ML17228B449

From kanterella
Revision as of 07:08, 19 June 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Cycle 9 Startup Physics Testing Rept.
ML17228B449
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 03/14/1996
From: Klein R, Martin L, Wachtel P
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17228B448 List:
References
NUDOCS 9604090121
Download: ML17228B449 (16)


Text

STARTUP PHYSICS TESTING REPORT 9604090i21 96040i PDR ADDCK 05000389 P PDR ST.I UCIE UNIT 2, CYCLE 9 STARTUP PHYSICS TESTING REPORT St.Lucie Unit 2, Cycle 9 Startup Physics Testing Report Author Patricia.Wachtel Reactor Engineering, St.Lucie Plant Date~9/Reviewed ay M.K ein Reactor Engineering, St.Lucie Plant Date Reviewed Leo A.Martin Nuclear Fuel, JPN+~Q Approved William L.Parks Reactor Engineering Supervisor St.Lucie Plant Date St.Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table f ntents Qecfjiig~ae I II.III IV V VI VII VIII Introduction Cycle 9 Fuel Design CEA Drop Time Testing Approach to Criticality Zero Power Physics Testing Power Ascension Program Summary References f'e i e u e Title 8 9 9 10 11 12 13 Cycle 9 Core Loading Pattern Inverse Count Ratio Plot-Channel 1 Inverse Count Ratio Plot-Channel 2 Power Distribution

-25%Power Power Distribution

-50%Power Power Distribution

-80%Power Power Distribution

-100%Power.i t fTa les Table m er Titte 14 15 15 Cycle 9 Reload Sub-Batch ID Approach to Criticality CEA Group Worth Summary St.I ucie Unit 2, Cycle 9 Startup Physics Testing Report L~td The purpose of this report is to provide a description of the fuel design, core load and to summarize the startup physics testing performed at St.Lucie Unit 2 following the cycle 9 refueling.

Startup physics testing verifies that the models used in the safety analysis adequately predict the as-built core and that certain Technical Specifications are met.The major parts of this testing program include: 1)Initial criticality following refueling, 2)Zero power physics testing and 3)Power ascension testing.II.cle uel e i n The cycle 9 reload consists entirely of fuel manufactured by ABB Combustion Engineering (ABB/CE).The 217 assemblies of the cycle 9 core are comprised of 84 fresh Region L assemblies, 80 once burned Region K assemblies, and 53 twice burned Region J assemblies.

Table 1 provides enrichment information for the cycle 9 reload sub-batches.

The mechanical design for the fresh fuel Region L assemblies differs from Regions J and K in the following ways: 1)Gadolinia burnable absorbers are used in Region L in lieu ofthe Alumina-Boron Carbide burnable absorbers used in Regions J and K.The mechanical design features of the gadolinium poison rods are identical to that of the fuel rods, and 2)A change from tungsten inert gas to laser welded zircaloy intermediate spacer grids was employed for Region L.The entire cycle 9 fuel load, Regions J, K, and L, consists of the debris resistant fuel assembly design.This design has long fuel rod lower end caps which provide protection against debris induced fretting in the lower end-fitting region.The cycle 9 core map is represented in Figure 1.The assembly serial numbers and control element assembly (CEA)serial numbers are given for each core location.The fuel is arranged in a low leakage pattern with no significant differences between the cycle 8 loading pattern.Twenty St.Lucie Vnit 2, Cycle 9 Startup Physics Testing Report four twice-irradiated Region J assemblies, sixteen once-irradiated Region K assemblies, and eight fresh Region L assemblies were placed on the core periphery and the remaining irradiated and fresh fuel was loaded inboard.III.E r'me e tin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed.

The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit)to the 90%inserted position under hot, full flow conditions.

The average CEA drop time was found to be 2.69 seconds with maximum and minimum times of 2.83 seconds and 2.53 seconds, respectively.

All drop times were within the requirements of Technical Specification 3.1.3.4 and the reload PC/M 112-295 (Reference 5).IV.r ach t riti ali The approach to criticality involved diluting from a non-critical boron concentration of 1749 ppm to a predicted critical boron concentration of 1496 ppm.Inverse count rate ratio (ICRR)plots were maintained during the dilution process using startup channels 1 and 2.Refer to Figures 2 and 3 for ICRR information.

Table 2 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.

Initial criticality for St.Lucie Unit 2, Cycle 9, was achieved on January 1, 1996 at 0328 with CEA group 5 at 61 inches withdrawn and all other CEAs at the all-rods-out (ARO)position.The actual critical concentration was observed to be 1506 ppm.V.er wer Ph ic Te tin To ensure that the operating characteristics of the cycle 9 core were consistent with the design models, the following tests were performed:

1)Reactivity Computer Checkout, 2)All Rods Out Critical Boron Concentration, 3)Isothermal Temperature Coefficient Measurement and 4)CEA Group Rod Worth Measurements.

St.Lucie Unit 2, Cycle 9 Startup Physics Testing Report Proper operation of the reactivity computer was verified through the performance of two tests.In the first, reactor power was elevated suf5ciently high to ensure maximum sensitivity of the reactivity measuring system and at the same time preserve adequate margin to the point of adding heat.The second test ascertained the response to a known value of positive or negative reactivity by measuring the values of positive or negative reactor periods that result.The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 112-295 (Reference 5).Satisfactory agreement was obtained.The measurement of the all-rods-out critical boron concentration was performed.

The measured value was 1561 ppm which compared favorably with the design value of 1547 ppm.This was within the acceptance limits of+100 ppm.The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC)was obtained.The MTC was determined to be 0.56 pcm/'F which fell well within the acceptance criteria of+2.0 pcm/'F of the design MTC of-0.044 pcm/'F (corrected).

Additionally, this satisfies the Unit 2 Technical Specification which states that the MTC shall be less positive than 5.0 pcm/'F.The final section of interest for zero power physics testing is in the measurement of CEA group worths.Rod worth measurements were performed using the rod swap methodology.

This method involves exchanging the reference group, which is measured by the boration dilution technique, with each of the remaining test groups.A comparison of the measured and design CEA reactivity worths is provided in Table 3.The following acceptance criteria applies to the measurements made: 1)The measured value of each test group is within+15%or+100 pcm of the design CEA worths, whichever is greater, and 2)The measure worth of the reference group and the total worth for all the CEA groups measured is within+10%of the total design worth.All acceptance criteria were met.e cni nPro ra During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and that there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt)for power plateaus at 25%, 50%, 80%and greater than 98%

St.Lucie Unit 2, Cycle 9 Startup Physics Testing Report rated thermal power.Additionally, calorimetric, nuclear, and hT power calibrations were performed at each of the plateaus prior to advancing reactor power to the next higher level.A summary of the results of the flux maps at each power level is provided in Figures 4, 5, 6, and 7.VII.$ummaig All measurement to prediction acceptance criteria were met and compliance with the applicable Unit 2 Technical Specifications was satisfactory.

I)"Initial Criticality," Pre-Operational Procedure 2-3200088, Revision 10.2)"Reload Starlup Physics Testing," Pre-Operational Procedure 3200091, Revision 7.3)"Reactor Engineering Power Ascension Program,"Pre-Operational Procedure 3200092, Revision 9.4)St.Lucie Unit 2 Technical Specifications.

5)St.Lucie Unit 2, Cycle 9 Fuel Reload PC/M 112-295.

St.Lucie Unit 2, Cycle 9 Startup Physics Testing Report FIGURE 1 CYCLE 9 CORE LOADING PATTERN P M K H Y X W V T S R N L J~F E D C B A 21 Krl J21 J31 K88 20 19 18 J62 L1f 201 8 L01'2P L2lf K24 L3f K1P LO P 101 K48 K1f K3l L8f KOS L3f 17 113 L1f f7 L2f 74 K48 Let 1e 25 J1 P LS?K77 L6f 76 16 LOf K18 Lrf 52 K68 K2f K67 Lrf 5 J12 L9f K4P 75 72 15 K7R K28 Lrf J2s 12 K5g Lsf K48 21 Lef 71 K78 14 13 20 J13 L4Z K58 Lrf Lef 78 J23 12 11 K28 K1f 73 J10 0 J1IP Jef J18 L4f K1f K21 10 9 K78 28 JO1 Lef 1 Ld 19 K64 KOf L4g J1P L4f K5f LQf J19 107 18 Lrf 110 10 K18 KH LOS KOF L5'f er KSP L6f K78 117 Lsf 4 LQP J11 J18 L4W 114 115 rut Kr8 112 Let M Lef K4f K1f JRP L1f K%8 Lrf J2IP Lsf 70 lie Llf 210 J61 , J63 K18 Lsf K3g K1 T K38 L5 f K(A L2 f J53 118 211 119 120 J47 Loll K18 L3f K2$L2f K28 Lld J37 121 122 K78 J32 J22 K73 St.Lucie Vnit 2, Cycle 9 Startup Physics Testing Report FIGURES 2&3 INVERSE COUNT RATIO PLOTS 1.0 FIGURE 2 STARTUP CHANNEL I BORON DILUTION Cb~IIO<<>>W 0 00 Oil f>vy Cb~$0~I Cb>$0~IC>>II<<IVI>>W 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 (t 05 0.5 0.4 0.4 0.3 0.3 02 0.2 0,1 0.1 0, I II>'I li II>i~~I'll I I I I~ill>l II>I~li I~ll l>l>~ill II~I~III I ljli>>tl>I I I I I I I I t FIGURE 3 STARTUP CHANNEL 2 BORON DILUTION Cb>150 00 OOW Cb o$0~I Gallons Diluted Cb la~ICval IWlrt>OW 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 ct.0.5 Ct: O 0.4 0$0.4 0.3 0.3 0.2 0.2 0.1 0.1~I I t~~"I]I l>il I II I I ill>>Ill~>li lilill>'>tl~~~I~II~I~IIII/till>II>>

Gallons Dltuled

~Sf.Lltcie Unit 2, Cycle 9 0 Startup Physics Testing Report FIGURE 4 POPOVER DISTRIBUTION COiltPARISOiV IVITit DESIGN-25%POPOVER N)tcwosce)(CKCORIIXFAX)

Socccc tcsscr Lccct Isltstcc CKA Fwidso pcsicos FCM 112-215 25$$5 KFF)I 222~R F K I M L K I 1 I I II C l 2 Y I l Il Llc)L))5 LON 5~J5 Ll)l I.t)I C.N IS IA))IA4S 40)C 44$LW)4 I I I 14 1.171 I J)5 40)7 J.le I tIT~.II~*NI 4N IT I JOI I JIS 41 I 5-I.I5 I LIN L4)1~.I)S 4JS I I JTC IJ)I LN)II I.W LI2t LNI LCT I L)$5 L)II O.N4 IIXI t I Jt)Ltl1 LI I I SJ)Il I J)L242 LWI 5 I I I tJ$4 OJS I~.Nl I 1.21 I~2.147\J)I Lt)C I.N 2$I.III I.)It LOI)I AS I~A)S~A I I~A)l CJI II LI)4 L I I I O.NT 1$5 II I.)T7 I JI'l*Nt 22 LN5 LW2 A.NT 22 LIST L)IS J.~I Il Ll)'I L))l 442 441 I)IAI 7 IAN 4tSI 411 4 LII I OJ)5~.NC I.'ll$1 4 IJ)S LNI 0.10 51 Lt)1 LTCI aNO 4$LN5 LI I I 41 I~.LN 25~J)$~.~I~1.st I.~I~I.tCS*OS I at)54 I.IN I.)25 4$71 4S I J41 I Jst 407)JAS 2C I,II)4 LWO 40)I 4)2 40 I AN IASC 4NI J.sl$5 2.251 ats)47S N~,NI Mlt 4011-1.N 17 Lltl I.NC 4151 41 I J41 IJI 4047 4)S 54 IA I)I AS)4NO*SS TI I.lt5 I J4$441 44 11 I JSS IJ)4 4NI J IT I)I.W)I.OS)t.~I~~.Is 57 IA)S IAI I.t)t LTS 71 IA5 IA2t L122 LN It'l4S LWO 5.17 Il L157 I.)41~.Nt~,TI 5$I Alt IAIS~.Wt CII 71 I.I'l L I SS Lt)I MS)I 1.1S2 IJ12~AI~LTT 4I LS5C Lt)l Lt)l I.t)Sl L2$7 I.t4 4t I I TI I AC)IA52 LNI$$4)I Ltls LSW 45 I JW IJI 4024.I AT CO LNI O'NI*I I~75 I 2)4 I JS A.~I 4-I Jt)I I JS'7 I J11 412S-I tl LS)t O'IÃ~.~II I.IT CI L1$1 L)CI 4 III.1.1$W I.NS LOS2 O.NI LS)I)LOT I AAOO 4N 47 I JTT 1.241 4NI I.'I I 42 IAI4 IAIS~.OS5<07 77 L)24 I.ISS MT I 5.TS)I I J4t I J)4 4WI 41 IA5 I.tS)4N)a)s I)IA)t I.~I LNS 71 IATC IA)S ONT 457)5 LSSC IAIC J.~I n 1.14)IJI awT 44 I.~I I I AS)41)7 J.C4 1.217 I.)4$AA)I.I (I IA2$IA51 4NI Lt2 IAtC IA44 J.tN ass CS L241 I J)4 acTS N~.IW LISS 4ON 4))17 OJIS L))5~.II~I.~I 51 2.124 I.WS 4NS 44 I.)52 I.2 I 5 atQ JAT II I J47 IJIt JAS)alt 52 tJ)I L))t LNI 14 47 LS)7 41)5 J.'ll 11 LNS M I'I 411~1.14~AS5~Alt LNI S4T L)I I M)1 L12 I 02 IAW I AS2 LN4 L)4 IC)LICI 1.142 LNI~.N IS~C I.)12 I ASI 1.2)I I.I)t 41st 4NI.I JT-Lt)2.121 IJI)4Wt JA)Its LSCS NI 41~~.SI 5 Lt)t 4t I).IA2 11$I JS'I L)I AASI LW L)I 7 L24$4NI alt I 04 LS)S LN)4NI*21 IA)I IAS)4020.I.SI It)I JN I JS*N1 JAI Sl I.)4 L))$LN2~.IC Ill LN4 Lt)5 NS S2 MS LIN LNI$$2 IM LTIT~.CII LOCS Lll I)I.)l I I J)$~.N)IJC II~LI47~,051 C.4S N LI 14 IA52~.072 CA I I II 1.24C I JS 10 24 I.TC I.)71 I.)41 LOW L)S I I 1 Ltll LSSI~.N2 LIS W MS4 Lt)l~.~Il I.N I I I L1S)I JI*tIT-I.)I I.LIS L212 4t)1-IA)II~~,N5 LI IS I.tl Sl I.III I.ITS*Nl 4N I IS I.)ll I.)42~.NI I.CI I J)4 I Jl I AAOT AAT I IC LI 05 Lll)Ltl1 I.I I L4II$411 M)I TA I L)4 L)I I Lt2$Lll tJ44 I Lt)1 C)1 I14 L4N~A I I~.12$L)1 I It I J Il I Jl I 4~I).TAT I14 MI~M IS 445 441 IN~.SIT~AC I 4tll 15$I 44 Ll)C Ll)l LNT LN I)l IJIT 1.2)t 41 I).I AT IIT I.)77 I J IS 4N2 I52 I.ll)I JIS 4024 LO)147 IA)5 IACt 4$4 J.2S II I OJ)C M IS~NI I)I I J41 I J$2 4NO J.)1 I)l 4N)I Sl I.)W I J)4 4t41 14$IAOT I.NC*0)l 4$7 I I)I.t I I.OSI 4NI 4'75 It4 Ll)7 L))S Lttl O.SS I)2 LS17 Lt2t*NI 411 I)'I I Jt5 I J41 4N)J.ST I)I IA2C LNl 4127.$41 I st 1.2)I L)1 4$74 414 ss)LS4 I.NC atTI J.W ITS IAO\IA4S 4 Wt 415 205 1 Jll tJ)t O.tN$44 121 L11$I JN 4NO*24 I IO I Act IA2t Ltit I A I ISS IAIC IA I LtW LS'I I)0 IA)S I AS)4114.I JS IN I.)41 I J)C 4tl)ISO 1)$4 I.I I)415t 41~44 Ll)l LW2*t)4 It4 IA44 IA52 LI I 1 I.II I I I L I 1)I.I SS~.02$L)7 I 5C I A II IA)l*t I I.IAO ITI IJI I L)N 41)7 JW I I)~.ti 4~ASS 1~17 IA4 It)I.)$I JIS 40)S J.W NT~.114 LI I'I~.NS~.47 Il~~A)S LI I I Lt)4%51 I)5 I JTC I Jll Lt)C 1.1$142 IASI IAS)LNC LI~IST I.)SS I J41 40N 47 I I'7l Ll)S 21 II I.I 7 SIC I.252 7.212 4NO Ill LI)2 I.l)l LNI 117 tlat L)51 I.I)I Lt21 I 4$225 OJTO O)s I~.t)7 S.lt I 24 Lltl ILN IQ I JN 1.25 LO)Ill I A I 5 1.NI MN 7JS I I)I Jtl IJI 4NT 454 117 LWI LSCC*NS 4S2 It\L)W L)42~.N4 5)T LITC I AS)LOI4 7.14 2)4 L)4 I L)SI~,ON I L)1 I)T I JSS L))t Lt41 244 I.I I)I.051 LWS 5$2 15S I.)7$, 2.24$IA I~LTI I 74 Lt5C Lt)l Lt)l I.tl I lt I.)77 I.)$1 a$0$4)S IN Ltsl LI)t OA I'I 144 II~L)4 I.))I 1.\)I L44 217$4ll LCII 1.017 414 I)l I AN IAS)LN4 I.I I 145 I.)I I LI)5 LOS'I I 14 I 40 IAIl IAIS LII I I.)I I 75 I.)s)IJII 44 Ilt LN4 LOSS LOI7 4 ST 211 I JOI I J IS*t I~I.N III L$15 Lilt LOW~.Tl 12S LICI I.)41 41N 4)2 144 I.N I.NS OASI 472 141 I AS)IAI~.N)IN IA4)AS)Ltll IAO 1st I JSI I Jl4 4N5 S.I4 N)I.172 1.21$4N)J Cl 14~.NI 1WI 4020 1.12 I)0 L'ls I LS)$Lt s1 I.)s 14 I.)45 I JSI 40N 414 IQ I Ass I AS)~A)I 2.$4 ITS IJTI IJI AA)C I'l I O.SN IAIC 4W)Itl I.~21 I.WS 4NI III L)l)L))S Llt1 III I J)$I Jl1 402l.LSI I4$~.1st~.1st~.~IS 1.07 I I)I Jl I J)4 4$IC-I.'I I I II I.t)7 LNC 4Nt 4N It)IA)I I.WI A.tm-$51 IN I L))5 OAOT IAS I)1 LI)5 L ITS 4N4 4)C 1st I JOI I JI'I 41)~.I Jt I 41 1.11$I JIS LO I~~A2 ITS IACI IA4S 447 IS)L)I OJI5 O.N5 SAT I I)I.)1 IJ)1 41I I 4N I 50$122 Ll IS LNI~)I I 45 LSC)I.NC LN IN L)IC OJ2t~A II~.I I 4141 t.ml I 15 4427 OA I I LOII L)0 RMS Deviation:

3.7%Max Deviation:

11c4%The Incore detection system Is operabte per Appendix A, RMS deviotlon should be fess than or equal to S.Ott and meet the requirements of 47.1 if pecfonned at the 2$and 98 percent power test plateaus during the power ascension test progranL kC 10

~St.Lucie Unit 2, Cycle 9~Startup Physics Testing Report FIGURE 5 POPOVER DISTRIBUTION COMPARISON iVITH DESIGN-50%POPOVER Qcooocch (CECOI/NPAX)

Soccco Pjtocr ILccl I 2 4n 9)poeot 6.76 DPII CEA Poddce I 22'cdga: PCM I IQ)$5$075 10 t)PII 122'p n H I 1 I L K 5 I I I H 0 I 1 I I I P 2 1DI DT~lj)4$1)45~Q 1025 On 1QS 1024 571 Ct t.11 Lot j 4$7 4>>004I\41 IN~It S.21 101t$.21 IN 14II cn 0th 11$Q 1))2~.Ql 1NI 1)t Q at)7 an)4QC-25t 40 NI II~4ltC 4'74 4$I jll IJ IT Nl 415 ia I Off LNI a Ill I ll I It Lj l1 LDT ONI 140 IN sin sill 4NI 4>>I II Nl a f5 1 4N7 4'fl 144 1Qi I lt all~107 IA)$I.lll 4QI 4.12 54 L15 LI¹4th LIT Ljl)IJI I 4NI LQ 14 Lot\LI jl 4Q4 4l0 IQ L)41 L)Q 0~II atf'IQ LI I5 LID 4th Ln>>7 I J74 IJtl~2T jn IQ LI IS Litt~lj-1.1~I I I I.an IA54 nl 441 ant 4N)4h 14 1)N N$145 IC IA)I I.W2 4QI LN N I.0l I LOD 4012 4 I I 5$1241 L)D 40D Ln NS fli 4014 I jl IJD LÃC 0$1 IC IN 0$4$0th 4th 4)I III I JII I JTC 41>>4tl ia 1h4 1'Nl N7 4'n 151 Ljn Ljjl 4WO At)l40 LNS LOD Qt 70 ln I.ll I I Wl 4NI LW Ill 1)N 4OQ 4h 5~Jlt I~II 514 IS Lan L05t 4nl 211 17 alff I.N)4NC 44l II IJQ 4050 54 Lnl Lht 4QI TI IJQ I JS 4NI N 1715 atQ 4 no Lit ln I J)t Ljl 4WI L 05 122 all)anl 4010-IN Ih l.2N I JS*N4 JQ I)I I.NS Lht 40N JQ lit I.DI I JD 4th S.lt IQ at47 I NI 40N 744 Itl I ll LOQ 4NS 4 f5 105 1210 1QI 1NT 107 4 1 Sit anl 4NI 411 l4 L I I 1 IN 40 I I.15)il I Jn LID 4n5 I 0)42 LW4 I alt 100T OW$7 I Nl I.N4 lit IQ n IWI LNI 1N1 alt I.II4 I J74 4WO Lt)IW at)7 atQ 4tl5.I 40 IQ I J)7 I J74 4th IN Ltn I ON 1NI 1Q I S5 l.Ill I.024 4N4 45$I TO LN Lhf 4t lt.I al IN I 244 IJD 4057 LD i f4 L IS)Lln 4N)4n IW 1'i)7 at)I 4tll'I 1117 OIII N))7 IT IJQ IJOI 1N)115 1NT 1NI NC 414 D l.)57 LD ONT Q I.ON IAW also~$7 n ljn LIT)aal 17C LNT LWT 40D Lh itf 1205 I JD 4WT Lfl I)I I 04 I.WT 4th 41$III LIIS L I 7 I 1 Ill I ll 15C 1.01$LON 4th I tl ill 12 I 5 IJ)4DS-2 40 Ill 17 I 4 1NI sill I 44 ltf Lift I JOI*tjj.Ln 207 an)sill 10N 147 I L244 I JIT Nt 1tT II LISC LID~Q lh)0 Ljtl LITC atl5 I.II n4 1$)5 I lj I St L 24 L)74 40 I 4.I 27'l4 IAQ L\Ct~Il I lf fl I J>>22$4 4015-I II IN 1NI nl~15 1.70 I 25 I Jn I.15l I AS I 42 LI~I LWT 112 Ltl ISI IJD LITC 4tl I 4h in Sil anl 1NC N I 14 I J)2 I JTC 4n4.in In I.1 27 I.nl 1NI)$IN Ljll L)IT an)ill LIN I.N)IW lN it I Jjl Ll)1 10T)IJT I 0th Ltl 45 LDI I)I 4th IAT N t jf atn 40>>.I jl 7$I J>>L)D 4nj.I 14 1151 nl 270 Ilf 17N 14N 10W C21 l24 atn 1ID 1NS t jl ID L)N I J41~n 247 15$in>atQ 1W'I 174 ln I jh Lll 4th 4D I if Nl 4NT 4n Ih I Jn IJ)1 1N4)54 ict LIST IAI)ahi C.ot I~I J)t I JIT Nl j)4 LID LIQ~II ID I I Jn LÃ4 4 lit 15l 44 Nl t15 ONC 144 41 I J)7 I JTC 4NT.I)S 74 I lft LWS ant Ln I JW I JSI Ql 24I>>~1 14$~jl ahl I.24 ill IJTI L)$4 Ln IN LI I 4 L047 1NT~.I I 15f I JQ I JTC 1NI 1SS IN atSI 11)5 10D IN LÃl LÃ4~tl 14 L I 4I I.l jl anl I al Ii~I J)I LI It 10)4 Lfl II an4 IIC~I~I I I D I J75 I JOI 4Q4 N h attl 4tli I Sc if I.D L)S 4nt ID D LON I Nl N4 CN TT I JQ 1 17l OWI 4t5 I.>>1 LWT W)$$7 I I I L241 IJD 4NI 4N IQ I.074 LW'I CNS 147 I IS I Jh LITI~Q).I~I CO I.Nt I.NI NS ail ITS I.jn I 2$4th 4 I 4 Ill O'Nl 1NI ill itl IJ I JI)4NI 4N I I I anl I I I 1NT~I ij 1'ill nl 4IIC Lfl D L150 LIN~N 45 L)7 I JD 4th LIT~I I AS)I ht 4NT 447 D LN2 LO)4 I I I i.n TI IATI I.NI 11N Lll'IS I JTC LDC 1 IN~N I I I nj 10 I I I tC Ill 1.150 l.Ã4 4 lit-I 41 ll4 I.OTT LON an IW l41 LOQ I.024 Nl 204 ITC Ion L05t 10>>I I I IN I JN IJD 4nf IN itl I.I'Litt 4024 JN Il 2 SD nl 4th Lh Il 1)jl 4N)4'l l D I.~It I.WI 40>>Q atff LOD 4NI LN It I J44 I J41 4 I)7 LST 44 lht Lht 4th 7$I J)I JS 4QO JAC atll at)5 1 0l I I IC IQ LJI)L)I 4IIT.I)I Ill 1N)t)5 NT 174 Ill l.245 I J5 4N5 ID IAOI I lit 102t 247 177 I Jn I JD 4N5-I N Itl afn LOD 4W5.5.$7 LN5 LWO 40D JQ IQ 121$1Q)CON II~IA)I IASI 4QI LN 50 Litt I NI 4QC 45 I JD IJD 4Wt 4'n f0 I 4NS 45C 1174 401$.I I)I II atN 1Nl 1014 I ll ill I J54 I JTI 4 no 1.5\I¹atl4 1NI~15 14l ID I J14 IJD 4NT 4Q In I ON LOll 4NI 44I in I.Q4 I Wl 40i4-I Si IN 1141 1N4 I lt~Ij~1 SI IA)4 I.OQ 4QI 4 I)LIQ LIN 4NS II I J44 IJOI~Q 2'14 LQI LID Nl I IS Lift LIS1 anf)I I in L II I LID 4N)410 lh I Jn I Jll 4N 14 IJN LIN~I~lff IAQ I.OSI N>>1 ONT 201 Q Ql 1QI 10N 1N I nl 40Q-240 Q~ll NC 74 LQI LQT 1N5 141 I 14 LI~I LNI 0 oil I 41 Dl Ll IS I J IT 40Q 4 I 4 ISO all4 sill 1NI 125 l45 1n'I an)1tW IN 1)D 1QI sill 4D 1411 1027 54 u~a ill I)$Dl~AQ alii So RMS Deviation:

3.1%Max Deviation:

9.7%11~1DI 14>>1017 140 II5\14 I IT)74Ã4 1>>l N5 IJIS 1411 1QI 1011 T.n 414 IN The Incore detectton system ts operable per Appendix A, RMS deflation should he less than or equal to 6.5)76 and meet the requirements of 6.7.1 if performed at the 26 and 96 percent power test plateaus duitng the power ascension test program.11

~St.Lucio Unit 2, Cycle 9~Startup Physics Testing Report FIGURE 6 POPOVER DISTRIBUTION CohfPhRISON iVITli DESIGN-80%POPOVER MccccroL (CECOR/IV)AX)

Sovnc Tccccr Lccd$096 11 51 EPII CEA lovuco Ocdpc PCM 112-295$074)0 EFTH I)I't v v L K)v 0 I~I~I I)M)0 DJTI DJTI LC)0~AID OJS)a)52 ILC)0 D.~11 M2t 4.019 OA I I 1.'Tt L)$S,ll L7t!L N IL45 I OA I~M))7JI Ioo DJC I DJ51 ILOD9 Lct OJC)ILIS1 OAI~2.TC I)4 tACl DA Il LNO)0 4Jll DJ))4001 a)4 Sl MTC M)4 4<<N asc 4 OAOI MDT 4AO)4J7$5 1.10C L101~.004 4)l 102 I 090 I Aso 0.0 20 0.12 I It 1.111 1.102 DA I~0 al I 14 OA05 MOT 4AO)415)5)~.917 D,tM*DOT 4'Tc 144~JIS 4.1))4AD4 7.22 15 OJSC~Jcl 0.0 I I IA)IACI aon.I J4 54 LI)1 LI75 4011 100 41 I JSI IJTT 401C 400 IC IA$9 I.I I'I 4ND~1.75 IN I.ISI 1.15$4004 4)2 I)0 1.200 I.)It 40)t I)7 L7)C L)77 4AII.I.CT I)1 LLC I.I'Il 4A)t I 44 I 47 IA1 I IACI 4AI).2,2S I 0 I OJ45 Ikl45 DADO 400)4 OJI)OJCS 4.002 4 cs 16 IA)4 IA54 4AI)L I I Io IAl1 IAI 4027$47 55 I JCS I JN 4A)$.1.TC 70 MIS Mt)4.0 I 7.L'I I 17 L214 I J4$aocc 4SS I 04 0.9C I O.t71 4.t I I I.I I I)I I J)l I.14$aN5-).N I)l DA$5~.901 4NT I.t2 IS)Ll)9 I J4)4N)JA1 I4$e.tts IA4 4.041 421 Ill IAIO IA54 4046 Jdcl IN ITS Ik)45 4.010.Ltt 5 IL)SI DJll M)I$,1)IS IA14 IA44 aots 4.tT 17 ILSS I IAI aocs 4'll II L)SC L)tl-2.07 Tl I J II I Jct 4017$$4A)I O)4 I 4A20.2.17 ID5 1.2C4 I JDI 4AIO).76 I I)OA24 ILSC I 40)7~I.sc I)9 1.101 1.149 44IC JA2 I)I IA)l IACC 4N)149 I J)0 I Jt2 4061 404 IN DJC4 IAI 407C TAD IN IAOT IAIC 40)7 JCT TN IL)N 4J11 Ik007 I OC 6 4.945~.9)4 MI I I.I 4 IC I.IT)I.I)5 4'aot 2$I Jtl I JN 4A I~4.77 42 L04C LOCC O.ND~.40 57 IAlt IAI)~.006~57 71 IACl IA45 4AO)4tt I.))$L2$2 4044 I44 O.t4C 0.962 aoIC 749 Ill I J)I I.1$1 4NI al~I lo IASO IACS 4025 IA)IS)IAT I IAI)4021.115 170 IA)9 IACC 4AIT 2.40 IM I JCI I JN 4.N)196 I.ISD I.l)5 ae)5.LIT 20C ILNI O.NC aoN 4.)2 7 0.$06 O.NT 4AD I*I I IT I Jtl).277 M IS I.M LS)9$.901~.NT 1,94 N).254 I Jct 0.047 I.SC 5$IASC IACS M)I Lll 71 I J I)I.144 4.4C 90 IACS IA49 4.020 I$7 It)1.226 L17 4AM 459 114!ASS I.Nt 40)0 2.$)III I.lt)L104 4A I I 4.12 ISC IAIO 1.045 401$LCO ITI I JIt I Jlt 4019 1)$I 15~.'I I I 4.902 DAI I 1.10 I 97 I.)41 IJTT 4.0N ac)207 0.<<N 0.001 Ik25 4 1.1N IJtl~.4I I L)0 Il I.IN I.I)t M))2.4I It I JN I JCS tAI 5 I.I 7 44~.N)LSII~.~Il I.'ll St 1.14$1.1$1 40 I 7 I J)74 IA9C IAOS~.007 1l 1.247 I.ICS 4ADI am I IN~.$5C Mll 0.00$~.N 115 Lltl).24t I.'Tl II)LI I 1 IADS Mll 2.07 157 I JTT 1.1$1 aoos 4)1 ITI Ml1~.N I~.00 I DI I)14).14C 1.260*011 Its I.I I)I.I)9 aooc asc IIN I.I I 7 1.1D)ILNS 7.2)t I,I)2 I As MT)C.25 IS I JN 1.2Sl D.NT LC4)I~.992~.t71~A)0 L42 45 7.290 I J44 aon.I.ot 4t LS)7 0.961 402S.$47 75 L1SI IJT 4A It IAI t)$542 Mcl OA I~Il2 Iot D.T IS IL4t OA)9 I.O)114~.NS L$4$~.NT 1JO Ill I.)I)IJT LOI)$20)5$IA)$~.942 MCC CA 2)7)I JI~I JOI DAOC~.CC I 1)LOESS~.t)1 4417 I.Tl Itt).171 I.15$L420 I,CC 209 I.l)1 IAD MII I.TI I~I.))9 L)02 DA)7 Ltt 20 I.)IT I.)It 0.71)I I JSC I JCS 4AI1 416 4C LSCI 0.941 t.oo I~.I I 42 I JCD 1.2$2*tl4 I.I4 74 I.IOS IADS M20 I AO tl I JDI I.24t~.NC IA I II~ILATS L$4$~.D27)DI 117 I All).269 Mc)$2$Ic)I.I IT IAIS M)$I JT ISS IJS)L1$2~A I I~.0$I 74 LNI~.~IT I AT Ill 1.171 I J6$MN Ik2 4 No I.I)$I.I It 4AOt 4.$0 I I 0 1.224 1.2DI 0.014 INC II Ml1 4)47 0.0 I I I Jl II I.)T4 1.177 4.001 4.24 DASC LSD)4ADC a67 IT 1.240 1.149 4.009 4.7)41 LID)IACS M)7 I)C 77).166 L)N Lsl)I.)'I 14 I.I I 7 lANt$05$S.OC III I.)75 I.)7 I)0 TAN)IA$9 4007 445 145 L220 I.)04 MIC I.l I I CD LOSS 1.04$4ADC 4$7 ITS 1.150 I.IIS~A4)I lt ILSI5 0.941 OAI)I cS 201 I.)$9 I JTT t.oil M)I I I D.ND ILNT OAOI D.I)I)D.N4~.NI 0.002 IL2 1 21 I.ICI I.I)5 4A I~.I.I I)I I.)76 I JD)4AI7.LI 2 N I.N$1.066 a<<N 476 Cl I A5)I AC)MDD 4.'TC 7$IADC IA45 OAI I I.t)95 I Jll I Jl)~.ODC OAT I I I 4.tTC~.962 MII IVI I)9 L14C 1.1$1 4A IC.LM I IC I All IAC5 DAIS I AT)4 I I ASS IAIl M)6 IAI ITC IAT I IACC IL005 047 ISO I JS I I J41 4A I I OJS 242 I.I 47 I.I)5 4.oos 4CS 2 I I D.NT OA)4 O.DD)~J2 Il 4.11)~.))1~.000 0.00 I)IA)4 IA44 4.t)t.7.15 15 IAOO IA4@AN 400 lt 1.1$)I JS)4.N)40)Cl IA15 IA4C 4AI I I.)26 L)49 402)I$$94 O.t4$~.SCI t.007 4.74 I I)1.29$I JOC 4044 446 I)0 DAI5 ILSII IL004 Ikl1 I IT 1.2$0 Lilt~.ODI sot IC)I AS)IACC DSIC)77 1.177 I JS)4025.L17 It)O.tTt I AC aoll 42)IN 1.021 I.OI4 4All.$2$2 I 1 OJ)1 OJ)l OA45 I 4$14 OJ41 OJ45 4AN IC IA)0 IA5C 4A I~~I.T)$0 LDI 4 1.04 4.026 45 1.170 I Jtl 4N).240 N LSO)4004 447 tT).155 1.141 aoo 1.04 I)4 D.tll 4.971 Iko I~142 Ill 1.1ST I.)40 4A I I Ill 0.91)IL901~.0 I I I.20 IC)I JI)I J41~.Dot 041 17$I.Nl IAI 4AOT acl It 1 IA)4 IASC 4AIt~I.1)204 0.)I I 4.)45 I.I 7 17 L)45~.~)5 C.I 7 Sl IA)4 I A)I aot~*t)44 LI 50 I.I 75 4027 IAT$1 I JCS I JTT 40 I I tl I.I tt I.I tt 4.~I~aco I I 5 1.276).25$4AI1 I Jl Ill I.I)0 I.I IS~.00 I 009 I 49 1.210 I JTT M)I 0.$$ICI I.ltl I.)75 Loll I.S I I)t IA$5 IAII 4.0 I I IA4 Itl DJS4 M45 DAOt 2,$4$2 M)2 OJ))4001 a)4 47 O.NI O.N4 400)4N~1 OADt DADT Ikool 0.25 tt I.211 L201 O.NO IAI I IC I.IN I AD O.D11 L09 I)1 1.221 1.101~.020 1.44 15t~.$10 Mt)Mtl I JC)45 O.N2 O.NI DA I 1 I AS I lo ILMI DJll 4<<N 2.)S~.44$t.c I 1 t.o)0 4.70 ID)~J45 4,1SI 4.~I)L54 D)64 M51 0.0II IJO I)5 OAI I DA I 0 DA))5.21 RMS Oaviation:

2.5%Max Deviation:

9.3%I II OA)l OA I~O.DOS I.I~I I 5 I I I)IT 4JC)OJ4$0.4)S~J)1 L151 DA I 1 DA I I~.0 I 1 OADT lol LSC I 4$The tncore detection system Is operable per Aooendbc A RMS devlltlon should be loss than or equal to 6 IV/, and meet the requlremonts of*7.7 If performed at the 26 anti Sd percent power test ptlteaus durtng the powei ascension test program.EI 12

~St.Lucio Unit 2, Cycle 9~Startup Physics Testing Report FIGURE 7 POiVER DISTRIBUTION COMPARISON iVITH DESIGN-100%POPOVER MeoeootL (KCCRT/bNTATO Sonic IOOTI IAtd tl 0054 EXPO)NO SS.II CKA Ttddte ARO Dcdct: Tc)C I I)qt)10054 75 67775 ARO R e N N I I I I I x)I I I H O 5 414 424 lit alt 100 10)Itl 1405 Lit 241 111 Lit t)Q 400 4ti Q tif ttD 4N5 4$5 40 1775 100 4NT LN 1)47 1 I I)41)t L05 LN 4ti~4tt 54 Lli I L1 i i 400 I JS lt I J42 I JCS 400.I 15 1NT 400 7.44 Lnl I Nl 4tlt.IN 0 I~I 7.07 407 447 SS I.)41 I JN 40l 145 70 t0 I NI 401 JCI I SS 101 0 021 420 15 Lt)I 1.05 17 1 tlf I 07 400 Ln ii I JSI LJN 405 aft SC 107 Ln)40$71 I JN IJQ 404 JCI 4 O.N)ttD~21 10 14 Ll f1 I.Ill at i~~5 11 IJt L2N 404 4)I 41 I.WI I.nl 400 475 57 I.NI I 04 400 4tl 72 I.WI LOTI 4 4 I$.14I I ONI 100 Nl ll Il L)tf I JCS 1 ID I TI it 10$1 tti 1414 41 L2S4 I.)Q 100 114 I.NT I.tfl 0.~It I.T)71 Li l1 I J I I 4NS 44 I I JD Litl~0 241 il LQ L I I 4~It 1st L271 I.)45~0 in 0 1$51 100S 57 1.245 IJN 400 10 74 IAtf I.IN 400 444 t L I 7 4 L04 N)17C It L2tf I J)4 100 I ONT 105 tli)ID 45 L20 IJN 40 I C-I 14 40 at)5 1 tf 40$J.t4 7$l.2Q 1271 405 il L2it Lltl 0$L ill LI I 4 4NI 4ll 1 1.257 I JCS 4 I II 711 44 1N 104 4004 444 41 IJt I JN 4 Oil 141 74 LIQ LIQ all I 0tt II IQ 101~II I J5 11 L24t I J4$tl)5 400-I~I if L)41 1.15)4411 40\Lln I.OTI 141 77 IJQ L)II 107 1tS il 105~0 I Jt 0 L I 5)LI I~400 477 I JTC I.ltl Ltit.I.41 41 LWI I 071 4tli.I OI 4)I.nl LNC 101 It Tl LIW Ltfl OID LSI 0 104 11D Nl 0 L Ill I.05 4011.In ttt I 07 400 JN it I.)54 I.)n 410.241 44 Lt)C I 071 404 Lit Tt 1241 I JQ ONlt 171-IA4 I.N I IWI Lilt 4W I.~II I 07 Lilt I 17 4$I JTI I JN~l4-I 15 1'll NI 1N4 044~JC)7~1$47~SI Lnt L05 1NI LIN 1.141 1N)14 II IJT 1245 NS)I 47 10$ttQ 1 0 i)I Jt 0 Ill Nl 1tl~ID I~71 70 A 40 41\tl)l IN NS I Jt 440 41$12$15 Lltl Lltl 1NI 1D ia I.N2 i.'eit 100'74 I I'I LNS Lltl tti~I IC 04 N2 N)4)0 151 71 1 IQ 400 40 144 1117 400 10 14 IN L I I 4 404 JJl IN I JW L154 400 44I Qt I.ltl till 404-SN I)7 I JIT L)45 4tll 1.4I IS)LI4I LI 41 401-I 0 ICT I.0 II 1.05 4tll-1.77 III lit 1147 ONI 157 0 IJI~l)45 4 tif J.I4 IN 1tQ tm 400-itt ill IJ)4 I JCS 40t 414 IN 117)Tti 40$SN IQ I JN I JTC 400 J.I'I I II LifT I tif*Nt L~I in l.~14 l.051 40$444 IN 1Q4 t)47 Ltl I 417 0 107 1044 40t 414 IW L))t I JN 404$J 57 111'I l'I)44 407-'Lti Qt Litt I JQ 404 LSO I)I i.0 L02 4IQ Lit 14t IDI I Jn*05 444 IQ 1.07 4,50 It5 I.tl I I.NS 404 105 107 120 1 tN I it LDI I JN 400 LN IW 1$0 1tl 4t2T-1 14 ID I JD I.)N 4WI Ltf IN I.NI IATI 400 JJ4 15$I.nl I.OTC 404 I.N)I tfi 400 LN IN I JW I 1N 401 477 IW I.I 52 I.III 400 471 IW 1t)1tQ 100 14C Ltfl I.ltl 400.1N in I JD L)7)40Q l)I IA51 I.ltl 4NI 45 I I I I.lt)I 2 Il~25 I)4 LNS Lnt 400 4 I C I 7 I L224 l.)$1 407 2)7 ill ttlt 1 ON tilt in I tT I Jit 1.24$1 tti 10 IOT 1NT 101 1NS 142 tl I.27 IJTT 4NI 47 I IN tnf 1141 400 447 l25 1271 I JT)1014 IN 142 LIQ LIN~Il I ST LD I L)N 400 455 in N)1tiC 4N)4)1 I 14 I JW I JCS Lilt-I$2 Its L1 I IJIC 400C 4SI I)II Litl 101 in)t44 1141~0 10 in TD 7W llil IN l)4 ti~41~Tt IQ I JIT l)fl 17t 274 ISO 1.0 1tf OWO in I Jll I J04 1NT 10 in 0tQ ns 401-2)i Itt L271 I JSI ttit I.tt ln LI ll ini t04 241 I JN I Jft 10)t 10 Ill 10 1141 ttlt 114 ID I Alt I Jft)11 I4I LQ LII2 021 141 1)t I JTS I JN 1NT 1SC I 74 t$T N4 ttil I I5 IN I.lf I 115 1405 LQ4 I.I I 4 OON 171 ii~I 2 II Llt I 1017 10 N LI 5 I LIQ~24 I I I I Jn LÃl ONt tft i)i I At L ill 4011 Il~145 I JD 1211 NS~I IN L04 I.nl 400-20 ITS l.)5 I.)Q 400 414 in 1t4I 1 IN OON 414 itl I JW I JCS 101 I Cl 111 I 02 440 40 tl Ll)4 I JN 110 2tf I I)ttt)77 10D LD lit 1.274 L)N 401 4OI 144 Lttl Ltfl Nf 145 141 LW LW4 10 I'l In)I.n)~N N IN IJT4 I J74 tNt Llit LICI ONe 044 111 tt)$1tD 100 I)I 74 I 024 104 1 IN TN II)I J)4 01 IN I)0 til 1 td 4NI II in L)Q L2Q 4NI 40 141 I Nl I.nl 1t21 I'll I 77 I JI I I Jn 400 44)It l 10\1.07 4NI Ltt 10 I tlf I 05 400 470 I I I 101 100 I.ff tf I Jn L)45 I 77 II~tt4 t7$an>1 I I Ql I JQ l24$00 414 I II Ill 04 NI IQ Lln L)N~15 I 15 III I 04 I.07 400 41t itl I.N)LNI 4NT 414 IN t)0 IJI t 40N I,if LID LI I~4 lit-I 17 I IS L17t 1254 t t)5 I tl Ql L I I L I I 4 W itt 12N 1245~it IN IN LID I.141<<ai i.'Tl If)101 I.NS~14 IJ)it)L)54 1)41 LQ L1D Lltl 01 1$4 IW LIN L04 000 271 I)l I J)I L ill 00 144 150 114 N2~12 IAT 145 N4 t)1 04 1St IN tDT 10 04 1.77 451~I'I 02 7 10 Nl~I 1NI 140 140~it~it I~RMS Deviation:

2.4%Max Deviatfon:

8A%I I4 1422 14 1 t~.N)1ti I IS 114 117 t)CI 14D t)54 1)54 tilt 1NT\ON I ti Lii 1'll The fncore dtIOCdon system Is operable por Appendix A RMS devlatlon should be less than or equal fo 6.4756 and meet the requlremenls of 4.7.1 If performed af the 26 and Sa percenl powlr test plateaus durlnf)Ihe power ascension test prof)ran@13 St.Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table 1 Cycle 9 Reload Sub-Batch ID Sub-Batch L/LX LY Number of Assemblies 48 16 12 32 16 20 16 17 Enrichment 4.30 4.30/2.30 4.30/2.30 4.30/2.30 4.30/2.30 4.10 3.60 3.60 3.60 3.60 4.10 4.10 3.70 3.70 14 St.Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table 2 Approach to Criticality Dilution Rate 132 gpm 88 gpm 44 gpm Initial Boron Concentration 1749 1671 1532 Final Boron Concentration 1671 1532 1506 Dilution Time (minutes)30 60 30 Table 3 CEA Group Worth Summary CEA Group Reference Group 1,2 3,4,5 Total Measured Worth (pcm)1992 1481 1641 1783 6897 Design*Worth (pcm)1947 1451 1581 1665 6644 Percent Difference

-2.3-2.0-3.7-6.6-3.7*Reference 5.Percent difference

=(Design/Measured)

-1 x 100 15