ML17228B449

From kanterella
Jump to navigation Jump to search
Cycle 9 Startup Physics Testing Rept
ML17228B449
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 03/14/1996
From: Klein R, Martin L, Wachtel P
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17228B448 List:
References
NUDOCS 9604090121
Download: ML17228B449 (16)


Text

STARTUP PHYSICS TESTING REPORT 9604090i21 96040i PDR ADDCK 05000389 P

PDR

ST. I UCIE UNIT2, CYCLE 9 STARTUP PHYSICS TESTING REPORT

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Author Patricia

. Wachtel Reactor Engineering, St. Lucie Plant Date

~ 9/

Reviewed ay M. K ein Reactor Engineering, St. Lucie Plant Date Reviewed Leo A. Martin Nuclear Fuel, JPN

+ ~Q Approved WilliamL. Parks Reactor Engineering Supervisor St. Lucie Plant Date

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table f ntents Qecfjiig

~ae I

II

. III IV V

VI VII VIII Introduction Cycle 9 Fuel Design CEA Drop Time Testing Approach to Criticality Zero Power Physics Testing Power Ascension Program Summary References f 'e i

e u

e Title 8

9 9

10 11 12 13 Cycle 9 Core Loading Pattern Inverse Count Ratio Plot - Channel 1

Inverse Count Ratio Plot - Channel 2 Power Distribution - 25% Power Power Distribution - 50% Power Power Distribution - 80% Power Power Distribution - 100% Power

.i t fTa les Table m er Titte 14 15 15 Cycle 9 Reload Sub-Batch ID Approach to Criticality CEA Group Worth Summary

St. I ucie Unit 2, Cycle 9 Startup Physics Testing Report L ~td The purpose ofthis report is to provide a description of the fuel design, core load and to summarize the startup physics testing performed at St. Lucie Unit 2 followingthe cycle 9 refueling.

Startup physics testing verifies that the models used in the safety analysis adequately predict the as-built core and that certain Technical Specifications are met. The major parts ofthis testing program include:

1) Initial criticality followingrefueling,
2) Zero power physics testing and
3) Power ascension testing.

II.

cle uel e i n The cycle 9 reload consists entirely offuel manufactured by ABB Combustion Engineering (ABB/CE). The 217 assemblies ofthe cycle 9 core are comprised of84 fresh Region L assemblies, 80 once burned Region K assemblies, and 53 twice burned Region J assemblies.

Table 1 provides enrichment information for the cycle 9 reload sub-batches.

The mechanical design for the fresh fuel Region L assemblies differs from Regions J and K in the followingways:

1) Gadolinia burnable absorbers are used in Region L in lieu of the Alumina - Boron Carbide burnable absorbers used in Regions J and K. The mechanical design features ofthe gadolinium poison rods are identical to that ofthe fuel rods, and
2) A change from tungsten inert gas to laser welded zircaloy intermediate spacer grids was employed for Region L.

The entire cycle 9 fuel load, Regions J, K, and L, consists of the debris resistant fuel assembly design.

This design has long fuel rod lower end caps which provide protection against debris induced fretting in the lower end-fitting region.

The cycle 9 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location. The fuel is arranged in a low leakage pattern with no significant differences between the cycle 8 loading pattern. Twenty

St. Lucie Vnit2, Cycle 9 Startup Physics Testing Report four twice-irradiated Region J assemblies, sixteen once-irradiated Region K assemblies, and eight fresh Region L assemblies were placed on the core periphery and the remaining irradiated and fresh fuel was loaded inboard.

III.

E r

'me e tin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed.

The objective ofthis test is to measure the time ofinsertion from the fullywithdrawn position (upper electrical limit)to the 90% inserted position under hot, fullflowconditions. The average CEA drop time was found to be 2.69 seconds with maximum and minimum times of2.83 seconds and 2.53 seconds, respectively. Alldrop times were within the requirements ofTechnical Specification 3.1.3.4 and the reload PC/M 112-295 (Reference 5).

IV.

r ach t riti ali The approach to criticalityinvolved diluting from a non-critical boron concentration of 1749 ppm to a predicted critical boron concentration of 1496 ppm. Inverse count rate ratio (ICRR) plots were maintained during the dilution process using startup channels 1 and 2. Refer to Figures 2 and 3 for ICRR information. Table 2 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.

Initialcriticalityfor St. Lucie Unit 2, Cycle 9, was achieved on January 1, 1996 at 0328 with CEA group 5 at 61 inches withdrawn and all other CEAs at the all-rods-out (ARO) position. The actual critical concentration was observed to be 1506 ppm.

V.

er wer Ph ic Te tin To ensure that the operating characteristics of the cycle 9 core were consistent with the design models, the followingtests were performed:

1) Reactivity Computer Checkout,
2) AllRods Out Critical Boron Concentration,
3) Isothermal Temperature Coefficient Measurement and
4) CEA Group Rod Worth Measurements.

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Proper operation of the reactivity computer was verified through the performance oftwo tests. In the first, reactor power was elevated suf5ciently high to ensure maximum sensitivity ofthe reactivity measuring system and at the same time preserve adequate margin to the point ofadding heat.

The second test ascertained the response to a known value ofpositive or negative reactivity by measuring the values of positive or negative reactor periods that result.

The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 112-295 (Reference 5). Satisfactory agreement was obtained.

The measurement of the all-rods-out critical boron concentration was performed.

The measured value was 1561 ppm which compared favorably with the design value of 1547 ppm. This was within the acceptance limits of+ 100 ppm.

The measurement ofthe isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was obtained.

The MTC was determined to be 0.56 pcm/'F which fell well within the acceptance criteria of+ 2.0 pcm/'F ofthe design MTC of-0.044 pcm/'F (corrected). Additionally, this satisfies the Unit 2 Technical Specification which states that the MTC shall be less positive than 5.0 pcm/'F.

The final section ofinterest for zero power physics testing is in the measurement ofCEA group worths. Rod worth measurements were performed using the rod swap methodology.

This method involves exchanging the reference group, which is measured by the boration dilution technique, with each ofthe remaining test groups. A comparison ofthe measured and design CEA reactivity worths is provided in Table 3.

The following acceptance criteria applies to the measurements made:

1) The measured value ofeach test group is within+ 15% or + 100 pcm ofthe design CEA worths, whichever is greater, and
2) The measure worth ofthe reference group and the total worth for all the CEA groups measured is within+ 10% ofthe total design worth.

Allacceptance criteria were met.

e cni nPro ra During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and that there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt)forpower plateaus at 25%, 50%, 80% and greater than 98%

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report rated thermal power. Additionally,calorimetric, nuclear, and hT power calibrations were performed at each ofthe plateaus prior to advancing reactor power to the next higher level. A summary ofthe results ofthe flux maps at each power level is provided in Figures 4, 5, 6, and 7.

VII. $ummaig All measurement to prediction acceptance criteria were met and compliance with the applicable Unit 2 Technical Specifications was satisfactory.

I) "InitialCriticality," Pre-Operational Procedure 2-3200088, Revision 10.

2)

"Reload Starlup Physics Testing, " Pre-Operational Procedure 3200091, Revision 7.

3)

"Reactor Engineering Power Ascension Program, "Pre-Operational Procedure 3200092, Revision 9.

4)

St. Lucie Unit 2 Technical Specifications.

5)

St. Lucie Unit 2, Cycle 9 Fuel Reload PC/M 112-295.

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report FIGURE 1 CYCLE 9 CORE LOADING PATTERN P

M K

H Y

X W

V T

S R

N L

J

~

F E

D C

B A

21 Krl J21 J31 K88 20 19 18 J62 L1f 201 8

L01'2P L2lf K24 L3f K1P LOP 101 K48 K1f K3l L8f KOS L3f 17 113 L1f f7 L2f 74 K48 Let 1e 25 J1 P LS?

K77 L6f 76 16 LOf K18 Lrf 52 K68 K2f K67 Lrf 5

J12 L9f K4P 75 72 15 K7R K28 Lrf J2s 12 K5g Lsf K48 21 Lef 71 K78 14 13 20 J13 L4Z K58 Lrf Lef 78 J23 12 11 K28 K1f 73 J100 J1IP Jef J18 L4f K1f K21 10 9

K78 28 JO1 Lef 1

Ld 19 K64 KOf L4g J1P L4f K5f LQf J19 107 18 Lrf 110 10 K18 KH LOS KOF L5'f er KSP L6f K78 117 Lsf 4

LQP J11 J18 L4W 114 115 rut Kr8 112 Let M

Lef K4f K1f JRP L1f K%8 Lrf J2IP Lsf 70 lie Llf 210 J61

,J63 K18 Lsf K3g K1T K38 L5f K(A L2f J53 118 211 119 120 J47 Loll K18 L3f K2$

L2f K28 Lld J37 121 122 K78 J32 J22 K73

St. Lucie Vnit2, Cycle 9 Startup Physics Testing Report FIGURES 2 &3 INVERSE COUNT RATIO PLOTS 1.0 FIGURE 2 STARTUP CHANNEL I

BORON DILUTION Cb ~ IIO

<<>>W 0 00 Oil f>vy Cb ~ $0

~I Cb>$0

~IC>>II

<<IVI>>W 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 (t 05 0.5 0.4 0.4 0.3 0.3 02 0.2 0,1 0.1 0,

I II> 'I li II>

i ~

~ I

'll I I I I ~

ill>l II> I ~ li I ~ll l>l> ~ill II

~ I ~ III I ljli>>tl>I I

I I

I I

I I

t FIGURE 3 STARTUP CHANNEL 2

BORON DILUTION Cb>150 00 OOW Cb o $0

~I Gallons Diluted Cb la

~ICval IWlrt>OW 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 ct.0.5 Ct:O 0.4 0$

0.4 0.3 0.3 0.2 0.2 0.1 0.1

~ I I

t ~

~

"I ]I l>il I II I

I ill>>Ill

~ >li lilill>' >tl ~ ~ ~ I

~

II ~ I ~ IIII/till>II>>

Gallons Dltuled

~

Sf.Lltcie Unit 2, Cycle 9 0 Startup Physics Testing Report FIGURE 4 POPOVER DISTRIBUTIONCOiltPARISOiVIVITitDESIGN - 25% POPOVER N

)tcwosce)

(CKCORIIXFAX)

Socccc tcsscr Lccct Isltstcc CKA Fwidso pcsicos FCM 112-215 25$$

5 KFF)I 222~

R F

K I

M L

K I

1 I

I II C

l 2

Y I

l Il Llc)

L))5 LON 5

~J5 Ll)l I.t)I C.N IS IA))

IA4S 40)C 44$

LW) 4 III 14 1.171 IJ)5 40)7 J.le I

tIT

~.II~

  • NI 4N IT IJOI IJIS 41 I5

-I.I5 ILIN L4)1

~.I)S 4JS I

IJTC IJ)I LN)

II I.W LI2t LNI LCT I

L)$5 L)II O.N4 IIXI t

IJt)

Ltl1 LIII SJ)

Il IJ)

L242 LWI 5 II I

tJ$ 4 OJS I

~.Nl I 1.21 I~

2.147

\\J)I Lt)C I.N 2$I.III I.)It LOI)

IAS I

~A)S

~AII

~A)l CJI II LI)4 LIII O.NT 1$5 II I.)T7 IJI'l

  • Nt 22 LN5 LW2 A.NT 22 LIST L)IS J. ~I Il Ll)'I L))l 442 441 I)

IAI7 IAN 4tSI 411 4LIII OJ)5

~.NC I.'ll

$1 4

IJ)S LNI 0.10 51 Lt)1 LTCI aNO 4$

LN5 LIII 41 I~

.LN 25

~J)$

~.~ I~

1.st I.~I~

I.tCS

  • OSI at) 54 I.IN I.)25 4$71 4S IJ41 IJst 407)

JAS 2C I,II)4 LWO 40)I 4)2 40 IAN IASC 4NI J.sl

$5 2.251 ats) 47S N

~,NI Mlt 4011

-1.N 17Lltl I.NC 4151 41 IJ41 IJI 4047 4)S 54 IAI)

IAS) 4NO

  • SS TI I.lt5 IJ4$

441 44 11 IJSS IJ)4 4NI J IT I)

I.W)

I.OS) t.~ I~

~.Is 57 IA)S IAI I.t)t LTS 71 IA5 IA2t L122 LN It

'l4S LWO

5. 17 Il L157 I.)41

~.Nt

~,TI 5$

IAlt IAIS

~.Wt CII 71 I.I'l LISS Lt)I MS

)I 1.1S2 IJ12

~AI~

LTT 4I LS5C Lt)l Lt)l I.t)

Sl L2$7 I.t4 4t II TI IAC)

IA52 LNI

$$4

)I Ltls LSW 45 IJW IJI 4024

.IAT CO LNI O'NI

  • II~

75 I 2)4 IJS A.~ I4

-IJt

)I IJS'7 IJ11 412S

-Itl LS)t O'IÃ

~.~II I.IT CI L1$1 L)CI 4III

.1.1$

W I.NS LOS2 O.NI LS)

I)

LOTI AAOO 4N 47 IJTT 1.241 4NI I.'II 42 IAI4 IAIS

~.OS5

<07 77 L)24 I.ISS MTI 5.TS

)I IJ4t IJ)4 4WI 41 IA5 I.tS) 4N) a)s I)IA)t I.~I LNS 71 IATC IA)S ONT 457

)5 LSSC IAIC J. ~I n

1.14)

IJI awT 44 I.~ II IAS) 41)7 J.C4 1.217 I.)4$

AA)I

.I(I IA2$

IA51 4NI Lt2 IAtC IA44 J.tN ass CS L241 IJ)4 acTS N

~.IW LISS 4ON 4))

17 OJIS L))5

~.II~

I.~I 51 2.124 I.WS 4NS 44 I.)52 I.2I5 atQ JAT II IJ47 IJIt JAS) alt 52tJ) I L))t LNI 14 47 LS)7 41)5 J.'ll 11 LNS M I'I 411 ~

1.14

~AS5

~Alt LNI S4T L)II M)1 L12 I02 IAW IAS2 LN4 L)4 IC)

LICI 1.142 LNI

~.N IS

~C I.)12 IASI 1.2) I I.I)t 41st 4NI

.IJT

-Lt) 2.121 IJI) 4Wt JA)

Its LSCS NI 41 ~

~.SI 5 Lt)t 4tI)

.IA2 11$

IJS'I L)I AASI LW L)I7 L24$

4NI alt I04 LS)S LN) 4NI

.I.SI It)

IJN IJS

  • N1 JAI Sl I.)4 L))$

LN2

~.IC Ill LN4 Lt)5 NS S2 MS LIN LNI

$ $ 2 IM LTIT

~.CII LOCS Lll I)

I.)lI IJ)$

~.N)

IJC II~

LI47

~,051 C.4S N

LI14 IA52

~.072 CAI III 1.24C IJS 10 24 I.TC I.)71 I.)41 LOW L)S II1 Ltll LSSI

~.N2 LIS W

MS4 Lt)l

~.~Il I.N III L1S)

IJI

  • tIT

-I.)I I.LIS L212 4t)1

-IA)

II~

~,N5 LI IS I.tl Sl I.III I.ITS

  • Nl 4N I ISI.)ll I.)42

~.NI I.CI IJ)4 IJl I AAOT AAT IIC LI05 Lll)

Ltl1 I.II L4II

$411 M)I TAI L)4 L)II Lt2$

Lll tJ44 I

Lt)1 C)1 I14 L4N

~AII

~.12$

L)1 IIt IJIl IJl I 4 ~I)

.TAT I14 MI~

MIS 445 441 IN

~.SIT

~ACI 4tll 15$

I44 Ll)C Ll)l LNT LN I)l IJIT 1.2)t 41 I)

.IAT IIT I.)77 IJ IS 4N2 I52 I.ll)

IJIS 4024 LO) 147 IA)5 IACt 4$4 J.2S III OJ)C M IS

~ NI I)I IJ41 IJ$ 2 4NO J.)1 I)l 4N)

ISl I.)W IJ)4 4t41 14$

IAOT I.NC

  • 0)l 4$7 II)

I.tI I.OSI 4NI 4'75 It4 Ll)7 L))S Lttl O.SS I)2 LS17 Lt2t

  • NI 411 I)'I IJt5 IJ41 4N)

J.ST I)I IA2C LNl 4127

.$41 Ist 1.2)I L)1 4$74 414 ss)

LS4 I.NC atTI J.W ITS IAO\\

IA4S 4 Wt 415 205 1Jll tJ)t O.tN

$44 121 L11$

IJN 4NO

  • 24 IIO IAct IA2t Ltit IAI ISS IAIC IAI LtW LS'I I)0 IA)S IAS) 4114

.IJS IN I.)41 IJ)C 4tl)

ISO 1)$4 I.II) 415t 41 ~

44 Ll)l LW2

  • t)4 It4 IA44 IA52 LII1 I.II III LI1)

I.ISS

~.02$

L)7 I5C IAII IA)l

  • tII

.IAO ITI IJII L)N 41)7 JW II)

~.ti4

~ASS 1 ~ 17 IA4 It)

I.)$

IJIS 40)S J.W NT

~.114 LII'I

~.NS

~.47 Il~

~A)S LIII Lt)4

%51 I)5 IJTC IJll Lt)C 1.1$

142 IASI IAS)

LNC LI~

IST I.)SS IJ41 40N 47 I I'7l Ll)S 21II I.I7 SIC I.252 7.212 4NO Ill LI)2 I.l)l LNI 117 tlat L)51 I.I)I Lt21 I 4$

225 OJTO O)s I

~.t)7 S.lt I24 Lltl ILN IQ IJN 1.25 LO)

Ill IAI5 1.NI MN 7JS II)

IJtl IJI 4NT 454 117 LWI LSCC

  • NS 4S2 It\\

L)W L)42

~.N4 5)T LITC I AS)

LOI4 7.14 2)4 L)4I L)SI

~,ON IL)1 I)T IJSS L))t Lt41 244 I.II)

I.051 LWS 5$ 2 15S I.)7$

2.24$

IAI~

LTI I74 Lt5C Lt)l Lt)l I.tl Ilt I.)77 I.)$1 a$ 0$

4)S IN Ltsl LI)t OA I'I 144 II~

L)4 I.))I 1.\\) I L44 217

$4ll LCII 1.017 414 I)l IAN IAS)

LN4 I.II 145 I.)II LI)5 LOS'I I 14 I40 IAIl IAIS LIII I.)I I75 I.)s)

IJII 44 Ilt LN4 LOSS LOI7 4 ST 211 IJOI IJ IS

  • tI~

I.N III L$15 Lilt LOW

~.Tl 12S LICI I.)41 41N 4)2 144 I.N I.NS OASI 472 141 IAS)

IAI

~.N)

IN IA4

)AS)

Ltll IAO 1st IJSI IJl4 4N5 S.I4 N)

I.172 1.21$

4N)

J Cl 14

~.NI 1WI 4020 1.12 I)0 L'lsI LS)$

Lts1 I.)s 14 I.)45 IJSI 40N 414 IQ I Ass IAS)

~A)I 2.$4 ITS IJTI IJI AA)C I'lI O.SN IAIC 4W)

Itl I.~21 I.WS 4NI III L)l)

L))S Llt1 III IJ)$

IJl1 402l

.LSI I4$

~.1st

~.1st

~.~ IS 1.07 II)

IJl IJ)4 4$ IC

-I.'II III I.t)7 LNC 4Nt 4N It)

IA)I I.WI A.tm

-$51 INI L))5 OAOT IAS I)1 LI)5 L ITS 4N4 4)C 1st IJOI IJI'I

41) ~

.IJt I41 1.11$

IJIS LOI~

~A2 ITS IACI IA4S 447 IS)

L)I OJI5 O.N5 SAT II)

I.)1 IJ)1 41II 4N I50

$122 LlIS LNI

~ )I I45 LSC)

I.NC LN IN L)IC OJ2t

~AII

~.II 4141 t.ml I15 4427 OAII LOII L)0 RMS Deviation:

3.7%

Max Deviation:

11c4%

The Incore detection system Is operabte per Appendix A, RMS deviotlon should be fess than or equal to S.Ott and meet the requirements of47.1 ifpecfonned at the 2$ and 98 percent power test plateaus during the power ascension test progranL kC 10

~

St. Lucie Unit 2, Cycle 9 ~

Startup Physics Testing Report FIGURE 5 POPOVER DISTRIBUTIONCOMPARISON iVITHDESIGN - 50% POPOVER Qcooocch (CECOI/NPAX)

Soccco Pjtocr ILccl I2 4n 9)poeot 6.76 DPII CEA Poddce I22'cdga:

PCM IIQ)$5

$075 10 t)PII 122' p

n H

I 1

I L

K 5

I I

I H

0 I

1 I

I I

P 2

1DI DT

~lj

)4$

1)45

~ Q 1025 On 1QS 1024 571 Ct t.11 Lot j

4$7 4>>

004I

\\41 IN

~It S.21 101t

$.21 IN 14II cn 0th 11$

Q 1))2

~.Ql 1NI 1)t Q

at)7 an) 4QC

-25t 40NI II~

4ltC 4'74 4$

Ijll IJ IT Nl 415 ia I Off LNI a Ill Ill IIt Ljl1 LDT ONI 140 IN sin sill 4NI 4>>

IIINl a f51 4N7 4'fl 144 1Qi I lt all~

107 IA)$

I.lll 4QI 4.12 54 L15 LI¹ 4th LIT Ljl)

IJII 4NI LQ 14 Lot\\

LIjl 4Q4 4l0 IQ L)41 L)Q 0 ~II atf

'IQ LII5 LID 4th Ln

>>7 IJ74 IJtl

~2T jn IQ LIIS Litt

~lj

-1.1 ~

III I.an IA54nl 441 ant 4N) 4h 141)N N$

145 IC IA)I I.W2 4QI LN N

I.0lI LOD 4012 4 II 5$

1241 L)D 40D Ln NSfli 4014 Ijl IJD LÃC 0$ 1 IC IN 0$4$

0th 4th

4) I III IJII IJTC 41>>

4tl ia 1h4 1'Nl N7 4'n 151Ljn Ljjl 4WO At) l40 LNS LOD Qt 70 ln I.llI IWl 4NI LW Ill 1)N 4OQ 4h 5

~Jlt I

~II 514 IS Lan L05t 4nl 211 17alff I.N) 4NC 44l II IJQ 4050 54Lnl Lht 4QI TI IJQ IJS 4NI N

1715 atQ 4no Lit ln IJ)t Ljl 4WI L05 122all) anl 4010

-IN Ih l.2N IJS

  • N4 JQ I)I I.NS Lht 40N JQ lit I.DI IJD 4th S.lt IQ at47 INI 40N 744 Itl Ill LOQ 4NS 4f5 105 1210 1QI 1NT 107 4

1Sit anl 4NI 411 l4 LII 1IN 40 II

.15) il IJn LID 4n5 I0) 42 LW4 Ialt 100T OW

$7 INl I.N4lit IQ nIWI LNI 1N1 alt I.II4 IJ74 4WO Lt)

IW at)7 atQ 4tl5

.I 40 IQ IJ)7 IJ74 4th IN Ltn I ON 1NI 1Q IS5l.Ill I.024 4N4 45$

ITO LN Lhf 4tlt

.I al IN I 244 IJD 4057 LD if4 L IS)

Lln 4N) 4n IW 1'i)7 at) I 4tll

'I 1117 OIII N)

)7 IT IJQ IJOI 1N) 115 1NT 1NI NC 414 D

l.)57 LD ONT Q

I.ON IAW also

~ $7 nljn LIT) aal 17C LNT LWT 40D Lh itf 1205 IJD 4WT Lfl I)I I 04 I.WT 4th 41$

III LIIS LI7I 1 Ill I ll 15C 1.01$

LON 4th Itl ill 12 I5 IJ) 4DS

-2 40 Ill 17 I4 1NI sill I 44 ltf Lift IJOI

  • tjj

.Ln 207 an) sill 10N 147 I

L244 IJIT Nt 1tT II LISC LID

~Q lh

)0Ljtl LITC atl5 I.II n4 1$)5 IljI St L24 L)74 40 I4

.I 27

'l4 IAQ L\\Ct

~Il Ilf fl IJ>>

22$ 4 4015

-I II IN 1NInl

~15 1.70 I25 IJn I.15l IAS I42 LI~I LWT 112 Ltl ISI IJD LITC 4tlI 4h inSil anl 1NC N

I14 IJ)2 IJTC 4n4

.in In I. 1 27 I.nl 1NI

)$

IN Ljll L)IT an) ill LIN I.N)

IW lN it IJjl Ll)1 10T)

IJT I

0th Ltl 45 LDI I)I 4th IAT Ntjf atn 40>>

.Ijl 7$

IJ>>

L)D 4nj

.I 14 1151nl 270 Ilf 17N 14N 10W C21 l24 atn 1ID 1NS tjl ID L)N IJ41

~n 247 15$

in>

atQ 1W'I 174 ln Ijh Lll 4th 4D IifNl 4NT 4n Ih IJn IJ)1 1N4

) 54 ict LIST IAI) ahi C.ot I~

IJ)t IJIT Nl j)4 LID LIQ

~II ID I

IJn LÃ4 4 lit 15l 44 Nl t15 ONC 144 41 IJ)7 IJTC 4NT

.I)S 74 Ilft LWS ant Ln IJW IJSI Ql 24I

>> ~

1 14$

~jl ahl I.24 ill IJTI L)$4 Ln IN LII4 L047 1NT

~.II 15f IJQ IJTC 1NI 1SS IN atSI 11)5 10D IN LÃl LÃ4

~tl 14 LI4I I.ljl anl Ial Ii~

IJ) I LIIt 10)4 Lfl IIan4 IIC

~I~

I II D

IJ75 IJOI 4Q4 N

h attl 4tli I Sc if I.D L)S 4nt ID D

LON I Nl N4 CN TT IJQ 1 17l OWI 4t5 I.>>1 LWT W)

$ $7 III L241 IJD 4NI 4N IQ I.074 LW'I CNS 147 I IS IJh LITI

~Q

).I~

ICO I.Nt I.NI NS ail ITSI.jn I 2$

4th 4 I4 Ill O'Nl 1NI ill itl IJ IJI) 4NI 4N III anlIII 1NT

~I ij1'ill nl 4IIC Lfl D

L150 LIN

~N 45 L)7 IJD 4th LIT

~I IAS)

Iht 4NT 447 D

LN2 LO)4 III i.n TI IATI I.NI 11N Lll

'IS IJTC LDC 1IN

~ N III nj 10 II I tC Ill 1.150 l.Ã4 4 lit

-I 41 ll4 I.OTT LON an IW l41 LOQ I.024 Nl 204 ITC Ion L05t 10>>

III IN IJN IJD 4nf IN itl I.I' Litt 4024 JN Il2 SDnl 4th Lh Il 1)jl 4N) 4'll D

I.~It I.WI 40>>

Q atff LOD 4NI LN It IJ44 IJ41 4 I)7 LST 44lht Lht 4th 7$

IJ)

IJS 4QO JAC atll at)5 10lI I IC IQ LJI)

L)I 4IIT

.I)I Ill 1N) t)5 NT 174 Ill l.245 IJ5 4N5 ID IAOI Ilit 102t 247 177 IJn IJD 4N5

-IN Itl afn LOD 4W5

.5.$7 LN5 LWO 40D JQ IQ 121$

1Q)

CON II~

IA)I IASI 4QI LN 50Litt I NI 4QC 45 IJD IJD 4Wt 4'n f0I 4NS 45C 1174 401$

.II)

III atN 1Nl 1014 Ill ill IJ54 IJTI 4 no 1.5\\

I¹ atl4 1NI

~15 14l ID IJ14 IJD 4NT 4Q In I ON LOll 4NI 44I in I.Q4 I Wl 40i4

-I Si IN 1141 1N4 Ilt

~Ij

~1 SI IA)4 I.OQ 4QI 4 I)

LIQ LIN 4NS II IJ44 IJOI

~Q 2'14 LQI LID Nl IIS Lift LIS1 anf

) II in LIII LID 4N) 410 lh IJn IJll 4N 14 IJN LIN

~I~

lff IAQ I.OSI N

>>1 ONT 201 QQl 1QI 10N 1N I

nl 40Q

-240 Q

~ll NC 74 LQI LQT 1N5 141 I14 LI~I LNI 0oil I 41 Dl LlIS IJ IT 40Q 4 I4 ISO all4 sill 1NI 125 l45 1n'I an) 1tW IN 1)D 1QI sill 4D 1411 1027 54 u ~

a ill I)$Dl

~AQ alii So RMS Deviation:

3.1%

Max Deviation:

9.7%

11 ~

1DI 14>>

1017 140 II5

\\14 IIT

)74

Ã4 1>>l N5 IJIS 1411 1QI 1011 T.n 414 IN The Incore detectton system ts operable per Appendix A, RMS deflation should he less than or equal to 6.5)76 and meet the requirements of 6.7.1 ifperformed at the 26 and 96 percent power test plateaus duitng the power ascension test program.

11

~

St. Lucio Unit 2, Cycle 9 ~

Startup Physics Testing Report FIGURE 6 POPOVER DISTRIBUTIONCohfPhRISON iVITliDESIGN -80% POPOVER MccccroL (CECOR/IV)AX)

Sovnc Tccccr Lccd

$096 11 51 EPII CEA lovuco Ocdpc PCM 112-295

$074

)0 EFTH I)I' t

v v

L K

)

v 0

I

~

I

~

I I

)

M)0 DJTI DJTI LC)0

~AID OJS) a)52 ILC)0 D.~ 11 M2t 4.019 OAII 1.'Tt L)$

S,ll L7t L

N IL45I OAI~

M))

7JI Ioo DJC I DJ51 ILOD9 Lct OJC)

ILIS1 OAI~

2.TC I)4 tACl DAIl LNO

)04Jll DJ))

4001 a)4 Sl MTC M)4 4<<N asc 4

OAOI MDT 4AO) 4J7

$5 1.10C L101

~.004 4)l 102 I 090 IAso 0.0 20 0.12 IIt 1.111 1.102 DAI~

0 al I14 OA05 MOT 4AO) 415

)5)

~.917 D,tM

  • DOT 4'Tc 144

~JIS 4.1))

4AD4 7.22 15 OJSC

~Jcl 0.0 II IA)

IACI aon

.IJ4 54 LI)1 LI75 4011 100 41 IJSI IJTT 401C 400 IC IA$9 I.II'I 4ND

~1.75 IN I.ISI 1.15$

4004 4)2 I)0 1.200 I.)It 40)t I)7 L7)C L)77 4AII

.I.CT I)1 LLC I.I'Il 4A)t I 44 I47 IA1I IACI 4AI)

.2,2S I0 I OJ45 Ikl45 DADO 400

)4 OJI)

OJCS 4.002 4 cs 16 IA)4 IA54 4AI)

LII Io IAl1 IAI 4027

$47 55 IJCS IJN 4A)$

.1.TC 70MIS Mt) 4.0 I7

.L'II 17 L214 IJ4$

aocc 4SS I04 0.9C I O.t71 4.t II I.II I)I IJ)l I.14$

aN5

-).N I)l DA$5

~.901 4NT I.t2 IS)

Ll)9 IJ4) 4N)

JA1 I4$

e.tts IA4 4.041 421 Ill IAIO IA54 4046 Jdcl IN ITS Ik)45 4.010

.Ltt 5

IL)SI DJll M)I

$,1)

IS IA14 IA44 aots 4.tT 17 ILSSI IAI aocs 4'll II L)SC L)tl

-2.07 Tl IJ II IJct 4017 4A)I O)4 I 4A20

.2.17 ID5 1.2C4 IJDI 4AIO

).76 II)

OA24 ILSCI 40)7

~I.sc I)9 1.101 1.149 44IC JA2 I)I IA)l IACC 4N) 149 IJ)0 IJt2 4061 404 IN DJC4 IAI 407C TAD IN IAOT IAIC 40)7 JCT TN IL)N 4J11 Ik007 I OC 6

4.945

~.9)4 MII I.I4 IC I.IT)

I.I)5 4'aot 2$

IJtl IJN 4AI~

4.77 42 L04C LOCC O.ND

~.40 57IAlt IAI)

~.006

~ 57 71 IACl IA45 4AO) 4tt I.))$

L2$2 4044 I44 O.t4C 0.962 aoIC 749 Ill IJ)I I.1$1 4NI al ~

Ilo IASO IACS 4025 IA)

IS)

IATI IAI) 4021

.115 170 IA)9 IACC 4AIT 2.40 IM IJCI IJN 4.N) 196 I.ISD I.l)5 ae)5

.LIT 20C ILNI O.NC aoN 4.)2 7

0.$06 O.NT 4ADI

  • II IT IJtl

).277 M IS I.M LS)9

$.901

~.NT 1,94 N

).254 IJct 0.047 I.SC 5$

IASC IACS M)I Lll 71 IJ I)

I.144 4.4C 90 IACS IA49 4.020 I $7 It) 1.226 L17 4AM 459 114

!ASS I.Nt 40)0 2.$)

III I.lt)

L104 4AII 4.12 ISC IAIO 1.045 401$

LCO ITI IJIt IJlt 4019 1)$

I15

~.'III 4.902 DAII 1.10 I97 I.)41 IJTT 4.0N ac) 207 0.<<N 0.001 Ik25 4

1.1N IJtl

~.4I I L)0 Il I.IN I.I)t M))

2.4I It IJN IJCS tAI5 I.I7 44

~.N)

LSII

~.~Il I.'ll St 1.14$

1.1$ 1 40 I7 IJ) 74 IA9C IAOS

~.007 1l 1.247 I.ICS 4ADI am IIN

~.$5C Mll 0.00$

~.N 115Lltl

).24t I.'Tl II)

LII1 IADS Mll 2.07 157 IJTT 1.1$ 1 aoos 4)1 ITI Ml1

~.N I

~.00 I DII

)14

).14C 1.260

  • 011 Its I.II)

I.I)9 aooc asc IIN I.II7 1.1D)

ILNS 7.2) t I,I)2 IAs MT)

C.25 IS IJN 1.2Sl D.NT LC4

)I

~.992

~.t71

~A)0 L42 45 7.290 IJ44 aon

.I.ot 4t LS)7 0.961 402S

.$47 75 L1SI IJT 4AIt IAI t)

$542 Mcl OAI~

Il2 Iot D.TIS IL4t OA)9 I.O) 114

~.NS L$4$

~.NT 1JO Ill I.)I)

IJT LOI)

$ 20

)5$

IA)$

~.942 MCC CA2

)7)

IJI ~

IJOI DAOC

~.CC I1)

LOESS

~.t)1 4417 I.Tl Itt

).171 I.15$

L420 I,CC 209 I.l)1 IAD MII I.TI I~

I.))9 L)02 DA)7 Ltt 20 I.)IT I.)It 0.71

)I IJSC IJCS 4AI1 416 4C LSCI 0.941 t.oo I

~.II 42 IJCD 1.2$ 2

  • tl4 I.I4 74 I.IOS IADS M20 IAO tl IJDI I.24t

~.NC IAI II~

ILATS L$4$

~.D27

) DI 117 IAll

).269 Mc)

$2$

Ic)

I.I IT IAIS M)$

IJT ISS IJS)

L1$2

~AII

~.0$

I 74 LNI

~.~IT IAT Ill 1.171 IJ6$

MN Ik24 No I.I)$

I.IIt 4AOt 4.$0 II0 1.224 1.2DI 0.014 INC IIMl1 4)47 0.0 II IJl II I.)T4 1.177 4.001 4.24 DASC LSD) 4ADC a67 IT 1.240 1.149 4.009 4.7) 41 LID)

IACS M)7 I)C 77

).166 L)N Lsl)

I.)'I 14 I.II7 lANt

$05$

S.OC III I.)75 I.)7 I)0 TAN)

IA$9 4007 445 145 L220 I.)04 MIC I.lI ICD LOSS 1.04$

4ADC 4$ 7 ITS 1.150 I.IIS

~A4)

Ilt ILSI5 0.941 OAI)

I cS 201 I.)$9 IJTT t.oil M)

III D.ND ILNT OAOI D.I)

I)

D.N4

~.NI 0.002 IL2 1 21 I.ICI I.I)5 4AI~

.I.II

)I I.)76 IJD) 4AI7

.LI2 N

I.N$

1.066 a<<N 476 Cl IA5)

IAC)

MDD 4.'TC 7$

IADC IA45 OAII I.t) 95 IJll IJl)

~.ODC OAT III 4.tTC

~.962 MII IVI I)9 L14C 1.1$ 1 4AIC

.LM IIC I All IAC5 DAIS IAT

)4I IASS IAIl M)6 IAI ITC IATI IACC IL005 047 ISO IJS I IJ41 4AII OJS 242 I.I47 I.I)5 4.oos 4CS 2 II D.NT OA)4 O.DD)

~J2 Il 4.11)

~.))1

~.000 0.00 I)

IA)4 IA44 4.t)t

.7.15 15 IAOO IA4

@AN 400 lt 1.1$ )

IJS) 4.N) 40)

Cl IA15 IA4C 4AII I.)26 L)49 402)

I $$

94 O.t4$

~.SCI t.007 4.74 II) 1.29$

IJOC 4044 446 I)0 DAI5 ILSII IL004 Ikl1 IIT 1.2$0 Lilt

~.ODI sot IC)

IAS)

IACC DSIC

)77 1.177 IJS) 4025

.L17 It)

O.tTt IAC aoll 42)

IN 1.021 I.OI4 4All

.$ 2$

2 I1 OJ)1 OJ)l OA45 I 4$

14 OJ41 OJ45 4AN IC IA)0 IA5C 4AI~

~I.T)

$0 LDI4 1.04 4.026 45 1.170 IJtl 4N)

.240 N

LSO) 4004 447 tT

).155 1.141 aoo 1.04 I)4 D.tll 4.971 IkoI~

142 Ill 1.1ST I.)40 4AII Ill 0.91)

IL901

~.0 II I.20 IC)

IJI)

IJ41

~.Dot 041 17$

I.Nl IAI 4AOT acl It 1 IA)4 IASC 4AIt

~I.1) 204 0.)II 4.)45 I.I7 17 L)45

~.~ )5 C.I 7 Sl IA)4 IA)I aot ~

  • t) 44 LI50 I.I75 4027 IAT

$ 1 IJCS IJTT 40 II tl I.Itt I.Itt 4.~I~

aco II5 1.276

).25$

4AI1 IJl Ill I.I)0 I.IIS

~.00 I 009 I49 1.210 IJTT M)I 0.$$

ICI I.ltl I.)75 Loll I.S I I)t IA$5 IAII 4.0 II IA4 Itl DJS4 M45 DAOt 2,$4

$ 2M)2 OJ))

4001 a)4 47 O.NI O.N4 400) 4N

~1 OADt DADT Ikool 0.25 tt I.211 L201 O.NO IAI IIC I.IN IAD O.D11 L09 I)1 1.221 1.101

~.020 1.44 15t

~.$ 10 Mt)

Mtl IJC

)45 O.N2 O.NI DAI1 IAS Ilo ILMI DJll 4<<N 2.)S

~.44$

t.c I1 t.o)0 4.70 ID)

~J45 4,1SI 4.~I)

L54 D)64 M51 0.0II IJO I)5 OAII DAI0 DA))

5.21 RMS Oaviation:

2.5%

Max Deviation:

9.3%

III OA)l OAI~

O.DOS I.I~

II5 III

)IT 4JC)

OJ4$

0.4)S

~J)1 L151 DAI1 DAII

~.0 I1 OADT lol LSC I 4$

The tncore detection system Is operable per Aooendbc A RMS devlltlon should be loss than or equal to 6 IV/,and meet the requlremonts of *7.7 Ifperformed at the 26 anti Sd percent power test ptlteaus durtng the powei ascension test program.

EI 12

~

St. Lucio Unit 2, Cycle 9 ~

Startup Physics Testing Report FIGURE 7 POiVER DISTRIBUTIONCOMPARISON iVITHDESIGN - 100% POPOVER MeoeootL (KCCRT/bNTATO Sonic IOOTIIAtd tl0054 EXPO)NO SS.II CKATtddte ARO Dcdct:

Tc)C II)qt) 10054 75 67775 ARO R

e N

N I

I I

I I

x

)

I I

I H

O 5

414 424 lit alt 100 10)

Itl 1405 Lit 241 111 Lit t)Q 400 4ti Qtif ttD 4N5 4$ 5 40 1775 100 4NT LN 1)47 1II) 41

)t L05 LN 4ti~

4tt 54LliI L1ii 400 IJS lt IJ42 IJCS 400

.I 15 1NT 400 7.44 Lnl INl 4tlt

.IN 0

I ~I 7.07 407 447 SS I.)41 IJN 40l 145 70t0 I NI 401 JCI I

SS 101 0 021 420 15Lt)I 1.05 17 1tlf I 07 400 Ln ii IJSI LJN 405 aft SC 107 Ln) 40$

71 IJN IJQ 404 JCI 4

O.N) ttD

~21 10 14 Llf1 I.Ill at i ~

~5 11IJt L2N 404

4) I 41 I.WI I.nl 400 475 57 I.NI I04 400 4tl 72 I.WI LOTI 4 4 I$

.14I I

ONI 100 Nlll IlL)tf IJCS 1ID I TI it 10$

1tti 1414 41 L2S4 I.)Q 100 114 I.NT I.tfl

0. ~It I.T) 71 Lil1 IJ II 4NS 44 I IJD Litl

~0 241 il LQ LII4

~It 1st L271 I.)45

~0 in 0

1$51 100S 57 1.245 IJN 400 10 74IAtf I.IN 400 444 t

LI74 L04 N) 17C It L2tf IJ)4 100 I

ONT 105 tli)

ID 45 L20 IJN 40 IC

-I 14 40 at)5 1tf 40$

J.t4 7$

l.2Q 1271 405 il L2it Lltl 0$

L ill LII4 4NI 4ll 1

1.257 IJCS 4III 711 44 1N 104 4004 444 41IJt IJN 4 Oil 141 74 LIQ LIQ all I 0tt IIIQ 101

~II IJ5 11 L24t IJ4$

tl)5 400

-I ~I if L)41 1.15) 4411 40\\

Lln I.OTI 141 77 IJQ L)II 107 1tS il 105

~0 IJt 0

LI5)

LII~

400 477 IJTC I.ltl Ltit

.I.41 41 LWI I 071 4tli

.I OI 4)I.nl LNC 101It Tl LIW Ltfl OID LSI 0104 11D Nl 0

LIll I.05 4011

.In ttt I 07 400 JN it I.)54 I.)n 410

.241 44 Lt)C I 071 404 Lit Tt 1241 IJQ ONlt 171

-IA4 I.NI IWI Lilt 4W I.~II I 07 Lilt I 17 4$

IJTI IJN

~l4

-I 15 1'llNI 1N4 044

~JC) 7

~1$

47 ~

SILnt L05 1NI LIN 1.141 1N) 14 II IJT 1245 NS

)I 4710$

ttQ 10i)

IJt 0Ill Nl 1tl~

ID I~

71 70 A

40 41\\

tl)l IN NS IJt 440 41$

12$

15Lltl Lltl 1NI 1D ia I.N2 i.'eit 100

'74 II'I LNS Lltl tti~

I IC 04 N2N) 4)0 151 71 1IQ 400 40 144 1117 400 10 14IN LII4 404 JJl IN IJW L154 400 44I Qt I.ltl till 404

-SN I)7 IJIT L)45 4tll 1.4I IS)

LI4I LI41 401

-I 0 ICT I.0II 1.05 4tll

-1.77 IIIlit 1147 ONI 157 0IJI~

l)45 4tif J.I4 IN 1tQ tm 400

-itt ill IJ)4 IJCS 40t 414 IN 117)

Tti 40$

SN IQ IJN IJTC 400 J. I'I III LifT Itif

  • Nt L ~I in l.~14 l.051 40$

444 IN 1Q4 t)47 LtlI 417 0

107 1044 40t 414 IW L))t IJN 404$

J 57 111

'Il'I

)44 407

-'Lti Qt Litt IJQ 404 LSO I)I i.0 L02 4IQ Lit 14tIDI IJn

  • 05 444 IQ 1.07 4,50 It5 I.tlI I.NS 404 105 107 120 1tN I it LDI IJN 400 LN IW 1$0 1tl 4t2T

-1 14 ID IJD I.)N 4WI Ltf IN I.NI IATI 400 JJ4 15$

I.nl I.OTC 404 I.N)

Itfi 400 LN IN IJW I 1N 401 477 IW I.I52 I.III 400 471 IW 1t) 1tQ 100 14C Ltfl I.ltl 400

.1N in IJD L)7) 40Q l)I IA51 I.ltl 4NI 45 III I.lt)

I2Il

~25 I)4 LNS Lnt 400 4 IC I7I L224 l.)$1 407 2)7 ill ttlt 1ON tilt in ItT IJit 1.24$

1tti 10 IOT 1NT 101 1NS 142 tl I.27 IJTT 4NI 47 I INtnf 1141 400 447 l25 1271 IJT) 1014 IN 142 LIQ LIN

~Il IST LDI L)N 400 455 inN) 1tiC 4N) 4)1 I14 IJW IJCS Lilt

-I $2 Its L1I IJIC 400C 4SI I)II Litl 101 in) t44 1141

~0 10 in TD 7W llil IN l)4ti

~41

~Tt IQ IJIT l)fl 17t 274 ISO 1.0 1tf OWO in IJll IJ04 1NT 10 in 0tQ ns 401

-2)i Itt L271 IJSI ttit I.tt ln LIll ini t04 241 IJN IJft 10)t 10 Ill 10 1141 ttlt 114 ID IAlt IJft

) 11 I4I LQ LII2 021 141 1)t IJTS IJN 1NT 1SC I74 t$T N4 ttil I I5 IN I.lf I 115 1405 LQ4 I.II4 OON 171 ii~

I2II LltI 1017 10 N

LI5I LIQ

~ 24 III IJn LÃl ONt tft i)i IAt Lill 4011 Il~

145 IJD 1211 NS

~I IN L04 I.nl 400

-20 ITS l.)5 I.)Q 400 414 in 1t4I 1IN OON 414 itl IJW IJCS 101 I Cl 111I 02 440 40 tl Ll)4 IJN 110 2tf II)ttt) 77 10D LD lit 1.274 L)N 401 4OI 144Lttl Ltfl Nf 145 141 LW LW4 10 I'l In)

I.n)

~N N

IN IJT4 IJ74 tNt Llit LICI ONe 044 111 tt)$

1tD 100 I)I 74 I 024 104 1IN TN II)

IJ)4 01 IN I)0til 1td 4NI II in L)Q L2Q 4NI 40 141 INl I.nl 1t21 I 'll I77 IJI I IJn 400 44)

It l 10\\

1.07 4NI Ltt 10 Itlf I 05 400 470 III 101 100 I.ff tf IJn L)45 I 77 II~tt4 t7$

an>

1 II Ql IJQ l24$

00 414 IIIIll 04 NI IQ Lln L)N

~15 I 15 III I 04 I.07 400 41t itl I.N)

LNI 4NT 414 IN t)0 IJIt 40N I,if LID LII~

4 lit

-I 17 IIS L17t 1254 tt)5 Itl Ql LII LII4 W

itt 12N 1245

~it IN IN LID I.141

<<ai i.'Tl If) 101 I.NS

~14 IJ) it)

L)54 1)41 LQ L1D Lltl 01 1$4 IW LIN L04 000 271 I)l IJ) I Lill 00 144 150 114 N2

~12 IAT 145 N4 t)1 04 1St IN tDT 10 04 1.77 451

~I'I 02 7 10 Nl

~I 1NI 140 140

~it

~it I~

RMS Deviation:

2.4%

Max Deviatfon:

8A%

II4 1422 14 1t

~.N) 1ti IIS 114 117 t)CI 14D t)54 1)54 tilt 1NT

\\ON Iti Lii 1'll The fncore dtIOCdon system Is operable por Appendix A RMS devlatlon should be less than or equal fo 6.4756 and meet the requlremenls of4.7.1 Ifperformed af the 26 and Sa percenl powlrtest plateaus durlnf) Ihe power ascension test prof)ran@

13

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table 1 Cycle 9 Reload Sub-Batch ID Sub-Batch L/

LX LY Number ofAssemblies 48 16 12 32 16 20 16 17 Enrichment 4.30 4.30/2.30 4.30/2.30 4.30/2.30 4.30/2.30 4.10 3.60 3.60 3.60 3.60 4.10 4.10 3.70 3.70 14

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table 2 Approach to Criticality Dilution Rate 132 gpm 88 gpm 44 gpm InitialBoron Concentration 1749 1671 1532 Final Boron Concentration 1671 1532 1506 DilutionTime (minutes) 30 60 30 Table 3 CEA Group Worth Summary CEA Group Reference Group 1,2 3,4,5 Total Measured Worth (pcm) 1992 1481 1641 1783 6897 Design

  • Worth (pcm) 1947 1451 1581 1665 6644 Percent Difference

-2.3

-2.0

-3.7

-6.6

-3.7

  • Reference 5.

Percent difference = (Design/Measured) - 1 x 100 15