ML19210B121

From kanterella
Revision as of 06:39, 15 August 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
ECCS Evaluation of Containment Input Parameters.
ML19210B121
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 10/31/1975
From: Fritzen J, Hernady B, Klingaman R
METROPOLITAN EDISON CO.
To:
Shared Package
ML19210B118 List:
References
GED-0002, GED-2, NUDOCS 7911040057
Download: ML19210B121 (16)


Text

{{#Wiki_filter:7 _.._ _ _ _. . _ _ .-. -'-_,_____ _ _ _ ./XMM'EC - ,--am,'.'METROPOLITAN EDISON COMPANY w : ~ - .. r m - e---POST OFFICE BOX 542 READING, PENNSYLVANI A 19603 TELEPHONE 215 - 929-3601 October 23, 1975 GQL 1636.Fue CF g terf- ,\~(/,.ft_,'~ ~ m ,j (3,. f p//,.Director of Nuclear Reactor Regula j\ og I't 3 N,< ~ '.Attn: R. W. Reid, Director [b 0 (g, I [^ % s3 'M L.Operating Reactors Branch No. 4 07 OCT 1975 " p)8g/Sy'-(f U. S. Nuclear Regulatory Cor:missic

  • a.;%n u s. .g,,;,*;pm j.,.g, g Washington, D.C.

20555 g_g.,,..,-- . . . ..i#

Dear Sir:

, , u.s- s\9 ctj Dock'.t No.

," %-J 'Operating License No. DFn.50 Three Mile Island Nuclear Station, Unit 1 (TMI-1) Attached please find Technical Report GED 0002 which supplies the information that was requested in your letter of September 15, 1975 Please note that the some of the information contained on Table 2 of this report does not correspond to similar information submitted as part of our Technical Specification Change Request #17 (August 8,1975) for the following reasons: 1." Steel thickness, ft." under items a. and b. of our August submittal does not correspond to like values in Table 2 of GED 0002 in that the report quotes FSAR nominal values and the August submittal values were developed using the gross weight, surface area and density of the steel. 2 2." Exposed area, ft " under items c. and e. of our August submittal does not include some B&W supplied equipment which is included in Table 2 items 3 and 5 of GED 0002. 3 3." Reactor Building Free Volume ft " is explained in GED 0002 section h.0. h." Concrete thickness, ft" under item f. of our August submittal differs from GED 0002 since GED 0C02 reflects a model approximately twice as thick and uninsulated on either side where the August submittal gave concrete thickness for an infinite slab perfectly insulated on one side. 2 5" Exposed surface area, ft " under item d. of our August submittal catagori::ed the Nuclear Services Cooling Water System as stainless steel.) jbb S O7 3911040 123SS v...,.-2-2 6.sed area, ft " under item f. of our August submittal was not e most recent 7.s built data. We trust that this submittal adriquately ansvers your questions, and should you have any further questions please contact me. Sincerely,/0 I'!R. C.old Vice President RCA:CWS:tas File: 20.1.1 / 7 7.h.3 9

Attachment:

Technical Re. port lio. GED 0002 15C6 197 -_.-.Technical Report No. GED 0002 Three Mile Island Nuclear Station Unit #1 Emergency Core Cooling System .Evaluation of Contain=ent Input Parameters October, 1975 .Prepared by: OIf No,w JJ. F. Frit7.bn 1 .4 . Ji - a Reviewed by: ,/B. F. Hernady Approved by: ,4+7 4EZ%'/R/ M. {i aman fj f f j - .Metropolitan Edison Company 2800 Pottsville Pike .Reading, Pa. 19605} ,j h'ir'.suu. -.> ~ ,..

1.0 INTRODUCTION

This report provides the as-built details and characteristics of the Three ~ Mile Island Huclear Station Unit #1 (T!E-1) Reactor Contain=ent and Reactor Building E=crgency Cooling Systems and provides an evaluation de=enstrating the overall con-servatism of these parameters to those stated in Babcock and Wilcox Topical Report BAW-10103 2.0 BACKGROU:TD By letter dated Septe=ber 15, 1975, Met-Ed was requested to provide justification for the input parameters used in BAW-10103 by co=parison with the appropriate values for TIC Unit #1. The input para =eters of concern were those used in the calculations of containment tachpressure and included net free containment volume, passive heat sinks, starting time of contain=ent cooling syste=s, containnent initial conditiens, contain=ent spray water te=peratures and fan-cooler heat removal rate. 3.0 NET FREE CorfAI'!ETT VOLU"E, - -BAW-10103 assu=es a net free contain=ent volume of 2,205,000 cubic feet. The total gross internal TIE-1 contain=ent volume and the internal structures and equip =ent volumes which are subtracted to obtain the T!C-1 net free volume are identified in Table 1, The as-built net free volume of the T2C-1 contain=ent is 2,122,182 4 cubic feet or 82,518 cubic feet less than that assu=ed in the B&W generic report. In order for the net free volume of 2,205,000 cubic feet to be exceeded, the T!H-1 containment diameter would have to be about 2 feet larger than nominal. Since the original construction specifications required the diameter of the contain=ent liner to be held to vithin 10 inches of nc=inal, it is concluded t21at the T!E Unit #1 net free volu=e cannot exceed that specified in BAW 10103. Therefore, the TMI-1 net free volt =e is = ore conservative then that assumed for the generic model. , o n-- 6 ,--..4.'O PASSIVs HEAT SINES The input parameters used by B&W in the generic analysis to model the reactor building heat sinks are identified in Table 2. Included in Table 2 are the corresponding parametert for the TMI-1 reactor building heat sinks. Table 3 con-tains the detailed listing of the metallie passive heat sinks within the TMI-1 con-tainment which were used to develop the comparison of Table 2. The passive containment heat sinks identified in Table 3 vere deter =ined from a detailed review and material take-off of construction drawings. Metal surfaces above 250 F and metal totally em-bedded in concrete and not in contact with metal having exposed surfaces were not in-cluded as a passive heat sinks. The external surface sheet of reflective metal insulation on ec=penents above 250 F was included as a passive heat sink. Since all retallic heat sinks involved thin sections and since the total veight of metal used in the generic analysis exceeded the TMI-1 values, it was concluded that the generic =etallic heat sink parameters were conservative. It should be further noted that, although the total veight of internal concrete at TMI-1 exceeds that which would be calculated using the generic parameters, the generic input parameters on internal concrete surface area and thickness vill result in maximi::ing short ter= heat renoval. Similarly, the assu=ption for the geceric model that the contain=ent external valls are h.0 feet thick rather than 3.5 foot thickness for TMI-1 does not effect the short term heat removal rates due to the poor conductivity of concrete. Therefore, use of the 4.0 foot concrete thickness has virtually no effect on contain=ent back pressure. In addition, during the development of the generic input parameters, it was determined by B&W that the TMI-1 represented the vorst case contain=ent design kU. ..-.-of all B&W 177-fuel assembly,1cvered-loop, nuclear steam systems from the standpoint of size and heat sinks. In order to confirm the overall conservatism of the generic inputs, the minimum containment back pressure transient resulting from an 8.55 ft. double ended break was calculated for the TMI-l building using the method outlined in Section b.3.6.1 of BAW1010h. The actual TMI-1 input parameters identified in Table 3 including the actual exterior containment concrete thickness identified in Table 2 vere used as inputs. A containment net free volu=e of 2.126x10 cubic feet, which slightly more conservative than that identified in Table 1, was used. The generic model parameters was used in all other instances. The results of this analysis are presented in Table h and demonstrated that the TMI-l reactor building yields a higher containment pressure transient than that calculated by the generic contain=ent model described in Section h.h of BAW-10103 50 CONTAIMENT INITIAL CONDITIOUS Section h.h of BAW-10103 states that the initial reactor building conditions o were assumed to be 100 F,13 7 psia and 100% relative hu:nidity. A review of the operating data from TMI-l for the period of December 19Th through October 1975 indicates that contain=ent pressure nearly always varies from +0.2 psig up to +1.0 psig above atonspheric pressure. Therefore, with regard to initial pressure .conditions, the generic model is conservative. The TMI-1 Reactor Building was designed for average nor=al operating interior temperatures between 90 F and 110 F. Calculations have previously been performed on the effect on maxic:s containcent pressure resulting frcm a 20 F increase in average initial containment te=perature. These calculations indicate that the peak pressure during the LCCA is increased by 0.4 psig. Since the assumptions used in these calculations are those which vill maximize the transient pressure effects, it is concluded that a 20 F decrease'is initial temperature vill lover the minimum containment back pressure by less than 0.h p.sig. ' As noted 3cce 9'lJUO l'. ..-_from a review of Table h a reduction of TMI-1 peak back pressure by 0.4 psig vill still result in a higher containment peak pressure transient fer TMI-l than that calculated by the generic contain=ent model. A 100% relative humidity was used in the generic analysis and the TMI-1 analysis described in Section h.0 above since it represents a conservative value and operating data concerning relative humidity are not readily available. 6.0 coNTAIMENT SPRAY WATER TE?EFATURES The generic rodel assu=es the building spray to be at 40 F. The spray solution at TMI-l is a mixture of solutions from three tanks (i.e. Sodium -Thiosulfate Tank, Sodium Hydroxide Tank and Borated Water Storage Tank). Each of these three tanks is electrically heat traced through use of redundant heaters to maintain the tank contents greater than h0 F. Therefore , the BAW 10103 input parc=eters on centain=ent spray water temperature are conservative for the TMI-1. In addition, the generic model asst =es the spray flow rate is 1800 gpm for each of the two spray syste=s. This flev rate is the maximum permitted by TMI-1 emergency procedures to ensure pu=p run out does not occur. Since the design flow rate for the each T'2-1 spray system is 1500 gpm, the generic codel spray flow rate is considered suitably conservative. 70 COOLER HEAT REMOVAL PATES Figure 1 presents a comparison of the heat re= oval rate per cooler used in BAW-10103 and the maximu= predicted heat removal rate of a TMI-l Reactor Building Coolers. The predicted perfor:ance of the TMI-1 Coolers is based on an inlet cooling water te=perature of 32 F vhich is the minimum operational value. As illustrated by Figure 1, less heat vill be removed by the TMI-l coolers than assu=ed to be re=oved in the generic analysis. Therefore, the generic codel vill-ng--ibov LUL.- ..~, underpredict containment back pressure and is conservative. 8.0 STARTIliG TIME OF CO!!"AME'iT CCOLI'iG SYSTDS BAW-10103 assumes no starting time delays for the Beactor Building Emergency Cooling Fans. For TMI-1, this neglects the time delays associated with the following: 'a 2.4 see electrical leading delay is imposed on the Emergency a.Cooling Fan Systen under ESP conditions even when no loss of offsite power occurs, b.start-up time of the Reactor Building Emergency River Water pu=ps, and c.the time required to fill the Reactor Building Emergency River Water pump colu=n. Figure 2 presents a cocparisen of the spray pump starting delay times assu=ed in the generic analysis and the actual delay times which would exist for the T!E-1 spray system. Undelvorstcaseconditiens,theT!E-1sprayheaders .could be operational 1.8 and 6.9 see prior to that assumed by the generic model. However, the overall generic =odel vill still predict lover containment back pressures for the following leasons: 1.A review of Figure 6-10 of BAW 10103 indicates that the spray systems are actuated after peak containment back pressure has been reached and at a time when the rate of change of containment back pressure is small. Figure 6-10, therefore, indicates that actuation of the spray systen does not substantially reduce containment pressure. 2.Based on the conservative fan cooler heat removal rates used in the generic model, the assured heat removed during the first 65 seconds of the accident is still more than that which can occur frem the TIE-1 contai'n=ent cooling systems. }b0b-. .., , 3.The zero starting time delay assumed for the fan coolers further assures that the generic =edel vill overpredict the heat removal which can occur from the TMI-1 contain=ent cooling systems. 9.0 SlFMARY The TH-1 as built parameters which can effect containment back pressure during a LOCA have been co= pared to the input parameters used to perform the ayalysis described in BAW-10103 This evaluation de=cnstrates that the input parameters of BAW-10103 vill conservatively underpredict the centainment back pressure transient which would occur under a Loss of Coolant Accident at DC-1. .$$**% -A....._..-...-Table 1 TMI #1 Net Free Volume 1.Gross volume inside liner 2,341,h79 cu. ft. 2.Structural 127,58h cu. ft. a) Concrete valls 50,400 cu. f t. b) Concrete floor c) Structural Steel 5,120 cu. ft.(including polar crane, grating, 1 motor stand, 1 pump stand) 155 cu. ft. d) Platform Steel 3.Heating & Venti 11ation Equipment 2,092 cu. ft.(i.e. Ducts, Piping, Coils) 570 cu. ft. 4.Electrical Equipment 12,186 cu. ft. 5 RC System (Fluid volume only, excludes metal surface volume) 6.Volume of Secondary Side Equipment 6,983 cu. ft.(Steam generators only) 7 Core Flood Tanks & Piping 3,219 cu. ft. .h08 cu. ft. 8.RC Pump Motor Housings 9 CRDM Stator, Position Indicator, Motor Tube, 87 cu. ft. and Closure Insert 10.Puel Handling & Reactor Service Equipment 473 cu. ft. 11.Reactor Vessel & Steam Generator Support Skirts 126 cu. ft. -12.liisc. Piping 7,897 cu. ft. a) Pipe 27h cu. ft. b) Hangers c) Sleeves for Penetrations 127 cu. ft. 1,138 cu. ft. d) GAI Equipment 158 cu. ft. e) Motor Operators & B&W Supplied Coolers 2,122,482 cu. ft.

13. Net Free Volume

.1I"4^pI i .s v J LU3.s.-

  • .s-.:_-.~,..,/Table 2 Comnarison of Pascive Heat Sinks Parameter Generic Model TMI-1 x 1.Reactor Building Walls including the concrete vall, carbon steel liner and anchors:

Exposed area, ft2 67,h10 63,870 Paint thickness, ft. 0.00083 0.00083 Steel thickness, ft. 0.0550h 0.03125 Concrete thickness, ft. h.0 3.5 Steel Weight, 1bs. 1,818,020 922,1h5 2.Reactor Building Dome including concrete, carbon steel liner and anchors: Exposed area, ft2 18,375 18,h00 Paint thickness, ft. 0.00083 0.00083 Steel thickness, ft. 0.065h6 0.03125 Concrete thickness, ft. 3.0 3.0 Steel Weight, lbs. 58,939 26,566 3.Painted Internal Carbon Steel: 2 Exposed area, ft 249,000 355,323 Paint thickness, ft. 0.00083 0.00083 Steel thichness, ft. 0.03125 N 0.0238 (average) Steel weight, lbs. 3,812,812 h,139,6h7 h.Unpainted Internal Carbon Steel: Exposed area, ft2 36,000 126 Steel thickness, ft. 0.03125 N 0.00713 (average) Steel Weight, lbs. 55,125 hho 5 Unpainted Stainless Steel: Exposed area, ft2 10,000 45,697 Steel thickness, ft. 0.03125 N 0.012h (average) Steel weight, 1bs. 15h ,175 278,671 6.Internal Concrete: 2 Exposed area, ft 160,000 87 hh3 Paint thickness, ft. 0.00C83 0.00083 Concrete thickness, ft. 1.0 N h.0 (average) Weight, 1bs. 23,200,000 25,629,696 T.Su= mary by Metallic Heat Sinks: -Total Painted Carbon Steel,1bs. 5,689,771 5,088,358 Total Unpainted Carbon Ste,el, lbs. 55,125 hho.Total Unpainted Stainless Steel, lbs. 15h,175 278,671 Total Metal, lbs. 5,899,071 5,367,469 re<-1n 1JvU Ldb'_ ~...3-2-8.Thermophysical Properties Thermal Conductivity Heat Capacity Material' BTU /hr - ft OF BTU /ft3 op Concrete 0 92 22.62 Carbon Steel 27.0 58.8 Stainless Steel 9 1836 54.263 Paint 0.6215 h0.h2 C ^ . '.'^'/suu Lv- ...- .Table 3-'WEIGHTS AND SURFACE AREAS OF PAINTED AND BARE METAL SURFACES -EXPOSED TO THE REACTOR BUILDING ATMOSPHERE AT THREE MILE ISLAND NUCLEAR STATION, UNIT #1 Painted Metal (1) Bare Metal (5) 2 Categories We ght, lbs Surface, ft Weight, lbs Surface, ft Material i I.Heatinc & Ventilating -1.Cooling coils (21 --83,830 223,810 ca ggg 2.Ventilation Ducting 162,h63 61,884--C.S.3.Cooling Water Piping 2d,940 1,257 c.S.--h.Miscellaneous (3) 227,731 35,795 c.S.>--II. Instruments & Annurtenances 1.Mounting Brackets, Instr. Backs 1,134 102--c.S.c.S.2.Channel Protection for Instr. Tubing 2,150 190--III. GAI Supplied Electrical Eouipment --h,035 772 S.S.1.Electrical Penetrations , 2.Junction Boxes 309 99 60 15 c.S.3.Pull & Special Boxes lh6 47 56 11 C.S.h.Terminal Boxes 801 256 8 2 C.S.5.Conduit 170,500 19,072 c.S.--'6.Tray & Wire Way 27,500 3,601--c.S.7.Receptacles & Fittings, etc. h,304 1,377--C.S.8.Hangers 33,850 10,832--c.S.lll9 Panels 727 232--C.S.10.Communications Equipment 262 158 C.S.-.-11.Lighting Fixtures 17h 66 C.S.'-..IV. GAI Small Piping Systems 3[~ Barn Pipe & Equipment --54,728 6 h8h S.S.2.Painted Pipe & Equipment 45,026 4,708--C.S.--16.356 13,630 S.S.3.Insulation on Piping & Equipment -" L'h.Pipe Hangers 39,527 7,193--c.S.Ci 5 Manual Valves 2,070 115 2.530 lho C.S/S.S .C6.Lbtor Operated Valves & Operators 2,394 224 c.S.--N CD Co , >.-2-Painted Metal Bare Metal 'Categories Weight, lbs Surface, ft2 Weight, lbs Surface, ft2 Paterial'.I V.GAT Iarre Piping Systems 1.Building Spray System --33,100 3.590 S.S.--38,485 880 S.S.2.Core Flooding System 3.Emergency F.W. 10,441 635--C.S.h.Intermediate Cooling Water System 13,9ho 1,350--c.S.--5,055 336 S.S.5 Makeup & Purification System 6.Nuclear Services Cooling Water System 72,772 5,557 lh2 32 c.S.823 71 S.S.7 Pressurizer Relief --8.Insulation Surface. Normally Hot Pipon '10.467 8,739 S.S.h--2,383 1,986 S.S.9.Insulation Surface, Normally Cold Pipes -->'10.Motor Operator's for Valves 14,434 1,008--C.S.11.Pipe Hangers 94,669 9,688--c.S.VI.Structural Steel 1.Reactor Building Liner Plate 1,187,819 82,270--C.S.2.Fuel Transfer Canal Liner 56,000 5,520 S.S--3.Support for Polar Crane 185,000 9,110--c.S.4.Polar crane 567,400 20,500--C.S.5 Pipe Restraints 159,966 5,886--c.S.6.Large Equipment Restraints 11,185 385 c.S.--7.LP.rge Equipment Supports 78,594 3,913--c.S.8.Steel Framing Inside Secondary Shield 128.hh8 17,671--C.S.9 Steel Franing Outside Secondary Shield 1,234,797 83,845--C.S.10.Hornal Personnel Access Airlock 7,569 164 C.S.--11.Equipment Access Hatch and Emergency .g Personnel Access Airlock 119,813 2,182--c.S.W C.S.12.Special Access Platforms 13,753 1,993--VII. B&W Supplied Equipnent N 1.Valves, Operators, and Coolers 28,235 1,8hh--c.S.2.R.C. Pump Motor llousing 200,000 13,061--C.S.h2,780 2,773 S.S.~3.CRD!! Stator, Position Indicator, Motor --Tube, & Closure Insert d h.Fue] Handling & Reactor Service Equipment 231,816 15,139--c.S.5.RC vessel Support Skirt 30,332 1,981--c.S.N 6.Mirror Insulation --1,760 114 C.S.CD 7 Steam Generator Support Skirt 31,388 2,050--C.S.e 8.Core Flood Tanks 156, h86 10,219--c.S.9 Liquid Waste Disposal Equipment --10,01h 650 S.S.'10.Reactor Bldg. Spray Nozzles --135 9 S.S.11.Intermediate Cooling Equipment 775 50--C.S. I".-3-...Notes: 1.Paint thickness is 10 mils nominal. -.2.Included in E&W analysis for TMI-l heat sink calculations even though zero time delay is assumed for Reactor Building Coolers. 3.Includes regulators, fans and motors, stiffners, hangers, and filters. .h.Surface areas based on 3/8 inch metal thickness. 5.In performing the specific TMI-l back pressure calculatieng discyssed in Section 4.0 of this report - 3LW assumea that some of the bare material identified in this table as stainless steel was unpainted carbon steel. This is a conservative assumption. -Legend: Cu Copper C.S.Carbon Steel S.S.Stainless Steel , 6 9 E D PM.y.e=, ,e-.e C3l<Gdf C EEED rs >b_ _ . ..~'.Table h C0fiTAIti?EllT - PRESSURE CC!9ARIS0fi: TMI-1 & GEITERIC .Time Pressure (psig) Pressure (psig)(sec)TMT-1 Generic (sec)TMT-1 Generie 2.0 13.32 12.29 72 21.55 21.41 h.7 18.11 17 52 76 21.42 21.31 6.7 22.19 21.46 78 21.38 21.28 89 25.67 2h.75 82 21.27 21.21 99 27.00 26.00 88 21.18 21.1h 12 29.24 28.11 92 21.10 21.07 13 30.10 28.59 94 21.07 21.06-15 31.34 29.87 96 21.03 21.03 17 32.05 30.k1 98 21.00 20.99 19 32.46 30.68 105 20 91 20. 90.21 32.49 30.59 115 20.82 20.79 23 31.87 29.54 125 20.69 20.69 25 30.67 28.71 135 20.60 20.52-2i 29.43 27.69 145 20.h7 20.38 29 28.38 26.61 155 20.36 20.23 31 27.53 25.77 165 20.25 20.09 33 26.Th 25.11 175 20.14 1 9. 94 35 26.09 24.53 185 20.01 19.79 37 25.53 24.08 195 19.89 19.63 39 25.0h 23.69-42 24.k2 23.22-h6 23.70 22.77 48 23.32 22 50 52 22.81 22.10 56 22.38 21.8h....k0-- ....--.. .II'fff I.9...-.. .... _ ' .. . . . ....7.._.. _ . . . - ..._..g....i., ,;.; I ....y.I...1.,.....1:::l-.g.: t f.1 1't.';!b N:_. ! .. ..i i...f.:.. . _ . ' _ . ..ih _. . . .h. '. .. i ,b.. .. . . . . . _ . .. .T. . ..._....... . . . . .l lj '.I'.... i. .: .. . . .i _-.

).1: 'li[*'.M.!!:!:.?!'_ - _ ' _..._...l-.;':;-:l: ' . ' .. _ . _ _ _ .

...._. . ._ . _ .. !:. .._. g _.. . ._ _ . _ . . _ _.- [: .. ...;-;:...:?i.I.;::t:. .4- .l;:l..,.._.;.p.. .. ,, j I;:j:....l::.:^;-O: ':1......,g....'p.;:..;.;j:- . _ ' _ . - _ _-l __ _' j ;.....- . . ,:1;' . . - ._.__._. i:: ::!: T'_ . .:!:*- . _ . _ . _.'..'!._-{_';-....__ . .;.l.. . . .

l'*-
.;'- =..:-, O:!.-'.:.::l:~'.i =.51-= 5[.~Z---*N:: ~.~ I-i: *-- ---b~~*-*E-. . '=1.~. .. i !r EI a*. . . -- . . . _.l..... .-* -.. .. . _ ..l.....1......_..

...=-T -- -:t: -g +::t-:tt. -.... . . . . ..f.;r-: : ---. -- !-- : !::r { .. . _ . .. ... . _ . . . . . .i..l:: -:-;,7--..]....,.: Uc J = J _cr l: _ _. :- .;;; _ .Q:.:1:l:!.... :1:.;-. _ _ . .: .N:.; 7. .*trt!=:tu:=t._ .'t-. : n): .. i:!.-r:n _T.:-- --I' =r. .=..=!: 't'-'::.:^.: --.^(.:l':~

{ ;. ..~._..;...;*_'_-_. ._1.
._ ..

_..J.=._.,: ; ..j .h. n..:._.1: : =._ .,... ...* - _ : : !n. _n. =_U ! : ._ . r. _J ;* _-.p#-,__;; ..g... . . ......... _ . . .. _;... n . ._ _ _

/.i. k. . . , . . . .. .. . . = . _

N.--.,,g r.--7t: .'. ... .....__ . . _. . _ .f . . _ _.j __... .. . . . . . . _ ... .....G_:.=.._.../_.".._. . . . . . .=_7. _- c ; _ . 7 =. _. _.n..._. _. . . _ _ . . _ . =.._'.r..= 1_. P_._. =....;.. . . -;.. . . .. . . _ ..i.. . ur^ : ir 7x}* r M ;_... ._ n ,m ._. - ..g... . .i O -. N ;-- 7 2 . '.: ===t. :!=._;t= =_-r-= t.: . 2 = t . _. ._ . . rrr-n . . .r::n.-:=-= r b. . .g. . : . . _ =

i === h=un_= 1 ,. : :---- : .._,_.;

==N -e. : _r r - -7: =.= = ~r ! =.:;r nx =-n-=: =W=.. r - rT- + -. ra=1.=:--g g =; m utr :=====r=-: ; a =-=n-_ . ., . . . _ . _ _ . _ .

==:='.rr._. q =. =......g.g.b,.,.... .-. _ . ;.;. _ _ . .__ ._._ . __ .._ -__ ._._ g.__. .;. 9} r_., y__ _ - n :

D_: ch..c f.7...y.. _ ..____. _ _ ..._...__ . . g - - -- 7 _ . ._ . _ . _ _ . ..c r : .N =_ . . =. _- _ - - _ ___H 7 1= r= n___1_ _ _ ..n . Y. __'._ ' _*. g __.._l.-_ _ _ - _ . . _ _ _ . _ .

  • *-- $ U ~.C]:' C._....._. . . _ , .. " ~ _ . ~ . . . _ .

....._.-__~_~._.n._~~..C *~~.~~_C.,_'.. ~ _~~._ . .._.si_.. . . . _., .'_ 9 . . ._. _. _' 8..,.__.~, ,__O:i:nI .;; - = t : .r._ .:= b.=: -= a- N=r i . _ =_.:_. . C r; = = 21: = =_.

  • u - v- a _: N2.-
=: --2., un_ _ . . ~= - - - , = - = ~ _ . =

1- - - - W t = 1. __. := = s . . 4=.__.__A==. ge- -. =~ :--- = r: =-a!U). .h U b'EE N 5 5-Nj--~_Z 5'NE5 C C f. ' E--~h_ 1 5 d b 2 . NIE2 S-h~ - - --;- -~~~.L*=~~= E1---Q=== R.=j u.. _-:-+ .g : Q'=.-a= ____:29-Ei~T-"%_xf Eg- : - ~2 F :: i 1 =---- - ;EP - - - -~ r= ni -=$r n=h n~.== =r -- t-7=cr.___ __ g= = 7 = .= ,&';i_ 1I 1 -] ==#! . dd- -- E-1-s=c_-E a t =.-Wo------~w -- - - - - - + - - - - _----S[===d;-rir h= = W.r= g r*-- nn --_r-g -*:-- =__ \ =. t=== g __.1b.__--- n th;* ;--- imp =z.5*=.= = -m _. .__ = - - ---t==':-_=___.n.-._=._{. =_ = ..; _r___ g , .__. -- -_ . _ .. _ _ .. _ _ . _ . ,~.r. =. "-C* .=__ ,r=._ . .=y_ :._:- _q,,,--__...:=___.__-.. .__._.a.__5- -_ n._ =_1

4 :-- .p., 7__._. _-c, % r. .

.*w-_ . _.g.______._ _ . .. ... . ._ ._.,.._.._ .. . . _ ___ , ,;= :21 l=: .=4==4==. = = =22 : ====-.r=_----t--.-----'= : o .r=- --= = -:====c_- _ _ . = + _ _

---- ==o .w -- ==

_:= $t=== . . : s =n= y ==:

  • ~d._ _ _$~~M;. _ c .=

.1x;_;:_=,==_.={=nn:- .__- :in = p=- . = =:r.=r ,.=t_ . _ ,==3= = ~- M - ~ --- ~'__ = 4 = == <' _._ - _=__.47==-,...._p+E=-d_E _ __ ..__ _ _ _ . . - -- q..=_ .t =-i_= r?~ '=T+. _ h. __:1_: ~ $2 r b = :t=1E[_-- :

T-E--~n. 2-L: j_y 2,iE! -E~f. .~-_ _ . .

.-._.=-.*v t =_;:=:-~-.._;- q=. . == =r :C ==t .,_}.= .m = ja=-- r-__ t _ ._ _ = = I x==.. -.,80 =2.:=

3.=r _ ,n 2

--- -=-8. . =1-a: n__._-r"-. 2=== =Arr=r== ' = .= ___4 (.. __.. .t=.2 7} = 0 . -

-% . :, =miin-r.- n:=rr=;r n!r rar x_. . . _._ t:- ._ t == t =: r n t -- g rt r:r ::-. ==yr=2 l = ==to . . .m..r-=rx ,=:=.= ==jnc.___ mn.= F,=r=n=t=. ;.1 c 2._- ._.===c=c::n--. _1-::::x==:=- - . _ ...:=..==.:_:Jm:rrt ==_a s . : .r-

..:l-_ f ....- . - --u=: x=_ ,=r....-: m:=2. . --n- --n:-._, + =-c r=t u o--r. . - -.., ,. .. . .,-.

.. _ . . . q.. .,.... :..:2.:---_ :;,:c.: p. .:n,. ,3 : . : p .. l : . . _.; l_= u..__. . 3.:;p..yx_,.e.r.... .g..g 4,...,.2.c...a.. .-..-. a. . _.._.._,..a.,.9--o.'rl..wl.i.i...i:..{.O..: w w ' : e.' -:h g. - . ~ .. _o e,. . ---f. ~m#: 4. ::.--- - c- -- - . . g..,-..~.l 'i',,:.jj.:j: '!;jj.'.!:.l...,...g, W.i 1 j.1.[. . .;._ . __i_... .y y . 4. . i i:.og: ......._L.....;...2-- .y_ _ . . .. . . . _ . _ . . _ _ . ,... p.q.: i.- l.a. :--.." p 3:.: , i M70071WPIMWW1M +a v.o'..._.._a....... ._. . . . _ .. ._.u.. a. .a. ._ .. ' . . .*t i x.L_.__ . u, ._. ._. L.._ _ . . _ .. _ . . .........1:..;..l:.,.I i. -;.!.l.!..:_ I: ,....I: i.i';' .m_ . ..i.._.... ... . . , ..a-.i. _i.-..,.j'.._ . . . . . .. *I.;.1.i.! .,!......, i I i:l: I 1 j..l.!.'l.''.,.D""}Dg~0$~".w o Ju o Ju 1[\.lf-di $ d2 c c...w '.Figure 2..-COMPARISON OF BUILDING SPRAY DELAY TIMES ..,.0.0.3 m--->0.3% ESF 1500 psig Actuation Delay T 15.8_ , Electrical Ioading Delay'I x"'15.5 sec. minimum BS Pumps @ 21.8 t,100% Speed, i I 6 sec..63.2"A" Spray Header Full ,, M IT 47.h sec. minimum 8 5 *1"B" Spray Header Full , k>i G.42.3 sec. minimum 65.0 q Generic Analysis Building Spray Delay ,*65 sec.-LII.c--)('.' s Accident!t-J U4}}