ML17207A326

From kanterella
Jump to navigation Jump to search
Cycle 3 Startup Physics Testing Summary.
ML17207A326
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 08/17/1979
From: Dryden M, Ryall R, Tomanto J
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17207A325 List:
References
NUDOCS 7908310412
Download: ML17207A326 (49)


Text

FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT f/1 CYCLE 83 STARTUP PHYSICS TESTING SUMtfARY

/

P P 4

4

AUTHOR: DATE It- t" M. S. Dryd n Reactor Engineering RE VIE(AD:

J.

~ ~

R. Tomonto c~~ DATE'B Manager of Nuclear Analysis REVIEWED: DATE C. A. Pell Reactor Engineering PSL K.

'PPROVED:

7I ~

R. K. Ryall Reactor Engineering Supervisor PSL

r 0

.TABLE OF CONTENTS

~Pa e Title Introduction Core Reload Approach to Criticality Zero Power Physics Testing Power Ascension Testing 22 Summary

P

'I

LIST OF FXGURES Title ~Pa e Reactor Fuel Location ICRR vs. Dilution Time for Channel B ICRR vs. Dilution Time for Channel D Boron Concentration vs. Dilution Time Integral CEA Group 7 Worth 10 Xntegral CEA Group 6 Worth Integral CEA Group 5 Worth Integral CEA Group 4 Worth Xntegral CEA Group 3 Worth Integral CEA Group 2 Worth Integral CEA Group 1 Worth '16 Power Distribution at 30% Power 18 Power Distribution at 50% Power 19 Power Distribution at 80% Power 20 Power Distribution at 100% Power 21

k >

P p

LIST OF TABLES T1tle Fuel Types for Cycle /f3 Dilution Rates CEA North Suaunary

P 0

Page 1 INTRODUCTION The intent of this report is to satisfy the Nuclear Regulatory Commission's request for a summary of the St. Lucie Unit 81, Cycle 83 Startup Physics Testing results. The purpose of the Startup Physics Testing Program is to provide verification of selected design physics parameters before substantial increases in power are made. The major phases of this program are the core reload, approach to criticality, zero power physics testing, and power ascension testing.

I

r Pp

~ 6'f 11 ~ ~

CORE RELOAD:

The cycle 3 core contains five uniquely enriched fuel types as listed in Table 1 below.

TABLE 1 Fuel Tyue No. of Ass 's. Enrichment (w/o)

B 21 2.33 C 68 2. 82.

D 40 3.03 DA 20 2.73 40 3.03 E* 28 2.73 The cycle 3 loading pattern is given in Figure 1. The assembly serial number and full length control element assembly (CEA) present (if applicable) are given for each core location.

Following the fuel shuffle and prior to the approach to criticality, the CHA performance tests were executed. The objective of these tests was to measure travel time from the fu'ly withdrawn position to the 90% inserted position as well as verify correct operation of the CEA position indication system. The average CEA drop time was found to be 2.28 seconds. The maximum and minimum drop times were 2.47 and 2.08 seconds respectively. All CEA drop times met the acceptance criteria of less than or equal to 3.1 seconds as required in Technical Specification 3.'1.3.4.

P t

~

Page 3 5-10-79 Figure 1 ST LUCXE UNrT 1

'0 FUEL LOADlNG PATTERN FOR CYCLE 3 NORTII E025 E021 E031 E015 E012 DOll E105 D123 C033 D10 Ell D023 E023 002 E115 B007 D001 C106 D119 Cll DOO B031 E113 DOl 63 62 73 61 60 H008 DOOS C012 H118 C204 D03 B06 D03 103 C019 D021 H004 18 C21 69 59 58 56 =

68

~

016 H112 C03 C20 C03 D10 B039 D047 B034 D104 Col C201 C036 E102 E027 17 55 PL13 54 PL16 53 PL15 52 041 B035 E120 C02~ 002 C007 D034 C014 D028 C010 D02 C028 E119 B015 D012 51 50 49 48 108 D037 C208 Dlo 022 C016 C104 D115 C115 C039 004 D112 C206 D018 H123 47 46 45 74 43 42 41 E011 106 C109 D017 B02 004 C107 D033 COOl D046 Cll D03 B062 D043 C112 D117 E 40 39 38 37 36 35 E005 E029 027 D122 B038 D03 009 D116 C002 B009 C024 D113 008 D024 B033 D120 C037

'02 72 PL1$ 34 33 32 PL12 71

'-1 107 C102 D019 031 C110 D042 C003 D020 Cll 027 B027 D014 C103 D110 E017 9

31 30 29 28 27 26 EOl H022 8 "106 D003 C212 D12 C005 C035 C105 Dill C101 C017 C021 D103 C209 D006 Hill 25 24 23 22 21 20 19'045 B045 H121 030 040 C023 D039 C013 D029 006 D026 COll H107 B072 D016 18 17 16 15 013 E114 C029 202 C032 D102 8074 D044 B066 109 C026 C203. C015 E101 E030 14 PL9 13 PL10 12 PLll 11 H003 D048 C03 E116 C210 D013 B058 D00 207 E117 C020 D008 E018 67 10 9 8 7 66

. H006 E12 B040 D038 C114 D121 C10 015 B005 E104 E009 6 5 70 4 3 E01 E001 E122 D118 C040 Dll E109 D022 E028 2 1 E026 E007 H032 E019 I I Y X 8 V T S R PN ML k H G F E D C B A Assembly No.

Insert No.

PL denotes a part

P g r

Page 4 APPROACH TO CRITICALITY:

The approach to criticality involved the dilution from a non-critical boron concentration of 1645 ppm to a critical boron concentration of 1093 ppm. Inverse count rate ratio plots were maintained during the dilution process and are provided in Figure 2 and Figure 3. A plot of boron concentration versus dilution time is provided in Figure 4. The following table delineates the dilution rate and range of boron concentrations for which these are applicable.

TABLE 2 Dilution Initial Boron Final Boron Dilution Rate Concentration Concentration Time 88GP14 1645 1093 291 min.

Criticality was achieved on May 31, 1979, at 05:35 hours with CEA group 7 at 48 inches withdrawn and a critical boron concentration of 1093 ppm.

6, e ~

t' Va 4 I L ~

j ~

. Page 5 2

ST. LUCRE UNIT 1 BOC, CYCLE 3

, XNVERSE COUNT RATE v's. DILUTION TIME 2

2 4

4 Pigure,2 -,

2 2

2 P 2 2~

P 2 ~

'IDE RANGE LOG CHANNEL 8

~ 2 4 ~ I ~ ~

2 2 I I ~

s 'I I I ~ '. " f I I ~

I ~ ! I 4 . !

0.9 ~ I 4 4 4

I 4

I 4

~

4

)

s ~ I I ~

.0 I ' '

I ~

I I I '

?,\ ? 4 ~ ~

I I  ! ~

0.7 2

~

  • 2 4,

~ ~

~

I 4 I

~ss ~ 4 ~

ldll I O.o 4 2 ~ ~

I I I ~ ~ ~

~

~ ~

I I I I I 4 4 I ~ 4 I I ~

5'.5

~ 4 ~ 1 4 ~

I 2 2 SP

'.4 2 ~

~ '

~

i 4

2 s 4

~ 2

~ ~

2

~

I I

I I I

~

~

~ s I t I ~

2 I

~,

I? ~

0.3 2 I ~ I

~ ~ 4 4 I I ~ I 2

~

2' I 4 I I 4 I

4 2 ~ I ~ ~ 2 I 1 4 0.2 ~ I I ~ ~ I

~

~ I 2 I ~ I 4

i s 2 ~ I 4 ~ ~ ~

4

'0.1 ~ I ~ I I i 2

I ~

2 ~

I 4

~

4 I ~ I I ~ ~ I ~

I: i i ~

~s! ~

I 4 ~ I I I 4 s I ~ ~ . 2 I 1 I I i

2 I ~

~

. s 2 0 '1' 3 5, 6 8 . 9 DILUTION TIME (Hours)

Page 6

'ST. LUCIE UNIT

" BOC, CYCLE I

3 INVERSE COUNT 1% E v's. DILU ION TDK FIGURE 3 VIDE RANGE LOG CHANNEL D I I t I 4

I (J' J

~ r

'II

~ 1 4 ~

C 1 a I ' ~ I 4 I I I e I I ~

' s 1

' ~ I I

0. 9- 1 I 1 4; ~

I I I I ! t I T I I i i l

~

~ a I

~ I I I I I e ~ L 1

I ~

I I I I I;

1

~ s I I 4

~ <<1 4

I ~

0.8 ~ 1

~

~

I 1 I

~

t+ 4 1 ~ ~

4

(

I s I I L.. I I s I I I I 4 4 ~ ' 4 I

O 4 ~

~ 4 1 ~ I '

4 4

4 4 I

4 I

~

~

4

~

I i e ~

t j 1 ~ I 1

-~je

~ e 4 1

J~l I

~ 1 I L

~

4 I ~

CU

~ S I I 4 0.6 t ~

~e etW I ~ 1 I t~s i 1

--'r 1 ~

I I I!

I v 4 4 1 1

1,

~

I I I

~ s

'I" Wj 4 4

~ nU ~ 3c s

iP ~ 1 i ~

I

~

j e 't,

~ ~

~i.

~ 1 I

~

s I ~ I o

j

~ ~

O i I I T

I ~ 7 I ~ e I I I

!xi 4

~ i ~l I l 1 ~

r s I C

4 s

~

1 4 1 I s itch OC4 I W I 1 ~

Pp I-l L I I ~

~ 1 4

I

~ I il ~

l ~

I 4

I

~s

~

I

~

I

~

I 1

I I j I 0.3 4 ~ ~

v a

~ ~ 1 t l ~ t ~ I

~a

~ ~

Pe I &4 1 I ~ s ~ 4 4 ~

I ~

' ~ ~s I I a I . I ~ ~ I I I I '

0.2 s I I i 4

~

~

I 4

I ~ 1 1

~ t 4 i 4

' I I I

~

I: f e I

~as

~ I s ~ I ~ I 'S ~

0.1 4

j -i ~i-( 4 4

~ ~ ~

I

~

4 I s s

~ r ~ ~

~

I

~

~

I I

~ I I

I ~

r i I ~

~ 1 e I 4

r I i 4 ei

~

I I

I I ~ ~"

2j('.

1 I ~ I I ~ I t I I 1 I ~ I I 4 I . s I i 4; ~ ~ ~ ~ ' l 4 I IW I ~

~: ~ t ~ 1 ~ ~ ~ 1 I

0

'1 2 3, 4 5 ' 7 9 IO DILUTION TDiE Olouqs) 4 te'

~

" 1 ~ ~

1 ~

~ 1 1 1 '\"

r I'I~ ~ aa

ZERO POlKR PHYSICS TESTING:

The major tests in this phase of the startup testing program con-sist of the following:

1. Reactivity Computer Checkout
2. CEA Latch Verification
3. Unrodded Critical Boron Concentration
4. Moderator Temperature Coefficient Heasurement'.

Rod Llorth Heasurements During the performance of the reactivity computer. checkout, an appropriate range of flux was selected for use throughout the remainder of the zero power physics testing program. A comparison of measured reactivity insertion for a given period with the appro-priate design reactivity value was also performed with good results.

Following the successful completion of the CEA latch verification for groups 7, 6, 5, 4, 3, 2, 1 and B, a symmetry check test was per-formed on CEA group A. The acceptance criterion for this test states

, that the reactivity measured for each of group A's dual CEA's shall be within + 2.5q of the average reactivity measured for all of the group of A duals. This criterion was satisfied.

The unrodded critical boron concentration was determined to be 1137 ppm. This was well within the acceptance criteria of + 100 ppm of the predicted unroddcd critical boron concentration of 1146 ppm:

The ARO, HZP moderator temperature coefficient,was measured to be

+.46* 10 4 bk/k/ F. This met 'the Technical Specifjcation requirement that the MTC shall be less positive than 0.5 ~ 10 Ak/k/ F.

A comparison of the measured and design CEA group reactivity worths is provided in Table 3. A plot of integral rod worth as a function of rod position for each CEA group is provided in Figure 5 throu'gh Figure ll. The following acceptanc'e criteria for rod worth measure-ments were met:

1. The measured value of each group CEA worth is within + 15% or 0.1%hp of the design CEA worths, whichever is greater.
2. The total worth for all the CEA groups measured is within + 10% of the total de'sign worth.

~ ~

- ~

Page 7 ST. LUCIE UNIT 1 BOC, CYCLE BORON CONCENTRATION QS. DILUTION TIME PIGURE>>4

~ ' I ~

JI ~IS ' i s ~ ( ~ r

(

>> ~ t

~ I- ~ 1 ~ r ~

I I I: ~t

~ ~

.1900 ~ ~ I I '  ! ~ ~ ~

(

i t ;l

~ I r ~ >>

I

~ ~

L I

~

T I ~ *

~

~ (

r

~

s r I

'IM-

, ~

M >>L

~

I

' I l I

~ ~

,~

s r I 1800 ~ I

( ~

~ I ~ I

~ I

~ ~ ~ I

~ '

1700 I

~ I ~ s r ~ ~ j I s ~

~ r ~ (

s a

16OO I ~

L' l ~

i l <<

I S ~ I

~a ~

1509 I I ~

s

~ i >>

I 1400 Lie i ~

L l, ~

>> I

~ ~

~ ~

~ ~

J.

S.'s J

~ ~

I .j ~

s ~ ~ ~

1300 I ~ r

(- r

~ ~

' (

~

I J~ I t ~ ' ~

i I I S~ a:.

s ~ s

~

r

~

~ ~ ~

f 1

~ I 1200 ~ e I ' r ( ~ I I ~I s s t ( J J ~ (-"" l"

~ 1 1 I

~

~ I 1

<> J>>

1100 I S

(~a ~

I S I L

~ I ~ I, S i,'

S ~

r S l- ~ ~

1000 't I r

~ ~ ~ ~

'i I I

~

~

~

~

I ~a

~

t (

900 r j

I I I i S r

~

r ~

I>>

~ ~ f a

~ '

s 'a ~

r

~ ~ f I I

<< ~ a

(

~

800

  • '00 S. I I

i '

~ ~ I

~I

~

J~

~

~

i I

~

~

l I I S

~

( I

~ I I ~

i

~

~

r I

~ .l.a

~ 1 f~.:"f ."

~

~ ~

)

f a

(

0 ~

1 4. 56 7 9 10 DILUTION TIME (HOURS)

Page 9 TABLE 3 CEA NORTH StDRfARY CEA HEASURED DESIGN PERCENT GROUP MORT1j NORTH DIFFERENCE 7 .684 .76 10.0%

6 .408 .42 2.9%

5 .195 .19 + 2,6%

4 1.279 1.44 - 11.2%

3 .604 .70 - 13.7%

2 .989 l. 06 6.7%

1 .504 .49 + 2.9%

TOTAL 4.66%hp 5.06%Ap 7. 9%

4~

Page 10 ST. LUCIE UNIT 1 NORTHER IHTEGlVL CEA GROUP HOC P HZP P CYCLE 3 GEA GROUP 7

'75 Figure 5

~ I ~

g,~.p

.70 ~ " l I Jj 31= t ~I J..L!

.60 l

-, -L LLt I I l ~

~

I I l

~ ~ ~

.50) I

~ ~

-L-

! ! I

~ l I I Ji I l i-4-z"-}

I I ~ I I I I t l I I

~

l:

t ~

I I I I I I

+7

.30 I ! l

.20 ~ ~

l L

! I

~; ~

L

+ L}

I

-I-'-

~

I Ll L

.10 ~ l I I I l i I ~

I LI I

+ -}

0 10 20 30 I'}0 .. 50 60 70 80 90 '00 110 . 120'30 14<'

CEA WITllDRAUAL (INCHES)

~ p P

rp

1 Page ll ST. LUCTE UNIT 1 INTEGRAL CEA GROUP l!ORTH . i BOC, IIZP, CYCLE 3 I CEA. GROUP 6' Figure 6

.75 t ~ I Li I,

I i

I i }

.70 i I ~

I I ~

I i !

.60 I 1 I

~

~ I I I i

@i+ ...LL.

.50 I I ~

F4 M!l~ ilt o

~ I I hl 30

+ I~i LL M

+ LI I I

.20 I i t ~

I ~

.10 F-'-I ML,.

L: ~ I i i

..}~LI-0 10 20 30 40 50 60 70 80 90 100 110 120 130 14C CEA WXTIERAMAL (INC}IHS)

Page 12 ST. LUCIE UNIT 1 INTEGRAL CHA GROUP WORTll ~

HOC, 117P, CYCLE CRA GROUP Figure 7

.75

.70

+-1

~ I I ~ I

.60 ~ I I I

.50

.40 t30 tg M

L' L

..O I ~ I w

90 100. 110. 120 130 1I'i 0 10 20 30 40 ... 50 60 70 80 ~

~ t CHA WITllDRAWAL (INCllES)

Pg 8 h

,v>>

Page 13 ST. LUCXE UNIT 1 INTEGRAL CEA GROUP WORTH'OC, HZP, CYCLE 3 CEA GROUP 4 Pigure 8

1. 50 1.40

.1.30 1.20 1.10 1.00 a

.90

~

.80

70

..60

.50

.40

.30

.20

.10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 CEA WITHDRAWAL ( INCHES )

h 4' Page 14 ST. LUCIE UNIT 1 INTEGRAL CEA GROUP WORTH

~

BOC, HZP, CYCLE 3 CEA GROUP 3 Figure 9

.75

.70

.60

.50 30

.10 0 10 20 30 40 50 60 70 80 . 90 100 lip 120 130 140 CEA WITHDRAWAL (INCHES)

h h v I I 1 ~ fg ~

  • li " ~ a ~ " ' i I ~ ~ ~

Page 15 ST. LUCXE KNIT 1 INTEGRAL CEA GROUP WORTH BOC, HZP, CYCLE 3 CEA GROUP 2 Figure 10 1.50 1.40 e 1. 30 1.20 1.10 b4 90

'.80 8 .70

.60

.50

.~o

.30

.20

..10 0 10 .

20 30 40 . 50 60 70 80 90 100 110 120 130 140 CEA WITkkDRAWAL ( INCHES )

~q II

,page 16 ST. LUCIE UNIT 1 INTEGRAL CEA GROUP NORTH BOC, HZP, CYCLE GEA GROUP 1 Figure ll

~

.75

.70

.60

.'50 w ~ 30

.10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 CEA WITHDRAWAL (INCHES) /

qe Page 17 POWER ASCENSION'lux maps from the fixed incore detector system were used to verif(

that no unexpected abnormalities occurred in the Tq, LBR, FR T , Fxy ,

Fq and ASII values at the 30, 50,) 80, and 100 percent power plateaus.

Upon investigation it was determined that four incore detectors (f/ s 33, it was requested that 36, 38, 42) were producing abnormal signals and CE investigate the cause of this. Sufficient evidence was provided and it was concluded that "cable switching" was in fact corrective the cause for actions were the abnormal detector readings. Appropriate taken by rerouting the signals, hence, eliminating the anomalous readings. All of the above peaking factors and power distribution parameters corresponded well with design predictions.

Calorimetric, nuclear power, and AT power calibrations were performed at the 20, 30, 50, 80, and 100 percent power plateaus. The 100 per-cent power flux map was determined and found to meet the review criteria of:

1) + 10% of predicted if assembly power is >. 9 average power, or,
2) + 15% of predicted if assembly power is <. 9 average power.

A summary of the results obtained during the 30, 50, 80, and 100 per-cent power flux maps is provided in Figure 12, Figure 13, Figure 14, and Figur'e 15, respectively.

A verification of the shape annealing factors (SAF) was performed at the 80 percent power level. During this test, a xenon oscillation was induced with the corresponding oscillation of the axial shape index (ASI) being monitored for each power range channel and by CECOR. The Cycle III SAF values were calculated to be lower than those in the previous two cycles, however, the SAF's presently in the RPS are conservative with respect to the ones just measured.

CE concluded that the shift is probably caused by the reflection .

of neutrons off the recently installed neutron shield water bags.

A formal recommendation on the shift of the SAF's is I still pending.

The moderator temperature coefficient was measured shortly after entering the 100 percent power plateau. 'The test was performed in two phases, both with group 7 at 102 inches withdrawn. The first involves holding power constant, varying.Tavg and compensating resulting reactivity changes by CEA 7-1 movement. The second for'he involves holding Tavg constant, varying power and again compensating with CEA 7-1 movement. The measured value of .13 x 10 4 AK/K/ F satisfies the Technical Specification requirement that the MTC shall be less negative than -2.2 x 10 " AK/K/ F at rated thermal power, and less positive than 0.2 x 10 " hK/K/ F whenever thermal power is greater than 70 percent.

~r V

Page FIGURE 12 POHER DISTRIBUTION AT 30% POHER 18'731

.929

.750 .964

.702 .949. 1.125 1.121 .979

.719 .983 1.167 1.127 .994

.809 l. 136 .885, 1.230 1.010 1.294

.830 1. 174 .911 1.230 1.002 1.296

! "'Relative Powe .815 1.105 .984 1.280 1.006 1.206 .893 Densities .829 '1.128 .985 1.285 .978 1.160 .866 Measured-) .693 1 135 .985 .898 .963 1.072 .883 1.172 Design .721 .1.175 .986 .882 .944 1.031, .856 1.115

.939 .883 1. ;959 .954 1.155 .983

.989 .916 271'.289

.944'.1. 170145 ~

.920 1.113 .931 1.110 1.216 .996 1.060 .945 '. 868 .833 .976 1.176 1.240 .985 1.035 .924 '.832 .804 .936

~ .730

.756 1.109 .994 1.186 .066 1.142 .840 1. 058 .877 1.138 1.015 1.171 .864 1.125 .813 1,015 .844

.929

.973 r

.968 1.274 .873 l. 148 .963 .977 .890 .720 1.004 1.310 . .874 1.126 .943 .946 .848 .707 HEASURED DESIGN Snapshot ID C271681 Power 30  %

Date 6-9-79 Rods ARO Time 19:32 Exposure 38 EFPki Power. 32.3%

Rods Group 7 at 115.8" withdrawn

.007 1.543

g'q 1.499 1.884 ASII -.05956 Exposure 4 EFPH

~g 0 4 i

Page 19 FIGURE 13 POHER DISTRIBUTION AT 50% POWER

.724 .922

.729 .936

.687

.700

'930.958 l.ill 1.114 1.137 1.106

.977

.980

. 795 1.114 .862'902 1.215 1.009 1.303

.808 1.145 1.216 1.000 1.285 Relative Power .801 ~ 1.100 .975 1.267 1.004 1.209 .897

. Densities

.807 1.104 .9.76 1.274 .985 1.168 .878 Measured & .687 'l. 117 .975 .894 .963 1. 079 .895 1. 186 Desi'gn .702 1. 146 .977 .888 .954 1.048 .877 1.137

. 922 .864 1.260 . 961 1.179 .972 1.195 1.003 .

.962 .906 1.278 .954 1.163 .944 1.143 .961

1. 086 1.200 .9.95 l. 067 .957 .887 .863'839 1.005 1.145 1.225 .991 1.051 .948 .862 ;973

. 716'735 1.094 .990 1.189 . 876 l. 162 .864 1.094 .909 1.116 1.012 1.178 .885 ,1. 155 .847 1.056 .883

.914

..943

.958 l. 280 .880 1.163 .985 1.005 .926 .756

.988 l. 297 .886 1.148 .972 .983 .887 .745 MEASURED DESIGN Snapshot ID S271772 Power 50%

Date 6-10-79 Rods ARO Time 17:34 Exposure llS EFPH Power 48.3%

Rods Group 7 at 118.8" withdrawn

.006 1.545 1.512 Fq 1.809 ASII -.01759 Exposure ll, EFPH

~ ~

e I

I

~ M P

P

~

~

~

I ~ ~ ~

I ~

I ~

~ ~

~ ~

~ ~

~

~

I ~

~

~

o I ' o

~ ~ ~ ~

I ~ ~

~ ~ ~

~

~

I ~ 'ol I ~

~ ~

~ ~

~ ~

~ ~ ~

I ~ I ~

~

~ ~ 'o ~ ~

I ~

~ ~ '

I~ 'ol ~

~

~

~

~

~

~

~

~ ~

~

~

~ ~ ~ ~ ~

~

~ ~ ~ ~

~ ~

~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ 'lo ~ ~

I

' - I

~ ~ I

' ~

~

~

I' ~ ~

~ ~

~ ~ ~ ~

I I~ '

~

0 4)

}ly Page 21

, I'%'

~

0 Figure l5 Power Distribution at 100% Power

.720 .919

.707 .903

.662 ;913 1.102 1.110 .975 Relative Power Densities .682 .932 1.105 1.081 .963 J

.765 1.085 .843 1.208 1.009 1. 306

.785 1.115 .898 1.196 1.002 l. 273

.768 1.069 . 958 1.257 1.004 1.217 ;909

.784 1.075 . 969 1.265 .996 1.176 .897 Heasuied H .655 1. 079 .955 .889 .966 1.091 .911 1.213 Design'ed + .683 1.116 .969 ;898 .967'.066 .904 1.158

.884 .841 l. 246 .968 1. 195 .994 1.222 1.042

.936 .902 1.268. .966 1.175 .968 1.169 .989 1.037 1.173 .996 1.070 .981 .917 .906 1.052 1.112 1.207 1.002 1.069 .972 .894 .877 1.010 685

~ 712 1.062 .982 1.201 .899 1. 204 . 905 1.150 .956 1.090 1.018 1.185 .911 1. 180 .885 1.094 .921

.879

.905 .936 1.272 .904 1.201 1.034 1.056 .981 .798

.971 1.284 ;904 1.160 1.000 1.020 .925 .787

~ J

?feasured Desi Snapshot ZD G273 632 Power 100%

Date , 6-29-79 . Rods ARO TiQle 07:48 'xposure 192 EFPH Power 99.5%

Rods . Group 7 at 136" withdrawn Tq .005

'FR Fxy T 1.550 1.506 1.790 ASlZ .01313 Exposure '64 EFPH

~Sammar All Technical Specifications were met. Recommendation from CH on SAF's is still pending.

References:

1. Letter F-CE-6728, "Low Power Physics Test Predictions," A. S. Jameson to R. Wm Winnard dated May 1, 1979.
2. Letter F-CE-6738, "Power Ascension Test Predictions for St, Lucie 1 Cycle 3," A. S. Jameson to R. W. Winnard dated May 1, 1979.
3. Letter F-CE-6807, "Anomalous Detector Readings for St. Lucie 1 Cycle 3," A. S. Jameson to C. H. Wethy dated July 6, 1979.
4. Letter Hk. 8605, "Request for Recommendation Concerning Cycle 3 SAF's,"

C. H. Wethy to A. S. Jameson dated July 6, 1979.

5. Letter PRN-L1-79-185, "St. Lucie Unit 1 Startup Testing," A. D. Schmidt to R. E. Uhrig dated May 25, 1979.
6. "Cycle 3 Startup Testing for St. Lucie 1," R. E. 'Uhrig to R,. W. Reid, R.E. Docket No. 50-335.
7. Letter F-CE-6759, "Additional Sets of Kinetics Parameters for Low Power Physics Testing at St. Lucie 1>'. S. Jameson to R.H. Winnard dated May 25, 1979.

0~

f