ML20215M798

From kanterella
Jump to navigation Jump to search
Cycle 3 Startup Physics Testing Summary
ML20215M798
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 10/24/1986
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML20215M793 List:
References
NUDOCS 8611030303
Download: ML20215M798 (19)


Text

I e I em' e

FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT 2 CYCLE 3 STARTUP PHYSICS TESTING

SUMMARY

9 8611030303 861024 PDR P

ADOCK 05000389 PDR

TABLE OF CONTENTS PAGE TITLE I

'l Introduction 2 Core Reload

~

5. Approach to Criticality 9 Zero Power Physics Testing 13 Power Ascension Testing 17 Summary i

i

_ - , - - , . . . .. - . _ . . - , _ - , , - , _ , . , _ , _ _ _ _ , _ . _ _ _ _ _ . . _ _ _ . _ . _ . _ . _ _ . _ _ - , . , . ~ _ _ _ , . . _ . - _ . -

LIST OF FICURES FIGURE NO. TITLE PAGE 1 Reactor Fuel Location 3 2 ICRR vs Dilution Time for Channel 1 6 3 ICRR vs Dilution Time for Channel 2 7 4 Boron Concentration vs Dilution Time 8 5 Integral CEA Reference Group B Worth 10

~

6 CEA Group Worth Comparison 12 (Measured vs Design) 7 Power Distribution at 257. Power 14 (of 2700 MW thermal) 8 Power Distribution at 50% Power 15 (of 2700 MW thermal) 9 Power Distribution at 100% Power 16 (of 2700 MW thermal) 1 l

s

_ _ . , - - - ___,r__ -- ._, . . _ _ -...__e __.. - . . , -- , , , , , , . . . . _ - , , _ , ._.-._,,..r__,,, ~,_.....m.. ,-...,m

LIST OF TABLES TABLE NO. TITLE PAGE 1 Fuel Typei for Cycle 3 2 2 Dilution Rates 5 3 CEA Worth Summary 11

, _ _ . - . , - _ . . - . - - - - - - - - ----- - - - * - - - ~ -" " ' - " " ' - -

Paga 1 INTRODUCTION The inten: of this report is to sununarize the St. Lucie Unit 2 Cycle 3 Startup Physics Testing results. The purpose of the Startup Physics Testing Program is to provide verification of selected design physics parameters before making substantial increases in power. The major phases of this program are the Core Reload, Approach to Criticality, Zero hwer Physics Testing and Power Ascension Testing.

y' -

Paga 2 Core Reload The Cycle 3 core consists of eighty-four (84) fresh Batch E Combustion 2ngineering (CE) assemblies and one hundred thirty three (133) exposed CE assemblies. The core contains 12 distinct batches of fuel with the enrichments as listed in Table 1 below.

TABLE 1 FUEL TYPE NUMBER OF ASSEMBLIES ENR'JHMENT (W/0)

C0 37 2.73 C1 8 2.73 C2 8 2.73 D0 24 3.65 D1 16 3.65 D2 40 3.65 E0 28 3.60 El 12 3.60 E2 24 3.60 E3 8 3.20 E4 8 3.20 E5 4 3.11 Included in the fresh Batch E fuel are four test assemblies which are part of a Cadolinia Demonstration Program. Each test assembly contains 8 Gadolinia-Urania (Cd203 - UO2 ) burnable poison rods enriched to eight weight percent (w/o Cd20 3 - UO2 ). The remaining fuel rods are enriched to 3.20 weight percent (w/o) U-235. In addition, the top and bottom 6 inches of each fuel rod of the four test assemblies (236 rods per assembly) consist of Natural Urania pellets. This arrangement of Natural Urania pellets forms the Axial Blankets.

The Cycle 3 loading pattern is presented in Figure 1. The assembly serial numbers and the control element assembly numbers are given for each core location.

- .= -. .- ---

Page 3 ST. LUCIE UNIT No. 2 FIGURE 1 *

, REACTOR FUEL AND CEA LOCATIONS CYCLE 3 Assembly No.

Insert No.

G2 55 56 G8 21 2nh ll C212 E24 ID9 E3 D218 E.D BS E27 C213 20 29 25 G225 El D003 D239 G26 M7 G7 m27 DDL1 E6 (D37 l 19 17 72 87 75 8 -

G321 EDS DD20 ESL D2.% C4 D215 Em m17 20 DDZ3 EDL G7 18 85 50 45 49 44 86 CD6 E2 D022 D109 C05 56 0235 D211 0236 M1 CO3 D111 DE3 E5 C04 17 16 74 20 61 23 76 28

, E23 0001 549 CD4 55 DOL 5 D106 EM 0115 D017 58 C07 54 D005 E22 16 79 3 7 3 34 48 n3 m19 D216 E43 0009 (D04 G309 D206 (D34 G3 DDLO E55 m31 D229 E20 15 W 43 22 2 71 95 21 67 G328

~

~

14 r31 G)36 E73 0232 DIOS G3L1 c5 D102 E33 G329 .D116 2 33 G8 (D31 137 13 CO 3 65 62 46 66 10 78 52 ~

12 157 0225 54 D204 0212 E83 D202 D103 (DOS D113 D210 ESL D201 0205 E48 m37 , LL 9L 11 24 64 56 41 88 U1 -

LO i E29 c)L6 D7 0222 D108 24 E36 DL12 E32 C010 D114 D108 E75 GEO E34 S-2 ~ 9. ._

l G324 42 12 14 27 18 69 1 G3 ~

8-

! no 0238 D220 27 0007 G)39 (D06 0213 (D30 G301 DDL4 M2 D203 D224 Ela 7 i 13 59 86 9 89 58 52

! C6 0016 23 C08 29 0018 0101 ES2 010 7 0002 E61 C06 55 0006 E28 6

\

5 M U D D M l C16 n9 0024 D104 CO2 FA6 0221 0307 W30 E54 C101 DL10 0021 n4 C10 5 i l 33 4 57 19 60 6 37 (D08 ID3 DOL 2 c1 2 28 U6 5 09 E79 D214 E63 0019 ID2 0015 4 93 36 31 35 30 96 G0 C6 0000 m26 G3L2 E62 G)D7 0223 D004 ED4 0019 3 1 54 5 92 26 63 C09 E21 n7 E38 0140 E40 ED7 E23 C03 2 i 5 R l (D3 59I EB8 G)32 1 ll i

i 1

i Y X W V T S RP NM LKJH G F E D C B A Note X 1. The four fingered CEA's (Serial No.'s 80, 81, 82, 83) will be

installed as part of the upper guide structure following com-

! pletion of fuel load between the central dogear assemblies.

2. CEA's in locations Cll, D4, G7, R15, V18 and Wil are oriented northwestr CEA's in locations D-18, G15, L3, L19, R7 and V4 are oriented southwest.
3. All fuel assembly serial numbers are oriented to the southwest.

i i

Paga 4 Core Reload (continued)

During the fuel shuffle, in accordance with FSAR 4.2.1.5.1, a visual inspection of six fuel assemblies was performed. Two non-adjacent fuel assemblies from each of the three irradiated batches of the Cycle 2 core load were chosen for inspection. The assemblies inspected are listed below. No abnormalities were observed.

B002 B063 - --

C201 -

C207 D101 D220 Following the fuel shuffle and prior to the approach to criticality, the CEA Performance Tests were executed. The objective of these tests was to measure travel time from the fully withdrawn position to the 90% inserted position as well as verify correct operation of the CEA Position Indication System.

The average CEA drop time was found to be 2.32 seconds for both the four-fingered and five-fingered CEA's. The maximum and minimum drop times for the five-fingered CEA's were 2.41 and 2.17 seconds, respectively.

The' maximum and minimum drop times for the four-fingered CEA's were 2.35 ano 2.31 seconds, respectively. All CEA drop times met the acceptance criterion of less than or equal to 2.7 seconds as required in Technical Specification 3.1.3.4.

l t

~

Page 5 APPROACH TO CRITICALITY The approach to criticality involved the dilution from a non-critical boron concentration of 1969 ppm to a critical boron concentration of 1558 ppm. Inverse count rate ratio plots were maintained during the dilution process and are provided in Figure 2 and Figure 3. A plot of Boron Concentration versus Dilution Time is provided in Figure 4. The following table delineates the dilution rate and range of boron concen-trations for which this rate is applicable.

TABLE 2 DILUTION RATE INITIAL BORON FINAL BORON DILUTION CONCENTRATION CONCENTRATION TIME 88 gpm 1969 ppm 1558 ppm 179 min Criticality was achieved on June 2, 1986, at 1214 hours0.0141 days <br />0.337 hours <br />0.00201 weeks <br />4.61927e-4 months <br /> with CEA Croup 5 at 56 inches withdrawn and a critical boron concentration of 1558 Ppm.

l l

I

Page 6 INVERSE COUNT RME VS. OlLUIl0N INE STARTUP CHANNEL 1 1Pg i

N .

0.9 \

0.8

\

\

~

0 k s 0.7

\

' '4 U 0.6

\

t \

$ 0.5 '

0

\g u 0.4

\

s e \

1

\

0.2 h

0.1 0

0 20 40 60 80 100 120 140 160 180 200 OlLUTION TlWE(WINUTES)

FIG. 2 l

. . Pagt 7 INVERSE COUNT RATE VS. DlLVIl0N TIME STARIUP CHANNEL 2 1"

i 0.9 N .

3 0.8 0 k j 0.7

\

r N

N 0.6 \

! \

s z 0.5 R, 8

0 y 0.4

\ _ _ _ _

l. 3 0.3

\

0.2 0.1

'~

0 i , , , ,

0 20 40 60 80 100 120 !40 160 180 200 OlLUEON EWE (Wi.NUIES)

FIG. 3

Paga 8 BORON CONCENTRATION VS DILUTION IlME CHEWICAL ANALYSIS 2 ,

\

X 1.9 N

i \

6 \

!g 1.8

\

p g

n

" \ /[J I[

u \\'//

y \Y#

g gj v

 ;\

't " S l\ $g

!! \'O N6 ll l \ /> \ 4' 4 " \\'# \\'t 13 vf

'/j vj i 'j L\ 3 i\ f4 [\ /'/

I \;6 N6

" \6

" \ # \ EG \ d \

u \Y# \\'# \V/ \\'#1 \\ 7/Z) gj gj; gj yj, y,; gj;

" 'A 1\ / s\ t4 s\ P4 s\ /'41\ 74 s\ /'/

" N6 nn N92 Nfa \;6 Nf'j N6 .

O

\ () \ E\ 0 \ h \ </, \0 \E GRPB GRP 4 W5 W1 GRP 2 WP3 GRP A

{ WEASURED WORB [ PEED WORM FIG. 6

Page 13 Power Ascension Flux maps from the fixed incore detector system were used to verify the absence of abnormalities in the core power distributi 9a, peaking factors and tilt at the 25, 50, 80, and greater than or equal to (>)

98 percent power plateaus.

Calorimetric, nuclear and a T power calibrations were performed at the 25, 50, 80, and 2; 98 percent. power plateaus. The 25 and 2;98 percent power flux maps met the review criteria oft'

~

1)
  • 10% of predicted if assembly power is >; 0.90 average power, or
2) i 13% (at 25% power) or
  • 15% (at 2; 98% power) of predicted .if assembly power is < 0.90 average power.

A summary of the results of the flux maps taken during the 25, 50, and 2; 98 percent power plateaus is presented in Figures 7, 8, and 9.

O Page 14 FIGUNE 7 RELATIVE POWER DISTRIBUTION AT THE 25% POWER PLATEAU

' O.589j

, 0.577l'

+0.012' 34

_ _ . - 0.915' O.793 0.925 0.786l

-0.010 +0.007l 32: 33l 0.640L 0.637! 0.823!

0.625 0.630 0.816l

+0.015 '+0.007 +0.007l

! 29" 30: 31l L 1.122l 1.027l 0.971.' 1.014l i

1.133, 1.047l 0.997 1.033l

, -0. 011;;'-0.020j-0.026 -0.019.l 25l 26! 27: 28 3 1.172l 0.892 1.186l 1.011 1.059, 1.143, '

O.880 1.263l 1.111; 1.091

'+0.029 +0.012 '-0.077l-0.100,'-0.032 20 21, 22! 23: 24. KEY 1.187 '

1.236; 1.340; '

1.193, 1.266l 1.142; MEASURED c

1.212, 1.235 1.338 1.198 . 1.316l 1.161 DESIGN

-0.025 '+0.001, +0.002 -0.005L -0.050l-0.019 DEVIATION (Xi) 14 '

15, 16: 17 18! 19[

O.413i 1.214j 1.356' 1.224j 1.034, 1.222 i 0.404; 1.217l 1.292 1.211l 1.033 1.261

+0.009l,-0.003 +0.064 +0.013'+0.001l -0.039 8y 9 10: 11 '

12 13, l 0. 3 7 8 l- 0.989l 1.177- 1.196 1.030l l 0.357 0.985! 1.213 1.244 1.053!

l+0.021f+0 004l-0.036. ,-0.048: -0.023l'

! 3! 4! $. '

6, 7' O.360 0.709 0.355 0.740 i+0.005;-0.031 i 1! 2, Measured Design Snapshot ID S526859 Power 25% (of 2700 MW Thermal)

Date 6/4/86 CEA's Group 5 at 115" Time 1509 withdrawn Power 30.62% (of 2700 MW Thermal) Exposure 10 EFPH CEA's Group 5 at 113" withdrawn Tq .0016 FxyT 1.7514 FT R 1.6748 Fq 2.2534 ASII -0.0892 Exposure 3 EFPH

. '~'_ .

Paga 15 FIGURE 8 RELATIVE POWER DISTRIBUTION AT THE 50% POWER PLATEAU 0.622' O.615

. ... - +0.007 0.968,. 0.824 0.972i 0.830'

-0.004l-0.006 32 33

l. 0.655 0.658 0.864, 0.656 0.662 0.855

-0.001 -0.004 '+0.008

29- 30 31

! 1 . 1 5 7. '

1.063 1.013 1.044 '

' 1 . 1 4 5' 1.066 1.023 1.061,

+0.012 -0.003 -0.010 -0.017 25 26l 27 28 KEY l

1.175- 0.922 1.234 1.090 1.122 MEASURED 1.134 0.888. 1.242 1.125 1.109 DESIGN

+0.041;+0.034i-0.008i -0.035 '+0.013- DEVIATION (Xi) 20! 21! 22 23 24 1.150 1.219 1.338 1.209 1.296 4

1.192, 1.211 1.318 1.194l 1.316 1.169 1.171l l

-0.042 L+0.008,'+0.020 '+0.015'-0.020 '+0.002 14 15 l 16 L 17 18 19

, 0.388 1.182 1.319l 1.215l 1.038 1.219 l 0.402  ! 1.186 1.261J 1.195 ' 1.031 1.264 l-0.014 L-0.004 +0.058 '+0.020 l+0.007, -0.045-

! 81 9 10 11 12' 13 0.367 0.967 1.160 1.183 1.041 0.355. 0.961 1.185 1.225' 1.047

+0.012 .+0.006 .-0.025L -0.042 -0.006l l 3 4 SL 6 7' O.344 0.702 l 0.356 0.737 L

-0.012 -0.035 1 2 Measured Desion Snapshot ID N526977 Power 50% (of 2700

Date 6/5/86 MW thermal)

Time 1825 CEA's Group 5 at 122" Power 50.22% (of 2700 MW withdrawn thermal) Exposure 35 EFPH CEA's Group 5 at 111" withdrawn Tg .0028 FxyT 1.7178 FTR 1.6430 Fq 2.1350 ASIr -0.03765 Exposure 7.73 EFPH

__ .___- -- - _ ._ .- -_ - - - - - - .-.. -- -. . - . . . .