ML17334B113

From kanterella
Revision as of 02:15, 4 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Reactor Vessel Matl Surveillance Program for DC Cook Unit 2:Analysis of Capsule X, Final Rept on Swri Project 06-8888
ML17334B113
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 05/31/1987
From: LEVERANT G R, NAIR P K, WILLIAMS M L
SOUTHWEST RESEARCH INSTITUTE
To:
Shared Package
ML17325A184 List:
References
NUDOCS 8707020216
Download: ML17334B113 (221)


Text

gy~cg~~n~>'I....9207280249SOUTHWESTRESEARCHINSTITUTEPostOfficeDrawer28510,6220CulebraRoadSanAntonio,Texas78284REACTORVESSELMATERIALSURVEILLANCEPROGRAMFORDONALDC.COOKUNITNO.2:ANALYSISOFCAPSULEXByP.K.NairM.L.Williams(Consultant)FINALREPORTSwRIProject06-8888May1987APPi";-OVEDApproved:QI'orIndiana&MichiganElectricCompanyDonaldC.CookNuclearPlantBridgeman,Michigan49106COOKPLANTMEDRECORD-MEDCOPYSECTIOI'Jc'i~!GPi!EERD~.TE~pah,vi..xiiiLII'::!i!iEi)A12i(.'I.AHl'722,i~!Y(+IP'"lii<IANENTfbi!0l,".1Ul;"RE7c.w1lONYRS.GeraldR.Leverant,DirectorDepartmentofMaterialsSciences ABSTRACTCapsuleX,thethirdvesselmaterialsurveillancecapsuleremovedfromtheDonaldC.CookUnitNo.2nuclearpowerplanthasbeentested,andtheresultshavebeenevaluated.Theanalysisofthedataindicatesthatthepressurematerialwillretainadequateshelftoughnessthroughoutthe32EFPYdesignlifetime.Heatupandcooldownlimitcurvesfornormaloperationhavebeendevelopedforupto12effectivefullpoweryearsofoperation.

TABLEOFCONTENTSLISTOFFIGURESLISTOFTABLES1.0SUMMARYOFRESULTSANDCONCLUSIONS~Pae1V2.03.04.05.06.0BACKGROUNDDESCRIPTIONOFMATERIALSURVEILLANCEPROGRAMTESTINGOFSPECIMENSFROMCAPSULEX4.1Shipment,Opening,andInspectionofCapsule4.2Neutron,Transport,andDosimetryAnalysis4.3MechanicalPropertyTestsANALYSISOFRESULTSHEATUPANDCOOLDOWNLIMITCURVESFORNORMALOPERATIONOFDONALDC.COOKUNITNO.2121213344

77.0REFERENCES

APPENDIXA-DeterminationofAssembly-MiseSourceDistributionforDonaldC.CookUnit2,CapsuleXAnalysisAPPENDIX8-Descriptionofthe3-DFluxSynthesisMethodAPPENDIXC-TensileTestDataRecords61 LISTOFFIGURES~FiereArrangementofSurveillanceCapsulesinthePressureVessel~PaeVesselMaterialSurveillanceSpecimensArrangementofSpecimensinCapsuleXR-8GeometryforDonaldC.CookUnit2.RadiationResponseofDonaldCDCookUnitNo.2VesselShellPlateC5521-2(LongitudinalOrientation)RadiationResponseofDonaldC.CookUnitNo.2VesselShellPlateC5521-2(TransverseOrientation)RadiationResponseofDonaldC.CookUnitNo.2ReactorVesselHeat-AffectedZoneMaterialRadiationResponseofDonaldC.CookUnitNo.2ReactorVesselWeldMaterialEffectofNeutronFluenceonRTNDTShift,DonaldC.CookUnitNo.2154142444910DependenceofCUpperShelfEnergyonNeutronFluence,DonaldC.CookknitNo.211ReactorCoolantSystemPressure-TemperatureLimitsVersus100'F/HourRateCriticalityLimitandHydro-staticTestLimit,12EFPY12ReactorCoolantSystemPressure-TemperatureLimitsVersusCooldownRates,12EFPY13ReactorCoolantSystemPressure-TemperatureLimitsVersus100'F/HourRateCriticalityLimit,andHydro-staticTestLimit,32EFPY(Ref.17)14ReactorCoolantSystemPressure-TemperatureLimitsVersusCooldownRates,32EFPY(Ref.17)57585960 LISTOFTABLESTable3.14.14.24.34.44.5DonaldC.CookUnitNo.2ReactorVesselSurveillanceMaterials[12]47-GroupEnergyStructureReactionCrossSections(Barns)UsedinCalculationsForSequoyahUnit1AbsoluteCalculatedNeutronFluenceRateSpectra[)(E)]AtTheCenterofSurveillanceCapsules(SC)ForDonaldC.CookUnit2CalculatedSaturatedActivitiesAtTheCenterOfSurveillanceCapsulesForDonaldC.CookUnit2DonaldC.CookUnit2Spectrum-AveragedCrossSectionsAtCenterOfSurveillanceCapsules(SC)~Pae16171819194.60CalculatedNeutronFluenceRate[)(E)]SpectraInReactorPressureVesselAtPeakAxialandAximuthalLocation(8=45')ForDonaldC.CookUnit221.AzimuthalVariationof)(>1)InRPVOfDonaldC.CookUnit2204.84.9RadialGradientOfFastFluenceRate[)(E>1]ThroughRPV,AtPeakAzimuthalandAxialLocationsInDonaldC.CookUnit2CalculatedFluenceRatesAndLeadFactorsInDonaldC.CookUnit222234.1OEquationsandDefinitionsForNeutronDosimetryAnalysis254.11ConstantsForProcessingDosimetryData264.12ReactorPower-TimeHistoryForDonaldC.CookUnit2CapsuleX274.13CorrectionFactorsToObtainMeasuredSaturatedActivitiesAtCapsuleXCenterline304.144.15'alculatedSaturatedMidplaneActivitiesInDonaldC.CookUnit2SurveillanceCapsulesComparisonOfMeasuredandCalculatedSaturatedActivitiesForFastThresholdDetectorsThermalNeutronFluenceRateInCapsuleX313233 TableLISTOFTABLES(Continued)~Pae4.17ComparisonOfFastNeutronFluenceRatesFromTransportCalculationsandDosimetryMeasurementsForCapsuleX4.18CalculatedPeakFluencesInPressureVesselBasedonCapsuleXDosimetry4.19CharpyImpactPropertiesofLongitudinalPlateDonaldC.CookUnitNo.2CapsuleX4.20CharpyImpactPropertiesOfTransversePlateDonaldC.CookUnitNo.2CapsuleX353537384.21CharpyImpactPropertiesofHAZHaterialDonaldC.CookUnit2CapsuleX394.22CharpyImpactPropertiesOfMeldMetalDonaldC.CookUnit2CapsuleX4.23EffectofIrradiationOnCapsuleXSurveillanceMaterlaisDonaldC.CookUnitNo.24.24TensilePropertiesOfSurveillanceMaterials,DonaldC.CookUnitNo.24O45465.15.2Pr'ojectedValuesOfRTNDTForDonaldC.CookUnitNo.2ReactorVesselSurveillanceCapsuleRemovalSchedule[16jDonaldC.CookUnitNo.25053 1.0SUMMARYOFRESULTSANDCONCLUSIONSTheanalysisofthethirdmaterialsurveillancecapsuleremovedfromtheDonaldC.CookUnitNo.2reactorpressurevesselledtothefollowingconclusions:(1)Basedonacalculatedneutronspectraldistribution,CapsuleXreceivedafastfluenceof1.002x109neutrons/cm(E>1MeV)atitsradialcenterline.(2)ThesurveillancespecimensofthecorebeltlinematerialsexperiencedshiftsinRTNDTof70'Fto103'Fasaresultofexposureuptothe1986refuellingoutage.(3)ThecorebeltlineplatematerialsexhibitedthelargestshiftsinRTNDT.Sincetheintermediateshellplatematerialhasthehighestinitial(unirradiated)RTNDTitwillcontroltheheatupandcooldownlimitationsthroughoutthedesignlifetimeofthepressurevessel.(4)Theestimatedmaximumneutronfluenceof3.406x10neutrons/cm(E>1MeV)receivedbythevesselwallaccruedin5.273effectivefullpoweryears(EFPY).Theprojectedmaximumneutronfluenceafter32EFPYis2.067x10neutrons/cm(E>1MeV).Thisestimateisbasedontheaveragefluencerateafter5.273EFPYofoperations.(5)BasedontheanalysesofCapsulesT,YandX,theprojectedvaluesofRTNDTfortheDonaldC.CookUnit2vesselcorebeltlineregion,atthe1/4Tand3/4Tpositionsafter12EFPYofoperation,are146'Fand102'F,respectively.Thesevalueswereusedasthebasesforcomputingrevt.sedheat-upandcooldownlimitcurvesforupto12EFPYofoperation.(6)BasedontheanalysesofCapsulesT,YandX,thevaluesofRTNDTfot'heDonaldC.CookUnit2vesselcorebeltlineregion,atthe1/4Tand3/4Tpositions.after32EFPYofoperation,are-projectedtobe163'Fand 130'F,respectively.(7)TheDonaldC.CookUnitNo.2vesselplates,weldmetal,andHAZmateriallocatedinthecorebeltlineregionareprojectedtoretainsufficienttoughnesstomeetthecurrentrequirementsof10CFR50AppendixGthroughoutthedesignlifeoftheunit.

2.0BACKGROUNDTheallowableloadingsonnuclearpressurevesselsaredeterminedbyapplyingtherulesinAppendixG,"FractureToughnessRequirements,"of10CFR50[1].Inthecaseofpressure-retainingcomponentsmadeofferriticmaterials,theallowableloadingsdependonthereferencestressintensityfactor(KIR)curveindexedtothereferencenilductilitytemperature(RTNDT)presentedinAppendixG,"P.otectionAgainstNon-DuctileFailure,"ofSectionIIIoftheASMECode[2].Further,thematerialsinthebeltlineregionofthereactorvesselmustbemonitoredforradiation-inducedchangesinRTNDTpertherequirementsofAppendixH,"ReactorVesselMaterialSurveillanceProgramRequirements,"of10CFR50.TheRTNDTisdefinedinparagraphNB-2331ofSectionIIIoftheASMECodeasthehighestofthefollowingtemperatures:(1)Drop-weightNilDuctilityTemperature(DW-NDT)perASTME208[3];(2)60degFbelowthe50ft-lbCharpyV-notch(Cv)temperature;(3)60degFbelowthe35milCtemoerature.TheRTNDTmustbeestablishedforallmaterials,includingweldmetalandheat-affectedzone(HAZ)materialaswellasbaseplatesandforgings,whichcomprisethereactorcoolantpressureboundary.Itiswellestablishedthatferriticmaterialsundergoanincreaseinstrengthandhardnessandadecreaseinductilityandtoughnesswhenexposedtoneutronfluencesinexcessof10neutronspercm(E>1MeV)[4].Also,ithasbeenestablishedthattrampelements,particularly,copperandphosphorus,affecttheradiationembrittlementresponseofferriticmaterials[5-7].TherelationshipbetweenincreaseinRTNDTandcoppercontentis openingloading(MOL)fracturemechanicsspecimens.CurrenttechnologylimitationsresultinthetestingofthesespecimensattemperatureswellbelowtheminimumservicetemperatureinordertoobtainvalidfracturemechanicsdataperASTME399[10],"StandardMethodofTestforPlane-StrainFractureToughnessofMetallicMaterials."Currently,thesespecimensarebeingstoredpendinganacceptabletestingprocedureliketheJ<fracturetesting[11]hasbeendefined.ThisreportdescribestheresultsobtainedfromtestingthecontentsofCapsuleX.ThesedataandthoseobtainedpreviouslyfromCapsulesTandYareanalyzedtoestimatetheradiation-inducedchangesinthemechanicalpropertiesofthepressurevesselatthetimeoftherefuellingoutageaswellaspredictingthechangesexpectedtooccuratselectedtimesinthefutureoperationoftheDonaldC.CookUnitNo.2powerplant.

3.0DESCRIPTIONOFMATERIALSURVEILLANCEPROGRAMTheDonaldC.CookUnitNo,2materialsurveillanceprogramisdescribedindetailinMCAP8512[12],datedNovember1975.Eightmaterialssurveillancecapsuleswereplacedinthereactorvesselbetweenthethermalshieldandthevesselwallpriortostartup,seeFigure1.Theverticalcenterofeachcapsuleisoppositetheverticalcenterofthecore.ThecapsuleseachcontainCharpyV-notches,tensile,andWOLSpecimensmachinedfromtheSA533GrB,CL2plate,weldmetal,andheat-affectedzone(HAZ)materialslocatedatthecorebeltline.ThechemistriesandheattreatmentsofthevesselsurveillancematerialsaresummarizedinTable3.1.Alltestspecimensweremachinedfromthetestmaterialsatthequarter-thickness(1/4T)locationafterperformingasimulatedpostweldstress-relievingtreatment.MeldandHAZspecimensweremachinedfromastress-relievedweldmentwhichjoinedsectionsoftheintermediateandlowershellplates.HAZspecimenswereobtainedfromtheplateC5521-2sideoftheweldment.ThelongitudinalbasemetalCspecimenswereorientedwiththeirlongaxisparalleltotheprimaryrollingdirectionandwithV-notchesperpendiculartothemajorplatesurfaces.ThetransversebasemetalCvspecimenswereorientedwiththeirlongaxisperpendiculartotheprimaryrollingdirectionandwithV-notchesperpendiculartothemajorplatesurfaces.Tensilespecimensweremachinedwiththelongitudinalaxisperpendiculartotheplateprimaryrollingdirection.TheMOLspecimensweremachinedwiththesimulatedcrackparalleltotheprimaryrollingdirectionandperpendiculartothemajorplatesurfaces.Allmechanicaltestspecimens,seeFigure2,weretakenatleastoneplatethicknessfromthequenchededgesoftheplatematerial.CapsuleXcontained44CharpyV-notchedspecimens(8longitudinaland X(220')270iV('8>>)Y(320')2(356'il80'oS(~.)U(140')I90'eac.orVeeselTherr.".alSi'l'ore3arrelT(<0')FIGUREl..ARRANGEMENTOFSURVEILLANCECAPSULESINTHEPRESSUREVESSEL TABLE3.1DONALDC.COOKUNITNO.2REACTORVESSELSURVEILLANCEMATERIALS[12]HeatTreatmentHistorShellPlateMaterial:Heatedto1700Ffor4-1/2hours.waterquenched.Heatedto1600Ffor5hours,waterquenched.Temperedat1250Ffor4-1/2hours,aircooled.Stressrelievedat1150Ffor51-1/2hours,furnacecooled.Weldment:Stressrelievedat1140Ffor9hours,furnacecoo1ed.ChemicalComposition(Percent)MaterialCMnPSiNiMoCuCrPlateC-5521-2PlateC-5521-2WeldMetalWeldMetal(0.211.290.0130.0150.221.280.0170.0140.111.330.0220.0120.081.420.0190.0160.160.580.270.580.440.970.360.960.500.140.550.110.0720.540.0550.0680.050.07(a)LukensSteelanalysis.(b)Westinghouseanalysis.(c)ChicagoBridgeandIronanalysis.

(293~lOC3~i4I'04ZJ43I(a)Charpvv-notchimpcc'pe~JmenII.CCI'2+9III6II1PS3~~1ItI99I444II.26442I4~al2RQA~i18$,-o~~~V~95+935~ON(b)Temiiesuecimenl,45aeaIIU24~Z<S439I'XT~3IoaR(c)Wedca"enir~loa"Incspe'r."enFIGURE2.VESSELMATERIALSURVEILLANCESPECIMENS 1012transversefromtheplatematerial,plus12eachfromweldmetalandHAZmaterial);4tensilespecimens(2plateand2weldmetal);and4transverseplateWOLspecimens.ThespecimennumberingsystemandlocationwithinCapsuleXisshowninFigure3.CapsuleXalsowasreportedtocontainthefollowingdosimetersfordeterminingtheneutronfluxdensity:TaretElementForm~QuantitIronCopperNickelCobalt(inaluminum)Cobalt(inaluminum)Uranium-238Neptunium-237BarewireBarewireBarewireBarewireCdshieldedwireCdshieldedoxideCdshieldedoxideTwoeutecticalloythermalmonitorshadbeeninsertedinholesinthesteelspacesinCapsuleX.One(locatedatthebottom)was2.5$Agand97.5$Pbwithameltingpointof579'F.Theother(locatedatthetopofthecapsule)was1.75$Ag,0.75$Sn,and97.5$Pbhavingameltingpointof590'F.

11TOPMT-7LIT-8TENSILELIT-16WOLMT-15WOLMT-14WOLWOLLIW7MWSMW-47MW-48MT-47MT-48MW-45MW-46Mr-45MT-heTENSILECHARPYCHARPYSPECIMENCODE:MT-PLATEC5221-2TRANSVERSE213MW-43MW-44MT-43MT-44LIW-41MW-42MT-41LIT-42MW-39MW-40MT-39MT40LIW>>37MW-38MT-37MT-38CHARPYCHARPYCHARPYCHARPYML-PLATEC5221-2LONGITUDINALMW-WELDMETALMH-WELDHEATAFFECTEDZONEMH-47MH-48ML-31M1.-32CHARPYMH45MH-46ML-29ML-30CHARPYMH-43MH44ML-27M1.-28CHARPYMH-41MH42ML-25M1.-28CHARPYBOTTOMMH-39MH40MH-37MH-38CHARPYFIGURE3.ARRANGEMENTOFSPECIMENSZNCAPSULEX 124.0TESTINGOFSPECIMENSFROMCAPSULEXThecapsuleshipment,capsuleopening,specimentesting,andreportingofresultswenecarriedoutinaccordancewiththeProjectPlanforDonaldC.CookUnitNo.2ReactorVesselIrradiationSurveillanceProgram.TheSwRINuclearProjectsOperatingProcedurescalledoutinthisplaninclude:(1)XI-MS-101-1,"DeterminationofSpecificActivityandAnalysisofRadiationDetectorSpecimens"(2)XI-MS-103-1,"ConductingTensionTestsonMetallicSpecimens"(3)XI-MS-104-1,"CharpyImpactTestsonMetallicSpecimens"(4)XIII-MS-103-1,"OpeningRadiationSurveillanceCapsulesandHandlingandStoringSpecimens"(5)XIII-MS-104-2,"ShipmentofWestinghousePMRVesselMaterialSurveillanceCapsuleUsingSwRICaskandEquipment"CopiesoftheabovedocumentsareonfileatSwRI.4.1ShipmentOoeninandInsectionofCapsuleSouthwestResearchInstitutepreparedProcedureXIII-MS-104-2fortheshipmentofCapsuleXtotheSwRIlaboratories.SwRIpersonnelseveredthecapsulefromitsextensiontube,sectionedtheextensiontubeintoseverallengths,andsupervisedtheloadingofthecapsuleandextensiontubematerialsintotheshippingcaskfortransporttoSanAntonio,Texas.ThecapsulewasopenedandthecontentsidentifiedandstoredinaccordancewithProcedureXIII-MS-103-1.Aftersawingoffthecapsuleends,thelongseamweldsweremilledoffusingaBridgeportverticalmillingmachine.Thetophalfofthecapsuleshellwasremovedandthespecimensandspacerblockswerecarefullyremovedandplacedinindexedreceptaclesidentifyingeachcapsulelocation.Afterthedisassemblyhadbeencompleted,eachspecimenwascarefullycheckedtoinsureagreementwiththe 13identificationandlocationaslistedinMCAP8512.[12]Nodiscrepancieswerefound.Thethermalmonitorsandneutrondosimeterwireswereremovedfromtheholesinthespacers.Thethermalmonitors,containedinquartzvials,wereexaminedandnomeltingwasobserved,thusindicatingthatthemaximumtemperatureduringexposureofCapsuleXdidnotexceed579'F.4.2NeutronTranscrtandDosimetrAnalsisAspartofthesurveillancetestingandevaluationprogram,theneutrontransportanddosimetryanalysisservestwopurposes:(1)todeterminetheneutronfluence(E>1.0MeV)inthesurveillancecapsulewherethemetallurgicaltestspecimensarelocatedand(2)todeterminetheneutronfluence(E>1.0MeV)incidentonandwithinthereactorpressurevessel(RPV).ThecurrentmethodologyforRPVfluencedeterminationisbasedoncombiningresultsoftransportcalculationswithmeasureddosimeteractivities.Thetransportcalculationsprovidethreeimportantsetsofdataintheoverallanalysis:(1)spectrum-weighted,effectivedosimetercrosssections,(2)leadfactorsforvariouslocationsintheRPV,and(3)fluenceratesatlocationsofinterest.Thecalculatedeffectivecrosssectionsfordifferentdosimetersaredividedintothemeasuredreactionratesinordertoobtainthefluencerate(E>1.0MeV)atthecapsulelocation.ThecorrespondingfluenceratesatvariousdepthsintotheRPVareobtainedbydividingthecapsulefluenceratebytheappropriateleadfactors.Boththeeffectivecrosssectionsandtheleadfactorsdependonlyonratiosofcomputedresultssothatabsolute

14calculationsarenotrequired.Themeasureddosimeteractivitiesprovidethefluenceratenormalization.However,absolutefluenceratesarecalculatedtocomparewithmeasurementstoprovideameasureoftheuncertaintyinvolvedintheRPVfluencedeterminationprocedure.4.2.1NeutronTransortAnalsisAdiscreteordinatescalculationusingtheDOT[13]codewasperformedtoobtaintheradial(R)andazimuthal(0)fluence-ratedistributionforthegeometryshowninFigure4.TheinclusionofthesurveillancecapsulesintheR-0modelismandatorytoaccountforthesignificantperturbationeffectsfromthephysicalpresenceofthecapsule.The47-groupenergystructurefortheSAILOR[14]cross-sectionlibraryisgiveninTable4.1.AnS8angularstructureandaP3Legendrecross-sectionexpansionwereusedinthecomputations.Thefine-group0dosimetercrosssectionsfortheCu(n,a)CoreactionwereobtainedfromENDF/B-Vfileandwerecollapsedto47groupsusingafissionplus1/Eweightingspectrum.TheotherreactioncrosssectionsweretakenfromtheSAILORcross-sectionlibrary.ThereactioncrosssectionsaregiveninTable4.2.TheresultsofthetransportcalculationsrequiredfortheRPVfluenceanalysisarepresentedinTables4.3through4.9.Table4.3containsthecalculatedabsolutefluence-ratespectraforthecenterlineofthesurveillancecapsulesandinTable4.4arethecalculatedsaturatedactivitiesobtainedbyfoldingtheresultsofTables4.3and4.2Thespectrum-averagecrosssections,Table4.5,areobtainedfromtheresultsofTables4.3and4.4.Table4.6showsthatthepeakfluenceratesattheinnerradius,1/4-T,and3/4-Tlocationsareatthe8=45'zimuthal,andTable4.7arethegroupfluxesatthepeaklocation.Table4.8showstheradialgradientsofthefluencerates(E>1.0MeV)throughthereactorpressurevessel.Thepeak 1540CAPSULEST,U,X,YFORMERPLATErPrRPVDOWNCOMERTHERMALSHlELDWATERGAPBARREL4CAPSULESS,V,W,ZFIGURE4.R-0GeometryfoiDonaldC.CookUnit2.

'6TABLE4.147-GROUPENERGYSTRUCTUREGroupLowerenergy(MeV)GroupLowerenergy(Mev)101213141516171819202122232414.19*12.2110.008.617.416.074.973.683.012.732.472.372.352.231.921.651.351.000.8210.7430.6080.4980.3690.298252627282930313233343536373839404142434445460.1830.1110.06740.04090.03180.02610.02420.02190.01507.10x3.36x1.59x4.54x2.14x1.01x3+73x1.07x5.04x1.86x8.76x4.14x1.00x1.00x1010310310-4104104101010-610-61071071010-11*TheupperenergyofGroup1is17.33MeV.

17TABLE4.2REACTIONCROSSSECTIONS(BARNS)USEDINCALCULATIONSFORDONALDC.COOKUNIT2Group1234'67891011121314151617181920212223242526272829303132333435363738394041424344454647Energy(MeV)1.733E+011'.419E+Ol1.221E+011.000E+Ol8.607E+007.408E+006.065E+004.966E+003.679E+003.012E+002.725E+002.466E+002.365E+002.346E+002.231E+001.920E+001.653E+001.353E+001.003E+008.208E-017.427E-016.081E-014.979E-013.688E-012.972E-011.832E-011.111E-016.738E-024.087E-023.183E-022.606E-022.418E-022.188E-021.503E-027.102E-033.355E-031.585E-034.540E-042.144E-041.013E-043.727E-051.068E-055.043E-061.855E-068.764E-074.140E-071.000E-07U-238(nf)1.275E+001.086E+009.844E-Ol9.864E-019.891E-018.574E-015.849E-015.615E-015.475E-015.463E-015.527E-015.521E-015.512E-015.504E-015.390E-014.685E-012.706E-014.502E-021.102E-022.881E-031.397E-035.378E-041.502E-048.333E-056.168E-054.668E-054.015E-054.000E-056.176E-058.610E-058.700E-058.700E-058.700E-055.650E-054.860E-117.439E-104.199E-041.464E-081.044E-081.243E-081~955E-083.086E-084.770E-087.171E-085.067E-081.881E-081.182E-09Np-237(nf)2.535E+002.320E+002.334E+002.329E+002.248E+001.965E+001.520E+001.538E+001.638E+001.680E+001.697E+001.695E+001.694E+001.693E+001.677E+001.645E+001.604E+001.543E+001.389E+001.205E+009.845E-016.437E-012.642E-018'00E-023.552E-022.043E-021.542E-021.228E-021.088E-021.023E-021.002E-029.906E-039.723E-031.004E-026.506E-038.716E-032.303E-023.701E-026.129E-029.027E-022.296E-021.014E-024.011E-039.350E-031.407E-024.328E-038.332E-02Fe-54(n)2.686E+014.137E-015'76E-015.781E-015.888E-015.590E-014.697E-013.199E-011.762E-011.155E-017.755E-025.111E-024.756E-024.484E-022.008E-024.771E-036.335E-041.311E-0500000000000000000000000000000Ni-58(n)2.962E-014.416E-016.103E-016.588E-016.553E-016.285E-015.365E-Ol3.917E-012.287E-011.658E-011.131E-019.308E-029.232E-028.614E-024.661E-022.660E-031~337E>>024.438E-035.023E-041.729E-044.914E-057.673E-068.903E-074.070E-081.832E-150000000000000000000000C0-63(nn)3.682E-024.540E-025.357E-023.811E-021.906E-029.277E-032.915E-034.437E-043.568E-055.831E-061.707E-066.834E-074.637E-073.430E-071.150E-071.536E-080000000000000000000000000000000 TABLE4.3ABSOLUTECALCULATEDNEUTRONFLUENCERATESPECTRA[4(E))ATTHECENTEROFSURVEILLANCECAPSULES(SC)FORDONALDC.COOKUNIT2GroupUpperEnergy(MeV)SCat40'Cat44(E)*n'cm2's"11234567891011121314151617181920212223242526272829303132331.733E+011.419E+011.221E+011.000E+018.607E+007.408E+006.065E+004.966E+003.679E+003.012E+002.725E+002.466E+002.365E+002.346E+002.231E+001.920E+001.653E+001.353E+001.003E+008.208E-017.427E-016.081E-014.979E-013.688E-012.972E-011.832E-011.111E-016.738E-024.087E-023.183E-022.606E-022.418E-022.188E-026.93656E+063.09479E+071.27275E+082.59658E+084.64990E+081.10830E+091.59842E+093.24363E+092.93332E+092.36696E+092.89003E+091.42825E+094.42338E+082.12501E+095.48432E+09.7.12292E+091.03149E+102.05020E+101.54321E+106.80836E+092.08115E+101.90620E+101.87027E+101.87067E+102.59350E+102.32048E+101.63390E+101.52521E+105.03766E+091.71555E+095.79265E+093.69441E+098.14806E+095.76403E+062.51896E+079.75622E+071.92220E+083.27455E+087.51266E+081.00403E+091.79877E+091.45231E+091.12970E+091.33287E+096.52104E+081.98677E+089.45496E+082.41337E+092.98454K+094.21588E+097.93826E+095.72833E+092.54752E+097.26207E+096.55344E+096.48139E+096.28913E+098.87760E+097.80143E+095.48592E+095.10511E+091.69700E+096.14043E+081.78767E+091.19550E+092.67201E+09 19TABLE4.4CALCULATEDSATURATEDACTIVITIESATTHECENTEROFSURVEILLANCECAPSULESFORDONALDC.COOKUNIT2ReactionSurveillanceCapsuleat4'Bq/g)SurveillanceCapsuleat40'Bq/g)54Fe(n,p)54Mn5Ni(n,p)Co63Cu(n,a)60CoNp(n,f)3Cs238U(nf)137Cs1.535E+62.260E+72.026E+51.119E+71.561E+62.648E+64.054E+72.867E+52.749E+73.260E+6TABLE4.5DONALDC.COOKUNIT2SPECTRUM-AVERAGEDCROSSSECTIONSATCENTEROFSURVEILLANCECAPSULES(SC)a(barns)(Reaction54Fe(n,p)58Ni(n~p)Cu(n,n)7Np(n,f)238U(nf)46Ti(n,p)SCat400.06780.09270.0007002.7630.344SCat4'.08940.11740.001132.5580.3740.0152/0o(E)y(E)dE(1)Jl$(E)dE TABLE4.620AZIMUTHALVARIATIONOF](>1)INRPVOFDONALDC.COOKUNITy(E>1.0MeV)n/cm's0-TR~219.781/4-TR~225.193/4-TR~236.1421234567890111213141516171819202122232425262728293031323334353637383940414243c,g46474849501.563.284.004.725.948.0010.0012.0014.0016.0018.0020.0021.5022.5023.5024.3925.0225.4826.3127.4928.3028.7429.4830.5031.5032.4733.4734.5035.2535.7536.2536.7537.2537.7538.2538.8139.2839.6640.0040.3440.7241.0541.4541.9242.3942.8743.3443.8244.2944.769.480E+099.169E+099.025E+099.486E+091.015E+101.085E+101.150E+101.217E+101.286E+101.350E+101.402E+101.432E+101.427E+101.418E+101.408E+101.401E+101.399E+101.399E+101.399E+101.408E+101.424E+101.434E+101.449E+101.482E+101.522E+101.568E+101.620E+101.678E+101.722E+101.751E+101.778E+101.800E+101.815E+101.822E+101.817E+101.804E+101.776E+101.766E+101.779E+101.802E+101.852E+101.899E+101.955E+102.008E+10-2.047E+102.075E+102.097E+102.112E+102.121E+102.125E+105.221E+095.176E+095.175E+095.037E+095.597E+096.001E+096.375E+096.749E+097.122E+097.466E+097.738E+097.883E+097.876E+097.839E+097.799E+097.779E+097.781E+097.784E+097;787E+097.847E+097.937E+097.990E+098.078E+098.251E+098.469E+098.712E+098.983E+099.277E+099.498E+099.630E+099.741E+099.828E+099.887E+099.908E+099.900E+099.902E+099.924K+099.975E+091.006E+101.016E+101.032E+101.046E+101.066E+101.090E+101.112E+101.130E+101.144E+101.154E+101.161E+101.164E+101.028E+091.041E+091.052E+091.073E+091.106E+091.175E+091.247E+091.320E+091.389E+091.450E+091.497E+091.523E+091~527E+091.527E+091.526E+091.527E+091.530E+091.532E+091.537E+091.551E+091.568E+091.578E+091.597E+091.628E+091.666E+091.708E+091.754E+091,803E+091.837E+091.858E+091.877E+091,893E+091.907E+091.920E+091.935E+091.954E+091.975E+091.994E+092.012E+092.028K+092.047E+092.064E+092.085E+092.112E+092.139E+092.165E+092.186E+092.203E+092.215E+092.221E+09 2'ABLE4.7CALCULATEDNEUTRONFLUENCERATE[$(E)JSPECTRAINREACTORPRESSUREVESSELATPEAKAXIALANDAXIMUTHALLOCATION(645')FORDONALDC.COOKUNIT2GroupUpperEnergy(MeV)0-TR=219.78$(E)1.0MeV)n/cm's1/4-TR~225.193/4-TR=236.142123456789011121314151617181920212223242526272829303132331.733E+011.419E+011.221E+011.000E+018.607E+007.408E+006.065E+004'66E+003.679E+003.012E+002.725E+002.466E+002.365E+002.346E+002.231E+001.920E+001.653E+001.353E+001.003E+008.208E-017.427E-016.081E-014.979E-013.688E-012.972E-011.832E-011.111E-016.738E-024.087E-023.183E-022.606E-022.418E-022.188E-020.53166E+070.23088E+080.90374E+080.17693E+090.30438E+090.71052E+090.97912E+090.17730E+100.13497E+100.10299E+100.11992E+100.60323E+090.17406E+090.80461E+090.19961E+100.22153E+100.30608E+100.47574E+100.31781E+100.16647E+100.43628E+100.38778E+100.42456E+100.41077E+100'0974E+100.55796E+100.42564E+100.37388E+100.15103E+100.99039E+090.13253E+100.90043E+090.22970E+100.22286E+070.97553E+070.36426E+080.70333E+080.11754E+090.26569E+090.35272E+090.64140E+090.53264E+090.43784E+090.53614E+090.27104E+090.84240E+080.40595E+090.10353E+100.13200E+100.19119E+100.36067E+100.27155E+100.11772E+100.46686E+100.40155E+100.45651E+100.53608E+100.61226E+100.62975E+100.41358E+100.33406E+100.89469E+090.28232E+090.18702E+100.11019E+100.20128E+100.36063E+060.15732E+070.53124E+070.96453E+070.14818E+080.30518E+080.37525E+080.67721E+080.63806E+080.55198E+080.70522E+080.36044E+080.12500E+080.62522E+080.15980E+090.25036E+090.38146K+090.96084E+090.92694E+090.35203E+090.19763E+100.18109E+100.20894E+100.29320E+100.29813E+100.33266E+100.20823E+100.15865E+100.40075E+090.12523E+090.10917E+100.71618E+090.11316E+10 22TABLE4.8RADIALGRADIENTOFFASTFLUENCERATE[P(E>1)JTHROUGHRPV,ATPEAKAZIMUTHALANDAXIALLOCATIONSINDONALDC.COOKUNIT2R(1)(cm)y(E>1)cm-s219.978221.14222.92224.70226.48228.26230.04231.82233.60235.39237.17238.95240.732.109E+101.922E+101.572E+101.239E+109.649E+97.452E+95.721E+94.369E+93.316E+92.494E+91.849E+91.331E+98.723E+9(1)RPVlinerbeginsatR=219.71cm.RPVbeginsat220.25andendsat241.62cm.1/4-T~225.19cm.3/4-T~236.14cm.

23TABLE4.9CALCULATEDFLUENCERATESANDLEADFACTORSINDONALDC.COOKUNIT2Location.Radius(cm)FluenceRate[n/(cm2'"1)]LeadFactors4'apsule40'apsulecapsulesIDs,V,W,Z(4')T$U$X$Y(40)VesselIDVessel1/4-TVessel3/4-T211.41211.41219.71225.19236.142.746E+106.245E+102.125E+101.164E+102.221E+91.292.3612.362.945.3728.12 fluenceratesattheinnerradius,1/4-T,and3/4-TlocationsinTable4.9areobtainedfromTable4.8byinterpolation(orextrapolation).ThecapsulefluenceratesandtheleadfactorsarealsosummarizedinTable4.9.4.4.2NeutronDosimeterTestinandAnalsisThegammaactivitiesofthedosimetersweredeterminedinaccordancewithProcedureXI-MS-101-0usinganIT-5400multi-channelanalyzerandaGe(Li)coaxialdetectorsystem.ThecalibrationoftheequipmentwasaccomplishedwithMn,Co,and3CsradioactivitystandardsobtainedfromtheU.S.DepartmentofCommerceNationalBureauofStandards.ThedosimeterwireswereweighedonaMettler-TypeH6Tbalance.Allactivitieswerecorrectedtothetime-of-removal(TOR)atreactorshutdown.ThereferencesfortheproceduresusedinprocessingthedosimetersASTME181-82,"DetectorCalibrationandAnalysisRadionuclides"ASTME261-77,"DeterminingNeutronflux,Fluence,andSpectraRadioactiveTechniques"ASTME262-85,DeterminingThermalNeutronFluxbyRadioactiveTechniquesASTM-E263-82,"DeterminingFastNeutronFluxbyRadioactivationofIron"ASTME264-82,"DeterminingFastNeutronFluxbyRadioactivationofNickel"ASTME523-82,"MeasuringFastNeutronFluxDensityofRadioactivationofCopperASTME704-84,"DeterminingFastNeutronFluxDensitybyRadioactivationofUranium-238"ASTME705-84,"DeterminingFastNeutronFluxDensitybyRadioactivationofNeptunium-237"TheresultsoftheneutrondosimetryanalysisprocedurearesummarizedinTables4.10to4.16.Theequationsanddefinitionsusedforneutrondosimetryanalysisaresummarizedintable4.10.Theneutron 25TABLE4r10EQUATIONSANDDEFINITIONSFORNEUTRONDOSVifETRYANALYSIS/JATOg~NoFJo(E)d(E)dEQPj(lmLTJ)el(Ttj)j~LhereATOR~produceauc'Lideactivitracandofirradiacion,bq/ag;o(E)renergy-dependeataccivacioncrossseccioa(ca)fordosineccra,29(E)~energyHepcndentfluenceraceatsurvcillaacelocacioa;Yproductnuclideperrcactioa(fissionyield);l~decaycoastaatoftheproductauclidc(d1);Pj~fractionoffullpoverduringoperacingperiodj;T.rlcagchoftineforirradiacioniatcrvalj;k~rinefroabeginaingofirradiationtocineofrcnovaL;r..>elapsedcinefronbeginningofirradiaciontocadofincervalj;Nrnuaberoftargetsconepcragindosinetcr;and0Jrnuaberofirradiattonintervaled.+WASATJo(E)d(E)dg0vbercASAT~reactiooracepertargetnucleus.(C.1)(C.2)f.Wo(E)d(K)dgs4(E)dgKr.ASATd(K>gt)(4.3)vheteog~cftcccivcspectrua-averagedcrossseccionaadtd(K)dE~flucnccraceforneutronsvithenergiesgreaterthanEtNeV(s(K>gt)).tSubstitutingEq.(2.2)iotoEq.(2.1)andsolvingforASAT,oneobca'LasAhgT~TORSATNoTQPJ(1-c"j)e"j)j~LReplacingASATinEq.(2.4)byASATiaEq.(2.3),oocobtainsd(E>E)~ATORJNoYogQPj(L-eLTj)el(T-tj)jeLThetocalfluenceischengivenby(C.4)(4.5)JKE>gt)~d(E>gt)QPjTjjRThecharnelneutronfluencerace(ptb)isdaterainedfroarbebareaodcsdniua-coveredcobaltactivici<<susingEq.(2.F)belov.h~'bCdNoc(P.(1c-XTj)e-A(T-j)j-lwereAbbarecobaltactiviry(dpsing),AOd~cadniun-coveredcobalr.activity(dps/ag),No~nuaberofcobalt-59sconeperagofcobalt,andooi3F.Lbarns.(4.6)(C.y)DefinitionaTheLeadfaccor(LF)risdefinedasfollovs>doeucroafluea<<erace(E>gr)atthecapsulecenteraaxtauaaeutronflucnccraceatthePVsanerradtusThcsaturaciontacror(SF)isgivenbrSF~1JpP'(1-elTj)el(T-cJ)jaL~Anoregeneraldefiaicioncanbcstatedbyreplacingthedeaoaiaatorbytheuaxiuuaneutronfinancerateacanypointiathepressurevessel(PV)~

TABLE4.11CONSTANTSFORPROCESSINGDOSIMETRYDATAReactionN0(atoms/mg)HalE-Life(day-1)X-rayBranchingFissionAtomAtomicIntensityYieldFractionWeight54Fe(n,p)4Mn6.254x10312.50d2.218x1030.99978835keV0.99449811keV7004x101870'85d9.783x105Ni(n,p)Co59Co(n,y)Co1.022x105.271y3.600x100.9990Q1173keV0.999891332keV"Ti(n,p)4Sc1.018x1083.85d8.261x100.99989889keV0.999991120.keV0.08147.900.05855.8470.682758.701.000058.933263Cu(n,a)Co6.555x105.271y3.600x100.9990Q1173keV0.999881332keV0.691763.546237Np(n,f)3Cs2.540x1030.17y6.290x100.8530Q662ke'V6.267.1.0000237.0482238U(nf)137Cs2'30x101830.17y6'90x100'5309662keVF00010000238'508CSi 27TABLE4.12REACTORPOWER-TIMEHISTORYFORDONALDC.COOKUNIT2CAPSULETaleStep12345678910ll1213141516171819202122232425262728293031323334i35363738394041OperatingPeriod3/784/785/786/787/788/789/7810/7811/7812/781/79z/793/794/795/796/797/798/799/7910/7911/7912/791/80Z/803/804/805/806/807/808/809/8010/8011/8012/801/812/813/814/815/816/817/81FractionofFullPower*P]0.24370.15440.25940.63820.43960.60660.85310.88250.48080.92570.92570.92570.92570.91420.58350.00000.90330.96560.96560.59180.00000.00000.44470.91910.91910.91910.91910.82720.59260.96690.96690.56140.00000.59790.97820.97820.44180.00000.35250.78060.7201IrradiationIntervalTJ1030313031313031303131283130313031313031303131293130313031313031303131283130313031DecayT11MT-t328912861283028002769273827082677264726162585255725262496246524352404237323432312228222512220219121602130209920692038200719771946191618851854182617951765173417041673 2vTABLE4.12(Continued)REACTORPOWER-TIMEHISTORYFORDONALDC.COOKUNIT2CAPSULETimeStepOperatingPeriodFractionofFullPower*P]IrradiationIntervalTjDecayTimeT-t'2434445464748495051525354555657585960616263646566676869707172737475767778798081828/819/8110/8111/8112/811/822/823/824/825/826/827/828/829/8210/8211/8212/821/832/833/834/835/836/837/838/839/8310/8311/8312/831/842/843/844/845/846/847/848/849/8410/8411/8412/840.95160.95160.13430.96120.96120.96120.96120.40280.95690.95690.95690.95690.41150.90760.92150.66690.00000.12170.97480.99890.99300.96920.77120.66730.91570.91720.48150.16590.93970.96230.94100.30540.00000.00000.00000.54240.92000.94300.95750.84720.432131303130313128313031303131303130313128313031303131303130313129313031303131303130311642161215811551152014891461143014001369133913081277124712161186115511241096106510351004974943912882851821790759730699669638608577546516485455424 29TABLE4.12(Continued)REACTORPOWER-TIMEHISTORYFORDONALDC.COOKUNIT2CAPSULEXTimeStepOperatingPeriodFractionofFullPower*P~IrradiationIntervalTgDecay~*--,T"lme--t~J838485868788899091929394951/852/853/854/855/856/857/858/859/8510/8511/8512/851/862/860.52080.99160.97640.99240.99860.99850.42950.02370.00000.06410.54370.79420.80000.59973128313031303131303130313128*FullpowerlevelforCookUnit2is3391HWt.Timeofremovalisreferencedto2/28/86,2400hr.3933653343042732432121811511209059280 30TABLE4.13CORRECTIONFACTORSTOOBTAINMEASUREDSATURATEDACTIVITIESATCAPSULEXCENTERLINEReactionSaturationFactorGradientFactorImpurityFactor*5Fe(n,p)Mn58Ni(n,p)58Co63Cu(n,a)Co237Np(nf)137Cs238U(nf)137Cs39Co(n,y)60Co1.6311.7202.3409.0379.0372.3401.0511.1640.95381.01.01.1641.01.01.01.01.01.0*Impuritieswereassumednegligible.

TABLE4.14CALCULATEDSATURATEDMIDPLANEACTIVITIESINDONALDC.COOKUNIT2SURVEILLANCECAPSULESDosimeterorFluxSaturatedActivitiesfor40'urveillanceCasuleB/R=210.41cmR=211.41cmR=212.41cmSaturatedActivitiesfor4'urveillanceCasuleBq/R=210.41cmR=211.41cmR=212.41cm54Fe(n,p)4Mn58Ni(n,p)Co63Cu(n,a)Co237Np(n~f)137Cs238U(n,f)13Cs46Ti(n,p)46Sc$(E>1.0MeV)g(E>0.1MeV)2.506E+112.111E+111.717E+113.240E+062.648E+062.170E+064.953E+074.054E+073.313E+073.471E+052.867E+052.390E+053.279E+072.749E+072.234E+073.963E+063.260E+062.640E+067.872E+056;454E+055.337E+057.544E+106.245E+105.048E+101.856E+061.535E+061.275E+062.732E+072.260E+071.847E+072.428E+052.026E+051.704E+051.332E+071.119E+079.241E+061.880E+061.561E+061.286E+065.114K+054.240E+053.545E+053.297E+102.746E+102.258E+109.354E+107.901E+106.521E+10 32TABLE4.15COMPARISONOFMEASUREDANDCALCULATEDSATURATEDACTIVITIESFORFASTTHRESHOLDDETECTORSReactionIDRadialLocation(cm)TimeofRemovalActivity,ATOR(Bq/mg)MeasuredSaturatedActivity,AESAT(Bq/mg)CalculatedSaturatedActivity,AGSAT(Bq/mg)Calculated(C)DividedbyMeasures(E)Activity(Bq/mg)54Fe(n)54MnTopTop-middleMiddleBottom-middleBottom211.68211.68211.68211.68211.681.375E+31.407E+31.399E+31.423E+31.367E+3Average1.394a0.023E+32.390E+32.648E+31.1083Cu(na)0Coop-middleMiddleBottom-middle211.18211.18211.181.197E+21.202E+21.216E+2Average1.205~0.010E+22.689E+22.867E+21.066Ni(n)CoTop-middleMiddleBottom-middle212.18212.18212.181.837E+41.808E+41.840E+4Average1.828a0.018E+43.660E+44.054E+41.108237N(nf)137CsMiddle211.413.142E+32.839E+42.749E+40.9683238U(nf)137Csiddle211.413.763E+23.400E+33.260E+30.9588 33TABLE4.16THERMALNEUTRONFLUENCERATEINCAPSULEXAxialLocationBareCadmium-CoveredSaturatedActivity(Bq/mg)ThermalFluenceRate[n/(cms1)]TopCoBottomCoAverage3.448E+073.402E+071.445E+071.445E+07*5.283E+105.161E+105.222E+10+Assumedtobesameastopvalue.

34dosimetersandtheconstantsusedinprocessingthedosimetersaregivenin~~Table4.11.Thereactorpower-timehistorydatagiveninTable4.12areusedtocalculatethesaturationfactors(seedefinition,Table4.10)showninTable4.13.InTable4.13,thegradientcorrectionfactorsareobtainedfromthetransportcalculationsgiveninTable4.14andtheimpuritycorrectionfactorsareassumedtobenegligible.EachofthemeasuredactivitiesAT0R,Table4.15aremultipliedbythethreeappropriatecorrectionfactorsinTable4.13toobtainthemeasuredsaturatedactivitiesASAT,forcomparisonwiththecalculatedvalues.Theresults(Table4.15)indicatethatthecalculatedvaluesare+11(to-4$fromthemeasuredvalues.ThethermalneutronfluenceratesaregiveninTable4.16andareobtainedusingEq.(4.7)fromTable4.10.Thesevaluesweretoolowtocauseanysignificantburninorburnout~~~corrections.4.2.3ResultsofNeutronTransortandDosimetrAnalsisThecomparisonofthecalculatedandthederivedfluenceratesinTable4.17indicatesverygoodagreement:6.019x10fromthemeasurementsand6.245x10fromthecalculations.ThederivedfluenceratefromthemeasurementsisusedtodeterminethefluencesshowninTable4.18.Theassembly-wisesourcedistributionforDonaldC.CookUnit2CapsuleXanalysisisprovidedinAppendixA.Thethree-dimensional(3-D)fluxsynthesismethodusedinthisreportisgiveninAppendixB.4.3MechanicalProcrtTestsTheirradiatedCharpyV-notchspecimensweretestedonacalibrated"SATECModelSI-1K240ft-lb,16ft/secimpactmachineinaccordancewithProcedureXI-MS-104-1.Thetesttemperatures,selectedtodeveloptheductile-brittletransitionanduppershelfr'egions,wereobtainedusingaliquidconditioning

35TABLE4.17COMPARISONOFFASTNEUTRONFLUENCERATESFROMTRANSPORTCALCULATIONSANDDOSIMETRYMEASUREMENTSFORCAPSULEXReactionMeasuredSaturatedActivity(Bq/mg)FluenceRateDerivedfromMeasurements[n/(cm2.s1))CalculatedFluenceRate(n/(cm2s1)]CalculatedDividedbyDerivedFluenceRateFe(n,p)Mn63Cu(n,0)Co5Ni(n,p)Co2.390E+032.689E+023.660E+04238U(nf)137Cs3.400E+03Average3Np(n,f)Cs2.839E+045.637E+105.860E+105.637E+106.452E+106.511E+106.019~0.432E+106.245E+106.245E+106.245E+106.245E+106.245E+106.245E+101.1081.0661.1080.96790.95911.042+0.074TABLE4.18CALCULATEDPEAKFLUENCESINPRESSUREVESSELBASEDONCAPSULEXDOSIMETRYLocation5.273EFPYFluence(ncm2)10EFPYFluence(ncm2)15EFPYFluence(ncm2)32EFPYFluence(ncm2)SurveillanceCapsule*PressureVesselIRPressureVessel1/4-TPressureVessel3/4-T1.002E+193.406E+181.865E+183.562E+171.899E+196.460E+183.538E+186.753E+172.849E+199.690E+185.306E+181.013E+186.078E+192.067E+191.132E+192.161E+18*Basedonaveragedfluenceratederivedfromdosimetrymeasurements.

36bothmonitoredwithaFlukeModel2168Adigitalthermometer.TheCharpyV-notchimpactdataobtainedbySwRIonthespecimenscontainedinCapsuleXarepresentedinTables4.19through4.22.TheshiftsintheCharpyV-notchtransitiontemperaturesdeterminedforthevesselplate,theweldmetalandtheHAZmaterialsareshowninFigures5through8.TheCapsuleTandYresultsareincludedforcomparison.AsummaryoftheshiftsinRTNDTdeterminedat,the30ft-lblevelasspecifiedinAppendixGto10CFR50[1],andthereductioninCuppershelfenergiesforeachmaterial,ispresentedinTable4.23.TensiletestswerecarriedoutinaccordancewithProcedureXI-MS-103-1usinga22-kipcapacityMTSModel810MaterialTestSystemequippedwithanInstronCatalogueNo.G-51-13A2-in.straingageextensometerandHewlettPackardModel7004BX-Yautographicrecordingequipment.Tensiletestsontheplatematerialandtheweldmetalwererunat250Fand550'Fatastrainrateof0.005in/in/min.throughthe0.2$offsetyieldstrengthusingservocontrolandrampgenerator.Theresults,alongwithtensiledatareportedbyWestinghouseontheunirradiatedmaterials[12],arepresentedinTable4.24.Theload-strainrecordsareincludedinAppendixC.TestingoftheWOLspecimenswasdeferredattherequestofIndiana4MichiganElectricCompany.ThespecimensareinstorageattheSwRIradiationlaboratory.InspectedandcalibratedusingspecimensandproceduresobtainedfromtheArmyMaterialsandMechanicsResearchCenter.

37TABLE4.19CHARPYIMPACTPROPERTIESOFLONGITUDINALPLATEDONALDC.COOKUNIT2CAPSULEXSouthwestResearchInstituteDepartmentofMaterlaisSciencesCHARPYTESTDATASHEETMATERIAL-LONGITUDINALProjectNo.06-8888-001Date4/28/87SPECIMENNO.TEMPoFENERGYFT-LBSLATERALEXPANSIONFRACTUREAPPEARANCEPHOTOGRAPHML-25RT-7117.0.017ML-26+10028.5.026ML-32+12530.5.02615ML-27+15040.0.03730~%wt'L-31+17570.0.06145ML-28+20083.5.07290ML-29+25099.0.085100ML-30+300107.0.085300,Q+)

TABLE)1.20CHARPYIMPACTPROPERTIESOFTRANSVERSEPLATEDONALDC.COOKUNITNO.2CAPSULEXSouthwestResearchInstituteDepartmentofMaterialsSciencesCHARPYTESTDATASHEETMATERIAL-TRANSVERSEProjectNo.06-8888-001Date1!/28/87SPECIMENNO.TEMP'FE?tERGYFT-LBSU\TERALEXPANSIONFRACTUREAPPEARANCEPHOTOGRAPHYiMT-48+508.0F0070MT-37RT-7114.5.0130MT-38+10023.0.02215MT-46+10020.5.01910MT-47+12524.5.02410MT-39+15030.0.02920I'irgMT-40+20050.0.04830<<)T-45.20i)53.i).050~0IIi)T-44Ii".22">..60.l)..<)5580err4[~.2'.0!'>':"~r'a3N

39TABLE4.21CHARPYIMPACTPROPERTIESOFHAZMATERIALDONALDC.COOKUNIT2CAPSULEXSouthwestResearchInstituteDepartmentofMaterialsSciencesCHARPYTESTDATASHEETMATERIAL-HAZProjectNo.06-8888-001Date4/28/87PHOTOGRAPHSPECIMENNO.TEMPoFENERGYFT-LBS.LATERALEXPANSIONFRACTUREAPPEARANCEMH-432525.0.01810MH-47+5048.5.03945H-37RT+7141.5.03640MH-45+10064.5.05460MH-38+10095.0.06870MH-48+125117.0.082100MH"42+15097.0.06780MH"41+200100.0F081100MH-40+20071.0.061100Mll-46+225110.0.076100.'ill-441+250119.0.08310011-39+300103.0.080100 4OTABLE4.22CHARPYIMPACTPROPERTIESOFMELDMETALDONALDC.COOKUNIT2CAPSULEXSouthwestResearchInstituteDepartmentofMaterialsSciencesCHARPYTESTDATASHEETMATERIAL-WELOProjectNo.06-8888-001Date4/28/87SPECINENNO.TEMP0FENERGYFT-LBSLATERALEXPANSIONFRACTUREAPPEARANCEPHOTOGRAPHXMW-47-2524.5.02210MW-4816.0.018MW-45+5019.5.01710MW-37RT+7124.0.02015MW-38+10027.0.03025MW-46+12561.5.05745MW-40+15070.5.064100MW"39+20075.5~069100MW-43+20061.0.058MW-42MW41+250+25064.0ee.o.061.057100IitooMW-44+300I't68.5t.069100 DliV~t~I~'~~l C0e:':'parr'ia'.e.--'-CapsuleT--e--CamisoleY,CapsleXe'O115'F103'FIcier0100200300400530a~4pce804F0ag./Wr7r~e~-:000100200Tes:.e,.Fera.ere,'c'OvcsFIGURE6.RADIATIONRESPONSEOFDONALDC.COOKUNITNO.2VESSELSHELLPLATEC5521-2(TRANSVERSEORIENTATION)

4316C-Cade:Un1rradlated--CapsuleT--o--CapsuleY~CapsuieX'e4I75'F4c.-72'F0-1001002CQ40C5CCM'-I684F-I0-lCC100200.esTeaoerat"re,F420FIGURE7.RADIATIONRESPONSEOFDONALDC.COOKUNITNO.2REACTORVESSELMEAT-AFFECTEDZONEMATERIAL 4410".CoCeUAltradlatedCapsule--o--Ca:suleY-uaCapsuleX0rassJ../-7~60'F/70'F1CC01002M300400500CshPC20600FleCG01002CGxestie~cerdture,FnJMVFIGURES.RADIATIONRESPONSEOFDONALDC.COOKUNITNO.2REACTORVESSEIWELDMATERIAL TABLE4.23EFFECTOFIRRADIATIONONCAPSULEXSURVEILLANCEMATERIALSDONALDC.COOKUNITNO.2Criterion(1)MeldMetalHAZ(2)Trans.PlateLongPlateHaterialC5521-2(3)C5521-2(3~5)TransitionTemperatureShift850ft-lb830ft-lb835mil(4)NDTCvUpperShelfDrop60F70F60F70Fllft-lb(15%)75F72F68'F72F46ft-lb(38%)115F103'F80'F103F23ft-lb(27%)105F95F98F95F42ft-lb(33%)(1)RefertoFigures4-7.(2)Fluence=8.53x1018n/cm2,E>1MeV.(3)Fluence=1.05x10n/cm,E>1MeV.(4)Transitiontemperatureshiftat30ft-lb(46ft-lbforlongitudinalplate).(5)Transitiontemperaturesat77ft-lb,and54milsf17].

TABLE4.24TENSILEPROPERTIESOFSURVEILLANCEMATERIALSDONALDC.COOKUNITNO.2ConditionTestMaterialSpec.No.Temp.0.2%YS('F)(ksi)UTS(ksi)FractureLoad(lb)FractureStress(ksi)UniformElongation(%)-TotalElongation(%)R.A.(/)CapsuleXPlateC5521-2MT-8(a)(Transverse)HT-725055076.072.193.992.335883672156.0163.915.014.818.717.352.854.0WeldMetalMW-8HW-721055079.973.794.592.531123148183.1166.613.911.421.465.318.861.4(b)PlateC5521-2(Transverse)RoomRoom30030055055367.465.458.860.557.558.987.385.978.679.583.083.1320029502650267532253150161.2156.4146.1157.6142.1145.613.415.013.010.611.512.723.427.122.619.819.020.559.661.763.165.453.856.0WeldMetalRoom75.7Room76.930070.730071.055070'55068.293.291.388.085.387.287.8285029502900287531603050173.4178.8171.0179.0157.2166.013.912.210.710.310.19.325.722.620.721.219.220.266.866.666.067.559.662.8(a)Fluence=1.002x10m/cm,E)1MeV.(b)Unirradiated[12].

5.0ANALYSISOFRESULTSTheanalysisofdataobtainedfromsurveillanceprogramspecimenshasthefollowinggoals:(1)EstimatetheperiodoftimeoverwhichthepropertiesofthevesselbeltlinematerialswillmeetthefracturetoughnessrequirementsofAppendixGof10CFR50.ThisrequiresaprojectionofthemeasuredreductioninCuppershelfenergytothevesselwallusingknowledgeoftheenergyandVspatialdistributionoftheneutronfluxandthedependenceofCuppershelfenergyontheneutronfluence.(2)Developheatupandcooldowncurvestodescribetheoperationallimitationsforselectedperiodsoftime.ThisrequiresaprojectionofthemeasuredshiftinRTNDTtothevesselwallusingknowledgeofthedependenceoftheshiftinRTNDTontheneutronfluenceandtheenergyandspatialdistributionoftheneutronflux.TheenergyandspatialdistributionoftheneutronfluxforDonaldC.CookUnitNo.2wascalculatedforCapsuleXwithadiscreteordinatestransportCode.Thisanalysis,predictedthattheleadfactor(ratiooffastfluxatthecapsulelocationtothemaximumpressurevesselflux)was2.94atthecapsulecenterline,3.09forthecore-sideCharpylayer,and2.50forthevessel-sideCharpylayer(seeTable4.9).Thisanalysisalsopredictedthatthefastfluxatthe1/4Tand3/4Tpositionsinthe8.5-in.pressurevesselwallwouldbe55(and11)respectivelyofthatatthevesselI.D.AmethodforestimatingtheincreaseinRTNDTasafunctionofneutronfluenceandchemistryisgiveninRegulatoryGuide1.99,Revision1[81.However,theGuidealsopermitsinterpolationbetweencrediblesurveillancedataandextrapolationbyextendingtheresponsecurvesparallel 48totheGuidetrendcurves.ThedatafromCapsulesT,YandXaredeemedtobecrediblebecause(1)thesurveillancematerialsarejudgedtobecontrollingwithregardtoradiationdamage,(2)thescatterinthetransverseplateandweldmetalCharpydataissmall,and(3)thechangesinyieldstrengthareconsistentwiththeCharpycurveshifts.Exceptforthelongitudinalplatematerial,theslopesoftheresponsecurvesconstructedinFigure9arelessthanthesquarerootoffluenceutilizedinRegulatoryGuide1.99.Althoughrecentwork[7]indicatesthatthesquarerootoffluencedependencemaybetoohigh,theprojectedresponsesoftheDonaldC.CookUnitNo.2vesselbeltlinematerialsarebasedonthetrendcurvesofFigure9whichwereconstructedinaccordancewithRegulatoryGuide1.99procedures.TheDonaldC.CookUnitNo.2vesselplatesurveillancematerialismoresensitivethantheweldmetal'andHAZsurveillancematerialstoirradiationembrittlement.SincetheunirradiatedvaluesofRTNDTfortheintermediateshellplateC5521-2ishigherthanthoseoftheweldandHAZmaterials[16],thebeltlineregionplatematerialisprojectedtocontroltheadjustedvalueofRTNDTthroughthe32EFPYdesignlifeofDonaldC.CookUnitNo.2.AsummaryoftheprojectedvaluesofRTNDTfor12and32EFPYofoperationofDonaldC.CookUnitNo.2,ispresentedinTable5.1.AmethodforestimatingthereductioninCuppershelfenergyasafunctionofneutronfluenceisalsogiveninRegulatoryGuide1.99,Revision1[8].TheresultsfromCapsulesT[16],Y[17],andXarecomparedtoaportionofFigure2oftheRegulatoryGuide1.99,Revision1,inFigure10.AlthoughtheshelfenergyresponseoftheweldsurveillancematerialfromCapsulesXfallbelowthem,thepredictivetrendcurvesofRegulatoryGuide1.99,Revision1,willbeusedinthisanalysisforconservatism..ResponsecurveshavebeendrawnthroughtheHAZTransversePlateandLongitudinalplate

600II4002001006040Reg.Guide1.99UpperLimiteCode;:0Trans.PlateGLong.Plate+HeldMetal:~HAZMaterialI~Il)ili,jIlijls[III.202xlpll1pl8NeutronFluence,nlcm2(E>1MeV)1pl9IIIII'll6x1019FIGURE9.EFFECTOFt/EUTRpffFLUENCEOf)RTffDTSHIFT,Dpf(ALDC.COOKUNITNO.2 50TABLE5.1PROJECTEDVALUESOFRTNDTFORDONALDC.COOKUNITNO.2EFPYP.V.MaterialLocationhRTNDTFluence(a)ARTRpT~Ad'.RTRpT12PlateC5521-2I.D.1/4T3/4T58'F(b)7.8x10'858'F4.3x1058'F8.1xlp171018844159146102HAZMaterial7.8x10184.3Xlp188.1x1017I.D.20'F741.4T20'F633/4T20'F31g48351WeldMetalI.D.1/4T3/4TO'()7.8x10F4.3xlp18O'F8.1x1017664723664723584F()2.1x10958'F1.1x10958'F2.2x101832PlateC5521-2I.D.1401/4T1053/4T721g8163130HAZMaterialI.D.1/4T3/4T'04F(b)2.1x1p1920'F1.1x109204F2.2x10-1138450133104(70WeldMetalI.D.p'F()2.1x101081/4TO'F1.1x10803/4TOoF2.2x10184p1088040(a)Neutrons/cm,E>1MeV.(b)Reference16.(c)EstimatedperReference18 l~6040Req.Guide1.99UpperLimitIjlIj,II'I'5-g20Reg.Guide1.99C7l5-QJCW100.15KCuPlate0.05$CuMeldcnC)4:Code:k:0Trans.PlateLong.Plate+WeldMetal:~HAZMaterialIjIIIs.IIII2x1P171P181P19NeutronFluence,n/cm2(E>1MeV)6xlPFIGURE>oDEPENDEtlCEOFCyUPPERSIIELFENERGY0thNEUTRONFLUENCEDptNLDCCOOKUNITNp2

datasincetheseresultsfallabovetheplatetrendcurve.Referringtotheconservativetrendcurvesfor0.05$CuweldmetalandtheHAZandplateresponsecurves,theprojectedCvshelfenergiesofthevesselmaterialsareasfollows:oPlateC5521-2(UnirradiatedCShelf=86ft-lb)32EFPYatI.D.-60ft-lb(30$reduction)32EFPYat1/4T--63ft-lb(27$reduction)32EFPYat3/4T-71ft-lb(171reduction)Note:Forshelfenergiesbelowthe0.15$Cuplatecurvetheconservativeplatecurveisused.oWeldMetal(UnirradiatedCShelf=75ft-lb)v32EFPYatI.D.--58ft-lb(237reduction)32EFPYat1/4T-60ft-lb(20$reduction)32EFPYat3/4T--65ft-lb(13$reduction)oHAZMaterial(UnirradiatedCShelf=122ft-lb)v32EFPYatI.D.-68ft-lb(44$reduction)32EFPYat1/4T-73ft-lb(40$reduction)32EFPYat3/4T--100ft-lb(18(reduction)TheseprojectionsindicatethatthecorebeltlinematerialsintheDonaldC.CookUnitNo.2pressurevesselmaterialwillretainadequateshelftoughnessthroughoutthe32EFPYdesignlifetime.ThecurrentDonaldC.CookUnitNo.2reactorvesselsurveillanceprogramremovalschedule,revisedtoconformtoASTM185-79[9],issummarizedinTable5.2.Therearefivecapsulesremaininginthevessel,ofwhichthreearestandbys.

53TABLE5.2REACTORVESSELSURVEILLANCECAPSULEREMOVALSCHEDULE[16]DONALDC.COOKUNITNO.2~CasuleWOLMaterialWeldMetalWeldMetalTrans.PlateWeldMetalTrans.PlateTrans.PlateTrans.PlateWeldMetalRemovalTime1.08EFPY(a)324EFPY(b)5.27EFPY(')9EFPY32EFPYStandbyStandbyStandbyEquivalentVesselFluence3.4EFPYatI.D.11EFPYatI.D.E.O.L.at1/4TE.O.L.atI.D.E.O.L.atI.D.(a)Removedaftercorecycle1.(b)Removedaftercorecycle3.(c)Removedaftercorecycle5.

6.0HEATUPANDCOOLDOWNLIMITCURVESFORNORMALOPERATIONOFDONALDC.COOKUNITNO.2DonaldC.CookUnitNo.1isa3391MwtpressurizedwaterreactoroperatedbyIndianaandMichiganElectricCompany.Theunithasbeeprovidedwithareactorvesselmaterialsurveillanceprogramasrequiredby10CFR50,AppendixH.Thethirdsurveillancecapsule(CapsuleX)wasremovedduringthe1986refuellingoutage.Thiscapsulewastestedasdescribedinearliersectionsofthisreport.Insummary,thesetestresultsindicatethat:(1)TheRTNDTofthesurveillanceplatematerialinCapsuleXincreased103'Fasaresultofexposuretoaneutronfluenceof1.002x1019neutrons/cm(E>1MeV).(2)BasedonananalysisofthedosimetersinCapsuleX,thevesselwallfluenceattheI.D.was3.406x10neutrons/cm(E>1MeV)atthetimeofitsremoval.(3)ThemaximumRTNDTafter12effectivefullpoweryears(EFPY)ofoperationwaspredictedtobe146'Fatthe1/4Tand102'Fatthe3/4Tvesselwalllocations,ascontrolledbythecorebeltlineshellplate.TheseprojectionsarecomparabletothoseresultingfromtheevaluationofthedatafromcapsuleY.(4)ThemaximumRTNDTafter32EFPYofoperationwaspredictedtobe163'Fatthe1/4Tand130'Fatthe3/4Tvesselwalllocations,ascontrolledbythecorebeltlineshellplate.ThesepredictionsarelowerthanthatpredictedfromCapsuleYanalysis.TheUnitNo.2heatupandcooldownlimitcurvesfor12EFPYand32EFPYhavebeencomputedonthebasesof(3)and(4)above.Thefollowing 55pressurevesselcontentswereemployedasinputdatainthisanalysis:VesselInnerRadius,VesselOuterRadius,rOperatingPressure,PInitialTemperature,TFinalTemperature,TfEffectiveCoolantFlowRate,QEffectiveFlowArea,AEffectiveHydraulicDiameter,D86.50in.,includingcladding95.2in.2235psig70oF550oF134.6x10lb/hr26.72ft215.05in.TheSwRIcomputerprogramcalculatestheallowablepressureoverthetemperaturerange70'F-550Fsuchthatthereferencestressintensityfactor,KIR,isalwaysgreaterthanthesumoftwiceKI(pressureinduced)andKIt(thermalgradientinduced)asdictatedbyAppendixGoftheCode(2].ThecurrentversionoftheSwRIprogramincorporatesthephysicalpropertydataspecifiedbyAppendixIoftheCodethroughthe1982SummerAdenda.Thechangesinthermalconductivitycodeallowablesmadeintheearly1980'sreducedthecalculatedallowablepressureatcoolanttemperaturesbelowabout200'Ffromthatobtainedwhenusingthepreviouslyspecifiedvalues.Heatupcurveswerecomputedforaheatuprateof100'F/hr.Sincelowerratestendtoraisethecurveinthecentralregion,thesecurvesapplytoallheatingratesupto100'F/hr.CooldowncurveswerecomputedforcooldownratesofO'/hr(steadystate),20'F,40'F/hr,60'F/hr,and100'F/hr.The20'F/hrcurvewouldapplytocooldownratesupto20'F/hr;the40'F/hrcurvewouldapplytoratesupto40'F/hr;the60'F/hrcurvewouldapplytoratesupto60'F/hr;the100'F/hrcurvewouldapplytoratesupto 100'F/hr.TheunitNo.2heatupandcooldowncurvesdevelopedforupto12EFPYafterCapsuleYisidenticaltotheCapsuleXdata.Itisrecommendedthatthecurrenttechnicalspecificationfor12EFPYnotbechanged.ThesecurvesarereproducedinFigures11and12.ThelimitcurvesdevelopedintheCapsuleYreportfor32EFPYisconservativecomparedtothedatageneratedhereforCapsuleX.ThesecurvesarereproducedinFigures13and14.

2600'40022002000180016001400!il!,iJ!IIliiIII!illljiIiIIMATERIALPROPERTYBASISBASEl%TALCU=0.14<:,INITIALRTNDT=58'F.12EFPYRTNDT(1/4T)~146F(3/4T)~102oF.ILEAKTESTLIMITUNACCEPTABLEOPERATION12001000800PRESSURE-TEMPERATlNELIMITFORHEATUPRATESUPTO100'F/HR.REACTORCOOLANTSYSTEMHEATUPLIMITATIONSAP-.'PLICABLEFORFIRST12EFFECTIVEFULLPOHER,'YEARS,(MtQGINSOF60PSIGAND10'FAREIH-jCLUDEDFORPOSSIBLEINSTRlNENTERROR)jjIIi::IljIIIIACCEPTABLE}OPERATION!".,ijj:IIIIlI'!ijII600400200IjjjCAPS}ULEYTACRITICALITYLIMITII1!jjIjj}II'jl60100150200250300350400450AVERAGEREACTORCOOLAI'lTSYSTEMTEN'ERATlNE<F>FIGURE11.REACTORCOOLANTSYSTEMPRESSURE-TEMPERATURELIMITSVERSUS100'F/HRRATE,CRITICALITYLIMITAHOIIYDROSTATICTESTLIMIT,12EFPYIII 2600240022002000180016001400>-12001000SOO8600400200.:i.',il.:!I,fiif;fIII':I:II~IIMATERIALPROPERTYBASISI'ASEMETALCU=0~14>INITIALRTNDT=~8~12EFPYRTNDT(1/4T)=146F(3/4T)=1020FUNACCEPTABLEOPERATIONPRESSURE-TBPERATULIMITSICRATEFIIRQ~20~a40".1!!Oll'I~f:ImI',ll!I':'!!::Ifi:REACTORCOOLANTSYSTEMCOOLIXWLIMITATIONS:IAPPLICABLEFORFIRST12EFFECTIVEFULLPCNFR~YEARSS(MARGINSOF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBLEINSTRlNENTERROR,)]ACCEPTABK-OPERATIONIIIIII.,:III~.II~060100150200250300350400450AVERAGEREACTORCOOLANTSYS/EMTEMPERATURE(F)FIGURE12.REACTORCOOLANTSYSTEMPRESSURE-TEMPERATURELIMITSVERSUSCOOLDOWtlRATES,12EFPY .26002400I22002000lSOO16001400120010008005600g4oo200BASEMETALCU=O.l4'tINITIALRTNPT=58F!32EFPYRTNPT(1/4T)(3/4TIe=175oF=135'Fe'INACCEPTAHLE:.OPERATIONjIIj,PRESSURE-TEMPERATURELIMITFORllEATUPRATESUPTO100'F/HRREACTORCOOuelTSYSTEMHEATUPLIMITATIONSAPIPLICABLEFORFIRST32EFFECTIVEFULLPOWERYEARS(MARGINS.OF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBL'EINSTRINENTERROR)ilill!!.,II!,I!I!I!!IIIIII~',IISTj'l.:,itI:I:eleiLIIIiTiii.il';IIIeII:lie,e'Illliij.'i)Il,iI~I:~'lIile~il.:li,e~leiilj"ACCEPTABLE:OPERATIONileIillIllI",ii".,I.i.~eeJjCRITICALITYI"'IMITij'60100150200300350250400450AVERAGEREACTORCOOLANTSYSTEMTEMPERATURE('F)FIGURE13.REACTORCOOLA>lTSYSTEMPRESSURE-TEMPERATURELIMITSVERSUS100'F/HRRATE,CRITICALITYLIMITANDIIYDROSTATICTESTLIMIT,32EFPY(Ref.17) 26002400220020001800160014000-12001000'g800g.80040020006.'jREACTORCOOLANTSYSTEMCOOLDON)LIMITATIONS!:IAPPLICABLEFORFIRST32EFFECTIVEFULLPNERjYEARSe(NARGINSOF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBLEINSTRlNENTERRORS)jIIMATERIALPROPERTYBASIS)BASE%TALCU=0.14%IINITIALRT=58'F'2EFPYRTNDT(NDT1/4r)=1754'NACCEPTABLEOPERATION34T50FPRESSURE"lEMPERATURE'IMITS/R'IlRATE..'..020-.40.s.60100~IljlI'tIIIIItII.0100]50200250300'I!IIlj'.ACCEPTABLF.::OPERATICH350julIIIIjlI1j'.Ij400~I450AVERAGEREACTORCOOLANTSYSTEMTEI'IPERATURE(F)FIGURE14.REACTORCOOLANTSYSTEMPRESSURE-TEtfPERATURELIMITSVERSUSCOOLDONlRATES,32EFPY(Ref.17) 6

17.0REFERENCES

Title10,CodeofFederalRegulations,Part50,"LicensingofProductionandUtilizationFacilities."2.ASMEBoilerandPressureVesselCode,SectionIII,"NuclearPowerPlantComponents."3.ASTME208-81,"StandardMethodforConductingDrop-WeightTesttoDetermineNi-DuctilityTransitionTemperatureofFerriticSteels,"1982AnnualBookofASTMStandards'.5.Steele,L.E.,andSerpan,C.Z.,Jr.,"AnalysisofReactorVesselRadiationEffectsSurveillancePrograms,"ASTMSTP481,December1970.Steele,L.E.,"NeutronIrradiationEmbrittlementofReactorPressureVesselSteels,"InternationalAtomicEnergyAgency,TechnicalReportsSeriesNo.163,1975.6.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInserviceInspectionofNuclearPowerPlantComponents,"1974Edition.7~Randall,P.N.,"NRCPerspectiveofSafetyandLicensingIssuesRegardingReactorVesselSteelEmbrittlement-CriteriaforTrendCurveDevelopment,"presentedattheAmericanNuclearSocietyAnnualMeeting,Detroit,Michigan,June14,1983.8.RegulatoryGuide1.99,Revision1,OfficeofStandardsDevelopment,U.S.NuclearRegulatoryCommission,April1977.9-ASTME185-79,"StandardRecommendedPracticeforSurveillanceTestsforNuclearReactorVessels,"1981AnnualBookofASTMStandards.10.ASTME399-81,"StandardMethodofTestforPlane-StrainFractureToughnessofMetallicMaterials,"1982AnnualBookofASTMStandards.ASTME813-81,"StandardTestMethodforJI,AMeasureofFractureToughness,"1982AnnualBookofASTMStandards."12.13."AmericanElectricPowerServiceCorporationDonaldC.CookUnitNo.2ReactorVesselRadiationSurveillanceProgram,"WCAP-8512,November1975.W.A.RhoadesandR.L.Childs,AnUdatedVersionoftheDot4One-andTwo-DimensionalNeutron/PhotonTranscrtCode,ORNL-5851,OakRidgeNationalLaboratory,OakRidge,TN,July1982.G.L.SimonsandR.Roussin,SAILOR-ACoupledCrossSectionLibraryforLightWaterReactors,DLC-76,RSIC.DonaldC.CookUnitNo.2TechnicalSpecifications. 0 6

27.0REFERENCES

(continued)16.Norris,E.B~,"ReactorVesselMaterialSurveillanceProgramforDonaldc.CookUnitNo.2;AnalysisofCapsuleT,"SwRIReport06-5928,September16,1981.17.Norris,E.B.,"ReactorVesselMaterialSurveillanceProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleY,"SwRIReport06-7244-002,February1984.18.USNRCStandardReviewPlan,NUREG-75/087,Section5.3.2,Pressure-TemperatureLimits,November24,1975' APPENDIXADeterminationofAssembly-WiseSourceDistributionforDonaldC.CookUnit2,CapsuleXAnalysis DETERMINATIONOFASSEMBLY-WISESOURCEDISTRIBUTIONFORDONALDC.COOKUNIT2,CAPSULEXANALYSISSurveillance-capsuleXwasinthereactorforcycles1-5.TableA.1showsthecycle-averagerelativeassembly-wise.powerdistributionforeachofthesefivecycles.ThesevalueswereobtainedbyaveragingBOC,MOC,andEOCpowerdistributionsprovidedforeachcycle.Theresultingassembly-wiserelativepowerdistributionshowninthelastcolumnofTableA.1formedthebasisofthespace-dependentsourceusedinthetransportcalculations.Therelativepowervaluesshowninthistableweremultipliedbyavalueof17.6MWthperassemblytoobtaintheabsolutepowerproducedbyeachassembly.TableA.2showsthefinalabsolutepowerproducedbyeachassembly.TableA.2showsthefinalabsoluteassembly-wisepowerdistributionforaquartercoremodel(notethatsomeassembliesappearasfractionsinthequartercore,whichreducestheirabsolutepowerproduced).Theabsolutepowervaluesareconvertedtoaneutronsourcebymultiplyingbytheconversionfactorof8.163x10neutrons/sperMW.Apin-wiseintra-assemblydistributionwasusedtorepresentthespatialpowervariationwithineachoftheperipheralassemblies,whileaflatdistributionisusedforinteriorassemblies.Therelativepin-powerdistributionwasprovidedbytheDonaldC.CookUnit2sup-portstaff.Thenormalized,space-dependentsourcedistributionisthentransformedtotheDOTR8meshbyusingacomputerprogramwhichperformsthenecessaryinterpolationandrenormalizationcalculations.Theoutputofthissourceroutine,whichincludesalistingofthefinalDOTR9spatialsourcedistribution,isincluded.Thesourceenergydistributioncorrespondstoan~~~~~~ENDF/B-VWattfissionspectrum. TableA.l.Cycle-AverageAssemblyRelativePowerforDonaldC.CookUnit2DistributionZoneCYCLEAverage2*3*4*5*6*7*8*9*1011121314151617*1819202122232425*2627282930313233*34353637383940*4142434445461.1461.1881.1511.2051.1171.1230.9720.7311.1921.1511.1841.1401.1731.0691.0390.7511.1671.1891.1431.1991.1081.0970.9290.6561.2241.1651.2011.1391.1341.0360.9650.5451.1691.1991.1271.1461.1660.9830.8141.0951.0851.1481.0701.0190.9730.4970.8611.0370.9681.1350.9881.0730.9310.9441.0310.9641.0531.0771.2181.0881.1660.9280.9801.0661~0121.2371.0151.1940.9050.8291.1271.0771.2421.0111.1780.9421.0810.5561.0041.2331.0261.1840.9120.9840.9011.0451.0961.1940.9560.9861.0510.5470.8541.060l.1171.2061.1131.0791.0840.8731.0471.0831.2131.1141.1811.1451.1200.8511.1221.2161.1101.19.61.0981.1801.0480.7521.2111.1191.1990.9701.1251.0340.9990.4231.1191.1931.0171.1271.0520.9550.7811.0751.1511.1911.0390.9410.8930.4010.8500.9620.9871.0380.9821.0701.0150.8550.9741.0641~1821.0661.1850.9991.1060.7590.9971.1831.0891.0741.1101.2251.0470.8261.0421.076l.1041.0981.2441.0731.1180.5630.9941.1981.1211.2491.0381.1730.7671.0620.9941.2171.0671~1821.0140.4041.0131.1391.1831.2501.1711.1861.0230.9441.1461.1871.2151.1531.2391.1381.1560.9551.1871.2201.2341.2781.2191.2501.1060.8531.2571.1631~2921.2331.2161.1831.1190.4591.1951.2651.2261.2581.2161.2150.7731.1821.1731.2531.2031.2101.0070.3890.9451.0771.0811.1651.0741.1061.005~0.8691.0781.0901.1691.110l.1991.0881.117~0.8491.0911.1751.1181.1971.1101.1891.0070.448~o.ass1.1721.1201.2081.0901.1791.0541.056~0.5091.0961.2181.1031.1931.0771.062~0.8071.0921.1001.2011.0671.0680.988*1/4assemblyin1/4~1/2assemblyin1/4NOTZ:Circledvaluescore.core.correspondtoperipheralassemblies. TableA.2.AbsoluteAssemblyTotalPower3391MWthNo.ofassemblies~193(i.e.,Zone)PowerforDonaldC.CookUnit23391MWPperassembly~-=17.57193assemblyZone]~2*3*4*5*6*7*8*9*1011121314151617*1819202122232425*2627282930313233*34353637383940*414243444546RelativePower0.9451.0771.0811.1671.0741.1061.0050.8691.0781.0901.1691.1101.1991.0881.1170.8491.0911.1751.1181.1971.1101.1891.0070.7831.1721.1201.2081.0901.1791.0541.0560.5091.0961.1221.1031.1931.0771.0620.8071.0921.1001.2011.0671.0680.9880.448AbsolutePower'.1519.4619.49710.2529.4359.7168.8297.6349.7019.15120.53919.50321.06619.11619.62614.9179.58420.64519.64321.03119.50320.89113.75710.29619.67821.22419.15120.71518.51918.548.9439.62819.71019.38020.96118.92318.659~14.1799.59319.32721.10218.74718.76517.3597.871~1/4assemblyin1/4core.*1/2assemblyin1/4core.NOTE:Circledvaluescorrespondtoperipheralassemblies. FigureA.l.IdentificationofAssemblyNomenclatureUsedinSourceDetermination4041424344454633343536373839252627282930313217181920212223241011121314151623478 APPENDIXBDescriptionofthe3-DFluxSynthesisMethod

DESCRIPTIONOFTHE3-DFLUXSYNTHESISMETHODA3-D(RBZ)fluxdistributionissynthesizedusingthefollowingwellestablishedapproximation:$(R,e,Z)=pe(Re)RZ'OREA(RZ)(R,Z)4R(R)B.1where4R~isthefluxobtainedfromtheRB.DOTcalculation;andA(R,Z)"RZ~axialdistributionfunctionobtainedbyrepresentingthe~RRZflux=(QRZ)distributionanddividingitbytheintegraloverZoftheRZflux;i.e.,4RJ4RZdZ.ZInsomepreviousstudies,theRZfluxdistributionwasrepresentedbytheresultsobtainedfromaDOTRZcalculation,whiletheradialflux4Rwasobtainedfromaone-dimensionalcalculation.However,ithasbeendiscoveredthatasimplerapproximationgivessimilarresults(withinafewpercent)astheresultofthesetransportcalculationsforlocationsnotoutsideoftheRPVandnearthereactormidplane.Inthisapproach,werepresentA(RZ)RZ-"(Z)J4RZZfP(>>dZZZB.2whereP(Z)istheaverageaxialdistributionofpowerinthecore.Thefunc-tionP(Z)hasbeenrepresentedby61discretenodalvaluesprovidedbyAmericanElectricPower.Thesevalues,whichareshowninTableB.1andB.2,correspondtotheaveragerelativepowerfor61six-centimeternodesdefinedoverthecoreheight.TableB.listheMOCaxialdistributionforatwice-burnedperipheralassembly,whileTableB.2isforafreshperipheralassembly. EmployingtheexpressioninEq.B.2,wefindA(R,Z)=A(Z)AK='1,61PKAZi=1EvaluatingthedenominatorbysummingthevaluesinTablesB.landB.2,andmultiplyingbyhZ=6givesaxialfluxfactorfornodeKforburnedassemblyPK(PKtakenfromTableB.l)AK~KaxialfluxfactorfornodeKforfreshassemblyP15o~8(PKtakenfromTableB.2)Theaxialfactors(AK)usedinsynthesizingtheRSZfluxesarealsoshowninTablesB.landB.2.Notefromthesetablesthattheaxialfluxfactorshavedifferentaxialvariationsforthefreshandburnedassemblies(indicatingadifferenceintherelativefluxshape).However,thepeakvalueineachcaseisnearlyidentical(>>3.1E-3),andoccursatapproximatelythesamelocation(-35inchesbelowthemidplane).Theaxialdistributionisfairlyflatinbothcases,andvariesbyonlyabout10Xoverthemiddle9feetofthecore.SincesurveillancecapsuleXaswellasthepeakRPVfluxarelocatedoppo-siteatwice-burnedassembly,theaxialdistributionfactorsinTableB.1aremoreappropriateforthisanalysis.Inordertocomputethe3-Dfluxoractivityatsomeaxialnodei(corre-spondingtoaheightZinTablesB.1andB.2),forsomeR8locationonemust1.findthefluxoractivityattheappropriate(RI,8J)locationintheDOTRBrun2.findtheaxialfluxfactorattheappropriatenodeK3.computethe3-Dvalueusingexpression$(RIOJ,ZI)4R6(RI6g)+AK (*)Forexample,thereactormidplanecorrespondstonode31.FromTableB.l,itcanbeseenthattheaxialfluxfactorfornode31isequalto3.063x10Therefore,allactivitiesandfluxesintheDOTReoutputshouldbemultipliedbythisfactorinordertoobtainthecorrespondingmidplanevalues.Allofthedosimeterresultsgiveninthetablespresentedpreviouslycorrespondtomidplanevaluesobtainedinthismanner.Themaximumvaluesoccurbelowthemidplaneandareobtainedbyusinganaxialfactorof3.143x10 TableB.l.AxialDistributionFactorsforBurnedPeripheralAssemblyinDonaldC.CookUnit2NodeZk(cm)(relativepower)Ak(axialfluxfactor)~Midlane123456789101112131415161718192021222324252627282930313233343536373839404142434445463.09.015.021.027.033.039.045.051.057.063.0'9.075.081.087.093.099.0105.0111.0117.0123.0129.0135.0141.0147.0153.0159.0165.0171.0177.0183.0189.0195.0201.0207.0213.0219.0225.0231.0237.0243.0249.0255.0261.0267.0273.00.2120.2120.2680.3180.3590.3860.3680.4110.4440.4560.4630.4740.4770.4790.4700.4130.4700.4830.4880.4940.4960.4980.4940.4620.4440.4880.4910.4960.4990.5010.4990.4930.4380.4760.4960.4980.4990.5040.5040.5030.4910.4380.497-0.5070.5120.5121.301,E-31.301E-31.645E-31.952E-32.204E>>32.369E-32.259E-32.523E-32.725E-32.799E-32.842E-32.910E-32.928E-32.940E-32.885E-32.535E-32.885E-32.965E-32.995E-33.032E-33.045E-33.057E-33.032E-32.836E-32.725E-32.995E-33.014E-33.045E-33.063E-33.075E-33.063E-33.026E-32.689E-32.922E-33.045E-33.057E-33.063E-33.094E-33.094E-33.088E-33.014E-32.689E-33.051E-33.112E-33.143E-33.143E-3 TableB.l.(continued)Node21c(c)(relativepower)Ak(axialfluxfactor)474849505152535455565758596061279.0285.0291.0297.0303.0309.0315.0321.0327.0333.0339.0345.0351.0357.0363.00.5110.5070.4990.4620.4420.4840.4820.4770.4660.4490.4220.3810.3320.2660.1333.137E-33.112E-33.063E-32.836E-32.713E-32.971E-32.959E-32.928E-32.860E-32.756E-32.590E-32.339E-32.037E-31.632E-38.160E-4 TableB.2.AxialDistributionFactorsforFreshPeripheralAssemblyinDonaldC.CookUnit2Nodezk(cm)(relativepover)Ak(axialfluxfactor)dlane12356789101112131415161718192021222324252627282930313233343536373839404142434445463.09.015.021.027.033.039.045.051.057.063.069.075.081.087.093.099.0105.0111.0117.0123.0129.0135.0141.0147.0153.0159.0165.0171.0177.0183.0189.0195.0201.0207.0213.0219.0225.0231.0237.0243.0249.0255.0261.0267.0273.00.1740.1830.2380.2830.3200.3470.3480.3730.4030.4160.4270.4320.4340.4350.4280.4050.4310.4360.4380.4420.4440.4450~444.0.4200.4250.4500.4570.4580.4600.4590.4610.4540.4270.4510.4610.4640.4660.4670.4670.4650.4470.4360.4650.4730.4760.4781.154E-31.214E-31.578E-31.877E-32.122E-32.301E-32.308E-32.474E-32.673E-32.759E-32.832E-32.865E-32.878E-32.885E-32.839E-32.686E-32.858E-32.892E-32.905E-32.931E-32.945E-32.951E-32.945E-32.786E-32.819E-32.984E-33.031E-33.038E-33.051E-33.044E-33.057E-33.011E-32.832E-32.991E-33.057E-33.077K-33.091E-33.097E-33.097E-33.084E-32.965E-32.892E-33.084E-33.137K-33.157E-33.170E-3 TableB.2.(continued)Node2k(cm)Pk(relativepower)Ak(axialfluxfactor)Bottom474849505152535455565758596061279.0285.0291.0297.0303.0309.0315.0321.0327.0333.0339.0345.0351.0357.0363.00.4780.4780.4730.4420.4610.4660.4580.4500.4340.4130.382.0.3420.2860.2070.2073.170E-33.170E-33.137E-32.931E-33.057E-33.091E-33.038E-32.984E-32.878E-32.739E-32.533E-32.268E-31.897E-31.373E-31.373E-3 APPENDIXCTensileTestDataRecords SouthwestResearchInsiuteOepartmentofMaterialsSciencesTENSILETESTOATASHE"iSpecimenNo.ri-8TestTemperature/NrStrainRate.aaMrw.ritYw.~projectHo.Q8'-+w>4->-rrMachineIdent.DataofTest4/~rk7InitialOiameter.Z.nInitialArealltllggLgSpecimenTemperaure:TopT.C.MiddleT.C.BottomT.C.~/n"~FinalOiameter.r+'7FinalAreaw/7;i"FinalGageLength.'~r~.'aximumLoad0.2~OffsetLoadFracureLoadllg.tg*.Lg~U.T.S.=MaximumLoad/InitialArea0.2..Y.S.=0.2OffsetLoad/InitialAreaFratureStress=FractureLoad/FinalArea"R.A.100(Init.Area-FinalArea)/Init.Area"TotalElong.=100(FinalG.L.-Init.G.L.)/Init.G.L...UniformElong.=100(Elong.toMax.Load)/Init.G.L.Pr',5NTestPerformedby:CalculationsPerormedby:CalculationsCheckedby:~-.W.~~~~~(Oate(Oate)~/7/~~ ~ih1 lIC'jt1(IJ'y ,.iSouthwestResearchInst'teDepartmentofMaterialsSciencesTENSILETESTDATASHEETSpecimenNo.TestTemperature~.StrainRate.an</'s~~.~ProjectNo.w~-,<PAA'~fMachineIdent.DataofTestu/~a/a7fillgiInitialArea.n<;gglgSpecimenTemperature:TopT.C.MiddleT.C.BottomT.C./jAn/H'fFinalDiameterFinalAreafl1gglgg~MaximumLoadll.g'llg~FractureLoadFlong.toMax.LoadU.T.S.=MaximumLoad/InitialArea0.2~Y.S.=0.2"OffsetLoad/InitialAreaFratureStress=Frac.ureLoad/FinalAreaR.A.=100(Init.Area-FinalArea)/Init.Area,".Total"long.=100(FinalG.L.-Init.G.L.)/Init.G.L...UniformElong.=100(Elong.toMax.Load)/Init.G.L-g/+Z//jil~nTestPertoeeedby:!CalculationsPerormedby:CalculationsCheckedby:(Date(Date)~7/(7 rI'gII'I'IIilllI'!I;~.I'I.11I'III~!Il~II:IIIjjIIj;I.III11iiI11III'.,'ll11illjli.'jiijiIIIIllll,ii',I:j::.i'.ji!!il""II.'llIiIijl!I,II,II'II;'jl:I~ll,iljj:II::.(,'I;jj.'I,II:I:',II!j'!IIj:IiII."Ij::I::ll'::lj~,'IIj!iI~I~jIill,i,I~Ijl'lIII'ilI11~IIIIIsil"i'i!::I:.jl!.I':1'jljlIII;:!ii,'ljlIII~I~'11'I'IIIIIaIIjjjlIII:lIIjjI~~IiIIIl,'!IIIlI;IIIiIji11I:I'lilIIIII.IjIIilII)IIIjIIiII.j.,jI~IIIIII'.ji:,li'I!:IjlIjl:IjIIII!jliIIIIIll1!Iij'Ili.I:iIIIjIIII,IlIIIIIIIjIIIII IgIII,Ij:I!,,IIi!I'f1~II:IIIII~~'IiiIIIIII!iIIIIIII:!jljil~~ SouhwestResearchinstfueOeparimentofMaierfalsSciencesi~HSil~Tc.STOATASH=":-7SpecimenHo.TesiTemoeratureP.objectNo.Machineiden..SirainRaie~+~g~>>~g~pOateofTestinitialOiameterw/7iniifalAreainfifaIGageLengthr.~.'>SpecimenTemoerature:TopT.C.MiddleT.C.m/SI.C~FinalOiameterFinalAreaFinalGageLengtnMaximumLoadC.Z.".OffsetLoaa;"racurLoad=long.toMax.Load>>~/d7.U.T.S.=MaxmumLoad/initialAreaO.Z..Y.S.=O.Z..OffsetLoad/iniiialArea7/,nFraureSi.essFrac.ureLoad/FinalArea..Toal"iona...Uniform="Iong.100(FinaIG.L.-inii.G.L.)/';nit.G.L.=100(=long.toMax.Load)/in"'-L.~R.A."-100(inilArea-FinalArea)/init.Areal7/~'g>5.D~Tes.>erarwe",byCalculaiionsPerformedby:CalculationsCheckedby:

a)t(I()I'II.:llI')("r1~L'II):(I)I,Il'ilII:',IIiII!iIIIi)I!I~)~'~I','1t:!):'III'I',i,IIII~~IIli):)i'I!iI))I'lI,I~)I)iillIiI

.Southwes.ResearchIns..uteOeoartmentofMaterialsSciencsTENSILETZSTOATASH"-:-TSpiNYTSrainRate/rg~y~~i~/ProjectNo.MacnineIder..~~/OateofTesteJ~"J<W,Ini.ialOiameterIni.ialAreaInitialGageLenctnSpecimenTempe.a:ure:TopT.C.MiddleT.C.HottomT.C.rVC7:n+nPw470.2"..Y.S.=0.2'.lOffsetLoad/InitialAreaFinalOiameterFinalAreaFinalGageLengthMaximumLoadQ.Z.rac=ureLoadalong.toMax.Load/7',r>FratureStress=Frac.ureLoad/FinalArea",.R.A.=100(Init.Area-FinalArea)/.nst.Area"..Toallong,=100(FinalG.L.-Init.G.L.)/;r..'-.G.L...Uniform=long.=100(along.toMax.Load)/n't.G.L./4.9',.~/p+,'znTes.Pe.formedby:Q.CalculationsPerfor,edby:-'i".m.rt~~(OateCa1cu1aticnsCheckedby:~-~~.(Date)5'/7/<7 I,sI!,I~ss'Isl~s I~~CIj~i:Ilie~lj'liII',C~.IIIIIIII~Ic!llIII~,I<<~!ilIlli'<<I'I'IlCI~:Ill~I'I.'.I1~I;(I,:lj:I'.l:<<'Iilli~~li<<:I'I'-~I.'ll,IliIII~I;IIII.I.Cl~I.II:!I<<III.I~,'I',:~I:I~~~I1III.<<l<<lliII.":~l!:'.Iijl'll!Iiil!:IIIIII"':,1.I'1iI<<~II::1I<<<<II'lll:IilII'IIIIIIIIIil!II.'I~jilljil!il'IliI'illiiIIIijjlIl!!iIIII.iIIIIIIIIj,1IIC<<I!III(Ii!iI)IlII:I:II!Il<<iIIIII:III!I;I~1I~jIII'II".II,Ci~<<ll.1 TABLE4.1-12ORCOOCODSgor~oe~etReactorVesselFullLengthControlRodDrfveMechanismsSteamGeneratorsReactor-CoolantPumpCasingsPressurizerPressurizerSafetyValvesgodeASHEIII*ClassAASHEIII*ClassAASMEIZZ*ClassANoCode(DesignedwithASMEIIIArticle4asaGuide)ASMEIII*CLassAASMEIII*Unit1ddedaandCodeCases1965Ed.through1966WinterAddenda,CodeCases1332-2,1358,1339-'2,1335,1359-1,1338-3,13361965Ed.through1966WinterAddenda1965Ed.through1966WinterAddenda1968Edition1965Ed.throughWinter1966Addenda,CodeCases1401,14591968EditionPowerOperatedRely.efValvesB-16.5HainReactorCoolantSystemPipingReactorCoolantSystemValvesB31.1B-16.5orHSS-SP-66,andASHEIII,1968Edition*1967EditionASMEBoilerandPressureVesselCode,SectionIZI-NuclearVesselsRepairsandreplacementsareconductedin";ordancewithASMESectionXI4.1-40July1991 V~<<,'$ TABLE4.1-12(cont'd.)8Hoc/~en~5pa~ggg.goragone~tReactorVesselFullLengthControlRodDriveMechanisms~odASMEIXIClassAASMEIXXClassAUnit2ddendaandCodeCases1968Ed.(1968SummerAddenda)-CodaCase1335-41968Ed.'NoAdd.)SteamGeneratorsASMEIXXClassA1968Ed.throughMinter1968Addenda,CodeCases1401,1498forupperassembliesand1983Ed.throughSummer1984forreplacementlowerassembliesReactorCoolantPumpCasingsPressurizerPressurizerSafeeyValvesNoCode(Desi~edwithASMEXIIArtic3.e4asaGuide)ASMEIXI*ClassAASMEIXI*1968EditionthroughSummer1969Addenda1965Ed.throughWincer1966Addenda1968EditionPowerOperatedReliefValvesB-16.5MainReactor.CoolantSystemPipingReactorCoolantSystemValvesB31.1B-16.5orMSS-SP-66,andASMEIXX,1968Edition+1967Edition*ASMEBoilerandPressureVesselCode,SectionIIX-NuclearVesselsRepairsandreplacamenesareconductedinaccordancewithASMESectionXI4.1-41July1991 .EF":.ScMICHIGANPOWERCOMPiJ...r~..ucYI'1C,.Hovaxiber7,1977DonaldC.CookNuclearPlantQn3.tHo'DocketHo'0-315DPRNo~58rI'EdsonG.Case,ActingDirectorOfficeofNuclearReactorRegulationU.S~NuclearRegulatoryCommissionshington,D.C.20555earMrCasecT?d.sletterrespondstoMrsDonK.Davis'etteroi20,1977requestingreactorvesselmaterialpropertyinformationDtheDonaldC.CookNuclearplantInourletterdated*uly25,1977,weinformedyouthatwewouldneedadditionaltimetoprovidetherequestedinformation.Enclosedherewitharethree(3)copiesofadocumententitled,"D.CCookUnitHo.1ReactorVesselMaterialurveillanceProgram"whichsuppliestheinformationrequested.Verytrulyyours,ohnTzdlinghatVicePresideJT~mamSwornandsubscribedtobeforemeonthis7dayofNovember1977inNewYorkCounty,NewYorkNotaryPlicGfiEGOiTYM.Gi:Z~VilrHataryPublic.St:teat<'tewYuritHa.31-46<3<31GualiTiedinNewYarkCountyCommiss'anExpiresMsrch30,19?5 \~."&~EgGCase~l'~P~sIICharnoff,H,SteketeeVollenCCallenNalshVShaller-Bridgman~N~tuxgensenQePo'eRiRiDiRop~glgbc:S-ZMilioti/P.W.Daley8'~GFeinsteinM.H.Fletcher-'RCM.M.Mlynczak-NRCDC-N-6015.XDC-N-6079~,~0Xov.Lr7,1977g'rt'5,,'~>~I<</~,t'~I >>~4~~D.C.COOKUNITNO.l:"$Rei'd)l.hs'es>>W'.Q?'.:;..-REACTORVESSELMATERIALSURVEILLANCEPROGRAM'pp'.grrsi>>~"-.tm~r>>'~~1~-:T;)Theestimatedmaximumfluence(E>>IMev)atthejnnerSurfaceofthereactorvesselasofMarch31,1977is8.38x10n/cm~.:-;2.}'.:-'-.;.3.)~r.:.',,:.4.)surveysa~I.Theeffectivefullpoweryears(EFPY)ofoperationaccumulatedasofMarch.31,1977is1.34EFPY.Fab~icationofthereactor.vesselwasperformedbyCombustionEngineering,IncaP.a.)Sketchofthereactorvesselshowingmaterialsinthebelt1ineregion'...isshowninFigurel.b.').Informationoneachoftheweldsinthebeltlineregionisshownin~..Tables1through4.c'.)InformationoneachoftheplatesinthebeltlineregionisshowninTables4through8.>>InformationrelativetotheweldandplatematerialinthematerialllanceprogramisshowninTables1through3and5through8.~sI~.'r1>>>>a,.rr>>~raie<>~.~. '+i:~'g.t+jj+'k8~fFIGURE1.,"'.p~p'g,IDENTIFICATIONANDLOCATIONOFD.C.COOKUNITNO.1REACTORVESSELBELTLINEREGIONWELDANDPLATENTERIAL~~r1~~r,.'~~9vV05=3l~,r.'.I.-.~'I~VlCQ9'lz,AC~i/9VZC31105-2.5~~~~~'~~~I~~I'308'Sob"AleO8'SvoG-33-V'/ZA~gqvol3gqvo7-l.a'.~ol'~.a~~.03-99"8IQO0~~~302709'j'/07-2 MeldLocationNozzleShellVerticalSeams1-442A,88(CIs~~TAIDENTIFICATIONANDLOCATIONOFD.C'OOKVNITN0.,1~~~VESSELBELTLINEREGIONMELDMETAL':'-*".'.:.'.-,.",'.-,-,-,'.-..'lux~TeLotNo.PostMeldHeatTreatment::WeldWeldWirettrdttttttt.t~tttl.SubmergedArcB-4Mod.13253(TandemMire).B-4Mod..'12008Lande10923791'.1125-1175'F-40HR-FCMl.14LowerShell.VerticalSeams3-442A,85CSurveillanceMeldSubmergedArc(TandemMire)SubmergedArc~dNozzleShelltoSubmergedArcInterShellCircleSeam8-442Inter.ShellSubmergedArcVerticalSeams(TandemMire)2-442A,85C.Inter.toLowerSubmergedArcShellCircleSeam9-442Ml.18M1.14M1.14mM1.42.'.1125-1175'F<<40HR-FC.;rg~'J,:.1125-11754F-40HR-FC..:=...'.1125-1175'F-40HR-FG-'-..:,'-:IS'~l--;;..1125-1175'F-.40HR-FC',;~.:.1125-1175'F-40HR-FC-.:-,.'.*r~~~..~~,.~'0s~r0r~,r~092.'791Linde1"B-4Mod.13253B-4Mod.:12008'I'I~B-4Mod.:IP3571092-.3958:Linde1,~s~'J'r,~oI092';3791'-4Mod.13253.Lande1B-4Mod..12008.8-4Mod.'13253.Unde1092'.3791~d~'sId..-dd'1+~d'B-4Mod.20291.'inde1092,3833 CHEMICALCOMPOSITION0WeldMireT~eHeat.No.i~Te13253Linde109212008'Linde109220291Linde1092IP3571Linde1092SurveillanceMeldFluxSiNi'Mo".'Cr.Cu"V.06.72'45~.04',07.05.99.51.-:.06.13.-'.*.03.74.51.21.82.54.-':.40.18.74.44.02..27.001.Ii~~~,~~~I'ItI~'I4~~~REGIONMELDMETAL'ShelfYS'TS..Elong,'AFt-Lbo.KSI:KSI:0*--63.380.127.5'9.770.588.0.25.5.67.1.'I69.084.0,'.28.0.69,4'":c1155>>>>,>>>>>'>>111~:.67.181.926.869.2LotNo.C37913791.38333958PS=..013.015,010.015.008.009.017:.009.023.014,15.13.16.12.26"1.831.921.921.381.3384Mod.84Mod.84Miod.84Miod.*MireAnalysis-NoAsDepositedMeldAnalysiswasPerformedTABLE3MECHANICALPROPERTIESOFYESSELBELTLINEEnergyat10'FFt-LbsRTNPToFFluxMeldMireT~e.HeatNo.84Mod.13253)84Mod.12008J84Mod.2029184Mod.IP3571SurveillanceMeldSurveillanceMeldTNDToFLotNo.Linde109237910*.84,74,70Linde1092Linde1092CETestsWTests3833.'*39580*>>7035,50,48'*40,46,460*54~54~73,>>5683,84,92-70~M~1IA:':::.':',:-:...--.-FYESSELBELTLINEREGIONMELOMETAL)5MeihtPercent*EstimatedperNRCStandardReviewPlanSection5.3.2~I~i.c')",~I<~I~~+'I~~~lg~~~)~I,~),~V~yo~.-::.'M~' g~~~)~,I....~'~i~'~TABLXIMUMEND-OF-LIFEFLUENCEATVESSELINNERMALLLOCATIONSh~'I.~~.NozzleShellIIIIleShellr.ShellII'lr.ShellrShellIIIIleShellIIIIr.ShellIIIIrShellVertiIIIItoInVerticalSeamllIIter.ShecalSeamIIIIwerShelalSeamllCircleSeam"--.:.',t~I.',~1CircleSeamNozzInte'nteLowetoLoVerticNozzPlateIIIIPlateInte')1LowePlateIIIII~PlateorMeldSeamLocation1-442A1-442B1-442C8-4422-442A2-442B2-442C9-4423-442A3-442B3-442CB4405-1B4405-284405-3B4406-1B4406-2B4406-3B4407-1B4407-2B4407-3'I~~~~rr'~~4~IPlateor-.SeamNo...'Fluene:~IIC4;2.4x1013.9x1017'.9x1017.3x10176.2x10181.1x10191.1x10192.0x101911x1019'*6.2x10181.1x10197,3x10177,3x101777.3x102.0x102,.0x10192.Ox1O192.0x102.0x101192.0x10r'~I)~~~JihIh~)I~~~l\'~'.,rhh~)h~~,~h

~~.Is'DENTIFI..'eatNo.C3594C3594C3872C1260C3506.*C3506C3929C3932C3929~ComonentPlateNo84405-184405-284405-384406-184406-284406-384407-184407-284407-3ozzieShellIIiIInter.ShellIIIIowerShellIIIIIIIISurve)llanceMaterialsameasInter.ShellPlateCHEPlateNo.SS$'21.20.24.25.24.21'21.20.22.24llancePlate84405-1~84405-284405-384406-184406-284406-384407-184407-284407384406-3**Survei'~~sTAB~,~'"~~IONOFVESSELBELTLINEREGIONPLATEMATERIALMat'l.Heat'Treatment.'Sec.No.,~SuIIer'ustenltlze~Temer.---.-'tressReliefA5338Cl.1Lukens1600'F+50'F-4HRMg1225'F+25'F-4HR-AC.))50'F+25'F-40HR-FCA5338Cl.1Lukens,.IIIIA5338Cl.1Lukens;,'-II.II.IIA5338Cl.1.Lukens'..II'l....,IIA5338Cl.1Lukens.-A5338Cl.1Lukens':"A5338Cl.1.LukensA5538Cl.1LukensA5538Cl.1Lukens'....-B4406-3~~TABLE6MICALCOMPOSITIONOFVESSELBELTLINEREGIONPLATEMATERIALh..IMeihtPercentC*MnPN$MoCu.42.007..018.26.46".47.141.41.006.018.25:-.45.47".14-'30.008.013.30.48.46.141.17.016'025.29'52..49'.121.41..00&':.015.28..50.47..151.40..009.015.25:'.49.46.1S1.35.010.014.29.55:.53..141.25.012..014.22.59.54.121.32.010.014.24.50.55'l41.40.009.015.25;.49,.46.14AnalysisPerformedbyWest)nghouse~al ~~',C'r>~~'.~c,~~~\UTS,'....Elong.':..-.,.;"RA..'KSI81.3".-.29.5'.,';:,::.;-:.-6&.l;-.'.'5.8.'-.:...::.28.5,::;.".':-66.886.4':'.."::.25.5".;;-"i-'.66.586.3.':'.'.27.0::.'-..'.";".'67.1'-'.89.7..,".""26.2:~"'::.':68.0'88.8-"'.26.2:.:",;-':.68.0,."-)86.7'.'&.0'.:,:;:.'-':::,.'9.684.1.'.:27.2";-;.-:.70.6;~86.4.::::.;..27.2'".;:J,'.-;69.7'-'."'.ReviewPlanSect)on5.3.2'I~Q'FLATESPERFORMEDBYMESTINGHOUSE'".-:.hElong."~RA~..'t90.4'.."27.5"::-'..'0.0m~0\':..:.i~'!+~'4!~~~y.C'~'helf.EnerTNDTRTNDT*oFYS'SIFt-LsNMWD*87,~92808080.578.5:85.590.5lODoFPlateNo.rrI134142123123124121133149139100~0"-10-10-10-20-20023440-8172756,362.964.463.3.'7.266.864.162.163.784405-184405-284405-384406-184406-284406-384407-184407-284407-35-1501intheMajor"~'ion(MUD)perNRC'St*EstimatedfromDataandardMorkingDirecTABLE8MECHANICALPROPERTIESOFSURVEILLANCEPLATE5OTHERBELTLINEPShelfEnerslODNMMDNDT'FNDToFYSKSIUTSKSIPlateNo..8396981031261085334028-123884406-184406-284406-384407-184407-284407-3'68.4130~I~~I~~J!~'ABMECHANICALPROPERTIESOFVESSELTLINEREGIONPLATEMATERIAL::.'4~1~(I'!',!0a.7 gPgchm.4'7f4+topl5Providethefollowinginformationforthepressuzevessel:l.Aschematicofthereactozvesselshowingallweldsinthebelt-lineregion.Weldsshouldbeidentifiedbyashopcontzolnumber(suchasapzoceduzequalificationnumber)andtheheatoffillermetal,typeandbatchnumberofflux,etc.2.Foreachoftheabovewelds,andforweldsinthevesselmaterialsurveillanceprograms,anidentificationoftheweldingprocess(subarc,electroslag,manualmetalarc,etc.).Also,alistingofthefollowinginformationoneachofthesewelds:chemicalcomposition(particularlyCu,PandScontent),dropweightT~,RT,uppershelfCharpyenergyandtensileproperties.3.ThemaximumendoflifefluenceatthevesselI.D.foreachweldinthebeltline.ReferenceNRCletterdatedHay20,1977toFw.JohnTillinghast,VicePresident,IndianaandMichiganElectricCompanyontheabovesubjectandaddi-tionalrequestedinformation.ForDonaldC.CookUnit2reactorvesseltheresponsetotheabovequestionandtotheadditionalrequestedinformationinthereferencedletterisprovidedbelow:l.NotApplicable.2NotApplicable.3.ChicagoBridgeandIron.4aAsketchofthereactorvesselshowingallmaterialweldsinthebeltlineregionisshowninFigure1.b.InformationrelativetoeachoftheweldsinthebeltlineregionisshowninTables1through4.AppendixgUntt2121.2-1jgENDHEHT77JULY,1977

c.InformationrelativetoeachoftheplatesinthebeltlineregionisshowninTables4through7.5~InformationrelativetotheweldandplatematerialincludedinthevesselmaterialsurveillanceprogramisshowninTables1through3and:5through7.AppendixgVnit2121.2-2AMENDMENT7y~ULY.1S77 Figuregl21.2-1gggckmrnf7p~~3+IDReactorVesselBeltlineReionMeldsD.C.CookUnit2PlateC5521-2OoPlateC5556-L80'700Soo80oCOREI80oOoPlateC5540-2C)270o.SOoI80oPlateC5592-1MAX.EHDOFI.IFEWELDORIENT.WELDLOCATIOHFLUENCEH/cm<VERTICALl70o4350o7.7xIOI8VERTICAL90o4270o6.3xIOI8CIRCUMFERENTIALINTER.TOLONERSHELL2.0xIO9AppendixgUnit2321.2-3SlENDHENT77dULY,1977 TABLE1IDENTIFICATIONOFREACTORVESSELBELTLINEREGIONWELDMATERIALInter.Shell(VerticalSeams)Inter.toLowerShell(CircleSeam)LowerShell(VerticalSeains)SurveillanceMeldWeldingWeldProcess~oal.No.Sub.Arc*MPS-1323-2F4F6WeldWireFlux~TeHeatNo.~TeLotNo.PostWeldNeatTrADCOMTNMMS3986LINDE1249341125-1150'9-622/2NES-PC1115-1165'F-9HRS-FC<WeldsfabricatedusingbothsingleandtandemwiresPs aa~l3c+fDfOCLWe~OcTABLE2BELTLINEREGIONWELDMATERIALCllEMICALCOMPOSITIONWELDWIREFLUXWEIGIITPERCENTTYPE-IIEATNO.LOTNOCMnPSSi,NiMoCrCoADCOMINllMS39B6SURVEILLANCEWELDLine124934(SingleWire)(TandemWire).0801.42.019~016~36.96~0921.46~019.015;35~97~1101.33.022,012~44!~97~07~05~53~07~06.54~07.055 TABLE3HECHANICALPROPERTIESOFBELTLINEREGIONMELDMATERIALWELDMIRETYPENEATNO.FLUXTYPELOTNO.NDTNDTF'FS}IELFENERGYYSFT-LBBKBIUTSELONGBhKSIXXADCOMIN19fS3986LINDE124934(SingleWire)(TandemWire)27*27*77*71.886.530.068.677*74'91.225.5660SURVEILLANCEMELD<<40277776.392.324.266.7*EstimatedfromsurveillancewelddataI g6acl~a~I-7p~p)$/DMAXIMUMENDMF-LIFEFLUENCEATINNERMALLREACTORVESSELLOCATIONSlater.Shell(Ve'rticalSeams)Inter.,ShelltoLowerShell(CircleSeam)FLUENCE(n/cm)27'x1020x10LowerShell(VerticalSeams)Inter6LowerShellPlates63K1020xloAppendixgUnit2121.2-7AMENDblBlT77JULY,]g77 TABLE5IDENTIFICATIONOPBELTLINEREGIONPLATEMATERIALCOMPONENTPLATECODENO.HEATNO.MATUALSPECSUPPLIERHEATTREATMENTInter.Shell10>>1C5556-2A533B,CLolLUKENS1650-1750'P-5HR-WQ1550-1650F-43/4HR-WQ1200-1300P-5HR-AC1100-i175'P-621/21R-PCInter.Shell10-2C5521-2.A533B,CL,1LUKENS1650-1750'P-41/2HR-WQ'550-1650'P-5HR-WQ1200-1300'P-41/2HR-AC1100-1175F-621/2HR-PCLowerShellLowerShellSunreillance9-19-2PlateC5540-2C5592-1C5521-2A533B,CL+1LUKENSA533B,CL,1LUKENSA533B,CL,1LUKENS1650-1750'P-41/2HR-WQ1550-1650'P-5HR-WQ1200-1300'F-41/2HR-AC1100>>1175'F-621/2.HR-FC1650-1750'P-41/2HR-WQ1550-1650F-41/2HR-gQ1200-1300'P-41/2HR-AC1100-1175'P-621/2HR-PC1650-1750'P-41/2HR-WQ,1550-1650'P-5HR-WQ1200-1300'P-41/2HR-AC1125-1175'F-511/21R>>PCS!cA,~ TABLE6CHEMICALCOMPOSITIONOPBELTLINEREGIONPLATEMATERIALPLATECODENO.10-110-29-2HEAT'O.C5556-2C5521-2C5540-2C5592-1PLATELOCATIONCTOP,24BOT.TOP~21~22BOT,TOPBOT,~21~21~19BOT,.20TOP~201.341.38lo281,291+311.341351,25~012~014~012~013.015.011.010~012HEIGHTPERCENTSSi~015.19~014~18~016,18.015~16~014~20~015.~18~015.19~014ol8Ni.56~58.57~58~64~63,60.57Mo~55.55;54.50~57.56.53~50Cu.14~15~14~14.11.10~14.14SURVEILLANCEPLATE.22128.017~014~27.58~55~ll TABLE7MECHANICALPROPERTIESOFBELTLINEREGIONPLATEMATERIALPLATECODENO.10<<110-29-19-2HEATNO.C5556-2C5521-2C5540-2C5592-1NDT'P0103886-20-20110-2020103SHELFNDT.ENERGYFPT-LBS90.YSKSI67.264.565.870.0UTSKSI87'85'85788,1ELONG~X25'25;526'24.5RhXSURVEILLANCEPLATE1038.8666.486'25.260.6 Ugff'4c"/tor~~~7gINDIANA&MICHIGANPOWERCOMPANYP.0,BOX18BOWLINGGREENSTATIONNEWYORK,N.Y.10004July3,1979AEP:NRC:00097CDonaldC.CookNuclearPlantUnitNo~1DocketNo.50-315LicenseNo.DPR-58Mr.JamesG.Keppler,DirectorU.S.Nuclea~RegulatoryCommissionRegionIII799RooseveltRoadGlenEllyn,Illinois60137

DearHr.Keppler:

References:

(;)NRCIEBULLETINNOS.78-12,78-12A,78-128"ATYPICALWELDMATERIALREACTORPRESSUREVESSELS"(2)"COMBUSTIONENGINEERINGREPORTINCOMPLIANCEWITHNRCIEBULLETIN78-12,DATEDJUNE8,1979ThisletteranditsattachmentsareinresponsetotheabovereferencedI.E.BulletinsastheyapplytoUnit1oftheDonaldC.CookNuclearPlant.CombustionEngineering,manufacturerofthereactorvesselforUnit1hassubmittedtotheNRC,onJune8,1979,agenericreport(ref-erence2)providingtherequiredweldmaterialinformationonallreactorvesselsfabricatedbythem.WestinghouseandAmericanElectricPowerhavereviewedtheabovereferencedreportandconcludedthatitrepresentsadequatelythedatafortheweldmentmaterialusedinthereactorvesselof Ae.t':Nii.:Uoi)9/i//Qcci'ngfgr3~7/PUnit1oftheDonaldC.CookNuclearPlant.WestinghousehasnotedsomediscrepanciesintheCombustionEngineeringreport..TheseareeditorialinnatureandwillbesubmittedtotheNRCasarevisionbyCombustionEngineering,Inc.Verytrulyyours,ohnE.DolanicePresidentAttachments:1)CombustionEngineeringlettertoNRCdatedJune8,19792)CombustionEngineeringreviewcertificationletterdatedJune8,19793)WestinghouselettertoAEPdated6/25/79cc:R.C.CallenG.CharnoffD.V.Shaller-8ridgmanR.S.HunterR.W.Jurgensen

Hr.J.G.Keppler,Directorbc:S.J.Milioti/J.I.Castresana/T.SatyanR.F.Hering/S.H.Steinhart/J.A.KobyraH.N.Scherer,Jr.R.F.KroegerJ.F.Stietzel-BridgmanD.Migginton-NRCCookPlantRegionIIIResidentInspectorAEP:NRC:00097CR.C.Kopeiow/J.R.JensenOC-N-6015.3.1~PEP:NRC0097Cegg~'F)i~~i.g'-g~~~/4

Qgf:pv<'pi~~i..i".s~~Comcu!ion-<:r..r.'.irq.Ihc)QQQPivSPOCii'uitiOOd.Windsor.Gonhcc:icui0609'ci~'>>g<~"~toiITelex93"97Attachment1AEP:HRC:00097C:..--POWER'~SYSTEViS+gzicl~mc~'7p'du~~'+c>+INJune8,1979LD-79-036Hr.HaroldD.ThornburgDivisionofReactorCons;iuctionInspectionOfficeofInspectionardEnforce.-:ntU.S.NuclearPeguiatoryCommissionWashington,D.C..20555

Subject:

I5E8ulletin78-12,"Atypicaliteldt',aterialinPeactorPressureVessel';.'elds"

Deartir.Thornburg:

Enclosedpleasefind;hree(3copiesofadocu",ententitled"Infer:-'onRequeted;yV*:-Bulletin7o-12,~typical'i'eldi"-terialinRe=ctoiPres-sureVessel'h'elds."Thisrepoitisbeir,"s..';.'.itteddirectlytothei'=:b.Cc;:bustionEi::-.ine-eringasperr:itt".by::.:'olc..n.Atothe,"ulletn.Itisexpecto"',aholdersoiCons'ructo::Per;.-.i-.sandu>".ei*atingLic:..".sesv:il',re:.ere:.cethis'eportinrespondingtothebulletinonthe;rindividualdeci,e:s.Shouldyouhaveanyc"estior.s,pleasefeelfreetocallr,",eorfl;.E.H.Kennedyofmystaffa"(203)6"'31911,extension2o2G.Verytrulyyours,COf18USTIOllEiiG!.",EER!,'lG,IilC.AES:dagEnclosureLicensirgl',anager

~~C.EpowerSystemsCprnbUstlonFngineering.tnc9]tQ/,VieII1StreetCttgttanooga.Tennessee3y't02PODER:SYSIEi',Sl.JTel,615;26~463:LiAttachment2AEP:HRC:00097Crki5&c-'.~~HgJune8r1979Ihereb'icertha7S-12and73-12'".sknot;ilcdeeand~el1979re:ltit'ed,In:oEtlforce:t:e::ttullePressurekressels",inthe'acr'cationotherecordcotiplc"tnere.o-t.r:"..;.>>'tl:xe'u70-1~ti".'er01lo'w'lse,.rchrcruirLdbJI.Eedaildt"a>>,tothebeIt'E~M~At,pica1t'cldlateriaiotiea>>aQ'ca'e,atengreactorvesel:D;tiletinstof:'ynJut%>>Mr"nd'Rcactor'ialsuscGC-EContractr,'o.:23366Uti1ity/Sit;e:Indiana-'.ichic'anElectricCo.DonaldCook<1N.A.Stone,Jr.,tlanagerNuclearQuali".AssuranceChattat>oo>a'.nuclearOpration" WestinghouseElectricCorporationPriverSystemsCompanyAEP:t(RC:00097CP+~h~~.ypH<N:learServiceOw<sio<<<axn<SpilisD<'<g'<pennsy<vzn<a15230June25,1979AEP-79-17Hr.J.R.Jensenttechanica1EngiiiiiiingDivisionAmericanElectricPowerServiceCorp.2BroadwayHewYork,HY1000)

Deart'Ir.Jensen:

NRCIEBULLETIttS='78-125;-.'78-12A"At~4<1teldimmaterialinReactorP.essure",essel'lds"Baseduponourt<<tinicalevaluationofthein,ormationcontainedinthcnrcrep<<<<o"piledtvCo-'.bustionEnginering,Inc.tosatisfytherequir.;,.en.sore-sentedintheU'.<<uclearRegulator"Cor.:;,.issionIEBulletins="78-12~~=7:-<2.-'.,>lestinghouseha"<onclud"dthatthe'weldraterialdataandotherrequired'n-'-r-prt'rnt.l,otheD.C.CookUnit1reactoivesselareincludedinCo.":3"5-tionEngineering,Inc.report.Thisrepoi'thasI<reviouslybeensubmittedtoieU.S.NuclearRegulatoryCo:.-;.'s-sion>aseviden>>'<lbyCo.",:bustionEngineering,inc.transmittalletero-.Ju,".1979to<<e"S'<<<<:learRegulatoryCor<i7ission,acopyofwhichisenclosedforyourinformatioil,Additionally,w"tiaveenclosedforyourfilesacopyofCombustionEneincrine,Inc.letterto".",tinghouse,datedJune5,1979andattachedcertific.=t'.onstatingtha".h~ioner'.creportsubmittedtoUSl<uclearRegulatoryconta'nsc'.a-:.fortheD.C.Cool;Unit1i-eactorvessel.Mestinghouseau<latedthecontentofthesubjectreportagainsttheAS:ECocoandHE-Spec.r('iiiire,ntsorthD.C.CookUnit'eactorvess1built'".CombustionEnoiii<<iinInc.ThereportcontainsdatapertainingtotheD.C.CookUnitI<,oac..vesselardisconsi"eredtobeinco."iipli=.ncewiththeUShRCBull<iirisand';<estinghouserequirements.However,someapparenterrorswerenot<Iinthcreport.Thesediscrepancies,verebrouchttot'.".eattentionofC<><.,!ii:tionEngineering,Inc.andCoirbustionEngireering,Iiic.iscurrentlyev.<t<<~tiflgtileol~Theyhaveagreedtoresolvethecor.:ments:oMestingnouss'<ii'lctiona<idwillsubmitrevisedpagesfortherepoi.tto..':eVuclearRegula'<<IvCommissionandl(estinghouseatalaterdate. -'1QQI',r,J.R.Jersen-2-June25,1979++4'c!pm,+gAEP-79-171A$g1<<j+InadditiontothedatasuppliedbyCombustionEngineering,Inc.inthesubJectreport,westinghousehasdevelopedsurveillancev<eldrentdata.Thisdataiscontainedinthefollowingreport,vihichhaspreviouslybeentransmittedtoyou:O.C.CookUnit1,MCAP'8047,datedHarch,1973AsstatedintheirreportCombustionEngineering,Inc.doesnotmaintainarchivematerialforthefieldsrepresentedbythisreport.Inaddition,Westinghouseinventoried-ourarchivesurveillance<;eldmentmaterialandnoneexistsfortheD.C.CookUnit1reactorvessel..Inconclusion,.thisletterprovidesassurancethattheD.C.CookUnit1reactorvesselis+overedinthesubjectreport,andfulfillsl!estinghouse'sobligationsrelativetotheReactorYessel'ldflaterialProgramcontractedfor'yk:,ericarElectricPoi;erServiceCorporation.'rEAcopyoftheCo;..bustionEngineering,Inc,genericreportapplicabletotheD.C.CookUnit1reactorvesselissubmitted,oryourrecords.Sincerely,(/JDC/ejattachmentsF.t/oon,t!anagerEasternRegion8Ht(ISupportcc:D.Y.Shaller*R.H.Jurgensen*J.G.'ern**withoutattachment ~IC-8PowerSystemsCombustionEngineering,Inc.911W.MainStreetChattanooga,Tennessee374Q2,IgPOWER5SYSTEMSTel.615(265-463;~rgp~8'p)9~FI+~urnBiv-cLt.MNFORMATIONREQUESTEDBYNUCLEARREGULATORYCOMMISSIONINSPECTION&ENFORCEMENTBULLETINNO.78-12"ATYPICALWELDMATERIALINREACTORPRESSUREVESSELWELDS" INFORMATIONREQUESTEDBYNUCLEARREGULATORYCOMMISSIONINSPECTION&ENFORCEMENTBULLETINNO'8-12"ATYPICALWELDMATERIALINREACTORPRESSUREVESSELWELDS"PreparedbyCOMBUSTIONENGINEERING,INC.NUCLEARPOWERSYSTEMSJune',1979 V~&>~r.r+~*REACTORPRESSUREVESSELSFABRICATEDBYCR1BUSTEONENGINEERING,INC.Page1of4Ajjkc4~+g.~/o//+-.;.-C-ECTHO.:=-164'=-26417765198652966ACUSTOMERGeneralElectircGeneralElectricWestinghouseGeneralElectricCEiPD-WindsorASMECODEI&VIII,1962I&VIIE,W-63III,W-65IIE,S-65III,1965OWNERNiagaraMohawkJerseyCentralConsolidatedEdisonCo.NortheastUtilitiesConsumersPublicPowerSITENineMilePointPlOysterCreekIndianPoint/f2Millstone81Palisades326633666866WestinghouseWestinghouseWestinghouseEII,W-65III,W-65III,W-65PublicServiceofN.J.ConsolidatedEdisonCo.CarolinaP&LSalem!31IndianPoint83Robinson82213666621566GeneralElectricGeneralElectricGeneralElectricIII,W-66EIE,W-66IIIW-66ConsumersPublicPowerBostonEdisonCo.PowerAuthorityStateN.Y.CooperSitePilgrimFitzpatrick2306623366WestinghouseWestinghouseIII,W-66III,W-66PacificGas&ElectricIndiana-MichiganElec.Co.DiabloCanyon81DonaldCooki'P.l711662067216726672867CEMD-WindsorWestinghouseWestinghouseGeneralElectricGeneralElect'ricIEI,W-67III,'rT-66III,S-71III%S-69EII,W-69OmahaPublicServiceofN.J.DukePowerCompanyDetroitEdisonCommonwealthEdisonFt.CalhounSalem82McGuire81FermiLaSalle3067GeneralElectricIIE,S-68LongIslandLightingCo.Shoreham3167GeneralElectricIIE,W-66SouthernServicesHtch81i677316774167CENPD-WindsorCENPD-WindsorCENPD-WindsorIII,W<<67EEI,W-67EII,W-67BaltimoreGas&Electric.BaltimoreGas&ElectricFloridaPower&LightCalvertCliffCalvertCliffSt.LucieI SUMMARYOFWELDMATERWIRE/FLUXIDTESTMELDINGMATERIALSNmmERANDDATESOFTESTSVENDORADCOHRACO3RACO3WIRE/ELECTRODETYPEHEAT/LOTNO.12008'0541433A277VENDORI.IHDE1INDELIHDEFLUXTYPE109210921092LOTNO.3947'9473947NO.OFTESTSDATE(S)4-1-704-8-70WIRE/FLUXORELECTRODEWELDDEPOSITTESTPLATESC-ECODENO.Ml.37Ml.37M1.38REFER.ATTACHEDNON-CONFORM.REPORTADCOHReid-Aver-vrHMHReid-Avery)BQfReid-AveryIIHH30542430541412008305414305414LINDELINDELIHDELINDELINDE109210921092109210923947395139513951395f)4-10-705-4-705-11-706-2-70ill.39M1.40M1.41M1.41M1.42Reid-AverReil-AverReid-AverIIHH1P35711P35711P3571LINDELINDELIHDE109210921092395839583958NA6-9-70M1.42M1.43l)1.43NhIIHHReid-AveryHMIReid-Avery)IHHADCOH1P35713054142720451989LIHDELIHDELINDELINDE1092109212412439583958368736876-3>>706-3-707-11-67Ml.44M1.44E1.01E1.01ADCOH)IHM27204LIHDE124368710-10-67E1.02Reid-AverIBIHReid-AveryIBBI348009349009LIHDE).IHDE124124368736882-28-682-7-69E1.03El.04NANAReid-AverIBIHIBIHIBIHA-8746A>>874633A277LIHDEI.INDELIHDE1241241243688387838785-7-699-10-6910-29-69E1.05El.06E1.07Page6of21

WIRE/FLUXINDEXHeatofWire~PluxTneLotTestResultsO646B428661H57786054-B12485458V-521439B19634B009'7204124201325313253&120082029171148746IP2809IP28152193533A277305424305414IP3571885T409009935C1919013610120101376329637518745187651907606L4051922.51923519123P4767836408364283653836484P517483637&836505P5622'36462P57554P6052870058760088118LindeLindeArcos8080B-5AreasLindeAreasB-580B-5Linde1092Linde80Linde1092LindeLindeLindeLindeLindeLindeLindeLinde10921092109210921092109210921092Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde1092Linde1092Linde1092Linde1092Linde1092Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091;Linde0091Linde0091Linde0091Linde0091Linde0091817481744D4F4D5F4K13F82085613F3617840537243724372437743791383338543854385438693869&865138893947395839223922392239773999399939993458345834583489&345834893489349034903490353635363536112211221122112211220145014501450145Page1Page1Page2Page3Page4Page5Page6Page7Page8Page8Page9Page10Page11Page12Page13Page14Pages15Pages17Pages20Pages22Pages24Pages26Pages28Pages30Page32Pages33Pages35Pages37Pages39Pages41Pages43Pages45Pages47Pages50Pages52Pages54Pages57~Pages59Pages61Pages63Pages65Pages67Pages69Pages72Pages74Pages76Pages78Pages80Pages82Pages84&16thru19&21&23&25&27&29&31&34&36&38&40&42&44&46thru49&51&53thru56&58&60&62&64&'6&68thru71&73&75&77&79&81&83&85 fROM~OhTCVFeldingMaterialQualification-...toRequirementsofASME.SectionIIl'A-32255~.".810560MetallurgicalResearchaad.DevelopmentDepartment-ChattanoogaJune9,1970~~~~~~~I~zo~I~~~Ir~~Thefollowingtestdataisfor3/16"diameterbhrewire,typeB-4.MOD.,.heatnumber1P3571(tandem),fluxtype1092,lotnumber3958.a~~'vrelddepositwasmadeusingtheaboveheatofwireandlotofQux.'A'eldinq~erasdoneinaccoraarcewithC.E.'A'eidingProcedureSpecificat'onSAA"33-H3~~,'hecompletedveldmentwasgivenapostweldheattreatmentof1150'F25'F.for40hoursardiurnacecooledto600F.~~~~estCodeVZ~~Reouirements79,68,64'0Ft.,Ebs.@+10FCharovV-NotchimpactsPtbs.+10'F~~~AllWeldMetal.505Ter.sile0YieldStrength~.....KSI~~.'0.5\~UltimateTensileStrenathKSI86.8~~1~I~&>>27.0Elongationin2IIReductionof'rea/067.0~~~~~~~~~~~~~~~~~p~I~~.~~~~~~~~~~I,~~~~~~'~~~~~0~\~\~~~

J~~~~'4~~%~~~I~~~~~~~~rSAIIPLENO.LABIlO.TYPEAIRESIZE"llRETHO./P3Z7/'CHEHICr:.LAi'!ALYSISGFI'lIr"'"--FLUX"-'TESTMELOCOUPONLOTIIO."S'I'.;S/HOCU.NI.s/877+o~~~~0 INDIANAIIMICHIGANPOWERCOMPANYP.O.BOX18BOWLINGGREENSTATIONNEWYORK,N.Y.10004June1,1979AEP:NRC:00097DonaldC.CookNuclearPlant,UnitNo.2DocketNo.50-316LicenseNos.DPR-74Mr.JamesG.Keppler,DirectorU.S.NuclearRegulatoryCommissionRegionIII799RooseveltRoadGlenEllyn,Illinois60137

DearMr.Keppler:

References:

(1)NRCIEBULLETINNOS.78-12,78-12A,78-12BATYPICALWELDMATERIALINREACTORPRESSUREVESSELS(2)"CHICAGOBRIDGE5IRONCOMPANYREPORTINCOMPI-ANCEWITHTHENRCBULLETINS78-12AND78-12A",DAT-DAPRIL24,1979ThisletteranditsattachmentsareinresponsetotheabovereferencedI.E.BulletinsastheyapplytoUnitNo.2oftheD.C.CookNuclearPlant.ChicagoBridge8Iron(CB8I),manufacturerofthereactorvesselforUnit2,hassubmittedtotheNRC,onApril24,1979,agenericreport(reference2)providingtherequiredweldmaterialinformationonallreactorvesselsfabricatedbyCBEI.WestinghouseandAmericanElectricPowerhavereviewedtheabovereferenced.reportandconcludedthatitrepresentsadequatelythedatafortheweldmentmaterialusedinthereactor.vesselofUnitNo.2oftheDonaldC.CookNuclearPlant.Weld-mentmaterialthatmightbeusedforverificationpurposes,isavailableinthearchivesoftheWestinghouseElectricCorporation.

Hr.JamesG.Keppler,Director-2-AEP:NRC:00097yAsstatedinourletterNo,AEP:NRC:000978datedMay21,1979,theaboveinformationforDonaldC.CookUnitNo.1reactorvesselwillbesubmittedbyJuly2,1979VerytrulyyoursJED:emohnE.DolanicePresidentAttacnments:1)CBIIIreviewcertificationlettertotheNRCdated4/24/792)C88IlettertotheNRCdated4/24/793)WestinghouselettertoAEPdated5/23/79cc:R.C.CallenG.CharnoffD.Y.Shaller-BridgmanR.W.Jurgensen

Hr.J.G.Keppler,DirectorJpp9AEP:NRC:00097bc:S.J.Milioti/J.I,Castresana/T.SatyanR.F.Hering/S.H.SteinhartH.N.Scherer,Jr.R.F.KroegerJ.F.Stietzel-BridgmanD.Higginton-NRCCookPlantRegionIIIResidentInspectorAEP:NRC:00097DC-N-Gois.atR.C.Kopelow/J.Jensen 'rat:MEiirr'>+8="00.-"~iroank".northoUs:onrad'ChicagoBridge&IronCompanygoox'00rgRoustc~.T~;;as77040ThedocumentationandinformationrequiredbyNRCBulletins78-l2and78-I2A,andWestinghousePO//546-MVC-40I945-MNforCBIContract$$68-3262VesselD.C.CookIIarecontainedintheattachedreport.Weldingconsumableswerere-reviewedagainsttheoriginalrequirementsinaccordancewiththeabovelisteddocuments.Nodeviationswerefound.Baseduponourrecords,Icertify,tothebestofmyknowledge,thisreportiscorrect.RalphE.KelleyManager,CQAServicesDate~',r'1','~'~~,~~1~~ Akir4~jP~ATTACHMENT2WPEga'p'hicagoBridge5tronCompany'.6000FairbanksnorthHoustonroadpobox40066Houston,Texas77040telephone7i3.4667661.April24,1979OfficeofInspecti'on&Enforcement'.S.NuclearRegulatoryCommissionWashington,D.C.20555Attention:Mr.G.W.ReinmuthRE:NRCBULLETINS78-12678-12AGentlemen:.InaccordancewiththeabovelistedBulletinsandrequirementsfromWestinghouseandGeneralElectric,enclosedisonecopyofourreport.ilThisreportincludesinformationfromallcompletedReactorVesselsconstructedbyChicagoBridge&IronCo.Verytrulyyours,CHCAGOBRIDGE6IRONCO.REK:mksEnclosureRalphE.Kelley,MagerCQAServicesHoustonOperationsII!',~~Vi~,V-qi

0I-"'ATTACHMENT3WestinghouseElectricCorporationWaterReactorOlvislonsNuctearServiceOivisionBox2728PittsburghPennsytvanta15230May23,1979AEP-79-10MechanicaEgineeringDivisionAmerican1ctricPowerServiceCorp.2BroadwayNewYork,NY10004

DearMr.Jensen:

NRCIEBulletins878-12&878-12A"AticalWeldMaterialinReactorPressureYesselMelds"~BaseduponourtechnicalevaluationoftheinformationcontainedinthegenericreportcompiledbyChicagoBridge&IronCompanytosatisfytherequirementspresentedintheU.S.NuclearRegulatoryCommissionIEBulle-tinsf78-12andf78-12A,MestinghousehasconcludedthattheweldmaterialdataandotherrequiredinformationpertinenttotheD.C.CookUnit2reactorvesselareincludedinChicagoBridge&Iron'sreport.ThisreporthaspreviouslybeensubmittedtotheU.S.NuclearRegulatoryCommission,asevidencedbyChicagoBridge&IronCompany'stransmittalletterof.April24,1979totheU.S.NuclearRegulatoryCommission,acopyofwhichisenclosedforyourinformation.'dditionally,wehaveenclosedfor.yourfilesacopyofChicagoBridge&IronCompany'slettertoWestinghouse,datedApril24,1979,providingfurtherconfirmationthatthegenericreportpreparedby"'vendorincludesrecordspertainingtotheO.C.CookUnit2reactorvessel.TheChi'cagoBridge&IroncertificationsstatingthatthereportcontainsdatafortheO.C.CookUnit2reactorvesselisincludedinPart2ofthereport.HestinghouseauditedthesubjectreportagainsttheASME"andME-Spec.requirementsfortheD.C.CookUnit2reactorvesselbuiltbyChicagoBridge&Iron.ThereportcontainsdatapertainingtotheD.C.CookUnit2reactorvesselandisconsideredtobeincompliancewiththeU.S;NuclearRegulatoryCommissionbulletinsandWestinghouserequirements.InadditiontothedatasuppliedbyChicagoBridge&IronCompanyinthesubjectreport,'llestinghousehasdevelopedsurveillanceweldmentdata.Thisdataiscontainedinthefollowingreport,whichhaspreviouslybeentransmittedtoyou:O.C.CookUnit2,MCAP-8512,datedNovember,1975 J.R.Jensen72May23,179AsstatedintheirreportChicagoBridge5IronCompanyhasnoarchivematerialfortheweldsrepresentedbythisreport.Westinghouseinven-toriedourarchiveweldmentmaterialwhichcouldbeusedforverificationpurposesontheO.C.CookUnit2reactorvessel.Thismaterialconsistsofonefullthicknessweldmentmadeupofweldwirefromheatnumber53986andLindeFlux124fromlotnumber934.Inconclusion,thisletterprovidesassurancethattheO.C.CookUnit2reactorvesseliscoveredinthesubjectreport,andfulfillsWestinghouse'sobligationsrelativetotheReactorVesselWeldMaterialProgramcontractedforbyAmericanElectricPowerServiceCorporation.AcopyoftheChicagoBridgeandIrongenericreportapplicabletotheD.C.CookUnit2issubmittedforyourrecords.Sincerely,JDC/plAttachmentscc:O.V.ShallerR.W.JurgensenJ.G...Kernoon,ManagerEasternServiceRegion i A/4.g,pywp~/PChicagoBridge5Ironompany3I'~>.gc./GGGOFairb".."ks".<"".Houstct:roa"p0Qox+CGGGHousIcsI.TexGSi.G-'01~il)0eisy,CHICAGOBRIDGE&IRONCOMPANYREPORTINCOMPLIANCEWITHTHENUCLEARREGULATORYCOMMISSIONtC3E3KPLANTMEDRECQRD-MEDGQPYENGINEER~+~DATEHPLANiTL(rETIAM'iECATETCPI'iIIT,C3NQNP'Rt'Al<~!ITMININUHRETENTIONYRS.BULLETINS78-12&78-I2AReportpreporedbyRalphE.KelleyMgr.,CQAServicesILV-2I-7Date

PARTILISTOFREACTORVESSELSINCLUDEDWESTINGHOUSEVESSELSCBICONTRACT68-326268-37807I-26317I-26327I-2633VESSELDCCookIITrojanVirgilC.SummerIShearonHarrisIShearonHarrisIIGENERALELECTRICVESSELS9-56249-620I68-247I68-247268-333168-333269-296769-482469-496269-512869-540I69-540269-557I73-6735hhonticelloVermontYankeeBrunswickIBrunswickIISusquehannaISusquehannaIIDuaneArnoldQuadCitiesII(CBIPortion)PeachBottomII(CBIPortion)PeachBottomIII(CBIPortion)LimerickILimerickIIZimmerICIintonI

ChicagoBridge8IronCompany3.CO.=circa.".r..ncr".Hcus:c.".road@cox>>OA'6Ccc~o1,'asII0'l0~Ph~it4.rA)t.~i)tThedocumentationandinformationrequiredbyNRCBulletins78-l2and78-I2A,andWestinghousePO8546-MVC-40I945-MNforCBIContract/368-3262VesselD.C.CookIIarecontainedintheattachedreport.Weldingconsumableswerere-reviewedagainsttheoriginalrequirementsinaccordancewiththeabovelisteddocuments.Nodeviationswerefound.Baseduponourrecords,Icertify,tothebestofmyknowledge,thisreportiscorrect.RalphE.KelleyManager,CQAServicesDate IumberIPrlgrS!IvrllulruthlIWllllll)Cf00/((///(rcf~c69'.~~itrr/NUCLI:.RlhRECORDINDEXDESC((IPTIONWIREWIREWIREFLUXFLUXSIZEHEATNO.RUNORLOTTESTNO.SPECIFICATIONSIM(t/ib(-JP(IIgr'CtmtQIb'c+l(.wtlo'Rq2z~%OCQarlroAI.I.q'j./(,~7~lr/'i}.jc,/-IP~'~"Zt~~QP(r~erIn(9-pgZt~I((.Ig.(Q.C'<~t0>.(I.7c~.3l07'~l~a~("(.-(('.~fqI}8(C.t.-t=-/7PE/!/7C+yp~I"'n~47,c'8-I(}t(IItl~IIII>>'lI(~..~aPI.gr.'g-273gZP4f~09~103V-I"r-l93%(8llIII')rill>>r~I~rI)vlIIIIllytl>>c>>>>II~llr.rl:IIililIIIeCr)t)lCu-('~Idl:oI-/)'~gr-@~II'r/f07i""tDDilteSi(I>>lro)<CCOOKPLANTMEDRECORD-MEOCOPYSECTIONENGINEER+~PLANTLlfETIME~KZfLP.LhQNONPERMANENTQtlirl~Cr)llr(.I.I":III'rIIIIiiICIIIIII,I('I('IIIIIII)1'II~P>>t~rkl.ofI,llIIrp7JAkl)S vI,.Q>l..=.rtB'~CHICAGOBRIDGE&IRONCOMPANYCarbon.Manganese.Chromium.Nieke1...Silicon.Columbium.Tantalum...~Molybdenum,Tungsten.'.Copper.Titanium.Phosphorus.Sulfur.'.".'jtanadium.',.'ron.'~,.Schaeff1erCobalte~.05.022.016er'rr,~,fASMECODE,.COMPANYoratory',.:',',i;.Iv'ateta'Y,'0trMaterialsEvaluatiorFerri'te..033r,~~vv'vn.IIIoftheThismaterialconformstoSectioParagraphN511.3.'vvv'vevtCHICAGOBRIDGEANDIRONBirminghamMaterialsLab~~vvevry~g~P~>~'ByP>a!v.'nchargeaPProvedbyofTestingfolAteriahs">>nein<er1500N.50THST.P.0.BOX277,BBRMlNGHAM,ALABAMA35202~vv}TWXB10-7333554-:"-\WesternUnionWUX~e'l~...AreaCode:205595-1191'II'ERTIFICATEOFANALYSISPURCHASEORDERNUMBER:.MECHANICALTESTS:..'estNumber:PT200AHeatTreatment50=.Hours91125/1150TypeElectrode:AdcomlNtlM/Linde124FarenheitTradeName:'dcomltlH;i>(ireTensileProperties9RoomTemp.'..':..'iameter:3/16"Type:,505"FluxLotNumber:3877-Run934-Linde12CJTS89,000PSI'.:,~'!;.::~-:,tteireHeatNumber:S3986""YLP70,100PSIXElongationin2'inches=23.5~CHEMICALTESTSXReductionof.Area;:=65:..'..~.101.,ImpactProperties1.49'Type:CharpyVeeNotch.12.Orientation:1ToIieldDirection..'::..92)))'.-,TestTemperature+1-0.:.41Foot-lbs.67:.5,6~,65,004'.5'Shear60,60,55LateralExpansion61,58,52.53v.~~~ .AA.z~,.p9CHICAGOBRIDGL'IBOiNCO1VIPAiXX'~0~8OX13308,MEMPHIS,TENNESSEE3e't13CERTIFICATEOFNALYSIS901947-311'aMECHEiNICALTESTRESULTSPurchaseOrderNumber:M30506-3262/3780TestNumber:WO5337C(TandemNire)HeatTreatment1150'F+25'-50'Ffor621/2HoursTensilePropertiesTypeElectrode:Adcom1N)~J"./Linde124(20x150)FluxTradeName:AdcomlNMMType:.505'yUTS92g000PSIElectrodeDiameter:3/16"LotL~umber:HeatNumber:S3986YLP78,800PSI%Elongationin2inches=ReductionofArea=57.326iFluxBatchNumber:Run934Lot3878CHEI1IC..LTESTRESULTSImpactPopertiesType:CharpyVeeNotchOrientation:~toHeldDirec"ionTestTemperature+10'FFoot-Lbs.Carbon~~~~~~~~Manganese......089l.47hromium......c)wel~~~~~oo~o~~JSl1leon~~~~o~~.9039,53,3836,44,35LateralExpansionShear.4740,50,40C01umb1ume~~~~Tantalum......2)olybdenum....Tungsten......Coooer~.~~~~~~~.53.06T3tQIl3.um)losphorus.....028Sulfur........,.014Vanadium......Ironi~~~~~~~~~SchaefflerFerrite..CHICAGOBRIDGE&IRONCO)1PANYThismateialconformstoSECTIONIIIoftheASMECODE,ParagraphN511.3BYDATEMcr~~Z~.r2~P

PurchaseOrderNumber:M30506-3262/3780TestNumber:NOI337C(SingleWire)TypeElectrode:Adcom1NMM/Linde124(20x150)FluxTradeName:Adcom1NtB1HeatTreatment1150';+25'-50'Ffor621/2HoursTensilePropertiesType:.505"p(gg.rI'p;(.~!-~<!lgi'!e.i~KAn~a(VC~HE~5++1~CFIICAGORRIDGHEz,IH,ONCOMPANYP~O.8OX13308eMEMPHIS'EtlNESSEE38113hgaCERTIFlCATEOFANALYSISgp/+/0MECHANICALTESTRESULTCarbono~~~~~~~Manganese......076l.44hromium.10ElectrodeDiameter:3/16"gfLotNulnber:HeatDumber:S3986FluxBatchNumber:Run934Lot3878CHEt4ICALTESTRESULTSUTS89,500P-IYLP74,300PSI4Elongationin2inches=27%%ReductionofArea=675ImpactPropertiesType:CharpyVeeNotchOrientation:toNeldDirectionTestTemperature+10'F.ckel......g.Silicon.......JColumbium.....Tantalum......Mol;bdenum....Tungsten....'..Coppelo~~~~~~~Tit.anium......Phosphorus'.Sulfur.........81.46.50.06.026.017Foot-Lbs.50,49,62LateralFxpansion45,44,53%Shear35,35,40ThismaterialconformstoSECTIOtlIIIoftheAStlECODE,ParagraphN511.3Vanadi.um......Irono~~~~~~~~~SchaefflerFerrite..CHICAGOBRIDGE&IROt'lCOtlPANY")~ CitiCAGOHaiDC;8tt:IRONCoxIpAi>Y'500N50TH5T.P.O.BOX2TT.BtRMtNGRAM.At-ABAMA35202TWX810-733-3654WesternVnion-WUXPURCHASEORDERNU<BER:CERTIFICATEOFANALYSISMECHANICALTESTSAreaCoae:205595-1191TestNumber:PTa200-Single'.lireHeatTreatment62-1/2hours91125/1150TypeElectrode:AdcomInmm/Linde124TradeName:AdcomInmm';lireTensilePropertiesAtRoomTemPeraturDiarneter:3/16"g0505llgLotNumber:387>"Run934"Li.nde1%".:,'UTS'6,500'lireHeatNumber:S-3g86YLP71,800CHE)IICALTESTSElongationi'n2inches=30.0"ReductionofArea.=68.'60.080.1.420.070.960.360.520.050.0190.016rrite.Carbon.Manganese.Chromium.Nickel~.v.'i1icon.Y'.Columbium.Tantalum.ffolybdenum...Tungsten....Copper.Titanium.Phosphorus...Sulfur.Vanadium.Iron.SchaefflerFeImpactProoertitsType:CharPyVeetlotchOrientation:~,'le1dDirectionTestTemperaturePlus10'FFoot-lbs.46-51-49Shear40-40-40LateralExpansion38-44-43ThismaterialconformstoSectionIIIoftheASHECODEParagraph.'l511.37CHICAGOBRIDGEANDIRONCOMPANYBirminghamMaterialsLaboratoryuy+~pc.m4~~Datew-yz-45'nchargeofTestingforNaterialsEvaluation CHICAGOBRIDGENPROXCO>rPAr'V1500nBOTHST.P.0BOX27'7.BiRMINQ>AM,ALABAMA35202TWX810-733-3654WesierniJn.onWVXAreaCooe205595-119'iCENTIFICATEOFAi'lALYSISPURCHASEORDERtlU:<GER'ECHAtllCALTESTSTesttlumber:PTg2'30-Tanden':lireHeatTreatment62-1/2hours31125/TypeElectrode:AdcomInnm/Linde1241150eFTradetlar.e:AdcomInmm';lireTensilePropertieshtRoomTemperatureDiameter:3/16"g~Type:0,5'35"9Lot.Number:3876-Pun934TLande'~41'.1'~UTS91,2.'3:3---"';li-eHeatNumber.:S39B6-YLP74,700Elongationin2inches=25.5',CHEMICALTESTSReductionofArea.=66.0Carbon.Manganese.Chromium.Nickel.Silicon.Columbium.Tanta1um.Molybdenum...Tungsten.Copper.Titanium.Phosphorus...Sulfur.Vanadium.Iron.SchaefflerFeh0.0921.460.070:970.350.530.06-0.0190.015rrite.ImpactPropertiesType:Charpy1t'ee!totchOrientation:4toMe]dOirectionTestTemperaturet'~us,10'FFoot-lbs.41-45-.46XShear50-55-55LateralExpansion49-44-41ThismaterialconformstoSectionIIIoftheAS;!ECODE,Paragraph.'l511.3CHICAGOBRIDGEANOIRONCOMPANYBirminghamMaterialsLaboratoryPByH~4M~~gDate5-/Z-8InchargeofTestingforMaterialsEvaluatio' NUCLEARRECORDINDEXOocumentNumberNumberofPagesapeEl'ectrodeSizeHeatNo.0ESCRIPTIONBAREWIREANDFLUXCOREDWIRELotNo.SpecificationsAtc-csrtINrrtMx'AB.L-4Rat.Cgl~LCSL+Q(hzCOPIESofdocumentscoveredbythisindexareccrtificdtobetruecopiesDateOfficeCodeSignatureClass>f>cat>onContractNum!>c>Foidcrof ~"~r/A&Ar4+~(~"()CIXXCA.Gu33RIDGL'TR.OMCOMPA.i>'YP~0~80X13308~MKMPHIS~TKNN8SSES38113CERTIFICATEOF2;IrKLYSIS.601947-3:Purchase0cerNu.-.ver:lZCH&3'ICALTES'ESULTS"iiu,he>>;LS1016&N.O.12D2~peE1ectode:GTAFillerMetal.TradeName:ADCO:i1N&"1Elect.rodeD'ameter:3/32LotYu...her-HeatNu-..~er:S3986FluxBa"ch!'~-.e'er:Shield'ncGas:ArgonCH&!IC.-.LT:-6RESULTSHeatTreatment621/2Hoursat.1150'25'-50'FTensilePropertiesType:0.505"gfVTS95,700psiL-YLP95i200psi/8Elonge"Zoo'n2icchee=2&i~0ReductionoPvea=66.1%ImpactProper"ies&rQOn~~~~~e~~Hangnese.....IArOm>>ule~~e~~ele->>1I@ele~~~e~~~~g~Cun~~~~~~~Co1u.-;wiL~.....antalu-L~~~~~~1Wr>>~i~'&oly~~e.&i&.i~~TQngstn~~~~~~Cooper~~~e'~~~Titan'z......Phosphorus....1~evSuleL~~~~~~~~.0812.0.08.97.03.48.09.015.014Type:CharpyVeePotchOrientat'on:toteldDi"e"'cnTestTempeature-20'FFoot-Lbs.123,92,158'5Shear100,100,100,,I.4'-.!LateralExpansion.'..~.Sl;:.7p"'Kl>~!2rgThismatialconormstoSECTIO'.lofthe~~.S;:.ECODE,paagreh~t511.3Vanadium......~Iron~~~~~~~~~~Schae=lerFerrite..cHzcAGoDRzDGE&z.DNcQ!!pNzc.'r-.Jyg/gr('Y,~J<~.,vr~~rrypv!/DBTEWvieirw/~rVrr'A ~\tre'(~PlVLMANUFACT<JRERSOFTECHNICALLYCOSTROLLEDVe'IRROONICKLIt<CO((ElINCONELX,IIJCOLOY.AOCC'ISTA!t(LESSSTEELS.ALLOYCO'HAD<eJGSTE=LS.HIGHAI.LOYSTEFLS.LO'ea(<<LLOYSTEELS,Ve'DINGALLOYS,LO'<V,t:.EO,t<HIGHWELDINGELECTRODES.'~ADCOF<t'LT.I5.COT(<PANY,INC.<.It(TERSTATCIt(DVSTRI(LPAR!C-ICSATBEAVERRUIJIRO:,CsTL<at'T>>,G>>.POSTOFFICEBOX2SECS-PHOI<CC431121CUSTOACE(SORO.RNO.H-102('s01ADCO'.'RDERNO.761DATLSHIPPED!l-I'3-SPECIFICATION'P?EOTOChicacoBridee6IronBox13308Yse..p.lis,Tenn.36113MAR)~ED:ITEt:<CONSlSTI:lGOF3C'32"x36"1Y,."-~1,'zc'-GE<vTLEie'sE>a'".EIHEraBYCFP<TIFYTHATfdATERIALf'<EFEP.:.ED10ABOVECOi~.'FOl<i"<S.TOTHPHYSICALAlaaDCIIEfealCr<LTESTSASFOLLO':Shf!DISlfiACCOr<DAfCE'V!ITHSPECIFICATIOs.'S:-IIEC.a:..!s.!s.!o.!c.!e:.Cu.t,;nFc.AlCa966~161.97!.07!.012,010..010!1.07.03.006~55aa":e'ITEt'SILESisaEGTiilYIELDSTREVGTII201,700PS3.ELOtJ.G<<AI<aaSI?.EROCaaaTr.4,'iga;'.-'SHEARII'gs-',NOTARY~'OUPEQUESTEDrhlSlii'LP0PwIAj'aITli<ICQ2iI'IpTlQIglAOCOiltlETALSCO'I?A"Y.IIJC./e/,.(,nf,)/.fAUTHORIZFDOFrICI<<LPLEASEG(VETOYOUP.PURCHASINGAGENT. hl ElstaterReactorOivisionsI'1p~+V'c,r<.lat">~1l)/IIWestinghouseElectricCorporatfon1NUCLEAROPS.DXVISZON'"'wZ785Reed:Resy....,....,.Xtt.Person:NuclearServicestote@ationDivisionSg.tpO,f.y'ox2128PittsouryPennsylvania15230.2l28Jffjtt(,.'qittl5,AEP-85-641June14,1985CIerlctMr.H.P.Alexich,VicePresidt"andDirectorNuclearOperationsAmericanElectricPowerServiceCorporationOneRiversidePlazaColumbus,Ohio43216.AHERICANELECTRICPOHERSERVICECORPORATIOND.C.COOKUNITIReactorVesselBeltlineReaionHeldChemistr

DearHr.Alexich:

caaKPLANTMEDRECORD-MEDCOPYSEGTIQNENG1NEERDATFElPLANTLIFETIMEDATETOPLANT,~~ClNONPERMANENTMINIMuMRETENTIDHYRS.AreviewoftheweldwireandfluxusedtofabricatetheweldseamsinthecorebeltlineregionoftheD.C.CookUnitIreactorvesselwasconductedpertherequestofD.HaferofAmericanElectricPowerServiceCorporationtodeterminetheasdepositedcopper,nickelandphosphorouscontentoftheasdepositedweldseams.Thecircumferentialgirthseambetwentheintermediateandlowershellisconsideredtobethelimitingweldseaminthevessel.ThisseamwasfabricatedwithweldwireheatnumberIP3571andLinde1092fluxlotnumber3958.Eightseparatechemica'Ianalysesareknowntohavebeenperformedonthiscombinationofthewireandfluxandtheresultsarepresentedbelow:SourceCuNiPCEHeldgua1CEHeIdgualKewauneeUniMaineYankeeMaineYankeeMaineYankeeMaineYankeeHaineYankeeificationTest(SingleHire)ificationTest(TandemHire)rradiatedSurveillanceHeldUnirradiatedSurveillanceHeldIrradiatedCharpySpecimenIrradiatedCharpySpecimenIrradiatedCharpySpecimenIrradiatedCharpySpecimen.40.37.20.36.25.25.33.33.82.75.77.78.70.66.71.70.017.01T.016.015.030.020.040.040Average.31.74.024Sasedupontheabovedata,itisHestinghouse'srecommendationthattheaverageoftheab'ovedatapointsbeusedfortheCuandNicontent,sincethiswouldbemorerealisticthanusinganysingledatapoint.ThisapproachhasbeenacceptedbytheNRConotherapplications.

0AEP-85-641Mr.M.P.Alexich-2-June14,1985A+gchmenTIOp~Z,q~Thephosphorouscontentreportedfortheirradiatedspecimensisconsideredtobehighlysuspect.Hestinghouseconsiderstheaverageofthefourunirradiatedvalues(.016WTX)tobearealisticphosphorouscontentfortheweld.jThelongitudinalweldseamsintheheitlineregionofthevesselweremadewithatandemsubmergedarc.processusingweldwireheats12008and13253withLinde1092fluxlot3791.Hoasdepositedweldchemistryexistsforthiscombinationo'fwi'resandflux.Fourothertandemweldswhichcontainedwireheatnumber12008showedasdepositedcoppercontentsof0.19to27'X.Thesurveillanceweldwhichwasmadefromwire13253and,Linde1092fluxlot3791andwhichhasacoppercontentof0.27'Lisconsideredtobehighly.,'.representativeofthelongitudinalweldseamsandtheuseofitschemistr$forthelongitudinalweldseamsappearsappropriate.TheapplicationofnewcopperandnickelvaluestothebeltlineregiongirthweldseamoftheD.C.CookreactorvesselwillnotresultinthevesselexceedingthePTSscreeninglimitsimposedbytheNRC.PleasecallshouldyourequiremoreinformationVerytrulyyours,gA.P.Suda,ManagerGreatLakesAreaProjectsDepartmentAPS/debi4496f:12cc:M.P.Alexich,1LD.Hafer,1LN.G.Smith,.1LJ.Feinstein,'lL ) gyiiSlecc:-4rP.T.0.P.A.S.J~J.G.S.P.R.F.J.F.0.H.J.J.R.I.J.B.S.H.0.H.UNITEDSTATESNUCLEARREGULATORYCOMMISSlONWASHINGTON,O.C.20555June9,198950"RR-.;-'.DocketNo.Mr.MiltonP.Alexich,VicePresidentIndianaMichigan-.PowerCompanyc/oAmericanElectricPowerServiceCorporation1RiversidePlaza-'olumbus,Ohio43216AlexicalArgentaBarrettBrewerFeinsteinKiementowiczKroegerKurganMalinMarkowskyPawligerShinnockSteinhartWilliams,Jr.

DearMr.Alexich.SUBJECT:

AMENDMENTNO.126TOFACILITYOPERATINGLICENSENO.DPR-58(TACNO',71062)TheCommissionhasissuedtheenclosedAmendmentNo.126toFacilityOperatingLicenseNo.OPR-58fortheD.C.CookNuclearPlant,UnitNo.l.TheamendmentconsistsofchangestotheTechnicalSpecifications(TSs)inresponsetoyourapplicationdatedOctober14,1988andsupplementsdatedDecember30,1988,andJune5,1989.Thisamendment,revisestheTSstoallowoperationoffuturereloadcyclesofO.C.CookUnit1;atreducedpimarycoolantsystemtemperatureandpressureco'nditions.Thereducedtemperatureandpressure(RTP)conditionswilldecreasethesteamgeneratorU-tubestresscorrosioncrackingofthetypeobservedatD.C.CookUnit2.AcopyofourrelatedSafetyEvaluationisalsoenclosed.NoticeofIssuancewi11beinc1udedintheCommission'biweeklyFederal~Reisternotice.Sincerely,

Enclosures:

l.AmendmentNo.126toDPR-582.SafetyEvaluationccw/enclosures:SeenextpagetC!LI,u.Q..1Qjh.JigJohnF.Stang,ProjectManagerProjectDirectorateIII-1DivisionofReactorProjects"III,IV,V8SpecialProjectsOfficeofNuclearReactorRegulation ,~htoo~o4~oX03/~~OUNITEDSTATESNUCLEARREGULATORYCOMMISSIONWASHINGTON,D.C.206551~r.INDIANAMICHIGANPOWERCOMPANYDOCKETNO.50-315DONALDC.COOKNUCLEARPLANTUNITNO.1AMENDMENTTOFACILITYOPERATINGLICENSEAmendmentNo.126LicenseNo.DPR-581.TheNuclearRegulatoryCommission(theCommission)hasfoundthat:A.TheapplicationforamendmentbyIndianaMichiganPowerCompany(thelicensee)datedOctober14,1988assupplementedDecember30,1988,andJune5,1989,complieswiththestandardsandrequirementsoftheAtomicEnergyActof1954,asamended(theAct),andtheCommission'srulesandregulationssetforthin10CFRChapterI;8.Thefacilitywi11operateinconformitywiththeapplication,theprovisionsoftheAct,andtherulesandregulationsoftheCommission;C.Thereisreasonableassurance(i)thattheactivitiesauthorizedbythisamendmentcanbeconductedwithoutendangeringthehealth.andsafetyofthepublic,and(ii)thatsuchactivitieswillbeconductedincompliancewiththeCommission'sregulations;D.Theissuanceofthisamendmentwillnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic;andE.Theissuanceofthisamendmentisinaccordancewith10CFRPart51oftheCommission'sregulationsandallapplicablerequirementshavebeensatisfied. 2.Accordingly,thelicenseisamendedbychangestotheTechnicalSpecificationsasindicatedintheattachmenttothislicenseamendment,andparagraph2.C.(2)ofFacilityOperatingLicenseNo.DPR"58is'erebyamendedtoreadasfollows:TechnicalSecificationsTheTechnicalSpecificationscontainedinAppendicesAandB,asrevisedthroughAmendmentNo.126,areherebyincorporatedinthelicense.ThelicenseeshalloperatethefacilityinaccordancewiththeTechnicalSpecifications.3.Thislicenseamendmentiseffectiveasofthedateofitsissuance.FORTHENUCLEARREGULATORYCOMMISSION

Attachment:

ChangestotheTechnicalSpecificationsDateofIssuance:June9,1989LawrenceA.Yandell,ActingDirectorProjectDirectorateIII-1DivisionofReactorProjects-III,IV,V8SpecialProjectsOfficeofNuclearReactorRegulation

Hr.HiltonAlexichIndianaMichiganPowerCompanyDonaldC.CookNuclearPlantCC:RegionalAdministrator,RegionIIIU.S.NuclearRegulatoryCommission799RooseveltRoadGlenEllyn,Il1inois60137AttorneyGeneralDepartmentofAttorneyGeneral525WestOttawaStreetLansing,Michigan48913TownshipSupervisorLakeTownshipHallPostOfficeBox818Bridgeman,Michigan49106W.G.Smith,Jr.,PlantManagerDonaldC.CookNuclearPlantPostOfficeBox458Bridgman,Michigan49106,U.S.NuclearRegulatoryCommissionResidentInspectorsOffice7700RedArrowHighwayStevensville,Michigan49127GeraldCharnoff,EsquireShaw,Pittman,PottsandTrowbridge2300NStreet,N.W.Washington,OC20037Mayor,CityofBridgemanPostOfficeBox366Bridgeman,Michigan49106SpecialAssistanttotheGovernorRoom1-StateCapitolLansing,Michigan48909Nuclea~FacilitiesandEnvironmentalMonitoringSectionOfficeDivisionofRadiologicalHealthDepartmentof.PublicHealth3500N.LoganStreetPostOfficeBox30035Lansing,Michigan48909Mr.S.8'rewerAmericanElectricPowerServiceCorporation1Riverside;PlazaColumbus,Ohio43216 I~Illy~c+>>~4O~AOCe/~n~O+>>*++UNITEDSTATESNUCLEARREGULATORYCQMMlSSIONWASHINGTON,D.C.20555SAFETYEVALUATIONBYTHEOFFICEOFNUCLEARREACTORREGULATIONRELATEDTOAMENDMENTN0.126TOFACILITYOPERATINGLICENSENO.OPR"58INDIANAMICHIGANPOWERCOMPANYDONALDC.COOKNUCLEARPLANTUNITNO.1DOCKETNO.50-31

51.0INTRODUCTION

ByletterdatedOctober14,1988,assupplementedDecember30,1988,and-June5,1989,theIndianaMichiganPowerCompany(thelicensee)requestedanamendmenttotheTechnicalSpecifications(TSs)appendedtoFacilityOperatingLicenseNo.DPR-58fortheDonaldC.CookNuclearPlant,UnitNo.1.TheproposedamendmentwouldpermittheoperationoffuturereloadcyclesofUnit1atreducedprimarysystemtemperatureandpressureconditions.Thereducedtemperatureandpressure(RTP)conditionswilldecreasethesteamgenerator~~~~~~~~~~~~~U-tubestresscorrosioncrackingofthetypeobservedattheD.C.CookNuclearPlant,Unit2.Thelicensee'scontractor(Westinghouse)hasdeterminedthatIthisRTPprogramshouldmorethandoublethetimetoreachagivenlevelof.steamgeneratorU-tubecorrosionincomparisontotheoriginaltemperaturesandpressure.D.C.Cook,Unit1ispresentlylicensedtooperateat3250MWt,whichisratedthermalpowerdefinedbyDefinition1.3oftheTechnicalSpecifications.Sometransientandaccidentanalysesareperformedat"ahigherpowerleveltopositionUnit1forapotentialpoweruprating.However,notalloftheanalyseshavebeenperformedatthishigherpowerlevel.Thesmallbreakloss-of-coolantaccident(LOCA)analysiswas,forexampleperformedatapoweroflevelof3250MWtwiththehighheadsafetyinjectioncross-tievalveshutandat3588MWtforallotheranalyzedplantconditions.Thestaff'sreviewoftheRTPprogramforUnit1didnotconsideranyissuesrelatedtoafuturepoweruprating.ThelicenseeperformedanalysesandevaluationstosupporttheRTPprogramforD.C.Cook,Unit1.Thelicensee'seffortsaddressedfullratedthermalpo~e~operation(3250MWt)witharangeofvesselaveragetemperaturebetween547Fand576.3F.Twodiscretevaluesofthepressure,2100psiaand2250psia,wereusedintheanalysesandevaluations.Theanalysesandevaluationssupportamaximumaveragetubeplugginglevelof10K,withapeaksteamgeneratortubeplugginglevelof15K.Thelicenseewillselectthedesiredoperatingtemperatureandthepressureonacycle-by-cyclebasis.Thelicenseeperformedthesafetyanalysesandevaluationsatconservatively~~~~~~highpowerlevelsandhighprimarysystemtemperaturesinordertopositionbothoftheO.C.CookunitsforfuturepowerupratingandinordertosupportpotentialfutureoperationofUnit2atreducedtemperaturesandpressure.ThepotentialupratedpowerforUnit1thatispartiallysupportedbythisanalysisandevaluationis3425MWt,whichcorrespondstoareactorpowerlevelof3413MWt.ThedesignpowercapabilityparametersaregiveninTable2.1-1ofReference2.

2.0EVALUATION2.1NUCLEARSTEAMSUPPLYSYSTEMNSSS2.1.1Lare.andSmallBreakLOCAAnalsesThelicenseeperformedalargebreakLOCAanalysisusingthe1981versionoftheMestinghouseECCSEvaluationModel,whichusestheBASHcomputercode.Theanalysisassumptionsincludeatotalpeakingfactor,F,of2.15,ahotchannelenthalpyrisefactor,F-deltaH,of1.55,10Ksafetyinjectionflowdegradation,areactorpowerlevelof3413MWt,and15Kuniformsteamgeneratortubeplugginglevel.Arangeofhot-legtemperaturesof580.7'Fto611.2'Fandarangeofcold-legtemperaturesof513.3Fto546.2'F,consistentwiththetemperaturerangeoftheRTPprogram,wereconsideredintheanalysis.Intheanalysis,thereactorcoolantsystempressurewasvariedtojustifyplantoperationateither2100psiaor2250psia.Alarge-breakLOCAanalysiswasalsoperformedwiththeRHR.cross-tievalveclosed.Forthiscase,areducedcorepowerof3250NMtwasusedtocompensateforthereductioninsafetyinjectionflowcausedbytheclosedRHRcross-tievalve.Forthoselimitingpressureandtemperatureconditionswhichproducedthelargestpeakcladtemperature,afullbreakspectrumofdischargecoefficientswasperformed.Thelimitingbreaksizewasdeterminedtobeacold-legguillotinebreakwithadischargecoefficient,C,of0.6,ahot-legtemperatureof611.2Fandaprimarysystempressureo)2250psia,assumingmaximumsafetyinjectionflow.Thepeakcladtemperaturewascalculatedtobe2180.5'F.Basedontheseresults,therequirementsof10CFR50.46havebeenmetfortheUnit1large-breakLOCAanalysis.Thelicenseeperformedasmall-breakLOCAanalysisusingtheMestinghousesmall-breakECCSEvaluationModel,whichusestheNOTRUMPcode.Theanalysisassumptionsincludedatotalpeakingfactorof2.32,ahotchannelenthalpyrisefactorof1.55,safetyinjectionflowratesbasedonpumpperformancecurvesdegraded10Kbelowdesignheadandincludingtheeffectofclosureofthehighheadsafetyinjectioncross-tievalve,andauniform15Ksteamgeneratortubeplugginglevel.Theanalysiswasperformedatacorepowerlevelof3250MWt,arangeofoperatingcoreaveragetemperaturesof547'Fto581.3F,andreactorpressureofeither2100psiaor2250psia.Allotherplantconditionswereanalyzedatapowerof3588HMt.Thelicenseeanalyzedaspectrumofcold-legbreaksatthelimitingreactorcoolantsystemtemperatureandpressureconditions.Thelimitingbreaksizefromthisanalysiswasthenanalyzedatothertemperatureandpressurepointsoftheoperatingrange.Thelimitingcasewasdeterminedtobeathree-inchdiametercold-legbreakatapressureof2100psiaandatacoreaveragetemperatureof5474F.Thislimiting.breakresultedinapeakcladtemperatureof2122F.Basedontheseresults,therequirementsof10CFR50.46havebeenmetfortheUnit1small-breakLOCAanalysis.ThelicenseereviewedtheeffectoftheRTPprogramonthepost-LOCAhot-legrecirculationtimetopreventboronprecipitation.Thistimeisaffectedbypowerlevelandvarioussystems'atervolumesandboronconcentrations.Becausethesesystems'atervolumesandboronconcentrationsarenotaffectedbytheRTPprogram,thereisnoeffectonthepost-LOCAhot-legswitchovertime. 0 ThelicenseereviewedtheeffectoftheRTPprogramonthepost-LOCAhydrogengenerationrates.Theassumptionof120Fmaximumnormaloperationscontainmenttemperaturebounds,fortheanalysisofrecord,theeffectoftheprimarysystemtemperaturechangesoftheRTPprogramonthepost-LOCAhydrogengenerationrates.2.1.2Non-LOCATransientsandAccidentsThelicenseehasevaluatedtheimpactoftheRTPprogramonthenon-LOCAeventspresentedinChapter14oftheD.C.Cook,Unit1FSAR.Theapprovedreloadcoredesignmethodologyanddesigncodeswereused.TheevaluationswereperformedtosupporttheoperationofUnit1atacorepowerof3250MMtoveravesselaveragetemperaturerangebetween547'Fand576.3'Fataprimarysystempressureofeither2100psiaor2250psia.Theevaluationassumesasteamgeneratortubeplugginglevelof10K,withapeaksteamgeneratortubeplugginglevelof15K.Thenon-LOCAsafetyevaluationsupportstheparametersoftheRTPprogramwiththeexceptionsofthesteamlinebreakmassandenergyreleasesoutsidecontainment,whichwereevaluatedatafullpowervesselaveragetemperaturenogreaterthanthecurrentD.C.CookUnit1fullpoweraveragetemperature,T,of567.8'F.avg'heevaluationperformedbythelicenseealsoconsideredtheparametersforapotentialupratingofUnit1toreactorcorepowerlevelof3413MMt,withavesselaveragetemperaturerangebetween547Fand578.7'Fataprimarysystempressureof'ither2100psiaor2250psia.ThesteamgeneratortubeplugginglevelisassumedtobethesameasfortheRTPprogram.Eventhoughthenon-LOCAevaluationmayhavebeenperformedfortheupratedcorepoweranditsassociatedparameters,thestaff'sreviewofthislicenseamendmentdoesnotaddressaD.C.CookUnit1poweruprating.Thelicenseerevisedcertainreactortripandengineeredsafeguardsfeatures(ESF)setpointstoprovideadequateoperatingmarginsfortheRTPoperatingconditions.Revisedreactortripsetpointswereincorporatedintheovertemperature-deltaT(OTDT)andoverpower-deltaT(OPDT)tripfunctions.TherevisedESFsetpointsaffectsthelowsteamlinepressurevalueofthehigh-highsteamlineflowcoincidentwithalowsteamlinepressureactuationlogic.ThenewOPDTandOTDTreactortripsetpointsweredevelopedbythelicenseeforanewsetofcorethermalsafetylimitsfortheRTPprogramatareactorcorepowerlevelof3413MMt.TheapprovedsetpointmethodologyofReference3wasused.ForthoseeventsanalyzedwiththeapprovedImprovedThermalDesignProcedure(ITDP).,Reference4,asafety-limitvalueof1.45wasusedfortheDeparturefromNucleateBoilingRatio(DNBR).ThisisconservativecomparedtothedesignDNBRvalueof1.32forathimblecelland1,33foratypicalcellrequiredtomeettheDNBdesignbasis.InthesafetyanalysisforD.C.Cook,Unit1,thelicenseeassumedthehighpressurizerwaterleveltripsetpointof100K(nominalreactorsetpoint).Furthermore,thereferenceaveragetemperatureusedintheOPDTandOTDTtripsetpointequationsarerescaledtothefullpoweraveragetemperatureeachtimethecycleaveragetemperatureischanged.Similarly,theappropriatevalueofprimarysystempressureofeither2100or2250psiawasusedinthetwotripsetpointequations.FortherevisedESFsetpointofthehigh-highsteamlineflowcoincidentwithlowsteamlinepressure,thelowsteamlinepressuresetpointwasloweredfrom600psigto500psigtoaccommodatetherangeofconditionsoftheRTPprogramandapotentialpoweruprating. 2.1.3SteamlineBreakMass/EnerReleasesThecurrentmassandenergyreleasesfortheinsidecontainmentanalysisisbasedonanalysesperformedforCookUnit2,whicharealsoapplicabletoCookUnit1.DataarerepresentedinChapter14oftheFSARforUnit2atpowerlevelsof0,30,70,and100%power.Forthe"atpower"analyses,theinitialprimarysystemtemperatureandsecondarysteampressuresoftheRTPprogramarelowerthanthoseintheUnit2FSARanalyses.Themassblowdownrateisdependentonsteampressureandsincethesteampressurewi11be-lessthan-the-current--analyses,theinitialmassblowdownratewi11belower.---The..lowersteamlinepressuresetpoint(500psig)oftheESFactuationsignaldoesnotsignificantlyimpacttheanalysisbecausethelead-lagcompensationresultsinasteamlinepressuresignalwhichanticipatestherapiddecreaseinpressurecausedbyasteamlinebreak.Basedontheseconsiderations,thelicenseeconcludesthattheRTPprogramwi11resultinalowerintegratedenergyreleaseintocontainmentandthatthedatausedintheUnit2FSARremainsbounding.AstudywasperformedforUnit1ofthemassandenergyreleaseoutsidecontainmenttoaddressequipmentqualificationissues(Ref.5).Casesat70%and100%powerwereanalyzed.TheanalysispresentedinReference5assumed.thefullpowervesselaveragetemperaturetobe567.8'F~AnyreductioninfullpowerTfromtheanalyzedTandtheassociatedreductionininitialsearnpressurePillresultinlesslkmltingreleases.Thelowsteamlinepressurevalueassumedintheanalysissupportsthereducedvalueofthesetpointto500psig.Theincreasedlevelofsteamgeneratortubepluggingisacceptablebecausetheanalysisassumedbetterheattransfercharacteristics.ThelicenseeconcludesthatthecurrentmassandenergyreleaseanalysisisacceptablefortheRTPprogramaslongasthefullpowerTisequaltoorlessthan567.8F.avg2.l.4StartuofanInactiveLooThelicenseeevaluatedthestartupofaninactiveloopevent.ThiseventcannotoccurabovetheP-7permissivesetpointof10%powerasrestrictedbytheTechnicalSpecifications.TheparametersassumedintheFSARanalysisforthree-pumpoperationat10%powerremainboundingfortheparametersfor10%powercondition.Thelicenseeconcludes,therefore,thattheconclusionspresentedintheFSARremainvalid.2.1.5UncontrolledRodBankWithdrawalfromaSubcriticalConditionTheuncontrolledrodbankwithdrawalfromasubcriticalconditiontransientcausesapowerexcursion.Thispowerexcursionisterminated,afterafastpowerrise,bythenegativeDopplerreactivitycoefficientofthefuel,andareactortriponsource,intermediate,orpowerrangefluxinstrumentation.Thepowerexcursionresultsinaheatupofthemoderator/coolantandthefuel.Theanalysisusedareacti~ityinsertionrateof75pcm(notethatonepcmisequaltoareactivityof10deltaK/K).Thisreactivityinsertionrateisgreaterthanforthesimultaneouswithdrawalofthetwosequentialcontrolbankshavingthegreatestcombinedworthatthemaximumspeedof45inches/minute.Theneutronfluxovershootsthenominalfullpowervalue;however,thepeakheatfluxismuchlessthanthefullpowernominalvaluebecauseoftheinherentthermallagofthefuel.Theanalysis,withthereducedsystempressureof2100psia,yieldstheminimumvalueof'NBR.TheanalysisisperformedusingtheStandardThermalDesignProcedure(STOP).TheW-3ONBcorrelationwasissuedtoevaluateONBRinthespanbetweenthelowernon-mixingvanegridand

thefirstmixingvanegrid.TheMRB-1ONBcorrelationisappliedtotheremainderofthefuelassembly.Fromtheanalysisperformed,thelicenseeconcludesthattheONBdesignbasesaremetforallregionsofthecore,andtherefore,theconclusionsintheFSARremainapplicableforareductioninnominalsystea,pressureto2100psia.2.1.6UncontrolledControlRodAssemblBankWithdrawalatPowerTheuncontrolledrodbankwithdrawalfromapowerconditiontransientleadstoapowerincrease.Thetransientresultsinanincreaseinthecoreheatfluxandanincreaseinthereactormoderator/coolanttemperature.ThereductioninpressurefortheRTPprogramisnon-conservativewithrespecttoONB.Inaddition,arevisedOvertemperatureOelta-TsetpointequationisbeingassumedintheCookUnit1analyses.ThePowerRangeHighNeutronFluxandOvertempera-tureOelta-TreactortripsprovidetheprimaryprotectionagainstONB.Bothminimumandmaximumreactivitycaseswereanalyzedoverarangeofreactivityinsertionrates.Thelicenseeprovidedquantitativeresultsforthemaximumreactivityfeedbackcaseforpowerlevelsof10K,60K,and100Kpowerforarangeofreactivityinsertionrates.TheresultsindicatethattheONBRlimitismetforallthecases.Thelicenseeexaminedanumberofcasesassociatedwiththepressurizerwatervolumetransientcausedbyanuncontrolledcontrolrodassemblybankwithdrawal-at-powerevent.Itwasdeterminedthatcreditforhighpressurizerwaterlevelreactortripwasrequiredtopreventthepressurizerfromfilling.Thelicenseeassumedavalueof100Knarrowrangespan(NRS)forthehighpressurizerwaterlevelreactortripsetpoint.Atimedelayof2secondswasassumedfortripactuationunti1rodmotionbecomesadequatetoterminatethetransient.Thusthehighneutronfluxandovertemperature-deltaTreactortripsprovideadequateprotectionovertherangeofpossiblereactivityinsertionratesinthattheminimumvalueofONBRremainsabovethesafety-limitONBRvalue.Inaddition,thehighpressurizerwaterlevelreactortrippreventsthepressurizerfromfilling.2.1.7RodClusterAssemblMisalinmentTherodclustercontrolassemblymisalignmenteventsconsistofthreeseparateevents:(1)adroppedcontrolrod,(2)adroppedcontrolbank,and(3)astaticallymisalignedcontrolrod.TheseeventswerereanalyzedbecausethereductioninpressurefortheRTPprogramisnonconservativewithrespecttotheONBtransient.Adroppedcontrolrodorcontrolbankmaybedetectedinthefollowingmanner:(1)byasuddendropinthecorepowerasseenbythenuclearinstrumentationsystem;(2)byanasymmetricpowerdistributionasseenbytheexcoreneutrondetectorsorthecoreexitthermocouples;(3)byrodbottomsignal;(4)bytherodpositiondeviationmonitor;and(5)byrodpositionindicators.Amisalignedcontrolrodmaybedetectedinthefollowingmanner;(1)byanasymmetricpowerdistributionasseenbytheexcoreneutrondetectorsorthecoreexitthermocouples;(2)bytherodpositiondeviationmonitor;and(3)byrodpositionindicators.Theresolutionoftherodpositionindicatorchannel's+5percentor+12steps(+7.5inches).Oeviationofanycontrolrodfromitsgroupbytwicethisdistance(+24stepsort15inches)willnotcausepowerdistributionworsethanthedesignlimits.Therodpositiondeviationmonitorprovidesanalarmbeforearoddeviationcanexceed+24stepsor+15inches. Thedroppedrodeventwasanalyzedusinganapprovedmethodology(Ref.6).Adroppedrodorrodsfromthesamegroupwillresultinanegativereactivityinsertionwhichmaybedetectedbythenegativeneutronfluxratetripcircuitry.Ifdetected,ireactortripoccursinabout2.5seconds.ForthosedroppedrodeventsforwMchareactortripoccurs,thecoreisnotadverselyimpactedbecausetherapiddecreaseinreactorpowerwillreachanequilibriumvaluedependentonthereactivityfeedbackorcontrolbankwithdrawal(ifinautomaticcontrol).Thelimitingcaseforthisclassofeventsisthecasewiththereactorinautomaticcontrol.Forthiscaseapowerovershootoccursbeforeanequilibriumpowerconditionisreached.Thelicenseestatesthat,usingthemethodologyofReference6,allanalyzedcasesresultinONBRvalueswhicharewithinthesafety-limitONBRvalue.Thelicenseestatesthatadroppedrodbankresultsinareactivityinsertionofatleast500pcm.Thiswillbedetectedbythenegativeneutronfluxratetripcircuitryandcauseareactortripwithinabout2.5secondsoftheinitialmotionoftherodbank.Powerdecreasesrapidlyandthereis,therefore,noadverseimpactonthereactorcore.Themostseveremisalignmentcases,withrespecttoONBR,arethoseinwhichonecontrolrodisfullyinsertedorwherecontrolbank"0"isfullyinsertedbutwithonecontrolrodfullywithdrawn.Multiplealarmsalerttheoperatorbeforeadverseconditionsarereached.ThecontrolbankcanbeinsertedtoitsinsertionlimitwithanycontrolrodfullywithdrawnwithoutONBRfallingbelowthesafety-limitONBRvalue,asshownbyanalysis.Anevaluationperformedbythelicenseeindicatesthatcontrolrodbanksotherthanthecontrolbankwouldgivelesssevereresults.Forthecasewithonerodfullyinserted,ONBRremainsabovethesafety-limitONBRvalue.Forallcasesfollowingidentificationofacontrolrodmisalignment,theoperatorisrequiredtoperformactionsinaccordancewithplantTechnicalSpecificationsandprocedures.2.1.8ChemicalandVolumeControlSstemMalfunctionTheborondilutioneventwasanalyzedbythelicenseeforstartupandpoweroperation.Theanalysisisperformedtoshowthatsufficienttimeisavailabletotheoperatortodeterminethecauseofthedilutioneventandtakecorrectiveactionbeforetheshutdownmarginislost.Thelicenseereportsthat45minutesisavailableforMode1(poweroperation)and68minutesfor,Modes2or3(startuporhotstandbyconditions)(Ref.7).2.1.9LossofReactorCoolantFlowTheloss-of-flowtransientcausesthereactorpowertoincreaseuntilthereactortripsoneitheralow-flowtripsignalorreactorcoolantpumppowersupplyundervoltagesignal.Thereactorpowerincreasecausesareactormoderator/coolanttemperatureincrease.Thisinitialcoolanttemperatureincreasecausesapositivereactivityinsertionbecauseofthepositivemoderatortemperaturecoefficient.Thelicenseeanalyzedbothapartialloss-of-flow(lossofonepumpwithfourcoolantloopsinoperation)transientandacompleteloss-of-flowtransient(lossoffourpumpswithfourcoolantloopsinoperation).Forthepartialloss-of-flowtransient,thereactorisassumedtobetrippedonalow-flowsignal.Foracompleteloss-of-flowtransient,thereactorisassumedtobetrippedonapumpundervoltagesignal.Foreitherevent,theaverageandhotchannelheatfluxesdonotincreasesignificantlyabovetheirinitialvaluesandtheONBRremainsabovethesafety-limitONBRvalue. 2.l.10LockedRotorAccidentThelockedrotoraccidentcausesarapidreductioninthefluidflowthroughtheaffectedloop.Thereactortripsonalow-flowsignalwhichrapidlyreducestheneutronfluxuponcontrolrodinsertion.Controlrodmotionstarts1secondaftertheflowintheaffectedloopreaches87Kofitsnominalvalue.Thelicenseeevaluatedthisaccidentassumingthatoffsitepowerisavailable.Nocreditistakenforthepressure-reducingeffectofthepressurizerreliefvalves,pressurizerspray,steamdump,orcontrolledfeedwaterflowafterreactortrip.ThelicenseeperformedananalysistodeterminetheONBtransientandtodemonstratethatthepeaksystempressureandthepeakcladtemperatureremainbelowlimitvalues.Thepeakreactorcoolantsystempressureof2588psiareachedduringthetransientislessthanthatwhichwouldcausestressestoexceedthefaultedconditionsstresslimits.Thepeakcladtemperaturereachedis1959'F.Lessthan4.5XofthefuelrodsinthemostlimitingfuelassemblyreachvaluesofDNBRlessthanthesafety-limitDNBRvalue.TheseresultsindicatethattheRTPprogramassumptionsgiveacceptableconsequencesforthelockedrotoraccident.2.1.11LossofExternalElectricalLoadoTheloss-of-external-electrical-loadeventwasanalyzedbythelicenseetoshowtheadequacyofpressure-relievingdevicesandtodemonstratecoreprotection.ThisreanalysiswasnecessarybecauseofchangesinreactorpressureandtemperatureconditionsfortheRTPprogramandbecauseofchangestotheOvertemperature-DeltaTreactortripsetpointequation.Maximumandminimumreactivityfeedbackcaseswereexamined,withthecaseanalyzedwithandwithoutcreditforpressurizerspraysandpower-operatedreliefvalves.Fortheminimumreactivityfeedbackcasewithpressurizerpressurecontrol,thereactortripsonahighpressurizerpressuresignal.Forthemaximumreactivityfeedbackcasewithpressurizerpressurecontrol,thereactortripsonalow-lowsteamgeneratorwaterlevelsignal.Fortheminimumreactivityfeedbackcasewithoutpressurizerpressurecontrol,thereactortripsonahighpressurizerpressuresignal.Forallfourcases,theminimumvalueofONBRremainswellabovethesafety-limitONBRvalueandtheOvertemperature-DeltaTsetpointwasnotreached.TheanalysisconfirmsthattheconclusionsoftheFSARremainvalidforthiseventfortheRTPprogram.2.1.12LossofNormalFeedwaterFlowTheloss-of-normal-feedwater-floweventwasanalyzedbythelicenseetoshowthattheauxiliaryfeedwatersystemiscapableofremovingthestoredanddecayheat,thuspreventingoverpressurizationofthereactorcoolantsystemoruncoveringthecore,andreturningtheplanttoasafecondition.Thereanalysiswasbasedonapositivemoderatortemperaturecoefficient.AconservativedecayheatmodelbasedontheANSI/ANS-5.1-1979decayheatstandard(Ref.8)wasused.Pressurizerpoweroperatedreliefvalvesandthemaximumpressurizersprayflowratewereassumedtobeavailablesincealowerpressureresultsinagreatersystemexpansion.Theinitialpressurizerwaterlevelwasassumedtobeatthemaximumnominalsetpointof62Knarrowrangespan.Reactortripoccurredwhenthelow-lowsteamgeneratorwaterleveltripsetpointwasreached.Theresultsoftheanalysisshowthatalossofnormalfeedwaterdoesnotadverselyaffectthereactorcore,thereactorcoolantsystem,orthesteamsystem,andthattheauxiliaryfeedwatersystemissufficienttopreventwatetreliefthroughthepressurizerrelieforsafetyvalves.Thepressurizerdoes notfilland,therefore,theconclusionsoftheFSARremainvalidforthisevent,includingRTPconditions.2.1.13ExcessiveHeatRemovalOuetoFeedwaterSstemMalfunctionsTheexcessive-heat-removaleventduetofeedwatersystemmalfunctionwasanalyzedbythelicenseetodemonstratecoreprotection.ThisanalysiswasnecessarybecauseofchangesinreactorcoretemperaturesandpressurefortheRTPprogramandbecauseofchangestotheOTDTandOPDTtripsetpoints.Thiseventisanexcessive-feedwater-additioneventcausedbyacontrolsystemmalfunctionoranoperatorerrorwhichallowsafeedwatercontrolvalvetoopenfully.Thelicenseeanalyzedbothfullpowerandhotzeropowercases.Bothcasesassumedaconservativelylargenegativemoderatortemperaturecoefficient.Thefullpowercaseassumedthereactorwasinautomaticormanualcontrol.TheImprovedThermalDesignProcedure(ITOP)ofReference4wasusedintheanalysis.Fortheaccidentalfullopeningofonefeedwatercontrolvalvewiththereactorathot-zeropowerconditions,thelicenseedeterminedthatthemaximumreactivityinsertionrateislessthanthemaximumreactivityinsertionrateanalyzedintheUncontrolled-Rod-Cluster-Assembly-Bank-Withdrawal-at-Subcritical-Conditionevent.Thus,thishot-zeropowercaseisboundedbytheresultsobtainedpreviouslyfortheotherevent.Inaddition,iftheeventweretooccuratahot-zeropowerandanexactlycriticalcondition,thepowerrangehighneutronfluxtrip(lowsetting)ofabout25Kofnominalfullpowerwilltripthereactor.Thehot-fullpo~ercasewiththereactorinautomaticcontrolismoreseverethanthecasewiththereactorinmanualcontrol.Forallexcessivefeedwatercases,continuousadditionofcoldfeedwaterispreventedbyautomaticclosureofallfeedwaterisolationvalvesonsteamgeneratorhigh-highlevelsignal.Aturbinetripistheninitiatedandareactortriponaturbinetripisthenassumed.TheresultspresentedbythelicenseedemonstratethesaferesponseofCookUnit1totheevent,athot-fullpowerandinautomaticcontrol,withtheONBRremainingwellabovethesafety-limitONBRvalue.2.l.14ExcessiveIncreaseinSecondarSteamFlowTheexcessive-increase-in-secondary-steam-.floweventwasanalyzedbythelicenseetodemonstratecoreprotection.Thiseventisanoverpowertransientforwhichthefueltemperaturewillrise.ItwasanalyzedbecauseofreactorcoretemperatureandpressurechangesfortheRTPprogramandbecauseofchangestotheOTOTandOPOTsetpoints.TheCookUnit1reactorcontrolsystemisdesignedtoaccommodatea10Ksteploadincreaseanda5X-per-minuteramploadincreaseovertherangeof15to100percentoffullpower.Loadincreaseinexcessoftheserateswouldprobablyresultinareactortrip.Fourcaseswereanalyzedbythelicensee.Theseincludedminimumandmaximumreactivityfeedbackcaseswitheachcaseanalyzedforbothmanualandautomaticreactorcontrol.fortheminimumreactivityfeedbackcases,azeromoderatortemperaturecoefficientwasassumedtoboundthepositivemoderatortemperaturecoefficient..Foral'1thecases,nocreditwastakenforthepressurizerheaters.TheanalysesusedtheITDPofReferences4.Thestudiesshowthatthereactorreachesanewequilibriumconditionforallthecasesstudied,withONBRremainingwellabovethesafety-limitONBRvalue.Theoperatorswouldfollownormalplantprocedurestoreducepowertoanacceptablevaluetoconcludetheevent. II 2.1.15LossofallACPowertothePlantAuxiliariesTheloss-of"all-AC-power-to-the-plant-auxiliarieseventwasanalyzedtodemonstratetheadequacyoftheheatremovalcapabilityoftheauxiliaryfeedwatersystem.Thistransientisthelimitingtransientwithrespecttothepossibilityofpressurizeroverfill.Thiseventismoreseverethantheloss-of-loadeventbecausethelossofACpowerresultsinaflowcoastdownduetothelossofallfourreactorcoolantpumps.Thisresultsinareducedcapacityoftheprimarycoolanttoremoveheatfromthecore.Apositivemoderatortemperaturecoefficientwasassumedintheanalysis.AconservativedecayheatmodelbasedontheANSI/ANS-5.1-1979decayheatstandard(Ref.8)wasused.Nocreditistakenfortheimmediatereleaseofthecontrolrodscausedbythelossofoffsitepower.Insteadareactortripisassumedtooccuronasteamgeneratorlow-lowlevelsignal.Pressurizerpoweroperatedreliefvalvesandthemaximumpressurizersprayflowratewasassumedtobeavailablesincealowerpressureresultsinagreatersystemexpansion.Theinitialpressurizerwaterlevelisassumedtobeatthemaximumnominalsetpointof62Knarrowrangespanplusuncertaintiesof5Xnarrowrangespan.Theresultsdemonstratethatnaturalcirculationflowissufficienttoprovideadequatedecayheatremovalfollowingreactortripandreactorcoolantpumpcoastdown.Thepressurizerdoesnotfill.Thus,thelossofACpowerdoesnotadverselyaffectthecore,thereactorcoolantsystem,orthesteamsystem,andtheauxiliaryfeedwatersystemissufficienttopreventwaterreliefthroughthepressurizerrelieforsafetyvalves.2.1.16SteamlineBreakThesteamlinebreakaccidentwasanalyzedbythelicenseetoassesstheimpactofthereducedreactorcoolantsystempesssureoftheRTPprogramandthelowsteampressuresetpoint(loweredfrom600psigto500psig)ofthecoincidencelogicwithhigh-highsteamflowforsteamlineisolationandsafetyinjectionactuation.Anend-of-lifeshutdownmarginof1.6XdeltaK/Kfornoload,equilibriumxenonconditions,withthemostreactivecontrolrodstuckinitsfullywithdrawnposition,wasassumed.Anegativemoderatortemperaturecoefficientcorrespondingtotheend-of-lineroddedcorewasassumed.Thelicenseeevaluatedfourcombinationsofbreaksizesandinitialplantconditionstodeterminethecorepowertransientwhichcanresultfromlargeareapipebreaks.Thefirstcasewasthecompleteseveranceofapipedownstreamofthesteamflowrestrictorwiththeplantatno-loadconditionsandallreactorcoolantpumpsrunning.Thesecondcasewasthecompleteseveranceofapipeinsidethecontainmentattheoutletofthesteamgeneratorwiththeplantatno-loadconditionsandallreactorcoolantpumpsrunning.ThethirdcaseisthesameasthefirstcasewiththelossofoffsitepowersimultaneouswiththegenerationofaSafetyInjectionSignal(lossofoffsitepowerresultsinreactorcoolantpumpcoastdown).ThefourthcaseisthesameasthesecondcasewithlossofoffsitepowersimultaneouswiththegenerationofaSafetyInjectionSignal.AfifthcasewasperformedtoshowthattheONBRremainsabovethesafety-limitONBRvalueintheeventofthespuriousopeningofasteamdumporreliefvalve.Thelicenseedeterminedthatthefirstcasewasthelimitingcase,thatis,thedouble-endedruptureofamainsteampipelocatedupstreamoftheflowrestrictorwithoffsitepoweravailableandatno-loadconditions.Theresultsindicatethatthecorebecomescriticalwiththecontrolrodsinserted(however,withthemostreactivecontrolrodstuckout)beforeboronsolutionat2400ppmentersthereactorcoolantsystem.Thecorepowerpeaksatlessthanthenominalfullcorepower.TheONBanalysisshowedthatthe

minimumDNBRremainedabovethesafetylimitONBRvalue,eventhoughthiseventisclassifiedasanaccidentwithfuelrodsundergoing.DNBnotprecluded.Theanalysisperformedbythelicenseedemonstratesthatasteamlinebreakaccidentwillnotresu'ftinunacceptableconsequences.2.1.17RutureofControlRodOriveMechanismHousinRodE'ectionAccidentTherodejectionaccidentisanalyzedatfullpowerandhot,zero-powerconditionsforbothbeginning-of-cycle(BOC)andend-of-cycle(EOC).Theanalysisusedejectedrodworthandtransientspeakingfactorsthatareconservative.Reactorprotectionforarodejectionisprovidedbyneutronfluxtrip,highandlowsetting,andbythehighrateofneutronfluxincreasetrip.Theanalysismodeledthehighneutronfluxtriponly.Themaximumfueltemperatureandenthalpyoccurredforhot,full-powerBOCcase.Thepeakfuelenthalpywas,however,below200cal/gmforallthecasesanalyzed.Forthehot,full-powercases,theamountoffuelmeltinginthehotpelletwaslessthan10K.BecausefuelandcladtemperaturesandthefuelenthalpydonotexceedtheFSARlimits,theconclusionsoftheFSARremainvalid.Basedonareviewofthelicensee'sevaluationandanalysisofthenon-LOCAtransientsandaccidents(2.1.3through2.l.17)forthereducedtemperatureandpressureoperation(theRTPprogram),thestaffconcludesthattheyareacceptablebecause(1)approvedmethodologiesandcomputercodeshavebeenused,and(2)allapplicablesafetycriteriahavebeenmet.Thisreviewisbasedon(1)afullpowervesselaveragetemperatureoflessthanorequal'to567.8'F,(2)asteamgeneratortubeplugginglevelof10Kwithapeaktubeplugginglevelof15K,and(3).theminimummeasuredflowrequirementof91,600gpmperloo'pismet.2.1.18SteamGeneratorTubeRutureSGTR)AccidentThelicenseeanalyzedthesteamgeneratortuberupture(SGTR)eventforCookUnit1usingmethodologyandassumptionsconsistentwiththoseusedfortheCookFSARSGTRanalysis.TherangeofparametersassociatedwithafuturereratingprogramandtheRTPprogramwereusedinsensitivityanalysestoassesstheimpactoftheseprogramsontheprimary-to-secondarybreakflowandthesteamreleasedtotheatmospherebytheaffectedsteamgenerator.ThesetwofactorsaffecttheradiologicalconsequencesofanSGTRaccident.Inaddition,thelicensee'sevaluationoftheradiologicaldosesconsiderstheeffectofthenoblegasconcentrations.Thelicenseestatesthattheresultsoftheanalysesshowthatthedosesremainwithinasmallfraction(10K)ofthe10CFRPart100guidelinesforboththethyroidandwholebodydoses.Sincetheworstcasedosesarewithinthe10CFRPart100guidelines,thestaffconcludesthattheanalysisoftheSGTRisacceptable2.1.19FuelStructuralEvaluationThefuelassemblyliftandbuoyancyforcesareincreasedfortheRTPprogramatCookUnit1becauseareductioninreactorcoolantsystemtemperatureofabout20'Fwillincreasethecoolantdensitybyabout3X.Thelicenseeevaluatedthisforceincreaseagainstthefuelassemblyallowableholddownload.Theresultsoftheevaluationshowthattheincreasedforceiswellwithintheminimumspringholddownforcedesignmargin.Inaddition,thelicenseedeterminedthatthecold-legbreakremainsthemostlimitingpiperupturetransientwithrespecttolateralandverticalhydraulicforces.Basedonthelicensee'sreview,thestaffconcludesthatthe15xl5fuelassemblydesignremainsacceptable. Thefuelroddesignwasevaluatedtoassesstheimpactoffuturererating.Thelicenseedeterminedthattherodinternalpressurecriterionwillcontinuetobethemoreimportantfactorinfuelburnupcapabilities.Thefuelwillalsoundergomoreseverefueldutybecauseoftheupratedpower.Thelicenseeplanstoperformcycle-specificverificationforeachreloadtoassurethatallfuelroddesigncriteriaaremet.'-2;1;20-.-Justificationfor.PressurizerLevelThepurposeofthePressurizerHighLevelLimitistoensurethatasteambubbleispresentinthepressurizerpriortopoweroperationtominimizetheconsequencesofoverpressuretransientsandthepossibilityofpassingwaterthroughthereliefandsafetyvalves.Thesafetyanalysisassumesamaximumwatervolumewhichcorrespondstoabout65Kindicatedlevel.Thisnominalindicatedlevelismaintainedduringnormaloperationbythepressurizer.levelcontrolsystem.Thelicensee(andthefuelsupplier-Westinghouse)recommendstheuseof92KforthePressurizerHighLeveltriplimit.Theystatethatthisnewtriplimitwi11stillensurethepresenceofasteambubbleinthepressurizer.Thepressurizerlevelwill,however,becontrolledtothenominalvalue.Fornormaloperations(ConditionIevent),thereactorparameters,includingthepressurizerlevel,donosignificantlydeviatefromtheirnominalvalues.Thelicenseeconcludesthat,forthepressurizerleveltoexceedthenominallevel,a~~~~~~~~transientoraccidentmustoccurforwhichprotectiveactionisprovidedbytheReactorProtectionSystem.Anyotherpossibleconditionsforwhichthenominallevelwouldbeexceededbeforeandduringatransientwouldrequireatransient'rtransientsbeyondthoseusuallyconsideredforanFSARtypeofanalysis.Thestaffconcludesonthebasisofthelicensee'sevaluat>onthataPressurizerHighLevelTripof92~isacceptable.2.2BALANCEOFPLANTSYSTEMSThelicenseestatesthatbalanceofplant(BOP)systemsandcomponentswereanalyzedfortheeffectsofoperationatreducedtemperatureandpressureconditions.ThesecondarysideconditionsfortheseanalysesweredeterminedusingthePerformanceEvaluationandPowerSystemEfficiencies(PEPSE)heatbalancedata(14.20E6lb/hrmainsteamflowandmainfeedflow).Thesystemsreviewedwerethenonsafety-relatedsecondarysidepowergeneratingandnonpowergeneratingsystems.Includedinthelicensee'sanalysiswereportionsofthemainfeedwater,mainsteam,steamgeneratorblowdown(SGBS),componentcoolingwater(CCWS),auxiliaryfeedwater(AFS),heating,ventilation,andairconditioning(HVAC),servicewater,wastedisposal,fireprotection,radiationmonitoring,andspentfuelpool(SFP)coolingandcleanupsystems.TheperformanceoftheaboveBOPsystemswasevaluatedatthereducedtemperatureandpressurebyusingthenewprimarysideNSSSdata(14.20E6lb/hrmainsteamandmainfeedflow,and434'Fmainfeedtemperature)furnishedbyWestinghouse.Thelicenseestatesthattheimpactoncontainmentpressuresandtemperatures~~~~~~followingapostulateddesignbasismainsteamlinebreakwasevaluatedanditseffectonequipmentqualificationwasverified.Thefloodinganalysisinsafety-relatedareasoftheplantasaresultofapostulatedpipebreakwasreevaluatedduetotheslightincreaseinflowratesinthemainfeed,condensate,andmainsteamsystems.Theturbine-generatorsystemwasalsoevalutedtoconfirmitsintegrityandperformanceattheincreasedsteamvolumetricflowrateandtoverifythattheoriginalturbinemissileanalysisremainsvalid. Thelicensee'sanalysisofBOPsystemperformanceprovidedthefollowingfindings~~~~~~~concerningtheRTPconditionsatthepresentlicensedpowerlevelof3250HMtNSSSpower:(a)(b)(c)The:capabilityofthesafety-relatedportionofthemainfeedwatersystemwillnotbeaffectedandwillcontinuetoperformitssafetyfunctionbecausetheproposedRTPconditionsareboundedbytheexistingmainfeedwatersystemdesign.Thelicensee'sanalysisofthepressure/temperatureratingconditionsforthesystemconfirmsthatpressureboundaryintegritywillnotbeaffected.Inaddition,themainfeedwatersystemisolationvalveclosuretimeisnotaffectedbytheRTP"imposedconditions.ThecapabilityofthesteamgeneratorblowdownsystemtoremoveimpuritiesfromthesecondarysideremainsessentiallythesamefortheRTP-imposedconditionsduringnormaloperationbasedontheexsistingdesign.Thereactormakeupwatersystem's(HSM)capabilitytoprovidedemineralizedwaterformakeupandflushingoperationsthroughouttheNSSSauxilliaries,theradwastesystems,andfuelpoolcoolingandcleanupsystemisnotchaIlengedbecausetheexistingsystemdesignisbasedontheworstcasedemandwhichboundstheRTPconditions.(d)Thelicenseeconfirmedthatsafety-relatedequipmentwillnotbeaffectedbychangesinthefloodinganalysisduetotheRTPconditions.FloodingintheauxiliarybuildingduetofailureofnonseismicClassIpipinghasbeenreviewed.Thelicenseeanalyzedsystemshavingaccesstolargewatervolumesand/orpotentiallylargeflowrateswereconsideredasdiscussedintheFSAR.Theonlysuchsystemisthemainfeedwatersystem.Sincethechangesinflowinthemainfeedwatersystemarestillwithinthedesignlimits,theresultsconcerningfloodingdiscussedintheFSARarestillapplicable.Floodinginthecontainmentisslightlyincreasedduetothelargerinitialwatermassinthereactorcoolantsystembecauseofthehigherdensityatthereducedtemperature.Thischangewasfoundtobewithinthevolumemarginsusedtodeterminethemaximumflood-upelevation.ThecontainmentfloodingevaluationintheFSARremainsvalidattheRTP-inducedconditions.(e)TheadequacyoftheAFMsystemforaccidentmitigationwasdemonstratedintheMestinghouseaccidentanalysisperformedinsupport'ftheRTPprogramunderthefollowingscenarios:1.Lossofmainfeedwater2.Lossofoffsitepower3.HainsteamlineruptureEachaccidentanalysisdemonstratedacceptancecriteriasuchassystemoverpressurelimitsorONBlimits.TheAFMsystem'sabilityfordesignbasisaccidentdecayheatremovalcalculatedintheRTPanalysisisunaffected.

13AsevaluatedintheRTPanalysis,theheatloadsinboththeprimaryandsecondarysystemsduetoreactordecayheatremainunchanged.Therefore,theComponentCoolingWaterSystem(CCWS)analysisandservicewatersystem(SWS)analysisintheFSARremainvalid.(g)(h)(k)Formainsteamlinebreaksinsidethecontainmentstructure,thepressureandtemperaturewillremainwithintheboundsofthepeakpressureandtemperatureusedintheevaluationofcontainmentperformance.TheinitialprimarytemperaturesandsecondarysteampressuresundertheRTPconditionswillbelowerthanthoseusedintheFSARanalysis.Thelicenseehasconfirmedthatcontainmentenvironmentalqualificationofequipmentinsidecontainmentisnotaffected.Thesuperheatedmassandenergyreleaseanalysisoutsidecontainmentwasevaluatedtoaddressequipmentqualificationissues.TheprimarytemperaturesandsecondarysteampressuresresultingfromtheRTPconditionswillbelowerthanthoseusedintheFSAR'analysis.ThemassandenergyreleasewillbelowerandoperationwithRTPwillresultinlowertemperaturesinthebreakareas.Assuch,thecurrentsuperheatmassandenergyreleaseanalysisoutsidecontainmentremainsboundingprovidedthefullpowervesselaveragetemperatureisrestrictedtothecurrently-licensed567.8'Fandbelow.Thesecondarypressureconditionsassumedir.thehighenergysteamlinebreakanalysiswi11belowerthanthosepresentedintheFSAR.TheseboundtheproposedRTPconditionsandthereforethecurrentanaIysisissufficient.Theprimaryfunctionofthespentfuelpoolcoolingsystem(SFPCS)istoremovedecayheatthatisgeneratedbytheelementsstoredinthepool.Decayheatgenerationisproportionaltotheamountofradioactivedecayintheelementsstoredinthepoolwhichisproportionaltothereactorpowerhistory.Sincetheplant'sratedpowerlevelof3250NWtremainsunchanged,thedemandontheSFPCSisnotincreased.ThepurificationfunctioniscontrolledbySFPCSdemineralizationandfiltrationratesthatarenotaffectedbytheRTPconditions.Thefireprotectionsystemsandfirehazardsareindependentoftheplantoperatingcharacteristicswiththeexceptionoftheslightlyincreasedcurrentrequirementsfortheelectricmotordrivenpumpsintheprimarysystem.TheincreasedloadisduetothemoredensewaterbeingpumpedundertheRTPconditions.Theincreasedcurrentrequiredissmallandthereforeisnotconsideredtobeafirehazard.ThelicenseeconfirmedthatBOPsystemshavethecapabilitytomaintainplantoperationundertheRTP-inducedconditionswithoutmodificationtotheexistingdesign.ThestaffhasreviewedtheFSARandlicenseesubmittalsinordertoverifythatsafety-relatedBOPsystemperformancecapability,asanalyzed,boundsthe changesindesignbasisaccidentassumptionscreatedbytheRTPoperation.Thestaffhasconfirmedthatsafety-relatedBOPsystemdesigncapability,floodingprotection,aadequipmentqualificationsareboundedfortheproposedreratingandthereforeareconsideredacceptableasis.Basedontheabove,thestaffconcludesthattheproposedlicenseamendmentfortheD.C.CookNuclearPlantUnit1concerningtheReducedTemperatureandPressureiswithintheexistingsafety-relatedBOPsystemdesigncapabilityfordesignbasisaccidentmitigationand,therefore,thestaff'spreviousapprovalagainsttheapplicablelicensingcriteriaforthemainsteamsystem,mainfeedsystem,CCWS,SWS,AFS,MSW,SGBS,SFPCS,floodingprotection,containmentperformance,andequipmentqualificationsremainvalid.Thestaff,therefore,findstheBOPsystemsconcernedacceptableforcontinuedoperationattheproposedreducedtemperatureandpressure.2.3REACTORVESSELANOVESSELINTERNALSThereactorvesselisdesignedtotheASMEBoilerandPressureVesselCode,SectionIII(1965Editionwithaddendathroughthewinter1966).ThelicenseehasdeterminedthattheoperationofthereactorvesselunderthemostlimitingconditionsoftheRTPreratingisacceptablefotitsoriginal40-yeardesignobjective.AllofthestressintensityandusagefactorlimitsoftheapplicablecodefortheUnit1reactorvesselarestillsatisfiedwhentheRTPisincorporated,withtheexceptionofthe3SmlimitfortheControlRodOriveMotor(CROM)housingsandoutletnozzlesafeend.However,thecodepermitsexceedingthe3Smlimitprovidedplasticorelastic/plasticanalysiscriteriaaremet.Thelicensee'sreviewofthereactorvesselsinternalsfortheRTPprogramincludedthreeseperateareas:athermal/hydraulicassessment,aRCCAdroptimeevaluation,andastructuralassessment.Forceincreaseswerecalculatedfortheuppercoreplate,acrossthecorebarrel,andintheupperinternalsneartheoutletnozzles.Intheseareastheexistingmarginwasdeterminedtobesufficienttoaccommodatetheincreasedstresses.Theresultsofthisreviewindicatethattheoriginalreactorinternalscomponentsremainincompliancewiththecurrentdesignrequire-mentswhenoperatingatthenewrangeofprimarytemperaturesandpressures.ThePTSrulerequiresthatattheend-of-lifeofthereactorvessel,theprojectedreferencetemperature(calculatedbythemethodgivenin10CFR50.61(b)(2),RT/pts)valueforthematerialsinthereactorvesselbeltlinebelessthanthescreeningcriterionin10CFR50.61(b)(2).TheRT/ptsvalueisdependentupontheinitialreferencetemperature,marginsforuncertaintyintheinitialreferencetemperatureandcalculationalprocedures,theamountsofnickelandcopperinthematerial,andtheneutronfluenceattheend-of-lifeofthereactorvessel.Oftheseproperties,onlyneutronfluenceisaffectedbyreratingwithRTP.Sincethecoldercoolantinthedowncomerregionismoredenseandthusprovidesforamoreefficientneutronshieldforthereactorvessel,fluenceestimatesarelowerthanthoseatcurrentoperatingconditions.AllotherpropertiesareindependentoftheRTP-inducedconditions.TheeffectsofNRCGenericletter88-11,datedJuly12,1988,regardingRegulatoryGuide1.99Rev.2wereevaluatedbyWestinghouseanddeterminedtonotbesignificantforRTP.TheeffectofRTPwillbeincorporatedbythelicenseeinfuturePTSsubmittals. AnevaluationwasperformedtodeterminetheimpactofRTPreratingontheapplicabilityofthePTSscreeningcriteriaintermsofvesselfailure.AprobabilisticfracturemechanicssensitivitystudyoflimitingPTStransientcharacteristics,startingfromaloweroperatingtemperature,showedthattheconditionalprobabilityofreactorvesselfailurewillnotbeadverselyaffected.Therefore,theoverallriskofvesselfailurewillnotbeadverselyimpacted,meaningthatthescreeningcriteriainthePTSRulearestillapplicablefortheO.C.CookNuclearPlantUnit1reactorvessel'relativetoreratedconditions.AnalysisoftheCROMhousingsandtheoutletnozzlesafeendshowsthemaximumrangeofprimaryplussecondarystressintensityexceedthe3Smlimit.Thelicensee,however,performedasimplifiedelastic/plasticanalysisinaccordancewithparagraphNB-3228.3oftheASMEBoilerandPressureVesselCode,SectionIII(1971orlateredition)andthehigherrangeofstressintensityisjustified.Therefore,basedonthelicensee'sreviewsandanalysisoftheaboveportionsofthereactorvesselandinternals,thestaffconcludesthattheconditonsimposedonthereactorvesselandinternalsbytheRTPreratingareacceptable.2.4TURBINEMISSILESTheFSARturbinemissileanalysisisbasedonalowpressureturbinefailure.Thelicensee'sanalysisoftheslightlychangedsteamconditionsenteringthelowpressureturbineshowsthattheprobabiltyofalowpressureturbinemissileisvirtuallyunaffected.Thefactorsthatdirectlyorindirectlycausestresscorrosioncrackinginthelowpressureturbinewheelsaresteampressureandtemperature,massflowrate,steammoisturecontent,waterchemistry,oxygenlevel,andturbinespeed.ThelicenseereportedthatchangesinthesefactorsarenegligibleduetotheRTP-inducedconditions.Theonlynoticeablechangethatthestaffcandetermineisa1.0Xincreaseinthesteamflowrate.Thestaff'sconclusion,basedonthelicensee'sreview,isthattheturbinemissilehazardisneglibilyaffectedbytheRTPconditonsandis,therefore,acceptable.2.5PLANTSTRUCTURALANOTHERMALDESIGNTheNSSSreviewconsistedofcomparingtheexistingNSSSdesignwiththeperformancerequirementsatthereratedRTPconditions.ThecurrentcomponentsoftheCookUnitI/model51steamgeneratorscontinuetosatisfytherequirementsoftheASMEB8PVCode,SectionIII,(thecodeapplicableforthedesignoftheCookNuclearPlantUnit1),forthisprogram.Inaddition,thermalhydraulicevaluationsofthesteamgeneratorsshowacceptablestabilityandcirculationratiosattheRTPreratedconditions.Circulationratioisprimarilyafunctionofpower,whichisunchanged,thereforeisitselfvirtuallyunchanged.Thedampeningfactorcharacterizesthethermalandhydraulicstabilityofthesteamgenerator.Mestinghousehasdeterminedthatalldampeningfactorsarenegativeatnearlythesamevalueasthecurrentoperatingconditions.Anegativedampeningfactorindicatesastabledevice.Sincethecoderequirementscontinuetobesatisfied,andsincestabilityandcirculationratioshavebeendeterminedbyMestinghousetobe withinthedesigncriteria,thestaffconcludesthatRTPoperationisacceptablefortheModel'1steamgenerators.Thepressurizer.structuralanalysiswasperformedbymodifyingtheoriginalO.C.CookNuclearPlantPressurizeranalysis("Model51SeriesPressurizerReport").TheanalysiswasperformedtotherequirementsoftheASHECode1968Edition,whichisthedesignbasisfortheO.C.CookNuclearUnits.TheonlyASMECoderequirementaffectedbythetransientmodificationswasfatigue.Thelimitingcomponentsforfatigueusagefactorsaretheuppershellandthespraynozzle,whicharecalculatedtobe0.97and0.99respectively.Theseremain,however,withintheASMEacceptancecriteriaof1.0andare,therefore,acceptabletothestaff.ReactorcoolantpumphydraulicsandmotoradequacywerereviewedfortheproposedRTPconditionsbyWestinghouse.TheincreasedhothorsepowerandstatortemperatureconditionsarewithintheNEHAClassBlimits.AreviewofgenericReactorCoolantPumpstressreportsformodel93ApumpsbyWestinghousefindsthatallthedesignrequirementsprovideadequateboundingoftheRTP-inducedconditionsand,therefore,thestafffindsthisacceptable.OuetolowertemperaturesfromtheRTPprogram,theRCSwillnotexpandasmuchascurrentlydesigned.Thiswillresultinsupportgapsbeingpresentinlocationsthatwerepreviouslyzero.Thesmallgapsinthesupportstructuremayresultinincreaseddynamicloading(bothseismicandLOCA)inlocalizedareas.TheoverallLOCAloadingsontheRCS,however,remainapproximatelythesameforthefollowingreasons:ThelowerRCStemperaturesyieldlowerthermalloadings.2.The0.C.CookNuclearPlanthasaleakbeforebreakdesignmethodologywhichallowsthefaultedconditionevaluationtoproceedwithouthavingtoconsiderloadingsfrompostulatedbreaksintheprimarylooppiping.Theseismicmarginavailableforthisplantisalsosignificantwhichmeansthattherearenocomponentsinthesystemwhichareclosetotheirallowablestresses.Basedontheabove,thetemperaturesassociatedwiththeRTPreratingare,therefore,acceptabletothestaffforthelooppiping,theloopsupports,andtheprimaryequipmentnozzles.TheeffectsoftheO.C.CookNuclearPlantRTPreratingontheoperabilityanddesignbasisanalysisoftheCROM'sofUnit1werereviewed.TheRTPreratingdoesnotaffecttheoperabilityorservicedurationoftheCROMlatchassembly,driverod,orcoilstack.TheCROMlatchassemblyanddriverodwereoriginallydesignedfor650'F,andthedesignbasisstressandfatiguecalculationsremainrepresentativeforthesecomponentssincethecomponentsareexposedtothehotlegtemperature,whichhasnotincreased.Thecoilstackislocatedontheoutsideofthepressurehousingwhichissubjecttoambientcontainmenttemperatures,whichhavenotchanged.AnevaluationwasperformedontheimpactoftheRTPreratedoperatingconditionsonthestructuralanalysisoftheCROMpressurehousing.Thecomponentofthepressurehousingwhichexperiencesthegreateststressrangeandhasthehighestfatigueusagefactoristheuppercanopy.Thisisthepressurehousingsealweldbetweentherodtravelhousingandthecap.Mestinghouseprovidedareviewontheimpactofthedifferences betweentheoriginalnormalandupsetconditiontransientsandthoseoftheRTPonthecodeallowablestresslevelsandfatigueusagefactors.Theresultsoftheevaluationare:2.Themaximumstressintensityrangeisequalto109,960psi,whichislessthanthemaximumallowablerangeofthermalstressof127,105psiwhichwaspreviouslyfoundtobeacceptable.Thetotalfatigueusagefactorisequalto0.672,whichislessthantheallowablelimitof1.0(ASMESectionIII,1971Edit>on).Thestaffconcludes,basedonlicenseeevaluations,thattheimpactoftheRTPprogramontheCRDM'siswithindesigncriteriaand,therefore,isfoundtobeacceptable.2.6CONTAINMENTEVALUATIONShort-TermContainmentResonseAspartoftheanalysistosupportRTPoperation,thereactorcavityandloopsubcompartmentsshort-termpressurizationintheeventofabreakoflargecoolantpipingorasteamlinewasreanalyzedbyWestinghouse..Insomeofthoseareas,theanalyzedpressureexceededthestructurallimitsasexpressedintheFSAR.ThesestructureswerereevaluatedusingthepeakpressuresobtainedfromtheRTPanalysis,WCAP11902(ref.2),toconfirmthattheacceptancecriteriaofSection5.2.2.3oftheupdatedFSAR,titled"ContainmentDesignStressCriteria,"weremet.Theoriginaldesignofthecontainmentincludedanumberofconsiderationsofwhichthesubcompartmentpressureswerebutone.Forexample,radiationshieldingrequirementsmayhavedictatedathickerconcreteslabthanwasnecessaryfromastructuralperspective.Theactualcapacityisgenerally-greaterthanthedesignpressuresstatedintheFSAR,andisfurtherincreasedduetothefactthatthematerialsusedarestrongerthantherequiredminimumdesignstrengths.IntheRTPstructuralreview,advantagewastakenofthesegreatercapacitiesbyperformingmanualorfiniteelementevaluationsoftheaffectedstructuralelements.Thegreatermaterial.strengthswereusedintheanalysiswhereappropriate.LooSubcomartmentsThecontainmentbuildingsubcompartmentsarethefullyorpartiallyenclosedspaceswithinthecontainmentwhichcontainhighenergypiping.Thesubcompartmentsaredesignedtolimittheadverseeffectsofapostulatedhighenergypiperupture.TheresultsoftheshorttermcontainmentanalysesandevaluationsfortheD.C.CookNuclearPlantUnit1demonstratethat,forthepressurizerenclosure,thefanaccumulatorroom,andthesteamgeneratorenclosure,theresultingpeakpressuresremainbelowtheallowabledesignpeakpressures'ortheloopcompartments,thepeakcalculatedpressuresattheRTPreratedconditionsarehigherthantheFSARdesignallowables.Fortheseareas,structuralevaluationswereperformedasdiscussedabovefortherevisedpeakpressures,andthestructuraladequacyofthecontainmentsubcompartmentshavebeenconfirmed(Ref.10)asfollows: 1V~~~~~~'eDifferentialPressureNode1or6toNode25,Thisisthedifferentialpressurefromthereactorcoolantloopcompartmentsadjacenttatherefuelingcanalnodes1or6acrosstheoperatingdecktotheuppercontainment.OriginalDesignpressureOriginalCalculatedpressureNewCalculatedpressure16.6psi14.1psi18.7psiThelicenseedemonstratedtheincreaseddifferentialpressuretobeacceptablebyreviewofexistingcomputeranalysisofthereactorcoolantpumphatchcoversandreevaluationoftheoperatingdeckloadcarryingcapacity.DifferentialPressureNode2or5toNode25Thisisthedifferentialpressureacrosstheoperatingdeckfromthereactorcoolantloopcompartmentslocated90degreesfromtherefuelingcanaltotheuppercontainment.OriginalDesignpressureOriginalCalculatedpressureNewCalculatedpressure12.0psi10.6psi13.0psiThelicenseedemonstratestheincreaseddifferentialpressuretobeacceptablebycomparisontoNode1andNode6areas,Theslabsinbothareasarethesame.PeakShellPressureThisisthedifferentialpressureacrossthecontainmentshelltotheoutside,fornodeslocatedintheicecondenserinletareasclosesttotherefuelingcanal.OriginalDesignpressureOriginalCalculatedpressureNewCalculatedpressure12.0psi10.8psi14.0psiThelicenseedemonstratestheincreasedpressuretobeacceptablebyevaluationonalocalizedbasis.Thecontainmentshellcanhandlepressureswellinexcessoftheoverall12psidesignpressure.Theaveragepressureoverthestructurallysignificantportionofthecontainmentshellsurroundingandincludingthesenodesissmallerthanthe12psicontainmentshelldesignpressure.ReactorCavitThereactorcavityisthestructuresurroundingthereactorwithpenetrationsforthemaincoolantpiping.Thisstructureisdesignedtolimittheadverseeffectsoftheinitialpressureresponsetoalossofcoolantaccident.TheresultsofthereactorcavityanalysisandevaluationsfortheD.C.Cook.NuclearPlantUnit1demonstratethat,forthereactorvesselannulusandpipeannulus,theresulting*peakpressuresattheRTPreratedconditionsarewithintheFSARdesignallowables.FortheupperandlowerreactorcavitiesthepeakcalculatedpressuresunderRTPconditionsexceededthestructuraldesignpressures(Ref.2,Sections3.7.2and3.7.3)asstatedintheFSAR.Forthese 0 areas,structuralevaluationswereperformedfortherevisedpeakpressures,~~andthestructuraladequacyofthecontainmentsubcompartmenthasbeenconfirmed(Ref.10)asfollows:MissileShieldRefuelinCanalBulkheadBlocksandUerReactorCavitalsferentlaressuresTheupperreactorcavitywallssurroundthereactorhead.Themissileshieldsandtherefuelingcanalbulkheadsareblocksseparatingtheupperreactorcavityfromuppercontainment.Themissileshieldisbolteddownduringoperation,andisremovableforrefueling.Therefuelingcanalbulkheadsfitsnuglyingroovesintheupperreactorcavitywalls.~CiII11Wi1Sli11andBulkheadsOriginalOesignpressureOriginalCalculatedpressureNewCalculatedpressure48.0psi44.1psi48.4psi48.0psi44.1psi54.3psiThelicenseedemonstratestheincreasedpressureforthecavitywalltobeacceptablebyfiniteelementanalysisoftheentireupperreactorcavitywall.Thelicenseehasdemonstratedtheincreasedpressureforthemissileshieldsandthebulkheadstobeacceptablebymanualcalculation.Thetestcylinderbreakstrengthoftheconcrete,whichishigherthanthedesignstrength,wasalsotakenintoconsideration.PeakLowerCavitPressureThisisthecavitylocatedunderthereactorvessel.Thepeakpressureisusedinthestructuralanalysisratherthanthedifferentialpressuresincemostofthecavitywallsareinthefoundationmat.OriginalOesignpressureOriginalCalculatedpressureNewCalculatedpressure15.0psi13.8psi18.5psiThelicenseedemonstratedthattheincreasedpressuresareacceptablebymanualcalulation.Thestaffconcludes,basedonthelicensee'sdemonstration,thatthe0.C.CookNuclearPlant'sdesignbasispertainingtocontainmentshorttermresponse,asstatedinChapter5.2.7.3oftheFSAR,isadequateforRTPoperation,andtherefore,isacceptable.ThelicenseemustupdatetheFSARtoreflectthehigherstructuraldesignvalues.LonTermContainmentPressureThelongtermpeakcontainmentpressureanalysissupportsoperationwiththeRHRcrosstievalvesclosedatapowerlevelof3425NMtforbothUnits1and2containmentstructure..ThisanalysiscontainedadditionaljustificationforoperationundertheRTPconditions(Ref.11)andwasapprovedbythestaffSafetyEvaluationdatedJanuary30,1989(Ref.12). I HII-20-~~2.7NUCLEAR,PROCESSANDPOST-ACCIDENTSAMPLINGSYSTEMSTheNuclearSamplingSystem(NSS)fsdesignedtoproviderepresentativesamplesforlaboratory.analysesusedtoguidetheoperationofvariousprimaryandsecondarysystemsthroughouttheplantduringnormaloperation.Sincereductionofsamplepressureandtemperature,whennecessary,isalreadybeingdonebyheatexchangersandneedlevalves,theparametersassociatedwiththeRTPprogramdonotaffecttheperformanceoftheNSS.Withnopowerupratfng,thesourcetermremainsunchanged.Therefore,thestaffconcludesthatoperationunderRTPconditionsfsacceptablefortheNSS.Thestafffindsthat,sincenopowerupratingisbeingproposedatthistime,thereisaninsignificanteffectonthepost-accidentcontainmentthermalconditionsandthereforetheexistingpost-accidentsamplingsystemremainsadequateandisacceptable.OperationunderRTPconditionsresultsinslightreductionsinsecondarysfdetemperaturesandpressureswithnochangeinthesourceterm.Thestaffconcludesthatthechangeca'nbeaccommodatedbytheprocesssamplingsystemwithoutcausingdegradationoftheirperformance,andfs,therefore,acceptable.2.8ELECTRICSYSTEMSDESIGNOperationunderRTPconditionsresultsinminorchangestothe.heatbalance.Theonlyimpactnotedontheelectricalsystemsistheslightincreaseinmotorcurrentforthemotorsusedasprimemoversofprimarycoolant.TherequiredpowerfsincreasedbythehigherdensitiesencounteredduetotheRTPprogram.Thelicenseehasreviewedcablepenetratfons,busses,andmotorratingstoconcludethatthereissufficientdesignmargintohandletheincreasedload.Thestafffinds,basedonthelicensee'sevaluation,thattheproposedRTPprogramminimallyaffectstheelectricpowersystemandassociatedloadsandfstherefore,acceptable.3.0TECHNICALSPECIFICATIONS1.Definition1.38ondesignthermalpowerfsbeingdeletedonpage1-7oftheTechnicalSpecifications(TS's)becausetherefsnolongerasingledesignthermalpoweratwhichallthetransientandaccidentanalyseshavebeenperformed.ThelicensedpowerlevelforCook1remains3,250MWt.Thischangeisacceptable.2.Table1-3onpage1-10isbeingdeletedbecauseftpreviouslygaveinformationontheanalysesperformedatthedesignthermalpower.Thischangefsacceptablebecausethedefinitionofdesignthermalpowerisbeingdeletedalso.3.Figure2.1-1onpage2-2fsbeingrevisedtoreflecttherevisedDNBRsafetylimitof1.45.Thischangeisacceptablebecauseitissupportedbythesafetyanalysis.4.Thepressurizerpressurelowsetpoint(Item9ofTable2.2-1onpage2-5)fsincreasedby10psig.Thisisacceptablebecauseftwasassumedinthelarge-andsmall-breakLOCAanalyses. "21"~~~~~3.0TECHNICALSPECIFICATIONS1.Oefinition1.38ondesignthermalpowerisbeingdeletedonpage1-7oftheTechnicalSpecifications(TS's)becausethereisnolongerasingledesignthermalpoweratwhichallthetransientandaccidentanalyseshavebeenperformed.ThelicensedpowerlevelforCook1remains3,250HHt.Thischangeisacceptable.2.3.4.6.7.Table1-3onpage1-10isbeingdeletedbecauseitpreviouslygaveinformationontheanalysesperformedatthedesignthermalpower.Thischangeisacceptablebecausethedefinitionofdesignthermalpowerisbeingdeletedalso.Figure2.1.-1onpage2-2isbeingrevisedtoreflecttherevisedONBRsafetylimitof1.45.Thischangeisacceptablebecauseitissupportedbythesafetyanalysis.Thepressurizerpressurelowsetpoint(Item9ofTable2.2-1onpage2-5)isincreasedby10psig.Thisisacceptablebecauseitwasassumedinthelarge-andsmall-breakLOCAanalyses.TheOvertemperature-OeltaTtripsetpointequation(pages2-7and2-8)isbeingrevisedintermsofratedthermalpowerratherthandesignthermalpower.Inaddition,thisrevisedOTDTtripsetpointprotectsthecoresafetylimitsofFigure2.1-1.Thischangeisacceptablebecauseitissupportedbythenon-LOCAsafetyanalyses.TheOverpower-OeltaTtripsetpointequation(page2-9)isbeingrevisedtoreflecttherevisedcoresafetylimitsofFigure2.1-1.ThisequationisalsobeingdefinedintermsoftheindicatedTatratedthermalpower.ThesechangesareacceptablebecausetilearesupportedbythesafetyanalysisfortheRTPprogram.TechnicalSpecification3.2.2onpage3/42-5isbeingrevisedfromamaximumFof2.10to2.15.Thischangeisacceptablebecauseitissupportetlbythelarge-breakLOCAanalysis.TheFvaluesforExxonfuelarebeingdeletedbecausethisfuelwilln3longerbeusedatCookUnit1.8.TheK(Z)curveapplicabletoExxonfuel(page3/42-7)isbeingdeleted.ThisisacceptablebecauseExxonfuelwillnolongerbeusedatCookUnit1.9.10.TheK(Z)curveforMestinghousefuel(page3/42-8)isbeingrevised.ThisisacceptablebecauseitissupportedbythenewLOCAanalysisforCookUnitl.TheF-OeltaHlimitapplicabletoExxonfuel(page3/42-9)isbeingdeleted.ThisisacceptablebecauseExxonfuelwillnolongerbeusedatCookUnitl.Table3.2-1onpage3/42-14onONBparametersisbeingrevised.Tmustbelessthanorequalto570.9'F,thepressurizer l -22"pressuremustbelessthanorequalto2050psig,andthereactorcoolantsystemtotalflowratemustbegreaterthanorequalto366,400gpm.ThesechangesareacceptablebecausetheyreflectthesafetyanalysisfortheRTPprogram.TechnicalSpecification3.2.6onpage3/42-15isbeingrevisedtochangeFintheAPLlimitto2.15.Thischangeisacceptablebecause3treflectsthenewFlimitofSpecification3.2.2.ThelimitsonAPLapplicabletoE)xonfuelarebeingdeletedbecauseExxonfuelwillnolongerbeusedatCookUnitl.FunctionalUnits2and11ofTable3.2-2onpage3/43-10arebeingchanged.FunctionalUnit2incorporatesaneditorialchangetoindicatethattheresponsetimeisapplicabletoboththehighandlowsetpointsofthePowerRangeNeutronFluxtrip.Thischangeisacceptablebecauseitiseditorialinnature.FunctionalUnitllisbeingchangedfromaresponsetimeof"notapplicable"to"equaltoorlessthan2seconds."Thisisacceptablebecausethistriponpressurizerwater.level-highwasmodeledintheanalysisofthecontrolrodwithdrawal-at-powerevent.FunctionalUnits1.fand4.dofTable3.3-4onpages3/43-24and3/43-26arebeingchangedtodecreasethesteamlinepressurelowsetpointby100psig.Thesechangesareacceptablebecausetheyaresupportedbythesteamlinebreakanalysisandthesteamlinebreakmassandenergyevaluations.Tec'hnicalSpecification3.4.4onpage3/44-6isbeingrevisedto92Kofspan.Thischangeisacceptablebecauseitissupportedbythesafetyanalysis.TechnicalSpecification3.5.l.bonpage3/45-1isbeingrevisedfromanaccumulatorboratedminimumwatervolumeof929to921cubicfeet.ThischangeisacceptablebecauseitisconsistentwiththeLOCAanalysisforCookUnit1.SurveillanceRequirement4.5.2.fisbeingrevisedtoreducethedischargepressureofthesafetyinjectionpumpandtheresidualheatremovalpump.ThesechangesareacceptablebecausetheyareconsistentwiththeLOCAanalyses.SurveillanceRequirement4.5.2.hisbeingrevisedbyaddingarequirementtoverifythatthechargingpumpdischargecoefficientiswithinaspecifiedrangefollowingECCSmodifications.Thefootnoteisbrokenintofourpartsforclarity.ThischangeisacceptablebecauseitensuresthattheflowdeliveredtothecorebythechargingpumpsintheeventofaLOCAiswithintheanalyzedvalues.SurveillanceRequirement4.7.1.2on,page3/47-5isbeingrevisedtochangethedischargepressurerequirementsofthemotorandturbinedrivenauxiliaryfeedwaterpumpsto1375psigand1285psig,respectively.Thiscorrespondstoa5Xdegradationofthepumps ,~l23fromthemanufacturer'spumpheadcurve.ThesechangesareacceptablebecausetheyareconsistentwiththechangesfortheRTPprogl'am>>20.BasispageB2-1(a)isbeingchangedtoincorporatethedesignlimitandsafetyanalysislimitDNBRvalues.TheDNBlimitsforExxonfuelarebeingdeletedsinceExxonfuelisnolongerusedatCookUnit1.ThedesignlimitandsafetyanalysislimitDNBRvaluesareacceptablebecausetheyareconsistentwiththeRTPprogram.21.BasispageB2-2isbeingrevisedtodeletereferencetoF-DeltaHforExxonfuelandtodesignthermalpower.ThesechangesareacceptablebecausereferencestobothitemshavebeendeletedintheSpecifications.22.BasespageB2-4isbeingrevisedtoreflectthechangestotheOvertemperature-DeltaTtripfunction.ThechangesareacceptablebecausetheyreflectchangesmadetotheSpecifications.23.BasespageB2-5isbeingrevisedtoreflectthechangestotheOverpower-DeltaTtripfunctionandthepressurizerwaterlevel-hightr'ip.ThesechangesareacceptablebecausetheyreflectchangestotheSpecifications.24.BasespageB3/42-1isbeingrevisedtoreplacetheminimumDNBRvalueof1.69bythewords"thesafetylimitDNBR".ThischangeisacceptablebecauseitwillavoidchangestotheBasesifthesafetylimitDNBRvalueischanged.25.SurveillanceRequirement4.1.1.5.bisbeingchangedtorequireTdeterminationofTevery30minuteswhenthereactoriscriti87and-TislesstQP545'F.ThischangeissupportedbyReference9and57lowsafullpowerTof550'FforCookUnit1Cyclellwithoutrequiringamonitor)(IIevery30minuteswhileatfullpower,whichthepreviousvalueof551'Fwouldhaverequired.ThischangeisacceptablebecausetheintentofmaintainingtheminimumcoolanttemperatureforcriticalityofSpecification3.1.1.5ispreserved.4.0ENYIRONNENTALCONSIDERATIONPursuantto10CFR51.21,51.32and51.35,anenvironmentalassessmentandfindingofnosignificantimpacthavebeenpreparedandpublishedintheFederal~RelateronJune9,1989(94FR24774).Accordin917,basedupanutieenvsronmentalassessment,wehavedeterminedthattheissuanceofheamendmentwillnothaveasignificanteffectonthequalityofthehumanenvironment.

5.0CONCLUSION

.ThestaffhasreviewedtherequestbytheIndianaandMichiganPowerCompanytooperatetheDonaldC.CookNuclearPlantUnit1atthereducedtemperaturesandpressuresoftheRTPprogram.ReactoroperationisrestrictedtoanupperlimitonTof567.8'Fbecausethesteamlinebreakmassandenergyreleaseinsidecon$kfnmentwasnotreanalyzedaspartoftheRTPprogram.Althoughthe "24"~~~~~~~~~~~~~~~~safetyanalysiswasperformedatpowerratingswhichwouldsupportapossiblepowerupratingforCookUnit1,powerupratingisnotaddressedinthestaff'sreview.ThepowerofO.C.CookNuclearPlantUnit1islimitedtothepresentratedthermal'owerof3250MMt.Basedonitsreview,thestaffconcludesthatappropriatematerialwassubmittedandthatnormaloperationandthetransientsandaccidentsthatwereevaluatedandanalyzedareacceptable.TheTechnicalSpecificationssubmittedforthislicenseamendmentsuitablyreflectthenecessarymodificationsfortheoperationofCookUnitl.Thestaffhasconcluded,basedontheconsiderationsdiscussedabove,that(1)thereisreasonableassurancethatthehealthandsafetyofthepublicwillnotbeendangeredbyoperationintheproposedmanner,and(2)suchactivitieswillbeconductedincompliancewiththeCommissionsregulations,andtheissuanceoftheamendmentwillnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic.Oate:'June9,1989PrincipalContributors:DanFienoJohnStang,NRRAnthonyGody,NRR

6.0REFERENCES

1.Letter(AEP:NRC:1067)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedOctober14,1988.2."ReducedTemperatureandPressureOperationforDonaldC.CookNuclearPlantUnit1-LicensingReport,"D.L.CecchettandD.B.Augustine,WCAP-11902,October1988.3.EllenbergerS.L.,etal.,"DesignBasesfortheThermalOverpower-DeltaTandThermalOvertemperature-DeltaTTripFunctions,"WCAP-8746,March1977.4.Che'lerner,H.;Boman,L.H.;Sharp,D.R.,"ImprovedThermalDesignProcedures,"WCAP-8567,July1975.5.Butler,J.C.,andLove,D.S.,"SteamlineBreakMass/EnergyReleasesforEquipmentqualificationOutsideContainment,"WCAP-10961,Rev.1(proprietary)andWCAP-11184(nonproprietary),October1985.6.Morita,T,,etal.,"DroppedRodMethodologyforNegativeFluxRateTripPlants,"WCAP-10297-P-A(proprietary)andWCAP-10298-A(nonproprietary),June1983.7.Letter(AEP:NRC:10678)fromM.P,Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedFebruary6,1989.8."AmericanNationalStandardforDecayHeatPowerinLightWaterReactors,"ANSI/ANS-5.1-1979,August1979.9.Letter(AEP:NRC:1067A)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedDecember30,1988.10.Letter(AEP:NRC:1067C)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedMarch14,1989.11.Letter(AEP:NRC:1024D)fromM.P.AlexichtoT.E.Murley(NRC),datedAugust22,1988.IncludesWCAP-11908,"ContainmentIntegrityAnalysisforDonaldC.CookNuclearPlants,Units1and2."12.Letter,J.F.Stang(NRC)toM.P.Alexich(IMECo),datedJanuary30,1989.}}