ML17228B449

From kanterella
Jump to navigation Jump to search
Cycle 9 Startup Physics Testing Rept.
ML17228B449
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 03/14/1996
From: Klein R, Martin L, Wachtel P
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17228B448 List:
References
NUDOCS 9604090121
Download: ML17228B449 (16)


Text

STARTUP PHYSICS TESTING REPORT 9604090i21 96040i PDR ADDCK 05000389 P PDR

ST. I UCIE UNIT 2, CYCLE 9 STARTUP PHYSICS TESTING REPORT

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Author Date ~ 9/

Patricia . Wachtel Reactor Engineering, St. Lucie Plant Reviewed Date ay M. K ein Reactor Engineering, St. Lucie Plant Reviewed

+ ~Q Leo A. Martin Nuclear Fuel, JPN Approved Date William L. Parks Reactor Engineering Supervisor St. Lucie Plant

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table f ntents Qecfjiig ~ae I Introduction II Cycle 9 Fuel Design

. III CEA Drop Time Testing IV Approach to Criticality V Zero Power Physics Testing VI Power Ascension Program VII Summary VIII References f 'e i e u e Title 8 Cycle 9 Core Loading Pattern 9 Inverse Count Ratio Plot - Channel 1 9 Inverse Count Ratio Plot - Channel 2 10 Power Distribution - 25% Power 11 Power Distribution - 50% Power 12 Power Distribution - 80% Power 13 Power Distribution - 100% Power

.i t fTa les Table m er Titte 14 Cycle 9 Reload Sub-Batch ID 15 Approach to Criticality 15 CEA Group Worth Summary

St. I ucie Unit 2, Cycle 9 Startup Physics Testing Report L ~td The purpose of this report is to provide a description of the fuel design, core load and to summarize the startup physics testing performed at St. Lucie Unit 2 following the cycle 9 refueling.

Startup physics testing verifies that the models used in the safety analysis adequately predict the as-built core and that certain Technical Specifications are met. The major parts of this testing program include:

1) Initial criticality following refueling,
2) Zero power physics testing and
3) Power ascension testing.

II. cle uel e i n The cycle 9 reload consists entirely of fuel manufactured by ABB Combustion Engineering (ABB/CE). The 217 assemblies of the cycle 9 core are comprised of 84 fresh Region L assemblies, 80 once burned Region K assemblies, and 53 twice burned Region J assemblies. Table 1 provides enrichment information for the cycle 9 reload sub-batches.

The mechanical design for the fresh fuel Region L assemblies differs from Regions J and K in the following ways:

1) Gadolinia burnable absorbers are used in Region L in lieu of the Alumina - Boron Carbide burnable absorbers used in Regions J and K. The mechanical design features of the gadolinium poison rods are identical to that of the fuel rods, and
2) A change from tungsten inert gas to laser welded zircaloy intermediate spacer grids was employed for Region L.

The entire cycle 9 fuel load, Regions J, K, and L, consists of the debris resistant fuel assembly design. This design has long fuel rod lower end caps which provide protection against debris induced fretting in the lower end-fitting region.

The cycle 9 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location. The fuel is arranged in a low leakage pattern with no significant differences between the cycle 8 loading pattern. Twenty

St. Lucie Vnit 2, Cycle 9 Startup Physics Testing Report four twice-irradiated Region J assemblies, sixteen once-irradiated Region K assemblies, and eight fresh Region L assemblies were placed on the core periphery and the remaining irradiated and fresh fuel was loaded inboard.

III. E r 'me e tin Following the core reload and prior to the approach to criticality, CEA drop time testing was performed. The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit) to the 90% inserted position under hot, full flow conditions. The average CEA drop time was found to be 2.69 seconds with maximum and minimum times of 2.83 seconds and 2.53 seconds, respectively. All drop times were within the requirements of Technical Specification 3.1.3.4 and the reload PC/M 112-295 (Reference 5).

IV. r ach t riti ali The approach to criticality involved diluting from a non-critical boron concentration of 1749 ppm a predicted critical boron concentration of 1496 ppm. Inverse count rate ratio (ICRR) plots to were maintained during the dilution process using startup channels 1 and 2. Refer to Figures 2 and 3 for ICRR information. Table 2 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.

Initial criticality for St. Lucie Unit 2, Cycle 9, was achieved on January 1, 1996 at 0328 with CEA group 5 at 61 inches withdrawn and all other CEAs at the all-rods-out (ARO) position. The actual critical concentration was observed to be 1506 ppm.

V. er wer Ph ic Te tin To ensure that the operating characteristics of the cycle 9 core were consistent with the design models, the following tests were performed:

1) Reactivity Computer Checkout,
2) All Rods Out Critical Boron Concentration,
3) Isothermal Temperature Coefficient Measurement and
4) CEA Group Rod Worth Measurements.

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Proper operation of the reactivity computer was verified through the performance of two tests. In the first, reactor power was elevated suf5ciently high to ensure maximum sensitivity of the reactivity measuring system and at the same time preserve adequate margin to the point of adding heat. The second test ascertained the response to a known value of positive or negative reactivity by measuring the values of positive or negative reactor periods that result. The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 112-295 (Reference 5). Satisfactory agreement was obtained.

The measurement of the all-rods-out critical boron concentration was performed. The measured value was 1561 ppm which compared favorably with the design value of 1547 ppm. This was within the acceptance limits of+ 100 ppm.

The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was obtained. The MTC was determined to be 0.56 pcm/'F which fell well within the acceptance criteria of+ 2.0 pcm/'F of the design MTC of -0.044 pcm/'F (corrected). Additionally, this satisfies the Unit 2 Technical Specification which states that the MTC shall be less positive than 5.0 pcm/'F.

The final section of interest for zero power physics testing is in the measurement of CEA group worths. Rod worth measurements were performed using the rod swap methodology. This method involves exchanging the reference group, which is measured by the boration dilution technique, with each of the remaining test groups. A comparison of the measured and design CEA reactivity worths is provided in Table 3. The following acceptance criteria applies to the measurements made:

1) The measured value of each test group is within+ 15% or + 100 pcm of the design CEA worths, whichever is greater, and
2) The measure worth of the reference group and the total worth for all the CEA groups measured is within+ 10% of the total design worth.

All acceptance criteria were met.

e cni nPro ra During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and that there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt) for power plateaus at 25%, 50%, 80% and greater than 98%

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report rated thermal power. Additionally, calorimetric, nuclear, and hT power calibrations were performed at each of the plateaus prior to advancing reactor power to the next higher level. A summary of the results of the flux maps at each power level is provided in Figures 4, 5, 6, and 7.

VII. $ ummaig All measurement to prediction acceptance criteria were met and compliance with the applicable Unit 2 Technical Specifications was satisfactory.

I) "InitialCriticality, Pre-Operational Procedure 2-3200088, Revision 10.

2) "Reload Starlup Physics Testing, Pre-Operational Procedure 3200091, Revision 7.
3) "Reactor Engineering Power Ascension Program, "Pre-Operational Procedure 3200092, Revision 9.
4) St. Lucie Unit 2 Technical Specifications.
5) St. Lucie Unit 2, Cycle 9 Fuel Reload PC/M 112-295.

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report FIGURE 1 CYCLE 9 CORE LOADING PATTERN P M K H Y X W V T S R N L J ~ F E D C B A Krl J21 J31 K88 21 L01'2P L2lf K24 L3f K1P LO P 20 101 K48 K1f K3l L8f KOS L3f 19 8 17 J62 L1f L1f 18 201 113 L2f K48 Let J1 P LS? K77 L6f f7 74 1e 25 76 LOf K18 Lrf K68 K2f K67 Lrf J12 L9f K4P 16 52 5 75 72 K28 Lrf J2s K5g Lsf K48 Lef 15 12 21 71 K7R K78 14 J13 L4Z K58 Lrf Lef 13 20 78 J23 12 K28 K1f J10 0

J1IP Jef J18 L4f K1f K21 11 73 10 JO1 Ld L4g J1P L4f K5f LQf J19 9 28 19 107 18 10 K78 KH Lef K64 KOf Lrf K18 1 110 LOS KOF L5'f LQP J11 rut Kr8 K1f er 112 KSP L6f K78 Lsf J18 L4W Let M Lef K4f 117 4 114 115 JRP L1f K%8 Lrf J2IP Lsf Llf J61 70 lie 210 J63 K18 Lsf K3g K1 T K38 L5 f K(A L2 f J53 118 211 119 120 J47 Loll K18 L3f K2$ L2f K28 Lld J37 121 122 K78 J32 J22 K73

St. Lucie Vnit 2, Cycle 9 Startup Physics Testing Report FIGURES 2 & 3 INVERSE COUNT RATIO PLOTS FIGURE 2 STARTUP CHANNEL I BORON DILUTION Cb>$ 0 Cb ~ IIO 00 Oil

<<>>W 0 f>vy Cb

~ I

~ $0 ~ IC>> II

<<IVI>>W 1.0 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 (t 05 0.5 0.4 0.4 0.3 0.3 02 0.2 0,1 0.1 0, I II> 'I li II> i ~ ~ I I

'll I I I I~

I ill>l I

II>

I I~ li I~

I ll l>l> ~

I ill I II ~

t I ~ III I ljli>>tl>I Gallons FIGURE 3 Diluted STARTUP CHANNEL 2 BORON DILUTION Cb la Cb>150 Cb o $ 0 ~ ICval 00 OOW ~ I IWlrt>OW 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 ct.0.5 0$

Ct:

O 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1

~ I I t~ ~ "I ]I l>il I II I I ill>>Ill >li

~ lilill>' >tl ~ ~ ~ I ~ II ~ I~ IIII/till>II>>

Gallons Dltuled

~ Sf .Lltcie Unit 2, Cycle 9 0 Startup Physics Testing Report FIGURE 4 N POPOVER DISTRIBUTIONCOiltPARISOiV IVITitDESIGN - 25% POPOVER

)tcwosce) (CKCORIIXFAX) pcsicos Socccc FCM 112-215 tcsscr Lccct 25$ $

Isltstcc 5 KFF)I R F K M L K II C CKA Fwidso 222~ I I 1 I I l 2 I I I I LIN L)$ 5 tJ$ 4 ~ A)S L4)1 L)II OJS I ~AI I

~ .I)S O.N4 ~ .Nl ~ A)l 4JS IIXI I 1.21 CJI Y 5 I I t I~ II 22 Il

~ J5 tIT IJTC IJt) 2.147 LI)4 LN5 Ll)'I I Ll)l LW) ~ .II~ IJ)I Ltl1 \J)I LI I I LW2 L))l I.t) I 4 II I *NI LN) LII I Lt)C O.NT A.NT 442 l C.N 4N SJ) I.N 1$ 5 441 Il IS 14 IT II Il 2$ II 22 I) 4 Llc) IA)) 1.171 I JOI I.W I J) I.III I.)T7 LIST IAI7 LIII L))5 IA4S IJ)5 I JIS LI2t L242 I.)It IJI'l L) IS IAN OJ)5 LON 40)C 40)7 41 I5 LNI LWI LOI) *Nt 4tSI ~ .NC 44$ J.le -I.I5 LCT 5 II IAS J. ~ I 411 I.'ll 25 2C 17 11 It )I )I )I I) )I )5 17 I,II)4 Lltl IJSS 'l4S 1.1S2 Ltls IJS'7 LOT I IJ4t LSSC IA2$ OJIS

~ J)$ LWO I.NC IJ)4 IJ12 LSW IJ11 IJ)4 IAIC IA51 L))5

~ . ~ I~ 40)I 4151 4NI LWO ~ AI~ 412S AAOO 4WI 4NI ~ .II~

1.st 4)2 J IT 5. 17 LTT -I tl 4N J. ~ I Lt2 I.~ I 4 40 41 I) Il 4I 45 47 41 n 51 52 I.~ I~ IAN I J41 I.W) L157 LS5C IJW LS)t I JTT IA5 1.14) IAtC 2.124 tJ) I IJ)S I.tCS IASC IJI I.OS) I.)41 Lt)l IJI O'IÃ 1.241 I.tS) IJI IA44 I.WS L))t LNI *OS I 4NI 4047 t. ~ I ~ ~ .Nt Lt)l 4024 ~.~ II 4NI 4N) awT J.tN 4NS LNI 0.10 at) J.sl 4)S ~ .Is ~,TI I.t) .IAT I.IT I.'II a)s ass 14 51 54 $5 54 57 5$ Sl CO CI 42 I) 44 CS 44 47 Lt)1 I. IN 2.251 IAI) IA)S IAlt L2$ 7 LNI L1$ 1 IAI4 IA)t I.~ I I L241 I.)52 LS)7 LTCI I.)25 IAS) IAI IAIS I.t4 O'NI L)CI IAIS I.~ I IAS) IJ)4 I.2 I 5 aNO 4$ 71 ats) 47S 4NO

  • SS I.t)t LTS

~ .Wt CII 4t I I *II ~ 4 III

.1.1$

~ .OS5

<07 LNS 41)7 J.C4 acTS atQ JAT 41)5 J.'ll 4$ 4S N TI 71 71 TI 75 W 77 71 N II 11 LN5 I J41 ~,NI I.lt5 IA5 I. I'l IAC) I 2)4 I.NS L)24 IATC 1.217 ~ .IW IJ47 LNS LII I IJst Mlt IJ4$ IA2t L I SS IA52 IJS LOS2 I.ISS IA)S I.)4$ LISS IJIt M I'I 41 I ~ 407) 4011 441 L122 Lt)I LNI A.~ I 4 O.NI MTI ONT AA)I 4ON JAS) 411 ~

$1 .LN JAS -1.N 44 LN MS $ $4 -IJt LS) 5.TS 457 .I (I 4)) alt 1.14

~ AS5 L4II

~ Alt IS ~C Sl S2 I) N W Sl $ 411 LNI I.)12 I ASI 2.121 ~ .SI 5 L)I 7 IA)I I.)4 MS I.)lI LI14 I.)71 MS4 I.LIS I. III IJ)4 M)I S4T 1.2) I I.I)t IJI) Lt)t L24$ IAS) L))$ LIN IJ)$ IA52 I.)41 Lt)l L212 I.ITS IJl I TA I 41st 4NI 4Wt 4t I) 4NI 4020 LN2 LNI ~ .N) ~ .072 LOW ~.~ Il 4t)1 *Nl AAOT

.I JT -Lt) JA) .IA2 alt .I.SI ~ .IC $$2 IJC CA I L)S I.N -IA) 4N AAT L)4 L)II I02 IC) Its 11$ I04 It) Ill IM II~ I II II 1 I II II~ I IS I IC L)II M)1 IAW LICI LSCS IJS'I LS)S IJN LN4 LTIT LI47 1.24C Ltll L1S) ~,N5 I.)ll LI05 Lt2$

L12 IAS2 1.142 L) I LN) IJS ~ .CII IJS LSSI IJI I.)42 Lll) Lll LN4 LNI NI AASI 4NI *N1 Lt)5 LOCS ~,051 10 24 ~ .N2 *tIT LI IS ~ .NI Ltl1 L)4 ~ .N 41 ~ LW *21 JAI NS Lll C.4S I.TC LIS -I.) I I.tl I.CI I. I I tJ44 I I It I)l I)I I)2 121 It4 I)5 I 24 I )T I)l 12S I)0 III I)1 I I) 4141 Lt)1 IJ Il IJIT IJ41 LS17 L11$ IA44 I JTC IJSS IAN LICI L'ls I IJ)$ LI)5 I.)1 t.ml C)1 IJl I 1.2)t IJ$ 2 Lt2t I JN IA52 I Jll Lltl L))t IAS) I.)41 LS)$ IJl1 L ITS IJ)1 I14 4 ~ I)

.TAT 41

.I AT I) 4NO J.)1

  • NI 411 4NO
  • 24 LII 1 I.II Lt)C 1.1$ ILN Lt41 LN4 I.I I 41N 4)2 Lts1 I.)s 402l

.LSI 4N4 4)C 41I I 4N I 15 L4N 4427

~AI I I14 IIT I)l I)'I I IO I II 142 IQ 244 145 144 14 I4$ 1st I50 OA I I

~ .12$ MI~ I.)77 IJt5 I Act L I 1) IASI IJN I.I I) I.) I I I.N I.)45 ~ .1st IJOI $ 122 LOII L)1 MIS IJ IS IJ41 IA2t I.ISS IAS) 1.25 I.051 LI)5 I.NS I JSI ~ .1st IJI'I LlIS L)0 445 4N2 4N) 4N) Ltit ~ .02$ LNC LWS LOS'I OASI 40N ~ . ~ IS 41) ~ LNI 441 J.ST IA I L)7 LI~ LO) 5$ 2 I 14 472 414 1.07 .I Jt ~ )I IN I52 I Sl I)I ISS I 5C IST Ill 15S I40 141 IQ I I) I41 I45

~ .SIT I.ll) I.)W IA2C IAIC IAII I.)SS I AI 5 I.)7$ , IAIl I AS) I Ass I Jl 1.11$

~ AC I I JIS I J)4 LNl IAI IA)l IJ41 1.NI 2.24$ IAIS IAI I AS) I J)4 IJIS LSC) 4tll 4024 4t41 4127 LtW *t II 40N MN IAI~ LIII ~ .N) ~ A) I 4$ IC LO I ~ I.NC 15$ LO) .$ 41 LS'I .IAO 47 I 7JS LTI I.)I 2.$ 4 -I.'II ~ A2 LN I44 147 14$ I st I)0 ITI I'7l I I) I74 I75 IN ITS I II ITS IN Ll)C IA)5 IAOT 1.2)I IA)S IJI I Ll)S IJtl Lt5C I.)s) IA4 IJTI I.t)7 IACI L)IC Ll)l IACt I.NC L)1 IAS) L)N 21 IJI Lt)l IJII )AS) IJI LNC IA4S OJ2t LNT 4$ 4 *0)l 4$ 74 4114 41)7 II 4NT Lt)l Ltll AA)C 4Nt ~A II LN J.2S 4$ 7 414 .I JS JW I.I7 454 I.tl 44 IAO 4N 447 ~ .I I III I I) ss) IN I I) SIC 117 I lt Ilt 1st I'lI It) IS)

OJ)C I.t I LS4 I.)41 ~ .ti 4 I.252 LWI I.)77 LN4 IJSI O.SN IA)I L)I M IS I.OSI I.NC IJ)C ~ ASS 7.212 LSCC I.)$ 1 LOSS IJl4 IAIC I.WI OJI5

~ NI 4NI atTI 4tl) 1 ~ 17 4NO *NS a$ 0$ LOI7 4N5 4W) A.tm O.N5 4'75 J.W IA4 4S2 4)S 4 ST S.I4 -$ 51 SAT It4 ITS ISO It) Ill It\ IN 211 N) Itl IN Ll)7 IAO\ 1)$ 4 I.)$ LI)2 L)W Ltsl IJOI I.172 I.~ 21 I L))S IA4S I.II ) IJIS I.l)l L)42 LI)t I J IS 1.21$ I.WS L))5 Lttl 4 Wt 415t 40)S LNI ~ .N4 OA I'I *tI ~ 4N) 4NI OAOT O.SS 415 41 ~ J.W 117 5)T 144 I.N J Cl IAS 205 44 NT tlat II~ III 14 III 1 Jll Ll)l ~ .114 L)51 LITC L)4 L$ 15 ~ .NI L)l) tJ)t LW2 LI I'I I.I)I I AS) I.)) I Lilt 1WI L))S O.tN *t)4 ~ .NS Lt21 LOI4 1.\) I LOW 4020 Llt1

$ 44 ~ .47 I 4$ 7.14 L44 ~ .Tl 1.12 Il ~ 225 2)4 217

~ A)S OJTO L)4 I $ 4ll LII I O)s I L)SI LCII Lt)4 ~ .t)7 ~,ON 1.017

%51 S.lt I L)1 414 RMS Deviation: 3.7%

Max Deviation: 11c4%

The Incore detection system Is operabte per Appendix A, RMS deviotlon should be fess than or equal to S.Ott and meet the requirements of 47.1 ifpecfonned at the 2$ and 98 percent power test plateaus during the power ascension test progranL kC 10

~ St. Lucie Unit 2, Cycle 9 ~

Startup Physics Testing Report FIGURE 5 POPOVER DISTRIBUTION COMPARISON iVITHDESIGN - 50% POPOVER Qcooocch Soccco Pjtocr ILccl 9)poeot 22'cdga:

(CECOI/NPAX)

I2 4n 6.76 DPII PCM I IQ)$5

$ 075 10 t)PII j

CEA Poddce I 122' p n H L K 5 H 0 I 1 I I I I I 1 I I I P 2 1DI DT

~ lj )4$ 1)45 ~Q 1025 On 1QS 1024 571 Ct t. 11 Lot 5 4 'I I I~ II ij Il

~ Jlt 1 Sit 1117 L244 LIN IJ)t an4 1'ill I anl OIII IJIT I.N) IJIT IIC nl 1)jl

~ II 4NI N) Nt 514 411 )7 1tT lN IW j)4Nl ~ I~

I II 4IIC Lfl 4N) 4'l l 14 IS l4 IT II it D D D 1)N Lan LII IJQ LISC IJjl LID IJ75 L150 I.~ It L05t 1 IN IJOI LID Ll)1 LIQ IJOI LIN I.WI N$ 4nl 40 I I 1N) ~Q 10T) ~ II 4Q4 ~N 40>>

145 211 .15) 115 lh IJT ID N 45 Q IC 17 il )0 I I IA)I alff IJn 1NT Ljtl IJn h L)7 atff IA)I I.W2 I.N) LID 1NI LITC 0th LÃ4 attl I JD LOD IASI all ~ 4QI 4NC 4n5 NC atl5 4 lit 4tli 4th 4NI 4QI ~ Ij 107 LN 44l I 0) 414 I. II Ltl 15l I Sc LIT LN LN ~1 Q

1))2 N II 42 D 45 44 if ~ I It 50 SI Q IA)$ I.0l I LW4 l.)57 n4 LDI Nl I.D I AS) I J44 Litt IA)4 Ql

~ .Ql I.lll LOD IJQ Ialt LD 1$ )5 I)I t15 L)S I ht IJ41 I NI 1QI 1NI 1)t 4QI 4012 4 II 4050 100T ONT IljI 4th ONC 4nt ID 4NT 4 I)7 4QC I.OQ 4QI 10N 4.12 OW IAT 144 447 LST 4 I) 1N Q 54 5$ 54 $7 Q St N 41 D D 44 45 I at)7 L15 1241 Lnl I Nl I.ON L24 tjf IJ)7 LON LN2 lht IJD LIQ an) LI¹ L)D Lht I.N4 IAW L)74 atn IJTC I Nl LO)4 Lht IJD LIN nl 4QC 4th 40D 4QI lit also 40 I4 40>> 4NT N4 II 4th 4Wt 4NS 40Q

-25t LIT Ln IQ ~ $7 .I 27 .I jl .I)S CN i.n I

4'n -240 40 TI n n 'l4 7$ 74 TT TI 7$ II Q NI II~

Ljl) NS fli IJQ IWI ljn IAQ IJ>> I lft IJQ IATI I J) IJ44 4ltC IJI I 4NI 4014 IJS 4NI LNI 1N1 LIT) aal L\Ct Il L)D 4nj LWS ant 1 17l I.NI IJS f0 I IJOI ~ ll 11N 4QO 4NS 4$ 7 4'74 LQ I jl alt 17C I

~

lf .I 14 Ln OWI 4t5 Lll JAC 45C

~Q 2'14 NC 74 4D 4>> 4$ 14 N fl 004I

\41 I jll IJ IT Lot\

LI jl IJD LÃC 1715 atQ I.II4 IJ74 LNT LWT IJ>> 1151 nl IJW IJSI I.>>1

'IS IJTC atll at)5 LQI LQI 1411 1027 22$ 4 LWT LDC 1174 LID LQT 54 Nl 4Q4 0$ 1 4 no 4WO 40D 4015 Ql W) 1 IN 1 0l I 401$ Nl 1N5 IN 415 4l0 IC Lit Lt) Lh -I II 270 24I $ $7 ~N I IC .I I) 141 ia IQ IN ln IW itf IN Ilf >>~ I II II I IQ I II I IS I 14

~ It I Off L)41 0$ 4$ IJ)t at)7 1205 1NI 17N 1 14$ L241 LJI) atN Lift LI~ I S.21 LNI Ill L)Q 0 ~ II 0th 4th Ljl atQ 4tl5 IJD nl 14N ahl

~ jl IJD nj L) I 1Nl LIS1 LNI a 4WI 4WT ~ 15 10W 4NI 10 I I 4IIT 1014 anf 0 oil I ll atf 4) I L 05 .I 40 Lfl 1.70 C21 I. 24 4N I tC .I)I I ll ) II I 41 u~

I It 'IQ III 122 IQ I)I I 25 l24 ill IQ Ill Ill ill in Dl 101t Ljl1 LII5 IJII all) IJ)7 I 04 I Jn atn IJTI I.074 1.150 1N) IJ54 L III LlIS a ill

$ .21 LDT LID IJTC anl IJ74 I.WT I.15l 1ID L)$4 LW'I l.Ã4 t)5 IJTI LID IJ IT ONI 4th 41>> 4010 4th 4th 1NS CNS 4 lit NT 4 no 4N) 40Q IN 140 Ln 4tl -IN 41$ IAS t jl Ln 147 -I 41 174 1.5\ 410 4 I4 I)$

14II Dl 0th cn IN sin

>>7 IJ74 ia 1h4 Ih l.2N IN Ltn III LIIS I 42 LI~ I ID L)N IN LII 4 I IS IJh ll4 I.OTT Ill l.245 I¹ atl4 lh IJn ISO all4

~ AQ alii 11$ sill IJtl 1'Nl IJS I ON L I7 I LWT IJ41 L047 LITI LON IJ5 1NI IJll sill So 4NI ~ 2T N7 *N4 1NI Ill 112 ~ n 1NT ~Q an 4N5 1NI 4>> jn 4'n JQ 1Q 1

I ll Ltl 247 ~ .I I ).I ~ IW

~ 15 14l 4N 125 I II IQ 151 I)I I S5 15C ISI 15$ 15f I CO l41 ID ID 14 l45 Nl LIIS Ljn I.NS l.Ill 1.01$ IJD in> I JQ I.Nt LOQ IAOI IJ14 IJN 1n'I a f5 1 4N7 Litt lj Ljjl 4WO Lht 40N I.024 4N4 LON 4th LITC 4tl I atQ 1W'I IJTC 1NI I.NI I.024 I lit IJD LIN an)

~ NS Nl 102t 4NT ~ I~ 1tW 4'fl -1.1 ~ At) JQ 45$ I tl 4h 174 1SS ail 204 247 4Q 144 I II l40 lit ITO ill in ln IN ITS ITC 177 In lff IN 1Qi I.an LNS I.DI LN Lhf 12 I 5 IJ) anl Sil I jh atSI I.jn Ion I Jn I ON IAQ 1)D IA54 LOD IJD Lll 11)5 I 2$ L05t IJD LOll I.OSI 1QI nl Qt 4th 4t lt 4DS 1NC 4th 10D 4th 10>> 4N5 4NI sill I lt 441 70 S.lt .I al -2 40 N 4D 4 I4 I II -I N 44I N ln IQ IN Ill I 14 I if IN Ill IN Itl in >>1 I.llI at47 I 244 17 I 4 IJ)2 Nl LÃl I JN afn I.Q4 ant I Wl I NI IJD 1NI IJTC LÃ4 O'Nl IJD LOD I Wl 4N) 4NI 40N 4057 sill 4n4 4NT tl 1NI 4nf 4W5 40i4 ONT 4h LW 744 LD I 44 .in 4n

~

14 ill IN .5.$ 7 -I Si 201 Ill Itl if4 ltf In Ih itl itl IN 1 )N I ll L IS) Lift I. 27 1 IJn L I 4I IJ I.I' LN5 1141 LOQ Lln I JOI I.nl IJ)1 I.ljl I JI) Litt LWO 4OQ 4h 4NS 4 f5 4N) 4n

  • tjj 1NI 1N4 anl 4NI 4024 40D 1N4

.Ln )$ ) 54 I al 4N JN JQ I lt 105 IW 207 IN ict Ii~ II I Il2 IQ 1210 1'i)7 an) Ljll LIST IJ) I anl SD 121$

1QI at) I sill L)IT IAI) LIIt II I nl 1Q) 1NT 4tll 10N an) ahi 10)4 1NT 4th CON 107 147 ill C.ot Lfl ~ I Lh II~

11 ~ II5 \14 I IT 1DI )74 Ã4 1>>l 14>> N5 IJIS 1411 1017 1QI 1011 140 T.n 414 IN RMS Deviation: 3.1%

Max Deviation: 9.7%

The Incore detectton system ts operable per Appendix A, RMS deflation should he less than or equal to 6.5)76 and meet the requirements of 6.7.1 if performed at the 26 and 96 percent power test plateaus duitng the power ascension test program.

11

~ St. Lucio Unit 2, Cycle 9 ~

Startup Physics Testing Report FIGURE 6 POPOVER DISTRIBUTIONCohfPhRISON iVITliDESIGN -80% POPOVER MccccroL (CECOR/IV)AX) Ocdpc Sovnc PCM 112-295 Tccccr Lccd $ 096 $ 074 11 51 EPII )0 EFTH L CEA lovuco I) I' t v v I

L

~

K I

)

~

v 0 I I ) N M)0 DJTI DJTI LC)0

~ AID OJS) a)52 ILC)0 D. ~ 11 M2t 4.019 OA I I 1.'Tt L)$ S,ll L7t 5 6 7 4 t I~ II I) Il IL)SI 4.945 0.$ 06 1.1N I,I)2 I.))9 Ml1 D.N4 4.11)

DJll ~ .9)4 O.NT IJtl I As L)02 4)47 ~ .NI ~ .))1 M)I MII 4ADI ~ .4I I MT) DA)7 0.0 I I 0.002 ~ .000

$ ,1) I.I4 *II L)0 C.25 Ltt I Jl IL2 1 0.00

)4 IS IC IT Il IS 20 II 21 I) 14 OJI) IA14 I.IT) IJtl I.IN IJN I.)IT I.)T4 I.ICI IA)4 OJ41 OJCS IA44 I.I)5 ).277 I.I) t 1.2Sl I.)It 1.177 I.I)5 IA44 OJ45 4.002 aots 4' M IS M)) D.NT 4.001 4A I ~ 4.t)t 4AN 4 cs 4.tT aot I.M 2.4I LC4 0.71 4.24 .I.II .7.15 15 16 17 2$ It )I )I )I 15 IC 17 OJSC IA)4 ILSS I I Jtl LS)9 IJN ~ .992 IJSC DASC I.)76 IJD)

IAOO IA4 IA)0 IA5C L)45

~ Jcl IA54 IAI IJN $ .901 IJCS ~ .t71 IJCS LSD) 0.0 I I 4AI) aocs 4A I ~ ~ .NT tAI5 ~ A)0 4AI1 4ADC 4AI7 @AN 4A I ~ ~ . ~ )5 LII 4'll 4.77 1,94 I. I 7 L42 416 a67 .LI2 400 ~ I.T) C.I 7

)0 Io II 42 N 44 45 4C IT N lt $0 Sl $2 M)2 4Jll IA) IAl1 L)SC L04C ).254 ~ .N) 7.290 LSCI 1.240 I.N$ 1.1$ ) LDI4 IA)4 DJ)) IACI IAI L)tl LOCC IJct LSII IJ44 0.941 1.149 1.066 IJS) 1.04 IA)I OJ))

aon Il aon t.oo I 4.009 a<<N 4.N) 4.026 aot ~ 4001 4001 a)4 .I J4 4027

$ 47 -2.07 O.ND

~ .40 0.047 I.SC

~.~

I.'ll .I.ot ~. I I 4.7) 476 40) *t) a)4 5$ St 4t 42 41 Cl Cl 45 44 47 Sl 54 55 57 MTC LI)1 IJCS IAlt IASC 1.14$ LS)7 IJCD LID) I A5) IA15 1.170 LI50 O.NI M)4 LI75 IJN IAI) IACS 1.1$ 1 0.961 1.2$ 2 IACS IAC) IA4C I Jtl I.I75 O.N4 4<<N 4011 4A)$ ~ .006 M)I 40 I 7 402S *tl4 M)7 MDD 4AII 4N) 4027 400) asc 100 .1.TC ~ 57 Lll I J) .$ 47 I.I4 I )C 4.'TC .240 IAT 4N 4 41 70 Tl 71 71 74 75 74 77 7$ N $1 ~1 OAOI IJSI MIS IJ II IACl IJ I) IA9C L1SI I.IOS ).166 IADC I.)26 IJCS OADt MDT IJTT Mt) IJct IA45 I.144 IAOS IJT IADS L)N IA45 L)49 LSO) IJTT DADT 4AO) 401C 4.0 I 7 4017 4AO) ~ .007 4A It M20 Lsl) OAII 402) 4004 40 I I Ikool 4J7 400 .L'I I 4tt 4.4C IAI I AO I.)'I I.t) I $$ 447 0.25

~ .44$

IL45 I OA I ~ IC 17 $$ 90 1l t) tl 14 95 94 tT tl tt t.c I 1 M))

$5 IA$9 L214 4A) I I.))$ IACS 1.247 $ 542 IJDI I.II 7 I Jll O.t4$ ).155 I.I tt I.211 t.o)0 I.I tt 1.10C 7JI L101 I.I I'I IJ4$ O)4 I L2$ 2 IA49 I.ICS Mcl I.24t lANt IJl) ~ .SCI 1.141 L201 4.70

~ .004 4ND aocc 4A20 4044 4.020 4ADI OA I ~ ~ .NC $ 05$ ~ .ODC t.007 aoo 4. ~ I ~ O.NO Ioo 4)l ~ 1.75 4SS .2.17 I $7 am Il2 IAI S.OC OAT 4.74 1.04 aco IAI ID)

~ J45 DJC I DJ51 102 IN I 04 ID5 I44 It) I IN Iot II~ III II I I I) I )4 I I5 I IC 4,1SI ILOD9 I 090 I.ISI 0.9C I 1.2C4 O.t4C 1.226 ~ .$ 5C D.T IS ILATS I.)75 4.tTC 1.29$ D.tll 1.276 I.IN 4. ~ I)

Lct I Aso 1.15$ O.t71 IJDI 0.962 L17 Mll IL4t L$4$ I.)7 ~ .962 IJOC 4.971 ).25$ IAD L54 0.0 20 4004 4.t I I 4AIO aoIC 4AM 0.00$ OA)9 ~ .D27 MII 4044 Iko I ~ 4AI1 O.D11 0.12 4)2 I. I I ).76 749 459 ~ .N I.O) ) DI IVI 446 142 I Jl L09 D)64 OJC)

ILIS1 I It I)0 I)I I I) Ill 114 115 114 117 I)0 I)9 I)0 Ill Ill I)1 M51 OAI~ 1.111 1.200 IJ)l OA24 IJ)I !ASS Lltl ~ .NS IAll TAN) L14C DAI5 ILSII 1.1ST I.)40 I.I)0 I.I IS 1.221 0.0II IJO 2.TC 1.102 I.)It I.14$ ILSC I I.1$ 1 I.Nt ).24t L$4$ ).269 IA$9 1.1$ 1 1.101 DA I ~ 40)t aN5 40)7 4NI 40)0 ~ .NT Mc) 4007 4A IC IL004 4A I I ~ .00 I ~ .020 I)4 0 al -).N ~ I.sc al ~ 2.$ ) I.'Tl 1JO $ 2$ 445 .LM Ikl1 009 1.44 I)5 OAII tACl Ill DA Il I 14 I)7 I)l I)9 I lo III II) Ill Ic) 145 I IC I IT I 49 15t DA I0 LNO L7)C DA$5 1.101 IASO I.lt) LII 1 I.) I) I.I IT L220 I All 1.2$ 0 0.91) 1.210 ~ .$ 10 DA))

OA05 MOT L)77 ~ .901 1.149 IACS L104 IADS IJT IAIS I.)04 IAC5 Lilt IL901 IJTT Mt) 5.21 4AO) 4AII 4NT 44IC 4025 4A I I Mll LOI) M)$ MIC DAIS ~ .ODI ~ .0 I I M)I Mtl 415 .I.CT I.t2 JA2 IA) 4.12 2.07 $ 20 IJT I.lI IAT sot I.20 0.$ $ I JC I)1 IS) I)I IS) ISC 157 )5$ ISS ICD )4 I IC) IC) ICI )45

)5) IJI) I.ltl O.N2

~ .917 LLC Ll)9 IA)l IATI IAIO IJTT IA)$ IJS) LOSS IASS IAS)

D,tM I.I'Il IJ4) IACC IAI) 1.045 1.1$ 1 ~ .942 L1$ 2 1.04$ IAIl IACC IJ41 I.)75 O.NI

  • DOT 4A)t 4N) 4N) 4021 401$ aoos MCC ~AI I 4ADC M)6 DSIC ~ .Dot Loll DA I 1 4'Tc I 44 JA1 .115 LCO 4)1 CA 2 ~ .0$ 4$ 7 IAI 041 I.S I I AS 144 I47 I4$ 149 170 ITI ITI )7) I 74 ITS ITC )77 17$ I)t I lo

~ JIS IA1 I e.tts IJ)0 IA)9 I JIt Ml1 IJI ~ 1.150 IATI 1.177 I.Nl IA$5 IAII ILMI DJll 4.1)) IACI IA4 IJt2 IACC I Jlt ~ .N I IJOI LNI I.IIS IACC IJS) 4025 IAI 4AOT 4.0 I I 4<<N 4AD4 4AI) 4.041 4061 4AIT 4019 ~ .00 I DAOC ~ . ~ IT ~ A4) IL005 7.22 .2,2S 421 404 2.40 1)$ DI I ~ .CC IAT 047 .L17 acl IA4 2.)S I0 I Ill IN IM I 15 )14 I 1) Ill I lt ISO It) It 1 Itl OJ45 IAIO DJC4 IJCI ~ .'I I I ).14C LOESS 1.171 ILSI5 IJS I O.tTt IA)4 DJS4 M45 Ikl45 IA54 IAI IJN 4.902 1.260 ~ .t)1 I J6$ 0.941 IJ41 IAC IASC DADO 4046 407C 4.N) DAII *011 4417 MN OAI) 4A I I aoll 4AIt DAOt 400 Jdcl TAD 1.10 I.Tl Ik2 4 I cS OJS 42) ~ I.1) 2,$ 4 IN IN 196 I97 Its Itt No 201 242 IN 204 0.)I I ITS IAOT I.ISD I.)41 I.I I) ).171 I. I)$ I.)$9 I.I 47 1.021 Ik)45 IAIC I.l)5 IJTT I.I )9 I.15$ I.I It IJTT I.I)5 I.OI4 4.)45 4.010 40)7 ae)5 4.0N aooc L420 4AOt t.oil 4.oos 4All

.Ltt JCT .LIT ac) asc I,CC 4.$ 0 M) 4CS .$ 2$ I. I 7 TN 20C 207 IIN 209 I I0 II I 2I I 2 I1 IL)N ILNI 0.<<N I.II 7 I.l)1 1.224 D.ND D.NT OJ)1 4J11 O.NC 1.1D) IAD 1.2DI ILNT OA)4 OJ)l Ik007 aoN 0.001 ILNS MII 0.014 OAOI O.DD) OA45 I OC 4.)2 Ik25 7.2) I.TI INC D.I) ~ J2 I 4$

I II I I5 II I ) IT OA)l 4JC) OJ4$ 0.4)S OA I ~ ~ J)1 L151 DA I 1 O.DOS DA I I ~ .0 I 1 OADT I.I ~ lol LSC I 4$

RMS Oaviation: 2.5%

Max Deviation: 9.3%

The tncore detection system Is operable per Aooendbc A RMS devlltlon should be loss than or equal to 6 IV/, and meet the requlremonts of *7.7 If performed at the 26 anti Sd percent power test ptlteaus durtng the powei ascension test program.

EI 12

~ St. Lucio Unit 2, Cycle 9 ~

Startup Physics Testing Report FIGURE 7 POiVER DISTRIBUTION COMPARISON iVITHDESIGN - 100% POPOVER MeoeootL (KCCRT/bNTATO Dcdct:

Sonic Tc)C I I)qt)

IOOTI IAtd tl0054 10054 EXPO)NO SS.II 75 67775 CKA Ttddte ARO ARO R e N N x ) H O I I I I I I 5 I I 414 424 lit alt 100 10) Itl 1405 Lit 241 111 Lit I 4 I t il II il 0 SS O.N) ONI IJD LI7 4 L2it IQ 105 104 101 ttD 100 Litl L04 Lltl 101 11D 0 021 ~ 21 Nl ~ 0 N) 0$ ~ II ~ 0 Nl 420 10 ll 241 17C I J5 I Jt 15 14 Il il It 11 0 0 Lt)I Llf1 L)tf LQ L2tf L ill L24t L I 5) L Ill I~

1NT 1.05 I. Ill IJCS L II4 IJ)4 LII4 IJ4$ LII ~ I.05 400 at i~ 1 ID ~ It 100 4NI 400 4011 7.44 ~5 I TI 1st 4ll 477 .In -IA4 17 11 it I 1 Lnl 1 tlf IJt 10$ L271 ONT 1.257 tl)5 IJTC ttt I.N I ~ JC) 1)47 I Nl I 07 L2N 1 tti I.)45 105 IJCS I.ltl I 07 IWI 7 1 I I) 4tlt 400 404 1414 ~ 0 tli) 4 III 400 Ltit 400 Lilt ~ 1$

41 .IN Ln 4) I in ID 711 -I ~ I .I.41 JN 4W 47 ~

)t 0 ii 41 41 0 45 44 if 41 it SI L05 I ~I I JSI I.WI L2S4 1$ 51 L20 1N L)41 LWI I.)54 I.~ II Lnt 71 t)Q LN 7.07 LJN I.nl I.)Q IJN 104 1.15) I 071 I.)n I 07 L05 400 4ti ~ 407 405 400 100 100S 40 I C 4004 4411 4tli 410 Lilt 1NI 4ti 4tt 447 aft 475 114 -I 14 444 40\ .I OI .241 I 17 Q 54 SS SC 57 57 40 41 4) 44 4$ 47 tif LliI I.)41 107 I.NI I.NT 1.245 at)5 IJt Lln I.nl Lt)C IJTI LIN 10$ 70 ttD L1 i i IJN Ln) I 04 I.tfl IJN 1 tf IJN I.OTI LNC I 071 IJN 1.141 ttQ 4N5 400 40l 40$ 400 0. ~ It 400 40$ 4 Oil 101 404 ~ l4 1N) 1 0 i) A 4$ 5 IJS 145 4tl I.T) 10 J.t4 141 141 It Lit -I 15 14 IJt 40 lt 70 71 72 71 74 7$ 74 77 Tl Tt II 0 1775 IJ42 t0 I IJN I.WI Lil1 IAtf l.2Q LIQ IJQ LIW 1241 1'll IJT Ill 100 IJCS NI IJQ LOTI IJ I I I.IN 1271 LIQ L)II Ltfl IJQ NI 1245 Nl 4NT 400 401 404 4 4 I$ 4NS 400 405 all I 107 OID ONlt 1N4 NS 1tl~

LN .I 15 JCI JCI .14I 44 I 444 0tt 1tS LSI 171 044 )I ID 40 451 I~

41\ 15 14 0 0 tl N tl 74 tf ~ I'I tl)l Lltl IN IJI~ 107 LDI Ltfl I.27 t44 IJN LI5 I Ll)4 I 024 IJn LID L1D 02 Lltl L II4 l)45 1044 I JN I.ltl IJTT 1141 IJft LIQ IJN 104 L)45 LII~ Lltl 7 10 1NI 404 4 tif 40t 400 400 4NI ~ 0 10)t 110 1 IN 4 lit 01 IN 1D JJl J.I4 414 LN .1N 47 I 10 10 ~ 24 2tf TN I 77 -I 17 1$ 4 ia IN IN IW IW in IN in Ill II I I I) II) II~ I IS IW I.N2 IJW 1tQ L))t 1$ 0 IJD tnf TD 10 IJn ttt) IJ)4 tt4 L17t LIN Nl i.'eit L154 tm IJN 1tl L)7) 1141 7W 1141 LÃl 77 t7$ 1254 L04 ~I 100

'74 400 44I 400

-itt 404$

J 57 4t2T

-1 14 40Q 400 447 llil IN ttlt 114 ONt tft 10D LD IN 01 an>

1 II tI t)5 tl 000 271 I I'I Qt ill 111 ID l)I l25 l)4 ID i)i lit I)0 Ql Ql I)l NS LNS I.ltl IJ)4 'I l'I IJD IA51 1271 ti IAlt IAt 1.274 til IJQ LI I IJ) I 1NI I Jt Lltl tti ~

till 404 IJCS 40t 407

)44 I.)N 4WI I.ltl 4NI IJT) 1014

~ 41

~ Tt IJft L 4011 ill L)N 401 1 td 4NI l24$

00 L I I4 L ill 00 140 I IC -SN 414 -'Lti Ltf 45 IN ) 11 Il~ 4OI II 414 W 144 440 140 41$ 04 I)7 IN Qt IN I II 142 IQ I4I 145 144 in I II itt 150 ~ it 12$ IJIT 117) Litt I.NI I.lt) LIQ IJIT LQ IJD Lttl L)Q Ill 12N 114 ~ it N2 L)45 Tti IJQ IATI I2 Il LIN l)fl LII2 1211 Ltfl L2Q 04 1245 N2 N) 4tll 40$ 404 400 ~ 25 ~ Il 17t 021 NS Nf 4NI NI ~ it ~ 12 4)0 1.4I SN LSO JJ4 274 141 ~I 145 40 IN IAT 151 IS) IQ I)I 15$ I)4 IST ISO 1)t IN 141 141 IQ IN 145 71 LI4I IJN i.0 I.nl LNS LDI 1.0 I JTS L04 LW I Nl Lln LID N4 1 IQ LI41 IJTC L02 I.OTC Lnt L)N 1tf I JN I.nl LW4 I.nl L)N I.141 t)1 400 401 400 4IQ 404 400 400 OWO 1NT 400 1t21 ~ 15 <<ai 04 40 -I 0 J. I'I Lit 4I C 455 1SC -20 10 I 'll I 15 i.'Tl 1St 144 ICT I II 14t I7 I in in I74 ITS I'l I 77 III If) IN 1117 I.0 II LifT IDI I.N) L224 N) I Jll t$ T l.)5 In) I JI I I 04 101 tDT 1.05 I tif IJn I tfi l.)$1 1tiC IJ04 N4 I.)Q I.n) I Jn I.07 I.NS 10 400 4tll *Nt *05 400 407 4N) 1NT ttil 400 ~N 400 400 ~ 14 04 10 -1.77 L~I 444 LN 2)7 4)1 10 I I5 414 N 44) 41t IJ) 1.77 III in IQ IN ill I 14 in IN in IN It l itl it) lit l.~ 14 IJW ttlt IJW 0tQ I.lf 1t4I IJT4 10\ I.N) L)54 1147 l.051 1.07 I 1N 1 ON IJCS ns I 115 1 IN IJ74 1.07 LNI 1)41 ONI 157 40$

444 4,50 401 477 tilt in Lilt

-I $2 401

-2)i 1405 OON 414 tNt 4NI Ltt 4NT 414 LQ IN It5 IW I tT Its Itt itl 10 IN 1Q4 I.tlI I.I52 IJit L1 I L271 LQ4 IJW Llit I tlf t)0 t)47 I.NS I.III 1.24$ IJIC IJSI I.II4 IJCS LICI I 05 IJIt LtlI 404 400 1 tti 400C ttit OON 101 ONe 400 40N 417 471 10 4SI I.tt 171 I Cl 044 470 I,if 105 IW IOT ln ii~ 111 111 II I 107 1t) 1NT I ) II LIll I2 II I tt)$

120 1tQ 101 Litl ini LltI 02 1tD 101 1 tN 100 1NS 101 t04 1017 440 100 100 I it 14C 142 in) 241 10 40 I )I I.ff I I4 IIS 114 117 1422 t)CI 14D 14 1

~ .N) t t)54 1NT 1)54

\ON tilt 1ti I ti Lii 1'll RMS Deviation: 2.4%

Max Deviatfon: 8A%

The fncore dtIOCdon system Is operable por Appendix A RMS devlatlon should be less than or equal fo 6.4756 and meet the requlremenls of 4.7.1 If performed af the 26 and Sa percenl powlr test plateaus durlnf) Ihe power ascension test prof)ran@

13

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table 1 Cycle 9 Reload Sub-Batch ID Sub-Batch Number of Assemblies Enrichment 4.30 4.30/2.30 L/ 4.30/2.30 LX 48 4.30/2.30 LY 16 4.30/2.30 12 4.10 3.60 3.60 32 3.60 16 3.60 4.10 20 4.10 16 3.70 17 3.70 14

St. Lucie Unit 2, Cycle 9 Startup Physics Testing Report Table 2 Approach to Criticality Dilution Rate Initial Boron Final Boron Dilution Time Concentration Concentration (minutes) 132 gpm 1749 1671 30 88 gpm 1671 1532 60 44 gpm 1532 1506 30 Table 3 CEA Group Worth Summary CEA Group Measured Worth Design

  • Worth Percent Difference (pcm) (pcm)

Reference Group 1992 1947 -2.3 1481 1451 -2.0 1,2 1641 1581 -3.7 3,4,5 1783 1665 -6.6 Total 6897 6644 -3.7

  • Reference 5.

Percent difference = (Design/Measured) - 1 x 100 15