ML20076L571

From kanterella
Revision as of 07:38, 26 April 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Pressurizer Safety Valve Max Allowable Blowdown
ML20076L571
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 08/31/1982
From: Russell C
BABCOCK & WILCOX CO.
To:
Shared Package
ML20076L570 List:
References
77-1135671, 77-1135671-00, NUDOCS 8309160118
Download: ML20076L571 (125)


Text

{{#Wiki_filter:, i T M ff M 6~Mi~ 77-1135671-00 August 1982 i l PRESSURIZER SAFETY VALVE MAXIMUM ALLOWABLE BLOWDOWN 4. 9 4 BABC0CK & WILCOX Nuclear Power Group Nuclear Power Generation Division P.O. Box 1460 Lynchburg, Virginia 24505 I 8309160118 830909 " PDR ADOCK 05000289 - ~ p PDR . ..

77-1135671-00 August 1982 i PRESSURIZER SAFETY VALVE MAXIMUM ALLOWABLE BLOWDOWN I BY C.D. RUSSELL PRINCIPAL ENGINEER I BABCOCK &.WILCOX Nuclear Power Group Nuclear Power Generation Division P.O. Box 1260 i Lynchburg, Virginia 24505 e e

                  -     - ________m________.____.
  • CONTENTS Page

1.0 INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
                       ..l .1  Backg round ..........................                                                        1-1 1.2 Obj ecti ve a nd Me t hods . . . . . . . . . . . . . . . . . . . . . 1-2 2.0   CRITERI A AND TRANSIENT SELECTION . . . . . . . . . . . . . . . . . . 2-1 2.1 Criteria Selection ......................                                                        2-1
2. 2 Transi ent Sel ecti on . . . . . . . . . . . . . . . . . . . . . . 2-1 2.3 Criteria and Transient Selection Summary ........... 2-3 3.0 PLANT ANALYTICAL SIMULATION .................... 3-1
  .                      3.1 Generic 177 FA Plant .....................                                                       3-1 3.2 Sequence of Events ......................                                                        3-2 3.3 Analytical Model .......................                                                         3-4 3.4 Nodes and Fl owpaths . . . . . . . . . . . . . . . . . . . . . . 3-4 4.0 RESilLTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
          .              4.1 Criteria                     ...........................                                         4-1 4.2 LOFW 10% Blowdown - With LOOP - 650 GPM AFW . . . . . . . . . . 4-1 4.2.1                  Results   ........................                                    4-1 4.2.2 21scussion . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.3 LOFW 20% Blowdown - With LOOP - 650 GPM AFW . . . . . . . . . . 4-18
4. 3.1 Results ........................ 4-18 4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . 4-18 4.4 LOFW 20% Blowdown - w/o LOOP - 650 GPM AFW .......... 4-26 4.4.1 Results ........................ 4-26 4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . 4-26 4.5 LOFW 20% Blowdown - w/o LOOP - 780 GPM AFW .......... 4-35
    .e 4.5.1                 Results   ........................                                     4-35
    >                             4.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . 4-35
    ;.                    4.6 FWLB 20% Blowdown - With LOOP - 650 GPM AFW . . . . . . . . . . 4-43 4.6.1                Results   ........................                                     4-43
     !                             4.6.2 Discussion . . . . . .'. . . . . . . . . . . . . . . . . 4-43 i

5.0 CONCLUSION

S AND RECOMMENDATIONS .................. 5-1

6.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

LIST OF TABLES Page 2-1 ~ Summary of Licensing Document Review . . . . . . . . . . . . . . . 2-4 3-1 Plant Specific Parameters for 177-FA Plants . . . . . . . . . . . 3-5 3-2 Generic Plant Description .................... 3-6 3-3 LOFW Node Definitions ...................... 3-9

.                 3-4         LOFW Flowpath Definitions ....................                                                                    3-10 3-5         FWLB Additional Nodes and Flowpath Definitions . . . . . . . . . .                                                3-12 5-1         Summary of Minimum Subcooled Margins . . . . . . . . . . . . . . .                                                5-2 t

t

 ?

e e b k

  • I'

_ . _ . . _ . . _ . _ _ _ _ , _._ , _ _ _ , . , . _ _ , . _ _ , , , _ _ _ _ _ , _ _e. _ . ,_ ..__.._ __.

LIST OF FIGURES Page 3-1 LOFW Nooes and Flow Paths 3-8 3-2 FWLB Nodes and Flow Paths 3-11 4-1 LOFW 10% Blowdown Total Power 4-3

+                4-2    LOFW 10% Blowdown Temperature Path 1                                     4-4 4-3    LOFW 10% Blowdown Temperature Node 4                                     4-5
         -       4-4    LOFW 10% Blowdown Pressure Node 4                                        4-6 4-5    LOFW 10% Blowdown Temperature Node 9                                     4-7
,'               4-6    LOFW 10% Blowdown Pressure Node 9                                        4-8 4-7    LOFW 10% Blowdown Flow Path 9                                            4-9 4-8    LOFW 10% Blowdown Flow Path 41                                           4-10 4-9    LOFW 10% Blowdown Volume Node 19                                         4-11 4-10   LOFW 10% Blowdown Flow Path 23                                           4-12 4-11   LOFW 10% Blowdown Pressure Node 22                                       4-13 4-12   LOFW 10% Blowdown Flcw Path 100                                          4-14 4-13   LOFW 10% Blowdown Pressure Node 80                                       4-15 4-14   LOFW 10% Blowdown Volume Node 80                                         4-16
 .               4-15   LOFW 10% Blowdown Subcooled Margin                                       4-17 e                4-16   LOFW 20% Blowdown Temperature Path 1                                     4-19 4-17   LOFW 20% Blowdown Temperature Node 4                                     4-20 4-18   LOFW 20% Blowdown Pressure Node 4                                        4-21 4-19   LOFW 20% Blowdown Flow Path 100                                          4-22 4-20   LOFW 20% Blowdown Pressure Node 80                                       4-23 4 - 21 LOFW 20% Blowdown Volume Node 80                                         4-24 4-22   LOFW 20% Blowdown Subcooled Margin                                       4-25
 ,               4-23   LOFW 20% BD - w/o LOOP Temperature Path 1                                4-27 4-24   LOFW 20% BD - w/o LOOP Temperature Node 4                                4-28 4-25   LOFW 20% BD - w/o LOOP Pressure Node 4                                   4-29 4-26   LOFW 20% BD - w/o LOOP Flow Path 9                                       4-30
             . 4-27   LOFW 20% BD - w/o LOOP Flow Path 100                                     4-31 4-28   LOFW 20% BD - w/o LOOP Pressure Node 80                                  4-32
   ,             4-29   LOFW 20% BD - w/o LOOP Volume Node 80                                    4-33 LOFW 20% BD - w/o LOOP Subcooled Margin                                  4-34

( 4- 30~ 1 i

l LIST OF FIGURES (Continued) Page 1 4 -31 LOFW 20% BD - w/o LOOP - 780 GPM Temperature Path 14-40 4- 36 4-32' LOFW 20% BD - w/o LOOP - 780 GPM Temperature Node 4 4-37

               ~
 .,           4-33  LOFW 20% BD - w/o LOOP - 7B0 GPM Pressure Node 4                                                             4-38 4- 34 LOFW 20% BD - w/o LOOP - 780 GPM Flow Path 100                                                               4-39 4-35  LOFW 20% B0 - w/o LOOP - 780 GPM Pressure Node 80                                                            4-40 4- 36 LOFW 20% BD - w/o LOOP - 780 GPM Volume Node 80                                                              4-41 4-37  LOFW 20% BD - w/o LOOP - 780 GPM Subegoled Margin                                                           4-42 4- 38 FWLB 20% Blowdown Total Power                                                                                4-45 4-39  FWLB 20% Blowdown Temperature Path 1                                                                        4-46 4-40  FWLB 20% Blowdown Temperature Node 4                                                                         4-47 4-41  FWLB 20% Blowdown Pressure Node 4                                                                           4-48 4-42  FWLB 20% Blowdown Temperature Node 11                                                                       4-49 4-43  FWLB 20% Blowdown Temperature Node 9                                                                        4-50 4-44  FWLB 20% Blowdown Pressure Node 9                                                                           4-51 4-45  FWLB 20% Blowdown Flow Path 9                                                                               4-52 4-46  FWLB 20% Glowdown Temperature Node 16                                                                       4-53 4-47  FWLB 20% Blowdown Flow Path 41                                                                              4-54 8

4-48 FWLB 20% Blowdown Flow Path 51 4-55 4-49 FWLB 20% Blowdown Flow Path 49 4-56 4-50 FWLB 20% Blowdown Volume Node 19 4-57 4-51 FWLB 20% Blowdown Flow Path 23 4-58 4-52 FWLB 20% Blowdown Flow Path 30 4-59 4-53 FWLB 20% Blowdown Pressure Node 22 4-60 4-54 FWLB 20% Blowdown Pressure Node 29 4-61 4-55 FWLB 20% Blowdown Flow Path 100 4-62 4-56 FWLB 20% Blowdown Pressure Node 80 4-63 j 4-57 FWLB 20% Blowdown Volume Node B0 4-64 4-58 FWLB 20% Blowdown Subcooled Margin '4-65 { 5-1 Minimum Subcooled Margin vs. Percent Blowdown 5-3

T.%

SUMMARY

This report describes a study that established a 20% blowdown as tne maximum illowable pressurizer safety valve blowdown for the B&W 177-FA plants. The limiting transients analyzed were the loss of main feedwater (LOFW) moderate

 ,                frequency event and the feedwater line break (FWLB) design bases event. Hot leg voiding was evaluated to determine the maximum allowable blowdown value. A set of bounding analysis assumptions was selected for the plant computer model such that the results are applicable to all B&W 177-FA plants. The TRAP 2 computer f

code was used for the evaluation. B&W's recommendation is that the pressurizer safety valves be set to close at a l value no greater than 20% below the opening setpoint of 2500 psig. 1 4 k e t t i l 1

O

1.0 INTRODUCTION

This report presents the results of an evaluation performed by Babcock & Wilcox (88W) under contract to the B&W 177 FA Plant Owners Group. 1.1. Background l Following the Three Mile Island Unit 2 (TMI-2) incident, the Nuclear Regulatory Commission (NRC) published NUREG-0578, "TMI-2 Lessons Learned - Task Force Status i Report and Short-Tern Reconnendations," which recommended that utilities operat-ing and in the process of constructing pressurized water reactor (PWR) power plants develop a performance test qualification program for power-operated relief valves (PORVs) and self-actuated safety valves (PSVs) used in the protection of

    ,'                reactor coolant systems (Reference 1). The recommendations of NUREG-0578 were later required by NUREG-0737 (Reference 2). In response to these NUREG require-ments, EPRI was assigned the responsibility of conducting a comprehensive test
            ,         program to demonstrate the operability of the various types of PORVs and safety valves used by participating utilities. The primary objective of that program, as defined in EPRI's " Program Plan for the Performance Testing of PWR Safety and Relief Valves," was "to evaluate the performance of each of the various types of reactor coolant system safety and relief valves in PWR plant service for the
i. range of fluid conditions under which they may be required to operate" (Reference 3).

A major finding to the EPRI Relief and Safety Valve Test Program was that safety valve designs can exhibit instability during certain flow conditions. This instability can occur during the relief of steam, the condition for which these

     ,                valves were designed. Such instability is generally undersirable because it can result in unanalyzed relief capacity or in valve damage. The EPRI test results also showed that stable valve performance for steam relief could be achieved by adjusting the valve ring setting so that the valve stays open longer and close at a lower pressure. The resulting increase in valve blowdown, needed to acquire stable performance, was shown by the tests' to range from.2 to 3 times the nominal 5% established by the ASME code.

2 This increase in pressurizer safety valve blowdown is not a direct safety con-cern. All nuclear plants are designed to accommodate loss of Coolant Accidents l 1-1 i i .. .

including that which would result if a pressurizer sefety valve sticks in the open position - i.e., an unlimited blowdown. Nevertheless, an excessively large blowdown could hamper efforts by the operator to control the event which caused the valves to open. Thus an indirect,

                                     ~

operational consequence to safety may result. l.2 Objective and Methods The objective of this study was to determine a maximum allowable pressurizer safety valve blowdown value that would be applicable to all B&W 177 FA plants. , . The study was done in four phases as follows:

1. Criteria and Transient Selection
2. Plant Analytical Simulation
3. Results Evaluation
4. Conclusions and Recommendation The Criteria and Transient Selection is presented in Section 2. The purpose of this phase was to establish the limiting transients to be analyzed and to define limiting criteria to be used during the results evaluation phase.

The second phase was Plant Analytical Simulation. This phase is presented in Section 3. The purpose of this phase was to establish a computer model and a set of analysis assumptions that would be bounding for all B&W 177 FA plants.

            .                  Section 4 presents the Results Evaluation for the TRAP 2 computer code analysis.
  ;                            The purpose of this phase was to compare the results to the criteria and develop i                            conclusions.

v i ' The Conclusions and Recommendations determined from this study are presented in Section 5. *

  ,t 0
     !                                                                                1-2 8               e
                .-,,--.-~,-,r           -r--,- y  .   ,-e-.,-.... , - y,-,--_ ,, --,,

2.0 CRITERIA AND TRANSIENT SELECTION 2.1 Criteria Selection Pressurizer safety valve (PSV) blowdown is not a direct safety problem because the Bas nuclear steam system has been os;igned for a stuck open safety valve as par't of the Emergency Core Cooling System design. A stuck open safety valve represents a 100% blowdown case. The expected situation would not be the stuck open safety valve but rather a safety valve that opens at the setpoint pressure

          -        and closes at the setpoint pressure minus the percent blowdown times the setpoint.

Hot leg voiding has been identified as the primary safety concern relative to the maximum allowable PSV blowdown. The potential for hot leg voiding exists because ' of the lower system pressure that will be caused by larger PSV blowdown values. These lower pressures combined with transients that produce high system temperatures could result in saturation conditions and voiding that could impede natural circulation cooling. An additional desirable criteria would be that the pressurizer not fill for the larger PSV blowdown values. The pressurizer has a greater potential for filling

   -               because the larger blowdown valves will allow large insurges during the blowdown cycl e. The same EPRI tests that identified the blowdown concern also showed the safety valves were generally able to relieve two-phase fluid and water; thus, filling the pressurizer is a concern of secondary importance.

2.2 Transient Selection The objective of transient selection was to identify a limiting moderate frequency event and a limiting design basis event relative to pressurizer safety valve (PSV) usage. Two criteria were utilized to select the worst case:

1. Maximum System Pressure and
2. Maximum Coolant Temperature 2-1 9

e e

                                 -   -.,.--.,w. -
                                                  - - - - - . - - - . - -   ,      . - - . - - - - . - - -,-v

Maximum pressure is obviously a criterion because the effects of valve blowdown are not relevant if the valve is not opened during the transient. Maximum coolant temperature is a criterion because the combination of high coolant temperature and low system pressure produced by large valve blowdown values could lead to fluid saturation conditions. EPRI NP-2353-LD, " Valve Inlet Fluid Condi-tions for Pressurizer Safety and Relief Valves for B&W 177-FA and 205-FA Plants" (Reference 4) was used as a starting point for limiting transient selection. This report represents a recent evdluation of the potential for pressurizer safety valve usage and pressurizer conditions for the complete range of Safety Analysis Report transients, and for all of the B&W 177-FA plants. The following approach was taken to identify the transient events for the 177-FA units that challenge the PSVs: f o The latest amendment of the SAR was reviewed on an NSS unit-by-unit basis to determine which transients / accidents were considered in establishing the licensing basis of that unit. o Those transients / accidents identified as licensing basis events were then reviewed generically to detennine whether they would be predicted to challenge the PSVs. o The transients which challenged the PSV's were then reviewed in detail to determine the worst case combination of high system pressure and high system temperature, Table 2-1 shows the results of the 177-FA plant licensing document review. Only nine (9) transients challenge the PSVs. Of these nine (9) only two have a combination of high pressure (that would open the PSVs) and high fluid temperatures. These two transients are; (1) the loss-of-Main Feedwater (a moderate frequency transient) and (2) the Feedwater Line Break (a design basis event). . The rod ejections from HZP (Nos. 4 and 5) and the Rod Bank Withdrawal from - l Startup (No. 3) do produce high system pressures but they start at a low system r temperature, thus the potential for a fluid saturation condition does not exist. {

2-2 l

l 'i

        *
  • 2. 3 Criteria and Transient Selection Sumary The moderate f requency event (LOFW) was selected to establish the hot leg temperature which establishs the maximum allowable PSV blowdown. The design bases event (FWLB) was selected to confirm that the allowable blowdown established for the moderate frequency event is acceptable.

W t i a 8 6 i 2-3 . f f l f

                                    , ,  - , - -             -          -,    ---,-,----,g-,-,--:         --- , n-,----   p- . -     - , - , , w,,, a--

Table 2-1 i Summary of Licensing Document Review  ; i Maximum Maximum Pressurizer Hot Leg Pressure, Temperature, No. - Transient psia 'F l' Rod Bank Withdrawal 2500 606 From Full Power 2 Rod Bank Withdrawal. 2539 600 From 20% Power

                 '3            Rod Bank Withdrawal                                                              2515                                                        558 From Startup 4       Rod Ejection From                                                                2600                                                        564 HZP (Pressure Trip) 5       Rod E'ection j               From                                                    2662                                                        585 HZP (Flux Trip) 6       LOFW (Pressure Trip)                                                             2519                                                        61 3 7       LOFW (Anticipatory                                                               2281                                                        605 Trip) 8       FWLB(Midland                                                                     2500                                                        608 Results) 9       FWLB (Operating                                                                  2591                                                        621 Plants) b   4 9

2-4

                  - - , ,  .--            . , . - - . .                , .   ,.-,_.--,--,n,n           , - - ,                     . . _ . . , , - , , . . , , . ,-_.___,.---.__.,...,7   .

1 3.0 PLANT ANALYTICAL SIMULATION i The loss of main feedwater and feedwater line break are transients where normal , heat removal is lost, such that high pressures and temperatures are produced by ! excess heat production in the primary system and inadequate heat removal in the

                  . secondary system. This situation will continue until heat removal by auxiliary feedwater equals the heat production. In general, conservative transient results will be produced by the following:
1. Maximum initial core power level.
2. Maximum initial RCS coolant temperatures.
3. Minimum . reactor coolant system and steam generator initial inventory.
4. Minimum RCS flow.
5. Minimum negative reactivity feedback.
6. Maximum decay heat
7. Minimum auxiliary feedwater flow rate.

3.1 Generic 177 FA Plant In order to have a bounding analysis for all 177-FA plants, a combination of conservative assumptions was used based on the plant parameters of Table 3-1. A line has been drawn under the general parameters of Table 3-1 chosen to produce a bounding generic 177-FA plant. Table 3-2 shows the specific parameters used in the analysis. Other assumptions that are not shown by Table 3-1 are: 4

  '                l. Core power was 102% of design power.
2. A single failure in the AFW system was assumed to maximize the RCS temperature rise and minimize the allowable PSV blowdown.
3. A loss of offsite power at reactor trip.
4. Auxiliary feedwater actuation signal on low steam generator inventory (LOFW) or low steam generator pressure (FWLB).

3-1

  • d
5. No credit for PORV or pressurizer sprays. .
6. No credit for the turbine bypass s.yttem, the '
                                                                                                      / or condenser bypass valve.
7. The control rod of highest vseth was considered stuck out when the reactor
         ~               ~

tripped (1% shutdown margin tripped rod worth was used).

8. A decay heat curve of 1.2 times the ANS standard (5.1)., ,
  ,              9. For LOFW a 5 second ramp down fm.100% to 0% flow for the main feedwater.

i 10. For FWLB the blowdown of one steam generator.

                                                                                                                           ~.
 !               11. Reactor trip on high RCS pressure.
                                                                                                ~

3.2 Sequence of Transient Events ,

                                                                                                                                                                           ~
                                                                                                ,                        s
                                                   ~
       .         The following sequence of events for the LOFil and FWLD illustrate how the '                                                         .

analysis assumption were incorporatc1 into-the transient calculations;

                                              ^
                                        ~~                                  .                       .
       ,                              q-               s                                               .

A. Loss of feedwater (LOFW) ,-

m. .
1. LOFW was modeled as a Nin feedwater ramp down' frod 100% to 0% flow in 5 seconds. [
  -                   2. Reactor trip occured on]high RC pressure at 2400 psid.

Loss of offsite Dr.wer od[uhred at reactor trip which starts a 4 RC pump

3. ' ..

coastdown. - -

4. RCS pressure was cEntrolled by pressurizer safety valves. ,
5. Auxiliary feedwater was[,actury on'icw- steam,sErierator level.
                                                     . .                                             s
6. Minimum available auxiliary feedwater was dividRd yually between the two steam generators within 50 seconds following actuation. '

, , , 3-2 , ,  ! s "

                                                                                                                                                    ,   -.-.y-,  ~ - . _ - , _
7. Turbine trip occurred 0.5 see afterr'eactor trip. l
8. Main steam safety valves opened at 1065 psia to control steam pressure.  !
9. RCS temperatures continued to rise until energy input is balanced by tne  ;

auxiliary feedwater energy removal. B. Feedwater Line Break (FWLB)

1. FWLB was modeled as a blowdown of both steam generators until one steam generator is isolated. ,
2. Blowdown of the steam generators was a 2.836 ft2 break in the feedwater line.
3. Steam generator isolation meant only the remaining inventory of one steam generator was available for cooling until AFW was available.
4. Reactor trip occurred on high RC pressure at 2400 psia.

s

5. RCS pressure was controlled by pressurizer safety valves.
6. Loss of offsite power occurred at reactor trip which started a coastdown of the 4 RC pumps.
7. Auxiliary feedwater actuated on low steam generator pressure.

4

8. Minimum available feedwater was sent to the stemn generators.

! t

9. Turbine trip occurred 0.5 sec after reactor trip.

l. i

10. Main steam safety valves opened at 1065 psia to control steam pressure on unaffected steam generator.
11. Steam generator with FWLB did dry out.

t 3-3 l

                                                       '_.        L__   . - _ _ . -      - - - ,
12. RCS temperatures continued to rise until energy input is balanced by the auxiliary feedwater energy removal.

, 3.3 Analytical Model The TRAP 2 computer code described in NPGD-TM-414, Rev. 4, " TRAP 2 Fortran Program for Digital Simulation of the Transient Behavior of the Once-Through Steam

    ,             Generator and Associated Reactor Coolant System" was used in this study. The TRAP model was choosen because of the detailed steam generator and pressurizer models that are key components in this study.

3.4 Hodes and Flowpaths The simulation of a NSS plant in TRAP 2 consists of defining the components in terms of nodes and flowpaths. Figure 3-1 shows tne nodes and flowpaths for the LOFW simulation. Table 3-3 and Table 3-4 defines the nodes and flowpaths in terms of components for the LOFW simulation. Figure 3-2 shows the nodes and flowpaths for the FWLB model. The FWLB model was produced from the LOFW model by adding components that simulated the feedwater lines and the feedwater isolation. Table 3-5 contains only those nodes and flowpaths added to the list of Table 3-3 and Table 3-4. i.' d e j b e

          .g 6 e l*                                                            3-4 i

e e ,

     ,                                         .-__y. . , . . .__e    . . . _ _ , , . _ _ . _ . , _ , _ ~ , _ - . _ _ _ _ __,,f ,- , . , , .

Table 3-1 Plant Specific Parameters for 177-FA Plants Plant Values Rancho Pa_rameter Oconee ANO-1 CR-3 Midland Seco TMI-l

 ,               100% Core Power MWt          2568     2568     2544    2452       2772   2568 NSS Power, MWtl              2584     2584     2560    2468       2788   2584 Ta ve,   F                   579      579      579     579        582    579 Safetx Valve Orifice         2.545    3.341    2.545   2.545      3.341  2.545 in.' (per valve)

Safety Valve Setpoint, 2500 2500 2500 2500 2500 2500 psig AFW System

                 # of Elec Pumps              2        1         1      1          1      2 Pump Design Flow, gpm        500      780      740     885        840    460 Pump Recirculation           10       78        20     35         60     0 Flow, gpm
  ,              # of Tur. Pumps              1        1         1      1          1      1 Pump Design Flow, gpm        1080     720       740    885        T40    920 Pump Recirculation           100      15        20     35         60     0 Flow, gpm Notes:     1. Includes pump heat.
2. Values selected for bounding generic 177-FA plant are underlined.

4 l

  • 0
     .                                                    3-5 O           .

m

o Table 3-2 GENERIC PLANT DESCRIPTION A. Thermal Hydraulics Parameters Parameter Value

           .1. Power level (102%), MWt                             2827
2. RC Pump Heat, MWt 16
3. Primary Flow Rate Total, Ibm /hr 1.378 x 108 Core Heat Iransfer, Ibm /hr 1.295 x i
4. Secondary Flow Rate, Ibm /hr 6.12 x 10g8
5. Feedwater Temperature, 'F 470
6. Steam Temperature, 'F 570
7. SG Outlet Pressure, psia 925
8. SG Inventory, Ibm 33,130
9. Pressurizer Pressure, psi 2170
10. Pressurizer Inventory, ftg 950 B. Kinetics Parameters Parameter Value
1. Doppler Coefficient, ( k/k)/*F -1.52 4 10-5
2. Moderator Cofficient, ( k/k)/'F 0
3. Boron Worth, ppm /(% k/k) 117
4. Shutdown Worth, (% k/k) 2.38
5. Boron Conc. (Equil. cycle) ppm 1154 C. Pressurizer Safety Valve Parameters Parameter Value
1. Setpoint(psig) 2500
2. Close pressure Setpoint - (% blowdown)
3. Flow vs. pressure Proportional
4. Orifice (in.4) 2.545
5. 100% flow at 103% of setpoint 3.0 x 105 per valve (#/hr)

D. Auxiliary Feedwater Parameters Parameter Value

1. Steam generator golume for AFW 5 actuation, ft
2. Time to full flow, sec 50
3. Minimum flow rate, gpm 670
4. AFW temperature, 'F 100 1

3-6

                                                 .             .                                           1

Table 3-2 (Continued) E. Trip Setpcint and Delay Times Parameter Value

1. High pressure trip, psia 2400
2. High pressure trip delay time, sec 0.4
3. Turbine trip after reactor trip, sec 0.5 F. Valve Data Parameter Value Main Steam Safety Valves (lbs/hr) 0 - 1065 psia 0 1065 - 1085 psia 1.7 x 106 1085 - 1105 psia 3.4 x 106 1105 - 1115 psia 5.4 x 106
                            > 1115 psia                                          7.1 x 106 G.      Failure Considerations
1. A single failure criterion was applied to the AFW system. Only one AFW pump was assumed available with a 50 second delay following an initiation signal. The minimum flow for one AFW pump was assumed to be 650 gpm.

4 0 9 S 9

     ?

t O I i 3-7 .

                                            -.-m.-_. ._..s-   ,.           _
  • I e

l l l l tapee 3 0 Lee usett a Ptm Patet 19514 Sf9P tatti x_ ,, z x 9gg,gg gyy ggggg b __

  '                                                                                                $ flag CWWWE8
  '                               =                      8                             _ _

re -- w G

    • II filWiet OTPM8 tIGI 98488 gygi,g ggpagg (eg .g333 33 Plft 33 b tras paru _

tras pom h gg taf 8 tele, pgpg c='

                                                                              ,0    -

p::: - O - p.e. M I pad

                                                                                                                                         @                tant               {

t a T , uppta h 3 .w,rr 9 UP'l 8

                                                                                                                                                                           =.
                                              =       .  @       m     P.,    .                    i                 I 22 mi, .ser ures esi,                 as                                                  l                 l ist a                                                             situ
                                              ,,,,,,                                                                 l i

e ti am i. We It 93 l ~

                                                         ~

L"15!!!'S'$ _ g .

                                                                                                                                                                                   .   .=>

M $8 Ltd 56 N

                                 ,, h- v@[                       2#-

3G ll GE ,.' 7 33 b~

                                                                                    .,                                                                               y I8     aSPt en <                                                                                                       gg    ,y N        19                                                                                                                 38-gg,                                                                                                            I     ft CMS                   !?    08
    '                                                                   sg                                                                               14      78         "EI 33
                                                                                                                                                                 ~

e[ ;;  :: Je > ae- Je g , ,, O* G _ ,, I ha,j ", ,- 3 1111 si s" I e-. G -e

                                                                                                            .=                                           -
          ,                                                                                                                                            'r
     ,'                                                                                                                                        <= u.

u. g "e s,, i. i e i .,, G . 1 ( I i 3-8 e G F

                                                                                                                        ~.

Table 3-3 LOFW Node Definition 4 Node Number Description 1 Lower Reactor Vessel Plentum 2 Reactor Core

  ;                      3                                        Upper Reactor Vessel Plentum 4-5, 11-12                                    Hot Leg Piping 6-8, 13-15                                    Primary, Steam Generator Tube Region 9, 16                                         Cold Leg Piping

', 10, 24 Reactor Vessel Downcomer 17-18, 24-25 Steam Generator Downcomer 19-21, 26-28 Secondary, Steam Generator Tube Region 22, 29 Steam Generator Steam Region 23, 30 Main Steam Piping 31 Turbine

                      . 32                                        Containment 80                                        Pressurizer 4

e a b e I m 4 3-9 l

                                                     +      - - , - , - - - - - . . _ ,.--- -.,...-- . ,. -. _.-_ -

e

f eeste 3 2 849 met! 4 Pl09 Patut nasin stor util M 31 W

                                                                                                                                            ,,,, gry ,g,i b                               ._^

Iftne Cutleite

                                      =                  8                                                                              x                                   G 8I                   fuselet 3*Past seef 53408                                            fussist stPa13 tuet es48,                                                23 PIPE                                                                   33 h             tras Pete                                           _

ttaa paru h gg g catsaustet pig

                                                ..                -           A_                                   r.::           -           e                -

j  ! g e e

                                              -1                                                                                                                                          ,,.

u Il A su . . i l i wr ar9_. u-22 esse .est sitta pts , l (EST l # Mt g,g ,g , l OMB) 3, l 4 It 34

                                                        '         "                                                  l
                                                                                                  'e nifdid. .

4 esti 58488 g .

                                                                                                                                                                                               . . . .it . ,

ELEAMI g h tit 0Catta y ,;, LEC TJ ispo se. I' 43Pi sa . gge og II IW gg,s . I It IS 28 le ""

                                           ':Osts                                                                                                                           gg             Casa sg    gg                                                                                          $$

e[ :;;  :: Je > eP't e 11EMt e[ Je - we h)

                                                                                                                         ~~e I     19 it     Il                     i           4i h

Eval!._ G '

                                                                                                                                "l , -

e . vii: e - w PWer C3et de et PWW o , . cas tas ,g cas its is "g y .. , e' a,

                                                                                                          .            G "e
                                                                                                                                                           .P.
                                                                                              . it.n:n t

e e . e e 8

                          =                                                                                                                    ca =r .ui,                                                                 a l               ...
                                                                                                                                                                                                       ..,_ge
l. :
   .                   O e                                    n            !

n isau uin 9 T . I t M N e " l e &- "

                                                                                                                           .e                                                                                      e 3-11
                                                                                               ^ - - -                                             - - - - - -
                                                                                                                                                                                                                                    ~

me - - l e

  • e
                                                                                               +

Table 3-5 FWLB Additional Nodes and Flowpath Definitions Node Number Definition 33 Feedwater Crossover Piping 34 - 38 Feedwater Piping

         .                 39                            Feedwater Heater Flowpath Number                          Definition 47 - 48                          Feedwater Crossover 49 - 55                          Feedwater Piping 56 - 57                         Feedwater Line Break Path 58 - 59                         Feedwater Heater 9

I 4 5 l.. t ; 9t i i 3-12 l

4.0 RESULTS 4.1 Criteria The safety concern of this study was hot leg voiding. The potential for voids in l the-reactor coolant system (RCS) was evaluated by examining subcooled margin.

        .          -The term "subcooled margin" was established to measure the relation to saturation conditions. Subcooled margin is defined in this study as:

Subcooled Margin ('F) = (Saturation Temperature of Transient Pressure)

                                                -         (Transient Temperature)

If the subcooled margin is zero the pressure is low enough that saturated condi-tions exist and voiding could occur if the pressure goes lower or the temperature higher. 4.2 LOFW 10% Blowdown - With LOOP - 650 GPM AFW 4.2.1 Results

         .          Figures 4-1 through 4-14 show typical plant parameters for the LOFW transient with a 10% PSV blowdown. The case was run with an assumption of a loss of offsite power (LOOP) and an auxiliary feedwater flowrate of 650 gpm split equally between the two steam generators.

4.2.2 Discussicn i The results shown by Figure 4-1 through 4-14 show all of the important parameters for one steam generator during a loss of main feedwater event. The other steam generator responded the same thus these graphs are not shown. l

                   Figure 4-1 shows the total core power (heat from fissions and decay heat) for a reactor scram at 16.6 sec due to a high pressura of 2400 psia. Figures 4-2, 4-3 i                     and 4-5 show the core, hot leg and cold leg temperatures. Figure 4-4 and 4-6
     '               show the hot leg and cold leg pressure. The pressure curves show the cyclic increase and decrease characteristic of the PSV opening at a pressure of 2515
i 4-1
                             --      ..,,n __ ., , , - - - -       , - -   ,       , , . . _ . . - , _ . , - , - ,

psia and closing of 2265 psia (10% below the opening value). The temperature curves also show a decrease, as the pressure decreases, due to mass and energy removal from the reactor coolant system. When the PSV closes the pressure and temperature continue a general increase until the heat removal of the auxiliary feedwater compensates (at about 180 sec) for the heat being added (decay heat) to the ' reactor coolant system. Figure 4-7 sr.ows the flow coastdown associated with a RC pump coastdown (loss of offsite power assumption at reactor trip). Figure 4-8 shows the main feedwater flow termination (100% to 0 flow in 5 sec). Figure 4-9 shows the steam generator volume goes to zero at about 16.0 sec. Figure 4-10 shows the steam flow f rom the steam generator responds to the steam generator inventory. Figure 4-11 shows the steam pressure buildup in the steam lines to where the main steam safety valves hold the pressure at 1065 psia. Figure 4-12 shows the surge flow into the pressurizer produced by the PSV blow-down cycles. The pressurizer pressure associated with the PSV blowdown cycles is 3 shown in Figure 4-13. Figure 4-14 shows the pressurizer is filled (1500 ft )

        .           at about 120.0 sec.

In terms of subcooled margin Figures 4-3 (Hot leg coolant temperature) and Figure 4-4 (Hot leg pressure) are the critical parameters because they represent the

 '                  combination of the highest temperature and lowest pressure point in the reactor coolant system. Thus the hot leg temperature and pressure will determine the minimum subcooled margin for the reactor coolant system and the point in time that the temperature is highest and the pressure is lowest will determine the minimum subcooled margin for the case analyzed. Figure 4-15 shows the subcooled margin versus time for the LOFW 10% Blowdown - with LOOP - 650 GPM AFW case. The
  '                 minimum value is 13.6*F which is a very cmnfortabis margin.

l 1 O ed

       *Q 6     b.

4-2 i

t

  • Figure 4-1 Core Total Power

[ L .600 --

  !                                           I i                                                                                               LOFW -101                    BLOWDOWN i
                                              ;                                                                                               WITH LOOP t

l 650 GPM AFW 1 4:r 1 t.200 1 i l.000

                            =           .xC--
    .  C.                 -

( r e: _ u. I C c_ .6ma .. _.J 1

           .                H o

i W

    \
                                        .400--

i ., ,4

    !                                    .200 --

e., e

      ,-                               0.000 t - - - - l                                                                                                                                                 33.900 0 000           5 000            10.000                           15.000                           20 000                      25.0C0
      '"(-                                                                                                                     ,)

f- TIME (X10 l AE00EHZ i 4-3 - e o no me - o o - o a e .. ** - n s . .

                                                                                                                     .               ee e          y
                                                                                                    .             g.
                  ..              ,-        ,        ,,-- _      - - - - .-   _ _ , - ~ _ ,- . . - -      -                     . , - . . ~ _ _             , .. . - , . _ _ - . - . . - - . -            ..-m.-    ,

Figure 4-2

                                                                                            .            Average Core Coolant Temperature 8

l l LOFN -101. BLOWDOWN WITH LOOP

         ~

_ 650 GPM AFW

                               - 65.0"O I i

i

 , -                    O X

64.000 - t . 63.000 -

                                                                                    ' V' C                  62.000 -  -
                                                                      /

C l w J l j

                        .g                                    /

0: D S t .0% - l H 1 y Q

                        =                              #
                                                        /

I d 60.000 - Q:

  .                     W
  • 8 1 '

3 i l 53.000 - - j J, - l a

           ~

53.000 ' j ' 0.003 5.000 10.000 15.000 20.000 25.000 30.G00

(I TIME (X10)

i AE00EHZ m a - _ 3m -_ I M . B 4-4 g -- - y ,- - ,w.n., , - -w- ,. - . - - - . . - ~ ,

                          -                           -                                                           m Figure 4-3 Hot Leg Coolant e~                                                                                 Temperature S + .5 % ,-
LOFW -10%. BLOWD0hH l

WITH LOOP

                                                                                         /
                                                                                           ,^ p50 GPM AFW
                                                                                                \-
                      . 64.000 -                                                 /
                                                                                  /
                                                                               /
                                                                                 /
                                                                              /

A 2 63.500 - /j

                                                                      /
                     =

X

                                                                     /                                                     ,
                                                                /'y 63.CCC -                           l l

l l l f u 62 500 -- * ( L: M 3 M M 62 000 -

                                                    /
                     'o-r L

5 61 500 - , 2 , 9 61.000 - - t 50.500  :  :  :  :  :

     ',F                             0.000      5.000           10.000             15.000         20.000     25.0cc 30.c00 f                                                              TIMECX10 l')
           . RE00EHZ
                                                                            \2           E              Z -

4-5

a

 .                                                                                                                                                                                                                         Figure 4-4 Hot Leg Pressure 29.000 -

I LOFN -10*.. BLOlG0hW WITH LOOP 650 GPM AFW

                                   - 28.000 -

I. 1 g 27.0'" - 4

                                                                              'i I                           X w

1? i 26 000 -- l 1 l

      '                 (-.                                                                                                              j                                                                         [

25 G00 -- ffff , I\ \ ll lj l

                                 ~                                                              l s

l

                                                                                                     \

1 l l 1 J i D

  • j /

Q. 14.000 -- f I / I ll l.

                                                                                                               }

u

                                                                                                               -                                                                               \

e { l - D I /

        !                        h y 23.000 --

a. r I l 1 '[ i . 22 000 A 21.0 %  :  :  : i ',' /~ 0.000 5.000 10 000 15.000 I 20.000 25.000 30.000 f' TIME (X10 ') t AE00EHZ

                                                                                                                                                                                               .\ ~i Pm        -_

L j 4-6

Figure 4-5 j- Cold Leg Coolant 63.000 r Temperature l l LOFW -10%. BLONDOWN I WITH LOOP I 650 GPM AFW

                         . Sz.a=-l i

l

                    ~

4 61.000! o N ] V'

60.000 T.

I

                                                                                  /
                                                                                 /

l . J f L 33.000 -- ( d a 6-1

                    % 58.000 --

w C1_ P C w S 57.000 -- l z I 56.CCC -- t

     .                      55.000                                                '      '

j" r' O.000 5.000 10 000 15.000 20.000 25.0C0 30.Z: TIMECX10)

(RE00EHZ Nl'_~C
                                                                                                 -                         L_

C m 4-7 l

                                                                                              .                             9-

i

                                                                                                                                             )

Figure 4-6 Cold Leg Pressure

             #~
                .            30 000 -

LOFW -10*.. BLOWD0hW WITH LOOP l - - 650 GPM AFW 29.000-l I. I g 28.C 7J -- o I f,.7.CCC -l-i (~ ts.CCC - - (~ e . tn L 25 00C -- j 2

                                                                                                          /\

J' i \ }l I 1 / w I {, I I / 2 f I / /

                       ->                                           <              r                  /
,                      CO                                      !   I                                 /
                                                                                                                                   ~

h 24.000 -- (  !  ! c ' f l l g l l s n h i' I 23.000 -- I f 22 000 --  : i

c. 0.000 5.0C0 10.0C0 15 000 20.000 25.500 30.000 ,

i 1 p TI.MECX10 .) i AE00EHZ f

                                                                                         \In~rm ._

C m 4-8 l

Figure 4-7 ' Cold Leg Flow (Pump Coastdown Due to LOOP)

2. .0 r -.

LOFW -10*,. BLOWDOWN WITH LOOP 650 GPM AFW 35.000 -- f f 30 000 - o l . X w 25.0C0 --

  ,         b                 20 000 -    -

C a w W N 15.000 - - C

                        .1 3 10.000 -
   ?

1 I 1 5.000 -- [ 0.000 -

     ;    A                             0.000 5.000   10 000       15.000        20.000       25.000      30.000
     ,        f-                                              TIME (X10 1. )

RE00EHZ m 3 __ - g Y

     !-                                                       49

Figure 4-8 Feedwater Flow (100% to 0 in 5 sec)

               '~

AO. :: -; LOFN -10%. BLOWDOWN WITH LOOP 650 GPM AFW

                         , 35.000 +
                      &       30 0C0 A
                       .-s 25.00C
  • f' 20.000 --

l C l 1 u w O 15.000 -- N

                       =

a z U y 10.000

  • t 4
5.000 --

i f i 0.000 ' ' '

           .n                          o.acc            5.000                                          10.0c0       15.0c0      20.ccc       25.00c        30.000
                                                                                                                            ')

TIME (X10 C. RE00EHZ 3-_

                                                                                                                  -                 d.,

da 4-10

Figure 4-9 Secondary Liquid Volume In Lower Third of Steam Generator i 16 . ." C ,- i l LOFW -10% BLOWDOWN WITH LOOP 650 GPM AFW

                         .       14.c'% -

J. Iz.ccc - o

                       -                            .4 y                              .\

n 10 0c0 H l ( n s.cac -. w l 1 l (~ w l ta r 2, s.ccc - 5 c . O C

                       , , ,      2.acc -

t 2 00c -- t t f 0.cCc -

       !c 0.000                                        5.000 10.c00       15.000    20.0c0      25.000       30.0c0 TIME (X10)
.kE00EHZ i p '

C

                                                                                                     .\ u      r_        ..
4-11 4

l Figure 4-10 Steam Flow From Steam Generator

                                     55.CCC -

LOFW -105.. BLOWDOWN I i WITH LOOP 650 GPM AFW 35.000 - 1  !

                           ==.

25.000 - o

                           ~
   !                       x   -

t 20.000 1 i N s/

     '        I                         15.000 -                                            -

k c

     ,                     a L.;
         ,                 Q 10.000 --

m

     !                      =

8 y 5.000 -  ; l '! l l l ,' l , i I , ,W i h i , i i -

                                                                                                                                                             !         j   .1
                                                                                                                                                                                     ;  ,    l        P  Q, 7     ;
                                                                                                    )                                           i    ,  l.                    I       l 'i   i j   i 0.000 --                                                    jUj j fi/             :,,t     '

j U . Ih,t .

                                                                                                                                                                                                              ,,l   i I

r' -5.000 -- ' i e 0.000 S.000 10.000 15.000 20.000 25.000 30.000 TIMECX10 1.)

       '        pE00EHZ A
       '                                                                                                                                  3 2 -~

23 4-12 W - ___m_. _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _

Figure 4-11 Steam Pressure in . Main Steam Lines 12.00; .. l

                                   ,                                                                        LOFW -105.. BLOWDOWN WITH LOOP i                          .

650 GPM AFW _ 11.'300 -- s 4 11.000 L a D  ; (" , M'. : 7...:,c :.7- p-vmtwaleu ap ,;m 10.500 -- . I i 10.000 -- r La C- 9.500 -- 1 y QC D C LO c_ 9.000 -

!                          8 500 - -

1 I I 6.CCC

  !      I'.                     0.000               5.000            10.000               15.000            20.000      25.000       ?.C.G00 1                                                                                                    1 TIME (X10 *)

FRE00EHZ w s _ gn l 4-13 e

              .                                                                                   Figure 4-12 Surge Line Flow
           ,                                                                                      into Pressurizer
                             "> 3CC -

LOFW -10). -BLOWDOWN WITH LOOP 650 GPM AFW

                          - 3C CCC -l-4        2LCCC --

o x 20.000 - b 15.000 -- (

  ,                   u u

D N 10.CCC -- m J l l 1 (l O g 5.CCC-- L i

                                .CCc - N               h          b      )iEw-                      %~"w
                             -5.000            '                '

c 0.000 5.000 10.0C0 15.000 20.000 25.000 30.000 I

             '                                                       TIMEfX10                 ')

t AE00EHZ i 32-- . r^

                                                                                                  .. u -

4-14 e e 4 e- + - - ,

Figure 4-13 Pressurizer Pressurizer s . . . . ,

                          .: ...a-LOFN -10%           BLOWDOWN WITH LOOP 650 GPM AFW
                   .      3 .000 --

4 27.000 -- c-X 26.000 - - f. 1 i b 25.000 - - f L , I I

                                                                                        '                                    /l I
                                                                                                      ]'                    /

( { I i  : l /\ T l

  • b Il I,

i / j

                                                                                                                        /
                                                                                                                          / !
                                                                                                                                '(
..                                                                                 l              [                  '

t E 24 000 - -

                                         !             I i         ,
                                                                                 ,t             f.                               I I            $

I [' w i P ' cr 11, O tl . [ / I 23.000 - - e / I f I 22 000 - - i t.

  ,                      21 000                         '                                   '
r. 0.000 5.000 10.000 15.000 20.000 05.000 30.000 1'

p-TIMEfX10 i . RE00EHZ NC:E BJ 4-15 6 -- .

Figure 4-14 - Pressurizer Volume

                                     . . .u      -

l LOFW -10*.. 3 LOWDOWN WITH LOOP 650 GPM AFW i f0 000 -.

                                                     ~

1 3 4 18.000 r o s

     .                       X i

l? l 16.000 ' W I 14.000 1 m f & k I f

       ,                     uJ r

I -Q t 12 000 - C I a

       ,                     a                         '
         ;                   3 10,000 -
        '                     a r

i i r 8.000 - I. l 6 0C0 ' ' I ( 0.000 5.000 10.000 15.000 1 20.000 25.000 30.000

           .                                                                      TIMECX10       )

(n~c n'--- - - :g 7 I. N , __.' _- 8PJ 4-16

Figure 4-15 ' SUBCOOLEO MARGIN LOFW 105 BLOWOOWN WiiN LOOP 650 GPM AFI - ] 80 70 , i .

60 -

i w

                                . 50    -
                            ."o.

a  %

                             =
i. 6 40
                             %                              N 4

8 N NINIMUM SUBC00 LEO t 8 30 - MARGIN 13.5'F

!                            w                                     N                      ,

i 20 - - N N c  % i - 10 I I I I

0 l 0 50 100 150 200 250 i

1 . Time, sec l 5 I .

i 4.3 LOFW 20% Blowdown - With LOOP - 650 GPM AFW

4. 3.1 Results Figures 4-16 through 4-21 show the more important piant parameters for the LOFW transient with a 20% PSV blowdown. The case was run with an assumption of a loss of offsite power (LOOP) and a auxiliary feedwater flowrate of 650 gpm split equally between the two steam generators.

4.3.2 Discussion The results shown in Figures 4-16 through 4-21 represent the important parameters relative to a 20% PSV blowdown and subcooled margin. The temperature responses of Figure 4-16 and 4-17 are similar to the previous case. The pressure response of Figures 4-18 and 4-20 show the cyclic response to a PSV opening setpoint of 2515 psia and a closing setpoint of 2015 psia (20% below the opening setpoint). Figure 4-19 shows the surge flow into the pressurizer produced by the blowdown cycles. Figure 4-21 shows that the pressurizer fills at about 130.4 sec. Figure 4-22 shows the subcooled margin for this case based on the temperatures of Figure 4-17 and the pressures of Figure 4-18. The minimum subcooled margin for this case is zero at about 180.0 seconds. When the subcooled margin went to i zero, the computer code showed the formation of steam for a period of approximately 60 seconds. The maximum mass of steam was 28 lbs. in the hot leg. At 240 seconds the steam mass was zero and at no time did the code calculate steam in the primary side of the steam generator. Thus, natural circulation was not impeded. To show that subcooled margin exists for more realistic assumptions and to investigate pressurizer filling two mo.re LOFW cases were analyzed as follows:

1. LOFW 20% Blowdown - Without Loss of Offsite Power (RC pumps continue to run)
                                                                  - 650 GPM Auxiliary Feedwater Flowrate
2. LOFW 20% Blowdown - Without LOOP - 780 GPM Auxiliary Feedwater Flowrate i (Typical AFW flowate of one AFW pump for a 2772 MWt plant)
         )
          ,                                                                                             4-18 l

1 9

s -- -

                                                                                                                                                   -s;.
                                                   -s                                                                                               Figura 4-16                                                                             ,

Average core coolant'-

                                                       --                                               ,                               ,           Tcnperature
                                                                                  -                 s                                     -

i

                                                                                                                                                                           ~

55 0 C - , LOFW '20% 3 LOWDOWN I l

                                                                                                                      ,                           WITH L'00P 650 GPM _AFW
                                                                                                                         ,    , s .

w.

                            , 55.000 - -                                                                                                     s
                                                              ~ , -'                                                           +-
                , ,                                                                                                                  4
                  "                                                  ~
                                                                            *..,                                                             4 a
                                                                   *                                           ',             s, _ x
                                                                                                                                                                                              +

X _*

                                                                   .g             s'        g                                     ,                                                                        ,,

64.000 - -

                                                                                                                        .+-                  ,
                                                                 - s
s. .

s, ..

                                                                                                                           -s A                         4                                        ,                                                                      ,

63.0Z -- g

                                                                                                                                                                                     - -                                                   w C                    az.Dx - -

w ,

                                                                                                                                                                                      \

l LL' E a 51.000 -- w ., x . m w c_

                        =                                                                                                                                                                                                       , .
                                                                                                                                                                                                                   ~

W so.aca -- . z w l-m ' '. 2 , sg ,oaa - 56.000 E

' o.ccc 5.0c0 - ic.aca. ' Is.ccc 20.000 3 .000 30 003 i ,.

T IME( X I.0 ' l  %. .

AE00CIL '

l

                                                            ^

q _. qc-_ -i 1 , ! 4-19 4 4 !  ; s..

                                                                                                                                                                                                      .s
                                                                   +
                                                                                                                                     %.              + , - . - . , ,              , ,,,-. - -- - --

r.- m. -.

Figure 4-17 Hot Leg Coolant Temperature 54.500 -- LOFW - 20% BLOWDONN WITH LOOP

                                                                                                  .             650 GPM AFW
                                   -                    54.000 -         -

53.500 - - O X 3 53.000 -- , i . t - ( u 62.500 -- w b

      '                   C
                          % 62.000 --

W b u; w l w

                          @ 51.500 --

2 51.000 - - 1

                                                                           /

60.500  :  :  :  :  : 1 0.003 5.000 10.000 15.000 20.000 25. GOO 30.000 5 TIME (X101 AEDOCIL ,-- """ t , W M --e

         .                                                                                 4-20

_ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ t

               .                                                                                  Figure 4-18 Hot Leg Pressure 25 000 --                                                     LOFW - 20f, , BLOWDOWN WITH LOOP 650 GPli AFW 27.000 -  -

j c, 25 0C0 - O

                              ~

l X 25.000 - - ( l

                          .                                    r                                                      .

I 24.DCU - { I I

     '                        w u2 C.-  23.000 --

Lu , I I b

                              $ 22.000 -     -

cL. I I I l 21 0CU ~

                                                  ,J
                                                   }
20.000  :

l 0.000 5.00 10.000 15.000 20.000 25.000 30.000 i TIME (X10 1 j REDQCIL -- i ,

                                                                                         ~

L. 4-2, ) " .- b

                                                                               .             e
  • Figure 4-19 Surge Line Flow 35.0m LOFW - 20% BLOWDONN

.  ! WITH LOOP 650 GP}! AFW

                                  . 30.0T --

( m g 25.0::0 - - o X 9 20.023 -- i - ( 15.000 - - i u L.,.o 0 10 000 -- N O h I 3 O i 5 000 - - L l I F ' bo l,hm=

 ;                                     0m .

I k 0.003 3 000 10.000 15.000 20.000 25.000 'O .0::0 i TIMECX10 .)

     ., _ AE00CIL                                                                                  ,.,    _             . , , -

f - 4-22

                                                                                                   .               e l
              .                                                                                                                                           Figure 4-20 Pressurizer Pressure 2:' .000 ,-                                                                                                            LOFW - 20"     3LONDONN j                                                                                                           WITH LOOP l ,

650 GPM AFW 27.0p - 4 25.003 --

                         ._,                        .4 x.

i t$ .;= ~ (

r !'

I i I' ;I 4 I.

                    .                                            t                                                      ,
                                                               \

2+ .000 -- f l D i Q. 23 0 % - . u GC [

    .                    O i

y'O 22.000 - I c

                                                       )                                 j              l
    ,                                                  I                                            e r  (

El .CCO - - l I " f -

                                                                                                                                                  \
                                                                                 <                                                                 i, l

i k - 20 0~ . O.003 5 000 10.000 1.5.000 20.003 ?S.003 '0.030 T I."E C X 10 ' ' !

. .C. _.c G r.J r., 7. l._

f N .' . m .. { Q m 4-23

                                          ~s

Figure 4-21 Pressurizer Volume t 22.000 - LOFW - 20% BLOND 0hh WITH LOOP 650 GFl! AFW

                               ~

c0.0c0 - - e A ts.cco - - o X 15 000 - - 1 *

           .                      14.000 - -

en W A

   ,                        w r

o a 12 000 -- o o o 3 tC.0cc -- s.ccc - l i-s.ccc  :  :  :  :  :  :

. o.033 .s.cco io.cco is.ccc ca.ccc  :'s.cco  ?.a.aco
       '                                                                         l TIME (X10 '1 AE00CIL l                                                             ,-

s

                                                                    \
                                                                              ~

_ oJ O 4-24

w (- , . w4 g , w y 7-1 Figure 4-22 SUBC00 LEO NARGIN LOFW 205 BLD500tN WITH LOOP - 650 GPM AFW 4 80 i i t

         ,                                                    70 i                                           .

60 - w i 50 - n 9 M

a = .

a 4 I h. o. M -

          .                                             O
  !                                                     O 1                                                       4.3
  !                                                     Q
 !        :                                           a       30     -

j - e i a 20 1 .- .  : ] i 10

)          .

i t

            ',                                                  0                   8                    8                  8       8
            '                                                                                                                      200 .

O 50 100 150 250 j Time, see

                                                                                                ?
   \                                                                                                  .

4.4 LOFW 20% Blowdcen - W/0 LOOP - 650 GPM AFW 4.4.1 Results Figures 4-23 through 4-29 show the more important plant parameters for the LOFW transient with a 20% PSV blowdown where offside power is assumed to be available

 .                sdch that the RC pumps continue to run throughout the transient. The auxiliary I                feedwater was maintained at a value of 650 gpm split equally between the two steam generators.

4.4.2 Discussion , I I i ! The results shown in Figures 4-23 through 4-29 represent the important parameters r, elative to a 20% PSV blowdown with offsite power and subcooled margin. The temperature responses of Figures 4-23 and 4-24 are similar to previous cases, however the hot leg temperatures of Figure 4-24 are lower than the previous case because forced reactor coolant flow is maintained through the core. The pressure response of Figures 4-25 and 4-28 are similar to the previous cases. Figure 4-26 shows the cold leg flow decrea3es only slightly during the transients due to the temperature and pressure changes of the transient. Figure 4-27 shows the surge flow into the pressurizer produced by the blowdown

        .         cycles. Figure 4-29 shows that the pressurizer fills at about 130.0 seconds.

Figure 4-30 shows the subcooled margin for this case based on the temperatures of Figure 4-24 and the pressures of Figure 4-25. The minimum subcooled margir, for this case is 12.3*F. A 12.3*F subcooled margin is a very comfortable margin, however the pressurizer did fill. l

        ?

i 4-26 5 w-- ---, - . .-w- --,,-, , - - - - - - ,

                                                                                                       - - . ,----,r-r -- a-----,n,

Figure 4-23 Average Core Coolant C Temperature 65.000 -- Lopy . 20% BLOWDOWN W/0 LOOP 650 GPM AFW 65.000 - -

                    ~                                                                                              .

O . X 64.000 -- i 63.000 - - O 52.000 - -  ; i t.s L.2 E Q 61.000 -- W C E t.a : b i' G y 50 000 -- E L.: h f 53 000 - - i (

 ?

e., SS.000  :  :  :  ; . Q 0.000 10 000 2D.000 30.000 40.000 50.000 60.000 I TIMECX10 ") AEDOETN . j

                                                                   '"z_      -
                                                                                                                ..                     4.g7
           . - ~                                                                                         ..
                   - _ = - - -a- : : m u m. . . -                . .. . .. - _     ,_.
 ~ '
  • Figure 4-24 Hot Leg Coolant Temperature O.
                                                                                                                     ~

94 000 -- W/O LOOP 650 GPM AFW 4

                           -      63.500 -        -

i m 63.000 - - O X 62.500 - - O v u. 62 000 - - 1 C E 61.500 - - ! W ! CL i r u: l W i O 61.000 -  :

                           =                          }               \

t

    ,                             60.500 - -

L 1 60.000 l l l l l , Q, 0.000 10 000 20 000 30.000 40.000 50.000 60.000 TIMECX10 )

       ;       . AEDQETN i                                                                                     o--         _

4-28 w a _ f . I - - - - - _ _ _ _ _ _ . _

Figure 4-25 Hot Leg Pressure O 25 000 .. LOFN - 20% BLOWDOWN W/0 LOOP

                                                                                                                         .                              650 GPM AFW
                       . 27.DCU -  -

l . i 4 25 000 - - O

                      ~

i x 25.000 - - l 1 \ b 24 000 - - > 1  : I

                      -                                                                                                                                 l C

d- 23.000 - - W n

.0
                       $ 22.000 -                                                                                                                         ,

c. j 21.000 - - i 20 000 l  :  :  :  :  : O o ooo io ooo co ooo 30 oo0 1 40 ooo so ooo so ooo TIMECX10 )

     .'         AEDQETN                                                                                                -
                                                                                                                                     \n ---

j- 4-29

Figure 4-26 Cold Leg Flow 20.5m " LOFN - 20% BLONDOWN W/0 LOOP 650 GPM AFW 20 000 - - g, Is.sco - - o x 1s.000 --

      -   b               te.sco --                                                                                                                                           ;
 .                   Y.
                     -                        l e

N is. coo -- 1 m; c M' O

  ?

a 17.sco - - g

  ,                                                                                               t. . 2 m . m . .1 u.

i rqpr11'llin11 tv.oaa - - q to.sca  :  :  :  :  :  : O o ooo io ooo co ooo so ooo i

                                                                                                                                                +o ooo       so ooo      so ooo TIMECX10               ')                                                       '

AE00ETN ' i 32-- C 4-30 i

s. s.. . .m, .
                                   . . ; M.k .M 4                  -2.DI:73 E ' '. . n ws am TT *
                                                                                                    -  --         ---v.                       ~
  • e. *N "

_m_ _ _ _ _ _ _ _ _ _

Figure 4-27 Surge Line Flow 0 35.000 -. LOFN - 20% BLOWDOWN W/0 LOOP 650 GPM AFW

                     , 30 000 --                                                                                                                           l k

i g 25.0C0 - - C3 1

                  -                                                                                                                                        1 x                                                                                                                                        l
                  -                                                                                                                                        l t

20.000 -- O ts.0x -- U

.                 w
  '               t/J N

10.000 -- O

                  "                                                i 6

m S u. 5 000 - -

                           .000 -      -
                                                                                       ^

kkhi

                        -3.000                                          '

0.000 10 000 00.000 30.000 40.000 50.000 50.000,

        "                                                                                               I TIMECX10           ')

AE00ETN a :- _

                                                                                                                      ]-- --                 4-31
                                                                                                          .                  e

Figure 4-28 Pressurizer Pressure 25.000 -- LOFW - 20% BLOWDOWN W/0 LOOP 650 GPM AFW

                           , 27.000 -      -

l 6 26.000 - O x 25.000 - - i l l O' 24 000 - t i  : h l W 0- 23.000 - - l Lu l . Oc Q LO tn 1

                    $ 22.000 -                                                                       I c

21.000 - - l ( 1 i' N 20.CCt3  :  : l l l  :

h, 0.000 10 000 20.000 30.000 40.000 50 000 50.000 TIMECX10 ')

AE00ETN -

                                                                                                                     \,--       ~                p-             4-32 w  a                    LJ   s 9
                                                                                                                                  .                e'

Figure 4-29 Pressurizer Volume N L 22.000 -- LOFW - 20% BLOWDOWN W/0 LOOP l 650 GPM AFW i0 000 - - 15 000 - - O x 15 000 - - i 14 000 - - 1 m a l.a r D 12.000 - O Q l: C 3 10.000 - - J S.000 -

  • G.000  :  :  :  :  :
    '        .                     0.000        10.000                            20 000         30.000           40.000                            50.000    50.000 TIME (X10 'l
       . AE00ETN                                              -

i 3 ," " - g- " 4-33 i

l

                                                                                                                                   =
                                                                                                                                   =

G W a

                                 -                                             o a

u e .w

    ,.                                                                         =             n.                    a g

M N i

                                                                                            ~                      -

a E= l o

a. -o _
                                       =

o = mM

                                                                                  .=

a o

                                       =                                                                            1 I

o D .

                                       *                                                                                           =
                                                                                                                                   =
                                =                                                                                  I            -
                                ,? =   ,

o

                                                                                                                                       =
                                 .O
                                       ~                                                                                                 -
                                 ==                                                                                                    =

m a

                                -o                                                                                                    -
                                       =_

a f .

                                                                                                                                   =
                                       =

mu l

                                                                                                                                   ~

a< w  : W ,

    '-                                 a =
                          -            O    a.                                                            j a a                                                                                                 . .-

g, .

                                       ==

M ED

                                                                                                        /                                           l
                                                                                                      /                            .

a

                                                                                                  /                                -

i p- . I I I  % I i g a f, E E E E 3 M = = =

3. 'ul3Jeyt paloccans j ,

a 4 , I 4-34 f

      }                   .

s

      ..,                                                                                         i 4.5 LOFW 20% Blowdown - W/0 LOOP - 780 GPM AFW 4.5.1  Results Figures 4-31 through 4-36 show the more important plant parameters for the LOFW transient with a 20% PSV blowdown where offsite power is available and the aoxiliary feedwater flowrate is 780 GPM. The 780 gpm auxiliary feedwater flow was split equally between the two steam generators.

4.5.2 Discussion The results shown in Figures 4-31 through 4-36 represent the important parameters relative to a 20% PSV blowdown with offsite power and an auxiliary feedwater flowrate of 780 gpm. The temperature responses of Figures 4-31 and 4-32 are simular to the previous case where offsite power is available throughout the transient. The pressure response of Figures 4-33 and 4-35 are similar to previous cases. Figure 4-34 shows the surge flow into the pressurizer produced by the blowdown cycles. Figure 4-36 shows the pressurizer fills at about 180.0 seconds. The i point in time that the pressurizer filled is very close to the time that the auxiliary feedwater heat removal should compensate for the heat addition to the reactor coolant system. The pressurizer filled because of the insurge associated with the last blowdown cycle. Without this last blowdown cycle the pressurizer would probably not have filled. Figure 4-37 shows the subcooled margin for this case based on the temperatures of Figure 4-32 and the pressures of Figure 4-33. The minimum subcooled margin for this case is 17.6*F, which is a very comfortable margin. The subcooled margin increases with less consertative assumption such that the subcooled margin for

 !.            the actual parameters of an operating plant would probably be higher.
 .                                                        ~

i f- 4-35 i L

Figura 4-31 Average Core Coolant Temperature LOFW - 20% BLOWDOWN gg ,999 .. W/O LOOP 780 GPM AFW 85 000 - - f o

                              ~

x 64.000 -- 63.000 - -

                      @             62.000 -  -
                                                                                                                                                   )

m . W a 61 000 - s ct Z w C f .E

         !                    p 60.000 -     -
                            'e N                                                     .
                ~

5 - l 59.000 - - l$ 58.000 ' i

            '         .-                    0.000                             5.000          10.000        15.000    20.000       25 000      30.000 V                                                                                                                            

i TIMECX10)

             .        AE00K[S
                                                                                       ,, ,_           g-.                  .

T-_

                                                                                                               ~

L - v, ,, 4-36 e A 6 4 i

     ~
  • Figure 4-32 Hot Leo Coolant Temperature LOPJ - 20 % BLOWDOWN

{ 64.000 .. W/0 LOOP 780 GPM AFW 63.500 - - 63.000 -- c x - 62 500 - - . ha 62.000 - - 3

 ,          x
  • D
 .           w T

Q:: La 61.500 - - b $ s e L.; S 61.000 --

            .z i

60 500- - 60 000  : 5- '- 'S- 2- $ 25 3 O i . TIME (X10 ) REDQKIS g

                                                                                                      ,r                    z -

4-37 s

                                                                                                                       .            W
                .                --_ . _ . . ~ , . -     . _ . - _ , , . ,          _ _ _ _ - _

I Figure 4-33 Hot Leg Pressure

                  ,9                                                                                                                                                LOFW - 20%       BLOWDOWN 29.000 -.                                                                                                                        W/0 LOOP 780 GPM AFW
                              . 27.000 -                                          -

1 25.000 - - o X w 25.000 - - l l l l h 24.000 -

                                                                                                                                                                                                     )
                                                                                                                                                      ~
                                                                                                                                                     ~

L I D \ Q- 23.000 - - ' La cc l li 1 a o e

                            $ 22.000 -                                            -

m

          \

21 000 - - 1

       ,                                                                                                                       i                   .

20.000 - '

    !'                                                                     O.000                                          5.000              10 000      15.000       20.000       25 000     30.000 TIME (X10   ')

AE00KIS

                                                                                                                                                     \                      I .          4-38
  • e
  • Figure 4-34
                                                                                                                      . Surge t.ine Fl e
        .                                                                                                              LOFW - 20%          BLOND 0hW W/0 LOOP 35.0 Q -

780 GPM AFW 30 000 - - g 25.000 -- o e Q 6 20.000 --

             .             15.000 --                                                                                                                      -

1 u 10.000 - - A fL

    -                  $     5.000 -     -                                                                        -

u_ i . k Lt i 4

    .                          .000 -               !fhh3h h {I P , jhk-lfI.{ bh                                                  l)'$Cpf(
                            -5 000                                                                  '        '               '              '

l

           ^

0.0C0 5.000 10.000 15.000 20.000 25.GCG 30.000 I TIMECX10 ')

        .AE00KIS                                                                                                           ,   --
 ;                                                                                                     3-_
                                                                                                         ~
                                                                                                                           .. w    w             4-39
  ;                i e             e'

Figure 4-35

                                                                                                                                                 , Pressurizer Pressure LOFW - 20%                BLOWD0h%*

W/0 LOOP 0Z - 780 GPM AFW , . . 25 000 - - I' 4 25.00G - - ) . j S .I x 1 1 24.03G - - f C 23.000 - - L l i

                  -                                                                                                                                    )

co f y C- 22.000 -- / l l La K a LO - b - l 4 y 21 000 -- - 0 l l, l - l IfpiibfT l, 20.000 - -

)   4 19.00G                                        :                                       :               :                           :            :
 ,   l 0.000                           5.000                                     10.000             15.000            20.000                2%00G         30 003 TIMECX10)
 '        AE00KCS r                               -

1 s- -[ gO 4'-40

                '                                                                                                Figure 4-36
                                                                                                               , Pressurizer Volume LOFW - 20t       BLOWDONN
                                                                                                                                             ~

W/0 LOOP 22 000 -

              -                                                                                                 780 GPM AFW 20 000 - -

1 c, 15.000 - - e 1 X

                              ~                                                                                                                     l 16 000 - -

e r

                      ..,         14 000 - -

F-w r 3 a 12.000 - o l a o 1c.000 - - a 1 . 8.000 -

         ~

6.003 - 0.000 5.0c0 to.cco 15 000 20.003 25 000 33.ccc I TIMECX10**1

      ;              RE00K[S J1                  J             4-41 n
                                                  .                                 en

1 a i E G N E A < m a w

 ,                                                                   E ma E *=e-kl
                                                                     - o -
a. = =
                                                                     - =>

1 o o o- - o a* w i M a N

                          =

g . I ti: .I a c P=. s m l - .<>

n. -

a.

 .                        =                                                                                                                                                                                             en O

w

                     = =w                                                                                                                                                                                               e m a o                                               'N                                                                                                                                           -

n e G I

                          .m a=

I - o

                                                                                                                                                                                                                  =
                                                                                                                                                                                                                  ~
                          =                                                                                                                                                     i                                          . . . .

a E $

8. =
                                                                                                                                                        /

a

                           == .

r- . f

  !                                                                                                                  I                                                                                        -    o its I

e

  $                                              l     I      I         I                                 I                                                                               1               l        o
                                   .            r     .     .          ,                    n                                                                                            w              -

t

                           -                             3. tui3Jeg palocoons 1

i . J' I I 4-42 4

4.6 FWLB 20% Blowdown - With LOOP - 650 GPM AFW i 4.6.1 Results  ! Figures 4-38 through 4-57 show typical plant parameters for a feedwater line break-transient 20% blowdown with a loss of offsite power and an auxiliary feed-

 ,                     water flowrate of 650 gpm. The 650 gpm auxiliary feedwater flow was all sent to
 ;                     the unaffected steam generator (OASG).

4.6.2 Discussiqn The results shown in Figures 4-38 through 4-57 are the important parameters for a feedwater line break 20% PSV blowdown with loss of offsite power and an auxiliary feedwater flow of 650 gpm. The purpose of this case was to evaluate the effect of the blowdown value chosen by the moderate frequency loss of feedwater event. Figure 4-38 shows the total core power during the transient. For this feedwater l line break case the reactor trip occurred at 9.9 seconds because the initia) pressure increase was faster. The reactor trip was due to a high RC pressure of 2400 psia. Figure 4-39, 4-40 and 4-42 show the temperature in the cont and hot legs for both the affected and unaffected steam generator. The curves are simi-lar to previous cases with little difference between the hot leg temperatures. Figures 4-41 and 4-44 show the pressure in the hot and cold leg of the affected steam generator. The peak system pressure is greater than 2750 psi because of the conservative analysis assumptions and bounding plant parameters used in the analysis. The results are similar to previous cases and the same for the i unaffected steam generator. Figures 4-43 and 4-46 show the temperature in the cold leg for the affected and unaffected steam generator. The temperature shown in Figure 4-43 rises much sooner because the affected steam generator dries out

very rapidly. Figure 4-45 shows the cold leg flow coastdown associated with the assumption of loss of offsite power at reactor trip.

Figure 4-47 shows the feedwater pump flow termination associated with closure of the feedwater isolation valves at 33.0 seconds due to a low steam generator pres-sure of 615 psia at 16 seconds. Figures 4-48 and 4-49 show the feedwater flow at the steam generator for the affected and unaffected steam generator. For the l 4-43 I I l . . ________.m. _ _ _ _ _

affected steam generator (Figure 4-48) the flow reverses and then goes to zero with dryout. , For the unaffected steam generator the inventory loss is slower but the flow also reverses until the feedwater isolation valves close. Figure 4-50 shows the liquid volume in the affected steam generator. Figures 4-51 and 4-52 show the steam flow from the af,fected and unaffected steam generators. Figures 4-53 and 4-54 show the steam generator pressure for the affected and unaffected st~eam generator. Figure 4-53 shows the low steam generator pressure at 615 psia at 16 seconds. The steam generator pressure in the unaffected steam generator is similar to previous results. Figures 4-55, 4-56 and 4-57 show the pressurizer surge flow, pressure and level respectively. These results are similar to previous cases with the pressurizer filling at about 110.0 seconds. Figure 4-58 show the subcooled margin based on the temperatures of Figure 4'-40 and the pressures of Figure 4-41. The minimum subcooled margin is 4.3'F. It had been expected that the FWLB results would be worse than the LOFW results however the reactor trip at 9.9 seconds means less energy into the system initially and P thus a shorter time for a given auxiliary feedwater flowrate to compensate for the system energy. This implies that an anticipatory reactor trip involving feedwater flow would produce higher subcooled margins. i l [ e i t' i 4-44 t l l . . 1

Figure 4-38 Core Total Power C  ! .500 - FWLB - 20%. BLOWDOWN WITH LOOP 650 GPM AFW

                                     .. ) . d00 - -

i 1 2% - - 1 0c0 - - OEm 8co * -

                                                                                                  -                                                                                  )

cr w 1 o .600 - - a Q. J CC w e ! 40c - - i

                                           .ZOC - -

c.0cc - - 0.000 5.000 10.000 15.000 20.000 25.0C0 30 000 I

              -   d                                                                            TIMEfX10 ")                                                                            9 AE006EL t

4-45

  • e
                                      .p,,     . , - - - -      .y-   aw , -, <  e   -  g--,-,,w-.,  .-----~w---m- - - , , -                   -m,     - - , , , - - - - . -

Figure 4-39 Average Core Coolant Temperature r' FWLB - 20", BLOWDOWN 66.C00 - WITH LOOP 650 GPM AFW l 65.000 - 1  %

 !                o-X t
                  - 64.00G -     -

63.000 - - I g 62 000 -- - 14.J i 1.

                  %  3 61.0C0 -  -

w C3" W C b Z 60.000 - - i e U E 59.000 - - i i ss.000  : 0 000 5.000 10.000 15.000 20.0C0 25.0C0 30.000 O nnaxw' , RE00 BEL vv 3- 07-_ l 4-46

                                                                   .          g.

e e-

   ,                                                                                                                         .                                           3 Figure 4 .40     '

Hot Leg Temperature (ASG) f FWLB - 20% BLOWD0hw 54.500 -- WITH LOOP 650 GPM AFW 6i .000 - - i  % 4 63 500 - - o

    >                        X w
                                 $3 000 - -

l l hL 62 500 - -

                                                                                                                                                                                   )

i w 4-

                             % 62 000 -

W C

                             .E.

u

      !                      @ 61.500 -

z ( 61 000 - - i See 60.500 ' ' ' 0.000 5.000 10.0C0 15.000 20.000 05 0C0 30 000 TINE (X10 ,)

         ,           RE00 BEL g                                                                                                                   a--            ~
                                                                                                                                                           ,          A-47 I

w -- L .

         +                                                                                                                                                      e e           e

l. Figure 4-41 Hot Leg Pressure (ASG) ( FWLB - 20% BLOWD0hW 35.000 - WITH LOOP 650 GPM AFW 3a.000 - - l 4 32 000 - - o I X 30.000 - - 0 26.0W - ~

                                                                                                                     )

a (a f Q $.000 - - Lu QC D

D ln
                          $ 14.000 -  -
a. .

s . I

             ~

21 000 - -

                                                                                       -         m
         ,r-                                                       '

20.000 ' ' ' ' ' 0.000 5.000 10.000 15.000 20.000 05.0C0 30.000

       '          {#                                                    TIME (X10 ")

I '

       .          RE00 BEL g

m ._ F 4-48 9 @

                                                                                               #          e'

________s_..___

Figure 4-42 Hot Leg Temperature (UASG) f' FWLB - 20% BLOWDOWN 64.500 - WITH LOOP 650 GPM AFW 64.000 - - A

                  ,.;     63.500 -                  -

o-X 63.000 - - Q  : 62.500 - - t.u Q: a w CC Q: i.e 62.000 -- c_ r U w I e 81.500 - - z 81 000 --I J

     ,..                  60.500                                                         :      :

0.000 5.0C0 10.000 15.000 20.000 05.000 30.0C0 O rtnecxto ' 3 , AE00 BEL ,

                                                                                                      \-

4,49 e e e'

I i Figure 4.43 Cold Leg Temperature (ASG) I g.,

                ~*

OE0W f S3.000 -- WITH LOOP 650 GPM AFW 62 000 - -

                        ,,              61. 000 -   -

o X 60.000 - - J l

                @        *a 59.000 -                -
                                                                                                -                                                                                                        1 I                   w e
     .                    D w

cc 1.a 55.000 - - CL r w w

.c C
     !                   e              57.000 -   -

z 56.000 - - 55 000 - l 0.000 5 000 10.000 15.000 20.000 25 000 30.000 TIMECX10 ') e RE00 BEL

                                                                                                \r C

4-50

                            , - - . , -       ,,,        e <.c ,-ms--      - , - , ,- -     ,      ,---g--s      -----w,,  , - -   y        ,w  -
                                                                                                                                                    ,,--wg-w-      -,----,--w-     ---o-           --e     se

Figure 4-44 Cold Leg Pressure (ASG) ( 3b '0 ~ FWLB - 20%. BLOWDOWN-WITH LOOP 650 GPM AFW

                          ~34.000 -     -

t 32.000 - - o X 30.000 - - 23.G00 - - f u: Q- 26.0% - - u.: Q:l' a u) v) o 24 000 --l J .

   .                      22 000 -       -

20.000 - ' 0.000 5.000 10.000 15.000 00.000 25 000 30.000 i ',

               /

TIME (X10 ') i

     .         RE00 BEL i
                                                                                                        \C:E                     9       4-51 i
                                    .        z_____________                                   __

Figure 4-45 Cold Leg Flow (ASG) F FWLB - 20t,. BLOWDOWN

                   \

40 0% " WITH LOOP . 650 GPM AFW i

                                 -35.000 - -

g 30.000 - - c-x 25.000 -- l l 1 l g 20.000 - - y l I u

   <                       Ui O    15.000 -

l' N co

   .                          J i
    .-                     2 C
    ,.                     a      10.000 - -

u. t

    .'                             5.000 - -

l' b r*

            ,                      c.cCa                   :        :

0.000 5 000 10.000 15.000 20.000 25.000 30.000

      ;            O                                                      trnecxto ' 3                                                                                                                                    ,

1 AE00 BEL i I. 3- _ n 3 4-52 t l r . - - .

               .                                                                               Figure 4-46 Cold Leg Temperature (UASG) r'.

FWLB - 20% LLOWDOWN 53.000 " WITH LOOP 650 GPM AFW 62 000 - 1 ~ 6L.000 - o X w r 60.000 - g '% 59.000 - W W D

                          +

cr wE 55.00G - CL

                          .k                    !

l C l l W C e 57.000 - z 56 000 - 55.000 .-  : 0.000 5 000 10.000 15.000 20.000 25.00G 30.000

             -O                                                 itnecxto ' 3                                                  >

i AE00 BEL

y. _

w -- .. 4-53

                                                                                                           .          e"

r Figura 4-47 Main Feedwater Pump Flow O'

s. . ~

FWLB - 20%. BLOWD0hH 60.000 WITH LOOP 650 GPM AFW r 50 000 - -

                       ~

40 000 - - o X w 30.0C0- - Q to.000 - ' c:

 .                      i.e i

Q 10.000 -- cm

 .                      a 1

O y .000 -- u.

                            -10.000 -    -

m .

        ,                   -20.000 --              :
   .                                0.000          5.000 10.0C0        15.000        20.000      25.0C0                  30.000 I

TIMECX10 ') e RE QBEL

    ;.                                                          3-_-

L.. O 45 4-54

      .                                                                                            e                   e

Figure 4-48 Feedwater Piping Flow (ASG)

             ~

73,ggg _ M B - 200 BLOE0W WITH LOOP 650 GPM AFW 20 000 - -

      ~

g 15.000 - - . a X l to.cCc - - Q 5 000 - ' -

     ,.                                                              =                                                              .
     '.              U e                   W W       .000 - "

N co _J 2 S -s.cCO - - 6

                        -to.000 - f -

? f.

       '                -15.000     -

0.000 5.0C0 10.000 15.000 20.000 25.000 30.000 g) TINE (X10 *) ,

   .    ..lE00 BEL D:-_               5'-                            4-55
           ,                                                                                                      e           c

Figure 4-49 Feedwater Piping Flow (ASG) f' FWLB - 20 f, BLOWDOWN

           ~

M *U% - WITH LOOP 650 GPM AFW  ! 12 000 -- g 10.000 -- o X 8.000 k l g 6 000 -

                                                                                                                                                                                                                                                                                                         )

e u w I W 4 000 - N e _J 1 l 2 O g 7. 000 -- i

                '                                                                  I l
                                                                                                                                                                      - th"'-                                                   -                           - ~ ~ -     e"      -

r,. . c ric>,mn r,r@-

                                            .000 -

7' - ,.,m p n 'rn c m. ,-~ .,.

                               -2 000                                                                                                     :                                                                 :                                             :               :

0.000 5.0C0 10.00G 15.0C0 20.0C0 25.000 30.000

        ~b                                                                                                                                                                                                                         T U1E C X 10 ' ' )                                                    >

AEDOBEL 3:-- . dC iv 4-56 e e'

Figura 4-50 Affected Steam GInerator Volume In. Lower Third of Steam Generator e

                \.             15.00G --

FWLB~~- 20% BLOWD0hW WITH LOOP 650 GPM AFW I 14.000 - - 4 12.000 - - o x 10.000 - - 8-O

                                       ~~

m )

      ,~
                         &                                                                                                            =

ta u.: r O, 6 000 - - t O Q D O j' _ 4 000 --

  - .                        J i'
  .                             7. 000 --

I 0.000 ' 0.000 5.000 10.000 15.000 20.000 25.000 30.000

               ~ 'n, i
                   >                                                                                                                  TIME (X10 I')                                >
         .        REDQBEL Kn~T                  C
l. w - .. v 4-57 i

k e e*

                .                                                                                                                                                                   Figure 4-51 Steam Flow from ASG FWLB - 20%                 BLOWDOWN 35.000 --                                                                                                                                       WITH LOOP' 650 GPM AFW 30.000 --

d 25.000 -- , o X 20.000 - - t5-O

                                              ~

l c; q

       ,                    W                      I 1

W 10.G00 -- cm J r - I 3 u. 5.000 - -

        ,                             - .GCC - -                                                                                          4.fJ.hL      .nLaindh.abn LL1!1d&bh.dala
m. . , , . - , - - - - - - ~ . - - - -
                                   -5.000                                                                         '                                  '               '                 '                       '

0.000 5.000 10.GCG 15.000 20.000 25.000 30.000

           b
                                                                                                                                                            'TINECX10 I')                                                     '

r AE00 BEL i 2o0 4-58 e O

Figure 4-52 Steam Flow from UASG

                    ,-'                                                                                                                                                               FWLB - 20%                 BLOWD0hW 30.0 % -

WITH LOOP 650 GPM AFW

                                     .25.000 --
                             &        20.000 --

o-X

                               ~

i 15.000 -- I g 10.000 --

                                                                                                                                                                                                                                 )

t

         !                     U W

Q 5.000 -- h l o . J l l  !  ! l , I,',t l

                                                                                                                                                   ,I              '
                                                                                                            /f              ;

i i 1 : t l . h, 1 ; s l i O r, 1 i j i lll

i l ,

L g .000 -- , l [ i J kjhil,dI, Ag jjjj 'ii I( t . .b,II,.$ { % } .j4l D.,. a'd

                                      -5 000 --
                                     -10 000                                                                    :

O.000 5.000 10.000 15.000 20.000 25 000 30.000

                        .)                                                                                                                    TIME (X10 1.)                                                                       ,

i AE00 BEL ,__ , 1 4-59

Fiaure 4-53 Steam Line Pressure (ASG) FWLB - 20% BLOWDOWN 15 0C0 - WITH LOOP 650 GPM AFW 14.000 - - 12 000 - - o-X w 10.000 -- h S.000 - - j d ' Q- 5 000 - - u.: 1 72 V) A 4 000 -- 2 000 - - I __ _

      ,                        0.000        '
      '                                    5-       "      '5-                                  2-          25-          '-
          -O                             -      2 TIMECX10 1.)

AE006EL nn

                                                       \v,
                                                               ~

_ [d 4-60

Figure 4-54 Steam Line Pressure (UASG)

                   .(                                                                                                                                              FWLB - 20%      BLOWD0hw 11 500 --                                                                                                                            WITH LOOP 650 GPM AFW 11 000 --
          \
                                                                                                                                                                                    .=

g 10.500 -- a x 10 000 -- - h 9.500 - - J m

c. 9.000 -

ta

                                           )

a:: o m e st 8 500 - - P 8.000 - - 7.500 ' ' ' ' '

                  ' p                  0.000                                                               5.000             10.000            15.000  '

20.0C0 25.000 30.000 I TIMECX10 '1

        ,           AE00 BEL                                                                                                                    _

OC

\ -

T w - . _ _ . (v 4-61 i

Figure 4-55 Surge Flow into Pressurizer (m FWLB - 20% BLOWDOWN 35.000 -- WITH LOOP 650 GPM AFW 30.000 -- I 4 25 000 -- o X 20.000 -- g 15.000 - - l u r W l O N 10.000 -- cm k w 2 j O y 5.000 --r L

                                 .000 - -

W-

                                                                                                 -    - =-
   ,                          -5 000 -                              :           :            :           :           :

0.000 5.000 10.0C0 15.000 20.000 25 000 30'.000

            >                                                                         TIMECX10 I')                                  ,

RE00 BEL 3-_ 4-62

                      ~                                                                                                                .

Figure 4-56

                  ,._,                                                              Pressurizer Pressure FWLB - 20% BLOWD0hW 23.000 -                                           WITH LOOP 650 GPM AFW 17.000 --
                           ~

4 25 000 -- o t X l w 25.0C0 -- I h 24 000 - - l

                           -                       i e

C- 23.000 --

 '                         te at a
       ,                   D w

o 22 000 --{ J t

  ;                              21 000 - -

r i' t 20.000 -- ' ' 0.000 5.000 j , (;- 10.000 15.000

                                                                               ,)

20.000 25.000 30.000 TIMECX10 AE00 BEL

                                                                      --, _-             B,J i
                                                                   \

a-63

y Figure 4-57 Prassurizer Volume f , ' FWLB - 20% BLOWDOWN 22 000 - WITH LOOP 650 GPM AFW 20 000 -- 4 13.000 - - o X 4 -

    !                                  16 000 -  -

[ J h m 14.000 - - r w r 3 : 12.000 -- o . l . i a

      '                            3 0
                                   -    10.000 -   -                                                                              .

_J 4 S.000 - f' 6 000 e- 0.000 5.000 10.000 15.000 00.000 25.000 30.000 l '

          !~'J                                                                                  TIMECX10          ')

I'AE00 BEL _- gm 4-64 r-

g

                                                                                                                                                                                                       +

s , Figure 4-58 - -

      '                                                                                  SUBC00 LEO NARGIN FIL8 205 BLO500tN WITH LOOP 1                                                                                                                                                                .

i i 650 GPM AFI 4 1 80

                                                                                                                                          -                           \ \

1 ! 70 - i . 80 ! w , . J 50 l.

                                              .       z-

.;. m . 1 o, 40

                                                       =                                                                         .

1 o 1 o [ t u i o

!                                                     a     30    -

1 MININUM SUBC00 LEO i j 20 - - MARGIN 4.3*F i 10 - - t O I 8 I i } ! O 50 IOC 150 200 250 i 1 Time, sec ) 3 . 6 m l l _ ___ _ _ _ _ _ - . _ _ _ _

             . f

5.0 CONCLUSION

S AND RECOMMZNDATIONS

 ,                  A summary of the minimum subcooled margin for all the cases is shown in Table 5-1 and plotted in Figure 5-1. The conclusion developed from this study are as follows:
1. 'A 20% blowdown value has shown acceptable results (i.e., little or no hot leg
        *           ~

voiding) for both Loss of Main Feedwater (LOFW) and Feedwater Line Break 5 (FWLB) cases with conservative assumptions of 650 GPM Auxiliary Feedwater (AFW) and Loss-of-Offsite Power (LOOP).

2. For more realistic assumptions of LOFW with offsite power and 780 GPM AFW
 .                         (2772 MWt plant) a 17.6'F subcooled margin exists.
3. A 20% blowdown is the maximum allowable blowdown for the pressurizer safety valves.

The B&W recommendation relative to pressurizer safety valve blowdown for the B&W

        .             177 FA plants is that the valves be set to close at a value no greater than 20%

below the opening setpoint of 2500 psig. f 5. e f e 8 e e o L 5-1 I l O

Table 5-1 Sumary of Minimum Subcooled Margins Case Description Ma rgin 1 LOFW - 10% BD - With LOOP - 650 GPM 13.6*F 1 l

       ,                 -2                    LOFW - 20% BD - With LOOP - 650 GPM                                           0.0*F
  !                       3                    LOFW - 20% BD - W1thout LOOP - 650 GPM                                       i2.3*F r                      4                    LOFW - 20% BD - Without LOOP - 780 GPM                                       17.6*F 5                    FWLB - 20% BD - With LOOP - 650 GPM                                           4.3'F e

9 6 4 e

       .t f

5-2 9' I ' _ _.____._____._____.__._5_...___._

s l l I i l Figure 5-1 l MINIMUM SU8C00 LED MARGIN

         ,                          .                                                                                                   VS
PERCENT'PSV BLOWOOWN l l

20 - ' i 18

                                                                                                                                                                                  @ LOFW W/0 LOOP 780 GPM AFW                                 )

16 l

                                                .u.                                                                                                ,

I 14 - 5 12 _ @ LOFW W/0 LOOP o

         .                                      ?                                                                                                                                       653 GPM AFW '
                                                 = 10                 -

a s .

         '                                       E      8 T                                                                       .

g . . .. 6 LOFW WITH 4 - LQOP 650 GPM AFW @ FWLB WITH LOOP 650 GPM AFW

2 -

0 ' 0 10 20

        .,.                                                                                                               5 PSV Blowdown
1. . . .. .

i l

      ,                                                                                                                                                                                            5-3
               .,,,,-~---_v-
                                        - , - ,         , - - , , , -       -,--er-,-. 4-.-- . , . ~ , , - . - -- .       .,,..v,-,w    -y - ,,-. . - . - , ------.---.-r--       - - , - - -cy     e ---, .       p.------,
                      . a

6.0 REFERENCES

1. TMI-2 Lessons Learned - Task Force Status Report and Short-Term Recommenda-tions, NUREG-0578, Nuclear Regulatory Comission, July 1979.
2. Clarification of TMI Action Plant Requirements, NUREG-0737, United States Nuclear Regulatory Comission, November 1980.
3. Program Plan for the Perfomance Testing of PWR Safety and Relief Valves,
              .                 Rev.1, Electric Power Research Institute, July 1,1980.
4. Valve Inlet Fluid Conditions for Pressurizer Safety and Relief Valves for B&W e 177-FA and 205-FA Plants, EPRI NP-2352-LD. April 1982.

e L I f W i I i - , r l i.-; # 6-1 i s'

                                                                                                                                                    ~

0

ll1 ll , hD2y WI b 0

        ~

U08 P - M - EO O # . 4,p

                                                                                                        $.Mps.ij.Y        .

i G *y

                                                                                                        $?'l'-

M - N '

                                                                                                   $S 3
                                                                                                         'I-A T

f W SC -

                                                                                                        )'d 6 TDDE
                                                                                                          ;T 2

ISU 8 f

                                                                                                        ,Q F                       O CA I

rs 3 ' A -

                  . 2        -

s N g_ ~R, E. 6 I

  • r j
               .        e e -1 b vgt i ga P'. A-a e r dROD s

a. 2 8 h / 6 0

                                                                  /

e. a S 2 I S G I P L i X N F t f O T W M U D  :. 0 T S e 0 l C = c r N t 5 O O 1 I S T S O R U E I L T T R  :. i u N c u V s 6 R B S w s E . 4 S m r 1 S a u / 0 E P s 1 0  : a, 0 a . s _ N

                                                              /

l _ 5 I F J T M _ 2 E s H m u s a A

                                                                        .d      .    .   .                .f* -
                                                       -                          R-   a    B u

m. u us w s m lll(llll I l

aT - E2 u a o. 34 i h .l:,l4

                                                                                                                                                                                $f-3    S. 2+                                                                                                                                                       wr e':w 'g%,~                                              .9.it.q l  <                                                                                                                                                        * *
 @           G          I
                                                                                                                              .-                                  .,g E    O$        N   N                                                                                                                                        . I,0 $ 'I.' '
   '             m                                                                                                                                                  ;w r~n2          -                                                                                                                                   ,

f g( . O O

                                                                                                                                                                     ,* /.
w. . N I v i UJ .
                             )

N ,F

     $ ~3 .$

se6aLOYf t 2 E E E E g . d c,, Q

                                                                                          #   L 1   8 8 ,

m  : b g l 6 v 5 , = l= r =

                                                                                      .e
  • 8 "
                                                                                              -                                                                            =

l N Y i J s g ellos siiss ow om re sw-WE trasu tm KMJC s i d R E V _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

/ D . aT ' G8 ac (L - M T1 1  ! M 4 s 0

                                                                         ',' f I
                                                                          . . T ' , ?[>:.*:" ', .? 't O        N   $                                                  .
                                                                            ,r.       ,-

y @O 2 (D g f() - .- 4* ',' y, p 4(

  • O l 4
   \\
y. N, lI 0;
       %         Q h ~-

j i j a s .a a u d

      ?> 5 O $ 5.

e E

                                     =

5 = - 6 cn AD

  • a.

M II u y w b - H g w s - E E " E V $ E lV 5 E

                                          .                                               2 T

E t. I 8W su em e sans em r. j 18E EZMU Em unlimo u e i I l l'

a 1 1 Qi O V) O C4 O* EL 3 T' I Y ~O - :< 3 %'.' I!'l-[ f,. N': 1 N b,m {- . _1lf.: ; t -

                                                                                                                                '5 E     oo  N     4                                                                                                    '          4 8

57 00 . b *

                                                                                                                                 ,. l I'4 64  ,

on O 1 g

         $ 3 .$ Y U                                                                                                                                 }

l $ 5 6 O 5- l e E l le

                                                                                      '  8 2

E @ t - o a _ O E H H - s v 2 2 g g* I lW:e r m e

                                                                                         -                                             J L

l gE j B i

                                                                                  -                                                    5 g         = i=  .m    sw    am        n       sw WE 533EJ IG INAM s

i I l f' L

Il l K - W' I * . - 5 0 3 0 C 0 P - g 4 - , u 'O S

                                                                                                      .Di. '

f:. a u - M - @MGa,$,'2o.r A $ .' g W " -

                                                                                                                .:,Q'(=,.

T7 E I l S DD 2 4 ~..'A,' I SN 8 - 5  ; o" t f - . CA s I A - - 2 - r

         /

E - T N - g_ # j5 TA vi.gtege j b a e r a-dRODp J s t r i f R 2 G 8 O / R 6 4 F 0 3 / & 1 2

                                       -                              3     0 T. P t

i X C N f R B T 1 W / R E ,, t T g c S e ) r = I r N M O O I I 3 3 T R E 0, U D t T I R C s, O f o s T V a C R n $ im T. I . u 4 S

                                                               -a       1 S

E 0 R s / P s 1 0 a ,-

a. 01 1 l
                                                                         /     -

5 I r M T

                                                                 -       f.

_ 2 E R m u s a s. b s g .N 3 ,g mb

                                                                =

r

                                                                                      .1 5   oe E a.

u e w r u n y 1 l1l ll'!llll1 l

                                      ..                                                                              to
                                            '%i7                                                                         ,f- D, g,%+$>49                                         ;,

IMAGE EVALUATION

                                                        ,EE, - E, <                ,-

((/// 3;, 1'0 'N E b en p

                                                                     'm e

l,l [': lOIM l 1.8 1.25 1.4 1.6 4 150mm - >

                                          <                         6"                                                 >

4  %,, < $'+'4

  *I$[4D7///                                                                                                    4!bDMy

______.____ - _____________ __ _ _ _ -_ & m ___- _ __ _ __ ____ __ . - ________ - ____

4 i 50 - o Ho R F c. g 4_ _ _ c t* ' ,,a. ;, c. d 5 u

  • 4,Mt 2 s .- , '

G. N i.w:p,'m.g!s

                                                                                                -0..'*'

M T * -

                                                                                   '.'.       ".4 A        5                                                         ., ,,     ). e.- )'a . .

c M - T T 2 E 1 5.f 6 DD 4 , . 5 2 ~ *

      -    I J    8 8

5 S* CA I f o* . A c E

                 . 2
                    -        _T                                                                                 _

J R l R . 60 T A s, . eg e _ vi.gt e r a - _ 4.RODP 3 _ s. o t t n R 2 G 8 O / _ R 6 F 0 s.

                                               /                                                o

_ 3 2 1

                             .             3   0 T. P
                                           %   X C

N f R B T N M I L U s. 0 T e 0 S 1 C =  : r 0 O N - 5 0 1 1 3 T 3 0 R E U I I T T t E s. U c I Y - u C R M S

                                       =RE s

S 4

                                       =    1 S
                                       =

e 0

                                            /  E P

s 1 8 0 m

s. 0t E

t l

                                             /   -

S I _ M

                                        -   M 1

T E R u n a I. 8 s

                                                    . . i  . aN             j             .f
                                       =
                                       =
                                       =

3 he m. m

                                       =

_ = r a n 7

p. -

3T . E8 4 O A -

3. Tl ' f f' -? i
                                                                                           .b::c.v:&. icys::.             m"Ib 1

nu-

                                                                                               * . t i ,b y. .y .
       < g #                   ,
                                                                                                          ) 1Xf',,.' -
       & y G                                                                                 ~5:n,ll5'$' ,' u' 0 0              N   N ,@                                                                           ' {i; < .
  • 00 15 2 oy 5 [3 < .
         <       ;    . N       1-U       -

W . i d .O sl % 3 e 6 8 6. 2 E h E m s . d ce Q M L f l E mg  :- a m - H ,E w s  ;: c= " 5 y= s

                                         . R (E
5 .
                                          .g      .
 \                                           g w l

I 1 N* ~ i 3

                                         !                                     om     nw           re          ow.

f i sw e sim em WE 233dlJ O nAFIMDO ( B i f ' I i t?

 ---t                                                    _ ___ _

l

              ~

0 N0 N8

  • W M

B # O h 9.i .

                                                                                     .A@-   e.,.' h G                                                              .w %.

3 w .g "- $,:'7,5*. r~'

                                                                                         /

T. u - N ' A e T W SC - s JDDE I 2 4' 5' s

                                    -S I                     -

Ss t 8 f .- O - CA I t c.

                       . 2
  • e E.
                            -         f s, _     _

rf 6E _ t e e-

       ]

ba via .gt

r g
                                  -   A sRODP s.

o t v Rf 2 G 8 o t / f P 6 0 e.

                                                    /                                      c 3    2 1

3 O Y P L I M D f f B T t M t f L U T 3 c 0 S 0  : C w  : x i r N s O O i 3 5 0 I T R c f U t T 7 C 2 m t A c T V u C R M S

                                           -    r.

H

                                           -     1 S
                                           -     1 S

0

                                                 /   E P
                                           .      6
                                           . 0     =                                   t.
                                            . 0 1

c f 1

                                                 /     -

S t t X A t _ T 1 E R i

                                           -                                                s.

B

                                                          .              a          #$1' i

31e. i.

P. 3I

    ,o Un o te O-tL                                         .
     '.i 41 m
                \     !
     & S m 'O 2    -
                                                                      .sa
                                                                       .~:w 7^
                                                                        *~'w.i .< .c. s : . -

e pa . , k.,'f1,f?

                                                                                    ! 45
      +O s.$

O u 4 - - ' ' , t ' 7 i ,' J-@ 2 00 d

       +  5 o ~4
  • u N

W

  • h N3
                              ~

s d .$ s % Y s e 6 8 6. O d i e E s - T e e g D w g N I . 3 Q B b g 8 b h r g a d

o pg =

s ' I.- =e r

                                     -8     .

a h s i i

                                     .t                                                       3 am    ..    ,,    ,        n          su.

I its szatu o em g s I E I J g.

r G W

  • e A8 mo A -

3+ 1 1 l 4 o

                                                              ..phc-                 ,.7 

3 0

              }'                                            . J Ms : . . . f.. .?.'"-
      <    y              ,                                     k;{7;:,{iC'
      @ p +tl _                                                         ,s: + -

4 o' $ v A 2. ff :, i gj m J l 1 54

  • I -
                  . 'N vi     IW     .         -

i l Eds%9 ge6oa A i d E l E s . e E S a 4 E 8 ; l "

                                       ~

3 i B, E W _ e ,m E @, e a I W . l - Yn' (i E E l

' @ . l -

b I g" - I . i B

                                                  ** &% dinudb "

I i i I l c l'

1 c g d 5 . - 5 o 3 o R P o. g4 -, E 6 ,.;.$: f ,'Qr$., S o J d '-

                                                                                                  . P :. .

c ..33,o , M r. o+ .

                                                                           **.,q; ' ,-         '.

s 3 A -. ,. f e _ h.M' ' , T M S T s I 4 '.?" Do 2 , l' - -

     ** CA I

Sw 8 I - f o 5 ' A R M E. d i

                -    . 2 e

k "T E S I _? e e T j . h vi gt g e r a - A wRODP 5 c m R 2 G 8 o p

                                             /

6 r 0 9

                                             /                                                e S  2 I

S 0 T. P t X [ M F 9 9 O I T T U D 3-0 T o 0 S 1 C = I t r O N S D I 1 3 3 T R C P 0 U I t 1 T R C 3 O R o T V u C R _ A f S R . S l O 4

                                           /

S EP N v 1 1

                                       . 0   a                                               e
                                        . 0 1

M l

                                                                           \

3 r J I M 7 f k

                                       =

C I

                                       =

8

                                       =                                                       3 i

g

                                       =
                                       =
                                                   .Y   . t  -    ob                  e

_  ! =E i m. m

                                       =

u

                                       =

P

  • 37 Q8 uQ. o.

M i Tf I f . M 4 T,$T. : m O .t e; . -[. c.;' '5f4 s,.> 7 .

                                                                ' t. , )

4 Y e 0 g '8 J - -' 9'.e ' d:sa.' ' ~

                                                                            .v.

4 4 ,00 - i . - ?,U,j of y M: rn 2 m k4 6 <( g. o5 ..

              ;ue.  .

N

                        ,h                                            -

4 g% d ,4 ,- V rs.ess<t

        $ (E O o 5.

d Q .

                                 -  8                                          a C @

ca a. E g I . a

                                  . g                                              b o

8 5

                                  ' e E                                           2
                              .Er R

4W

                               >    =.

k k 7 \ iE R ' I Y i Y i

                                       >= .-
                                             =..nmu m 4L a 9

4 I I I t'

k^T 3 88 ao A - 3 t 1 4 ,.,ts:2 Q[J-tt)

u.. , c:n,,
   ,   y,                                                            .'  *..f., i';$_,       .'

O >@ ~ s;,; . n4 S oo - s g7 g g' . . -,

   ),    54    -    o 3 N       v V       tu  .
                                                                                      ~
       % f 4      @A V b-d .a s % k w at 2

E

                               =

s . a

                               ~  g
                               "  8.

E g 8 m a 8 , b g N 8 5-i: W 9-E , I:

                            .e r i8                                         r                   -

s i N m Y

                                  =-                                    '

> E j i g slos e see e som sian eine re simo. ws E13:Mu tit WNm R e

f. I E
 -    M
  • aT n a u

Q. o-3 T' M s9 a5 0 j il , W$.+$' . f'

                                                                                                 -: C<*-  '
                                                                                                               'u O oOW N       N                                                                                ,. - N-I       k d

V e 6,57 O4 00 Jh O k

                                                                                                               .4..

4 N 1

                            ,n e
                             ~

D 4 4 ,1

        $l f                 -

e e nw

          /2 0: OOA d

l l88 m a-

                                                       ~      a I

a. I 1 . 8 m a B v I m X M g W 2 2 y a i V T i =

                                                    . e.

g=

                                                       .8 .                                                            2 R 7                                          (>

I E  ;

                                                     >        a i

a E i =. i ' 4 m E E l l l l

    -P. .                      ' ' ' ' '

J

      'a      t c -

5 5 a J o R P c. K4 c t-M o

                                                                                 .D
  • i
                                                                                                    ,wf.d I

M G. N r, Nl

                                                                                                      , *. f
                                                                                        . - m. '* . o A          5                                                             .)i.

e W 2 _ i; h' r? T T E 3 1

                                                                                       - [4 6                2    4                                                             - .

a 5 DW IS ICA 6 f o 5 . 5-l- A -

                      . 2 c

5_ "T J R W E. R6 1 s . e e T i b v.gt g mRODPed a r A m f R 2 G 8 O / R 6 . F 0

                                                 /

3 2 1 3 0 Y, L 'y t M f R B T N M U D . 0 T 0 S 1 C s e X r E O N O I

                                                                                 ~                  S I

3 S T R E P _ O U I L T

                                                                                                 .T R   C F

O T Y u C R A S

                                         -    E                                                                _

_ R . S e 1 1 0

                                              /

S E R P s 1 0 =

s. 0 N l
                                               /    -

_ 5 I M _ _ X1 T

                                                 ~

E I

                                         =
                                         =
                                         =

_ s R eE e.n. _ = d e8 .

                                         =

l _ = _ = _ =

                                          =
                                          =
                                          =

9 .

r n , u a ,; i m o o

     *)

ta Q-

h. .

34 {+I[*] h. sk.Sa -f.' . g 2 ll\ ~i4).. j!?d .N : *. 1 -

                ~0
  • A b . sr .-. ..- .,e
                                                                                                                     '.r; v n, ' , ,.:

g 2 +g 4 t 'Yh.' O O$ M W gg d 97

       + v4         -

D ' ui ? dl-

      }P G4^Y ss.ss%d 2 e 5 8 6.

li 8 5 0 m 8 . 9 h

  • L 5 e g 5 d

u a E 5 < a E v

                                      "    E                                                                                            ::

E 9

                                  . N n   y b                                                        ,

I lWe :* l i

                                  =   D r

g

                                   -                                                                                                d t                                      g ll       "

r I I ( i !- g s sunt siers olme ro elin- eius. WE 9133dla 9t . m B R I I r - -. .- . _ , _ _ . _ _ . _ _ _ _ _ _ _ _ _ _ _ , . _ _ _ _

c ,,, . d . . S o G c R P o, g4 _

                                                                          .         ,c c 4                                                                    .:
                                                                                             .g4,+,y..

ME o J wp:y. 3: ". $ g)^  :._ M s. 5 c C . t. A r S c M E _ 7 . ,t-T T E l

                                                                                , . c ,,,-

3 6 DD 2 4 I SW 8 f _ . E E 2 o_ T* S CA I A . C - Jt N 9GC T E. e eA s s.j .gt g b via e r - MRODP 8 5 y r g 2 g o i s 8

                                            /

6 r ' 0 ' s / 2 t s G _ i P t e BO f _ T N M U U T 0 S 0 C = r N m s O 0 i 1 e 3 T 3 R 0 U L T m R E F O

                                    ,T C t  R V
                                    , fE    S I      .

S l O i

                                          /

S N

                                    ,    I
                                    ,         "                                                      h.

I _ N *

                                    -n MM                                l
                                     =               i s

a .' =ay

                                     =
                                                  =1   .       .                2 X ::H m. . t$
                                     =
                                     =

9

i .- ,

                          ~

aT n2 2w +9 ,1 y 4 ,.s.e

                                                               = %.~N~i ,gl.Y.' . .* .

e m O - n; .. 2 -

                                                                ~
    < y .

3 y a 1

                                                               .y{N' igx:  4!ft-
s. .e =

O af u4 j @o 4 ;o (f) 7 to

                                                                       . . p f-4      i. N   f u t ; .o a <

R& BBL 2 E h E

                               '  8                                             a' e  g b
                               ~  r E  I                                             .a 8  -

o g $ E. ~R == e

                            -  5 gW I : G
                            . R  [

? 5 t

                               .h E

[ 1 g-1 J l ~ I IM gg g " '* ( E e13aimJelF um m j i. d E \ I l l P

c 4, d 1

                                     .                                                                      J 50     -                                              .

5 o *

  $ c RP o.

W c 4 _ - .

                                                                                                 ., g a                                                                       E.

B 4 p . M G. e.N;.A=

                                                                            $' ;... f _' .

A I 5 N e M 2 _ i i r. .j!..f T T E 1

                                                                                     .N.,

s 6 DO 2 4 - E I S. J 8 f 3 .

                                                                                     .N CA _2 I

S A . o# ' c

    /

4 R 6 1 E . 9 I 5 _ j b a e vi.gteg e r a 7 N dRODP " 2 8

                                               /

6 *- 0 a

                                               /

2 G P ' X C n e 7 f y D '- g T S

                                                =

r N m s g O i I 3 3 0 e I M

  • n R

O T T *

                                       ,       y
                                       ,     C 4 A $
                                       . T     5
                                       . 1 5 1

0

                                             / E P

1

                                       .         =                                              '

6 5 I I N I

                                       .                          i\

u

                                                          .I    .    .N     3          .Y
                                       .             .d 5-   m~ E$
                                       =
                                       =
                                       =
                                       =
                                       =
    '.                                                                                                                                                                    .T 4T 3

E8 CA O A - 3' A 0)+ g 9 el I k

                                                                                                                                           .3...,.w...,,,..,
                                                                                                                                                 '~* n,";', F .

fk ' O O$ N N N$ '5.b5.' e.O

 ' in 2        m     a (I)                                                                                                                      - e
                                                                                                                                                         .n i c4 4            .

N oaf is v I UJ . i

 $1      l h h     i n

0:$ n - .s O O 0-n 2 E.. % e d l { I-E 8 . a

c. Q E

I h i I e

                                                                                                                                                                   ==

U y b v a s I E 9

                                                                        .     :5_

i h I W t e 2[ l R m l e - j gE g sles s san own oism out re eu. ws orInnJ op WAluno a I e I I r . . - . - - - _ _ _ _ . . _ . . _ _ . _ _. __ _ _

cjJ. /. g 5 s - . 5 o Coc. P W4 _ E 6 5 o . Y' 2.  %::Y;;g.. c. 2 G h e

                                                                                                        '7. T;a v
                                                                                   . , $2 u t, ' .

J, M EN A S  ;? ;:;;'. ' .' F M - T 'T _EIE I

                                                                                              . : 4,[*.. / *:,'

6 DD 2 4 -. r

            -      I SM 8 f               5                                        '                 ;..

t CA s I - o# A hc E. 2*

  • L T N RG s 3T e e A

j.gt h vi g e r a . wRODP s. o m R 2 G 8 O / R 6 F 0 4 3 / c 1 2 3 0 T P " E X N K f B T ( t t T J D 3 0' T S e 0 ) C = c r O N t S O I I 5 T _ 5 0 R U E t t _ T f _ R C 3 U T f I

V 6 C R M S
                                            -     E      .

S - 1 S _ 1 0 E e / P s t D = 3 s. O 0 M l

                                                   /   -

5 I r f. M 1 _ I E I

                                            =
                                            =

- s e. a p s

                                                           .   .            .8           3         ,gy i

d R !GEl 1 l

                                            =
                                            =
                                            =
                                            =
                                            =

_ =

e 3 u . . 5 5

 ; o c

cP o. y4 - * - e & ' ,:.: e% hs n o

s.  :
                                                                           - -:.R'%
                                                                                                   . .$.i
                                                                                          ;sG (.9 C' u

A r N ^ '? M SR t , C. g t c - .

                                                                                         'n%"

T 6 Y_E l

                                                                                       , 7/-#  #'

DD I S* J 8 2 A - 3 ' /' : ' . o~ t a CA I . M J c E. 2

                      '  LT sd s,        _R }2_ TA e

h vigt ge j . a e r a - 3RODP s. o t r A t G 2 O B

                                                 /

R 6 4 F 0

                                                 /                                                 e 3    2 1

S 0 T P E C M Bo f r T W M 7 3 U t T e 0 S 0 1 C = 2 t r M 5 O ' 1 I S S T R E P O U t L T 7

2 R

O R 0 i T V s C R A S E

                                       ._    R 4

S S 1 0 E

                                       .      /  R 1

P

                                       .                                                            1
                                       . 0     =                                                0
                                         . 0 n
                                              /

l S  ! _ P a M. T

                                       =
                                        =

_ 1 E R R 8 m 8 a ,Y

                                                       . . B  .8 .8          3
                                        -                  RgES m

m. x

                                        =
                                        =

- 1

n 4, K J g j S S o E o

      'o, N

W 4_ - tyC q;:. j N o

                                                                               <. ' e. W'            N. i ' .
                                                                                                  "4 M G.         N                                                              es;)h A r S 8 M E T 'T E         I 1
                                -                                     A.5  .,.'.I;
                                                                               . Y,
a. ~

6 DD 2 4

  -       I SSJ 8                   5                                          .

O D CA I 2 f c" - C - E.

                        '   5_    T Y.dvi.gt        R G _2T    _

e eA j b g a e r a . dRODP s. e 1 r n R 2 G 8 0 / n 6 r 0 4 3

                                               /                                        o 1

2 3 0 Y. t P X w t I R B f w W  :. t L O 0 T e 0 S 1 C = c r o s O N O I I 3 3 T n tr 0 u I t T T R c  :. O M e T y u C a M. s

                                      - r  M       .

s

                                      -    1 1

0

                                            /

s u 1 f  :

                                      . 0     -                                          .
                                       . 0                                             c m   '-

5 P L n

n. I A

_ 1 E R s. o

                                                            . i  .8   ,        .l
                                      -              -l   i g'l e E$

7

d ( c 3 5c - 5 o 3 c 2P o. W 4 , c .,i.

                                                                                  ,'e* .#

2 % E s.

                                                                               /
                                                                                                         , %:,h[' .'

5 0.,'i.,' ;;3: h' . . 4s ': M N ' A I S

                                                                                  -
  • N'i ;. h,'e '

e M EI T T_E 1 S g, x. 'I'* . f([' 6 DD 2 I S> J 8 45f

                                                                                      ~
                                                                                           's s

E S CA I c# A C - E

                    . 2
                          -  4       T
                                                                                                 ~.

JE N Rf2 I G T j ba via e

                  .gt r

e e g r A dRODP 5 0 1 r M R 2 G 8 0 / ti 6 P 4 0

                                                /                                                       0 S  2 I

S 0 T P E X N F t f 6 _ 7 W M f L U T 3 0 8 0 S I C = r E S o N O I I 5 T 5 0, R E U I t T T t C 3 U T F 0

                                         . C  V M  R S
                                         -   E
                                          -  4  5
                                         -. 1 5

0

                                             /  K P
                                         . 1 8
                                         . 0    =
                                           . 0                                                           8 l

N k I I M T 2 WR (

                                         =
                                         =

6 8 a B i

                                         -            = . a   a8     .n           3           *h a

N 5 Ed8 m s i

                                         =
                                         =
                                         =
                                         =

1

s, 4, A g a . s s o s c e e o. g4 _ c . , ' . . +; 1 u  % '. . ?, . d , e u r N 6  ?.

                                                                  ~ -    . 4 _
                                                                        ,I$                         1.: '
                                                                     ' - $ , ?.,e. I a

A, ~ F* . e M S R

                           -                                              '                 ~

r - 6 fDDE l , b

                                                                                   ?.          O 2 4                                                                   ,  '

_ 8 S

    -    I SW 8 fo CA I

5 ' A C

   /

2 N E.

              ?
                . 2 6 2 _T 9,

f

                  . ge e       T
      ;h vi gt e r a -             A wRODP                               .

5 0 1 r n R G 2 0 8 ~

                                             /

H 6 F 0 4

                                             /                                                  0 3    2 1

3 0 Y P l i N P O S T W M f L D T 3 0 0 0 S 1 C = r N E S O O I I 3 3 T R E P 0 U I t T I R 3 O E 0 T Y u C R M S

                                   =    E        .
                                   =         S 4    S
                                   =    1
                                   .=   0
                                         /   E P

1 _

                                   . 0       =                              _                t.
                                     . 0 1

C A I _ 3 I b M

                                   -     X 2

T E _ R $\

                                    =                                       j
                                   =

9

m. N oN g p
                                    -              .i   oN     o R

m. m i

f K '. . A I N0 U 0 C 0 P W EM S O

                                                               . ::   '.                  .d.

7.J.,*l J,M9  ! . 44-

                                                                                           ,- D M S.

A

             ~ s 2 l::<:;

i c W

                                                                     ?
                                                                     ! y~.Y) '

f .. ., ' - T-

                                                                           ..     \

6 g 2 R ' , $'- 9 g;g-8 f o 3 .. k'- k" 2 M - J I 2 T

       '}_a.igt"e g e T r

ODp a - A 5 0 1 r n R 2 G 8 O / R 6 P 0 4 5 / 0 1 2 3 0 T P E x t M f A B T t M f n [ 3 t T 0 S C 0 1 C =  : r N 0 5 O O 1 I 3 5 0 T R E t U I t T T R E F J _ O O _ T V u C R __ A S E

                                 ._   R S

s 1 1 0

                                      /

1 S E R P x s 0 = l o

e. 0 1

C t l

                                      /   -

5 2 P M L E R I T M f ( m u 8 a 0 s

                                 -            . . 1    . oN          3 R38 a.

m . m a w

E aT mO W) O Q .Q

0. -

y*4 A e ~ :..

                                                                ; * .' . j ,' ., :; s ; . '
                                                                        ~.        .

f y u _1 ','*TM(',r-lj,*t;;'

   @    oy      g of                                                           -! ti;
                                                                          .,'~).

s g3 GA m o 1 ( I

                                                                              ~ .i..

N 1 m . F

   }2;s3%
        % d 4 s e 6 8 b.

N lf 2 E

                                $ =                                                  .

e n a e o M L

                                >=

e . 2 o , - b $ n E E v E S 2 3 u y Ih $ j lIe r E l e t l{ j me

                            !                                                       n
                            ,          .-   .-  ..    ..   ..          r.      .

s wsirrwn a nss m If a t I t'

4 AI 9-5 0 N0 M4 0-N 0 J

         /*
                                                                      %i$es .tO           jTf ;r s-M 6 * -

d $>5 l

                                                                       '  Y'M6'.f':;Z   - ,      .

A 5  ;  ?" *1, c T W 2

                                                                          ]* .

4 e J E ..;4-. 6 DD 2 R. - '.- E I SU 0 f 3 '  :

? '.:'fM.-

CA o# I S A . 2 Jt c E. 8 l' s s.N_ R !2g l vigt e eA i . b a e r a - sRODp 8-8 i,, 2 8 r

                                           /

6 , 0 - S / e I D ( S Y P L t e X [ D R F S T 1 N 9

                                       /   D                                              3 t

0 T o 0 S g C = r N g O O g I S T . g S O m i g L T 7 N a. w c i Y u N R S E . _ S

                                  .. 4 3  S E
                                  , /

0 R P 4 I N

                                             =                      \                     1 t

_ M' ! l f P

                                                                   /

m u s WT L 8 a 1 i . n .d .N  : .d9

                                   -                  Rg[5
                                   =
                                   =

n

                                   =
                                   =

w

g, n > s s o s c e r o. 4, _ ws t . .* o $q

                                                                           . 5'. . ,..rh                        "S_ .
r. N .. *
                                                                            . s Y.- i9.                   F N'-

w S :d -

   "n T "M  7 E

3 E l

                                                                                    .%1psS '
                                                                                       .? .'

S DD 2 A -  : ..

r
s o$

I SU 8 f CA I . 2 M -

                       % *1 J     M E. 0         2 m.b vigt g e A
      )     . R. e t

u e r a P'. b R O D n R R 2 G O 8

                                                /

R 6 P 0 .

                                                /

3 2

                           ,               1 3   G Y.

l P i X N f N I T t

                             ,              M   T t

f D . 0 T 0 S C = l r E O N E S _ O I I _ 3 5 T  : 0 R E L U f I T R U C R .T - u T C Y R R m E S u R . v S i

                                      -   l    S U    E s    /    P n
                                                                              \_

1 i 0 = .

                                       . 0 M    I
                                          /      -

_ 5 P I M /_ _ R. I 1 L E I m . u m i

                                                     .   .   ' . s ._ . .N       I           =&

3gg

                                     =
                                     =
                                     =
                                     =
                                     =
                                     =

r

   .r'.                                                                                      ,

37 .

   *8 Qg                   ,

m . N' Y I M 4 m O .eg%:c,n. 1 . f w::Q e,h ; t .s f a ! > 1 i

   @   h y,$                                                       :?SNdW '
                                                                          . 6..e  9a:

f 9 m2 m e n4 o II) o4 *

                ) hgF                                                             v..

gj p g o rn U s d .s s % f R & 5 8 L. 2 E h E a- E 2 N

                               $a  m
                               >=

I U R e 9 b 5 e 5

                               "   I E

w 4

                            . E                                                       2 E #
  • I l :WEE ,
8 - =

l$ 7 y i( g-t i - i

t. 2 I sur sus rart om an " **

m ars arrasu on mm 8 m E I t

x.q - , 8 .

  ..    . 8               .

GL 0-A 3T M 4 s O e - m "Vj- g ,. , '., 97 u4

                 -  .(

0 * . 'l;i;f' 7 h '.h ui - j% g 4 (Y] '- n ; .e s % g 3&68L 2 E hE

                                   '    8 3

l h L = .. gg e o a 2 b $ N 8 M

                                                                   )              .,

E , =

                               ,      5 h2      $
                              =5 W 8   ~

s - R

                                !  . e                          r g            t_

l t" S E SWE gg gg ' R E IN ICE MW

                           .d l

I

      ~                                                                                    l}}