ML18044A898

From kanterella
Jump to navigation Jump to search
Tech Spec Change Request,Clarifying Implementation,Providing Editorial Changes & Deleting Redundant Requirements.Proposed Revised Pages to Sections 2.3.7,2.3,3.3,4.6,3.17 & Revised Tables 3.17.4,4.1.1 & 4.1.2 Encl
ML18044A898
Person / Time
Site: Palisades Entergy icon.png
Issue date: 05/14/1980
From: Dewitt R
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML18044A897 List:
References
NUDOCS 8005190418
Download: ML18044A898 (34)


Text

r . ,

8005190 CONSUMERS POWER COMPANY Docket 50-255 Request for Change to the Technical Specifications License DPR-20 For the reasons hereinafter set forth, it is requested that the Technical Specifications contained in the Provisional Operating License DPR-20, Docket 50-255, issued to Consumers Power Company on October 16, 1972, for the Palisades Plant be changed as described in Section! below:

I. Changes A. Change Section 2.3.7 to read:

"Containment High Pressure - A reactor trip on containment high pressure is provided to assure that the reactor is. shut down upon the initiation of the safety injection system."

B. Delete Reference 2.3(10).

C. Change Section 3.3.1.b to read:

"b. All four safety injection tanks are operable and pressurized to at least 200 psig with a tank liquid volume of at least 1103 ft 3 and a maximum liquid volume of 1166 ft 3 with a boron concentration of at least 1720 ppm but not more than 2000 ppm."

D. Change Section 3.3 basis to read:

" ... The minimum 190-inch level corresponds to a liquid volume of 1103 ft 3 and a maximum 202-inch level corresponds to a liquid volume of 1166 ft 3 , , , , II E. Add Section 3.6.4:

"Two independent containment hydrogen recornbiners shall be operable when the reactor is at power or at hot standby. With one hydrogen recombiner system inoperable, restore the inoperable system to operable status within 30 days or be in at least hot shutdown within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />."

F. Add the following to Table 3.17.4:

Minimum Minimum Operable Degree of Permissible No Functional Unit Channels Redundancy ByPass Conditions "8 Spent FuelPool None Not required if fuel Criticality M6nitors is not stored in fuel handling building."

'1

. t 2

G. Add Footnote (e) as follows:

"(e) With the number of channels operable less than required, perform area surveys with portable instrumentation at least once each 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />."

H. Change Note (1) on Table 4.1.1 to read:

11 (1) .The bistable trip tester injects a signal into the bistable and provides for a precision readout of the trip set point."

I. Change Note (5) on Table 4.1.l to read:

11 (5) It is not necessary to perform the specified testing during prolonged periods in the cold shutdown condition. If this. occurs, omitted testing will be performed prior to returning the plant to service."

J. Add.Notes (4) and (5) identification to Table 4.1.2 as follows:

TAl\LE 4.1.2 Minimum Frequencies for Checks, Calibrations and Testi~ of

  • Engineered Safety Feature Instrumentation Controls~5J Surveillance Channel Description Functiou Frequency Surveillance Method
l. I.ov-Pressure SIS Initiation a. Check s(5) a. Comparison of four separate pressure Chan11cl8 indications.
b. Test(!) R b. Signal to meter relay adjust vith test device to verify SIS actuation logic. ~*
c. 'l'est M(2}(5) c. Signal to meter relay adjusted vith t~

device.

2. Lo\1-l'ressure SIS Signal Dlock a. R a. Part of l(b) above.

PermJssive an~ Auto Reset

3. SIS Actuation Belays a. 'l'est a. Simulation of SIS 2/4 logic trip using built:..in testing system. Both "standby power" and "no standby pover" circuits vHl be tested for left and right chan-nels. Test wil.l verify functioning of initiation circuits of ull equipment .

nonnally operated by ~IS signals* *

b. '!'est R b. Complete automatic test initiated by srune method us Item l(b) and including all normal nutoma.tic operations.

Containment lligh-Preasure a. CalJbrate R a *. Known pressure' lipplied to sensors. A Channels b. *rest* R - b. Simulation of CllP 2/11 logic trip .to

  • verify*actuution logic for SIS, .con-tuinment isolation and containment spray~
c. Test c. Pressurc*switch operation simulated by opening or*shorting terminals or pres-sure ~1pplied to the switch.

CoutuJ umcnt High Hadiat.ion u. Check a. Coi11par loon of four separate rudlution Churu1els leve.L i11Ji.cutions.

b. Culibrnte R b. Exponure to known external radiation nourct:.

TAllLE 4 *l . 2 Minimum Frequencies for Checks, Calibrations and Testing 9f Engineered Safety Feature Instrumentation Controls (Contd)~5)

Surveillance Channel DescriEtion Function Freguencl Surveillance Method

5. Contuin.ment High Radlation c. Test f.1(2) c. Remote-operated integral radiation check Channels (Contd} source ~sed to verify instrument opera-tion.

.d. Test R d. Simulation of CHR 2/4 logic trip v~ th .

test switch to verify actuation rel~y~

including contaii1Illent isolation.

6. Munual SIS Initiation a. Test R a. Manual push~buttoil test.
7. f.tanuul Containment Isola- o.. Test R a. Manual push-button test.

tion Initiation . b. Check R b. Observe isolation val.ves closure.

8. Manuul Initiation Contain-ment Spray Pwnps and Valves a. Test R a. Mani1al switch operation.

i:-

-I 9. OBA Dequencers a. Test Q(~) a. Proper operation will be verified during SIS o.ctuo.tion test of Item* 3(a) above.

10. Normal Shutdown Sequencers a. *rest R ***=:. a. Simulate normal actuation vith

. . test~

ppei*nte switch and verify equipment slo.rting circuits *.

11. Diesel Start a. Test M a. Manual initi&tion followed by synchro-nizing and loo.ding~
b. Test R b. Diesel start, loo.d shed, synchronizin~

and loading wiil be verified during Item 3( b)

  • o.bove.
c. Test p c. Diesel auto start initiating circuits.
12. SIRW Tank Level Svltch a. Test R *a. Level switches removed from fluid to Interlocks verity u,ctuation logic~
b. 'l'est Q{4)(5) b. Use SIRW tank and containment sump control switch to verify actuation of valves.*

'rAnLE 11.1.2 Minimum Frequencies for Checks, Calibrations and Testing ~S Engineered Safety Feature Instrumentation Controls (Contd) )

Survelllance Channel DescriEtion Function Freg,uencl Surveillance Method

13. Safet.y Injection Tank Level a. Check s(5} a. Verify that level and pressure indica-and Pressure Instruments tion is between independent high high/

low alarms for level and pressure.*

b. Calibrate n b. Known pressure and differential pres-sure applied to pressure and level sensors.

1'4. Dorlc Acid 'l'unk Level Switches 0.. *.refl t R a. Pump tank below low-level alarm point

  • to verify switch operation.
15. lloric /\ci d Heat Tracing System a. Check D . a. Observe temperature recorders for proper rendinc;s.

s::- 16.

  • Mui n Steam Isolation Valve a. Check s<5). a. Compare four independent pressure indi-I O> Circuits cutions.
b. Test(J) R b. Signal to meter relay adjusted vi th test device to verify MSIV circuit logic.
17. SIHW 'l'ank 'l'e1nperature a. Check M a. Compure independent temperature readouts.

Indication and Alurmfl b. Calibrate R b. Known resistance applied to indicating loop.

18. Low-Pressure Sufety Injection a. Check p a. Obflcrve valve is open with ait supp~'

1"low Control Vulve CV-3006 isolated.

19. Safety Injection Dottle a. Check p a. Ensure each valve open by observing valve Isol.ntion Valves position indication nnd valve itself.

The11 lock open breakers (at r.iCC-9) and control power (key svitch in control e

room).

20. Safely Iujection Mi niflow a. Check p a. Verify valves open and HS-3027- and 3056 Vtllvcs CV-302*1. 30'..iG positioned to rnaintain them open~

Notes: (1) Calibl"ation of the sensors iu performed during calibration of Item 5(b), Table 4.1.l.

(2) All monthly tests will be done on only one channel at a time to prevent protect.ion system actuation.

(3) Calibration of the sensors is performed during calibration of Item 7(b), Table 4.1.1.

(4) Perform prior to each start-up, if the plant is in a cold shutdown condition, if not already performed during the previous quarter. *

(5} It is not necessary to perform the specified testing during prolonged periods in the cold shutdown condition. If this occurs, omitted testing will be performed prior to returning the plant to service *.

3 K. Add Note {4) to Table 4.1.2 to read:

"(4) Performprior to each start~up, if the plant is in a cold shutdown condition, if.not already performed during the previous quarter."

L. Change Note (5) to Table 4.1.2 to read:

11 (5) It is not necessary to perform the specified testing dqring prolonged periods in the cold shutdown condition. If this occurs, omitted testing will be performed prior to returning the plant to service."

M. Add Note (5) identification to Table 4.1.3 as follows:

  • 4 N. Change Item 2. in T.able 4 .1. 3 to read:

11

2. Primary Rod a. Check s(S) a. Comparison of Position output data with Indication

System

b. Check M(S) b. Check of power dependent insertion limits monitoring system.
c. Calibrate/ R c. Physically measure Check rod drive position used to verify system accuracy. Check rod posit:i.on interlocks. 11
0. Change Item 3 in Table 4.1.3 to read:

113. Secondary Rod a. Check s (5) a. Comparison of output Position data with primary RPIS.

Indication System

b. Check b. Same as 2(b) above, including out-of-sequence alarm functions.
c. Calibrate/ R c. Same as 2(c) above. 11 Check P. D~lete Item 5 in Table 4.1.3.

Q. Change Item 6 in Table 4.2.l to read:

11

6. Spent Fuel Pool Boron Concentration Monthly(7) 9 .4 Bulk Water Temperature Continuously when None bundles are stored in tilt pit racks with less than one year decay(6)"

R. Change Item 7 in Table 4.2.1 to read:

117

  • Secondary Coolant Gas Radioactivity by Continuous(S) None Air Ejector Gas Monitor during power operation Coolant Gross Radio- 3 times/7* days None activity with a maximum of 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> between samples

TABLE 11.1. 3 Minimum Frequencies for Checks, Ca.l.ibrations and Testing of Miscellaneous Instrumentation and <::ontroJ_s{5)

Surveillance Channel Description Function Freguency Surveillance Method

1. Start-Up Ro.np,e Neutron a. Check s a. Comparison of both channel count rate J.lonitors indications when in service.
b. Tes.t .P b* Internal te~t signals.
2. Primary Rod Position Inuico.tion System a.

b.

Check Check s{5)*.

M(5) a.

b.

Comparison of output.data vith secondary RPIS.

Check of power dependent insertion limits monitoring system.

c. Ca.l.ibra.te/Ch~ck R c. Physically measured rod drive position used to verify system accuracy. Check rod I

position interlocks. *

  • i:- 3. Secondary Rod Position a. Check a. Comparison of output data vith primary I

..... lndi.co.tion System RPIS

  • 0
b. Check b. Same as 2(b) above, including out-of-sequence.*

alann function~ *

c. Calibrate/Check c. Same as 2{c) above.

Areu and Process Monitors a. Check D a. tlormal readings observed arid internal test signals used to verify instrument operation.

b. Co.librate b. Exposure to known external radiation source.
c. Test M c. Detector el!l'osed to remote op~ratcd radiation check source.
5. This item deleted.
  • 6. Environmental Monitors a. Check M a. Operational .check.**
b. Calibrate A b. Verify nirflow indicator.
7. Pressurizer Level a. Checl~ 5(5) a. Comparison of six independent level Inat rmneuts rendings.
b. Calibrate b. Known differential pressure applied to sensor.
c. 'l'est c. Si~nal to meter relay adjusted vith test device.

TABLE 11 .1. 3 i-unimum F*t."e<;.uencies for Checka, Ca.libratior!" anrl Testing of Mit1cellwi~ous Instrumentetion and. Controls (Contd)(5)

Surveillance Channel Descri;etion Function 1',reguencv Surveillance Method

o. Control Rod Drive System a. Test R a. Verify. proper operation of all rod drive Interlocks control system interlocks, using simulated
  • signals vhere necessary.
b. Test p b. Same as 8(a) above, if not done vithin three months.
9. Flux-.AT Pover Comparator a.

b~

Calibrate Test ~(5) a.

b.

Use simulated signals.

Internal test signal.

e

10. Ca~orimetric Instrumentation a. Calibrate *n a. Kno'\lll differential pressure applied to feed-vater flov sensors.

Containment Building Humidity a. . Test R a.

Expose sensor to high .humidity atmosphere.

11.

Detectors

~

I

12. Interlocks - Isolation Valves a. *Calibrate R a. Knovn pressure applied to sensor.

~ on Shutdo\lll Cooling Line

13. Service Water Break Detector a. Test R a. Known differential pressure hpplied to in Containment sensors.
14. Cont1*ol Room Ventilation a. *Test R a. Check damper operation for DBA mode vith HS-1801 and isolation signal.
b. Test *R b. Check control room for positive pressure.

(5)rt* is not necessary to perform the specified testing during prolonged periods in. the cold shutdo~

or re.t'ueling conditions~ If this occurs, omitted testing will be performed prior to returning the plant to service. * *

  • 5 "pH and specific Once/24 hours during.* None conductivity power operation Sodiµm 3 times/7 days None during power opera-tion, with a maximum of, 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> between samples Isotopic Analysis for. a) 1 per 31 days, when-.

Dose Equivalent I.;131 ever the gross Concentration. activity determina-tion indicates iodine concentrations greater than 10% of the allowable limit b) 1 per 6 months, whenever the gross activity determination indicates iodine con-centrations below 10%

of the allowable limit" S. Delete Items 7 and 10 in* Table 4.2.2.

T. Change Note (4) in Table 4.2.1 to read:

"(4) When iodine or particulate radioactivity levels exceed 10 percent of limit in Specifications 3.9.11 and 3.9.14, the sampling frequency shall be increased to. a minimum of once each day."

  • U. Change Section 4.5 Basis to read:

" ... The test pressure (255 psig) achieved either by normal system operation or by hydrostatically testing gives an adequate.margin over the highest pressure within the system after a DBA. Similarly, the hydrostatic test pressure for the return lines from the containment to the shutdown cooling system (100 psig) gives an adequate margin over the highest pressure within the lines after a DBA. (5) ... "

Y. Delete Section 4.6.3 ..

W. Delete Section 4.6.4.

X. Delete Note (1) Table 4.1.3.

II. Discussion A. The. present Technical Specifications (Section 2.3.7) contains a.

statement that the setting of the containment high-pressure trip is identical to that of the containment high-pressure safety injection signal. The reference to this statement is ~he FSAR, Amendment No 17,

  • 6 Item 4.0. This statement is in error. The FSAR, Amendment No 17, Item 4.0 states that the containment high-pressure setting has been revised to 5 psig. The basis of the 5 psig set point is to establish a s~tting which would be reached immediately in the event of the DBA, cover as much of the break size spectrum as possible, and, yet be sufficiently above the normal operation maximµm internal pressure to prevent spurious high-pressure signals.

The proposed Technical Specifications change will delete the statement about the containment high-pressure set point being identical to that of the containment high-pressure safety injection signal since it is no longer valid.

B. Reference 10 of Section 2:3 was to support the above statement about the setting of the containment high-pressure trip being identical to that containment high-pressure safety injection signal. Therefore, this reference is not needed.

C. The safety injection (SI) tanks contain an upper and lower level tap, located four inches above and below the vessel head tangent line. The present Technical Specifications requires thRt the tank be maintained with a liquid level of at least 186 inches and a maximum level of 198 inches. The lower level tap is not used by the plant and the sensing line terminates in the injection line.

Relocation of the transmitter sensing leg resulted in a new "zero" point for the level transmitter that provides liquid level indication for the SI tanks. The proposed Technical Specifications change reflects the current plant design. This change is in agreement with the Exxon LOCA analysis (XN-NF-77-24, July 1977).

Taking into account the new "zero" point, the proposed Technical*

Specifications will set a safety injection tank level of at least 190 inches (1103 ft 3 ) and a maximum level of 202 inches (1166 ft 3 ) .

This change does not change the volume of liquid in the tanks.

D. The proposed Technical Specifications change to the Basis section of 3.6.4 is to provide the correct safety injection tank liquid levels.

Refer to Item C for more detail.

E. The present Technical Specifications were written when venting (purging) of hydrogen, that may be built up inside of containment., was an acceptable practice. For this reason, LCOs and Technical Specifications were not written for the hydrogen recombiners.

Since venting is no longer an acceptable method to eliminate hydrogen buildup, the hydrogen recombiners will be used. Therefore, the proposed T.echnical Specifications provides an LCO and guidelines to govern the recombiner operation.

F. The present Technical .Specifications (Table 3.17.4) does not provide criteria for the spent fuel pool criticality monitors.

7 1.0 CFR 70.24 "Criticality Accident Requirements" requires a monitoring system (radiation detectors) in the area where special nuclear materials are st~red or handled.

The proposed Technical Specifications provides criteria for the spent fuel pool criticality monitors and is in compliance with 10 CFR 70.24 as well as the standard Technical Specifications, Section 3/4.3.3.

G. This proposed addition, Note (e) to Table 3.17.4, is used in support and to clarify the addition of the spent fuel pool criticality monitors to Table 3.17.4.

H. The present Note 1 in Table 4. 1.1 states that the bistable trip tester injects a signal into the bistable and provides a precision readout of the trip set point.

The proposed editorial change states that the bistable .trip tester injects a signal* into the bistable and provides for a precision readout of the trip set point. This change is made to make the sentence read correctly.

I. The present Technical Specifications states that it is not necessary to perform the specified testing during prolonged periods in the refueling shutdown condition.

The proposed Technical Specifications states that it is not necessary to perform the specified testing during prolonged periods in the cold shutdown condition.

This change does not detract from the intent and purpose of the present Technical Specifications. Testing of a component or piece of equipment during a prolonged cold shutdown condition does not $erve any significant purpose since the test will be conducted prior to the plant start-up. It should aTso be pointed out that this change will maintain the same amount of conservatism since the only difference between the cold shutdown mode and the refueling mode is the boron concentration.

J. This Technical Specifications change allows this component not to be tested at the required interval if th.e plant is in a cold shutdoWll condition.for a prolonged period of time. Howev~r, it will be tested prior to start-up (refer to Item I).

K. The present Technical Specifications (Table 4.1.2, Item 12) requires the safety injection and refueling water tank (SIRW) outlet valves to be tested on a quarterly basis. Testing these valves during power operation violates Technical Specification 3.3.2 because flow to a high-pressure safety injection pump arid a low-presure safety injection pump is simultaneously interrupted for a brief period of time.

  • -l:'J 8

To avoid this violation, this test will be conducted as follows:

Perform the SIRW*valve test prior to each start-up, if the plant is in a cold shutdown condition, if not already performed during the previous quarter.

What this means is to conduct the test while the plant is*in a cold shutdown condition. This does not mean bringthe plant to cold shutdown to conduct the test but if, for some other reason, the plant is in cold shutdown and these valves have not been tested in the last three months, they will be tested prior to start-up .. This approach is* also in compliance with ASME Section XI code.

L. Same as-Item I.

M. Same as Item J.

N. The present Technical Specifications (Table 4.1.3, Item 2.c) requires the primary rod position indication system to be calibrated each refueling outage, If a functional check is performed and no inherent drift in the cam/limit* switch in the control rod drive mechanisms is *detected, then a calibration is. not necessary. Therefore, the proposed Technical Specifications change will allow the primary rod position indication system to be either calibrated or checked (using-Surveillance Test Procedure~ R0-21 and R0-22). If a checking process shows that the primary rod position indication system has *"significantly" drifted, a calibration will be performed. *

0. Refer to Item N on changing the surveillance function for Item 3.c to calibrate/check.

The present Technical Specifications (Items 3. b and c) states:*

b. Same as 2(b) above.
c. Same as 2(c) above, inciuding out-of-sequence *alarm function.

The proposed Technical Specifications editorial change states: .

. b. Same as 2(b) abov.e, including out-of-sequence alarm function.

c. Same as 2(c) above.

The out-of-sequence*alarm function should be performed on a monthly basis rather than refueling. This sequence does not require calibration because it is being fed from constants into the secondary computer which are compared to secondary rod position indications.

P. The present Technical Specifications requires the testing of the emergency plan radiation instrumentation. This item is being deleted.

Permanently installed emergency plan radiation instrumentation is

9

.covered under Table 4.1.3, Item 4. The *portable emergency plan radiation instruments are calibrated and controlled in accordance with Consumers Power Company QA Program. Therefore, the proposed Technical Specifications will.delete Item 5 of Table 4.1.3.

Q.. This is an editorial correction, deleting the words "Secondary Coolant" under the. words "Spent Fuel Pool," Item .6 in Table 4. 2 .1.

R. This is an editorial correction, adding the words "Secondary Coolant" to Item 7 in Table, 4. 2 .1.

S. The. present Technical Specifications (Table 4. 2. 2, Item 7) requires monthly testing of the *fire protection pumps a:nd power supply.

The proposed Technical Specifications for Table 4.2.2 deletes Item 7.

This is a redundant requirement which is presently being conducted under Technical Specification 4.17.2.1.a~

Technical Specification Section 4.2 requires that certain plant equipment related td safety be tested periodically to verify operability. Part of that equipment is the critical headers of the service.water system which are required to be hydrostatically tested at 150 psig every five years per Table 4. 2. 2, Item 10. This requirement is satisfied by Technical Specifications* Surveillance Procedure F0-1.

Technical Specification Section 4.3 also requires inservice surveillance of Class 1, Class 2 and Class.3 piping systemsto ensure their integrity

.*and operability. The critical headers of the service water system are part qf the Class 3 systems and their.requirements are satisfied by Special Test Procedure T-115, Tests 9A and 9B of the inservice inspection program.

Technical Specification Section 4.2 was written prior to the evolution of .the inservice inspection program in order to ensure .. safety system integrity. However, since there is now a more* detailed and accepted ISI program to ensure safety *system integrity, the requirements of Technical Specification Sectidn 4.2, Table 4.2.2, Item 10 are to be removed f~om the Technical Specifications.

T. This is an editorial change to Technical Specification 4.2.1. The present .Technical Specificatfons refers to limits in Sections 3.9.6 and 3.9.9. Section 3.9.6* refers to. chlorine releases to Lake.Michigan whereas Section 3.9.9 refers to thermal discharges from blowdo'wn.

The correct sections to be referenced are 3.9.11 and 3.9.14.

Section* 3. 9. 11 refers to* annual release rates of gaseous and airborne particulates whereas Section 3.9.14 refers to calculating permissible releases. *

~. This is an editoria~ correction to the Basis section of Technical Specification 4.5. The present specification refers to a test pressure of 270 psig .. The proposed specification changes this test pressure to

V. The present Technical Specification (4.6.3) requires testing of the safeguards pumps on a quarterly basis.

The testing of safety-related pumps is defined by ASME, Section XI requirements, as iden~ified by Technical Specification 4.3.c. This code provides guidance with respect to measured parameters, test methods, and acceptance criteria. Section XI requirements are more conservative than the present Technical Specification 4.6.3. Therefore, the proposed Technical Specifications is to delete Section 4.6.3.

W. The proposed Technical Specifications change will delete Section 4.6.4 for the same reasoning used in Item V. The only difference is that Section 4.6.4 refers to valves.

The SIRW and containment sump.valves will be tested in accordance with Note (4) in Table 4.1.2.

X. The proposed Technical Specifications (Table 4.1.3 Note (1)) no longer applies and is to be deleted.

III. Conclusion Based on the foregoing, both the Palisades Plant Review Committee and the Safety and Audit Review Board have concluded that these changes are acceptable.

CONSUMERS POWER COMPANY B~~.~~g Nuclear Operations Sworn and subscribed to before me this 14th day of May 1980.

} *~ *~*,,

,. ' . , ' I

_>~,**~&~

-<< '-.-. *Lind.~Jackson

-- ~ ,:

K

  • C~rstens, Notary Public County, Michigan f' -- '

.:'.i**- _My commiss~_o_n expires June 10, 1981.

~.

ATTACHMENT PAGE CHANGES FOR PROPOSED TECHNICAL SPECIFICATIONS CHANGES

  • * *I, 2.3 LIMITING SAFETY SYSTEM SETTINGS - REACTOR.PROTECTIVE SYSTEM (Contd)

Basis (Contd)

The s.etting listed in Table 2. 3 .1 assures that the heat transfer surface (tubes) is covered with water when the reactor is.* critical.

6. Low Steam Generator Pressure - A reactor trip on low steam generator secondary pressure is .provided to protec.t against an excessive rate of heat extraction from the steam generators and subsequent cooldown of the primary coolant. The setting of 500 psia is sufficiently below the rated load operating point of 739 psia so as not to interfere with normal operation, but still high enough to provide the required protec-tion in the event of excessively high steam flow. This setting was used in the accident.analysis.( 8 )
7. Containment High Pressure - A reactor trip on containment high pressure is provided to assure that the reactor is shut down upon the initiation of t.he safety injection system.
8. Low Power Physics Testing - For low power physics tests, certain tests will require the reactor to be critical at low temperature (L 260°F) and low pressure (~ 415 psia). For these certain tests only, the thermal margin/low pressur.e, and low. steam generator pressure trips may be by-passed in order that reactor power can be increased for improved data*

acquisition. Special operating precautions will be in effect during these tests in accordance with approved written testing procedures. At reactor power levels be].ow 10"" 1 %of rated power, the thermal margin/low-pressure trip is not required to prevent fuel rod thermal limits from being exceeded. The low steam generator pressure trip is not required because the low steam generator pressure will not allow a severe reactor cooldown, should a steam line break occur during these tests.

References (1) FSAR, Section 4.1.

( 2) FSAR, Section 7.2.3.2.

(3) FSAR, Section 7.2.3.3.

(4) XN-NF-77-18, Section 3.3.

( 5) FSAR, Section 3.3.3.

(6) Deleted.

(7) FSAR, Section 3.3.6.

2-9

  • *I.

2.3 LIMITING SAFETY .SYSTEM SETTINGS :.:. REACTOR PROTECTIVE SYSTEM (Contd)

. References (Contd)

(8) XN-NF-.77-18, Section 3.8 .

. .* (9) . XN-NF.:..77-18, Section 3.. 7.

(10) Deleted.

(11) XN-NF-77-18, Section3.6 .

. (12) XN-NF-77-18, .Section 3.1.

(13) XN-NF~77-22, Section 3.4.

2-10

3.3 EMERGENCY CORE COOLING SYSTEM Applicability Applies to the operating status of the emergency core cooling system.

Objective To assure operability of equipm.ent required to remove decay heat from the core in either emergeI1CY or normal shutdown situations.

Specifications Safety Injection and Shutdown Cooling Systems 3.3.1 The reactor shall not be made critical, ex~ept for low-temperature physics tests, unless all of the following conditions are met:

a. The SIRW tank contains not less than 250,000 gallons of water with a boron concentration of at least .1720 ppm but not more than 2000 ppm at a temperature not less.than 4o°F.
b. All four safety injection tanks are operable and pressurized to at least 200 psig with a tank volume. of at least 1103 ft 3 and a maximum volume of ll66 ft 3 with.a boron concentration of at least.1720 ppm but not more than 2000 ppm.
c. One low-pressure safety injection pump is operable on each bus.
d. One high-pressure safety injection pump is operable on each bus.
e. Both shutdown heat exchangers and both component cooling heat exchangers are operable.
f. Piping and valves shall be operable to provide two flow paths from the SIRW tank to the primary coolant system.
g. All valves, piping and interlocks associated with the above components and required to function during accident conditions are operable.
h. The Low Pressure Safety Injection Flow Control Valve CV-3006 shall be opened and disabled (by isolating the air supply) to prevent spurious closure.
i. The Safety Injection bottle motor-operated isolation valves shall be opened with the electric power supply to the valve.

motor disconnected.

j. The Safety Injection miniflow valves CV-3027 and 3056 shall be open with HS-3027 and 3056 positioned to maintain them open.

3-29

3.3 EMERGENCY CORE COOLING SYSTEM (Contd) severity to the design basis accident is.not possible and the engineered safeguards' systems are not required.

The SIRW tank contains a minimum of 250,000 gal.lens of water con-taining 1720 ppm boron. This is sufficient boron concentration to provide a 5% shutdown margin with all control rods withdrawn and a new core at a temperature of 6o°F.

Heating steam is provided to maintain the .. tank above 4o°F to pre-vent freezing. The 1% bo.ron (1720 ppm) solution will not precipi-tate out.above 32°F. The source of steam during normal plant operation is extraction steam line in the turbine cycle.

The limits for the safety injection tank pressure and volume assure the required amount of water injection during an accident and are based on values used for the accident analyses. The minimum 190-inch level corresponds to a volume of ll03 rt 3 and the maximum 202-inch 1 eve1 correspond s. t o a vo1 ume o f 1166 rt 3 .

Prior to the time the reactor is brought critic.al, the valving of the safety injection system must be checked for correct alignment and appropriate valves locked. Since. the. system is used for shut-down cooling, the valving will be changed and must be properly aligned prior to start-up of the reactor.

The operable status of the various systems and components is to be demonstrated by periodic tests. A large fraction of these tests will be performed while the reactor is operating in the power range.

If a component is found to be inoperable, it will be possible in most cases to effect repairs* and restore the system to full operability within a relatively short time. For a single component to be in-operable does not .negate the ability of the system to perform its function, but* it reduces the redundancy provided in the reactor design and thereby limits the. ability to tolerate additional equip-ment failures. To provide maximum assurance that the redundant component(s) will operate if required to do so,. the redundant com-

. ponent(s) is to be tested prior to initiating repair of the inop-erable component. If it develops that (a) the inoperable component is not repaired within the specified allowable time period; or (b) a second component in the same or related system is found to be inoperable, the reactor will initially be put in the hot shutdown 3-31

3.6.4' Two independent containment hydrogen recombiners shall be operable when the reactor is.at power or at hot standby.

With one hydrogen recombiner system inoperable, restore the* inoperable system to operable status within 30 days or be in at least hot shutdown within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> *

.. '.1*

3-4oa

Table 3.IJ.4 Instrumentation OperatingRequirements.for Other Safety Feature Functions *

. Minimum Minimum Permissible Operable Degree of Bypass No Functional Unit Channels Reduridanc;y Conditions

  • l SIRW tow-Level 2(b) l None Switches 2 L::.T - Power 3(c) l None Comparator 3 High-Pressure 4 None None Safety Injection Flow Instruments 4 Air Cooler Service l None None Water Flow Instr 5 Primary and l None NA Secondary Rod Insertion and Out:..

of-Sequence Monitors 6 Fuel Pool Bldg l None As Requested Under Crane Interlocks Adminis1;r~t ive Control~a) 1 Start-Up 2 Not Required Above Channels io-4% of Rated Power 8 Spent Fuel Pool l(e) None Not Required if Fuel Is Criticality Not Stored in Fuel Monitors Handling Building (a) . Crane shall not be used to move material past the t:uel storage pool unless the interlocks are available.

(b). One of the inoperable channels must. be.in the tripped condition.

(c-) If only 2 channels*are operable, load* shall be reduced to 70% or less of rated power.

(d) Minimum operable channels shall be one (l) and minimum degree of redundancy is zero (0) if shutdown neutron power levels indicated on the log range channels are greater than 3 times the lowest decade in which neutron visibility can be confirmed. Neutron visibility will be confirmed through observation of reactivity changes on neutron power level (including a l/M plot during reactor start-up) and comparing the observed changes to the changes noted on previous similar start-ups. Instrumentation operability will also be verified by comparison among the three operable channels to ensure their individual responses are in agreement.

(e) With the number of channels operable less than required, perform area surveys with portable instrumentation at least once each 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3-81

_J TABLE 11 .1.1 Minimum Frequencies for Checks, Calibrations and 'l'esting of Reactor Protective System{ 5 ) (Contd)

Surveillunce

---~Chunnel Description 1unction Jt'requency Surveillance Method

6. Steam Geneqitor Level* a. Check s a. Comparison of four level indications per generator.
b. Calib:rate R b. Known different.ial pressure applied to sensors. (1)

M(2)

7. Steam Generator Pressure c.

a.

'l'est Check s.

c. Bistable trip tester.

a *. Comparisons of four pressure indications per generator.

e

b. Calibrate R(2) b. Known pressure applie? jo sensors.
c. 'l'est M c. Bistable trip tester. 1 *
8. Containment *Pressure a. Calibrate* R(2) a. Known pressure applied to sensors.
b. Test M b. Simulate pressure switch action.

.i:--

1 9. Loss of Load a. Test p a* Manually trip turbine auto-stop oil relays.

.r--

10. Munuul Tripa a. Test p a. Manually test both circ\li ts.
11. Heuctor Protection System a. 'l'es t i2) a. Internal test circuits.

Logh: Uni ts Hot es: ( l) The bistable trip tester injects a signal into the bistable and provides for a precision readout of the trip set point.

(2) All monthly tests will be done on only one of four channels at a time to prevent reactor trip.

(3) Adjust tlie nuclear gain pot on the hT cabinet until readout agrees vi th. heat balance calculations *.

Trip setting for operating pump combination only. Settings for other tha~ operating pump combinations must be tested during routJne lnonthly testing performed when shut down anci within four hours. after resLUning operatlon wi tli a. different pump combination if the setting for that combination has not been te!.ited wlthi.n the p1*evious month .. * * .

(5) It is not necessary to perform the specified testing during" prolonged periods in the cold shutdown condition *. If this occurs, omitted testing will be performed prior to returning the plant to service.

..J 1, .

TAHLE li .1. 2 Mininnun Frequencies for Checks, Calibrations and Testt*~ of .f Engineered Safety Feature Instrumentation Controls 5) .

Surveillo.nce Channel DescriEtion Function Freguenci Surveillance Method

1.
  • I.ow-Pressure SIS Initiation Chan11cls
a. Check s(5) a. Comparison of four separate pressure indications.

L

b. Test(l) R b. Signal to meter relay adjust with test
c. 'l'est M(2)(5) . c.

device t.o verify SIS actuation logic Signal to meter relay adjusted with t

  • 9 I device *.
2. Lov-l'ressure SIS Signal Dlock a. Test(!) R a. )?art of l(h) above.

Permlssive and Auto Reset*

SIS Actuation Relays Q(5)

.i::-

3. a. 'l'est a* Simulation of SIS 2/4 logic trip using I built-in testing system *. Both "standby

°' power" and "no standby power" circuits vill be tested for left and right chan-nels. . Test will verify functioning of initiation circuits of all equipment normally operated by SIS signals.

b. Test R b. Complete o.utomatictest initiated by same method as Item. l(b) and including 0.11 normal automatic operations.

11

  • Containment High-Pressure Channels a.

b.

Callbrate

  • rest R

R a.

b.

Known pressure appliei;l to sensor*s.

Simulation of CllP.2/4 logic trip to e

c. Test M(2)(5) c.

verify actuation logic for SIS, con-tainment isolation* and containment spray Pressure switch operation simulated by

  • I
  • opening or shorting terminals or pres-s~re applied to the switch.
5. Contujnm0.nt High Hadiution a. Clieck D(5) a. Comparlson of four separate radltttion Chur111els level indi.cations.
b. Cu.librate R .. b. Exposure to known external radiation source.

r-*

TADJ..E 4.1.2 Min_imum Frequencies for Checks, Calibrations and Testing 9f Engineered Safety Feature Instrumentation Controls (Contd)~5)

Surveillance Channel DescriEtion Function Freguenc;y: Surveillance Method

5. Containment. High Radlation c. Test ri 2 > c. Remote-opernted integral radiation check Channels (Contd) sourc.e used to verify instrument opera-tion. *

.d. Test R d. Simulation of CHR 2/4 logic trip with test switch to verify actuation relays~

including containment isolation. . ..

6. Munuul SIS Initiation a. Test R a. Manual push-button test.
1. t.tanuul Containment Isol,a- a.. Test R a. Manual push-button test.

tion Initiution b. Check R b. Observe isolation valves closure.

B. Manual Initiation Contain-i:.-

111ent Spro.y Pumps and Valves a. Test R a. Manual switch operation.

I

9. DBA Gequencers Test Q(5) a ..

-.:a

10. Normal Shutdown Sequencers a.
a. *rest R a.

Proper operation will be verified during SIS actuation test of Item 3(a) abOve.

Simulate normal actuation with test...:

I operate switch and verify equipment starting circuits.

11. Diesel Start a. Test M . a. Manual initiation followed by synchro-nizing and loading.
b. Test R b. Diesel start, load shed, synchronizing-o.nd loading will be verified during Item 3(b) above.
c. *rest p c. Diesel'.auto start initiating circuits.
12. SIRW Tank Level Switch a. Test n a. Level switches removed from fluid to Interlocks . _verify actuation logic.
b. *rest Q(4}(5) b. Use SIRW tank and contairim.ent sump control r switch to verify actuation of valves.

'fABLE 11.1.2 (J

  • Minimwn Frequencies for Checks, Calibrations and Testing ~S Engineered Safety Feature Instrumentation Controls (Contd) ) '*.

Surveillance Ct~nnel Description FWlction Frequency S~r~eill~nce Method 13~ Safet.y Injection Tnnk Leve.L a. Check s(5) a. Verify that level and pressure indica-and Pressure Instrwnents tion is between independent high high/

low alarms for level and pressure.

b. Calibrate R b. Known pressure and differential pres-sure applied to pressure and level sensors.
14. Dor iC Acid 'l'unk Level Switches 11. *rest R a. Pump tank below low-level alarm point A to verify switch operation. ~
15. Uoric Add Heat Tracing System a. Check D a. Observe temperature recorders for proper readings.

f 16.

  • M1:1.in Ste1:1.m Isolation Valve a. Check s (5 )~. a. Compare four independent pressure indi-

°' Ci re 11i ts cations.

b. Test( 3 ) R b. Signal to meter relay adjusted with test device to verify MSIV circuit logic.
17. SIRW 'l'ank 'l'emperature a. Check M a. Compure independent temperature readouts.

Indication and Alarms b. Calibrate R b. Known resistance applied to indicating loop. .,

10. Low-Pres.nure Safety Injection a. Check p a. Observe valve is open with air suppl!'

Flow Control Valve CV-3006 isolated.

19. Surety Injection Dottle a. Check p a. Ensure each valve open by observing valve Isolntion*valves posltion indication o.nd valve itself.

Then lOck open breakers (atMCC-9) and.A.

control power (key switch in control * .,_,

room).

20. Safely Injection Miniflow a. Check p a. Verify valves open and HS-:-3027 and 3056 Valves CV-3021, 3056 positioned to maintain them open.

Notes: . ( J.) Calibration of the sensors is performed during calibration of Item 5(b). Table 4.1.1.

(2) J\ll monthly test!'> wgJ b~do~~ on only one chann~l at a time to prevent protection system actuation.

(3) Calibration of the sensors is performed durinS cB.iibration of Item. 7(b), Table 4.1.l .....

(4) Perform prior to each start-up, .if the plant is in a cold shutdown condition, if not already performed during the previous quarter.

(5) It is not necessary to perform the specified testing during prolonged periods in the cold shutdown condition. If this occurs, omitted testing will be performed prior to returning the plant to service.

I TABLE Ii .1. 3 * (

Minimum Frequencies for Checks, Calibrations and ~estins. of Miscellaneous Instrumentation and Controls 5)

I Surveillance Channel Description Function Freguency Surveillance Method

1. Start-Up Range Neutron a. Check s a. Comparison of both channel count rate Monitors indications when in service.*
b. Test b. Internal test signals.
2. Primary Rod Position a. Check a. Comparison of output data with Indication System secondary RPIS.
b. Check. b. Check of power dependent inse1tion limits monitoring system.
c. Calibrate/Check R c. Physically measured rod drive position used to verify system accuracy. Check re>d position interlocks.
3. Secondary Rod Position a. Check. a. Comparison of output data with primary Indication System RPIS.
b. Check b. Same as 2(b) above, including out-of-sequence alarm function.

,c-.---Calibrate/Check c. Same as 2(c) above.

11. Area and Process Monitors a. Check D a. Normal readings observed and internal*

test signals used to verify instrument operation.

b. Calibrate R b. Exposure to known extei*nal radiation source.
c. Test M c. Detector exposed to remote operated radiation check source.
5. This item deleted.
  • 6. Environmental Monitor-a a. Check M a.*
  • Operatfoijal .check.
b. Calibrate A b. Verify airflow indicator.
7. Pressurizer Level a. *Chect 8 (5) a. Comparison of six independent level Irwt nunents readings.
b. Calibrate R b. Known differential pressure applied to sensor.*
c. 'l'est ~(5) c. Si~nul to meter relay adjusted with test device.

F; .

~.

1 i>i.lnimutn F*t"e<i_uencies for Checks, Caiibratior!;; anrlT:~~i~~ ~.~ Miaceli~<:ous Iristrumentecion and. Controls (Contd)(5) *I Surveillance Channel DescriEtion Function Freguenc! Surveillance .Method

0. Control Rod Drive System a. Test R a. Verify proper operation of all rod drive Interlocks control system interlocks, using simulated
  • signals vhere necessary.

. b. Test p b. Same as 8(a) above, if not done within three months.

~

9. Flux-AT Pover Comparator a. Calibrate. R a. Use simulated signals.
b. Test M(5) b. Internal test signal.
10. Calorimetric Instrumentation a. Calibrate R a. Kriown differential pressure applied to feed-vater flov sensors.
11. Containment Building llwnidity a. Test R a. Expose sensor to high humidity atmosphere.

Detectors l='

I

....... 12. Interlocks - Isolation Valves a. Calibrate R a* Known pressure applied. to sensor.

on Shutdown Cooling Line

13. Service Water Break Detector a. Test R a. Known differential press':lre applied to in Containment~ sensors.

lli. Control R.oom Ventilation a. Test R a* Check damper operation for DBA mode v:l,th

. HS-1801 and isolation signal.

b. Test *R b. Check control room for positive pressure.

( 5 )rt is not nec~ssary to perform the specified--~~~-ti~g .durl~~ ~~olonged periods in the cold shutdown \

or refueling conditions. If this occurs, omitted testing will be performed prior to returning the plant to service.

Table 4.2.1 Minimum Freouencies for Sa.nroling Tests

  • FSAR Section

. Test Frequency Reference

6. Spent Fuel Pool Boron Concentration Monthly ( 7 ) 9.4 Bulk Water Temperature Continuously when None bundles. are stored in tilt pit racks with less 1;~~ one.

year decayl J

7. Secondary Coolant Gas Radioactivity by Continuous(S) None
  • Air Ejector Gas Mon~tor during power operation Coolant Gross Radio- 3 times/7 days None activity with a ina.ximum of 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> between samples pH and specific Once/24*hours during None conductivity* power operation Sodium 3 times/7 days None
  • during power opera-tion, with a maximum of 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> between samples Isotopic Analysis for a) 1 per 31 days, when-Dose E~uivalent I-131 ever the gross Concentration activity determina-tion indicates iodine concentrations greater than 10% of the .allowable limit b) 1 per'6 months, when-ever the gross activity determinatio~ incicates iodine concentrations below 10% of the allowable limit
8. Liquid Radwaste Radioactivity Analysis Prior to release 11.l of each batch
9. Radioactive Gas Decay* Radioactivity Analysis Prior to release 11.l of each batch*
10. Stact-Gas Monitor Iodine 131 ana Partic- weekly <4 ) 11.1 Particulate Samples ulate Radioactivity

~-14a

Table 4.2.2 Minimum Frequencies for F.quipment Tests FSAR Section Test Frequency Reference l *. Control Rods Drop Times of All Full* Each Re- 7.4.l.3 length Rods tueling Sbutdovn

2. Control Rods Partial Movement of All Every Two 7.4.l.3 Rods (Minimum of 6 In) Weeks
3. Pressurizer Safety Set Point One Each 7 .3. 7
  • Valves Retueling Shutdovn
4. Main Steam Safety Valves Set Point* Five F.ach 4.3.4 Retuellng Sbutdovn
5. Retue~ng System Interlocks P\mctioning *Prior to 9.1i.3 Retueling.

Operations

6. Service Water* System . P\mctioning Each Re- 9.i.2 Valve Actuation (SIS-CRP) *rueling Operation
7. This item deleted.
8. Primary System leakage Evaluate D'aily 4 Amend 15, Ques 4.3.7
9. Diesel Fuel Supply 1\1.~l Inventory Deily 8.4.1
10. This item deleted.

Years

11. Charcoal & R1 Efficiency Charcoal fiiters Each Re- Amend 14, Filters for Control Room checked ~ 99% effi- fueling Ques 14.19-1 F\tel Storage Building and ciency per Freon 112 Shutdovn 6.5 .1 Containment Purge System test (ORNL).
  • HEPA and at *9.8.3 (containment post- tilters checked ~ any time accident filter). 99% efficiency per work on

>..NSI NlJl.l-1972 filters rould alter

  • ~heir in-
  • ~.egrity.

1'-15

Table. 4.2.1 Minimum Frequencies*for Sampling Tests (l)A daily sample shall be obtained and analyzed if fission product monitor is out of service.

2

( )After at least 2 EFPD and at least 20 days since the last shutdown of longer than 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />.

( 4 )When iodine.or particulate radioactivity levels exceed 10 percent oflimit in Specification 3.9.11 and 3.9.14, the sampling frequency shall be increased to a minimum of one e each day. *

( 5 ) If the a.ir ejector gas monitor is out of service, the secondary coolant gross radioactivity shall be measured once per day ~o evaluate steam generator leak tightness.

( 6 )Reference Specification 3.8.5 for* maximum bulk water temperature and monitoring

. requirements.

7 C )Reference Bases section of Specification 3.8 for minimum boron concentration.

(~1720ppm) 4-14b

4.5

  • CONTAINMENT. TESTS (Contd) an impor*tant part of the structural integrity of the containment is i*

~ maintained.

The basis for specification of.a total leakage rate of o.601 from a

penetrations and isolation valves is specified to provide assurance that the integrated leak rate would remain within .the specified

. liinits during the intervals between integrated leak rate tests.

This value allows for possible deteriorat*ion in the intervals be-

.tween tests. The limiting. leakage rates from the shutdown cooling system are judgment values ba*sed primarily on assuring* that the components could operate without mechanic.al failure for a period on the order of 200 days. after a DBA~ The test pressure (255 psig)

  • achieved either by normal system operation or by hydrostatically testing gives an adequate margin over the highest pressure within the system after a DBA. Similarly, the hydrostatic test pressure for the return lines from the containment to the shutdown cooling system (100 psig) gives an adequate margin over the highest pressure within the lines after a DBA. ( 5)

(

A shutdown cooling system leakage of 1/5 gpm will limit off-site expo-sures due to leakage to insignificant.levels relative to those calculated for leakage directly from the containment in the DBA. The engineered safeguards room ventilation system is equipped with isolation valves which close upon a high radiation signal from a local radiation detector.

These*monitors shall be set at 2.2 x 10 5 cpm, which is well below the expected level, following a loss-of-coolant accident (LOCA), even with-out clad failure ... The 1/5 gpm leak rate is sufficiently high to permit prompt detection and to allow for reasonable leakage through the pump seals and valve packings, and yet small enough to be readily handled by the sumps and radioactive waste system. Leakage to the engineered safeguards .!

I room sumps will be returned to the containment clean water receiver fol-lowing an LOCA, via the equipment drain tank and pumps. Additional makeup 1.

4-:35

4. 6 SAFETY INJECTION AND CONTAINMENT SPRAY SYSTEMS TESTS Applicability Applies to the safety injection system, the containment spraysysterc, chemical inJection system and the containment cooling system tests.

Objective To verify that the subject systems will respond promptly and perform

.their intended functions, if*required.

Specifications 4.6.1 Safety Injection System

a. System tests shall be. performed at. each reactor* refueling interval.
  • A test safety injection signal will be applied to* initiate operation of the system. The safety injection-and shutdown cooling

(

system pump motors may be. de-energized for this test.

b. The system test will be considered satisfactory if control board indication and visual observations indicate that all components have received the safety injection signal in the proper sequence and.timing (ie, the appropriate pump breakers *shall have opened and closed, and all valves shall have_ completed their travel).
c. All high-pressure safety injection pumps except those otherwise required to*be operable shall be demonstrated inoperable at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> whenever the temperature of one or more of the PCS cold legs is 250°F by verifying that the control system fuses
  • . and their fuse holders for the HPSI pumps (P66A, P66B and P66C) have been removed from the circuit.

4.6.2 Containment Spray System

a. System tests shall be performed at each reactor refueling interval.

The test shall be performed with the isolation valves.in the spray supply lines at the containment blocked closed. Operation of the*

system is initiated by tripping the normal actuation instrumentation~

  • b. At. least every five years, the spray nozzles shall be verified to be open.
c. The test will be considered* satisfactory if visual observations indicate all components have operated satisfactorily.

4.6.3. Pumps - Deleted 4.6.4 Valves ~Deleted 4-39

1, 4.6.5 Containment Air Cooling System

a. Emergency mode,automatic valve and fan operation will be checked for operability during each refueling shutdown.
b. Each fan and valve required to function during accident conditions will .be exercised at intervals not to exceed three months.

Basis The safety injection system and the containment spray .. system are princi-pal plant safety features that are normally *inoperative during reactor operation.

Complete systems tests cannot be performed when the reactor is operating because a safety injection signal causes containment isolation and a containment spray system test requires the system tO be. temporarily disabled. The method of assuring operability of these systems is there-fore to combine systems tests to be performed during annual plant shut-downs, with more frequent component tests, which can be performed during reactor operation.

The annual systems tests demonstrate proper automatic operation of the safety injection and containment spray systems. A test signal is applied*to initiate automatic action and verification made.that the components receive the safety injection in the proper sequence. The test demonstrates the operation of the valves, pump circuit breakers, and automatic circuitry. (l, 2 )

4-40