ML18151A894
ML18151A894 | |
Person / Time | |
---|---|
Site: | Surry, North Anna |
Issue date: | 11/30/1991 |
From: | Berryman R, Dziadosz D VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
To: | |
Shared Package | |
ML18151A895 | List: |
References | |
VEP-NAF-2, NUDOCS 9201060272 | |
Download: ML18151A894 (60) | |
Text
.I
- 1 D I
- Ii Ill Reactor Power
- 1-i Dist1ibution I I_ '
Analysis Using A ll Moveable In-Core Detector System and The TIP/CECOR Computer Code I' Package
. ~11 Nuclear Analysis and Fuel Department II Nuclear Engine~ring Services
- I VEP-NAF-2
- 1
/_ November, 1991 I'
,I
I VEP-NAF-2
- It*
I
,. REACTOR POWER DISTRIBUTION ANALYSIS USING A MOVEABLE IN-CORE DETECTOR SYSTEM AND THE TIP/CECOR COMPUTER CODE PACKAGE I
I*
BY T. W. SCHLEICHER
- I
,. NUCLEAR ANALYSIS AND FUEL DEPARTMENT NUCLEAR ENGINEERING SERVICES VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA NOVEMBER, 1991 I
I I,. Recommended for Approval:
t?,i~
I Supervisor, Nuclear Core Design I Approved:
I
,I R. M. Berryman
,. Manager, Nuclear Analysis and Fuel I
.1 CLASSIFICATION/ DISCLAIMER
\I The data, information, analytical techniques, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the 11' Company), and they may not be appropriate for use in.situations other than those (or which they_were specifically prepared. The Company therefore makes no claim I or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY 11*
- v OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE
',,( FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, information, analytical techniques, or conclusions in it. By making this report available, the Company does not authorize its use by -others, and any such use is expressly forbidden except with the prior written approval of the I Company. Any such written approval sha 11
- itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether
!I contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other I damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, information, and analytical techniques, or conclusions
'I in it.
':I
.I i
ABSTRACT
\'ii, The Virginia Electric and Power Company (Virginia Power) currently uses a version of the Westinghou~e INCO~E code ~o infer a three-dimensional core power distribution from a limited number of moveable in-core detectors at the Surry and N~rth Anna Power Stations. In response to changes in reload design and the po-II tential for the use of fixed in-core detectors in future cycles, Virginia Power
- I has acquired the ABB/C-E CECOR system to perform this function.
'( The Virginia Power version of the CECOR code, also known as TIP/CECOR, uses the CECOR radial solution methodology. However, since the Virginia Power moveable I detectors generate signals at 61 axial points, as compared to the 4 or 5 typically provided by fixed detectors, no axial synthesis is performed.
I Calculations documented in this report validate the Virginia Power TIP/CECOR package as an alternative to INCORE and show that coefficients generated by either I the Virginia Power PDQ Discrete or Two Zone models are acceptable.
I I
ii I
I TABLE OF CONTENTS Page I CLASSIFICATION/DISCLAIMER.
ABSTRACT . . . .
i ii
'I*
- TABLE OF CONTENTS iii
,, LJST OF TABLES __ ...
LIST OF FIGURES ..
iv V
.,,. SECTION 1 - INTRODUCTION 1
,, SECTION 2 - CODE PACKAGE DESCRIPTION SECTION 3 - METHODOLOGY SECTION 4 - RESULTS ..
3 9
17 I SECTION 5 -
SUMMARY
AND CONCLUSIONS SECTION 6 - REFERENCES . . .
52 53 1:
iii
,(
LIST OF TABLES Table Title Page
.I 3-1 3-2 Simulation Database North Anna Discrete Database 12 13 I 3-3 Surry Discrete Database 14 3-4 North A~~a.Two Zone Database 15 I 3-5 Surry Two Zone Database 16 t* 4-1 4~2 Summary of Simulation Database Statistics Axial Offset Comparison for Simulation Database (38 Thimbles) 19 20 I 4-3 4-4 Axial Offset Comparison for Simulation Database (44 Thimbles)
Axial Offset Comparison for Simulation Database (50 Thimbles) 21 22 I 4-5 Summary of SlC9 Simulation Statistics 23 4-6 Summary of North Anna Discrete Statistics 24 I 4-7 Summary of Surry Discrete Statistics . . . 25 4-8 Suminary_ of North Anna Two Zone Statistics 26 4-9 Summary of Surry Two Zone Statistics 27 I
II, I
I t
- I, II I iv
LIST OF FIGURES Figure Title Page I 2-1 2-2 Virginia Power TIP/CECOR Code Package Flowchart Surry and North Anna Instrumented Assembly Locations 6
7 I 2-3 4-1 Vi rgi ni a Power TIP/CECOR Geometry . . . .
Detector. Level 28 FQ Comparison (S1C9 Simulation/I Level INCOR) 8 28 I 4-2 Detector Level 28 FQ Comparison (S1C9 Simulation/I Level CECOR) 29 I 4-3 4-4 Detector Level 28 FQ Comparison (S1C9 Simulation/7 Level CECOR)
Detector Level 28 FQ Comparison (S1C9 Simulation/22 Level CECOR) 30 31 4-5 RPO Comparison for N1C2 Map 44 (INCOR with 1 Analysis Level) 32 4-6 RPO Comparison for N1C2 Map 44 (CECOR with 1 Analysis Level) 33 4-7 RPO Comparison for N1C2 Map 44 (CECOR with 7 Analysis Levels) 34 4-8 RPO Comparison for N1C2 Map 44 (CECOR with 22 Analysis Levels) 35 I 4-9 FAH Comparison for N1C2 Map 44 (INCOR with 1 Analysis Level) 36 4-10 FAH Comparison for N1C2 Map 44 (CECOR with 1 Analysis Level) 37 4-11 FAH Comparison for N1C2 Map 44 (CECOR with 7 Analysis Levels) 38 12 FAH Comparison for N1C2 Map 44 (CECOR with 22 Analysis Levels) 39 4-13 Fz(Z) Comparison North Anna Unit 1, Cycle 2 Map 44 40 4-14 FQ(Z) Comparison North Anna Unit 1, Cycle 2 Map 44 41 4-15 RPO Comparison for S1C6 Map 70 (INCOR with 1 Analysis Level) 42 4-16 RPO Comparison for S1C6 Map 70 (CECOR with 1 Analysis Level) 43 4-17 RPO Comparison for S1C6 Map 70 (CECOR with 7 Analysis Levels) 44 4-18 RPO Comparison for S1C6 Map 70 (CECOR with 22 Analysis Levels) 45 4-19 FAH Comparison for S1C6 Map 70 (INCOR with 1 Analysis Level) 46 4-20 FAH Comparison for S1C6 Map 70 (CECOR with 1 Analysis Level) 47 4-21 FAH Comparison for S1C6 Map 70 (CECOR with 7 Analysis Levels) 48 4-22 FAH Comparison for SlC6 Map 70 (CECOR with 22 Analysis Levels) 49 4-23 Fz(Z) Comparison Surry Unit 1, Cycle 6 Map 70 50 4-24 FQ(Z) Comparison Surry Unit 1, Cycle 6 Map 70 51 I V
I.
SECTION 1 INTRODUCTION
,.I Virginia Electric and Power Company (Virginia Power) reactors at the Surry and North Anna Power Stations use a Westinghouse moveable in-core detector system 1
- I to measure the neutron flux distribution at sixty-one axial points in a maximum of fifty instr:~mentation thimbles. Virginia Power currently uses a version of the Westinghouse INCORE code 2 to infer a three-dimensional assembly and pe~k pin power distribution from these moveable detector readings. INCORE also uses pre-I computed (by Virginia Power's PDQ Discrete Model 3 ) relative power densities, peak ii pins, and thimbl~ fluxes. INCORE code results are used for core power distrib-
,. ution monitoring and surveillance, core follow, and methods development verifi-cation.
I I. The design of Surry Unit 1, Cycle 13 (scheduled start-up April, 1994) will include part-length Hafnium flux suppression inserts to protect the reactor vessel welds from neutron embrittlement. The increased number of axial regions defined
- 1 by this design would require modification to Virginia Power 1 s production version of INCORE. This requirement, as well as the potential for using some or all fixed I in-core detectors in the future, prompted Virginia Power to acquire the ABB/C-E I. CECOR system 4 for use at the Surry and North Anna Power Stations.
ii The CECOR system, which has been reviewed by the USNRC 5 , is used for all 1, ABB/C-E reactors with fixed in-core detectors to synthesize full-core radial and axial assembly and peak pin powers. CECOR uses the fixed in-core detector
- t* readings and precomputed (from 2-group diffusion theory calculations) signal-to-power conversions, pin-to-box factors, and average coupling coefficients to syn-I thesize full-core power distributions. The Virginia Power version of the CECOR
-1.
code, also known as TIP/CECOR, uses the CECOR radial solution methodology. How-ever, since the Virginia Power moveable detectors generate signals at sixty-one 1
axial points, as compared to the four or five typically provided by fixed detec-tors, no axial synthesis is performed.
I The purpose of the topical report is to validate the Virginia Power TIP/CECOR II package as an alternative to INCORE by demonstrating the following:
- TIP/CE~PR has synthesis uncertainties similar to those of INCORE.
- TIP/CECOR, when used with PDQ Discrete Model 3 physics input, has overall uncertainties similar to those of INCORE .
.I
- TIP/CECOR, when used with PDQ 30 Two Zone Model' physics input, has overall uncertainties simil~r to those of INCORE.
/'
- TIP/CECOR, when used with either model's physics input, has overall un-certainties less than approved nuclear reliability factors'.
I I
1*
J, I
I I
'\
I I 2
SECTION 2 - CODE PACKAGE DESCRIPTION Figure 2-1 shows the relationships between the sources of input (Moveable de-
,1* tector data and PDQ physics input) and the three codes in the Virginia Power
/I TIP/CECOR Code Package (CESIC, TIP/CECOR, and CEWED) .
.,, TERMINOLOGY I
Terms used frequently in conjunction with the TIP/CECOR Code Package include:
analysis level, rod bank region, and detector level.
1/* An analysis level is an axial region, corresponding to axial regions in the physics model, for which there is a unique set of coefficients. For example, a
- I 2-dimensional physics model could only generate coefficients for one analysis level, while a 22-plane, 3-dimensional physics model could generate coefficients for up to 22 analysis levels.
I Rod bank regions are axial regions, superimposed over the analysis levels, for J. which there is a unique control rod configuration. For example, a single set of I eight control rods partially inserted defines two rod bank regions (unrodded and rodded). It is important to note that, while the dimensions of the analysis 1: levels are predetermined, the dimensions of the rod bank regions are specific to the individual flux map (i.e., determined by control rod positions).
I
,. A detector level is a discrete axial point at which a reaction rate is measured (and a power level determined). Each detector level has both a corresponding I/
analysis level and rod bank region. For example, detector level 55 may be in analysis level 18 and rod bank region 2.
I 3
I MOVEABLE DETECTOR DATA
_,: Figure 2-2 shows the location of the fifty instrumentation thimbles at the Surry and North Anna Power Stations. The moveable detector system consists of I five detector drives that simultaneously traverse five thimbles, recording a flux
,,. 0gnal at 61 a_x_ial points. A 'flux map' consists of a sufficient number of de-tector passes to ensure at least 38 of the 50 thimbles have been traversed. This
,I raw detector data is provided as input to the CESIC code.
,, PDQ PHYSICS INPUT I, Precomputed assemblywise relative power densities, peak pins, and thimble fluxes are obtained from either PDQ Discrete or PDQ Two Zone calculations. If I the 2D PDQ Discrete Model is used, only 1 analysis level is possible, and a sep-arate PDQ calculation is required for each rod bank region. If the 3D PDQ Two Zone Model is used, :either 1, 7, or 22 analysis levels (See Figure 2-3) may be I
used with input from a single PDQ calculation or separate PDQ calculations for each rod bank region. If a single, partially rodded 3D calculation is used, and the PDQ calculation and flux map are not at exactly the same _rod position, data I for the nearest analysis level with the same rod configuration are used.
I CESIC I- CESIC is a pre-processor for CECOR that writes CECOR Snapshot and Coefficient Files necessary for the execution of CECOR. The Snapshot File ~ontains moveable I detector data that has been shifted (to account for detector misalignment), ad-I justed (to account for reactor power level changes, the detector scale setting, and the detector background reading), and calibrated (to account for detector to detector differences). The Coefficient File contains signal-to-power conver-4
I sions, pin-to-box factors, and average coupling coefficients calculated using the ABB/CE methodology 4 and PDQ relative power densities, peak pins, and thimble fluxes. TIP/CECOR permits the use of axially dependent coefficients. Sets of coefficients are generated for each rod bank region for a user-specified number of analysis levels.
CECOR TIP/CECOR synthesizes three-dimensional box and peak pin power distributions I using data from the Snapshot and Coefficient Files.
ABB/CE CECOR program to create TIP/CECOR were limited to:
Modifications made to the I
- The bypassing of axial synthesis when moveable detector data is provided.
The sixty-one axial detector readings provide an explicit axial shape.
I
- Reformatting numerous edits that were designed assuming a limited number of axial detector levels.
- The creation of an output file to transfer data to the CEWED program.
CECOR performs sixty-one independent radial solutions (one for each detector
-1
,, level). Coefficients are assigned by determining what rod bank region and anal-ysis level bounds each detector level (an averaging technique is used for detector levels exactly corresponding to rod bank region or analysis level boundaries).
'I CEWED 1:
CEWED is a post-processor for CECOR that generates a concise summary of the I CECOR calculation as well as producing station-specific edits.
I I
I 5
I - --=:. -
FIGURE 2-1
,. VIRGINIA POWER TIP/CECOR CODE PACKAGE FLOWCHART I
~OVEABLE IN-CORE PDQ DISCRETE OR I DETECTOR SYSTEM TWO ZONE MODEL Raw Detector Signals RPD's, Peak Pins, I
& Thimble Fluxes CESIC I CECOR Snapshot File containing Shifted, Adjusted, and Calibrated Detector Signals
.I CECOR Coefficient File containing W-Primes, Coupling Coefficients, and I-Pins I TIP/CECOR I *CECOR Edit File containing 3-D Assembly and Peak Pin power-s and other miscellaneous data I required by CEWED I CEWED II I
I 6
I FIGURE 2-2
,, SURRY AND NORTH ANNA INSTRUMENTED THIMBLE LOCATIONS RP NM L-K _J_H_G FED C 8 A I
I ( 1)
( 2) 1 2
I
,, (IO)
( 3)
( 7)
(11)
( 4) ( 5)
(12)
( 8) ( 9)
( 6)
(13) (14) (15) 3 4
5 I (19)
(16)
(20)
(17)
(21)
(18)
(22) (23) 6 7
,I (24) (25) (26) (27) (28) (29) 8 (30) (31) (32) (33) 9 (34) (35) (36) (37) 10
, (38) (39) (40) (41)
I (42) (43) (44) (45) 11 12 I (48)
(46)
(49)
(47) 13 14 I (50) 15 I ( ) = Moveable Detector Number I
I I 7
I - -
FIGURE 2-3 VIRGINIA POWER TIP /CECOR GEOMETRY I CM FROM BOTTOM PDQ TWO-ZONE MODEL AXIAL TIP/CECOR 22 ANALYSIS TIP/CECOR 7 ANALYSIS TIP/CECOR 1 ANALYSIS
,1 OF FUEL 0.000 FUEL MESH LEVEL MODEL LEVEL MODEL LEVEL MODEL PLANE 1 LEVEL 1 I 5. 715
- 11. 430 PLANE 2 LEVEL 2 LEVEL 1 PLANE 3 LEVEL 3 I 22.860 PLANE 4 LEVEL 4 34.290 I 45. 720 PLANE 5 PLANE 6 LEVEL 5 LEVEL 6 LEVEL 2 I 68.580 91.440 PLANE 7 LEVEL 7 PLANE 8 LEVEL 8
.I 114. 300 PLANE 9- LEVEL 9 LEVEL 3 137 .160 PLANE 10 LEVEL 10 160.020 PLANE 11 LEVEL 11 182.880 LEVEL 4 LEVEL 1 I 205.740 PLANE 12 LEVEL 12 PLANE 13 LEVEL 13 I 228.600 251. 460 PLANE 14 LEVEL 14 LEVEL 5 PLANE 15 LEVEL 15 I 274.320 PLANE 16 LEVEL 16 297.180 I 320.040 PLANE 17 LEVEL 17 LEVEL 6 PLANE 18 LEVEL 18 I 331. 470 342.900 PLANE 19 LEVEL 19 PLANE 20 LEVEL 20 I 354.330 PLANE 21 LEVEL 21 LEVEL 7 360.045 I 365.760 PLANE 22 LEVEL 22 NOTE: THERE ARE 61 DETECTOR LEVELS (NODES) UNIFORMLY SPACED FROM BOTTOM TO TOP.
-I 8
I SECTION 3 - METHODOLOGY I The data used in the generation of each RPO, FAH* and Fq uncertainty factor were random samples of historical flux maps and are believed to be representative I of the entire population (data from all possible flux maps). RPO data consisted of percent dif_f_er.ences, (Predi cted-Measured)/Measured, for each assembly having I both a predicted and measured RPO greater than 1. FAH data consisted of percent differences for each assembly having both a predicted and measured FAH greater I than 1. Fq data consisted of percent differences for each assembly at five (for I Surry) or six (for North Anna) axial locations having both a predicted and meas-ured Fq greater than 1. Axial locations approximately halfway between the grids I were selected for conservatism. Since the Two Zone PDQ Model does not include grids, the predicted axial power distribution is not depressed at grid locations I resulting in a maximum difference between measured and predicted Fq tending to occur halfway between the grids.
I Uncertainty factors were calculated using the equation: 1.0 + (TL/100.), where TL is the appropriate 95%/95% one-sided upper tolerance limit. Si nee the I Kolomogorov D-test indicated that all of the statistical samples analyzed were I non-normal, Somerville. 7 tolerance limits were calculated using a method described This method determ~nes the 95%/95% one-sided upper tolerance limit by I to be bounded by the mth largest value in a ranking of the observed values of a non-normal distribution. The value of 11 m" is a function of the number of obser-I vations which, for populations greater than 500 (n>SOO), can be approximated by
,I the equation 17+.045*(n-500).
I The overall uncertainty associated with TIP/CECOR includes a measurement un-certainty and a synthesis uncertainty. The synthesis uncertainty, which is in-dicative of the code's ability to calculate the power distribution in I 9
I uninstrumented assemblies, can be determined by performing TIP/CECOR calculations using simulated detector traces (traces that exp 1icitly represent PDQ I 3-Dimensional Two Zone predictions). Table 3-1 lists the 27 simulated flux maps that comprised the Simulation Database.- Fo~maps with fewer than 50 thimbles, I thimble removal was determined by random number generation. For the 38-thimble I maps, Thimbles* *2; 6, 10, 13, 15, 20, 26, 28, 31, 39, 44, and 46 were removed.
For the 44-thimble maps, Thimbles 8, 9, 22, 28, 32, and 40 were removed. The I Simulation Database was analyzed using TIP/CECOR (with 1, 7, and 22 analysis levels) and INCORE (with 1 analysis level). An additional simulation case was I performed for Surry Unit 1, Cycle 9 at O MWD/MTU with part-length Hafnium flux I suppression inserts. A good estimate of the. impact of the inserts was obtained by modelling them as part-length inserts made of control rod material (Ag-In-Cd).
I Assemblies Hl, R8, A8, and H15 contained 27-inch long inserts (spanning Detector Levels 17 through 28). Assemblies M3, 03, N4, C4, N12, Cl2, M13, and 013 containe.d 54-inch long inserts (spanning Detector Levels 5 through 28). The purpose of this I '
case was to investigate the ability of INCORE and TIP/CECOR to synthesize power distributions in the presence of these inserts.
I I The PDQ Discrete Model is currently used to generate precomputed relative power densities, peak pins, and thimble fluxes for INCORE. The feasibility of using I this input with TIP/CECOR was demonstrated by determining the overall uncertainty I for a series of historical flux maps (listed in Tables 3-2 and 3-3 for North Anna and Surry, respectively). These seventy-nine maps, which include a range of power I levels and rod configurations (including several dropped rod cases), comprised I the Discrete Database. Since the PDQ Discrete Model is only 2-Dimensional, the Discrete Database was analyzed using TIP/CECOR and INCORE with only 1 analysis "I level and uncertainty factors were only determined for RPO and FAH*
10
I The feasibility of using 3-D PDQ Two Zone physics input with TIP/CECOR was demonstrated by determining the overall uncerta.inty for a series of historical I flux maps (listed in Tables 3-4 and 3-5 for North Anna and Surry, respectively).
These eighty maps, which include a range_of power levels and rod configurations, I comprised the Two Zone Database. With the exception of Surry Cyc 1es prior to Cycle 4, these_maps are identical to those included in Two Zone Topical Report 6
- I The Two Zone Database was analyzed using TIP/CECOR (with 1, 7, and 22 analysis I levels) and INCORE (with 1 analysjs level).
I I
I I
I I
I I
I I
I 11
I TABLE 3-1 SIMULATION DATABASE I FLUX MAP - -
CYCLE PERCENT MWD/MTU _ POWER D-BANK POSITION THIMBLES USED I N1C8 N1C8 Simulated Simulated Map Map 01 02 150 1000 100.0 100.0 228 228 38 38 N1C8 Simula~ed Map 03 3000 100.0 228 38 I N1C8 N1C8 N1C8 Simulated Simulated Simulated Map Map Map 04 05 06 5000 7000
. 9000 100.0 100.0 100.0 228 228 228 38 38 38 I N1C8 N1C8 N1C8 Simulated Simulated Simulated Map Map Map 07 08 09 11000 13000 15000 100.0 100.0 100.0 228 228 228 38 38 38 44 I N1C8 N1C8 N1C8 Simulated Simulated Simulated Map Map Map 01 02 03 150 1000 3000 100.0 100.0 100.0 228 228 228 44 44 N1C8 Simulated Map 04 5000 100.0 228 44 I N1C8 N1C8 Simulated Simulated Map Map 05 06 7000 9000 100.0 100.0 100.0 228 228 228 44 44 44 N1C8 Simulated Map 07 11000 I N1C8 N1C8 Simulated Simulated Map Map 08 09 13000 15000 100.0 100.0 228 228 44 44 50 N1C8 Simulated Map 01 150 100.0 228 N1C8 Simulated Map 02 1000 100.0 228 50 N1C8 Simulated Map 03 3000 100.0 228 ~o N1C8 Simulated Map 04 5000 100.0 228 50 N1C8 Simulated Map 05 7000 100.0 228 50 I N1C8 N1C8 Simulated Simulated Map Map 06 07 9000 11000 100.0 100.0 228 228 50 50 N1C8 Simulated Map 08 13000 100.0 228 50 I N1C8 Simulated Map 09 15000 100.0 228 50 I
I I
I I
-I 12
I TABLE 3-2 NORTH ANNA DISCRETE DATABASE I FLUX MAP DATE CYCLE MWD/MTU _
PERCENT POWER D-BANK POSITION THIMBLES USED I N1C8 NlC8 Map Map 01 02 07 /17 /89 07/19/89 14 47 28.8 74.4 163 192 38 44 N1C8 Map 03. 07/26/89 257 100.0 228 43 I N1C8 N1C8 N1C8 Map Map Map 04 05 06 07/27/89 07/27/89 08/21/89 280 300 1243 100.0 100.0 100.0 206 228 228 21 21 43 I N1C8 N1C8 N1C8 Map Map Map 07 08 09 09/22/89 10/23/89 11/17 /89 2550 3786 4768 100.0 100.0 100.0 228 228 228 42 44 44 NlC8 Map 10 12/27/89 5728 95.6 228 42 I N1C8 N1C8 Map Map 11 12 01/30/90 02/28/90 6970 8122 100.0 99.9 100.0 228 228 228 44 44 44 N1C8 Map 13 04/02/90 9462 I N1C8 N1C8 NlC8 Map Map Map 14 15 16 04/26/90 05/25/90 06/20/90 10387 11559 12580 100.0 99.9 100.0 228 228 228 46 45 43 N1C8 Map 17 06/21/90 12609 99.9, 217 21 I N1C8 NlC8 Map Map 18 19 06/21/90 07/23/90 12627 13897 100.0 100.0 228 228 25 47 N1C8 Map 20 08/22/90 15079 100.1 228 47 N1C8 Map 21 09/19/90 16200 100.0 228 47 N1C8 Map 22 10/17/90 17224 82.8 228 44 N2C7 Map 01 05/10/89 19 29.9 123 46 I N2C7 N2C7 N2C7 Map Map Map 02 03 04 05/11/89 05/13/89 05/17/89 35 60 224 45.0 82.0 98.0 134 195 208 46 46 45 05/18/89 253 99.2 1 210 26 I N2C7 N2C7 N2C7 Map Map Map 05 06 07 05/18/89 05/18/89 264 270 99.0 99.0 204 216 21
-29 N2C7 Map 08 06/01/89 800 100.0 228 46 I. N2C7 N2C7 N2C7 Map Map Map 09 10 11 06/23/89 07/24/89 08/22/89 1700 2914 4066 100.0 100.0 100.0 .
228 228 228 44 46 45 I N2C7 N2C7 N2C7 Map Map Map 12 13 14 09/21/89 10/20/89 11/06/89 5257 6409 7095 100.0 100.0 99.9 228 228 228 45 45 46 N2C7 Map 15 12/08/89 8339 100.0 228 47 I N2C7 N2C7 Map Map 16 17 01/08/90 02/05/90 9572 10685 99.9 100.0 228 228 47 47 N2C7 Map 18 03/07/90 11892 100.0 228
- 47 I N2C7 N2C7 N2C7 Map Map Map 19 20 21 03/27/90 03/27/90 03/28/90 12691 12700 12721 100.0 99.9 99.9 228 216 228 46 26 26 100.0 228 46 I N2C7 N2C7 N2C7 Map Map Map 22 23 24 04/25/90 05/18/90 06/14/90 13841 14731 15822 100.0 99.9 228 228 47 47 N2C7 Map 25 07/16/90 17014 85.4 228 47 N2C7 Map 26 08/16/90 17932 49.6 112 47 I 13
I TABLE 3-3 SURRY DISCRETE DATABASE I FLUX MAP DATE CYCLE MWD/MTU -
PERCENT POWER D-BANK POSITION THIMBLES USED I SlClO SlClO Map Map 10 19 07/07/89 08/22/89 1850 3373 25.7 100.0 133 217 44 44 SlClO Map 20 - 09/28/89 4420 100.0 217 43 I SlClO SlClO SlClO Map Map Map 21 22 28 10/21/89 10/24/89 11/27/89 5185 5254 6439 73.8 100.0 100.0 193 225 223 44 40 44 I SlClO SlClO SlClO Map Map Map 29 30 31 12/28/89 01/29/90 03/06/90 7419 8346 9701 100.1 99.9 100.0 224.
223 223 40 40 44 SlClO Map 35 04/07/90 10800 100.0 221 41 I SlClO SlClO Map Map 36 37 04/26/90 05/21/90 11440 12300 100.0 100.0 217 216 41 42 SlClO Map 41 07/11/90 13450 100.0 213 40 I S1C10 S1C10 S1C10 Map Map Map 44 46 48 07/27/90 07/28/90 07/30/90 13829 13860 13908 97.9 95.5 94.4 212 215 224 44 40 43 S1C10 Map 49 08/23/90 14858 83.4 224 42 I S1Cl0 S2C10 Map Map 50 02 09/24/90 10/02/89 15520 115 66.2 63.9 224 180 43 42 S2Cl0 Map 14 02/28/90 3549 100.0 221 40 S2C10 Map 15 03/26/90 4453 100.0 224 41 S2C10 Map 18 04/24/90 5244 100.0 223 41 S2C10 Map 19 05/31/90 6476 100.0 218 41 I S2C10 Map 20 06/27/90 7564 100.0 221 41
,, S2C10 S2C10 S2C10 S2Cl0 S2C10 Map Map Map Map Map 22 25 26 31 35 07/18/90 09/04/90 09/26/90 11/18/90 11/19/90 8016 9412 10325 11165 11200 100.0 100.0 99.8 27.6 44.9 222 223 224 191 187 41 39 39 42
-42 S2C10 Map 38 11/21/90 11231 66.0 190 41 I S2C10 Map 41 11/26/90 11392 90.1 216 42 I
I I
I I 14
I - --:::.._---
TABLE 3-4 NORTH ANNA TWO ZONE DATABASE I FLUX MAP DATE CYCLE PERCENT MWD/MTU _ POWER 0-BANK POSITION THIMBLES USED I NlCl NlCl Map Map 01 25 04/09/78
. 05/14/78 0
300 4.0 96.0 228 216 48 48 NlCl Map 52. 01/18/79 8405 96.4 218 38 I NlCl N1C2 Map Map 68 07 08/01/79 01/24/80 14070 28 100.0 30.0 220 165 49 46 N1C2 Map 15 02/07/80 300 99.1 228
- 48 I N1C2 N1C2 Map Map 26 44 05/05/80 09/30/80 3277 8109 99.9 99.9 222 210 47 47 N1C3 Map 02 04/08/81 0 4.0 220 46 I N1C3 N1C3 N1C3 Map Map Map 14 33 84 04/27/81 11/13/81 03/15/82 487 6883 11434 100.2 99.8 100.0 224 213 216 42 48 48 I N1C4 NlC4 N1C4 Map Map Map 02 07 17 03/14/83 03/24/83 08/17/83 13 305 5520 29.1 100.0 100.0 180 221 216 48 45 42 39 I N1C4 N1C5 N1C5 Map Map
- Map 25 01 15 02/15/84 09/25/84 10/10/84 10170 0.
225.
100.0 4.0 99.8 226 228 224 39 48 N1C5 Map 23 04/16/85 6831. 99.9 224 43 N1C5 Map 34 10/22/85 12983. 100.0 228 45 N1C6 Map 09 01/28/86 378. 100.0 219 48 48 I N1C6 N1C6 N2C2 Map Map Map 17 29 02 07/21/86 03/06/87 06/03/82 6690.
14340.
0 100.0 100.0 4.0 228 228 228 39 44 100.0 224 50 I N2C2 N2C2 N2C3 Map Map Map 20 27 01 11/05/82 02/15/83 05/29/83 3225 6750 0
99.9 4.0 218 211 50
~l 212 48 I N2C3 N2C3 N2C3 Map Map Map 14 25 37 07/22/83 12/30/83 06/14/84 1566 7647 13040 100.0 99.9 100.0 217 221 43 46 3.0 211 46 I N2C4 N2C4 N2C4 Map Map Map 01 08 22 11/03/84 12/07/84 06/04/85 0
1060 6610 100.0 100.0 228 220 49 46 N2C4 Map 28 10/10/85 11267 100.0 228 49 I N2C5 N2C5 Map Map 08 19 04/21/86 10/10/86 250 6075 100.0 100.0 228 228 49 39 N2C5 Map 29 04/24/87 13671 100.0 228 50 I N2C6 N2C6 Map Map 04 13 11/16/87 03/17/88 222 4930 100.0 100.0 228 228 47 46 N2C6 Map 22 10/11/88 13175 100.0 228 45 I
I 15
I I
TABLE 3-5 SURRY TWO ZONE DATABASE CYCLE PERCENT D-BANK THIMBLES FLUX MAP DATE- .. MWD/MTU _ POWER POSITION USED I S1C5 SlC5 Map Map 01 11 07/07/78 08/18/78 1300 0 0.0 100.0 218 220 40 42
- S1C5 Map 23- - 03/12/79 7411 100.0 224 43 I S1C5 S1C6 Map Map 32 .
01 06/06/80 07/07/81 11580 0
100.0 0.0 216 201 42 40 S1C6 Map 13 08/10/81 973 100.0 217 42 I S1C6 S1C6 Map Map 56 70 04/20/82 10/28/82 7518 13207 100.0 100.0 228 222 42 38 S1C7 Map 02 05/31/83 0 2.0 221 38 I S1C7 S1C7 S1C7 Map Map Map 03 08 14 06/17/83 07/19/83 11/16/83 6
807 4329 50.8 100.0 100.0 180 223 228 45 49 45 I S1C7 S1C8 S1C8 Map Map Map 22 08 37 03/20/84 02/04/85 10/22/85 7630 925 8081 100.0 100.0 100.0 226 228 227 39 47 38 I S1C9 S1C9 S1C9 Map Mqp Map 06 28 40 07/29/86 06/02/87 02/19/88 240 7295 14606 100.0 100.0 100.0 220 222 217 39 44 44 S2C4 Map 01 10/10/77 0 3.0 228 47 S2C4 Map 10 11/16/77 1186 100.0 223 41 S2C4 Map 23 08/14/78 8250 100.0 201 41 I S2C4 S2C5 S2C5 Map Map Map 34 01 17 12/14/78 08/15/80 10/17/80 11934 0
1690 100.0 0.0 100.0 226 216 217 47 42 48 I S2C5 S2C5 S2C6 Map Map Map 23 35 01 02/11/81 08/12/81 12/30/81 5619 11320 0
100.0 100.0 0.0 219 220 223 49 44 "47 I S2C6 S2C6 S2C6 Map Map Map 07 18 29 02/10/82 09/17/82 04/27/83 1116 7390 13900 100.0 100.0 100.0 228 228 227 47 47 47 I S2C7 S2C7 S2C7 Map Map Map 02 13 19 09/29/83 11/23/83 05/23/84 10 1647 5781 46.5 99.0 100.0 178 226 226 38 38 44 S2C7 Map 38 01/30/85 13122 100.0 223 47 I S2C8 S2C8 Map Map 13 23 09/21/85 02/11/86 2423 6525 100.0 99.9 211 218 42 41 S2C8 Map 34 09/05/86 12391 100.0 221 41 I S2C9 S2C9 Map Map 09 17 04/23/81 10/14/87 1072 6687 100.0 100.0 208 223 43 44 S2C9 Map 27 06/28/88 13553 100.0 224 41 I
I 16
I SECTION 4 - RESULTS I This section summarizes results of the TIP/CECOR validation. Results are presented separately for the SimuJation Database, the Discrete Database, and the I Two Zone Database.
I Results of TIP/CECOR and INCORE calculations analyzing the Simulation Database I are provided in Table 4-1. The synthesis uncertainty was found to be independent of the number of thimbles used. TIP/CECOR (using 1, 7, or 22 analysis levels)
I and INCORE (using 1 analysis level) all had essentially no RPO or FAH synthesis I . uncertainty. TIP/CECOR (usirig 1 analysis level) and INCORE (using 1 analysis level) had essentially the same FQ uncertainties. Increasing the number of
,I analysis levels used with TIP/CECOR (to 7 or 22), significantly reduces the FQ uncertainty factor. Axial offsets for the Simulation Database for 38 thimbles, 44 thimbles, and 50 thimbles are provided in Tables 4-2 through 4-4, respectively.
I The use of multiple analysis levels significantly improves the calculation of axial offset.. Table 4-5 summarizes the results of the Surry Unit 1, Cycle 9 I Simulation. The synthesis uncertainties exhibit trends similar to those of the Simulation Database (i.e., multiple analysis levels minimize synthesis uncer-I tainty). However, large localized maximum and minimum FQ differences, expected I with INCORE and 1 analysis level CECOR because of the inserts, were also found with 7 analysis level CECOR. FQ comparison maps for Detector Level 28 (near the I top of each insert), provided in Figures 4-1 through 4-4, demonstrate this dif-ficulty in determining FQ in assemblies adjacent to the inserts. INCOR under-I predicts FQ by .over six percent for relatively high powered assemblies P9, Nll, I Mll, L3, G2, E3, and Cll (Figure 4-1). Both 1 analysis level CECOR and 7 analysis level CECOR have problems with assemblies with the inserts (Figures 4-2 and 4-3).
CECOR using 22 analysis levels (Figure 4-4) is necessary to avoid these problems.
I 17
I - ---- -**
Results of TIP/CECOR and INCORE calculations analyzing the Discrete Database are provided in Tables 4-6 and 4-7 (for North Anna and Surry, respectively) .
.I TIP/CECOR (using 1 analysis level) had RPD and FAH uncertainty factors similar to those of INCORE (using 1 analysis level).
I Results of J_IP/CECOR and INCORE calculations analyzing the Two Zone Database I are provided in Tables 4-8 and 4-9 (for North Anna and Surry, respectively).
I TIP/CECOR (using 1, 7, or 22 analysis levels) had identical or lower RPD uncer-tainties than INCORE (using 1 analysis level). TIP/CECOR ~using 1, 7, or 22 I analysis levels) had slightly higher FAH uncertainties than INCORE (using 1 analysis level). This can be attributed to peaking factor methodology differences I between TIP/CECOR and INCORE. Both TIP/CECOR and INCORE determine the peak pin
- 1 power for each assembly at each detector level, however, INCORE also monitors the power for pins other than the peak location. TIP/CECOR 1 s FAH calculation assumes the peak pin is the same pin for each detector level, while INCORE 1 s FAH is the maximum of the integral of each monitored pin. Therefore, when the assembly peak I pin is not the same pin for each detector level (e.g., partially rodded cores),
TIP/CECOR will calculate a more conservative FAH* TIP/CECOR (using 1 analysis I level) and INCORE (using 1 analysis level) had essentially the sa~e FQ uncer-I tainties. Increasing the number of analysis levels used with TIP/CECOR (to either 7 or 22), reduces the FQ uncertainty factor. Predicted versus measured RPD and I FAH comparison maps and plots of Fz(z) and F0(z) were generated to document the consistency of INCORE and CECOR results. Since providing these comparisons for I each map would involve* a prohib.itive number of figures, only the map with the I maximum average difference in FQ level) was selected.
between predicted and CECOR (using 1 analysis Comparisons for the selected North Anna map (N1C2 Map 44),
I Figures 4-5 through 4-14, and the selected Surry map (S1C6 Map 70), Figures 4-15
.. through 4-24, demonstrate the consistency of INCORE and CECOR results.
I 18
I ~
TABLE 4-1
SUMMARY
OF SIMULATION DATABASE STATISTICS I CODE/
ANALYSIS # OE. . # IJF _ MEAN STD. MAX. MIN. UNCERT.
I TYPE RPO LEVELS INCOR/1 THIMBLES 38 OBS.
1413 DIFF.
-0.017 DEV.
0.141 DIFF. *mFF.
0.3 -0.6 FACTOR 1.004 CECOR/1- 38 1413 -0.004 0.031 0.3 -0.3 1.001 I CECOR/7 CECOR/22 38 38 1413 1413 0.006 0.005 0.044 0.038 0.4 0.4
-0.2
-0.2 1.001 1.000 RPO INCOR/1 44 1413 -0.019 a.po 0.3 -0.6 1.004 I CECOR/1 CECOR/7 44 44 1413 1413
-0.003 0.007 0.006 0.029 0.044 0.040 0.3 0.4 0.4
-0.3
-0.2
-0.2 1.001 1.000 1.000 CECOR/22 44 1413 I RPO INCOR/1 CECOR/1 50 50 50 1413 1413 1413
-0.016
-0.004 0.006 0.133 0.030 0.042 0.3 0.2 0.4
-0.6
-0.3
-0.2 1.004 1.001 1.000 CECOR/7 I FaH CECOR/22 INCOR/1 CECOR/1 50 38 38 1413 1413 1413 0.005 0.044 0.038 0.039 0.131 0.079 0.4 0.5 0.5
-0.2
-0.5
-0.2 1.000 1.002 1.000 I CECOR/7 CECOR/22 INCOR/1 38 38 44 1413 1413 1413 0.000
-0.004 0.048 0.045 0.042 0.126 0.2 0.2 0.5
-0.2
-0.2
-0.4 1.001 1:002 1.002 FaH CECOR/1 44 1413 0.039 0.079 0.5 -0.2 1.000 CECOR/7 44 1413 0.001 0.045 0.2 -0.2 1.001 CECOR/22 44 1413 -0.003 0.042 0.2 -0.2 1.002 I FaH INCOR/1 CECOR/1 CECOR/7 50 50 50 1413 1413 1413 0.055 0.038 0.000 0.122 0.080 0.045 0.6 0.5 0.2
-0.4
-0.2
-0.2 1.002 1.000 1.001 CECOR/22 50 1413 -0.003 0.041 0.2 -0.2 1.002 I FQ INCOR/1 CECOR/1 38 38 8478 8478
-0.171
-0.177 2.027 1.987 7.5 7.1
-6.0
-5. 9 - .
1.037 1.038 CECOR/7 38 8478 0.327 0.454 1.5 -1.4 1.007 I. FQ CECOR/22 INCOR/1 38 44 8478 8478 0.474
-0.130 0.085 1.906 0.7 6.7 0.0
-5.1 1.004 1.035 CECOR/1 44 8478 -0.134 1.818 5.8 -5.2 1.035 I CECOR/7 CECOR/22 44 44 8478 8478 0.327 0.476 0.434 0.080 1.3 0.7
-1.4 0.0 1.007 1.004 FQ INCOR/1 50 8478 -0.144 1.948 6.6 -5.1 1.036 I CECOR/1 CECOR/7 50 50 8478 8478
-0.150 0.326 1.846 0.437 5.8 1.4
-5.3
-1.4 0.0 1.035 1.007 1.004 CECOR/22 50 8478 0.475 0.081 0.7 I
I I 19
I
... TABLE 4-2 AXIAL OFFSET COMPARISON FOR SIMULATION DATABASE (38 THIMBLES)
I
- - -CODE/NUMBER OF ANALYSIS LEVELS I
MAP NUMBER - . PDQ INCOR/1 CECOR/1 CECOR/7 CECOR/22 I
1 -0.48 -0.836 -1.016 -0.387 -0.374 I
2 0.05 -0.434 -0. 611 0.132 0.143 I
3 -1. 51 -2.207 -2.389 -1. 475 -1.462 I
4 -2.28 -3.200 -3.387 -2.288 -2 .271 I -2.73 -4.020 -2.755 -2.732 5 -3.835 6 -2.94 -4.265 -4.452 -2.982 -2.960 I
7 -3.14 -4.675 -4.861 -3.192 -3.165 I .:.3.21 8 -4.964 -5 .144 -3.265 -3. 236 I 9 -2.99 -4.976 -5.150 -3.045 -3.015 I
I I
I I 20
I TABLE 4-3 AXIAL OFFSET COMPARISON FOR SIMULATION DATABASE (44 THIMBLES)
I
- -- CODEtNUMBER OF ANALYSIS LEVELS I
MAP NUMBER - - PDQ INCOR/1 CECOR/1 CECOR/7 CECOR/22 I -
1 -0.48 -0.687 -0.873 -0.385 -0.375 I
2 0.05 -0.276 -0.462 0.134 0.143 I
3 -1.51 -2.025 -2 . 222 -1.473 -1.462 I
4 -2.28 -2.999 -3.207 -2.286 -2.272
,I 5 -2.73 -3.622 -3.832 -2. 75-J -2.733 6 -2.94 -4.039 -4.254 -2.979 -2.961 I -3.190 -3.166 7 -3.14 -4.444 -4.658 I -3.21 -4.735 -4.942 -3.262 -'3.237 8
I -2.99 -4.753 -4.951 -3.042 -3.015 9
I I
I I
I 21
I TABLE 4-4 AXIAL OFFSET COMPARISON FOR SIMULATION DATABASE (50 THIMBLES)
I
- - -CODEtNUMBER OF ANALYSIS LEVELS I
MAP NUMBER -. PDQ INCOR/1 CECOR/1 CECOR/7 CECOR/22 I
1 -0.48 -0.725 -0.921 -0.386 -0.375 I
2 0.05 -0.317 -0.511 0.133 0.143 I
3 -1.51 -2.077 -2.278 -1.474 -1.462 I
4 -2.28 -3.060 -3.268 -2.287 -2.272 I
5 -2.73 -3.688 -3.896 -2.754 -2.733 6 -2.94 -4.111 -4.322 -2.981 -2.961 I
7 -3.14 -4.519 -4.729 -3.191 -3.166 I
8 -3.21 -4.809 -5.013 -3.264 -3.237 I
9 -2.99 -4.824 -5.021 -3.044 -3.016 I
I I
I I 22
I TABLE 4-5
SUMMARY
OF SlC9 SIMULATION STATISTICS I CODE/
ANALYSIS # OF- - # -OF MEAN - STD. MAX. MIN. UNCERT.
I TYPE RPO LEVELS INCOR/1 THIMBLES 50 OBS.
157 DIFF.
0.003 DEV.
0.127 DIFF. DIFF.
0.4 -0.4 FACTOR 1.004
,I ~
CECOR/1-CECOR/7 CECOR/22 50 50 50 157 157 157
-0.018 0.028 0.024 0.153 0.118 0.111 0.3 -0.7 0.7 -0.1 0.7 -0.1 1.007 l.001 1.001 FAH INCOR/1 50 157 0.065 0.114 0.4 -0.2 1.002 I CECOR/1 CECOR/7 50 50 157 157 0.074 0.016 0.124 0.058 0.6 -0.3 0.4 -0.1 1.003 1.001 CECOR/22 50 157 0.008 0.042 0.2 -0.1 1.001 I FQ INCOR/1 CECOR/1 50 50 785 785 0.313 0.385 1.793 2.066 8.8 -13.4 15.7 -8.8 1.021 1.019 CECOR/7 50 785 0.399 1.162 9.9 -5.5 1.004
I' CECOR/22 50 785 0.340 0.051 0.5 0.0 1.003 I
I I
I I
I
.I I
I 23
I - --=-* -- -
TABLE 4-6
SUMMARY
OF NORTH ANNA DISCRETE STATISTICS I CODE/PDQ MODEL/ DATA MEAN STANDARD UNCERT.
DESCRIPTION ANALYSIS- LEVELS- POINTS DIFFERENCE DEVIATION FACTOR I RPO > 1. 00 INCOR/DISCRETE/1 5317 0.228 1.31 1.022 I RPO > 1.00 CECOR/DISCRETE/1 5329 0.116 1.10 1..016 I
FaH > 1. 00 INCOR/DISCRETE/1 5759 0.245 1.16 1.020 I 5772 0.005 1.18 1.019 FaH > 1.00 CECOR/DISCRETE/1 I
,I I
I
,I I
I I
I I 24
I TABLE 4-1
SUMMARY
OF SURRY DISCRETE STATISTICS I DESCRIPTION CODE/PDQ MODEL/
ANALYSIS- LEVELS--
DATA MEAN STANDARD POINTS DIFFERENCE DEVIATION UNCERT.
FACTOR I RPO > 1. 00 INCOR/DISCRETE/1 3365 0.158 1.59 1.027 I RPO > 1.00 CECOR/DISCRETE/1 3375 0.096 1.22 1.021 I INCOR/DISCRETE/1 3679 0.114 1.55 1.026 FAH > 1. 00 I FAH > 1. 00 CECOR/DISCRETE/1 3689 -0.165 1.29 1.024 I
- .1 II I
I I.
I I
I I L I 25
I TABLE 4-8
SUMMARY
OF NORTH ANNA TWO ZONE STATISTICS I CODE/PDQ MODEL/ DATA MEAN STANDARD UNCERT.
DESCRIPTION ANALYSIS LEVELS- - POINTS DIFFERENCE DEVIATION FACTOR I RPO > 1. 00 INCOR/TWO ZONE/1 3998 0.216 1.84 1.029 I RPO > 1. 00 CECOR/TWO ZONE/1 4003 0.123 1. 73 1.029 I RPO > 1. 00 CECOR/TWO ZONE/7 4002 0.124 1. 73 1.029 I RPO > 1.00 CECOR/TWO ZONE/22 4002 0.124 1. 73 1.029 I INCOR/TWO ZONE/I 5176 0.135 1. 90 1.032 FAH > 1. 00 I CECOR/TWO ZONE/1 5174 -0.058 1. 90 1.037 FAH > 1. 00 FAH > 1. 00 CECOR/TWO ZONE/7 5175 -0.148 1.91 1.038 I FAH > 1.00 CECOR/TWO ZONE/22 5176 -0.161 1. 91 1.038 I ' .
Fq > 1.00 INCOR/TWO ZONE/I 31300 -2.086 2.80 1.066 1*
Fq > 1.00 CECOR/TWO ZONE/I 31303 -2.237 2.79 1.067 I
Fq > 1.00 CECOR/TWO ZONE/7 31287 -2.064 2.47 1.062 I
Fq > 1.00 CECOR/TWO ZONE/22 . 31280 -1. 948 2.47 1.061 I
I I 26
I TABLE 4-9
SUMMARY
OF SURRY TWO ZONE STATISTICS ii CODE/PDQ MODEL/ DATA MEAN STANDARD UNCERT.
DESCRIPTION ANALYSIS LEVEL~- POINTS DIFFERENCE DEVIATION FACTOR I RPO > 1.00 INCOR/TWO ZONE/1 4081 0.071 1.39 1.022
- RPO > 1. 00 CECOR/TWO ZONE/1 4094 0.044 1.23 1. 020 I
., RPO RPO
- 1. 00
- 1. 00 CECOR/TWO ZONE/7 CECOR/TWO ZONE/22 4089 4091 0.042 0.042 1.23 1.22 1.020 1.020 I INCOR/TWO ZONE/1 5129 0.074 1.43 1.022 FAH > 1. 00 I
FAH > l. 00 CECOR/TWO ZONE/1 5137 -0.017 1.29 1.023 FAH > 1. 00 CECOR/TWO ZONE/7 5140 -0 .111 1.29
- 1.024 I FAH > 1. 00 CECOR/TWO ZONE/22 5141 -0.128 1.29 1.024 I -
Fq > 1.00 INCOR/TWO ZONE/1 25576 -2.429 2.72 1.068 I.
Fq > 1. 00 CECOR/TWO ZONE/1 25585 -2.479 2.61 1.067 I
Fq > 1.00 CECOR/TWO ZONE/7 25580 -2.339 2.20 1.057 I
Fq > 1.00 CECOR/TWO ZONE/22 25572 -2.221 2.20 1.056 I
I
.I 27
.I FIGURE 4-1 DETECTOR LEVEL 28 FQ COMPARISON (S1C9 SIMULATION/1 LEVEL INCOR)
I R p N ti L K
J H G F E D C B A 0.674 0.652 0.674 0.642 0.622 0.639 1 5.0 4.8 5.5
- -. 0.759 1.160 1.573 1.381 1.573 1.160 0.759 0.735 1.175 1.496 1.334 1.468 1.155 0.747 2 3.3 -1.3 5.1 3.5 7.2 0.4 1.6 0.831 1.589 1.628 1.526 1.646 1.526 1.628 1.589 0.831 I 0.810 1.482 1.607 1.542 1.632 1.533 1.590 1.488 0.804 3 2.6 7.2 1.3 -1.0 0.9 -0.5 2.4 6.8 3.4 0.833 1.363 1.651 1.568 1.664 1.364 1.664 1.568 1.651 1.363 0.833 0.854 1.335 1.605 1.592 1.652 1.375 1.649 1.591 1.576 1.335 0.851 4 I -2.5 2.1 2 .* 9 -1.5 0.7 -0.8 0.9 -1.4 4.8 2.1 -2.1 0.774 1.588 1.655 1.619 1.631 1.652 1.696 1.652 1.631 1.619 1.655 1.588 0.774 0.795 1.552 1.625 1.645 1.634 1.680 1.678 1.677 1.638 1.653 1.639 1.548 0.785 5
-2.6 2.3 1.8 -1.6 -0.2 -1.7 1.1 -1.5 -0.4 -2.1 1.0 2.6 -1.4 1.160 1.627 1.569 1.627 1.686 1.665 1.565 1.665 1.686 1.627 1.569 1.627 1.160 1.167 1.599 1.577 1.617 1.699 1.651 1.587 1.647 1. 700 1.640 1.596 1.591 1.160 6
-0.6 1.8 -0.5 0.6 -0.8 0.8 -1.4 1.1 -0.8 -0.8 -1.7 2.3 o.o 0.677 1.574 1.525 1.663 1.648 1.660 1.713 1.689 1. 713 1.660 1.648 1.663 1.525 1.574 0.677 0.644 1.498 1.545 1.648 1.660 1.642 1.733 1.712 1.732 1.643 1.680 1.656 1.541 1.546 0.711 7 5.1 5.1 -1.3 0.9 -0.7 1.1 -1.2 -1.3 -1.1 1.0 -1.9 0.4 -1.0 1.8 -4.8 0.653 1.382 1.646 1.363 1.692 1.558 1.688 1.597 1.688 1.558 1.692 1.363 1.646 1.382 0.653 0.626 1.339 1.636 1.382 1.679 1.586 1. 713 1.611 1.711 1.582 1.678 1.377 1.630 1.373 0.695 8 4.3 3.2 0.6 -1.4 0.8 -1.8 -1.5 -0.9 -1.3 -1.5 0.8 -1.0 1.0 0.7 -6.0
- 1 0.677 1.574 1.525 1.663 1.648 1.660 1. 713 1.689 1.713 1.660 1.648 1.663 1.525 1.574 0.677 0.622 1.478 1.547 1.651 1.678 1.647 1.732 1.714 1.732 1.650 1.683 1.652 1.531 1.521 0.698 8.8 6.5 -1.4 0.7 -1.8 0.8 -1.1 -1.5 -1.1 0.6 -2.1 0.7 -0.4 3.5 -3.0 9
1.160 1.627 1.569 1.627 1.686 1.665 1.565 1.665 1.686 1.627 1.569 1.627 1.160 1.175 1.620 1.595 1.638 1.712 1.655 1.591 1.648 1.704 1.639 1.592 1.590 1.147 10
-1.3 0.4 -1.6 -0.7 -1.5 0.6 -1.6 1.0 -1.1 -0.7 -1.4 2.3 1.1 0.774 1.588 1.655 1.619 1.631 1.652 1.696 1.652 1.631 1.619 1.655 1.588 0.774 0.761 1.492 1.557 1.645 1.650 1.693 1.686 1.663 1.617 1.645 1.566 1.488 0.760 11
- 1. 7 6.4 6.3 -1.6 -1.2 -2.4 0.6 -0.7 0.9 -1.6 5.7 6.7 1.8 0.833 1.363 1.651 1.568 1.664 1.364 1.664 1.568 1.651 1.363 0.833 0.791 1.289 1.617 1.597 1.656 1.382 1.647 1.579 1.612 1.318 0.811 12 5.3 5.7 2.1 -1.8 0.5 -1.3 1.0 -o.7 2.4 3.4 2.7 0.831 1 .. 589 1.628 1.526 1.646 1.526 1.628 1.589 0.831 0.817 1.522 1.578 1.541 1.635 1.546 1.620 1.560 0.841 13 1.7 4.4 3.2 -1.0 0.7 -1.3 0.5 1.9 -1.2 0.759 1.160 1.573 1.381 1.573 1.160 0.759 0.756 1.140 1.520 1.383 1.554 1.175 0.796 14 0.4 1.8 3.5 -0.1 1.2 -1.3 -4.6 0.674 0.652 0.674 0.688 0.696 0.713 15
-2.0 -6.3 -5.5 KAX DIFFERENCE = 8.8 ASSEMBLY R 9) x.xxx PREDICTED KAX DIFF (FQ3>1.0) = 7.2 ASSEMBLY G 2) x.xxx MEASURED RMS DIFFERENCE = 2.8 X.K PERCENT DIFFERENCE I 28
I FIGURE 4-2 DETECTOR LEVEL 28 FQ COMPARISON (S1C9 SIMULATION/I LEVEL CECOR)
I R p N ti L K
J H G F E D C B A 0.674 0.652 0.674 0.673 0.568 0.669 1 0.1 14.8 0.7
-. 0.759 1.160 1.573 1.381 1.573 1.160 0.759 0.768 1.149 1.522 1.338 1.510 1.146 0.763 2
-1.2 1.0 3.4 -3.2 4.2 1.2 -0.5 0.831 1.589 1.628 1.526 1.646 1.526 1.628 1.589 0.831 0.718 1.524 1.589 1.546 1.636 1.520 1.579 1.510 0.718 3 15.7 4.3 2.5 -1.3 0.6 0.4 3.1 5.2 15.7 0.833 1.363 1.651 1.568 1.664 1.364 1.664 1.568 1.651 1.363 0.833 0.874 1.339 1.636 1.592 1.645 1.364 1.640 1.598 1.613 1.338 0.876 4
-4.7 1.8 0.9 -1.5 1.2 0.0 1.5 -1.9 2.4 1.9 -4.9 0.774 1.588 1.655 1.619 1.631 1.652 1.696 1.652 1.631 1.619 1.655 1.588 0.774 0.791 1.549 1.620 1.647 1.642 1.681 1.677 1.682 1.643 1.647 1.641 1.557 o. 771 5 I -2.1 2.5 2.2 -1.7 -0.7 -1.7 1.1 -1.8 -0.7 -1.7 0.9 2.0 1.160 1.627 1.569 1.627 1.686 1.665 1.565 1.665 1.686 1.627 1.569 1.627 1.160 1.152 1.593 1.583 1.617 1.700 1.649 1.585 1.648 1.698 1.642 1.597 1.597 1.159 0.4 6
0.7 2.1 -0.9 0.6 -0.8 1.0 -1.3 1.0 -0.7 -0.9 -1.8 1.9 0.1 I 0.677 1.574 1.525 1.663 1.648 1.660 1.713 1.689 1.713 1.660 1.648 1.663 1.525 1.574 0.677 0.676 1.526 1.546 1.643 1.675 1.645 1.737 1.714 1. 737 1.646 1.683 1.651 1.536 1.552 0. 716 0.1 3.1 -1.4 1.2 -1.6 0.9 -1.4 -1.5 -1.4 0.9 -2.1 0.7 -0.7 1.4 -5.4 7
0.653 1.382 1.646 1.363 1.692 1.558 1.688 1.597 1.688 1.558 1.692 1.363 1.646 1.382 0.653 0.569 1.342 1.636 1.370 1.681 1.582 1. 712 1.612 1.712 1.579 1.678 1.371 1.636 1.353 0.688 8 14.8 3.0 0.6 -0.5 0.7 -1.5 -1.4 -0.9 -1.4 -1.3 0.8 -0.6 0.6 2.1 -5.1 I 0.677 1.574 1.525 1.663 1.648 1.660 1.713 1.689 1.713 1.660 1.648 1.663 1.525 1.574 0.677 0.674 1.521 1.532 1.643 1.677 1.646 1.731 1.713 1.737 1.649 1.683 1.644 1.523 1.520 0.680 0.4 3.5 -0.5 1.2 -1.7 0.9 -1.0 -1.4 -1.4 0.7 -2.1 1.2 0.1 3.6 -0.4 9
I 1.160 1.627 1.569 1.627 1.686 1.665 1.565 1.665 1.686 1.627 1.569 1.627 1.160 1.158 1.617 1.594 1.643 1. 710 1.654 1.588 1.650 1.703 1.644 1.600 1.579 1.146 0.2 0.6 -1.6 -1.0 -1.4 0.7 -1.4 0.9 -1.0 -1.0 -1.9 3.0 0.774 1.588 1.655 1.619 1.631 1.652 1.696 1.652 1.631 1.619 1.655 1.588 0.774 1.2 10 I 0.785 1.525 1.616 1.647 1.645 1.689 1.686 1.678 1.618 1.647 1.611 1.507 0.776
-1.4 4.1 2.4 -1.7 -0.9 -2.2 0.6 -1.5 0.8 -1.7 2.7 0.833 1.363 1.651 1.568 1.664 1.364 1.664 1.568 1.651 1.363 0.833 5.4 -0.3 11
- 0. 720 1.331 1.617 1.589 1.653 1.373 1.644 1.587 1.618 1.321 0. 720 12 I 15.7 2.4 2.1 -1.3 0.7 -0.7 1.2 -1.2 2.0 0.831 1.589 1.628 1.526 1.646 1.526 1.628 1.589 0.831 0.868 1.544 1.588 1.530 1.636 1.539 1.617 1.562 0.871 3.2 15.7 13 I -4.3 2.9 2.5 -0.3 0.6 -0.8 0.7 0.759 1.160 1.573 1.381 1.573 1.160 0.759 0.755 1.149 1.529 1.374 1.551 1.171 0.786 1.7 -4.6 14 0.5 1.4 -0.9 -3.4 I
0.5 1.0 2.9 0.674 0.652 0.674 0.677 0.694 o. 715 15
-0.4 -6.1 -5.7 MAX DIFFERENCE = 15.7 ASSEMBLY D 3 x.xxx PREDICTED t!AX DIFF CFQ3>1.0) = 4.2 ASSEtlBLY G 2 x.xxx MEASURED RMS DIFFERENCE = 3.6 x.x PERCENT DIFFERENCE I 29
- I FIGURE 4-3 DETECTOR LEVEL 28 FQ COMPARISON (S1C9 SIMULATION/7 LEVEL CECOR)
R p N II L K J H G F E D C B A 0.674 0.652 0.674 0.666 0.599 0.665 1 1.2* 8.8 1.4
-- 0.759 1.160 1.573 1.381 1.573 1.160 0.759 I o_.753 1.150 1.557 1.360 1.555 1.153 0.754 0.8 0.9 1.0 1.5 1.2 0.6 0.7 0.831 1.589 1.628 1.526 1.646 1.526 1.628 1.589 0.831 2
0.759 1.564 1.614 1.522 1.640 1.515 1.614 1.563 0.7_59 3 9.5 1.6 0.9 0.3 0.4 0.7 0.9 1.7 9.5 0.833 1.363 1.651 1.568 1.664 1.364 1.664 1.568 1.651 1.363 0.833 0.840 1.344 1.643 1.560 1.657 1.362 1.656 1.564 1.640 1.345 0.843 4
-0.8 1.4 0.5 0.5 0.4 0.1 0.5 0.3 0.7 1.3 -1.2 0.774 1.588 1.655 1.619 1.631 1.652 1.696 1.652 1.631 1.619 1.655 1.588 0.774
- 0. 771 1.573 1.645 1.615 1.623 1.650 1.689 1.648 1.624 1.615 1.647 1.582 0.769 5 I 0.4 1.0 0.6 0.2 0.5 0.1 0.4 0.2 0.4 0.2 0.5 1.160 1.627 1.569 1.627 1.686 1.665 1.565 1.665 1.686 1.627 1.569 1.627 1.160 1.152 1.616 1.561 1.619 1.680 1.659 1.561 1:659 1.681 1.620 1.563 1.618 1.153 0.3 0.4 0.3 0.4 0.4 0.4 0.6 0.7 0.6 6
0.7 0.7 0.5 0.5 0.4 0.4
,I 0.677 1.574 1.525 1.663 1.648 1.660 1.713 1.689 1.713 1.660 1.648 1.663 1.525 1.574 0.677 0.669 1.559 1.522 1.655 1.644 1.653 1.710 1.686 1.710 1.654 1.644 1.657 1.518 1.564 0.685 7 1.2 1.0 0.2 0.5 0.2 0.4 0.2 0.2 0.2 0.4 0.2 0.4 0.5 0.6 -1.2 0.653 1.382 1.646 1.363 1.692 1.558 1.688 1.597 1.688 1.558 1.692 1.363 1.646 1.382 0.653 0.601 1.362 1.640 1.359 1.684 1.553 1.683 1.592 1.684 1.555 1.684 1.359 1.640 1.368 0.662 8 8.7 1.5 0.4 0.3 0.5 0.3 0.3 0.3 0.2 0.2 0.5 0.3 0.4 1.0 -1.4 I 0.677 1.574 1.525 1.663 1.648 1.660 1. 713 1.689 1.713 1.660 1.648 1.663 1.525 1.574 0.677 0.668 1.557 1.517 1.654 1.646 1.653 1.707 1.685 1.710 1.654 1.644 1.655 1.516 1.561 0.676 1.3 1.1 0.5 0.5 0.1 0.4 0.4 0.2 0.2 0.4 0.2 0.5 0.6 0.8 0.1 9
1.160 1.627 1.569 1.627 1.686 1.665 1.565 1.665 1.686 1.627 1.569 1.627 1.160 1.152 1.621 1.562 1.620 1.680 1.659 1.560 1.658 1.680 1.620 1.566 1.613 1.153 10 0.7 0.4 0.4 0.4 0.4 0.4 -0.3 0.4 0.4 0.4 0.2 0.9 0.6 0.774 1.588 1.655 1.619 1.631 1.652 1.696 1.652 1.631 1.619 1.655 1.588 0.774 0.769 1.565 1.643 1.615 1.623 1.648 1.689 1.647 1.622 1.615 1.643 1.562 0.768 11 0.7 1.5 0.7 0.2 0.5 0.2 0.4 0.3 0.6 0.2 0.7 1.7 0.8 0.833 1.363 1.651 1.568 1.664 1.364 1.664 1.568 1.651 1.363 0.833 0.761 1.344 1.644 1.562 1.658 1.361 1.656 1.561 1.643 1.341 0.761 12 9.5 1.4 0.4 0.4 0.4 0.2 0.5 0.4 0.5 1.6 9.5 0.831 1.589 1.628 1.526 1.646 1.526 1.628 1.589 0.831 0.841 1.582 1.619 1.519 1.640 1.519 1.621 1.584 0.840 13 I -1.2 0.4 0.6 0.5 0.4 0.5 0.4 0.3 -1.1 0.759 1.160 1.573 1.381 1.573 1.160 0.759 0.753 1.153 1.563 1.375 1.563 1.155 0.761 14 0.8 0.6 0.6 0.4 0.6 o.4 -0.3 0.674 0.652 0.674 0.672 0.663 0.683 15 0.3 -1. 7 -1.3 I IIAX DIFFERENCE = 9.5 ASSEKBLY D 3 PREDICTED KAX DIFF (FQ3>1.0) = 1.2 ASSEKBLY G 2 KEASURED RIIS DIFFERENCE = 1.9 PERCENT DIFFERENCE 30
I FIGURE 4-4 DETECTOR LEVEL 28 FQ COMPARISON (S1C9 SIMULATION/22 LEVEL CECORJ
,I R p N II L K J H G F E D C B A 0.674 0.652 0.674
,~
0.672 0.649 0.672 1 0.3 0.5 0.3 0.759 1.160 1.573 1.381 1.573 1.160 0.759 0.757 1.156 1.567 1.376 1.567 1.156 0.757 2 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.831 1.589 1.628 1.526 1.646 1.526 1.628 1.589 0.831 I 0.828 1.583 1.623 1.520 1.641 1.521 1.623 1.584 0.828 0.4 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.4 0.833 1.363 1.651 1.568 1.664 1.364 1.664 1.568 1.651 1.363 0.833 3
4 0.830 1.358 1.645 1.562 1.658 1.360 1.659 1.562 1.645 1.358 0.830 I 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.4 0.4 0.4 0.774 1.588 1.655 1.619 1.631 1.652 1.696 1.652 1.631 1.619 1.655 1.588 0.774
- 0. 772 1.583 1.649 1.614 1.625 1.646 1.691 1.646 1.625 1.614 1.649 1.583 0.772 5 0.3 0.3 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.3 0.3 1.160 1.627 1.569 1.627 1.686 1.665 1.565 1.665 1.686 1.627 1.569 1.627 1.160 1.156 1.622 1.564 1.622 1.680 1.659 1.560 1.659 1.680 1.622 1.564 1.622 1.156 6 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.3 0.3 0.3 0.677 1.574 1.525 1.663 1.648 1.660 1.713 1.689 1. 713 1.660 1.648 1.663 1.525 1.574 0.677 0.674 1.569 1.520 1.658 1.643 1.654 1.707 1.684 1.707 1.654 1.643 1.657 1.520 1.568 0.674 7 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.3 0.4 0.4 0.653 1.382 1.646 1.363 1.692 1.558 1.688 1.597 1.688 1.558 1.692 1.363 1.646 1.382 0.653 0.651 1.377 1.640 1.358 1.686 1.553 1.682 1.592 1.682 1.553 1.686 1.358 1.640 1.377 0.651 8 0.3 0.4 0.4 0.4 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.677 1.574 1.525 1.663 1.648 1.660 1.713 1.689 1.713 1.660 1.648 1.663 1.525 1.574 0.677 0.674 1.569 1.520 1.657 1.642 1.654 1.708 1.684 1.707 1.654 1.643 1.657 1.520 1.569 0.674 9 0.4 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.4 0.3 0.3 0.4 I 1.160 1.627 1.569 1.627 1.686 1.665 1.565 1.665 1.686 1.627 1.569 1.627 1.160 1.156 1.622 1.564 1.622 1.680 1.659 1.560 1.659 1.680 1.622 1.563 1.622 1.156 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.3 0.774 1.588 1.655 1.619 1.631 1.652 1.696 1.652 1.631 1.619 1.655 1.588 0.774 0.3 10 I. 0.772 1.583 1.649 1.614 1.625 1.646 1.691 1.646 1.625 1.614 1.649 1.583 0.772 0.3 0.3 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.833 1.363 1.651 1.568 1.664 1.364 1.664 1.568 1.651 1.363 0.833 0.3 0.3 11 0.830 1.358 1.646 1.563 1.658 1.360 1.658 1.562 1.645 1.358 0.830 12 0.4 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.831 1.589 1.628 1.526 1.646 1.526 1.628 1.589 0.831 0.828 1.583 1.623 1.521 1.641 1.521 1.622 1.583 0.828 13 0.4 0.4 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.759 1.160 1.573 1.381 1.573 1.160 0.759 0.756 1.155 1.567 1.376 1.567 1.155 0.756 14 0.4 0.4 0.4 0.4 0.4 0.4 0.4 I 0.674 0.652 0.674 0.671 0.649 0.672 0.4 0.5 0.3 15 I x.xxx
-I IIAX DIFFERENCE = 0.5 ASSEKBLY 815 PREDICTED IIAX DIFF CFQ3>1.0) = 0.4 ASSEIIBLY J 3 x.xxx IIEASURED RIIS DIFFERENCE = 0.3 x.x PERCENT DIFFERENCE 31
I FIGURE 4-5 RPD COMPARISON FOR N1C2 MAP 44 (INCOR WITH 1 ANALYSIS LEVEL)
R p N II L K J H G F E D C B A 0.740 0.881 0.740 0.780 0.929 0.776 1
-5.1 -5.2 -4.6
- - 0.739 0.997 1.141 0.969 1.141 0.997 0.739 I 0.768 0.968 1.149 0.978 1.179 1.042 0.777
-3.8 3.0 -0.7 -0.9 -3.2 -4.3 -4.9 0.771 1.114 0.963 0.969 1.088 0.969 0.963 1.114 0.771 2
I 0.785 1.131 0.945 0.953 1.071 0.976 0.987 1.155 0.817
-1.8 -1.5 1.9 1.7 1.6 -0.7 -2.4 -3.5 -5.6 0.771 0.847 1.054 1.089 1.080 0.984 1.080 1.089 1.054 0.847 0.771 3
4 0.789 0.852 1.057 1.067 1.060 0.965 1.075 1.082 1.068 0.862 0.809 I -2.3 -0.6 -0.3 2.1 1.9 2.0 0.5 0.6 -1.3 -1.7 -4.7 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.996 1.156 0.988 1.054 1.114 0.739 0.747 1.127 1.051 0.981 1.141 0.972 1.084 0.973 1.131 0.975 1.052 1.165 0.797 5
-1.1 -1.2 0.3 0.7 1.3 2.5 2.5 2.4 2.2 1.3 0.2 -4.4 -7.3 0.996 0.963 1.089 1.156 1.024 1.144 1.027 1.144 1.024 1.156 1.089 0.963 0.996 0.992 0.960 1.084 1.149 1.007 1.115 1.002 1.105 0.990 1.139 1.088 0.991 1.047 6 0.4 0.3 0.5 0.6 1.7 2.6 2.5 3.5 3.4 . 1.5 0.1 -2.8 -4.9 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 1.010 1.143 0.996 1.082 0.971 1.141 0.740 0.725 1.132 0.964 1.081 1.001 1.138 0.987 1.134 0.978 1.103 0.970 1.083 0.979 1.155 0.756 7 2.1 0.8 0.7 0.1 -o*.5 0.4 2.3 2.5 3.3 3.6 2.7 -0.1 -0.8 -1.2 -2.1 0.881 0.970 1.102 0.995 1.112 1.027 1.161 0.961 1.161 1.027 1.112 0.995 1.102 0.970 0.881 0.887 0.963 1.095° 0.987 1.102 1.012 1.134 0.939 1.139 1.008 1.101 0.997 1.110 0.994 0.915 8
-0.7 0.7 0.6 0.8 0.9 1.5 2.4 2.3 . 1.9 1.9 1.0 -0.2 -0.7 -2.4 -3.7 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 1.010 1.143 0.996 1.082 0.971 1.141 0.740
- 0. 721 1.130 0.963 1.071 0.984 1.131 1.001 1.147 0.995 1.127 0.988 1.085 0.985 1.177 0.775 9 2.6 1.0 0.8 1.0 1.2 1.1 0.9 1.3 1.5 1.4 0.8 -0.3 -1;4 -3.1 -4.5 0.996 0.963. 1.089 1.156 1.024 1.144 1.027 1.144 1.024 1.156 1.089 0.963 0.996 I 0.973 0.941 1.061 1.124 1.002 1.138 1.019 1.138 1.014 1.152 1.084 0.984 1.042 2.4 2.3 2.6 2.8 2.2 0.5 0.8 0.5 1.0 0.3 0.5 -2.1 -4.4 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.996 1.156 0.988 1.054 1.114 0.739 10 I 0.735 1.109 1.040 0.960 1.140 0.992 1.108 0.995 1.146 0.983 1.067 1.149 0.771 0.5 0.5 1.3 2.9 1.4 0.4 0.3 0.1
- 0.9 0.5 -1.2 -3.0 -4.2 0.771 0.847 1.054 1.089 1.080 0.984 1.080 1.089 1.054 0.847 0. 771 11 0.781 0.841 1.024 1.073 1.084 0.988 1.078 1.075 1.040 0.862 0.809 12
-1.3 0.7 2.9 1.5 -0.4 -0.4 0.2 1.3 1.3 -1.7 -4.7 0.771 1.114 0.963 0.969 1.088 0.969 0.963 1.114 0.771 0.791 1.158 0.981 0.974 1.094 0.968 0.953 1.088 0.809 13 I -2.5 -3.8 -1.8 -0.5 -0.5 0.1 1.0 0.739 0.997 1.141 0.969 1.141 0.997 0.739 0.767 1.031 1.165 0.983 1.139 0.987 0.721 2.4 -4.7 14
-3.7 -3.3 -2.1 -'1.4 0.2 1.0 2.5 I 0.740 0.881 0.740 0.762 0.897 0.743
-2.9 -1.8 -0.4 15 I MAX DIFFERENCE = -7.3 ASSEIIBLY B 5) x.xxx PREDICTED MAX DIFF (RPD>1.0) = -4.4 ASSEIIBLY C 5) x.xxx IIEASURED RIIS DIFFERENCE = 2.3 x.x PERCENT DIFFERENCE I 32
FIGURE 4-6 RPD COMPARISON FO,R N1C2 MAP 44 (CECOR WITH 1 ANALYSIS LEVEL)
.I R p N II L K J H G F E D C B A I 0.740 0.881 0.740 0.758 0.929 0.769
-2.4 -5.2 -3.8 1
- - - 0.739 0.997 1.141 0.969 1.141 0.997 0.739 0.739 0.994 1.142 0.988 1.173 1.042 0.766 2 0.0 0.3 -0.1 -1.9 -2.7 -4.3 -3.5 0.771 1.114 0.963 0.969 1.088 0.969 0.963 1.114 0.771 0.801 1.118 0.953 0.941 1.092 0.981 0.986 1.148 0.816 3
-3.7 -0.4 1.0 3.0 --o.4 -1.2 -2.3 -3.0 -5.5 0.771 0.847 1.054 1.089 1.080 0.984 1.080 1.089 1.054 0.847 0.771 0.779 0.854 1.046 1.073 1.055 0.962 1.074 1.095 1.065 0.868 0.793 4 I -1.0 -0.8 0.8 1.5 2.4 2.3 0.6 -0.5 -1.0 -2.4 -2.8 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.996 1.156 0.988 1.054 1.114 0.739 0.742 1.128 1.055 0.969 1.134 0.967 1.085 0.976 1.132 0.969 1.067 1.150 0.797 5
-0.4 -1.2 -0.1 2.0 1.9 3.0 2.4 2.0 2.1 2.0 -1.2 -3.1 -7.3 0.996 0.963 1.089 1.156 1.024 1.144 1.027 1.144 1.024 1.156 1.089 0.963 0.996 0.994 0.962 1.090 1.164 1.012 1.119 1.004 1.109 0.975 1.133 1.093 0.984 1.034 6 0.2 0.1 -0.1 -0.7 1.2 2.2 2.3 3.2 5.0 2.0 -0.4 -2.1 -3.7 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 1.010 1.143 0.996 1.082 0.971 1.141 0.740 0.734 1.130 0.952 1.076 0.995 1.130 0.986 1.134 0.982 1.109 0.981 1.084 0.983 1.168 0.760 7 0.8
- 1.0 2.0 0.6 0.1 1.2 2.4 2.5 2.9 3.1 1.5 -0.2 -1.2 -2.3 -2.6 0.881 0.970 1.102 0.995 1.112 1.027 1.161 0.961 1.161 1.027 1.112 0.995 1.102 0.970 0.881 0.875 0.965 1.109 0.993 1.118 1.017 1.141 0.942 1.133 0.997 1.099 0.994 1.104 0.991 0.911 8 0.7 0.5 -0.6 0.2 -0.5 1.0 1.8 2.0 2.5 3.0 1.2 0.1 -0.2 -2.1 -3.3 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 1.010 1.143 0.996 1.082 0.971 1.141 0.740 0,733 1.129 0.962 1.066 0.969 1.124 0.996 1.145 0.992 1.143 0.993 1.086 0.985 1.176 0.780 9 1.0 1.1 0.9 1.5 2.8 1.7 1.4 1.5 1.8 o.o 0.3 -0.4 -1.4 -3.0 -5.1 0.996 0.963 1.089 1.156 1.024 1.144 1.027 1.144 1.024 1.156 1.089 0.963 0.996 I 0.981 0.940 1.068 1.130 1.008 1.134 1.020 1.134 1.020 1.151 1.095 0.983 1.035 1.5 2.4 2.0 2.3 1.6 0.9 0.7 0.9 0.4 0.4 -0.5 -2.0 -3.8 10 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.996 1.156 0.988 1.054 1.114 0.739
'I 0.729 1.102 1.037 0.959 1.140 0.990 1.112 0.993 1.155 0.972 1.061 1.142 0.761 11 1.4 1.1 1.6 3.0 1.4 0.6 -0.1 0.3 0.1 1.6 -0.7 -2.5 -2.9 0.771 0.847 1.054 1.089 1.080 0.984 1.080 1.089 1.054 0.847 o. 771 0.781 0.845 1.048 1.086 1.079 0.987 1.079 1.081 1.047 0.855 0.808 12 I -1.3 0.2 0.6 0.3 0.1 -0.3 0.1 0.7 0.7 -0.9 -4.6 0.771 1.114 0.963 0.969 1.088 0.969 0.963 1.114 0.771 0.774 1.125 0.972 0.979 1.104 0.969 0.941 1.102 0.769 13 I -0.4 -1.0 -0.9 -1.0 -1.4 o.o 2.3 1.1 0.739 0.997 1.141 0.969 1.141 0.997 0.739 0.767 1.016 1.160 0.982 1.148 0.989 0.731 1.1 0.3 14
-3.7 -1.9 -1.6 -1.3 -0.6 0.8 0.740 0.881 0.740 0.761 0.897 0.748 15
-2.8 -1.8 -1.1 I IIAX DIFFERENCE = -7.3 ( ASSEIIBLY B 5) x.xxx PREDICTED IIAX DIFF (RPD>1.0) = 5.0 ( ASSEIIBLY F 6) x.xxx IIEASURED "I
RIIS DIFFERENCE = 2.1 x.x PERCENT DIFFERENCE 33
I FIGURE 4-7 RPD COMPARISON FOR N1C2 MAP 44 (CECOR WITH 7 ANALYSIS LEVELS)
I R p N It L K
J H G F E D C B A I 0.740 0.881 0.740 0.759 0.929 0.770
-2.5 -5.2 -3.9 1
- - 0.739 0.997 1.141 0.969 1.141 0.997 0.739 I 0.740 0.995 1.144 0.989 1.175 1.042 0.767
-0.1 0.2 -0.3 -2.0 -2.9 -4.3 -3.7
- 0. 771 1.114 0.963 0.969 1.088 0.969 0.963 1.114 0. 771 2
I 0.801 1.119 0.953 0.941 1.091 0.980 0.985 1.149 0.817 3
-3.7 -0.4 1.0 3.0 -0.3 -1.1 -2.2 -3.0 -5.6 0.771 0.847 1.054 1.089 1.080 0.984 1.080 1.089 1.054 0.847 0.771
- o. 779 0.854 1.046 1.072 1.054 0.961 1.073 1.094 1.064 0.868 0.794 4
-1.0 -0.8 0.8 1.6 2.5 2.4 0.7 -0.5 -0.9 -2.4 -2.9 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.996 1.156 0.988 1.054 1.114 0.739 0.743 1.128 1.054 0.968 1.134 0.967 1.084 0.975 1.132 0.969 1.067 1.151 0.797 5
-0.5 -1.2 0.0 2.1 1.9 3.0 2.5 2.2 2.1 2.0 -1.2 -3.2 -7.3 0.996 0.963 1.089 1.156 1.024 1.144 1.027 1.144 1.024 1.156 1.089 0.963 0.996 0.995 0.961 1.088 1.164 1.013 1.119 1.003 1.109 0.975 1.133 1.092 0.983 1.034 6 0.1 0.2 0.1 -0.7 1.1 2.2 2.4 3.2 5.0 2.0 -0.3 -2.0 -3.7 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 1.010 1.143 0.996 1.082 0.971 1.141 0.740 0.735 1.133 0.951 1.075 0.994 1.130 0.986 1.134 0.982 1.108 0.980 1.084 0.982 1.168 0.761 7 0.7 0.7 2.1 0.7 0.2 1.2 2.4 2.5 2.9 3.2 1.6 -0.2 -1.1 -2.3 -2.8 0.881 0.970 1.102 0.995 1.112 1.027 1.161 0.961 1.161 1.027 1.112 0.995 1.102 0.970 0.881 0.877 0.967 1.109 0.993 1.117 1.016 1.141 0.942 1.133 0.996 1.097 0.993 1.104 0.992 0.912 8 0.5 0.3 -0.6 0.2 -0.4 1.1 1.8 2.0 2.5 3.1 1.4 0.2 -0.2 -2.2 -3.4 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 1.010 1.143 0.996 1.082 0.971 1.141 0.740 0.735 1.132 0.961 1.066 0.968 1.124 0.995 1.145 0.992 1.143 0.992 1.086 0.984 1.177 0.780 9 0.7 0.8 1.0 1.5 2.9 1.7 1.5 1.5 1.8 0.0 0.4 -0.4 -1.3 -3.1 -5.1 0.996 0.963 1.089 1.156 1.024 1.144 1.027 1.144 1.024 1.156 1.089 0.963 0.996 I 0.982 0.940 1.068 1.130 1.009 1.134 1.019 1.134 1.021 1.151 1.094 0.982 1.035 1.4 2.4 2.0 2.3 1.5 0.9 0.8 0.9 0.3 0.4 -0.5 -1.9 -3.8 10 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.996 1.156 0.988 1.054 1.114 0.739 I 0.730 1.102 1.037 0.959 1.141 0.990 1.111 0.993 1.155 0.971 1.060 1.142 0.762 1.2 1.1 1.6 3.0 1.3 0.6 0.0 0.3 0.1 1.8 -0.6 -2.5 -3.0 0.771 0.847 1.054 1.089 1.080 0.984 1.080 1.089 1.054 0.847 0.771 11 0.782 0.845 1.047 1.085 1.078 0.986 1.077 1.080 1.046 0.855 0.809 12 I -1.4 0.2 0.7 0.4 0.2 -0.2 0.3 0.8 0.8 -0.9 -4.7 0.771 1.114 0.963 0.969 1.088 0.969 0.963 1.114 0. 771 0.775 1.126 0.971 0.978 1.104 0.968 0.940 1.103 0.770 13
- 1. -0.5 -1.1 -0.8 -0.9 -1.4 0.1 2.4 1.0 0.739 0.997 1.141 0.969 1.141 0.997 0.739 0.768 1.017 1.162 0.983 1.148 0.989 0.733 0.1 14
-3.8 -2.0 -1.8 -1.4 -0.6 0.8 0.8 I 0.740 0.881 0.740 0.762 0.898 0.748
-2.9 -1.9 -1.1 15 I ltAX DIFFERENCE = -7.3 ASSEltBLY B 5 x.xxx PREDICTED MAX DIFF (RPD>1.0) = 5.0 ASSEltBLY F 6 x.xxx ltEASURED RMS DIFFERENCE = 2.1 x.x PERCENT DIFFERENCE I 34
I FIGURE 4-8 RPD COMPARISON FOR N1C2 MAP 44 (CECOR WITH 22 ANALYSIS LEVELS)
I R p N If L K
J H G F E D C B A I 0.740 0.881 0.740 0.759 0.929 0.770
-2.5 -5.2 -3.9 1
- - 0.739 0.997 1.141 0.969 1.141 0.997 0.739 0.740 0.995 1.144 0.989 1.175 1.042 0.767 2
-0.1 0.2 -0.3 -2.0 -2.9 -4.3 -3.7 0.771 1.114 0.963 0.969 1.088 0.969 0.963 1.114 0.771 0.801 1.120 0.953 0.941 1.091 0.980 0.985 1.149 0.817 3
-3.7 -0.5 1.0 3.0 -0.3 -1.1 -2.2 -3.0 -5.6
- o. 771 0.847 1.054 1.089 1.080 0.984 1.080 1.089 1.054 0.847 0.771 0.779 0.854 1.046 1.072 1.054 0.961 1.073 1.094 1.065 0.868 0.794 4
-1.0 -0.8 0.8 1.6 2.5 2.4 0.7 -0.5 -1.0 -2.4 -2.9 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.996 1.156 0.988 1.054 1.114 0.739 0.743 1.128 1.053 0.968 1.134 0.967 1.084 0.975 1.132 0.969 1.067 1.151 0.797 5
-0.5 -1.2 0.1 2.1 1.9 3.0 2.5 2.2 2.1 2.0 -1.2 -3.2 -7.3 0.996 0.963 1.089 1.156 1.024 1.144 1.027 1.144 1.024 1.156 1.089 0.963 0.996 0.994 0.961 1.089 1.163 1.014 1.119 1.004 1.109 0.974 1.133 1.092 0.983 1.034 6 0.2 0.2 0.0 -0.6 1.0 2.2 2.3 3.2 5.1 2.0 -0.3 -2.0 -3.7 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 1.010 1.143 0.996 1.082 0.971 1.141 0.740 0.735 1.133 0.951 1.075 0.994 1.130 0.986 1.134 0.982 1.108 0.980 1.084 0.982 1.168 0.761 7 0.7 0.7 2.1 0.7 0.2 1.2 2.4 2.5 2.9 3.2 1.6 -0.2 -1.1 -2.3 -2.8 0.881 0.970 1.102 0.995 1.112 1.027 1.161 0.961 1.161 1.027 1.112 0.995 1.102 0.970 0.881 0.877 0.968 1.109 0.993 1.117 1.016 1.141 0.942 1.133 0.996 1.097 0.993 1.104 0.992 0.912 8 0.5 0.2 -0.6 0.2 -0.4 1.1 1.8 2.0 2.5 3.1 1.4 0.2 -0.2 -2.2 -3.4 0.740 1.141 0.971 1.082 0.996 1.143 1.010 1.162 1.010 1.143 0.996 1.082 0.971 1.141 0.740 0.735 1.132 0.961 1.066 0.968 1.124 0.995 1.144 0.992 1.143 0.992 1.086 0.984 1.177 0.780 9 0.7 0.8 1.0 1.5 2.9 1.7 1.5 1.6 1.8 o.o 0.4 -0.4 -1.3 -3.1 -5.1 I 0.996 0.963 1.089 1.156 1.024 1.144 1.027 1.144 1.024 1.156 1.089 0.963 0.996 0.982 0.940 1.068 1.130 1.010 1.134 1.019 1.135 1.022 1.151 1.094 0.982 1.035 1.4 2.4 2.0 2.3 1.4 0.9 0.8 0.8 0.2 0.4 -0.5 -1.9 -3.8 10 0.739 1.114 1.054 0.988 1.156 0.996 1.111 0.996 1.156 0.988 1.054 1.114 0.739
- 1. 0.730 1.102 1.037 0.959 1.141 0.990 1.111 0.993 1.154 0.971 1.060 1.142 0.762 1.2 1.1
- o. 771 1.6 3.0 1.3 0.6 o.o 0.3 0.2 1.8 -0.6 -2.5 -3.0 0.847 1.054 1.089 1.080 0.984 1.080 1.089 1.054 0.847 0.771 11 0.782 0.845 1.048 1.085 1.078 0.986 1.077 1.080 1.046 0.855 0.809 12 I -1.4 0.2 0.6 0.4 0.2 -0.2 0.3 0.8 0.8 -0.9 -4.7 0.771 1.114 0.963 0.969 1.088 0.969 0.963 1.114 0.771 0.775 L126 0.971 0.978 1.103 0.968 0.940 1.103 0.770 13 I -0.5 -1.1 -0.8 -0.9 -1.4 0.1 2.4 1.0 0.739 0.997 1.141 0.969 1.141 0.997 0.739 0.767 1,017 1.162 0.983 *1.148 0.989 0.733 0.1 14
-3.7 -2.0 -1.8 -1.4 -0.6 0.8 0.8 I 0.740 0.881 0.740 0.762 0.898 0.748 15
-2.9 -1.9 -1.1 I IIAX DIFFERENCE = -7.3 ASSEIIBLY B 5) x.xxx PREDICTED IIAX DIFF (RPD>1.0) = 5.1 ASSEIIBLY F 6) x.xxx IIEASURED RIIS DIFFERENCE = 2.1 x.x PERCENT DIFFERENCE I 35
I FIGURE 4-9 F t:i.H COMPARISON FOR N1C2 MAP 44 (INCOR WITH 1 ANALYSIS LEVEL)
R p N ti L K J H G F E D C B ,.
I 1.085 1.116 1.085 1.095 1.148 1.129
-0.9 -2.8 -3.9 1
- - 1.101 1.207 1.222 1.015 1.222 1.207 1.101 I 1.102 1.172 1.230 1.016 1.262 1.261 1.141
-0.1 3.0 -0.7 -0.1 -3.2 -4.3 -3.5 1.089 1.216 1.011 1.013 1.160 1.013 1.011 1.216 1.089 2
I 1.094 1.234 0.993 0.997 1.171 1.012 1.035 1.259 1.105 3
-0.5 -1.5 1.8 1.6 -0.9 0.1 -2.3 -3.4 -1.4 1.088 0.936 1.124 1.126 1.133 1.014 1.133 1.126 1.124 0.936 1.088 1.094 0.942 1.128 1.105 1.111 0.996 1.127 1.118 1.140 0.950 1.123 4
-0.5 -0.6 -0.4 1.9 2.0 1.8 0.5 0.7 -1.4 -1.5 -3.1 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.037 1.219 1.040 1.124 1.216 1.101 1.097 1.229 1.123 1.032 1.204 1.011 1.139 1.011 1.193 1.025 1.149 1.269 1.144 5 I 0.4 -1.1 0.1 0.8 1.2 2.6 1.8 2.6 2.2 1.5 -2.2 -4.2 -3.8 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.206 1.054 1.219 1.126 1.0.11 1.206 1.20*0 1.011 1.120 1.212 1.039 1.184 1.035 1.165 1.030 1.202 1.124 1.042 1.266 6 1.4 2.5 3.5 2.3 1.4 0.2 -3.0 -4.7 I
0.5 0.0 0.5 0.6 1.9 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.037 1.206 1.037 1.135 1.015 1.223 1.084 1.077 1.213 1.008 1.127 1.033 1.201 1.013 1.186 1.006 1.163 1.009 1.144 1.024 1.237 1.112 7 0.6 0.8 0.7 0.7 0.4 0.4 2.4 2.4 3.1 3.7 2.8 -0.8 -0.9 -1.1 -2.5 1.116 1.017 1.163 1.027 1.165 1.059 1.213 0.973 1.213 1.059 1.165 1.027 1.163 1.017 1.116 1.123 1.010 1.155 1.024 1.159 1.050 1.201 0.951 1.191 1.040 1.155 1.028 1.173 1.028 1.145 8
-0.6 0.7 0.7 0.3 0.5 0.9 1.0 2.3 1.8 1.8 0.9 -0.1 -0.9 -1.1 -2.5 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.037 1.206 1.037 1.135 1.015 1.223 1.084 1.091 1.212 1.003 1.118 1.024 1.193 1.025 1.204 1.022 1.191 1.026 1.138 1.035 1.261 1.126 9
-0.6 0.9 1.2 1.5 1.3 1.1 1.2 0.9 1.5 1.3 1.1 -0.3 -1.9 -3.0 -3.7 I 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.206 1.054 1.219 1.126 1.011 1.206 1.177 0.988 1.097 1.187 1.031 1.200 1.052 1.200 1.047 1.214 1.120 1.032 1.262 2.5 2.3 2.6 2.7 2.2 0.5 *0.9 0.5 0.7 0.4 0.5 -2.0 -4.4 10 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.037 1.219 1.040 1.124 1.216 1.101 I 1.094 1.209 1.109 1.011 1.199 1.033 1.164 1.031 1.203 1.035 1.137 1.252 1.134 0.6 0.6 1.4 2.9 1.7 0.4 -0.3 0.6 1.3 0.5 -1.1 -2.9 -2.9 1.088 0.936 1.124 1.126 1.133 1.014 1.133 1.126 1.124 0.936 1.088 11 1.075 0.929 1.129 1.108 1.138 1.018 1.131 1.111 1.109 0.952 1.103 12 1.2 0.8 -0.4 1.6 -0.4 -0.4 0.2 1.4 1.4 -1.7 -1.4 1.089 1.216 1.011 1.013 1.160 1.013 1.011 1.216 1.089 1.097 1.264 1.030 1.019 1.159 1.012 0.998 1.188 1.092 13
-0.7 -3.8 -1.8 -0.6 0.1 0.1 1.3 2.4 -0.3 1.101 1.207 1.222 1.015 1.222 1.207 1.101 1.144 1.248 1.247 1.023 1.219 1.195 1.090 14
.1 -3.8 -3.3 -2.0 -0.8 0.2 1.085 1.116 1.085 1.108 1.133 1.100 1.0 1.0 15
-2.1 -1.5 -1.4 I MAX DIFFERENCE = -4.7 ASSEtlBLY B 6) x.xxx PREDICTED MAX DIFF (FDH>1.0) = -4.2 ASSEtlBLY C 5) x.xxx tlEASURED RtlS DIFFERENCE = 1.9 x.x PERCENT DIFFERENCE I 36
I FIGURE 4-10 F !J.H COMPARISON FOR N1C2 MAP 44 (CECOR WITH 1 ANALYSIS LEVEL)
I R p N K L K
J H G F E D C B A I 1.085 1.116 1.085 1.112 1.178 1.128
-2.4 -5.3 -3.8 1
- - - 1.101 1.207 1.222 1.015 1.222 1.207 1.101 I 1.101 1.203 1.226 1.043 1.259 1.262 1.142 o.o 0.3 -0.3 -2.7 -2.9 -4.4 -3.6 1.089 1.216 1.011 1.013 1.160 1.013 1.011 1.216 1.089 2
I 1.131 1.222 1.001 0.986 1.168 1.028 1.035 1.254 1.153
-3.7 -0.5 1.0 2.7 -0.7 -1.5 -2.3 -3.0 -5.6 1.088 0.936 1.124 1.126 1.133 1.014 1.133 1.126 1.124 0.936 1.088 3
1.099 0.944 1.117 1.110 1.108 0.991 1.128 1.132 1.137 0.960 1.120 4 I -1.0 -0.8 0.6 1.4 2.3 2.3 0.4 -0.5 -1.1 -2.5 -2.9 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.037 1.219 1.040 1.124 1.216 1.101 1.106 1.232 1.125 1.020 1.196 1.008 1.134 1.017 1.194 1.020 1.139 1.257 1.187 5 I. -0.5 -1.3 -0.1 2.0 1.9 2.9 2.3
- 2.0 2.1 2.0 -1.3 -3.3 -7.2 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.206 1.054 1.219 1.126 1.011 1.206 1.203 1.009 1.127 1.227 1.050 1.181 1.036 1.172 1.011 1.195 1.130 1.033 1.251 6 0.2 0.2 -0.1 -0.7 0.4 2.1 2.4 2.9 4.3 2.0 -0.4 -2.1 -3.6 I 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.037 1.206 1.037 1.135 1.015 1.223 1.084 1.076 1.214 0.998 1.130 1.037 1.194 1.013 1.187 1.009 1.171 1.022 1.138 1.030 1.254 1.116 0.7 0.7 1.7 0.4 0.0 1.0 2.4 2.4 2.8 3.0 1.5 -0.3 -1.5 -2.5 -2.9 7
1.116 1.017 1.163 1.027 1.165 1.059 1.213 0.973 1.213 1.059 1.165 1.027 1.163 1.017 1.116 1.110 1.020 1.177 1.026 1.172 1.049 1.194 0.954 1.185 1.028 1.152 1.027 1.172 1.047 1.156 8 0.5 -0.3 -1;2 0.1 -0.6 1.0 1.6 2.0 2.4 3.0 1.1 0.0 -0.8 -2.9 -3.5 I 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.037 1.206 1.037 1.135 1.015 1.223 1.084 1.076 1.213 1.008 1.120 1.009 1.188 1.023 1.197 1.019 1.208 1.034 1.141 1.033 1.263 1.144 0.7 0.8 0.7 1.3 2.8 1.5 1.4 1.5 1.8 -0.2 0.3 -0.5 -1.7 -3.2 -5.2 9
I 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.206 1.054 1.219 1.126 1.011 1.206 1.188 0.987 1.105 1.191 1.046 1.198 1.053 1.198 1.059 1.214 1.133 .1.032 1.253 1.5 2.4 1.9 2.4 0.8 0.7 0.8 0.7 -0.5 0.4 -0.6 -2.0 -3.8 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.037 1.219 1.040 1.124 1.216 1.101 10 I 1.086 1.203 1.107 1.010 1.203 1.032 1.162 1.035 1.218 1.023 1.132 1.247 1.135 1.4 1.1 1.5 3.0 1.3 0.5 -0.2 0.2 0.1 1.7 -0.7 -2.5 -3.0 1.088 0.936 1.124 1.126 1.133 1.014 1.133 1.126 1.124 0.936 1.088 11 1.103 0.934 1.119 1.123 1.133 1.017 1.132 1.118 1.117 0.946 1.141 12 I -1.4 0.2 0.4 0.3 0.0 -0.3 0.1 0.7 0.6 -1.1 -4.6 1.089 1.216 1.011 1.013 1.160 1.013 1.011 1.216 1.089 1.093 1.229 1.020 1.026 1.182 1.015 0.988 1.204 1.086 13 I -0.4 -1.1 -0.9 -1.3 -1.9 -0.2 2.3 1.0 1.101 1.207 1.222 1.015 1.222 1.207 1.101 1.143 1.231 1.245 1.037 1.232 1.197 1.090 0.3 14
,I -3.7 -1.9 -1.8 -2.1 -0.8 1.085 1.116 1.085 1.117 1.138 1.097 0.8 1.0 15
-2.9 -1.9 -1.1 I KAX DIFFERENCE = -7.2 ASSEKBLY B 5 x.xxx PREDICTED HAX DIFF CFDH>1.0) = 4.3 ASSEKBLY F 6 x.xxx KEASURED RKS DIFFERENCE = 2.1 x.x PERCENT DIFFERENCE I 37
I FIGURE 4-11 F b.H COMPARISON FOR N1C2 MAP 44 (CECOR WITH 7 ANALYSIS LEVELS)
I R p N II L
.K J H G F E D C B A I 1.085 1.116 1.085 1.113 1.179 1.129
-2.5 -5.3 -3.9 1
- -. 1.101 1.207 1.222 1.015 1.222 1.207 1.101 I 1.103 1.205 1.229 1.044 1.262 1.262 1.143
-0.2 0.2 -0.6 -2.8 -3.2 -4.4 -3.7 1.089 1.216 1.011 1 *.013 1.160 1.013 1.011 1.216 1.089 2
1.133 1.224 1.000 0.986 1.169 1.027 1.034 1.256 1.154 3
-3.9 -0.7 1.1 2.7 -0.8 -1.4 -2.2 -3.2 -5.6 1.088 0.936 1.124 1.126 1.133 1.014 1.133 1.126 1.124 0.936 1.088 1.101 0.943 1.116 1.111 1.108 0.992 1.128 1.134 1.136 0.959 1.122 4 I -1.2 -0.7 0.7 1.4 2.3 2.2 0.4 -0.7 -1.1 -2.4 -3.0 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.037 1.219 1.040 1.124 1.216 1.101 1.107 1.233 1.124 1.019 1.196 1.008 1.134 1.016 1.194 1.019 1.138 1.258 1.187 5 I -0.5 -1.4 0.0 2.1 1.9 2.9 2.3 2.1 2.1 2.1 -1.2 -3.3 -7.2 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.206 1.054 1.219 1.126 1.011 1.206 1.205 1.008 1.128 1.227 1.052 1.182 1.036 1.171 1.011 1.195 1.132 1.032 1.252 6 0.1 0.3 -0.2 -0.7 0.2 2.0 2.4 3.0 4.3 2.0 -0.5 -2.0 -3.7 I 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.037 1.206 1.037 1.135 1.015 1.223 1.084 1.079 1.218 0.997 1.130 1.036 1.194 1.013 1.188 1.008 1.171 1.021 1.139 1.029 1.256 1.116 0.5 0.4 1.8 0.4 0.1 1.0 2,4 2.3 2.9 3.0 1.6 -0.4 -1.4 -2.6 -2.9 7
1.116 1.017 1.163 1.027 1.165 1.059 1.213 0.973 1.213 1.059 1.165 1.027 1.163 1.017 1.116 1.113 1.022 1.177 1.026 1.173 1.048 1.195 0.954 1.186 1.028 1.152 1.027 1.172 1.048 1.157 8 0.3 -0.5 -1.2 0.1 -0.7 1.0 1.5 2.0 2.3 3.0 1.1 0.0 -0.8 -3.0 -3.5 1.0~4 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.037 1.206 1.037 1.135 1.015 1.223 1.084 1.078 1.217 1.008 1.120 1.009 1.188 1.023 1.199 1.019 1.207 1.034 1.141 1.032 1.266 1.145 9 0.6 0.5 0.7 1.3 2.8 1.5 1.4 1.3 1.8 -0.1 0.3 -0.5 -1.6 -3.4 -5.3 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.206 1.054 1.219 1.126 1.011 1.206 I 1.189 0.986 1.106 1.192 1.048 1.198 1.052 1.198 1.061 1.214 1.134 1.031 1.254 1.4 2.5 1.8 2.3 0.6 0.7 0.9 0.7 -0.7 0.4 -0.7 -1.9 -3.8 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.037 1.219 1.040 1.124 1.216 1.101 10 I 1.087 1.205 1.106 1.009 1.203 1.031 1.162 1.034 1.21,8 1.022 1.131 1.249 1.136 1.3 0.9 1.6 3.1 1.3 0.6 -0.2 0.3 0.1 1.8 -0.6 -2.6 -3.1 1.088 0.936 1.124 1.126 1.133 1.014 1.133 1.126 1.124 0.936 1.088 11 1.105 0.933 1.118 1.124 1.133 1.017 1.132 1.119 1.117 0.945 1.143 12 I -1.5 0.3 0.5 0.2 0.0 -0.3 0.1 0.6 0.6 -1.0 -4.8 1.089 1.216 1.011 1.013 1.160 1.013 1.011 1.216 1.089 1.095 1.231 1.020 1.026 1.182 1.015 0.987 1.206 1.088 13
-0.5 -1.2 -0.9 -1.3 -1.9 -0.2 2.4 0.8 0.1 1.101 1.207 1.222 1.015 1.222 1.207 1.101 1.144 1.232 1.248 1.038 1.234 1.198 1.091 14
-3.8 -2.0 -2.1 -2.2 -1.0 0.8 0.9 I 1.085 1.116 1.085 1.118 1.139 1.098
-3.0 -2.0 -1.2 15 I
,, IIAX DIFFERENCE =
IIAX DIFF ( FDH> 1
- o*) =
RIIS DIFFERENCE =
-7.2 4.3 2.1 ASSEMBLY B 5)
ASSEIIBLY F 6) x.xxx x.xxx x.x PREDICTED MEASURED PERCENT DIFFERENCE I 38
I
... FIGURE 4-12 F !J.H COMPARISON FOR N1C2 MAP 44 (CECOR WITH 22 ANALYSIS LEVELS)
I R p N 11 L K J H G F E D C B A I 1.085 1.116 1.085 1.113 1.179 1.129
-2.5 -5.3 -3.9 1
- - - 1.101 1.207 1.222 1.015 1.222 1.207 1.101 I 1.103 1.205 1.230 1.046 1.2.63 1.262 1.143
-0.2 0.2 -0.7 -3.0 -3.2 -4.4 -3.7 1.089 1.216 1.011 1.013 1.160 1.013 1.011 1.216 1.089 2
I 1.132 1.224 1.000 0.987 1.169 1.029 1.034 1.256 1.154
-3.8 -0.7 1.1 2.6 -0.8 -1.6 -2.2 -3.2 -5.6 1.088 0.936 1.124 1.126 1.133 1.014 1.133 1.126 1.124 0.936 1.088 3
1.101 0.943 1.116 1.112 1.109 0.992 1.128 1.135 1.136 0.959 1.122 4 I -1.2 -0.7 0.7 1.3
- 2.2 2.2 0.4 -0.8 -1.1 -2.4 -3.0 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.037 1.219 1.040 1.124 1.216 1.101 1.107 1.233 1.124 1.019 1.196 1.008 1.134 1.016 1.194 1.020 1.138 1.259 1.187 5
-0.5 -1.4 .o.o I 2.1 1.9 2.9 2.3 2.1 2.1 2.0 -1.2 -3.4 -7.2 1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.206 1.054 1.219 1.126 1.011 1.206 1.205 1.008 1.129 1.227 1.054 1.182 1.036 1.171 1.011 1.195 1.132 1.032 1.252 6 0.1 0.3 -0.3 -0.7 o.o 2.0 2.4 3.0 4.3 2.0 -0.5 -2.0 -3.7 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.037 1.206 1.037 1.135 1.015 1.223 1.084 1.079 1.218 0.998 1.131 1.036 1.194 1.013 1.188 1.008 1.171 1.021 1.140 1.030 1.256 1.116 7 0.5 0'.4 1. 7 0.4 0.1 1.0 2.4 2.3 2.9 3.0 1.6 -0.4 -1.5 -2.6 -2.9 1.116 1.017 1.163 1'.027 1.165 1.059 1.213 0.973 1.213 1.059 1.165 1.027 1.163 1.017 1.116 1.113 1.023 1.178 1.026 1.173 1.049 1.195 0.955 1.186 1.028 1.152 1.027 1.173 1.049 1.157 8 0.3 -0.6 -1.3 0.1 -0.7 1.0 1.5 1.9 2.3 3.0 1.1 o.o -0.9 -3.1 -3.5 I 1.084 1.223 1.015 1.135 1.037 1.206 1.037 1.215 1.037 1.206 1.037 1.135 1.015 1.223 1.084 1.078 1.217 1.009 1.120 1.009 1.188 1.023 1.199 1.019 1.207 1.034 1.141 1.033 1.266 1.145 0.6 0.5 0.6 1.3 2.8 1.5 1.4 1.3 1.8 -0.1 0.3 -0.5 -1.7 -3.4 -5.3 9
1.206 1.011 1.126 1.219 1.054 1.206 1.061 1.206 1.054 1.219 1.126 1.011 1.206 I 1.190 0.986 1.107 1.192 1.050 1.198 1.052 1.198 1.063 1.214 1.135 1.031 1.254 1.3 2.5 1.7 2.3 0.4 0.7 0.9 0.7 -0.8 0.4 -0.8 -1.9 -3.8 1.101 1.216 1.124 1.040 1.219 1.037 1.160 1.037 1.219 1.040 1.124 1.216 1.101 10 I 1.087 1.206 1.106 1.009 1.203 1.031 1.163 1.034 1.218 1.022 1.131 1.249 1.135 1.3 0.8 1.6 3.1 1.3 0.6 -0.3 0.3 0.1 1.8 -0.6 -2.6 -3.0 1.088 0.936 1.124 1.126 1.133 1.014 1.133 1.126 1.124 0.936 1.088 11 1.105 0.933 1.118 1.125 1.134 1.018 1.133 1.120 1.117 0.945 1.143 12 I -1.5 0.3 0.5 0.1 -0.1 -0.4 o.o 0.5 0.6 -1.0 -4.8 1.089 1.216 1.011 1.013 1.160 1.013 1.011 1.216 1.089 1.095 1.231 1.020 1.026 1.182 1.016 0.987 1.206 1.088 13 I -0.5 -1.2 -0.9 -1.3 -1.9 -0.3 2.4 1.101 1.207 1.222 1.015 1.222 1.207 1.101 1.144 1.232 1.249 1.039 1.234 1.198 1.091 0.8 0.1 14
-3.8 -2.0 -2.2 -2.3 -1.0 0.8 0.9 I 1.085 1.116 1.085 1.118 1.139 1.098
-3.0 -2.0 -1.2 15 l'IAX DIFFERENCE = -7.2 ASSEl'IBLY B 5 x.xxx PREDICTED l'IAX DIFF (FDH>1.0) = 4.3 ASSEl'IBLY F 6 x.xxx l'IEASURED RKS DIFFERENCE = 2.1 x.x PERCENT DIFFERENCE I 39
I
... FIGURE 4-13 FZ(Z) COMPARISON NORTH ANNA UNIT 1, CYCLE 2 MAP 44 I
,. 0 U')
I U')
(\J I
I 0 0
)I I
- Ix I
U')
lit
- 1*
I- NO
~
N LL I
- 0 U')
0
- I
- I U')
(\J 0
I 0 0
I a-+-------------------------.
o.oo 20.00 40.00 60.00 80.00 100.00 PERCENT HEIGHT FROM BOTTOM OF CORE I AAA CECOR C 1 LEVEL)
+ + +
I XXX
(!) (!) (!)
CECOR C 7 LEVEL)
CECOR (22 LEVEL)
I NCOR C 1 LEVEL)
I
-I 40
I FIGURE 4-14 FOCZ) COMPARISON NORTH ANNA UNIT 1. CYCLE 2 MAP 44 I 0
<<)
I I 0 I()
I I 0
(\J I 0 ;w: I!
...... 0\.
I NO
"-,J a ~
LL I!
0
'°0 .
'I I 0 I"")
0 I 0 0
I a-----------~----.-----.
o.oo 20.00 40.00 60.00 80.00 100.00 PERCENT HEIGHT FROM BOTTOM OF CORE I AAA CECOR C 1 LEVEL)
+ + +
I XXX C) C) C)
CECOR C 7 LEVEL)
CECOR (22 LEVEL)
I NCOR C 1 LEVEL)
I I 41
I FIGURE 4-15 RPD COMPARISON FOR S1C6 MAP 70 (INCOR WITH 1 ANALYSIS LEVEL)
I R p N
" L K J H G F E D C B I 0.434 0.676 0.434 0.421 0.655 0.429 3.1 3.2 1.2 1
- - - 0.428 0.863 0.978 0.922 0.978 0.863 0.428 I 0.433 0.847 0.964 0.909 0.978 0.876 0.435
-1.2 *1.9 1.5 1.4 0.0 -1.5 -1.6 0.494 1.011 1.163 1.061 1.030 1.061 1.163 1.011 0.494 2
I 0.499 1.021 1.142 1.045 1.029 1.062 1.181 1.026 0.502
-1.0 -1.0 1.8 1.5 0.1 -0.1 -1.5 -1.5 -1.6 0.491 0.922 1.207 1.150 1.235 1.106 1.235 1.150 1.207 0.922 0.491 3
0.493 0.924 1.207 1.132 1.216 1.088 1.223 1.125 1.226 0.937 0.496 4 I -0.4 -0.2 o.o 1.6 1.6 1.7 1.0 2.2 -1.5 -1.6 -1.0 0.427 1.007 1.205 1.170 1.275 1.161 1.281 1.161 1.275 1.170 1.205 1.007 0.427 0.428 1.008 1.203 1.164 1.262 1.139 1.268 1.149 1.248 1.171 1.224 1.017 0.428 5 I -0.2 -0.1 0.2 0.5 1.0 1.9 1.0 1.0 2.2 -0.1 -1.6 -1.0 -0.2 0.861 1.161 1.150 1.277 1.155 1.268 1.066 1.268 1.155 1.277 1.150 1.161 0.861 0.861 1.161 1.149 1.279 1.147 1.261 1.075 1.271 1.135 1.268 1.168 1.176 0.871 6 0.0 0.0 0.1 -0.2 0.7 0.6 -0.8 -0.2 1.8 0.7 -1.5 -1.3 -1.1 I 0.433 0.977 1.060 1.234 1.161 1.270 0.985 ,1.229 0.985 1.270 1.161 1.234 1.060 0.977 0.433 0.433 0.977 1.059 1.225 1.142 1.250 0.996 1.247 0.998 1.271 1.152 1.220 1.063 0.991 0.439 o.o 0.0 0.1 0.7 1.7 1.6 -1.1 -1.4 -1.3 -0.1 0.8 1.1 -0.3 -1.4 -1.4 7
0.675 0.921 1.039 1.105 1.281 1.067 1.231 1.053 1.231 1.067 1.281 1.105 1.039 0.921 0.675 0.675 0.921 1.039 1.091 1.240 1.040 1.187 1.067 1.244 1.075 1.288 1.093 1.032 0.923 0.681 8 0.0 0.0 o.o 1.3 3.3 2.6 3.7 -1.3 -1.0 -0.7 -0.5 1.1 0.7 -0.2 -0.9 I 0.433 0.977 1.060 1.234 1.161 1.270 0.985 1.229 0.985 1.270 1.161 1.234 1.060 0.977 0.433 0.443 0.988 1.071 1.226 1.146 1.251 0.983 1.234 0.993 1.279 1.163 1.227 1.054 0:919 0.438
-2.3 -1.1 -1.0 0.7 1.3 1.5 0.2 -0.4 -0.8 -0.7 -0.2 0.6 0.6 -0.2 -1.1 9
I 0.861 1.161 1.150 1.277 1.155 1.268 1.066 1.268 1.155 1.277 1.150 1.161 0.861 0.879 1.185 1.159 1.274 1.153 1.261 1.055 1.259 1.162 1.278 1.149 1.159 0.872
-2.0 -2.0 -0.8 0.2 0.2 0.6 *1.0 0.7 -0.6 -0.1 0.1 0.2 -1.3 10 0.427 1.007 1.205 1.170 1.275 1.161 1.281 1.161 1.275 1.170 1.205 1.007 0.427 I 0.433 1.021 1.217 1.177 1.276 1.146 1.247 1.125 1.279 1.172 1.206 1.010 0.432
-1.4 -1.4 -1.0 -0.6 -0.1 1.3 2.7 3.2 -0.3 -0.2 -0.1 -0.3 -1.2 0.491 0.922 1.207 1.150 1.235 1.106 1.235 1.150 1.207 0.922 0.491 11 0.495 0.928 1.214 1.149 1.226 1.086 1.227 1.165 1.212 0.920 0.496 12 I -0.8 -0.6 -0.6 0.1 0.7 1.8 0.7 -1.3 -0.4 0.494 1.011 1.163 1.061 1.030 1.061 1.163 1.011 0.494 0.2 -1.0 0.497 1.017 1.163 1.056 1.033 1.077 1.184 1.021 0.495 I -0.6 -0.6 o.o 0.5 -0.3 -1.5 -1.8 -1.0 -0.2 0.428 0.863 0.978 0.922 0.978 0.863 0.428 0.431 0.867 0.984 0.931 0.989 0.875 0.437 14
-0.7 -0.5 -0.6 -1.0 -1.1 -1.4 -2.1 I 0.434 0.676 0.434 0.437 0.683 0.439 15
-0.7 -1.0 -1.1 I nAX DIFFERENCE = 3.7 ASSEnBLY J 8) x.xxx PREDICTED nAX DIFF (RPD>1.0) = 3.7 ASSEnBLY J 8) x.xxx nEASURED RMS DIFFERENCE = 1.2 x.x PERCENT DIFFERENCE I 42
I FIGURE 4-16 RPD COMPARISON FOR SIC6 MAP 70 (CECOR WITH I ANALYSIS LEVEL)
I R p N K L K J H G F E D C B A I 0.434 0.676 0.434 0.425 0.655 0.429 2.1 3.2 1.2 1
- - - 0.428 0.863 0.978 0.922 0.978 0.863 0.428 I 0.425 0.852 0.965 0.915 0.979 0.876 0.433 0.7 1.3 1.3 0.8 -0.1 -1.5 -1.2 0.494 1.011 1.163 1.061 1.030 1.061 1.163 1.011 0.494 2
I 0.498 1.004 1.149 1.043 1.036 1.062 1.169 1.017 0.498
-0.8 0.7 1.2 1.7 -0.6 -0.1 -0.5 -0.6 -0.8 0.491 0.922 1.207 1.150 1.235 1.106 1.235 1.150 1.207 0.922 0.491 3
0.491 0.920 1.199 1.137 1.214 1.085 1.228 1.149 1.212 0.932 0.497 4 I 0.0 0.2 0.7 1.1 1.7 1.9 0.6 0.1 -0.4 -1.1 -1.2 0.427 1.007 1.205 1.170 1.275 1.161 1.281 1.161 1.275 1.170 1.205 1.007 0.427 5
0.428 1.009 1.203 1.163 1.261 1.137 1.269 1.155 1.268 1.174 1.226 1.019 0.428 I -0.2 -0.2 0.2 0.6 1.1 2.1 0.9 0.5 0.6 -0.3 -1. 7 -1.2 -0.2 0.861 1.161 1.150 1.277 1.155 1.268 1.066 1.268 1.155 1.277 1.150 1.161 0.861 0.862 1.161 1.149 1.283 1.150 1.262 1.077 1.267 1.131 1.274 1.157 1.171 0.872 6
-0.1 0.0 0.1 -0.5 0.4 0.5 -1.0 0.1 2.1 0.2 -0.6 -0.9 -1.3 I 0.433 0.977 1.060 1.234 1.161 1.270 0.985 1.229 0.985 1.270 1,161 1.234 1.060 0.977 0.433 0.435 0.979 1.059 1.227 1.149 1.260 0.983 1.237 1.001 1,269 1.161 1.237 1.065 0.998 0.440
-0.5 -0.2 0.1 0.6 1.0 0.8 0.2 -0.6 -1.6 0.1 0.0 -0.2 -0.5 -2.1 -1.6 7
0.675 0.921 1.039 1.105 1.281 1.067 1.231 1.053 1.231 1.067 1.281 1.105 1.039 0.921 0.675 0.678 0.925 1.040 1.093 1.238 1.053 1.226 1.056 1.241 1.072 1.283 1.103 1.028 0.920 0.679 8
-0.4 -0.4 -0.1 1.1 3.5 1.3 0.4 -0.3 -0.8 -0.5 -0.2 0.2 1.1 0.1 -0.6 I 0.433 0.977 1.060 1.234 1.161 1.270 0.985 1.229 0.985 1.270 1.161 1.234 1.060 0.977 0.433 0.437 0.986 1.068 1.233 1.151 1.262 0.982 1.229 0.992 1.274 1.162 1.233 1.057 0.977 0.438
-0.9 -0.9 -0.7 0.1 0.9 0.6 0.3 0.0 -0.7 -0.3 -0.1 0.1 0.3 0.0 -1.1 9
0.861 1.161 1.150. 1.277 1.155 1.268 1.066 1.268 1.155 1.277 1.150 1.161 0.861 I 0.875 1.188 1.159 1.278 1.153 1.267 1.057 1.265 1.156 1.278 1.149 1.160 0.861
-1.6 -2.3 -0.8 -0.1 0.2 0.1 0.9 0.2 -0.1 -0.1 0.1 0.1 0.0 10 0.427 1.007 1.205 1.170 1.275 1.161 1.281 1.161 1.275 1.170 1.205 1.007 0.427 I. 0.434 1.021 1.215 1.177 1.274 1.151 1.244 1.152 1,276 1.174 1,205 1.009 0.428
-1.6 -1.4 -0.8 -0.6 0.1 0.9 3.0 0.8 -0 .1 -0.3 0.0 -0.2 -0.2 0.491 0 .922 1.207 1.150 1.235 1.106 1.235 1.150 1.207 0.922 0.491 11 0.494 0.928 1.212 1.150 1.231 1.097 1.234 1.157 1.212 0.917 0.497 12 I -0.6 -0.6 -0.4 0.0 0.3 0.8 0.1 -0.6 -0.4 0.494 1.011 1.163 1.061 1.030 1.061 1.163 1.011 0.494 0.497 1.014 1.165 1.061 1.031 1.070 1.187 1.022 0.496 0.5 -1.2 13 I -0.6 -0.3 -0.2 0.0 -0.1 -0.8 -2.0 -1.1 -0.4 0.428 0.863 0.978 0.922 0.978 0.863 0.428 0.430 0.865 0.981 0.927 0.989 0.876 0.434 14
-0.5 -0.2 -0.3 -0.5 -1.1 -1.5 -1.4 I 0.434 0.676 0.434 0.436 0.680 0.438 15
-0.5 -0.6 -0.9 KAX DIFFERENCE = 3.5 ASSEKBLY L 8 x.xxx PREDICTED KAX DIFF CRPD>1.0) = 3.5 ASSEKBLY L 8 x.xxx KEASURED RKS DIFFERENCE = 1.0 x.x PERCENT DIFFERENCE I 43
I FIGURE 4-17 RPD COMPARISON FOR S1C6 MAP 70 (CECOR WITH 7 ANALYSIS LEVELS)
I R p N II L K J H G F E D C B A I .
0.434 0.676 0.434 0.425 0.656 0.429 2.1 3.0 1.2 1
- -. 0.428 0.863 0.978 0.922 0.978 0.863 0.428 I 0.424 0.853 0.966 0.915 0.980 0.876 0.433 0.9 1.2 1.2 0.8 -0.2 -1.5 -1.2 0.494 1.011 1.163 1.061 1.030 1.061 1.163 1.011 0.494 2
I 0.498 1.005 1.150 1.040 1.036 1.062 1.170 1.018 0.498 3
-0.8 0.6* 1.1 2.0 -0.6 -0.1 -0.6 -0.7 -0.8 0.491 0.922 1.207 1.150 1.235 1.106 1.235 1.150 1.207 0.922 0.491 0.491 0.920 1.199 1.135 1.214 1.085 1.228 1.149 1.213 0.932 0.497 4 I 0.0 0.2 0.7 1.3 1.7 1.9 0.6 0.1 -0.5 -1.1 -1.2 0.427 1.007 1.205 1.170 1.275 1.161 1.281 1.161 1.275 1.170 1.205 1.007 0.427 0.428 1.009 1.203 1.162 1.262 1.134 1.271 1.154 1.268 1.173 1.227 1.019 0.428 5 0.6 -0.3 -1.8 -1.2 -0.2 I -0.2 -0.2 .0.2 0.7 1.0 2.4 0.8 0.6 0.861 1.161 1.150 1.277 1.155 1.268 1.066 1.268 1.155 1.277 1.150 1.161 0.861 0.863 1.163 1.149 1.283 1.148 1.262 1.076 1.268 1.129 1.274 1.156 1.172 0.872 6
-0.2 -0.2 0.1 -0.5 0.6 0.5 -0.9 0.0 2.3 0.2 -0.5 -0.9 -1.3 I 0.433 0.977 1.060 1.234 1.161 1.270 0.985 1.229 0.985 1.270 1.161 1.234 1.060 0.977 0.433 0.435 0.980 1.059 1,228 1.148 1.260 0.982 1.238 1.001 1.270 1.160 1.238 1.064 0.998 0.440
-0.5 -0.3 0.1 0.5 1.1 0.8 D.3 -0.7 -1.6 0.0 0.1 -0.3 -0.4 -2.1 -1.6 7
0.675 0.921 1.039 1.105 1.281 1.067 1.231 1.053 1.231 1.067 1.281 1.105 1.039 0.921 0.675 0.678 0.924 1.039 1.093 1.239 1.053 1.226 1.056 1.241 1.072 1.283 1.102 1.027 0.920 0.679 8
-0.4 -0.3 .0.0 1.1 3.4 1.3 0.4 -0.3 -0.8 -0.5 -0.2 0.3 1.2 0.1 -0.6 I 0.433 0.977 1.060 1.234 1.161 1.270 0.985 1.229 0.985 1.270 1.161 1.234 1.060 0.977 0.433 0.437 0.987 1.068 1.233 1.150 1.262 0.982 1.229 0.991 1.274 1.162 1.233 1.056 0.978 0.438
-0.9 -1.0 -0.7 0.1 1.0 0.6 0.3 o.o -0.6 -0.3 -0.1 0.1 0.4 -0.1 -1.1 9
0.861 1.161 1.150 1.277 1.155 1.268 1.066 1.268 1.155 1.277 1.150 1.161 0.861 I 0.876 1.189 1.158 1.279 1.152 1.268 1.057 1.266 1.155 1.279 1.148 1.162 0.862
-1. 7 -2.4 -0.7 -0.2 0.3 0.0 0.9 0.2 0.0 -0.2 0.2 -0.1 -0.1 0.427 1.007 1.205 1.170 1.275 1.161 1.281 1.161 1.275 1.170 1.205 1.007 0.427 10 I 0.434 1.022 1.216 1.176 1.275 1.151 1.244 1.151 1.277 1.173 1.205 1.009 0.427
-1.6 -1.5 -0.9 -0.5 o.o 0.9 3.0 0.9 -0.2 -0.3 0.0 -0.2 0.0 0.491 0.922 1.207 1.150 1.235 1.106 1.235 1.150 1.207 0.922 0.491 11 0.494 0.927 1.212 1.150 1.231 1.096 1.234 1.156 1.212 0.917 0.497 12 I -0.6 -0.5 -0.4 o.o 0.3 0.9 0.1 -0.5 -0.4 0.5 -1.2 0.494 1.011 1.163 1.061 1.030 1.061 1.163 1.011 0.494 0.497 1.015 1.166 1.061 1.030 1.068 1.188 1.023 0.496 13 I -0.6 -0.4 -0.3 o.o 0.0 -0.7 -2.1 -1.2 -0.4 0.428 0.863 0.978 0.922 0.978 0.863 0.428 0.430 0.865 0.981 0.926 0.990 0.877 0.434 14
-0.5 -0.2 -0.3 ~o.4 -1.2 -1.6 -1.4
- I 0.434 0.676 0.434 0.436 0.680 0.438
-0.5 -0.6 -0.9 15 I IIAX DIFFERENCE = 3.4 ASSEIIBLY L 8) x.xxx PREDICTED IIAX DIFF CRPD>1 .. 0) = 3.4 ASSEIIBLY L 8) x.xxx IIEASURED RIIS DIFFERENCE = 1.0 x.x PERCENT DIFFERENCE I 44
I FIGURE 4-18 RPD COMPARISON FOR S1C6 MAP 70 (CECOR WITH 22 ANALYSIS LEVELS)
I R p N II L K J H G F E D C B A I 0.434 0.676 0.434 0.425 0.655 0.429 2.1 3.2 1.2 1
- -- 0.428 0.863 0.978 0.922 0.978 0.863 0.428 I 0.424 0.853 0.966 0.915 0.980 0.876 0.432 0.9 1.2 1.2 0.8 -0.2 -1.5 -0.9 0.494 1.011 1.163 1.061 1.030 1.061 1.163 1.011 0.494 2
I 0.498 1.005 1.150 1.039 1.036 1.062 1.169 1.018 0.498 3
-0.8 0.6 1.1 2.1 -0.6 -0.1 -0.5 -0.7 -0.8 0.491 0.922 1.207 1.150 1.235 1.106 1.235 1.150 1.207 0.922 0.491 0.491 0.920 1.200 1.135 1.214 1.085 1.228 1.148 1.213 0.932 0.496 4 I 0.0 0.2 0.6 1.3 1.7 1.9 0.6 0.2 -0.5 -1.1 -1.0 0.427 1.007 1.205 1.170 1.275 1.161 1.281 1.161 1.275 1.170 1.205 1.007 0.427 0.427 1-009 1.204 1.162 1.262 1.133 1.271 1.154 1.268 1.173 1.227 1.019 0.428 5 I 0.0 -0.2 0.1 0.7 1.0 2.5 0.8 0.6 0.6 -0.3 -1.8 -1.2 . -0.2 0.861 1.161 1.150 1.277 1.155 1.268 1.066 1.268 1.155 1.277 1.15Q 1.161 0.861 0.863 1.163 1.149 1.283 1.149 1.263 1.076 1.268 1.129 1.274 1.156 1.172 0.872 6
-0.2 -0.2 0.1 -0.5 0.5 0.4 -0.9 0.0 2.3 0.2 -0.5 -0.9 -1.3
.I 0.433 0.977 1.060 1.234 1.161 1.270 0.985 1.229 0.985 1.270 1.161 1.234 1.060 0.977 0.433 0.435 0.980 1.059 1.228 1.148 1.260 0.981 1.238 1.001 1.270 1.160 1.238 1.064 0.998 0.440 0.4 -0.7 -1.6 o.o 0.1 -0.3 -0.4 -2."1 -1.6 7
-0.5 -0.3 0.1 0.5 1.1 0.8 0.675 0.921 1.039 1.105 1.281 1.067 1.231 1.053 1.231 1.067 1.281 1.105 1.039 0.921 0.675 0.678 0.925 1.039 1.093 1.239 1.053 1.226 1.056 1.241 1.072 1.284 1.102 1.027 0.919 0.679 8
-0.4 -0.4 0.0 1.1 3.4 1.3 0.4 -0.3 -0.8 -0.5 -0.2 0.3 1.2 0.2 -0.6 I 0.433 0.977 1.060 1.234 1.161 1.270 0.985 1.229 0.985 1.270 1.161 1.234 1.060 0.977 0.433 0.437 0.987 1.068 1.234 1.150 1.262 0.982 1.229 0.991 1.275 1.161 1.234 1.056 0.978 0.438
-0.9 -1.0 -0.7 o.o 1.0 0.6 0.3 o.o -0.6 -0.4 o.o 0.0 0.4 -0.1 -1.1 9
0.861 1.161 1.150 1.277 1.155 1.268 1.066 1.268 1.155 1.277 1.150 1.161 0.861 I 0.876 1.189 1.158 1.279 1.153 1.269 1.057 1.266 1.155 1.279 1.148 1.162 0.862
-1.7 -2.4 -0.7 -0.2 0.2 -0 .1 0.9 0.2 0.0 -0.2 0.2 -0.1 -0.1 10 0.427 1.007 1.205 1.170 1.275 1.161 1.281 1.161 1.275 1.170 1.205 1.007 0.427 I 0.433 1.022 1.216 1.176 1.275 1.151 1.245 1.151 1.277 1.173 1.206 1.009 0.427
-1.4 -1.5 -0.9 -0.5 0.0 0.9 2.9 0.9 -0.2 -0.3 -0.1 -0.2 0.491 0.922 1.207 1.150 1.235 1.106 1.235 1.150 1.207 0.922 0.491 o.o 11 0.494 0.927 1.212 1.150 1.232 1.096 1.235 1.156 1.213 0.917 0.497 12 I -0.6 -0.5 -0.4 o.o 0.2 0.9 o.o -0.5 -0.5 0.5 -1.2 0.494 1.011 1.163 1.061 1.030 1.061 1.163 1.011 0.494 0.496 1.015 1.166 1.060 1.030 1.068 1.188 1.023 0.496 13 I -0.4 -0.4 -0.3 0.1 0.0 -0.7 -2.1 -1.2 -0.4 0.428 0.863 0.978 0.922 0.978 0.863 0.428 0.430 0.865 0.982 0.926 0.990 0.877 0.434 14
-0.5 -0.2 -0.4 -0.4 -1.2 -1.6 -1.4 I 0.434 0.676 0.434 0.436 0.680 0.438
-0.5 -0.6 -0.9 15 I IIAX DIFFERENCE = 3.4 ASSEKBLY L 8) x.xxx PREDICTED IIAX DIFF (RPD>1.0) = 3.4 ASSEKBLY L 8) x.xxx IIEASURED RIIS DIFFERENCE = 1.0 x.x PERCENT DIFFERENCE I 45
I - . ..:;;._- --*
FIGURE 4-19 F AH COMPARISON FOR S1C6 MAP 70 (INCOR WITH 1 ANALYSIS LEVEL)
I R p N ti L K J H G F E D C B A I 0.689 0.908 0.689 0.675 0.887 0.680 2.1 2.4 1.3 1
. - 0.771 1.119 1.104 0.970 1.104 1.119 0.771 I 0.768 1.099 1.089 0.961 1.106 1.136 0.783 0.4 1.8 1.4 0.9 -0.2 -1.5 -1.5 0.808 1.215 1.232 1.116 1.051 1.116 1.232 1.215 0.808 2
I 0.813 1.218 1.210 1.100 1.042 1.117 1.250 1.234 0.821 3
-0.6 -0.2 1.8 1.5 0.9 -0.1 -1.4 -1.5 -1.6 0.801 1.076 1.267 1.219 1.281 1.170 1.281 1.219 1.267 1.076 0.801 0.802 1.076 1.264 1.199 1.261 1.152 1.269 1.192 1.288 1.093 0.811 4 I -0.1 0.0 0.2 1.7 1.6 1.6 0.9 2.3 -1.6 -1.6 -1.2
- o. 770 1.213 1.271 1.221 1.308 1.207 1.307 1.207 1.308 1.221 1.271 1.213 0.770 0.770 1.212 1.268 1.217 1.297 1.188 1.294 1.197 1.279 1.228 1.291 1.227 0.777 5 2.3 -0.6 -1.5 -1.1 -0.9 I 0.0 0.1 0.2 0.3 0.8 1.6 1.0 0.8 1.118 1.230 1.219 1.310 1.199 1.313 1.103 1.313 1.199 1.310 1.219 1.230 1.118 1.118 1.230 1.219 1.310 1.192 1.301 1.109 1.314 1.173 1.302 1.238 1.247 1.134 6 o.o 0.0 0.0 0.0 0.6 0.9 -0.5 -0.1 2.2 0.6 -1.5 -1.4 -1.4 I
0.688 1.103 1.115 1.281 1.207 1.314 1.012 1.265 1.012 1.314 1.207 1.281 1.115 1.103 o.,688 0.688 1.102 1.114 1.273 1.180 1.294 1.007 1.283 1.015 1.312 1.200 1.267 1.120 1.114 0.693 7 0.0 0.1 0.1 0.6 2.3 1.5 0.5 -1.4 -0.3 0.2 0.6 1.1 -0.4 -1.0 -0.7 0.907 0.969 1.056 1.169 1.307 1.104 1.267 1.069 1.267 1.104 1.307 1.169 1.056 0.969 0.907 0.907 0.969 1.056 1.150 1.266 1.074 1.222 1.084 1.280 1.112 1.314 1.156 1.055 0.970 0.911 8 0.0 0.0 0.0 1.7 3.2 2.8 3.7 -1.4 -1.0 -0.7 -0.5 1.1 0.1 -0.1 -0.4 I 0.688 1.103 1.115 1.281 1.207 1.314 1.012 1.265 1.012 1.314 1.207 1.281 1.115 1.103 0.688 0.688 1.115 1.130 1.274 1.185 1.294 1.007 1.270 1.019 1.323 1.213 1.275 1.108 1.102 0.692 0.0 -1.1 -1.3 0.5 1.9 1.5 0.5 -0.4 -0.7 -0.7 -0.5 0.5 0.6 0.1 -0.6 9
1.118 1.230 1.219 1.310 1.199 1.313 1.103 1.313 1.199 1.310 1.219 1.230 1.118 I 1.141 1.256 1.224 1.310 1.198 1.303 1.087 1.299 1.202 1.311 1.218 1.228 1.132
-2.0 -2.1 -0.4 0.0 0.1 0.8 1.5 1.1 -0.2 -0.1 0.770 1.213 1.271 1.221 1.308 1.207 1.307 1.207 1.308 1.221 1.271 1.213 0.770 0.1 0.2 -1.2 10 I 0.783 1.230 1.283 1.227 1.310 1.188 1.274 1.169 1.311 1.221 1.272 1.215 0.774
-1.7 -1.4 -0.9 -0.5 -0.2 1.6 2.6 3.3 -0.2 o.o -0.1 -0.2 -0.5 0.801 1.076 1.267 1.219 1.281 1.170 1.281 1.219 .1.267 1.076 0.801 11 0.809 1.083 1.275 1.218 1.270 1.145 1.278 1.232 1.272 1.076 0.804 12 I -1.0 -0.6 -0.6 0.1 0.9 2.2 0.2 -1.1 -0.4 0.808 1.215 1.232 1.116 1.051 1.116 1.232 1.215 0.808 0.813 1.222 1.231 1.111 1.062 1.134 1.253 1.227 0.811 0.0 -0.4 13 I -0.6 -0.6 0.1 0.5 -1.0 -1.6 -1.7 -1.0 -0.4 0.771 1.119 1.104 0.970 1.104 1.119 0.771 0.776 1.126 1.099 0.980 1.118 1.136 0.784 14
-0.6 -0.6 0.5 -1.0 -1.3 -1.5 -1.7 I 0.689 0.908 0.689 0.696 0.917 0.696
-1.0 -1.0 -1.0 15 I tlAX DIFFERENCE tlAX DIFF (FDH>1.0) =
RtlS DIFFERENCE
=
=
3.7 3.7 1.2 ASSEtlBLY J 8 ASSEtlBLY J 8 x.xxx x.xxx x.x PREDICTED tlEASURED PERCENT DIFFERENCE I 46
I FIGURE 4-20 F AH COMPARISON FOR S1C6 MAP 70 (CECOR WITH 1 ANALYSIS LEVEL)
I R p N II L K
J H C F E D C B A I 0.689 0.908 0.689 0.675 0.880 0.681 2.1 3.2 1.2 1
- .. 0.771 1.119 1.104 0.9-70 1.104 1.119 0.771 I 0.764 1.106 1.089 0.963 1.105 1.137 0.779 0.9 1.2 1.4 0.7 -0.1 -1.6 -1.0 0.808 1.215 1.232 1.116 1.051 1.116 1.232 1.215 0.808 2
3 I 0.815 1.207 1.217 1.096 1.057 1.117 1.238 1.223 0.815
-0.9 0.7 1.2 1.8 -0.6 -0.1 -0.5 -0.7 -0.9 0.801 1.076 1.267 1.219 1.281 1.170 1.281 1.219 1.267 1.076 0.801 0.802 1.074 1.259 1.204 1.259 1.148 1.274 1.218 1.273 1.088 0.810 4 I -0.1 0.2 0.6 1.2 1.7 1.9 0.5 0.1 -0.5 -1.1 -1.1 0.770 1.213 1.271 1.221 1.308 1.207 1.307 1.207 1.308 1.221 1.271 1.213 0.770 0.771 1.215 1.268 1.213 1.293 1.181 1.295 1.200 1.300 1.224 1.293 1.227 0.772 5 0.6 -0.2 -1.7 -1.1 -0.3 I -0.1 -0.2 0.2 0.7 1.2 2.2 0.9 0.6 1.118 1.230 1.219 1.310 1.199 1.313 1.103 1.313 1.199 1.310 1.219 1.230 1.118 1.119 1.231 1.218 1.316 1.193 1.307 1.114 1.313 1.174 1.306 1.227 1.241 1.132 6
-0.1 -0.1 0.1 -0.5 0.5 0.5 -1.0 0.0 2.1 0.3 -0.7 -0.9 -1.2 I
0.688 1.103 1.115 1.281 1.207 1.314 1.012 1.265 1.012 1.314 1.207 1.281 1.115 1.103 0.688 0.690 1.105 1.114 1.274 1.194 1.304 1.009 1.274 1.028 1.314 1.207 1.284 1.120 1.126 0.698 7
-0.3 -0.2 0.1 0.5 1.1 0.8 0.3 -0.7 -1.6 0.0 o.o -0.2 -0.4 -2.0 -1.4 0.907 0.969 1.056 1.169 1.307 1.104 1.267 1.069 1.267 1.104 1.307 1.169 1.056 0.969 0.907 0.910 0.973 1.056 1.157 1.263 1.089 1.262 1.072 1.277 1.109 1.309 1.167 1.044 0.968 0.912 8
-0.3 -0.4 0.0 1.0 3.5 1.4 0.4 -0.3 -0.8 -0.5 -0.2 0.2 1.1 0.1 -0.5 I 0.688 1.103 1.115 1.281 1.207 1.314 1.012 1.265 1.012 1.314 1.207 1.281 1.115 1.103 0.688 0.693 1.113 1.123 1.280 1.196 1.306 1.009 1.265 1.019 1.319 1.208 1.280 1.111 1.103 0.695
-0.7 -0.9 -0.7 0.1 0.9 0.6 0.3 0.0 -0.7 .,-0.4 -0.1 0.1 0.4 0.0 -1.0 9
1.118 1.230 1.219 1.310 1.199 1.313 1.103 1.313 1.199 1.310 1.219 1.230 1.118 I 1.136 1.258 1.228 1.311 1.197 1.313 1.094 1.311 1.200 1.311 1.218 1.229 1.118
-1.6 -2.2 -0.7 -0.1 0.2 o.o 0.8 0.2 -0.1 -0.1 0.1 0.1 0.0 10 0.770 1.213 1.271 1.221 1.308 1.207 1.307 1.207 1.308 1.221 1.271 1.213 0.770 I 0.782 1.230 1.281 1.228 1.306 1.196 1.269 1.197 1.308 1.225 1.271 1.215 0.771
-1.5 -1.4 -0.8 -0.6 0.2 0.9 3.0 0.8 - 0.0 -0.3 0.0 -0.2 -0.1 0.801 1.076 1.267 1.219 1.281 1.170 1.281 1.219 1.267 1.076 0.801 11 0.806 1.08? 1.272 1.219 1.277 1.160 1.281 1.226 1.273 1.071 0.810 12 I -0.6 -0.6 -0.4 0.0 0.3 0.9 o.o -0.6 -0.5 0.5 -1.1 0.808 1.215 1.232 1.116 1.051 1.116 1.232 1.215 0.808 0.812 1.219 1.234 1.116 1.052 1.125 1.257 1.229 0.811 13 I -0.5 -0.3 -0.2 0.0 -0.1 -0.8 -2.0 -1.1 -0.4 0.771 1.119 1.104 0.970 1.104 1.119 0.771 0.775 1.122 1.107 0.975 1.117 1.137 0.782 14
-0.5 -0.3 -0.3 -0.5 -1.2 -1.6 -1.4 I 0.689 0.908 0.689 0.692 0.913 0.695
-0.4 -0.5 -0.9 15 I x.xxx
~
IIAX DIFFERENCE = 3.5 ASSEMBLY L 8) PREDICTED IIAX DIFF CFDH>1.0) = 3.5 ASSEMBLY L 8) x.xxx IIEASURED RIIS DIFFERENCE = 1.0 x.x PERCENT DIFFERENCE I 47
I I R p N !I L K J FIGURE 4-21 FAH COMPARISON FOR S1C6 MAP 70 (CECOR WITH 7 ANALYSIS LEVELS)
H G F E D C B A I 0.689 0.908 0.689 0.675 0.880 0.681 2.1 3.2 1.2 1
- -- 0.771 1.119 1.104 0.970 1.104 1.119 0.771 I 0.764 1.107 1.091 0.962 1.107 1.137 0.779 0.9 1.1 1.2 0.8 -0.3 -1.6 -1.0 0.808 1.215 1.232 1.116 1.051 1.116 1.232 1.215 0.808 2
I 0.815 1.208 1.220 1.095 1.063 1.118 1.241 1.223 0.815 3
-0.9 0.6 1.0 1.9 -1.1 -0.2 -0.7 -0.7 -0.9 0.801 1.076 1.267 1.219 1.281 1.170 1.281 1.219 1.267 1.076 0.801 0.801 1.074 1.263 1.203 1.261 1.148 1.275 1.217 1.277 1.088 0.810 4 I 0.0 0.2 0.3 1.3 1.6 1.9 0.5 0.2 -0.8 -1.1 -1.1 0.770 1.213 1.271 1.221 1.308 1.207 1.307 1.207 1.308 1.221 1.271 1.213 0.770 0.771 1.216 1.272 1.215 1.295 1.178 1.297 1.199 1.302 1.226 1.297 1.228 0.771 5 I -0.1 -0.2 -0.1 0.5 1.0 2.5 0.8 0.7 0.5 -0.4 -2.0 -1.2 -0.1 1.118 1.230 1.219 1.310 1.199 1.313 1.103 1.313 1.199 1.310 1.219 1.230 1.118 1.120 1.234 1.218 1.318 1.192 1.308 1.113 1.313 1.172 1.308 1.226 1.244 1.132 6
-0.2 -0.3 0.1 -0.6 0.6 0.4 -0.9 0.0 2.3 0.2 -0.6 -1.1 -1.2 I 0.688 1.103 1.115 1.281 1.207 1.314 1.012 1.265 1.012 1.314 1.207 1.281 1.115 1.103 0.688 0.690 1.107 1.115 1.275 1.193 1.305 1.010 1.275 1.030 1.315 1.206 1.285 1.121 1.128 0.698
-0.3 -0.4 o.o 0.5 1.2 0.7 0.2 -0.8 -1.7 -0.1 0.1 -0.3 -0.5 -2.2 -1.4 7
0.907 0.969 1.056 1.169 1.307 1.104 1.267 1.069 1.267 1.104 1.307 1.169 1.056 0.969 0.907 0.911 0.972 1.063 1.156 1.265 1.089 1.263 1.072 1.278 1.109 1.310 1.166 1.050 0.967 0.912 8
-0.4 -0.3 -0.7 1.1 3.3 1.4 0.3 -0.3 -0.9 -0.5 -0.2 0.3 0.6 0.2 -0.5 I 0.688 1.103 1.115 1.281 1.207 1.314 1.012 1.265 1.012 1.314 1.207 1.281 1.115 1.103 0.688 0.693 1.115 1.124 1.281 1.196 1.307 1.010 1.266 1.020 1.320 1.207 1.281 1.112 1.105 0.695
-0.7 -1.1 -0.8 o.o 0.9 0.5 0.2 -0.1 -0.8 -0.5 o.o 0.0 0.3 -0.2 -1.0 9
1.118 1.230 1.219 1.310 1.199 1.313 1.103 1.313 1.199 1.310 1.219 1.230 1.118 I 1.137 1.261 1.228 1.313 1.196 1.314 1.093 1.311 1.199 1.313 1.217 1.232 1.119
-1.7 -2.5 -0.7 -0.2 0.3 -0.1 0.9 0.2 o.o -0.2 0.2 -0.2 -0.1 10 0.770 1.213 1.271 1.221 1.308 1.207 1.307 1.207 1.308 1.221 1.271 1.213 0.770 I 0.781 1.231 1.285 1.229 1.308 1.196 1.270 1.196 1.310 1.226 1.274 1.216 0.771
-1.4 -1.5 -1.1 -0.7 o.o 0.9 2.9 0.9 -0.2 -0.4 -0.2 -0.2 -0.1 0.801 1.076 1.267 1.219 1.281 1.170 1.281 1.219 1.267 1.076 0.801 11 0.806 1.083 1.276 1.219 1.279 1.159 1.282 1.226 1.277 1.071 0.810 12 I -0.6 -0.6 -0.7 o.o 0.2 0.9 -0.1 -0.6 -0.8 0.5 -1.1 0.808 1.215 1.232 1.116 1.051 1.116 1.232 1.215 0.808 0.812 1.220 1.237 1.117 1.056 1.125 1.260 1.230 0.811 13 I -0.5 -0.4 -0.4 -0.1 -0.5 -0.8 -2.2 -1.2 -0.4 0.771 1.119 1.104 0.970 1.104 1.119 0.771 0.775 1.123 1.109 0.974 1.118 1.138 0.782 14
-0.5 -0.4 -0.5 -0.4 -1.3 -1.7 -1.4 I 0.689 0.908 0.689 0.691 0.913 0.695
-0.3 -0.5 -0.9 15 I x.xxx
~
!IAX DIFFERENCE = 3.3 ASSE!IBLY L 8 PREDICTED MAX DIFF (FDH>1.0) = 3.3 ASSE!IBLY L 8 x.xxx !IEASURED R!IS DIFFERENCE = 1.0 x.x PERCENT DIFFERENCE I 48
I FIGURE 4-22 F /J.H COMPARISON FOR S1C6 MAP 70 (CECOR WITH 22 ANALYSIS LEVELS)
I R p N II L K
~
J H G F E D C B A I 0.689 0.908 0.689 0.674 0.880 0.681 2.2 3.2 1.2 1
- - - - 0.771 1.119 1.104 0.970 1.104 1.119 0.771 I 0.764 1.107 1.091 0.963 1.107 1.137 0.779 0.9 1.1 1.2 0.7 -0.3 -1.6 -1.0 0.808 1.215 1.232 1.116 1.051 1.116 1.232 1.215 0.808 2
0.815 1.208 1.220 1.094 1.063 1.118 1.241 1.223 0.815 3 I -0.9 0.6 1.0 2.0 -1.1 -0.2 -0.7 -0.7 -0.9 0.801 1.076 1.267 1.219 1.281 1.170 1.281 1.219 1.267 1.076 0.801 0.801 1.074 1.263 1.203 1.261 1.148 1.275 1.217 1.278 1.088 0.810 4 I o.o 0.2 0.3 1.3 1.6 1.9 0.5 0.2 -0.9 -1.1 -1.1 0.770 1.213 1.271 1.221 1.308 1.207 1.307 1.207 1.308 1.221 1.271 1.213 0.770 0.771 1.215 1.273 1.215 1.295 1.178 1.297 1.199 1.301 1.226 1.297 1.228 0. 771 5 0.7 0.5 -0.4 -2.0 -1.2 -0.1 I -0.1 -0.2 -0.2 0.5 1.0 2.5 0.8 1.118 1.230 1.219 1.310 1.199 1.313 1.103 1.313 1.199 1.310 1.219 1.230 1.118 1.120 1.234 1.218 1.318 1.192 1.308 1.113 1.313 1.172 1.308 1.226 1.244 1.132 6
-0.2 -0.3 0.1 -0.6 0.6 0.4 -0.9 0.0 2.3 0.2 -0.6 -1.1 -1.2 I 0.688 1.103 1.115 1.281 1.207 1.314 1.012 1.265 1.012 1.314 1.207 1.281 1.115 1.103 0.688 0.690 1.107 1.115 1.275 1.193 1.305 1.010 1.274 1.029 1.315 1.206 1.285 1.121 1.128 0.698
-0.3 -0.4 0.0 0.5 1.2 0.7 0.2 -0.7 -1.7 -0.1 0.1 -0.3 -0.5 -2.2 -1.4 7
0.907 0.969 1.056 1.169 1.307 1.104 1.267 1.069 1.267 1.104 1.307 1.169 1.056 0.969 0.907 0.911 0.973 1.063 1.156 1.265 1.089 1.263 1.072 1.278 1.109 1.310 1.166 1.051 0.967 0.912 8
-0.4 -0.4 -0.7 1.1 3.3 1.4 0.3 -0.3 -0.9 -0.5 -0.2 0.3 0.5 0.2 -0.5 I 0.688 1.103 1.115 1.281 1.207 1.314 1.012 1.265 1.012 1.314 1.207 1.281 1.115 1.103 0.688 0.693 1.115 1.124 1.281 1.196 1.307 1.010 1.266 1.020 1.320 1.207 1.281 1.112 1.105 0.695
-0.7 -1.1 -0.8 o.o 0.9 0.5 0.2 -0.1 -0.8 -0.5 0.0 o.o 0.3 -0.2 -1.0 9
1.118 1.230 1.219 1.310 1.199 1.313 1.103 1.313 1.199 1.310 1.219 1.230 1.118 I 1.137 1.262 1.228 1.313 1.196 1.314 1.093 1.312 1.199 1.313 1.217 1.233 1.119
-1.7 -2.5 -0.7 -0.2 0.3 -0.1 0.9 0.1 0.0 -0.2 0.2 -0.2 -0.1 10 0.770 1.213 1.271 1.221 1.308 1.207 1.307 1.207 1.308 1.221 1.271 1.213 0.770 I. 0.781 1.231 1.285 1.229 1.308 1.196 1.271 1.196 1.310 1.226 1.275 1.216 0.770
-1.4 -1.5 -1.1 -0.7 0.0 0.9 2.8 0.9 -0.2 -0.4 -0.3 -0.2 0.801 1.076 1.267 1.219 1.281 1.170 1.281 1.219 1.267 1.076 0.801 0.0 11 0.806 1.083 1.277 1.219 1.279 1.159 1.282 1.226 1.277 1.071 0.810 12 I -0.6 -0.6 -0.8 o.o 0.2 0,9 -0.1 -0.6 -0.8 0.5 -1.1 0.808 1.215 1.232 1.116 1.051 1.116 1.232 1.215 0.808 0.812 1.220 1.237 1.117 1.057 1.125 1.261 1.230 0.811 13 I -0.5 -0.4 -0.4 -0.1 -0.6 -0.8 -2.3 -1.2 -0.4 0.771 1.119 1.104 0.970 1.104 1.119 0.771 0.775 1.123 1.109 0.974 1.118 1.138 0.782 14
-0.5 -0.4 -0.5 -0.4 -1.3 -1.7 -1.4 I 0.689 0.908 0.689 0.692 0.913 0.695
-0.4 -0.5 -0.9 15 I IIAX DIFFERENCE = 3.3 ASSEIIBLY L 8 x.xxx PREDICTED KAX DIFF (FDH>1.0) = 3.3 ASSEIIBLY L 8 x.xxx MEASURED RIIS DIFFERENCE = 1.0 x.x PERCENT DIFFERENCE I 49
I FIGURE 4-23 FZCZ) COMPARISON SURRY UNIT 1, CYCLE 6 MAP 70 I 0 I()
I I LO
(\I I
I 0 0
I I()
I N LL 0
""! ¥ 0
- I i LO I .
(\I 0
I 0 0
- +----.--------~----,....----"I I 0 o.oo 20.00 40.00 60.00 PERCENT HEIGHT FROM BOTTOM OF CORE 80.00 100.00 I AAA CECOR C 1 LEVEL)
+ + +* CECOR C 7 LEVEL)
I XXX
(!) (!) (!)
CECOR (22 LEVEL)
I NCOR ( 1 LEVEL)
I 50 I
I FIGURE 4-24 FQ(Z) COMPARISON SURRY UNIT 1. CYCLE 6 MAP 70 I 0 co I
I 0 I()
I I 0
(\J I 0 0\
I 0
U:)
0 I
I 0
t")
0 I 0 0
0.-t------..--------.-----r-------.-----,
I o.oo 20.00 40.00 60.00 PERCENT HEIGHT FROM BOTTOM OF CORE 80.00 100.00 I AAA CECOR C 1 LEVEL)
+ + + CECOR C 7 LEVEL)
I XXX
(!) (!) (!)
CECOR C22
[ NCOR C 1 LEVEL)
LEVEL)
I 51 I
I SECTION 5 -
SUMMARY
AND CONCLUSIONS The results presented in this topical report validate the Virginia Power I TIP/CECOR package as an alternat~ve to ~NCORE by demonstrating that TIP/CECOR 1 s I RPO, F~H* and Fq uncertainty factors are similar to INCORE 1 s uncertainty factors.
In all cases a~alyzed, uncertainty factors for both CECOR and INCORE were less I than values approved by the USNRC in Reference 8 (1.05 for F~H and 1.075 for Fq).
I I Extensive benchmarking demonstrated TIP/CECOR's ability to synthesize three-dimensional core power distributions, using moveable detector data, with physics I input from either the PDQ Discrete or Two Zo~e Model. CECOR also provides the capability to use more than one analysis level. Simulation benchmarking confirms I that, although not necessary for current reload designs, the use of multiple analysis levels permits improved accuracy due to the better axial representation of signal-to-power conversions 1 pin-to-box factors, and coupling coefficients.
I Based on the results of the flux suppression insert simulation, however, 22 analysis levels shall be used for future cycle designs using inserts.
I I
I I
I I
I 52
1.
SECTION 6 - REFERENCES 11
- 1. Technical Manual for In-core Instrumentation 11 , WCAP-7631, Westinghouse Elec-tric Corporation, 1968.
I 2. W. D. Leggett, III and L. D. Eisenhart, "The INCORE Code", WCAP-7149, Westinghouse Electric ~or~ora~on, De~ember 1967.
I 3. M. L. Smith, "The PDQ07 Discrete Model", VEP-FRD-19A, Virginia Electric and Power Company, July 1981.
I 4. W. B. Terney, et al, "The C-E CECOR Fixed In-Core Detector Analysis System",
Trans. Am. Nucl. Soc. , 44 , (542) 1983.
- 5. A. Jonsson, W. 8. Terney, and M. W. Crump, "Evaluation of Uncertainty in the I Nuclear Power Peaking Measured by the Self-Powered Fixed In-Core Detector System," CENPD-153-P, Revision 1-P-A, Combustion Engineering, Inc., May 1980.
- 1 6. R. A. Hall, "The PDQ Two Zone Model", VEP-NAF-1, Virginia Electric and Power Company, July 1990.
- 7.
- P. N. Somerville, "Tables for Obtaining Non-Parametric Tolerance Limits, 11 Ann.
I of Math. Stat., , Volume 29, No. 2, June, 1958.
- 8. J. G. Miller, 11 Vepco Nuclear Design Reliability Factors", VEP-FRD-45A, I Virginia Electric and Power Company, October 1982.
I I
I I
I I
I I 53