ML17331A802

From kanterella
Revision as of 09:24, 4 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Corrected Nonproprietary Facility Conceptual Design Description for Technical Support Ctr & Emergency Operations Facilities.
ML17331A802
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 09/14/1981
From:
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML17331A800 List:
References
NUDOCS 8109230495
Download: ML17331A802 (140)


Text

{{#Wiki_filter:INDIANA&MICHIGANEUKTRICCOMPANYDONALDC.COOKNUCHRRPLANTFACILITYCOIKEPTUALDESIGNDESCRIPTIONFORTHETECHNICALSUPPORTCENTERANDTHEEOF.ATTACHMWZTOAEP:NRC:0531CThisdocumntcontainsinformationproprietarytoAnglicanElectricPowerServiceCorporation;itissubmittedinconfidenceandistobeusedsolelyforthepurposeforwhichitisfurnished.Thisdocumntandsuchinformationisnottobereproduced,transmitted,disclosedorusedotherwiseinwholeorinpartwithoutauthorizationofAmricanElectricPowerServiceCorporation.8109230495810814PDRADOCK05000315PDR

U~I0-ThisdocumentcontainsmaterialthatisproprietarytotheWestinghouseElectricCorporation.Theproprietaryinformationhasbeenmarkedbymeansofbrackets.ThebasisformarkingthematerialproprietaryisidentifiedbymarginalnotesreferringtothestandardsinSection8ofthe'affidavitofR.A.Wiesemannofrecord"IntheHatterofAcceptanceCriteriaforEmergencyCoreCoolingSystemsforLightMaterCooledNuclearPowerReactors(OocketNo.RH-50-1)"attranscriptpages3706through3710(February24,1972).OuetotheproprietarynatureofthematerialcontainedinthisreportwhichwasobtainedatconsiderableWestinghouseexpenseandthereleaseofwhichwouldseriouslyaffectourcompetitiveposition,werequestthisinformationtobewithheIdfrompublicdisclosureinaccordancewiththeRulesofPractice,10CFR2.790,andthattheinformationpre-sentedthereinbesafeguardedinaccordancewith10CFR2.903.Webelievethatwithholdingthisinformationwillnotadverselyaffectthepublicinterest.-Thisinformationisforyourinternal.useonlyandshouldnotbereleasedtopersonsororganizationsoutsidetheOirectorateofRegula-tionandtheACRSwithoutpriorapprovalofWestinghouseElectricCorporation.Shoulditbecomenecessarytoreleasethisinformationto.suchpersonsaspartofthereviewprocedure,pleasecontactWesting-houseElectric.Corporationandtheywillmakethenecessaryarrangementsrequiredtoprotecttheirproprietaryinterests. ..~t'.);F,~Ileslglq,.~U~~Iqp~-'.~ <<)jI)(ISectionIntroductionTABLEOFCONTENTSTitlePacaeAEP-11.1.11.1.21.1.31.1.41.2SystemFunctionsTechnicalSupportCenterSafetyPararetersDisplaySystemNuclearDataLink+pass&IngleStatusIndicationSystemReportBasisAEP-1AEP-12.2.12.22.32.3.12.3;22.3.3TheDataAcquisition&DisplaySystemComputerSystemInputSystemDataDisplaySystemOhsiteTechnicalSupportCenterContxolRocmEmergencyOperatingFacilitiesAEP-4AEP-5AEP-53.3.13.23.3OnsiteTechnicalsupportCenterDesignBasisInputDtermination(ZSCOperatorInterfaceAEP-9AEP-9AEP-10AEP-114~4.14.24.3SafetyParanetersDisplaySystemPurposeInputDetexminationMan-iMchineInterfaceAEP-30AEP-30AEP30AEP-335.5.15.25.3Bypass&InoperableStatusIndicationSystemPurposeInputDeterminationPan-MachineInterfaceAEP-47AEP-47AEP-47AEP-476.TSCInstxumntationAEP-55

TABLEOFCONTENTSSection.TitlePacae7.7.17.1.17.1.27.2TSCPowerSupplySystemsPowertotheTSCComputer'IheUPSSystemConsequenceofPowerSupplyInterxuption~totheTSCComplexAEP-56AEP-56AEP-56AEP-56AEP-578.8.18.1.18.1.28.1.38.1.48.1.58.28.2.18.2.28.2.38.3TSCandEOFFunctionsTaskFunctionsPerformedbyIndividualsintheTSC.RadiationMonitoringEbseAssessnantGmnunicationsTechnicalSupportManagementSupportBnergencyFunctionsPerformedintheTSC/EOFforeachEmergencyClass.&usualEventAlertSiteandGeneralEmergencyFunctionsofIndividualsReportingtotheEOF.AEP-58AEP-58AEP-58AEP-58AEP-58AEP-59AEP-59AEP-59AEP-59AEP-60AEP-61AEP-629.9.19.2TSCRecordsandDataAvailabilityAEP-63ControlledPlantSpecificReferenceMaterialAEP-63&controlledInformationandTechnicalAEP-649.3ReferenceMaterial.OtherData,Records,andInformationAEP-65 ~I~l.0 ~,fgl~~1.INTB3DKZION1.1SYSTEMFUNCTIONS:TheD.C.CookPlantTechnicalSupportCenterDataSystemisbeingdevelopedanddesignedusingtheguidelinesofNUREG0696toprovidetheplantcperatingandtechnicalsupportpersonnelwiththepertinentplantinformationtofacilitatetheerrergencyresponsetoanaccident.ThisSystem,whichutilizestheWestinghouseP2500TSCComputerSystems,canalsobeusedduringnormalplantoperationforotherfunctionssuchasplantperformanceanalysis,personneltrainingetc.Thissystemconsistsoftwosimilarcomputerizeddataacquisition,processinganddisplaysystems,oneforeachD.C.CookUnit.Thefournajorfunctionsprcvidedbythiscomputersystemare:1.1.1TECZKICALSUPPORTCENTER(TSC):The~tersystemwillreceive,store,processanddisplayoncolorCRTterminalsand/oronhard-copyterminalstherealtimedataacquiredfromvariousplantsystems.Pre-tripandpost-tripdataarealsocollectedandcanbeprocessedanddisplayedbythecomputer.Thissystemwillfacilitatetheassesmeatoftheplant'sconditionbyplantoperatingandtechnicalsupportpersonnel.ThedatadisplaysoftheTechnicalSupportCenterfunctionwillprovidesufficientinformationtodetermine:AEP-1 ~~\ -Plantsteadystatecperatingconditionspriortotheunittrip.'Transientconditionsproducingtheinitiatingeventandsystembehaviorduringthecourseoftheaccident.-Presentconditionsoftheplant.TheTSCdatadisplaysystemmaybeusedfor:-Reviewingtheaccidentsequence.-Determiningapprcpriatemitigatingactions.-Evaluatingtheextentofanydamage.-Determiningplantstatusduringrecoveryoperations.Thisfunctionwillbedescribedindetails-inSection3.1.1.2PLANTSAFETYSTATESDISPLAY(PSSD):~sPSSDsystemwasdesignedinaccordancewiththeguidelinesfortheSafetyParameterDisplaySystem(SPDS)ofNUREG0696.ThisPSSDsystem,whichdisplaysthesafetystatusoftheplantinaformatthatcanbeeasilyrecognizedbythecontxolroomoperators,willhelptheoperatorstodetectanyabnormalconditioninatimelymanner.AdditionalfeaturesofthisPSSDsystemwillhelptheoperatorsandtechnicalsupportpersonneltoobtaindetailedinformationonthesafetysystemsoftheplant.DetaileddescriptionsofthissystemareprovidedinSection4.1.1.3NKXZARDATALINK(NDL)TheTSCcomputersystemhasabuilt-inoff-sitedatatransmissioncapabilitywhichcanbeusedforinterfacingwithafutureNuclearDataLink(NDL)Sub-System.AEP-2 1.1.4BYPASS&INOPERABLESTATUSINDICATIONSYSTEM(BISI):TheBISIsystemprovidestheoperatorsandtechnicalsupportpersonnelwithaclearindicationoftheavailabilityoftheplantsafetysystems(ESPSystems).DetaileddescriptionsofthissystemareprovidedinSection5.1.2REPORTBASIS:ThisreportisbasedontheproprietaryWestinghouseKM?Report9725WestinghouseTechnicalS~rtComplex"whichwassubmittedtotheNRC.AppropriatenedificationsweremadetoreflectthespecificdesignofD.C.CookM.ts1and2.AEP-3 2.THEIRTAAOQUISITION&DISPLAYSYSTEM2.1THECGMPUZERSYSTEM:Figure2.1showstheccmputersystemhardwareforeachCookUnit.Multiple16-bithighspeedminicomputerandmerrydevicesareusedtoprocessplantdata,generatedisplaysandperformotherman-rrachireinterfacefunctions.Thesystemisconfiguredinafaulttolerantdesign.Ithasafullyautomaticfail-overcapability.Ifacentralprocesssingunit(CPU)oraportionofnanaryfails,thesystemwillautomaticallyreconfigureitselfandcontinuetofullyperformitsdesignatedfunctions.2.2INPUZSYSTEMFigure2.2showstheschematicdiagramfortheTSCcomputerSystem.Inputsignalsfromthecontrolroomandotherplantlocationsaretakentothere@ateInput/~t(I/O)cabinets.Signalisolators.areprovidedintheI/Ocabinetssothat.nofailureontheoutputsideoftheI/Ocabinetswillaffecttheinputsignals.Inadditiontotheseisolators,allsignalscomingfranthesafetysystemsaretakenaftertheexistingqualifiedisolatorsonthesesystems.Theinputsignals,aftergoingthroughtheisolators,willbeconvertedtobinaryinformationontheinputcardsandthenarenoltiplexedtothecemputer.Eachsignalchannelhas'tsownAnalog/DigitalConverter,thusprovidingahighdegreeofrealiabilityfortheinputsystem.AEP-4 v 2.3DATADISPLAYSYSTEM2.3.1TechnicalSurtCenterRoomEachD.C.GookUnithasadedicatedcomm-mdconsolelocatedintheOnsiteTechnicalSupportCenter.EachcanmandconsoleisequippedwithtwocolorCRPdisplaysandavideohardcopier(whichcanbeusedtoobtainahardcopyofthescreenimage).OneCRTisdedicatedtothePSSDfunctionandthesecondCRTisageneralpurposedisplay.Threesatellitestations,eachwithacolorCRTdisplay,arealsoprovided.ThesatellitestationscanbeconnectedtoeitherCookUnit1orUnit2TSCComputerSystem.AsharedvideohardcopierisprovidedforthethreesatelliteCRTs.Wesatellitestationsarearrangedsothatvisualaccessfromtheconuaandstationcanbemaintainedwhilestillprovidingsufficientroomtominimizenoiseanddisturbance.Porprintinglengthyreports,ahardcopyterminalisprovidedforeachCookUnitCorrputerSystem2.3.2ControlRoom:TworedundantPSSDdisplayCRTsandtworedundantBISICRTsareprovidedineachcontrolroom.AvideohardcopierisalsoprovidedtoobtainhardcopyoutputfromtheCRTscreenimage.2.3.3Eme~ren.ratinFacilities(EOF):AcolorCRTterminal,whichcanaccesseitherCookunitTSCcomputer,isprovidedintheErergencyOperatingFaciliies.TheresteCRTcanbeusedtodisplayallofthedisplaysavailableonAEP-5 thePSSD,TSCandBISXfunctionsexceptforthetcpleveliconicdisplayofthePSSDfunction.ThisiconicdisplaywasdesignedforearlyrecognitionofaneventbythecontrolrocmoperatorsandthereforeisnotincludedintheEOF.AEP-6 Ir,tfACSICIIafftAIlgfIIloI~sofalaohstoo~<<IjlfahlfhahlZOFCOI0affCoAoos~SalkSfdstaCLIIIIStktaladhara5IIaaskII~a4IstAaasaoaacalLC'OACSCtllIIIIIIVItaoIIlfkhlaohIIIIIctatIIIllIaaf51TIrlaaoaaTaaIlaoalTEOFCR.(sharedby-.un-i-t:s-~.).0fritLkIClaaI5045ICCI5tlsTaahlfoofldJ/C'rYyar00IS'\A5CIhI500ISCOISILLTClhlIOOISLllII1t5waldaaIIRS232toiG)LIIIIIcohfsoCotCafasffloasoLCoda'sfSallllI504aao~~CaatCsfTadf0~5LOr550Cdtaf0I~Irfossd~IIIOAAO~\50IIII~II'I0IIIrIIIIDTLATILPlAfCCASCisttfaooar~~~Italo,rCahSATClraIQrIwld0oaaaIPfaI~aatoCaltlATCfsIDsaaATQhfDpaAT'lsIClaaIa%IWhoaltaI1~Iahaarar~Iahaaraf~IaaaWOfitfCf1lIII.'IIIIICALCUTTUIIICLISI~IlIIIII.lfIIIIIIIIIIaFigurc2.1.TcchnicalSupportCoI>>p(cxSystemCoiifigurationAEP-7 1Iit~A'0l~>'pJ~&tf~I++gy~ygyf44III53lgll~fL5%5III~'llL~ekh9t5I4k4I)4 SensorSignalsnon-safetySafetysyst.syst.signalssignalsisolators~ControlboardIndicationIL1IBISIDisrlaysLI1iPSSDDisplaysICONTROLROQiIr'PSSDDisplaysPlantProcessComputerIsolatorsI/OCaninerainAIIIIIII)~~~solatorslI=I/OCa!ineiITrainDII~BISIDisplaysLrITSCDisplaysTSCCO>'IPUTCRSYSTE'.1TECHSUPPORTCE'NTERsiteIoundaryFigure2.2:TSCComputerSystemSchematic.TSCBISIPSSD(non-iconic)ÃUCLEA'RDATii.LIxlE<EOFAEP-8 3.ONSITETECHNICALSUPPORTCENTER3.1DESI'ASIS:TheOnsiteTechnicalSupportCenter(OTSC)servesasthefocalpointforpost-accidentrecoverymanagerent.Assuch,itmusthavethecapabilitytoaccess,displayandtransmitpertinentplantstatusinformationindependentofactionsinthecontrolroom.TheTechnicalSupportCenterfunctionoftheTSCCcmguterSystemwasdesignedtosatisfythefollowingrequiremnts:1.PersonnelintheOTSCrmsthaveaccesstotherealtimeinformationdefiningthecurrentstatusofcriticalplantsystemsandfunctions.2.,TheTSCfunctionausthavethecapabilitytostorehistoricalpreventandpost~ventdatainordertoenableadiagnosisandevaluationoftheeventtodeterminetheextentofanypossibleplantsystemdamage.3.TheTSCfunctionnusthavethecapabilitytoaccessanddisplayplantpazamtersindependentofactionsinthecontrolzoom.4.TheinterfaceoftheTSCsystemequipmentwithexisitingplantinstrumentationmustnotresultinanydegradationoftheplantprotectionsystem,controlroanorotherfunctions.5.Paramtezstotheextentpossibleshouldbefranthesanasourcethatisusedforcontrolrocmindicationstoensuredataconsistency.6.TheTSCsystemnusthavethecapabilityofinterfacingwithcannunicationequiprrant'ortheoffsitetransmissionofpertinentplantdata.AEP-9 7.Theusersestbeabletocreateoredifydisplaystorraettheneedsasconditionsmay'dictate.3.2INPUZEETERNIHRTIONInordertodefinetheinformationwhichmustbeavailableintheOTSC,'genericstudyofcriticalplantsystemsandkeysafetyfunctions(aslistedinTable3.1)wasconductedbyWestinghouse.Thisstudyresulted.inalistofparamterstobenanitoxedbythecomputerfortheTechnicalSupportCenterfunction.ThisWestinghouseparameterlistwasreviewedandmadeCookPlantspecificbyAEP.Table3.2liststheprincipalparametersandTable3.3liststhebasisforinputselection.Redundancyanddiversityofprocessindicationsaxeutilizedtosatisfyconoxnsassociatedwithunavailablesignalsduetosensorfailure.SomrefinementoftheinputparameterslistmaybemadeafterthesubmittalofthisconoptualdesignreportAFP-10 ~1~I~~~~3.3OTSCOPERATORINTERFACETheabilityoftheOTSCtobeaneffectivetool$npost-eccicfentrecoverymanagementisafunctionoftheinputsprovidedandtheabel)tytopresentinformation-inameaningfulandorganizedmanner.Asstatedpreviously,theman-machineinterface$sthroughtheuseofinteractiveIJgraphiccolorCRTdisplays.TheinterfacefunctionsintheOTSCconsistofdisplaysandconsolefunctions.0ThedisplaytypesavailableforOTSCpersonneluseconsistofgraphicandalphanumericdisplayswhicharebothprcformattcdanduserconstruc-tible.ExamplesofthetypesofdisplaysavailableareshowninFigures3->.3-2and3-3-Figure3~lisanexampleofapreformattedsystemstatusdisplay,g~theringimportantsystemandloopparametersontoasinglepageofdisplay.Figure3.2showsmorcdetailedinformationonindividualparameterssuchasinformationonsensorstatus,currentvalue,andhighandlowlimits..Figure3-3isanexampleofagraphictrenddisplayshowingatimehistoryofrelatedparameters.Highlight--ingtechniquesforindicatingparametersorconditionsofinterestutil-izebothcolorandachromaticmeans.Byprovidingacombinationofboth'preformettedanduserconstructibledisplaystheOTSCpersonne'Iareprovidedwithprearrangedquicklyacces-siblesysteminformationandtheflexibilitytopermittheta',loringofinformationpresentationtomeetspecificneedsasconditionsdictate.Thespecificcontentofpreformatteddisplayswillbedeterminedbyanalyzingpost-accidentdatarequirementsintermsofeventevaluation,thesafetystatusoftheplant,andlong-termrecoveryplanning.Dis-playswillalso.bedesignedtoreflectplantspecificdesigndetails.~~Displayaccessisprovidedbothbydedicatedfunctionalconsolepush-buttonsandstandardkeyboardentries.Dedicatedkeysprovideaccesstothemostfrequentlyuseddisplaysorfunctions.Forotherfunctionsaccesscanbeeitherdirectbyenteringshortcodesorbyutilizinganinstructionfunctiontodeterminethe)dentif)cationcodeforadisplayifitisunknown.5251AAEP-ll ~E~~~~ ~~~I~Othertypesofinformationisavailablethroughtheconsolekeyboard.Theseconsistoffdnctionssuchaspo~ntrevie~,logs,post-triphistor-icaldatareviegandoffsitedatatransmission.s~Thepointrev'iewfunctionsenabletheconsoleoperatorto'reviewplanttsensorinformation.Thetypesofreviewfunctionsavailableare:tL.Valuesofindividualpoints.2.Pointsremovedfromscan.3.Pointsremovedfromlimitchecking.4.Pointsfailedunderqualitycheckingroutines.$.Pointswhose'scanfrequencieshavebeenchangedfromti.e-normalscan:Trequencies.-TherearelogfunctionsavailabletotheOTSCpersonnelwhichcanbedisplayedonCRTswithperiodicupdatesoroutputontoahardcopy.devicesuchasalineprinter.Thesefunctionscanbepreprogranmedandautomaticallyinitiatedorspecifiedandinitiatedbyconsoleoperatorinput.Thepost-tripreviewfunctionprovidesthecapabilitytoreviewhistor--icaldatatoaidinaneventevaluation.Thisfunctioncontinuously.storesinmemoryanupdatedtableofpreassignedsensorvaluesforapredefinedperiod.Upontheoccurrenceofadisturbance(e.g.,planttrip)thesystemcontinuestostoredataforadefinedtimeperiod.Afterthisperiod,theentiredatarecordcanbereviewedbytheOTSCpersonnelonCRTsand/oroutputtohardcopydevicesforpermanentrecordstoragepurposes.O'RC1A2-8AEP-12 III"I~RP".'A!3'A.."iT>IP~GPl'.',.U~q'~~pqp Theoffsitedatatransmi"sionfunctionenablesOTSCpersonnelto'rans-.mitplantdatatooffsite',ocationsviaownersuppliedcomounicationssystems.TheOTSCoperatorcaninitiatetransmissionofdataeitherona"one-shot"orperiodicbasis.ThetransmitteddatacanbearrangedintofoureditedversionsforthespecificneedsofseparateoffsitecomaunicationsreceiverssuchastheNRC. gl':393)T)7)3~84~39Pl;f),j,",",)j)'~"I~~ I~~~~~ilITABLES.1CRITICALPLANTSYSTEMS/FUNCTIONS,ReactivityControlPrimarySystemInventoryCoreHeatRemovalCapabilitiesAvailabilityandCapacityofHeatSinks~~ContainmentIntegrity;~'PrimarySystemPressureandTemperatureAvailabilityandCapacityofAlternateMaterSourcesI~.AvailabilityandOperabilityofCriticalSupportSystemsRadioactivityControl2-10AEP-14 RzN.~3)O'A~<'i"fM".3":i;~"'!;",)aid="$~II~c ~~I~~~~Table3.2TSCParamtersListVariablesMin.NoofSils-BCShotlegtemp-RCScoldlegtemp-BCSpressure-Beactorwaterlevel-BCSboronconcentration-Pressurizerwaterlevel20-700degF0-700degF0-3000psig0-100%0-5000ppm0-1008-SteamgeneratorlevelWiderangeNarrowrange-Steamlinepressure~ntainmntpressure-Containmentwaterlevel0-10080-10080-1400psig-~36psig-RNSTwaterlevelcondensatestoragetanklevel2-Boricacidtanklevel-Auxfeedwaterflow~Rainfeedwaterflaw-Highheadinjectionflaw589'-'599'lev.599'-614'lev.0-10080-10000-100%0-250Klbs/hr0-5000Klbs/hr0-200gpmAEP-15 Table3.2TSCPazmntersListVariablesMin.NoofSils~Ran~-Zawheadinjectionflow4-Coreexittemperature16-Containmenttempezatuze~utzonflux-Controlzodposition53componentcoolingwaterflow2-Carponentcoolingwatertemp.2~ntainnanthydzogenconcent.20-5500gpm0-2500degF0-10000gpm32-200degF0-30%0-100degF0-1200power'Fullinormt-Primarysystemrelief&4Closed-notclosedsafetyvalves-Sec.syst.reliefvalves4-Containmentisolationvalves139-PZRrelieftankpressure1-PZRzelieftanklevel-PZRrelieftariktemp.1-RCSdegreeofsubcoolingN/A1-Accumulatorlevel-Accunulatorpressure-Accumulatorisolationvalves-Auxbuildingsumplevel-RHRsystemflowClosed-notclosedClosed-notclosed0-100psig0-100850-350degF200sub-5super0-10080-700psigClosed-notclosed0-flocdlevel0-7000gpmAEP-16 ~1~'~~ITable3.2TSCParanetersListVariablesMin.NoofSials-RHRheateIc.outlettemp.-Boricacidchargingflaw-RCSletdawnflaw-RCSmake-upflaw-Emrg.ventilation~r-Statusafstandbypower-Highradioactivityliquidtanklevel-Radioactivegasdecaytkpress4-ReactorCoolantPunpsstatus4-PZRheaterbankstatus~meteorologyWinddirectionWindspeedAtm.deltatemp.-Radiation2Containmntarearadiation1Containmntradiogas1Containtnentairparticulate1UnitVentradiogasUnitVentiodine0-400degF0-10gpm0-200gpn0-200gpnclosed-notclosedEnergizedornot0-10080-150psig0-1200anps0-200arrps0-360deg0-100miles/hr0-50degF.1-10E4mR/hr10-10E6cpm10-10E6cpn10-10E6cpn10-10E6cpmAEP-17 VariablesTable3.2MinNoofSilsIIIII-Radiation(continued)Steamgen.blowdownCondenserairejectorCoolingwaterEastCoolingwaterWestServicewaterEastSexvimwaterWestWasteliquidoff-gasWastegasdecaytarikControlrocmareaSpentfuelareaChargingpprocmarea10-10E6cpn.1-10E4mR/hr10-10E6cpm10-10E6cpn10-10E6cpn10-10E6cpn10-10E6cpm10-10E6cpm.1-10E4mR/hr.1-10E4mR/hr.1-10E4mR/hrNote1:DegreeofsubcoolingwillbeindependentlycalculatedbytheTSCccmputerNote2:Theradiationsignalslistedabovearesignalsfromtheexistingradiationdetectors.AEPisintheorocessofingle'tinganewRadiationMonitorSystematCockUnits1and2,andwilltransmittherequiredradiationsignalstotheTSCccmputerfromthisnewRadiationMonitorSystemAEP-18 ~I~~~p,~ PARAMETERTABLE2-3TSCINSTRUMENTBASISINITIALEVENlOIAGNOSIS"BASISI&ItranI5251A PARAMETERTABLE2-3(Continued)TSCINSTRUMENTBASISINITIALEVENTDIAGNOSIS*BASISQJI~CO5251A PARfitlETERT"BLE2-3(Continued)TSCINSTRUHENTBASISINITIALEVENTDIAGNOSIS*BASIS525]A PARAMETERTABLEP-3(ContInuerl)TSCINSTRUMENTOASISINITIALEVENTOIAGNOSIS*OASIS PARAHETERTABLE2-3(Continued)TSCINSTRUHFNTBASISINITIALEVENTDIAGNOSIS*BASIS5251A~~ PARAMETERTABLEg.3(CogtIpoed)*TSCINSTRUMENTBASISINITIALEVENTDJAGNOSIS*BASIS PARAt1ETERTABLE33(Continued)TSCINSTRUMENTBASISINITIALEVENTDIAGNOSIS*BASIS(b,c)IVlŽi5251A ~~~~Ir~ PARAihETERTABLE2-3(Continued)TSCINSTRU)hENTBASISINITIALEVENTDIAGNOSIS*BASIS(b,c)5251A ~~~~~y ~~SystemsStatus-ReactorCoolantSystemLoop1Loop2Loop3Loop4Taverage('F)OverpowerDT('/oPWR),Overtemp,ZD('/0PVIR)Coldlegtemp.(narrowrange)('F)Hotlegtemp.(narrowrange))'F)Reactorcoolantflow(%)Reactorcoolantpressure-WR(PSIG)Pressurizerpressure(PSIA)Pressurizervaportemp.('F)Pressurizerliquidtemp.('F)Pressurizerrelieftankpressure(PSIG)Pressurizerrelieftanklevel(%)Pressurizerrelieftanktemp.('F)Pressurizersafetyrelieftemp.('F)595.2595.2110.0110.0110.0110.0559.8559.8624.0'24.0100.0100.02250.02250.02250.0563.8565.21.577.6110.3120.0595.2110.0110.0559.8624.0100.02250.0595.2110.0110.0559.8624.0100.02250.0Figure3.1SystemStatusDisplayatQnsite1echnicalSupportCenter(Example)AEP-27 ~~x(.;43<>>s~QHI>>,~0)3qggfJ[)>~.,)) ~~I~~ParameterSummaryPointDescriptionTO400RCSLoop1HotLegTTO406RCSLoop1ColdLegTPO480RCSPressure547.20:7002234.10:3000DEGFNormaiPSIGNormalYalueRangeUnitsStatus593.40:700.DEGFNormal'LO421StmGen2NarrowRangeLevel39.10:100PCLowPO549SteamlinePressure893,00:1100PSlGNormalLO103RWSTLevelLO114BoricAcidTankLevel100.00:10098.80:100LO119CondensateStorageTankLevel5640:100LO947ContainmentBldg.'VaterLevel3.30:100PCNormalPCNormalPCNormalPCHighFigure3.2,ParameterinformationDisplayatOnsiteTechnicalSupportCenter(Example)AEP-28 ~~~~t 16708-2~700RCSCOLDLEGTEMP(oF)'100700RCSHOTLEGTEIVIP(oF)100100PRZRLEVEL(~o)402500PRZRPRESSURE(PSIG)19002468101214161820TIME(SECONDS)Figure3.3GraphicDisplayatOnsiteTechnicalSupportCenter(Example)EAEP-29 I4'~~~Y."~~-N"9,">>">UA'l~~1k'>~0 4.0PLANTSAFETYSTATUSDIS?LQY4.>PURPOSEThefunctionofthePlantSafetyStatusDisplay(PSSD)istopresentasuccinctaccountoftheoverallplantsafetystatustothecontrolroomoperator(orsupervisor).Theentiredatabaseshouldbeavailabletotheoperatorarrangedinaformatthatwillenhancehisresponsetoeventsandthediagnosesofthecauseoftheevent.Becausethe'PSSDservesasanimportantinterfacebetweentheplantprocessandtheoperator,theinformationpresentationshouldbedefinedintermsofparametersandlogicsupportiveofdefinedoperatingproceduresfordealingwithabnormalevents.4e2INPUTDETERMINATIONInordertodete'rminethcrequiredoperationalmodesforthePSSO(b,c,e)Becauseofthefactthatgi(b,c,e){b,c,e)4-154".5A TheparametersavailableforTheroleforwhichthePSSOprovidesLJisasfollows:(b,c,e)~,5435A4-2AEP-31 ~~0 (b,c,e)ByaddressingL(b,c,e)(b,c,e)IndefiningtheinputsforthePSSD,Lfo11ows:.1as(b,c,e)~c(b,c,e)Inresponsetothe/(b,c,e)O..IQC.lv'svvgI4-3PEP-32 4e3MAN-MACHINEINTERFACEThePSSDsystemwillprocessthedefinedinputdatasetofplantparam-(a,b,c)etersatQQandgeneratedisplaysforredundantPSSD(a,c)dedicatedCRTslocatedinthecontrolroom.~.Inordertoachieveaneffectiveman-machineinterface,thedisplaysystemmustbedesignedtoprovidealogicalandhumanengineereddis-playstructureandselectionprocessinamannerwhichsupportsdefinedrolesinwhichtheoperatorisexpectedtoperformduringanabnormaloccurrence.Theroleofthecontrolroomoperatorin/~depictedinFigure4-1.ThedisplaysystemstructureshouldbedefinedsuchthatitLgaredefinedasfollows:2~54~=A44AEP.-33 ~Ws~(b,c)ThedisplaystructureshowninFigure4-2Q(a,c,f)4-5AEP-34 (a,c,f)(a,c,f)Amajorproblemassociatedwiththeman-machineinterfaceisthe(a,c,f)4-3isanillustrationofthedisplay.figure~(a,c,f)(a,c,f)Figures'-4and4-5arepreliminaryversionsofl'fortwosampleevents:PrimarytoSecondaryCoolantSystemLeakandPrimaryCoolantSystemLeaktoContainment.Theparameterschosenforthedisplayswerechosento(a,c,f)5435A4-6AEP-35 TheinforaatlonatL5435A4-7AFP-36 TABLE4-1PLANTSAFETYSTATUSOISPLAY-SAFETYGOALS-TERMINATEMOOETRANSIENTSi435A4-8AEP-37 TABLE4-2PLANTSAFETYSTATUSDISPLAY-SAFETYGOALS-MITIGATEMODETRANSIENTS5435AmP-38 ~~0 TASLE4-2(Continued)PLANTSAFETYSTATUSDISPLAY-SAFETYGOALS-MITIGATEt',ODETRANSIENTS5435A4-10AEP-39 TABLE4-3\PLANTSAFETYSTATUSDISPLAYTERi~tINATEYCOEPARAllETERS{b,c,e)4-11AEP-40 ~~'~TABLE4&PLANTSAFETYSTATUSP~SPLAYNITTGATE."POEPARAvETHS4-12-'iSAmv-4a '~,Ig16708.1(a,c)Figure4-1.OperatorResponseModelAEP-42 ~~~Iq(Figure4-2.DisplayStructureofPlantStatusDisplayAEP-43 ~~~~(a,c,f)Figure4-3.SampleDisplay-PlantSafetyStatusDisplayAEP-44 Figure4.4.SamplePlantSafetyStatusDisplay-TemiinateMode-PrimarytoSecondaryCoolantSystemLeak(SGTubeLeak)AEP-45 (a,c,f)Figure4-5.SamplePlantSafetyStatusDisplay-MitigateMode-PrimaryCoolantSystemLeaktoContainmentAEP-46 .5~0..BYPASSE0ANOINOPERABLESTATUSINOICATIGNFORPLANTSAFETYSYSTEMS5.1PURPOSEThepurposeoftheBypassedandInoperableStatusIndication(BISI)systemistoprovidethecontrolroomoperatorwithacontinuoussystems.levelindicationofabypassedorinoperableconditionforthesystemscomprisingtheengineeredsafetyfeatures.Thesystemconsiderstheactualstatusofindividualcomponentsincludingsystemslevelbypassesandcontrolroomoperatorenteredinputsforcomponentsremovedfromservice.5.2INPUTOETERMINATIONBypassedandinoperablestatusindicationisprovidedforthesystemscomprisingtheengineeredsafetyfeaturesandtheircriticalsupportsystems.ThesesystemsareidentifiedinTable5.l.Thistablealsoidentifiesthetypesofcomponentsforwhichmonitoringisrequired,theapproximatenumberofeachtypeofcomponent,andthetypeofstatus.informationneeded.Thislistisgenericinnatureandwillberevisedtomeetindividualplantspecificdesigns.Intheevaluationofsysteminputs,thecomponentsineachsystemare.consideredinthelightofbeinginaproperstatetoperformorsupoorttheoperationofasafetyfunction.ThesystemslevelbypassfunctionsthatmustalsobeconsideredarelistedinTable5.2.Inadditiontoautomaticallymonitoredinputs,thesystemalsoconsiderstheeffectofcomponentorsystemoutofserviceinputsmanuallyenteredbythecontrolroomoperator.5.3MAN-MACHINEINTERFACETheinterfacebetweentheoperatorandthissystemisprovidedbyredun-dantCRTdisplaysandkeyboardconsoleslocatedinthecontrolroom.PersonnellocatedintheOnsiteTechnicalSupportCenterwillalsobe ~~lR'<<~'J3YP~~'GIR~C~S3>UO'>'"j)gg"'(' abletoaccessthesameinformation.The8IGIutilizesastructureddisplayhierarchyfortheooeratorinterface.ThedisplayhierarchyisshowninFigure5.1.Theprimarydisplay,anexampleofwhichisshowninFigure5.2icon-,tainsthefollowinginformationforeachofthesystemscomprisingtheengineeredsafetyfeatures:1.Bypassedorinoperablestatu"indicationforeachaffectedsubsystemoneitherasystemsleveland/ortrainlevelbasis.2.Identificationofwhethertheconditionisduetotheinoperablestatusofacomponentorauxiliarysupportsuchascoolingwater,powersupply,tc.(a,c,f)OtherlevelsofdisplayssuchasshowninFigure5.3providesupportinginformationonindividualcomponentswithineachsubsystemandsupportsystem.Wheneverthestatusofasystembecomesinoperableorbypassed,the(a.r)AEP-48 3-3AEP-49 ~~'I ~~~~TABLEs.aBYPASSEDAtsDIttOPERABLESTATUSIttDICATION-COMPOttettTIttPUTS(b,c)~SstemEmergencycorecoolingComonentsValvesPumps-.Process(level,pressure)StatvsOpen/ShutOperableHigh/Low,etc..Auxiliaryfeedwaterai~Valves.Pumps.ProcessOpen/Shut.Operable.High/Low,etc.Containmentspray'alvesPumps.'rocessOpen/ShutOperableHigh/Low,etc.ContainmentisolationValvesOpen/ShutAuxiliarypowersystemContainmentventilationBreakers'eneratorsVoltagesValvesMotorsOpen/Closed/OutOperableHigh/LowOpen/ShutOperableContainmenthydrogenrecombinersValvesMotorsOpen/ShutOperableComponentcooIingValvesPumpsOpen/ShutOperableServicewaterValvesPumpsOpen/ShutOperable3-4AEP-50 ~~~~'TABLE5.2BYPASSEDANDINOPERABLESTATUSINDICATION-SYSTEMLEVELBYPASSFUNCTIONSSafetyinjection-'owpressurizerpressureLowsteamlinepressureManualresetSteamlineisolationSteamdumpinterlockSteamgeneratorblowdownisolation3-5AEP-5j.5251A ~~1~I Figure5-jDisplayStructure-BypassedandInoperab!eStatusIndica;ionAEP-52 Figure5.2PrimaryDisolay-BypassedandtnoperaoleStatusindicationAEP-53 l~I ~~~~(a,c,f)Figure5.3SecondaryDisplay-BypassedandInoperableStatusInformationAEP-54 ~)6.TSC&STD~>'lATlCH\IAsdescribedinSection2,PastoftheinputsignalstotheTSCcavputerare~enfrctntheexistinginstrumentswhichalsoprovidesignalsfor12mControlRccmindicators.Thisapproachwillprovideconsistentdatainboth&~contxolzoom,OnsiteTechnicalS~rtCenterandtheEOP.TI~inputsignalstotheTSCcomputerthereforehavesarehignquality,accuracyandxeliabilityasthecontxolzootnsignal.Transfoznerisolatorsareprovidedforallanaloginputsignalsandmticalisolatozsareprovidedforalldigitalinputsignals.~waddition,allsignalsfxantheFaactorProtectionChannelsaze~nafterthen~stingsafetygradeisolatozs.C~oze,Minterfacingoft>aTSCcmgirsystemtotheexistingplantinstzmntationwillnotresultinarydegradationofthcontxolzocm,protectionsys"w,controlsozoi9mrplantfunctions.AEP-55 (~~~'I ~~I~j7.TSCPOWERSUPPLYSYSTEMS7.1POWERTOTHETSCCGMPUZERSYK'EM:ThepowerxequixeaantsoftheTSCComputerSystemwillbesatisfiedthoughtheuseofanunintex~ptible~supplysystem(UPS).ThisUPSsystemwillprovidetheTSCcxmputexsandperipheralequipmentwithahighquality,transientfreepowersource.7.1.1THEUPSSYSTEM:Figure7.1showsaone-linediagram(schematic)fortheUPSsystem.Thesystemconsistsofredundantbatterychargers,battery,staticinvertexs,andstatictransferswitches.Undernormalconditions,thebatterychaxgerconvertsACtoDCandsuppliesit.totheinverter.Thebatterychargeralsokeepsthebatteryatfullcharge.TheinverterconvertstheDCtoACinordertosupplytheloadrequirementsoftheTSC~tersandtheirperipheralequipHBIlto71.2CONSEQUMZSOFPOWERSUPPLYINTERRUPTION:Ifthereisapowerreduction(dipordegradation)orloss(failure)oftheACpowersource,theUPSbattexybeconestheprirmxysourceofDCtotheinverter,ratherthanthebatterychargerwhichhaslostitsnormalsourceofACpowersupply.Thebatterywillbesizedtosupplytheinverterloadxe'quixemntforaperiodof30minutes.ThisallowsasufficienttimeintervalinMichadieselgenerator(badmpACsource)canbemadeavailabletoprovidepowertotheinverter.IntheunlikelyeventoflossorAEP-56 TSCPOWERSUPPLYSYSTEM(CONCEPTUALDESIGN)EMERGENCYSOURCEINDEPENDENT600VOLTBUSNORMALSOURCEINDEPENDENT600VOLTBUSBACK-UPSOURCEINDEPENDENT600VOLTBUSM.C.C.BREAKER225AM.C.C.BREAKER225AM.C,C.BREAKER225AAUTOMATICTRANSFERSWITCH260A60075KVAI20BATTERY927AI~700AMP~BATTERYCHARGER~~(ALTERNATE)L700AMPBATTERYCHARGER40KVAINVERTER40KVAINVERTERSTATICSWITCHSTATICSWITCH'IGURE7.16/I'/8IIUNITWITSCCOMPUTER8PERIPHERALSAEP-56aUNITW2TSCCOMPUTER8PERIPHERALS unavailabilityofboththenormalandbackupACsources,thestaticswitchwillbeusedfortransfer,ifnecessary,totheemrgencyACsourcee7.2KNERTOTHETSCCOMPLEX:Standardbalance-of-plant(BOP)sourceswillprovidetheTSCwithpowerforlightingandconveniencereceptacles.Foradditionalprotection,thelightingfixturesareprovidedwithbatterypacksforcontinuedoperationintheeventoflossoftheBOPpowersupply.TheHVACequiparantwill.besuppliedfrcmanEssentialServicesSystembus(ACsource).AEP-57 0 '~ll'8.TSCANDEOFFACTIONS8.1TASKFUNCTIONSPERFORMEDBYINDIVIDUALSINTHETSC:Theemergencyfunctions/tasksperfozmedby.individualsrequiredtoreporttotheTSCaredescribedkpthefollawing:S.l.lRADIATIONMOND)RING-.Coordinateactivitiesoffieldassessmentteams.ReceiveDatafrompersonnelinthefield.ProvideRADIATIONMONITORINGMTAtoappropriatepersonnel.DosimetryContxol.8.1.2DOSEASSESBKNT:ReceivedatafromcomtlUnicationspersonnelonRadiationMonitoringandMeteorologicalconditions.ReceiveRadiationMonitoringDatafromRadiationMonitoringDirector.PerformEbseAssesarentcalculations.Providerecommendedprotectiveactions,asneceessary.Assistinclassificationofevent.PlaceContzolBoomDatainformatusefultooff-siteagencies.8.1.3COMMUNICATIONSReceiveeventdatafranContzolRoom.PlaceeventdatainformatusefulforDoseAssessmntpersonnel,PlantStatusEvaluationpersonnel,andOff-siteAgencies.AEP-58 -CcmnunicateeventconditionstotheBerrienCountySheriff'sDepartment;MichiganStatePolice;theJointPublicInformationCenter;AEPServiceCorporation;andIndustrySupportGroups.8.1.4TECHNICALSUPPORTProvidetechnicalsupporttoOperationspersonnelinareassuchsuchasCoreAnalysis,ChemicalControl,+cleEvaluation,andinstrumentation.-ProvideIndependentEvaluationoftheSafetystatusoftheUnit.8.1.5MANAGEMENTSUPPORT-Provideforavailabilityofsitepersonnelasneeded.Providedirectionandprioritiesforsitepersonnelactivities.-ProvideevaluationofEmergencynaasurestobetakenon-siteandoff-site.82BKBCZNCYFUNCTIONSPERFORMEDINTHETSC/EOFFOREACHEMEBGENCYCLASS:8.2.1QKSUALEVENT:Plantconditionsrequiringdeclarationofan"UnusualEvent"arenotexpectedto>+quireactivationoftheTechnicalSupportCenterorEmergencyOperationsFacility.TheEmergencyfunctionspreviouslydescribedwillbedelegated/coordinatedfromtheControlAEP-59 ~4a~4~g~e'~.>:8.2.2ALERT:Plantconditionsrequiringdeclarationofan"Alert"varyinseveritylevelfrcmtheupperboundsof"thusualEvent"totlatlowerboundsofa"SiteEmergency".An"Alert"classificationthexefore,mayrequireperformanceofportionsofthefunctions,describedaboveinSection8.1,intheTechnicalSupportCenterandtheControlBoom,oritmayrequireperformanceofalloftheemergencyfunctionsintheTechnicalSupportCenterandtheEtta~cy~tionsfacility.ThedegreeofactivationoftheTSC/EOFisafunctionoftimeaswellasofeventseverity.AtthetiradetheeventoccursallemergencyfunctionswillbeperfornedintheControlRccm,withfirstpriorityforoperatoractionsgiventoeventmitigation.Apizcodmately1houraftereventoccurrencetherequiredemergencyfunctionswillbedividedbetweentheControlRoomandtheTSC.Zftheeventisoflowseveritywithinthe"Alert"category,amajorityofthesefunctionswillbeperformedintheContxolBoom,asapplicabletotheevent.Zfthe~isofhighseveritywithinthe"Alert"category,itisexpectedthatthemajorityofthesefunctionswillbeperformedintheTSC,asapplicabletotheevent.PAP-60 ~+~'s>.ak~ Iftheeventcontinuesforalongperiodoftim,suchas24hoursornaze,responsegrouparrivalsatthesitewillrequizefullactivationoftheTSCandapartialactivationoftheEOF,independentoftherelativeseverityofthe"Alert"event.AllapplicableemergencyfunctionswillbeperformedintheTSCwiththeexceptionofdoseassesmant,whichmayshifttotheEOF.8.2.3SITEANDGRIEFBKRGEKZA"SiteEmergency"willrequirefullactivationoftheTSC.Exceptforthedoseassessmentfunction,whichmayshifttotheEOF,allapplicableemergencyfunctionsofSection8.1willbeperformedintheTSC.A"SiteEmergency"isnotexpectedtooccurinstantarmusly;however,shouldthisoccur,theTSCwillbeactivated,staffedandassumeemergencyfunctionsfrcmtheControlRocm,within1hourofeventoccurrence.TheEOFisexpectedtobeactivatedwithin4to6houzsanditwillassunathedoseassessmentfunctionfromtheTSC.A"GeneralEmezgency"willrequirefullactivationoftheTSCandEOFandthefunctionsperformedbysitepersonnelassignedinthesefacilitiesisexpectedtobeidenticaltothosefunctionsperforrredfora"SiteEmzgency."AEP-61 8.3FACTIONSOFINDIVZDGKSREPORTIh6TOTHEEOF:Theemergencyfunction/taskperforrredbyindvidualsrequiredtoreporttotheEOFarechscribedindetailintheDCCNPEnargencyplanChapter12.3.3.3andaregeneralizedbelowbythefollowingfourcatecpries:CoordinationofOff-siteRadiologicalMonitoringandDoseAssessment.-Technical~rtofPlantRecoveryOperations.-ManagenantSupportofRecoveryOperations.-CommunicationwithOffsiteAgencies.AEP-62 Ah>4~~l~. 9.TSCRECORDSANDDATAAVAILABILITYItisnecessarytomakeavailableintheTechnicalSupportCenterthereferencematerial.anddatasourcematerialneededto'akeatechnicalevaluationofanaccidentoremrgencysituation.Therefore,up-~teplantspecificdocumntsandgeneraltechnicalreferencesneededtoimplenentthisfunctionwillbemaintainedintheTechnicalSupportCenter.9.1CONTROLLEDPLANTSPECIFICREFEREKZMATERIAL:Forplantspecificreference,thefollawingcontrolledmaterialwillbekeptintheTSC:TechnicalSepcifications.AbnormalandEmergencyOperatingProcedures.Detailedeleaantaryelectricaldiagrams,anddetailedflawdiagrams.Includedwiththisinformationareplantarran~tdiagramsshowingcomponentlocations.Contourareamapwithpopulationdistributionandoverlaysfor'lumevaluation.DonaldC.GxkNuclearPlantEmrgencyPlanwithprocedures.SystemDescriptions.Precautions,LimitationsandSetpointsPlant.TechnicalDataBockcontainingcurvesforreactivitycontrol,rodworth,RSCtemperatureandpressurelimitsandsecondaryplantperformance.AEP-63 TheabovematerialwillbecontrolledbytheDonaldC.CockPlantdocumntcontrolsystemwhichisgovernedbyPlantManagerInstruction2030,entitledEocurrentControl.9.2UNCONTROLLEDINEORMATIQNANDTZXZiNlCALREFERENCEMATERIALS:Inaddition,otherplantinformationwhichisusefulwillbepresentintheTSC:PumpGIldfanperformancec~lBs~FinalSafetyAnalysisReport.AnnunciatorLayouts.TankVolum/levelcurves.ApprcpriatePlantManagerProcedures.Referencecopiesofmiscellaneousemrgencyprocedures;andUnitVentEmergencyReleaseLevelDeterminationandSecondarySystemEmrgencyReleaseDeterminationguides.Generaltechnicalreferencematerialswillalsobeavailable,suchas:Steamtables.ChartofNuclides.StandardHandbockforElectricalEngineers.HandhxkofChemistryandPhysics.StandardHandbookforMechnaicalEngineers.GhermacbpmmicsHandbock.NuclearReactorEngineeringHandbook.RadiologicalHealthHandbxk.InstrumentEngineersHandbock.PumpHandbook.AEP-64 Theabove~ntioneditemswillbemaintainedintheTSCreadilyavailableandothermaterialsdec@ednecessarymaybeaddedinthefutureatarptiae.9.3OZHERDATA,RECORDS,ANDINFORMATION:ThefollowingreferencesaxeimmediatelyavailabletothepersonnelintheContxolBoom:AbnormalOperatingProceduresThefollowingreportsandinformationareavailableintheplantlibrary.PlantOperatingRecoxdsPlantNuclearSafetyReviewCanmtteeBeportsVendormanuals,andcmponentleveldrawingandsketchesStateofMichiganandlocal'emrgencypreparednessplans.Theplantlibraryislocatedintheofficebuilding,MichisincloseproximitytotheTSCandContxolRooms.AEP-65 ttfrb1~' AttachmentCtoAEP:NRC:0745HResponsestoQuestionsonUnitlCycle8ThermalHydraulics(Non-Proprietary) QUESTIONS'1throuh3:WhatisthebasisforusingtheWRB-1correlationfor15xl5OFA?WhatisthebasisfortheDNBRlimitof1.17forWRB-lappliedto15xl5OFA?Arethereanycriticalheatfluxdata?RESPONSE:TheWRB-1CHF.correlationisbasedenti'relyonrodbundledataandhasbeenshowntoprovideasignificantimprovementinDNBpredictivecapabilityforWestinghousefueldesignswithtype"R"mixingvanegrids.CTheNRChasrecognizedthisincreasedaccuracyandconcurredthata95/95limitDNBRof1.17isappropriatefor12ftand14ft17x17standardandoptimizedfuelassemblies,and12ft15xl5standardfuelassemblieswiththetype"R"mixingvanegrid'Ref.1and2).Basedonthesemi-empiricalnatureofthecorrelation,theNRChasimposedrestrictionsonitsappli-cabilitytootherPWRdesigns.Specifically,theSafetyEvaluationReportstatedthat,"ThecorrelationshouldnotbeappliedtoanyPWRgeometrywhichhasnotbeenspecificallytestedorwhichhasnotbeenbracketedbythetestdata.Theimportantparameterstowhichthisappliesare:rodsize,rodpitch,heatedlength,mixingvanedesignandgridspacing."Te15xl5optimizeddesignisvirtuallyidenticaltothe15xl5R-griddesigninthattheI. Aswillbediscussedbe]ow,similarscalingtechniqueshavebeenusedfordesigningthe1?xl7OFAand14xl4OFAgrids,andDNBtestinghasshownthattheMRB-1correlationcorrectlypredictstheperformanceofthosedesignswithoutmodifications.Basedontheprevioussuccessofthisgridscalingtechnique(asdemonstratedbythe17xl7OFAand14xl4OFADNBtestresults)andthesimilarityofthe15x15OFAandR-gridgeomtries,useoftheMRB-1CHFcorrelationwithade-signlimitof1.17isjustified.forthe'5x15OFAdesign.17xl7OFADNBTestResultsGeomtricallythe'?x'l7OFAdesigndiffersfromthestandard17xl7R-griddesigninthat1)Thefuelroddiameterwasreducedfrom0'.374inchto[ginch.(a,e)2)TheZircaloytype"R"gridis[]thanthefnconeltype"R"gridwhichhaspreviously'eenDNBtested.(a.,c)0Inordertominimizetheeffectofthegriddimensional'changesonDNBperformance,specialcarewastakentopreservetheimportanttype"R"mixingvanecharacteristics.[(CL~Q).]DNBtestingofthe+17xl7OFAgeometrydemonstratedthesuccessofthisscalingapproach-theMRB-1correlationpredictedthedatawellwithoutanymodifications,usingthe..sameperformancefactoraswasusedforthe1?xl?standardfuel.Re-peatabilitystudies(Ref.3)haveshownthattheaccuracyoftheMRB-1correlationisessentiallyidenticalforthe1?xl?OFAandstandardgeometries,indicatingthatnoadditionalcomponentofvarianceisintroducedbythegriddimensionalchanges.Inotherwords,thecorrelationcorrectlyaccountedfortheequivalentdiametereffectsandthescalingapproachcorrectlyaccountedfor'thegriddimensionalchanges.. 14xl4OFADHB'TestResultsThe14x14optimizedgeometrydiffersfromthestandardgeomtryinthat:1)Thefuelroddiameter.hasbeen-reducedfrom0.422inchto]inch.2)TheZi.rcaloytype"R"gridis[)+thanthe.?nconeltype"R"gridwhichhadpreviouslybeenDNBtested.ACHF<estseries.ofthe14xl4OFA'typicalcellgeometryhasbeenperformd'toverifythattheMRB-1correlationcorrectly'redictstheeffectonCHFoftheequivalentdiameterchange,andthatthegridscalingapproachintroducesnoadditionalcomponentofvariance..Aswillbediscussedbelow,theresultsir-icatethattheWRB-1correlationpredictsthe14xl4OFAdatawithessent;allythesameaccuracyasforthegeomtryfromwhichitwasscaled.TestFhcilitiehThetestfacilitiesandtestingproceduresusedf'rthe14x14OFACHFtestswerethesameasthosedescribedinReferences'and'5.Thetest.sectionwassimilartothe0.422inchrodbundledescribedinReference4.exceptthatthemixingvanegriddimensionsweremodifiedslightlyinordertoaccommodatethenewroddiameterandthechangefromInconeltoXircaloy.Themodifiedgriddesignhasretainedthetype"R"gridfeatures.Figure1showsasketchofthe14xl4GFA'typicalcelltestbundlecrosssection.Theaxia1locationsofthegrids.an'dthermocouplesareshowninFi'gure2,andFigure3sh'owsthecosineaxialpowerdistributionusedforthetests. CHFDataEvaluationsThedatawerereducedusingtheTHINGsubchannelcode,inthesamemannerasdescribedpreviouslyinReferences4and5.TheWRB-.lcorrelationofReference6wasusedtopredictthecriticalheatflux.Theperformancefactorusedwasthesameasthatemployedforthe0.422'inchdataeval-uations[],sincethemixingvane.gridsizewas[+]Asdiscussedabove,thisapproachhadpreviouslyworkedquitewellwiththe17x17OFACHFdata.The.resultsofthedatareductionareshowninTable1.Theaveragemeasured-topredi"c'tedcriticalheatfluxratioforthedatasetis[]witha5,csamplestandarddeviationoeviationof[].Thesevalueswerecomparedtothose.(44+fromthe0.422inchrodbundletestswith26inch'd'thincgrispacing',thegeometryfromtheoriginalWRB-1R-griddatabasewhichisclosesttothe14xl4OFAgeometry.AsshowninTable2theagreementisexcellent,indicatingthattheWRB-Icorrelationcorrectlyaccountsforthegeometrychangesandthatthechoiceofperformancefactorisappropriate.AlsogiveninTable2isacomparisonofthe17x17standardandOFADNBstatistics.Itisapparentthatt¹'RB-1correlation'0abilitytopredictCHFisest'lyidenticalforstandardandOFAfueldesigns,T-testsandF-testshavebeenperformdforeachofthesestandard/OFAdatasetpairsinordertoevaluatetheeffectofthegeometrychangeson.theaccuracyoftheWRB-Icorrelation.Table3showstheresultsofthesetests.ItcanbeseenthatthehypothesisthattheWRB-1correlationpre-dietstheDNBbehavioroftheOFAgeometrieswiththesameaccuracyasthestandardR-gridgeometriescannotberejectedata5lsignificancelevel,withtheexceptionofthe-{.'~+;]comparison.ForthatcomparisontheOFAdatahadanappreciablylowervariance.Asmallervarianceisindicativeofbettercorrelationaccuracy,sofailureoftheF-e-testisnoreasonforconcern.Therefore,theresultsofthesetestsindicatethatnoadditionalcomponentofvarianceisintroducedbythegriddimensionalchanges. FIGURE1 FIGURE20AXIALGRIDANDCHFDETECTORLOCATIONS,14X14OPTIMIZEDCHFTESTSECTION Z,,AXIALDISTAHCEFROMBEGIHHIHGOFHEATEDLEHQTll'(.IHCIIES)Flgura3.AxialHeatFluxDistribution TABLE1-CHFTESTRESUt.fSPgR14x14OFATYRICALCELLUSlt(Gj(RD-ICORRELATIONththatttttttItStIttthttthetttIttttetttIItIIttIttheItthethtttIItttththtttttthhhl'tthhtttttttttttIttIittIItttttt'.INLETINLFTLt(LETl(ASS.);OCALLOCALRE4TFLURM/P~ELEVATIJHFRO)l?HLEfRVNPRFSSURETEMPVELOCITYQUAL(TY(XlOE6BTU/HR-.SQFT)CllF(lACI(ES)NO~.(PSIA)(F)(X1066LB}l/HR-SQFT)(P)AREAS~lPRED~I(sfRB-1)PREO~NEAS<<Q,c1htPthttttItthttttttttttttttttthttttItIItttttII'ttt+ttttthttI'tttILI'tI'ttttttI'ttthttI'thtttthttAttttttItIttItttIg,c)M22%2M2243M22%0.MZZ%5M22%6M2247M2Z's8M2209M2250M2251M2252MZZ53M2250M2255M2256M2257M2258M2Z59M2260'M2Z61MZZ62M2263MZZ6%M2265M2266a2267M2268M2269~M2270M2271105991,15821.05931.1O641.11491'.14831.09431.13201:14821.1118~9741'.lo361.09831.09391.08441.07831.1O)8.95141.13381.0550.8592.9104.94661.O7391.0461.9942l.ol541.01461.0065.9615ttttttttttthtttttttttttIttttttttttttthhtIthttftIhthttttttihfttttttlthttttttthtthhttttttttttttttttttthh+ttttt ttttttti+g,c)1.1401'I.0612.9741.93141.07351.14111.1465M2272M2273M2270MZ31%M2315M2316M2317TAGLE1(CONTINUED)CHFTESTRESULTSFOR.14xl4PF/)TYPICALCELLettttitettttttteetti'tttetetetttetttettteettetteetcteetetettettetttttetet'tietetetteeIHLETIHLETINLETl'ASSLOiALL3".AL'lEATFLUX,H/PRUNPRESSURETEMPVELOC?TYQUALI1'r(X10E6Balll/HRSQFTlCHFHJ~.(PSIAl(Fl(X10ibLBH/HR-SQFTl(PlHEAS~)PREO~(MRG-1tttttttittitttttttttttttettttttttetettettetttettttttrttitttttittittitttttittttiittteetrtititteitttELENATIJNFROhINLET(INCHESllPRED~HEAS~Ietetttttttttetetttttttete+b,cLII0FTDE~5800IHRODS10041ZRODS05stttttttitteitttttittttttttttttteeittttttitetttteteeeetiititttttieeetttttttiiettiteteeitieitttttstettttteeett+'LiCRunO.n.:t.<OOIS]ZIRCSPRlicGHVGRIOS26IHSPACINGINhrxRUO/OBITERROOPOMER~1~1765 TABLE2STATISTICALCOMPARISONOFSTANDARDANDOPTIMIZEDFUELCHFRESULTSUSINGTHEWRB-ICORRELATION TABLE3F-testandt;testResultsforStandard/OFADataSetPairsin,Table2*Fortheseteststhe0.422inchrodDNBdatasetshavebeengrouped REFERENCES1)Letter,D.F.Ross,Jr.(NRC)toD.B.Vassallo(NRC),

Subject:

TopicalReportEvaluationforWCAP-8762,April10,,1978.2)Letter,R.L.Tedesco(NRC)toT.M.Anderson(Westinghouse),

Subject:

AcceptanceforReferencingTopicalReportWCAP-9401(P)/WCAP-9402(NP),Hay7,1981.3)Beaumont,.M.D.,Skaritka,J.,"VerificationTestingandAnalysesofthe17xl7OptimizedFuelAssembly,"MCAP-9401,March1979.4)K.M.Hill,F.E.Motley,F.F.Cadek,A.H.Menzel,"Effectof17xl7FuelAssemblyGeomtryonDNB,"WCAP-8926-P-A(WestinghouseProprietary)andWCAP-8297-A(Non-proprietary),February1975.5)F.E.Hotley,A.H.Menzel,F.F.Cadek,"CriticalHeatFluxTestingof17xl7,FuelAssemblyGeometrywith22-inchGridSpacing,"WCAP-8536,(WestinghouseProprietary)andMCAP-8537(Non-proprietary),May1975.6)Motley,F.E.,Hill,K.M.,Cadek,F.F.,Shefcheck,J.J:,"NewCWestinghouseCorrelationMRB-1forPredictingCriticalHeatFluxinRodBundleswithMixingVaneGrids,"WCAP-8762,(WestinghouseProprietary),July19?6. QUESTION4:Whatisthereasonforusingtwocriticalheatfluxcorrelationsinthesamecore?RESPONSE:TheExxonfuelcurrentlyintheD.C.CookUnit1nicorewasoriginallylicensedwiththeW-3criticalheatfluxcorrelation(

Reference:

0C~~CookUnit1FinalSafetyAnalysisReport).Therefore,theWestinghouseanalyseswftheExxonfuelduringthetransitioncycleshavealsoutilizedtheW-3correlation.TheWRB-1criticalheatfluxcorrelationwasdevelopedfromalargebodyofWestinghousemixingvanegridrodbundleCHFdata,andhasbeenshowntopredictCHFforfueldesignswith'hetype"R"gdthbtgriwibetteraccuracythanpreviouscorrelations.TheWRB-1correlationwas,therefore,selectedforanalysesoftheWestinghouse15x15optimizedfueld'ha-esign,'icusesmixingvanegridsofthetype"R"design.FurtherjustificationfortheuseoftheWRB-1correlationforthe15xl5OFAdesignisprovidedintheresponsestoquestions1through3. HRCVESTIONHO.5A5%DNBRpenaltyforthetransitionmixedcoreisusedinthisreload(D.C.CookUnit1Cycle8)asaresultofanalysisusingthesamemethodsasappliedforthe17xl7OFA-and17x17LOPARcores.Provideyouranalysesandresults.RESPONSEAttachedareresultsoftheanalyseswhichwereperformedinordertocalculatetheD.C;CookUnit1Cycle8transitioncoreDNBRpenaltyof5%. Ilull123II5619IO11~1213III1516IT181920~2l:I23I21125Coul'guratIon(FigureIlo.)Pressuro(psla)TADI.E.lAIALYSESHADETOJIIS1IFYTDAHSIIIDII000EHETIIODS"InIotTaupernturo('F)PowerA~laIPnwe>($oF16.8IIN(t/Assy)($ol'gIII)/,Dlstrlbutlono~00gpm/assy)(FigureIIo,)

TABLE2.-RESULTSOFTRANSITIONCOREDNBPENALTYSENSITIVITYSTUOIESRuns~aDNBR(,+(a,c) FIGVRE1TRANSITIONPATTERN1+(a,c)Key:ENC-ENC15xl5FuelAssemblyOFA-'15x15OFA FIGURE2'TRANSITION'ATTERN2+(a,c)Key:ENC-ENC15x15'FuelAssemblyOFA-W15xl5OFA FIGURE3REPRESENTATIVEAXIALPOWERDISTRIBUTION+(a,c) FIGURE4REPRESENTATIVEAXIALPOMERDISTRIBUTION+(a,c) FIGURE5REPRESENTATIVEAXIALPOWERDISTRIBUTION+(a,c) FIGURE6REPRESENTATIVEAXIALPOWERDISTRIBUTION+(a,c) IIUIIIliltIIIlllIllllllllllllilllllllIlilllllllllllllIIIIliltIIIIIIIIllllIIlllltillllIIIIIIIIIIIIIIIIIIlllllillInatlIIIIIIlllllIIIIIIIIIIIIIIIIIIIIIII[llIllllllIIIIIIIIIIIIIIII!IIIIIIIII HEl0IO.iIN('llIXluIt(CIIFSEL6ESSMCO.NAOSIIIll5446132'IGURE8LOCALQUALITYVS.ELEVATION~ll!I~~ lo1O!5INCII1xmInn>a'SfLAESSERCO.suocwusa.46132'IGURE9HRB-IPUBSVS.ELEVATIONill AttachmentDtoAEP:NRC:0745HResponsetoQuestiononFuelSeismicAnalysis STRUCTURALANALYSISOFMIXEDOFA/EXXONREACTORCOREDURINGLOCAEVENTSAHDDURINGSEISMICEVENTSAnaccidentanalysiswasperformedtoestablishthestructuraladequacyoftheoptimizedfuelassemblydesignforuseintheD.C.CookUnitI(AEP)Plant.ThespecificobjectivewastodeterminethemaximumfuelassemblyresponseduringaseismicorLOCAaccidentandtoverifytnattheWestinghouseISx15oPtimizedfuelassembliesremaineoolable.AnanalysisdescribedinSection3.5oftheDonaldC.CookUnitIJuly,'.1982updatedFSAR,dealtwi.th,theadequacyoftheExxonfuelassemblieswhenmixedwithWestinghouse15x15standard(Inconelgrid)fuelassemblies.ThisanalysisboundsamixedcoreconsistingofExxonandWestinghouse15x15optimizedfuelassemblies.Sincethisplantcurrentlyconta'insExxonfuelassemblies,thereactorcorewasmodeledusingvariouscoreloadingpatternsthatcontainedbothWestinghouseandExxonfuelassemblies.Inordertoperformthereactorcorestructuralanalysis,themechanicalpropertiesoftheWestinghouse15x15(Inconelgridtype)fuelassemblydesignwereusedtosimulatetheExxonfuelpropertiesinthemodelingoftheExxonfuel.IthasbeenconfirmedthatthismodelingoftheExxonfuelisconservativeinpredictingtheresponseoftheWestinghouse15x15optimizedfuel.LOCAANALYSISThefuelassemblyresponseresultingfromthemostlimitingmaincoolantpipebreakwasanalyzedusingtimehistorynumericaltechniques.ThevesselmotionfortheLOCAaccidentproducessubstantiallateralloadsonthereactorcore,andtherefore,afiniteelementmodelsimilartotheseismicmodeldescribedinRef.(I)wasusedtodeterminethefuelassemblydeflectionsandgridimpactforces.Thereactorcorefiniteelementmodelwhichsimulatesthefuelassemblyinter-actionduringlateralexcitationconsistsoffuelassembliesarrangedinaplanararraywithinter-assemblygaps.FortheD.C.CookUnitIPlant,012IP:5 fifteen(15)fuelassemblieswhichcorrespondtothemaximumnumberofassembliesacrossthecorediameterwereusedinthemodel.Thefuelassembliesareschematicallyrepresentedbyindividualbeam.elementsasshowninFigurel.AspringandlumpedmasssystemmodelconsistentwiththemodeldescribedinRef.(2)wasusedtorepresentthesimplifiedfuelassembly.elementsinFigure1.Thediscretemassesandspringrateswerecalculateddirectlyfromthefuelassemblyfrequenciesandcorrespondingmodeshapes.Thistypeofmodelwasadoptedbecauseitinherentlyprovidesanaccuraterepresentationofthefuelassemblyhighernaturalfrequenciesandmodeshapes.Becauseofthemixedcoreconsideration;four(4)fuelassemblyreactorcorepatternswereselectedforanalysis.TheWestinghouse/ExxonfuelassemblyrelativelocationsforthevariouspatternsareshowninFigure2.TheseI'eactorcorereloadpatternsareconsistentwithtypicalreloadconfigurations.Thetimehistorymotionfortheupperandlowercoreplatesandthebarrelattheuppercore.plateelevationaresimultaneouslyappliedtothesimulatedreactorcoremodelasiIIustratedinFigure1.Thethreetimehistorymotionswereobtainedfromatimehistoryanalysisinvolvingafiniteelementmodelofthereactorvesselandinternals.Thefuelassemblyresponse,namelythedisplacementsandgridimpactforces,wasobtainedwiththereactorcoremodelbyusingthecoreplateandbarrelmotionsthatresult,fromareactorvesselinletnozzlebreak.Thereactorvesselinletbreakhasbeenshowntoproducethelimitingstructuralloadsforthefuelassembly.ThemaximumgridimpactforcesforboththeLOCAandseismicaccidentsoccurattheperipheralfuelassemblylocationsadjacenttothebafflewall.Thegridimpactforcesareappreciablylowerforfuelassemblylocationsinwardfromtheperipheralfuel.Forthelateralblowdowncase,onlyasmall(outer)portionofthecoreexperienceslargegridimpactforces.0121P:6 Thegridmaximumimpactforcesandfuel'ssemblymaximumdeflectionobtainedfromthenozzleinletbreakforthefourreloadpatternsaregiveninTableI.AnexaminationofTableIshows'onlyminordifferencesinthefuelassemblymaximumdeflectionandgridimpactforcesforthevariousreloadpatterns.TableILOCAINDUCEDFUELASSEMBLYfORCESANDDEFLECTIONCaseI*Case2Case3Case4GridWax.ImpactForce(5ofAllowableLimit)585659FuelAssemblyMax.Deflection(in).73.75.75.750*RefertoFigure2forco<epatternSeismicAnalysisAseismicanalysisofthereactorinternalswasperformedusingasynthesizedtimehistorywavewhichproducedaresponsespectrathatenvelopedtheD.C.CookUnitIPlantdesignrequirement.ThetimehistoryresultsobtainedfromthatanalysiswereusedasinputtothemodelshowninFigureItoobtainthereactorcoreseismicresponse.SincethereactorcoreresponsesobtainedfromtheLOCAanalysiswereessentiallythesame,onlythreeofthefourcorereloadpatternswereanalyzedfortheseismicaccident.Thegridmaximumimpactforcesandfuelassemblymaximumdeflectionsobtainedfromtheseismicanalysisofthethreer'eloadreferencepatternsaregiveninTable2.TheresultsoftheanalysisshowthatCaseIisthemostlimitingpatternbasedonthegridimpactforces.ThehomogeneouscoreconsistingofaIIWestinghouseoptimizedfuelassemblies,whichisCase4,exhibitedthemostmargin.0121P:6 Table2SEISMICINDUCEDFUELASSEMBLYFORCESANDDEFLECTIONSGridMax.ImpactForce(5ofAllowableLimit)FuelAssemblyMax.Deflection(in)C'ase180.71Case375.86Case454.89FUELASSEMBLYCOMPDNENTSTRESSESThestressesinducedinthevariousfuelassemblycomponentswereassessedbasedonthemostlimitingseismicandLOCAaccidentconditions.Thefuelassemblyaxialforcesresult'ingfromtheLOCAaccidentweretheprimarysourceofthestressesinthethimbleguidetubeandfuelassemblynozzles.Asaresultoffaultedconditiontransientloading,theinducedstressesinafuelrodaregenerallyverylow.Theywerecausedbybendingduetothefuelassemblydeflectionsduringtheseismicaccident.AsumnaryoftheLOCAinducedstresses,expressedintermsofapercentageoftheallowablestress'limits,forthefuelassemblymajorcomponentsisgiveninTable3.TABLE3FUELASSEMBLYCOMPONENTSTRESSESFORLOCAACCIDENT(PercentofA'llowable)~ComonentThimbleFuelRod*TopNozzlePlateBottomNozzlePlateUniformStresses(Membrane/Direct)45.513.81.01.0CombinedStresses(Membrane+Bendin)53.213.98.331.6~Includesprimaryoperatingstress0121P:6 ThefuelassemblycomponentstresseswhichresultfromtheverticaleffectsoftheLOCAaccidentweredirectlycombinedwiththeseismicinducedstressesandasummaryofthecombinedstressesisgiveninTable4.Table4FUELASSEMBLYCOMPONENTSTRESSFORCOMBINEDSEISMIC/LOCAACCIDENT(PercentofAllowable)ComponentThimbleFuelRod*TopNozzlePlateBottomNozzlePlateUniformStresses(Membrane/Direct)46.313.91.01.0CombinedStresses(Membrane+Bendin)57.914.68.331.6*IncludesprimaryoperatingstressCONCLUSIONSBasedonthegridimpactforcesandfuelassemblycomponentstressmargins,itisconcludedthattheWestinghouse15x15optimizedfuelassemblieswillremaineoolableforseismicorLOCAaccidents.REFERENCES1.WCAP8236,"SafetyAnalysisof17x17FuelAssemblyforCombinedSeismicandLossofCoolantAccident",L.T.Gesinski.2.WCAP9401,"VerificationTestingandAnalysisofthe17x17OptimizedFuelAssembly",M.D.Beaumont,et.al.0121P:6 A%1.ABBGfXY~rsct)~~r(i)~~r3(t)~t50400~~~~H~000+irVI5COUSDAtf%R~~44P/+rSPlllID0~4q~t)Ct)~FIGUREtSCHENATICREPRESENTAl'IONOFREACTORCOREFINITEELEMENTMODEL 00eIIQ~IalSHQHHlRRIRQIRHHRIR8lggggggggggggggg,HllR8%898%888%5RHl'gggggggggggggg AttachmentEtoAEP:NRC:0745HResponsetoQuestionsonNCAP-9500MethodsandDesignCriteria Q.lReferringtoSections4.2.1.1to4.2.1.3oftheNRCSER'onWCAP-9500,confirmthatthedesignacceptancecriteriastatedintheseSERsectionsaresatisfiedfortheCookUnit115xl5optimizedfuel.~ResonseThhedesignacceptancecriteriaaresatisfiedexceptforSection4.2.1.3(d)oftheSER.TheCookUnit1licensingbasesdoesnotrequirethecombiningofseismicandLOCAforcesduringasafeshutdownearthq'uakeevent.AdditionalinformationonseismicILOCAisprovidedintheresponsetoQuestion3,Part(c).Q.2ReferringtoSections4.2.3.1to4.2.3.3oftheNRCSERonWCAP-9500,confirmthatapprovedmethodswereusedfortheCookUnit1optimizedfuel.NoteandjustifychangestoapprovedmethodsgiveninMCAP-9500whichwereusedfortheCookUnit1fuel.~ResonseApprovedmethodsnotedintheSERsectionsareusedfortheCookUnit1fuelwiththefollowingclarificationsorexceptions:1.WithrespecttoSection4.2.3.2(d),therevisedPAOfuelthermalsafetymodel(WCAP-8720,Addendum2)hasbeenusedinthesafetyanalysesofallnon-LOCAtransients.InaJuly29,1983lettertotheNRCthefollowingisstated,"Inallcases,itwasdeterminedthattheuseofthefueltemperaturespredictedbytherevisedPADmodelhasaslightimpactonthenon-LOCAsafetyanalysesandtheappropriatedesignbasesarestillmet." 2.WithrespecttoSections4.2.3.2(f)and4.2.3.3(c),claddingrupture,claddingballooningandflowblockageduringLOCAincidentsareaccommodatedintheCookUnit1analysesbyuseoftheapproved1981largebreakECCSevaluationmodel(WCAP-9220-P-A).Approvalofthe1981ECCSmodelrepresentsagenericresolutionofthecladswellingandballooningopenitemsstatedintheWCAP-9500SER.3.WithrespecttoSection4.2.3.3(d),theseismicandLOCAforceswerenotcombinedsincethiswasnotrequiredbytheCookUnit1licensingbasestForadditionalinformationseetheresponsetoQ3,part(c).Q.3PertheNRCSERcoverletteronWCAP-9500,providethefollowingplantspecificinformation:a)Howwastherodbowpenaltyaccountedfor?b)Confirmthatthepredictedcladcollapsetimeexceedstheexpectedlifetimeofthefuel.c)ConfirmthattheappropriateseismicandLOCAforcesonthefuelassembliesarewithinacceptablebounds.d)Whatarethefuelsurveillanceplans?Resonse3aTheWestinghouse15x15OFAisassumedtohaveidenticalgapclosureastheWestinghouse15xl5LOPAR,sincetheparameters(fuelroddiameter,cladthickness,andgridspacing)usedinanalyticallydetermininggapclosureareidentical.Thus,theNRC-approvedfullflowrodbowpenaltyappliedtoWestinghouse15x15LOPARis(1)applicabletoWestinghouse15x15OFA.Thisrodbowpenaltyis12.5%DNBR.SufficientmarginbetweenthesafetyanalysislimitDNBRandthe,designlimitDNBRismaintainedtoaccommodatethispenaltyas J wellasthetransitioncoreDNBRpenalty.Theadditionalpenaltyof2.4%DNBRatloss-of-flowconditionsiscoveredexplicitlyintheloss-of-flowanalysisforWestinghouse15x15OFA.Referenceto3(a)Response:1.Stolz,J.F.,NRCLettertoT.M.Anderson,Westinghouse,"StaffReviewofWCAP-8691,"April5,1979.Resonse3bCladflattening(collapse)calculations,performedusingtheNRCapprovedcladflatteningmodel(WCAP-8377),confirmthatcladflatteningwillnotoccurduringtheexpectedlifetimeofthefuel.PredictedcladflatteningtimeforD.C.CookUnit1Region10fuelisinexcessof40000EFPH.Resonse3cConsistentwithSection4.2.3.3(d)oftheSERforWCAP-9500aplantspecificanalysisofseveralcasescoveringtheD.C.CookUnit1mixed-coreconfigurationswasdone.TheanalysisdemonstratesthatgridimpactforcesontheOFAforthemostlimitingcase'are:<60%ofallowableloadforLOCAand<80%ofallowableloadforseismicHowever,sincetheD.C.CookUnit1originaldesignba'sisdoesnotcombinegridimpactforcesduetoresponsetotheLOCAandseismicevents,wehavenotcombinedgridimpactforcesinthisanalysis.Analysesalsoshowthatthemajorfuelassemblycomponentstressesarelessthantheallowable.Hence,itisconcludedtheWestinghouse15x15OFAwillremaininaeoolableconfigurationunderthepostulatedLOCAorseismicevents. Resonse3dAroutinefuelinspectionprogramwillbeimplementedontheirradiatedanddischargedoptimizedfuelfromtheinitialreloadregion.Theprogramwillinvolvevisualexaminationson.arepresentativesampleofassembliesfromtheinitialfuelregionateachrefuelinguntilthisfuelisdischarged.Visualobservationswillinclude,butnotbelimitedto,crudbuildup,rodbowing,gridstrapconditionsandmissingcomponents.Additionalfuelinspectionswouldbeperformeddependingontheresultsofoperationalmonitoring,includingcoolantactivity,andthevisualfuelinspections. AttachmentFtoAEP:NRC:0745HRevisedPeakingFactorLimitReport}}