ML17207A326

From kanterella
Jump to navigation Jump to search
Cycle 3 Startup Physics Testing Summary
ML17207A326
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 08/17/1979
From: Dryden M, Ryall R, Tomanto J
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17207A325 List:
References
NUDOCS 7908310412
Download: ML17207A326 (49)


Text

FLORIDA POWER

& LIGHT COMPANY ST.

LUCIE UNIT f/1 CYCLE 83 STARTUP PHYSICS TESTING SUMtfARY

/

P P

4 4

AUTHOR:

M. S. Dryd n Reactor Engineering DATE It-t" REVIE(AD:

~

~

c~~

J.

R. Tomonto Manager of Nuclear Analysis DATE'B REVIEWED:

C. A. Pell Reactor Engineering PSL DATE

'PPROVED:

7I

~ K.

R. K. Ryall Reactor Engineering Supervisor PSL

r 0

.TABLE OF CONTENTS

~Pa e Title Introduction Core Reload Approach to Criticality Zero Power Physics Testing Power Ascension Testing 22 Summary

'I P

LIST OF FXGURES Title

~Pa e

Reactor Fuel Location ICRR vs. Dilution Time for Channel B

ICRR vs. Dilution Time for Channel D

Boron Concentration vs. Dilution Time Integral CEA Group 7 Worth Xntegral CEA Group 6 Worth 10 Integral CEA Group 5 Worth Integral CEA Group 4 Worth Xntegral CEA Group 3 Worth Integral CEA Group 2 Worth Integral CEA Group 1 Worth

'16 Power Distribution at 30% Power Power Distribution at 50% Power Power Distribution at 80% Power Power Distribution at 100% Power 18 19 20 21

k >

P p

LIST OF TABLES T1tle Fuel Types for Cycle /f3 Dilution Rates CEA North Suaunary

P 0

Page 1

INTRODUCTION The intent of this report is to satisfy the Nuclear Regulatory Commission's request for a summary of the St. Lucie Unit 81, Cycle 83 Startup Physics Testing results.

The purpose of the Startup Physics Testing Program is to provide verification of selected design physics parameters before substantial increases in power are made.

The major phases of this program are the core reload, approach to criticality, zero power physics testing, and power ascension testing.

I

r Pp

~ 6'f 11

~

~

CORE RELOAD:

The cycle 3 core contains five uniquely enriched fuel types as listed in Table 1 below.

TABLE 1 Fuel Tyue No. of Ass 's.

Enrichment (w/o)

B C

D DA E*

21 68 40 20 40 28 2.33

2. 82.

3.03 2.73 3.03 2.73 The cycle 3 loading pattern is given in Figure 1.

The assembly serial number and full length control element assembly (CEA) present (if applicable) are given for each core location.

Following the fuel shuffle and prior to the approach to criticality, the CHA performance tests were executed.

The objective of these tests was to measure travel time from the fu'ly withdrawn position to the 90% inserted position as well as verify correct operation of the CEA position indication system.

The average CEA drop time was found to be 2.28 seconds.

The maximum and minimum drop times were 2.47 and 2.08 seconds respectively.

All CEA drop times met the acceptance criteria of less than or equal to 3.1 seconds as required in Technical Specification 3.'1.3.4.

P t

~

Page 3

5-10-79 ST LUCXE UNrT 1 FUEL LOADlNG PATTERN FOR CYCLE 3 Figure 1

NORTII E025 E021 E031 E015 002 H008 DOOS 69 E012 DOll E115 B007 63 C012 H118 59 E105 D001 62 C204 D123 C033 D10 Ell C106 D119 Cll DOO 73 61 D03 B06 D03 C21 58 D023 B031 103 56

=

E023 E113 DOl 60 C019 D021 H004 68'0 18

~ 016 H112 55 C03 041 B035 E120 51 C20 C03 PL13 C02~

002 50 D10 54 C007 B039 D047 B034 PL16 D034 C014 D028 D104 53 C010 Col D02 49 C201 C036 E102 E027 PL15 52 C028 E119 B015 D012 48 17 108 D037 C208 47 Dlo 022 46 C016 45 C104 D115 C115 74 C039 43 004 D112 C206 D018 H123 42 41 E011 E005 106 40 C109 D017 39 B02 004 C107 D033 COOl D046 Cll 38 37 D03 B062 D043 C112 D117 E

36 35 E029

'02

'-1 EOl 027 107 31 D122 B038 72 C102 D019 30 D03 PL1$

009 031 D116 34 C110 C002 B009 C024 33 D113 32 D042 C003 D020 Cll 29 28 008 027 D024 B033 D120 C037 PL12 71 B027 D014 C103 D110 27 26 E017 H022 9

8 "106 D003 C212 25 D12 C005 24 C035 23 C105 Dill C101 22 C017 21 C021 D103 C209 D006 Hill 20 19'045 013 B045 H121 18 E114 C029 14 H003 D048 67

. H006 030 040 17 202 C032 PL9 C03 E116 10 E12 B040 6

E01 E001 C023 D102 13 C210 D038 5

E122 D039 C013 D029 006 8074 D044 B066 109 PL10 12 D013 B058 D00 207 9

8 C114 D121 C10 015 70 4

D118 C040 Dll E109 2

1 D026 16 C026 E117 7

B005 D022 COll H107 B072 D016 15 C203. C015 E101 E030 PLll 11 C020 D008 E018 66 E104 E009 3

E028 E026 E007 H032 E019 I

I Y

X 8

V T

S R

PN ML k H

G F

E D

C B

A Assembly No.

Insert No.

PL denotes a part

P gr

Page 4

APPROACH TO CRITICALITY:

The approach to criticality involved the dilution from a non-critical boron concentration of 1645 ppm to a critical boron concentration of 1093 ppm.

Inverse count rate ratio plots were maintained during the dilution process and are provided in Figure 2 and Figure 3.

A plot of boron concentration versus dilution time is provided in Figure 4.

The following table delineates the dilution rate and range of boron concentrations for which these are applicable.

TABLE 2 Dilution Rate Initial Boron Concentration Final Boron Dilution Concentration Time 88GP14 1645 1093 291 min.

Criticality was achieved on May 31, 1979, at 05:35 hours with CEA group 7 at 48 inches withdrawn and a critical boron concentration of 1093 ppm.

6, e ~

t' Va 4

I L

~

,j

~

2 Page 5

ST.

LUCRE UNIT 1

BOC, CYCLE 3

2

, XNVERSE COUNT RATE v's.

DILUTION TIME 2

4 4

2 2 ~

2 ~

Pigure,2 2

P

'IDE RANGE LOG CHANNEL 8 2

P 2

0.9

~

2 s

2

~

I s

'I 4

4

~

I 2

4

~

I

~

~

I I

~

I I

~

f I

I

~

)

~

I

~

I 4

4 I

I 4

4 4

I

~

.0 I

I

~

I

?, ?

\\

I 4

~

~

I '

I

~

I 0.7 ldll O.o

. 5'.5 SP'.4 0.3

- 0.2

~

~

~

2'

~

I

~

~

4

~ss I

~

I 4

2

~

2 4

I I

~

2 4

~

4 2

~

~

I

~

4 4

2 ~ I I

~

~ '

~

2 I

I I

~

I

~

1 4

i 2

s

~

4

~

~

2

~

~

4,

~

4 4

I I

2 2

I I

4 I

4

~

I

~

~

~

~

I

~

~

4

~

~

~

2

~,

~

I?

I

~

I I

2 2

I I

I

~

I

~

~

I

~

I I

4 I

~

I I

I

~

I I

2 s

I t

I

~

I 1

4

'0.1 i

s

~

I

~

I I

I

~

I I

4 2

I

~ ~.

I

~

I

~

~

2 i

I

~

2

~

I 2

I:

~

2 I

~

I 1

I

~ i.

s I4 4

~

i i

~

I I

I

~

~

2

~s!

~

I 4

s

~

I 4

~

4 4

I

~

2 0

'1' 3

5, 6

8 9

DILUTION TIME (Hours)

Page 6

'ST.

LUCIE UNIT I

" BOC, CYCLE 3

INVERSE COUNT 1% E v's.

DILU ION TDK FIGURE 3 VIDE RANGE LOG CHANNEL D O

--'r

~

oO

!xi itch PpI-l

0. 9-0.8 0.6 n

c U ~ 3 OC4 0.3 1

~

~

~

C a

I '

4 4

~

1 e

I I

1 I

1

~

I

~

I '

I 1

I I;

~

i e

~

s iP 'I" I

4 1

~

I

&4

~

I 4

4;

~

J~l I

I I

I vI!

i I

IT I

4

~

i L I I

~

v I

a t

l

~

t 4

t I

~

a TI

~

~

4

~

4 I

I s

I 4

1

~

~

t e

1-~je

~

S I

I 4

4

~

1 i

~

I

~ j e

I

~ 7j ~l I

s I

W I

4

~

1 I

r I

l 1

~

1 I

~

I

~

I I

I I

I

~

~

I 4

s I

~

I il Pe s

~

4

~

~s

~

1 I

4 t

~

1

~

1 1,'t, ~i.

~

~

~

1 I

4 s

1 '

~e etW I

~

e I

C s

1 4

~

1

~

~

r J

I'I

~

I s

I I

I

~

1 4

I 4

4 j

1

~

e I

I 4

~

4 t+

(

s 4

I

~

1 I

Wj 'I

~

~

~ l

~

I

~

j

~

I 4

~s I

~

4 I

I

~

(J I

I 1 '

I I

I

~

~

I I

I t

t~s

~

I I

4 I

4

~

s I

i i

l

~

L 1

I

~

~

L.. I 1

4 L

~

I

~CU 1

i s!

~

I 4

I 1

~

~

I 1

I I

~

~

I ~a

~

I I

a

~

I I

I I I

I 4

~<<1

~

1 1

I

~

I II I

I I

4

~

4 I

~

~

I I

4 0.2

~

I s

I I

i I

4 I

~

4

~

I I

~

1 1

~

t 4

e I

4 '

i '

I I

0.1

~

~

I I

I

~

~

I I

~

4 I

4 j

I i I

r I

~

~:

~

t

-i~i-(

~

~

1 I

I

~

4 4

~

~

e I

I s

I f

I:

~

~

~ 4 I

I t

i 4;

~

I s

s 4

I i

r 1

I I

1

~

~

I s

~

r 4

ei I

~

~ '

l

~

1

~

~

~

I

~

I

~as 2j('.

~

I I

I 4

I IW

~

1 I

~

I I

~

'S

~

~

~

~"

0

'1 2

3, 4

5 7

DILUTION TDiE Olouqs)

I 9

IO 4 te'

~ 1

~

1

~

~

1

~

1

'\\"

1

r I'I

~

~

aa

ZERO POlKR PHYSICS TESTING:

The major tests in this phase of the startup testing program con-sist of the following:

1.

Reactivity Computer Checkout 2.

CEA Latch Verification 3.

Unrodded Critical Boron Concentration 4.

Moderator Temperature Coefficient Heasurement'.

Rod Llorth Heasurements During the performance of the reactivity computer. checkout, an appropriate range of flux was selected for use throughout the remainder of the zero power physics testing program.

A comparison of measured reactivity insertion for a given period with the appro-priate design reactivity value was also performed with good results.

Following the successful completion of the CEA latch verification for groups 7, 6, 5, 4, 3, 2, 1 and B, a symmetry check test was per-formed on CEA group A.

The acceptance criterion for this test states

, that the reactivity measured for each of group A's dual CEA's shall be within + 2.5q of the average reactivity measured for all of the group of A duals.

This criterion was satisfied.

The unrodded critical boron concentration was determined to be 1137 ppm.

This was well within the acceptance criteria of + 100 ppm of the predicted unroddcd critical boron concentration of 1146 ppm:

The ARO, HZP moderator temperature coefficient,was measured to be

+.46* 10 4 bk/k/ F.

This met 'the Technical Specifjcation requirement that the MTC shall be less positive than 0.5

~ 10 Ak/k/ F.

A comparison of the measured and design CEA group reactivity worths is provided in Table 3.

A plot of integral rod worth as a function of rod position for each CEA group is provided in Figure 5 throu'gh Figure ll.

The following acceptanc'e criteria for rod worth measure-ments were met:

1.

The measured value of each group CEA worth is within + 15% or 0.1%hp of the design CEA worths, whichever is greater.

2.

The total worth for all the CEA groups measured is within + 10% of the total de'sign worth.

~ ~

-~

Page 7

ST. LUCIE UNIT 1

BOC, CYCLE BORON CONCENTRATION QS.

DILUTION TIME PIGURE>>4

~

t

~ I-

~ '

I

~

J I

~IS i

s

~

1

~

r

~

~

(

(

~

r

.1900 1800

~

I

~

T

~

(

~

r

(

~

s r

I

~

I

~

~

I

~

~

I

~

I I:

I r

~

s

~

r I

~

>> i I

~ M

'IM-

~

I

~

I

>>L '

L I

~

~~t

~

I l

~

~

I

~

I I

~

~

(

I t ;l

, ~

1700 16OO 1509 r

~

l

~

~

I

~

I S

~

I

~

~

~

j I

~a

~

~

r

~

I

~ '

I

~

i s

~

(

L' l

s a

I s

~

I I

~

s

~

i I

1400 1300 1200 1100 1000

~

~

s

~

I

~

~

(

~

~

st s

I

~

S~

~

I Lie i

~

I

~

~

~

r

~

I

~J a:.

~

~

~

~

e I

~

S i,'

L S.'s I t (-

s

~

f r

I '

( J J

~

I S

l,

~

S r

S I

~ '

s r

1

(

(-"" l"

~

1 1

I S

I, ~

l-

~

~

~

~

~

I I

~

~

I I

~

I 1

~

I

<> J>>

~

~

900 800

*'00 I

~

~

~

~

~

f a

s

~'

S. I

~

I

~

~

~

i '

I

~

~

I I

~

r I

S I

r

'a

~

r I J

~

~~ ~

~

i i

~

I

~

r f

a

~

~

I

~

a I

~

I

~

l I

~

1

~.l.a

)

't r

'i I

I I

t

(

~ f I

I

~

(

S

~

(

I

~

~

~a

~

~

~

f~

~.:"f."

(

j

~

i r

I>>

0

~

1 4.

56 7

9 10 DILUTION TIME (HOURS)

Page 9

TABLE 3 CEA NORTH StDRfARY CEA GROUP 7

6 5

4 3

2 1

HEASURED MORT1j

.684

.408

.195 1.279

.604

.989

.504 DESIGN NORTH

.76

.42

.19 1.44

.70

l. 06

.49 PERCENT DIFFERENCE 10.0%

2.9%

+

2,6%

- 11.2%

- 13.7%

6.7%

+

2.9%

TOTAL 4.66%hp 5.06%Ap

7. 9%

4 ~

Page 10 ST.

LUCIE UNIT 1 IHTEGlVL CEA GROUP NORTHER HOC P HZP P CYCLE 3

GEA GROUP 7

'75

.70 g,~.p

~

l I

Jj 31=

Figure 5

~

I

~

t

~ I

.60 l

-, -L J..L!

LLt

.50)

I I l

~

~

I I l

~

~

~

~

~

I I

~

l

-L-I I

Ji I l I

I

~

I l

I i-4-z"-}

I I

I t

.30 I l:

I

~

t

~

+7 I

I I

I I

.20

.10 I

l

~

~

lL I

~;

~

~

I

~

l Ii I

I l

L L

I +

L}

-I-'-

Ll I

~

I I

I L

+

-}

0 10 20 30 I'}0..

50 60 70 80 90

'00 110

. 120'30 14<'

CEA WITllDRAUAL (INCHES)

~ p P

rp

ST.

LUCTE UNIT 1 INTEGRAL CEA GROUP l!ORTH BOC, IIZP, CYCLE 3

CEA. GROUP 6'

Page ll 1

i I

.75

.70 t

~

I I

II,

}

  • i i

Figure 6

Li i

I

~

I I

~

.60 I

i

~

I 1

I

~

I I

I i

.50

@i+

L

...L.

I I

~

F4o M!l~

ilt hl 30 M

~

I I

+I~i

+ LI LL

.20 I

I I i t

~

I

~

.10 L:

i i

F-'-I ML,.

~I

..}~LI-0 10 20 30 40 50 60 70 80 90 100 110 120 130 14C CEA WXTIERAMAL (INC}IHS)

Page 12 ST.

LUCIE UNIT 1 INTEGRAL CHA GROUP WORTll~

HOC, 117P, CYCLE CRA GROUP

.75

.70 Figure 7

1

+-

.60

~ I I ~

I

~

I I

I

.50

.40 tgM t30

..O L'

L I

~ I w

0 10 20 30 40...

50 60 70 80 90 100.

110.

120 130 1I'i ~

CHA WITllDRAWAL (INCllES)

~ t

Pg 8

h

,v>>

Page 13 ST.

LUCXE UNIT 1 INTEGRAL CEA GROUP WORTH'OC,

HZP, CYCLE 3

CEA GROUP 4

1. 50 Pigure 8

1.40

.1.30 1.20 1.10 a

1.00

.90

~.80

70

..60

.50

.40

.30

.20

.10 0

10 20 30 40 50 60 70 80 90 100 110 120 130 140 CEA WITHDRAWAL ( INCHES )

h 4'

Page 14 ST. LUCIE UNIT 1 INTEGRAL CEA GROUP WORTH

~

BOC, HZP, CYCLE 3

CEA GROUP 3

.75 Figure 9

.70

.60

.50 30

.10 0

10 20 30 40 50 60 70 80 90 100 lip 120 130 140 CEA WITHDRAWAL (INCHES)

h h

v I I

1

~

fg

~

  • li

~

a

~ " '

i I

~ ~

~

ST.

LUCXE KNIT 1 INTEGRAL CEA GROUP WORTH

BOC, HZP, CYCLE 3

CEA GROUP 2

Page 15 1.50 Figure 10 1.40 e

1. 30 1.20 1.10 b4 90

'.80 8

.70

.60

.50

.~o

.30

.20

..10 0

10 20 30 40 50 60 70 80 90 100 110 120 130 140 CEA WITkkDRAWAL ( INCHES )

~ q II

,page 16 ST. LUCIE UNIT 1 INTEGRAL CEA GROUP NORTH BOC, HZP, CYCLE GEA GROUP 1

~

.75 Figure ll

.70

.60

.'50 w

~ 30

.10 0

10 20 30 40 50 60 70 80 90 100 110 120 130 140 CEA WITHDRAWAL (INCHES)

/

qe Page 17 POWER ASCENSION'lux maps from the fixed incore detector system were used to verif(

that no unexpected abnormalities occurred in the Tq, LBR, FR

, Fxy,

T Fq and ASII values at the 30, 50, 80, and 100 percent power plateaus.

)

Upon investigation it was determined that four incore detectors (f/ s 33, 36, 38,

42) were producing abnormal signals and it was requested that CE investigate the cause of this.

Sufficient evidence was provided and it was concluded that "cable switching" was in fact the cause for the abnormal detector readings.

Appropriate corrective actions were taken by rerouting the signals,

hence, eliminating the anomalous readings.

All of the above peaking factors and power distribution parameters corresponded well with design predictions.

Calorimetric, nuclear

power, and AT power calibrations were performed at the 20, 30, 50, 80, and 100 percent power plateaus.

The 100 per-cent power flux map was determined and found to meet the review criteria of:

1)

+

10% of predicted if assembly power is >.

9 average

power, or, 2)

+ 15% of predicted if assembly power is <.

9 average power.

A summary of the results obtained during the 30, 50, 80, and 100 per-cent power flux maps is provided in Figure 12, Figure 13, Figure 14, and Figur'e 15, respectively.

A verification of the shape annealing factors (SAF) was performed at the 80 percent power level.

During this test, a xenon oscillation was induced with the corresponding oscillation of the axial shape index (ASI) being monitored for each power range channel and by CECOR.

The Cycle III SAF values were calculated to be lower than those in the previous two cycles,

however, the SAF's presently in the RPS are conservative with respect to the ones just measured.

CE concluded that the shift is probably caused by the reflection of neutrons off the recently installed neutron shield water bags.

A formal recommendation on the shift of the SAF's is still pending.

I The moderator temperature coefficient was measured shortly after entering the 100 percent power plateau.

'The test was performed in two phases, both with group 7 at 102 inches withdrawn.

The first involves holding power constant, varying.Tavg and compensating for'he resulting reactivity changes by CEA 7-1 movement.

The second involves holding Tavg constant, varying power and again compensating with CEA 7-1 movement.

The measured value of.13 x 10 4 AK/K/ F satisfies the Technical Specification requirement that the MTC shall be less negative than -2.2 x 10 " AK/K/ F at rated thermal power, and less positive than 0.2 x 10 " hK/K/ F whenever thermal power is greater than 70 percent.

~r V

FIGURE 12 POHER DISTRIBUTION AT 30%

POHER Page 18'731

.750

.929

.964

.702

.719

.949.

.983 1.125 1.167 1.121 1.127

.979

.994

.809

.830 l.136

1. 174

.885, 1.230

.911 1.230 1.010 1.002 1.294 1.296

! "'Relative Powe Densities

.815

.829 1.105

'1.128

.984

.985 1.280 1.285 1.006

.978 1.206 1.160

.893

.866 Measured-)

Design

.693

.721 1 135

.1.175

.985

.986

.898

.882

.963

.944 1.072 1.031,

.883

.856 1.172 1.115

.939

.989

.883

.916 1.

271'.289

959

.944'.

170

1. 145

.954

~.920 1.155 1.113

.983

.931

~

.730

.756 1.110 1.176 1.109 1.138 1.216 1.240

.994 1.015

.996

.985 1.186 1.171 1.060 1.035

.066

.864

.945

.924 1.142 1.125

'. 868

'.832

.840

.813

.833

.804

1. 058 1,015

.976

.936

.877

.844

.929

.973 r

.968 1.004 1.274

.873 1.310

.874 l.148 1.126

.963

.943

.977

.946

.890

.848

.720

.707 Snapshot ID Date Time Power.

Rods

g'q ASII Exposure HEASURED C271681 6-9-79 19:32 32.3%

Group 7 at 115.8" withdrawn

.007 1.543 1.499 1.884

-.05956 4 EFPH DESIGN Power 30 Rods ARO Exposure 38 EFPki

0

~ g 4 i

FIGURE 13 POHER DISTRIBUTION AT 50%

POWER Page 19

.724

.729

.922

.936

.687

.700 '930

.958 l.ill 1.114 1.137 1.106

.977

.980

. 795

.808 1.114 1.145

.862'902 1.215 1.009 1.216 1.000 1.303 1.285 Relative Power

. Densities

.801

.807

~ 1.100 1.104

.975

.9.76 1.267 1.274 1.004 1.209

.985 1.168

.897

.878 Measured &

Desi'gn

.687

.702

'l.117

1. 146

.975

.977

.894

.888

.963

.954

1. 079 1.048

.895

.877

1. 186 1.137

. 922

.962

.864

.906 1.260 1.278

. 961

.954 1.179 1.163

.972 1.195

.944 1.143 1.003

.961 716'735

.914

..943

1. 086 1.145 1.094 1.116

.958

.988 1.200 1.225

.990 1.012

l. 280 l.297

.9.95

.991 1.189 1.178

.880

.886 l.067 1.051

. 876

.885 1.163 1.148

.957

.948 l.162

,1. 155

.985

.972

.887

.862

.864

.847 1.005

.983

.863'839 1.094 1.056

.926

.887 1.005

973

.909

.883

.756

.745 Snapshot ID Date Time Power Rods Fq ASII Exposure MEASURED S271772 6-10-79 17:34 48.3%

Group 7 at 118.8" withdrawn

.006 1.545 1.512 1.809

-.01759 ll, EFPH DESIGN Power 50%

Rods ARO Exposure llS EFPH

~ ~

e I

I

~

M P

P

~ ~

~

I

~

~

~ I

~ I

~

~

~

~

~

~

~

~

~

~

~

I ~

o I o

I ~

~

~

~

~

~

~

~ ~

I ~'ol I ~

~

~

~

~

~

~

~

~

~

~

~ I

~ I

~

~

~

~

~

~

~

~

I ~

'ol

'o

~

~

~

~

~

~

~

~

~

~

I

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ ~

~

~

~

~

~

~

~

~

~

~~

~

'lo

~

~

~

~

I

~

~

I

~ I

~ ~

~

~

I'

~

~

~

~

~

~

I I ~ '

~

0 4)

I'%'

~

}ly Figure l5 Power Distribution at 100% Power 0

Page 21

.720

.707

.919

.903 Relative Power Densities J

.765

.785

.662

.682 1.085 1.115

913

.932 1.102 1.105

.843 1.208

.898 1.196 1.110 1.081 1.009 1.002

.975

.963

1. 306
l. 273

.768

.784 1.069 1.075

. 958

. 969 1.257 1.004 1.265

.996 1.217 1.176

909

.897 Heasuied H Design'ed +

.655

.683

1. 079 1.116

.955

.969

.889

898

.966 1.091

.967'.066

.911

.904 1.213 1.158

.884

.936

.841

.902 l.246 1.268.

.968

.966

1. 195 1.175

.994

.968 1.222 1.169 1.042

.989 1.037 1.112 1.173 1.207

.996 1.002 1.070 1.069

.981

.972

.917

.894

.906

.877 1.052 1.010 685

~ 712 1.062 1.090

.982 1.018 1.201 1.185

.899

.911

1. 204
1. 180

. 905

.885 1.150 1.094

.956

.921

.879

.905

.936

.971 1.272 1.284

.904

904 1.201 1.160 1.034 1.056 1.000 1.020

.981

.925

.798

.787

~ J

?feasured Snapshot ZD Date TiQle Power Rods Tq FxyT

'FR ASlZ Exposure G273 632

, 6-29-79 07:48 99.5%

Group 7 at 136" withdrawn

.005 1.550 1.506 1.790

.01313

'64 EFPH Desi Power

. Rods

'xposure 100%

ARO 192 EFPH

~Sammar All Technical Specifications were met.

Recommendation from CH on SAF's is still pending.

References:

1.

Letter F-CE-6728, "Low Power Physics Test Predictions,"

A. S.

Jameson to R.

Wm Winnard dated May 1, 1979.

2.

Letter F-CE-6738, "Power Ascension Test Predictions for St, Lucie 1 Cycle 3," A. S.

Jameson to R.

W. Winnard dated May 1, 1979.

3.

Letter F-CE-6807, "Anomalous Detector Readings for St. Lucie 1 Cycle 3," A. S. Jameson to C. H. Wethy dated July 6, 1979.

4.

Letter Hk. 8605, "Request for Recommendation Concerning Cycle 3 SAF's,"

C. H. Wethy to A. S.

Jameson dated July 6, 1979.

5.

Letter PRN-L1-79-185, "St. Lucie Unit 1 Startup Testing," A. D. Schmidt to R. E. Uhrig dated May 25, 1979.

6.

"Cycle 3 Startup Testing for St. Lucie 1," R. E. 'Uhrig to R,.

W. Reid, R.E. Docket No. 50-335.

7.

Letter F-CE-6759, "Additional Sets of Kinetics Parameters for Low Power Physics Testing at St. Lucie 1>'.

S. Jameson to R.H. Winnard dated May 25, 1979.

0~

f