DCL-18-058, Flaw Evaluation of Unit 2, ASME Code Class 2 Charging Pump Discharge Lines: Welds WIC-45A and RB-46-7

From kanterella
(Redirected from ML18220B396)
Jump to navigation Jump to search
Flaw Evaluation of Unit 2, ASME Code Class 2 Charging Pump Discharge Lines: Welds WIC-45A and RB-46-7
ML18220B396
Person / Time
Site: Diablo Canyon Pacific Gas & Electric icon.png
Issue date: 08/08/2018
From: Welsch J
Pacific Gas & Electric Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
DCL-18-058
Download: ML18220B396 (75)


Text

Pacific Gas and Electric Company"'

James M. Welsch Diablo Canyon Power Plant Vi ce President P.O. Box 56 Nuclear Generation and Avila Beach, CA 93424 Chief Nuclear Officer 805.545.3242 E-Mail: James.Welsch@pge.com August 8, 2018 PG&E Letter DCL-18-058 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Docket No. 50-323, OL-DPR-82 Diablo Canyon Unit 2 Flaw Evaluation of Unit 2, ASME Code Class 2 Charging Pump Discharge Lines:

Welds WIC-45A and RB-46-7

Dear Commissioners and Staff:

In accordance with the requirements of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section XI, 2007 Edition through 2008 Addenda, Paragraphs IWC-3132.3, IWC-3134(b), and IWC-3640, Pacific Gas & Electric Company (PG&E) is submitting the results of the analytical evaluation of the flaws found in Diablo Canyon Power Plant (DCPP) Unit 2, on the 4-inch diameter ASME Code Class 2 Charging Pump Discharge Lines: Welds WIC-45A and RB-46-7. IWC-3134(b) states, "Analytical evaluation of examination results as required by IWC-3132.3 shall be submitted to the regulatory authority having jurisdiction at the plant site."

PG&E identified circumferential indications at welds WIC-45A and RB-46-7 (i.e., one circumferential flaw in each weld) in the charging pump discharge lines using ultrasonic examination techniques during a DCPP routine scheduled risk-informed inservice inspection (RI-ISi) performed during Unit 2 twentieth refueling outage.

Additional examinations required in accordance with IWC-2430 were completed and no other indications were detected.

The indications in WIC-45A and RB-46-7 were found to have exceeded the acceptance standards of ASME Section XI, 2007 Edition with 2008 addenda, Table IWB-3514-2 (as referenced by IWC-3514). The flaws were initially dispositioned as unacceptable. Subsequently, an analytical evaluation was performed based on the rules of ASME Code, Section IWC-3640, to demonstrate that the welds containing the flaw are acceptable for continued service for the life of the plant.

The results of the analysis show that, using the conservative bounding flaw size, the conservative bounding loads, and a conservative transient loading, the flaw does not exceed the ASME Code, Section XI allowable flaw size assuming an additional A m e mb e r of the STARS Alli ance Ca ll away

  • Di ab l o Canyo n
  • Pal o Ve rd e
  • Wolf Cr ee k

Document Control Desk PG&E Letter DCL-18-058 August 8, 2018 Page 2 40-year operating period. Therefore, the flaws are acceptable for the remainder of the Unit 2 plant life through the end of the operating license on August 26, 2025.

The analysis, methodology, and results are shown in the Enclosure.

PG&E makes no new or revised regulatory commitments (as defined by NEI 99-04) in this letter. If you have any questions or require additional information, please contact Mr. Hossein Hamzehee at (805) 545-4720.

Sincerely, Ja~ ~

Vice President, Nuclear Generation and Chief Nuclear Officer rntt/4231 /SAPN 50965613-04 Enclosure cc: Diablo Distribution cc/enc: Kriss M. Kennedy, NRC Region IV Administrator Christopher W. Newport, NRC Senior Resident Inspector Gonzalo L. Perez, Branch Chief, California Department of Public Health Balwant K. Singal, NRR Senior Project Manager State of California, Pressure Vessel Unit A member of the STARS (Strategic Teaming and Resource Sharing) Alliance Callaway

  • Diablo Canyon
  • Palo Verde
  • Wolf Creek

Enclosure PG&E Letter DCL-18-058 Diablo Canyon Power Plant, Unit 2 Evaluation of the Flaw in the 4-inch Charging Pump Discharge Line: Welds WIC-45A & RB-46-7

File No.: 1800289.301 Structural Integrity Associates, Inc.

Project No.: 1800289 CALCULATION PACKAGE Quality Program Type: 12] Nuclear D Commercial PROJECT NAME:

Diab lo Canyon Power Plant Charging Pump Discharge Line Flaw Evaluation CONTRACT NO.:

PO 3501159353 , Rev. 0 CLIENT: PLANT:

Pacific Gas & Electric Diablo Canyon Power Plant, Unit 2 CALCULATION TITLE:

Evaluation of the Flaw in the 4-inch Charging Pump Discharge Line: Welds WIC-45A & RB-46-7 Project Manager Preparer(s) &

Document Affected Revision Description Approval Checker(s)

Revision Pages Si nature & Date Si natures & Date 0 1 - 41 Initial Issue Preparers:

A A-6 James W. Axline S.S . Tang B B-3 JWA 3/10/ 18 SST 3/10/18 C-l -C-22 C. Fourcade CJF 3/ 10/18 Checkers:

C. Fourcade CJF 3/ 10/18 M. Fong MF 3/ 10/ 18 1, 4, 5, Revised to incorporate Preparers:

11 , 19, 22 Client comment J~-~\~tUu. G,_u_.._,

( _ JJames W. Axline JWA 7/19/18 Checkers:

R.Bax RLB 7/19/ 18 Page 1 of 41 F0306-01 R2

e Structural Integrity Associates, Inc.

Table of Contents

1.0 INTRODUCTION

......................................................................................................... 4 2.0 TECHNICAL APPROACH ............. ........ ... ..................... ............................................. 4 3.0 DESIGN INPUTS ............................................................................. ................... .......... 6 3.1 Geometry ...... ..................................................................................................... 6 3.2 Loads .................................................................................................................. 6 3.3 Operating Conditions .......................................... ................. ....... ... .................... 6

3. 4 Material ........... ... .... ............................................................................................ 7 3.5 Indication Characterization .. .................................. .............. .............................. 7 3 .6 Cause of Cracking ...................................................................... .. ...................... 8 3.7 Thermal Transients ............................................................................................ 9 3 .8 Residual Stress .............................................................................. ................... 11 4.0 CALCULATIONS ....................................................................................................... 11 4.1 Flaw Characterization ............ .......................................................................... 11 4.2 Determination of Stresses and Load Combinations ......................................... 11 4.3 Thermal Transient Stress Analyses and Stress Intensity Factors Determination ................. ................. .. .... ................. ... 14 4.4 Crack Growth Evaluation ................................................................................ 15 4.4.1 Stress Intensity Factors .... .. ............................ .. ..... .. ......... .................. .. ... .. .. .... . 15 4.4.2 Austenitic Stainless Steel Fatigue Crack Growth Law ........ .......... .................. 16 4.4.3 Loading Combinations and Stresses ..... .. ....... .. ... .. ....... ..... ...... .................... ..... 17
4. 4. 4 Allowable Flaw Size Determination .................... ....... .. .. ...... ..... .. .... .............. .. 17 5.0 RESULTS ................ .... ............................................................................ ... ........... ...... 19

6.0 CONCLUSION

S ......................................................................................................... 20

7.0 REFERENCES

............................................................ ................ .... ................. ........... 21 APPENDIX A NDE ISI EXAMINATION DATA .............................................................. A-1 APPENDIX B COMPUTER FILE LISTING ....................................................................... B-1 APPENDIX C PC-CRACK OUTPUT FILES ........... .... ................................................. ...... C-1 File No.: 1800289.301 Page 2 of 41 Revision: 1 F0306-0l R2

e Structural Integrity Associates, Inc.

List of Tables Table 1: Transient Cycles for Evaluation ............................................................................... 23 Table 2: Piping Loads for Weldment WIC-45A (Node 15 E) and RB-46-7 (348-380) ......... 25 Table 3: Piping Loads for Load Combinations- Weldment WIC-45A & RB-46-7 .............. 27 Table 4: Primary/Secondary Stresses ............................................................ ......................... 29 Table 5: Bounding Primary Piping Stresses ........................................................................... 31 Table 6: Bounding Secondary Piping Stresses ....................................................................... 31 Table 7: Transient Cycles Evaluated ...................................................... .......... ...................... 32 Table 8: Transient Analyzed in SI-TIFFANY .......................... ........... ................................... 33 Table 9: Material Properties for A-376 TP 316 ...................................................................... 34

, Table 10: Fatigue Crack Growth Loadings ........................... .............................................. .. . 34 Table 11: Initial, Final, and Allowable Flaw Sizes ................................................................ 34 Table 12: Allowable Flaw Sizes ............................................................................................. 35 List of Figures Figure 1. Isometric Drawing of the Charging Pump 2-1 Line ................................................ 36 Figure 2. Isometric Drawing of the Charging Pump 2-2 Line .................... ....... ................. .... 37 Figure 3. Indication Sketch WIC-45A .................................................................................... 38 Figure 4. Indication Sketch RB-46-7 ...................................................................................... 39 Figure 5. Semi-Elliptic Flaw on Inside Surface of a Cylinder .............................................. .40 Figure 6. Flaw Growth and Allowable Flaw Size-Bounding Flaw ..................................... .41 File No.: 1800289.301 Page 3 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

1.0 INTRODUCTION

During routine inservice inspection of the ASME Code, Class 2 Charging Pump discharge line welds at Diablo Canyon Power Plant (DCPP), Unit 2 in the Spring 2018 2R20 outage, a circumferential flaw was identified at two weldments: Weld WIC-45A and RB-46-7 [1, 2]. The location of weld WIC-45A is shown in Figure 1 (isometric drawing of the charging line) and weld RB-46-7 is shown in Figure 2. As can be seen from these figures, the welds are located a short distance from the charging pump. The possible cause of cracking is discussed in Section 3.6.

This calculation documents an evaluation to determine the acceptability of the circumferential flaws identified in the charging line welds WIC-45A and RB-46-7 at DCPP Unit 2 for continued operation.

Included in the calculation is documentation of loadings, calculation of stresses and stress intensity factors, determination of fatigue crack growth, and the allowable flaw size. Based on the evaluation contained herein, the flawed component is acceptable for continued operation. The crack will not exceed the ASME Code, Section XI allowable flaw size for the life of the plant (assuming an additional 40-year operating life).

2.0 TECHNICAL APPROACH The subject DCPP piping systems are classified as ASME Class 2 piping, with Class 1 requirements for seismic. The calculation documents the evaluation of existing flaws in a Class 2 piping system that remains in service. Therefore, the requirements for evaluation and acceptance criteria of ASME Code, Section XI, Subsection IWC apply. The current applicable Section XI Edition and Addenda for these systems at DCPP is the 2007 Edition with 2008 Addenda [3].

The technical approach used for the flaw evaluation consists of using the ASME Code, Section XI, Subarticle IWC-3600 and Appendix C requirements summarized in the following steps:

1. The characterization of the identified flaws are planar flaws located within the austenitic stainless steel piping butt welds, and are ID-connected [l, 2]. The flaws are first evaluated using the Acceptance Standards of Subarticle IWC-3500, specifically IWC-3514, for flaws in austenitic piping. IWC-3514 states that these standards "are in the course ofpreparation" and directs that "the standards of IWB-3514 may be applied." IWB-3514, specifically IWB-3514.3(a) for austenitic piping, states that "the size of allowable flaws shall not exceed the limits specified in Table IWB-3514-2." This determination has been performed by PG&E and the as-found flaws did not pass the rules ofIWC-3500, implemented as IWB-3500 (Table IWB-3514-2).

It is noted that these butt welds are in stainless steel piping in a pressurized water reactor (PWR),

which are not susceptible to stress corrosion cracking, and therefore the requirements of IWB-3514 are applicable.

File No.: 1800289.301 Page 4 of 41 Revision: 1 F0306-01R2

e Structural Integrity Associates, Inc.

2. Subsubarticle IWC-3640 states that piping containing flaws that exceed the acceptance standards ofIWC-3514 (implemented as IWB-35 14) may be evaluated by analytical procedures to determine acceptability for continued service, and references use of Section XI, Appendix C.

Therefore, a more detailed flaw evaluation using the rules of Appendix C is required. The specific steps in the evaluation involved are listed below.

a. Determine the stresses at the flaw locations. Since the flaws are oriented in the circumferential direction, the stresses required are the axial stresses. The loadings considered in this evaluation include pressure, deadweight, thermal expansion, seismic (inertial and anchor movements), residual, and thermal transient stresses.
b. Determine the ASME Code, Section XI allowable flaw size for austenitic stainless steel piping in Appendix C [3] {Past Operability} .
c. Determine thermal transients applicable to flawed piping location.
d. Calculate stress intensity factors for the thermal transients and other loadings.
e. Perform a crack growth evaluation to determine how long it will take the as-found flaws to reach the ASME Code, Section XI allowable flaw size determined in Step b.
f. Compare the end of the evaluation period flaw (after fatigue crack growth) to the ASME Code, Section XI allowable flaw size in Appendix C to determine acceptability for operation through the evaluation period {Continued Operability}.

The current version of ASME Code, Section XI used at DCPP [15] is the 2007 Edition with Addenda through 2008 [3] .

Two computer programs verified under Structural Integrity Associates (SI) Quality Assurance (QA) program are used to facilitate the calculations in this evaluation. These computer programs are SI-TIFFANY [10] and pc-CRACK [11].

The software SI-TIFFANY [10] performs time history thermal stress and stress intensity factor analysis of a pipe with a specified temperature/flow history of the fluid inside the pipe. The end result (output) of the software is tables of the maximum and minimum stress intensity factor for ID part-through wall circumferential or axial flaws for selected crack sizes.

In this calculation, SI-TIFFANY is used to calculate the the1mal transient stress and minimum and maximum stress intensity factor distributions for the bounding thermal transient(s). These maximum and minimum stress intensity factors are used for the fatigue crack growth evaluation.

The fatigue crack growth evaluation is performed using pc-CRACK [11]. pc-CRACK [11] is a Windows-based software for the fracture mechanics analysis of cracks in materials. Analysis procedures performed are based on linear elastic fracture mechanics (LEFM) or elastic-plastic fracture mechanics (EPFM). The code can be used for a very wide range of crack geometries subjected to a variety of stress File No.: 1800289.301 Page 5 of 41 Revision: 1 F0306-01R2

e Structural Integrity Associates, Inc.

states. Some 35 LEFM and 15 EPFM crack configurations are included, several with influence functions that allow consideration of arbitrary stress distributions. pc-CRACK can compute critical crack size, allowable flaw size based on the ASME Code, and the life of a component subjected to sub-critical crack growth such as fatigue, stress corrosion cracking (SCC) or primary water stress corrosion cracking (PWSCC).

In this calculation, pc-CRACK is used to calculate the fatigue crack growth and to determine the flaw acceptability (stability) using the rules of ASME Code, Section XI, Appendix C [3].

3.0 DESIGN INPUTS 3.1 Geometry Nominal pipe size (NPS) = 4 inch [l, 2]

Pipe outside diameter (OD)= 4.5 inches [l, 2]

Nominal pipe thickness= 0.437 inches [l, 2]

Actual measured pipe thicknesses are all thicker than 0.48 inches [5]

In this evaluation, the nominal thickness (0.437 inches) will be conservatively used as it results in a larger a/t and larger stresses.

3.2 Loads All piping loads for this analysis are taken from References 1 and 2. The locations of the flaws are shown in Figure 1 (WIC-45A) and Figure 2 (RB-46-7). The representative nodes in the piping analysis

[l and 2] are node 15 E for weld WIC-45A, and 348-380 for weld RB-46-7. Multiple load cases are provided in References 1 and 2. All the load cases in References 1 and 2 are contained in Table 2. To account for any future updates of the piping loads due to changes in the piping analysis, the loads (other than pressure) are conservatively increased by a 50% factor. The loads are further explained in the calculation of stresses.

3.3 Operating Conditions References 1 and 2 define the operating conditions for the charging pump discharge line. The discharge line is line 2-S6-45-4 [1] for weld WIC-45A, and line 2-S6-46-4 [2] for weld RB-46-7. Operating conditions are defined [l]. Pages 9 and 15 of Reference 1 define the temperatures and pressures to be used. Discussion of the thermal transients applicable to this location is contained in Section 3. 7.

Internal Pressure= 2800 psig [l, pg. 9, Based on pipe specification S6]

Temperature= 130°F [l, pg. 15, Mode INN]

File No.: 1800289.301 Page 6 of 41 Revision: 1 F0306-01R2

e Structural Integrity Associates, Inc.

3.4 Material The material of the piping is A-376 TP 316 [1, pg. 14] austenitic stainless steel and the elbow and tee are A-403 Type 316 [8]. Reference 7 identifies the weld as being stainless steel (Type 308 and 316) and using both GTA W and SMAW welding processes. As a flux type weld is used, the elastic plastic fracture mechanics method of the ASME Code, Section XI, Appendix C will be required for the allowable flaw size detennination.

For the flaw evaluation, the flow stress of the material is required. At a temperature of 150°F, the stainless steel material properties are as follows (SA-376 TP 316 properties used):

  • Sy= 27.4 ksi [4]

Su= 75.0 ksi [4]

q= 51.2 ksi (average of Sy and Su) 3.5 Indication Characterization The two flaws are described below, and a bounding flaw is then defined. The bounding flaw will be evaluated using bounding loads from the two piping systems.

Weld WIC-45A: One circumferential indication was identified in the weld [1]. The NDE report is contained in Appendix A of this calculation, and the indication is shown in Figure 3.

Length= 0.40 inch [1]

Maximum flaw depth= 0.075 inch [1]

Flaw depth-to-thickness ratio (a/t) = 0.172 (based on nominal thickness)

Weld RB-46-7: One circumferential indication was identified in the weld [2]. The NDE report is contained in Appendix A of this calculation, and the indication is shown in Figure 4.

Length= 0.45 inch [2]

Maximum flaw depth= 0.067 inch [2]

Flaw depth-to-thickness ratio (a/t) = 0.153 (based on nominal thickness)

BOUNDING FLAW:

Length= 0.45 inch [Greater of 1 and 2]

Maximum flaw depth= 0.075 inch [Greater of 1 and 2]

Flaw depth-to-thickness ratio (a/t) = 0.172 (based on nominal thickness)

File No.: 1800289.301 Page 7 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

3.6 Cause of Cracking A thorough root cause of the cracking cannot be undertaken since the flawed components were not removed from service. Possible causes of the cracking include:

  • Thermal fatigue from thermal transients and thermal stratification
  • Stress corrosion cracking
  • Vibration
  • Fabrication defect The crack like indications identified in References 1 and 2 are noted as being ID connected. Given the significant rate of flow, and resulting velocity, in these discharge piping runs, it is unlikely that any thermal stratification is present. Most importantly, these systems are run without voids, that is, there is no water/steam interface within the line. Also, the RB-46-7 weldment is on a vertical run, making stratification unlikely. Therefore, thermal stratification as a cause for the cracking can be eliminated.

One other possible apparent cause could be stress corrosion cracking. However, as the Reactor Coolant System (RCS) is in constant operation and there is very little oxygen in the system, the risk of stress corrosion cracking is small. DCPP has also performed other evaluations that has eliminated stress corrosion cracking as a plausible degradation mechanism in the reactor coolant system. Additionally, the operating temperature of the piping system is low (<200°F). At these temperatures SCC is not significant [ 14].

It is not necessary to include vibration as a mechanism to grow the flaw. The basis for this is that currently the flaws have not grown through wall but have "initiated". Given the extremely high number of cycles that would have been generated by the operation of the pump (cycles>> 10 7), if the vibration-induced stress were greater than the K threshold stress value for flaw growth, then the flaw would already have grown through wall. As the flaw is still small, the stress due to vibration is by default below the threshold K stress value, and therefore fatigue growth, due to vibration, is not an issue.

As thermal stratification and SCC are not likely causes, and the defect could be associated with a lack of fusion (weld root), the only mechanism that will lead to flaw growth is due to thermal transients and thermal cycling. As such, the fatigue crack growth evaluation is appropriate as the thermal transient cycles are considered.

File No.: 1800289.301 Page 8 of 41 Revision: 1 F0306-0IR2

(> Structural Integrity Associates, Inc.

3. 7 Thermal Transients The charging system delivers RCS water back to the RCS (cold leg) after it has been processed

(" cleaned") through the ion exchange system. As such, the 2-1 and 2-2 charging pumps (there are three (3) at each unit of DCPP) are either on or off. The feed for the charging pumps is low temperature RCS water from the regenerative heat exchangers and is nominally 130°F [I , pg. 15, Mode INN].

A set of design transients for the charging pump discharge piping is not defined as part of the design basis. Therefore, in order to perform a fatigue crack growth evaluation, SI developed a conservative pressure and temperature transient for these two sections of piping that contain the flawed weldments.

The bounding transient is shown schematically below. See Table 8 for an explanation of time steps.

Pressure 3000 2500 cl, 2000 I

  • v; a.
!'. 1500 t;:

OJ 0:: 1000 500 0

Time (seconds)

Tem p 140 T

120

~ 100

[:: 80 OJ a.

~ 60 f-

-0

  • , 40 I u.. I 20 0

Time (seconds)

File No.: 1800289.301 Page 9 of 41 Revision: I F0306-0IR2

e Structural Integrity Associates, Inc.

The specifics of the transient are:

1. The discharge piping line is pressurized at 2800 psig and the fluid temperature is l 30°F.
2. It then instantaneously drops pressure to zero, and fluid temperature to 40°F. It is acknowledged that RCS water cooled to 40°F will create crystallization of dissolved boron, but this temperature, although unrealistic, is conservatively selected to maximize the thermal transient.
3. After 3600 seconds (long enough for the pipe to reach 40°F thru-wall), the pressure is instantaneously ramped to 2800 psig and the fluid temperature goes to 130°F. The selection of 3600 seconds for this portion of the transient is an academic one and is not a realistic value for any actual charging pump transient. It is only intended to conservatively assure steady state behavior prior to the temperature upshock.
4. Then another period of time sufficient to reach steady state at the 2800 psig and 130°F.

This transient conservatively bounds the maximum pressure change (2800 psig to 0 psig [ 1]) and the maximum operating temperature range (130°F to 40°F) [l, Pg. 15, Mode INN].

Relative to the number of cycles to be evaluated, SI referenced SI Calculation FP-PGE-305, Rev. 3 [9].

The objective of this calculation, performed as part of SI's FatiguePro implementation, is to determine transient cycle counts and fatigue usage factors (at selected monitored locations) that accurately reflect the operating history ofDiablo Canyon Power Plant (DCPP) Units 1 and 2 from initial startup to year-end 2008. These results constitute a 'baseline' of cycle counts and cumulative usage factor (CUF) on which future monitoring efforts will be based.

Table 1 from [9] lists all the identified transients, and those transients applicable (for which a cycle will be assigned) are highlighted in yellow. These include all charging transients, both prompt and delayed, and delayed letdown transients (that would potentially result in stopping of the charging pump). Lp3 and Lp4 refer to different loops, but the cycles from each are conservatively combined to develop a number of cycles for either of the flawed weldments. Heatup and Cool down are also included.

The number of cycles for each listed transient in Table 1 is taken as the greater of the design cycles or the projected cycles (based on monitoring). The number of cycles chosen is marked with yellow highlight.

Based on the selected transients listed in Table 1, a total of (75 + 25 + 25 +25 +75 + 25 + 118 + 25 +

200 + 200), equals 793 total cycles for 60 years, or conservatively 14 cycles per year. This yearly cycle count (14) is then applied in this flaw evaluation for a period of 40 years (14

  • 40 =560 cycles) to justify an additional 40 years of operation (starting from the present) for this bounding flaw.

File No.: 1800289.301 Page 10 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

3.8 Residual Stress The residual stresses in the weld are required for the crack growth evaluation. For this evaluation, a constant tensile residual stress will be assumed. The value assumed is the operating temperature yield strength of the material, which is 27.4 ksi [4] for Type 316 stainless steel(@ 150°F). The yield stress is taken at 150°F, as it is a stated value from the Code (no interpolation required). Use of a lower yield stress value(< 10%) for the uniform through-wall residual stress, is bounded by the assumption of uniform tensile residual stresses through the thickness. Using this value is conservative as the axial residual stresses in piping are required to balance through the wall thickness to remain in equilibrium.

Assuming a constant tensile stress is not realistic, but it is conservative as it gives a higher mean stress for the evaluation which leads to higher crack growth rates.

4.0 CALCULATIONS 4.1 Flaw Characterization Since only one circumferential flaw was identified in each weldment, the flaw combination rules of ASME Code, Section XI, IWA-3330 do not apply. The bounding characterized flaw length is 0.45 inch and the flaw depth is 0.075 inch [1 and 2] (see Section 3.5). The actual measured thickness at the flaw location varies, but is greater than 0.48 inches, therefore, the nominal pipe wall thickness of 0.43 7 inches is conservatively used for a flaw-depth to-thickness ratio of 0.172 and an aspect ratio (flaw depth, a (0.075 inch), divided by flaw length, 1 (0.45 inch)) of 0.167. Using Table IWB-3514-2 of ASME Code Section XI, this flaw does not meet the Acceptance Standards and, therefore, will need to be evaluated per the flaw evaluation procedures ofIWC-3600.

4.2 Determination of Stresses and Load Combinations The stresses are calculated based on the piping loads from References 1 and 2 and the loads are contained in Table 2. Table 3 performs the load combinations for both weldments and Table 4 determines the resulting membrane and secondary stresses from the load combinations. Table 5 lists the resulting bounding membrane stresses that include the 50% increase for margin. Table 6 lists the resulting bounding secondary stresses that include the 50% increase for margin.

A description of the individual loads is given below. Following the description of the individual loads, the load combinations for all service levels are defined and listed.

Deadweight (DW) Deadweight of piping system (Listed as WTOl)

THRMNl through THRMN5 -Five normal thermal expansion conditions described in References 1 and 2. These loads include thermal anchor movement. The bounding thermal load, TM, is determined based on the maximum SRSS value of the three moments for each thermal load case.

File No.: 1800289.301 Page 11 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

THRMAl - Accident thermal load (includes thermal anchor movement).

SEISDX - DE (similar to OBE) inertial seismic loading for X & Y directions. Seismic anchor movements are zero.

SEISDZ - DE (similar to OBE) inertial seismic loading for Z & Y directions. Seismic anchor movements are zero.

SEISDE - Maximum of SEISDX and SEISDZ (Based on the maximum SRSS value of the three moments for each seismic load case SEISDD - DD (similar to SSE) inertial seismic loading. Seismic anchor movements are zero. This is 2 times SEISDE.

SEISHX-Hosgri (Faulted seismic condition specific to DCPP) inertial seismic loading for X & Y directions. Seismic anchor movements are zero.

SEISHZ- Hosgri (Faulted seismic condition specific to DCPP) inertial seismic loading for Z & Y directions. Seismic anchor movements are zero.

SEISH - Maximum of SEISHX and SEISHZ (Based on the maximum SRSS value of the three moments for each seismic load case With the definition of the piping loadings, the load combinations for each service level are defined as:

Primary Loads:

Service Level A DW0l + Pressure (P)

Service Level B DW0 1 + P + SEISDE Service Level C DW0l + P + SEISDD Service Level D DW0l + P + SEISH Secondary Loads Service Level A TM Service Level B TM Service Level C THRMAl (Conservatively added as Service Level C)

Service Level D THRMAl The load combinations are performed and shown in Table 4. The piping stresses are calculated based on pressure and external bending moments using equations from Appendix C, Section C-2500 [3] as described as follows.

File No.: 1800289.301 Page 12 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Primary membrane stress ( Oin) is given by:

O"m = PD/(4t) + FIA, where:

P operating pressure for the service level being considered D = outside diameter of the component t = thickness, consistent with the location at which the outside diameter is taken F resultant force for the appropriate primary load combination for each Service Level A cross sectional area of the pipe Primary bending stress ( m) is given by:

m = DMb/(21), where:

D outside diameter of the component d inside diameter, consistent with the point at which the outside diameter is taken Mb resultant moment for the appropriate primary load combination for each Service Level I = moment of inertia, (n/64) (D 4 - cf)

Secondary membrane stress ( O"msec) is given by:

O"msec = FseclA, where:

Fsec resultant force for the appropriate secondary load combination for each Service Level A cross sectional area of the pipe Secondary bending stress ( O"e) is given by:

O"e = DMe/(21), where:

D outside diameter of the component d inside diameter, consistent with the point at which the outside diameter is taken Me = resultant moment for the appropriate secondary load combination for each Service Level (includes seismic anchor loads and thermal expansion)

I moment of inertia, (n/64) (D 4 - cf)

For this evaluation, all the primary forces are combined (SRSS) and are conservatively considered a membrane stress and added to the pressure component. In pc-CRACK, all secondary forces are also combined and added to the secondary bending stress term for conservatism. In SI-TIFFANY, the File No.: 1800289.301 Page 13 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

secondary membrane and secondary bending stresses are input separately. The stress for the secondary forces are calculated as F/A, where F is the resultant force (SRSS of 3 directions) and A is the area of the piping. The bounding stresses are shown in Table 5 (membrane) and Table 6 (bending), and both Tables include the 50% margin.

4.3 Thermal Transient Stress Analyses and Stress Intensity Factors Determination Table 7 and Table 8 list the transients that are evaluated for the flawed location. The transient in Table 8 is evaluated with SI-TIFFANY to determine the transient stresses and stress intensity factors.

Construction of the input file for the transient involves inserting the transient time history into an input file. A time step of 0.1 seconds is used in all SI-TIFFANY runs. All material properties used for the SI-TIFFANY runs are contained in Table 9.

Each SI-TIFFANY run with the corresponding filename has the following relevant files, which are included as supporting files to this calculation:

  • .dat SI-TIFFANY input file
  • .rpt SI-TIFFANY output file, which echoes the inputs.
  • .mnn SI-TIFFANY output file with tabulated Kmin values.
  • .mxn SI-TIFFANY output file with tabulated Kmax values.

The tabulated values of the minimum and maximum stress intensity factors, Kmin and Kmax, for specific crack sizes are used for fatigue crack growth analysis. All SI-TIFFANY files are listed in Appendix B.

SI-TIFFANY uses temperature history of the transient to compute the thermal stress due to the radial gradient of the temperature in the pipe wall. At the beginning of the transient, the piping location is taken to be at a uniform temperature equal to the first line in the transient history. The radial gradient thermal stress is then combined with the pressure stress and thermal expansion stresses due to tensile and bending loads (restraint of thermal expansion) to provide stresses that are used to calculate stress intensity factors. The thermal expansion tension and bending stress at the beginning of the transient is taken to be the stress due to the resultant force and moment of the restraint of thermal expansion, which are obtained from the loads in Table 3, scaled up or down from the normal operating temperature using the following relation:

( )

T ave -40 CJ Tave = - - - C J no Tno -40 This relation is applied to tension and bending thermal expansion stresses to scale the values during the transient. Tno is 130.0°P (normal operation temperature). Tave is the average wall temperature, which is evaluated in SI-TIFFANY. The values of er no (nominal stress) for tension and bending were calculated using the equations from Section 4.2 and the loads from Table 2.

File No.: 1800289.301 Page 14 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

The values of CY no rension and a-no bending from thermal expansion input to SI-TIFFANY are 0.031 ksi and 1.165 ksi, respectively. Stresses due to deadweight, residual stress, and seismic are input separately in the subsequent crack growth calculation. Pressure stresses do not need to be input to SI-TIFFANY separately. Only the pressure term is included as SI-TIFFANY calculates the stresses due to pressure.

SI-TIFFANY treats the piping conservatively as insulated and the insulation is considered perfect which means that no heat transfer is considered to the surrounding environment. The piping is not insulated as noted in References I and 2.

4.4 Crack Growth Evaluation

4. 4.1 Stress Intensity Factors SI-TIFFANY calculated stress intensity factors (K) and determined maximum applied K (Kmax) and minimum applied K (Kmin) for a semi-elliptical inside-surface circumferential flaw in a cylinder for various flaw depths and aspect ratios. The Kmax and Kmin values include the effects of internal pressure, thermal expansion piping loads, and thermal transient stresses. Kmax and Kmin represent the range of applied K for each transient whose difference, l'.1K = Kmax - Kmin, are used by pc-CRACK for the fatigue crack growth (FCG) calculations.

The constant stress intensity values for deadweight and residual stress were not included in SI-TIFFANY. As such, they are input as constant stress values for each load cycle. Seismic is input as a reversible stress. Additionally, the crack face pressure of 2.8 ksi (conservative operating pressure) is added to the Kmax term. The semi-elliptical flaw model with variable aspect ratio is used in pc-CRACK to determine the fatigue crack growth. The flaw model is shown in Figure 5.

File No.: 1800289.301 Page 15 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

4.4.2 Austenitic Stainless Steel Fatigue Crack Growth Law The ASME Code has developed new fatigue crack growth laws for austenitic stainless steels in PWR water environments. The fatigue crack growth law for stainless steels in PWR environment has been approved by the ASME Code, Section XI Committee through Code Case N-8O9 [12, 13]. This crack growth law (provided below) is used for the present analysis.

da/dN = Co* .-1Kn, units of inch/cycle where:

Co = scaling parameter that accounts for the effect of loading rate and environment on fatigue crack growth rate n slope of the log (da/dN) versus log (L1K) curve= 2.25 C = nominal fatigue crack growth rate constant

= 4.43 x 10-7 for L1K::::: L1Kth 0 for L1K < L1Kth L1K = stress intensity factor range, ksiin L1Kth = 1.10 ksiin ST = parameter defining effect of temperature on FCG rate

= e-2516/TKfor 3OO°F :ST :S 65O°F

= 3.39xlO5 el<-2516 rrK)-00 301TK] for 7O°F :s T < 3OO°F T = metal temperature, °F SR = parameter defining the effect of R-ratio on FCG rate

= 1.0 for R < 0

= 1 + es 02(R-0 748) for O :SR< 1.0 R = Kmin/Kmax = R ratio (Conservative value of 0.9 is used, and bounds the case of Kmin <O)

SENV = parameter defining the environmental effects on FCG rate

= TR03 TR = loading rise time, sec TK = [(T-32)/1.8+273.15] , K File No.: 1800289.301 Page 16 of 41 Revision: 1 F0306-0IR2

SJ Structural Integrity Associates, Inc.

The following parameters were used:

  • T 130°F (metal temperature)
  • R 0.9 (Conservative value)
  • TR 1000 seconds (Conservatively long rise time results in greater flaw growth)

The crack growth evaluation is performed with a variable aspect ratio, which uses the K values at the deepest and surface points of the flaw, while allowing the flaw aspect ratio (depth, a, divided by length, 1) to vary.

4.4.3 Loading Combinations and Stresses SI-TIFFANY was used to obtain tables of maximum applied K (Kmax) and minimum applied K (Kmin) for various flaw depths and aspect ratios due to system transients. The Kmax values are contained in the filename with MXN file extension and the Kmin values are contained in the filename with MNN file extension.

The maximum and minimum K for crack growth cycles are the combined total of the Kmax and Kmin tables output from SI-TIFFANY, combined with deadweight and weld residual stress added to both the max and min of the cycle. Seismic is added to Kmax as a plus value and added to Kmin as a minus value.

Deadweight stresses are calculated from the loads given in Table 3. Deadweight and residual stress loads do not cycle but are present in both the maximum and minimum of the cycle. The fatigue crack growth also needs to include Service Level B seismic (SEISDE). Therefore, SEISDE was considered to occur with the bounding transient. Seven hundred and ninety-three (793) SEISDE cycles are assumed over a 60 year plant life. This is a conservative value for seismic cycles and exceeds the design basis value [9]. Therefore, fourteen (14) seismic cycles are considered each year. Table 10 defines the loading combinations used for each event evaluated in pc-CRACK. A crack growth period of an additional 40 years was evaluated.

4. 4. 4 Allowable Flaw Size Determination After the fatigue crack growth is performed, the final flaw size has to be checked against the allowable flaw sizes in the ASME Code, Section XI, Appendix C. pc-CRACK is used to determine the allowable flaw sizes. As stated earlier, the weld was manufactured partly with a SMAW process and, therefore, requires the use of elastic plastic fracture mechanics (EPFM). The EPFM rules are contained in Article C-6000 of Section XI [3].

The specific equations from Appendix C, including the appropriate safety factors, used to determine allowable flaw size are listed below.

File No.: 1800289.301 Page 17 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

The allowable bending stress for EPFM under combined membrane plus bending loads is given by the equation:

Sc = 1 SFb

[(jgZ - C5 ] -

e (J.

m

[1 - - 1 ]

ZSFm Reference 3, C-6321, where, 2

1 [2 sin/J- ~sin0],for(0+ /3) < n Reference3,C-5321 ,

/3 = ~2 (n - :!:. 0 - n t

O"m)

O"f Reference 3, C-5321, The allowable membrane stress is given by the equation:

C S - O"m Reference 3, C-6322, t - ZSFm where, Reference 3, C-5322, and Sc = allowable bending stress for a circumferentially flawed pipe

~b = bending stress at incipient plastic collapse SFm= safety factor for membrane stress based on Service Level as shown in the Table below

[3, C-2621]

SFb = safety factor for bending stress based on Service Level as shown in the Table below

[3, C-2621]

a = flaw depth t total wall thickness Si = allowable membrane stress for a circumferentially flawed pipe

~m = membrane stress at incipient plastic collapse 0 = half flaw angle [3, Figure C-4310-1 ], 180° or n for a 100% full circumferential flaw

/J = angle to neutral axis of flawed pipe in radians Cim = unintensified primary membrane stress at the flaw location CY/ = flow stress= (Sy+ Su)/2 [3, C-8200(a)]

Sy specified value for material yield strength at the evaluation (operating) temperature from Reference 4 Su = specified value for material ultimate strength at the evaluation (operating) temperature from Reference 4 File No.: 1800289.301 Page 18 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

ae = Secondary bending stress For austenitic weldments fabricated by SMAW, Z = 1.30[1 + O.OlO(NPS - 4)], Reference 3, C-6330 Where:NPS = Nominal pipe size Safety factors are provided in Appendix C of Section XI for evaluation of flaws in austenitic stainless steel piping. The safety factors used are shown below and are taken from C-2621 [3].

Safety Factors for Sizing- Circumferential Flaw [3, C-2621]

Service Membrane Stress Bending Stress Safety Level Safety Factor, SF m Factor, SFb A 2.7 2.3 B 2.4 2.0 C 1.8 1.6 D 1.3 1.4 Each service level is checked by inputting pipe geometry, crack parameters, and stresses appropriate for the service level. For this calculation, the initial flaw size is input into the program. Based on the stress ratios, it gives the allowable flaw size tables (a/t (flaw depth/pipe thickness) and 1/c (flaw length/pipe circumference) values). The pc-CRACK output files for the allowable flaw sizes are contained in Appendix C.

5.0 RESULTS The results of the evaluation are contained in Table 11. Table 11 contains the initial flaw size and the final flaw sizes using the variable aspect ratio assumption. Table 12 contains the bounding limiting allowable flaw size from all service levels, for both combined stress and membrane stress. For the loadings, all Service Levels, A through D (see Appendix C), show that the allowable flaw depth is relatively large (75% of pipe wall thickness which is the maximum allowed by the ASME Code, Section XI).

For the fatigue crack growth evaluation, the flaw was grown with a variable aspect ratio. The results show that using the conservative bounding flaw size, the conservative bounding loads, and a File No.: 1800289.301 Page 19 of 41 Revision: 1 F0306-0JR2

e Structural Integrity Associates, Inc.

conservative transient loading, the flaw does not exceed the ASME Code, Section XI allowable flaw size for the remainder of the plant life (assuming an additional 40-year operating period). Figure 6 shows a plot of crack growth (depth) per year and the allowable flaw size for the 40 year period. All files used in the analysis are listed in Appendix B.

6.0 CONCLUSION

S The evaluation presented in this report has shown that the flawed welds in the 2-1 and 2-2 pump discharge piping weldments (WIC-45A and RB-46-7) at DCPP, Unit 2 are acceptable for continued operation. Using the bounding loads assumption, the flaws are acceptable for the remainder of the plant life (assuming an additional 40-year operating period from the present day).

File No.: 1800289.301 Page 20 of 41 Revision: 1 F03 06-0IR2

e Structural Integrity Associates, Inc.

7.0 REFERENCES

1. DCPP Design Input Transmittal No. DIT-50966007-001-00, "Diablo Canyon Unit 2, CVCS Pump 2-1 , 4" Discharge Line- Weld Indications WIC-45A," SI File No . 1800289.201.
2. DCPP Design Input Transmittal No. DIT-50966526-001-00, "Diablo Canyon Unit 2, CVCS Pump 2-2, 4" Discharge Line - Weld Indications RB-46-7," SI File No. 1800289.205.
3. ASME Boiler and Pressure Vessel Code, Section XI, 2007 Edition, with Addenda through 2008.
4. ASME Boiler and Pressure Vessel Code, Section II, Part D, 2007 Edition, with Addenda through 2008.
5. DCPP Design Input Transmittal No. DIT-50966007-005-00, "Diablo Canyon Unit 2, CVCS Pump 2-1 and 2-2, 4" Discharge Line - UT Reports from ISI, WIC-45A and RB-46-7, SIFileNo. 1800289.211.
6. DCPP Design Input Transmittal No. DIT-50966007-004-00, "Diablo Canyon Unit 2, CVCS Pump 2-1 , 4" Discharge Line - Weld Indication WIC-45A, SI File No. 1800289.208.
7. DCPP Design Input Transmittal No. DIT-50966526-002-00, "Diablo Canyon Unit 2, CVCS Pump 2-2, 4" Discharge Line - Weld Indication RB-46-7, SI File No. 1800289 .210.
8. DCPP Design Input Transmittal No. DIT-50966007-002-00, "DCPP Pipe Specification, Drawing 047288, Revision 12, S6," SI File No. 1800289.206.
9. SI Calculation FP-PGE-305, Revision 3, Cycle and Fatigue Baseline up through YE 2008, SI File No. 1800289.203.
10. SI-TIFFANY 3.0, Structural Integrity Associates, September 15, 2015.
11. pc-CRACK 4.1 CS, Version Control No. 4.1.0.0, Structural Integrity Associates, December 31 , 2013.
12. R. C. Cipolla and W. H. Bamford, "Technical Basis for Code Case N-809 on Reference Fatigue Crack Growth Curves for Austenitic Stainless Steels in Pressurized Water Reactor Environments," Proceedings of PVP2015 ASME Pressure Vessels and Piping Division Conference, PVP2015-45884, July 19-23, 2015, Boston, Massachusetts, USA, SI File No. 1800289.207.
13. ASME Boiler and Pressure Vessel Code, Section XI, Division 1, Code Case N-809, "Reference Fatigue Crack Growth Rate Curves for Austenitic Stainless Steels in Pressurized Water Reactor Environments," June 23 , 2015.

File No.: 1800289.301 Page 21 of 41 Revision: 1 F0306-0IR2

lJ Structural Integrity Associates, Inc.

14. a. P. L. Andresen, J. Hickling, K. S. Ahluwalia and J. A. Wilson, "Effects of Hydrogen on SCC Growth Rate of Ni Alloys in High Temperature Water", Corrosion, Vol. 64, No. 9,
p. 707. Sept 2008.
b. P. L. Andresen, R. Reid and J. Wilson, "SCC Mitigation of Ni Alloys and Weld Metals by Optimizing Dissolved H2", Proc. 14th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors", American Nuclear Soc.,

August 2009.

15. DCPP Design Input Transmittal No. DIT-50966007-003-00, "Diablo Canyon Unit 2, CVCS Pump 2-1, 4" Discharge Line - Weld Indications WIC-45A, SI File No. 1800289.209.

File No.: 1800289.301 Page 22 of 41 Revision: I F0306-0IR2

e Structural Integrity Associates, Inc.

Table 1: Transient Cycles for Evaluation [9]

Tablt> 9: Ba st>liut> and 60-Yt>ar P r ojt>crion of Cydes (Unit 2)

Startup 1/1105 Sbrtup  % Used 60 year Transient tlvu thru fhru 60 year Design to-date projected 12131104 12131/08 12131 /08 oroiection CYCies / 12131/081  % Used 7.5M Hos~ Earthauake 0 0 0 1 1 0% 100%

Accumulator SI into CL 0 0 0 4(1) 1,000 0% 0.4%

Am,. Spray dtaing CID 54 0 54 102 500 11% 20%

Char~ SI into Cold Leg 13 0 13 20 400 3.3% 5.0%

Complete Loss of Normal FW 0 0 0 1 20 0% 5.0%

Complete Los; of RCS Flow 0 0 0 1 20 0% 5.0%

Control Rod Drop 1 0 1 2 80 1.3% 2.5%

Design Eanhq1.1ake (OBE) 0 0 0 1 20 0% 5.0%

Double Design Earthquake 0 0 0 1 1 0% 100%

facessiYe Feedwater Flow 0 0 0 1 30 0% 3.3%

Feedwater Cycling (S.IG-1) 0 0 0 * (J) 18,300 NIA NIA Feedwater Cycling (SIG-2) 0 0 0 *(J) 18,300 NIA NIA Feedwater Cyc~ (S!G-3) 0 0 0 * (3) 18,300 NIA NIA Feedwaier Cycling (S,G- 0 0 0 0 * (3) 18,300 NIA NIA High Head SI into CL 0 0 0 4(1) 97 0% 4.1%

Hot Le!!. Safety Injection 0 0 0 4(1) 500 0% 0.8%

Inadv. Accumulator Blowdn. 0 0 0 1 5 0% 20%

Inadv. AtL"-. Spray Actuation 5 0 5 7 10 50% 70%

Inadv. ECCS Actuation 0 0 0 5 60 0% 8.3%

Inadv. RCS DepresStlrization 0 0 0 3(S) 20 0% 15%

Large Steam Pipe Break 0 0 0 1 1 0% 100%

Large Step Load Decrease 3 1 4 9 200 2.0% 4.5%

Loss of All Offsite Power 1 0 1 3 40 2.5% 7.5%

Los_; of Load (1T w/o RD 3 0 3 10 80 3.8% 13%

Lp3 Chr2: & Ltdn Shutoff 0 0 0 8(4) l75\ 0% 11%

li,Lp3 Chrg Tnp Delayed Rtn. 0 0 0 3(4) t25 0% 12%

Lp3 Chr2: Tnp Promot Rm 0 0 0 3(4) 25 0% 12%

Lp3 Ltdn Trip Delayed Rm.) 0 0 0 3(4) \25 0% 12%

Lp3 Ltdn Trip Prompt Rtn. 0 0 0 25(4 1 250 0% 10%

L~ Chr!! & L:dn Shutoff 3 1 4 11 75) 5.3% 15%

Lp4 Chrg Tnp Delayed Raj 3 0 3 6 125 12% 24%

L~ Chr!! Tnp Prompt Rtn.l 53 1 54 118 25 216% 472%

LP.:! Ltdn Trip Delayed Rtn. 5 1 6 14 ,2s 24% 56%

Lp4 Ltdn Trip Prompt Rtn. 44 1 45 94 250 18% 38%

Main RCS Pipe Break 0 0 0 1 1 0% 100%

Partial Loss ofFlow 2 1 3 8 80 3.8% 10%

File No.: f P-PGE-305 Page 29 of 61 Revision: 3 Note: Selected transients and number of cycles are highlighted in yellow. Greater of design or projected cycles is used.

File No.: 1800289.301 Page 23 of 41 Revision : 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

Table 1 (Concluded) [9]

Startup 111105 Startup  % Used 60year Transient thru thru thru 60year Design t<Klate pc-oje<:ted 12131104 12131/08 12/31/08 proje<:tion Cycles {1 2131/08)  % Used 1~lant CS) Cooldown 27 3 30 63 200; 15% 32%

Plant ffi,CS) Hean1p} 28 3 31 65 (200) 16% 33%

Pressurizer Cooldom1 28 4 32 72 250 13% 29%

Pressurizer Heatup 29 4 33 73 250 13% 29%

Primary Hydrostatic Test 1 0 1 2(5) 5 20% 40%

Primary Side Leak Test 0 0 0 5 50 0% 10%

RHR Operation ([rain A) 27 2 29 59 250 12% 24%

RHR Operation (frain B) 27 2 29 59 250 12% 24%

Reactor Trip - OD & SI 0 0 0 4(2) 10 0% 40%

Reactor Trip - OD no SI 11 0 11 17 160 6.9% 11%

Reactor Trip - no C1D 36 1 37 61 230 16% 27%

Refueling 12 2 14 36 80 18% 45%

Secndi)* Hydrotest (S/G-1 ) 0 0 0 1 10 0% 10%

Secndrv Hydrotest (S/G-2) 0 0 0 1 10 0% 10%

Secndry Hydrotest (SIG-3) 0 0 0 1 10 0% 10%

Secndrv Hydrotest (S!G-4) 0 0 0 1 10 0% 10%

Secndr)* Leak Test (S/G- 1) 0 0 0 1 10 0% 10%

Secndrv Leak Test (SJG-2) 0 0 0 1 10 0% 10%

Secndr)* Leak Test (S1G-3) 0 0 0 1 10 0% 10%

Secndr)* Leak Test (S/G-4) 0 D D 1 10 0% 10%

Step Load Decrease 10% 4 1 5 13 2,000 0.3% 0.7%

Step Load Increase 10% 25 0 25 48 2,000 1.3% 2.4%

Switcho\-er from ~orm/Alt Chare:. 0 0 0 4(7) 120 0% 3.3%

Ta\*g Coastdn to Red. Temp. 4 0 4 9 50 8.0% 18%

Tutbine Roll Te.st 6 0 6 g (SJ 10 60% 90%

T a.b_e Note;:

) Tl=e SI e\*ent:. were ~ified to an unrea..oI13bly high = of cycle:.; the projected is re<luced accordingly.

-) =

Thi; e, *ent. whicli include~ an SI act'U.ltion. is con:;e1nti,-ely projected to the = e of cycle, a; High-H.-ad SI.

~) Thi; e,*enr is not monitored - the desig:n number of cycle'.. ;hould be u:.ed a., the projection.

(-4) Bee a= DCPP r,ever u:,e; the alteril3te clurging. I 0% (~gn cycles) ~ uc.ed a., the projection.

(5) llic-e e*.-ent a.i-e ;rmup te.ts, unlikely to be repeated; project at 50% abo\-e CU1Tent (roUlld up).

(6) Thi; e,*ent is roicidered m ore likely than other e, *enr, with , .40 de;ign cycle:;. :.o the proj ection w;;.s uicre:ted.

(i) The de.igu a;~lllllJ)tion u ve y high for this. en*nt the U cit I proj ection ~ comi~ good for Umt _ ilio.

Note: Selected transients and number of cycles are ighlighted in yellow. Greater of design or projected cycles is used.

File No.: 1800289.301 Page 24 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Table 2: Piping Loads for Weldment WIC-45A (Node 15 E) and RB-46-7 (348-380)

Forces & Moments for WIC-45A [1 , Pg. 17-27]

FINAL Node/ SRSS of Load Case Forces (lb) Moments (ft-lb) LOAD Notation Moment CASE FA FB FC MA MB MC WT0l 15 E 21 108 9 13 -13 68 WT0l THRMNl 15 E 13 76 87 235 -154 182 TM 334.8 THRMN2 15 E 99 184 -118 -148 192 132 276.0 THRMN3 15 E 41 112 17 104 -36 164 197.5 THRMN4 15 E 99 184 -118 -148 192 132 276.0 THRMN5 15 E 33 106 42 150 -78 177 244.8 THRMAl 15 E -121 -101 411 839 -698 240 THRMAl SEISDX 15 E 152 54 5 7 21 45 50.1 SEISDZ 15 E 76 48 45 54 68 42 SEISDE 96.5 152 96 90 108 136 84 SEISDD 192.9 SEISHX 15 E 397 153 13 19 54 122 134.8 SEISHZ 15 E 212 122 111 131 167 109 SEISH 238.6 Notes:

1. The bounding case is determined from the largest square root of the sum of the squares of the moments and is shown in bold. These are shown in grey.
2. These piping loads are given in the local coordinate system. A is the axial direction, so FA is the axial force and MB and MC are the bending moments.

File No.: 1800289.301 Page 25 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Table 2 Concluded - Piping Loads for Weldment WIC-45A and RB-46-7 (Node 348-380)

Forces & Moments for RB 7 [2, Pg. 19-43]

FINAL Node/ SRSS of Load Case Forces (lb) Moments (ft-lb) LOAD Notation Moment CASE FA FB FC MA MB MC WT0l 348-380 -20 37 35 -2 -90 -147 WT0l THRMNl 348-380 103 54 6 -19 2 87 89.1 THRMN2 348-380 -69 -127 13 8 -42 -249 TM 252.6 THRMN3 348-380 45 -8 8 -10 -13 -29 33.3 THRMN4 348-380 -69 -127 13 8 -41 -249 252.5 THRMN5 348-380 65 15 8 -13 -10 16 22.9 THRMAl 348-380 148 256 -43 -63 123 525 THRMAl SEISDX 348-380 2 12 17 8 89 32 94.9 SEISDZ 348-380 22 81 11 6 42 169 SEISDE 174.2 44 162 22 12 84 338 SEISDD 348.5 SEISHX 348-380 45 84 79 20 263 185 322.2 SEISHZ 348-380 66 218 41 15 154 458 SEISH 483.4 Notes:

1. The bounding case is determined from the largest square root of the sum of the squares of the moments and is shown in bold. These are shown in grey.
2. These piping loads are given in the local coordinate system. A is the axial direction, so FA is the axial force and :MB and MC are the bending moments .

File No.: 1800289.301 Page 26 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Table 3: Piping Loads for Load Combinations- Weldment WIC-45A & RB-46-7 PRIMARY RESULTANT Forces & Moments - Weldment WIC-45A Forces (lb) Moments (ft-lb)

FA FB FC MA MB MC Service Level A WT0l 21 108 9 13 -13 68 LEVEL A Summary Force/Moment 110.4 70.4 Service Level B WT0l 21 108 9 13 -13 68 SEISDE 76 48 45 54 68 42 Abs Sum 97 156 54 67 81 110 LEVELB Summary Force/Moment 191.5 152.2 Service Level C WT0l 21 108 9 13 -13 68 SEISDD 152 96 90 108 136 84 Abs Sum 173 204 99 121 149 152 LEVELC Summary Force/Moment 285.2 244.8 Service Level D WT0l 21 108 9 13 -13 68 SEISH 212 122 111 131 167 109 Abs Sum 233 230 120 144 180 177 LEVELD Summary Force/Moment 348.7 290.6 SECONDARY RESULTANT Forces & Moments - Weldment WIC-45A Forces (lb) Moments (ft-lb)

FA FB FC MA MB MC Service Level A TM 13 76 87 235 -154 182 LEVEL A Summary Force/Moment 116.2 334.8 Service Level B TM 13 76 87 235 -154 182 LEVELB Summary Force/Moment 116.2 334.8 Service Level C THRMAl -121 -101 411 839 -698 240 LEVELC Summary Force/Moment 440.2 1117.5 Service Level D THRMAl -121 -101 411 839 -698 240 LEVELD Summary Force/Moment 440.2 1117.5 Note: Summary forces and moments are resultant SRSS of three directions File No.: 1800289.301

  • Page 27 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Table 3 Concluded: Piping Loads for Load Combinations- Weldment WIC-45A & RB-46-7 PRIMARY RESULTANT Forces & Moments - Weldment RB-46-7 Forces (lb) Moments (ft-lb)

FA FB FC MA MB MC Service Level A WT0l -20 37 35 -2 -90 -147 LEVEL A Summary Force/Moment 54.7 172.4 Service Level B WT0l -20 37 35 -2 -90 -147 SEISDE 22 81 11 6 42 169 Abs Sum 42 118 46 8 132 316 LEVELB Summary Force/Moment 133.4 342.6 Service Level C WT0l -20 37 35 -2 -90 -147 SEISDD 44 162 22 12 84 338 Abs Sum 64 199 57 14 174 485 LEVELC Summary Force/Moment 216.7 515.5 Service Level D WT0l -20 37 35 -2 -90 -147 SEISH 66 218 41 15 154 458 Sum 86 255 76 17 244 605 LEVELD Summary Force/Moment 279.6 652.6 SECONDARY RESULTANT Forces & Moments - Weldment RB-46-7 Forces (lb) Moments (ft-lb)

FA FB FC MA MB MC Service Level A TM -69 -127 13 8 -42 -249 LEVEL A Summary Force/Moment 145.1 252.6 Service Level B TM -69 -127 13 8 -42 -249 LEVELB Summary Force/Moment 145.1 252.6 Service Level C THRMAl 148

  • 256 -43 -63 123 525 LEVEL C Summary Force/Moment 298.8 542.9 Service Level D THRMAl 148 256 -43 -63 123 525 LEVELD Summary Force/Moment 298.8 542.9 Note: Summary forces and moments are resultant SRSS of three directions File No.: 1800289.301 Page 28 of 41 Revision: 1 F03 06-0IR2

e Structural Integrity Associates, Inc.

Table 4: Primary/Secondary Stresses STRESS Calculation WIC-45A Pipe OD 4.5 tnom 0.437 Pip.'.:_I D 3.626 Pipe Metal Cross-sectional area _ (n/4)(DoA2-DiA2) 5.578 in2 Pipe Section Modulus _ (n/{32*Do)*(__DoA4-DiA4) 5.175 in3 Membrane Stress= FsRSs/ Apipe Bending Stress= MomentsRSs/Section Modulus Prif1:!a__ry_Membr~~ Stress DC_f:l:_Cbarg_i_ ng_Nozzl 1:_ WIS:-45A Nc:>_zzlt'!

Summa_ry F9_rce LSRSS) (lb) Stress (psi)

Service Level A 110.4 19.8 Service Level B 191.5 34.3 Service Level C 285.2 51.1 Service Level D 348.7 62.5 Primary Bending S!ress DCPP Charging Nc:>_zzle ~ IS:-45A_Noz~le_

Sum ~ ary Moi:ii1:_11t(SR~S)ft-lb Stress_{_psi )_ _

Service Level A 70.4 163.3 Service Level B 152.2 352.8 Service Level C 244.8 567.8 Service Level D 290.6 673.9 Secondary Membrane Stress Sum '!_l a_r:y Fc:i_~ce (~_RSS)_ (lb) Stress ( p_si)

Service Level A 116.2 20.8 Service Level B 116.2 20.8 Service Level C 440.2 78.9 Service Level D 440.2 78.9 Secondary Bending Stress Summary Moment(SRSS)ft-lb Stress (psi)

Service Level--A. 334.8 776.3 Service Level B 334.8 776.3

-Service


.Level*- *-

C 1117.5 2591.3 Service Level D 1117.5 2591.3 Secondary Stre_sses are conservatively added (both membrane and bending)

Secondary Stress DCPP Char~ing Nozzle WIC-45A Nozzle Stress (psi)

Service Level A 797.1 Service Level B 797.1

_.~- -

Service Level C 2670.2

--* --~ - - - -*

Service Level D 2670.2 File No.: 1800289.301 Page 29 of 41 Revision: I F0306-0IR2

e Structural Integrity Associates, Inc.

Table 4 (Concluded): Primary/Secondary Stresses STRESS Calculat ion - RB-46-7 Pipe OD 4.5 tnom 0.437 Pipe ID 3.626 Pipe Met_al_~ro_ss::_set:t~o_nal area (rr/4)(DoA2*D! A_2} . 5.578 in2 Pipe Section Mo~~ lu.5- !_rr/(32*[)o) * ( DoA4-Di A4) 5.175 in3 Membrane Stress= FSRSs/Ap;ee Bending Stress= MomentsRss/Section Modulus Primary_Mem_b ra r:i_e S!_ress DS ~P Charging Nozzle ~~-4~-7 l'Jo_z_zl_e_

S~mm ~ry Force (S~?S) (lb) Stres_s (psi)

Service Level A 54.7 9.8 Service Level B 133.4 .. 23.9 Service Level C -* 216.7 38.8 -

- - - *- *- . --* . -- ~~

Service Level D 279.6 50.1 Primary Bending Stress DCPP Charging Nozzle RB-46-7 Nozzle Su_mmary Moment(SRS?)ftJ b St_r:e~.5- (psi)_

Service Level A 172.4 399.7 Service Level B 342.6 794.4 Service Level C 515.5 1195.3 Service Level D 652.6 1513.3 Secondary Membrane Stress

?Ummary Force (SRSS} (lb) Str~ ss (psi)

Service Level A 145.1 26.0 Service Level B 145.1 26.0 Service Level C 298.8 53.6 Service Level D 298.8 53.6 .

Secondary Bending Stress

?Ummary Moment(SRSS}ft-lb Stres_s (psi)

Service Level A 252.6 585.9 Service Level B 252.6 585.9 Service Level C ..542.9 1258.9 Service Level D 542.9 1258.9 Secondary Str~sses are conservatively added (both membrane an t:! b_ ~ nding)

Secondary Stress DCPP Charging Nozzl_e RB-46-7 Nozzl ~

Stress (p~i) .

Service Level A 611.9 Service Level B 611.9 Service Level C 1312.5 Service Level D 1312.5 File No.: 1800289.301 Page 30 of 41 Revision : 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Table 5: Bounding Primary Piping Stresses Primary Membrane Stress DCPP Charging Nozzle BOUNDING Summary Force (SRSS) (lb) Stress (psi) Stress (psi)

Service Level A 110.4 19.8 29.7 Service Level B 191.5 34.3 51.5 Service Level C 285.2 51.1 76.7 Service Level D 348.7 62.5 93.8 Primary Bending Stress DCPP Charging Nozzle BOUNDING Summary Moment(SRSS)ft-lb Stress (psi) Stress (i:,~i)

Service Level A 172.4 399.7 599.6 Service Level B 342.6 794.4 1191.5 Service Level C 515.5 1195.3 1793.0 Service Level D i 652.6 1513.3 2269.9 Note: Bounding stress column includes 50% increase. Input membrane stress to pc-CRACK and SI-TIFFANY includes pressure stress.

Table 6: Bounding Secondary Piping Stresses Secondary Stress DCPP Charging Nozzle BOUNDING Stress (psi) Stress (psi)

Service Level A 797.1 1195.7 Service Level B 797.1 1195.7 Service Level C 2670.2 4005.3 Service Level D 2670.2 4005.3 Note: Bounding stress column includes 50% increase. Stresses listed above do not include thermal transient stress.

File No.: 1800289.301 Page 31 of 41 Revision: 1 F0306-0IR2

SJ Structural Integrity Associates, Inc.

Table 7: Transient Cycles Evaluated Transients Cycles for 60 years Normal Lp3 Chrg & Ltdn Shutoff 75 Lp3 Chrg Trip Delayed Rtn. 25 Lp3 Chrg Trip Prompt Rtn. 25 Lp3 Ltdn Trip Delayed Rtn. 25 Lp4 Chrg & Ltdn Shutoff 75 Lp4 Chrg Trip Delayed Rtn. 25 Lp4 Chrg Trip Prompt Rtn 118 Lp4 Ltdn Trip Delayed Rtn. 25 Plant (RCS) Cooldown 200 Plant (RCS) Heatup 200 TOTAL Cycles s.

793 Notes: 1. All information is obtained from Reference 9.

File No.: 1800289.301 Page 32 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Table 8: Transient Analyzed in SI-TIFFANY Temperature Pressure Flow Rate Transient Time (sec) (OF) (psi!!) (gpm) 0 130 2800 560 0.1 40 0 560 Charging 3600 40 0 560 3600.1 130 2800 560 7200 130 2800 560 Notes: 1. For info1mation on transient development, see Section 3.7. The figure in Section 3.7 which shows the pressure and temperature transient is a schematic representation, as the actual time period between the start of the analysis input and the drop in pressure/temperature is only 0.1 seconds. However, the initial conditions of the system (2800 psig and 130°F) at time zero are consistent with steady state operation (the initial straight line of the trace). Actual SI-TIFFANY time step staiis at 0 .1 seconds for pressure/temperature change.

File No.: 1800289.301 Page 33 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Table 9: Material Properties for A-376 TP 316 Pump Material Property Units Discharge Line Normal Operating Temperature op 130 Young's Modulus ksi 28,300 Poisson's Ratio -- 0.3 Density lb/in3 0.29 Specific Heat BTU/lb-°F 0.11 Coefficient of Thermal Expansion in/in-°F 8.5 X 10-6 Thermal Conductivity BTU/sec-in-°F 1.90 X 10-4 Note: 1. Material properties are taken at a temperature of 70 °F from Reference [4].

Table 10: Fatigue Crack Growth Loadings Event Kmax Kmin Thermal Expansionmax, Thermal Expansionmin, Thermal Transientmax, Thermal Transientmin, Pressuremax, Pressuremin, Charging Transient Deadweight, Deadweight, Residual, Residual, Seismicmax SeismiCmin Crack Face Pressure Table 11: Initial, Final, and Allowable Flaw Sizes Flaw Depth (in) Length (in) aft(l) l/circ< 2) Years Initial 0.075 0.45 0.175 0.032 NIA Final 0.0917 0.48 0.21 0.034 40< 3)

Notes: 1. alt is the ratio of the flaw depth to the pipe wall thickness.

2. 1/circ is the ratio of the flaw length to the pipe circumference.
3. Flaw growth was evaluated for an additional 40 years.

File No.: 1800289.301 Page 34 of 41 Revision: 1 F0306-01R2

e Structural Integrity Associates, Inc.

Table 12: Allowable Flaw Sizes For Combined Loading Allowable flaw depth (a/t)

Level A Level B LevelC LevelD I/Cir. SR=0.2112 SR=0.2298 SR=0.2941 SR=0.3157 0 0.75 0.75 0.75 0.75 0.1 0.75 0.75 0.75 0.75 0.2 0.75 0.75 0.75 0.75 0.3 0.75 0.75 0.75 0.75 0.4 0.75 0.75 0.75 0.75 0.5 0.7343 0.7381 0.703 0.7328 0.6 0.6843 0.6983 0.6465 0.6912 0.75 0.6366 0.6502 0.5983 0.6328 SR= Stress Ratio, L/Cir. = 0.034 For Membrane Loading Allowable flaw depth (a/t)

Level A Level B LevelC Level D I/Cir. SR=0.4962 SR=0.4424 SR=0.3329 SR=0.2410 0 0.75 0.75 0.75 0.75 0.1 0.75 0.75 0.75 0.75 0.2 0.75 0.75 0.75 0.75 0.3 0.75 0.75 0.75 0.75 0.4 0.7115 0.733 0.75 0.75 0.5 0.6146 0.6791 0.7434 0.75 0.6 0.5542 0.6134 0.7203 0.75 0.75 0.5038 0.5576 0.6671 0.7295 SR= Stress Ratio, L/Cir. = 0.034 File No.: 1800289.301 Page 35 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

~~/

~

.o.c. Z.Z- 3' r@filfilD rn'l I

f' '

L oe..ct4+a"Y"\ c-r-F IOI. w  ;.,._ "2. R 2.0 Figure 1. Isometric Drawing of the Charging Pump 2-1 Line Weldment WJC-45A Note: Location of the flaw is circled in the picture. The node of interest is # 15 E. Drawing is from Reference 1.

File No.: 1800289.301 Page 36 of 41 Revision: 1 F0306-01R2

e Structural Integrity Associates, Inc.

~

. I~ -~ u Figure 2. Isometric Drawing of the Charging Pump 2-2 Line Weldrnent RB 7 Note: Location of the flaw is circled in the picture. The node of interest is #348-380. Drawing is from Reference 2.

File No.: 1800289.301 Page 37 of 41 Revision: I F0306-0IR2

e Structural Integrity Associates, Inc.

\i\i1C-45A Flow Looking Downstream Flaw 0.4" Corrected ID Length Flaw 0.075" Flaw Height 0.51 "

Pipe Thru-Wall V 1f'!-N 2:1 scale

/ Flaw Figure 3. Indication Sketch WIC-45A

[Reference 1]

File No.: 1800289.301 Page 38 of 41 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

DCPP 1/\eld RB-46-7 1.56"CW 0.45 Corrected Flaw Length at ID Looking Downstream 1/lkfd RB-46-7 Pipe ' emaining Ligament

____ _l

/ Eloo Figure 4. Indication Sketch RB 7

[Reference 2]

File No.: 1800289.301 Page 39 of 41 Revision : 1 F0306-0IR2

e Structural Integrity Associates, Inc.

(j Figure 5. Semi-Elliptic Flaw on Inside Surface of a Cylinder File No.: 1800289.301 Page 40 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Figure 6. Flaw Growth and Allowable Flaw Size - Bounding Flaw 1

0.9 -

0.8 -

0.7 -

0.6 -

+-'

"ro-0.5 - - Crack growth results 0.4 - - Allowable depth (All Levels) 0.3 -

0.2 -

0.1 -

0 I I I I I I I 0 5 10 15 20 25 30 35 40 Time, year File No.: 1800289.301 Page 41 of 41 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

APPENDIX A NDE ISi EXAMINATION DATA (Selected pages)

File No.: 1800289.301 Page A-1 of A-6 Revision: 1 F0306-0 JR2

~~

~

(\) ,--

< (\)

t;:;*

5*

z 0

s
  • DCPP Form 69-22145 (04/26/17)

U1&2 NDE PDI-UT --3 Attachment 2 Page 1 of 1 c:::

C')

00 0 Sizing E tion Data Sh eet

  • - (, S-

-s-0 N ,,, ......... eil 00

~ Line I 45- 4 I Weld I y;rc- 45A J Item No. 3t. I Confia I Pipe- El bow l 1sol 2 . 2- 38 t..i XDCR Anq les I below I Xi:)CR Mcx:fes I ::>el ow Scan Gain I var I Weld Crown Width I O. e cii' 0 l,Q Ind Ang le I Corrected Remaining Thru- ~

  1. Used dB OD Tech. L1 L2 Lenoth Lenath Liaament Wall Remarks  ::i:,.

1 60 OS A.~TT 8" 8 . 5" 0. 5" C. 4 " 0 . 435" . 075 2. 2 5 ~Hz, elbow side ~

0 1 6 0 OS I A.11.'I T 0 . .(;50 " . 060 2 . 25 MHz , Pipe S~ce C")

ii,*

1 60 DS AA.TT o.,60 " . 05 S . 0 HHz , el bow side @'

60 RL AATT --- --- See Below _(I)

ODCR I Hi> --- --- See Belo*,i  ::j' C")

70 AA.TT I - -- --- 2.2 5Hhz, elbow and pi pe s ' des * @)

Note: Lenqth measu rements are determined usina the applicable qualified POI detection oroced ure and included here for info onlv.

Comments 60 ~L acplied to pi~e side (throug:i. weld }, no distinct ind~cations attributable to i ndica ~i on noted.  !

ODCR e lbow side detected an indication at 4+ screen divisions, outside the calibra~ed depth ~ange. An add itional s ' qnal is prese~t ~t ~3 divisions whi l e th e t ransducer i s b~ i dging base me ~a: and crown.

This s i gnal is attributec to t ~e shear wave compone nt a~d t he~e f ore cc ns i dered invalid .

70 shear a ppli ed to pipe and e:bow sides for indication confirmatio::-,, lenq~h sizi~q and t c co~f irrn ~he absence of mid- wa ll re l ect.ors. See attached ~bite paper fer additional discussio~ .

Examiner /1,1. L~,. ~ ~ 'pl,{,,, -t:" - _/ I Level 1 Ii( I Examiner I rJtA. I I Level I ,.J/~

I GvAbAt.. AA'I:, c r.J 1,,,. 1,,,;.'

I Review I -r-; ..-~ ,,.,,,,,qki::r/1 ,rY ,,,y.,<_ iI- - .ZZZ:- I Date l~-..zy'*/d'I ANII I Date I ?, /.*. M,

'1:1

~(\) ISi

'Tl N

I fNsERVrcE

!NS?::cno.'\!

0 w 0 0 Indication data sheet.<:oc 0224 .2223

>-+,

°'

b

> I 1'.l

°'

e Structural Integrity Associates, Inc.

WIC-45A Thro ugh-wall/Length Sizing Process and Results

  • 60° shea r wave technique from the elbow side, both 2.25MHz an d 5.0MHz w ere used for t he through- wall sizing of record .

o Both frequenci es produced repeatable indications at 0.480" - 0.510" range. In a limited area near the CW end of th e flaw, a minimum rem ain ing ligarn ent of 0.435" was detected.

The elbow wall t hickness Is 0.510 in th e area, resulting in a fl aw through wall dimension of 0.075" .

  • 10* Shear (dctectlon calibration) was used to determin e the leneth of the indication; length was determined to be 0.5, with an ID corrected length of 0.4".

Supporting result s and other information

  • 60° shca r, 2.2.5 M Hz from the far side of the weld {pipe) produced repeatable indicat ion s that were t ypically in the same range as t he Indications above.
  • 60" Dua l 1.-wave from the far side (pipe) did not produce distinctive ind ications in the area of interest. This Is believed to be due to t he small through-wall dimension of t he flaw and t he longer longitudin al scarch un it wave-length.

o 60* Dual L-w ave from the near side (elbow) was not effective due to lack of contact in th e elbow intra dos area even though it Is a small dual search unit.

  • OD Creeper technique produced Ind ications In t he area of Int erest as fo llows:

o An indication at approxim ately 4+ screen divisions, which is we ll outside the calibrated ra nge of t he technique.

o An indicatio n at approxim ~tely 3 screen divisions. This indication Is qu ite large in amplitude, but is obtained with the transducer bridging over a gap between th e ba se material and wel d area. This transducer position wou ld place t he reflector (detected with the OD creeper) location far outside t he area of interest. In addition, the indication has a rapid rise and fall, i. e. short travel, which Is characteristic of the shear (un used) component of t he search unit rather than t he OD creeping w ave wh ich is calibrated . For t hese reasons, the ODCR indications are not considered useful.

  • 10* Shear, both 2.25 MHz and 5.0 MHz were applied an d produced repeat able indicatio ns in the area of interest. Due to the large beam sp read from th e sm.all diameter search units, repeatable calibration proved difficult In the examination depth.

Due to t he crisper re spon se of the 60. search units, they provide more accurate measurements at the depth of interest.

o No dee p, (near surface) indications were detected with the 70" search units.

  • Phased arrny SMh z shear wave setup produced repeatable ind ications from the far sid e (p ipe), but cannot be cred ited fo r siz:l ng t hrough the we ld. Unfortunately, Th e ph ased array search unit did not achieve contact on the lntrados of the elbow, so no near side data was acquired .

\S\

\NSERVICE INSPECTION File No.: 1800289.301 Page A-3 of A-6 Revision: 1 F0306-0IR2

?O ~

(D -

< (D NDE UT-P IPE-TWSMPA1 R1 o* zo en* Page 7 of 7

s
  • 00 Indication D.a ta S heet .*u 1 &2 Attachment 3: Page 1.of 1

~

2 c-,

Q i::

Q N

00

\0

(,;,I Weld_No: (

RB- li,,-7) ocan

\ Line: Yb Pos. *

] Component Temp: (:,f"~ Page 2..of 5 -

al

i" Cb Q

] Data Scan Direc. Ind.Start Ind.Stop (W} Pas. Depth Pipe IQ

~-

Ind. File Type . UP/ON (L1 } (L2) Ref. (W) Sweep From Wall TW. Technique/!ndication ~

No. Name AX/Circ CW/CCW (check) (check) Point Dim. .or MP OD Thick Dim. Description Acc~pt/Reject !  ::t:,.

C/)

r ,is~WJf{ Al- ti S t. o l.5l:. ,

~ .

c.t::. - . SSo . ez~* . 'tl3 .~eo .067" PA-rr to* f¢c. 1. {.4. v.1 ~ lECr C/)

0 C")

i:G*

' co

.5" s

C")

- I .

I Comments:

. -- ~ - t I t_

.~bl>

i

.r*f:~*-. 1* 1*t ~

  • I /

!'-:r*

.:t:nJ~ /'QJ" .-

Examiner: U Ru1d IJ/clS- {)~ ~ I Level: ~ Date: Z - 2.'f- 18 Examiner:

Level: Date; I Reviewer: M. L .,.{./_,./ )v., .~  : Le\!el: fl\ Date: 2/;~ { 1g cl t I

\J .

ANII:

  • G,<.;AhA(. lr- 11 Date: 5 / i)id.

"'1:::1 p:,

(JQ NOE_ VT-P!PE-T*N SM PA 11.t".:i<OLP OC 0208 .1045 "\

(D

'Tl

> I

.j::.

0 w 0 0

H,

°'

b

> I

~ 0\

~2

~ ~

(1) -

t;;*

o*

zo (1)

i .

DCPP Form 69-22145 (04/25/17) U1&2 * , NOE PDI-UT-3 Attachment 2 of 1 C")

~

~

Page 1 00 Q

Q Sizing Examination Data Sheet P(J{e .i~,3 N  ::i" 00

',a Line I i.jl, I Weld I( CZ-6 -'lh-1 ) Item No. I il.P.,4-? I Confia I ,--+o p,,~. I Isa \ 2.-2. 'II ci>"

(.H Q XDCR Anales I. l;;O I ......_ des yr:,/"'O . ........ I <~ ... Scan Gain I .3i:,d,?> I Weld Crown Width I , g ~

~ ~

Corrected Remaining Thru-  :::t:.

Ind Ang le C/)

I #

I Used bo s dB 1,,

OD Tech.

PKrr ,.

L1 L2

(.K" Lenath

. Sb,.

Lenath Liaament

.cl13'

.Wall

.(:k7" 5e-, c.,..,,_..-,s Remarks C/)

0 C")

i:i5*

.\. co

_cn I I I s C")

Note: Lenath measurements are determined usino the aoolicable aualified POI detection orocecture and included here 1or info only.

Comments*. :Cr.tel < con- 4""""~ -lo kov..r ~.,,,cl S,s, ... , N, ('(o,5£ 6V~* "aoL"-9 ....... M6

,-1:, *-nr* -z,,.,"u (,<).,,.a tibs:crv"'d . '-uYf'ou.v.dl'"A ..-,-~4.,-, *S' c1.,..,..., -i S:t<>Of.<>l'-

(isdH4\-to,,. o,,

  • ce,rN., -fvo;, ""n/J.4<</ " ln: Ot\.C,. 11,&tt.DT/o-,,, - Stl,..9 IQ~~.,,_& n.-~ S*1-"14C. w,fr. u<is.f- S)!ll(cl /1,i.k./ llool-f.,

Exami ner ~vt" l . Wit,_. -r, 1J~Mh- I Level I ,-.r I Examiner T I I Level I Review /{,(. J._ .,. ~.. - 7,y.,...e:_~ L /II I Date I z/.,.f,il ANII I /"f t-, l.-,..J. r...., A'!IA (,/oAJ~I I Date I -.,/t/22 t,') *I

-~

.,,'"O (JQ (1)

"rl 0

Vi I

NDE_PDI-VT--3u3rC4.DOC 0425.1351 w 0 0 ,......,

°'

b

~

  • 0\

I

e Structural Integrity Associates, Inc.

DCPP Wald RB-46-7 1.56"' CW 0.45" Corrected Flaw Length at ID Looking Downstream

\flkld RB-46-7 Pipe 0.586" 0.48" INall T Flaw

-<_,, Row File No.: 1800289.301 Page A-6 of A-6 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

APPENDIXB COMPUTER FILE LISTING File No.: 1800289.301 Page B-1 ofB-3 Revision: 1 F0306-01R2

e Structural Integrity Associates, Inc.

SI-TIFFANY Files transl .dat SI-TIFFANY input file transl .rpt SI-TIFFANY output file, which echoes the inputs SI-TIFFANY output file with tabulated Kmin transl.mnn values SI-TIFFANY output file with tabulated Kmax transl.mxn values File No.: 1800289.301 Page B-2 ofB-3 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

pc-CRACK Files pc-CRACK input file for Service Level A EPFM LevelA.pcf evaluation pc-CRACK input file for Service Level B EPFM LevelB.pcf evaluation pc-CRACK input file for Service Level C EPFM LevelC.pcf evaluation pc-CRACK input file for Service Level D EPFM LevelD.pcf evaluation pc-CRACK output file for Service Level A EPFM LevelA.rpt evaluation pc-CRACK output file for Service Level B EPFM LevelB.rpt evaluation pc-CRACK output file for Service Level C EPFM LevelC.rpt evaluation pc-CRACK output file for Service Level D EPFM LevelD.rpt evaluation pc-CRACK input file for fatigue crack growth for variable CGVarAC.pcf aspect ratio pc-CRACK output file for fatigue crack growth for variable GrkGrw.rpt aspect ratio p~-C~CK file including K vs A for fatigue crack growth CrkGrw.kva with vanable aspect ratio pc-CRACK file including crack depth vs time for fatigue CrkGrw.avn crack growth with variable aspect ratio File No.: 1800289.301 Page B-3 ofB-3 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

APPENDIXC PC-CRACK OUTPUT FILES File No.: 1800289.301 Page C-1 of C-22 Revision: 1 F0306-01R2

e Structural Integrity Associates, Inc.

Service Level A pc- CRACK 4.1 CS Version Control No . 4.1 . 0 . 0 Structural Integrity Associates , Inc .

www.structint . com pccrack@structint.com Date : 03/01/2018 14:09 Input Data read from D:\01.Project\11.DCPP\LevelA.pcf Analysis

Title:

DCCP Weld WIC - 45A Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in - lbs/inA2 Analysis Type: ASME Section XI IWB - 3640 (2004)

Crack Geometry Orientation: Circumferential Crack Depth= 0 . 0750 Crack Length 0.4500 Pipe Geometry Nominal Pipe Size 4.0000 Outer Diameter 4.5000 Wall Thickness 0.4370 Service Level: A The allowable flaw size is determined using Tables Stresses Pm 7.2380 (safety factor 2 . 7000)

Pb 0.6000 (safety factor 2.3000)

Pe 1.1960 K (Residual Stress) = 0.0000 Material: Stainless Steel Flux weld Flow Stress 51.2000 Number of Warnings in Inputs: 0 File No.: 1800289.301 Page C-2 of C-22 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

Analysis Results Failure Mode per Screening Criteria:EPFM (Class 1 screening rules used)

Table C- 5310 - 1 used Stress Ratio 0.2122 Z factor 1.3000 1/circumference 0.0318 allowable a/t 0.7500 (Combined Loading) 1/Circumference Allowable a/t 0 . 0000 0.7500 0.1000 0.7500 0.2000 0.7500 0 . 3000 0 . 7500 0.4000 0.7500 0 .5 000 0.7329 0.6000 0 . 6829 0.7500 0.6353 Table C- 5310 - 5 used Stress Ratio 0. 4 962 Z factor 1.3000 1/circumference 0.0318 allowable a/t 0.7500 (Membrane Loading) 1/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0 . 7500 0.3000 0.7500 0 .4 000 0 . 7115 0 . 5000 0 . 6146 0.6000 0.5542 0.7500 0 . 5038 Note: Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size Number of Runtime Warnings : 0

      • End of pc - CRACK output***

File No.: 1800289.301 Page C-3 of C-22 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Service Level B pc - CRACK 4.1 CS Version Control No. 4.1.0.0 Structural Integrity Associates, Inc .

www.structint.com pccrack@structint.com Date: 02/27/2018 14 : 33 Input Data read from D:\DCPP 1800289\Weld WIC - 45A\LevelB.pcf Analysis

Title:

DCCP Weld WIC-45A Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in - lbs/inA2 Analysis Type: ASME Section XI IWB - 3640 (2004)

Crack Geometry Orientation: Circumferential Crack Depth = 0.0750 Crack Length 0.4500 Pipe Geometry Nominal Pipe Size 4.0000 Outer Diameter 4 . 5000 Wall Thickness 0.4370 Service Level: B The allowable flaw size is determined using Tables Stresses Pm 7.2600 ( safety factor 2.4000)

Pb 1.1 916 (safety fac to r 2 . 0000)

Pe 1.1950 K (Residual Stress) = 0.0000 Material: Stainless Steel Flux weld Flow Stress 51.2000 Number of Warnings in Inputs: 0 File No.: 1800289.301 Page C-4 of C-22 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

Analysis Results Failure Mode per Screening Criteria : EPFM (Class 1 screening rules used)

Table C- 5310 - 2 used Stress Ratio 0 . 2298 Z factor 1 . 3000 1/circumference 0.0318 allowable a/t 0 . 7500 (Combined Loading) 1/Circumference Allowable a/t 0 . 0000 0 . 7500 0 . 1000 0 . 7500 0 . 2000 0 . 7500 0 . 3000 0.7500 0.4000 0.7500 0 . 5000 0 . 7381 0 . 6000 0.6983 0 . 7500 0 . 6502 Table C- 5310 - 5 used Stress Ratio 0 . 4424 Z factor 1 . 3000 1/circumference 0.0318 allowable a/t 0.7500 (Membrane Loading) 1/Circumference Allowable a/t 0 . 0000 0 . 7500 0 . 1000 0.7500 0.2000 0 . 7500 0 . 3000 0.7500 0 . 4000 0 . 7330 0 . 5000 0 . 6791 0 . 6000 0 . 6134 0 . 7500 0.5576 Note : Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size Number of Runtime Warnings : 0

      • End of pc - CRACK output***

File No. : 1800289.301 Page C-5 of C-22 Revision: I F0306-0 1R2

e Structural Integrity Associates, Inc.

Service Level C pc - CRACK 4 . 1 CS Version Control No. 4 . 1.0 . 0 Structural Integrity Associates , Inc .

www . structint . com pccrack@structint.com Date: 02/27/2018 14 : 33 Input Data read from D: \DCPP 1800289\Weld WIC - 45A\LevelC . pcf Analysis Title : DCCP Weld WIC - 45A Units Selected : US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in - lbs/inA2 Analysis Type : ASME Section XI IWB - 3640 (2004)

Crack Geometry Orientation : Circumferential Crack Depth= 0 . 0750 Crack Length 0 . 4500 Pipe Geometry Nominal Pipe Size 4.0000 Outer Diameter 4 . 5000 Wal l Thickness 0.4370 Service Level : C The allowable flaw size is determined using Tables Stresses Pm 7 . 2850 (safety factor 1.8000)

Pb 1 .7930 (sa f ety f acto r 1. 6000)

Pe 4.0050 K (Residual Stress) = 0 . 0000 Material : Stainless Steel Flux weld Flow Stress 51.2000 Number of Warnings in Inputs : 0 File No.: 1800289.301 Page C-6 of C-22 Revision: I F0306-0 IR2

e Structural Integrity Associates, Inc.

Analysis Results Failure Mode per Screening Criteria:EPFM (Class 1 screening rules used)

Table C-5310-3 used Stress Ratio 0.2941 Z factor 1.3000 1/circumference 0.0318 allowable a/t 0.7500 (Combined Loading) 1/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0 . 3000 0 . 7500 0.4000 0.7500 0.5000 0.7030 0.6000 0.6465 0.7500 0.5983 Table C-5310 - 5 used Stress Ratio 0.3329 Z factor 1.3000 1/circumference 0.0318 allowable a/t 0.7500 (Membrane Loading) 1/Circumference Allowable a/t 0.0000 0.7500 0.1000 0.7500 0.2000 0.7500 0 . 3000 0.7500 0.4000 0.7500 0 . 5000 0.7434 0.6000 0. 7203 0.7500 0.6671 Note: Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size Number of Runtime Warnings: 0

      • End of pc- CRACK output***

File No.: 1800289.301 Page C-7 of C-22 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Service Level D pc - CRACK 4 . 1 CS Version Control No. 4 . 1.0.0 Structural Integrity Associates , Inc .

www . structint.com pccrack@structint . com Date : 02/27/2018 14 : 34 Input Data read from D:\DCPP 1800289\Weld WIC - 45A\LevelD . pcf Analysis

Title:

DCCP Weld WIC - 45A Units Selected : US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Jic - in - lbs/inA2 Analysis Type : ASME Section XI IWB - 3640 (2004)

Crack Geometry Orientation: Circumferential Crack Depth= 0 . 0750 Crack Length 0 . 4500 Pipe Geometry Nominal Pipe Size 4 . 0000 Outer Diameter 4 . 5000 Wall Thickness 0 . 4370 Service Level: D The allowable flaw size is determined using Tables Stresses Pm 7 . 3020 (safety factor 1. 3000)

Pb 2.2700 (safety factor 1.4000)

Pe 4 . 0050 K (Residual Stress) = 0 . 0000 Material: Stainless Steel Flux weld Flow Stress 51.2000 Number of Warnings in Inputs : 0 File No.: 1800289.301 Page C-8 of C-22 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

Analysis Results Failure Mode per Screening Criteria:EPFM (Class 1 screening rules used)

Table C- 5310 - 4 used Stress Ratio 0.3157 Z factor 1 . 3000 1/circumference 0.0318 allowable a/t 0.7500 (Combined Loading) 1/Circumference Allowable a/t 0.0000 0.7500 0.1000 0 . 7500 0.2000 0 . 7500 0.3000 0.7500 0.4000 0.7500 0.5000 0.7328 0.6000 0 . 6912 0.7500 0.6328 Table C- 5310 - 5 used Stress Ratio 0.2410 Z factor 1.3000 1/circumference 0.0318 allowable a/t 0.7500 (Membrane Loading) 1/Circumference Allowable a/t 0.0000 0.7500 0 .1 000 0.7500 0.2000 0.7500 0.3000 0.7500 0.4000 0.7500 0.5000 0 . 7500 0.6000 0.7500 0.7500 0.7295 Note : Allowable crack size is calculated based on the failure mode indicated by the screening criteria which is based on the input crack size Number of Runtime Warnings: 0

      • End of pc - CRACK output **f File No.: 1800289.301 Page C-9 of C-22 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

Fatigue Crack Growth- Variable Aspect Ratio pc - CRACK 4.1 CS Version Control No. 4.1 . 0.0 Structural Integrity Associates, Inc.

www.structint.com pccrack@structint.com Date: 03/01/2018 06:18 Input Data read from D:\DCPP 1800289\Weld WIC - 45A\CGVarAC.pcf Analysis

Title:

DCCP Weld WIC- 45A Units Selected: US Customary Linear Dimensions - inches Stress - ksi Load - kips Temperature - deg F Time - hours Analysis Type: Crack Growth (LEFM)

Crack Growth Calculation Method - Cycle/Time Stepping Maxinum Number of Load Blocks 40 Block Print Interval= 1 Crack Model: 309 - Semi-Elliptical Circumferential Crack in Cylinder on the Ins i de Surface (Chapuliot)

Crack Depth, a= 0 . 0750 Half Crack Length, c 0.2250 Wall Thickness, t = 0.4370 Inside Radius, Ri = 1 . 8130 Aspect ratio allowed to vary Maximum a/t = 0 . 7 Crack Depth Print Increment for SIF Tabulation= 0.1 Maximum Aspect Ratio (c/a) for SIF Tabulation= 5 Aspect Ratio Increment for SIF Tabulation= 0 . 2 Total Load Cases: 6 Load Case l:DW Type: Stress Coefficients Input by User Coefficient CO 0 . 6290 Coefficient Cl 0.0000 Coefficient C2 0.0000 Coefficient C3 0.0000 Load Case 2:OBE Type: Stress Coefficients Input by User Coefficient CO 0. 6130 Coefficient Cl 0.0000 Coefficient C2 0.0000 Coefficient C3 0.0000 Load Case 3:Residual Type: Stress Coefficients Input by User Coefficient CO 27.4000 Coefficient Cl 0 . 0000 Coefficient C2 0.0000 Coefficient C3 0.0000 Load Case 4:Trans Max File No.: 1800289.301 Page C-10 of C-22 Revision: 1 F0306-0IR2

lJ Structural Integrity Associates, Inc.

2 - d SIF Input by User The SIF originally read from D:\DCPP 1800289\Weld WIC - 45A\transl . mxn No. of aspect ratios (ale) in the tables = 6 ale= 0.1250 Crack Depth Kdeepest Ksurface 4 . 370E- 03 2 . 4027 0.8950 0.0437 6 . 2314 2. 7154 0 . 0874 7 . 1142 3.6305 0 .1311 7 . 4768 4 . 38 1 9 0 . 1748 7 . 3526 4 . 9733 0 . 2185 7.0997 5 . 5248 0.2622 8 . 3834 5 . 9997 0.3059 10.2240 6 . 6660 0 . 3452 11. 9800 7 . 2282 0 . 3496 12 . 1800 7.2886 ale= 0 . 1500 Crack Depth Kdeepest Ksurface 4 . 370E- 03 2 . 3769 0 . 97 90 0 . 0437 6.1473 2. 9656 0 . 087 4 6 . 9980 3 . 9621 0 .1311 7.2875 4 . 7948 0.1748 7 . 0807 5 . 4596 0 . 2185 6 . 9092 6.0647 0 . 2622 8.1272 6.5791 0 . 3059 9 . 8355 7 . 2603 0 . 3452 11 . 4590 7 . 8222 0 . 3496 11. 6 4 50 7 . 8816 ale= 0 . 2000 Crack Depth Kdeepest Ksurface 4 . 370E- 03 2.3209 1. 14 03 0 . 0437 5 . 9688 3.4465 0 . 0874 6 . 7550 4.5989 0 . 1 311 6 . 9014 5 . 5885 0.1748 6 . 5354 6 . 3947 0 . 2185 6 . 5216 7.1039 0 . 2622 7 . 6085 7.6951 0 . 3059 9.0542 8.4044 0 . 345 2 10.4 1 80 8 . 9640 0 . 3 4 96 10 . 5730 9 . 0217 ale= 0.2500 Crack Depth Kdeepest Ksurface 4 . 370E- 03 2.2607 1.2925 0 . 0437 5.7809 3.9001 0 . 087 4 6.5028 5.2000 0 .13 11 6. 5119 6 . 3373 0 . 1748 5 . 9939 7. 2778 0 . 2185 6 . 1308 8.0857 0 . 2622 7.0887 8 . 7491 0 . 3059 8 . 2777 9.4841 0 . 3452 9.3875 10.0400 0.3496 9.5131 10.0960 ale= 0 . 5000 Crack Depth Kdeepest Ksurface 4.370E - 03 1. 9620 1. 6314 0 . 0437 4 . 9421 4 . 9206 0 . 0874 5 . 4405 6 . 5758 0 . 1311 5 . 22 41 7 . 8334 0 .1 748 4.5586 8 . 7938 File No.: 1800289.301 Page C-11 of C-22 Revision: I F0306-0 1R2

e Structural Integrity Associates, Inc.

0.2185 4.9422 9. 7181 0.2622 5 . 5776 10.4790 0.3059 6.2845 10.9070 0.3452 6.9250 11.1770

0. 3496 6.9965 11. 2010 ale = 1.0000 Crack Depth Kdeepest Ksurface 4.370E - 03 1. 4 605 1. 7158 0 . 0437 3 . 5619 5 .1 232 0.0874 3 . 7551 6.7634
0. 1311 3.5226 7 . 9784 0.1748 3.1763 8 . 8914 0.2185 3.6039 9 . 6159 0 . 2 622 4 . 0057 10 . 1960 0 . 3059 4 . 4364 10. 7160 0.3452 5.2345 11.1020 0 . 3496 5 . 3757 11 . 1400 Load Case 5:Trans Min 2- d SIF Input by User The SIF originally read from D: \DCPP 1800289\Weld WIC - 45A\trans l. mnn No . of aspect ratios (ale) in the tables = 6 ale= 0 . 1250 Crack Depth Kdeepest Ksurface 4.370E - 03 - 1 . 7725 - 0.6664 0.0437 - 4 . 1372 -1. 9929 0 . 0874 - 4 . 0350 - 2.6082 0 .1311 - 3 . 3699 - 3 . 0849 0.1748 - 2.2281 - 3.4235 0.2185 - 0 . 8004 - 3 . 7180 0 . 2 622 - 0 . 6973 - 3.9398 0 . 3059 - 0 . 8545 - 4 . 2621 0 . 345 2 - 1. 0047 - 4 . 5028 0 . 3496 - 1. 0219 - 4 . 5266 ale= 0.1500 Crack Depth Kdeepest Ksurface 4 . 370E - 03 -1. 7533 - 0. 7288 0 . 0437 -4. 0792 - 2 . 1730 0 . 0874 - 3 . 963 1 - 2 . 8373 0 . 1311 - 3 . 2558 - 3.3610 0 . 1748 - 2 . 0673 - 3 . 7384 0 . 2 1 85 - 0.6151 - 4.0448
0. 2622 - 0.6751 - 4.2618 0 . 3059 - 0 . 8215 - 4.5486 0.3452 - 0 . 9611 - 4 . 7405 0 . 3496 - 0 . 9770 - 4 . 7581 ale= 0.2000 Crack Depth Kdeepest Ksurface 4 . 370E- 03 - 1.7118 - 0.8486 0 . 0437 - 3.9563 - 2 . 5189 0.0874 - 3.8135 - 3.2781 0 . 1311 - 3.0260 - 3.8911 0 . 1748 - 1.7508 - 4 . 3442 0.2185 - 0 . 5357 - 4.6734 0 . 2622 - 0 . 6301 - 4.8805 0.3059 - 0.7553 - 5.0979 0.3452 - 0 . 8737 - 5 . 1951 0 . 3496 - 0 . 8872 - 5 . 2005 File No.: 1800289.301 Page C-12 of C-22 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

ale= 0 .2500 Crack Depth Kdeepest Ksurface 4.370E -03 - 1. 6673 -0.9617 0 . 0437 - 3.8275 - 2.8449 0 . 0874 -3 .6593 - 3.6935 0 . 1311 -2.7974 - 4.3913 0 .1 748 - 1 .4 425 - 4.9162 0.2185 -0.5 017 -5. 2661 0.2622 - 0.5852 - 5.4649 0 . 3059 -0.6894 - 5.6155 0.3452 - 0. 7872 - 5.622 1

0. 3496 - 0.7983 - 5.6156 ale= 0 . 5000 Crack Depth Kdeepest Ksurface 4 .370 E-03 - 1.4464 - 1. 2131 0 . 0437 - 3.2524 - 3.5708 0.0874 - 2.9947 - 4.6264 0 .1311 - 2.0874 -5.3399 0 . 1748 - 0 . 7805 - 5 . 7952 0.2185 - 0 . 4066 -6.1415 0.2622 - 0 . 4645 - 6.3160 0 . 3059 - 0 .528 9 - 6.2050 0.3452 - 0.5880 - 5.9858 0 . 3496 - 0 . 5946 - 5.9552 ale= 1.0000 Crack Depth Kdeepest Ksurface 4.370E-03 -1. 0755 - 1.2756 0.0437 - 2.3088 - 3 . 7096 0.0874 - 1.9570 - 4 . 7323 0 . 1311 - 1.2031 - 5.4016 0 . 1748 - 0.2593 - 5.8146 0.2185 - 0.2980 -6.0523 0 . 2622 - 0 . 3353 - 6.1579 0 . 3059 -0.3774 - 6.1768 0 . 3452 - 0.7821 - 6.1110 0 . 3496 - 0.8822 - 6.0992 Load Case 6:Crack Face Pres Type: Stress Coefficients Input by User Coefficient CO 2.8000 Coefficient Cl 0.0000 Coefficient C2 0.0000 Coefficient C3 0.0000 Total Load Sub-Blocks: 1 Load Sub-Bl ock# 1 Load Sub - block Name: Charging Line Transient Maximum Load Case Multiplier Load Case ID 1.0000 Trans Max 1.0000 DW
1. 0000 OBE 1.0000 Residual 1.0000 Crack Face Pres Minimum Load Case Multiplier Load Case ID
1. 0000 Trans Min
1. 0000 ow

- 1. 0000 OBE 1.0000 Residual File No.: 1800289.301 Page C-13 of C-22 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

Growth Law: Paris Cycles/Time: 14 Cale. Interval: 1 Print Interval: 14 Material: 3 Stainless Steel: Type 316 Paris Fatigue Crack Growth Equation C = 1. 2 60E - 07 n = 2.2500 Delta K Threshold 0.0000 Paris Crack Growth Law The Fatigue Crack Growth Rate in/cycle (or m/cycle) is given by:

da/dN = C * (Delta K)An where Delta K = Kmax - Kmin C,n empirical constants da/dN 0 for Delta K < Delta K Threshold No. of Data in the KIC Table 2 Crack Depth KIC 0 . 0000 200.0000 10.0000 200.0000 messages/Warnings:

Solution for Ri/t of 0.2 and 0 . 5 will be used Number of Warnings in Inputs: 0

- - - - - - - - - - ANALYSIS RESULTS - - - - - - - - -

STRESS INTENSITY FACTORS Load Case# 1: DW Crack Dimensions Kat tips a C a/t c/a a C c/a = 3.0000 0 . 0750 0.2250 0 .1716 3.0000 0.2995 0.1915 0 . 1750 0 . 5250 0.4005 3.0000 0.4949 0.3171 0.2750 0.8250 0. 62 93 3.0000 0.6982 0.4530 c/a = 3 . 2000 0 . 0750 0.2400 0.1716 3.2000 0 . 3032 0.1884 0 . 1750 0.5600 0.4005 3.2000 0.5028 0.3127 0.2750 0.8800 0.6293 3.2000 0. 7127 0.4474 c/a = 3.4000 0.0750 0.2550 0 . 1716 3.4000 0 . 3065 0 . 1856 0 . 1750 0.5950 0.4005 3.4000 0.5098 0.3088 0.2750 0.9350 0.6293 3.4000 0. 7254 0 . 4425 File No.: 1800289.301 Page C-14 of C-22 Revision: 1 F0306-0JR2

e Structural Integrity Associates, Inc.

c/a = 3.6000 0.0750 0.2700 0 . 1716 3 . 6000 0.3094 0.1832 0 . 1750 0.6300 0.4005 3.6000 0.5159 0 . 3053 0.2750 0.9900 0. 62 93 3 . 6000 0.7367 0.4381 c/a = 3.8000 0.0750 0.2850 0.1716 3.8000 0.3120 0.1810 0.1750 0 . 6650 0.4005 3 . 8000 0.5215 0 . 3022 0 . 2750 1.0450 0. 62 93 3.8000 0.7468 0 . 4341 c/a = 4.0000 0.0750 0.3000 0.1716 4.0000 0.3143 0.1791 0.1750 0.7000 0.4005 4.0000 0 . 5264 0 . 2994 0.2750 1.1000 0.6293 4.0000 0 . 7560 0 .4 306 c/a = 4 . 2000 0.0750 0 . 3150 0 .1716 4.2000 0.3166 0.1750 0.1750 0 . 7350 0.4005 4.2000 0 . 5329 0.2924 0.2750 1.1550 0.6293 4.2000 0 . 7709 0.4198 c/a = 4.4000 0 . 0750 0 . 3300 0 .1716 4.4000 0 . 3187 0.1714 0.1750 0. 7700 0.4005 4.4000 0 . 5388 0.2860 0 . 2750 1.2100 0. 62 93 4.4000 0.7844 0.4101 c/a = 4 . 6000 0 . 0750 0.3450 0 . 1716 4.6000 0.3206 0.1680 0.1750 0.8050 0.4005 4.6000 0.5441 0 . 2802 0.2750 1. 2 650 0. 62 93 4.6000 0 . 7 968 0 . 4011 c/a = 4.8000 0.0750 0.3600 0 .1716 4.8000 0.3223 0.1650 0.1750 0 . 8400 0.4005 4.8000 0.5490 0 . 2748 0.2750 1.3200 0 . 6293 4.8000 0.8081 0 . 3929 Load Case# 2: OBE


Crack Dimensions ------------ Kat tips a C a/t c/a a C c/a = 3 . 0000 0 . 0750 0.2250 0 .1716 3.0000 0.2919 0.1866 0 .1 750 0.5250 0.4005 3.0000 0 . 4823 0.3091 0.2750 0.8250 0. 62 93 3.0000 0.6805 0.4415 c/a = 3.2000 0.0750 0.2400 0.1716 3.2000 0.2955 0.1836 0.1750 0.5600 0.4005 3.2000 0.4900 0.3048 0.2750 0.8800 0.6293 3.2000 0.6945 0.4360 c/a = 3.4000 0.0750 0.2550 0 .1716 3.4000 0.2987 0.1809 0 . 1750 0 . 5950 0.4005 3.4000 0.4968 0.3010 0.2750 0.9350 0.6293 3.4000 0.7069 0.4312 c/a = 3.6000 0 . 0750 0 . 2700 0 .1716 3.6000 0 . 3015 0.1786 0 . 1750 0.6300 0 . 4005 3 . 6000 0.5028 0 . 2976 0.2750 0.9900 0. 62 93 3.6000 0.7180 0 . 4269 File No.: 1800289.301 Page C-15 of C-22 Revision: I F0306-0IR2

e Structural Integrity Associates, Inc.

c/a = 3.8000 0 . 0750 0.2850 0.1716 3.8000 0.3040 0 . 1764 0 . 1750 0 . 6650 0 . 4005 3.8000 0 . 5082 0 . 2945 0 . 2750 1. 0450 0 . 6293 3 . 8000 0 . 7279 0.4231 c/a = 4 . 0000 0.0750 0 . 3000 0 . 1716 4.0000 0.3063 0.1745 0 . 1750 0 . 7000 0.4005 4 . 0000 0. 5131 0 . 2918 0.2750 1.1000 0 . 6293 4 . 0000 0.7367 0.4196 c/a = 4.2000 0 . 0750 0.3150 0 .1716 4 . 2000 0.3086 0.1706 0 . 1750 0 . 7350 0 . 4005 4 . 2000 0.5193 0.2850 0.2750 1.1550 0.6293 4 . 2000 0 . 7513 0 . 4092 c/a = 4 . 4000 0 . 0750 0.3300 0 . 1716 4.4000 0.3106 0.1670 0 . 1750 0 . 7700 0.4005 4 . 4000 0 . 5251 0 . 2787 0.2750 1.2100 0. 62 93 4 . 4000 0 . 7645 0 . 3996 c/a = 4 . 6000 0.0750 0.3 4 50 0 . 1716 4.6000 0.3124 0 . 1638 0 . 1750 0 . 8050 0 . 4005 4 . 6000 0 . 5303 0 . 2730 0 . 2750 1.2650 0. 62 93 4.6000 0.7765 0 . 3909 c/a = 4 . 8000 0.0750 0.3600 0.1716 4.8000 0 . 3141 0.1608 0.1750 0 . 8400 0 . 4005 4.8000 0.5351 0 . 2 67 8 0 . 2750 1. 32 00 0 . 6293 4 . 8000 0 . 7876 0 . 3829 Load Case# 3 : Residual


Crac k Dimensions ------------ Kat tips a C a/t c/a a C c/a = 3.0000 0 . 0750 0.2250 0 .1716 3 . 0000 13.0476 8.3401 0.1750 0.5250 0 . 4005 3 . 0000 21. 5594 13.8153 0.2750 0.8250 0. 62 93 3.0000 30 . 4158 19 . 7331 c/a = 3 . 2000 0 . 0750 0.2400 0 . 1716 3 . 2000 13 . 2087 8 . 2054 0.1750 0.5600 0 . 4005 3 . 2000 21 . 9027 13 . 6224 0 . 2750 0.8800 0 . 62 93 3.2000 31.0445 19.4891 c/a = 3 . 4000 0 . 0750 0 . 2550 0 . 1716 3 . 4000 13.3509 8 . 0865 0.1750 0.5950 0 . 4005 3.4000 22.2056 13.4521 0.2750 0.9350 0.6293 3 . 4000 31 . 5993 1 9 . 2739 c/a = 3.6000 0 . 0750 0 . 2700 0 . 1716 3.6000 13.4772 7.9809 0.1750 0.6300 0 . 4005 3 . 6000 22 . 4748 13.3008 0 . 2750 0.9900 0 . 62 93 3 . 6000 32 . 0924 19 . 0825 c/a = 3 . 8000 0 . 0750 0 . 2850 0 . 1716 3.8000 13.5902 7 . 8864 0.1750 0.6650 0 . 4005 3 . 8000 22 . 7156 13.1654 File No.: 1800289.301 Page C-16 of C-22 Revision: 1 F0306-0I R2

e Structural Integrity Associates, Inc.

0.2750 1. 0450 0. 62 93 3.8000 32 . 5336 18. 9113 c/a = 4.0000 0.0750 0.3000 0 .1716 4.0000 13.6920 7.8013 0.1750 0.7000 0 . 4005 4.0000 22.9324 13.0435 0.2750 1. 10 00 0. 62 93 4.0000 32.9307 18.7572 c/a = 4.2000 0 . 0750 0.3150 0.1716 4.2000 13 . 7918 7.6254 0.1750 0.7350 0.4005 4.2000 23.2134 12 . 7370 0 .2 750 1 . 1550 0. 62 93 4.2000 33.5799 18.2886 c/a = 4.4000 0.0750 0.3300 0.1716 4.4000 13.8825 7 .4 654 0.1750 0.7700 0.4005 4.4000 23.4689 12 .4 583 0 . 2750 1.2100 0. 62 93 4.4000 34.1701 17.8626 c/a = 4.6000 0.0750 0.3450 0.1716 4.6000 13. 9654 7.3193 0.1750 0.8050 0.4005 4.6000 23 . 7022 12.2039 0.2750 1.2650 0 . 62 93 4.6000 34.7090 17.4736 c/a = 4.8000 0.0750 0.3600 0.1716 4.8000 14 . 0413 7.1855 0.1750 0.8400 0.4005 4.8000 23.9160 11. 9706 0.2750 1.3200 0 . 6293 4.8000 35.2030 17 . 1171 Load Case# 4: Trans Max


Crack Dimensions ------------ Kat tips a C a/t c/a a C c/a = 3 . 0000 0 . 0750 0.2250 0.1716 3.0000 5.9650 5.2561 0 . 1750 0.5250 0.4005 3.0000 5 . 5165 7.7870 0.2750 0.8250 0. 62 93 3 . 0000 6. 8 8 62 9.5110 c/a = 3 . 2000 0.0750 0.2400 0.1716 3.2000 6.0482 5.1499 0.1750 0.5600 0.4005 3.2000 5.6360 7.6606 0 . 2750 0.8800 0.6293 3 .2 000 7.0239 9.3744 c/a = 3.4000 0 . 0750 0.2550 0 . 1716 3.4000 6.1217 5.0561 0.1750 0.5950 0.4005 3.4000 5.7414 7.5491 0 . 2750 0 . 9350 0. 62 93 3.4000 7.1454 9.2538 c/a = 3 . 6000 0.0750 0.2700 0.1716 3.6000 6.1870 4. 972 8 0.1750 0.6300 0.4005 3.6000 5 . 8352 7.4500 0.2750 0.9900 0.6293 3.6000 7.2534 9 .1 466 c/a = 3.8000 0 . 0750 0.2850 0.1716 3.8000 6 . 2454 4.8983 0 . 1750 0.6650 0.4005 3.8000 5.9190 7. 3613 0.2750 1. 0450 0.6293 3.8000 7 . 3500 9.0507 c/a = 4.0000 0 . 0750 0.3000 0.1716 4.0000 6.2980 4. 8311 File No.: 1800289.301 Page C-17 of C-22 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

0.1750 0.7000 0 . 4005 4.0000 5.9945 7 . 2815 0.2750 1.1000 0. 62 93 4.0000 7 . 4370 8 . 9644 c/a = 4 . 2000 0.0750 0.3150 0 .1716 4 . 2000 6.3537 4.6980 0.1750 0.7350 0.4005 4 . 2000 6.1233 7. 0711 0 . 2750 1.1550 0 . 62 93 4 . 2000 7.5786 8 . 7116 c/a = 4.4000 0 . 0750 0.3300 0.1716 4.4000 6 . 4043 4 . 5769 0 .1 750 0.7700 0.4005 4.4000 6 . 2403 6 . 8799 0 . 2750 1. 2100 0. 62 93 4.4000 7 . 7074 8.4819 c/a = 4.6000 0 . 0750 0 . 3450 0 .1716 4 . 6000 6 . 4505 4.4664 0 . 1750 0.8050 0.4005 4.6000 6.3472 6 . 7053 0.2750 1. 2 650 0 . 6293 4.6000 7.8250 8 . 2721 c/a = 4.8000 0 . 0750 0.3600 0 .1716 4.8000 6 . 4 92 9 4 . 3651 0 .1 750 0 . 8400 0.4005 4.8000 6.4452 6.5452 0.2750 1. 3200 0. 62 93 4.8000 7 . 9328 8 . 0798 Load Case# 5 : Trans Min


Crack Dimensions ------------ Kat tips a C a/t c/a a C c/a = 3.0000 0.0750 0 . 2250 0 . 1716 3 . 0000 - 3.4940 - 3.7441 0 . 1750 0 . 5250 0 . 4005 3.0000 - 1.2184 - 5 . 2108 0.2750 0 . 8250 0 . 6293 3.0000 - 0 . 5716 - 5 . 7672 c/a = 3 . 2000 0.0750 0.2400 0 .1716 3.2000 - 3 . 5472 - 3. 6712 0 . 1750 0 . 5600 0 . 4005 3 . 2000 -1 .2733 - 5.1375 0 . 2750 0 . 8800 0. 62 93 3 . 2000 - 0.5826 - 5 .7 026 c/a = 3.4000 0 . 0750 0.2550 0.1716 3.4000 - 3.5942 -3. 6070 0.1750 0.5950 0.4005 3 . 4000 - 1. 3218 - 5.0729 0.2750 0.9350 0.6293 3.4000 - 0.5924 - 5 . 6457 c/a = 3 . 6000 0 . 0750 0 . 2700 0 . 1716 3.6000 - 3.6360 - 3 . 5498 0.1750 0 . 6300 0.4005 3.6000 - 1.3649 - 5 . 0155 0.2750 0.9900 0. 62 93 3.6000 - 0.6010 - 5 . 5951 c/a = 3 . 8000 0 . 0750 0.2850 0 .1 716 3.8000 - 3 . 6734 - 3 . 4987 0.1750 0 . 6650 0 .4 005 3 . 8000 - 1.4035 -4 . 9641 0.2750 1 . 0450 0.6293 3.8000 - 0.6088 - 5 . 5498 c/a = 4.0000 0 . 0750 0.3000 0 .1716 4 . 0000 - 3 . 7070 - 3.4527 0 . 1750 0.7000 0.4005 4 . 0000 -1. 4382 -4. 9178 0 . 2750 1.1000 0 . 6293 4 . 0000 - 0.6157 - 5 . 5090 c/a = 4 . 2000 File No.: 1800289.301 Page C-18 of C-22 Revision: 1 F0306-0IR2

e Structural Integrity Associates, Inc.

0 . 0750 0.3150 0 . 1716 4.2000 - 3 . 7420 - 3.3598 0.1750 0.7350 0.4005 4 . 2000 - 1. 5113 - 4 . 7816 0.2750 1 . 1550 0.6293 4 . 2000 - 0 . 6279 - 5 . 3745 c/a = 4.4000 0 . 0750 0.3300 0 .1 716 4 . 4000 - 3 . 7738 - 3 . 2754 0 . 1750 0 . 7700 0 . 4005 4.4000 - 1 . 5778 - 4 . 6578 0 . 2750 1.2100 0. 62 93 4 . 4000 - 0.6389 - 5 . 2523 c/a = 4.6000 0.0750 0 . 3450 0.1716 4.6000 - 3 . 8029 - 3.1983 0 . 1750 0.8050 0.4005 4 . 6000 - 1 . 6384 - 4.5447 0.2750 1.2650 0 . 62 93 4 . 6000 - 0 . 6490 - 5.1406 c/a = 4.8000 0.0750 0.3600 0.1716 4.8000 - 3 . 8295 - 3.1277 0.1750 0.8400 0.4005 4 . 8000 - 1. 6941 - 4 . 4411 0 . 2750 1.3200 0 . 6293 4 . 8000 - 0 . 6583 - 5 . 0383 Load Case# 6: Crack Face Pres


Crack Dimensions ------------ Kat tips a C a/t c/a a C c/a = 3 . 0000 0.0750 0.2250 0 .1716 3.0000 1. 3333 0.8523 0 . 1750 0 . 5250 0 . 4005 3.0000 2 . 2032 1. 4118 0 . 2750 0 . 8250 0 . 6293 3 . 0000 3.1082 2 . 0165 c/a = 3 . 2000 0.0750 0 . 2400 0 . 1716 3 . 2000 1.3498 0 . 8385 0 . 1750 0.5600 0 . 4005 3.2000 2 .2 382 1. 3921 0 . 2750 0 . 8800 0.6293 3.2000 3 . 1724 1. 9916 c/a = 3 . 4000 0 . 0750 0.2550 0 . 17 1 6 3 . 4000 1. 3 64 3 0 . 8264 0.1750 0.5950 0.4005 3 . 4000 2 . 2692 1 .3747 0 . 2 7 50 0 . 9350 0 . 62 93 3 . 4000 3.2291 1. 9696 c/a = 3.6000 0 . 0750 0.2700 0 . 1716 3.6000 1. 3772 0 . 8156 0.1750 0 . 6300 0.4005 3.6000 2 . 2967 1.3592 0 . 2750 0 . 9900 0 . 6293 3.6000 3.2795 1. 9500 c/a = 3.8000 0 . 0750 0.2850 0 .1716 3 . 8000 1.3888 0 . 8059 0 . 1750 0.6650 0.4005 3 . 8000 2 . 3213 1 . 3454 0 . 2750 1. 0450 0. 62 93 3 . 8000 3.3246 1.9325 c/a = 4 . 0000 0 . 0750 0 . 3000 0 . 1716 4 . 0000 1. 3 992 0. 7 972 0 . 1750 0 . 7000 0.4005 4.0000 2.3435 1. 3329 0 . 2750 1.1000 0.6293 4 . 0000 3.3652 1 . 9168 c/a = 4.2000 0 . 0750 0.3150 0 . 1716 4.2000 1. 4094 0.7792 0.1750 0.7350 0.4005 4.2000 2. 3722 1. 3016 0.2750 1.1550 0 . 62 93 4 . 2000 3 . 4315 1. 8 68 9 c/a = 4 . 4000 File No.: 1800289.301 Page C-19 of C-22 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

0.0750 0.3300 0 . 1716 4.4000 1. 4187 0. 7 62 9 0 .1 750 0.7700 0 . 4005 4 . 4000 2 . 3983 1 .2731 0 . 2 7 50 1. 2100 0. 62 93 4 . 4000 3. 4 918 1 .8254 c/a = 4.6000 0.0750 0 . 3450 0 . 1716 4 . 6000 1. 4271 0 . 7480 0.1750 0 . 8050 0 . 4005 4 . 6000 2 . 4221 1.2471 0 . 2750 1.2650 0 . 6293 4 . 6000 3 . 5469 1. 7856 c/a = 4 . 8000 0.0750 0.3600 0 . 1716 4.8000 1.4349 0 . 7343 0 . 1750 0 . 8400 0.4005 4.8000 2 . 4440 1.2233 0.2750 1.3200 0 . 62 93 4 . 8000 3 . 5974 1. 7 492 CRACK GROWTH ANALYSIS RESULTS Total Subblock Cycles Cycles DaDn

/Time /Time Kmax Krain DeltaK /DaDt Crack Dimensions a a/t C c/a Blocks : 1 14 . 0000 14.0000 20 . 9676 9 . 5920 11.3755 2 . 994E - 05 0 . 0754 0 . 1726 14 . 8815 4 . 6194 10.2620 2.375E - 05 0.2253 2.9877 Blocks: 2 28.0000 14 . 0000 20.9999 9. 6250 11 . 3749 2.994E - 05 0 . 0758 0 .1 735 14.9406 4.6394 10.3012 2 . 395E- 05 0 . 2257 2 . 9756 Blocks: 3 42.0000 14 . 0000 21. 0322 9.6579 11. 3743 2.994E - 05 0.0763 0 .1745 14 . 9996 4.6593 10.3403 2 . 416E - 05 0.2260 2.9637 Bl ocks: 4 56 . 0000 14.0000 '21. 0643 9.6906 11. 3737 2 . 993E - 05 0.0767 0.1755 15 . 0585 4 . 6791 10.3794 2 . 436E - 05 0.2263 2 . 9519 Blocks : 5 70.0000 14.0000 21. 0964 9 . 7233 11 . 3731 2 . 993E - 05 0 . 0771 0 . 1764 15.1173 4 . 6989 10 . 4 1 84 2.457E - 05 0 . 2267 2 . 9403 Blocks : 6 84.0000 1 4 . 0000 21.1284 9.7558 11 . 3725 2.993E - 05 0 . 0775 0 . 1774 15.1760 4.7186 10 . 4574 2.478E - 05 0 . 2270 2.9289 Blocks : 7 98 . 0000 14.0000 21.1602 9.7882 1 1. 3720 2 . 992E - 05 0.0779 0 . 1783 15.23 4 6 4.7382 1 0.4964 2.499E - 05 0 . 2274 2 . 9176 Blocks: 8 112.0000 14 . 0000 21.1920 9.8206 1 1. 3714 2 .992E- 05 0 . 0784 0 . 1793 15.2932 4 . 7578 10 . 5354 2.520E - 05 0 . 2277 2 . 9065 Blocks: 9 126 . 0000 14 . 0000 2 1. 2236 9 . 8528 11 . 3709 2 . 992E - 05 0.0788 0 . 1803 15.35 1 6 4.7773 10.5743 2 . 5 4 1E - 05 0.2 2 8 1 2 . 8955 Blocks : 10 140 . 0000 14.0000 21. 2552 9.8849 11. 3703 2 . 991E - 05 0 . 0792 0 . 1812 15.4099 4 . 7968 10.6132 2 . 562E- 05 0 . 2284 2.8847 Blocks: 11 154 . 0000 1 4 . 0000 21.2867 9 . 9169 11 . 3698 2 . 99 1 E- 05 0.0796 0 . 1822 15.4682 4. 8162 10 . 6520 2.583E - 05 0.2288 2.8741 File No. : 1800289.301 Page C-20 of C-22 Revision: I F0306-0IR2

e Structural Integrity Associates, Inc.

Blocks: 12 168.0000 14 . 0000 21.3181 9 . 9488 11.3693 2.991E - 05 0.0800 0.1831 15 . 5263 4.8355 10.6908 2.604E - 05 0.2292 2 . 8636 Blocks : 13 182.0000 14 . 0000 21. 3494 9.9806 11.3688 2.990E - 05 0.0804 0 . 1841 15 . 5843 4.8547 10. 7296 2.625E - 05 0.2295 2 . 8532 Blocks: 14 196 . 0000 14.0000 21.3807 10.0123 11.3684 2.990E - 05 0.0809 0 . 1850 15.6423 4 . 8739 10.7683 2 . 647E - 05 0.2299 2 . 8430 Blocks : 15 210.0000 14 . 0000 21. 4118 10 . 0439 11.3679 2 . 990E - 05 0 . 0813 0 . 1860 15.7001 4.8931 10.8070 2.668E - 05 0.2303 2 . 8330 Blocks : 16 224.0000 14 . 0000 21. 4429 10.0754 11.3675 2.990E - 05 0.0817 0 . 1870 15 . 7579 4.9122 10.8457 2 . 690E - 05 0.2306 2 . 8230 Blocks: 17 238.0000 14.0000 21.4739 10 . 1069 11.3671 2.989E - 05 0.0821 0 . 1879 15 . 8155 4.9312 10.8843 2 . 711E - 05 0.2310 2.8132 Blocks : 18 252.0000 14 . 0000 21. 5049 10.1382 11.3667 2 . 989E - 05 0 . 0825 0.1889 15 . 8730 4.9501 10 . 9229 2.733E - 05 0.2314 2 . 8036

,Blocks: 19 266.0000 14 . 0000 21. 5357 10.1695 11.3663 2.989E - 05 0.0830 0 . 1898 15 . 9305 4 . 9690 10 . 9615 2.755E - 05 0 . 2318 2.7941 Blocks: 20 280.0000 14.0000 21.5665 10.2006 11. 3659 2 . 989E - 05 0.0834 0 . 1908 15 . 9878 4 . 9878 11.0000 2.777E - 05 0.2322 2.7847 Blocks: 21 294 . 0000 14.0000 21. 5973 10 . 2317 11. 3656 2 . 988E - 05 0.0838 0.1917 16 . 0450 5.0066 11.0385 2 . 798E - 05 0.2326 2.7755 Blocks: 22 308.0000 14 . 0000 21 . 6279 10.2627 11. 3653 2 . 988E - 05 0.0842 0.1927 16 . 1022 5 . 0253 11. 0769 2 . 820E - 05 0.2330 2 . 7664 Blocks: 23 322 . 0000 14.0000 21 . 6586 10.2936 11. 3650 2 . 988E - 05 0.0846 0 . 1937 16.1592 5 . 0439 11.1153 2.842E - 05 0 . 2334 2.7574 Blocks: 24 336 . 0000 14 . 0000 21. 68 91 10 . 3244 11.3647 2 . 988E - 05 0.0850 0.1946 16 . 2161 5. 0 62 5 11.1536 2.865E - 05 0.2338 2.7485 Blocks: 25 350 . 0000 14.0000 21 . 7196 10.3552 11.3644 2 . 988E - 05 0.0855 0.1956 16 . 2729 5 . 0810 11.1919 2.887E - 05 0.2342 2 . 7398 Blocks: 26 364.0000 14.0000 21.7501 10 . 3858 11.3642 2.988E - 05 0 . 0859 0 . 1965 16 . 3296 5 . 0994 11. 2302 2.909E - 05 0 . 2346 2 . 7311 Blocks: 27 378 . 0000 14 . 0000 21. 7805 10 . 4164 11. 3640 2.988E - 05 0 . 0863 0.1975 16.3862 5 . 1178 11.2684 2.931E - 05 0 . 2350 2.7226 Blocks : 28 392.0000 14 . 0000 21. 8108 10.4469 11. 3638 2.987E - 05 0 . 0867 0.1984 16 . 4427 5 .1362 11 . 3065 2 . 954E - 05 0 . 2354 2 . 7143 File No. : 1800289.301 Page C-21 of C-22 Revision: 1 F0306-0 IR2

e Structural Integrity Associates, Inc.

Blocks: 29 406 . 0000 14.0000 21.8411 10 . 4774 11.3637 2 . 987E - 05 0 . 0871 0.1994 16.4991 5 . 1544 11. 3446 2 . 976E - 05 0 . 2358 2.7060 Blocks : 30 420.0000 14 . 0000 21.8702 10 . 5106 11.3596 2.985E - 05 0 . 0876 0 . 2004 16.5552 5.1739 11 . 3813 2 . 998E - 05 0 . 2362 2 . 6979 Blocks : 31 434 . 0000 14.0000 21.8969 10.5502 11.3467 2 . 977E - 05 0 . 0880 0 . 2013 16.6107 5 .1962 11 . 4145 3.018E- 05 0 . 2366 2.6898 Blocks : 32 448 . 0000 14.0000 21.9234 10 . 5895 11.3339 2.970E - 05 0 . 0884 0.2023 16.6660 5 . 2185 11 . 4476 3 . 037E - 05 0 . 2371 2 . 6820 Blocks : 33 462 . 0000 14 . 0000 21.9498 10.6287 11. 3211 2 . 962E - 05 0 . 0888 0 . 2032

16. 7211 5.2406 11 . 4804 3 . 057E - 05 0 . 2375 2 . 6742 Blocks : 34 476 . 0000 14.0000 21.9762 10.6677 11 . 3084 2 . 955E - 05 0.0892 0 . 2042 16 . 7758 5.2627 11 . 5132 3 . 077E - 05 0.2379 2 . 6666 Blocks : 35 490 . 0000 14 . 0000 22 . 0024 10.7066 11 . 2958 2 . 947E - 0 5 0 . 0896 0 . 2051 16 . 8303 5.2846 11 . 5457 3 . 096E - 05 0.2384 2 . 6592 Blocks : 36 504 . 0000 14 . 0000 22 . 0285 10 . 7453 11 . 2833 2 . 940E - 05 0.0900 0 . 2061 16 . 8845 5 . 3065 11. 5781 3 . 116E- 05 0.2388 2 . 6518 Blocks : 37 518.0000 14.0000 22.0546 10.7838 11. 2708 2.933 E- 05 0 . 0905 0 . 2070 16.9385 5.3283 11. 6103 3.135E- 05 0 . 2392 2 . 6446 Blocks: 38 532.0000 14 . 0000 22.0806 10 . 8222 11. 2584 2 . 925E - 05 0 . 0909 0 . 2079 16 . 9922 5 . 3499 11.6423 3.155E- 05 0.2397 2 . 6375 Blocks : 39 546.0000 14 . 0000 22.1065 10.8605 11.2461 2 . 918E - 05 0 . 09 1 3 0 . 2089 17 . 0456 5 . 3715 11.6741 3 . 174E- 05 0 . 2401 2.6306 Blocks: 40 560.0000 14.0000 22 . 1324 10.8985 11.2338 2 . 911E - 05 0 . 09 1 7 0 . 2098 17.0988 5.3930 11. 7058 3.194E- 05 0 . 2406 2.6237 Maximum number of blocks reached . The analysis terminated.

Number of Runtime Warnings : 0

      • End of pc - CRACK output***

File No.: 1800289.301 Page C-22 of C-22 Revision : I F0306-0 IR2