential ODSCC indications, trvnty-nine urere multiple circumferential ODSCC indicalions and two unre slngle axlal lndications). The remaining lwenty-our indications werc locatd above the top of tubesheot (Nlne lyer single circumferentlal ODSCC irdications, tulo uuere multiple cirdmferential ODSCC indlcatlons and thirteen wtsre single axial indications). Table 2RCSG21A lndication Location Severity lnltiation Proiected Elevation Orientatlon Axiat Arc Surfacel EOG SG Row Column Volts Length Length Degradation (lnches) (lnchesl (Degresl Leakage A 1 57 TSH 0.00 MCt 0.11 g2 ODSCC Zero A 2 54 TSH O.O1 MGI 0.19 139 ODSCC Zero A 3 26 TSH -0.08 MCI 0.08 247 ODSCG See Note 1 A 3 28 TSH O-OO SCI 0.11 39 ODSCC See Note 1 A 3 45 TSH 0.62 SAI 4.fi 0.20 ODSCC See Note 1 A 4 23 TSH -0.05 sct 0.08 69 ODSGC See Note 1 A 4 43 TSH 0.55 SAI 0.19 0.25 ODSCC See Note 1 A 5 46 TSH -0.01 SCI 0.11 77 ODSCC See Note 1 A 5 4g TSH O.OO sct 0.15 26 ODSCC See Note 1 A 5 58 TSH -0.15 MCI 0.20 300 ODSCC See Note 1 A o 47 TSH -0.03 SCI 0.09 120 ODSCC See Note 1 A o 49 TSH 0.00 sct 0.33 80 ODSCC See Note 1 A o 52 TSH O.OO MCI 0.15 108 ODSCC See Note 1 A 7 16 TSH -0.04 SCI 0.06 43 ODSCC See Note 1 A 7 17 TSH O.O3 scl 0.14 46 ODSCC See Note 1 Page 3 ol 12

Table 2RCSG2lA (conr.) lndicatlon Locatlon Severity lnltlatlon ProJected Elevation Orientation Axlal Arc Surfacel EOG SG Row Golumn Volts Length Length (lnchee) (lnchesl Degradation Leakage IDeameol A 7 51 TSH O.OO MCI 0.10 139 ODSCC See Note 1 A 7 57 TSH -0.07 SCI 0.10 79 ODSCC See Note 1 A 7 76 TSH -0.07 SCI 0.15 77 ODSCC See Note 1 A I 10 TSH -0.08 SCI 0.07 32 ODSCC See Note 1 A I 13 TSH ,0.08 SCI 0.21 168 ODSCC See Note 1 A I 14 TSH -0.09 SCI 0.13 83 ODSCC See Note 1 A I 16 TSH -0.02 SGI 0.11 31 ODSCC See Note 1 A I 20 TSH -0.08 SCI 0.22 214 ODSCC See Note 1 A I 24 TSH 4.11 scr 0.17 gg ODSCC See Note 1 A I 26 TSH -0.05 SCI 0.15 275 ODSCC Zero A I 28 TSH -0.05 sGr 0.23 71 ODSCC See Note 1 A I 29 TSH {.04 sct 0.13 108 ODSCC See Note 1 A I 35 TSH O.OO MCI 0.12 zzg ODSCC $ee Note I A I 36 TSH -0.09 scr o.12 47 ODECC See Note 1 A I 42 TSH 1.27 SAI 0.1s 0.20 ODSCC See Note 1 A I 56 TSH -0.01 scl 0.08 48 ODSCC See Note 1 A I 62 TSH -0.05 scl 0.14 78 ODSCC See Note I TSH -0.05 sct 0.14 57 ODSCC See Note 1 A I 72 TSH -0,04 SGI 0.09 35 ODSCC See Note 1 A I 78 TSH O.OO MCI 0.23 240 ODSCC See Note 1 g TSH O.OO SCI 0.06 39 ODSGG See Note 1 A 31 TSH O.OO scr 0.07 74 ODSCC See Note t A I 71 TSH O.OO SCI 0.08 46 ODSCC See Note 1 A 10 13 TSH -0.02 scr 0.09 115 ODSCC See Note 1 A 10 4g TSH -0.03 sct o.24 90 ODSCC See Note 1 A 10 55 TSH -0.09 scr 0.18 122 ODSCC See Note 1 A 10 5g TSH O.OO scl 0.12 31 ODSCC $ee Note 1 A 10 62 TSH -0.09 SCI 0.12 34 ODSCC See Note 1 A 11 12 TSH -0.07 MCt 0.05 111 ODSCC See Note 1 A 11 26 TSH -0.02 scl 0.12 35 ODSCC See Note 1 A 11 39 TSH -0.06 SCI 0.14 142 oDscc $ee Note 1 A 11 40 TSH -0.04 SCI 0.12 177 ODSCC See Note I A 1'l 86 TSH O.OO sct 0.10 42 ODSCC Zero A 12 13 TSH -0.02 SCI 0.10 3g ODSCC See Note 1 A 12 17 TSH -0.07 MCI 0.15 151 ODSCC See Note 1 A 13 16 TSH -0.02 scl 0.0s 31 ODSCC See Note 1 A 13 59 TSH 0.00 SCI 0.07 32 ODSCC See Note 1 A 13 68 TSH -0.08 MCt 0.15 140 ODSCC See Note 1 A 14 26 TSH -0.0S MCt 0.10 171 ODSCC See Note 1 A 15 13 TSH -0.09 sct 0.18 49 ODSCC See Note 1 A 15 31 TSH -0.05 SCI o.21 129 ODSCC See Note 1 Page 4 of 12

Table 2RCS-SG21 A (cont.) lndication Location Severity Inltlation Profected Orientation Axial Arc Surfacel EOC Row Golumn Elevation Votts SG (lnches) Length Length Degradatlon Leakage llnchesl (Desrs) A 16 21 TSH 0.02 SCI 0.10 35 ODSCC See Note 1 A 17 71 TSH -0.06 SCI 0.19 117 ODSCC See Note 1 A 18 34 TSH 4.Og SCI 0.12 51 ODSCC See Note I A 19 21 TSH -0.11 SCI 0.21 68 ODSCC See Note 1 A 19 34 TSH {.06 MCI 0.10 49 ODSCC See Note 1 A 19 62 TSH 0.00 SCI 0.10 45 ODSCC See Note 1 A 20 28 TSH -0.07 SCI 0.12 39 ODSCC See Note 1 TSH -0.1 1 SCI 0.09 126 ODSCC See Note 1 A 20 33 TSH -0.11 SCI 0.07 30 ODSCC $ee Note 1 A 20 35 TSH -0.1 1 MCI 0.34 175 ODSCC See Note 1 A 20 57 TSH -0.23 sct 0.08 28 ODSCC See Note 1 A 20 79 TSH O.OO scl 0.07 72 ODSCC See Note 1 A ?1 14 TSH O.OO MCI 0.19 179 ODSCC Zero TSH 0.CI1 scr 0.11 g2 ODSCC See Note 1 A 2',L 33 TSH O.O1 SCI 0.11 25 OD$GC See Note 1 A 21 37 TSH -0.02 SCI 0.10 71 ODSCC See Note 1 A 22 40 TSH O,OO MCt 0.18 151 oDscc See Note 1 A 22 67 TSH -0.08 sct 0.14 43 ODSCC See Note 1 TSH O.O4 SAI 0.10 0.13 ODSCC See Note 1 A 24 61 TSH O-01 scl 0.17 183 ODSCC See Note 1 A 24 74 TSH -0.07 sct 0.16 235 ODSCC See Note 1 A 25 64 TSH 0.06 SAI 0.18 0.17 ODSCC See Note I A 26 37 TSH -0.13 sct 0.09 165 ODSCC See Note 1 A 26 51 TSH -0.05 MCI 0.08 86 oDscc See Note I A 26 5g TSH O.OO SCI 0.16 139 ODSCC See Note 1 A 26 65 TSH -0.05 SCI a14 122 ODSCG See Note 1 A 27 28 TSH O.OO SCI 0.08 66 ODSCC See Note 1 A 27 43 TSH O.OO SCI 0.16 106 ODSGC See Note 1 A 27 51 TSH -0.03 scl 0.11 51 ODSCC See Note 1 A 27 52 TSH O.OO scr 0.10 43 ODSCC See Note 1 A 27 73 TSH O.OO scl 0.17 80 ODSCC See Note 1 A 27 77 TSH O.OO MCI 0.24 131 ODSCC Zero A 28 46 TSH O.OO SCI 0.20 217 ODSCC See Note 1 TSH 0,12 SAI 0.17 0.16 ODSCC See Note 1 A 28 53 TSH -0.01 SCI 0.10 115 ODSCC See Note 1 A 28 5g TSH O.O2 SCI 0.05 45 ODSCC See Note 1 A 28 63 TSH O.O3 SAI 0.12 0.10 ODSCC See Note 1 A 29 27 TSH -0.01 SAI 0.15 0.13 ODSCC See Note 1 A 29 51 TSH -0.06 MCI 0.28 168 ODSCC See Note 1 A 2g 52 TSH O.OO sct 0.18 43 ODSCC See Note 1 A 2g 56 TSH -0.07 MCI 0.07 115 ODSCC See Note 1 A 29 58 TSH -0.01 MCI 0.10 52 ODSCC See Note 1 A 29 61 TSH -0.03 SCI 0.12 74 ODSCC See Note 1 A 29 73 TSH 0,00 MCI 0.19 140 ODSCC See Note 1 Page 5 of 12

Table 2RCS-SG21 A (cont.) lndicatlon Locatlon Severlty lnltlation Projected Orientation Axial Arc Surfacel EOC Row Column Elevatlon Volts SG (lnches) Length Length Degradation Leakage {lnches} (Deoreesl A 30 52 TSH O.OO SCI 0.?1 151 ODSCC See Note 1 A 30 61 TSH -0.06 SCI 0.14 48 ODSCC See Note 1 A 30 74 TSH O.OO SCI 0.11 29 ODSCC Zero A 31 21 TSH 0.00 SCI 0.08 57 ODSCC Zero A 31 28 TSH 0.06 SAI 0.16 0.13 ODSCC See Note 1 A 31 32 TSH 4.03 SCI 0.13 31 ODSCC See Note 1 A 31 47 TSH O.OO scr 0.22 119 ODSCC See Note 1 A 31 51 TSH O.O1 SAI 0.15 0.10 ODSCC See Note 1 A 31 55 TSH -0.04 MCI 0.13 5g ODSCC See Note 1 A 31 56 TSH -0,1 1 MCI 0.11 66 ODSCC See Note 1 A 31 57 TSH O.O1 sct 0.15 28 ODSCC See Note 1 A 31 60 TSH O.O5 sAl 0.23 0.17 ODSCC See Note 1 A 31 61 TSH -0.04 SCI 0.11 48 ODSCC See Note 1 A 31 63 TSH O.O2 MCI 0.49 200 ODSCC Zero A 31 69 TSH -0.06 scl 0.05 31 ODSCC See Note 1 A 31 70 TSH O.OO scr 0.16 274 ODSCC See Note 1 A 31 73 TSH O.OO SCI 0.18 60 ODSCC Zero A 32 39 TSH -0.10 scl 0.15 145 ODSCC See Note 1 A 32 46 TSH -0.08 SCI 0.15 71 ODSCC See Note 1 A 32 5g TSH 0.02 SAI 0.18 0.13 ODSCC See Note I A 32 69 TSH -0.02 MCI 0.38 122 ODSCC See Note 1 A 33 54 TSH -0.13 SCI 0.08 28 ODSCC See Note I A 33 56 TSH -0.07 SCI 0.06 37 ODSCC See Note 1 A 33 67 TSH O.O4 SCI 0.13 52 oDscc See Note 1 A 33 72 TSH O.OO MCI 0.21 214 ODSCC Zero A 34 35 TSH -0.10 MCI 0.17 117 ODSCC See Note 1 A 34 50 TSH O.OO SCI 0.23 75 ODSCC See Note I A 34 72 TSH O.OO SCI 0,05 180 ODSCC Zero A 34 73 TSH O.OO sct 0.14 3g ODSCC Zero A 35 26 TSH -0.03 MCI 0.20 92 ODSCC Zero A 35 68 TSH -0.03 scl 0.28 32 ODSCC Zero A Jtr 27 TSH O.O4 sct 0.15 66 ODSCC Zero A JO 51 TSH 0.00 SAI 0.05 0.10 ODSGC See Note 1 A Jb 60 TSH 0.67 SAI 0.08 0.23 ODSCC See Note 1 A 37 63 TSH O.OO MCl 0.13 129 ODSCC Zero A 37 M TSH -0.03 scr 0.09 31 ODSCC Zero A 38 43 TSH O.OO SCI 0.13 211 ODSCC See Note 1 A 38 46 TSH 0.00 SCI 0.10 159 ODSCC See Note 1 A 38 55 TSH O.OO SCI 0.21 235 ODSCC See Note 1 Page 6 of 12

Tahle ZRCS-SG2 I A (cont.) Indication Locatlon Sverlty lnltlation Proiected Elevatlon Orientatlon Axial Arc Surface/ EOG

   $G     Rottr    Column                                      Volts     Length    Length (lnches)

(Deorsffil Degradation Lealmge tlncheal A 39 51 TSH 1.36 SAI 0.08 0.18 ODSCC Zero A 3g 56 TSH 0.00 sct 0.1 I 134 ODSCC Zero A 3g 57 TSH O.OO MCI 0.13 108 ODSCC Zera A 40 42 TSH 0.00 sct 0.17 214 ODSCC Zero A 41 47 TSH {.01 SCl 0.1 1 46 ODSCC Zero A 41 47 TSH O.OO SCI 0.19 20s ODSCC Zero Nob 1 - Per wcAP 15919 (R2), "SG Tube Repairbr WesunghoGe Dslgned PhnE wlth 78' tnconet 600 Tubas Ustng Leak Limiting Aby 800 Slellres', the per sleeye leak rab at normal operating oonditiom b 0.000543 gellorE per hour (g?t) and at main steam line or ftdu,aEr lin6 bll'ak condiliona is 0.ffi0863 gph. For 2RCS-SG21A which cunontly has 168 Aloy 800 tubeGheet sleev6 instelled, thb equdes tc 1.52 x 103 gpm and 2.4164 x 103 gpm, respcdivety. Page 7 of 12

2RCS-SG21B Hd Leo Tubesheet: There werc eighty indications in seventy-one tubeo. Six$cight indications ncre located d or slightly below the top of tubesheet (Fifty-seven were single circurrfcrential ODSCC indicalions and eleven ruee multipie cirqrn erential ODSCC indications). Thc rmaining tu,elve indications vyer6 located above the top of tubeshet (Ien were single circumferential ODSCC indicalioni, one uras a multiple circumErential ODSCC indication and one was a single axial ODSCC indication). Table 2RCS-SG2iB lndication Location Severity

                                                                                    !nitiation    Projected Elevation  Orlentation             Arlal      Arc      Surfacel        EOC SG     Row      Column                                 Volts  Length    Length (lnchea!

(lneherl Degradation Leakage (Degreel B 2 61 TSH -0.10 MCt 0.08 133 ODSCC Zero B 2 62 TSH -0.20 SCI 0.08 35 ODSCC Zero B 2 64 TSH -0.05 scr 0.08 31 ODSCC Zero TSH O.OO SCI 0.20 190 ODSCC See Note 1 B 3 65 TSH O.OO SCI 0.08 52 ODSCC See Note 1 B 4 36 TSH -0.02 MCr 0.38 188 ODSCC See Note 1 B 4 48 TSH {.10 SCI 0.09 43 ODSCC See Note 1 B 6 43 TSH 1.51 SAI 0.14 0.18 ODSCC See Note 1 B o 57 TSH -0.11 sct 0.07 41 ODSGC See Note 1 B o 70 TSH -0.18 scl 0. 18 200 ODSCC See Note 1 B I 53 TSH -0.13 SCI 4.22 157 ODSCC See Note 1 B I 57 TSH -0.07 scr 0.1 2 2g ODSCG See Note 1 B o 51 TSH 0.06 SCI 0.1 43 ODSCC See Note 1 I 1 B 52 TSH -0.06 SCI 0.1 1 123 ODSGC See Note 1 B o 55 TSH -0.03 MCI 0. 17 195 ODSGC See Note 1 B 10 26 TSH -0.10 SCI 0.1 5 51 ODSCC See Note 1 B 10 34 TSH O.OO SCI 0.28 190 oDscc See Note 1 TSH O.OO SCI 0,12 48 ODSCC See Note 1 B 10 41 TSH -0.03 scr 0,1 1 83 ODSCC See Note 1 B 11 13 TSH -0.02 scr 0. 10 63 ODSCC See Note 1 B 11 14 TSH -0.07 SCI 0.18 33 ODSCC See Note 1 B 11 15 TSH -0.01 SCI 0.06 34 ODSCC See Note 1 B 11 24 TSH O.OO SCI 0.08 43 ODSCC See Note 1 TSH O.O4 SCI 0.16 71 ODSCC See Note 1 B 12 15 TSH O.O4 SC! 0.08 30 ODSCC See Note 1 B 12 43 TSH -0.01 MCI 0.1 0 fia ODSCC See Note 1 TSH -0.08 SCI 0.14 65 ODSCC See Note 1 B 1? 44 TSH -O.OB scr 0,13 55 ODSCC See Note 1 TSH -0.08 sct 0.15 37 ODSCC See Note 1 TSH -0.11 SCI 0.1 1 12s ODSCC See Note 1 B 12 50 TSH -0.11 SCI 0.11 82 ODSCC See Note 1 B 13 g TSH 0.06 SCI 0.1 1 111 ODSCC Zero B 13 14 TSH -0.08 SCI 0.23 34 ODSGC See Note 1 B 13 43 TSH -0.11 $ct 0.08 37 ODSCC See Note 1 B 13 56 TSH -0.07 scr 0.1 6 152 ODSCC See Note 1 B 13 60 TSH -0.02 scr 0.12 43 ODSCC See Note I Page I of 12

Table 2RCS-SG21 B (cont.) lndicatlon Locatbn Severity lnftiatlon Profected EleYation Orientation tu(iel Arr Surfacel EOC SG Row Column Voltn Length Length Degradation Leahage flnchctl (DeqrE!l tlneherl B 13 63 TSH O.OO MCt 0. 10 211 ODSCC See NoG 1 B 14 I TSH -0.05 scr 0.20 34 ODSCC Zero B 14 10 TSH -0.02 SCI 0.14 37 ODSCC Zero B 14 12 TSH 4.01 MCI 0.27 172 ODSGC See Note 1 TSH 0.04 SCI 0.34 80 ODSCC Zero B 15 10 TSH O.O3 sc! 0.13 55 ODSCC Zero B 16 24 TSH -0.17 scl 0.05 139 oDscc See Hote 1 B 16 26 TSH O.OO scr 0.15 83 ODSCG See Note 1 B 16 27 TSH O.OO sct 0.10 60 ODSCG See Note 1 B 16 75 TSH -0.08 scr 0.07 46 ODSCC See Note 1 B 17 7 TSH -0.05 scr 0.06 39 ODSCC Zero B 17 10 TSH O.OO MGI 0.30 215 ODSCC Zero B 17 11 TSH O.O8 SCI 0.08 26 ODSCC Zero TSH -0.06 SCI 0.18 115 ODSCC See Note 1 B 17 12 TSH -0.06 SGI 0.09 55 ODSCC See Note 1 B 17 13 TSH O.O2 scr 0.10 26 ODSCC See Note 1 B 17 14 TSH O.O7 sct 0.09 31 ODSCC See Note 1 B 17 42 TSH 0.00 MCI 0.08 182 ODSCC See Noh 1 TSH -0.11 scr 0.10 100 ODSCC See Note 1 B 17 43 TSH -0.11 sct 0.10 8g ODSCC See Note 1 B 17 44 TSH O.OO MCr 0.14 163 ODSGC See Note 1 B 18 11 TSH -0.05 scr 0. 10 88 ODSCC Zero B 18 13 TSH O.OO SCI 0.1 1 26 ODSCC See Note 1 B 18 50 TSH -0.06 SCI 0.09 75 ODSCC Eee Note 1 B 19 11 TSH 0.06 SCI 0.08 48 ODSCC Zero B 20 35 TSH -0.06 scr 0. t2 37 ODSCC See Note 1 B 22 12 TSH -0.10 sct 0.18 59 ODSCC Zero B 22 13 TSH -0.20 s0r 0.08 2S oDscc Zero B 23 u TSH -0.11 SCI 0.07 75 ODSGC See NoE 1 B 25 28 TSH -0.01 scr 0.16 g2 ODSCG See Note 1 B 26 26 TSH O.OO MCI 0.07 82 ODSGC See Note 1 B 27 14 TSH -0.03 SCI 0.15 4g ODSCC Zero B 27 47 TSH -0.09 scr 0.28 125 ODSCC See Note 1 B 27 59 TSH -0.06 SCI 0.14 154 ODSCC See Note 1 B 28 33 TSH O.OO scr 0.09 105 ODSCC See Note I B 31 34 TSH O.OO scl 0.22 35 ODSCS See Note 1 B 31 50 TSH -0.04 SCI 0.07 32 ODSGC See Note 1 B 33 37 TSH O.O4 MCt 0.15 145 ODSCC See Note 1 Page I of 12

Table 2RCS-SG2{ B (cont.) lndicatlon Locatlon Severlty lnitiation Projected Elevafon Orientation Axial Arr $urfacel EOG

   $G     Row     Golumn        (lnches)                      Volts    Length    Length    Degradation       Leakage flnchesl fiIesrEeel B      33        45       TSH -0.21           SCI         0.08                  49       ODSCC          See Note 1 B      34        3g       TSH -0.15           scr         0,12                  43       ODSCC          See Note 1 B      36        39       TSH -0.08           sct         0.18                  162      ODSCC          See NoE 1 B      37        40       TSH O.OO            sct         0.06                  37       ODSCC          See Note 1 B      37        45       TSH -0.22           MCI         0.?7                  62       ODSCC          See NoE 1 B      38        39       TSH -0.18           SCI         0.19                  37       0Dscc          See Note 1 Nob 1 - Por WCAP 15319 (R2),'SG Tub Repdr tur Wbsffnghouse D$igned Plants with 78'lnconel A)0 Tubes Using Loak Limiting Alloy 800 Slea,e8", the per slee\re leak raE al nomal operating condl0ons b 0.000813 gallom pr hour (gph) and at main Etearn line or Edurabr line brBak condluons b 0.000,863 gph. For 2RCSG2i B whlch cu[ently has 75 Alloy 800 tubesheet rleevca inltdlsd, lhi! cqusto   t 6.7876 x 10.. gpm and 1.0788 x 103 gpm, respectively.

Page 10 of f2

2RCSG21C Hot leo Tubeeheet: There ryere nineteen indications in nineteen tub@. Fifteen indication3 werE located d or Glightly below the top of lubesheet (Eleven were singlc cirtumferontial ODSCC indications, four ruere multiple circum&rential ODSCC indications). Thc rcmaining four indications wErc located above the top of tubesheet Cfwo were single circumferential ODSGC indications, one was a multiple circurnftrential ODSCC indication and one was a single axial ODSGC indication). No sleeves wsre installed in the hot leg during 2R19. 2RCSG21C Cold Leo Tubesheet: A t uenty percent random sampb of the inservice cold leg tubes in 2RCS-SG21C was performd ftom 6 inches abow to 3 incies below TTS. No tubes with rcll oxpan3ions grBater than 0.75 inches bolou, the top of tubesheet lrere induded in lhe rardom sampb, thercfor no tubes u,Er required to be inspected to a depth of greaier tftan 3.0 Inches. No indicdions were deteded during lhis inspection. Teble 2RCSG2iC Indication Location Severlty lnitlation Projected Orientation Axial Arc $urfacel EOC SG Row Golumn Elevatbn Volts (lncher) Length Length Degradation Leakege (lnchec) (Desreeel c 5 13 TSH O.OO SCI 0.14 163 ODSCC Zero C 6 22 TSH 0.06 SAI 0.38 0.1 I ODSCC Zero C 6 45 TSH -0,03 SCI 0.09 52 ODSCC Zero C I 53 TSH -0.16 $ct 0.1 3 62 ODSCC Zero C 10 52 TSH -0.13 scr 0.09 134 ODSCG Zero C 11 42 TSH -0.06 scl 0.08 109 ODSCC Zero G 13 14 TSH -0.04 scr 0.06 34 OD$CC Zero C 13 21 TSH -O.M SCI o.12 52 ODSCC Zero C 14 15 TSH -0.08 MCI 0.1 s 139 ODSCG Zero C 15 46 TSH -0.10 scr 0.1 7 7g ODSCC Zero C 15 47 TSH O.O2 SCI 0.09 1?,8 ODSCC Zero c 17 43 TSH -0.07 SCI 0.07 48 oDscc Zero C 17 52 TSH -0.11 SCI 0.08 g0 ODSCC Zero C 1g 39 TSH O.O2 SCI 0.10 28 oDscc Zero G 19 49 TSH 0.01 MCI 0.15 159 ODSCC Zero c 28 47 TSH -0.03 SCI 0.20 191 ODSGC Zero C 32 69 TSH -0.18 MCt 0.08 172 ODSCC Zero C 36 58 TSH -0.0s MCI 0.1 1 80 ODSGC Zero C a7 60 TSH -0.08 MC! 0.13 242 ODSCC Zero Note 1 - Per WCAP 15S19 (R2), "SG Tube Repah for Wbstinghouse D3signed Planb wih 7/8'lnconel600 Tubes Using Leak Limiting Alloy 800 SlEews", tr6 pr 8lee\re leak rab at nomal operating oonditions is 0.000543 gallons per hour (gph) and at main steam line or fBdwEter line brcak conditions is 0.00086:l gph. For 2RCS-SG21C which currenuy has 22 Alloy 800 tubeshet sleevs installed, thls equates b 1.9010 x 10{ gpm and 3.1643 x 10{ gpm, rEspctively. Page 11 of 12

Attachment A Unit 2 ' Gumulative Listing of Tubesheet lndications (All Outages) (Updated through 2R1g) 2RCS-SGz1A 1 2RCS.SGz1C 2RCS-SG21C Hot Co Tubesh Hot T Hot INCH COUNT INCH COUNT INCH COUNT INCH INGH INCH I COUNT COUNT 0.00" 59 0.00" 0.00" ?2 0.00. g 0.00" 0.00' 0.01" 18 - 0,01" - 0.01 10 - 0.01" 0.01"

-  0.02"    17        -  0,02'                   -  0.02"       o       -  0.02'                  -  0.02" 1        0.01.'
                                                                                                                     - 0.02.
-  0.03"    26        -  0.03'                   -  0.03"      1s       -  0.03'                  -  0,03" 3

4 0.03'

-  0.04"    2?        -  0.04.                   -  0.04"      12       -  0.04'                  -  0.04"       7   -    0.04"
-  0.05"    2?                                   -  0.05"      15       -  0.05'                  -  0.05"      14   -    0.05"
-  0.06,    22       -   0.06"                   -  0.06'      14       -  0.06"                  -  0.05'           -    0.06"
-  0.07'    24       -   0.07"                   -  0.07"      15       -  0.07.                  -  0.07" 10
-  0.08'    ?0       -   0,08"                   -  0.09"      29       -  0.09"                  -  0.09" 10 0.07" 0.08"
-  0.09"    20       -   0.09"                   -  0.09"      24       -  0.09"                  -  0.09" 18 13   -    0.09"
-  0.10"    13       -   0.10'                   -  0.10"      15       -  0.10"                  -  0.10"      12   -    0.10" 0.11',   25           0.1 1"                  -  0.11"      16          0.11"                     0. 11"
-  0.12"     6       -   0.12"                   -  0.12"       g       -  0.12"                     0.12" 11 I   -

0.1 1* 0.12"

-  0.13"    16       -   0.13"                   -  0.13"       ?       -  0.13"                  -  0.13"           -

0.14" I - 0.14" 0.14" 2 - 0.14" 0.14" 4 6 0.13', 0,14"

-  0.15u     4       -   0.15',                  -  0.15"      6        -  0.15"                  -  0.15"           -
-  0.16',    6       *,0.16",                    -  0.16"      2        -  0.16"                  -  0.16" 1

0.1s', 1 0.16" 0.17', 4 - 0.17. - 0.17" 3 - 0.17" - 0.17' 3

                                                                                                                     -    0.17"
-  0.18"             -   0.19"                      0.19"      4        -  0-19"                  -

1

,  0.1g',            -   0.19'                   -  0.19"               -  0-19"                  -

0.18" 2 0.18',

- 0.20' 1

0.19" 1 - 0.20" - 0.20"  ? - 0.20" - 0.20" 1 0.1g', 0.20' 0.21', - 0.21" 3  :;:{16i39ii il - 0.22" '-' ,5 29n 1 1 0.22" 0.22" 1 - 0.36" 1 0.23" 1 4.27" 1 - 0.40" 1 I rI 0.31' 1 0.41" 1

                                                                                                  -  0.50"       1
                                                                                                  -  1.22        I The five shaded tube locations were reported ae a distorted tubesheet signal from the bobbin coil  -  1.49.       I probe' Rotating pancake coil examinations did not confirm any of these iignal as real indications. -  3.16*

1 18,.36 I TOTAL 335 TOTAL 2 TOTAL 229 TOTAL 1 TOTAL 147 TOTAL 1 Page 1?ot12}}