ML18092A335

From kanterella
Revision as of 11:57, 19 April 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
App XI to Salem Generating Station 316(b) Demonstration, Weakfish (Cynoscion Regalis): Synthesis of Info of Natural History,W/Ref to Occurrence in Delaware River & Estuary & Involvement W/Salem Generating Station.
ML18092A335
Person / Time
Site: Salem, Hope Creek, 05000000
Issue date: 05/31/1984
From:
Public Service Enterprise Group
To:
Shared Package
ML18092A334 List:
References
NUDOCS 8410230338
Download: ML18092A335 (747)


Text

{{#Wiki_filter:The Energy People 8410230338 840921 PDR ADOCK 05000354 A PDR -NOTICE -THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE REEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL. DEADLINE RETURN DATE RECORDS FACILITY BRANCH Appendix XI Weakfish (Cynosclon regalls)

  • *
  • WEAKFISH (CYNOSCION REGALIS):

A SYNTHESIS OF INFORMATION OF NATURAL HISTORY, WITH REFERENCE TO OCCURRENCE IN THE DELAWARE RIVER AND ESTUARY AND INVOLVEMENT WITH THE SALEM GENERATING STATION SALEM GENERATING STATION 316(b) DEMONSTRATION APPENDIX XI NPDES Permit No. NJ0005622 NRC Operating Licensing DPR-70 & DPR-75 NRC Docket Numbers 50-272 & 50-311 Public Service Electric and Gas Company 80 Park Plaza Newark, N.J. 07101 May 1984

  • PREFACE The Salem Generating Station 316(b) Demonstration summarizes the results of 15 years of environmental studies conducted by Public Service Electric and Gas Company (PSE&G) and its consultants on the Delaware River Estuary. Early studies responded to Nuclear Regulatory Commission requirements.

Later studies were conducted according to a plan approved by the U.S. Environmental Protection Agency -Region II. The "Salem Generating Station 316(b) Ecological Impact Assessment Plan-of-Study" listed nine fish species and two macroinvertebrate species as target species. It directed that in-depth studies be conducted for these species and that species-specific reports be prepared. These reports are Appendices II.through XII of the Salem Generating Station 316(b) Demonstration. Essentially, these appendices are species monographs that follow a standardized Table of Contents to facilitate referencing among species in the Demonstration. Each report addresses the species first as an organism and then as a Delaware Estuary population or stock with emphasis on post-1977 data collected according to the Plan-of-Study. Study data are corroborated by, and supplemented with, literature to develop important themes. Finally, aspects of the species involvement with Salem through entrainment and/or impingement are described

  • i CONTENTS

.................*.....*...............*..... o

  • CONTENTS ***.....********..**.**.**...***

o ******* Q ***** INTRODUCTION. .........................................

1.0 IDENTITY

...... . 1.1 NOMENCLATURE. 1.1.1 1.1. 2 Valid Name Synonymy .. 1.2 TAXONOMY *....* Affinities .. . '* 1.2.1 1. 2. 2 1.2.3 1. 2. 4 Taxonomic Status .. Subspecies ...*... Standard Common Names, Vernacular Names .. 1.3 MORPHOLOGY ......*...*....

1. 3 .1 1. 3. 2 1. 3. 3 1.3.4 External Morphology

.. Cytomorphology ...*.. Protein Specificity. Aging ............... . 2.0 DISTRIBUTION .. 2.1 TOTAL AREA. 2.2 DIFFERENTIAL DISTRIBUTION .. Preadul ts *. Adults ..*. 2.2.1 2. 2. 2 2.3 DETERMINANTS OF DISTRIBUTION . ... CHANGE. 2.4 HYBRIDIZATION ..*...*.................

3.0 BIONOMICS

AND LIFE HISTORY. 3.1 REPRODUCTION .. 3.1.1 3.1.2 3 .1. 3 3 .1.4 3.1.5 3.1.6 3 .1. 7 Sexuality

  • . Maturity .* Mating *..* Fertilization

.. Gonads ... Spawning. Spawn ..... 3.2 EMBRYONIC PHASE .* 3.2.1 3.2.2 3.2.3 Development, Duration .. Environmental Conditions, Predators .. PHASE .. 3.3 LARVAL 3.3.1 3.3.2 3.3.3 3.3.4 Development, Duration *. Environmental Conditions, Competitors .. Predators .... ii Hardiness .. Hardiness .. .** .

  • Page i ii .., __ y_ 1-1 1-1 1-1 1-1 1-1 1-1 1-3 1-3 1-3 1-4 1-4 1-5 1-5 1-5 2-1 2-1 2-1 2-1 2-3 2-4 2-4 3-1 3-1 3-1 3-1 3-1 3-1 3-2 3-3 3-4 3-4 3-4 3-5 3-6 3-6 3-6 3-7 3-8 3-8 *
  • 3.4 JUVENILE PHASE **** ** ****.*****

3.4.1 Development, Duration .... 3.4.2 Environmental Conditions, 3.4.3 Competitors

  • . Hardiness

.* 3.4.4 Predators .... 3.5 ADULT PHASE *...* Longevity .* 3.5.1 3.5.2 3.5.3 3.5.4 Environmental Conditions, Hardiness ... Competitors .*... Predators ....... . 3.6 PARASITES, DISEASES, INJURIES AND ABNORMALITIES JUVENILES AND ADULTS. 3.7 NUTRITION AND GROWTH. 3.7.1 3.7.2 3.7.3 Feeding ..... . Food ...... . Growth Rate .*. 3.8 BEHAVIOR *......** . . . . . . 3.8.1 3.8.2 3.8.3 Migrations and Local Movements. Schooling ...*......... Responses to Stimuli ........... . 4.0 POPULATION ... 4.1 STRUCTURE ....*.* 4.1.1 4.1.2 4 .1. 3 Sex Ratio. Age Composition ......... . Size Composition .* 4.2 ABUNDANCE AND DENSITY. 4.2.1 4.2.2 4.2.3 4.2.4 Average Changes Average Changes Abundance .. in Abundance .. Density ..... . in Density .. . 4.3 NATALITY AND RECRUITMENT. 4.3.1 4.3.2 4.3.3 Reproduction Rate .*... Factors Affecting Reproduction .. Recruitment ......... . 4.4 MORTALITY AND MORBIDITY .. 4.4.1 Mortality Rates ..*... 4.4.2 Factors Causing or Affecting Mortality .. POPULATION

  • .....*...*...........

4.5 DYNAMICS

OF 4.6 THE POPULATION IN THE COMMUNITY AND ECOSYSTEM .. 5. 0 EXPLOITATION .. , .. , .. 5.1 FISHING EQUIPMENT. 5.1.1 5.1.2 Gear *..... Boa ts *.... 5.2 FISHING AREAS. 5.2.1 5.2.2 5.2.3 General Geographical Geographic Ranges .. Depth Range ...... . iii Distribution

  • . Page 3-8 3-8 3-9 3-10 3-10 3-10 3-10 3-11 3-11 3-11 3-11 3-12 3-12 3-13 3-14 3-17 3-17 3-18 3-19 4-1 4-1 4-1 4-1 4-2 4-3 4-3 4-3 4-4 4-6 4-7 4-7 4-7 4-8 4-9 4-9 4-11 4-12 4-13 5--1 5-1 5-1 5-2 5-2 5-2 5-2 5-3

..

  • 5.2.4 Condition of the Grounds ... 5.3 FISHING SEASONS *******.*****.***

5.4 FISHING

OPERATIONS AND RESULTS .. 5.4.1 Effort and Intensity .. 5.4.2 Selectivity .* 5.4.3 Catches ............... . 6 . 0 ENTRAINMENT .............. . 6.1 DENSITY IN INTAKE WATER. 6. 2 SURVIVAL ................ . 7.0 7.1 7.2 7.3 7.4 7.5 IMPINGEMENT .............. . DENSITY IN INTAKE WATE.R. AGE CLASS COMPOSITION. COLLECTION EFFICIENCY .. RECIRCULATION SURVIVAL ..... . LITERATURE CITED ..................................... . *Not discussed; no data available. iv Page 5-3 5-4 5-4 5-4 5-6 5-6 6-:-1 6-1 6-4 7-1 7-1 7-1 7-2 7-2 * *

  • *
  • INTRODUCTION Cynoscion regalis, commonly known as weakfish, is a schooling species which inhabits coastal and, seasonally, estuarine waters of the Atlantic coast from the east coast of Florida to Massachusetts Bay. Adults are warm-season migrants that spawn in coastal waters and bays. In the Delaware Bay spawning apparently occurs from late May through August and may be typified by two peaks in intensity, in June and again in July. Early lifestages are believed carried upstream by subsurface flow toward the head of the bay, and further distribution occurs through the early juvenile stage. Young weakfish, which are euryhaline and have been reported in fresh water, grow rapidly through summer on a diet of planktivorous invertebrates and fishes. By late summer adults and young have moved to downbay waters and typically have begun southerly coastal movements by October-December.

Weakfish is recreationally and commercially exploited in the Delaware Bay. In 1979, the U.S. Environmental Protection Agency -Region II (EPA) selected as a target species for the Salem 316(b) Demonstration on the premise that early life stages could experience involvement with the station's cooling-water intake system while in the vicinity. This report presents technical information on the species and its use of the Delaware Bay and Estuary. rt also relates information on aspects of involvement with Salem that can be quantified in the Demonstration, to the degree possible, and evaluated

  • v .*-': ...
  • \
  • 1-1 SECTION 1.0 IDENTITY 1.1 NOMENCLATURE

1.1.1 Valid

Name Cynoscion regalis (Bloch and Schneider, 1801) 1.1.2 Synonymy Johnius regalis -Bloch and Schneider 1801:75 (type locality New York) Roccus comes -Mitchill 1814:26 Labrus squeteague -Mitchill 1815:396 otolithus regalis -Cuvier and valenciennes 1830:67 Cynoscion r8gale -Gill 1862:581 Cestreus regalis -Jordan and Eigenmann 1889:366 This synonymy is after Jordan and Evermann (1896-1900).

1.2 TAXONOMY

1.2.l Affinities Classification follows Greenwood et al. (1966). Taxa higher than superorder are.not included: Superorder Acanthopterygii Order Perciformes Suborder Percoidei Family Sciaenidae Genus Cynoscion Species Cynoscion regalis The weakfish is one of 33 species of the family Sciaenidae found along the Atlantic, Gulf and Pacific coasts of the United States (Robins et al., 1980). The family is commonly known as the drum family because many species use special muscles to vibrate their swim bladders to produce drumming or croaking sounds (Jordan and Evermann, 1896-1900; Bigelow and Schroeder, 1953). The genus Cynoscion includes five other species in the United States: the sand seatrout, Cynoscion arenarius; spotted seatrout, c. nebulosus; silver seatrout, c. nothus; shortfin corvina, c. parvipinnis, and orangemouth corvina, c. xanthulus (Robins et al., 1980) . The white seabass (formerly

c. nobilis) is reclassified as 1-2 Atractoscion nobilis in Robins et al. (1980). Weakfish is the only Cynoscion species that commonly occurs in Delaware Bay, although the spotted seatrout and silver seatrout occur along the Atlantic coast and the former ranges as far north as Cape Cod (Johnson, 1978). The following genus and species descriptions are condensed from Jordan and Evermann (1896-1900), Hildebrand and Schroeder (1928) Bigelow and Schroeder (1953). Genus Cynoscion Gill The genus can be differentiated-from other sciaenids by the presence of an elongate, compressed body, conical head and a large terminal mouth sharp in narrow bands. The upper jaw contains 2 tapered canines (1 of which is sometimes obsolete);

canir.es are absent from the lower jaw. Species Cynoscion regalis (Bloch and Schneider) (Fig. 1-1) The weakfish is distinguished from other Cynoscion species by the following meristic characteristics: anal fin with 11 or 12 soft rays, 11-13 gill rakers on lower limb of first arch, 10 scales in a series between the origin of the anal and the lateral line, and lateral line scales ranging from 76 to 86. Further, adult weakfish exhibit a characteristic dark olive green dorsal coloration which fades to a silvery or chalky white underside. The back and sides are burnished with purple, green, blue and gold spots which are most numerous above the lateral line. Lateral areas typically exhibit dark diagonal lines and blotches and fins are dusky to yellow. A detailed description of weakfish eggs is presented in Section 3.1.7. Mercer (1983) notes the difficulty in distinguishing weakfish eggs from those of other sciaenids, e.g., silver perch, kingfish and black drum. During the present study this was not considered a significant source of bias due to small number of adults of these species in Delaware Bay. However, differentiating weakfish and windowpane eggs was initially problematic when studies were expanded to include the lower Delaware Bay in 1979. Although there is overlap in all distinquishing characteristics, a combination of typical minimum and maximum limits of spawning season, temperature of occurrence, salinity of occurrence and egg size (Table 1-1)

  • I I. I I I I r I I 1-3 can be used to identify nearly all specimens.

The few specimens that did not meet these criteria were classified as unidentified. Detailed morphological descriptions of pre-adult stages are presented in Section 3.0. Prolarvae are 1.49-1.99 mm (NL) upon hatching (Lippson and Moran, 1974: Johnson, 1978: Wang and Kernehan, 1979), absorb their yolk-sac by about 2.2 mm NL (Welsh and Breder, 1923; Johnson 1978): complete transition to postlarvae occurs between 3.0-3.5 mm (Johnson, 1978: Wang and Kernehan, 1979). Postlarvae have been reported to transform to juveniles at lengths ranging from 10.0 (Wang and Kernehan, 1979) to 12.5 mm TL (Welsh and Breder, 1923): the most frequently cited length was ca. 10.5 mm TL (Pearson, 1941; Lippson and Moran, 1974: Johnson, 1978). In the present study, were considered prolarvae from hatching through 3.0 mm TL, postlarvae from 3.1 through 10.5 mm TL, and juveniles fr0m 10.6 mm TL to maturity. See Section 3.1.2 for size at maturity.

1.2.2 Taxonomic

Status This is a well-defined morphospecies (Chao, 1978). 1.2.3 Subspecies Evidence exists that sand seatrout, which is found only in the Gulf of Mexico, is a clinal subspecies of weakfish that became separated from the main population by the emergence of the Florida peninsula (Ginsburg, 1929: Alperin, 1953: Weinstein and Yerger, 1976). Ginsburg's (1929) original description of sand seatrout noted that there is "room for difference of opinion as to *** whether they should be regarded as species or subspecies." Alperin (1953) theorized the two are conspecific based on meristics. Moshin (1973) hypothesized that weakfish and silver seatrout are on a different phyletic line than spotted and sand seatrout, but Weinstein and Yerger (1976) rejected that phylogeny and concluded that sand seatrout is a subspecies of weakfish based on similarities in meristics and biochemistry.

1.2.4 Standard

Common Name, Vernacular Names Weakfish is the common name for c. regalis listed by the American Fisheries Society (Robins et al., 1980). Other ! . 1-4 names used commonly are squeteague, trout, seatrout, gray seatrout, gray trout, weakie, squit, squittee, sheantts, chickwick, succoteague, drummers, saltwater trout, tide runner, sun trout, shad trout, yellow-finned trout, yellowmouth trout and summer trout (Jordan and Evermann, 1896-1900: Hildebrand and Schroeder, 192&: Bigelow and Schroeder, 1953: Mahood, 1974: Mercer, 1983). 1.3 MORPHOLOGY

1.3.1 External

Morphology Adults are described in Section 1.2.1: eggs, larvae and juveniles are described in Sections 3.1.7, 3.3.1 and 3.4.1, respectively. Equations for converting among standard (SL), fork (FL) and total length (TL) are presented in Table 1-2. Fork length is equivalent to total length to at least 250 mm. Populations Based on a tagging study and differences in scale growth in age 0+ specimens, Nesbit (1954) suggested that northern and southern weakfish subpopulations might exist: however, he concluded that adults from two or more nursery grounds did ultimately mix and that weakfish were apparently a common stock orginating in southern waters. Perlmutter et al. (1956) found differences in scale growth, growth rate and morphometry between fish from the North Carolina to Virginia fishery and the Cape May (New Jersey) to Montauk, Long Island (New York) fishery. Both studies reported faster growth and greater longevity in fish from northern waters. Seguin (1960), in a study of meristics and morphometrics, postulated three subpopulations -a northern group (New York), central group (Delaware and perhaps Virginia), and a southern group (North Carolina). She reported the Delaware group could be differentiated from southern and northern fish on the basis of caudal peduncle depth and gill raker number. Merriner (1973) also hypothesized several subpopulations based on differing growth rates throughout the range, particularly between fish in North Carolina and Chesapeake Bay. He maintained that direct recruitment of North Carolina fish to the northern stock is unproven and believed, as Nesbit (1954) did, that if such recruitment exists it is minimal. I .I I I I I J I I I I I l r l I I I 1-5 None of the above studies are conclusive enough to define separate stocks of weakfish. variation in some meristic characters is only marginally significant (Joseph, 1972). Also, it is likely that clinal differences in morphometry and growth rates are environmentally, not genetically, induced (Weatherley, 1972; Cushing, 1973; Seagraves, 198la; Shepherd, NMFS, pers. comm.)

  • Most recently, Crawford and Grimes (1983) looked for genetic differences among hypothesized stocks from North Carolina, Chesapeake Bay and from Delaware Bay north. Results of electrophoretic analysis of young and adult fish did not support the race hypothesis, and Crawford (pers. comm.) believes the species maintains a genetically homogenous population at least during periods of abundance.

1.3.2 Cytomorphology

No chromosomal investigations on weakfish are reported in the subject review by Gold et al. (1980), and no record of such studies being conducted since 1980 has been found. 1.3.3 Protein Specificity Sullivan et al. (1975) reported amino acid composition of parvalbumins in weakfish. Weinstein and Yerger (1976) produced serum and muscle protein for the four Atlantic and Gulf Cynoscion species and concluded that spotted seatrout is the most divergent species of the group and that sand seatrout should be considered a subspecies of weakfish (Section 1.2.3). Russell and Jeffrey (1979) found three serum transferein patterns among adult weakfish from lower Rappahannock River, Virginia. Analysis indicated no significant difference among patterns, supporting the genetic hypothesis of two codominant autosomal alleles. 1.3.4 Aging weakfish have been aged by reading annuli on scales, otoliths and vertebrae and from length-frequency distributions (Merriner, 1973). In the present study, age was inferred from length-frequency distribution and correspondence to length-at-age data of Seagraves (198la). Some analyses in this report require designation of a birth 1-6 date for the species. May 1 was chosen based on commencement of spawning (see Section 3.1.6) and formation. annulus I .I I I I I 1 l J

  • Table 1-1 Differentiating criteria and characteristics of the eggs of weakfish and windowpane.

Spawning season Spawning temperature (°C) Spawning salinity (ppt) Egg diameter (mm) 1. Present Study 2. Harmic (1958) 3. Herman (1963) 4. Wang and Kernehan (1979) 5. Johnson (1978) 6. Merriman and Sclar (1952) 7. Smith et al.-(1975) 8. Herman (1958) 9. Wheatland (1956) 10. Austin (1973) 11. Perlmutter (1939) Weakfish peaks mid-late May and June-July 1 (May-September) typically> 19.0 2 (15.5 3-25.0 4) 4 typically ) 15 (12.0-32.5) 4 typically 0.84-0.96 5 (0. 68 6-1.4 4) Windowpane 1 7 8 9 8 9 split seasons April ' ' ' -July ' . 10 11 . 8 10 or May-June ' and September ' 1 9 or September-November ' 9 typically 8.0-10.0 (7 .0-20.0) 9 9 18. 2-30. 0 i.01 9 (0.90-1.38) 9 ...... I -...J Location Delaware River estuary Delaware Bay Georgia North Carolina

  • 2 r not reported.
    • Table 1-2 Conversion equations for paired combinations of standard (SL) and total (TL) lengths of weakfish.

Reference Size Range (mm) Equation Present Study 50-345 TL SL=-7.181+0.882 TL=8.142+1.134 Seagraves, 198la 118-702 SL SL=-10.3+0.869 TL=5.2+1.172 SL Jorgenson and Miller, 1968 10-52 TL SL=0.266+0.763 TL=0.070+1.290 Merriner, 1973 age o+ (**) SL=0.814 TL TL=l.229 SL age l+ (ca. 155 SL) SL=0.827 TL TL=l.209 SL age 2+ (ca. 220 SL) SL=0.830 TL TL=l.205 SL age 3+ (ca. 275 SL) SL=0.826 TL TL=l.210 SL age 4+ (ca. 337 SL) SL=0.831 TL TL=l.204 SL age 5+ (ca. 415 SL) SL=0.831 TL TL=l.203 SL size or range not specified

  • TL SL TL TL SL 2 r 0.99 0.99 0.99 0.99 * * * * * * * ...... I 00
  • *--:_ .:.:_
\ . I Adult weakfish, Cynoscion regalis (Bloch and Schneider), PUBLIC SERVICE ELECTRIC Alill GAS COMPANY 300 mm FL. SALEM 316(b) STUDY Figure 1-1 I I I I I I 2.1 TOTAL AREA 2-1 SECTION 2.0 DISTRIBUTION Weakfish ranges along the Atlantic coast from Massachusetts Bay to southern Florida (Wilk, 1979) and occasionally strays to Nova Scotia (Bigelow and Schroeder, 1953) and the Gulf of Mexico (Weinstein and Yerger, 1976) (Fig. 2-1). It is most common from North Carolina to New York (Mercer, 1983). The principal reproductive range is from Chesapeake Bay to Montauk, Long Island, NY (Colton et al., 1979); however, spawning has been reported from the Gulf of Maine (Bigelow and Schroeder, 1953) to Georgia (Mahood, 1974). Local Distribution Adults begin entering the Delaware Bay (?ig. 2-2) in late March and April and congregate in the lower half of the Bay. During spawning, in late May through August, they become widely distributed throughout the Bay (Section 3.1.6). Young use the entire study area (rkm 0-117) as a nursery during the summer (Section 4.2). Weakfish (mostly O+ young) have been reported in tributaries of the River and Bay from Raccoon Creek, NJ, rkm 130 (Himchak, 1981) to the Broadkill River, DE, rkm 2 (Martin, 1974; Daiber et al., 1976) (Table 2-1). It is also likely that they inhabit other tributaries throughout the Delaware River estuary. Weakfish larvae, young and adults have been reported in the Chesapeake and Delaware Canal (Table 2-1, Fig. 2-3), a water body that affords passage between the Delaware and Chesapeake Bay systems for many fishes (Ritchie and Koo, 1973). Dovel and Lippson (1973) reported an apparent movement of weakfish young into Chesapeake Bay via the Canal. 2.2 DIFFERENTIAL DISTRIBUTION 2.2.l Preadult Habitat Spawning generally takes place in estuarine and nearshore waters; off Georgia and South Carolina, it may also occur in 2-2 deeper waters of sounds (Mercer, 1983). Several estuarine studies suggest a progressive upriver displacement with age until the fall seaward movement.

Major concentrations of eggs tend to occur in the lower portions of estuaries. Olney (1983) reported eggs concentrated at mid-channel near the mouth of Chesapeake Bay during 1971 through 1975. In Delaware Bay the major concentrations have also occurred in the Bay, especially south of the Mispillion River, DE (rkm 19) (Harmic, 1958; Daiber et al., 1976; Present Study, Section 4.2.3). Larvae and juveniles tend to be distributed further upstream (Massman et al., 1958; Lippson, 1973; Loos, 1975; EA, 1976; Polgar et al., 1979, Olney, 1983); probably reflecting some utilization of the two layered transport system common to many estuaries (Lippson et al., 1979; Appendix I). In summers of the present study, young-of-year juvenile weakfish were abundant in the upper bay and lower river, although they were collected as far upriver as rkm 140, near Tinicum Island. Typically, they occur only sporadically beyond Wilmingtonj "DE (rkm 114) (Harmon and Smith, 1975; Morrisson et al., 1976; Present Study). In fall juveniles are distributed along the Atlantic coast and in the mouths of estuaries from New York to North Carolina (Nesbit, 1954; Johnson, 1978). In winter they are distributed near shore along the coast from Virginia to Florida (Wilk, 1979). Vertical Distribution Eggs are initially pelagic and highly bouyant, but in the later stages of development their specific gravity increases enough to cause them to sink (Welsh and Breder, 1923; Lippson and Moran, 1974). Results from ichthyoplankton field studies in the Delaware River and Bay seem to support the influence of a time-or age-dependant mechanism on vertical distribution. Harmic (1958), in studies including the principal spawning ground in the lower bay and up to the Smyrna River (rkm 70), collected 88.3 percent of the eggs in surface samples. Present study collections taken in the lower river and upper bay (rkm 61-97), up-estuary from the principal spawning grounds, indicated that eggs were most abundant in the mid-depth and bottom collections (Maiden et al., 1976, 1977; PSE&G, 1978; Table 2-2). Most eggs taken in this latter study were developmentally advanced, and these less bouyant eggs were most likely transported from the spawning grounds by net upriver bottom currents. Collections taken at rkm 80 during 1982 suggested that eggs were most abundant in the upper half of the water column (Table 2-3); however, this database was relatively small compared to the previously cited present-study information and is therefore not considered wholly representative. I I I I le I I I I I I I l J 2-3 Larvae gra_dually become demersal and nektonic as they develop (Pearson, 1941: Lippson and Moran, 1974). In the Delaware River and Bay they occurred at all depths but were most abundant near (Tables 2-2 and 2-3: Harmic, 1958). The vertical distribution of 0+ weakfish in Delaware Bay was examined using surface, midwater and bottom hauls of a 4.9-m otter trawl on three transects located as follows: 1) across the lower river (ca. rkm 80) between Salem and the Appoquinimink River, DE: 2) across the middle bay between Kitts Hummock, DE (ca. rkm 40) and Egg Island Point, NJ (ca. rkm 35) and 3) across the lower bay between Slaughter Beach, DE (ca. rkm 15) and Miami Beach, NJ (ca. rkm 12) (Figs. 2-4 through 2-7). Abundance was greatest near bottom on all three transects (Figs. 2-4 through 2-7). 2.2.2 Adults Habitat During April through November adults are found in nearshore coastal areas as well as in the main body of estuaries and sounds where salinity is to high (ca. 10 ppt and above) and sand bottoms are available (Johnson, 1978; U.S. EPA, 1983). Older fish are distributed toward the northern end of the species range (Wilk, 1979). In Delaware Bay adults are abundant below Artificial Island (rkm 80) and especially in the lower Bay (rkm 0-40) (Thomas, 1971). Daiber and Smith (1971) reported adults inhabit all parts of the Bay but they observed greatest density in downbay sectors off the Mispillion River (rkm 19). In Chesapeake Bay, adult fish were most abun.dant in the mid-to lower main bay, and were uncommon in tributaries (Massman et al., 1958; Lippson, 1973: Loos, 1975). The winter distribution is offshore of North Carolina to New Jersey at depths of 10 to 55 fathoms (20-100 m) (Pearson, 1932: Bigelow and Schroeder, 1953: Wilk, 1979). Vertical Distribution Adults distribute throughout the water column. Individuals are taken dear surface in gill nets (Present Study; Seagraves, 198lb), near bottom in otter trawls (Present Study; Shepherd, 1982), and at midwater by pelagic trawls (Shepherd, 1982). 2-4 2.3 DETERMINANTS OF DISTRIBUTIONAL CHANGES Changes in adult weakfish distribution are difficult to assess due to the migratory nature of the species (Seagraves, 198la). Periods of unusual abundance in the northern extreme of the species range have been reported (Bigelow and Schoeder, 1953). Poole (NYDEC, pers. comm.) has suggested that such observed increases may simply reflect a coastwide increase in species abundance. Seagraves (198la) concurred, stating that, in Delaware Bay, trends in weakfish abundance and average size have paralleled these elsewhere on the*Atlantic coast. Localized absence of young fish may reflect a regional episode of poor for example, Joseph (1972) believed that heavy usage.of DDT may have resulted in the lack of weakfish larvae in Chesapeake Bay from 1959 through 1963. 2.4 HYBRIDIZATION Moenkhaus (1911) attempted unsuccessfully to hybridize a mummichog (Fundulus heteroclitus) female with a weakfish male. Development ceased 42.5 hrs after fertilization .

  • I I I I River Kilometer 2 2 19 28 29 29 34 37 38 45 46 so 52 53 55 63 72 78 81 82 88 95 '130
  • Inferred * -. .-' 2-5 Table 2-1 Tributaries of the Delaware River estuary in which weakfish have been reported.

Location Dividing Creek, NJ Broadkill River, DE Mispillion River, DE Dennis Creek, NJ West Creek, NJ Riggen's Ditch, NJ Maurice River, NJ Murderkill River, DE St. Jones River, DE Little River, DE Mahon River, DE Nantuxent Creek, NJ Back Creek, NJ Simons River, DE Leipsic River, DE Bombay Hook, DE wetlands Smyrna River, DE Hope Creek, NJ Blackbird Creek, DE Appoquinimink Creek, DE Alloway Creek, NJ Chesapeake & Delaware Canal Raccoon Creek, NJ Life Phase young* young*, adult young*, adult young* young* yo_ung* larvae, young young* young* young* adult young* young* young*, adult young*, adult young* young* young young young young larvae, young, adult young Source Walton and Patrick, 1973 Martin, 1974; Daiber et al., 1976 Martin, 1974; Daiber et al., 1976; Walton and Patrick, 1973 Walton and Patrick, 1973 Walton and Patrick, 1973 Walton and Patrick, 1973 Walton and Patrick, 1973, Himchak, 1982 Martin, 1974; Daiber et al., 1976 Martin, 1974; Daiber et al., 1976 Martin, 1974; Daiber et al., 1976. Martin, 1974 Walton and Patrick, 1973 Walton and Patrick, 1973 Martin, 1974; Daiber et al., 1976 Martin, 1974; Daiber et al., 1976 Walton and Patrick, 1973 Daiber et al., 1976; Walton and Patrick, 1973 Smith, 1971 Himchak, 1981; Smith, 1971; Thomas, 1971 Smith, 1971; Thomas, 1971 Smith, 1971 Taylor et al., 1973; Himchak, 1981; Bason et al., 1976; Daiber et al., 1976; Ritchie and Koo, 1973; Himchak, 1981 2-6 Table 2-2 Mean density (n/m 3) of weakfish eggs and and bottom samples taken near Artificial Location Source (river kilometers) Surface Eggs Maiden et al., 1976 72-97 (l. 001 Maiden et al., 1976 61 <O .001 Maiden et al., 1977 72-97 <0-.001 PSE&G, 1978 72-97 0.011 Larvae Maiden et al., 1976 72-97 <0.001 Maiden et al., 1977 72-97 o.oos PSE&G, 1978 72-97 0.230 larvae in Island in Depth Middepth 0.011 <0.001 <0.001 0.073 0.002 0.009 0.335 surface, middepth the present study. Number Bottom Taken 0.015 697 0.012 424 0.004 67 0.103 2,033 0.003 129 0.006 229 0.504 12,792 I

  • I I I I .J l I I I I I I I I I '* I I Mean surf ace and Date June 8 June 14 June 21 July 6 July 12 July 20 Aug. 4 . *.* 2-7 density (n/m3) Table 2-3 of weakfish eggs and larvae in bottom samples, present study W-factor program, 1982. Eggs Larvae Surf ace to Middepth surface to Middepth Middepth to Bottom Middepth to Bottom 0 0 0.119 0.127 0 0 0.008 0.010 0 0 0.038 0.052 0 0 0.057 0.135 0.006 0 0.046 0.029 0.026 0. 001 0.065 0.105 0 0.004 0.003 0.003 45°N-35°N-30°N-25° N., 85°W I I'\ .. 80°W PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY 2-8 WEAKFISH ' I 75°W I 70°W I 65°W Distribution of weakfish along the Atlantic coast of the United States. Arrow indicates Delaware Bay. Figure 2-J I I 60°W I I *
  • f>ENNSYLVAN IA*** . . ., *.****. ... . ** DELAWARE . . ,,. .. *. .* . . PUBLIC SEi.VICE EUCTRIC AND GAS COMPA:.'n' SALEM 3l6(b) STUDf 2-9 N 10 20 30 km ISLAND ATLANTIC OCEAN HENLOPEN Indian River Inlet Delaware River system from Cape May to Trenton, NJ. Figure 2-2 I.A. Research/Consulting

* DELAWARE N km 0 3 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEK 316(b) STUDY 2-10 JERSEY Delaware River system from Smyrna River, DE to Pea Patch Island, DE. .,.. __________

,_, ___ F_i_g_u_r_e __ 2 ___ 3 ____________

i I I I 8 ... 18 6 9 12 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316{b) STUDY 2-11 SNGS 9 18 7 6 4 1 9 7 Distribution (mean number per haul) of o+ weakfish -on a--transect across -the Delaware River during June (above) and July 1980 Figure 2-4 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STU'DY 2-12 Distribution (mean number per haul) of o+ weakfish on a transect across the Delaware River during August (above)* and September-October 1980 (below). Figure 2-5 ** I t lf) Oil
: w 1-w PUBLIC DE 3 *. 6 9 VERTICAL PROFILE TRANSECT 12 15 DE SERVICE ELECTRIC Alill GAS COMPANY SALEM 316(b) STUDY -----* NJ Distribution (number per haul) of o+ weakfish on a_transect across middle Delaware Bay during July and August 1980. Figure 2-6 .

r Cf) °' w 1-w -12 18 24 PUBLIC SERVICE ELECTRIC Al;J> GAS SALEM 316(b) STUDY COMPANY NJ 0 0 0 0 1 0 * .. 0 ** . . -.. .. Distribution (number per haul) of O+ weakfish on a transect across lower Delaware Bay during July and August 1980. Figure 2-7 --N I ...... .,,.

  • 3.1 REPRODUCTION

3.1.1 Sexuality

-.-.* 3-1 SECTION 3.0 BIONOMICS AND LIFE HISTORY Weakfish are dioecious. The sexes appear externally. The males produce "drumming" sounds with special muscles which are vestigial in females (Seymour, 1975). No hermaphroditic weakfish have been reported.

3.1.2 Maturity

Most males and females are sexually by the end of their second summer (age l+) and practically all are mature by the end of their third (age 2+) (Merriner, 1976: Wilk, 1979; Shepherd, 1982). Earlier researchers reported maturity at an older age; Bigelow and Schroeder (1953), two to three years, and Welsh and Breder (1923), at 2 3 years for males and 3 to 4 years for females. Merriner (1976) found size, rather than age, the dominant factor in attainmen.t of sexual maturity in North Carolina fioh; he also reported that males matured at a slightly smaller size than females (Table 3-1). Shepherd (1982) reported that in New York Bight weakfish matured within the same size range reported by Merriner (1973; 1976) but found no difference between sexes (Table 3-1). The smaliest mature male and female reported by Shepherd (1982) were 21 and 20 cm TL, respectively; the largest immature male and female were 33 and 40 cm TL, respectively (Table 3-1). Daiber and Smith (1971) reported that in Delaware Bay, females less than 24 cm TL in June and males less than 21 cm TL would not spawn in that year. 3.1.3 Mating Weakfish are polygamous broadcast spawners (Welsh and Breder, 1923). The male produces a croaking or drumming *sound which is believed associated with mating behavior (Hildebrand and Schroeder, 1928: Thomas, 1971: Horseman, 1979). 3.1.4 Fertilization Fertilization is external. -.*: 'c ' .. * *:**** * ... * *: 3-2

  • 3.1.5 Gonads Stages of gonad development were described by Merriner (1973, 1976) and are summarized in Table 3-2. Just prior to spawning he found mature ovaries and testes of North Carolina fish to be approximately 8-9 percent and 3-4 percent, respectively, of the body weight. Several investigators have reported on the relationship between number of ova produced and age, length or weight. Merriner (1973; 1976) found significant differences (p < 0.01) in the number of ova produced by North Carolina weakfish of different ages. Age group 0 females produced a mean of 44,880 ova while age group IV females produced a mean of 1,725,920 ova (Table 3-3). He also found a significant relationship with SL, TL and weight (Table 3-4). Present study invesiigators also f6und significant relationships with both TL (Fig. 3-1) and weight (see Appendix I for procedures).

Shepherd (1982) noted that a 500 mm TL weakfish from his Region 1, i.e., Cape Cod, MA to Ocean City, MD, would produce 299,456 ova while a same size fish, based on equation from Meiriner (1973; 1976), w6uld produce 2,051,080 ova. Acknowledging slight variations in methodology and assuming that the differences were real, he speculated that this could be the result of natural annual variation, density dependent mechanisms, environmental influence, or a selected reproductive strategy. In support of the latter argument, he caltulated that lifetime fecundities of fish from the two regions were nearly identical; the shorter lived southern individuals could produce 9.9 million eggs over a 5 year life span while the longer lived northern females could produce 10 million eggs over a 10 year life span. In this context it should be noted that Merriner's equations, the basis of Shepherd's comparison, appears to be incorrect. By comparison to the data presented in his tables and figures, Merriner's equations greatly overestimate fecundity. It is likely that not all eggs are released during a given spawning act and that individual fish may spawn more than once during a single spawning season. Shepherd (1982) estimated that northern (New York Bight) fish release 60 to 75 percent of all eggs in the ovaries. Merriner (1973, 1976) found evidence of multiple spawnings in I and older fish. Ripe and running ripe ovaries prior to spawning in April and May contained mature follicles with interspersed clusters of immature follicles. By June, 26.6 percent of the ovaries were classified as ripe spent; however, these ovaries still possessed mature follicles, and the immature follicles were enlarging. 1 1 ' [ I '

  • 3-3 3.1.6 Spawning Spawning Times and Locations The weakfish spawning season varies with latitude, extending from March through August in Georgia (Dahlberg, 1972: Mahood, 1974), April through August in North Carolina (Welsh and Breder, 1923: Higgins and Pearson, 1927: Merriner, 1976), May through September in Chesapeake Bay (Hildebrand and Schroeder, 1928: Pearson, 1941: Olney, 1983), May through September in Delaware Bay (Harmic, 1958: Thomas, 1971: Wang and Kernehan, 1979: Present Study) see Section 4.2.3, and May through October in the New York Bight including the New Jersey coastal waters and Long Island and Block Island Sounds (Perlmutter, 1939: Merriman and Sclar, 1952: Wheatland, 1956: Herman, 1963: Tatham et al., 1974: Shepherd, 1982). Spawning occurs nearshore along the coast, and in sounds and estuaries at water temperatures between 15.5 and 25°C (Herman, 1963: Wang and Kernehan, 1979) and salinity of 12.0-32.5 ppt (Harmic, 1958). In.Delaware Bay, spawning was reported by Welsh and Breder (1923) to be centered on the east side of the Bay between Maurice Cove and Cape May in 3 to 5 fathoms of water: however Harmic (1958) and Daiber et al. (1976) found spawning most intense in the area west of the shipping channel and south of the Mispillion River (rkm 19). In the present study, spawning intensity, as inferred from egg density, was also greatest in southwestern Delaware Bay. During the protracted spawning period, which may extend into late September, the center of spawning appears to gradually move upestuary to the vicinity of Port Mahon, DE (ca. rkm 40) (Section 4.2.3). During the present study spawning time was inferred from weekly weakfish egg recruitment proportions (Table 3-5) calculated from weakfish egg standing crop estimates.

Standing crop estimates, which were based on baywide ichthyoplankton sampling data for 1979-1982, were adjusted for incubation time (Appendix I: Section 4.2). Spawning was observed as early as May 11-14. Based on the four-year* mean, peak spawning was estimated to occur during May 14-27 *(weeks 20 and 21) and median egg recruitment on May 31. Over 95 percent of annual recruitment occurred by July 16-22 (week 29) and spawning continued as late as September 20-24. Secondary spawning peaks were observed during most years in the present study (Section 4.2.3) and were reported in earlier years, e.g., Daiber (1956a: 1957). These pulses likely reflect either the influx of younger age groups spawning for the first time, or potential multiple spawns by .,.* 3-4 individuals as evidenced by Daiber (1956a) and Merriner (1976) in Delaware Bay and North Carolina, respectively. Shepherd (1982) reported that females spawning in the New York Bight do.so only once per season" Diel Spawning Pattern Weakfish are reported to spawn chiefly at night, especially in the early evening (Welsh and Breder, 1923; Bigelow and Schroeder, 1953). Birthdate Designation Several analyses used in this report require a consistent system for designating age. Although any arbitrary start date could be used, it is both desirable and convenient to choose a date that corresponds closely to the initial spawning period so that the designated age closely corresponds to the true age of the fish. A reasonable birthdate for weakfish in Delaware Bay appears to be during early May based on the first occurrence of eggs and larvae (Present Study; Table 3-5: Section 4.2.3), and for convenience the birthday was fixed at the first of the month. 3.1.7 Spawn Lippson and Moran (1974) describe weakfish eggs as: "Pelagic and highly bouyant, size ca. 0.74-1.3 mm spherical, transparent with thin horny membrane and 1-4 (rarely 5 or 6) amber oil globules in yolk which coalesce with very thin perivitelline space *** " See Figure 3.2. 3.2 EMBRYONIC PHASE 3.2.1 Development, Duration Embryonic development has been describ*d or illustrated by Welsh and Breder (1923), Harmic (1958), Lippson and Moran (1974) and Powles and Stender (1978). Observations made during the present study are summarized in Table 3-6. In * *

  • I l [ 3-5 the present study eggs held at 22.0 to 25.0°C hatched 29 to 36 hrs after fertilization.

Hatching times have been reported as 50 hrs at 18°C (Daiber, 1957), 36-40 hrs at 20-210C (Welsh and Breder, 1923: Merriner, 1976) and ca. 1,000 degree-hrs within a temperature range of 12 to 3l.5°C (Harmic, 1958). 3.2.2 Environmental Conditions, Hardiness Temperature Laboratory studies by Harmic (1958) showed hatching at 12.0 to 31.5°C, with an optimum range of 18 to 23.7°C. Harmic's maximum hatching rate was 11.7 percent, which was considerably lower than the 80 percent estimated by Meldrim (IA, DE, pers. comm.) for eggs laborator9-reared for a variety of experimental purposes in the present study. Harmic also found that a positive or negative thermal shock of greater than 6°C resulted in decreased hatching success: a thermal increase of 9°C produced zero hatching success. Greges and Schubel (1979) conducted heat-shock iests on weakfish eggs in late tail-free stage acclimated to 22.5°C at delta T's ranging from 2.8 to 14°C and for durations of 3 to 180 minutes. No mortality resulted from a 3 minute exposure at any delta T: for delta T's of less than ll.2°C1 mortality was low (5 percent) for all durations. Mortalities to 15 percent and 18 percent for 45 minute exposures at maximum delta T (14°C), mortality rose to 94 percent when time was doubled to 90 minutes. Greges and Schubel (1979) speculated that earlier stages would probably be less tolerant to equivalent thermal exposures, based on Frank (1973), Hopkins and Dean (1975) and Lauer et al. (1974), who all found egg tolerance to thermal stress positively related to developmental stage. Salinity Harmic (1958) studied the effects of sudden changes in salinity upon eggs acclimated to 27 ppt and 17.2°C. Sudden increases of 10 ppt or reductions of more than 5.7 ppt stopped all development within 20 hrs. In the present study, no relationship between egg viability and ambient salinity was found (Figs. 3-3 through 3-5). In the present study, 67.2 percent of weakfish eggs from 1974-1978 in the Delaware River (rkm 64-97) were alive at collection (Table 3-7). Viability (percent live) of eggs taken in baywide (rkm 0-117) sampling from 1979-1982 was 3-6 tabulated by 4-km interval for each month of high egg density (May through July) (Figs. 3-6 through 3-19). It ranged from 17.2 percent at rkm 44 in June 1981 to 97.7 percent upriver of rkm 72 in July 1981. Generally, maximum viability during May occurred between the mouth of the bay and rkm 30: during June it occurred between rkm 50 and 70: during July it varied among years. Oxygen In a series of turbulence/dissolved oxygen studies, Harmic (1958) experimented with eggs introduced to,temperatures of 18.0°C and a second series at 23.7°C. Both test series began with salinity at 32.09 ppt and dissolved oxygen level of 8.8 ppm. Lowering of dissolved oxygen to 4.3 ppm resulted in 4.3 percent hatching success. Hatching success was 0 percent at 2.4 ppm as well as when high turbulence was introduced.

3.2.3 Predators

No of predation on weakfish eggs were noted in the literature although jellyfish, ctenophores and planktivorous fish are likely predators.

3.3 LARVAL

PHASE 3.3.1 Development, Duration Weakfish prolarvae range from 1.49 to 1.99 mm TL upon hatching (Harmic, 1958). The head is spherical, with large, round eyes covering much of the lateral surface area (Fig. 3-2). Harmic (1958) reported yolk absorption complete at ca. 2.4 mm TL: Welsh and Breder (1923) reported absorption occurring at 2.2 mm NL. For detailed descriptions of the chromatophore changes associated with various developmental stages see Tracy (1908), Welsh and Breder (1923), Pearson (1941) and Harmic (1958). In the present study the duration of the prolarval stage was seen as about 58 hr at water temperature of 16-30°C and salinity of 15-20 ppt (Table 3-6). Further, the transition from pro-to postlarvae

  • occurs between 24 to 58 hr after hatching during which period the yolk sac is absorbed, body depth increases, fin development accelerates, eyes become pigmented and alimentary system I .: I 1 j I J *
  • 3-7 adapts for food ingestion.

We considered individuals as prolarvae through 3.0 mm TL and as postlarvae from 3.1 mm through 10.5 mm TL. This is within the reported maximum prolarval length range of 2.2 mm NL (Welsh and Breder, 1923; Pearson, 1941; Lippson and Moran, 1974) to 3.0 mm NL (Wang and Kernehan, 1979). Johnson (1978) does not cite an upper length for prolarvae but reports minimum length of postlarvae as 3.5 mm. As larvae develop they lose bouyancy and sink to the bottom. This occurs by 8-10 mm TL (Pearson, 1941) and perhaps as early as 1.5-5.0 mm HL (Hildebrand and Cable, 1934). At 4.6 mm NL, the caudal, anal and dorsal fins begin differentiation inside the finfold; at 8.2 mm NL (Pearson, 1941) anal fin rays are distinct. The larval stage ends when a full complement of fin rays has developed, at ca. 10.5 mm TL (Fig. 3-2) (Section 3.4.1). Duration of the postlarval phase is ca. 8 to 18 *days depending on the growth rate of the individual (Present Study) see Section 3.7. 3.3.2 Environmental Conditions, Hardiness Temperature There are relatively few reports on the temperature tolerance of weakfish larvae. In the present study, Meldrim (1979) measured the critical thermal maximum (CTM) temperature of 49 larvae aged 4 to 17 days. The CTM temperatures for specimens 4 to 16 days old ranged only from 33.l to 33.8°C, while the CTM for specimens aged 17 days was 35.5°C. In studies of effects due to sudden temperature increases, he exposed larvae to increases of 2 to 16°C for durations of 1 to 240 minutes (Figs. 3-20 through 3-25). Mortality generally increased with acclimation and test temperature, and exposure duration. Greges and Schubel (1979), reporting on thermal shock response of weakfish larvae acclimated to 22.5°C, noted higher mortality at given temperature increases with longer exposure times. At a temperature increase of ll.2°C mortality increased from an average of 16 percent for 3 and 15 minute exposure, to 61 percent for exposures of 45 to 180 minutes. Total (100 percent) mortality occurred when temperature was increased by 14°C for 45 minutes or more

  • 3-8 Salinity Harmic (1958) reported capture of newly hatched larvae in Delaware Bay at salinity of 12.0 to 31.5 ppt. As larvae develop and become demersal they occur further up Bay and in the lower River where salinity tends to be lower (3-15 ppt) (Thomas, 1971). No information on effects of salinity on activity or growth was found. 3.3.3 Competitors Intraspecific competition exists amon9 weakfish larvae, juveniles and, to some extent, small adults for Gammarus and Neomysis (Bason et al., 1976; Thomas, deSylva et al. (1962) also identified striped bass, silver perch, kingfish, Atlantic silverside, summer flounder and windowpane flounder as significant consumers of Neomysis in Delaware Bay and therefore potential competitors.

3.3.4 Predators

Thomas (1971) reported that larval weakfish are cannibalized by larger larval and juveniles. Bason (1971) reported weakfish of 10-20 mm TL in stomachs of adult and subad.ult striped bass in Delaware Bay and the Chesapeake and Delaware Canal. Bason et al. (1976) reported weakfish in stomachs of bluefish in the Canal. Few other predator diet studies have identified prey larvae to the species level; however, given the opportunistic feeding habits of most estuarine piscivores, it is likely that summer flounder, catfish, eels and oyster toadfish are among the common predators of larval weakfish during the months that they provide abundant forage. The occurrence of unidentified larval fish remains in the stomachs of diamondback terrapin captured in weakfish nursery grounds (R. E. Meadows, IA, pers. comm.), suggests it as a potential predator also. 3.4 JUVENILE PHASE 3.4.1 Development, Duration Transition from larval to juvenile phase is conventionally considered to occur when a full complement of fin rays has

  • I *1 J I I .J I 1 J l l J. I l l t '
  • 3-9 developed.

For weakfish, reported size at this occurrence ranges from 10.0 mm TL (Wang and Kernehan, 1979) to 12.5 mm (Welsh and Breder, 1923). The most frequently cited length of 10.5 mm (Pearson, 1941; Lippson and Moran, 1974; Johnson, 1978) was adopted as the transition size in present study analysis. At this length, weakfish have lost bouyancy and begun a demersal existence (Johnson, 1978). As they grow the body lengthens and becomes less compressed; the pointed tail gradually becomes indented and homocercal

  • . Pearsori (1941) indicates that adult body form becomes recognizable between 17 and 32 mm TL. Wilk (1979) and Johnson (1978) report that the characteristic weakfish body outline is recognizable at 32 mm TL. Duration of the juvenile life stage varies from one to two years. Most weakfish become mature by the end of their second summer (age l+; ca. 250 mm TL); almost all are mature by the end of their third summer (age 2+; ca. 325 TL) see Section 3 .1. 2. 3.4.2 Environmental Conditions, Hardiness Temperature In present-study experiments, sudden temperature decreases of 14°C or more were lethal within 96 hrs (Fig. 3-26) (PSE&G, 1978). Smaller decreases were also lethal when ambient temperature was 6°C or less (Meldrim, Hildebrand and Cable (1934) speculated that weakfish could not survive water temperature much below 41°F (5°C). Schwartz (1964a) noted a die-off of adults at 3.3°C. Experiments described in PSE&G (1978) incorporating sudden temperature increases demonstrate that, for a given delta T (4.0-10.5°C), survival of juveniles (22-129 mm TL) decreases as acclimation temperature increases (range 22-30°C) (Fig. 3-27). Some of this mortality may have resulted from exceeding the critical thermal maximum (CTM). Salinity In present-study low salinity shock studies, when salinity was decreased by 3.5-8.5 ppt from acclimation levels of 6.0-10 .0 ppt juvenile weakfish experienced generally high mortalities, from 40-100 percent. However, when acclimation was at 13.0-16.5 ppt, decreases of even 10.0-14.5 ppt resulted in much lower mortality, from 0-42 percent. Mortality was total whenever salinity reached O.O ppt.

3-10 These experimental data (Figs. 3-28 and 3-29) suggest a possible.minimum salinity threshold of < 4.0 ppt and that the stress of reduced salinity is most acute for specimens acclimated to near this level. Noted in the present study, a fish kill including weakfish occurred in the Delaware River estuary in July 1969 when fresh flood-waters reduced salinity from 7.6 to less than 3 ppt (Thomas, 1971). 3.4.3 Competitors Juvenile weakfish compete with larvae and adults for Neomysis and Gammarus (Thomas, 1971). Weakfish become more piscivorous in early autumn, at which time competition with striped bass, flounders, eels and bluefish could occur. There appears to be minimal competition

  • with other sciaenids.

Chao and Musick (1977) examined niche partitioning of five sciaenid species, including weakfish, in a tributary of Chesapeake Bay and concluded that dissimilar spatial and temporal distribution and different morphological features dictated different food and feeding habits, thus enabling a number of similar species to share the habitat. Similar implication relative to sciaenids in the Delaware estuary made in Thomas (1971) (Section 4

  • 6)
  • 3.4.4 Predators Thomas (1971) and Daiber and Smith (1971) note significant cannibalism among weakfish, with adults and large young feeding on young and larvae. This was also noted in laboratory holding facilities in the present study. Wilk (1979) comments that principal predators include bluefish and striped bass. Bigelow and Schroeder (1953) found weakfish in goosefish stomachs.

Weakfish young are likely prey for piscivorous birds, such as cormorants and osprey. 3. 5 ADULT PHASE 3.5.l Longevity Shepherd (1982) observed that maximum age of weakfish differed substantially among regions but not between sexes, based on samples taken in 1979-1981. He reported maximum ages of 11 years for specimens in the region from Cape Cod *

  • 3-11 to Delaware Bay, five and six years for males and females respectively in Chesapeake Bay, and three years for specimens from the Cape Hatteras, NC region. Supporting this apparent north-south trend, Seagraves (198la) recounted the maximum age of specimens collected in the Delaware Bay as nine years. Merriner (1973) generally supports this geographic trend; however, he reported maximum age as seven years (age group VI) in North Carolina waters near Cape Hatteras.

The apparent disagreement between Merriner (1973) and Shepherd (1982) regarding North Carolina may reflect Shepherd's small sample size from that area, i.e., < 200 vs ca. 1,000 specimens.

3.5.2 Environmental

Conditions, Hardiness Data addressing the tolerance levels of adult weakfish to temperature, salinity, or dissolved oxygen are sparse or existant. Smith (1907) interpreted seasonal migration patterns as evidence of preference for water warmer than 4.4°C and acute sensitivity to cold . 3.5.3 Competitors Adult weakfish compete with other midwater carnivores, such as striped bass, bluefish (Wilk, 1979), and summer flounder (Bigelow and Schroeder, 1953). 3.5.4 Predators Wilk (1979) cites bluefish, striped bass, and larger weakfish as predators. Weakfish have been found in the stomachs of dogfish (Hildebrand and Schroeder, 1928). 3.6 PARASITES, DISEASES, INJURIES, AND ABNORMALITIES -JUVENILES AND ADULTS Merriner (1973) reports parasites from the phyla Protozoa, Cestoda, Acanthocephala, Trematoda, Nematoda, Copepoda and Isopoda as associated with weakfish (Table 3-8). Lindsay and Moran (1976) examined 969 weakfish from Delaware Bay and determined that fish 51-210 mm FL were common hosts of the 3-12 isopods Lironeca ovalis and Olencira praegustator. Lawler (1979) lists weakfish among the hosts of the parasitic dinoflagellate Amyloodinium occellatum. Mahoney et al. (1973) reported weakfish as one of the most susceptible of marine and euryhaline fishes in New York Bight to "fin rot" disease, and that this disease may be a consequence of their residence in polluted water. He noted the disease in 10.7 percent of the 1,229 fish examined; Tatham et al. (1977) found it in only 1.2 percent of 1,572 fish from coastal New Jersey. Tower (1902) reported the presence of gallstones in 3 out of 300 weakfish specimens. Pugheadedness was recorded by Dahlberg (1970), Tatham et al. (1977) and in the present study. 3.7 NUTRITION AND GROWTH 3.7.1 Feeding The feeding habits of weakfish are well documented. Chao and Musick (1977) demonstrated that the mouth morphology of weakfish is well adapted for rapacious pelagic predation, with large, terminal jaws and both conical and canine teeth

  • This structure permits the fish to quickly seize and swallow large pelagic prey. Further, they noted that the fusiform, compressed body and lack of barbels indicate the weakfish to be a fast-swimming sight-feeder.

Larvae and small young are highly selective feeders; juveniles, as they advance in age, seek larger and a wider variety of prey (Thomas, 1971; Stickney et al., 1975; Wilk, 1979). The period of growth during which the shift occurs is generally complete by October (Thomas, 1971). This shift has been attributed to increased daily food ration requirement rather than changes in prey availability {Merriner, 1973; Bason et al., 1976). See section 3.7.2 for a detailed description of prey selection. There is disagreement as to whether diel feeding patterns exist among weakfish. Daiber and Smith (1969) found no evidence of a day/night feeding difference among adults. Thomas (1971) found a two-thirds reduction in Neomysis americana consumption at night by young weakfish. Field data and laboratory observations suggested by Lascara (1981) that weakfish feed along the edge of eelgrass beds during low light periods {dusk to dawn). Adult weakfish have been reported to cease feeding between peak gonadal ripeness and spawning {Muller, 1976); however, in the present study running ripe males were captured with hook and line and running ripe females which had recently fed were taken in gill {Horseman, 1979). * *

  • r l [ l I* r [ l 3-13 3.7.2 Food The food habits of weakfish have been widely studied throughout its range (Peck, 1896; Welsh and Breder, 1923; Hildebrand and Schroeder, 1928; Pearson, 1941; Bigelow and Schroeder, .1953; deSylva et al., 1962; Daiber and Smith, 1969, 1971; Thomas, 1971; Merriner, 1973, 1975; Stickney et al., 1975; Bason et al., 1976; Schuler, 1976; Chao and Musick, 1977; Schwartz et al., 1980; PSE&G, 1980). Larval and early young weakfish feed predominantly upon Neomysis (Thomas, 1971; Stickney et al., 1975; Bason et al., 1976). Thomas (1971) and Stickney et al. (1975) also identified Copepoda as important diet items for larvae and juveniles under 50 mm SL. Fish become increasingly important prey as the juveniles grow. Weakfish will prey on a wide range of crtlstaceans, annelids, and pelagic molluscs (Bigelow and Schroeder, 1953). The literature agrees that larger young and adults are predominantly piscivorous.

In the present study fish occurred in 45 to 56 percent of stomachs examined among weakfish 121-180 mm FL (Thomas, 1971). Stickney ct al. (1975) observed a similar occurrence pattern of fish prey in weakfish collected from estuaries from Winyah Sound, SC to the St. Johns River, FL, as did Merriner (1975) for weakfish in Pamlico Sound, NC. In Delaware Bay, bay anchovy was reported as the greatest single food by volume, especially

  • in the eastern part of the Bay by Schuler (1976). Bason et al. (1976) found bay anchovy in ca. 5 percent of the 60.0 mm FL weakfish (n = 95), but in nearly 100 percent of fish over 180 mm FL (n = 7). In several coastal locations clupeids frequently ranked high as weakfish prey taxa. Blueback 'herring and menhaden were common in Massachusetts (Peck, 1896; Welsh and Breder, 1923); Merriner (1973) reported menhaden as important in North Carolina waters. Thread herring were important in Florida (Welsh and Breder, 1923). Daiber and Smith (1971) and Merriner (1975) stated that reported diet differences reflect local variations in forage species abundance rather than a regional preference for any particular prey. Weakfish cannibalism has been commonly reported in Delaware River estuary (Daiber and Smith, 1971; Thomas, 1971; Bason et al., 1976) and elsewhere (Welsh and Breder, 1923: Merriner, 1973). Thomas (1971) reported that young weakfish comprised at least 37.5 percent of fish consumed by Delaware Bay adults. Daiber and Smith (1971) speculated that depressed menhaden stocks may have triggered weakfish cannibalism in Delaware Bay during their study. Cannibalism may be especially common in the presence of an unusually strong 0+ weakfish year class.

3-14 3.7.3 Growth Rate Larvae and Juveniles The present study included laboratory investigations into the growth rate of larval and juvenile weakfish (for procedure see Appendix I). From specimens held in aquaria at temperatures of 19-20°C and salinities of 13-25 ppt, approximately ten were removed and measured at each of nine intervals between July 1 through September

20. September 13th and September 20th data were not included in analyses because a decrease in mean length suggested bias resulting from the rearing conditions.

Size-at-age over the 68 day period (Fig. 3-30) can be described by the polynomial equation: where TL = 1.0437 + 0.0156D + 0.0303D 2 -0.00031D 3 2 (n = 91; R = 0.935; p < 0.01) TL = total length in millimeters D = age in days. Daily growth rate (GR) may be obtained from the first derivative: GR = 0.0156 + 0.0606D -0.00092D 2 The maximum daily growth rate was 1.01 mm/day while the average growth rate over the entire 68 day period was 0.66 mm/day. Comparison with other studies indicates that these laboratory-determined values may be low. Harmic (1958) reported that larvae grew from 1.8 mm TL at hatching to 2.4 mm in 70 hours (i.e., 0.21 mm/day). Our laboratory studies indicated a mean size of 3.1 mm seven days after hatching. Allowing 1.8 mm at hatching, growth was 0.19 mm/day. Welsh and Breder (1923) cited Tracy (1908) as indicating that weakfish reach 17.5 mm 15 days after hatching (i.e., 1.17 mm/day) while the model derived from our laboratory observations predicts 7.0 mm 0.47 mm/day). Welsh and Breder (1923) estimated from field samples the following size-at-age relative to a June 1 hatch: Date Size (mm) July 1 30 August 1 80 September 1 130 October 1 170 November 1 180 l 1 .I J J I 1 J J l J *

  • 3-15 These equate to monthly average growth rates of approximately 1.00, 1.61, 1.61, 1.33 and 0.32 mm/day for June to November, respectively.

They stated that growth was rapid until September, practically ceased in November, and then began again the following spring. Polgar et al. (1979) reported that in the Potomac River weakfish reached 50 mm in ca. 60-90 days (i.e., 0.56-0.83 mm/day). Daily larval and juvenile growth rates may also be estimated from field data collected during the present study. In most years two cohorts of juveniles were apparent. By following each cohort separately, as reflected through modes in frequency distributions (Section 4.1.3), growth rates averaged approximately 0.76-1.40 mm/day from hatching to October (Table 3-9). Since growth estimates derived from catch length-frequency data may be biased low if recruitment occurs over a prolonged period, an independent check using a second method is advantageous. Seagraves (198la) reported an average size of 164 mm SL (ca. 197 mm TL) at time of first annulus formation, i.e., Since little or no growth occurs from November through the following spring (assumed as May 1) and the median date is May 31 (Table 3-5), approximately 209.days are available for growth. This suggests an average growth rate of approximately 0.94 mm/day and predicts that by November, fish leaving the estuary should be ca. 140 mm TL. This agrees quite favorably with the observed mean length of first cohort weakfish taken by 4.9-m bottom trawl during late 1978 (Fig. 3-31) and the modal size of first cohort weakfish taken in November trawl and impingement samples. Adults Although age determination of adult weakfish has been estimated from annular marks on otoliths and vertebrae (Merriner, 1973), it is generally based on annular marks on scales, Time of annulus formation ranges from March through September (Table 3-10), with most taking place during June through July; however, timing appears to vary with locality, age, and year. Annulus formation tends to occur earlier in southern portions of the range and later in northern portions. In North Carolina, Schwartz et al. (1979), reported peak formation in May while in New York, Perlmutter et al. (1956), reported annulus formation in July. Annulus formation also appears to take place earlier in younger fish. Massman (1963b) reported it in April-August for yearlings but June-July for older fish in Chesapeake Bay. Annual variations in annulus formation timing are suggested from studies conducted in Delaware Bay: Daiber (1956a) reported formation in mid-July, Thomas (1971) late May throusn late July and Seagraves (198la) June through July. 3-16 To obtain growth estimates from scale annuli, the relationship between scale radius and fish length must be known. This relationship has been described by several workers (Table 3-11) for weakfish, but direct comparison among all data sets is not possible due to differences in length standards (TL vs SL), magnification factors, and statistical model form. Shepherd (1982) noted no significant differences between sexes but did find significant differences among geographic locations, with a trend towards decreasing slopes in more southerly regions. Calculated length-at-age in various water bodies suggests that growth rates of adult weakfish vary considerably among regions, years, and to a lesser degree, sexes (Tables 3-12 through 3-15). For combined sexes, Shepherd (1982) discovered significant differences among regions for ages one through four. Size-at-age in the most southerly region, Virginia Beach, VA to Cape Fear, NC, was significantly greater for the first year, but, by age three, the maximum recorded from that area, size-at-age was significantly smaller than the northern regions. Seagraves (198la) compared the growth of weakfish (sexes combined) taken from Delaware Bay during 1956 to those taken during 1979 and found two very different growth patterns (Fig. 3-32). Size-at-age of fish taken during 1956 was smaller at all ages, wiEh the oldest age group, IV, reaching 264 mm SL. Fish taken during 1979 reached a maximum size of 630 mm SL at a maximum age of IX. Several workers, have speculated on explanations for this progressive shift in growth rates over the 1960's and 1970's. Seagraves (198la) implied that the 1956 population may have consisted of a slower growing, shorter-lived stock of southern fish. He also stated that there was circumstantial evidence suggesting a negative correlation between stock density and growth in that recreation catch in the late 1960's and 1970's. Feldheim (1975) attributed the differences to an increase in survival and recruitment during the late 1960's. Perlmutter et al. (1956) noted a progressive increase in average size at each annulus beyond the first for weakfish taken in New York waters from 1921 through 1928. Although fish collected in 1946 through 1951 displayed no* consistent trend in size-at-age over years, they were at least as large or larger, especially at older ages, than fish taken in 1928. They attributed the apparent increase in growth to a decreasing contribution of slower growing southern-spawned fish. J r f [ I

  • 3-17 Seagraves (198la), when comparing length-at-age between male and female weakfish at each age by t-test, found no significant differences.

However, females tended to be larger at each age. When overall growth functions were tested, males were found to grow at a significantly greater rate than females. However, thi9 test was probably biased by a single large age VI male (Mercer, 1983). Shepherd (1982) reported that length-at-age was greater for females from all regions but did not become statistically significant until age 6. Merriner (1973) noted that females were significantly larger at ages I through IV for Hatteras, NC, area fish but found no differences in the Morehead City, NC area. Von Bertalanffy growth parameters for male, female and combined sexes weakfish are presented in Table 3-16. The von Bertalanffy functions reported by Seagraves (198la) and Shepherd (1982) reflect growth rates greater than those reported for Delaware Bay in 1956 (Figs. 3-33, 3-34} (Daiber, 1956a; Seagraves, 198la) or for the New York Bight in 1929 or 1952 (Nesbit, 1954; Perlmutter et al., 1956; Shepherd, 1982; Shepherd and Grimes, unpubl.). Shepherd and suggested that a decline in abundance over the years has resulted in increased growth of individuals (compensatory growth) as described by Botsford (1981). Other possible contributing factors include changes in food availability such as greater abundance of large prey items or changes in migration patterns resulting in a greater proportion of northern (faster growing) fish in recent years (Seagraves, 198la). Length-weight relationships from various areas are summarized in Table 3-17. Several of these are illustrated in Figure 3-35. Tatham et al. (1977), Wilk et al. (1978), Seagraves (198la), and the present study found no difference between sexes. Merriner (1973) found no sex-related difference in the Morehead City, NC area, but females in the Hatteras, NC area weighed significantly (p < 0.05) more than males at a given length. Schwartz et al. (l979) reported significant (p < 0.05) variation among years. 3.8 BEHAVIOR 3.8.l Migrations and Local Movements In the spring, as water temperature increases weakfish move generally inshore and northward from off-shore overwintering grounds extending from Florida to North Carolina (Pearson, 1932; Nesbit, 1954; Wilk, 1979) (Fig. 3-36). Pearson (1932) concluded that larger and older individuals possibly moved 3-18 further up the coast than did 2-3 year old specimens which seemed to move directly inshore to North Carolina sounds and Chesapeake Bay. Nesbit (1954) found that weakfish 3 years old and older dominated the catch in samples in northern New Jersey and Fire Island, NY, supporting to some degree Pearson's (1932) conclusion. However, he also found that a few one year-old specimens did move to southern New Jersey in mid-summer. Additionally, data from Daiber (1954; 1956a,b), Daiber and Smith (1971) and the present study indicate that 1-3 year old individuals were common in summer collections in Delaware Bay. Welsh and Breder (1923) reported that weakfish first appear along the middle Atlantic coast in April and May as mature individuals entering estuaries to spawn. Mercer (1983) reported c6mmercial catches of*weakfish off Cape Henry, VA in March, and Daiber and Smith (1971) cited their moving into Delaware Bay as early as April. Commercial and sport catches, and Dingell-Johnson trawl data (Daiber and Smith, 1971) indicate that fish age 3+ and older enter the Delaware Bay first; successive arrivals of younger fish continue into the summer. This progression suggests that older fish swim faster, overwinter closer to Delaware Bay or begin spring migration earlier than do younger fish. After spawning, weakfish generally leave the estuary and move into coastal ocean waters and remain there into the fall (Welsh and Breder, 1923). Their progeny generally remain in or near their natal waters during their first summer. Local movements of weakfish 0+ are discussed in Section 4.2.3 and illustrated in Figure 3-37. In the fall weakfish generally move off shore and southward (Fig. 3-38; Wilk, 1979). Young and sub-age 4+ adults leave estuaries and southward along the coast and overwinter near shore from Virginia to perhaps Florida (Wilk, 1979). Age 4+ and older fish, which move out of estuaries shortly after spawning and summer along the coast, move only as far south as North Carolina and overwinter farther off shore than the younger fish (Wilk, 1979). These fish appear to follow the 16°C isotherm offshore and, at least in mild winters, may occur as far north as New Jersey (Shepherd, NMFS, pers. comm.). Juveniles also move progressively to warmer water in the lower estuary and southward to shore overwintering grounds along the coast. 3.8.2 Schooling Schooling begins during the pre-adult phase and is organized by size (Wilk, 1979). Schools in Delaware Bay are often composed of a single or several consecutive year classes

  • I I I I ' t ' l I * .'.* -, . 3-19 Feldheim, 1975). Bigelow and Schroeder (1953) stated that schools are usually small and occasionally quite dense, citing an instance in which three commercial fishing craft took over 200,000 lbs of fish. Wilk (1979) reported that under laboratory conditions dense schooling was induced by fright or thermal stress. 3.8.3 Responses to Stimuli Weakfish are sensitive to cold (Bigelow and Schroeder, 1953), and declining temperatures are believed to prompt the fall emigration from estuaries and bays toward southern wintering grounds (Thomas, 1971). Shepherd (NMFS, pers. comm.) has observed that the bulk of the.fish follow the l6°C isotherm offshore.

Schwartz (1964b), observing captive adult weakfish in declining ambient temperature, reported that swim speed was drastically reduced at 10°C and feeding activity halted at 7.9°C. Conversely, Wilk (1979) noted a 35 percent increase in actlvity (i.e., swimming speed) as temperature was gradually increased (0.05°C/hr) from a 19-200C acclimation temperature to ca. 29°C. Weakfish normally move to deeper, warmer water during winter cold spells (Welsh and Breder, 1923). In the present study, temperature preference experiments with age 0+ weakfish acclimated to 10-30°C indicated a final preferendum of ca. 27°C (PSE&G, 1978). At the extremes, specimens acclimated to 10°C preferred 19°C and those at 30°C preferred 20°C. Generally, fish acclimated at 24°C or below tended to select a warmer temperature; those at above 24°C sought water cooler than their acclimation temperature. Temperature avoidance tests were conducted during the present study at acclimation temperatures ranging from 16 to 31°C (PSE&G, 1978). Specimens acclimated at 16°C exhibited an avoidance response at 24-25°C; those acclimated at 31°C avoided at 34°C. Generally, avoidance temperature increased with acclimation temperature. Typical summer temperatures in Delaware Bay ranged from 25 to 30°C and specimens acclimated to temperatures within this range (mean acclimation temperature = 26.9°C) exhibited a mean avoidance temperature of 31.1°C. Chlorine avoidance studies on a limited number of age 0+ weakfish (n = 6) indicate they will avoid relatively low chlorine concentrations (less than 0.1 mg/l) (PSE&G, 1978) * ,-- 3-20 Table 3-1

  • Percentage of mature weakfish by size. Cape Cod, MA 1 Ocean City, Mril I to to Ocean City, MD Cape Fear, NC Pamlico Sound 2 Morehead City 2 Size mm SL Female Male Female Male Female Male Female Male 81 o.o o.o o.o o.o 99 o.o o.o <100 ------o.o o.o -105 -----100.0 110 -------o.o 115 -------14 .o 116 o.o o.o o.o o.o 120 -------o.o 125 ----o.o 20.0 o.o o.o I 130 ----o.o o.o -100.0 134 o.o o.o o.o o.o ----135 ----o.o* 33.0 -60.0 140 ----20.0 33.0 25.0 67.0 l 145 ----7.0 11.0 54.0 56.0 150 ----22.0 61.0 33.0 67 .o 152 o.o o.o o.o o.o ----! 155 ----7.0 47.0 67.0 80.0 1 160 ----42.C 56. 0 76.0 96.0 165 ----15.0 83.0 87.0 100.0 169 12. 5 o.o so.a 75.0 ----170 ----23.0 58.0 90.0 95.0
  • 175 ----21.0 87 .o 100.0 97 .o l 180 ----26.0 77.0 85.0 100.0 185 ----48.0 85.0 100.0 100.0 187 35.7 25.0 66. 7 190 ----57 .o 77.0 96.0 100.0 195 ----69.0 94.0 90.0 100.0 200 -----81.0 100.0 96.0 100.0 204 35.7 so.a 57 .1 58.3 205 ----93.0 97 .o 96.0 100.0 210 ----78.0 100.0 100.0 100.0 215 ----85.0 100.0 100.0 100.0 220 ----80.0 100.0 100.0 100.0 222 66.7 -69.6 59.1 225 ----100.0 100.0 100.0 100.0 230 ----100.0 100.0 100.0 100.0 235 ----100.0 100.0 100.0 100.0 240 80.0 66. 7 73.l 83.8 100.0 100.0 -100.0 )240 ----99.0 100.0 100.0 100.0 257 90.0 58.8 100.0 100.0 275 83.3 76.9 100.0 100.0 293 83. 3 93.3 100.0 100.0 310 81.8 100.0 100.0 100.0 328 86.7 100.0 100.0 100.0 346 82.4 100.0 100.0 100.0 363 100.0 100.0 100.0 100.0 381 100.0 100.0 100.0 100.0 1 Shepherd (1982) 2 Merriner (1973)
  • l
  • Table 3-2 Gonad stage designations and macroscopic condition of the male drumming muscle used in describing weakfish maturity (after Merriner, 1973, 1976). Immature Mature Ripe Ripe Running Ripe Spent Spent Spent Resorbing Res orbing Female Gonad Stage 1 (I) Virgin small, transparent sex organs; eggs invisible (II, III, & IV) Maturing virgin -Developing organs translucent or opaque, fill 1/2 to 2/3 ventral cavity; eggs visible opaque (V) Gravid sex organs fill cavity, eggs round, some translucent and ripe (VI) Spawning roe run with slight pressure; most eggs translucent, some opaque (VII) Spawn:f_ng/spent not yet empty; no opaque eggs left in ovary (VIII) Spent sex organs empty, red; some eggs resorbing (VIII & II) (I for larger fish) 1 Corresponding stage for the Kesteven (1960) scheme. Gonad Stage (I) (II & III) (IV) (V & VI) (VII) (VIII) (VIII & II) (I ror larger fish) Male Condition of Drumming Muscle White, undeveloped Pink, beginning to thicken Red, thickened Deep red, very thick Red to deep red, thinner Mottled red to pale red, thinner Pink, thin Pink to white, thin Table 3-3 Fecundity by age estimates for weakfish from North Carolina (based on Merriner, 1973, 1976)
  • Age Mean Length Range Group N Fecundity SD (SL mm) 0 2 44,880 10,693 145-160 I 8 285,740 105,600 190-268 II 7 579,660 302,700 245-308 III 2 491,700 186,900 292-335 IV 3 1,725,920 614,300 395-480 w I NI Total 22 NI ' . i . * ** ! *.*
  • Author Shepherd, 1982 Present Study Merriner, 1973
  • Table 3-4 Fecundity relationships for weakfish various studies. Location Cape Cod, MA to Ocean City, MD Delaware Bay North Carolina F F w *F *F F 2 Equation r 8.16 x 10-8 TL 4*659 0.84 4. 609 TL 1. 723 0.82 60,920 + 107.3 weight (gm) 0.85 0.116 SL2.7755 0.85 0.152 TL2.6418 0.86 21,198 + 1,279 weight (gm) 0.88
  • Size n Range (mm) 28 ca. 400:-77 5 11 300 11 550 22 145-480 Equations do not fit data given in Merriner's (1973, publications; appear to be incorrect.

w I N w

  • .. ... .,. .... . . "" 3-24 Table 3-5 Weakfish egg recruitment, by week, and annual egg production in the Delaware River estuary, based on egg standing crop estimates adjusted for incubation time. Start Wee'k Day 1979 1980 1981 1982 Mean 1 1 2 8 3 15 4 22 5 29 6 36 7 43 8 50 9 57 10 64 11 71 12 78 13 85 14 92 15 99 16 106 17 113 0 0 0 0.001950 0.000488 18 120 0.022315 0 0 0.068238 0.022638 19 127 0.124962 0.057028 0 0.163534 0.086381 20 134 0.234304 0.190092 0 0.247584 0.167995 21 141 0.265204 0.243174 0.000192 o. 205677 0.178562 22 148 0.059174 0.120295 0.069039 o.n1115 0.089921 23 155 0.016397 0.034244 0.185192 0-025117 0.065238 24 162 0.056469 0.042733 0.167286 0.029651 0.074035 25 169 0.052734 0.052363 0.104212 0.054708 0.066004 26 176 0.046308 0.053069 0.08.7760 0.025016.

0.053038

  • 27 183 0.045417 0.053504 0.100821 0.011665 0.052852 28 190 0.036907 0.060464 0.134614 0.013043 0.061757 29 197 0.021182 0.058798 0.092064 0.017341 0.047351 30 204 0.011490 0.023900 0.033869 0.013479 0.020690 31 211 0.004799 0.009963 0.015896 0.007469 0.009537 32 218 0.000270 0.000321 0.006936 0.002146 0.002418 33 225 0.000064 0.000020 0.002081 0.000745 0.000726 34 232 0.000005 0.000006 0 0.001091 0.000276 35 239 0 0.000003 0 0.000299 0.000076 36 246 0 0.000001 0 0.000010 0.000003 37 253 0 0 0 0.000016 0.000004 38 260 0 0 0 0.000021 0.000005 39 267 0 0 0 0.000013 0.000003 40 274 0 0 0 0.000002 0.000001 41 281 42 288 43 295 44 302 45 309 46 316 I ... 47 323 48 330 49 337 50 344 51 351 52 358 53 365 Total Egg Production 8.662046E+l2*

6.788984E+l2 l.488443E+l2 4.111423E+l2 5.262724E+l2 L

  • Table 3-6 Egg and larval development in weakfish reared in the laboratory during the present study. Age After Fertilization 0.25-0.5 hr 1.0-7.0 hr 8.5-17.0 hr 18-22 hr 24-27 hr 29-36 hr After Hatching 0.25-0.5 hr 2-4 hr 7-8 hr 12-18 hr 24-36 hr 40-58 hr 60-70 hr 72-100 hr 6-8 days 12 days 17-19 days 20-21 days 27-28 days 34-38 days Life Stage Egg 2-4 cell Blastula Gastrula tail-bud embryo tail-free embryo hatching Pro larvae Pro larvae Prolar"<1.e Pro larvae Pro larvae (transformation)

Pro larvae (transformation) Postlarvae* Post larvae Post larvae Post larvae Post larvae Post larvae (transformation) Juvenile Juvenile Length (mm TL) 0.73-0.83 0.70-0.95 0.72-1.2 o. 73-1.0 0.84-0.96

1. 94-2. 00 1.88-2. 28 1. 82-2. 30 2.20-2.60 2.18-2.88 2.55-3.20 2.35-2.85 2.25-3.20 2.2-4.6 4.8-7.1 3.0-6.5 6.8-13 .0 16.5-37.0 23.0-43.0 Temp. Range ( *c) 22.0-25.0 22.0-25.0 22.0-25.0 22.0-25.0 22.0-25.0 22.0-25.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 16.0-30.0 Salinity Range (ppt) 18-25 18-25 18-25 18-25 18-25 18-25 15-20 15-20 15-20 15-20 15-20 15-20 15-20 15-20 15-20 15-20 15-20 15-20 J 5-20 15-20 Comments for Life Stage Egg diameter dependent on salinity 0.70-1.2 mm. Diameter perivitteline space 0.02-0.18 mm x = 0.16 mm. Number of oil globules 1-8 in early cleavage stages with the number (1-2) decreasing with embryonic development.

Diameter oil globules 0.1-0.3 mm i = 0.20 mm. Chorion is clear, thin and very elastic. were typically tadpool shaped and limited in mobility. They possessed a prominent yolk sac and posteroventral oil globule. Greatest body depth ranged from 1.82-2.60 mm. Postlarvae are considerably more robust in the head and abdomen with a complex viscera, oral cavity, and esophagus. The mouth is slightly subterminal and oblique with a jutting angular mandible.

  • I I*

3-26 Table 3-7 Viability (percentage live) of weakfish eggs taken in the Delaware River (rkm 64-97) during 1974 through 1978. Day Night Number Percent Number Percent Year Source Collected Live Collected Live 1974 Maiden et al., 1976 1975 Mairlen and Randle, 1977 1976 Maiden et al., 1977 1977 PSE&G, 1978 1978 PSE&G, 1979 Total Grand Total (day and night) Number collected Percent live 2,806 67.2 210 82.8 487 55.8 7 42.9 0 52 75.0 15 66.7 1, 045 . 81.2 988 54.4 2 so.a 0 1,316 81.0 1,490 55.0 I I I I 1 I

  • I l I I I I I I I t I I
  • le *'-., -*-* *-* _ ..
  • 3-27 Table 3-8 Parasites associated with weakfish (after Merriner, 1973). Parasite Protozoa Sinuolina dimorpha Myxidium sp. Chloromyxa sp. Henneguya sp. Cestoda
  • Tetraphyllidea 2 unknown species* Trypanorhyncha 2 unknown species* Otobothrium sp. Nybelinia sp. Acanthocephala 2 species Trematoda Cynoscionicola pseudoheteracantha Neoheterobothrium cynoscioni Pleorchis americanus Hemiuridae 3 unknown species Nematoda Contracaecum sp.* Capillaria sp. Goezia sp. Copepoda Lernaeenicus sp.

sp. Argulus sp. Isopoda L. 1. 2 ironeca ova is Olencira praegustator Agathoa medialis Agnatha Petromyzon marinus *Larval forms. 1 R. G. Howells (IA, DE Pers. Comm.) 2 Lindsay and Moran (1976) Location in or on Host urinary bladder gall bladder gall bladder fins and mesentery intestine and gall bladder

  • mesentery mesentery mesentery intestine and mesentery gills gills intestine stomach, mesentery and ovary stomach, mesentery and intestine intestine stomach skin pectoral fin gills gills Table 3-9 Estimated daily growth rates (mm/day) for Delaware Bay weakfish (Present Study). Peak Spawning Julian Day Year (1. 8 mm hatching Jun. Jul. Aug. Sep. Oct. Clase Cohort size) (166) (196) (227) (2S8) (288) Estimated Modal Size (TL mm) at Julian Day 1979 1 143 33 63 12S 1S3 2 164 33c 63 83 123 1980 1 142 23 83 123 163 2 198 23 43 73 123 1981 1 161 63 73 93 138 2 196 33 S3 73 88 1982 1 139 48 63 100 133 163 2 202 43 63 Estimated Average Growth Rate (mm/day) Over Period 1979 1 1.36 1.00 2.00 0.90 2 1.07 0.97 Q.6S 1.33 1980 1 0.88 2.00 1.29 1.29 2 0.6S Q.96 1.67 0 1981 1 2.10 0.32 o.6s 1.SO 2 0.6S 0.6S a.so 1982 1 1.71 a.so 1.19 1.06 1.00 2 0.11 0.67 Cohort 1 1.32 1.40 1.20 0.98 l.2S Cohort 2 1.07 Q.76 0.76 1.04 0 * -Nov. (319) 123 x -1.23 x -Q.91 * ---VJ I N 00 f* : -* i . " '

I I 3-29 Table 3-10 Time of scale annulus formation in weakfish from various localities. Location New York Delaware Bay Delaware Bay Delaware Bay Chesapeake Bay Massachusetts to North Carolina Beaufort, North Carolina New York to North Carolina North Carolina North Carolina Source Perlmutter et al., 1956 Dai ber, 1956 b Thomas, 1971 Seagraves, 198la Massman, 1963b Shepherd, 1982 Taylor, 1916 Nesbit, 1954 Merriner, 1973 Schwartz et al., 1979 Time of Annulus Formation July mid-July late May-late July June-July April-August (yearlings) June-July (older fish) May-June July-August July-early August March-September (most June-July) April-June (peak in May) I: Tahle 3-11 Scale-body length relationship for weakfish. Author Location Equation n r Merriner (1973) Matteras, VA SL (mm) -69.899 + 3.1266 SR 1 1,095 0.916 Morehearl City, VA SL (mm) 54.970 + 1.6051 SR 1 558 0.679 Seagraves (198la) Delaware Bay SL (mm) -53.979 + 1.8615 S 1 R 2 723 0.95 Shepherd (1982) Cape Cod, MA to TL (cm) 0.143 SRl.1392 850 0.940 Ocean City, MD 3 Ocean City, MD to TL (cm) 0.305 SR0.974 190 0.914 Virginia Beach, VA w 3 I SR0.786. w Virginia Beach, VA TL (cm) 0.120 200 0.799 0 to Cape Fear, NC 1 project scale length (mm) X42 2 project scale length (mm) X45 3 project scale length (mm) X32 * . . . ---

  • Table 3-12 Calculated length (nun) at age for weakfish.

Age Groups Location Source Sex I II III IV v VI VII VIII IX x XI Delaware Bay Seagraves, 198la Males 164 268 373 449 499 563 (1979) (SL) Females 162 270 376 457 511 525 558 609 630 Both 164 268 374 462 512 530 570 594 630 Delaware Bay Seagraves, 198la Both 156 203 236 264 (1956) Cape Cod, MA to Shepherd, 1982 Males 199 314 462 563 627 656 664 676 705 682 703 Ocean City, MD (TL) Females 203 323 479 578 638 677 700 728 758 758 809 Ocean City, MD to Shepherd, 1982 Males 201 279 450 556 602 w I Virginia Beach, VA (TL) Females 203 301 516 656 674 707 w Virginia Beach, VA Shepherd, 1982 Males 219 272 319 to Cape Fear, NC (TL) Females 214 292 362 New York (1928) Nesbit, unpub. in Males 196 264 298 324 360 406 443 523 Perlmutter et al., Females 192 264 299 337 381 408 427 439 1956 (FL) Chesapeake Bay Nesbit unpub. in Both 164 251 286 326 367 419 465 (1929) Perlmutter et al., 1956 (FL) New York (1952) Perlmutter et al., Males 200 274 354 425 538 630 1956 (FL) Females 205 281 361 481 557 645 Table 3-13 Mean hack-calculated standard lengths amd standard deviation (SD) of male weakfish collected in Delaware Bay during 1979 (from Seagraves, 198la). Ohserve<l Size at Mean Standard Length at Successive Annuli (mm) Age Number Capture 1 2 3 4 5 6 I 116 250 166 (45.2) (24.8) II 170 307 164 274 (50.8) (24.8) (59.9) III 32 400 160 238 375 (52.6) (20.4) (37.9) (63.4) IV 4 537 155 276 391 480 (39.0) (26.4) (50.4) (74.2) (31. 6) LL> I LL> v 7 544 166 257 363 438 499 N (58.6) (35.1) (50.7) (68.6) (58.l) (58.1) VI l 549 171 247 327 405 502 563 Weighted Mean 164 268 373 449 499 563 Weighted SD 24.5 55.8 63.7 44.4 58.1 Number 330 214 44 12 8 1 Growth Increment 164 104 105 76 50 64 * ---i* ---*---*

  • Table 3-14 Mean back-calculated standard lengths and standard deviation (SD) of female weakfish collected in Delaware Bay during 1979 (from Seagraves, 198la). Observed Size at Mean Standard Length at Successive Annuli (mm) Age Number Capture 1 2 3 4 5 6 7 8 9 I 111 260 160 (46.3) (27.4) II 140 '.H3 163 276 (57.9) (24.8)

III 27 444 163 250 381 (91.5) (29.6) (44.7) (57.7) '* IV 5 563 157 277 382 492 (47.7) (14.3) (29.1) (25.8) (29.0) v 12 585 178 282 403 491 552 w (24.2) (24.2) (29.1) ( 41.5) (25.9) (36.3). I w w VI 3 610 125 233 362 453 511 563 (39.4) (7. 6) (39.3) (73.4) (71.9) (75.6) (77. 5) VII 4 655 178 258 361 438 506 559 590 (24.6) (22.3) (37.4) (80.6) (84.9) (53.1) (33.8) (30.8) IX 4 644 171 22<) 316 373 436 505 566 609 630 (63.8) (44.9) (53.4) (84.5) (97.5) (105.4) (79. 8) (76.3) (77.5) (82.3) Weighted Mean 162 270 376 457 511 525 558 609 630 Weighted SD 26.0 51.8 55.7 50.0 56.4 62.4 53.5 77 .5 82.3 .*.*. Number 306 195 55 28 23 11 8 4 4 I' Growth Increment 162 109 108 ,34 55 22 38 31 21 Table 3-lS Mean hack-calculated standard lengths and standard deviation (SD) of weakfish collected in Delaware Bay during 1979 for sexes combined (from Seagraves, 198la). Observed Size at Mean Standard Length at Successive Annuli (mm) Age Number Capture 1 2 3 4 s 6 7 8 9 I 25S 264 16S (S2.7) (2S.6) II 327 314 163 274 (57.9) (23.S) (S7.9) III 6S 427 162 243 374 (76.9) (23.S) (40.S) (59.1) IV 13 SSS 1S6 276 392 501 (40.4) (17.7) (39.3) (S9.9) (42.2) v 22 573 17.1 270 390 473 537 w I (42.7) (29.1) (37.S) (Sl.6) (4S.5) (S0.6) w .i::-VI 6 S8S 118 226 336 42S 492 538 (40.2) (27.9) (32.6) (S7 .8). (S5.l) (56.6) (64.7) VII 4 655 178 258 361 438 506 559 S90 (24.6) (22.4) (37.4) (80.6) (8S.O) (53.2) (33.8) (30.8) VIII 1 578 160 228 305 370 424 466 S02 532 IX 4 644 171 229 316 373 436 505 566 609 630 (89.8) (62.6) (75.2) (114 .0) (135.8) (148.0) (111.2) (100.6) (104.0) (107.8) Weighted Mean 164 268 374 462 512 530 570 594 630 Weighterl SD 24.6 53.4 60 .4. 56.4 67.2 69.2 65.7 104.0 107.8 Number 697 442 115 so 37 lS 9 5 4 Growth Increment 165 103 106 88 so 18 40 24 36 * ----

  • Tahle 3-16' Von Bertalanffy growth parameters for weakfish as reported in 1iterature.

Author Area Sex N L to K Units Seagraves, Delaware Bay, 1956 Combined 230 315.6 -1. 270 0.327 SL (mm) 198la Delaware Bay, 1979 Combined 295 734.7 -0.085 0.236 SL (mm) Female 306 751.8 0.013 0.237 SL (mm) Male 330 868.8 -0.228 0.171 SL (mm) Shepherd, Cape Coil, MA -Combined 705 82.649 0.031 0.274 TL (cm) 1982 Ocean City, MD Female 332 82.837 0.056 0.282 TL (cm) Male 373 82.271. 0.005 0.265 TL (cm) Ocean City, MD -Combined 171 68.579 0.051 0.350 TL (cm) Virginia Beach, VA VJ Virginia Beach, VA -Combined 194 40.000 -0.500 0.550 TL (cm) I VJ Cape Fear, NC l.J1 *I Table 3-17 Weakfish length-weight relationships reported by various authors for several locations. Weight in grams, length in mm except as noted; SL = Standard Length, FL = Fork Length, TL = Total Length. Source Wilk et al., 1978 Wilk et al., 1978 Wilk et al., 1978 Tatham et al., 1977 Tatham et al., 1977 Tatham et* al., 1977 Prese!lt Study Present Study Present Study Present Study (Thomas, 1971) Seagraves, l98la Seagraves, 198la Seagraves, 198la Daiber awl Feldhe!m, 1976 Feldheim, 1975 Daiber, 1955a Daiber, 1955s Daiber, 1955a Daiber, 1955a Merriner, 1973 Merriner, 1973 Herr iner, 1973 Merriner, 1973 Merriner, 1973 Location Nev York Bight Nev .York Bight *Nev York Bight Coastal Nev Jersey Coastal Nev Jersey Coastal Nev Jersey Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Delaware Bay Morehead City, !IC Morehead City, NC Batteraa, NC Hatteras, NC North Carolina Crozier awl Hecht, 1914 Beaufort, NC Sholar, 1979 Pa11Uco So.und, NC Schwartz et al., 1979 Cape Pear R., llC Schwartz et al., 1979 Cape Pear R., !iC Schwartz et al., 1979 Cape Pear R., NC Schwartz et al., 1979 Cape Fear R., 'IC Schwartz et al., 1979 Cape Fear R., !IC

  • Correlation Coefficient
    • Equation seems_. incorrect.

Sex Male Female Both Male Female Both Male Female Both Both Male . Female Both Both Both Both (May-June 1953) Both (July 1953) Both (June 1954) Both (late June-mid July 1954) Male Female Male Female Both Both Both Both (1973) (1974) Both (1975) Both (1976) Both ( 1977) !relationship V 5.22 x E-5 TL 2" 731 v*

  • 6"33 x* g..,5 TLi*699 W a 1.20 x E-5 TL 2*963 V -9.75 x E-6 TL 2*9952 V
  • 1.18 x E-5 TL 2" 9627 ll
  • 3.94 x. E-6 TL 3" 1599 V = 2.64 x E-5 SL 2" 918 V
  • 4.49 x E-5 SL 2*831 ll
  • 4.06 x E-5 SL 2*646 V
  • 5.8 x E-6 PL 3*092 ll
  • 2.55 x E-5 SL 2" 928 V
  • 4.55 .x E-5 SL 2*831 ll
  • 3.78 x E-5 SL 2*861 ll
  • 3_. 77 x E-2 ll -1.69 x E-2 V*2.55xE-2 ll -5.66 x l!-2 W -1.95 x E-2 ll
  • 3. 74 x R-2 ll
  • 1.25 x E-5 ll
  • 1.07 x E-5 ll
  • 2.78 x E-4 ll
  • 4.54 x E-4 ll
  • 4.23 x E-4 SL2.746 (cm) SL2.783 (cm) SL2 * .S6 (cin) SL2.58 (cm) SLz.93 . (cm) SL2.71 (cm) SLJ.144 .. SL3.115 SL2.851**

SL2.946 .. SL2.934"* 3 ll

  • 8.77 x E-3 TL(cm) V 6.6 x.E-3 V -3.07 x E-5 SL 2*87 ll
  • 4.79 x E-5 SL 2" 78 W 8.14 x E-5 SL 2" 57 ll a 5.43 x E-5 SL 2*76 W
  • 8.12 z E-5 SL 2" 87
  • n 55 40 666 41 23 1,266 100 100 200 101 75 107 182 244 502 259
  • 246 297 261 482 610 1,650 290 217 670 1,855 2,245 2,559 2,499 r* 0.99 0.99 0.99 Size Range 210-673 ... 193-768 .... 59-768 111111 26-672 .... 1-3,500 8 0.98 187-547 !!Ill, 120-2,740 g 0.98 192-659 mm, 148-4,800 g 0.99 '

mm, 120-4,800 g 0.99 0.99 0.99* 0.98 0.98 0.99 0.99 0.99 o.95 56-279 .... 5-120 8 195-725 .... 148-6,750 8 100-400 mm, 15-1,250 g 100-400 .... 15-1,250 8 100-515 .... 15-2,000 8 100-515 mm, 15-2,000 g 100-580 mm, 15-3,000 g 20-340 mm, 1-555 g 20-400 mm, 1-800 g 20-380 mm, 1-660 g 20-375 11111, 1-650 8 20-340 .... 1-530 g .:* .I I .1 .' .**. I 3-37 WEAKFISH 250000 Y -4.609TL1.723 200000 100000 300 350 400 450 500 550 TOTAL LENGTH (MM) Fecundity of weakfish based on female PUBLIC SERVICE ELECTRIC AND GAS COMPANY length.

  • SALEM 316(b) STUDY Figure 3-1

-1 3-38 I I I 0.9 mm I EGGS I I ..... 1.7 mm TL 2.9 mm T.L 10.5 mmTL LARVAE 17.5 mm TL JUVENILe Weakfish eggs larvae and juvenile. PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STODY Figure 3-2 * --

  • WEAKFISH MAY 100-LEGEND x x I D = 1979 x x O= 1980 x A= 1981 x x 90-x = 1982 x x x x 0 x 0 x --80-x x l< 0 E-4 0 z 0 R x 0 x 0 x u ?O-0 x 0 x 0 0 0 )( M 0 x x 8 x I x 60-D ._ 0 0 x x x >1 x E-4 50-0 13 0 x 1-1 x ....:I D 0 D .__. 0 x 40-0 0 1'31 <tl 8 B A x .__. D El x > 30-D D D 0 x x x c.; 0 0 x c.; 0 D 0 20-0 x 0 x D 0 x A 10-x D x D x x 0 I I .... 'I' I I 25 0 5 10 15 20 SALINITY (PPT). Weakfish egg viability at various salinities PUBLIC SERVICE ELECTRIC Alfi GAS COMPANY Estuary during May 1979-1982.

SALEM 316(b) STUDY Figure 3-3 x x x x 0 0 (;! 0 8 x D x D x 0 0 D x 0 0 D D 0 D D D D D c D D I 30 in the Delaware River w I w *-0 I 35 '. ' .. . "

: WEAKFISH JUNE 100-LEGEND x [.J x A l!l x A x i IJ= 1979 0 H A A A x x O= 1960 A 0 A 0 x x x x x x A A= 1961 x A x A A x x 0 x Q 0 90-x = 1982 0 g A x x 0 A x x 8 A x x § !ill fl 0 0 ,........_

80-x 0 E-t D 0 A z A x A x ti x e r:::I 1f 13 D D g x D D 0 181 w 0 u 70-0 x 0 0 A x ti [.J 0 § r:T.1 0 A

  • fl 0 0 0 0-! 60-0 x x 0 D --0 A !!!I A 0 0 0 0 x tl D w !>-i A x R E-t 50-D x c D 0 0 A 1-1 x x t§ A A ; A fl w 1-1 D. A A A I II) 40-0 A fl I D D 0 < e 0 0 B 0 !'. x § -8 D e > 0 B 30-D i!!i 0 () 8 A [.J c fJ I 0 A A x 0 r:T.1 20-0 [.J i D 0. fl :II e 0 '-'l 0 A [.J fl D A 8 [.J x D 10-A R D D D D 8 0 A x x A D e 0 D D x A 0 A A 0 A .t. G r-"' ¥ .t. I I I I . I I 0 5 10 15 20 25 30 35 *" SALINITY (PPT) ,,*. Weakfish egg viability at various salinities in the Delaware River PUBLIC SERVICE ELECTRIC AlID GAS COMPANY Estuary*during June 1979-1982.

SALEM 316(b) STUDY Figure 3-4 * ---


WEAKFISH.

JULY 100-LEGEND x A 0 0 e 8 x fll A e A i 0 I 0=1979 0 0 0 0 O D c 0=1960 0 () x 0 A= 1961 0 A 8

  • e A A 0 0 0 0 0 e A 90-x = 1982 0 A 0 x 0 A A A A A 0 A A 0 x 0 A A A x A a ..-60-0 x )!( E-t A 0 0 A 0 0 B z 0 0 0 B f£l 0 0 x D x 0 u ?O-0 l!l x 0 ii x x x x 0 @ f£l 8 13 ii x 0 60-0 x x --A x x gi x 0 0 A 0 g A x E-t 50-0 0 D. A 0 i w A A I 1-1 0 x -"' ....:I A §
  • I-' 1-1 0 0 A m 40-0 IJ B 0 x <!l 0 0 !::. A 1--4 0 0 > 30-8 8 c 8 M 0 x 0 D 0 0 D x x 0 0 f£l 20-0 (;! 0 x e A 0 0 x 0 0 s !::. 0 0 x 0 0 x x A 10-0 A 0 0 0 0 A tS x 0 A A 0 x 0 . . I 'I' I T -.. 'r I I 0 5 10 15 20 25 30 35 SALINITY (PPT) Weakfish egg viability at various salinities in the Delaware River PUBLIC SERVICE ELECTRIC AlID GAS COMPANY Estuary during July 1979-1982.

SALEM 316(b) STUDY Figure 3-5 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Weakfish average egg viability with from the mouth of the Delaware River Estuary during May 1979-1982. Figure 3-6

  • Cf) E-4 z -0 fl.. ..--. f-4 z r:il u r::c:i fl.. ..._ >-i f-4 -.....:I -III < -::.> 0 0 r:il 100 90 60 '70 60 50 40 30 20 10 WEAKFISH JUNE LEGEND D EGG VIABILITY

-1979 0 EGG VIABILITY -1980 A EGG VI.ABILITY -1961 X EGG VI.ABILITY -1982 1W79 ---x , '\ *, I D\ x x x x x x D x x x x x x x x x A x D D D D D D D D a D a D D D x 0 A a x x A D 0 A x D 0 D 0 0 a a \ ', I \ '*1. ,.'DA a 0 A *a**.\ D " ._ ,.. **.x """ *.* 0 ' "' 0 \ "* 0 . \ . 0 -.. --, 1.---....... .... \ A 0 A 0 0 0 0 0 0 0 0 '* \ A A A A A A A ., ---.;...:::: . .... . .__..>*(, ..... .,, . ... .,, .,, .... ***** A 0 0 0 0 0 A A A A A 0-+rrTT-n-l"'TT"rTTT'T"l.,.....,rTTT'T"l.,...,...,rTTTTT"T'nnTTT'T.,..,..,"'TT"rTT,-rT..,.....,l"'T"T"TTT-n-l"'TT"rrr-r-n-rr,.,.....T'TT"T"'Nl"'T"T"rrr-r-n"'TT"rrr-r-r-1-rrrTTTTTTM"'TT"rrr-r-n-ri-lrrl-

  • 32 28 (/) 24 r:c:i z -.....:I 20 I ..--. E-4 16 P-c P-c >-i 12 E-4 -z 1-1 6 Cf) 4 0 O 10 20 30 40 50 60 70 60 90 100 110 120 PUBLIC SERVICE ELECTRIC AUD GAS COMPANY SALEM 316(b) STUDY

KILOMETERS FROM OCEAN ENTRANCE Weakfish average egg viability with distance from the mouth of the Delaware River Estuary during June 1979-1982.

Figure 3-7 w I p. w : *1 " 100 fl) 90 z t-1 0 60 A I A Cl 70 x ......... Cl z r:r.1 60 u 0 0 50 .._,,. . :>-i 40 x t-1 ...:I t-1 30 <I! t-1 20 > c.; c.; 10 r:i::i Cl x 0 0 D D D WEAKFISH A A A D A 0 e A 0 x A 0 D x x JULY A A A 0 0 0 x x x A A A 0 0 0 x x x ..... LEGEND D EGG VIABllJTY -1979 0 EGG VIABIIJTY -1980 A EGG VIABIIJTY -1961 X EGG VIABILITY -1982 SAIJIDIII A A A A A A 0 0 0 0 0 0 x x x x x x 32 26 :>-i 12 E-t t-1 z 0 -+.-,n"T"r,......,..TT"T"...,.,..,rrTTTTTTT"T"rrnrrrr-rTTTTTTTT"rrrr-rrTTTT'rrnrrrr-rrrTTTTT"T"rTT"l""TTTTTT'TTT"f"T"T"rrrT-rTT,,-rrrnrrrrTTTTTTrrT'lr-y-T1TTTTTT"ri'""O 0 10 20 30 40 50 60 70 80 90 100 110 120 KILOMETERS FROM OCEAN ENTRANCE Weakfish average egg viability with distance from the mouth of the PUBLIC SERVICE ELECTRIC AlID GAS COMPANY Delaware River Estuary July 1979-1982. SALEM 316(b) STUDY Figure 3-8 ' .. N i 3-45 WEAKFISH EGGS MAY, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND EGG VIABILITY (PERCENT) 0 29.4 TO 38.8 > 36.8 TO 48.2 I > 48.2 TO 57.6 Iii > 57.6 TO 67.0 DELAWARE Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0.5-m ichthyoplankton tows, Delaware SALEM 316(b) STUDY River Estuary Figure 3-9 . *. . 3-46 ..-.---------* I I N t WEAKFISH EGGS JUNE, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND EGG VIABILITY (PERCENT) 0 15.6 TO 30.6 > 30.6 TO 45.6 ml >*45.6 TO 60.5 I > 60.5 TO 75.5 NEW JERSEY DELAWARE Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0.5-m ichthyoplankton tows, Delaware SALEM 316(b) STUDY River Estuary. Figure 3-10

  • I I i t ]

I 3-47 I

  • l WEAKFISH EGGS. I JULY, 1979 DELAWARE RIVER ESTUARY, rklll 0-117 I LEGEND t EGG VIABILITY (PERCE.t'l'T) 121 25.1 TO 38.6 f > 38.6 TO 52.1 Iii > 52.l TO 65.6 1* I :> 65.6 TO 79.1 l NEW JERSEY 1* N t DELAWARE Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0.5-m ichthyoplankton tows, Delaware SALEM 316(b) STIJDY River Estuary. Figure 3-11 N t 3-48 WEAKFISH EGGS MAY, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND EGG VIABILITY (PERCE.J.'\fT) 0 34.7 TO 42.3 > 42.3 TO 50.0 a > so.o TO 57.6 I > 57.6 TO 65.2 NEW JERSEY DELAWARE Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0.5-m ichthyoplankton tows, Delaware SALEM 316(b) STIJ!lY River Estuary. Figure 3-12
  • I I I t 1 I ] *1
  • I t I I I: 1* l N t 3-49 WEAKFISH EGGS JUNE, 1980 .. *:::. DELAWARE RIVER ESTUARY. rkm 0-117 LEGEND EGG VIABILITY (PERCENT) 0 12.1 TO 30.8 > 30.8 TO 49.5 I > 4-9.5 TO 68.2 I > 68.2 TO 86.9 NEW JERSEY DELAWARE . ... -. Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPA.'rl on 0. 5-m ichthyoplankton tows' Delaware SALEM 316(b) STUDY River Estuary. 1----------------------------------11 Figure 3-13 .'*.*

N i 3-50 WEAKFISH EGGS JULY, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND EGG VIABILITY (PERCENT) 0 21.6 TO 402 [i1l > 40.2 TO 58.8 a > 5aB TO 77.3 II > 77.3 TO 95.9 NEW JERSEY DELAWARE Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0.5-m ichthyoplankton tows, Delaware SALEM 316(b) STCJDY River Estuary. Figure 3-14

  • I I I I I t I
  • N i 3-51 WEAKFISH EGGS JUNE, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND EGG VIABILITY (PERCENT) 121 14.B TO 33.6 > 33.6 TO 52.4 I > 52.4 TO 71.1 I > 71.1 TO 89.9 NEW JERSEY DELAWARE Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0.5-m ichthyoplankton tows, Delaware SALEM 316(b) STUDY River Estuary
  • Figure 3-15 i N 3-52 WEAKFISH EGGS JULY, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND EGG VI.ABILITY (PERCENT) 121 31.6 TO 48.4 > 48.4 TO 65.1 Ill >*65.1. TO 81.9 I > 81.9 TO 98.6 NEW J.E:RSEY DELAWARE *.*: Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0. 5-m ichthyoplankton tows, Delaware SALEM 316(b) STUDY River Estuary. Figure 3-16
  • I I l l l t
  • N t 3-53 WEAKFISH EGGS MAY, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND EGG VIABILITY (PERCENT) 121 27.1 TO 45.6 > 45.6 TO 64.1 Ill > *64.1 TO 82.5 I > 82.5 TO 101.0 DELAWARE -: .. Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPA.'ff on 0. 5-m ichthyoplankton tows, Delaware SALEM 316(b) STUDY River Estuary * ..,... ____________________________

.._.. ..... Figure 3-17 N i 3-54 WEAKFISH EGGS JUNE, 1982 .... . ; . DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND EGG VIABILITY (PERCENT) 121 29.4 TO 44.6 > 44.6 TO 59.7 ml > 59.7 TO 74.9 I .. >* 74.9 TO 90.1 NEW JERSEY DELAWARE Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0.5-m ichthyoplankton tows, Delaware SALEM 316(b) STUDY River Estuary. Figure 3-18

  • I '* (, l I l l r
  • N t .. ** : ' 3-55 WEAKFISH EGGS JULY, 1982 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND EGG VIABILITY (PERCENT) 0 32.6 TO 46.8 > 46.8 TO 61.1 Ill > 61.l. TO 75.3 I > 75.3 TO 89.6 DELAWARE Mean egg viability of weakfish eggs, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on 0.5-m ichthyoplankton tows, Delaware SALF.M 3l6(b) STUDY River Estuary. Figure 3-19 WEAKFISH LARVAE MIN. EXPOSURE 16.0-0 15.0-14.0-40 0 10 ..-0 13.0-20 ..._, r.x:I 12.0-10 [/) < 11.0-r.x:I 10.0-0 z 9.0-t-t r.x:I 6.0-7.0-6.0-5.0-fzl 4.0-::;a fzl 3.0-E-t 2.0-1.0-0.0 I I I . I I I I I 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 ACCLIMATION TEMPERATURE (C) Percentage of weakfish larvae at 24-hr resulting from 1-min PUBLIC SERVICE ELECTRIC AlID GAS COMPANY exposure to various delta t temperatures above acclimation. (Secondary SALEM 316(b) STUDY entrainment data; control mortality<

20 percent). Figure 3-20 * . * .... ,' .. , . *. . . . . .. w I IJ1 °' !:.:.* :***. ' ,.-.. u "-" r.i:I rt) < r.i:I u z 1-4 r.i:I f!§-r.i:I r.i:I E-t -- 16.0-15.0-10 14.0-0 13.0-12.0-11.0-10.0-9.0-8.0-7.0-6.0-5.0--4.0-3.0-2.0-1.0-0.0 19.0

  • WEAKFISH LARVAE M IN. EXPOSURE 20 10 I 20.0 100 50 I I I I ' 21.0 22.0 23.0 24.0 ACCLIMATION TEMPERATURE (C) Percentage mortality of weakfish larvae at I I I -25.0 26.0 27.0_ 24-hr resulting from 5-min PUBLIC SERVTC1>'"1!d.!:C1\l.IC AlID GAS COMPANY exposure to various delta t temperatures above acclimation. (Secondary entrainment data; SALEM 316(b) STUDY control mortality<

20 percent. Figure 3-21 I -w I \JI ..... -I I ': -* * **** * : : -: : * * * ** * ** * * < ' 1 .. WEAKFISH LARVAE . MIN. EXPOSURE 16.0-90 15.0-14.0-38 0 --0 13.0-20 ' --f;l::I 12.0-rJ) < 11.0-f;l::I 0 10.0-27 20 13 0 z 9.0-0 1-l f;l::I 6.0-0 27 0 w 7.0-I p VI 00 E-t 6.0-13 < 27 *13 0 5.0-f;l::I .. Cl. 4.0-0 ::a 13 60 f;l::I 3.0-E-t 2.0-.. 1.0-0.0 I I I T I I I I 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 2:1.0 ACCLIMATION TEMPERATURE (C) Percentage of weakfish larvae at 24-hr resulting from 15-min PUBLIC SERVICE ELECTRIC A?ID GAS COMPANY exposure to various delta t above acclimation. rnecondary SALEM 316(b) STUDY entrainment data; control mortality< 20 percent. Figure 3-22 * * -

  • WEAKFISH LARVAE 30-MIN. EXPOSURE 16.0-15.0-i4.0-18 44 ..-... u 13.0-..._ f:il 12.0-20 rn < 11.0-0 10.0-u 13 29 13 z 9.0-0 1-i 6.0-60 17 27 13 13 ' 7.0-w 0 10 I 6.0-0 U1 50 33 13 0 '° 5.0-26 50 !'.lot 4.0-7 13 14 f:il 3.0-E-t 20 2.0-0 1.0-0.0 I I I I I I I I 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 A CCLI MATI ON TEMPERATURE (c) iPercentage mortality of weakfish larvae at 24-hr resulting fr.om 30-min PUBLIC SERVICE ELECTRIC AND GAS COMPANY to various delta t temperatures above acclimation. (Secondary SALEM 316(b) STUDY entrainment data; control mortality

< 20 percent. Figure 3-23

      • _* ..... WEAKFISH LARVAE 60-. MIN. EXPOSURE 16.0-15.0-14.0-' . ,....... u 13.0-...._, ,, Pit 12.0-if) '* <t1 11.0-Pit 7 10.0-u 29 40 100 z 9.0-0 Pit 8.0-33 1B 13 21 13 7.0-:=> 11 w 6.0-0 I 52 20 21 0 °' 0 Pit 5.0-48 33 P-t 4.0-7 14 27 Pit 3.0-E-i 18 20 0.0 I I I -. I I I I I 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 'Zl.O ACCLIMATION TEMPERATURE (c) Percentage mortality of weakfish larvae at.24-hr resulting from 60-min PUBLIC SERVICE ELECTRIC AUD GAS COMPANY exposure to various delta t temperatures above acclimation. (Secondary SALEM 316(b) STUDY entrainment data; control mortality

< 20 percent. Figure 3-24 * * -*

  • WEAKFISH LARVAE 240-M IN. EXPOSURE 16.0-15.0-14.0-" ,--.. u 13.0-......_, r:r:i 12.0-if) < 11.0-r:r:i 10.0-u z 9.0-r:r:i 8.0-38 38 7.0-'Zl 6.0-5.0-r:r:i 4.0-::a 19 62 10 r:r:i 3.0-30 2.0-10 1.0-0.0 I I I I I I I . I 19.0 20.0 21.0 22.0 23.0 24 .. 0 25.0 26.0 A CCLI MATI ON TEMPERATURE ( C) Percentage mortality of weakfish larvae at 24-hr resulting from 240-min PUBLIC SERVICE ELECTRIC AND GAS COMPANY exposure to various delta t temperatures above acclimation. (Secondary entrainment control mortality

< io percent. SALEM 316(b) STUDY Figure 3-25 w I °"' ..... I :* i

  • .. , *,** . ' -* ,. ' ... ;.,

.. I,' i . WEAKFISH COLD SHOCK 22.0-100 20.0-100 100 --16.0-100 u ..__,. 100 100 f11 100 Cf) 16.0-<t! 100 10 Poo 100 f11 14.0-100 fl:: u 95 9060 f11 12.0-60 100 0 r:::i 40 100 w f11 30 0 I i*. 10.0-60 BO °' : . 0 57 N 40 8.0-8 'Z1 fl:: 67 Ro f11 6.0-100 67 P-t f11 4.0-100 . 0 f-4 2.0-0 0.0 I I I I I I I I 0.0 4.0 8.0 12.0 16.0 20.0 24-.0 28.0 32.0, A CCLI MATI ON TEMPERATURE (C) The 96 hr percentage mort_ality of juvenile weakfish subjected to PUBLIC SERVICE ELECTRIC AND GAS COMPANY sudden temperature decreases. Data source: Present study. SALEM 316(b) STUDY Figure 3-26 * -

  • WEAKFISH HEAT SHOCK 11.0-10.0-w 50 100 --9.0-u ......,, 100 B.0-50 40 100 [/) < 60 100 7.0-u .Z 6.0-0 ........ 0 100 5.0-21 w :::> I 20 °' 4.0-w 3.0-l1i 2.0-E-t 1.0 -0.0 I -1 I I I I I l I I 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 ACCLIMATION TEMPERATURE (C) The 96 hr percentage mortality of juvenile weakfish subjected to PUBLIC SERVICE ELECTRIC AlID GAS COMPANY sudden temperature increases.

Data source: Present study. SALEM 316{b) STUDY Figure 3-27 WEAKFISH -SALI NI T*Y TOLERANCE (1977) 15.0-14.0-13.0-,......... 12.0-E-t P-t 11.0-P-t ..__, r:z::i 10.0-rJ) <tl 9.0-r:il 8.0-0 r:z::i 7.0-A 6.0-E-t . 1-1 5.0-z t-1 4.0-...:I <tl 3.0-rJ) 2.0* 1.0-0.0 I I 0.0 2.0 . 4 .. 0 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY

  • 100 100 89 100 100 BO 100 50 60 100 BO 100 40 20 0 I I I I I 6.0 8.0 10.0 12.0 14.0 A CCLI MAT! ON SALINITY {PPT) I 16.0 Percentage mortality of juvenile weakfish subjected decreases.

Data source -PSE&G, 1978. Figure 3-28 I 18.0 I 20.0 to sudden salinity w I °' .p.

  • WEAKFISH -SALINITY TOLERANCE (1978) 15.0-14.0-13.0-,......._

12.0-E-t P-t 11.0 -P-t ...__,. r:c:i 10.0-if) < 9.0-pq E3 8.0-pq 7.0-:>-i 6.0-E-t 1-t 5.0-z 1-t 4.0-H <l! 3.0-if) 2.0-1.0-0.0 I I 0.0 2.0 4-.0 PUBLIC SERVICE ELECTRIC AUD GAS COMPANY SALEM 316(b) STUDY 100 100 100 0 100 61 57 57 40 I I I I I 6.0 8.0 10.0 12.0 14.0 A CCLI MATI ON SALi NI TY (PPT) 20 4-2 6 8 0 I 16.0 I I 18.0 20.0 Percentage mortality of juvenile weakfish subjected to sudden salinity decreases. Data source -PSE&G, 1978. Figure 3-29 UJ I Q'\ \JI . I I LABORATORY-REARED WEAKFISH PRESENT STUDY 60.0 50.0 .....-... 6 40.o ::c E-t 0 z 30.0 ;j 0 E-t 20.0 10.0 0.0 0 I I I I I I 5 10 PUBLIC SERVICE ELECTRIC AlID GAS COMPANY SALEM 316(b) STUDY

  • I I I 15 A A A A I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 20 25 30 35 40 45 55 60 65 70 AGE (DAYS) Length-age relationship for Delaware River weakfish larvae (laboratory-reared).

Data .source -Present study. F;i.gure 3;...30 -----w I 0\ 0\ -,** i

  • 160.0 140.0 120.0 100.0 LEGEND o = S-1 o =S-2 A= S-3 + =S-4 x =S-5 =S-6 v =S-7 111 =S-8 WEAKFISH . I ' -

80.0 ------.... ---- _ .......

    • """ ---_....--:.,-::..

a--------


;-:..-:..--=---

-+ .- .,.,,. -... -




-- ..


.


f'-------_,,, ------..v ---__ .._..,.,,,, . . ------------l!lt __ _ 60.0 40.0 20.04--...--.---....-.---.--.,........,--..-..-r--.---.--r---.--..--r-..--.-ir--.r-T-r-r-r--r--r---.--.-...-..-.--.-..r--t---Y---r-r-r-r---r--r--.-..--,-,r--.---y---r-r-, 200 205 210 PUBLIC SERVICE ELECTRIC AUD GAS COMPANY SALEM 316(b) STUDY 215 220 225 230 235 240 JULIAN DAY Observed mean lengths of two cohorts of O+ weakfish taken in eight sections of Delaware River and Bay (rkm 0-117) in 1978. .l!'igure 3-31 250 I !. I ,* i: i !: !. _J

.. *: WEAKFISH 650.0 600.0 550.0 500.0 :::a 450.0 ..__,, P:l 400.0 E-4 CJ z 350.0 r.:i::l ...:I 300.0 A w 250.0 ---I < ---°' ------CX> A ---z 200.0 .......... ..... --.......... 150.0 -('/) '/ '/ '/ r 100.0 r I' 50.0 0.0 0 1 2 3 4 5 6 7 8 9 AGE (YEARS) Estimated length-age relationship for Delaware River weakfish. PUBLIC SERVICE ELECTRIC AHD GAS COMPANY Solid line = 1979 collection; Dashed line = 1956 collection. SALEM 316(b) STUDY Data source -Seagraves (198la). 800.0 700.0 500.0 400.0 300.0 200.0 100.0 0.0 0 WEAKFISH -. SEAGRAVES (1981A) LEGEND BOTH SEXES MALES ---1 2 3 4 5 6 7 8 AGE (YEARS) 9 10 Von Bertalanffy growth functions for combined sexes *. Male and; female PUBLIC SERVICE ELECTRIC AUD GAS COMPANY weakfish fitted by unweighted least squares. SALEM 316(b) STUDY Data source -Sea raves 1981A. Figure 3-33 i. i. I I ' '*. 900.0 800.0 700.0 ,......,. ::!! 600.0 ....._, ::q E-t 500.0 t.? z 1":£1 400.0 ....:i ....:! 300.0 0 E-t 200.0 100.0. 0.0 0 WEA:KFISH SHEPHERD (1982) LEGEND DELAWARE BAY -NORTH CHESAPEAKE BAY --CAP._E --1 .-----* _,..........-* 2 3 ...... .--*-4 5 --------------...... -0 , I I I I i' I I 11 I I I 1 I 11 I II I I I I I I I I 11 I I I I I I I I I I 11 I i I I I I I I I I p ii I I I I ii I 1 J I I Ii I I ii I Ii J 6 .7 8 9 W ll IB ra M AGE (YEARS) PUBLIC SERVICE ELECTRIC AIID GAS COMPANY SALEM 316(b) STUDY Von Bertalanffy growth function for combined sexes of weakfish fitted by unweighted least squares. Data source -Shepherd 1982. Figure 3-34 w I -...J 0 --l/) 0 ...._.,, E-t :I1 0 t-1 µ::i 6750.0 6075.0 5400.0 4725.0 4050.0 3375.0 2700.0 2025.0 1350.0 675.0 LEGEND PRESENT STUDY -MALE WEAKFISH PRESENT STUDY -FEMALE --s:E:AJ}RAVEs If98f.t\J--= -:aoTlI --------.... ... El.AL. ... .. :-:-... ao.T.tt, .. ...

  • 15.0 14.0 13.0 I 12.0 11.0 --10.0 rg 9.0 z p 0 8.0 114 ...._.,, 7.0 E-t 6.0 ::r::: 0 t-1 5.0 !":cl 4.0 3.0 2.0 1.0 0.0 0.0 75.0 150.0 225.0 300.0 375.0 450.0 525.0 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY STANDARD LENGTH (MM) Length-weight relationship for weakfish.

Figure 3-35 600.0 675.0 750.0 w I ...... !--' 3-72 WEAKFISH 4.0oN-35°N-30°N-25° N -i 85°W YOUNGER FISH I 80° if I'\ -PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 3l6(b) STUDY OLDER FISH I ?0°W ' I 65°W I 600"' Movements of weakfish along the Atlantic Coast of the United States during spring summer (Wilk, 1976). Figure 3-36

  • I I I I I
  • SPRING MOVEMENT -....( PRE5PAWN ADULTS. -<l POSTSPAWN ADULTS DE. Public Service Electric and Gas Company N.J. Salem 316(b) Demonstration SUMMER DISTRIBUTION FALL MOVi;=MENT

-<C JUVENILES f!*tM LARVAE JUVENILES <:I POSTSPAWN ADULTS DE. DE. Principal spawning .. a:i:-ea _and sea;:;onal distribution of weakfish in the Delaware EstuRr.y. Figure ".J.,...37 N.J. .(i w I --.i w ; . i I .. i. .. *: ... .. . * .... '-** . __ ;..:. _______ -_: __ :...__ . ._ .: __ .:.._. 3-74 WEAKFISH 45°N-40°N-30°N-25° N., 65° W YOUNGER FISH 1 80° w "\ . PUBLIC SERVICE ELECTRIC AND GAS COMPA.'r! SALEM 316(b) STUDY I 75°W 1 600" Movements of weakfish along the Atlantic coast of the United States during fall and winter (Wilk, 1976). Figure 3-38 ... *,* *

4.1 STRUCTURE

4.1.1 Sex Ratio 4-1 SECTION 4.0 POPULATION The coastal population of weakfish is likely composed of equal numbers of males and females. Shepherd and Grimes (unpubl.) examined 1,240 fish (50-900 mm TL) from Massachusetts to North Carolina and reported a male:female ratio of 1.09:1 which was not significantly (p < 0.05) different from 1:1 (Table 4-1). Shepherd (1982) noted that males outnumber females in the 45-to 60-cm size range but the opposite is true between 60 and 80 cm. He attributes this to females growing out of the range at a faster rate than males (see Section 3.7.3). In the Delaware Estuary each sex is about equally represented (Table 4-1). Daiber (1956a) found evidence of monosex schooling in Delaware Bay but no preponderance of one sex over the other. The deviation from a 1:1 ratio that was observed in the present study may be due to small sample size (Table 4-1). 4.1.2 Age Composition Reported age composition varies with latitude, season and year (Table 4-2). Older age groups (2+ and older) increasingly dominate catches from south to north (Nesbit, 1954). Agel+ fish typically dominate North Carolina commercial catches throughout most of the year (Wolff, 1972; Sholar, 1979: Devries, 1981) and Chesapeake Bay catches during summer (Massman, 1963a). Nesbit (1954) reported that l+ fish comprised less than 20 percent of the catch north of Delaware Bay: 2+ fish dominated in southern New Jersey and 3+ dominated in northern Jersey and Long Island waters. In Delaware Bay, age 3+ and older fish have typically dominated the population in May, but modal age then declined through the summer and age l+ typically dominated in August (Daiber, 1956a, 1957: Daiber and Smith, 1971: Feldheim, 1975). Massman (1963a) observed a similar pattern in Chesapeake Bay and surmised that the older May/June fish departed the estuary for northern summer feeding grounds and reappeared briefly in October during the fall migration. 4-2 There is evidence of an apparent shift in age-structure of weakfish occurring in Delaware Bay. Studies conducted during the mid-1950's through the early 1970's indicated a virtual absence of fish age 5+ and older (Daiber, 1954; 1957; Daiber and Smith, 1971) (Table 4-2). Based on analysis of scale samples collected by Daiber (1956a) in Delaware Bay during 1956, Seagraves (198la) reported the following age-class composition: 26.9 percent, age l+; 39.6 percent, age 2+; 29.6 percent, age 3+; and 3.9 percent, age 4+ (Table 4-2). Samples collected by Seagraves (198la) in 1979, however, demonstrated the presence of fish to age 9+; age-class composition was: 36.6 percent, age l+: 46.8 percent, age 2+; 9.3 percent, age 3+: 1.9 percent, age 4+: 3.2 percent, age 5+; and 2.2 percent, age 6+ and older (Table 4-2). 4.1.3 Size Composition As with age composition (Section 4.1.2), size varies with coastal latitude and time at any given location. Gear selectivity also affects size composition of the catch and it must be considered when comparing studies using different gears. Nesbit (1954) examined pound net catches from New York to North Carolina and found that modal length of adults decreased from north to south. Shepherd and Grimes (1982) reported the same trend in trawl catches between Cape Cod and Cape Hatteras in 1979-1981. The trend resulted primarily from a smaller proportion of older age groups in the south, but size within each age group also decreased from north to south (Nesbit, 1954). Age O+ fish were the exception: by October they were relatively uniform in length throughout their range (Nesbit, 1954). Daiber (1957), Massman (1963a), Daiber and Smith (1971), and Wilk and Silverman (1976) reported that the average size of fish in inshore areas decreased between May and October. This is caused by both emigration of large fish and recruitment of small fish. Seagraves (198la) reported a shift in size composition within Delaware Bay over the last three decades (Section 3.7.3). In 1953-1955 and 1966-1969 trawl catches were dominated by 180-300 mm TL fish. In 1970, 1971 and 1979 there was a greater proportion of larger fish. Size composition of the catch in the present study is presented in Figures 4-1 through 4-9 for larval through adult life phases. Modal size decreased from ca. 300 mm FL in May to ca. 30 mm FL in June as adults left the Bay after spawning and 0+ fish were recruited (Fig. 4-9). Continued

      • !***.:*
  • *
  • 4-3 recruitment of 0+ young from June through early September is reflected in the wide range and variation around the mean length for each sampling period (Figs. 4-10 through 4-16). Mean length of fish taken by bottom trawl generally was slightly greater than of those taken in corresponding pelagic fixed-frame trawls because of larger mesh size of the former. Mean length generally increased steadily from June through September, reflecting growth (Section 3.7.3). As larger juveniles and adults exited the Bay during late September and October, mean length levelled off or declined through the end of each year (Figs. 4-5 through 4-9). During some years a bimodal size distribution was apparent in the 0+ age group (Present Study, Section 3.7.3; Thomas, 1971). It was most likely a result of two major pulses of spawning (Daiber, 1956a, 1957; Daiber and Smith, 1971; Shepherd and Grimes, unpubl.) and by fall it was no longer apparent, perhaps because fish the Bay earlier than the smaller fish. By age l+ the fish had a single length mode because of growth convergence or greater mortality of the smaller fish during migration (Shepherd and Grimes, unpubl.).

4.2 ABUNDANCE

AND DENSITY 4.2.1 Average Abundance Polgar et al. (1979) estimated the population of juveni7e weakfish in the Potomac estuary (rkm 0-105) as 4.6 x 10 fish based on data collected during 1976. No estimates of adult populations could be found in the literature.

4.2.2 Changes

in Abundance Harmic (1958) estimated annual egg production during 1955-1957 in Delaware Bay as 450 billion, based on egg densities in plankton tows. This was a period of relatively low abundance and small average size of spawners. Present-study estimates of annual baywide production ranged from 1.5 El2 to 8.6 El2 for 1979 through 1982 (Table Assessment of coastal adult weakfish abundance depends on inference drawn from sport and commercial landings (Section 5.4.3). Fluctuating effort, especially during World War II, distorted the trend but it appears the population experienced a long gradual decline beginning in the mid 1930 1 s (McHugh, 1972, 1979; Joseph, 1972; Murawski, 1977). Joseph (1972) cited overfishing and DDT as responsible for . . . *1* 4-4 the decline and believed that catch statistics since 1945 accurately reflect abundance. Merriner (1973) considered Joseph's conclusions about DDT to be ill however, catches did increase dramatically in the late l960's after DDT was banned (McHugh, 1979). Commercial landings increased more than ten fold to near-record levels between 1967 and 1979. Recreational landings showed the same trend although effort also increased substantially (Section 5.4.1). Poole (NYDEC, pers. comm.) has noted an apparent decline in adult weakfish abundance in New York waters since the' l950's. This is believed by Poole to reflect general weakfish population trends, with expansion into the New York region occurring during years of coastwide abundance and retraction during years of reduced species abundance. However, McHugh (1979) concluded that we?kfish were more abundant in mid-Atlantic waters than at any time in history. Daiber and Smith (1971) report that, at least on a term basis, abundance in Delaware Bay appears to fluctuate randomly from year to year. Miller (1978), in c0mmenting on the Delaware sport fishery of the 1960's and 1970's, concluded that twofold increases and decreases in weaktish catch per unit effort were the rule rather than the exception (Section 5.4). 4.2.3 Average Density Density of a given life stage of weakfish typically exhibits considerable spatial and temporal variation within an estuary. Temporal-spatial variations observed during the present study are summarized in Tables 4-4 through 4-29 and Figures 4-17 through 4-326. Eggs, larvae and juveniles are carried or swim upestuary from spawning grounds (Thomas, 1971), causing densities to peak progressively farther upestuary for each successive life stage. For example, Olney (1983) found weakfish larvae in lower Chesapeake Bay, with peak densities occurring at mid-channel stations near the Bay mouth, while another study conducted further upestuary (lower Potomac River) detected the presence of juveniles, but no larvae (Polgar et al., 1979) (Table 4-3). A similar trend was apparent in the present study. Annual regional egg densities were greatest between 3 rkm 0-32, ranging from 1,341 per lOOm to 12,984 per lOOm (Figs. 4-21 through 4-24). Welsh and Breder (1923) reported eggs offshore of Delaware Bay as well. Localized areas of high egg density occurred progressively further upestuary during the late spring and summer (Figs. 4-25 through 4-63). and pc3tlarval densities typically peaked between rkm 16-80,

  • I I J I I I I * *-*-.. **-*-----.. 4-5 ranging from 95.1 per 100m 3 to 249 per 100m 3 for prolarvae (Figs. 4-68 throug§ 4-71 and Figs. 4372 through 4-108) and from per lOOm to 55.8 per lOOm for postlarvae (Figs. 4-113 through 4-116 and Figs. 4-117 through 4-156). Age O+ weakfish were distributed throughout the estuary, i.e., rkm with peak densities ranging from ca. 5.5 to 16.5 per lOOm occurring within the 0-80 rkm region. The center of O+ density to the lower Bay (rkm 0-32) during September in most years as the fish congregated near the Bay mouth prior to the autumnal migration (Figs. 4-157 through 4-163 and Figs. 4-164 through 4-246: Daiber and Smith, 1971). Density of adult fish (l+ and older) was greatest between rkm 0-64 (Figs. 4-247 through 4-253 and Figs .. 4-254 through 4-326: Thomas, 1971: Daiber and Smith, 1971). Temporal (seasonal) changes in density also occurred in Delaware Bay for each life stage. Eggs first appeared in baywide ichthyoplankton tows between mid.May and early June in the present study. Highest densities, reflecting peak spawning activity, at this time and ranged from 1.4 to 7,207 eggs per lOOm
  • In most years, a secondary peak (ranging from about 500 to 2,400 eggs per lOOm ) occurred ln late June or July (Tables 4-4 through 4-7: Figs *. 4-17 through 4-20). Due to a relatively short incubation period (Section 3.2.1) and a rapid growth rate (Section 3.7.3)i pro-and postlarval temporal peaks in density closely parallel those of eggs, prolarval peak density ranges of 10.9 to 119.3 per lOOm (Tables 4-8 through 4-11: Figs. 4-64 through and postlarval peaks ranging from 1.1 to 37.8 per lOOm (Tables 4-12 through 4-15: Figs. 4-109 through 4-112). Mean larval (pro and post) summer densities from Chesapeake Bay 1971 through 1974 ranged from 1.1 to 302.6 per lOOm (Olney, 1983): larval density ranges in the River (DE) estuary were reported as 0.2 to 65.0 per lOOm during May, June and July sampling in 1975-1976 (EA, 1976). Long Island 3 sound (NY) larval estimates ranged between 10-15 per lOOm during the summers of 1980 through 1982 (Williams, GeoMet Tech, Inc., pers. comm.) (Table 4-3). Age 0+ fish were recruited throughout the late spring and summer, with annual baywide peaks occurring between late July and lat3 August, and peak densities ranging from 1.9 to 7.9 per lOOm (Tables 4-16 through 4-22, Figs. 4-157 through 4-163). These densities exceed those reported by Polgar 3 et ale (1979) for the Potomac River estuary of 0.7 per lOOm
  • Adult fish (l+ and older) typically evidence a peak in density in June in the lower Bay (Daiber and Smith, 1971), which reflects an influx of adults which disperse after spawning (Tables 4-23 through 4-29) .

4-6 4.2.4 Changes in Density Mercer (1983) compiled catch per unit effort data for the coastal commercial fishery between 1940 and 1976. She warned that effort-based estimates are crude but the data are likely the best available index of coastal density. Catch per unit effort was highest in 1945, declined through the 1950's, then increased from the 1960's through 1976 (Section 5.4.3). Joseph (1972) interpreted declining catch per unit eff9rt subsequent to 1945 as indicative of a general population decline but stated that commercial landings data from earlier years were biased by changing market demand and fluctuating effort, and are therefore probably unreliable indicators of abundance. There is some evidence that weakfish populations in Delaware Bay have been declining in recent years *. Smith (1981, 1982) reported a decreasing abundance index (number of fish per nautical mile) over the period 1966 through 1981 (Fig. 4-327). The observed decrease in abundance was accompanied by an observed increase in mean fish length, suggesting to him that the fishery was being by the strong 1966-68 year classes. An increase in 3ize of entries in the Delaware Sport Fishing Tournament was noted by Seagraves (198la). Lesser (1982) suggested that the apparent decline was part of a natural cycle and that weakfish are now on the downside. However, he did not present the data upon which his suggestion was based. Evidence to the existence of cycles might be inferred from Mercer (1983), citing Austin (1981), describing peaks in abundance at ca. 10-year intervals in a trawl-based index series of juvenile abundance in the York River, VA, 1955-1982. Smith (1982) implied that weakfish year-class strength is determined by unpredictable environmental fluctuations and that the fishery is dependent on the occurrence of strong year classes. Present study data (Figs. 4-328, 4-329; see also Section 7.0) demonstrate that in Delaware Bay (rkm 64-97) during 1970 through 1980 year-class-strength underwent substantial fluctuations. Strong year classes were evident in 1970, 1975 and 1978. The peak in 1978, 413.8 fish/10 min tow, was approximately 44 times greater than the 1974 peak, 9.4 fish/10 min tow, the year of lowest peak density. Evidence of a strong year class may persist for a few subsequent years: peaks then appear to dampen over time. Although post-1980 river sampling was not comparable with this data set, the subsequent field and on-site impingement monitoring programs have not suggested any strong year classes since 1978.

  • I I I I I I I 4-7 4.3 NATALITY AND RECRUITMENT

4.3.1 Reproduction

Rate Individual fecundity estimates are discussed in Section 3.1.5. Harmic (1958) estimated annual (1955-1957) egg production in Delaware Bay at 450 billion based on egg densities in plankton tows. This was during a period of relatively .low abundance and small average size of spawners (Section 4.1, 4.2, 3.7.3). Present study estimates of annual baywide production ranged from 1.5 El2 to 8.6 El2 for 1979 through 1982 (Table 3-5). 4.3.2 Factors Affecting Reproduction A variety of biotic and abiotic factors affect reproductive success of fish populations. Three of the most obvious biotic factors are abundance and of the parental population and survival rate of the young. These are in turn influenced by abiotic ones, such as temperature, salinity, dissolved oxygen, nutrients, pollutants, and perhaps solar radiation and rainfall. For weakfish, there is a strong positive relationship between fish length and number of ova produced (Section Since length is related.to age, the age-class composition of the population will have some effect on the number of ova produced. weakfish eggs and larvae in the Delaware Bay are subject to the extreme and sudden changes in temperature, salinity and turbidity characteristic of Atlantic coast estuaries. Harmic (1958) considered 18-24°C optimal for maximum reproductive success, and opined that unseasonably warm or cold temperature during the spawning period affects egg and larval mortality by prolonging or speeding up development. through these vulnerable life stages. Although sudden increases or decreases in salinity may be lethal to eggs, data from the present study showed no relationship between the salinity at collection and percentage of live eggs (Section 3.2.2). Abundance of suitably-sized prey at the first-feeding stage was an important factor for survival of laboratory-reared larvae in the present study. Ware (1975) that older (larger) fish produce larger eggs which in turn produce larvae large enough to feed efficiently and survive. Smaller eggs produced later in the season by younger adults (see Section 3.1.6) may produce fewer succes3ful larvae.

  • --.. -_ .. ; : ....... * ... . 4-8 The later spawn may be cannibalized by the first (Thomas, 1971: Daiber and Smith, 1971). Joseph (1972) hypothesized that chronic presence of pesticides may reduce spawning success. The combined effect of the above factors is local fluctuation in reproductive success. However, Merriner (1976) reasoned that the entire population would never undergo simultaneous coastwide spawning failure due to natural causes because of the protracted spawning season and broad geographical range of spawning grounds. 4.3.3 Recruitment A spawner-recruit model for weakfish within a given estuary has not been developed for lack, in part, of accurate population estimates of spawning adults. Seagraves (1982a) interpreted data from Delaware Bay trawl surveys conducted by the Delaware Division of Fish and Wildlife to indicate "poor recruitment of juveniles to adult populations for the past several years." Harmic (1958) stated that physicochemical fluctuations in the estuary approach levels detrimental to weakfish survival at that time. Merriher (1976) believed such fluctuations to be related to annual variation in recruitmentr Recruitment of weakfish adults to the northern extreme of the species range could be density dependent.

Perlmutter et al. (1956) reported that the northern (NY waters) fishery for weakfish was primarily dependent on southern-spawned stock and that northern abundance of the species would increase only as the southern stock built up to a greater density. Recruitment of 0+ fish to New York waters was inferred by Nesbit (1954), who concluded that local weakfish spawning intensity and success was not great enough to account for the presence of all 0+ weakfish he observed late in the season. Murawski (1977), using a Beverton-Holt yield-per-recruit analysis with the following population parameters: w = 4645.7g K = 0.270 TO = 0.074 yrs T = 0.25 yrs r T = 0.5, c 1.0, 1.5, 2.0 yrs

  • 4-9 t = a.a: yrs M = 0.2, 0.3, 0.4 F = 0.1 -1.0 tentatively concluded that under the harvest conditions, optimum exploitation rate was achieved.

He calculated that an increase in the age of first capture, t , from age 1 to 2 would result in a 29-32 percent increase iR Y/R at F , depending on the value of M. He concluded that are not particularly sensitive to the absolute value of the natural mortality coefficient. Mercer (1983), however, questioned the reliability of Murawski's results due to the doubtful of recreational landings data, gear bias, and lack of information on the natural mortality rate. 4.4 MORTALITY AND MORBIDITY

4.4.1 Mortality

The literature presents no estimates of natural mortality in the early life stages (i.e., egg through O+ young) of weakfish: mortality estimates for these stages were generated from present-study data. The egg mortality rate was estimated from present-study weakfish egg viability (for procedure see Appendix I). The following monthly average egg viability values were generated from plankton-net sampling in the Delaware River estuary between rkm 0-117 during 1979-1982: Mean Egg Viability (percent) June 1979 45.6 41.1 56.3 1980 50.4 47.4 70.4 1981 48.6 76.7 1982 68.3 58.9 57.5

..... ** 4-10 An average value of 51.47 percent was calculated as the arithmetic mean of the May and June values; only May and June were considered since about 79 percent of annual egg production occurs during these months. Assuming egg viability as an estimate of through-stage survival, the survival rate of 0.5147 equates to an instantaneous daily total mortality rate (Zd) of 0.33209 over two days. We obtained a mortality estimate for pro-and post larvae from the following relationships (Ricker, 1975; p. 60-61): dL/dt = K a (Log N)/dL = z I e where dL = change in length, mm dt = change in time, days* dN = change in number Therefore, d (Log N)/dt = -Z'K e and z = Z'K The value of Z' was estimated from length-frequency data for 1979-1982.

Inspection of this data suggested that only the size range of 2.3-4.3 mm TL was representatively sampled with the 0.5 m plankton net; therefore, analyses were limited to this range. Since the slopes among years (1979-1982) were not significantly different, the pooled slope of 1.33096 was considered the best estimate of Z' (Table 4-30). The growth rate coefficient, K, was developed from information presented in Section 3.7.3. Since the size range of interest, 2.3 through 4.3 mm TL, is not explicitly described by the available growth equations, a new function was developed by fitting a second degree polynomial through a presumed 1.8 mm at hatching (Harmic, 1958) and the observed means, 3.1 and 10.0 mm at day 7 and 20, respectively, from the present study laboratory data. The size-at-age function TL = 1.8 + 0.06495D + O.Ol725D 2 where D = age in days, yields the following first derivative which expresses the daily growth rate (GR): GR= 0.06495 + 0.03451D.

  • 4-11 The sizes 2.3 and 4.3 mm c9rrespond to ages 3.9 and 10.3 days; integrating over this period yields an average growth rate of 0.31 mm/day. Therefore, the daily instantaneous total mortality rate, zd, is 0.4126. The mortality rate for age O+ juveniles was calculated from present-study, trawl density values employing the density methodology.

Examination of baywide (rkm 0-117) densities, by collection period, for the period 1979-1982 indicated that full recruitment to the sampling gear occurred during early to mid-August, and that emigration from the estuary may not be pronounced until after October. Therefore, the regression analysis was applied to the mean collection period densities from August through October. Since the slopes among years were not significantly different (Table 4-31), the pooled slope of 0.04115 was used as the best estimate of daily instantaneous total mortality for juveniles. Estimates of adult mortality have been reported *from many regions throughout the species range (Table 4-32). Merriner (1973) found that his 1967-1970 total annual mortality estimates derived from Hatteras, NC pound net and Morehead City, NC otter trawl catches were similar to literature values from the same region during 1934 as well as from Chesapeake Bay, New Jersey and New York data dating from the 1930's and l950's. Merriner reported annual total mortality rates (A) ranging from o*.48 to 0.73, depending on method of calculation. The comparable rates ranged from 0.59 to 0.81. Murawski (1977) compared age-specific instantaneous total mortality (Z) derived from 1976 New Jersey creel census data to rates derived from 1976 NMFS Atlantic fall trawl data for fish aged from l+ to 5+. Murawski's data indicated an increase in z from 0.353 to 0.658 for age l+ through 5+ fish taken in New Jersey. values of Z derived from the coastwide trawl data ranged from 0.523 for 4+ fish up to 0.752 for 5+ fish with no apparent relationship to age class (Table 4-32). Shepherd (1982) demonstrated a trend toward increasing total instantaneous mortality from north to south among adults sampled by trawl between Cape Cod (MA) and Cape Fear (NC) (Table 4-32). 4.4.2 Factors causing or Affecting Mortality Eggs and Larvae The effects of temperature, salinity, turbulence and egg size on hatching success are discussed in Sections 3.2 and 4.3.2. ware (1975) concluded that mortality of larvae decreased as size increased on the bases of decreased energy expenditure for food search as well as general locomotion \ 4-12 capability and decreased vulnerability to predation. Shepherd (1982) concluded that progeny of late spawners, being smaller through the larval stage that some-age siblings of the earlier cohort(s), experience higher mortality. Sudden reductions in salinity are known to increase egg and juvenile mortality (Harmic, 1958; Thomas, 1971); one might infer that larvae are similarly affected. Juveniles and Adults Density-related (biotic) factors such as cannibalism by adults and other juveniles as well as predator competition for estuarine food resources have been cited as a source of juvenile mortality in Delaware Bay (Daiber and Smith, 1971; Thomas, 1971). Abiotic factors* such as *sudden changes in salinity may also result in mortality. For example, early in the present study a sudden infusion of storm runoff rapidly depressed salinity in the Delaware River above rkm 94 was soon followed by a fish kill including juvenile weakfish (Thomas, 1971). Mercer (1983), citing a personal communication from John Poole, New York Department of Environmental Coriservation, reported numerous moribund weakfish from Peconic and Gardeners bays of New York. Although heavy copepod infestations were noted, the cause of the condition was unknown.

  • Fishing is a considerable source of mortality (McHugh, 1977; 1979; 1981). The sport fishery almost exclusively affects adults. Commercial fishing often affects selected age groups of adults (see Selectivity, Section 5.4.2). However, the shrimp and scrap fisheries in the Carolinas and the fall bottom trawl fishery off Delaware Bay destroy vast quantities of juveniles (Wolff, 1972; Devries, 1981; Shepherd, 1982). Latitude is not a factor per se but various parameters combine to affect a clinal increase in mortality rates from north to south (Shepherd, 1982). 4.5 DYNAMICS OF POPULATION Shepherd (1982) described north to south trends in several population characteristics.

Growth in southern regions was initially more rapid than in northern areas but southern fish never achieved the ultimate size of northern fish . Additionally, life span was shorter, mortalities higher and egg production by individuals of a given size higher in * *

  • 1 I I 1 ] 1
  • 4-13 southern fish. He hypothesized that these characteristics were the result of natural selection of a reproductive strategy favorable for the particular location.

Selection in the southern portion of the range, a region of presumed greater environmental stability, would favor a strategy of maximizing annual fecundity at the expense of somatic growth.* In the northern portion of the range, with presumably a less predictable environment, it would be more advantageous to spread egg production over a longer period of time. Shepherd concluded that despite the latitudinal differences in somatic growth and annual fecundity, the life time fecundity of northern and southern fish was nearly identical. He conceded that the evaluation of the differential strategies is dependent on having reproductively isolated populations. As Mercer (1983) noted, the existence of genetically distinct populations of weakfish has not yet been established (see Section 1.3.1). 4.6 THE POPULATION IN THE COMMUNITY AND THE ECOSYSTEM Most Atlantic estuaries are characterized by interaction between a resident community and a seasonally transient assemblage of species. Weakfish is one of the many seasonal occupants that use estuaries for feeding, spawning and/or nursery grounds during most productive time of year. EA (1976) found that 48 of the 108 species encountered in the Indian River (DE) estuary were seasonal migrants. Weinstein et al. (1980) theorized that transient species act as a trophic link for energy transfer from estuarine to marine ecosystems. Thomas (1971) compared the usage of the lower Delaware Estuary by six sciaenids: weakfish, silver perch, black drum, spot, northern kingfish, Atlantic croaker, and black drum. His information suggests that resources are partitioned by a combination of differential timing of entry, habitat, and diet. Young black drum entered the study area in early June, followed by weakfish in mid-June, northern kingfish in mid to late June, silver perch in late June, larger young spot in early July and Atlantic croaker in late October, generally after most other species had left. Young weakfish and Atlantic croaker were taken primarily in the River proper, whereas small black drum were found almost exclusively in the mid to upper portions of marsh creeks. Small silver perch and spot were collected in these tributary creeks as well as in the shore zones of the river. Weakfish consumed more fish than any of the other sciaenids in the study area while black drum were primarily benthic feeders. The diet of young silver perch was intermediate, containing a mixture of both benthic organisms 4-14 and fish. Spot fed upon small crustaceans and plant material while Atlantic croaker fed almost exclusively on copepods and Neomysis. The four northern kingfish examined contained mostly decapods. Chao and Musick (1977) reported similar mechanisms of resource sharing among juvenile sciaenids, including weakfish, spot, Atlantic croaker and silver perch in the York River estuary, VA. In the present study, weakfish associated most frequently with bay anchovy, hogchoker and spot in the Delaware River near Salem, NJ (Rohde and Schuler, 1974). Weakfish ranked second or third in abundance in baywide trawls conducted from 1979 through 1982 and comprised between 4.3 and 22.l percent of the annual catch (present study). Weakfish ranked fourth in combined trawl hauls in the C & D Canal during 1972-1975 (Bason et al., 1976), and ranked second to spot in June through August and fifth in annual catches in the Indian River (DE) estuary (EA, 1976t. Schuler (1971) reported that weakfish accounted for 30 percent of the total Salem (NJ) region trawl catch although the species was among the most restricted in period of occurrence. Relative abundance of weakfish in other estuarine systems is summarized in Table -.. --

  • 4-15 Table Summary of weakfish sex ratios Source Present Study Present Study Seagraves, 198la Crozier & Hecht, 1914 Shepherd and (unpubl.)
  • p < o.os ** p < 0.01 Grimes t NS--not significant Location/Date Delaware R., 1969; 1974-1977 (rkm 64-97) Delaware R., 1969 Delaware R., 1970 Lower Delaware Bay, 1970 Delaware Bay, 1979 Beaufort, NC Ocean City, MD. -Cape Cod, MA 1979-1981 Virginia Beach, VA -Ocean City, MD 1979-1981 Cape Fear, NC -Virginia Beach, VA 1979-1981 4-1 reported_by_

several . . . * .. , *;* ' Life Phase/ Gear Age Bottom trawl young Bottom trawl adult adult adult Bottom trawl adult and gill net Not stated adult Trawl and 1+ pound net 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ Total l+ 2+ 3+ 4+ 5+ 6+ Total l+ 2+ 3+ 4+ Total authors. Number t Male Female 172 240 ** 33 57

  • 6 19
  • 25 19 NS 330 306 NS 111 274 ** 67 57 NS 105 74
  • 113 97 NS 35 33 NS 14 18 NS 21 14 NS 8 13 NS 3 11 NS 5 6 NS l 6 NS l 3 NS 373 332 NS 62 45 NS 27 24 NS 5 3 NS 0 2 NS l l NS 0 l NS 95 76 NS 56 42 NS 29 43 NS 9 14 NS 0 l NS 94 100 NS Table 4-2 Age composition of weakfish populations reported from Long Island (NY) to North-Carolina.

Age Group, Percent Composition Source Localitl 0 1 2 3 4 5 Remarks Nesbit, 1954 Fire Island (L.I.) 3+ and older dominant in northern NJ Northern NJ and in some years at Fire Island Nesbit, 1954 Montauk, L.I. 2+ fish dominant Southern NJ Seagraves, 198la Delaware Bay, 1956 26.9 39.6 29.6 3.9 1979 36.6 46.9 9.3 1.9 3.2 2.2 Daiber and Delaware Bay 1966-68: catches predominantly o+ I Smith, 1971 to 2+ fish f-' 0\ 1969-70: population composition gradually shifting toward older fish Daiber, 1957 Delaware Bay 1953-54: May-June -3+ and 4+ dominant July -2+ dominant August -l+ dominant Note: Continued recruitment of o+ fish throughout season, Daiber, 1954 Delaware Bay, 1953 8.3 77.2 10.4 3.8 0.3 1954 12.3 57 .6 28.4 1.7 Joseph, 1972 Chesapeake Bay, 1964 54.8 43.5 1.6 0.1 3+ fish present only in spring and fall Massman, 1963a Chesapeake Bay, 1950's 62.0 28.0 8.0 1..0 April-May: 2+ and 3+ dominant June-October: l+ dominant but 3+ and 4+ increase somewhat during October. Pattern consistent every study-year. Devries, 1981 Cove Sound, NC 50.0 so.a long haul seine, recruited at 170 111111 TL Sholar, 1979 Pamlico Sound, NC 78.8 12.9 5.1 2.8 0.5 Pound net and long haul seine

  • catches, April-October,
  • 4-17 Table 4-3 Summary of weakfish densities from various locations.

Location F.ggs New York Bight Surface Subsurface Larvae Long Islanci Sound, NY New York Bight Indian River estuary, DE Chesapeake Bay Young Potomac River estuary rkm 0-65

  • Period ig71 Sep. 1971 Sep. 1980-1982 Summer 1971 Sep. 1975 May 20 Jun. 13 Jun. 26 1976 Jul. 7 Jul. 14 1971 Aug. Sep. 1972 Jun. Jul. Aug. 1973 Jul. Aug. 1974 Aug. 1971-1976 Summer Density. 3 10. 6/100m 3 3.0/lOOm 10-15/100m 3 3 2.9/lOOm 3 0.2/100m3 65 .0/100m 3 4.5/100m 3 2.5/100m 3 0.2/lOOm 3 302.6/100m 3 l.l/100m 3 0.7/100m 3 15.9/100m 3 4.6/100m 3 22.6/100m 3 17 .4/100m 3 4.8/lOOm 3 0.7/lOOm (15.2-966.2)*

(10.0-12.1) (17.9) (17.6-639.3) (42.9-46.3) (4.9-281.4) (3.2-93.5) (3.8-21.2) Density range for collections that included larvae

  • Reference Austin, 1976 Williams, Geo.Met Tech, Inc. (pers. comm.) EA, 1976 EA, 1976 Olney, 1983 Folgar et al., 1979
  • Size Collection Julian Range Period Date (um) 1979 Mar. 27-30 87.5 Apr. 17-20 108.5 May 1-4 122.5 May 22-24 143 Hay 29-Jun. 1 150.5 Jun. 5-7 157 Jun. 12-14 164 Jun. 25-29 178 Jul. 9-12 191.5 Jul. 16-20 199 Jul. 24-27 206.5 Aug. 6-9 219.5 Aug. 20-24 234 Sep. 10-13 254.5 Oct. 15-17 289 Oct. 29-Nov. 2 304 Number of Table 4-4 Population statistics for weakfish eggs prior and subsequent to moving-average process:0.5-m plankton net collections, 1979. Prior to Averaging t Subsequent to Averaging Mean Standard Coefficient Standard Coefficient Mean t Error of of Error of of Density 3 Samples Density 3 (x/lOOm ) Mean Variation Mean Variation R2 (x/lOOm } 11 0 ** 40 0 0 39 0 0 51 3959.90 1662.99 300 930.28 168 0.69333 7.207E+3 51 834.85 257.70 220 197.99 169 0.42154 1.154E+3 51 21.65 10.48 346 4.60 152 0.81119 1.414E+l 72 1195.82 361.18 256 186.32 132 0.73765 1.176E+3 77 804.98 171.61 187 115.14 126 0.55577 8.684E+2 71 615.44 152.26 208 101.83, 139 0.55913 7.911&+2 51 225.34 48.58 154 37.07 117 0.42935 3.412E+2 47 110.82 31.44 195 18.15 112 0.67399 1.987&+2 49 1.64 0.81 344 0.68 290 0.30266 2.418E+o 57 0 0 70 0 0 79 0 0 46 0 0 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period * ** Insufficient sample size to estimate density * * +95% Confidence River Limits Kilometers 64-117 64-117 64-117 6.109E+3;9.075E+3 0-117 _,,,.. I 8.820E+2;1.552E+3 0-117 00 9.770E+o;2.338E+l 0-117 8.834E+2;1.545E+3 0-117 6.820E+2;1.096E+3 0-117 6.311E+2;9.927E+2 0-117 2.785E+2;4.157E+2 0-117 l.743E+2;2.352E+2 0-117 l.698E+O;J.786E+o 0-117 0-117 0-117 0-117 0-117
  • Size Collection Julian Range Period Date (nm) 1980 Jan. 23 23 Mar. 17-20 78.5 Apr. 15-17 107 Apr. 29-May 2 121.5 May 5-7 127 May 19-22 141.5 Jun. 2-6 156 Jun. 9-12 162.5 Jun. 16-20 _ 170 Jul. 7-11 191 Jul. 14-18 198 Jul. 21-24 204.5 Aug. 4-7 218.5 Aug. 18-23 233.5 Sep. 8-12 254 Sep. 22-29 269.5 Oct. 6-10 282 Oct. 20-27 297.5 Nov. 3-7 310 ------*-Table 4-5 Population statistics for weakfish eggs prior and subsequent to process:0.5-m plankton net collections, 1980. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm ) 2 0 ** 40 0 0 40 0 0 40 0 0 42 0 0 69 2240.07 665.47 247 223.03 82 0.88933 5.240E+3 68 436.97 181.60 343 129.63 245 0.49808 4.545E+2 70 515.64 139.27 226 76.36 124 o. 70372 6.035E+2 70 619.01 288.42 390 229.50 310 0.37600 8.595E+2 70 488.70 242.96 416 194.33 333 0.36949 7.438E+2 . 70 475.49 109.34 192 68.57 121 0.61239 l.039E+3 69 167.16 64.20 319 41.99 209 0.57843 4.105E+2 70 0.20 0.13 533 0.10 398 0.45154 S.521E-l 68 0.05 0.03 579 0.03 460 0.37674 7.682E-2 69 0 0 66 0 0 70 0 0 58 0 0 53 0 0 t . Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. ----+95% Confidence River Limits Kilometers 64-117 64-117 64-117 +:-64-117 I 0-117 I-' 4.934E+3;5.682E+3 0-117 '° 2.681E+2;7.112E+2 0-117 4.714E+2;7.547E+2 0-117 6.160E+2;1.314E+3 0-117 4.825E+2;1.129E+3 0-117 9.252E+2;1.174E+3 0-117 3.637E+2;4.936E+2 0-117 4.971E-1;7.408E-l 0-117 6.933E-2;1.284E-l 0-117 0-117 0-117 0-117 0-117 0-117

. '"-'

  • Size Collection Julian Range Period Date (mm) 1981 Apr. 27-30 118.5 May 11-14 132.5 May 18-22 140 May 26-28 147 Jun. 8-11 160.5 Jun. 15-18 167.5 Jun. 22-26 175 Jul. 6-10 189 Jul. 13-17 196 Jul. 20-,24 203 Aug. 3-6 216.5 Aug. 17-22 231.5 Aug. 31-Sep. 3 244.5 Sep. 14-18 259 Sep. 28-30 272 Oct. 12-15 286.5 Number of Table 4-6 Population statistics for weakfish eggs prior and subsequent to moving-average process:0.5-m plankton net collections, 1981. Prior to Averaging t Subsequent to Averaging Mean Standard Coefficient Standard Coefficient Mean Error of of Error of of t Samples Density 3 (x/lOOm } Mean Variation Mean Variation R2 Density 3 (x/lOOm } 69 0 0 70 0 0 68 0 0 66
1. 57 597 1.19 454 0.43102 1.443E+o 10 507.91 173.11 285 94,44 156 o.70668 7.306E+2 68_ 415. 71 117.34 233. 95.68 190 0.34496 4.195E+2 66 245.56 51.59 171 37.49 124 0.48019 2.352E+2 71 227.21 55.51 206 48.15 179 0.25821 3.009E+2 70 365.02 86.15 197 53.01 122 0.62683 4.694E+2 70 76.53 25.02 274 18.49 202 0.46163 l.291E+2 71 32.63 12.43 321 6.19 160 0.75578 2.906E+l 69 0 0 70 0 0 70 0 0 70 0 0 70 0 0 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. --..... ... * +95% Confidence River Limits Kilometers 0-117 0-117 0-117 l.178E+o;3.809E+o 0-117 6.079E+2;9.176E+2 0-117 -!:'-2.731E+2;6.090E+2 0-117 I !>.) l.801E+2;3.094E+2 0-117 0 2.205E+2;3.962E+2 0-117 ,_ 3.,52E+2;5.743E+2 0-117 l.060E+2;1.657E+2 0-117 2.328E+l;4.131E+l 0-117 0-117 0-117 0-117 0-117 0-117 ------
  • Table 4-7 Population statistics for weakfish eggs prior and subsequent to moving-average process:0.5-m plankton net Prior to Averaging t
  • Size Number Hean Standard Coefficient Collection Julian Range of Density 3 Error of of Period Date (mm) Samples (x/lOOm ) Mean Variation 1982 Apr. 26-30 118 69 0 May 11-14 132.5 64 1522.35 604.55 318 May 17-21 139 70 2565.35 1019.43 332 May 24-27 145.5 70 1471.57 433.18 247 Jun. 7-10 159.5 69 35.27 7.32 172 Jun. 21-24 173.5 70 612.57 243.91 333 Jun. 28-Jul. 3 181.5 70 104.37 36.64 294 Jul. 12-15 194.5 70 87.21 21.63 208 Jul. 19-23 202 70 122.75 25.14 171 Jul. 26-29 208.5 70 74.04 21. 78 246 Aug. 9-13 223 70 2.14 1.23 479 Aug. 23-27 237 70 14.22 7.31 430 Aug. 30-Sep. 2 243.S 70 Q.06 Q.04 594 Sep. 20-24 265 69 0.08 0.06 652 Oct. 4-5 277.5 70 0 Oct. 18-20 292 70 0 t Averaging indicates moving average process {three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. Standard Error of Mean 442.15 500.17 220.92 5.62 208.03 27.30 14.85 11.62 10.04 0.74 4.74 0.04 0.04 collections, 1982. Subsequent to Averaging t Coefficient Hean of R2 Density 3 Variation (x/lOOm ) 0 232 Q.47359 2.484E+3 163 o. 76277 3.104E+3 126 Q.74367 2.094E+3 132 0.42067 4.139E+l Q.28.309 5.442E+2 219 o.45279 8.947E+l 142 0.53536 l.016E+2 79 o. 78936 1. 525E+2 113 0.79041 l.016.E+2 289 0.64220 3.884E+o 280 0.58601 l.059E+l 498 o. 30585 4.657E-2 458 0.51384 2.259E-l 0 0 +95% Confidence River Limits Kilometers 0-117 2.134E+3;3.359E+3 0-117 2.560E+3;4.094E+3 0-117 l.814E+3;2.532E+3 0-117 3.260E+l;5.251E+l 0-117 "'" 3.189E+2;9.561E+2 0-117 I NI 5. 022E+l; 1. 435E+2 0-117 8.116E+l;l.310E+2 0-117 l.360E+2;1.755E+2 0-117 9.001E+l;l.214E+2 0-117 6.430E+o;l.997E+l 0-117 S.349E+o;3.389E+o 0-117 4.196E-2;1.212E-l 0-117 2.090E-1;3.084E-l 0-117 0-117 0-117
  • Size Collection Julian Range Period Date (mm) 1979 Mar. 27-30 87.5 1.5-3.0 Apr. 17-20 108.5 1.5-3.0 May 1-4 122.5 1.5-3.0 May 22-24 143 1.5-3.0 May 29-Jun. 1 150.5 1.5-3.0 Jun. 5-7 157 l.S-3.0 Jun. 12-14 164 1.5-3.0 Jun. 25-29 178 1.5-3.0 Jul. 9-12 191.5 1.5-3.0 Jul. 16-20 199 1.5-3.0 Jul. 24-27 206.5 1. 5-3.0 Aug. 6-9 219.5 1. 5-3.0 Aug. 20-24 234 1.5-3.0 Sep. 10-13 254.5 1.5-3.0 Oct. 15-17 289 1.5-3.0 Oct. 29-Nov. 2 304 1.5-3.0 Table 4-8 Population statistics for weakfish prolarvae prior and subsequent to moving-average process:0.5-m plankton net collections, 1979. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Sameles (x/lOOm } Mean Variation Mean Variation (x/ lOOm } 11 0 ** 40 0 0 39 0 0 51 26.93514 7.19361 191 4.64373 123 0.59162 4.169E+l 51 10.24835 3.51799 245 2.49934 174 0.50536 1.460E+l 51 0.07498 0.05251 500 0.04926 469 0.13737 L577E-2 72 8.62452 3.70844 364 2.75241 271 0.45690 8.501E+o 77 6.55136 1. 68477 226 0.88083 118 0.73025 3.720E+o 71 4.62053 1.48022 270 1.02716 187 o.52535 4.877E+o 51 12.57853 3.17754 180 1.85819 105 0.66486 7.138E+o 47 2.09478 0.50255 164 0.36248 119 0.49107 2.207E+o 49 0.64556 0.23611 256 0.20983 228 0.22667 9.896E-l 57 0 0 70 0 0 79 0 0 46 0 0 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. * +95% Confidence Limits 3.392E+l;5.102E+l l.058E+l;l.962E+l 1.370E-2;1.147E-l 6.910E+o;l.395E+l 2.938E+o;5.464E+o 3.881E+o;6.910E+o 5.274E+o;l.087E+l l.564E+o;2.936E+o 7.380E-l;l.412E+o

River Kilometers 64-117 64-117 64-117 0-117 0-117 I 0-117 N N 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117

  • Size Collection Julian Range Period Date (om) 1980 Jan. 23 23 1.5-3.0 Mar. 17-20 78.5 1.5-3.0 Apr. 15-17 107 1.5-3.0 Apr. 29-May 2 121.5 1.5-3.0 May 5-7 127 1.5-3.0 May 19-22 141.5 1.5-3.0 Jun. 2-6 156 1.5-3.0 Jun. 9-12 162.5 1.5-3.0 Jun. 16-20 170 1.5-3.0 Jul. 7-11 191 1.5-3.0 Jul. 14-18 198 1.5-3.0 Jul. 21-24 204.5 1.5-3.0 Aug. 4-7 218.5 1.5-3.0 Aug. 18-23 233.5 1.5-3.0 Sep. 8-12 254 1.5-3.0 Sep. 22-29 269.5 1.5-3.0 Oct. 6-10 282 1. 5-3.0 Oct. 20-27 297.5 1.5-3.0 Nov. 3-7 310 1.5-3.0 t . -* Table 4-9 Population statistics for weakfish prolarvae prior and subsequent to moving-average process:0.5-m plankton net collections, 1980. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of Of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm } 2 0 ** 40 0 0 40 0 0 40 0 0 42 0 0 69 75.51545 21.60991 238 10.24142 113 o. 77870 Ll93E+2 68 16.57455 4.29768 264 3.10872 155 0.66080 1. 205E+l 70 26.39161 14.34187 455 10.58003 335 0.46368 l.306E+l 70 7.33783 1.98712 227 1.44953 165 0.47560 3.926E+o 70 19.30630 5.04551 219 3.47700 151 0.53199 9.203E+o 70 45.94539 12.79882 233 8.14268 148 3.199E+l 69 28.22798 6.21333 183 3.73258 110 0.64442 5.806E+l 70 0.14717 0.05992 341 0.05103 290 0.28521 1.879E-l 68 0 0 69 0 0 66 0 0 70 0 0 58 0 0 53 0 0 Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. --* +95% Confidence River Limits Kilometers 64-117 64-117 64-117 64-117 0-117 -!>-I 1 .* 032E+2; 1. 400E+2 0-117 !-.) 8.639E+o;l.820E+l 0-117 w 9.967E+o;3.401E+l 0-117 2.571E+o;6*796E+o 0-117 2.274E+l;4.811E+l 0-117 6.]51E+o;l.609E+l 0-117 5.175E+l;6.545E+l 0-117 l.592E-1;2.889E-l 0-117 0-117 0-117 0-117 0-117 0-117 0-117 ! i {: I. (. , .. ' !*. l .. : 1 !-** '
  • Size Collection Julian Range Period Date (mm) 1981 Apr. 27-30 118.5 1.5-3.0 May 11-14 132.5 1.5-3.0 May 18-22 140 1.5-3.0 Hay 26-28 147 1.5-3.0 Jun. 8-11 160.5 1.5-3.0 Jun. 15-18 167.5 1.5-3.0 Jun. 22-26 175 1.5-3.0 Jul. 6-10 189 1.5-3.0 Jul. 13-17 196 1.5-3.0 Jul. 20-24 203 1.5-3.0 Aug. 3-6 216.5 1.5-3.0 Aug. 17-22 231.5 1.5-3.0 Aug. 31-Sep. 3 244.5 1.5-3.0 Sep. 14-18 259 1.5-3.0 Sep. 28-30 272 1.5-3.0 Oct. 12-15 286.5 1.5-3.0 Table 4-10 Population statistics for weakfish prolarvae prior and subsequent to moving-average process:0.5-m plankton net collections, 1981. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Hean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm ) 69 0 0 70 0 0 68 0 0 66 0 0 70 0.17372 0.06985 336 0.04668 225 0.560 8.374E-2 68 o.78340 0.27630 291 178 0.630 5.490E-l 66 13.19431 7.99338 492 6.48159 399 0.353 L091E+l 71 3.54372 1.37187 326 0.87505 208 0.599 2.280E+o 70 1.51920 0.45684 252 0.29693 164 0.584 L355E+o 70 1.63730 0.35404 181 0.22009 112 0.619 L841E+o 71 LJ1657 0.37649 241 0.31418. 201 0.314 L676E+o 69 0.02914 0.02046 583 0.01102 485 0.318 2.448E-2 70 0 \ 0 70 0 0 70 0 0 70 0 0 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period * .... Insufficient sample size to estimate density. * .___ --.........._ -i** +95% Confidence River Limits Kilometers 0-:-117 0-117 0-117 o-i11 -!>-I 7.144E-2;1.762E-l 0-117 N 4.422E-1;8.842E-l O-i17 -!>-8.189E+o;2.374E+l 0-117 l.851E+o;4.013E+o o-u1 1.002E+o;l.943E+o 0-117 1.478E+o;2.277E+o 0-117 l.187E+o;2.298E+o 0-117 2.199E-2;5.817E-2 0-117 0-117 0-117 0-117 0-117 ..; ,. .. * :* . t. ' ! . * '* ... ---lililllli.-
  • Size Collection Julian Range Period Date (um) 1982 Apr. 26-30 118 1.5-3.0 May 11-14 132.5 1.5-3.0 May 17-21 139 1.5-3.0 May 24-27 145.5 1.5-3.0 Jun. 7-10 159.5 1.5-3.0 Jun. 21-24 173.5 1.5-3.0 Jun. 28-Jul. 3 181.5 1.5-3.0 Jul. 12-15 194.5 1.5-3.0 Jul. 19-23 202 1.5-3.0 Jul. 26-29 208.5 1.5-3.0 Aug. 9-13 223 1.5-3.0 Aug. 23-27 237 1.5-3.0 Aug. 30-Sep. 2 243.5 1.5-3.0 Sep. 20-24 265 1.5-3.0 Oct. 4-5 277.5 1.5-3.0 Oct. 18-20 292 1.5-3.0 -* -Table 4-11 Po{?ulation st.atistics for weakfish prolarvae prior and subsequent to moving-average process:0.5-m plankton net collections, 1982. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm ) 69 0 0 64 16.26951 13.93615 685 10.36159 509 0.456 L334E+l 70 17 .48404 5.58009 267 3.62260 173 0.585 l.968E+l 70 59.55231 29.44055 414 22.19946 312 o.440 6.265E+l 69 2.11793 0.67433 264 0.39935 157 o.654 1. 730E+O 70 4.90210 1. 75031 299 1.25262 214 0.495 4. 214E+O 70 5.29532 1.53591 243 0.95149 150 0.622 4.244E+O 70 2.11452 1.15001 455 0.96916 383 0.300 L808E+O 70 0.24078 0.08324 289 0.07331 255 0.236 l.888E-l 70 0.03975 0.02796. 588 0.02245 4/2 0.365 3.lllE-2 70 0 0 70 0.86827 0.29206 281 0.18028 174 0.625 1.134E+O 70 0.14838 0.09542 538 0.05128 )289 0.715 4.259E-1 69 0.02499 0.02499 830 0.02070 '688 0.324 l.701E-2 70 0 0 70 0 0 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. -+95% !: Confidence River . ' Limits Kilometers

!*. 0-117 l.088E+l;3.386E+l 0-117 l.547E+l;2.685E+l 0-117 4.042E+l;l.066E+2 0-117 0-117 3.477E+0;6.695E+O 0-117 I !;,) 3.537E+0;6.128E+O 0-117 \J1 l.254E+0;3.727E+O 0-117 l.484E-1;3.339E-l 0-117 2.816E-2;7.556E-2 0-117 0-117 9.585Erl;l.491E+O 0-117 0-117 0-117 0-117 0-117

  • Size Collection Julian Range Period Date (nm) 1979 Mar. 27-30 87.5 3.1-10.5 Apr. 17-20 108.5 3.1-10.5 Hay 1-4 122.5 3.1-10.5 Hay 22-24 143 3.1-10.5 May 29-Jun. 1 150.5 3.1-10.5 Jun. 5-7 157 3.1-10.5 Jun. 12-14 164 3.1-10.5 Jun. 25-29 178 3.1-10.5 Jul. 9-12 191.5 3.1-10.5 Jul. 16-20 199 3.1-10.5 Jul. 24-27 206.5 3.1-10.5 Aug. 6-9 219.5 3.1-10.5 Aug. 20-24 234 3.1-10.5 Sep. 10-13 254.5 3.1-10.5 Oct. 15-17 289 3.1-10.5 Oct. 29-Nov. 2 304 3.1-10.5 Table 4-12 Population for weakfish postlarvae prior and subsequent to moving-average process:0.5-m plankton net collections, 1979. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm } Mean Variation Mean Variation (x/lOOm } 11 0 ** 40 0 0 39 0 0 51 3.21038 1.48718 331 1.01357 225 0.545 6.148E+o 51 2.91788 1.33799 327 1.06076 260 0.384 3.152E+o 51 3.71797 1.40819 270 0.80486 155 0.680 1.863E+o 72 0.20022 0.13049 553 0.09538 404 0.473 2.048E-1 77 1.64967 0.71261 379 0.45182 240 0.603 6.216E-1 71 2.54072 0.65900 219 0.49747 165 0.438 2.159E+o 51 7.58124 2.28683 215 1.51187 142 0.572 3.996E+o 47 2.12055 0.65658 212 0.43712 141 0.566 1.802E+o 49 0.44817 0.13732 214 0.10611 166 0.415 3.823E-1 51 0.04722 0.03388. 542 0.02583 413 0.429 4.525E-2 70 0 0 79 0 0 46 0 0 t Averaging indicates moving average process (three nearest neighbors)
  • Midpoint of collection period * ** Insufficient sample size to estimate density * * +95% Confidence River Limits Kilometers 64-117 64-117 64-117 *!: 5.147E+o;8.184E+o

(}-117 I 2.270E+o;5.283E+o (}-117 N l.560E+o;3.480E+o (}-117 "' 1.891E-1;3.937E-l (}-117 5.056E-l;l.516E+o. (}-117 1.618E+o;3.144E+o (}-117 2.735E+o;7.033E+o 0-117 1.471E+o;2.682E+o (}-117 2.753E-1;5.957E-l (}-117 3.921E-2;9.640E-2 0-117 0-117 (}-117 0-117

  • Size Collection Julian Range Period Date ( llDll) 1980 Jan. 23 23 3.1-10.5 Mar. 17-20 78.5 3,1-10.5 Apr. 15-17 107 3,1-10.5 Apr. 29-May 2 121.5 3.1-10.5 May 5-7 127 3.1-10.5 May 19-22 141.5 3.1-10.5 Jun. 2-6 156 3.1-10.5 Jun. 9-12 162.5 3,1-10.5 Jun. 16-20 170 3.1-10.5 Jul. 7-11 191 3.1-10.5 Jul. 14-18 198 3.1-10.5 Jul. 21-24 204.5 3.1-10.5 Aug. 4-7 218.5 3.1-10.5 Aug. 18-23 233.5 3.1-10.5 Sep. 8-12 254 3.1-10.5 Sep. 22-29 269.5 3.1-10.5 Oct. 6-10 282 3.1-10.5 Oct. 20-27 297.5 3,1-10.5 Nov. 3-7 310 3.1-10.5 Table 4-13 Population statistics for weakfish postlarvae prior and subsequent to moving-average process:0.5-m plankton net collections, 1980. Prior to Averaging t Subsequent to Averaging t Number Hean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm Mean Variation Mean Variation (x/lOOm } 2 0 ** 40 0 0 40 0 0 40 0 0 42 0 0 69 4.01776 2.01606 417 1.30105 269 0.590 4.237E+o 68 7.55853 3.35778 257 1.60379 175 0.544 3.747E+o 70 o.33297 0.12889 324 0.07465 188 0.669 l.074E-1 70 0.28512 0.9728 285 0.08129 239 o-;312 9.744E-2 70 6.68335 2.58132 323 1.97931 248 0;421 2.471E+o 70 5.91129 2.05887 291 1.55536 220 0.438 3.009E+o 69 16.93140 8.27491 406 6.05497 297 0.472 3. 777E+l 70 0.39819 0.16825 354 0.14137 297 0.304 2.631E-1 68 0 0 69 0 0 66 0.09201 0.09201 812 0.07629 674 0.323 6.061E-2 70 0 0 58 0 0 53 0 0 t Averaging indicates moving average process (three nearest neighbors)
  • Midpoint of collection period * ** Insufficient sample size to estimate density. * +95% *confidence River Limits Kilometers 64-117 64-117 64-117 64-117 0-117 I N 3.561E+o;6.813E+o 0-117 '-I 2.863E+o;6.923E+o 0-117 9.814E-2;2.552E-l 0-117 8.003E-2;2.584E-l 0-117 l.783E+o;6.390E+o 0-117 1.658E+o;6.088E+o 0-117 2.987E+l;4.976E+l 0-117 l.752E-1;5.430E-l 0-117 0-117 0-117 5.609E-2;2.117E-l 0-117 0-117 0-117 0-117
  • Size Collection Julian Range Period Date (mm) 1981 Apr. 27-30 118.5 3.1-10.5 May 11-14 132.5 3.1-10.5 May 18-22 140 3.1-10.5 May 26-28 147 3.1-10.5 Jun. 8-11 160.5 3.1-10.5 Jun. 15-18 167.5 3.1-10.5 Jun. 22-26 175 3.1-10.5 Jul. 6-10 189 3.1-10.5 Jul. 13-17 196 3.1-10.5 Jul. 20-24 203 3.1-10.5 Aug. 3-6 216.5 3.1-10.5 Aug. 17-22 231.5 3.1-10.5 Aug. 31-Sep. 3 244.5 3.1-10.5 Sep. 14-18 259 3.1-10.5 Sep. 28-30 272 J.1-10.5 Oct. 12-15 286.5 3.1-10.5 Table 4-14 Population for weakfish postlarvae prior and subsequent to moving-average process:0.5-m plankton net collections, 1981. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/IOOm ) Mean Variation Mean Variation (x/lOOm ) 69 0 0 70 0 0 68 0 0 66 0 0 70 0.01661 0.01661 837 0.01254 632 0.438 l.856E-2 68 0.16497 0.10363 518 0.06532 327 0.607 1.l 77E-l 66 1.38603 0.62582 367 0.44813 263 0.495 l.056E+o 71 0.95644 0.38446 339 0.29425 259 0.423 7.037E-l 70 0.99054 0.46210 390 0.31481 266 0.543 7.639E-l 70 0.89579 0.36694 343 0.26225 245 0.497 7.855E-l 71 0.25566 0.09388 309 0.07674 253 0.341 2. 792E-l 69 0.09027 0.04969 457 0.03415 314 o.535 4.900E-2 70 0 0 70 0 0 70 0 0 70 0 0 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density * * +95% Confidence River Limits Kilometers 0-117 0-117 0-117 0-117 1.737E-2;4.339E-2 0-117 l.030E-1;2.470E-l 0-117 8.635E-l;l.943E+o 0-117 5.148E-l;l.286E+o 0-117 6.260E-l;l.387E+o 0-117 5.980E-l;l.305E+o 0-117 2.292E-1;4.312E-l 0-117 4.201E-2;1.166E-l 0-117 0-117 0-117 0-117 0-117 * ------.i:--I !-,,) 00 ..
  • Size Collection Julian Range Period Date (mm) 1982 Apr. 26-30 118 3.1-10.5 May 11-14 132.5 3.1-10.5 May 17.-21 139 3.1-10.5 May 24-27 145.5 3.1-10.5 Jun. 7-10 159.5 3.1-10.5 Jun. 21-24 173.5 3.1-10.5 Jun. 28-Jul. 3 181.5 3.1-10.5 Jul. 12-15 194.5 3.1-10.5 Jul. 19-23 202 3.1-10.5 Jul. 26-29 208.5 3.1-10.5 Aug. 9-13 223 3.1-10.5 Aug. 23-27 237 3.1-10.5 Aug. 30-Sep. 2 243.5 3.1-10.5 Sep. 20-24 265 3.1-10.5 Oct. 4-5 277.5 3.1-10.5 Oct. 18-20 292 3.1-10.5
  • Table 4-15 Population for weakfish postlarvae prior and subsequent to moving-average process:0.5-m plankton net collections, 1982. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm ) 69 0 0 64 o.48208 0.48208 800 0.39991 664 0.323 8.337E-l 70 1.01614 0.56048 461 0.38781 319 0.528 9.930E-l 70 9.54395 2.86169 251 2.10744 185 0.466 8.237E+O 69 1.19421 0.44346 308 0.32666 227 0.465 7.816E-l 70 0.31035 0.13620 367 0.10483 283 0.416 2.123E-1 70 3.73484 1.62841 365 1.13635 0.520 2.892E+o 70 0.66001 0.24114 306 0.19257 244 o.372 5.273E-l .70 0.63174 0.24684 327 o.1833j 243 0.456 5.139E-l 70 0.12076 0.04913 340 0.03559 247 0.483 8.873E-2 70 0.04395 0.03107 592 0.02592 494 0.314 3.388E-2 70 0.44534 0.18480 347 0.16308 306 0.233 4.105E-l 70 0.15305 0.10637 582 0.09542 522 0.207 2.735E-l 69 0.16477 0.11691 589 0.08881 448 0.431 2.116E-l 70 0 0 70 0 0 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. +95% Confidence River Limits Kilometers 0-117 7.695E-l;l.626E+o 0-117 8.348E-l;l.761E+o 0-117 5.918E+o;l.241E+l 0-117 .p. 6.190E-l;l.428E+o 0-117 I N l.824E-1;4.199E-l 0-117 '° 2.370E+o;5.142E+o 0-117 : .. 4.289E-1;9.087E-l 0-117 3.379E-1;8.769E-l 0-117 7.908E-2;1.592E-l 0-117 3.036E-2;8.521E-2 0-117 -2.606E-1;7.334E-l 0-117 '*. 2.183E-1;4.264E-l 0-117 l.951E-1;3.875E-l 0-117 0-117 0-117 .I
  • Size Number Collection Julian Range of Period Date (mm) Samples 1979 Apr. 10-12 101 11-295 95 Apr. 24-25 114.5 11-295 85 May 8-10 129 11-50 105 May 22-24 143 11-50 67 Jun. 5-7 157 11-83 107 Jun. 18-22 171 11-83 100 Jul. 2-5 184.5 11-173 67 Jul. 16-20 199 11-173 98 Jul. 31-Aug. 3 213.5 11-210 109 Aug. 13-17_ 227 11-210 59 Aug. 27-30 240.5 11-210 104 Table 4-16 Populatio_n statistics for weakfish O+ prior and subsequent to moving-average process:4.9-m surface trawl collections, 1979. Prior to Averaging t Subsequent to Averaging t Mean Standard Coefficient Standard Coefficient Mean Density 3 Error of of Error of of R2 Density 3 (x/lOOm Mean Variation Mean Variation (x/lOOm } 0 0 0 0 0 0 0 0 0 0 0.1.0108 0.02878 285 0.01402;.

139 0.76508 3.305E-2 0.14717 0.04689 261 0.03549 197 o.43599 6.863E-2 0.14202 0.03397 237 0.02511 175 0.45931 9.385E-2 0.17996 0.03741 217 0.02834 164 0.43130 l.148E-l 0.59656 0.16402 211 0.11248. 145 0.53781 5.154E-l 0.13876 0.03241 238 0.02331 171 0.48759 L051E-l t Averaging indicates moving average process (three nearest neighbors).

  • Midpoint of collection period. ** Insufficient sample size to estimate density. * +95% Confidence River Limits Kilometers 0-117 0-117 0-117 0-117 0-117 3.013E-2;6.081E-2 0-117 5.202E-2;1.389E-l 0-117 7.463E-2;1.436E-l 0-117 8.817E-2;1.707E-l 0-117 4.095E-1;7.381E-l 0-117 7.964E-2;1.511E-l 0-117 * ----'* .i::-I w 0
  • Size Number Collection Julian Range of Table 4-17 Population statistics for weakfish O+ prior and subsequent to _moving-average process:4.9-m bottom trawl collections, 1979. Prior to Averaging t Subsequent to Averaging Mean Standard Coefficient Standard Coefficient Mean t Density 3 Error of of Error of of Density 3 Period Date (mm) Samples (x/lOOm ) Mean Variation Mean Variation R2 (x/lOOm } 1979 May 15-18 136.5 11-50 84 0 0 May 29-Jun. l 150.5 11-50 105 0 0 Jun. 12-14 164 11-83 104 Q.00435 0.00207 486 0.00146 342 o.50811 4.859E-3 Jun. 25-29 178 11-83 103 0.39694 0.11579 296 0.08021 205 0.52478 2.549E-l Jul. 9-13 192 11-73 106 1.00283 0.13608 140 0.09179 94 0.54933 8. 522E-l Jul. 24-27 206.5 11-173 95 2.10499 0.29594 137 0.19136 89 0.58633 1. 789E+o Aug. 6-10 220 11-210 100 4.13499 0.50319 122 0.38377 93 0.42421 4.00lE+o Aug. 20-24 234 11-210 86 2.00039 0.22238 103 0.22238 74 0.49130 l.804E+o Sep. 4-5 247.5 11-250 35 1.88398 0.41314 130 0.28664 90 0.53279 l.619E+o Sep. 10-13 254.5 11-250 95 1.55165 0.19305 121 0.15892 100 0.32959 l.515E+o Sep. 25-27 269 11-250 41 0.53443 0.08855 106 0.07095 85 0.37402 5.320E-l Oct. 11 284 11-260 28 0.41509 0.10931 139 0.08433 108 0.42690 3.846E-1 Oct. 22-23 295.5 11-260 55 0.19561 0.03418 130 0.02979 113 0.25437 1.668E-l Nov. 15 319 11-270 29 0.05521 0.02326 227 0.01843 180 Q.39465 5.190E-2 Nov. 19-21 324 11-270 43 Q.05364 0.03331 407 0.02918 357 0.25125 4.385E-2 Nov. 27 331 11-270 24 0.07418 0.05093 336 0.03797 251 0.46835 6.414E-2 Dec. 4-7 339.5 11-275 53 0.03386 0.01588 342 0.00957 206 0.64373 3.645E-2 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. * ' +95% Confidence River Limits Kilometers 0-117 0-117 4.502E-3;7.734E-3 0-117 .po l.969E-1;4.129E-l 0-117 I w 7.182E-l;l.033E+o 0-117 1.451E+o;2.168E+o 0-117 3.269E+o;4.761E+o 0-117 l.505E+o;2.120E+o 0-117 l.194E+o;2.202E+o 0-117 l.202E+o;l.830E+o 0-117 3.937E-1;6.754E-l 0-117 2.408E-1;5.577E-1 0-117 1.087E-1;2.258E-1 0-117 2.637E-2;8.964E-2 0-117 2.038E-2;1.027E-l 0-117 4.179E-2;1.427E-l 0-117 3.233E-2;5.541E-2 0-117
  • Size Collection Julian Range Period Date (mm) 1980 Jan. 16-18 17 11-280 Jan. 21-23 22 11-280 Jan. 28-29 28.5 11-280 Mar. 10 70 11-290 Mar. 20 80 11-290 Mar. 24-27 85.5 11-290 Apr. 7-11 100 11-295 Apr. 21-23 113 11-295 May 5-7 127 11-50 May 12-15 134.5 11-50 May 19-22 141.5 11-50 Jun. 2-6 156 11-83 Jun. 9-12 162.5 11-83 Jun. 16-20 170 11-83 Jul. 7-11 191 11-173 Jul. 14-18 198 11-173 Jul. 21-25 205 11-173 Aug. 4-7 218.5 11-210 Aug. 11-14 225.5 11-210 Aug. 18-23 233.5 11-210 Sep. 2-5 247.5 11-250 Sep. 8-12 254 11-250 Sep. 22-26 268 11-250 Sep. 29 273 11-250 Oct. 6-9 281.5 11-260 Oct. 20-23 295.5 11-260 Oct. 27 301 11-260 Nov. 3-7 310 11-270 Table 4-18 Population.

statistics for weakfish 0+ prior and subsequent to moving-average process:4.9-m bottom trawl collections, 1980. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient. Standard Coefficient Mean of Deneity 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Hean Variation Mean Variation (x/lOOm ) 31 0 0 8 0 ** 23 0 0 5 0 ** 10 0 ** 26 0 0 55 0 0 107 0 0 107 0 0 107 0 0 70 0 0 68 0 0 70 0.00133 0.00133 837 0.00101 632 0.43800 8.102E-4 70 0.29391 0.13686 390 0.10234 291 0.44887 2.855E-l 70 0.62666 0.15279 204 0.09190 ill 0.59541 5.067E-1 70 1.26365 0.37783 250 0 .* 26725 177 0.50693 9.919E-l 70 1.52313 0.31045 171 0.23013 126 0.45845 1.176E+o 70 7.82887 3.11142 332 2.73516 292 0.23835 7.902E+o 70 8.60612 2.32197 226 1.37638 134 o. 65372 1.019E-l 68 3.74509 0.13290 161 0.45178 99 0.62568 3.973E+o 70 1.63841 0.39567 202 0.17113 87 0.81565 L998E+o 70 0.94163 0.18478 164 0.12868 114 0.52208 1.161E+o 47 0.46934 0.13697 200 0.13697 141 0.51690 4.683E-1 20 0.32364 0.10483 145 0.05745 79 0.71547 2.374E-1 70 0.15435 0.03200 173 0.01925 104 0.64331 1.479E-l 50 0.22773 0.06208 193 0.04415 137 0.50457 2.257E-l 9 0 ** 55 0.02414 0.01085 333 0.00925 284 0.28672 5.245E-2 t Averaging indicates moving average process (three nearest neighbors).

  • Midpoint of collection period. **

size to estimate density. * +95% Confidence River Li mite Kilometers 0-117 0-117 0-117 64-117 64-117 . 64-117 p. I 0-117 lJ,) !-..) 0-117 0-117 0-117 0-117 0-117 *,;* 7.584E-4;2.805E-3 0-117 2.330E-1;4.881E-l 0-117 3.768E-1;7.005E-1 0-1-17 6.508E-l;l.521E+o 0-117 8.926E-1;1.631E+o 0-117 5.002E+o;l.332E+l 0-117 7.945E+o;l.291E+l 0-117 3.233E+o;4.867E+o 0-117 1.697E+o;2.337E+o 0-117 9.593E-l;l.416E+o 0-117 2.884E-1;6.620E-l 0-117 l.621E-1;3.577E-l 0-117 l.176E-1;1.860E-1 0-117 l.602E-1;3.144E-l 0-117 0-117 4.236E-2;7.082E-2 0-117 *

  • . :.*, Tflhle 4-19 .. *?** Popula t t"o.n statistics for weakfish o+ prior and subsequent to moving-average process:fixed-frame Prior to Averaging t
  • Size Number Mean Standard Coefficient Collection Julian Range of Density 3 Error of of Period Date (mm) Samples (x/lOOm ) Hean Variation 1981 May 4-8 126 11-50 54 0 Hay 18-22 140 11-50 54 0 Jun. 1-5 154 11-83 47 0 Jun. 15-19 168 11-83 49 0 Jun. 22-26 175 11-83 47 0 Jul. 6-10 189 11-173 47 o.01617 0.00837 355 Jul. 13-17 196 11-173 47 0.13813 0.08640 429 Jul. 27-30 209.5 11-173 47 0.25884 0.08834 234 Aug. 3-6 216.5 11-210 47 0.31722 0.14446 312 Aug. 17-22 231.5 11-210 47 0.07238 0.03046 289 Aug. 24-27 237 .5 11-210 47 0.16686 0.13131 540 Aug. 31-Sep. 3 244.5 11-250 45 0.14240 0.12176 574 Sep. 14-18 259 11-250 45 0.05847 0.02471 283 Sep. 21-25 266 11-250 45 0.02268 0.01244 368 Oct. 5-9 280 11-260 49 0.01585 0.00808 357 Oct. 19-22 293.5 11-260 49 0.00940 0.00435 324 t Average indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. surface trawl collections, 1981. Subsequent to Averaging t Standard Coefficient Mean Error of of R2 Density 3 Mean Variation (x/lOOm ) 0 0 0 0 0 0.00635 269 0.43713 7.809E-2 0.06622 329 0.42547 2. 770E-2 0.06657 176 0.44443 9.693E-2 0.13239 286 0.17827 l.794E-l 0.02354 223 0.41586 3.562E-2 0.11915 490 0.19450 9.942E-2 0.10197 480 0.31461 4.409E-2 0.02094 240 0.29788 2.043E-2 0.00999 295 0.37011 3.0llE-2 0.00610 270 0.44110 3.441E-3 0.00317 236 0.47916 4.261E-3 * +95% Confidence River Limits Kilometers 0-117 0-117 0-117 0-117 0-117 .!:"-5.691E-3;2.058E-2 0-117 I w 1.911E-2;1.610E-1 0-117 w 6.927E-2;2.309E-1 0-117 l.235E-1;4.459E-l 0-117 2.627E-2;8.301E-2 0-117 6. 494E-2; 3, 393E-1 , 0-117 2.941E-2;2.496E-1 0-117 l.463E-2;6.263E-2 0-117 2.482E-2;5.024E-2 0-117 i*. 2.258E-3;1.572E-2 0-117 3.438E-3;1.064E-2 0-117 *1
  • Size Number Collection Julian Range of Table 4-20 Population statistics for weakfish 0+ prior and subsequent to moving-average process:4.9-m bottom trawl collections, 1981. Prior to Averaging t Subsequent to Averagingt Mean Standard Coefficient Standard Coefficient Mean Error of of Error of of Density 3 Period Date (mm) Samples Density 3 (x/lOOm ) Mean Variation Mean Variation R2 (x/lOOm 1981 May 4-8 126 11-50 16 0 0 May 18-22 140 11-50 16 0 0 Jun. 1-5 154 11-83 23 0 0 Jun. 15-19 168 11-83 23 0 0 Jun. 22-26 175 11-83 23 0 0 Jul. 6-10 189 11-173 23 0.09748 0.05885 290 0.05159 254 0.26628 8.lOlE-2 Jul. 13-17 196 11-173 23 o. 60718 0.27420 217 o. 21771 172 0.39825 4.753E-l Jul. 27-30 209.5 11-173 39 1.54461 0.39978 162 0.39978 64 0.84726
  • l.146E+o Aug. 3-6 216.5 11-210 23 4.22904 1.29894 147 0.94119 107 0.49884 2.980E+o Aug. 17-22 231.5 11-210 23 3.02926 o. 81130 128 0.53329 84 o.58756 J.lOOE+o Aug. 24-27 237.5 11-210 39 1.59836 0.28654 112 0.23226 91 0.36030 l.601E+o Aug. 31-Sep. 3 244.5 11-250 25 2.88716 0.97578 169 0.80613 140 0.34593 3.608E+o Sep. 14-18 259 11-250 25 1.83523 1.22089 332 0.91070 248 0.46676 l.152E+o Sep. 21-25 266 11-250 35 0.91394 0.21003 136 0.15002. 97 0.50480 9.428E-l Oct. 5-9 280 11-260 28 0.47720 0.14338 159 0.12623 140 0.25365 5.801E-l Oct. 19-22 293.5 11-260 31 0.23602 0.06330 149 0.04922 116 0.41550 2.414E-l t Average indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. * +95% Confidence River Limits Kilometers 0-117 0-117 0-117 +:'-I 0-117 w 0-117 +:'-5.346E-2;1.880E-2 0-117 J.080E-1;9.268E-l 0-117 8.977E-l;l.466E+o 0-117 l.466E+o;4.932E+o 0-117 2.173E+o;4.206E+o 0-117 l.170E+0;2.071E+o 0-117 2.400E+o;5.272E+O 0-117 5.273E-l;J.031E+o 0-117 6.952E-l;l.248E+o 0-117 3.527E-1;8.391E-l 0-117 l.586E-1;3.419E-l 0-117 . . f . * ! :
  • Size Collection Julian Range Period Date (mm) 1982 May 3-5 124 11-50 May 17-21 139 11-50 Jun. 7-10 159.5 11-83 Jun. 14-17 166.5 11-83 Jun. 28-Jul. 3 181.5 11-173 Jul. 12-15 194.5 11-173 Jul. 19-23 202 11-173 Jul. 26-30 209 11-173 Aug. 2-5 215.5 11-210 Aug. 16-19 229.5 11-210 Aug. 23-27 237 11-210 Aug. 30-Sep. 2 244.5 11-250 Sep. 13-16 257.5 11-250 Sep. 27-Oct. 1 272 11-250 Oct. 12-14 286 11-260 Oct. 27-29 301 11-260 ** Table 4-21 Population statistics for weakfish O+ prior and subsequent to moving-average process: fixed-fram_e surface trawl collections, 1982. Prior to Averaging t Subsequent to Averaging t Number Mean Standard _ Coefficient Standard Coefficient Mean Error of of Density 3 Error of of of R2 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm ) 54 0 0 54 0 0 47 0 0 47 0 0 47 0.29961 0.14232 326 0.09139 209 0.59666 l.877E-l 47 0.10275 0.05485 366 0.03878 259 o. 51113 6.608E-2 47 0.10840 0.06932 438 0.04929 318 0.50548 6.538E-2 47 0.15680 0.01012 307 0.04628 202 0.57381 4.549E-2 47 0.03958 0.02839 492 0.02644 458 Q.15142 2.378E-2 47 0.09739 0.06641 468 0.04241 299 0.60104 2.602E-2 47 0.06043 0.02634 299 0.01540 175 0.66574 l.633E-2 45 0.03196 0.01437 302 0.01195 251 0.32366 l.323E-2 41 0.10418 0.06399 393 0.04814 296 o.44820 2.118E-2 45 0.05309 0.02760 349 0.01930 243 0.01930 l.803E-2 49 0.01433 0.00656 320 0.00459 224 0.51985 8.651E-3 49 0.00236 0.00236 700 0.00197 584 0.39144 2.551E-3 t Average indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. * +95% Confidence River Limits Kilometers

! . 0-117 0-117 0-117 0-117 I l.607E-1;3.717E-l 0-117 w VI l.441E-1;5.512E-2 0-117 5.560E-2;1.646E-1 0-117 3.325E-2;1.387E-l 0-117 2.002E-2;7.701E-2 0-117 2.109E-2;1.114E-1 0-117 1.328E-2;4.733E-2 0-117 9.621E-3;3.732E-2 0-117 1.432E-2;1.185E-l 0-117 9.684E-3;5.692E-2 0-117 7.380E-3;1.788E-2 0-117 ' -2.289E-3;6.511E-3 0-117 l .. J. l' ;

  • Size Collection Julian Range Period Date (mm) 1982 Hay 3-5 124 11-50 May 17-21 139 11-50 Jun. 7-10 159.5 11-83 Jun. 14-17 166.5 11-83 Jun. 28-Jul. 3 181.5 11-173 Jul. 12-15 194.5 11-173 *Jul. 19-23 202 11-173 Jul. 26-30 209 11-173 Aug. 2-5 215.5 11-210 Aug. 16-19 229.5 11-210 Aug. 23-27 237 11-210 Aug. 30-Sep. 2 244.5 11-250 Sep. 13-16 257.5 11-250 Sep. 27-Oct. 1 272 11-250 Oct. 12-14 286 11-260 Oct. 27-29 301 11-260 Number of Table 4-22 Population statistics for weakfish 0+ prior and subsequent to moving-average process:4.9-m bottom trawl collections, 1982. Prior to Averaging t Subsequent to Averaging Mean Standard *Coefficient Standard Coefficient Mean t Error of of Error of of Density 3 Samples Density 3 (x/lOOm ) Mean Variation Mean Variation R2 (x/lOOm 17 0 0 16 0 0 23 0 0 23 0.02019 0.01060 252 0.00938 223 0.25318 l.296E-2 23 1. 50116 o. 73211 234 0.52340 167 0.51211 1.456E+o 23 0.87707 0.31282 171 0.21829 119 0.53518 6.071E-l 23 1.81744 0.55474 146 0.29354 77 o. 73272 1. 732E+o 23 2.32418 0.92165 190 0.70224 145 0.44584 l *. 930E+o 23 0.83616 0.20048 115 0.16292 93 0.36962 7.464E-l 33 1.82846 0.35362 111 0.29244 92 0.33748 l.611E+o 23 1.48386 0.37883 122 0.27165 88 0.50919 l.521E+o 25 1.42729 0.37079 130 0.32718 115 0.25385 l.380E+o 23 1.41950 0.30189 102 0.20536 69 o.55831 9.157E-l 25 0.64836 0.17293 133 0.12612 97 0.49028 5.783E-l 21 1.29373 0.40031 142 0.30763 109 o.43897 l.165E+o 21 0.07628 0.02695 162 0.02241 135 0.34269 9.SlOE-2 t Average indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density * * * +95% Confidence River Limits Kilometers 0-117 0-117 0-117 I 8.221E-3;3.240E-2 0-117 Vl °' l.061E+o;2.542E+o 0-117 3.581E-l;l.060E+o 0-117 l.268E+o;2.341E+o 0-117 l.034E+o;3.387E+o 0-117 4.589E-l;l.084E+o 0-117 l.083E+o;2.206E+o 0-117 l.055E+o;2.085E+O 0-117 8.110E-1;2.055E+O 0-117 5.521E-l;l.341E+O 0-117 3.451E-1;8.386E-l 0-117 5.790E-l;l.806E+o 0-117 5.967E-2;1.419E-l 0-,117 *
  • Size Collection Julian Range Period Date (om) 1979 Apr. 10-12 101 296-890 Apr. 24-25 114.5 296-890 May B-10 129 51-890 May 22-24 143 51-890 Jun. 5-7 157 84-890 Jun. 18-22 171 84-890 Jul. 2-5 184.5 174-890 Jul. 16-20 199 174-890 Jul. 31-Aug. 3 213.5 211-890 Aug. 13-17 227 211-890 Aug. 27-30 240.5 211-890 Table 4-23 Population statistics for weakfish l+ and older prior and subsequent to moving-average process:4.9-m surface trawl collections, 1979. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm ) 95 0 0 85 0 0 105 0.00152 0.00113 763 0.00080 538 0.50791 1. 621E-3 67 0.00337 0.00029 508 0.00195 473 0.14465 3.216E-3 107 0.00098 0.00069 728 0.00059 624 0.27138 6.314E-4 100 0.00618 0.00197 319 0.00157 254 0.37223 5.861E-3 67 0.00932 0.00431 378 0.00359 316 0.31388 6.809E-3 98 0:00231 0.00144 617 o.00114 487 0.38235 l.916E-3 109 0.00591 0.00409 723 0.00337 595 0.00337 4.115E-3 59 0.00087 0.00087 768 0.00078 688 0.21073 4. 779E-4 104 0.00155 0.00155 1,020 0.00128 841 0.32686 l.llOE-3 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. * +95% Confidence River Limits Kilometers 0-117 0-117 r l.513E-3;3.194E-3 0-117 I* 2.654E-3;7.076E-3 0-117 " 5.898E-4;1.800E-3 0-117 I 5.068E-3;B.965E-3 0-117 w 5.753E-3;1.393E-2 0-117 --.! 1.745E-3;4.164E-3 0-117 3.614E-3;1.075E-2 0-117 4.348E-4;2.028E-3 0-117 l.058E-3;3.624E-3 0-117 . .
  • Size Collection Julian Range Period Date (llllD) 1979 May 15-18 136.5 51-890 May 29-Jun. 1 150.5 51-890 Jun. 12-14 164 84-890 Jun. 25-29 178 84-890 Jul. 9-13 192 174-890 Jul. 24-27 206.5 174-890 Aug. 6-10 220 211-890 Aug. 20-24 234 211-890 Sep. 4-5 247.5 251-890 Sep. 10-13 254.5 251-890 Sep. 25-27 269 251-890 Oct:. 11 284 261-890 Oct:. 22-23 295.5 261-890 Nov. 15 319 271-890 Nov. 19-21 324 271-890 Nov. 27 331 271-890 Dec. 4-7 339.5 276-890 Table 4-24 Population statistics for weakfish l+ and older prior and subsequent to moving-average process:4.9-m bottom trawl collections, 1979. Prior to Averaging t Subsequent Averaging t to Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm } 84 0.00740 0.00301 373 0.00224 278 0.45237 7.879E-3 105 0.03467 0.00748 221 0.00544 161 o.47733 3.8om:-2 104 0.05677 0.00945 170 0.00684 123 0.48113 5.792E-2 103 0.14030 0.02503 181 0.01704 123 0.54099 1.473E-l 106 0.05930 0.00988 172 0.00701 122 0.50213 6.208E-2 95 0.08465 0.01570 181 0.01182 136 0.43882 9.575E-2 100 0.09979 0.01790 179 0.00950 95 o. 72135 1.112E-l 86 0.08758 0.01867 198 0.01402 148 0.44226 9.245E-2 35 0.09920 0.03052 182 0.02431 145 0.38405 6.528E-2 95 Q.10575 0.01751 161 0.01273 117 0.47740 1.062E-l 41 0.02758 0.00867 201 0.00655 152 0.44313 2. 718E-2 28 0.05057 0.01672 175 0.01414 148 0.31069 6.758E-2 55 0.02253 0.00539 177 0.00401 132 0.45522 3.0SSE-2 29 0.00400 0.00278 374 0.00182 246 0.58436 9.236E-3 43 0 0 24 0 0 53 0.00219 0.00153 510 O.C0105 350 0.53813 2.521E-3 t Averaging indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density . * * +95% Confidence River Limits Kilometers 6.780E-3;1.232E-2 0-117 0-117 4.688E-2;7.140E-2 0-117 +:-I l.197E-l;l.809E-l 0-117 w 5.119E-2;7.589E-2 0-117 :JO 7.773E-2;1.192E-l 0-117 9.546E-2;1.300E-l 0-117 7.338E-2;1.202E-l 0-117 4.124E-2;1.147E-l 0-117 8.744E-2;1.314E-l 0-117 l.837E-2;4.042E-2 0-117 4.853E-2;9.660E-2 0-117 2.436E-2;3.850E-2 0-117 8.206E-3;1.270E-2 0-117 0-117 0-117 2.314E-3;4.603E-3 0-117
  • i .
  • Table 4,.....25 Population statistics for weakfish l+ and older prior and subsequent to moving-average process:4.9-m bottom trawl collections, 1980. to Averaging t Subsequent Averaging t Prior to
  • Size Number Mean Standard Coefficient Standard Coefficient Mean +95% Collection Julian Range of Density 3 Error of of Erro.r of of R2 Density 3 Confidence River Period Date (mm) Samples (x/lOOm } Mean Variation Mean Variation (K/100m } Limits Kilometers 1980 Jan. 16-18 17 281-890 31 0 0 0-117 Jan. 21-23 22 281-890 8 0 ** 0-117 Jan. 28-29 28.5 281-890 23 0 0 0-117 Mar. 10 70 291-890 5 0 ** 64-117 Mar. 20 80 291*890 10 0 ** 64-117 Mar. 24-27 85.5 291-890 26 0 0 64-117 Apr. 7-11 100 296-890 55 0 0 0-117 Apr. 21-23 113 296-890 107 0.00181 0.00089 510 0.00073 417 0.33873 2.465E-3 2.243E-3;3.903E-3 0-117 +:'-I May 5-7 127 51-890 107 0.00228 0.00101 458 0.00077 349 0.42406 1. 781E-3 1.630E-3;3.297E-3 0-117 w May 12-15 134.5 51-890 107 0.00766 0.00219 295 0.00166 225 0.42569 7.057E-3 5.971E-3;1.034E-2 0-117 '° May 19-22 141.5 51-890 70 0.00618 0.00284 385 0.00249 337 0.24302 6.832E-3 5.560E-3;1.177E-2 0-117 Jun. 2-6 156 84-890 68 0.03157 0.00854 223 0.00588 154 0.53282 3. 797E-2 3.146E-2;4.961E-2 0-117 Jun. 9-12 162.5 84-890 70 0.03739 0.01128 252 0.00921 206 0.34302 4.481E-2 3.294E-2;6.304E-2 0-117 Jun. 16-20 170 84-890 70 0.04960 0.01527 258 0.01091 184 0.49704 6.257E-2 5.224E-2;8.416E-2 0-117 Jul. 7-11 191 174-890 70 0.03951 0.01296 274 0.00975 206 0.44214 5.490E-2 4.525E-2;7.420E-2 0-117 Jul. 14-18 198 174-890 70 0.02644 0.00722 228 0.00541 171 0.44559 3.462E-2 2.813E-2;4.534E-2 0-117 Jul. 21-25 205 174-890 70 0.06670 0.04155 521 0.03761 472 0.19252 8.156E-2 6.253E-2;1.560E-1 0-117 Aug. 4-7 218.5 211-890 70 0.03980 0.01442 303 0.00951 200 0.57118 4.557E-2 3.711E-2;6.440E-2 0-117 Aug. 11-14 225.5 211-890 70 0.05699 0.01851 272 0.01429 210 0.41251 6.200E-2 4.731E-2;9.029E-2 0-117 Aug. 18-23 233.5 211-890 68 0.01914 0.00766 330 0.00629 271 0.33586 1.684E-2 1.343E-2;2.930E-2 0-117 Sep. 2-5 247.5 251-890 70 0.01782 0.00569 267 0.00375 176 0.57239 2.176E.,.2 1.764E-2;2.919E-2 0-117 Sep. 8-12 254 251-890 70 0.01118 o.00451 320 0.00367 261 0.34593 1.270E-2 9.831E-3;1.997E-2 0-117 Sep. 22-26 268 251-890 47 0.00908 0.00301 227 0.00221 167 0.47168 1.517E-2 1.247E-2;1.962E-2 0-117 Sep. 29 273 251-890 20 0.04811 0.02248 209 0.01728 161 0.44024 3.704E-2 1.885E-2;7.321E-2 0-117 Oct. 6-9 281.5 261-890 70 0.02732 0.01377 422 0.01238 379 0.20283 3.193E-2 2.379E-2;5.644E-2 0-117 Oct. 20-23 295.5 261-890 50 0.00600 0.00264 311 0.00200 236 0.43822 S.820E-3 4.694E-3;9.837E-3 0-117 Oct. 27 301 261-890 9 0 ** 0-117 Nov. 3-7 310 271-890 55 0 0 0-117 t Averaging indicates moving average process (three nearest neighbors). "
  • Midpoint of collection period. \. ** Insufficient sample size to estimate density.
  • Size Collection Julian Range Period Date ( lllD) 1981 May 4-8 126 51-890 May 18-22 140 51-890 Jun. 1-5 154 84-890 Jun. 15-19 168 84-890 Jun. 22-26 175 84-890 Jul. 6-10 189 174-890 Jul. 13-17 196 174-890 Jul. 27-30 209.5 174-890 Aug. 3-6 216.5 211-890 Aug. 17-22 231.5 211-890 Aug. 24-27 237.5 211-890 Aug. 31-Sep. 3 244.5 251-890 Sep. 14-18. 259 251-890 Sep. 21-25 266 251-890 Oct. 5-9 280 251-890 Oct. 19-22 293.5 261-890 Table 4-26 Population statistics for weakfish l+ and older prior and subsequent to moving-average process:fixed-frame surface trawl collections, 1981. Prior to Av_eraging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm 2 54 0 0 54 0 0 47 0 0 49 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 45 0 0 45 0 0 45 0 0 49 0 0 49 0 0 t Average indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density * *
  • I_ ** i +95% Confidence River Limits Kilometers 0-117 0-117 0-117 0-117 I 0-117 0 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117
  • Size Collection Julian Range Period Date (mm) 1981 May 4-8 126 51-890 May 18-22 140 51-890 Jun. 1-5 154 84-890 Jun. 15-19 168 84-890 Jun. 22-26 175 84-890 Jul. 6-10 189 174-890 Jul. 13-17 196 174-890 Jul. 27-30 209.5 174-890 Aug. 3-6 216.5 211-890 Aug. 17-22 231.5 211-890 Aug. 24-27 237.5 211-890 Aug. 31-Sep. 3 244.5 251-890 Sep. 14-18 259 251-890 Sep. 21-25 266 251-890 Oct. 5-9 280 261-890 Oct. 19-22 293.5 261-890 Table 4-27 Population statistics for weakfish 1+ and older prior and subsequent to moving-average process:4.9-m bottom trawl collections, 1981. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm } Mean Variation Mean Variation (x/lOOm } 16 0.01923 0.00892 186 0.00858 179 0.13679 2.179E-2 16 0 0 23 0.01294 0.00593 219 0.00532 197 0.23292 l.042E-2 23 0.02054 0.01083 253 0.00977 228 0.22298 1.739E-2 23 0.08085 0.04066 241 0.03215 191 0.40317 9.445E-2 23 0.04970 0.02107 203 0.01601 155 0.44880 5.00lE-2 23 0.05936 0.02313 187 0.01722 139 0.47085 6.881E-2 39 0.06818 0.01936 177 0.01477 135 0.43330 8.467E-2 23 0.03089 0.01324 205 0.00991 154 0.46488 3. 728E-2 23 0.05216 0.02798 257 0.02813 259 0.03472 7.105E-2 39 0.02531 0.00988 244 0.00807 199 0.35C59 3.407E-2 25 0.03754 . 0.01502 200 0.0.1324 !.76 0.25510 5.201E-2 25 0.01527 0.00823 269 0.00622 204 0.45191 2.206E-2 35 0.03045 0.01072 208 0.00875 170 0.35387 3.756E-2 28 0.00179 0.00179 529 0.00152 448 0.30864 4.560E-3 31 0.00162 0.00162 557 0.00147 507 0.20000 L773E-3 t Average indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. * . ' ' +95% Confidence River Lim.its Kilometers 6.142E-3;4.008E-2 0-117 0-117 5.210E-3;2.145E-2 0-117 .po 9.240E-3;3.766E-2 0-117 I 6.052E-2;1.611E-l 0-117 .po t--' 2.983E-2;8.322E-2 0-117 4.363E-2;1.037E-l 0-117 6.113E-2;1.146E-1 0-117 2.209E-2;5.783E-2 0-117 l 3.743E-2;1.294E-l 0-117 i . ' 2.464E-2;5.040E-2 0-117 3.262E-2;7.934E-2 0-117 1.661E-2;3.490E-2 0-117 2.571E-2;5.534E-2 0-117 3.711E-3;7.680E-3 0-117 1.455E-3;4.784E-3 0-117 Collection Period 1982 May 3-5 May 17-21 Jun. 7-10 Jun. 14-17 Jun. 28-Jul. 3 Jul. 12-15 Jul. 19-23 Jul. 26-30 Aug. 2-5 Aug. 16-19 Aug. 23-27 Aug. 30-Sep. 2 Sep. 13-16 Sep. 27-Oct. 1 Oct. 12-14 Oct. 27-29
  • Size Julian Range Date (mm) 124 51-890 139 51-890 159.5 84-890 166.5 84-890 181:5 174-890 194.5 174-890 202 174-890 209 174-890 215.5 211-890 229.5 211-890 237 211-890 244.5 251-890 257.5 251-890 272 251-890 286 261-890 301 261-890 Table 4-28 Population statistics for weakfish l+ and older prior and subsequent to moving-average process:fixed-frame surface trawl collections, 1982. Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Mean of Density 3 Error of of Error of Samples (x/lOOm ) Mean Variation Mean of R2 Density 3 Variation (x/lOOm ) 54 0 0 54 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 47 0 0 45 0 0 41 0 0 45 0 0 49 0 0 49 0 0 t Average indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estimate density. * +95% Confidence Limits River Kilometers 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 0-117 * -!>-I -!>-N ..
  • Size Collection Julian Range Period Date (mm) 1982 May 3-5 124 51-890 May 17-21 139 51-890 Jun. 7-10 159.5 84-890 Jun. 14-17 166.5 84-890 Jun. 28-Jul. 3 181.5 174-890 Jul. 12-15 194.5 174-890 Jul. 19-23 202 174-890 Jul. 26-30 209 174-890 Aug. 2-5 215.5 211-890 Aug. 16-19 229.5 211-890 Aug. 23-27 237 211-890 Aug *. 30-Sep. 2 244.5 251-890 Sep. 13-16 257.5 251-890 Sep. 27-Oct. 1 272 251-890 Oct. 12-14 286 261-890 Oct. 27-29 301 261-890 Table 4-29 Population statistics for l+ and older prior and subsequent to moving-average bottom trawl collections, 1982. *,, Prior to Averaging t Subsequent to Averaging t Number Mean Standard Coefficient Standard Coefficient Hean of Density 3 Error of of Error of of R2 Density 3 Samples (x/lOOm ) Mean Variation Mean Variation (x/lOOm 2 17 0.00196 0.00196 412 0.00183 385 0.18056 2.798E-3 16 0.01453 0.00978 269 0.00941 259 0.13527 1.587E-2 23 0.03101 0.01402 217 0.01185 183 0.31802 3.305E-2 23 0.02902 0.01365 226 0.00865 143 0.61647 2.867E-2 23 0.09291 0.03532 182 0.02621 135 0.47441 1.3UE-l 23 0.05788 0.02102 174 0.01546 128 0.48385 7.970E-2 23 0.07459 0.03536 227 0.02674 172 0.45408 7.877E-2 23 0.03363 0.02070 295 0.01874 267 0.21778 4.997E-2 23 0.03434 0.01747 243 0.01425 199 0.36511 3.728E-2 33 0.03528 0.01502 245 0.01285 209 0.29102 2.952E-2 23 0.03102 0.01290 199 0.01097 170 0.30970 4.198E-2 25 0.03796 0.01678 221 0.01428 188 0.30570 5.644E-2 23 0.02146 0.00883 197 0.00713 159 0.37866 2. 771E-2 25 0.03039 0.01887 311 0.01647 271 0.27508 6.296E-2 21 0.01601 0.00829 237 0.00582 166 0.53193 2.094E-2 21 0 0 t Average indicates moving average process (three nearest neighbors).
  • Midpoint of collection period. ** Insufficient sample size to estismte density. +95% Confidence River Limits Kilometers l.820E-3;6.686E-3 0-117 6.137E-3;3.593E-2 0-117 l.605E-2;5.762E-2 0-117 l.972E-2;4.662E-2 0-117 .po I 9.026E-2;1.855E-l 0-117 .po w 5.638E-2;1.118E-l 0-117 4.394E-2;1.342E-l 0-117 3.059E-2;8.883E-2 0-117 2.049E-2;6.683E-2
  • 0-117 l.782E-2;5.569E-2 0-117 .. 2.702E-2;6.473E-2 0-117 ' 4.0l4E-2;8.592E-2 0-117 l.702E-2;4.248E-2 0-117 I ! *.* 4.241E-2;9.695E-2 0-117 l.440E-2;3.308E-2 0-117 0-117 ;*. ! -*.

Year 1979 1980 1981 1982 Pooled 4-44 Table 4-3 O Estimated decrease in log number over length, Z', for 2.3-4.3 mm TL taken during 1979-1982 Present Study. z I Sb n 1.03670 0.10417 5 1.41850 0.08795 5 1.25403 0.08861 5 1.61463 0.22711 5 1.33096 0.06983 20 Test for equality of slopes F 3112 = 3.09; pi> 0.05 2 r 0.971 0.989 0.985 0.944 0.945 *

  • Year 1979 1980 1981 1982 Pooled : --*--:_ 4-45 Table 4-31 Estimated daily instantaneous total mortality rate for weakfish 0+ taken during August through October of 1979-1982 Present Study. z I Sb 2 n r 0.03968 0.00382 7 0.956 0.05526 0.00888 7 0.886 0.05157 0.00512 *5 a.971 a.a3aa8 a.a1a24 7 a.633 a.a4115 a.aa4a2 26 a.814 Test for equality of slopes F 3118 = 1.98; p > a.as .... * '* .. * ... ..

Table 4-32 .. *. . Estimated natural mortality of adult weakfish as reported in the literature. 2 Size or r or Source Location/Date Age Group Method of Calculation A z Zd SamJ!le Sf.= Perlmutter Nev York, 1952 age-frequency 0.66 1.08 0.00296 742 et al. (1956) Murawski (1977) Nev Jersey, 1976 1 0.297 0.353 0.0010 0.9143 2 0.333 0.405 0.0011 0.8731 3 0.353 0.436 0.0012 0.8569 4 0.375 0.470 0.0013 0.7829 5 0.482 0.658 0.0018 0.8212 Massman (1963a) Chesapeake Bay, 1956 age-frequency. 0.59 0.89 0.00244 218,807 1957 age-frequency 0.71 1.24 0.00339 126,448 1958 age-frequency 0.67 1.11 0.00304 221,808 .!>-Murawski (1977) Atlantic coast, 1976 1 0.506 0.705 0.0019 0.8530-I .!>-2 0.520 0.733 0.0020 0.9417 0\ 3 0.475 0.645 0.0018 0.9118 4 0.407 o. 523 0.0014 0.8435 5 0.529 0.752 0.0021 0.9339 Nesbit (1954) Northern NJ, 1929 age-frequency

o. 71 1.24 0.00339 1,171 Wildwood, NJ, 1928 age-frequency 0.63 0.99 0.00272 423 1934 age-frequency 0.81 1.66 0.00455 669 Chesapeake Bay, 1929 age-frequency 0.79 1.56 0.00428 96 .. 1934 age-frequency 0.72 1.27 0.00349 316 Exmore, VA, 1929 age-frequency 0.69 1.17 0.00321 22 1933 age-frequency 0.67 1.11 0.00304 946 1934 age-frequency 0.11 1.47 0.00403 419 North Carolina, 1934 age-frequency 0.62 0.97 0.00265 332 (1982) Cape Cod, MA-Ocean City, MD Ricker Catch Curve 0.344 o.422 0.00116 Ocean City, MD-Virginia Beach, VA Ricker Catch Curve 0.603 0.925 0.00253 Virginia Beach, VA-Cape Fear, NC Ricker Ca-t:ch Curve 0.680 1.141 0.00313 Cape May, NJ Cape May, NJ Rickiir Catch Curve 0.274 0.381 0.00104 Cape Cod, MA-Ocean City, MD Method 0.344 0.422 0.0020 Ocean City, MD-Virginia Beach, VA Chapman-Robson Method 0.741 o. 714 0.0012 Virginia Beach, VA-Cape Fear, NC Chapman-Robson Method 0.793 1.579 0.0043 Merriner (1973) Hatteras, 'Ne Ricker (1958) 0.48 0.65 0.00179 Reineke Method 0.68 l.14 o.00312 Chapman-Rohson Method 0.73 1.31 0.00359 Age II-V R.icker Catch Cur*e 0.53 0. 76 0.00208
  • Age III-V Rieker 0.62 0.97 0.00266 Morehead City, NC Age I-II Ricker Ca ve 0.48 0.65 0.00178
  • * ... .' 4-47 Table 4-33 Abundance of weakfish in Atlantic coast estuarine fish communities as reported in various studies. Author/Date Oviatt and Nixon (1974) Wilk and Silverman (1976) Taylor et al. (1973) Bason et al. (1976) Schuler (1971) Smith (1971) EA (1976) Merriner et al. (1976) Schwartz et al. (1979) Wenner et al. (1981) Wenner et al. (1982) Dahlberg and Odum (1970) Locality Narragansett Bay, RI Sandhook Bay, NJ Chesapeake and Delaware Canal; Delaware River (rkm 95-106) Chesapeake and Delaware Canal Delaware River (rkm 74-87) Delaware River (rkm 74-87) Tributary creeks Indian River (DE) estuary Piankatank River, VA (Chesapeake Bay) Cape Fear estuary, NC 3 Winyah Bay, SC North and South Santee rivers, SC Sapelo and St. Catherines Sound, GA 1 Rank and percentage by number caught. 2 Primarily age 0+ except as noted. 3 Predominantly l+ and 2+. 1 2 Remarks ' ranked 5th (8%); age not stated 7.3% by number; 5.9% by weight; age not stated 2nd in abundance; weakfish, white perch and striped bass made up 95% of biomass, collectively ranked 4th overall; "2nd in 25-ft trawl, 4th in 16-ft trawl (midwater), 8th in 10-f t trawl summer/fall occurrence 30% of trawl catch 2% of catch; generally 5th in abundance ranked 5th annual catch ranked 2nd summer catch 7.7% of catch, all seasons; peak abundance July-September 1973-78; 9% (all stations) 1973-77: ranked 6th or 7th 1978: ranked 3rd (all stations) ocean: ranked 2nd (25%) shoal: ranked 8th (3%) canal: ranked 3rd (10%) channel: ranked 3rd (14%) summer 1977: 5% summer 1978: 13% 1975-76: ranked 7th (3/7%) year-round occurrence; 3rd in abundance (7.8%)

?..:* I . I 4-48 WEAKFISH LARVAE -1979 r=rilk MAY 22-24 N = 533 gl I I I I I I I I I I I I I I dibn MAY 29 -JUN. 1 N = 376 gl I I I I I I I I I I I I I I JUN. 5-7 N = 110 0 I I I I I I l i F"'9 I I i=:i db JUN. 12-14 t!l ES N = 218 '1 igl I I I I I I I I I I I I I I (.) I I I &i 1l JTtb JUN. 25-29 a. t'll N = 351 < >-I I I I I I I I I I I u I I I I &l JUL. 9-12 ::i a N = 301 :;.;i ii:: r=. 6; 0 I I I I I I I I I I I I 1l JUL; 16-20 N = 410 I I I I I I I I I I I I JUL. 24--27 N = 151 0, I I I I I I I I I I I ;i Jln-n AUG. 6-9 N = 39 I I r==i I I I I I I I TOTAL LENGTH (MM) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Length-frequency distribution of weakfish larvae taken by 0.5-m plankton net -1979. Figure 4-1 PUBLIC 4-49 WEAKFISH LARVAE 1980 .... .---n-i g1 TOTAL LENGTH (MM) _____ : _,:_.*: ..... MAY 19-22 N = 766 JUN. 2-6 N = 570 JUN. 9-12 N = 244 JUN. 16-20 N = 268 roI.. 7-ll N = 498 JUL. 14-18 N = 808 roI.. 21-24 N = 733 AUG. 4-7 N = 21 Length-frequency distribution. of weakfish SERVICE ELECTRIC AND GAS COMPANY larvae taken by 0.5-m plankton net -1980. SALEM 316(b) STUDY Figure 4-2 4-50 -.. WEAKFISH LARVAE -1981 JUN. 6-11 N = 11 01 I I I I I I I I I I I I I I I I I rrl1-n JUN. 15-18 N= 59 0. I I I I I I I I I I I I I I I i:.1 JUN. 22-25 " d1h . N = 255 &1 I I I I I I I I I I I I C) o, I I I I ca 50, JUL. 6-10 p.. Cll N= m < >o I r I I I I I I I I I u I I z JUL. 13--17 i=l !::l N = 138 i=. g_, I I I I r-1 I. I I JUL. 20-24 N = 151 I I F9 I r I r-1 I I I I AUG. 3-6 N = 92 I I I I I I I r-1 I r=-1 I ITh AUG. 17-22 en N=7 O*, I I I I I I I I I I I I I I 0.0 OD l.O 1.6 ao ao 3.0 5.0 -LO 4.5 5.0 5.5 15.0 IS,:; '/J) 7.5 B.O B.5 ;.o 11.5 10.0*10.5 TOT.AL LENGTH (MM) Length-frequency distribution of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY larvae taken by 0.5-m plankton net -1981. SALEM 316(b) STUDY Figure 4-3 4-51 WEAKFISH LARVAE -1982 YAY 11-14 dh, N = 40 r==t Y.AY fl-21 rfb__, N = 3a1 0. I YAY 24-2? N = 939 0. JUN. 7-10 N = 151 0

  • F9 JUN. 21-24 N = 183 01 ES JUN. 28 -JUL. 3 § N = 294 gj ll. tll JUL. 12-15 < >< N = 92 0 I r=F==i ;i JUL. 19-23 :=. N = 48 r=1 r=1 r=dJ JUL. 26-29 N=9 n n n n dhn .AUG. 9-13 N = 84 r=h FF1 dl6. AUG. 23-27 N = 14 11 n JIJ AUG. 30 -SEP. 2 N=8 n I I I I I I I I I 0, I I I I I I a.o Q.s 1.0 1.5 25 s.o SJ> "° 45 e.o a.s e.o a.a 7.0 'l'Jj a.a 8.5 9.0 e.s mo lDJ> TOTAL I.lmGTH (MM} PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Length-frequency distribution-of weakfish larvae taken by 0.5-m plankton net -1982. ,,, Figure 4-4 PUBLIC -* :. -._. ____ ,,_. __ .... --4-52 WEAKFISH 1979 4.9 M BOTTOM TRAWL It INSUFFICIENT SAMPLE SIZE ji ii O ii 'I ii ii ii I I I ii ii I ii .. ii ii 'I" Ii ii ii .. I ii ii ii I ii j1 I I ii 'i It ....... INSUFFICIENT SAMPLE SIZE ' I I I ' I ii I ii ii ii ;; I ii ii ii ... ii I I ii ii. ii I ii ii ii ii Ii' I .,. I 0 .. I u 01 INSUFFICIENT SAMPLE SIZE ii I ji "i I I I j I I I ji ilii ijiii iii ji .... "" ............ " INSUFFICIENT SAMPLE SIZE I Ji ii I Ji ii I ii Ii Ji ii ii I ii j i iii ..... m . . n .................................

.. *. , .... . itA ...... .. I ii fi ilfRl!jiiRllR.:flFTl .... iijl I "'i' .. ""' .. ** """ ........ " fl I I ii I "I jL I ii ii I ii ii ii" I I I 'I lO . !L ........... ...... . I I ii "5bo it ...... 0 60 , .. .. %00 ,LI ............ . 200 250 aha' I u I"' 0 j il, 11 ij 11 360 400 450 FORK LENGTH (MM) .IAN N=O FEB N=O MAR N=O APR N=O 'MAY N = 84 JUN N*= 1372 JUL N = 6078 AUG N = 10188 SEP N = 4614 OCT N = 340 NOV N = 45 DEC N = 11 Length-frequency distribution of weakfish SERVICE ELECTRIC AND GAS COMP.A.'IT taken by 4.9-m bottom trawl, 1979. SALEM 316(b) STUDY Figure 4-5 * . :_ ***-*-*--*- .. .:. 4-53 WEAKFISH 1980 4.9 M BOTTOM TRAWL lt .... ' INSUFFICIENT SAMPLE SIZE ............ " """"" lilli'li "'I INSUFFICIENT SAMPLE SIZE ..... "" I jiii I "I" """" i ji .. iii" I' u 0 ! INSUFFICIENT SAMPLE SIZE ii jili "'"I .. jiliiii. I' I ji il INSUFFICIENT SAMPLE SIZE I' ii" ij ii iii 1111 i 1 i 1 J 1111 ii*.a *_lii*i*ji****i**ii'! 1 ii 1 I' 1l l ............. '" " oll Olp II>" II o j1 I II Ill II j nal& ...... ** 111111qc: AAf'iiiiillijilliilliij ijii i& .. , .. JI IUi i""" iii I" i 11 iii I' ii 11 "'i" '" '"l"'""i 1 11 'I' ..... § ....... jlAiRF1j:111111111ill "I 20, .. ... ** .. .. ............. , INSUFFICIENT SAMPLE SIZE ,b:,11111 io' Jo' FORK LENGTH {W) 1AN N=O FEB" N=O :MAR N=O APR N=3 MAY N = 24 JUN N = 497 .ror. N= 4147 AUG N = 9989 SEP N= 3389 OCT N = 487 NOV N = 27 DEC N=O Length-frequency distribution. of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY taken by 4.9-m bottom trawl, 1980. SALEM 3l6(b) STUDY Figure 4-6

    • I 11.) < >-I *:* .. : ..
  • 4-54 WEAKFISH -1981 4.9 M BOTTOM TRAWL lL li INSUFFICIENT SillPLE SIZE Ji"'" J 11 111 f" INSUFFICIENT SAMPLE SIZE I Ii I ..... "TT"""" T" TTTTfT" INSUFFICIENT SAMPLE SIZE ji I I ...... INSUmCIENT SAMPLE SIZE jiiiii. 'I"' ij ii ii I jiiiiliilij

., W ........................... . j i I I I I I I Ii j i I I I I I I I I j I I I I I I I I ! I I I I I I I I I j 11 I Ii I I I I j I*,; I Ii I I Ii I INSUmCIENT SAMPLE SIZE a 33 541 iiiiiiijiiiiiii jiiiiiii I" ii "'I" ii: ii ii I" I I ii "I ii ii I ii .... ii iiiiijii I H ......................

  • " ........ m ... m1flm!l .. w .. . ,...,., "I' ii 'I J2 . ml i "'I o I'"" flOAFlfliijilliiil"J""" "i""' "'l""""'i ltAIL. .........

jiil i' fl ... ... ... ii JI ji ii fl I fl I ii I l ll 0 ............ r*""""" "T'"""'" l50 .... 100 INSUFFICIENT SAMPLE SIZE .,.. .... ililiij ,..,.,.,.., INSUFFICIENT SAMPLE SlZE id:,o' 300 :i;o FORK LENGTH (MY) M"T" ... .. ... T" "T""'"' ,,, """'I ., 100 T"'" 460 .,, 600 lAN N=O FEB N=O MAR N=O APR N=O MAY N=5 JUN N = 58 JUL N = 1307 AUG N = 3790 SEP N = 1564 OCT N = 398 NOV N=O DEC N = 0 Length-frequency distribution of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA.."iY taken by 4.9-m. bottom trawl, 1981. SALEM 316(b) STUDY Figure 4-7

  • 4-55 . . WEAKFISH ......, 1982 4.9 M BOTTOM TRAWL IL ............. . 1AN N= 0 INSUFFICIENT SAMPLE SIZE ********************

lillljiiliiiliijiii

      • .*** " ...... , IL ...... . FEB N 0 INSUFFICIENT SAMPLE SIZE lijilliiil

... iljiiiiil iljiiiiiiiiijii lijii ' Y.AR INSUFFICIENT SAMPLE SIZE N= 0 APR N= 0 n .......... .. INSUFFICIENT SAMPLE SIZE I """"I".' I' .. ,. illiiiijiiiii ilji ii ii ijl ii I 1_11 llAY N=4 iL INSUFFICIENT SAMPLE SIZE A i=l 0 f:j ti &i p.. .... ITOT .. rlRT-Mji'"'ll"*,.,..,n*TjiMITIMTTllMOTjM.OTOT .. MTO"""ITllMTnTTllMj JUN N = 201 rn < i ..... ijiiif'Fl'-+R=fll:uiiilljiiilii '""' iifliljiiiiii ....... I' !l INSUFFICIENT SAMPLE SIZE ... I II I ......... iliiiiiij lijil I' u 0 *"' 0 INSUFFICIENT SAMPLE SIZE sbo s\o '10" 'i.6o FORK LENGTII (ID!) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY. Length-frequency distribution of weakfish taken by 4.9-m bottom trawl, 1982. Figure 4-8 PUBLIC " .. ---*-*--4-56 WEAKFISH -1970-1982 ALL GEARS u 0 I INSUFFICIENT SAMPLE SIZE .......... , ... Ji 'I' I "I' ...... llJiiiijlliij ... 0. ii ... INSUFFICIENT SAMPLE SIZE jiiiijill'll I' '1 11"1""1 'I 1 1 ij ii 'I ii ., .. . ... INSUFFICIENT SAMPLE SIZE * " ij Ii \ \I ( ii(i I C 'ii I t liij I \I \I """ o ............. *** ............... .... ..... ,._.,i;J-t .. .............. .... .... -..... .... -...... **,. ,iJ' rrr; :

  • r,. * .. , , ,; " ..
  • 1 I ijlii jililj iljillijliiijliilfliilj 11 p 1q1111p11q ij 0,

,,J, i o I "I' I 0 FORK LENGTH (W) L\N N=O FEB N=O :MAR N=O APR N=U MAY N = 157 JUN N = 7797 roL N = 30552 AUG N = 44891 fill' N = 2U94 OCT N = 4023 NOV N = 297 DEC N = 11 distribution of weakfish SERVICE ELECTRIC AND GAS COMPANY taken by seine, trawl and gill net during SALEM 316(b) STUDY the present study, 1970 through 1982. Figure 4-9 I I I I I

  • WEAKFISH o+ 1979 4.9 M BOTTOM TRAWL 275.0-250.0-225.0-,.-..._ 200.0-175.0-..._ ::i:: E--4 150.0-z 125.0-....:! 100.0-0 r:i:.-c 75.0-t 50.0-t 25.0--1-0.0 I JUN JUL PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY -I--'--'--'--L.. -'--,_ -,.... -,.... -,.... -,.... -,_ I I I I I I AUG SEP OCT NOV DEC Mean length, +/- one standard deviation, 95% c.r. of mean and range of weakfish O+ taken by 4.9-m bottom trawl in the Delaware River Estuary, 1979. Figure 4-10 .p. I \.J1 : . ;:. ' I ,.* I I. *1 J WEAKFISH o+ 1979 4.9 M SURFACE TRAWL 275.0-250.0-225.0-..--... 200.0-175.0-....__, f-t 150.0-t!J z 125.0-.....:i 100.0-0 75.0--r-t ----50.0-25.0-t 0.0 I JUN JUL PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY * -r-I I I I I I AUG SEP OCT NOV DEC Mean length, + one deviation, 95% C.I. of mean and range of weakfish 0+ taken hy 4.9-m surface trawl in the Delaware River Estuary, 1979. Figure 4-11 * -!>-I U1 co I .

--* WEAKFISH o+ 1980 4.9 M BOTTOM TRAWL 275.0-250.0-225.0-..-200.0-::a ::s 175.0-...._....

r: £-t 150.0-0 z f:<.'.I 125.0-....:l 100.0 -0 l':J:.t 75.0-r-.... *I -i 50.0-t I 25.0-!:::,. 0.0 I JUN JUL PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY -r----.... -.... ---r--I--.... --I-->--.... I I I I I I AUG SEP OCT NOV DEC Mean length, + one standard rleviation, 95% C.I. of mean and range of weakfish O+ taken by 4.9-m hottom trawl in the Delaware River Estuary, 1980. Fi ure 4-12 --; I .i::-I \.J1 *-o .. ! . ; I '

WEAKFISH o+ -1981 4.9 M BOTTOM TRAWL 275.0-250.0-225.0-..-::?l 200.0-::?l 175.0-..__, ::r: E-t 150.0-{j z I 125.0 -.....:i -,_ -.... -,__ ,_ 100.0--'-0 rx.. 75.0--,_ t-e -,__ 50.0-25.0-0.0 I I I I I I I JUN JUL AUG SEP OCT NOV DEC Mean Length, + one standard deviation, 95% C.I. of mean and range of PUBLIC SERVICE ELECTRIC AND GAS COMPANY weakfish 0+ taken by 4. 9-m hot tom trawl in the Delaware River Estuary, SALEM 316(b) STUDY 1981 * ...., ______________________________________________________________ _. Figure 4-13 **

  • I °' 0
  • q. WEAKFISH 0+ -1981 FIXED FRAME NET 275.0-250.0-225.0-...........

2aa.a-175.0-.._... f-1 15a.a-c..? z f:i:.1 125.a -....:I 1aa.o --,_ 0 -,__ f:T-t 75.a-t-5a.o-h ---,__ -,_ 25.0-t a.a I I JUN JUL -* I SEP I AUG DEC I I OCT NOV Mean length, +one standard deviation, 95% C.I. of mean and range of PUBLIC SERVICE ELECTRIC AlID GAS COMPANY weakfish taken by pelagic fixed-frame trawl in the Delaware River SALEM 316(b) STUDY Estuary, 1981. t-----------------------------------------------------------------4 Figure 4-14 WEAKFISH o+ 1982 4.9 M BOTTOM . TRAWL 275.0-250.0-225.0-200.0-::a 1?5.0---:r: E-i 150.0-{.!) z ->-125.0----..... I °' N ----100.0-----0 -..... fx.t 75.0-------50.0---25.0--t-o.o I I I . I I I I JUN JUL AUG SEP OCT NOV DEC * .. . ' ' .. Mean length, + one standard 95% c. I. of mean and range of PUBLIC SERVICE ELECTRIC AND GAS COMPANY weakfish o+ taken by 4.9-m bottom trawl in the Delaware River Estuary, SALEM 316(b) STUDY 1982. Figure 4-15 * *


*

  • WEAKFISH o+ 1982 FIXED FRAME NET 275.0-250.0-225.0---. 200.0-!75.0----::i:: E--i 150.0-0 z r:il 125.0-.....:! I 0\ 100.0-w ----0 --P:.-i ----'75.0 ----,_. ->-50.0-t ----25.0-0.0 I I I I I I JUN JUL AUG SEP OCT NOV DEC Mean length, + one standard deviation, 95% c.r. of mean and range of PUBLIC SERVICE ELECTRIC AlID GAS COMPANY weakfish o+ taken by pelagic fixed-frame trawl in the Delaware River SALEM 316(b) STUDY Estuary, 1982. Figure 4-16

,-...._ U) fz1 10000 E-t fz1 9000 u I-! l:Q 8000 u 0 7000 0 ...-! 6000 fz1 P-i 5000 fz1 l:Q 4000 z 3000 ......,, E-t 2000 I-! U) z 1000 fz1 z 0 <t! JAN FEB MAR PUBLIC SERVICE ELECTRIC AlID GAS COMPANY SALEM 316(b) STUDY WEAKFISH EGGS -1979 APR MAY JUN JUL AUG* SEP OCT NOV DEC Mean density and 95% C.I. of weakfish eggs taken by 0.5-m plankton net in the Delaware River Estuary, 1979. Figure 4-17 * * : . ' . i I ; .. }* ... :

  • ...-if.) r:q 10000 r:q 9000 u t-f IIl 8000 0 u 0 7000 0 ..-t 6000 r:q P-4 5000 r:q f:Q 4000 0 z 3000 ...._,,, 2000 t-f if.) z 1000 r:q z 0 -< JAN FEB MAR r:q ::21 PUBLIC SERVICE ELECTRIC AlID GAS COMPANY SALEM 316(b) STUDY
  • WEAKFISH EGGS 1980 APR MAY JUN JUL AUG SEP OCT NOV DEC . . Mean density and 95% c.r. of weakfish eggs taken by 0.5-m plankton net in the Delaware River Estuary, 1980. Figure 4-18 I °' IJ1 . ' i .. ... '* ' r* i ' . I" r. ' ! . . _ __J

.....-.. Cf) P::t 10000 E--i P::t 9000 u 1-1 m 8000 0 u 0 ?000 0 T-1 6000 P::t 5000 P::t m 4000 0 z 3000 ...._,, >"' f-i 2000 1-1 Cf) z P::t 1000 Q z 0 < JAN FEB MAR PUBLIC SERVICE ELECTRIC AlID GAS COMPANY SALEM 316(b) STUDY WEAKFISH EGGS 1981 APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density and 95% C.I. of weakfish eggs taken hy 0.5-m plankton net in the Delaware River Estuary, 1931. Figure 4-19 i . . '.1. : *'

  • ,-..... Cf) 10000 E-t 9000 u 1-1 J'.l:l 8000 u 0 7000 0 ....-! 6000 1"£1 5000 4000 :::g 0 z 3000 ....._ >-4 E-t 2000 1-1 lf) z 1000 A z 0 < JAN 1"£1 FEB MAR ::a PUBLIC SERVICE ELECTRIC AlID GAS COMPANY SALEM 316(b) STUDY *
  • WEAKFISH
  • EGGS *1982 APR MAY JUN JUL AUG SEP OCT NOV DEC "* . Mean density and 95% C.I. of weakfish eggs taken by 0.5-m plankton net in the Delaware River Estuary, 1982. Figure 4-20 r** ' ! (. i ,. \. ,. i* .. : .. i.

..... :* ... :. __ : ... :...:. . ... :..:* .... * ...........

  • -* * . .' .: ... * .. ; ..... -.

.: .. -...........

.'.: ........ : . . *" *-. _ .. :: .. : .. . .........
. -.. . **: -.-.. :. 4-68 WEAKFISH EGGS -1979 12000 rkm 113-117 12000 ,........._

rn P::: rkm 97-113 r=:i E--l r=:I 12000 '.:::::?! rkrn 80-97 u 1-1 CQ :::> u 12000 0 0 '1-i 12000 12000 rkm 64-80 rkrn 48-64 rkrn 32-48 rkm 16-32 rkm 0-16 .j b 0 I . 1 I I I I 1A A I :0 J A 4 I i JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PUBLIC SERVICE ELECTRIC AND GAS SALEM 316(b) STUDY Regional mean density of weakfish eggs, based on 0.5-m plankton net sampling, Delaware River Estuary -1979. Figure 4-21 I ' I l I (, I l l r * * ... -'-*--*-*-** .:0:.!"v_.*,-*.-*-** _._:_. __ ._. __ ._ ; .* -* **-*,:* . :._: ____ -: *.... _:. ** .* * ¥* **** *-*-******-"* 4-69 WEAKFISH EGGS -1980 12000 rkm 113-117 rkm 97-113 fil E-t 12000 rkm 80-97 u 1-1 CQ 0 u 12000 0 0 ....-! rkm 64-80 12000 rkm 48-64 12000 rkm 32-48 12000 rkm 0-16 0 I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Regional mean density of weakfish eggs, based on 0.5-m plankton net sampling, Delaware River Estuary -1980 * *Figure 4-22 en Cc: . **-*. -*-** '* -* . . *. . ._ -... .*.* _.. *. . . .. 4-70 WEAKFISH EGGS 1981 12000 rkm 113-117 12000 rkm 97-113 r::l f-i r::l 12000 rkm 80-97 u 1-1 m u 12000 0 rkm 64-80 0 .-! :;:.... f-i 1--1 en 12000 rkm 48-64 12000 rkm 32-48 z [:§ 12000. z rkm 16-32 < r::l 0 12000 rkm 0-16 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish eggs, PUBLIC SERVICE ELECTRIC AND GAS COMPA.."IY based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary -1981. Figure 4-23 el 1 ] I l j 1 *1 * ' .,,: _ ..........

. .. _; --_.. ' ... : *. -
. . . . .. *\.*. . -*-.. . . --_. * ... .. *. .. ... _.
-. .: ...... *. _, .. ___ : ___ . -*--***** . 4-71 I I WEAKFISH EGGS -1982 12000 I rkm 113-117 I 0 I 12000 rkm 97-113 I ---l rn P:! f:il 0

""4 .!.&&1"" .:.4 .:. p "" f-! f:il 12000 l rkm 80-97 (.) 1-1 m [ :::> 0 ht A£:.& I :6 :& 4' :& £:. .:.4 :6 p A (.) 12000 0 rkm 64-80 0 '<""'I l f:il 0

  • P-t 12000 l rkm 48-64 r:r:l m :::> 0 z 12000 .._ >i rkm 32-48 f-! 1-1 rn z 0 r:r:l 12000 z rkm 16-32 < f:il 0 12000 rkm 0-16, JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish eggs, PUBLIC SERVICE ELECTRIC AND GAS COMPANY based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary -1982
  • Figure 4-24 *

.. _;_ . .:.:**--.... : **

  • -* -** ;..* ** * ... -. N ' .1 ....

--__ _: __ _ 4-72 WEAKFISH EGGS MAY 22-24, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 9787.0 > 9787.0 TO 19574.0 l!!I > 19574.0 TO 29361.0 Ill > TO 39148.4 DELAWARE 3 density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-25 *-.... : .... *. * . -.. :.-.* -.. * ..* * .. :: .... '.* ... _ .* .. *. *.:_ -. ' .*. :._ .*.:. .... -............ --. -* . _,. ___ ---'--*-.

  • .::-.. : .. ; -* ...... _ .. ' *. ..>: _ -... ---*' .... . -*----I I r I I t l ( 4-73 WEAKFISH EGGS MAY 29 -JUN. 1, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 1177.0 > 1177.0 TO 2354.0 II<< > 2354.0 TO 3531.0 I > 3531.0 TO 4708.1 N i DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-26
  • . *.. ;,*. . *. .. -N i 4-74 WEAKFISH EGGS JUN. 5-7, 1979 ... '*--**"***-**
.... * ... *.* ... DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY *PER 100 CUBIC METERS D 0.00 0 > 0.00 TO 73.20 > 73.20 TO 146.40 !Ill > 146.40 TO 219.60 I > 219.60 TO 292.80 NEW JERSEY DELAWARE *--.* ...........

---* Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs' based on 0. 5-m plankton net sampling' SALEM 316(b) STUDY Delaware River Estuary. Figu_e 4-27 :.. ' . . I I !-N A I ** *-*-** ** . ** __ :_. ' -* *.* .: .. * .*. . . --* 75 WEAKFISH EGGS JUN. 12-14, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENS I TY PER 100 CUBIC METERS D 0.0 0 > 0.0 TO 3071.5 > 3071.5 TO 6143.0 llB > 6143.0 TO 9214.5 II > 9214.5 TO 12286.0 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 3l6(b) STUDY Delaware River Estuary. Figure 4-28

. ::' .. * .: * .. ... -: ... *.* ... **-* * .. **. *, . N A I 4-76 WEAKFISH EGGS JUN. 25-29, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 1043.5 > 1043.5 TO 2087.0 !Bl > 2087.0 TO 3130.5 II > 3130.5 TO 4174.0 DELAWARE !Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-29 . .. ..

  • 1 I 1 I 1 J I '* I I I l N .. I 4-77 WEAKFISH EGGS JUL. 9-12, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 !ZI > 0.00 TO 1155.05 > 1155.05 TO 2310.10 Ill! > 2310.10 TO 3465.15 I > 3465.15 TO 4620.20 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-30
  • ._ ** _ ...

.... ...* * .. _._.,:._ *. ***.-. .. :.-::: .. --_*. . , ... ..

  • .* : ..*.. *.. :...:. ** _,:; ,_;._,_.:
  • ..... .. *.* .. *.

_* *. ..*... : .. _. ___ - -: .. *.. . :* ...... *. *-*-*

.* . N i 4-78 WEAKFISH EGGS JUL. 16-20, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.00 121 > 0.00 TO 260.95 > 260.95 TO 521.90 > 521.90 TO 782.85 I > 782.85 TO 1043.80 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-31 I 1 1 I J
  • -*---* _ ..... _ ---* -* *

... :. ' ... * .. -* ... -.. .... : . .* ___ _:_.._ ... *_ : .. *--.. ,., .... *. *-' . N *. t 4-79 WEAKFISH EGGS JUL. 24-27, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS .::; D 0.00 0 > 0.00 TO 175.95 > 175.95 TO 351.90 IHI > 351.90 TO 527.85 II > 527.85 TO 703.80 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-32

,i . *:, *': .... ...........

_, __ .........

  • ... _ ...... ,..:.._, ___ ,_ .. -. '* ._, -.. *. ** ._ ::... . .. **-*------*-

_,__ -*.. . .. *--_,:_ ... N i 4-80 WEAKFISH EGGS AUG. 6-9, 1979 DELAWARE RIVER ESTUARY, rkm .0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 0 > 0.00 TO 3.45 > 3.45 TO 6.90 1111 > 6.90 TO 10.35 11!1 > 10.35 TO 13.80 NEW JERSEY DELAWARE Mean density (number/lOOm.

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-33
  • I I 1 I I l J 1 1
, .. , ---*-... -I '* I I I l --...
  • ---. N ' . I . --: .:; __ * **. -*-__ ;_.4_ .; **
  • :.*. *. --*-*. --* 4-81 WEAKFISH EGGS MAY 19-22, 1980 *-.. *-.. -*'* --. .. *-.. : -* DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 5563.0 > 5563.0 TO 11126.0 11!1 > 11126.0 TO 16689.0 I > 16689.0 TO 22252.0 DELAWARE Mean den13ity 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-34.

. :1 N ' I *:.* ...... :_ .... * .. . 4-82 WEAKFISH EGGS JUN. 2-6, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 1354.5 > 1354.5 TO 2709.0 II<< > 2709.0 TO 4063.5 Ill > 4063.5 TC 5418.0 DELAWARE Mean density (number/lOOm

3) of weakfish . . . . .. . .: -* .. -.. PUBLIC SERVICE ELECTRIC AND GAS eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-35

--* ... *----=----I I. I I I l * .... : *:-*-****

.. *-.
... N i ,.: __ ;_.: ... : 4-83 WEAKFISH EGGS JUN. 9-12, 1980 . .:: .. : .. , ._.._: __ : . .:.: .. -* . ,,. .. _ .. :. ....... *.*.:.. -*--..
  • DELAWARE RIVER ESTUARY, rk:m. 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 1101.5 > 1101.5 TO 2203.0 !Ill > 2203.0 TO 3304.5 11!1 > 3304.5 TO 4406.0 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on o.s-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-36 . :..: ...*. __.;_.:......

. . . : . . . .. . . . -*-. :.---.: ........ .' . *.* *, **-*:

  • .... .. .: .. :. .. .:. .............
. N t 4-84 WEAKFISH EGGS JUN. 16-20, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 1623.5 > 1623.5 TO 3247.0 11!1 > 3247.0 TO 4870.5 Ill > 4870.5 TO 6494.0 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC A.'ID GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 3l6(b) STCJDY Delaware River Estuary. Figure 4-37 * .. : .* .* . ___ ;:*_ *

.. -.*. : *: :. I I I I ' I ' * *-'--*-* .... : . : ..... N i .. .: -. . . -... 4-85 WEAKFISH EGGS JUL. 7-11, 1980 **-. .. *------. . -*. . .... -. . ..-:. . -** .. DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.0 0 > 0.0 TO 1588.0 > 1588.0 TO 3176.0 1111 > 3176.0 TO 4764.0 I > 4764.0 TO 6352.0 DELAWARE . :.:.:. '. ______ .,__._. --3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0. 5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary

  • Figure 4-38

-I ; L . . *.. . .. * *- ... : :._* ... : . --* .. **-. ...... **.--** . . .. . -_ .. _.* .. : --1 4-86 1 ..-------------.* I I N t WEAKFISH EGGS JUL. 14-18, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 833.0 > 833.0 TO 1666.0 Dll > 1666.0 TO 2499.0 I > 2499.0 TO 3332.0 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-39 I I I 1 *1 *

.* . . . . ... *., .... :* .... _ .. ::._. ___ ... :;_._.__, .:. __ ........ *.:. .** .. :.-....... * .. -.. -* .. :,._. __ :_ ... ,:. ;, ..

  • N i 4-87 WEAKFISH EGGS JUL. 21-24, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENS I TY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 485.0 > 485.0 TO 970.0 ll!I > 970.0 TO 1455.0 I > 1455.0 TO 1940.0* DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STlJDY Delaware River Estuary. Figure 4-40
* .. _ .. * .. .: .. ***-I *:. -::....c* .. .:.* .: . *: __ . : __ . -..... . .:.;, 1 .....----------...*

I I 4-88 N

  • I WEAKFISH EGGS AUG. 4-7, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.805 > 0.805 TO 1.610 !81 > 1.610 TO 2.415 II!! > 2.415 TO 3.220 \ NEW JERSEY DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 3l6(b) STUDY eggs, based on 0.5-m plankton net sampling,
  • Delaware River Estuary. ......__ ___ _.,. Figure 4-41
  • N i . --....... * ........ ,_ .* ... *-* .. * *.* **-.. *. --*-..
.. . , .: .. : .. _,,: ___

-.. *.:. . 4-89 WEAKFISH EGGS AUG. 18-23, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DEl'\J'SITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.135 U!I > 0.270 Ill > 0.405 NEW JERSEY TO 0.135 TO 0.270 TO 0.405 TO 0.540 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-42

'N i 4-90 WEAKFISH EGGS MAY 26-28, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 8140 > 8.140 TO 16.280 l!ll > 16.280 TO 24.420 I > 24.420 TO 32.560 NEW JERSEY 11; . f 1jzj1l1 I 11!/ 1j I I I j If ATLA.t'TTI C OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC. SERVICE ELECTRIC AND GAS COMPANY eggs, based on o.s-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure L*-43 * *1 I I I I [ I **. . ... .... . .:. ... :*..:.*::*,_

  • -. '* -:... *.** .. : . . . : ...... __ .; .: . :_:_ : _; --*. *----:-

.. --* * .. -__ . __ .-:;__ N i 4-91 WEAKFISH EGGS JUN. 8-11, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.0 0 > 0.0 TO 1645.0 > 1645.0 TO 3290.0 s > 3290.0 TO 4935.0 I > 4935.0 TO 6580.0 DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-44 N i WEAKFISH EGGS JUN. 15-18, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 656.0 > 656.0 TO 1312.0 ll!I > 1312.0 TO 1968.0 11!1 > 1968.0 TO 2624.0 DELAWARE Mean density of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, ba.sed on 0. 5-m. plankton net sa'\}lp ling , SALEM 316(b) STUDY Delaware River Estuary. Figure 4-45 *

  • N i : ___ -::. ..
  • 4-93 WEAKFISH EGGS JUN. 22-26, 1981 -**** *-*--0 *** * ' --1: **-* --* -*. DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 292.0 > 292.0 TO 584.0 1111 > 584.0 TO 876.0 Ill > 876.0 TO 1168.0 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on o.s-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary
  • Figure 4-46 N 4-94 WEAKFISH EGGS JUL. 6-10, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.0 0 > 0.0 TO 341.5 > 341.5 TO 683.0 Ill! > 683.0 TO 1024.5 Ill! > 1024.5 TO 1366.0 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-47 i I I I I ' J N ! I : -* .. __ * :: *-* :l.. ---.. :-** *.* -.' * ....... *-* ... -* .. * . __ .... :.-*-*--: .... ----:.* .. -*. .:_.-*--4-95 WEAKFISH EGGS JUL. 13-17, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENS I TY PER 100 CUB! C METERS 0 0.0 121 > 0.0 TO 632.5 > 632.5 TO 1265.0 !Bl > 126q.O TO 1897.5 I > 1897.5 TO 2530.0 DELAWARE .....

-* *----* -*-. Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-48 l

. . ' . 4-96 WEAKFISH EGGS JUL. 20-24, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.0 0 > 0.0 TO 166.0 > 166.0 TO 332.0 1111 > 332.0 TO 498.0 II > 498.0 TO 664.0 N

  • I DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 3l6(b) STUDY Delaware River Estuary. Figure 4-49

' I I I I I i

  • N A I *--*-... 4-97 WEAKFISH EGGS AUG. 3-6, 1981. DELAWARE RIVER ESTUARY, rkm 0-1!7 LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 121 > 0.00 TO 98.65 > 98.65 TO 197.30 an > 197,30 TO 295.95 Ill > 295.95 TO 394.60 NEW JERSEY DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS eggs, based on O.S7m plankton net sampling, SALEM. 316(b) STUDY Delaware River Estuary
  • Figure 4-50 I i . I
  • ..... . * .... : ... -* ..... : .. :.-.. -. ---..... ..: .. _ ... _____ ..... ______ , _________

.. _ ----*-. N i 4-98 WEAKFISH EGGS MAY 11-14, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.0 0 > 0.0 TO 4213.5 > 4213.5 TO 8427.0 s > 8427.0 TO 1F640.5 I > 12640.5 TO 16834.0 DELAWARE ** .. _*. .. -.... _ -*--**-!---- ' 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-51

  • I I I l I t t ;__ '* ..... N .. I 4-99 WEAKFISH EGGS MAY 17-21, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 8997.5 > 8997.5 TO 17995.0 Im > 17995.0 TO 26992.5 Ill > 26992.5 TO 35990.3 DELAWARE 3 Mean density (number/lOOm ) of .weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 3l6(b) STUDY Delaware River Estuary. Figure 4-52 I. i .. .:.. __ : ..... --.: ...... * ... * ... : .. ..*

.. ** N i 4-100 WEAKFISH EGGS MAY 24-27, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.0 0 > 0.0 TO 3847.5 > 3847.5 TO 7695.0 Im > 7695.0 TO 11542.5 Ill > 11542.5 TO 15390.0 DELAWARE " -* --... Mean density (number/lOOm?) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-53 I I I I *I t J I I 1 1 I I I I l I: t I I ( I ( l ,. -----

  • --* -. N
  • I ___ -:_. __ . __ .:._: .* -: *.. !**. 4-101 WEAKFISH EGGS JUN. 7-10, 1982 ** ******'* *****-**"'*
    • *-****_.:.

____ *.:.-** DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 0 > 0.00 TO 39.65 > 39.65 TO 79.30 IHI > 79.30 TO 118.95 Ill > 118.95 TO 158.60 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-54

--. . .. *-.. _ .. i. :N

  • I 4-102 WEAKFISH EGGS JUN. 21-24, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND *-*** .; . *----------.

DENSITY PER 100 CUBIC METERS 0 0.0 0 > 0.0 TO 1339.5 > 1339.5 TO 2679.0 11!1 > 2679.0 TO 4018.5 Ill > 4018.5 TO 5358.0 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-55 I '* I l r t t l* I 1* ' .. ,. ** : .:-. :.*-*** .*.. -__ ,_ * ..... :* ... :. 4-103 WEAKFISH EGGS JUN. 28 -JUL. 3, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 0 > 0.00 TO 241.75 > 241.75 TO 483.50 Ill! > 483.50 TO 725.25 I > 725.25 TO 967.01 N la I DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on o.s-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure L; *56

. . . . . .., .. ::*, *.1 4-104 1 I ...-----------* I I N A I WEAKFISH EGGS JUL. 12-15, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.0 121 > 0.0 TO 167.5 > 167.5 TO 335.0 IHI > 335.0 TO 502.5 I > 502.5 TO 670.0 DELAWARE Mean density (number/lOOm.

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on o.s-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-57 I 1 t t *I I *1 1 *

. :. ... . * ... .... *. :. :.\. .... _: __ -*-* .. ,-'

  • I I t t ' I l r f .,... -..... *.-* . ... ..:. --**.** ... ._.:.::****

.*. :* * **. : : ..**.. :* *.

  • .. : ....... _. ___ , *** ... ,.,,_, ____ .*** -** ----**-**-.* ... *--*-.

... _: *. .* N ' I 4-105 WEAKFISH EGGS JUL. 19-23, 1982 -DELAWARE RIVER ESTUARY, rkrn-0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.00 0 > 0.00 TO 194.75 > 194.75 TO 389.50 !lll > 389.50 TO 584.25 I > 584.25 TO 779.00 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling,
  • SALEM 316(b) STUDY Delaware River Estuary. Figure 4-58
    • ---*---*-** -... *-* .* ....... :_: __

.. N ' I . . . . .. : 4-106 WEAKFISH EGGS JUL. 26-29, 1982 "!; ... .. . . .: * .. . . .:. . .. *. . . . . ' .; --* .:. .. . . .. .. DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.0 0 > 0.0 TO 185.5 > 185.5 TO 371.0 DI! > 371.0 TO 556.5 I > 556.5 TO 742.0 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-59 *

-.. -. -.. .. ............ -***"* .. :*.:* *:..*._:* ...... :.: ** ... : ... :: .*. -:: *. ..** * ... ____ :_,.:**:,;.:_.-1_*_ ** :._, ;_, * ... __ .. __ ........ _ .. ___ . __ ... -.:*., ....... -*** : ... -. -* .. *--** ... _. * ... -*---.* * ...... . I I . J l t r f l 1* r r r N ' I 4-107 WEAKFISH EGGS AUG. 9-13, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 !ZI > 0.00 TO 8.85 > 8.85 TO 17.70 Ill > 17.70 TO 26.55 Ill > 26.55 TO 35.40 NEW JERSEY ! jff/1 ;!ff fffif f If ff fj f /ff ff f /ff ff f 1 ;lf1f1/1/1f11 11!//!/!/!/!/f ff! 1/1/1f1f1/1I ATLA.t'fTI C OCEAN 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-60 *. --*** .. : .. :--.

  • . .-N A I .** _*: ,._._._: . . * *** -***** '. l. .... :_ . -* ._ .:."-: 4-108 WEAKFISH EGGS AUG. 23-:-27, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND PER 100 CUBIC METERS 0 0.00 0 > 0.00 TO 54.60 > 54.60 TO 109.20 11!1 > 109.20 TO 163.80 Ill > 163.80 TO 218.40 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 3l6(b) STUDY Delaware River Estuary. Figure 4-61 .*.* .. * . I l I J J 1 1 J I *i l ] *

[ I ., *. :* . .. _ -'** -..:_ .. *_ .: . .; ___ ,_.: ... :.:. -.. -* ---.. . . . :_ ... ::....,,_. __ _. ___ *-** ..

.. -:_* .. -: , . ' -... -*-*. '.. . . .... ., N ' I 4-109 WEAKFISH EGGS AUG. 30 -SEP. 2, 1982 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0215 > 0215 TO 0.430 Ill > 0.430 TO 0.645 Ill > 0.645 TO 0.860 NEW JERSEY ATL.Al'l'TI C OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on o.s-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-62
    • .... *

--.: .. : * .. : . :. ! * .".' .*:\ _._ *_ *: *.. ** --= . __ .. ,. *---..... _.:,_, __ ._. __ 4-110 I .....------------..* J I N A I WEAKFISH EGGS SEP. 20-24, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 l2l > 0.000 TO 0.325 > 0.325 .TO 0.650 llil > 0.650 TO 0.975 Ill > 0.975 TO 1.300 NEW JERSEY DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY eggs, based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary. Figure 4-63 * , J l 1 I l 1 .1 1
  • ...-(/) 140 r:i:::i . 130 u 120 .-. m :=> 110 u 0 100 .o ..--! 90 80 70 60 50 40 20 10 *
  • WEAKFISH PRO LARVAE 1979 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density and 95% C.I. of weakfish prolarvae taken by 0.5-m plankton PUBLIC SERVICE ELECTRIC AND GAS COMPANY net sampling in the Delaware River Estuary -1979. -SALEM 316(b) STUDY Figure 4-64
": ----(f) WEAKFISH PROLARVAE 1980 r:il 140 r:il :::!1 130 u 120 . 1-i p 110 u 0 100 0 ..-l 90 80 r:il P-t 70 r:il 60 m :::!1 50 p z .._., 40 30 1-i (f) 20 z r:il 10 0 z 0 < JAN r:il FEB MAR APR MAY JUL JUN AUG SEP OCT NOV. DEC Mean density and 95% C. I. of weakfish prolarvae taken by 0.5-m.plankton PUBLIC SERVICE ELECTRIC AlID GAS COMPANY net sampling in the Delaware River Estuary -1980. SALEM 316(b) STUDY Figure 4....:.65

\ .. I . *. -.....-------:-* * *.* .. WEAKFISH PROLARVAE 1981 .....--(/) P:: r:i::I 140-E-i r:i::I 130-u 120-1-f rn 110-u 0 100-0 M 90-P:: 80-rz.l P-4 P:: 70-rz.l 60-r:Q 50-p z '-" 40->-i 30-E-i 1-f U1 20-z r:i::I 10-Q z 0 <r: r:i::I j I I OCT NOV I I I 'I JAN FEB MAR APR --I I MAY JUN I l 'I JUL AUG SEP I DEC !-*. Mean density and c.r. of weakfish prolarvae taken by o.s-m plankton PUBLIC SERVICE ELECTRIC AND GAS COMPANY net sampling in the Delaware River Estuary -1981. SALEM 316(b) STUDY Figure 4-66 ..--.. if) WEAKFISH PROLARVAE -1982 µ::j 140 E-i µ::j 130 u 120 1-1 rQ :::> 110 u 0 100 0 ..-! 90 80 µ::j P-t 70 µ::j 60 :::> 50 z "-../ 40 30 E-i 1-1 if) 20 z µ::j 10 Q z 0 < JAN µ::j FEB MAR OCT MAY JUL AUG NOV DEC APR JUN SEP PUBLIC SERVICE ELECTRIC AUD GAS COMPANY SALEM 316(b) STUDY Mean density and 95% C.I. of weakfish prolarvae taken by 0.5-m plankton net sampling in the Delaware River Estuary -1982. Figure 4-67 *

  • i* i ..
  • r '* r [ r l ..... __ : .' .

.... ;; --* :.:\ .*.* .* .. **'"'** .. **-* ****-**'***** .* ..... .: .. :..:. *. l : -*....

  • _._,__ ______ , __ :_ ______ .:. _____ :.._ --*---'-'-'*--!

--... *. 4-115 WEAKFISH PROLARVAE -1979 j rkm 113-1!7 rkm 9?-ll 3 A A1 -IA A I A A 4 2500] rkm 80-97 . 2500]. rkm 64-80 2500] rkm 48-64 250 l r km 32-48 0 AAA 1A :6 I :6 :6 4 2501 rkm 16-32 ......... 2501 1 rkm 0-16 1 0 1 I J J I AJ A AA j A A I A I A 4 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish prolarvae, PUBLIC SERVICE ELECTRIC AND GAS based on o.s-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary -1979. Figure 4-68 . *. * .. * ... ;z. . .*.:*. *.* -*** .' *- ... . .' . . 4-116 WEAKFISH PRO LARVAE -1980 rkm 113-117 I A A 4A A ¢:AA I AAA p!L A I A AjA A jA I rkm 97-113 .......... rn P:4 I A I A 4A L ¢:A::!>: I AAA p!L A I A A1A A 1A E-t P:4 rkm 80-97 u 1-1 m !::> 0 I I b I A 4A A A 1A A1A & 1A u 2] 0 rkm 64-80 rJl 0 ..--! P:4 I A I A 4A A I A. A1A A p!.: l'.l-t rkm 48-64 m !::> A 1A A1A A 1h z ..._,,. rkm 32-48 E-t 1-1 rn z h 1h A1A A 1:6 P:4 250 0 z rkm 16-32 < 0 rkm 0-16 ,AA ,.a/\ 0 I I I h I A h1A A 1A I J.AN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMP.A..'JY SALEM 316(b) STUDY prolarvae, based on 0.5-m plankton net .

  • sampling, Delaware River Estuary -1980. Fi ure 4-69

... * ... * * .. -. --..*.. :-.. -::" .. ***-....... __ . ..* *.* .... --.... _ * ..... :.: ..... '*** .:.-*.* -.. --* *-***--*-'-*--'->*-

  • -*

..... ----*.*. ---****-*-- 4-117

  • WEAKFISH PRO LARVAE 1981 rkm 113-117 :z!li A AA1 AA :i!I 1 :6:6A ¢' :6 >fs :6 :!i :6 rkm 97-113 ,..-.,. en r=:l hf AAA1 AAA I AA:!. r:!i A :f< A A E--4 :2l rkm 80-97 u m 0 hj AAA1 AAA I A::!tA r:!i :6
  • A A u 250-0 rkm 64-80 0 ..-I ,,,_ 0 . I I I -, ---1 -I -r--r -. -I I I I. i:i... rkm 48-64 m Aj AAiq
2l 0 16 A4':6A:6 z 250-.........., rkm 32-48 E--4 en z 0 I I I -, -I --I .--.... --.-I I I Q z rkm 16-32 < Aj :At.:61AAA1AAA jA is>i>AA+/-s 0 I rkm 0-16 Aj AAA1 AAA I :AAA jA A its A A h Q I I I I I JAN FEB MAR APR MAY JUN JUL AUG*SEP OCT NOV DEC Regional mean density of weakfish prolarvae PUBLIC SERVICE ELECTRIC AND GAS COMPANY based on 0.5-m plankton net sampling,
  • SALEM 316(b) STUDY Delaware River Estuary -1981. Figure 4-70
  • . *.._ __ . -** .. _ --**" :.* .. :' .**. -*-* _.: .*. !, **"' * **" -.... -I * -* *-** *._.*:.* ***
  • . 4-118 WEAKFISH PRO LARVAE 1982
  • I -250 rkm 113-117 I 1 I 0 I rkm 97-113 ,--... en. r=4 0 I !::\ :666 I A :6 4 A:t.:61 A e.4 e. F= e. f-i 250 f;:t::I rkm 80-97 I u -m 1 0 0 u 250 0 rkm 64-80 0 M I r::::i 0 0--t 250
  • rkm 48-64 J r::::i m 0 0 z ...__,. >i rkm 32-48 f-i -ht A en. z 0 I A4 A ¢i A r::::i 2501 0 z rkm 16-32 < l A r=4 0 ! A4 AA::!:1 A elf A ¢i A 250 rkm 0-16 FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish prolarvae PUBLIC SERVICE ELECTRIC AND GAS COMPA.-.Y based on 0. 5-m plankton net sampling, SALEM 316(b) STU'DY Delaware River Estuary -1982. Figure 4-71 *

...... , .*. "* "'"***.. . '* r I r l * . *:* .... ., ,*. **.: *_ ... :. ___ ' .* ':, ---**._ .. . . ' *--*-... , ____ ._ -**--..'...-->--..L-*. .;.__....: ___ ,; ------*-: :_

  • . * .* ; *--***-

.: ____ ;..,_. __ . __ .... --.. _____ * ..... *_;; __ ':.,_ N i 4-119 WEAKFISH PROLARVAE (1.5-3 MM) MAY 22-24, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 t!1 > 0.000 TO 45.090 > 45.090 TO 90.180 ll!I > 90.180 TO 135.270 I > 135.270 TO 180.360 Mean density (number/100m

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net
  • SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-72
  • N t . __ _..:_ .... --*--.: .. __ .. _._:_. .. _:*

_____ ..*.. :: ... 4-120 WEAKFISH PROLARVAE (1.5-3 MM) MAY 29 -JUN. 1, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 IZI > 0.000 TO 22.765 > 22.765 TO 45.530 an > 45.530 TO 68.295 I > 68.295 TO 91.060 DELAWARE . . .. 3 Mean density (number/lOOm i) of weakfish PUBLIC SERVICE ELECTRIC AND.GAS COMPANY prolarvae, .based on O. 5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-73 * *

  • * ------

N ' I .. *,_; . ..:. '. : :,., -. --* ** :*.* .*.. -.. .............. : ** * .*. *-** .... . * * *-! : __ *, _; __ :_ . _ __:_ _ ***-' * .,,.,,_ --**' 4-121 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 5-7, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.320 > 0.320 TO 0.640 11!1 > 0.640 TO 0.960 I > 0.960 TO 1.280 NEW JERSEY DELAWARE OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, 'Delaware River Estuary. Figure 4-74
      • _*_::. *_ *' * ** " * -* : * -* * -'. & * --* '** * --N t 4-122 WEAKFISH PRO LARVAE (1.5...:..3 MM) JUN. 12-14, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 >. 32.365 11!1 > 64.730 Ill > 97.095 NEW JERSEY TO 32.365 TO 64.730 TO 97.095 TO 129.460 ATLANTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampli.ng, Delaware River Estuary. Figure 4-75 * * *

-. ..: .* r I . 1* I r l l [ I I t I --*, *. . ... -: ......

  • N. i : .. _ :_: .. ** ...

.. :...--.' . ' -' .... . ----4-123 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 25-29, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 121 > 0.000 TO 14.220 > 14.220 TO 28.440 !Ill > 28.440 TO 42.660 I > 42.660 TO 56.880 *-*---** *-****-... ; . -*: .... DELAWARE ATLAl'iTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-76 l . ; : ... **. .. : * ..... ** . . . . : . . . . ....... *._.*. _,_ .. 124 ...-------------*'

I N t WEAKFISH PROLARVAE (1.5-3 MM) JUL. 9-12, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 9.670 > 9.670 TO 19.340 11!1 > 19.340 TO 29.010 I > 29.010 TO 38.680 NEW JERSEY DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY. prolarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-77 J J
  • .. .. --*

.. : .. __ .;..'_ .. -:*.*. .*. : ... *._: * ...... : .. * * * ** '-* -* ..: ** ---.-: *---.\. *-** -***. *' *** 1.

  • *
  • 4-125 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 16-20, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 16.095 > 16.095 TO 32.190 IHI > 32190 TO 48.285 I > 48285 TO 64.380 N i DELAWARE Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, DelRware River Estuary. Figure 4-78

'"t'* .. * * *:. *-' ,_: ...

..*.* :.'.:.=*' .. :*_. . __ *\:-.... : .... -:....**::..::_ .:-'" .. :.:.*.: .......... :_: .... __ ;: -:._, _* .. ...::: ............

  • ..... * ,. .. _* : .. -* . . .. .. *' *-...

.:. : .::. .... -* .. -*. . ...... .. *---... . __ ,,_. ___ .,_. ---.. I 4-126 -------------* I I N t WEAKFISH PROLARVAE (1.5-3 MM) JUL. 24-27, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 2.435 @ > 2.435 TO 4.870 1!11 > 4.870 TO 7.305 I > 7.305 TO 9.740 NEW JERSEY DELAWARE Mean density of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware Estuary. Figure 4-79

  • J J _j I ; . * ...... * .. * ...... * ... . ---

;--.---.. ,\ *.. * ...... ::.. ..... ... -* ..

... :.* ;_ * .. :. . .. , .. . . . . . .. *' * * .* -; --: *. -* *-.* :: :; .. * * ** * : **-. *. * * ..* * .i. *.. .* . --* 4-127 I I I I r l l I

  • N ' I WEAKFISH PROLARVAE (1.5-3 MM) AUG. 6-9, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 1.145 > 1.145 TO 2290 11!1 > 2.290 TO 3.435 I > 3.435 TO 4.580 DELAWARE Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY pro larvae. based on 0. 5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary, Figure 4-80
    • .*:*:***
    • . * ...

... *".'.-. :**: .*. **:: l

  • . :. ___ ....... ...

.. . * .. * .........

  • .,* ........ .-... ****---*-*

_,.:_.; __ .:*-: : ... -N

  • I 4-128 WEAKFISH PROLARVAE (1.5-3 MM) MAY 19-22, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 181. 740 > 181. 740 TO 363.480 Qll 1111 > . 363.480 TO 545.220 > 545.220 TO 726.960 Mean density 3 (number/lOOm ) of weakfish .. PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY 1 . . samp. 1n9. Delaware River Estuary. Figure 4-81 * * :l I I I J I l-.. : ....... :: .... :.. .. .: .' . * ---** -*-' ,.* *' <: * * "* .* '* * * ; * *, .:,* L. '* /: <o*
. .. *.* *: * * '

'*'; . ... * ....... :::: .. ***' ....... :. '*' *-.: .....:,_,_,:_ .. : . N i I 4-129 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 2-6, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 !21 > 0.000 TO 36.980 > 36.980 TO 73.960 D!1 > 73.960 TO 110.940 I > 110.940 TO 147.920 Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0. 5-m plankton net
  • SALEM 316(b) STUDY .sampling, Delaware River Estuary. Figure 4-82

___ .... *.**.. *.:::" ,,°. **:(. .. , ', 0:*.1:.* _: *i *. ::I 0::\:-:.:;:.;

    • .*: :._'* ' * * ** ',.*} N ! I ........ ,: ___ .:. __ ,:.,, , ... :.*_ .. _ *-.* ... .:*. * .. ::. *-.... ::., . . *'* *' -. 4-130 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 9-12, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 104.645 > 104.645 TO 209.290 Im > 209.290 TO 313.935 I > 313.935 TO 418.580 DELAWARE ATLANTIC Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0. 5-m plankton net SALEM 316(b) STUDY samnl in Delaware River Estuarv. Figure 4-83
  • l I I J I 1* N A I 4-131 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 16-20, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 11.405 > 11.405 TO 22.810 DB . > 22.810 TO 34215 II > 34215 TO 45.620 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. i Figure 4-84

';._ .:.;*. **-*** .. .. : :*: .. .*. * ... _:"*: ... ., .. . .:o .... '::*.: ... ** _*, : .... *;: * .... ,,;:,*._ ,.;,J. _:*:.**: .* *-**"" *-* '* ... *' ** .... N i 4-132 WEAKFISH PROLARVAE MM) JUL. 7-11, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSI.TY PER 100 CUBIC METERS D IZl fi'l ll!I I 0.000 > 0.000 TO 36.955 > 36.955 TO 73.910 > 73.910 TO 110.865 > 110.865 TO 147.821 ATLANTIC OCEAN Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0. 5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary * . Figure 4-85 .l I* :,.: .. _; ,: , .. : .. __ :_ .. -... :,*_ . ___ ,,, -. ___ ,,.-: *--, : ..... ,, ___ . .-. ;; ____ _. __ :*:,,; __ .... -.. .... .-:; __ _. -*:,.... -....... :--.. _ .. -: *-** ---------- .... *-* .* ... -. . . *-* ... . * ... *'**** ... * ... ;,:,:.;_:: ....... ':*... -.. -**-*" ........ -'. .. J I I I I I N i 4-133 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 14-18, 1980 DELAWARE RIVER ESTUARY, rklll 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 90.920 > 90.920 TO 181.840 an > 181.840 TO 272.760 Ill > 272.760 TO 363.680 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-86 *'"" -. . : __ -'"*-. : -.. :-;,. ,_* .. _ .

,*-.. *; ..
: . *-*.,.*: .. :*. N t . . :, _.;_,.* .;: .. ' -*-**--.,-. **-*--.:. 4-134 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 21-24, 1980 DELAWARE RIVER ESTUARY, rkm 0-'--117 LEGEND .* .':. *.

.... '*-: *-***. *-.. ' . DENSITY PER 100 CUBIC METERS 0 0.000 l2l > 0.000 TO 45.345 > 45.345 TO 90.690 . . 00 > 90.690 TO 136.035 I > 136.035 TO 181.380 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-87 . I __J
  • ' ,**-***-. .:..** ... :* _:-... * .. -... ,. . .............
  • N A I -*-......... . _: -. -. .. . . . . . . *. . 4-135 WEAKFISH PROLARVAE (1.5-3 MM) AUG. 4-7, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.305 > 0.305 TO 0.610 S > 0.610 TO 0.915 R > 0.915 TO 1.220 NEW JERSEY DELAWARE
  • Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..'rr prolarvae, based on o.s-m plankton net
  • SALEM 316(b) STUDY samnling, Delaware River Estuary . Figure 4-88
  • ._.,:__.

- '**. -** ... .*. .. . _. ..._ .. . ... * .. *-*--"-*--'*--*

  • -*-* . .* :.*----'*'***
  • . ,:.-._ .. ____ _*: .... *-*. -N ' I 4-136 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 8-11, 1981 DELAWARE RIVER ESTUARY, rk:m. 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 > 0.500 DD > 1.000 I > 1.500 TO 0.500 TO 1.000 TO 1.500 TO 2.000 ATLANTIC OCEAN . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River* Estuary. Figure 4-89 *. ,* __ .:__ .... *.*. I I *

... :, . ** . ...... * . : .: ..... . .* -.. . -*' .. I '* I I I -' *. *'.: . * .. * .. -**-. '" .... .-* ..... .; .... -. :..:' .. : .... -..... *.; _ _. .:,._.:. **' -*-*-**----* ... :*_: ... _____ : .. ____ ,,_ : ...... -_ ....... -.*.*--**-- ..... -'* ...........


**** N A l 4-137 WEAKFISH PRO LARVAE (1.5-3 MM) JUN. 15-18, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 12! > 0.000 TO 1.825 !;!l > 1.825 TO 3.650 U!1 > 3.650 TO 5.475 I > 5.475 TO 7.300 DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net

  • SALEM 316(b) STUDY sa111.pling, Delaware River Estuary. Figure 4-90
.. * ,*. *-******-**-.*.* .

-*-* 4-138 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 22-26, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 N i DELAWARE PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 3l6(b) STUDY LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 51.690 11!1 > 103.380 1111 > 155.070 I ;.f 1/1/1/1 TO 51.690 TO 103.380 TO 155.070 TO 206.760 I /71 f;I f;! f I I 7 I ATLANTIC OCEAN . 3 Mean density (number/lOOm. ) of weakfish prolarvae, based on 0.5-m plankton net sampling, Delaware River Estuary. Figure 4-91 . J ...* I I . I --* ... --:-------- -


.. _:.:.*-**

-* -.* --*-**---.. : -.... ' .. ' . . . -. . . . ' . . -. --: .. _:... :__ ----. : .. _:, .... * ' -*' . '. . -... , ..... *.: . . .* N t 4-139 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 6-10, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 7.710 > 15.420 II > 23130 1/111!1 1!/f;!f!f!f! 7 1/!j/f/1 TO TO , TO TO I; ). ii// ;lf 1/ 7.710 15.420 23.130 30.840 !ff/ I ATLANTIC OCEAN Mean den.sity /lOOm 3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-92 ' . . . ... . . --... :. -:."*.*: ... --**-* .: -. . ... .'. *** . ._ *-*** ';_, .: . . . -** * .. * .. _, .. *. N i 4-140 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 13-17, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 2.875 > 2.875 TO 5.750 > 5.750 . TO 8.625 I > 8.625 TO 11.500 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary Figure 4-93 I * . I I

  • N i 4-141 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 20-24, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 f2l > 0.000 TO 3.090 > 3.090 TO 6.180 11!1 > 6.180 TO 9.270 I > 9.270 TO 12.360 NEW JERSEY . DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY pro larvae, based on 0. 5-m plankton net SALEM 316(b) STUDY samvl inP.; Delaware 1'\stuarv.

Figure 4-94 N t 4-142 WEAKFISH PRO LARVAE (1.5-3 MM) AUG. 3-6, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 2.180 > 2.180 TO 4.360 > 4.360 TO 6.540 II > 6.540 TO 8.720 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling.

Delaware River Estuary. Figure 4-95 i I .I I

  • I 1 I
  • N A I .*.:* .. *. *.* 4-143 WEAKFISH PROLARVAE (1.5-3 MM) AUG. 17-22, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 12! > 0.000 > 0.085 !!<< > 0.170 Ill > 0.255 NEW JER:'.:i'EY TO 0.085 TO 0.170 TO 0.255 TO 0.342 ATLANTIC OCEAN .-. .. _: ... . . Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, .Delaware River Estuary. Figure 4-96 . :-...

N A I 4-144 WEAKFISH PRO LARVAE (1.5-3 MM) MAY 11-14, 1982 DELAWARE RIVER ESTUARY, rkin (}-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 84.200 > 84.200 TO 168.400 00 > 168.400 TO 252.600. Ill > 252.600 TO 336.800 NEW JERSEY I; f 1 1 1 1 1 1 1 zf 1/1 1 11 1 1 1 1 1 1 7/71 1 1 1 f 1/;/1 Mean density ATLAl'l'TIC OCEAN 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 3l6(b) STUDY samµling, Delaware River Estuary. Figure 4-97 .. * ,. - l '* [ I I t N Ji I *. ** .. * **t*. . . *:** .. 4-145 WEAKFISH PROLARVAE (1.5-3 MM) MAY 17-21, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D o.oop 0 > 0.000. TO 41290 > 41290 TO 82.580 11!1 > 82.580 TO 123.870. II > 123.870 TO 165160 NEW JERSEY Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, .Delaware River Estuary. Figure 4-98 N A I 4-146 WEAKFISH PROLARVAE (1.5-3 MM) MAY 24-27, 1982 DELAWARE RIVER ESTUARY, rkni LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 187.595 > 187.595 TO 375.190 Ill! > 375.190 TO 562.785 Ill > 562.785 TO 750.380 Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-9.9
    • ., .. N A I . .* .. 4-147 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 7-10, 1982 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 5.450 Im > 10.900 R > 16.350 TO 5.450 TO 10.900 TO 16.350 TO 21.803 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-100

. -... N ' I 4-148 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 21-24, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND DENS I TY PER 100 CUBIC METERS D o.ooo 0 !In Ill > 0.000 > 13.420 > 26.840 > 40.260 TO 13.420 TO 26.840 TO 40.260 TO 5;3.680 ATLANTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-101 j l

  • l
  • I t l I l t r t I
  • N ' I -... -. 4-149 WEAKFISH PROLARVAE (1.5-3 MM) JUN. 28 -JUL. 3, 1982 DELAWARE RIVER ESTUARY, rklll 0-1f7 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 11.615 11!1 > 23.230 I > 34.845 TO 11.615 TO 23230 TO 34.845 TO 46.460 C OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-102 1* N ' I 4-150 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 12-15, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 8.715 > 8.715 TO 17.430 IHI > 17.430 TO 26.145 Ill > 26.145 TO 34.860 DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STIJDY sampling, Delaware River Estuary. Figure 4-103 ___ ____J I I l l
  • N i 4-151 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 19-23, 1982 DELAWARE RIVER ESTUARY, rkm. 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.485 DIJ > 0.970 I > 1.455 TO 0.485 TO 0.970 TO 1.455 TO 1.940 ATI...ANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY pro larvae, based on 0. 5-m plankton net SALEM 3l6(b) STUDY sampling, Delaware River Estuar
  • Figure 4-104 L __ _

N t 4-152 WEAKFISH PROLARVAE (1.5-3 MM) JUL. 26-29, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.125 ll!I > 0.250 II > 0.375 NEW JERSEY TO 0.125 TO 0.250 TO 0.375 TO 0.500 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-;105
  • l l I
  • N i 4-153 WEAKFISH PROLARVAE (1.5-"-3 MM) AUG. 23-27, 1982 DELAWARE RIVER ESTUARY, rkni 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 2.095 > 2.095 TO 4.190 !Iii > 4.190 TO 6.285 I > 6.285 TO 8.384 NEW JERSEY DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-106 4-154 I ......--.--------*

l I N i WEAKFISH PROLARVAE (1.5-3 MM) AUG. 30 -SEP. 2, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.755 Ill > 1.510 1111 > 2.265 NEW JERSEY I; ;l;I; !fj/j// 1 1/1/1 /. TO 0.755 TO 1.510 TO 2.265 TO 3.020 ATLANTIC OCEAN 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-107

  • I 1 I '* I I I
  • N 4-155 WEAKFISH PROLARVAE (1.5-3 MM) SEP. 20-24, 1982 DELAWARE RIVER ESTUARY, rkin 0-1f'7 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 f1Cl > 0.145 l!D > 0.290 Ill > 0.435 NEW JERSEY TO 0.145 TO 0.290 TO 0.435 TO 0.580 ATLANTI'c OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY prolarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-108
  • *,_ ' * * '* ** : *' .* * ** *: * :. : -: .. :**: < ...........

WEAKFISH [/) POSTLARVAE -1979 P:1 50-E-i P:1 45-u m 40-:=> u 0 35-0 T-1 30-P:1 11-i 25-r:.::I m .i::-20-I :=> U1 °' *z 15-...__, E-i 10-[/) z 5-r:.::I Q z 0 e e e Et < I I ---. I r:.::I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density and 95% c.r. of weakfish postlarvae taken by 0.5-m PUBLIC SERVICE ELECTRIC AW> GAS COMPANY plankton net sampling in the Delaware River Estuary -1979. SALEM 316(b) STUDY Figure 4-109 *


. -* * * ...........

rn WEAKFISH POSTLARVAE -1980 r:il 50 E-1 r:il 45 u 1-1 m 40 !=J u 0 35 0 ..-I (l:j 30 r:il P-. 25 r:il m 20 !:J z 15 ..__, :>--i E-1 10 1-1 rn z 5 r:il i:::i z 0 <I! JAN r:il SEP OCT MAY JUN JUL AUG MAR APR FEB Mean density and 95% C.I. of weakfish postlarvae taken by 0.5-m PUBLIC SERVICE ELECTRIC Alfi GAS COMPANY plankton net sampling in the Delaware River Estuary -1980. * SALEM 316(b) STUDY Figure 4-llO

... ** ,--.. WEAKFISH POSTLARVAE 1981 [/) -µ:i 50-E-i µ:i 45-u m 40-0 u 0 35-0 ..-! 30-µ:i P-i 25-.p. µ:i I m 20-V1 :JO 0 z 15-""--/ :>-t E-i 10-[/) z 5-µ:i z J. 0 ---< I I I I . I I I 1 I I I I µ:i JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density and 95% c.r. of weakfish postlarvae taken by 0.5-m PUBLIC SERVICE ELECTRIC AND GAS COMPANY plankton net .sampling in the Delaware River Estuary -1981. SALEM 316(b) STUDY Figure 4-111 * * * --- ,,-.._, IJ) WEAKFISH POSTLARVAE 1982 li:t 50 r.:il 45 u 1-1 m 40 0 u 0 35 0 T-4 30 r.:il 25 r.:il m 20 0 z 15 ..__, :>-< 10 1-1 IJ) z 5 li:t 0 z 0-< JAN li:t NOV DEC AUG SEP OCT FEB MAR APR MAY JUN JUL Mean density and 95% C.I. of weakfish postlarvae taken by 0.5-m PUBLIC SERVICE ELECTRIC AND GAS COMPANY plankton net sampling in the Delaware River Estuary -1982. SALEM 316(b) STUDY Figure 4-112 -* -.I I .1 ,.-.._ r.n 4-160 WEAKFISH POSTLARVAE 1979 50 r km 113-117 50 rkm 97-113 r=:i E-t :::g 50 rkm 80-97 0 !-I m !::'.) 0 A 4 r' "-' o 50 rkm 64-80 0 ...-l 50 rkm 48-64 50 rkm 32-48 50 rkm 16-32 rkm 0-16 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *.* .. SERVICE ELECTRIC AND GAS COMP.A.-.Y SALEM 316(b) STUDY Regional mean density of weakfish postlarva based on 0.5-m plankton net sampling, Delaware River Estuary -1979. Figure 4-113 .. ,. I J *1 *

  • * ...-r.n . *** .. ! .. *. 4-161 WEAKFISH POSTLARVAE

-1980 50 rkm 113-117 50 r km 97-113 f:;:4 E-t f:;:4 50 rkm 80-97 0 t-1 o:l 0 0 0 0 ..-j 50 rkm 48-64 50 rkm 32-48 50 rkm 16-32 50 rkm 0-16 ol I I 1A A .. H I .. /\ A I b A 1 A A ,.. I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish poatlarvae PUBLIC SERVICE ELECTRIC AND GAS COMPANY based on 0.5-m plankton net sampling, Delaware River Estuary -1980

  • SALEM 316(b) STUDY Figure 4-114

. 't*. I ......------------.. I WEAKFISH POSTLARVAE -1981 I 4-162 ,.-..._ rn 50 r km 113-117 50 rkm 97-113 E-< r£l 50 rkm 80-97 {.) m o {.) 50 rkm 64-80 50 rkm 48-64 50 rkm 32-48 50 rkm 16-32 0 i 50 1 rkm 0-16 Q 1 I i i bj A Ahj Ah Ai AAA 16 A ;f< A 4 6 i I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional density of weakfish postlarvae PUBLIC SERVICE ELECTRIC AND GAS COMP.A."fY pased on 0.5-m plankton net sampling, Delaware River Estuary -1981. SALEM 316(b) STUDY Figure 4-115 J *

  • ... *-*, *. ** 4-163 WEAKFISH POSTLARVAE

-1982 50 r km 113-117 0 50 rkm 97-113 --. rn r:::i 0 E--l r:::i 50 rkm 80-97 0 m 0 0 0 0 50 rkm 64-80 0 ..-! r:::i 0-* !l-i 50 rkm 48-64 r:::i m 6 64 0 5: e. 16 6 z ......._,, :>-< J rkm 32-48 if) z r:::i 0 50 rkm 16-32 z r:::i 0-50 rkm 0-16 0 I ht AAAjA .e.4 :66:61 e. 64 A 16 6 I I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish postlarvae PUBLIC SERVICE ELECTRIC AND GAS COMPANY based on 0.5-m plankton net sampling, SALEM 316(b) STUDY Delaware River Estuary -1982. Figure 4-116 ...... : . N i 4-164 WEAKFISH POSTLARVAE (3.1-10.5 MM) MAY 22-24, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENS I TY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 8.385 > 6.385 TO 16.770 IHI > 16.770 TO 25.155 Iii :> 25.155 TO 33.544 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estnary. Figure 4-117 *1 l I l .*

.

.* N A I 4-165 WEAKFISH POSTLARVAE (3.1-10.5 MM) MAY 29 -JUN. 1, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 TO 7.845 > 7.845 TO 15.690 DD > 15.690 TO 23.535 II > 23.535 TO 31.380 NEW JERSEY ATLANTIC OCEAN Mean density (number/lOOm

3) of PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY s*ampling, Delaware River Estuary. Figure 4-118 N t 4-166 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUN. 5-7, 1979 DELAWARE RIVER ESTUARY, rk:m 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 o:ooo 0 > 0.000 > 8.745 Ill! > 17.490 Ill > 26.235 NEW JERSEY TO 8.745 TO 17.490 TO 26.235 TO 34.980 L ATLANTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware.River Estuary.

4-119 1 r I I* N ! I 4-lf\7 WEAKFISH POSTLARVAE MM) JUN. 12-14, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 1.045 ail > 2.090 9 > 3.135 NEW JERSEY TO 1.045 TO 2.090 TO 3.135 TO 4.180 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-120 . *.*:***

I N ' I 4-168 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUN. 25-29, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 4.560 an > 9.120 I > 13.680 NEW JERSEY TO 4.560 TO 9120 TO 13.680 TO 18.240 ATLANTIC OCEA.!'1 Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m piankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-121 I I
  • N i 4-169 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 9-12, 1979 DELAWARE RIVER ESTUARY, rkn1 0-117 *DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 5.045 s > 10.090 I > 15135 TO 5.045 TO 10.090 TO 15135 TO 20.180 OCEAN . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delavare River Estuary
  • Figure 4-122 N i 4-170 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 16-20, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 TO 10.400 > 10.400 TO 20.800 11!1 > 20.800 TO 31.200 I > 31.200 TO 41.600 NEW JERSEY DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY samoling, Delaware Ri 'rer Estuary. Figure 4-123 *
  • I I I *
  • N i 4-171 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 24-27, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 M > 3.660 1111 > 7.320 1111 > 10.980 NEW JERSEY ;I; !jff/f/j . /jff/jfj/j 1 1/1/1/1/1 TO 3.660 TO 7.320 TO 10.980 TO 14.640 l;l;I i ATLANTIC !f;;f fjff / OCEAN f1/1fzl lzl Mean density (number/100m.3r of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-124
  • .,* .. 4-172 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.640 > 0.640 TO 1280 Im > 1280 TO 1.920 I > 1920 TO 2.560 N t DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-125
  • I *
  • N .. I 4-173 WEAKFISH POSTLARVAE (3.1-10.5 MM) AUG. 20-24, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0140 !Bl > 0.280 Ill > 0.420 NEW JERSEY TO 0.140 TO 0280 TO 0.420 TO 0.560 OCEAN 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m. plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-126 N i . . .. -.*. . *:.: . 4-174 WEAKFISH POSTLARVAE (3.1-10.5 MM) MAY 19-22, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 17.460 11!1 > 34.920 I > 52.380 NEW JERSEY TO 17.460 TO 34.920 TO 52.380 TO 69.841 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-127 I i I .': I *
  • I r N i 4-175 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUN. 2-6, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 15.930 M > 15.930 TO 31.860 Ill! > 31.860 TO 47.790 I > 47.790 TO 63.720 DELAWARE ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-128 N t I 4-176 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUN. 9-12, 1980 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 l2l > 0.000 > 1.005 11!1 > 2.010 I > 3.015 NEW JERSEY TO 1.005 TO 2.010 TO 3.015 TO 4.020 ATLANTIC OCEAl'i Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-129 *
  • I '* I I I I N .. I 4-177 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUN. 16-20, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENS I TY PER 100 CUB! C METERS D 0.000 0 > 0.000 > 0.530 IPJ > 1.060 I > 1.590 NEW JERSEY TO 0.530 TO 1.060 TO 1.590 TO 2120 C OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY. sampling, Delaware River Estuary. Figure 4-130 . . . . . . ; .

L N

  • I 4-178 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 7-11, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 20.880 > 20.880 TO 41760 an > 41.760 TO 62.640 I > 62.640 TO 83.520 NEW JERSEY ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-131 I I*
  • N i 4-179 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 14-18, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENS I TY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 13.460 , > 13.460 TO 26.920 ll!I 26.920 TO 40.380 I > 40.380 TO 53.840 Mean density ATL.Al'l'TI C OCEAN 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.5-m plankton net SALEM 316(b) STtJDY sampling, River Estuary. Figure 4-132 N t 4-180 ... . . . . .. ' . WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 21-24, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 58.235 > 58.235 TO 116.470 a > 116.470 TO 174.705 I > 174.705 TO 232.942 DELAWARE .. ' ... *.-.. , .. Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY samnling, Delaware River Estuary. Figure 4-133 . ** ..
  • N i : . *.:. -: . ,. . . * .. 4-181 WEAKFISH POSTLARVAE (3.1-10.5 MM) AUG. 4-7, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 1.!75 DD > 2.350 Ill > 3.525 NEW JERSEY TO 1.175 TO 2.350 TO 3.525 TO 4.702 OCEAN Mean density (number/lOOm
3) of weakfish*

PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-134

  • .*. N ' I .. ,. 4-182 WEAKFISH POSTLARVAE (3.1-10.5 MM) SEP. 22-29, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 > 0.510 !Iii > 1.020 II > 1.530 NEW JERSEY TO 0.510 TO 1.020 TO 1.530 TO 2.040 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0. 5-m plankton net SALEM 316(b) STUDY sampling, Delaware River F.stuary.

Figure 4-135 * .1 I .i 1 *1 I _I I. I N t 4-183 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUN. 8-11, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0100 DI! > 0.200 a > 0.300 NEW JERSEY TO 0100 TO 0.200 TO 0.300 TO 0.400 ATLANTIC OCEAN . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-136 ----------------------------- L I ---------*I WEAKFISH POSTLARVAE (3.1-10.5 MM) I 4-184 JUN. 15-18, 1981 DELAWARE RIVER ESTUARY, rkrn 0-117 N t DEL.AWARE PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 3'16 ( b) STUDY LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.640 11!1 > 1.280 I > 1.920 TO 0.640 TO 1.280 TO 1.920 TO 2.560 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish postlarvae, based on plankton net samplinp;, Delaware River Estuary. Figure 4-137
  • 1 i

[ t * ., .. **: . .. ... * .. :. . . . N. A I 4-185 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUN. 22-26, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 TO 4.025 > 4.025 TO 8.050 11!1 > 8.050 TO 12.075 II > 12.075 TO 16.100 DELAWARE ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-138 F*-* . . . :\ ,,:* L N i 4-186 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 6-10, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 l2l > 0.000 TO 2.680 > 2.680 TO 5.360 l!n > 5.360 TO 8.040 II > 8.040 TO 10.720 NEW JERSEY I I I, Jj j/f /!11/!ff f !f/1 ;I l7!1l;lf!

l;l;l;I; I 111; f/f/f/f;f I 1 1:1 1 1 1 17/7/// I 717 j;lf . l;lfl I l;I; ;l.!/11/f !;! I ATLANTIC I I j1j1j ;I OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STIIDY samuling, Delaware Rivet' Estuary. Figure 4-139 I I 1 ] I i l

  • N i 4-187 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 13-17, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 2.865 11!1 > 5.730 I > 8.595 NEW JERSEY f TO 2.865 TO 5.730 TO 8.595 TO 11.463 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY po s tlarvae, based on 0. 5-m plankton net SALEM 3l6(b) STUDY sampling, Delaware River F.stuary.

Figure 4-140 **.*: ... I. N t 4-188 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 20-24, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 121 > 0.000 TO 2.830 > 2.830 TO 5.660 00 > 5.660 TO 8.490 II > 8.490 TO 11.320 NEW JERSEY DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-141 J ] J , ' I I I l I l I N t 4-189 WEAKFISH POSTLARVAE (3.1-10.5 MM) AUG. 3-6, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 *o.ooo 0 > 0.000 TO 0.595 > 0.595 TO 1.190 !Ill > ll90 TO 1.785 I > 1785 TO 2.380 NEW JERSEY DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sRmpling, Delaware River Estuary. Figure 4-142 L 4-190 WEAKFISH POSTLARVAE (3.1-10.5 MM) AUG. 17-22, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.445 f8I > 0.890 I > 1.335 NEW JERSEY ;I;! l ffj/1/j /!; 1/1/f/11 TO 0.445 TO 0.890 TO 1.335 TO 1.780 ATLA.t'l'TI C OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary *. Figure 4-143 I I I 1 I I i l l ' I I l
  • N i 4-191 WEAKFISH POSTLARVAE (3.1-10.5 MM) MAY . 11-14, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 2.575 > 2.575 TO 5.150 l!B > 5.150 TO 7.725 I > 7.725 TO 10.300 1'1EW JERSEY ATLANTIC OCEAN . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m*plankton net SALEM 316(b) STUDY SR.muling, Delaware River Estuary. Figure 4-144 N t . * ...
  • 4-192 WEAKFISH POSTLARVAE (3.1-10.5 MM) MAY 17-21, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 3.705 > 3.705 TO 7.410 !81 > 7.410 TO 11.115 Ill > 11.115 TO 14.820 NEW JERSEY ATLAl'iTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STODY sampling, Delaware River Estuary. Figure 4-145 l I I r l l l * * ,,, ,,* :*i* :'.'> .... ... N ! I 4-193 WEAKFISH POSTLARVAE (3.1-10.5 MM) MAY 24-27, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 16.020 > 16.020 TO 32.040 Dll > 32.040 TO 48.060 Ill > 48.060 TO 64.080 DELAWARE Mean density (number/lOOmJ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-146 L .,. -..... * *. J ...---------*I WEAKFISH POSTLARVAE (3.1-10.5 MM) ' 4-194 JUN. 7-10, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STlJDY LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 2.840 Ull > 5.680 I > 8.520 NEW JERSEY TO 2.840 TO 5.680 TO 8.520 TO 11.360 ATLAl'lTIC OCEAN Mean density (number/lOOm
3) of weakfish postlarvae, based on o.s-m plankton net sampling, Delaware River Estuary. Figure 4-147
  • I ,1 j
  • N i 4-195 WEAKFISH POSTLARVAE (3.1-10.5 MM) *JUN. 21-24, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.965 !!!I > 1.930 I > 2.895 NEW JERSEY TO 0.965 TO 1.930 TO 2.895 TO 3.860 ATLAl"ifTI C OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC. SERVICE ELECTRIC &'ID GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STIJDY sRmpling, Delaware River Estuary
  • Figure 4-148

.. * .. N A I 4-196 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUN. 28 -JUL. 3, 1982 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0 !lol II 0.000 > 0.000 TO 12.615 > 12.615 TO 25.230 > 25.230 TO 37.845 > 37.845 TO 50.461 ATLA...'l\lTIC OCEAN Mean density (number/lOOm.

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-149 . ';,,

l

  • N ' I 4-197 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 12-15, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 1.720 rm > 3.440 I > 5.160 TO 1.720 TO 3.440 TO 5160 TO 6.884 ATLAN'TIC OCEAN ' 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-150 ....

.. L N A I 4-198 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 19-23, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 2.040 > 2.040 TO 4.080 U!I > 4.080 TO 6120 I > 6120 TO 8.160 I;!; 1/jfjf/1 1/f!ffff/J/1

l;f1 7 1/ffff ff1 l;j1 j/1 11 I /jfjf I ATLA.t'lTIC lzj j1/1f 71 OCEAN fz/1/z! 11,I Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-151 l *1 I .. ' l
  • N A I 4-199 WEAKFISH POSTLARVAE (3.1-10.5 MM) JUL. 26-29, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.415 llD > 0.830 ii > 1.245 TO 0.415 TO 0.830 TO 1.245 TO 1.660 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-152 N 4 I 4-200 WEAKFISH POSTLARVAE (3.1-10.5 MM) AUG. 9-13, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 @ > 0145 11!1 > 0.290 Ill > 0.435 NEW JERSEY TO 0.145 TO 0.290 TO 0.435 TO 0.580 ATLA.l'lTI C OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.s-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-153
  • N ' I .--.-.--.

4-201 WEAKFISH POSTLARVAE (3.1-10.5 MM) AUG. 23-27, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 1.030 > 1.030 TO 2.060 IBI > 2.060 TO 3.090 I > 3.090 TO 4.120 NEW JERSEY Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on 0.5-m plankton net SALEM 316(b) STUDY DelAware River F,i:;t11ary. Figure 4-154 L 4-202 WEAKFISH POSTLARVAE (3.1-10.5 MM) AUG. 30 -SEP. 2, 1982 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 ARTIFICIAL ISLA.i'ID 121 > 0.000 TO 0.605 N

  • I DELAWARE PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 3l6(b) STUDY > 0.605 IP.I > 1.210 II > 1.815 NEW JERSEY . Ii ;l/1/1 ;l/11;1; f 1/1/ ff ff 1.; f/;fJfjfj/j/f

!/1!1/11 TO 1.210 TO 1.815 TO 2.420 ATLA.i'l"TIC OCEAN Mean density (number/lOOm

3) of weakfish postlarvae, based on 0.5-m plankton net sampling, Delaware River Estuary. Figure 4-155
  • l I *
  • N i 4-203 WEAKFISH POSTLARVAE (3.1-10.5 MM) SEP. 20-24, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 0 > 0.00 TO 0.95 ri<l > 0.95 s > 1.90 I > 2.85 NEW JERSEY TO 1.90 TO 2.85 TO 3.80 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY postlarvae, based on o.5-m plankton net SALEM 316(b) STUDY sampling, Delaware River Estuary
  • Figure 4-156
  • .. ***!* . 4-204 WEAKFISH 0+ -1979 (SURFACE) 150000 rkm 113-117 ,......_ 0 r.n 1500001 r:il E-t r:il :21 rkm 97-113 u 0 I A A I A A 1A A j' A f A .e.1 -150000 m :::> rkm 80-97 0 z 0 0 -t...'.l 150000 t...'.l -rkm 64-80 :21 r:il 0 P-t 150000 rkm 48-64 r:il m :21 :::> 0 z ...._,, 150000 rkm 32-48 >-E-t -r.n z r:il Q 150000 rkm 16-32 z <t: r:il :::2!

1500001 rkm 0-16 0 1 I I I A A I A A 1A A fl A 4' A A1 I I I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish O+, based PUBLIC SERVICE ELECTRIC AND GAS on surface trawl sampling, Delaware River 316(b) STUDY Estuary -1979. Figure 4-157

  • *,. --* ... 205 WEAKFISH 0+ -1979 150000 u 150000 :::J u rkm 113-117 rkm 97-113 rkm 80-97 z o 1-4 :j 150000 1-4 rkm 64-80 i

.... -"'d!i:;:::I .....

1500001 rkm 32-48 E--. 1-4 (/) t1 c
i 150000 z < 150000 0 I rkm 16-32 rkm 0-16 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish O+, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on bottom trawl sampling, Delaware River SALEM 316(b) STUDY Estuary -1979. Figure 4-158 L PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY 4-206 egional mean density of weakfish o+, based n bottom trawl sampling, Delaware River stuary -1980. * .,..__ ___ __..., Figure 4-159 150000 ........_

0 (f.l IB00001 f:il E-l f:il ::21 u 0 I ......... 150000 0 u z 0 0 ......... ....:I 150000 ....:I .........

2l f:il 0 P-t 150000 f:il CQ ;al 0 0 z ...._ 150000 E-l ......... (f.l z f:il 0 150000 z < f:il ;al 150000 *. ,* 4-207 WEAKFISH 0+ -1981 (SURFACE)
  • r km 113-117 rkm 97-113 rkm 80-97 rkm 64-80 rkm 48-64 rkm 32-48 rkm 16-32 rkm 0-16 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish O+, based* PUBLIC SERVICE ELECTRIC AND GAS COMPANY on surface trawl sampling, Delaware River SALEM 316(b) STUDY Estuary -1981. Figure 4-160 -.. -'*'

1,. , .. I ---rn E-l u 1-f :=> u z 0 1-f t-'.I t-'.I 1-f r:i::i 150000 0 150000 0 150000 0 150000 150000 4-208 WEAKFISH o+ -1981 rkm 113-117 rkm 97;_113 rkm 80-97 rkm 64-80 rkm 48-64 :=> i .. i 150000 rkm 0-16 0 I I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of O+, based PUBLIC SERVICE ELECTRIC AND GAS COMPA.."lY on bottom trawl sampling, Delaware River SALEM 316(b) STUDY Estuary -1981. Figure 4-161 ., 4-209

  • WEAKFISH o+ -1982 (SURFACE) rkm 113-117 p A I AA AAAp A6op 6 z!i A 61 en 1500001 rkm 97-113 r:i::I E-4 ::?1 0 I p 6 166 1 o! t\-ap :6.!.4' 6 :!i ..:. ' u p:::i rkm 80-97 u z p A I A A:f :6 £i 6 61 0 0 I ......:I 150000 ......:I rkm 64-80 ::21 r:i::I 0 I
  • P-t 150000 48-64 rkm r:i::I p:::i ::21 0 z ..._ 150000 :;:.... rkm 32-48 E-4 en z 0 r:i::I 1500001 0 z rkm 16-32 < r:i::I ::21 p A 166 4 62t:fl t. ti A A1 0 I 150000 rkm 0-16 0 I I p A I At. 4 A At.p ..!. A4' A t\ A t.1 I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish O+, based PUBLIC SERVICE ELECTRIC AND GAS COMPANY on surface trawl sampling, Delaware River
  • SALEM 316(b) STUDY Estuary -1982. Figure 4-162 4-210 WEAKFISH 0+ -1982 ..........

en P::l E-< u >-< i!l 0 0 z 0 150000 rkm 113-117 0 IB00001 0 t rkm 97-113 150000 rkm 80-97 rkm 64-80 150000 rkm 48-64 rkm 32-48 rkm 16-32 15.00001 rkm 0-16 Q 1 I I I JA :0 i>1 I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish O+, based PUBLIC SERVICE ELECTRIC AND GAS COHPANY on bottom trawl sampling, Delaware River SALEM 316(b) STUDY Estuary -1982. Figure 4-163 *

  • le I .
  • H ! I 4-211 WEAKFISH 0+ (SURFACE)

JUN. 18-22, 1979 DELAWARE RIVER ESTUARY, rkITI 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 t<J > 0.275 > 0.550 !ill > 0.825 NEW JERSEY TO 0.275 TO 0.550 TO 0.825 TO 1.100 ATL.A.i'l"TI C OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVI.CE ELECTRIC AND GAS COMPANY o+, based on 4.9-m surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-164 N ' I 4-212 WEAKFISH 0+ (SURFACE)

JUL. 2-5, 1979 DELAWARE RIVER ESTUARY, rkni 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.235 Im > 0.470 II > 0.705 NEW JERSEY TO 0.235 TO 0.470 TO 0.705 TO 0.940 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-165 * *
  • N A I 4-213 WEAKFISH 0+ (SURFACE)

JUL. 16-20, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.275 !HI > 0.550 I > 0.825 NEW JERSEY TO 0.275 TO 0.550 TO 0.825 TO 1100 ATLANTIC OCEAN 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY O+, based on 4.9-m surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-166 N ! I 4-214 WEAKFISH 0+ (SURFACE) JUL. 31 -AUG. 3, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 TO 0:380 > 0.380 TO 0.760 IHI > 0.760 TO 1.140 II > 1.140 TO 1.520 NEW JERSEY V;f!t ;I; '\ , I 7 'l;l;I; ;1;1;11 !/! /! /!/! F J ff/!// ff ff ff 1; I Jf/fjf ff ff ff I; ff /f ///,f j lj1/;I l;/;l;I/; X;lf!f! I I . /!f;1f1!1 1 1 i I I . .;l1lfl1 DELAWARE . I .f/1!1!/!/ 1!jij/l.;I l*l*/;11/. '/I I. 7 . 7 1 ATLA.t'i"TI C 1, I j ! j / I OCEAN I* I I I *!11 / 1/11,f f Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY O+, based on 4.9-m surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-167 * *

  • N ' I 4-215 WEAKFISH 0+ (SURFACE)

AUG. 13-17, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGE.I'm DE.J.'l"SITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 1.020 !iD > 2.040 I > 3.060 TO 1.020 TO 2.040 TO 3.060 TO 4.080 ATLA.l'l'TI C OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, b'ased on 4. 9-m surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-168 ' N ! I 4-216 WEAKFISH O+ (SURFACE) AUG. 27-30, 1979 DELAWARE RIVER ESTUARY, rkln 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.240 Ill! > 0.4.80 !II > 0.720 NEW JERSl!.'Y TO 0.240 TO 0.480 TO 0.720 TO 0.962 -ATLANTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-169 * *

  • I ' I _J 1* *
  • N ! I 4-217 WEAKFISH 0+ JUN. 12-14, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 ISLAl'ifD DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.020 ml > 0.040 !ii > 0.060 -NEW JERSEY TO 0.020 TO 0.040 TO 0.060 TO 0.084 ATLAl'ifTI C OCEAl'if Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary. Figure 4-170 N & I 4-218 WEAKFISH 0+ JUN. 25-29, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 -0.000 Q] > 0.000 > 0.905 Im > 1810 !lil > 2.715 TO 0.905 TO 1.810 TO 2.715 TO 3.620 ATLANTIC OCEAl-1' Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-171 ---, I * *
  • N ! I 4-21Q WEAKFISH 0+ JUL. 9-13, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGE.i'ID DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 1.150 > 1.150 TO 2.300 !Bl > 2.300 TO 3.450 II > 3.450 TO 4.600 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary
  • Figure 4-172 L N i I 4-220 WEAKFISH 0+ JUL. 24-27, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGE.i'fD DENS I TY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 2.080 > 2.080 TO 4.160. 11!1 > 4.160 TO 6.240 I > 6.240 TO 8.320 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-173
  • e 1 I
  • N ... I 4-221 WEAKFISH O+ AUG. 6-10, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 4.560 > 4.560 TO 9.120 !ill 9.120 TO 13.680 !I > 1;3.680 TO 18.240 DELAWARE .. . ' 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA.'ff o+, based on 4.9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary . Figure 4-174 4-222 ------------*

l ] N i WEAKFISH 0+ AUG. 20-24, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEl'{D DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 1.545 > 1.545 TO 3.090 !Ill 3.090 TO 4.635 a > 4.635 TO 6.180 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-175 ! I *
  • \ N ' I 4-223 WEAKFISH O+ SEP. 4-5, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 1.765 > 1.765 TO 3.530 IHI > 3.530 TO .5.295 II > 5.295 TO 7.060 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY 0+, based on 4. 9-m bottom trawl SALEM 316(b) STUDY sam lin Delaware River Estuar Figure 4-176 N .A I li.-224 WEAKFISH 0+ SEP. 10-13, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 1.505 > 1.505 TO 3.010 > 3.010 TO 4.515 > 4.515 TO 6.020 Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-177 *
  • t l l t, I ' N .. I 4-225 WEAKFISH O+ SEP. 25-27, 1979 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.380 IN . > 0.380 TO 0.760 l!ll > 0.760 *TO 1.140 I > 1.140 TO 1.520 DELAWARE . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling; Delaware River Estuary. Figure 4-178 J ---------------------.el J 4-226 N .A I WEAKFISH 0+ OCT. 11, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENS I TY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.360 >
  • 0.360 TO 0.720 ll!I > 0. 720 TO 1.080 11!1 > 1.080 TO 1.440 NEW JERSEY DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Kstuary .* Figure 4-179 *
  • 4-227 r. WEAKFISH 0+ l OCT. 22-23, 1979 DELAWARE RI VER ESTUARY, rkm 0-117 t LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.150 l > 0.150 TO 0.300 on > 0.300 TO 0.450 Ill > 0.450 TO 0.600 N i DELAWARE I I le Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..'n 0+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-180 N .. I 4-228 WEAKFISH 0+ NOV. 15,
  • 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.055 > 0.055 TO 0.110 !In > 0.110 TO 0.165 I > 0.165 TO 0.220 NEW JERSEY DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC.AND GAS CCMPA."iY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling; Delaware River Estuary. Figure 4-181 *
  • I I t l I l
  • 4-229 WEAKFISH 0+
  • NOV. 19-21, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DEi'iSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.135 > 0.135 TO 0.270 DD > 0.270 TO 0.405 Ill > 0.405 TO 0.540 NEW JERSEY N .. I DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA.'n o+, based on 4.9-m bottom trawl SALEM' 316(b) STUDY sampling, Delaware River Estuary. Figure 4-182 N ! I LL-230 WEAKFISH 0+ NOV. 27, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DE.t'iSITY PER 100 CUBIC METERS D o.ooo 12J > 0.000 TO 0.120 > 0.120 TO 0240 ll!I > 0.240 TO 0.360 11!1 > 0.360 TO 0.483 NEW JERSEY DELAWARE . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4. 9-m bottom trawl SALEM 316(b) STUDY sam lin Delaware River Estuar Figure 4-183 *
  • N ! I 4-231 WEAKFISH 0+ DEC. 4-7, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.115 > 0.115 TO 0.230 Im > 0.230 TO 0.345 I > 0.345 TO 0.464 NEW JERSEY DELAWARE . . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STlJDY sampling, Delaware River Estuary. Figure 4-184 N ! I 4-232 WEAKFISH 0+ JUN. 9-12, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.010 Im > 0.020 I > 0.030 NEW JERSEY TO 0.010 TO 0.020 TO 0.030 TO 0.040 ATLAi'iTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTR!C AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STlJDY sampling, Delaware River Estuary. Figure 4-185 I .I J
  • N i 4-233 WEAKFISH 0+ JUN. 16-20, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENS I TY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.865 Ull > 1.730 II > 2.595 NEW JERSEY \ TO 0.865 TO 1.730 TO 2.595 TO 3.460 L. ATLANTIC OCEAN Mean density (number/lOoID.
3) of weakfish PUBLIC SERVICE ELECTRIC A..'ID GAS COMPA..'N O+, based on 4. 9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-186 L N ' I 4-234 WEAKFISH 0+ JUL. 7-11, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEl"'ID DENS I TY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 1.080 > 1.080 TO 2.160 Ill! > 2160 TO 3.240 I > 3.240 TO 4.320 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-187 J 1 j l N .l I 4-235 WEAKFISH 0+ JUL. 14-18, 1980 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 2.495 > 2.495 TO 4.990 !ID > 4.990 TO 7.485 I > 7.485 TO 9.982 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-188 N i 4-23fi WEAKFISH 0+ JUL. 21-25, 1980 DELAWARE RIVER ESTUARY, rklll 0-117 DELAWARE LEGE.!'ID .

PER 100 CUBIC METERS 0 0.000 > 0.000 > 2.060 > 4.120 > 6.180 TO 2.060 TO 4.120 TO 6.180 TO 8240 ATLANTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary. Figure 4-189 1 *

  • N ! I 4-237 WEAKFISH 0+ AUG. 4-7, 1980 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND PER 100 CUBIC METERS 0 0.00 0 > 0.00 TO 17.50 > 17.50 TO 35.00 Im > 35.00 TO 52.50 I > 52.50 TO 70.00 DELAWARE Mean density I 3 . (number lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-190 N ' I 4-238 WEAKFISH 0+ AUG. 11-14, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND TY PER 100 CUBIC METERS D 0.00 0 > 0.00 TO 18.75 > 18.75 TO 37.50 > 37.50 TO 56.25 ll 56.25 TO 75.00 Dl!."'LAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-191 1 1 I 1 j l I -' I I ! I
  • N ' I WEAKFISH 0+ AUG. 18-23, 1980 DE,LAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 l2l > 0.000 TO 5.025 > 5.025 TO 10.050 181 > 10.050 TO 15.075 I > 15.075 TO 20.100 DELAWARE Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary. Figure 4-192 L N ' I 4-240 WEAKFISH 0+ SEP. 2-5, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D o.oo 121 > 0.00 > 3.00 D!l > 6.00 I > 9.oo TO 3.00 TO 6.00 TO 9.00 TO 12.00 Mean density 3 (number /lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-193 * *
  • N i 4-241 WEAKFISH 0+ SEP. 8-12, 1980 DELAWARE RI VER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 1.305 > 1.305 TO 2.610 U!l > 2.610 TO 3.915 I > 3.915 TO 5.220 DELAWARE Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC A..'ID GAS COM:PANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-194 N £ I 4-242 WEAKFISH 0+ SEP. 22-26, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.535 > 0.535 TO 1070 !!!l > 1.070 TO 1.605 il!I > 1.605 TO 2.140 DELAWARE I 3 Mean density (number lOOm ) of weak.fish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4_.195 * *
  • I ,. I . I N ' I 4-243 WEAKFISH 0+ SEP. 29, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 l2l > 0.000 TO 0.235 > 0235 TO 0.470 Dll. > 0.470 TO 0.705 I 0.705 TO 0.940 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-196 4-244 l N i WEAKFISH 0+ OCT. 6-9, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 l2l > 0.000 TO 0.240 > 0.240 TO 0.480 II!! > 0.480 TO 0.720 I > 0.720 TO 0.960 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY O+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-197 *
  • N .& I 4-245 WEAKFISH 0+ OCT. 20-23, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 0 > 0.00 TO 0.25 > 0.25 TO 0.50 l!!I > 0.50 TO 0.75 II > 0.75 TO 1.00 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY O+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary . Figure 4-198 N ! I 4-246 WEAKFISH '0+ NOV. 3-7, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D o.oo 0 > 0.00 TO 0.05 > 0.05 l!!I > 0.10 I > 0.15 NEW JERSEY TO 0.10 TO 0.15 TO 0.20 Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-199 * *
  • J I I I I_
  • N ! I 4-247 WEAKFISH 0+ (SURFACE)

JUL. 6-10, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 l2l > 0.000 > 0.035 Im > 0.070 I > 0.105 NEW JERSEY TO 0.035 TO 0.070 TO 0.105 TO 0.140 OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA."!Y O+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-200 4-248 I N ! I WEAKFISH 0+ (SURFACE) JUL. 13-17, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.385 Ill! > 0.770 fa > 1.155 NEW JERSEY TO . 0.385 TO 0.770 TO 1.155 TO 1.543 ATLANTIC OCEAN Mean density (number/lOOm.

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY O+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-201
  • r
  • N ! I 4-249 WEAKFISH 0+ (SURFACE)

JUL. 27-30, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS DELAWARE 0 0.000 0 > 0.000 > 0.370 Ill > 0.740 I > 1.110 NEW JERSEY TO 0.370 TO 0.740 TO 1.110 TO 1.480 ATLANTIC OCEAN Mean densHy (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Figure 4-202
N ! I 4-250 WEAKFISH 0+ (SURFACE)

AUG. 3*-6, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.475 > 0.475 TO 0.950 > 0.950 TO 1.425 I > 1.425 TO 1.900 NEW JERSEY ;If I; j;I 1;1!' I ;I 11/Jf/L I *fl 17 ATLANTIC OCEAN Mean density'(number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STlJDY sampling, Delaware River Estuary. Figure 4-203 l 1
  • N i 4-251 WEAKFISH 0+ (SURFACE)

AUG. 17-22, 1981 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE LEGE.i'ID DE.i'TSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.105 > 0.210 I > 0.315 . */ .. . / : I: 0J'i!,U\ ,.0__ \ TO 0.105 TO 0.210 TO 0.315 TO 0.423 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY O+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. .Figure 4-204 N .. I 4-252 WEAKFISH 0+ (SURFACE)

AUG. 24-27, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DEL.AWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.530 Cl! > 1.060 !I > 1.590 TO 0.530 TO 1.060 TO 1.590 TO 2J20 ATLANTIC , OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figur' 4-205 * *

  • N "' I 4-253 WEAKFISH 0+ (SURFACE)

AUG. 31 -SEP. 3, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.465 rl!I > 0.930 I > 1.395 NEW JERSEY TO 0.465 TO 0.930 TO 1.395 TO 1.864 ATLAN11C OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEK 316(b) STUDY sampling, Delaware River* Estuary. Figure 4-206 L N ' I 4-254 WEAKFISH 0+ (SURFACE)

SEP. 14-18, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.070 > 0.070 > 0.140 I > 0.210 NEW JERSEY TO 0.140 TO 0.210 TO 0.280 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish
  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY o+, based on pelagic fixed-frame trawl
  • sampling, Delaware River Estuary.

Figure 4-207 j N ! I 4-255 WEAKFISH 0+ (SURFACE) SEP. 21-25, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D o.oo 0 > 0.00 tii'l > 0.05 Ill! > 0.10 I > 0.15 NEW JERSEY TO 0.05 TO 0.10 TO 0.15 TO 0.20 ATLAN11C OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-208 N .& I 4-256 WEAKFISH 0+ (SURFACE) OCT. 5-9, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.055 ii<l > 0.055 !Bl > 0.110 II > 0.165 NEW JERSEY TO 0.110 TO 0.165 TO 0.220 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-209 N
  • I 4-257 WEAKFISH 0+ (SURFACE)

OCT. 19-22, 1981 DELAWARE RIVER ESTUARY, rkm 0-117

  • DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.020 !l1J > 0.040 ll!l > 0.060 NEW JERSEY TO 0.020 TO 0.040. TO 0.060 TO 0.080 ATL.Ai'l"TIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA.'!Y o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-210 N i 4-258 WEAKFISH O+ JUL. 6-10, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 121 > 0.000 > 0.125 Ill > 0.250 I > 0.375 NEW JERSEY TO 0.125 TO 0.250 TO 0.375 TO 0.500 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish
  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY o+, based ,on 4.9-m bottom trawl
  • sampling, Delaware River Estuary. ..........----.

__ ........._.___,. Figure 4-211

  • N ' I 4-259 WEAKFISH 0+ JUL. 13-17, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.680 > 0.680 TO 1.360 > 1.360 TO 2.040 I > 2.040 TO 2.720 DELAWARE ATLANTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-212 I --------------------.el I 4-260 N ! I WEAKFISH . 0+ JUL. 27-30, 1981 . DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND I TY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 1.915 > 1.915 TO 3.830 li!I > 3.830 TO 5.745 II > 5.745 TO 7.660 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-213 i I I I
  • N i 4-261 WEAKFISH 0+ AUG. 3-6, .1981 : .. ;* '*t.; DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENS I TY PER 100 CUBIC METERS 0 0.00 0 > 0.00 TO 3.00 > 3.00 TO 6.00 !ID > 6.00 TO 9.00 I > 9.00 TO 12.00 NEW JERSEY DELAWARE Hean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary . Figure 4-214 N i I 4-262 WEAKFISH O+ AUG. 17-22, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.00 0 > 0.00 TO 2.95 > 2.95 TO 5.90 llD > 5.90 TO 8.85 I > 8.85 TO 11.80 DELAWARE ean density (number/lOOm
3) of weakfish
  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY 0+, based on 4.9-m bottom trawl
  • SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-215

[ I *

  • N t 't* .* 4-263 WEAKFISH O+ AUG. 24-27, 1981 DELAWARE RIVER ESTUARY, rkln 0-117 LEGEND DENSITY PER 100 CUBIC. METERS 0 0.000 0 > 0.000 TO 1.045 > 1045 TO 2.090 a > 2.090 TO 3.135 II > 3135 TO 4.181 NEW JERSEY DELAWARE Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..-.Y o+, based on 4. 9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary
  • Figure 4-216

.. "t*. 4-264

  • WEAKFISH 0+ AUG. 31 -SEP. 3, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 2.645 > 2.645 TO 5.290 an > 5.290 TO 7.935 I > 7.935 TO 10.580 *NEW JERSEY N '
  • I DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-217
  • L I I
  • N i 4-265 WEAKFISH O+ SEP. 14-18, 1981 DELAWARE RIVER ESTUARY, rkni 0-1l7 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 TO 2.885 > 2.885 TO 5.770 rm > 5.770 TO 8.655 II > 8.655 TO 11.540 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4, 9-m bo.ttom trawl. SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-218

.,. . . .. 4-266 I WEAKFISH O+ 1 SEP. 21-25, 1981 1 DELAWARE RIVER ESTUARY, rk:zn 0-117 LEGEND I DENSITY PER 100 CUBIC METERS 0 0.000 i 0 > 0.000 TO 0.845 > 0.845 TO 1.690 11!1 > 1.690 TO 2.535 I > 2.535 TO 3.380 N i DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..'iY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-219
  • I I. t I l t
  • N i 4-267 WEAKFISH 0+ OCT. 5-9, 1981 DELAWARE RIVER ESTUARY, rklll 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D o.oo 0 * > 0.00 TO 0.45 > 0.45 rm > a.go I! > 1.35 TO 0.90 TO 1.35 TO 1.80 Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA.'rl o+, based on 4.9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary . , Figure 4-220 N t 4-268 WEAKFISH 0+ OCT. 19-22, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 IZI > 0.000 TO 0.185 > 0.185 TO 0.370 11!1 > 0.370 TO 0.555 II 0.555 TO 0.740 DELAWARE Mean density (number/lOOm.
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-221 *
  • I I I I I 1 l I
  • N 4-269 WEAKFISH 0+ (SURFACE)

JUN. 28 -JUL. 3, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.845 t.Xl > 0.845 TO 1.690 llU > 1.690 TO 2.535 I > 2.535 TO 3.380 NEW JERSEY DELAWARE ATLA!'\J'TI C OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary. Figure 4-222 N i 4-270 WEAKFISH O+ (SURFACE)

JUL. 12-15, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.260 > 0.260 TO 0.520 IHI > 0.520 TO 0,780 Ill > 0.780 TO 1.040 NEW JERSE'f '/ !ffffj/1 }/fff!f 1/l/1!1: /1/1/f!i . I ATL.A.1'1TIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA."IY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-223
  • I I ] I J l
  • N i 4-271 WEAKFISH O+ (SURFACE)

JUL. 19-23, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 TO 0.355 > 0.355 TO 0.710 !Bl > 0.710 TO 1.065 . I > 1.065 NEW JERSEY TO 1.420 ATLANTIC . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEK 316(b) STUDY sampling, Delaware River Estuary. Figure 4-224 N

  • I 4-272 WEAKFISH O+ (SURFACE)

JUL. 26-30, 1982 DELAWARE RIVER ESTUARY, rklll 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.380 Ill > 0.760 I > 1.140 NEW JERSEY TO 0.380 TO 0.760 TO U40 TO 1.520 OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-225
  • N
  • I 4-273 WEAKFISH 0+ (SURFACE)

AUG. 2-5, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.155 > 0.155 TO 0.310 ll!I > 0.310 TO 0.465 I > 0.465 TO 0.620 NEW JER:;'EY DELAWARE ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..-.Y o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-226 N i 4-274 WEAKFISH 0+ (SURFACE)

AUG. 16-19, 1982 DELAWARE RIVER ESTUARY, rkrn 0-1!7 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.360 > 0.360 TO 0.720 s > 0.720 TO 1.080 I > 1.080 TO 1.440 NEW JERSEY DELAWARE ATLA.!'4'Tl C OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-227 I I I 1
  • N
  • I 4-275 WEAKFISH 0+ (SURFACE)

AUG. 23-27, 1982 DELAWARE RIVER ESTUARY, rkni 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 @ > 0.170 Im > 0.340 B > 0.510 NEW JERSEY TO 0.170 TO 0.340 TO 0.510 TO 0.680 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-228 L N i **. * .. **: .. 4-276 WEAKFISH O+ (SURFACE)

AUG. 30 -SEP. 2, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.055 > 0.055 TO 0110 DD > 0.110 TO 0.165 a > 0.165 TO 0.220 NEW JERSEY DELAWARE ATLANTIC OCEAN Mean density (number/lOOmj) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-229

  • I l I I I *
  • N i 4-277 WEAKFISH 0+ (SURFACE)

SEP. 13-16, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.275 DU > 0.550 I > 0.825 NEW JERSEY TO 0.275 TO 0.550 TO 0.825 TO 1.100 ATLAl'l'TI C OCEAN Mean density (number/100m

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY O+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-230 N
  • I 4-278 WEAKFISH 0+ (SURFACE)

SEP. 27 -OCT. 1, 1982 DELAWARE RIVER ESTUARY, rkm. 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 1Z1 > o.oo > 0.10 !ID > 0.20 R > 0.30 NEW JERSEY TO 0.10 TO 0.20 TO 0.30 TO 0.40 ATLANTIC OCEAN 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-231

  • N ' I 4-279 WEAKFISH 0+ (SURFACE)

OCT. 12-14, 1982 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.035 > 0.035 DI > 0.070 I > 0105 -NEW JERSEY TO 0.070 TO 0.105 TO 0140 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMP.U.'Y o+, based on pelagic fixed-frame trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-232 I 4-280 I ....-----------.---..

I WEAKFISH o+ (SURFACE) I OCT. 27-29, 1982 DELAWARE RIVER ESTUARY, rkzn*0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.010 > 0.010 TO 0.020 11!1 > 0.020 TO 0.030 H > 0.030 TO 0.040 NEW JERSEY N i DELAWARE ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..>qy o+, based on pelagic fixed-frame trawl SALEM. 316(b) STUDY sampling, Delaware River Estuary. Figure 4-233
  • N i 4-281 WEAKFISH 0+ JUN. 14-17, 1982 DELAWARE RIVER ESTUARY, rklll 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.020 > 0.020 TO 0.040 a > 0.040 TO 0.060 I > 0.060 TO 0.080 DELAWARE ATLA.l'ITIC 3 . Mean density (number/lOOm ) qf weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY O+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-234 **!**

I I 4-282 N t WEAKFISH O+ JUN. 28 -JUL. 3, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.00 0 > 0.00 > 1.70 11!1 > 3.40 !l!I > 5.10 TO 1.70 TO 3.40 TO 5.10 TO 6.80 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY o+, based on 4.9-m bottom trawl t-s_a_mp_l_i_n_g_,_n_e_ia_w_a_re

__ Ri __ ve_r __ E_st_u_a_r_Y_*_,.._.. __ _... Figure 4-235 I N i 4-283 WEAKFISH 0+ JUL. 12-15, 1982 . * .. -. -. .---.* DELAWARE RIVER ESTUARY, rklll 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.00 0 > 0.00 > 0.70 LVJ > 1.40 II > 2.10 TO 0.70 TO 140 TO 2.10 TO 2.80 Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) .STUDY sampling, Delaware River Estuary. Figure 4-236 N i 4-284 WEAKFISH O+ JUL. 19-23, 1982 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 2.025 > 2.025 TO 4.050 ll!I > 4.050 TO 6.075 I > 6.075 TO 8.100 NEW JERSEY DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary. Figure 4-237 J *

  • N i 4-285 WEAKFISH 0+ JUL. 26-30, 1982 DELAWARE RIVER ESTUARY, rkni 0-117 LEGEND DENS I TY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 1625 > 1625 TO 3.250 Im . > 3.250 TO 4.875 II > 4.875 TO 6.500 NEW JERSEY DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316{b) STUDY sampling, Delaware River Estuary. Figure 4-238

. "t*. N i 4-286 WEAKFISH O+ AUG. 2-5, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY. PER 100 CUBIC METERS 0 0.000 121 > 0.000 TO 0.470 > 0.470 TO 0.940. 11!1 > 0.940 TO 1.410 II >' 1410 TO 1.880 DELAWARE 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-239 I I I I I I '* I N t 4-287 WEAKFISH 0+ AUG. 16-19, 1982 DELAWARE RIVER ESTUARY, rk:m 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 1.475 > 1.475 TO 2.950 all > 2.950 TO 4.425 a > 4.425 TO 5.900 NEW JERSEY DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..'{Y o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figur.e 4-240 N t 4-288 WEAKii.,I SH 0+ AUG. 23-27, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 1.130 181 > 1.130 TO 2.260 11!1 > 2.260 TO 3.390 Ill > 3.390 TO 4.520 NEW JERSEY DELAWARE . 3 Mean density (number/lOOm ) of weakfish PUBLIC.SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-241 *

  • 4-289
  • WEAKFISH O+ AUG. 30 -SEP. 2, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 1.015 > 1.015 TO 2.030 gjj > 2.030 TO 3.045 I > 3.045 TO 4.060
  • N
  • I DELAWARE . 3. Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m bottom trawl
  • SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-242 4-290 N i WEAKFISH O+ SEP. 13-16, 1982 DELAWARE RIVER ESTUARY, rk:rn 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 1040 > 1.040 TO 2.080 11!1 . > 2.080 TO 3.120 II > 3.120 TO 4.160 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS CO!{PA.NY o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware*River Estuary. Figure 4-2'43 *

' '* '

  • 4-291 WEAKFISH O+ SEP. 27 -OCT. 1, 1982 DELAWARE RIVER ESTUARY, rkin 0-117 PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.540 > 0.540 TO 1.080 !ID > 1.080 TO 1.620 a > 1.620 TO 2.160 N A I DELAWARE . 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..'r!

o+, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure N 4 I 4-292 ' WEAKFISH O+ OCT. 12-14, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 1.075 > 1.075 TO 2.150 > 2.150 TO 3.225 II > 3.225 TO 4.300 DELAWARE Mean density . 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC A.'ID GAS COMPA..-.Y o+, based on 4.9-m bottom trawl SALEM 316(b)_STUDY sampling, Delaware River Estuary. Figure 4-245 * ' I ' I. ' ' N 4-293 WEAKFISH 0+ OCT. 27-29, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.065 > 0.065 TO 0.130 Im > 0.130 TO 0.195 Ill > 0.195 TO 0.260 DELAWARE Mean density (number/lOOm.

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY o+, based on 4.9-m. bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-246 _I L u }--< m ;::> u z 4-294 WEAKFISH 1 + AND OLDER -1979 (SURF.)
  • 3000 rkm 113-117 rkm 97-113 3000 rkm 80-97 0 3000 rkm 64-80 30001 rkm 48-64 3000 rkm 32-48 rkm 16-32 3000 rkm 0-16 0, J.A.t'i FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PUBLIC SERVICE ELECTRIC AND GAS SALEM 316(b) STIJDY Regional mean density of weakfish l+ and older, based on surface trawl sampling,

__ E_s_tu_a_r_y __ -_1_9_7_9_. __________ """"'*

  • Figure 4-247

...-.. rn. r:::::l f-i r:::::l u I--< m 0 u z 0 I--< H H ...... r:::::l P-. r:::::l m 0 z ..___, 4-295 WEAKFISH 1+ AND OLDER -1979 30001 j r km 113-1f7 0 I A :ti es es, es es I es es pA :6 I AAA1es 30001 j rkm 97-113 0,

!:6..:!.I':!:

300011 rkm 80-97 0 i A 2f A Aj A A I :A A pA bl A A I AAA1A 30001 rkm 64-80 0 , ..:!.1 :!: A AA:::!:16 30001 rkm 48-64 30001 i rkm 32-48 O, 30001 rkm 16-32 0, *** 300011 . -rkm 0-16 o,, ** ** FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Regional mean density of weakfish l+ and older, based on bottom trawl sampling, Delaware River Estuary -1979. Figure 4-248 u ...... m !:) 0 z 3000 3000 4-296 WEAKFISH 1 + AND OLDER -1980 rkm 113-117 rkm 97-113 rkm 80-97 0 1-1 j 3000 rkm 64-80 3000 rkm 48-64 3000 rkm 32-48 3000 rkm 16-32 rkm 0-16 Regional mean density of weakfish l+ and PUBLIC SERVICE ELECTRIC AND GAS COMPANY older, based on bottom trawl sampling, SALEM 316(b) STUDY Delaware River Estuary -1980. Figure 4-249 *

  • 4-297 WEAKFISH 1+ AN-D OLDER -1981 (SURF.) 3000 rkm 113-117 0 en. 3=1 rkm 97-113 r:::::l E--4 u 0 I ,..:. 2:. f: A.!:. I..!:...!.

2:.f6 '..!:.+ ..:..s,::. = ,__. 3000 m 0 rkm 80-97 u z 0 0 t-* i-::1 3000 i-::1 rkm 64-80 -O::'i r::::i 0 0.... 30001 rkm 48-64 r:::i IIl 0 p6 A p. bb1bb bj6 Ao 1b :,, z 0 I :Stnp ...__, 3000 rkm 32-48 E--4 ,__. en. z. 0 Cl z. rkm 16-32 <: r:::i 1A A p. e,e, I tits bj6 AA,P AA1A A 3000 rkm 0-16 FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean dansity of weakfish l+ and PUBLIC SERVICE ELECTRIC AND GAS COMPANY older, based on surface trawl sampling,

  • SALEM 316(b) STUDY Delaware River Estuary -1981. Figure 4-250 4-298 WEAKFISH 1+ AND OLDER -1981 1 30001 rkm 113-117 J 0 1 ,.--., p6 :!t p :!t:!t I :O::!I
!t::!t I A :!! rn. ] P::: rkm 97-113 P::i E--i i=:l u 0 I 1A = p

'f'=-"h'+ = .._, 1 m 30001 rkm 80-97 :=> u z 0 o I A:!!"""¥=-.6:!!.;> I 6 :!t .._, 30001 H H rkm 64-80 .._, P::: 0 I :!I I 30001 P::: rkm 48-64

  • m :=> 0 I z 30001 ...._., ::>-< rkm 32-48 E--i 1

.._, 0 1 rn. z I Q 30001 z rkm 16-32 < al 30001 rkm 0-16 0 I I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish l+ and PUBLIC SERVICE ELECTRIC AND GAS COMPA.."IT older, based on bottom trawl sampling, SALEM 316(b) STUDY Delaware River Estuary -1981. Figure 4-251

  • ,......_ en. J:":;i::l E-< r=:I :21 u 1--! m ::::> u z 0 1--! ......:! ......:! 1--! :21 J:":;i::l l1t J:":;i::l m ::::> z ...._.,. :>-t E-< 1--! VJ. z J:":;i::l 0 z < r=:I 4-299 WEAKFISH 1+ AND OLDER -1982 (SURF.) 3000-rkm 113-117 0 I I I r--I --"T -----.--.., --1 I I 30001 rkm 97-113 0 ' ;6 ...:.. I ., ...:. 4 .:. 2.::lp ::l ':ft -=i ::l ..:., 3000-rkm 80-97 30001 1 rkm 64-80 1 rkm 48-64 O ¢< .a ,,u, 4 :t.:..c.p
...:.+..:.

=i :. .:!:.1 1 rkm 32-48 30001 1 rkm 16-32 0 I L.:l 4 ..:. ::lap ::l ii4< a i:i h ::l1 300011 rk1n 0-16 Q 1 I I I P ..:. I :6::l 4 :C:::l:Sp

S:O:fs :::l :4 h 2i1 I JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Regional mean density of weakfish l+ and PUBLIC SERVICE ELECTRIC AND GAS COMPANY older, based on surface trawl sampling, SALEM 316(b) STUDY Delaware River Estuary -1982. Figure 4-252 4-300 I 1 WEAKFISH 1+ AND OLDER -1982 rkm 113-117 rkm 97-113 rkm 64-80 rkm 48-64 rkm 32-48 rkm 16-32 Regional mean density of weakfish l+ and PUBLIC SERVICE ELECTRIC AND GAS COMPANY older, based on bottom trawl sampling, SALEM 316(b) STUDY Delaware River Estuary -1982. Figure 4-253
  • N i _.., ... _, 4-301 WEAKFISH 1+ AND OLDER (SURFACE)

MAY 8-10, 1979 DELAWARE RIVER ESTUARY. rkill 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.010 Im > 0.020 I > 0.030 NEW JERSEY TO 0.010 TO 0.020 TO 0.030 TO 0.040 ATLA.1'\ITI C OCEAN Mean (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older' based on surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary . Figure 4-254 N i 4-302 WEAKFISH 1+ AND OLDER (SURFACE)

MAY 22-24, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 IZI > 0.000 > 0.010 ll!I > 0.020 I > 0.030 NEW JERSEY TO 0.010 TO 0.020 TO 0.030 TO 0.040 ATLANTIC OCEAN Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older' based on surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. F {_gure 4-255 1 * *

  • I le N i 4-303 WEAKFISH 1+ AND OLDER (SURFACE)

JUN. 5-7, 1979 DELAWARE RIVER ESTUARY, rkITI 0-117 DELAWARE LEGE.i"lD PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.005 Ui'l > 0.010 I > 0.015 NEW JERSEY TO 0.005 TO 0.010 TO 0.015 TO 0.020 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY 1+ and older, based on surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-256 N
  • I 4-304 WEAKFISH 1+ AND OLDER (SURFACE)

JUN. 18-22, 1979 DELAWARE RIVER ESTUARY, rk111 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.015 1111 > 0.030 Ill > 0.045 NEW JERSEY TO 0.015 TO 0.030 TO 0.045 TO 0.060 C OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-257 * *

  • N ' I 4-305 WEAKFISH 1+ AND OLDER (SURFACE)

JUL. 2-5, 1979 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.020 > 0.020 TO 0.040 ilD > 0.040 TO 0.060 11!1 > 0.060 NEW JERSEY TO 0.080 ATLANTIC OCEAN 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COM.PA..'<Y 1+ and older, based on surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-258 N

  • I 4-306 WEAKFISH 1+ AND OLDER (SURFACE)

JUL. 16-20, 1979 DELAWARE RIVER ESTUARY, rk:rn 0-117 DELAWARE LEGEND DE.!"'{SITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.010 Ill > 0.020 I > 0.030 NEW JERSEY TO 0.010 TO 0.020 TO 0.030 TO 0.040 ATLAl'l'TIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-259 *

  • N i 4-307 WEAKFISH 1+ AND OLDER (SURFACE)

JUL. 31 -AUG. 3, 1979 DELAWARE RIVER ESTUARY, rkin 0-117 LEGE.t'ID DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.035 > 0.035 TO 0.070 D!I > 0.070 TO 0.105 I > 0.105 TO 0.143 NEW JERSEY DELAWARE ATLANTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE. ELECTRIC AND GAS COMPANY 1+ and older, based on surface trawl SALEM 316(b) STL'DY sampling, Delaware River Estuary. Figure 4-260 N ! I 4-308 WEAKFISH 1+ AND OLDER (SURFACE) AUG. 13-17, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.005 IHI > 0.010 I > 0.015 NEW JERSEY TO 0.005 TO 0.010 TO 0.015 TO 0.020 ATLANTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC A.'ID GAS COMPANY 1+ and older' based on surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-261 *
  • N i 4-309 WEAKFISH 1+ AND OLDER (SURFACE)

AUG. 27-30, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC D o.ooo 0 > 0.000 TO 0.015 > 0.015 Ill! > 0.030 I > 0.045 NEW JERSEY TO 0.030 TO 0.045 TO 0.060 OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on surface trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-262 N i 4-310 WEAKFISH 1+ AND OLDER MAY 15-18, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 l2l > 0.000 > 0.020 DD > 0.040 II > 0.060 NEW JERSEY ;I; /11;! 111/ijl 1f;!;f1 I;! 1 171/11 I JI; ff/!/!/!; I l;j;I TO 0.020 TO 0.040 TO 0.060 TO 0.080 ATLAl'lTIC OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..'fi l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-263 * *
  • N " I 4-311 WEAKFISH 1 + AND OLDER MAY 29 -JUN. 1, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGE.!'l'D DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.065 s > 0.130 Ill > 0.195 TO 0.065 TO 0.130 TO 0.195 TO 0.260 ATLA.t'fTI C OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA.-.Y l+ and older, base.d on 4. 9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-264 N i 4-312 WEAKFISH 1+ AND OLDER JUN. 12-14, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.095 > 0.095 TO 0.190 > 0.190 TO 0285 II 0.285 TO 0.380 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..-.Y l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-265 * * *

'* l . i I *

  • 4-313 WEAKFISH 1+ AND OLDER JUN. 25-29, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER* 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.260 > 0.260 TO 0.520 Im > 0.520 TO 0.780 II > 0.780 TO 1.040 NEW JERSEY N i DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY 1+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-266 N i 4-314 WEAKFISH 1+ AND OLDER JUL. 9-13, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENS I TY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.095 !ID > 0.190 I 0.285 TO 0.095 TO 0190 TO 0285 TO 0.384 ATLA.J.'i'TI C OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY 1+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary.
  • Fi -r,ure 4-267 *
  • J
  • N t 4-315 WEAKFISH 1+ AND OLDER JUL. 24-27, 1979 DELAWARE RIVER ESTUARY, rkni 0-117 \ LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.130 > 0.130 TO 0260 !1!1 > 0.260 TO 0.390 I > 0.390 TO 0.520 NEW JERSEY DELAWARE Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-268 N i 4-316 WEAKFISH 1+ AND OLDER AUG. 6-10, 1979 DELAWARE RIVER rkin 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.215 > 0.215 TO 0.430 lBI > 0.430 TO 0.645 I > 0.645 TO 0.860 DELAWARE
  • PUBLIC SERVICE ELECTRIC AND GAS COMPA..'rl SALEM 316(b) STUDY Mean density (number/lOOm.
3) of weakfish l+ and older, based on 4.9-m bottom trawl sampling, Delaware River Estuary.
  • Figure 4-269 ------

I -I I

  • N i 4-317 WEAKFISH 1+ AND OLDER AUG. 20-24, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0125 > 0.125 TO 0.250 9 > 0.250 TO 0.375 I > 0.375 TO 0.502 NEW JERSEY DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-270 .I N i 4-318 WEAKFISH 1+ AND OLDER SEP. 4-5, 1979 DELAWARE RIVER ESTUARY, rkm 0-1f7 LEGEND DEl"'fSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.100 > 0.100 TO 0.200 IP.I > 0.200 TO 0.300 Ill > 0.300 TO 0.400 DELAWARE Mean density (number/lOOm
3) of weakfish
  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY 1 + and 0 lder' based on 4. 9-m bot tom tr awl
  • SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-271
  • N A I 4-319 WEAKFISH 1+ AND OLDER SEP. 10-13, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.150 > 0.150 TO 0.300 Im > 0.300 TO 0.450 Ill > 0.450 TO 0.600 NEW JERSEY DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC A..'ID GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary . Figure 4-272 I -------------------.*I I 4-320 N ! I WEAKFISH 1+ AND OLDER SEP. 25-27, 1979 DELAWARE RIVER-ESTUARY, rkin 0-117 LEGEND DE.t'iSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.040 > 0.040 TO 0.080 al! > 0.080 TO 0.120 II > 0.120 TO 0.160 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary .. Figure 4-273
  • N A I 4-321 WEAKFISH 1+ AND OLDER OCT. 11, 1979 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.050 > 0.050 TO 0100 > 0100 TO 0150 II > 0.150 TO 0.200 DELAWARE Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA.'iY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-274 N A I 4-322 WEAKFISH 1+ AND OLDER OCT. 22-23, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.025 > 0.025 TO 0.050 tin > 0.050 TO 0.075 I > 0.075 TO 0100 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC A.'ID GAS COMPA..'IY l+ and older, based on 4.9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary. Figure 4-275 N
  • I 4-323 WEAKFISH 1+ AND OLDER NOV. 15, 1979 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGE..t'iD DE..t'iSITY PER 100 CUBIC METERS DELAWARE D o.ooo. 0 > 0.000 > 0.010 IS > 0.020 I > 0.030 NEW JERSEY TO 0.010 TO 0.020 TO 0.030 TO 0.040 ATLAl'iTIC OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-276 N ! I 4-324 WEAKFISH 1+ AND OLDER DEC. 4-7, 1979 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEl'ID PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.010 > 0.010 TO 0.020 U<< > 0.020 TO 0.030 a > 0.030 TO 6.040 NEW JERSEY DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STlJDY sampling, Delaware River Estuary. Fig-c:re 4-277 I I le N ! I 4-325 WEAKFISH 1+ AND OLDER APR 21-23, 1980 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND DE.i"\l'SITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.005 > 0.005 DD > 0.010 I > o.015 NEW JERSEY TO 0.010 TO 0.015 TO 0.020 ATLA.1"\l'TIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE 'ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-278 4-326 WEAKFISH 1+ AND OLDER MAY 5-7, 1980 DELAWARE RIVER ESTUARY, rk:m 0-117 N ! Xx X I llx/:rx DELAWARE PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.010 s > 0.020 I > 0.030 NEW JERSEY TO 0.010 TO 0.020 TO 0.030 TO 0.040 ATLA.l'ITI C OCEAN . 3 Mean density (number/lOOm ) of weakfish l+ and older, based on 4.9-m bottom trawl sampling, Delaware River Estuary. Figure 4-279
  • N 4-327 WEAKFISH 1+ AND OLDER MAY 12-15, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGE.L'ID DENS I TY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.020 > 0.020 TO 0.040 DD > 0.040 TO 0.060 I > 0.060 TO 0.080 NEW DELAWARE ATLAl'fTI C OCEAN Mean density (number/lOOm.
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary
  • Figure 4-280 N
  • I 4-328 WEAKFISH 1+ AND OLDER MAY 19-22, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.020 Ill! > 0.040 I > 0.060 TO 0.020 TO 0.040 TO 0.060 TO 0.080 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older) based on 4. 9-m bottom trawl SALEM 316(b) STaDY sampling, Delaware River Estuary. Figure 4-281
  • I l ,*
  • N ' I 4-329 WEAKFISH 1+ AND OLDER JUN. 2-6, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.060 11!1 > 0.120 I > 0180 NEW JERSEY TO 0.060 TO 0.120 TO 0.180 TO 0.240 ATI.Al'iTI C OCEAN Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 3l6(b) STUDY sampling, Delaware River Estuary. Figure 4-282 N
  • I 4-330 WEAKFISH 1+ AND OLDER JUN. 9-12, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.065 Ill > 0130 I > 0195 TO 0.065 TO 0.130 TO 0.195 TO 0.264 ATLAl"fTI C OCEAN Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and. older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-283 *

'* [ I I

  • 4-331 WEAKFISH 1+ AND OLDER JUN. 16-20, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY LEGEND DENSI'l?i PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.120 DI! > 0.240 I > 0.360 NEW JERSEY TO 0.120 TO 0.240 TO 0.360 TO 0.480 ATLANTIC OCEAN Mean density (number/100m
3) of weakfish l+ and older, based on 4.9-m bottom trawl sampling, Delaware River Estuary. Figure 4-284 1 -------------.*

l l 4-332 N A I WEAKFISH 1+ AND OLDER JUL. 7-11, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGE.i'l'D DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.070 !ID > 0.140 II > 0.210 TO 0.070 TO 0140 TO 0.210 TO 0.280 ATLA.:t'iTI C OCEAN Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..-...Y l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-285 )
  • N ! I 4-333 WEAKFISH 1+ AND OLDER JUL. 14-18, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGE.!'ID TY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.055 !BJ > 0.110 I > 0.165 TO 0.055 TO 0.110 TO 0.165 TO 0.220 ATLANTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-286' N ! I 4-334 WEAKFISH 1+ AND OLDER JUL. 21-=25, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEi'ID DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.250 9 > 0.500 Ill > 0.750 NEW JERSEY TO 0.250 TO 0.500 TO 0.750 TO 1.000 ATLA.!'lTIC OCEAN Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY l+ and older, based on 4.9-m bottom trawl
  • sampling, Delaware River Estuary. Figure 4-287 1 I I I I . *
  • N ' I 4-335 WEAKFISH.

1+ AND OLDER AUG. 4-7, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.125 > 0125 TO 0.250 Ill > 0.250 TO 0:375 !l!l > 0.375 TO 0.502 DELAWARE Mean density (number/lOOm

3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Fir;:re 4-288 L 4-336 I

] N A I WEAKFISH 1+ AND OLDER AUG. 11-14, 1980 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE LEGEi'l'D DENS I TY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.100 11!1 > 0.200 !Ill > 0.300 TO 0.100 TO 0200 TO 0.300 TO 0.400 ATLANTIC OCEAN . I 3 Mean density (number lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA."fi' l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-289 \l J

  • I I [, I
  • N ! I 4-337 WEAKFISH 1+ AND OLDER AUG. 18-23, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.035 !Ill > 0.070 I > 0.105 NEW JERSEY TO 0.035 TO 0.070 TO 0.105 TO 0.140 ATLANTIC OCEAN Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-290 N ! I 4-338 WEAKFISH 1+ AND OLDER SEP. 2-5, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.035 > 0.035 TO 0.070 11!1 > 0.070 TO 0105 I > 0.105 TO 0.140 NEW JERSEY DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC A."ID GAS l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-291
  • t j l l
  • N ' I 4-339 WEAKFISH 1+ AND OLDER SEP. 8-12, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.025 II!! > 0.050 I > 0.075 TO 0.025 TO 0.050 TO 0.075 TO 0.100 ATLANTIC OCEA.i"\f Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STIJDY samp*ling, Delaware River Estuary. Figure 4-292 N
  • I 4-340 WEAKFISH 1+ AND OLDER SEP. 22-26, 1980 DELAWARE RIVER ESTUARY, rkin 0-1f7 LEGE.l'ID DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.015 > 0.015 TO 0.030 II!! > 0.030 TO 0.045 II > 0.045 TO 0.060 DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COKPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-293 * .J ,]
  • N ! I 4-341 WEAKFISH 1+ AND OLDER SEP. 29, 1980 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGE.i'ID DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.035 > 0.035 TO 0.070 !Bl > 0.070 TO 0.105 D!l > 0.105 TO 0.140 NEW DELAWARE Mean density (number/lOOm
3) of weak.fish PUBLIC SERVICE ELECTRIC A,,>qD GAS COMPA."fi 1+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-294 L N ' I 4-342 WEAKFISH 1+ AND OLDER OCT. 6-9, 1980 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.075 > 0.075 TO 0150 I!!! > 0150 TO 0.225 I > 0.225 TO 0.300 NEW JERSEY DELAWARE Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-295 I t I I
  • N A I 4-343 WEAKFISH 1 + AND OLDER OCT. 20-23, 1980 DELAWARE RIVER ESTUARY, rkin 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 121 > 0.000 > 0.010 *II!! > 0.020 Iii! > 0.030 NEW JERSEY TO 0.010 TO 0.020 TO 0.030 TO 0.040 ATLANTIC OCEAN Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older) based on 4. 9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-296 N i 4-344 WEAKFISH 1+ AND OLDER MAY 4-8, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.015 > 0.015 TO 0.030 a<< > 0.030 TO 0.045 I > 0.045 TO 0.060 DELAWARE Mean density (number/lOOm
3) of PUBLIC SERVICE ELECTRIC AND GAS COMPA.."n' l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-297 1 .I i *
  • N i 4-31+5 WEAKFISH 1+ AND OLDER JUN. 1-5, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.015 !Pl > 0.030 II > 0.045 NEW JERSEY TO 0.015 TO 0.030 TO 0.045 TO 0.060 ATLA..l'iTI C OCEAN Mean density (number/lOOm
3) of weak.fish PUBLIC SERVICE ELECTRIC Al';1> GAS COMPA.'IT l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Fig1'ce 4-298 L N t 4-346 WEAKFISH 1 + AND OLDER JUN. 15-19, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.025 > 0.025 TO 0.050 llll > 0.050 TO 0.075 I > 0.075 TO 0100 NEW JERSEY DELAWARE Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-299 l I J I I
  • r I. t ( t
  • N ! I 4-347 WEAKFISH 1+ AND OLDER JUN. 22-26, 1981 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.115 > 0.115 TO 0.230 !Bl > 0.230 TO 0.345 I > 0.345 TO 0.460 NEW JERSEY DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) ST{]DY sampling, Delaware River Estuary. Figure 4-300 __________________
  • ]

N A I 4-348 WEAKFISH 1+ AND OLDER JUL. 6-10, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 !2l > 0.000 > 0.045 11!1 > 0.090 llll > 0.135 TO 0.045 TO 0.090 TO 0.135 TO 0.182 ATLA.!'l"TI C OCEAN Mean density (number/lOOm

3) of weakfish PUBLICSERVICEELECTRICANDGASCOMP.ANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-301 *
  • N .. I 4-349 WEAKFISH *1+ AND OLDER JUL. 13-17, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.060 > 0.060 TO 0.120 181 > 0.120 . TO 0180 I > 0160 TO 0.240 DELAWARE Mean density (number/lOOm
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA..'n l+ and older, based on 4.9-m hottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-302 N i 4-350 WEAKFISH 1+ AND OLDER JUL. 27-30, 1981 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.080 > 0.080 TO 0160 I!!! > 0.160 TO 0.240 I > 0.240 TO 0.320 DELAWARE Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-303 **
  • N A I 4-351 WEAKFISH 1+ AND OLDER AUG. 3-6, 1981
  • DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENS I TY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.040 > 0.040 TO 0.080 > 0.080 TO 0120 II > 0.120 TO 0.160 DELAWARE Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS l+ and older, based on 4.9-m bottomtrawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-304 N ' I 4-352 WEAKFISH 1+ AND OLDER AUG. 17-22, 1981 DELAWARE RIVER ESTUARY, rkin 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.065 > 0.065 TO 0.130 11!1 > 0.130 TO 0195 I > 0.195 TO 0.260 NEW JERSEY DELAWARE Mean density (number/lOOmJ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and o l!ier, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-305 *
  • N .. I 4-353 WEAKFISH 1+ AND OLDER AUG. 24-27, 1981 DELAWARE RIVER ESTUARY, rklll 0-117 DELAWARE LEGEi'ID DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.035 > 0.070 Ill > 0.105 NEW JERSEY TO. 0.035 TO 0.070 TO 0.105 TO 0.140 ATLAl'iTIC OCEAN *Mean density 3 (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m botto8 trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-306 L N ! I 4-354 WEAKFISH 1+ AND OLDER AUG. 31 -SEP. 3, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND .DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.035 > 0.035 TO 0.070 ll!l > 0.070 TO 0105 I > 0.105 TO 0.140 NEW JERSEY Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA.'N l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-307 *
  • N A I 4-355 WEAKFISH 1+ AND OLDER SEP. 14-18, 1981 DELAWARE RIVER ESTUARY, rkni 0-11'.7 DELAWARE LEGEND DE.J'l"SITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.025 Ill > 0.050 I > 0.075 NEW JERSEY TO 0.025 TO 0.050 TO 0.075 TO 0.100 ATLANTIC OCEAN !Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPA...""1 l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-308 N 4-356 WEAKFISH 1+ .AND OLDER SEP. 21-25, 1981 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.035 D:!I > 0.070 I > 0.105 NEW JERSEY TO 0.035 TO 0.070 TO 0.105 TO 0.140 ATLAl'JTIC OCEAN 3 Mean density (number/lOOm ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-309 *
  • r *
  • N .l I 4-357 WEAKFISH 1+ AND OLDER OCT. 5-9, 1981 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.005 IBI > 0.010 I > 0.015 NEW JERSEY TO 0.005 TO 0.010 TO 0.015 TO 0.020 ATLA.t'TTI C OCEAN Mean density (number/100m
3) of weakflsh PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary
  • Figure 4-310 N A I 4-358 WEAKFISH 1+ AND OLDER OCT. 19-22, 1981 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.005 > 0.005 QU. > 0.010 Ill > 0.015 NEW JERSEY TO 0.010 TO 0.015
  • TO 0.020 OCEAN Mean density (number/lOOmJ) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY l+ and older, based on 4.9-m bottom trawl SALEM 316(b) STUDY sampling, Delaware River Estuary. Figure 4-311 ** * *
  • N ' I 4-359 WEAKFISH 1+ AND OLDER MAY 3-5, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGE.t"{D DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.005 > 0.005 TO 0.010 11!1 > 0.010 TO 0.015 a > *0.015 TO 0.020 NEW JERSEY DELAWARE Mean density (number/100m
3) of weakfish l+ PUBLIC SERVICE ELECTRIC A..'ID GAS COMPA..'N and older, based on 4. 9-m bottom SALEK 3l6(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-312 N ' I 4-360 WEAKFISH 1+ AND OLDER MAY 17-21, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.015 Ill! > 0.030 I > 0.045 NEW JERSEY TO 0.015 TO 0.030 TO 0.045 TO 0.063 ATLA.i.\fTI C OCEAN Mean density (number/100m
3) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPANY and older, based on 4.9-m bottom SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-313 * *
  • I '* *
  • 4-361 WEAKFISH 1+ AND OLDER JUN. 7-10, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.040 > 0.040 TO 0.080 I!!! > 0.080 TO 0.120 !Ill > 0.120 TO 0.160 N
  • I DELAWARE Mean density (number/100m
3) of weakfish l+ PUBLIC SERVICE ELECTRIC A..'ID GAS COHPA..'ff and older, based on 4. 9-m bottom SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-314 N 4-362 WEAKFISH 1+ AND OLDER JUN. 14-17, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGE.t'l'D DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 > 0.045 Im > 0.090 l!I > 0.135 TO 0.045 TO 0.090 TO 0135 TO 0.183 ATLANTIC OCEAN Mean density (number/lOOmJ) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPANY and older, based on 4.9-m bottom SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-315 * * *
  • *
  • N £ I 4-363 WEAKFISH 1+ AND OLDER JUN. 28 -JUL. 3, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.110 > 0.110 TO 0.220 IHl > 0.220 TO 0.330 11!1 > 0.330 TO 0.440 DELAWARE Mean density 3 (number/lOOm ) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPA.'n'.

and older, based on 4.9-m bottom SALEM 316(b) STUDY trawl samplini;, Delaware River Estuary. Figure 4-316 4-364 I I .....--------------* I N ' I WEAKFISH 1+ AND OLDER JUL. 12-15, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENS I TY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.065 > 0.065 . TO 0.130 !lll > 0.130 TO 0.195 !Ill > 0.195 TO 0.260 DELAWARE . 3 Mean density (number/lOOm ) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPA.-.Y and older, based on 4.9-m 1Jottol'l. SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-317 *

  • *
  • N
  • I 4-365 WEAKFISH 1 + AND OLDER JUL. 19-23, 1982 .DELAWARE RIVER ESTUARY, rkrn 0-117 LEGEND DEl'iSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO . 0.100 > 0.100 TO 0.200 D!I > 0.200 TO 0.300 I > 0.300 TO 0.400 DELAWARE Mean density (number/100m
3) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPANY and older' baseq on 4. 9-m hot tom SALEM 316(b) STUDY Delaware River Estuar
  • Figure 4-*318 N A I 4-366 WEAKFISH 1+ AND OLDER JUL. 26-30, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGEND DENSITY PER 100 CUBIC METERS 0 0.000 0 > 0.000 TO 0.050 > 0.050 TO 0.100 II!! > 0.100 TO 0.150 I > 0.150 TO 0.200 DELAWARE Mean density (number/lOOmj) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY and older, based on 4.9-m bottom SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 1 f-319 *
  • l+ *
  • N .! I 4-367 WEAKFISH 1+ AND OLDER AUG. 2-5, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DELAWARE LEGEND DE.i\lSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.040 > 0.040 TO 0.080 !Pl > 0.080 TO 0.120 II > 0.120 TO 0.160 NEW JERSEY I ;If; 1/1/1/1 /1/1/1/1 j/1/ 1/ijlj I z 1 1 /j /ff j /j /1. ATLANTIC 1.flflf!/7!

OCEAN f1/1f f i I;;! Mean density (number/100m

3) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPANY and older, based on 4.9-m hnttom SALEM 3l6(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-320 N A I 4-368 WEAKFISH 1+ AND OLDER AUG. 16-:-19, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGE.i'ID DENSITY PER 100 CUBIC METERS D 0.000 0 > 0.000 TO 0.055 > 0.055 TO 0.110 ll!I > 0.110 TO 0.165 I > 0165 TO 0.220 DELAWARE Mean density (number/100m
3) of weakfish PUBLIC SERVICE ELECTRIC AND GAS COMPANY anq older, based on 4.9-m bottom SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-321 *
  • l+
  • 4-369
  • WEAKFISH 1+ AND OLDER AUG. 23-27, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 LEGE!'iD DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.035 > 0.035 TO 0.070 all > 0.070 TO 0.105 . I!! > 0.105 TO 0.141
  • N £ I DELAWARE Mean density 3 (number/lOOm ) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPA..-.Y and older, based on 4. 9-11'\ bottom
  • SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-322 N 4 I 4-370 WEAKFISH 1+ AND OLDER AUG. 30 -SEP. 2, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE DENSITY PER 100 CUBIC METERS D o.ooo 0 > 0.000 TO 0.045 tiil > 0.045 TO 0.090 11!1 > 0.090 TO 0135 11!1 > 0.135 TO 0.180 NEW JERSEY ATLANTIC OCEA.i'l"
  • PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Mean density (number/100m
3) o.f weakfish 1+ and older, based on 4.9-m trawl sampling, Delaware River Estuary.
  • Figure 4-323 .

4-371 /

  • WEAKFISH 1+ AND OLDER SEP. 13-16, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 PER 100 CUBIC METERS D o.ooo ARTIFICIAL ISLAND 0 > 0.000 TO 0.015 > 0.015 TO 0.030 > 0.030 TO 0.045 I > 0.045 TO 0.062 NEW JERSEY
  • N ' I DELAWARE Mean density 3 (number/lOOm ) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPANY and older, based on 4.9-m bottom ** SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-324 N £ I 4-372 WEAKFISH 1+ AND OLDER SEP. 27 -OCT. 1, 1982 DELAWARE RIVER ESTUARY, rkm 0-117 DENSITY PER 100 CUBIC METERS DELAWARE 0 0.000 0 > 0.000 > 0.050 l!!J > 0.100 Ill > 0.150 TO 0.050 TO Q.100 TO 0.150 TO 0.202 ATLA.1'\J'TIC OCEAN Mean density (number/100m
3) o.f weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPANY and older, based on 4,q-m bottom SALEM 316(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-325 * *
  • N ' I 4-373 WEAKFISH 1+ AND OLDER OCT. 12-14, 1982 DELAWARE RIVER ESTUARY, rkrn 0-117 DELAWARE LEGEND DENS I TY PER 100 CUBIC METERS 0 0.000 0 > 0.000 > 0.025 is > 0.050 !Ill .> 0.075 NEW JERSEY TO 0.025 TO 0.050 TO 0.075 TO 0.100 ATLAi'l'TI C OCEAN Mean density 3 (number/lOOm ) of weakfish l+ PUBLIC SERVICE ELECTRIC AND GAS COMPA..'N and older, based on 4.9-m bottom SALEM 3l6(b) STUDY trawl sampling, Delaware River Estuary. Figure 4-326

. WEAKFISI-I Q 2f)0 20 ...... H 0 rn i::::i l'.il I ::r: l'.il 200 rn < ....:i 15 ,_. ............

  • t. H ,......._

< 150 (/) u ...... I-< ...... ::r: , .. E-< u +:--_,if 10 z I < ,.,., ,_. -..J z ....._, +:--'---.. 100 -1;;"' ::r: ::r: -l'r-----1:i.** rn E-< t-t 0 r.:c... z Ii-. 5 l'.il ....:i 0 50 ::r: rn w ...... c:n Ii-. z 0--T --, 1 -0 1966 1967 1968 19139 1970 1971 1972 1973 19'Pt 1975 1976 .1977 1978 1979 1980 1981 Number of weakfish per trawl and mean length of weakfish taken by PUBLIC SERVICE ELECTRIC AND GAS COMPANY trawl in Delaware Bay from 1966-1981 (from Smith, 1981). SALEM 316(b) STUDY Figure 4-327 . * *

  • i--:1 6.0 [-t 5.0 z 1-i 4.0 I 0 3.0 .....-i 2.0 r:il 1.0 r:il 0.0 z -1.0 z <r: -2.0 r:i! ,--.. -3.0 .... 0 ci --4.0 + :x: ..___.. -5.0 1970 19?1 19?2 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY WEAKFISH 19?3 19?i 19?5 19?6 1977 1978 1979 1980 Log mean number of weakfish taken per 10-min, 4.9-m bottom trawl near Artificial Island, 1970-1980.

Figure 4-328

,._.__ .... *-**-* -: WEAKFISH 4.50.0 ._:i 400.0 E--1 350.0 z 1--1 300.0 I 0 rl 250.0 µ:i 200.0 +:-I µ:i w '-I l:Q 150.0 (J\ 0 z 100.0 z <i:: µ:i 50.0 ;:g 1970 1971 1972 1973 19?! 1975 1976 1977 1978 1979 1980 Mean number of weakfish taken per 10-min, 4.9-m bottom trawl PUBLIC SERVICE ELECTRIC AND GAS COMPANY near Artificial Island, 1970-1980. SALEM 316(b) STUDY Figure 4-329 * - I 5-1 SECTION 5.0 EXPLOITATION The weakfish is a valuable component of the commercial and recreational fisheries along the Atlantic Coast. Over the past decade most of the commercial catch has been landed in the southern half of the species range (VA and NC) where, additionally, juveniles are exploited in a scrapfish fishery. In the northern half of the species range, where older and larger fish occur, it supports a large recreational fishery. The importance of the sport fishery has increased substantially over the past 20 years as anglers have had more leisure time and disposable income and coincident with the increased capture of larger fish. Weakfish are the mainstay of the modest Delaware Bay commercial f inf ishery and have been the major species in the recreational fishery. 5.1 FISHING EQUIPMENT 5.1.1 Gear Early fisheries (lSOO's) used haul seines, gill nets, fykes and pound nets (Earll, 1887; Perlmutter, 1959). Trawlers became an important factor in the coastal fishery during the 1920's and their importance has grown since. During the 1940's pound nets accounted for 63 percent of the coastwide weakfish catch followed by trawls (23 percent), haul seines (11 percent) and gill nets (3 percent) (Wilk, 1981). In the 1950's purse seine, pound net, drift gill net, and hand and troll line fisheries dwindled in importance and in some areas died out completely (Reintjes and Roithmayr, 1960). The use of high-speed pelagic trawls began in the mid 1970's especially off southern New Jersey and Delaware (Wilk, 1981). These and other type trawls accounted for 60 percent of the commercial catch during the 1970's, followed by pound nets (20 percent), haul seines (11 percent) and gill nets (9 percent) . Table 5-1 summarizes the percent contribution of various fishing gears in the mid-Atlantic region during the 1970's. Anglers catch weakfish while trolling, chumming and drifting, and by casting, live-bait fishing, jigging, and still fishing (Freeman and Walford, 1974a-d, 1976a-d). 5-2 5.1.2 Boats A variety of vessels are utilized within the food-fish industry, with each fishery (e.g., haul seine, gill net) requiring a boat designed to effectively fish the specific gear employed. Trawlers of less than 50 ft take many weakfish on one-day trips to nearshore areas (Reintjes and Roithmayer, 1960). Fewer are taken by the larger (50 to 100 ft) trawlers which fish farther offshore for several days at a time. soats userl in the recreational fishery range from 12-ft skiffs to charter and party boats as large as 125 ft and capable of carrying over 100 passengers. Falk et al. (1981) in a survey of boats, motors and specialized equipment used to catch weakfish in Delaware Bay tournament, found the typical boat to be about 20-ft long with an outboard motor of 80-200 horsepower.

5.2 FISHING

AREAS 5.2.l General Distribution The geographical center of the coastal population is between North Carolina and Chesapeake Bay (Perlmutter, 1959; McHugh, 1980). Most of the commercial catch is taken in Virginia and North Carolina, while most of the recreational catch occurs from Delaware to New York where older and larger fish congregate in late spring and summer (McHugh, 1980). 5.2.2 Geographic Ranges Weakfish are taken in commercial iisheries from Massachusetts to Florida. From 1930 through the 1950's the largest catches were in Virginia and New Jersey but in the 1960's and 1970's North Carolina took an increasing proportion of the catch and today contributes the greatest percentage among states. Mercer (1983) suggests this shift is probably related to increased mobility of the North Carolina fishing fleet rather than a change in weakfish distribution.

  • 1 I
  • 5-3 5.2.3 Depth Range During spring, summer and early fall when adult fish are inshore they are taken at water depths ranging from the surface to 5-6 fathoms (9-11 m) (Bigelow and Schroeder, 1953). In winter months, weakfish migrate offshore of North Carolina and Virignia where Pearson (1932) reports them at depths of 10-30 fathoms (20-60 m). Bigelow and Schroeder (1953) report isolated winter catches in depths of 55 fat horns ( 100 m) . 5.2.4 Condition of the Grounds The ecological health of the coastal areas from Cape Hatteras, NC to Cape Cod, MA is critical to the maintenance of the weakfish stock (Section 4-2). These coastal waters, particularly those near the center of this range (i.e., New York Bight), have been affected by pollution from metropolitan and industrial centers, commercial shipping, and heavy sport and commercial fishing pressure (McHugh, 1977; Sindermann et al., 1982). Sindermann et al. (1982) noted that in the New York Bight toxic metals, chlorinated hydrocarbons, and petroleum hydrocarbons currently occur in concentrations that have been experimentally shown to be detrimental to the reproductive potential of fishery, including weakfish, stocks. However, measurement of these effects is difficult due to the effects of large environmental variations on the fisheries.

Joseph (1972) cites past widespread application of DDT for mosquito control in coastal wetlands as potentially contributing to the depression of coastal weakfish stocks during the 1950's and 1960's. Although Merriner (1973) considered Joseph's conclusion poorly founded, catches have increased since the use of DDT was restricted. On fishing grounds from North Carolina to New York increasing competition between commercial and recreational interests has led. to resource allocation problems. In *some areas gear restrictions have effectively partitioned fishing grounds into commercial and recreational areas. In Delaware Bay, weakfish is currently the most sought-after species in the recreational and commercial fisheries (R. Seagraves, DEDNR, pers. comm.). Recent (since 1980) declines in local sport catches are perceived by the sport fishing community and tourism industry to be primarily a consequence of commercial overexploitation (Lesser, 1982). McHugh (1977) emphasized that changes in species abundance cannot always be simply explained or easily managed. When a similar 5-4 conflict existed in the mid-1960's, the primary commercial gear, i.e., bottom trawl, was banned in the Bay (Seagraves, 198la). 5.3 FISHING SEASONS The seasonality of weakfish landings varies by region along the Atlantic coast and reflects availability of the species each area as governed by its migrational patterns (Section 3.8.1). Landings year-round are reported along the south Atlantic coast (Anderson and Gehringer, 1965; Merriner, 1973; Mahood, 1974). North of Chesapeake Bay the fishing season extends from April or May to November or December (Long and Figley, 1982; Seagraves and Rockland, 1983b). Mercer (1983) reported peak landings to occur in January in South Carolina, February in North Carolina, May or June and October from Virginia to New York and August in Rhode Island and Massachusetts. The sport fishing season for weakfish also varies along the coast. Freeman and Walford (1974a-d, 1976a-d) report the following regional seasons: year-round in 5outhern Florida; March-December from Altamaha Sound, GA to Fort Pierce Inlet, FL; May-December from False Cape, VA to Georgia: May or June through October or early November from False Cape, VA to Block Island, MA. 5.4 FISHING OPERATIONS AND RESULTS 5.4.1 Effort and Intensity Estimates of the total coastwide commercial effort of the principal gears in which weakfish are captured are not readily available; however, regional effort levels suggest an initial increase and subsequent decline in effort over the past fifty years. Perlmutter (1959) reported that between 1930 and 1955 haul seine (yardage), gill net (yardage) and large otter trawl (number of vessels) effort within the mid-Atlantic region (New York to Virginia) increased nearly 400 percent. During World War II, there had been a temporary decrease in effort in all coastal fisheries. This was followed by a high post-war level of exploitation, especially from Virginia south, which Perlmutter et al. (1956) and Massman (1963a) speculated may have led to declining catches in the north. Joseph (1972) I I '*

  • 5-5 reported the number of licensed haul seines and pound nets in Virginia declined markedly between the late 1940's and late 1960's and that this trend was not restricted to that area or those gears. Merriner (1973) stated that by the early 1970's licensed commercial gear in North Carolina declined to one-fourth the level earlier in the century. However, the increased capture efficiency resulting from post-World War II improvements in gear technology (e.g., synthetic net and rope materials), boat construction and electronics may have partially offset the reduction in total units of gear fished (Cole, 1978). Effort in commercial fisheries also varies seasonally, due to fish availability and market conditions (Sections 3.8.1 and 5.3). Godwin et al. (1971) reported that market conditions may result in decreased effort and weakfish landings in North Carolina, particularly when large catches occur in northern states. Commercial effort in Delaware, New Jersey and New York decreases during summer as landings increase in the recreational fishery and wholesale prices drop (Seagraves, 198lb; Shepherd, 1982; J. C. Poole, NYDEC, pers. comm.). McHugh (1981) detailed the history of Delaware commercial fisheries.

He reported that the number of licensed haul seines declined gradually from the peak around 1910 until the net stopped operating in 1971 (Fig. 5-1). Effort in the otter trawl fishery began in 1935, peaked in 1948 and trended erratically lower until the fishing ended in the mid 1960's when recreational fishermen identified and raised issue over an old law that prohibited trawling in the Bay (Fig. 5-2) (McHugh, 1981). The number of gill nets fell sharply to a low in the early l940's but has risen slowly since (Fig. 5-1). Similar statistics for the New Jersey commercial fisheries are unavailable. The limited coastwide effort data on the recreational fishery report the number of anglers seeking specifically weakfish as 180,000 in 1965, 400,000 in 1970 and 308,000 in 1979 (USNMFS, 1980; Wilk, 1981). Locally, the number of Delaware-based marine angler days more than tripled between 1960 and 1976 when it peaked at 826,000 man-days (Table 5-2) (Seagraves and Rockland, 1983b). Not all these efforts may have been directed at weakfish, but it is a primary sport fish in the Delaware Bay. Weakfish were the largest component of the recreational catch in the mid-1970's (Miller, 1980); the perceived decline in the species abundance was cited by Seagraves and Rockland (1983a) as responsible for the decrease in Delaware-based effort in 1982 to 515,000 days. Similar statistics and interpretation for the New Jersey-based fishery have not been reported

  • 5-6 5.4.2 Selectivity The selectivity of otter trawl mesh size in capturing weakfish was examined by Daiber (1955b). He reported that a codend of 2-in stretch mesh permitted escapement of weakfish to 15 cm and a 3 in-mesh allowed fish to 23 cm to escape. Further, he found escapement of ages l+ and 2+ fish through 2-in mesh was less than ten percent and that escapement through 3-in mesh was 83 and 53 percent for ages l+ and 2+, respectively.

Austin (1979) proposed that a trawl codend mesh size of 76-83 mm (3-3.5 in) would retain maximum yield per recruit for weakfish (age 3, 330 mm TL). Meyer and Merriner (1976), investigating pound net selectivity characteristics as a function of pound-head mesh size, found weakfish retention length and percentage gilling increased with increased mesh size (Table 5-3). They concluded that the 51-mm stretched mesh commonly employed in the pound fishery of the lower Chesapeake Bay was a necessary compromise as a single gear for the five species of major importance in pound fishery scrap landings, i.e., Atlantic menhaden, butterfish, weakfish, spot and herring. Several investigators reported the minimum marketable size of weakfish as about 220 mm TL (Massman, l963a; Wolff, 1972; Sholar, 1979); Meyer and Merriner (1976) determined the desirable market siie is 305 mm TL. 5.4.3 Catches Weakfish have been exploited commercially since at least the 19th century (Hildebrand and Schroeder, 1928); however, continuous records of annual coastwide landings exist only for about the past fifty years. During the 1930 1 s landings ranged from 21 to 36 million pounds (9,525 to 16,329 metric tons), well above the SO-year average of ca. 15 million pounds (6,804 mt) (Table 5-4, Fig. 5-3). During World War II weakfish landings declined due largely to a reduction in fishing effort (Seagraves, 198la). Post-war catches increased to a record 41.4 million pounds (18,779 mt) in 1945, but then landings plummeted to 6.4 million pounds (2.903 mt) by 1950. Landings remained low for the next 20 years, averaging only 5.7 million pounds (2,585 mt). However, beginning in 1970 and continuing through the decade catches rose to a 10-year average of 17,290 million pounds (7,843 mt). The peak during this period was reached in 1981, when an estimated 35 million pounds (15,878 mt) were landed. Landings were 30 million pounds in 1982. * *

  • 5-7 Regional catch per unit effort data are presented in Table 5-5. Delaware commercial landings of weakfish are presented in Table 5-4 and Figure 5-4; New Jersey landings are presented in Table 5-4 and Figure 5-5. New Jersey commercial landings generally follow the coastal trend as do Delaware landings with the notable exception during 1946-1966 when trawlers operated in Delaware Bay. The peak in Delaware landings during 1955-1957 coincided with below average coastwide landings.

Low catches in the late 1960's were influenced by legislative action in 1966 which banned trawling in the Bay. In the early 1970's landings, reflecting gill net catches, rebounded strongly; Seagraves (198la) construed this as a good indication of increased weakfish abundance. This inferred population increase is consistent with McHugh's (1979) observation of "a substantial recovery" in the population throughout the Mid-Atlantic Bight. Delaware landings leveled off in the mid 1970's but more than tripled between 1978 and 1981. The relative contributions to the post-1978 increase by fish numbers and size, increase in effort, and improved methodologies in catch estimation is unknown. Smith (1980) and Seagraves (198la,b) each describe a trend toward fewer but much larger fish compared to the mid 1960's. McHugh (1981) reported increased effort in the early 1970's but more recent data are not available. Seagraves (198lb) believed that much of the apparent 88 percent increase in reported 1980 landings was really not an increase in landings, but, rather, a realistic estimate based on improved techniques. The Delaware commercial (gill net only) weakfish landings during 1980-1982 had dockside values of $237,060, 462,748 and 757,240, respectively. The 1982 landings had an estimated total economic impact of about $2.2 million (Seagraves and Rockland, 1983b). This includes $0.8 million for 88 jobs attributed to harvest and sale and $1.3 million in value added from the sale of weakfish at the retail level. New Jersey weakfish landings during 1975-1979 had a dockside value ranging from $504,468-901,979. The economic impact of the fishery may total $2-3 million annually, assuming that the economic structure in the New Jersey Eish industry is similar to that in Delaware. The recreational catch of weakfish has grown substantially since 1950, the year that national angling surveys were begun; these surveys have been conducted at about five-year intervals. The catch of weakfish was reported as 3.8 (1,700 mt), 2.3 (l,000 mt), 15.7 (7,100 mt), 22.3 (10,100 mt), and 11.0 (5,000 mt) million pounds during 1960, 1965, 1970, 1974-75, and 1979, respectively (Clark, 1962; Deuel and Clark, 1968; Deuel, 1973; Wilk, 1981). Catch per unit effort (in number and weight) increased from 1965 to 1970 (Wilk, 1979). 5-8 Thereafter, number landed per angler declined while weight landed per angler remained fairly constant due to an increase in average weight per fish (Seagraves, l98la). McHugh (1980) noted that the increased recreational catches* have counter-balanced the decline in commercial landings and felt that the total landings during the 1970's were of such magnitude that the species may be more abundant then than ever before in recorded history. The Delaware DNR has periodically surveyed the state's marine recreational fishery (Daiber, 1956a; Lesser, 1968; Martin, 1973; Miller, 1978, 1980; Seagraves, 198lc). Weakfish have comprised from ca. 4.4 to 54.4 percent of the total annual catch (Table 5-2). Landings have ranged from ca. 24,000 fish in 1960 to ca. 2.3 million fish in 1976; catch per angler-day ranged from 0.1 in 1960 to 2.8 in 1976. In 1982 the estimated 114,178 weakfish landed comprised 15.1 percent of the total sport catch; catch rate was 0.2 per angler-day. Seagraves and Rockland (1983a) estimated the economic impact of the 1982 sport fishery as over $12.8 million. Similar statistics are unavailable for New Jersey; however, an estimated 1,372,000 weakfish were caught during 1979 by New Jersey-based fisherman (USNMFS, 1980). Figley and McClain (1981) calculated that the total participation in the two-month spring weakfish fishery in the Delaware Bay during 1980 generated approximately $4.9 million in anglers expenditures in New Jersey. * *

  • 5-9 Table 5-1 Percent contribution, by gear type, of the commercial weakfish landings in mid-Atlantic region during 1970-1976.

Data source U.S. Dep. Comm. Fishery Statistics Year Gear Type 1970 purse seine 1972 1974 1976 haul seine midwater trawl otter trawl pound net anchor gill net runaround gill net drift gill net handline miscellaneous Total Catch (lb.) purse seine haul seine midwater trawl otter trawl pound net anchor gill net runaround gill net drift gill net handline miscellaneous Total Catch (lb.) purse seine haul seine midwater trawl otter trawl pound net anchor gill net runaround gill net drift gill net hand line miscellaneous Total Catch (lb.) purse seine haul seine midwater trawl otter trawl pound net anchor gill net runaround gill net drift gill net hand line miscellaneous Total Catch (lb.) Percent of. State's Catch New York New Jersey Delaware 296 '000 32.7 19.8 17.3 10.2 9.1 10.9 1,828,000 32.2 31.6 24.9 4.1 7.2 1,427,000 17.7 31.2 26.4 14.1 10.6 1,346,000 95.4 0.6 0.5 3.5 1, 961,000 73.5 7.5 1.8 13.0 3.2 1.1 3,179,000

71. 7 10.6 0.5 13.7 <O.l 1.5 2.0 2,686,000 4.2 45.5 33.7 6.6 0.7 7.5 0.5 1.2 5,709,000 12.6 72.1 15.3 147,000 54.8 38.3 6.9 406,000 56.8 35.7 7.5 281,000 72.8 19.8 7.4 246,000 Tahle .5-2 Comparison of catch, effort and catch per effort by marine recreational anglers in Delaware waters during years of comparahle surveys. Total Numher Total Effort Caught Weakfish Weakfish Component Weakfish Catch Year J955a 1%0h 1%8c 1973d 1976e,f 1982h a after h after cafter d after eafter (mandays) 341,300 239,327 4%' 809 710,800 825,745 514,802 Daiher, l 956a Hermie, 1961 Lesser, 1968 Martin, 1973 Miller, 1978 (all species) Catch 2' 618' 700 403,700 546,53') 24,070 2,608,334 818,117 2,007,816 1,091,645 5,816,836 756,053 ]14,178 fcatch rate data for 1976 was determined through a mail. survey, all other years dockside suhsamples.

gexclusive of shore fishermen h after Seagraves and Rockland, 1983a * * * (percent of total) per Manday 15.4 1.2 4.4 0.1 31.4 1.8 54.4 1.5 *39. 7 2.8 15.1 0.2 * \.Jl I f-' 0

  • Table 5-3 Retention lengths and selection factors for weakfish derived from experin1ental data plus theoretical 50 percent retention lengths and selection factors computed from regressions (after Mercer, 1983; Meyer and Merriner, 1976). Advertised Conditioned Experimental Theoretical Experimental Stretched Stretched 50% Retention Experimental 50% Retention Theoret lcal 100% Retention Mesh Size Mesh Size Lengths Selection Lengths Selection Lengths (mm) (mm) (mm) Factors ( U1Ill) Factors (mm) 51 50.1 203 4.1 190 3.8 210 57 53.4 218 4.1 203 3.8 223 64 61.4 263 4.3 218 3.6 293 70 68.3 270 4.0 237 3.5 308 76 75.1 268 3.6 258 3.4 313 Morphometric data from weakfish (TL = Total length, OG opercular girth, MG maximum body girth, MD= maximum body depth, and MW maximum body width): OG 8.865 + 0.428 TL n = 210 2 0.69 (154-258 mm) r MG = 16.957 + 0.442 TL n = 210 2 0.58 (154-258 mm) r MD 9.479 + 0.165 TL n = 210 2 0.44 (15L1-258 mm) r MW -0.615 + 0.105 TL n = 210 2 0.59 (154-258 mm) r V1 I I-' I-'

Table 5...,4 Gommercial landings (in thousands Qf pounds) of weakfish by state, 1930-1982. A dash (-) indicates information not available or no catch reported; an asterisk (*) indicates less than 500 pounds taken. Data sources U.S. Dep. Comm. Fishery Statistics; Seagraves and Rockland, 1983b;Ff:1ercer, 1983. (East Year ME MA RI CT NY NJ DE MD VA NC SC GA Coast) Total 1930 1 14 J 43 950 11, 098 1,235 3,754 15,512 2,333 24 3 559 35,693 1931 150 42 28 1, 467 ll, 685 400 2, 159 10,279 2,994 4 24 29,242 1932 57 58 17 677 8,305 106 1,806 11,974 3,636 2 2 21 26,661 1933 287 63 20 824 6,927 123 1,154 12,310 21,708 1934 1,478 13, 406 7,729 2 10 22,625 J 935 261 38 29 1,640 8,075 428 1,313 13. 443 25,227 1936 1,340 10,349 8,969 3 20,661 1937 128 64 9 1, 4 57 10,51.5 292 1,090 12,607 7,525 6 33,693 1938 272 61 6 l, 057 6,289 197 1, 069 12, 547 5, 095 5 26,598 1939 124 57 10 1, 425 6,089 413 1, 459 12,100 2,840 2 1 1 24,521 1940 108 37 9 1,508 2,983 300 1. 368 12,306 3,629 2 22,250 1941 1,219 7,232 8,451 1942 4 53 17 1,810 4,200 171 1,468 6,126 13,849 1943 22 46 25 2,095 5,071 218 7,477 1944 38 215 68 1,509 4,719 272 2, 069 10, 313 19,203 1945 44 298 41 2,109 9,124 286 2, 369 22,379 4,739 33 41,422 1946 42 400 151 2,305 2,266 18, 291 23,455 1947 60 326 69 1,544 5,691 582 1,638 17. 678 27,588 1948 13 158 85 1,002 3,306 640 1, 109 11, 854 18,167 1949 1 16 3 406 2,518 1,038 614 6,062 10,658 1950 l 4 l 142 1,083 573 592 4,011 6,407 195J. 1 2 152 1,965 666 233 1,979 1,263 Bl 6,342 1952 2 4 167 2, 176 281 281' l,508 1,626 43 6,088 1953 17 7 108 2-. 162 732 252 2,032 1. 897 20 7,227 1954 8 3 127 2,003 369 263 2,122 2,381 26 59 7,361 \JI 1955 5 6 205 1,877 l,579 412 3,831 1,356 1 15 9,287 I 1956 12 11 211 2,002 958 477 3, 258 1,842 1 7 8,779 I-' N 1957 23 22 199 2,025 1,282 340 2,019 2,210 11 19 8,150 J 9 58 9 2 88 546 325 209 1,567 3,810 6 29 6,591 1959 J ] 45 372 182 109 682 2,913 7 34 4,346 1960 2 J 89 526 8 271 810 2,240 13 54 4,014 1961 1 2 53 418 134 279 1,194 2, 308 25 57 4,471 1962 7 5 48 650 143 193 1, 489 2, 160 11 26 4,732 ] 963 2 1 86 333 148 94 1,098 1,761 6 72 3,601 1964 1 56 545 127 172 1,593 1,966 7 107 4,574 1965 4

  • 73 596 221 248 2,007 1, 959 23 2 298 5,431 1966 1 26 344 90 150 1,040 1,896 29 184 3,761 1967 2 30 456 8 85 600 1, 71;9 3
  • 128 3,081 J.968 2 63 532 5 153 1, J 2f\ 2, 28(. 1 219 4,382 J9E9 J4 117 1,869 21 175 870 1,539 6
  • 144 4,755 1970 21 296 1,961 147 322 2, 142 2,441 4 292 7. 479 1971 183 1,280 3, 081 213 408 2, 332 3,645 144 11,073 1972 174 1,831 3,179 406 313 2,544 7,372
  • 175 15,588 1973 3 ]78 1,269 2,563 334 540 5,099 6,222 2 206 16,082 1974 48 458 1, 427 2,686 281 410 3, 063 6, 056 2 129 14, 279 1975 7 466 1,368 4,370 290 887 4, 090 6,726 2 2 113 18,031 1976 13 326 1,345 5,709 246 432 3,975 8,714 1 89 20,604 1977 10 328 1,708 3, 222 332 207 4,326 8,671 l 18,473 1978 17 253 1, 650 3,866 299 521 3,892 10,849
  • 120 21,168 19791 0 -24 4182 1,512 6,519 467 670 6, 222 14,759 1 30. 126 1980, '-3 -2S3 1,593 4, 896 981 569 6,242 20,343 172 35,049 198Ji'1 -279 2 ]
  • 358 3,750 1,089 200 2,471 16,893 185 26,225 1982 *-:: 225 l,255 2. 29 J 1,294 280 2,150 12,053 174 19,744 , 1983:* . .... From Seagraves and R;ocJ.-. land, 2 New England total. **r.Jm j93-;, * --

FISHING EFFORT DELAWARE 1600 /"" 275 ,.-... c::i ,-.. A r.£1 c::i 250 :Il 1-4 1400 [/) i-:1 0 .. [/) 4 225 c::i ....._.,. ..__, f--1 1200 ... "'\ 200 \ µ:i A z A 1-4 ... 175 r:il i-:1 1000 A [/) 0 i-:1 i-:1 1-4 0 0 150 0 BOO I 125 :Il 0 \JI 0 I t--' r:il 600 A 100 .p. ... 0 "'"'\ .I. r:il 400 \ 75 c.9 0 !\; 11 I}. if) l"" I I 50 0 0 I l 1-4 200 }..A,,. , l [/) z 0 K'-1...I> .! 25 f--1 0 1-4 z 0-&<H'> l!.-6, . A-A-A -0 0 111 11 I I I I I I I I I I I I I I I I I I I I I I I 1880 1890 1900 1910 1920* 1930 194-0 1950 1960 1970 1980 Fishing effort, gill net anrl haul seine, in Delaware, 11386-1975. PUBLIC SERVICE ELECTRIC AND GAS COMPANY Dcita source McHur,h, 1981. SALEM 316(b) STUDY Figure 5-1 ** * *

  • FI SH I NG EFFORT DELAWARE 701 10 --0 ,,-.... 1, r:i1 0 1, ::r:: t---l 1, t 9 \/). .....:l I I < 0 60 I I (/) I I r' 0 .___,, ! + 1' 8 .___,, 1' E-t I 1' .....:l r:i1 I I I 50 I I I z ""t l 7 I I I 0 0 I I I E-t z I I I 6 I I + i p 40 I I I r' r:il 0 I I \ r' '! I I I E-t , , + I 5 E-t I I/ I I I 0 30 0 Ir I l I ! I I lJ1 + AA*A+ 4. I < r I t-' 'Jl r:i1 r I I I < 0 20 I I 3 ri1 I I CJ I I 0 r I I + 2 f:i:.i \/). I 0 E-t 10 0 I 0 I \/). z + " A-.\*A 1 E-t 0 11 I 0 p 1, I I I r z 0-I I I I I I I I I J 1-rTI I I I I I j I I I I I I I I I (I Iii I I I I I I I I I I I 0 p 1880 1890 1900 1910 1920 1930 1840 1950 1960 1970 1980 FishJng effort, ponnrl net ann otter trawl, in Delaware, 1886-1975.

PUBLIC SERVICE ELECTRIC A.ND GAS COMPANY Data source McHugh, 1981. SALEM 316(b) STUDY Figure 5-2

  • wEAKFI SI-f U.S. ATLANTIC COAST 20000 17500 15000 if) z 12500 0 0 10000 1-1 w 7500 5000 2500 0-1930 1935 1940 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY
  • 4.5 40 35 \/) q 30 s 0 P-i 25 f:i:..t 0 20 \/) z 0 1-1 15 ....:i ....:i 1-1 10 5 0 194-5 1950 1955 1960 1965 1970 1975 1980 1985 11.s. Atlantic Coast landings of weakfish, 1930-JQRl.

Data sources ll.S. Dep. Comm. Fishery Statistics; Mercer, 1983. Dotted line indicates long-term average. Figure 5-3 U1 I t-' °' * ---------

  • WEAKFISH DELAWARE 750 1.6 700 1.5 650 1.4 600 1.3 550 1.2 r:f) 500 1.1 z r:f) :::> z 450 1.0 0 0 f-i 0.9 400 r:c..i (.) 0.8 0 f-t 350 P! r:f) U1 f-i 300 0.7 z I f;t:l I-' 0 ...... 0.6 f-t 250 0.5 200 f-t A )\ 0.4 150 0.3 100 / 0.2 50 0.1 0 0.0 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 Weakfish lanrlinr,s at Delaware ports, 1930-1981.

Data sources PUBLIC SERVICE ELECTRIC AND GAS COMPANY l9fn; Seagraves, 1982b. SALEM 316(b) STUDY Figure 5-4 WEAKFISH NE-W JERSEY 5500 12.0 5001) 11.0 4500 10.0 4000 9.0 if) q ,, 8.0 z Cf) 3500 z 0 0 7.0 P-4 E-4 3000 IZ-t () 6.0 0 t-! 2500 if) lJl E-4 5.0 z. I 0 f-1 2000 1-l ,::0 4.0 i-l i-l 1500 1-l 3.0 1000 2.0 500 1.0 0 0.0 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 Heakfish landings at New Jersey ports, 1930-1979. Data source PUBLIC SERVICE ELECTRIC AND GAS COMPANY McHu8h, 1977; u.s. Dep. Comm. Fishery Stati.stlcs. SALEM 316(b) STUDY Figure 5-5 * *

  • I I. I I
  • 6-1 SECTION 6.0 ENTRAINMENT

6.1 DENSITY

IN INTAKE WATER Number of entrained organisms may be estimated through two different methods: as calculated directly from on-site entrainment abundance samples or as assumed to be the same as in the river near Artificial Island based on the river sampling programs. On-site Entrainment Abundance Estimates From 1977 through 1982 there were, respectively, 2, 14, 8, 37, 38 and 46 sampling periods each year (Tables 6-1 through 6-3, Figs. 6-1 through 6-18). Sampling during 1977 through 1979 was by Salem's operating schedule and other constraints, reducing the potential for collection of entrainable life stages. Effective June l,* 1980, collections were taken on ca. 4-day intervals and these data are a better indicator of changes in density (Tables 6-1 through 6-3). Eggs, larvae and 0+ young (juveniles) were collected during the study. Eggs From 1977-82 weakfish eggs were collected on 18 occasions (Table 6-1; Figs. 6-1 through 6-6); they were taken each year except 1977 when sampling was done only late in the year and past the expected and observed period of occurrence. In 1978 eggs were collected only on July 12-13. Date of first collection ranged from May 23-24 in 1981 to July 10-11 in 1982. Date of last occurrence ranged from July 19-20 in 1979 to August in 1982. Annual peak densities 3 ranged from 0.2/lOOm on July 12-13, 1978 to 19.5/lOOm on July 10-11, 1982. Larvae Weakfish larvae were collected in all years except 1977 (Table 6-2; Figs. 6-7 through 6-12). Annual collection during 1980 and 1982 was between late May and mid-June. In 1978, 1979 and 1981 plant outages occurred and no samples were taken 6-2 during these periods. Last occurrence in entrainment samples was between July 25-26, in 1981, and Septembe5 4-5, in 1982. Annual peak densiti3s ranged from 15.4/lOOm on July 19-20, 1979 to 70.0/lOOm on July 8-9, 1980. In each year, larvae were collected between June 28-29 and July 25-26. Age 0+ Young Age 0+ weakfish occurred in entrainment samples every year from 1977 through 1982 (Table 6-3; Figs. 6-13 through 6-18). Date of first occurrence ranged from June 6-7 (1979, 1980) to July 12-13 (1981). Last occurrence ranged from August 22-23 (1979) to November 1 (1978). Peak densities usually occu3red in late June; the highest density of 114.7 per lOOm on June 28-29, 1978. Densities peaked as early as June 6-7 (1979) and as late as July 20-21 (1981). Length-frequency of entrained weakfish The length-frequency distributions of weakfish (all life stages) entrained during 1977 through 1982 are listed by week in Table 6-4. A total of 1,694 specimens were measured and total length (TL) ranged from 2.0 mm to 118.0 mm. Me6ian length generally fluctuated erratically between sampling periods (Table 6-5) probably reflecting pulses in spawning (Section 3.1.6). River Sampling Program Estimates One-half meter plankton net collections were taken during 1981 and 1982 at a single location (W-101) immediately adjacent to the Salem CWS as part of the W-factor program (Appendix I; Section 5.3.3). Sampling at W-101 was specifically designed to produce alternative estimates of intake density during the historical period of primary abundance; therefore, samples were taken from June through early August. Weakfish eggs were taken only on one date in 1981 and two dates in 1982; 2uring these 3 dates density of eggs ranged from 0.002/lOOm -0.024/lOOm . I .I I I I * *

  • 6-3 Larvae (1.8-10.5 mm TL) were taken during all 24 hr sampling periods from June 23 through August 4-5 in 1981 and June 8-9 through July 20-21 in 1982. Density of larvae was greater at night than during daylight during all but two collection periods 6-6). During daylight it ran§ed from 0.003/lOOm (August 4-5, 1981) to 0.188/lOOm 15-16, 1981); during darkness it ranged 0.000/lOOm (July 6 and August 4-5, 1981) to 0.073/lOOm (July 15-16, 1981). Comparison of length-frequencies of entrainable-size juvenile weakfish collected by 0.5-meter plankton net and fisheries gear (4.9-meter trawl and pelagic frame net) (Figs. 6-19 through 6-59) indicates that individuals of this juvenile size class are more vulnerable to the fisheries gear than to the 0.5-meter plankton net. Therefore, estimates of density for these individuals based on W-factor fisheries data collected at W-101 are more representative than those based on plankton data. Based on 1981-1982 factor fisheries data, density of 30 mm (TL) weakfish, the approximate me6ian size component those typically ranged from ca. 0.01/lOOm

-0.50/lOOm during June through September . Comparison of On-site and W-101 Density To determine the relative suitability of larval estimates, a comparison of data with regard to absolute magnitude of abundance was made. Data from matching on-site entrainment abundance and W-101 collection periods during 1981 and 1982 were used in the comparison. Collection periods were considered matching if they occurred within one day of each other. If a W-101 collection period occurred equally between two entrainment dates, an average of the entrainment data was used. Density estimates from other field programs (e.g., baywide and ETS programs) were not used because they lacked samples at night and general concurrence with entrainment collections. Additionally, the areas sampled were relatively large and numbers of samples too small to be representative of intake density considering the relatively small zone of influence (ca. 50-150 ft; Weston, 1982). Density estimates of weakfish larvae at both locations during daylight and darkness in 1981 and 1982 (Table 6-6) were compared using a paired t-test. The analysis indicated that larval densities in the river samples were significantly greater than in the entrainment samples at a = 0.05 (t = 2.10; df = 21) but not at a= 0.01; densities were higher for 16 of 22 comparisons. Comparison of the frequency distributions of entrained vs river (W-101) specimens on four dates in 1981 (Fig. 6-60) and 1982 (Fig. 6-61) indicates no consistent differences between distributions. 6-4 6.2 SURVIVAL The probability of weakfish larvae and 0+ young surviving entrainment at Salem station was assessed in 1) on-site studies using intake ,and discharge samples collecteo by pump with both a larval table and low velocity flume (Appendix I), and 2) experimentally. Larvae and O+ young were collected in entrainment survival samples but eggs could not be detected because of their small size and transparency and the often heavy detrital loads in the source water. Simulated entrainment studies were conducted under controlled laboratorv conditions. Six series of tests with prolarvae, 46 with postlarvae, two with transitional specimens between postlarval and young stages, and 14 with O+ young were conducted. The effects of decompression during the rapid transfer of organisms from lower levels of the intake bay into the circulating pump housing were incorporated in 6 series of tests with postlarvae and two with young. On-Site Studies On-site studies were done in 1977, 1978, 1980, 1981 and 1982. Collections were made at ambient temperatures of 17.5 to 30.0°C and discharge temperatures of 22.0 to 39.5°C (Tables 6-7, 6-8). Data prior to July 1980 are based on holding periods of less than 96 hr and, although tabulated, are not included in analysis. Analysis considers only data generatea in July 1980 through 1982 under the 96 hr conditions. Where sample size was adequate effects of temperature were evaluated. Larvae Weakfish prolarvae were not collected in on-site entrainment survival Postlarvae were taken in 16 collection periods during 1980-1982. Because of limited and/or unpaired (intake vs discharge) data during several months of 1980-1982, monthly data were pooled across years, resulting in a total sample of 42 intake and 74 discharge-collected specimens. Overlapping confidence intervals among years for a given month, and annually similar environmental conditions, indicated that this pooling was justified.

  • *
  • 6-5 Most mortality occurred during the initial 12 hrs after capture although some continued through 72 hrs for discharge specimens (Fig. 6-62, 6-63). During June, July and August estimated discharge survival based on specimens held for 96 hrs was 15.8 percent (n = 44), 9.7 percent (n = 34) and 60.0 percent (n = 8), respectively; no specimens were collected in discharge samples in September.

Cumulative 96 survival at intake and discharge based 6n a pooled sample of all 1980-1932 data is 33.3 + 14.3 percent and 14.9 + 8.1 percent, respectively (Table 6-9). Applying the used estimator based on Abbot (1925) (Appendix I) yields a plant induced mortality of 0.5526. Sample size was small to reflect the effect of discharge temperature on mortality. Age 0+ Young The 96-hr holding criterion restricted analysis to 93 fish collected in 1981 from 27 paired intake-dischargP-samples and 247 fish taken in 1982 in 61 paired intake-discharge samples (Table 6-8). The profiles of cumulative survival of 0+ young at the intake and discharge through 96 hr during 1981 (Figs. 6-64 and 6-65) and 1982 (Figs. 6-66 and 6-67) are markedly different. During 1981 survival in discharge samples decreased to 77 percent at +l hr (initial observation after entrainment) and then progressively decreased to ca. 27 percent at +48 hrs where it remained through +96 hrs (Table 6-10; Fig. 6-65). During 1982, survival in discharge samples decreased to 48 percent at +l hr and then decreased progressively to 12 percent at +96 hrs (Fig. 6-67). This difference in profiles is probably . related to differences in thermal exposures and to sample collection procedural differences between years (see Appendix I). The lower intake (control) sample survival during 1982 as compared with 1981 survival samples suggests a higher sampling-induced mortality during 1982. The relationship between discharge temperature and in discharge samples during 1981-1982 is presented in Figure 6-63. Because of limited and/or unpaired (intake vs discharge) data during several months of late 1980-1982, monthly survival data were pooled across years. During June, July, August and September estimated discharge survival was 14.6 percent (n = 103), 18.3 percent (n = 60), 16.2 percent (n = 37) and 30.6 percent (n = 36), respectively. Total 96-hr survival in intake and discharge samples based on a pooled monthly sample is 37.5 percent (n = 136) and 18.2 percent (n = 236). Applying the commonly used estimator based on Abbot (1925) yields a plant-induced mortality of 0.5141. 6-6 Simulated Entrainment Studies During 1978 through 1982 weakfish were tested at five different pressure-time regimens using the apparatus and procedures described in Appendix I. These studies simulated the time, temperature and pressure components of entrainment; they did not include chemical or the complete degree of mechanical injury that would be experienced by an entrained organism. During 1978 the testing was conducted at the pressure-time conditions described in Table 6-11, during 1979-1981 at those described in Table 6-12, and during 1982 at those described in Tables 6-13 through 6-15. Design temperature increases (delta T) were 10.0 and 15.0°C in 1978, 10.0 and 18.0°C in 1979-1981; 10.0, 12.0 and 15.0°C in 1982; actual experimental delta T, which were generally within + l.0°C of design values, are listed in Tables 6-16 through-6-18. Tests were conducted with holding periods of 24, 48 and 96 hr duration (Tables 6-16 through 6-18). Data from tests with holding periods of 24 hr (Table 6-16) \;ere not analyzed since these data did not reflect the full range of latent mortality observed in tests conducted through 48 hrs and longer. Summary data for 96 hr tests (Tables 6-19, 6-20) are discussed below by lifestage. Since analysis indicated no significant (p < 0.05) difference in survival between 48 and 96 hr, these data were pooled (Table 6-21, 6-22). Bxperimental-design differences during 1978 through 1982 (Tables 6-11 through 6-iS) dictated separate pooling of 1978 (Table 6-21) and 1979 through 1981 (Table 6-22) data. In general, the simulated entrainment tests indicate minimal effects on survival from pressure and from differences in exposure-durations tested, and that mortality increases directly with temperature. Pro larvae A total of 827 specimens were tested (Table 6-21, 6-22). Plots (Figs. 6-69, 6-70) of percent mortality at various combinations of delta T from 8.7-18.0°C, acclimation temperature from 10.0-23.0°C and exposure Juration of 6.5 and 9.7 minutes) and differential pressure indicate that within the ranges tested mortality of weakfish larvae was generally < 50 percent at water temperature below ca. 35 to 37°C. Greges and Schubel (1979) and Smith et al. (1979) found mortality increased with delta T in prolarvae acclimated to 22.5°C. They reported an average mortality of 16 percent at the end of exposures ranging to 15 min at I I *

  • I. ' '
  • 6-7 delta T of ll.2°C: they further reported that mortality was not affected by increases in exposure time up to 180 minutes at delta T < 8.4°C. Post larvae A total of 5,976 postlarvae were tested (Tables 6-19 through 6-22). Plots (Figs. 6-71 through 6-73) of percent mortality at various combinations of delta T from 9.0 to ll.5°C, acclimation temperature of 10.5 to 20.0°C and exposure duration of 6.5 and 9.7 min and differential pressure indicate that, within the ranges tested, mortality was generally

< 50 percent at water temperature below ca. 34-360C. Postlarvae appear tolerant to delta T as high as ll°C at acclimation temperatures < 20°C: > 50 percent mortality generally resulted wh2n exposure temperatures exceeded 36°C. Similar mortality was observed in tests which included effects of decompression (Figs. 6-74 and 6-75). Post larvae/Young A total of 136 specimens in the transitional phase between postlarvae and young were tested (Table 6-21). There was no mortality in tests conducted at ambient temperature of 19.0°C, exposure duration of 9.7 minutes, the pressure regimen described in Table 6-11, and delta T ranging from l.7-14.7°C. There was 10.6-14.6 percent mortality in tests conducted at the same ambient temperature and exposure duration but ae delta T of 10.7-14.0°C and at atmospheric pressure (Table 6-17). The reason for the apparent inverse relationship of mortality with pressure indicated by these latter tests is not known but may be an anomalous result related to treatment handling. Age 0+ Young A total of 808 specimens were tested (Tables 6-19 and 6-21, 6-22). Plots (Figs. 6-76 through 6-78) of percent mortality at various combinations of delta T from 9.0 to 20.0°C, acclimation temperature of 19.0 to 30.0°C, and exposure duration of 6.5-9.7 minutes) and differential pressure indicate that within these rangei mortality of weakfish young was generally < 50 percent at water temperature less than ca. 35-36°C. these tests, and in the few which l 6-8 include effects of rapid decompression (Table 6-17; Fig. 6-79) 100 percent mortality occurred at exposure temperature > ca. 38°C. *

  • Table o-1 Mean density (number/100 cubic meters) by date of weakfish eggs in entrainment abundance samples. Julian No. of ( C) Salinity (ppt) Pumps Total Volume Mean Density !_ 95% Confidence Date Day* Samples Hin. Max. Hin. Max. Hin. Max. Filtered (number /lOOn?) Interval 1977 Aug. 31-Sep. l 243.5 12 25.7 27. 0 8.0 6.0 5 5 904.9 0.0 Dec. 7-8 341. 5 12 2.2 3.1 0.0 0.1 5 6 869.0 0.0 1978 Feb. 2 7 58.0 5 1.1 2.0 5.0 9.0 5 6 246.2 0.0 Har. 2-3 61.5 12 0.6 2.1 3.0 6.0 6 6 600.0 0.0 Har. 16 75.0 8 2.5 3.6 LO 4.0 2 3 400.0 o.o Apr. 19-20 109.5 9 10.2 lJ.0 5.5 8.0 l l 315.0 o.o Jun. 28-29 179. 5 9 21.0 2i.8 4.0 6.0 6 6 450.0 o.o Jul. 12-13 193.5 12 24. 0 25.0 5.0 10.0 5 6 625.2 0. 2 0.4 Jul. 2 7-*28 208.5 12 26.3 27. 4 6.0 8.0 5 5 600.0 0.0 Aug. 10-11 222.5 12 26.7 28.7 6.0 6.0 5 6 600.0 0.0 Aug. 31-Sep. l 243.5 12 26.5 27.0 6.0 8.0 5 6 725.0 o.o Sep. 13-14 256.5 12 21.2 23.9 6.0 9.0 4 6 600.0 o.o Oct. 1 l 284.0 6 17 .3 18 .0 6.0 8.0 3 4 450.0 o.o Nov.* 1 305.0 8 13.5 14. 5 6.0 6.0 2 2 485.0 o.o Nov. 21-22 325.5 12 8.5 12.5 10.0 15.0 5 5 807.0 o.o Dec. 13 347.0 6 5.0 6.0 5.0 6.0 3 5 300.0 o.o 1979 Jun. 6-7 157.5 6 20.0 21.0 4.0 6.0 l l 365.7 o.o °' Jul. 186.5 12 21.0 23.0 5.0 11.0 l 1 700.0 1.2 1-8 I Jul. 12-13 193.5 12 24. 0 26.0 7.0 6.0 l l 620.0 1. 7 2.6 '° Jul. 19-20 200.5 12 25.l 27.0 5.0 8.0 l l 625.0 0.2 0.4 Jul. 25-26 206.5 12 23.3 27.l 5.0 8.0 l l 570.0 0.0 Aug. 22-23 234. 5 12 23. 5 24. 5 7.0 10.0 1 l 600.0 0.0 Oct. 17-18 290.5 12 15.5 16. 8 4.0 8.0 3 3 650.0 0.0 Oct. 31-Nov. 1 304.5 12 14. 2 15.8 4.0 6.0 2 2 900.7 0.0 1980 .Jan. 23-24 23.5 11 2.5 3.0 2.0 6.0 3 6 625.0 o.o Mar. 19-20 79.5 12 6.0 7.0 5.0 9.5 6 6 675.0 0.0 Apr. lh-17 107. '.. 12 11.0 13.8 o.o o.o 5 6 600.0 0.0 Ap<. 30-Hay 1 121. 5 12 14.1 14.4 2.0 4.0 5 6 634.5 0.0 7-B 128. '* 12 16.5 18. 8 1..0 5.5 6 6 646.0 0.0 Hay 21-22 l.!i 2.) 12 18.1 20.0 2.0 4.0 6 6 i5o.o 0.0 Jun. 2-3 154.5 8 23.0 23.0 2.5 6.0 5 6 399.8 0.3 0.6 Jun. 6-7 158.5 8 2J.O 21. 9 6.0 7 .o 6 6 400.0 o.o Jun. 10-:l 162.5 6 20.2 21.0 5.5 7 .0 4 4 300.0 o.o Jun. 14-15 166.5 8 20.9 21. s 5.5 s.o 6 6 400.0 o.o Jun. 18-19 170.5 3 22.0 29.0 7.0 8.0 5 5 150.0 0.0 Jun. 22-23 17".5 4 21. 5 29.0 7 .0 8.0 6 6 200.0 5.0 15.9 Jun. 26-27 178.5 4 23.5 24 .o 6.0 8.0 5 6 225.0 7.5 19.9 Jun. 30-Jul. l 182.5 4 24. 5 25.5 7.5 10.5 6 7 200.0 0.0 Jul. 4-5 4 25.5 26.7 6.0 9.0 6 6 200.0 1.5 3.0 Jul. 8-9 190.5 4 24.5 25.2 5.0 9.0 6 7 200.0 o.o Jul. 12-13 194.5 4 2t>. 0 27.0 6.0 8.0 7 7 200.0 o.o Jul. 16-17 198.5 4 26. 5 27.5 6.5 e.5 7 8 200.0 o.o Jul. 20-: 1 202.5 4 28.0 28.0 7.0 s.o 8 8 200.7 0.0 Jul.

206.5 4 28.0 29.5 7.0 10.0 8 8 200.0 0.5 1.6 Jul. 28-29 210. 5 4 27.0 28.5 7.5 10.0 7 7 200.0 o.o Aug. 1-2 214. 5 4 28.0 28.5 6.0 11.0 7 7 200.3 0.0 Aug. 5-6 218. 5 4 29.0 30.0 6.0 9.0 6 b 200.0 0.0 1-Table Continued Julian No. of (ppt) Pumj>S Total Volume Hean Densjcy +/-_ 95% Confidence Date Day* Samples Min. Max. Min.' Max. Hin. Hax. F 11 tered (m3) (number I 1000. ? __ ) --* l nterval Aug. 9-10 222. 5 4 29.0 30.0 6.0 9.0 7 7 200.0 0.0 Aug. 13 226.0 3 28.0 28.0 7 .0 9.0 6 6 150.0 0.0 Aug. 17-18 230.5 4 27. 5 27.5 8.0 11.0 8 8 200.0 0.0 Aug. 21-22 234.5 4 25. 5 26.5 12.0 15.0 7 8 200.1 0.0 Aug. 25 238.0 3 2b.O 10.0 12.0 8 8 175.0 o.o Aug. 29-30 242.5 4 26.5 26.5 10.0 14.0 6 7 200.0 0.0 Sep. 2-3 246.5 4 25.0 27.0 10.0 12.0 7 7 200.0 o.o Sep. 6 250.0 3 27.0 29.0 10.0 11.0 8 8 150.0 0.0 Sep. 10-11 254.5 4 23. 5 25.8 10.0 12.0 8 9 200.0 0.0 Sep. 14-15 258.5 24. 5 25.5 9.5 12.0 9 10 200.0 o.o Sep. 18 262.0 2 24.0 24. 5 10.0 11.0 7 7 100.0 o.o Sep. 22 266.0 3 24 .0 25.0 12.0 12.5 4 10 150.0 0.0 Sep. 26-Z7 270.5 2 22.0 22. 5 ll. 5 13.5 3 3 100.0 o.o Oct. 275.0 2 21.0 21.0 11.0 12.5 4 4 100.0 0.0 1981 Hay 7-8 127.5 4 14.5 15.0 b.O 10. 5 5 6 200.0 0.0 Hay 11-12 131.5 4 16.0 17 .0 8.5 10.0 5 6 193.2 0.0 Hay 15-16 135.5 4 17 .6 18.8 4.0 8.0 5 6 200.0 0.0 Hay 23-24 143.5 4 17. 5 18.0 5.0 8.0 8 9 200.0 0.5 1.6 Hay 27-28 147. 5 2 19.5 21.0 7.5 8.5 6 6 77 .2 o.o Jun. 22-23 173. 5 4 25.0 27.0 6.5 11.0 4 7 295.0 0.2 0.5 Jun* 26-27 177 .5 26.0 26.0 8.0 9.0 8 9 200.0 0.0 Jul. 1-2 182.5 4 24.0 25.0 9.0 12.0 8 8 233.0 o.o Jul. 4-5 185.5 4 24. 5 25.0 8.0 11.0 8 9 200.0 0.0 O' Jul. 8-9 189.5 3 26.0 28.0 9.0 10.0 7 9 150.0 o. 7 2.9 I Jul. 12-13 193. 5 4 27.0 28.0 10.0 12.0 7 8 200.0 3.5 7.5 1--' Jul. 16-17 197.5 4 26.0 27.0 11.0 14.0 8 9 200.0 2.0 6.4 0 Jul. 20-21 201. 5 4 27.5 28.0 12.0 15.0 9 10 212.0 0.5 1.6 Jul. 24-25 205.5 4 27.0 27.0 10.0 12.0 9 12 200.0 0.0 Jul. 28-29 209.5 26.5 28.0 11.0 12.0 10 11 199.5 0.5 1.6 Aug. 1-2 213. 5 4 25.5 26.0 ll.. 0 13.5 9 10 200.0 o.o Aug. 5-6 217. 5 3 27.0 28.0 13.0 13.0 11 12 600.0 0.0 Aug. 9-10 221. 5 4 2T.O 27.5 12.0 13.5 10 11 200.0 0.0 Aug. 13-14 225.5 4 26.0 27.0 10.0 10.0 11 11 305.0 0.0 Aug. 17-18 229.5 4 25.0 26.0 7.0 9.5 10 11 200.0 0.0 Aug. 21-22 233.5 3 25.0 26.0 9.0 10.0 10 10 150.0 o.o Aug. 25-26 237.5 4 25.0 26.0 9.0 10.0 9 11 200.0 0.0 Aug. 29-30 2*d.5 25.0 26.0 9.0 10.5 9 9 200.0 0.0 Sep. 2-3 2!i 5. 24. 5 28.0 8.5 11.0 7 8 200.0 o.o Sep. 5 248.0 0 24.2 10.0 ll .O 9 10 150.0 o.c Sep. 10-11 253.5 23.0 24. 5 7. 5 10.5 10 10 150.G c.o Sep. 14-15 257. 5 24.0 25.0 9.0 10.5 10 11 200.0 0.0 Sep. 13-19 2ol. 5 22. 5 23. 5 9.0 10.5 9 11 :!*10.(l 0.0 3ep. 22-23 265.5 4 21. 0 21.0 8.0 10.0 5 10 200.0 o.o Sep. 26-27 269.5 4 lb.5 20.5 8.0 10.0 3 3 200.4 o.o Sep. 30-0c l. 1 273.5 4 18.0 19.0 7.5 10.5 5 6 200.0 0.0 Ocl. 3-4 276.5 2 16.0 17. (j 8.0 9.0 5 6 100.0 o.o Ocl. 8-9 28i.5 4 15.5 16.0 8.0 11.5 9 10 200.0 0.0 Oc l-12-13 285.5 13.0 15.0 9.0 10.5 9 10 200.0 0.0 Oct. 16-17 289.5 15.0 15.5 8.0 9.0 10 10 200.0 0.0 Oct. 20-21 293.5 13.0 14. 2 10.0 12. 5 7 10 200.0 0.0 Gel. 24-25 297.5 13.0 14.0 10.0 12. 0 9 10 200.0 o.o Ocl. 28-29 30:.5 12.5 18. 0 9.0 13.0 9 9 200.0 o.o * --

  • Continued Julian No. of Temperature ( °C)

Pumps Total Volume Mean Density + 95% Confidence Dace Day* Samples Ml n-Max. Min. Max. Min-Max-Filtered (m 3) ( numbe rfl_OOm \ Interval 1982 May 4-5 124.5 J 15-0 15.0 1-0 J.5 8 9 150. 0 o.o May 10-11 130.5 4 17 .o 17.5 1-0 3.0 9 9 200.0 o.o May 13-14 133. 5 4 17-0 17. 5 4.0 6-0 9 9 200.0 o.o May 17-18 137.5 4 18.5 20.0 5_5 6.5 9 11 200.0 o.o May 20-21 140.5 4 19.0 21.5 4-0 8.1 9 10 200.0 0.0 May 24-25 144.5 4 17.0 20.0 7.0 11-0 9 10 200-0 o.o May 27-28 147.5 4 20.0 20.8 5-0 10.0 10 11 200.0 o.o May 31-Jun. l 151.5 4 21-0 22.5 6.0 11.0 9 11 200.0 o.o Jun. 4-5 155.5 4 20.0 21.0 4.0 8.0 10 12 200.0 o.o Jun. 8-9 159.5 4 20.0 20.5 7.0 7.5 11 12 200.0 o.o Jun. 12-13 163. 5 4 19.0 20-5 6.0 9.0 12 12 200.0 0.0 Jun. 16-17 167.5 4 19.3 20.0 6.0 7.5 12 12 200.0 o.o Jun. 20-21 171.5 4 21.0 23.8 3.0 5.0 12 12 200.0 o.o Jun. 24-25 r75.5 4 20.5 22. 5 3.5 4.5 10 12 200.0 o.o Jun. 28-29 179.5 4 25.0 25.0 5.0 6.0 10 12 300.0 o.o Jul. 2-3 183.5 4 23.0 24.0 s.o 6.0 8 10 200.0 o.o Jul. 7-8 188.5 4 23-5 24-8 4.0 6.0 9 10 200.0 O.ll Jul-10-11 191.5 4 24.J 26.J 4.5 6.0 9 12 200.0 19.5 62.0 Jul-14-15 195. 5 4 25.8 26.3 5.5 8.0 10 11. 200.0 o.o Jul. 19-20 200.5 4 26.8 28.5 7.0 9.0 10 12 100.0 0.0 Jul. 22-23 *203.5 4 26.0 27.0 7.0 8-5 11 11 200.0 o.o Jul. 26-27 207.5 4 25.5 27 .o 7.0 8.0 9 10 200.0 o.o Jul. 30-31 211.5 4 26.5 27.0 8.0 9.0 10 11 200.0 o.o O' Aug. 3-4 215-5 4 25.5 27.0 9.0 10.0 9 11 200.0 0.0 I Aug. 9-10 221.5 4 26.0 26-0 8.0 9.0 9 IO zoo.a o.o I-' Aug. 11-12 223-5 4 24.8 28.0 7.0 8.0 8 11 200.0 o.o I-' Aug. 15-16 227.5 4 25.3 26.0 6.0 8.5 9 11 200.0 o.o Aug. 19-20 231.5 4 26.0 27 .o 7.0 8.5 9 10 200.0 0.0 Aug. 23-24 235.5 4 24.3 26.0 6-0 7.0 8 10 200.0 o.o Aug. 27-28 239.5 4 23.5 24. 0 6-0 8.5 10 12 200.0 0.5 1.6 Sep. 1-2 244.5 4 22.0 24.0 7.0 9.0 11 11 200.0 o.o Sep. 4-5 247 .5 4 23.3 24. 5 6.0 8.5 10 11 200.2 0.0 Sep. 8-9 251. 5 4 21. 8 23.3 6.0 9.0 9 10 200.0 0.0 Sep. 11-12 254.5 4 23.5 24.0 7.0 8-0 8 9 200.3 o.o Sep. 16-17 259.5 4 23.B 24. 5 7.5 10.0 8 9 200.0 o.o Sep. 20-21 263. 5 4 21. 5 22. 5 s.o 10.0 9 9 2GO.O o.o Stp. 24-25 267.5 4 20.5 21-3 7.0 9.0 10 11 200.0 o.o Sep. 28-29 271. 5 4 21-0 22.8 9.0 10.0 9. 9 200.0 0.0 OcL. 2-*3 275. 5 4 21.0 21.5 10.5 12.0 9 10 200.4 o.o Oct. 6-7 27 9-5 4 21. 3 22.3 9.5 12.0 8 10 200.2 o.o Oct. 9-10 282. 5 4 20-3 22.0 10.0 12.0 9 11 200.0 o.o Oct. 15 268.(! 3 19.8 20.0 7.0 12.0 10 11 150.0 o.o Oct. 20-21 293.S 4 15. 5 16.3 5-0 10.0 5 6 200.2 o.o Oct. 22-23 295.5 -4 14.5 15-0 7. 5 s.o 5 5 200.0 o.o Oct. 27-28 300.5 4 12-8 13.8 15.0 16.0 4 6 200. 7 o.o Oct. 30-31 303.5 4 13. 5 14.0 12-0 14.0 4 6 200.0 o.o *Julian :nldpoint of date range. Table 6-2 Mean density (number/100 cubic meters) by date of weakfish larvae in entrainment abundance samples. Julian No. of Temperature ("C) Sallnlty {ppt) Pumps Total Volume Mean Dcnsi cy -I 95% Confidence Date DHy* Samples H!n. Max. Min. Max. Min. Max. Filtered (m 3) (number/lOOm

3) Interval 1977 Aug. 31-Sep. 1 243 .. 5 12 25.7 27. 0 8.0 8.0 5 5 904.9 o.o Dec. 7-8 341. 5 12 2.2 3.1 o.o 0.1 5 6 869.0 o.o 1978 Feb. 27 58.0 5 1.1 2.0 s.o 9.0 5 6 246.2 o.o Mar. 2-3 tl. 5 12 0.6 2.1 3.0 6.0 6 6 600.0 o.o Har. 16 75.0 8 2.5 3.6 1.0 4.0 2 3 400.0 o.o Apr. 19-20 109.5 9 10.2 11.0 5.5 0.0 1 l 315.0 o.o Jun. 28-29 179.5 9 21.0 26.8 4.0 6.0 6 6 450.0 10.2 9.6 Jul. 12-13 193.5 12 24.0 25.0 5.0 10.0 5 6 625.2 55.4 26.6 Jul. 27-28 208.5 12 26.3 27.4 6.0 0.0 5 5 600.0 1.7 1.8 Aug. 10-11 222.5 12 26.7 28.7 6.0 6.0 5 6 600.0 1.3 1. 7 Aug. 31-Sep. 1 243. 5 12 26.5 27.0 6.0 0.0 5 6 725.0 o.o Sep. 13-14 256.5 12 21. 2 23.9 6.0 9.0 4 6 600.0 o.o Oct. 11 284.0 6 17.3 18.0 6.0 e.o 3 4 450.0 o.o Nov. l 305.0 8 13.5 14. 5 6.0 0.0 2 2 485.0 o.o *Nov. 21-22 325.5 12 0.5 )2.5 10.0 15.0 5 5 807.0 o.o Dec. 13 347 .o 6 5.0 6.0 5.0 6.0 3 5 300.0 o.o 1979 (J'\ Jun. 6-7 157. 5 8 20.0 21. 0 4.0 6.0 1 1 365.7 1.5 1.8 I Jul. 5-6 186.5 12 21.0 23.0 5.0 11.0 l 1 700.0 3.7 2.1 I-' N Jul. 12-13 193.5 12 24.0 26.0 7.0 0.0 l 1 620.0 2.9 2.4 Jul. 19-20 200.5 12 25.l 27.0 5.0 8.0 1 l 625.0 15.4 8.9 Jul. 25-26 206.5 12 23.3 27.l s.o 8.0 1 1 570.0 0.8 0.7 Aug. 22-23 234.5 12 23.5 24. 5 1.0 10.0 1 1 600.0 o.o Oct. 17-18 290.5 12 J 5. 5 16.8 4.0 8.0 3 3 650.0 0.0 Oct. 31-Nov. 1 304.5 12 14.2 15.8 4.0 6.0 2 2 900.7 o.o 1980 Jan. 23-24 23. 5 11 2.5 3.0 2.0 6.0 3 6 625.0 o.o Har. 19-20 79.5 12 6.0 7.0 5.0 9.5 6 6 675.0 o.o Apr. 16-17 107.5 12 lJ.0 13.8 o.o o.o 5 6 800.0 o.o Arr. 3(*-HE y 1 121. 5 12 14.] 14.4 2.0 4.0 5 6 634.5 o.o !:lay 7-b 128.5 12 16.5 18.8 1.0 5,5 6 6 646.0 o.o !:lay 21-22 142.5 12 18.l 20.0 2.0 4.0 6 6 750.0 6.0 4.8 Jun. 2-3 154. 5 8 23.0 23.0 2.5 6.0 5 6 399.8 .. 18.0 14.4 Ju:i. &-7 158.5 8 2J..0 21. 9 6.0 7.0 6 6 400.0 10.3 3.5 Jur:.. 10-11 162.5 6 20.2 21.0 5.5 7.0 4 4 300.0 2.3 3,4 Jun. 14-15 166.5 8 20. 9 21. 5 5.5 8.0 b 6 400.0 5.3 6.3 Jun. 18-19 170.S 3 22.0 29.0 7.0 8.0 5 5 150.0 2.0 8.6 Jun. 22-23 114.5 4 21.5 29.0 7.0 B.O 6 6 200.0 s.o 9.9 Jun. 26-2 7 178.5 4 23.5 24.0 6.0 8.0 5 6 225.0 0.0 Jun. 30-Jul. l 182.5 4 24. 5 25.5 7.5 10.5 6 7 200.0 1.0 1.8 Jul. J,-5 186.5 4 25.5 26. 7 6.0 9.0 6 6 200.0 6.5 14.6 Jul. 8-9 190.5 4 24. 5 25. 2 s.o 9.0 6 7 200.0 70.0 86.S Jul. 12-13 194.5 4 26.0 27.0 6.0 s.o 7 7 200.0 20.0 34.l Jul. l6-l7 198. 5 4 26.5 27. 5 6.5 8.5 7 8 200.0 8.0 11.3 Jul. 20-21 202.5 4 28.0 28.0 7.0 8.0 8 B 200.7 10.4 24.7 jul.

206.5 4 2<l.O 29.5 7.0 10.0 8 8 200.0 7. 5 6.6 Jul. 28-29 210.5 4 27.0 28.5 7.5 10.0 7 7 200.0 4.0 4.5 Aug. 1-2 2J-'4. 5 4 28.0 28.5 6.0 11.0 7 7 200.3 o.o .5-6 213. 5 4 29.0 30. 0 6.0 9.0 ii.-._ 6 200.0 0.5 1. 6 --Ta bl. Continued Julian No. of Tempe['ature (*c) Salinity (ppt} Pumps Total Hean Density + 95% Confidence Date Day* Samples Hln. Hax. Min. Max. l'!in. Max. Filtered (m3) (number/l00..

1) Interval Aug. 9-10 222.5 4 29.0 30.0 f..O 9.0 7 7 200.0 o.o Aug. 13 226.0 3 28.0 28.0 7.0 9.0 6 6 150.0 o.o Aug. 17-18 230. 5 4 27. 5 27. 5 8.0 11.0 B 8 200.0 o.o Aug. 21-22 234.5 4 25.5 26. 5 12.0 15.0 7 8 200.1 o.o Aug. 25 238.0 3 26.0 26.5 10.0 12.0 B 8 175.(J o.o Aug. 29-30 242.5 4 26.5 2b. 5 10.0 14.0 6 7 200.0 o.o Sep. 2-3 246.5 4 25.0 27.0 10.0 12.0 7 7 200.0 0.0 Sep. 6 250.0 3 27.0 29.0 10.0 11 .0 8 8 150.0 o.o Sep. l 0-11 254.5 4 23.5 25.8 10.0 12.0 8 9 200.0 o.o Sep. 14-15 258.5 4 24.5 25.5 9.5 12.0 9 10 200.0 o.o Sep. 18 262.0 2 24.0 24. 5 10.0 11.0 7 7 100.0 0.0 Sep. 22 266.0 3 21 .. 0 25.0 12.0 12.5 " 10 150.0 o.o Sep. 26-27 270.5 2 22.0 22.5 11.5 13. 5 3 3 100.0 o.o Oct. 275.0 2 21.0 21.0 11.0 12.5 4 4 10(1.0 o.o 1981 Hay 7-8 127.5 4 14.5 15.0 6.(J 10.5 5 6 200.0 o.o H"y 11-12 131.5 4 16.0 17 .0 8.5 10.0 5 6 193.2 o.o Hay 15-16 135.5 4 17.6 JS. 8 4 .o 8.0 5 6 200.0 0.0 Hay 23-24 143.5 4 17.5 18.0 5.0 8.0 8 9 200.0 0.0 May 27-28 147.5 2 19.5 21.0 7.5 8.5 6 6 77 .2 o.o Jun. 22-23 173.5 4 25.0 27.0 6.5 11.0 4 7 295.0 1.5 1.6 Jun. 26-27 177.5 4 26.0 26.0 8.0 9.0 8 9 200.0 o.o Jul. 1-2 182.5 4 24.0 25.0 9.0 12.0 B 8 233.0 o. 7 2.1 Jul. 4-5 185.5 4 24. 5 25.0 8.0 11.0 8 9 200.0 4.0 3.7 a-Jul. 8-9 189.5 3 26.0 28.0 9.0 10.0 7 9 150.0 4.0 13.l I f--1 Jul. 12-13 193.5 4 27.0 28.0 10.0 12.0 7 8 200.0 0.5 1.6 w Jul. 16-17 197.5 4 26.0 27.0 11.0 14.0 8 9 200.0 0.5 1.6 Jul. 20-21 201. 5 4 27.5 28.0 12.0 15.0 9 10 212.0 8.8 13.1 Jul. 24-25 205.5 4 27.0 27.0 10.0 12.0 9 12 200.0 2.0 4.5 Jul. 28-29 209.5 4 26.5 28.0 11.0 12.0 10 11 199.5 3.0 4.1 Aug. 1-2 213.5 4 25.5 26.0 11.0 13.5 9 10 200.0 o.o Aug. 5-6 217.5 3 27 .o 28.0 13.0 13.0 11 12 600.0 o.o Aug. 9-10 221. 5 4 27.0 27. 5 12.0 13.5 10 11 200.0 1.0 1.8 Aug. 13-14 225.5 4 26.0 27 .0 10.0 10.0 11 11 305.0 o.o 17-18 22 9. 5 4 25.0 26.0 7.0 9.5 10 11 200.0 1.0 J.8 Aug. 21-22 233.5 3 25.0 26.0 9.0 10.0 10 10 150.0 0.0 Aug. 25-:!6 237.5 4 25.0 26.0 9.0 10.0 9 11 200.0 0.0 Aug. 29-30 241. 5 4 26.0 9.0 10.5 9 9 200.0 o.o Sep. 2-3 245.5 4 24. s 2*.0 8.5 11.0 7 8 200.0 o.o Sep. 5 248.0 24.0 24. 2 10.0 11.0 9 10 150.0 o.o Sep. 10-11 253.5 23. I) 24. 5 7.5 10.5 10 10 150.0 o.o Sep. 14-15 257.5 4 24.0 25.0 9.0 10.5 10 11 200.0 o.o Sep. 18-19 261.5 4 22. 5 9.0 10.5 9 11 200.0 o.o Sep. 22-23 265.5 4 21.0 21.0 8.0 10.0 5 10 200.0 o.o Sep. 26-27 269.5 4 18.5 20.5 8.0 10.0 3 3 200.1, o.o Sep. 30-0c t. 273.5 18.0 19.0 7.5 10.5 5 6 200.0 o.o Oct. 3-4 276.5 16. (> 17 .o 8.0 9.0 5 6 100.0 o.o Oct. 8-9 281.5 15.5 10. 0 8.0 11.5 9 10 200.0 0.0 Oct. 12-13 285.5 4 13.0 15.0 9.0 10.5. 9 10 200.0 o.o Oct. 16-17 289.5 4 15.0 15.5 8.0 9.0 10 10 200.0 o.o Oct. 20-21 293.5 4 13.0 14. 2 10.0 12.5 10 200.0 o.o Oct. 24-25 297.5 4 13.0 14.0 10.0 12.0 10 200.0 o.o Oct. 2 8-*2 9 301.5 4 12.5 18.0 9.0 13.0 9 200.0 o.o I

,------------ -Table 6-2 Continued Jul tan No. of Temperature c*c) Salinity <Pet> !'UlllpS Total VolW11e Mean Den.Ellty + 95% Confidence Date Day* Samples Min. Max. Mtn. Max. Min. rto.x. F!l lered (m3) (number/100m

3) Interval 1982 Hay 4-5 124-5 3 15.0 15.0 1.0 3.5 8 9 150.0 o.o Kay 10-11 130. 5 4 17 .o 17. 5 1.0 3.0 9 9 200.0 o.o Kay 13-14 133.5 4 17 .o 17.5 4.0 6.0 9 9 200.0 o.o Kay 17-18 137. 5 4 18.5 20.0 5,5 6.5 9 11 200.0 o.o Kay 20-21 140. 5 4 19.0 21.5 4.0 8.1 9 10 200.0 o.o Hay 24-25 144.5 4 17 .o 20.0 7 .o 11.0 9 10 200.0 o.o Hay 27-28 147.5 4 20.0 20. 8 5.0 10.0 10 11 200.0 5.5 15.5 Kay 31-Jun. 5 4 21.0 22.5 6.0 11.0 9 11 200.0 5.5 13.3 Jun. 4-5 155.5 4 20.0 21.0 4.0 8.0 10 12 200.0 8.5 12.0 Jun. 8-9 159. 5 4 20.0 20.5 1.0 7.5 11 12 200.0 2.5 3.0 Jun. 12-13 163.5 4 19.0 20.5 6.0 9.0 12 12 200.0 2.5 4.8 Jun. 16-17 167.5 4 19.3 20.0 6.0 7.5 12 12 200.0 0.0 Jun. 20-21 171. 5 4 21.0 23.8 3.0 5.0 12 12 200.0 1.5 4.8 Jun. 24-25 175.5 4 20.5 22.5 3.5 4.5 10 12 200.0 0.5 1.6 Jun. 28-29 179.5 4 25.0 25.0 5.0 6.0 10 12 300.0 1. 7 2.8 Jul. 2-3 183.5 4 23.0 24.0 5.0 6.0 B 10 200.0 19.5 38.0 Jul. 7-8 188.5 4 23.5 24.8 4.0 6.0 9 10 200.0 2.5 1.8 Jul. 10-11 191.5 4 24.3 26.3 4.5 6.0 9 12 200.0 1.5 3.0 Jul. 14-15 195.5 4 25.8 26.3 5.5 8.0 10 11 200.0 1.5 4.8 Jul. 19-20 200.S 4 26.8 28.5 7 .o 9.0 10 12 200.0 1.0 3.2 Jul. 22-23 203.5 4 26.0 27.0 7.0 8.5 11 11 200.0 0.5 1.6 Jul. 26-27 207.5 4 25.5 27 .o 7.0 8.0 9 10 200.0 o.o Jul. 30-31 211.5 4 26-5 27.0 s.o 9.0 10 11 200.0 o.o Aug. 3-4 215.5 25.5 27.0 9.0 10.0 9 11 200.0 o.o ()'\ Aug. 9-10 221.5 4 26.0 26.0 8.o 9.0 9 10 200.0 o.o I t-' Aug. 11-12 223.5 4 24.8 28.0 1.0 8.0 8 11 200.0 o.o .p.. Aug. 15-16 227.5 4 25-3 26.0 6.0 8.5 9 11 200.0 o.o Aug. 19-20 231.5 4 26.0 27.0 1.0 8.5 9 10 200.0 o.o Aug. 23-24 235.5 4 24. 3 26.0 6.0 7.0 8 10 200.0 0.0 Aug. 27-28 239.5 4 23.5 24.0 6.0 8.5 10 12 200.0 o.o Sep. 1-2 244.5 4 22. 0 24 .o 7 .o 9.0 11 11 200.0 o.o Sep. 4-5 247.5 4 23.3 24. 5 6.0 8.5 10 11 200.2 1.0 1.8 Sep. 8-9 251. 5 4 21. 8 23.3 6.0 9.0 9 10 200.0 o.o Sep. 11-12 254.5 4 23.5 24.0 7 .o 8.0 B 9 200.3 o.o Sep. lb-17 259.S 4 23.8 24.5 7.5 10.0 8 9 200.0 0.0 Sep. 20-21 263. 5 4 21. 5 22.5 8.0 10.0 9 9 200.0 0.0 Sep. 24-25 267.5 4 2().5 21. 3 7 .o 9.0 10 11 200.0 0.0 Sep. 28-29 271. 5 4 21.0 22.8 9.0 10.0 9 9 200.0 o.o Oct. 2-3 275.5 4 21.0 21. 5 10.5 12.0 9 10 200.4 o.o Oct. 6-7 279.5 4 21.3 22.3 9.5 12.0 8 10 200.2 o.o Oct. 9-10 282.5 4 20. 3 22.0 10.0 12.0 9 11 200.0 o.o Ckt. 15 288.0 3 19. 8 2G.O 7.0 12.0 10 11 150.0 o.o Oct. 20-21 293.5 4 15.5 16.3 5.0 10.0 5 6 200.2 o.o Oct. 22-23 295.5 4 14. 5 15.0 7.5 8.0 5 5 200.0 0.0 Oct. 27-28 300.5 4 12.8 13.8 15.0 16.0 4 6 200.7 o.o Oct. 30-31 303.5 4 13.5 14.0 12.0 14.0 4 6 200.0 o.o *Julian a..i dpoi nt of date range.

Table 6-3 Mean density ( nu*iibt.:r./ 100 cubic meter8) oy date of weakfish o+ in entrainment abundance samples. Julian No. of !emperature ("C) Salinity (ppt) Pumps Total Volume Mean Deosicy *+ 95% Confidence Fll tered (m3) . 3 -Date Day* Sampl!:'_s Min. l!aY.. Hin. !tax. Mio. Max. (ounber/100m_J __ Interval 1977 Aug. 31-Sep. 243. 5 12 25.7 27 .o 8.0 8.0 5 5 904.9 1.9 1.3 Dec. 7-8 341. 5 12 2.2 3.1 o.o 0.1 5 6 869.0 o.o 1978 Feb. 27 58.0 5 1.1 2.0 5.0 9.0 5 6 246.2 o.o Mar. 2-3 61. 5 12 0.6 2.1 3.0 6.0 6 6 600.0 o.o Mar. 16 75.0 8 2.5 3.6 1.0 4.0 2 3 400.0 o.o Apr. 19-20 109.5 9 10.2 11.0 5.5 8.0 1 1 315.0 o.o Jun. 28-29 179.5 9 21.0 26.B 4.0 6.0 6 6 450.0 114. 7 91.8 Jul. 12-13 193.5 12 24.0 25.0 5.0 10.0 5 6 625.2 24.2 19.4 Jul. 27-28 208.5 12 26.3 27.4 6.0 8.0 5 5 600.0 0.8 o.8 Aug. 10-11 222.s 12 26.7 28.7 6.0 6.0 5 6 600.f) 2.0 1.4 Aug. 31-Sep. 243.5 12 26.5 27.0 6.0 8.0 5 6 725.0 0.6 0.8 Sep. 13-14 256.5 12 2J. 2 23.9 6.0 9.0 4 6 600.0 o. 7 1.5 Oct. 11 284.0 6 17 .3 18.0 6.0 8.0 3 4 450.0 0.0 Nov. l 305.0 8 13. 5 14.5 6.0 8.0 2 2 485.0 0.2 0.5 Nov. 21-22 325.5 12 8.5 12.5 10.0 15.0 5 5 807.0 o.o Dec. 13 347.0 6 5.0 6.0 5.0 6.0 3 5 300.0 o.o 1979 (J"\ I Jun. 6-7 157.5 8 20.0 21.0 4.0 6.0 1 l 365.7 2.5 2.9 I-' Jul. 5-6 186.5 12 21.0 23.0 5.0 11.0 1 l 100.0 1.4 1.2 V1 Jul. 12-13 193.5 12 24 .o 26.0 7.0 8.0 1 1 620.0 0.2 0.5 Jul. 19-20 200.5 12 25.1 27.0 5.0 8.0 1 625.0 o.o Jul. 25-26 206.5 12 23.3 27.1 5.0 8.0 1 1 570.0 0.3 0.5 Aug. 22-23 234. 5 12 23.5 24. 5 1.0 10.0 1 l 600.0 1.8 3.3 Oct. 17-18 290.5 12 15. 5 16.8 4.0 8.0 3 3 650.0 o.o Oct. 31-Nov. 304.5 12 14.2 15.8 4.0 6.0 2 900.7 o.o 1980 Jan. 23-24 23.5 11 2.5 3.0 2.0 6.0 3 6 625.0 o.o Mar. 19-20 79.S 12 6.0 7.0 5.0 9.5 6 6 675.0 0.0 Apr. 16-17 107.5 12 11.G 13.8 o.o o.o 5 6 800.0 o.o Apr. 30-Hay 121.S 12 14 .1 14.4 2.0 4.0 5 6 634.5 o.o May 7-8 128.S 12 16.5 18.8 1.0 5.5 6 6 646.0 o.o May 21-22 142.5 12 18.1 20.0 2.0 4.0 6 6 750.0 o.o Jun. 2-3 154.5 8 23.0 23.0 2.5 6.0 5 6 399.8 o.o Jun. 6-7 158.5 8 21.0 21.9 6.0 7.0 6 6 400.0 0.5 1.2 Jun. 10-11 162.5 6 20.2 21.0 5. 5 7.0 4 4 300.0 l. 7 4.3 Jun. 14-15 166.5 8 20.9 21. 5 5. 5 8.0 6 6 400.0 0.8 0.9 Jun. 18-19 170.5 3 22.0 29.0 1.0 8.0 5 5 150.0 2.7 11.5 Jun. 22-23 174.5 4 21. 5 29.0 7.0 8.0 6 6 200.0 10. 5 20.4 Jun. 26-27 178. 5 4 23.5 24.0 6.0 8.0 5 6 225.0 1.2 2.1 Jun. 3 0-Jt:l . 182.5 4 24. 5 25.5 7.5 10.5 6 7 200.0 1.5 3.0 Ju]. 4-5 186.S 25.5 26. 7 6.0 9.0 6 6 200.0 1.0 3.2 Jul. 8-9 190. 5 24.5 25.2 s.o 9.0 6 7 200.0 o.o Jul. 12-l 3 19i..s 26.0 27 .o 6.0 8.0 7 7 200.0 0.5 1.6 Jul. H-17 198.5 26.5 27. 5 6.5 8.5 7 8 200.0 0.5 1.6 Jul. 20-21 202.5 28.Q 28.0 7.0 8.0 8 8 200.7 4.0 7.7 Jul. 24-25 206.5 28.0 29.5 7.0 10.0 8 8 200.0 9.5 13.3 Jul. 28-29 210.s 27.0 28.5 7.5 10.0 7 7 200.0 0.5 1.6 Aug. 1-2 214.S 28.0 28.5 6.0 11.0 7 7 200.3 3.0 6.1 l.ug. '>-6 21P .5 29.0 30. 0 t,.o 9.0 6 6 200.0 1.0 1.8 'fable 6-3 Continued Julian No. of Te!Dpera ture ("C) Salinity (ppt) Total Volume Hean Dtwsity + 95% Confidence Date D.:iy* Samples !tin. Max. Hin. H..ax. Hin. Malt-Filtered (1113) (nuwbec/l*lOm

3) Interval Aug. 9-10 222. 5 4 29.0 30.0 6.0 9.0 7 7 200.0 9.0 26.6 Aug. 13 226.0 3 28.0 28.0 1.0 9.0 6 6 150.0 2.7 7.6 Alig. 17-18 230.5 4 27.5 27.5 8.0 n.o 8 8 200.0 10.5 14.6 Aug. 21-22 234.5 4 25. 5 26. 5 12.0 15. I) 7 8 200.1 7 .o 12.8 Aug. 25 238.0 3 26.0 26. 5 10.0 12.0 8 8 175.0 0.4 1.9 Aug. H-30 242. 5 4 26.5 26. 5 10.0 14.0 6 7 200.0 0.0 Sep. 2**3 246. 5 4 25.0 27 .o 10.0 12.0 7 7 200.0 l.0 3.2 Sep. 6 250.0 ] 27.0 29.0 10.0 11.0 8 8 150.0 f\.O Sep. 10-11 254.5 4 23. 5 25.8 10.0 12.0 8 9 zoo.a f). I) 14-15 2'i8.5 4 24. 5 25. 5 9.5 12.0 9 10 200.0 o.s 1.6 Sep. 18 262.0 2 24.0 21,. 5 10.0 u .o 7 7 100.0 o.o Sep. 22 266.0 ] 24.0 25.0 12.0 12.5 4 10 150.0 0.0 Sep. 26-27 270.5 2 22. 0 22. 5 U.5 13. 5 3 3 100.0 0.0 Oct. 1 275.0 2 21.0 21.0 11.0 12.5 4 4 100.0 o.o 1981 !lay 7-8 127.5 4 14.5 15 .o 6.0 la.5 6 2oa.a 0.0 !fay 11-12 131. 5 4 16.a 11 .o 8.5 1a.o 6 191.2 o.o !1 .. y 15-16 135. 5 17.6 18.8 4.0 a.o 5 6 200.a o.o. !lay 23-24 143.5 4 17.5 ta.a 5.0 a.a a 9 200.0 a.a !lay 27-28 147. 5 2 19.5 21.0 7.5 8.5 6 6 77.2 o.o Jun. 22-23 173. 5 4 25.l) 27.0 6.5 11.0 4 7 295.0 o.o CJ\ Jun. 26-27 177 .5 4 26.0 26.0 a.a 9.a a 9 2aa.a a.o I Jul. 1-2 182.5 4 24.a 25.0 9.a 12.a 8 8 233.a o.a t-' CJ\ Jul. 4-5 185.5 4 24.5 25.a 8.0 11.a 8 9 2aa.o a.a Jul. a-9 la9.5 3 26.0 2a.a 9.0 10.0 7 9 150.0 a.o Jul. 12-13 193. 5 4 27.0 28.0 10.0 12.0 7 8 200.a l. 5 3.0 Jul. 16-17 197.5 4 26.0 27.0 11.0 14.0 a 9 200.0 o.s 1.6 Jul. 20-21 201. 5 4 27.5 28.0 12.0 15.0 9 10 212.0 2.0 4.5 Jul. 24-25 205.5 4 27.0 27.0 10.0 12.0 9 12 200.0 1. 5 4.8 Jul. 28-29 209.5 4 26.5 2a.o n .o 12.0 10 11 199.5 l. 5 3.0 Aug. 1-2 213. 5 4 25. 5 26.0 11.a 13.5 9 10 200.0 0.5 1.6 Aug. 5-6 217.5 3 27.0 28-0 13.0 13.0 11 12 6ao.o 0.9 2.5 Aug. 9-10 221.5 4 27.0 27.5 12.0 13.5 10 11 200.0 o.o Aug. 13-14 225.5 4 26.0 27.0 10.0 10.0 11 11 305.0 0.3 LO Aug. 17-18 229.5 4 25.0 26.0 7.0 9.5 10 11 200.0 0.5 1.6 Aug. 21-22 233. s 3 25.0 26.0 9.0 10.0 10 10 150.0 0.0 Aug. 25-26 237.5 4 25.0 26 .o 9.0 10.0 9 11 200.0 o.o Aug. 29-30 241. 5 4 25.0 26.0 9.0 10.5 9 9 2ao.o o.o Sep. 2-3 245. 5 4 24. 5 28.0 8.5 11.0 7 8 200.0 o.o Sep. 5 248.0 3 24 .o 24.2 10.0 11.0 9 10 150.0 O.I) Sep. 10-11 253.5 3 23.0 24. s 7. 5 10.5 10 lO 15a.o 0.0 Sep. 14-15 257.S 4 24.0 25.0 9.0 10.5 10 11 200.0 a.o 5.,p. 18-19 261.5 4 22.5 n.5 9.0 10.5 9 11 200.0 o.o Sep. 22-23 265.5 4 21.0 21.0 8.0 10.0 s 10 200.0 0.0 Sep. 26-27 269.5 4 18.5 20. 5 a.o 10.0 3 J 200. 4 o.o Sep. 30--0ct. 273.5 4 18.0 19.0 7.5 10.5 5 6 200.0 0.0 Oct. )-4 276. 5 2 16.0 17.0 a.a 9.0 5 6 100.0 o.o *)cc. a-9 231. 5 4 15. 5 i6.0 8.0 11. 5 9 10 200.0 o.o Oct. 12-13 285.5 4 13.0 15.0 9.0 10.5 9 10 200.0 o.o Oct. 16-17 289.5 4 15.0 15.5 a.a 9.0 10 10 200.0 o.o Oct. 20-21 293.5 4 13.0 14.2 10.0 12.5 7 10 200.0 ll. 0 Oct. 24-25 297.5 4 13.0 14.0 10.0 12.0 9 10 200.0 a.s 1.6 Oct. 28-29 Jal. 5 4 12.5 18.0 9.0 13.0 9 9 2ao.o 0.5 (l.8 * * ---
  • Tahle 6-3 Continued Juli3n No. of Temperature

("C) S.ali.ii ty (?pt) Pumps Total Volume Mt!Hn Density r 95% Confidence Date Day* Samples Min. Min. Filtered (m3) (number/!OOml Interval 1982 May 4-5 124.5 15.0 15.0 1.0 3.5 8 9 150.0 0 .<) May 10-11 130.5 17.0 17. 5 l.0 3.0 9 9 200.0 0.0 May 13-14 133. 5 17 .o 17. 5 *.o 6.0 9 9 200.0 0.0 May 17-18 iJ7. 5 18.5 20.0 5.5 6.5 9 11 200.0 o.o May 20-21 140.5 4 19.0 21.5 4.0 8.l 9 10 200.0 0.0 May H-25 1;4.5 4 17 .o 20.0 7.0 n .o 9 10 200.0 0.0 May 27-28 147.5 4 20.0 20.8 5.0 10.0 10 ll 200.0 o.o May 31-Jun. l 151. 5 1. 21.0 22.5 6.0 11.0 9 11 200.0 0.0 Jun. 4-5 155.5 20.0 21.0 4.0 8.0 .10 12 200.0 0.0 Jun. 8-9 159.5 20.0 20.5 7.0 7.5 11 12 200.0 o.o Jun. 12-13 163.5 19.0 20.5 6.0 9.0 12 12 200.0 3. 5 9.1 Jun. l&-17 167.5 4 19.3 20.<1 6.0 7.5 12 12 200.0 4. s 10.2 Jun. 20-21 171. 5 4 21.0 23.8 3.0 5.0 12 12 200.0 8.5 10.2 Jun. 24-25 175.5 4 20.5 22.5 3.5 4.5 10 12 200.0 7.0 20.2 Jun. 28-29 l79. 5 4 25.o 25.0 5 .0 6.0 10 12 300.0 3.0 6.1 Jul. 2-3 183. 5 23.0 24 .o 5.0 6.0 8 10 200.0 2.0 2.6 Jul. 7-8 188.5 4 23.5 24.8 4.0 6.0 9 10 200.0 0.5 1.6 Jul. 10-11 191. 5 4 24.3 26.3 4.5 6.0 9 i2 200.0 0.5 l.6 Jul. 14-*15 195.5 4 25.8 26.3 5.5 e.o 10 11 200.0 3.0 5.5 Jul. 19-20 200.5 4 26.8 28.5 7 .o 9.0 10 12 200.0 5.0 1.6 I Jul. 22-23 203.5 4 26.0 27.0 7.0 8.5 11 11 200.0 o.o Jul. 26-27 207.5 4 25.5 27.0 7 .o 0.0 9 10 200.0 0.5 1.6 -...J Jul. 30-31 211. 5 4 26.5 27.0 0.0 9.0 10 11 200.0 2.5 4.0 Aug. 3-4 215.5 4 25.S 27.0 9.0 10.0 9 ll 200.0 1.0 3.2 Aug. 9-10 221. s 4 26.0 26.0 8.0 9.0 9 10 200.0 o.s 1.6 Aug. il-12 223.5 4 24.8 28.0 7.0 8.0 8 11 200.0 l.0 3.2 Aug. 15-16 227.5 4 25.3 26.0 6.0 0.s 9 11 200.0 o.o Aug. 19-20 231. 5 4 26.0 27.0 7.0 8.5 9 10 200.0 o.o Aug. 23-24 235. 5 4 24.3 26.0 6.0 7 .a 8 10 200.0 o.o Aug. 27-28 239.5 4 23.5 24.0 6.0 8.5 10 12 200.0 o.o Sep. 1-2 244.5 4 22.0 24.0 7.q 9.0 11 11 200.0 o.o Sep. 4-5 247.S 4 23.3 24.S 6.0 8.5 10 11 200.2 0.5 1.6 8-9 251.5 4 21.8 23.3 6.0 9.0 9 10 200.0 o. 5 1.6 Sep. 11-12 254. 5 4 23.5 2-'4 .o 7.0 0.0 8 9 200.3 o.o Sep. 16-17 259.5 4 23.8 21 ** 5 7. 5 10.0 8 9 200.0 0.2 4.5 Sep. 20-21 263.5 4 21. 5 22. 5 8.0 10.0 9 9 200.0 1.0 3.2 Sep. 24-25 267.5 4 20. 5 21. 3 7.0 9.0 10 11 200.0 0.5 1.6 Sep. 28-29 271. 5 4 21.0 12.8 9.0 10.0 9 9 200.0 a. s 1.5 Oct. 2-3 275. 5 4 21.0 21. 5 10. s 12.0 9 10 200.4 o.o Occ. 6-7 279.5 4 21.3 22.3 9.5 12.0 8 10 200.2 0.0 Oct. 9-10 282.5 4 20.3 22.0 10.0 12.0 9 11 200.0 o.o Oct. 15 288.0 3 19. 8 20.0 7.0 12.0 10 11 150.0 o.o <;cc. 20-21 293.S 4 15. 5 16 .3 5.0 10.0 s 6 200.2 o.o Ocr. 22-23 295.5 4 14.5 15.0 7. 5 e.o 5 5 200.0 a.a Oct. 27-28 300.S 4 12. 8 13.8 15.0 16.0 4 6 200.7 o.o Occ. 30-31 303.5 13. 5 14.0 12.0 14 .o 4 6 200.0 o.o *Jul13n midpoint of dace range. TL (Ill<) 2. 1 3.1 4.1 5 .1 3. 'J 4.Q 5.j 6.0 NC. MEAS. ljQ. TAKE 'I 'IE AN "!:AS. RANG!: (I'll) VOL. FILTER C123eC 1025 TO 012579 1905 825.0 Table 6-4 Length-frequency distribution of weakfish larvae and O+ in entrainment abundance during 1977-1982. 022771! 1050 TO 022778 1 tl30 246.2 03*)2 75 G935 TO 03J378 0525 6'l0.0 031678 1J40 TO ()3201!0 0630 1075.0 032779 1045 TO J32879 1035 475.0

  • 041630 1010 TO 042078 0515 1115.0 'l430!10 1040 TO 1)50830 0527 16 30. 5 094 J TO 051681 0405 793.2 051H2 1 'l1 5 TO 0525!12 0420 27 25 52 52 3.2 2.5-1550.0 3.5 1J1 2 TO Q6.J1 0445 4 10 2 16 22 4.5 3.5-*477.2 a-. 5.5 I 1--' VJ Table 6-4 Continued
  • ------------------------------------------------------------------------------------------------------------------------------------

06'l2SO 061UO 061632 062482 063080 070732 071680 072480 OB0180 08'.J931 1130 1033 1010 101 2 1 ODO 160:) 1 '105 1 OOJ 0957 093') TO TO TO TO TO TO TO TO TO TO 060932 061530 362331 062978 07\l679 071532 072382 073182 080631 081632 Tl ( HH) 040'1 0424 C415 0615 0545 0405 0405 0415 0400 040'.l ------------------------------------------------------------------------------------------------------------------------------------ 1 .1 2.0 4 1 2 10 2 2.1 3.J 30 15 5 4 26 205 64 1 2 3.1 4. \) 40 15 6 30 .28 97 62 11 4.1 5.0 35 4 6 17 18 11 7 5.1 6. ') 10 1 7 10 9 3 1 6.1 7.J 10 2 8 3 4 2 7.1 S.'.J 6 1 2 2 1 8 5 2 3.1 9. oJ 1 1 2 1 1 11 2 1 9.1 10. *) 1 1 2 8 5 2 1J.1 11.1) 1 1 7 1 2 11 .1 1 2. I) 5 1 4 1 3 4 3 1 12. 1 13.\l 2 3 1 5 1 1 13.1 14.0 1 1 1 14 .1 15.0 1 3 1 4 1 4 1s.1 16. 0 2 1 1 3 1 1 16. 1 17 .o 2 5 1 1 17 .1 13. 0 n.1. 19.a 5 1 9 .1 20. ') 1 1 1 2 *J .1 21. 0 1 2 21.1 22.'.l 2 4 2 1 2 2 2 .1 23.Q 2 1 1 1 1 2 3. 1 24. () 1 3 1 24.1 25.0 4 1 1 11 1 25.1 26.1) 11 1 26.1 27.Q 2 1 15 1 27 .1 28.0 1 1 22 2 1 2d.1 29.*J 4 12 1 1 3 2 9 .1 3*). *) 1 1 28 1 1 30.1 31.0 26 1 31. 1 32.J 1 1 22 1 1 1 3 2. 1 33.u 2 13 1 2 2 2 3 3 .1 34. ') 1 17 2 2 34.1 35.0 1 22 1 1 1 2 2 35.1 36.0 2 9 1 1 3 6 .1 37.J 5 13 2 1 1 37.1 38.0 3 13 1 1 2 1 3 .1 39.') 13 1 2 1 2 3 9. 1 40.0 4 7 1 6 1 1 40.1 41.0 5 5 Cl' I I-' \.0 Tl 41.1 4 2.1 4 3 .1 4 4 .1 45.1 "6 .1 47.1 4 3 .1 4 9.1 5 ').1 51.1 52.1 5 3 .1 54.1 5 5 .1 5 (> .1 57.1 5 9 .1 59.1 6 'J .1 '61.1 6 2 .1 6 3 .1 64.1 () 5 .1 66.1 6 7 .1 69.1 6 9.1 7'J .1 71.1 12.1 73.1 74.1 75.1 76.1 7 7 .1 n.1 79 .1 42.0 4 3.0 44.0 45.0 46.0 H.O 43.Q H.'J '5J.*J 51.0 5 2. ') 5 l. 0 54.'J 55.0 56.0 57.0 5 3.il s 60.0 61.J 62.J 63.*) 64.0 65.0 66.0 67.0 68.0 69.J 7'.).0 71. IJ 12.0 73.0 74.) 75.0 H.O 77.Q 7S.O 79.0 81).'.) llO. MEAS. llO. HKE!l HEAil l'EH. RA!lGE (14H) VOL. FILTER 060280 1130 TO 0609-32 040J 149 151 6.d . 2.0-32.0 1565.5 061C30 1033 TO 061590 0424 41! 48 7.4 2.5-25.0 900.0 Ot.1692 1010 TO 062331 ('415 72 72 19.6 2.0-40.0 1245.0 062462 1012 TO 062978 0615 8 6 5 7 2 3 1 1 1 1 358 590 29.0 2.5-52.0 1500.0 Table 6-4 Continued* 063080 1000 TO ON679 0545 1 1 1 1 1 101 108 9.3 2.0-60.0 2133.0 070752 160::1 TO 071532 0405 3 9 8 10 5 8 11 7 8 3 6 1 3 1 1 1 505 718 13.o 2.0-79.5 2795.2 'J716!10 1 J05 TO 072382 0405 1 167 168 5.4 2.0-65.0 1837. 7 0724 30 1 OOJ TO 073182 0415 2 080180 0957 TO 0!!0631 0400 1 08'.!991 C93'J TO 0!!1632 040'.) 3 2 1 1 z 1 1 1 1 86 13 45 86 16 48 15.6 39.6 31.2 2.5-75.0 2.0-76.0 6.IJ-65.0 2369.5 1400.J 2055.0 0\ I N 0

  • Table 6-4 Continued

TL ('111) 081BO 1030 TO 0824i2 0405 082561 1 0c-J TC ll8 3G!31 042 3 083178 !:937 TO 090680 22CO ()90882 1 000 TO 091560 0401 091682 1010 TO 092982 0410 093081 1000 TO 1015132 2200 101681 1015 TO 102382 0700 102461 101'J TO 11J178 2141J 112178 1136 TO 112276 0640 120777 1146 TO 12*J877 0605 ------------------------------------------------------------------------------------------------------------------------------------ 3.1 4.1 5. 1 6.1 7.1 9.1 1 *) .1 11.1 12.1 13.1 14 .1 15.1 16.1 1 7 .1 13 .1 1? .1 2 *J .1 21.1 2 2 .1 2 3. 1 2.;. 1 25.1 2,;.1 27 .1 2 1 2 9.1 30.1 31 .1 32.1 33.1 34.1 3 5 .1 H.1 37 .1 3 s .1 3 9. 1 40.1 4.J 5. ') ') 7.J s .*:) ?.O n. J 11. 0 12.0 13 .. *J 14-') 1 5. ') 16.-) 17 .*::' 13. ') 1<i.0 2J.O 21. ') 22.0 Z3.') 24.J 25.J 26. IJ 27. ::J n.a 31.J 32.J 33.) 34. *J 35.J 36.0 37.0 3 a. a 39.0 40.0 41.0 1 1 2 2 3 1 °' I N ....... Table 6-l1 Coµtinued Tl (MIO 0817d0 1 OJO TO 0405 08 25 61 1 OCJ TO 083C81 0423 083178 G937 TO 090680* 22Cil 090892 1000 TO 091580 0401 091692 1010 TO 092982 0410 09 3081 1000 TO 101582 2200 1016 81 5 TO 1023 62 0700 1024 81 101() TO 11J176 2140 112178 1136 TO 11 2278 0640 120777 1141$ TO 12J877 0605 ------------------------------------------------------------------------------------------------------------------------------------ 41.1 42.J 4 2.1 4 3. 0 4 3.1 44.Q "4 .1 45.0 4 5 .1 4 (). '.l 4 6 .1 47.0 47.1 48.0 4 6.1 49.*J 4 9 .1 so.() 50.1 f1 .o 5 1.1 52. i} 5 2.1 5 3. i} s 3 .1 54. o 54.1 55.0 55.1 56.i} 5 () .1 57.i} 5 7.1 58.0 s a .1 H.O 59.1 60.() 6il.1 61.0 61.1 62.J 6?.1 t3.::J 6 3.1 64.*J 6 4 .1 t>. 0 65.1 66.0 66.1 6 7 *. '.) 67.1 68.0 68.1 69.0 t: 9 .1 70. '.) 70.1 11.0 71.1 H.J H.1 73.::J 73.1 74.0 74.1 75.'J 75.1 76.() 76.1 77.J 7 7 .1 7d.:J 73.1 n.o 79.1 so.o I! J. 1 81. 0 81 .1 e z. a e z .1 81.0 114.0 118.0 2 1 3 2 2 4 1 1 2 1 1 2 1 1 2 1 1 2 1 3 1 1 1 1 1 1 1 1 1. 1 1 ----------------------------------*------------------------------------------------------------------------------------------------ NO. MEAS, 40 24 6 7 3 NO. UKEN 40 24 6 7 3 !'IEUj l'EAS. 44.9 42.0 49.8 54.1 39 .1 33.0 95.7 1.0-71.IJ "2.-) 4.0-72.5 1 2. o-83. 0 55.0-118.0

  • v TfR 1750.1 975.0 2730 .1 1750.3 1750.4 000.6 1450 .2 21A6.4 BiJ7.0 869.0 °' I "-' l'.,)
  • Table 6-4 Continued
  • Tl (HM) 121378 1141 TO 121378 1813 ------------------------------------------------------------------------------------------------------------------------------------

NO. !'IEAS. NO. TAKEN l'EAS. (M!O VOL. FILTER 300.C Table 6-5 Pro bit regression analysis by sampling period of length-frequency distributions of weakfish larvae and o+ in entrainment abundance samples during 1978-1982. Median Size at which 2 Entrain::nent Standard stated percentage occurs Year Period Slope Intercept r size (m111 TL) Er roe-10% 25% SOX 75% 90% 95% 1978 Jun. l8-29 3. 94 -0.63 0.109 26.85 O.H 12.7 18.l 26.9 39.8 S6.8 70.3 Jul. 12-13 1.27 4.02 0.769 S.91 0.16 0.6* l. 7* 5.9 20.1 60.6 117 .4 Jul. 27-28 2.89 2.60 0.860 6. 77 0.59 2.4 3.9 6.8 11.6 18.8 25.l Aug. 10-11 2.63 2.63 0.887 14.90 0.95 4.8 8.2 14.9 26.9 45.8 63.0 Aug. 31-Sep. l 26.68 -3.92 0.877 45.21 1.52 40.S 42.7 45.2 47.9 50.5 52.l Sep. 13-H 5.28 -3.81 0. 780 46.62 7.63 26.7 34. 7 46.6 62.6 81. s 95.5 1979 Jun. 6-7 2.22 2.57 o.734 12.40 l. 58 3.3 6.2 12.4 24. 9 46.8 68.1 Jul. 5-6 l. 54 3.99 0.853 4. 50 4.47 0.1* 1.6* 4.5 12.3 30.5 52.4 J.11. 12-13 9.69 0.20 0.803 3.13 0.12 2.3 2. 7 3 .1 3.7 4.2 4.6 Jul. 19-20 1. 33 -1. 54 0.98S 3.11 0.04 2.s 2.8 3.1 3.S 3.9 4.1 Jul. 25-26 2.0S 3.58 0.881 4.93 0.08 48.3 Sl.4 55.l 59.1 62.9 65.4 Aug. 22-23 22.31 -33.8S 0.974 55 .15 1980 May 21-22 27.93 -8.14 0.957 2.9S 0.03 2.7 2.8 3.0 3.1 3.3 3.4 Jun. 1-7 6 .16 1. 56 0.002 3.61 0.06 2.2 2.8 3.6 4.6 5.8 6.7 Jun. 8-14 1.90 4.0S 0.780 3.17 0.37 0.1* 1.4* 3.2 7.2 15.0 23.4 .Jun. 15-21 1-56 3.50 0.804 9.11 2. 76 1.4* 3.4 9.1 24.6 60.3 103.9 Jun. 22-29 I.SO 3.09 o. 737 18.60 1.48 2.6 6.6 18.6 S2.4 132.9 232.0 Jun. 30-Jul. 6 1.47 4.lS 0.676 3.82 0.78 0.5* t.3* 3.8 11.0 28.6 50.6 Jul. 7-13 11.07 0.23 0.948 2.10 0.03 2.1 2.3 2.7 3.1 3.5 3.8 0' Jul. 14-20 3.23 2.84 0.931 4.68 0.18 1.9 2.9 4.7 7.6 11. 7 15.1 I Jul. 21-28 2.00 3.16 0.925 8.28 0.44 1.9 3.8 8.3 18.0 36.0 54.7 N Jul. 29-Aug. 7.46 -6.16 0.760 31. 36 2. 93 21.l 25.5 31.4 38.6 46.6 52.1 -""' Aug. 4-10 9.05 -8.91 0.950 34.46 0.82 24.9 29.0 34.S 40.9 47.8 52.4 Aug. ll-17 13. so -16.96 o.924 42.28 0.58 34.0 37.7 42.3 47.4 52.6 56.0 Aug. 18-24 10.12 -11.61 0.941 43. 71 1.12 32.7 37.5 43.7 51.0 58.5 63.5 1981 Jun. 21-27 6.47 1.36 0.8S2 3.65 0.45 2.3 2.9 3.7 4.6 5.8 6.6 Jun. 28-Jul. 12.67--1.47 0.945 3. 24 0.13 2.6 2.9 3.2 3.7 4.1 4.4 Jul. 5-11 2.14 3.48 0.846 5.12 1.13 1.3* 2.5 5.1 10.6 20.3 30.0 Jul. 12-18 Insufflcient Data Jul. 19-25 1.45 4.16 0.689 3.76 0.59 o.5* 1. )k 3.8 11.0 28.7 51.0 Jul. 26-Aug. 2.95 2.25 0.9S8 8.54 l.Ol 3.1 5.0 8.5 14.S 23.2 30.8 Aug. 2-0ct. 29 Insuf flcient Data 1982 May 27-Jun. 17. S9 -5.98 0.941 4.21 0.10 3.6 3.9 4.2 4.6 5.0 5.2 Jun. 4-10 9.90 -2.39 0.953 5.57 0.15 4.1 4.8 5.6 6.5 7. 5 8.2 Jun. 11-17 4.95 -0.13 O.S02 10.89 0.46 6.0 8.0 10. 9 14.9 19.8 23.4 Jun. 18-24 5.01 -1.04 o. 716 16.04 0.68 8.9 11.8 16.0 21.9 28.9 34.l Jun. 2S-Jul. 4.07 0.13 0.825 15.79 0.6l 7.6 10.8 15.8 23.1 32.6 40.l Jul. 2-5 3.24 2.87 0.742 4.57 0.23 1.8 2.8 4.6 7.4 11.4 14.7 Jul. 9-lS 2.16 2. 96 0.944 8.85 1.09 2.3 4.3 8.9 18-2 34.8 Sl. 3 Jul. 16-22 Insufficient Data Jul. 23-29 Insufficient Data Jul. 30-Aug. 15.53 -17. 99 0.848 30.27 1.11 0 27.4 )0. 3 33.5 36.6 38. 6 Aug. 6--0ct. 7 fosuf f iclent Data Acithmatic artifact: actual minimum size of larvae is 1.8 mm NL; Harm.ic (1958). * * *

  • ---------------------------------------

6-25 Table 6-6 Comparison of larval weakfish mean density (n/100m 3) in on-site entrainment abundance samples and in Date* river sampling program collections. Entrainment River Sampling Program (w-101) Ratio -----1981 ,June 23 D** N July 6 D N July 15-16 D N July 21-22 D N August 4-5 D N 1982 June 8-9 D N June 14-15 D N June 21-22 D N July 6-7 D N July 12-13 D N July 20-21 D N Mean Ratio

  • 0. 0 20 0.010 0.025 0.060 0.010 o.o 0.150 0.025 o.o o.o 0.040 0.030 0.015 0.010 0.015 o.o 0.030 0.020 0.005 0.025 o.o 0. 0 20 0.0232 0.459 0.030 0.011 0.078 o.o 0.188 0.073 0.008 0.058 0.003 o.o 0.123 0.064 0.013 0.009 0.060 0.037 0.169 0.006 0.038 0.038 0.068 0.038 0.0505 ** Date listed indicates river sampling period. D = daylight, N = night. 0.667 0.909 0.321 0.053 o.o 18.75 0.431 o.o 0.325 0.469 1.154 1.111 0.250 o.o 0.176 3.333 0.043 O.f'.i58 o.o 0.526 Ambient Date Salinity Temp.* (MMDDYY) (ppt) ( "C) 060380 6.0 23.8 060380 8.0 23.0 062480 9.5 23.0 072180 6.0 28.0 072180 6.0 29.5 072180 7.0 30.0 072180 8.5 29.0 072280 6.0 29.0 070781 11.0 26.0 070881 10.0 26.0 071581 16.0 26.2 071581 13.0 27.0 071581 11.0 27.0 072181 13.5 27.0 072881 12.0 25.8 072881 13.0 26.5 072881 13.0 26.5 081081 10.0 26.5 081181 9.0 26.5 081181 8.0 26.0 081181 8.0 28.5 081181 6.5 27.S 060882 7.0 20.0 060982 10.0 18.0 060982 8.o 17.5 060982 6.0 21.2 050982 7.0 19.0 060982 8.0 20.3 060982 5.0 22.2 061582 4.0 18.8 061582 s.o 19.6 061582 8.0 21.0 061582 6.0 20.8 062282 4.0 21. 5 062282 4.0 20.5
  • Table 6-7 Number of weakfish larvae, by condition category, in entrainment survival samples initially and during latent observation period. INTAKE (Control)

DISCHARGE (Experimental) Delta Test Mean Length T* Duration (ann TL) Initial Latent Initial Latent ("C) (hr) Intake Discharge Live Stunned Dead Live Stunned Dead Live Stunned Dead Live Stunned Dead 8.2 24 4.5* -2 0 0 2 0 0 0 0 0 0 0 0 8.0 24 5.0 -1 0 0 0 1 0 0 0 0 0 0 0 8.3 24 -5 0 0 0 0 0 0 1 0 0 0 0 1 9.0 24 9 6 5 0 0 3 0 2 0 0 2 0 0 2 7.3 96 9 10 0 0 1 0 0 1 0 0 1 0 0 1 8.0 96 9 6 5 1 0 4 0 2 0 0 1 0 0 1 6.9 96 -9 0 0 0 0 0 0 l 1 2 1 0 3 6.0 96 --0 0 0 0 0 0 0 0 1 0 0 1 11.0 96 5 9 2 0 0 0 0 2 0 0 2 0 0 2 10.5 96 10 -0 1 0 0 0 1 0 0 0 0 0 0 7.3 96 9 -2 0 0 0 0 2 0 0 0 0 0 0 .. 7 .5 96 8 -0 1 0 0 0 1 0 0 0 0 0 0 8.0 96 8 9 1 0 0 0 0 1 2 1 0 2 0 1 7.5 96 --1 0 0 0 0 1 0 0 0 0 0 0 7.7 96 -4 0 0 0 0 0 0 0 0 1 0 0 1 8.5 96 -7 0 0 0 0 0 0 0 0 2 0 0 2 8.0 96 -5 0 0 0 0 0 0 0 0 1 0 0 1 0.5 96 --0 0 0 0 0 0 1 0 0 1 0 0 o.o 96 --1 0 0 1 0 0 1 0 0 1 0 0 1.0 96 --0 0 0 0 0 0 l 0 0 1 0 0 3.4 96 8* 8 2 0 0 1 0 1 1 0 0 0 0 1 5.0 96 -9 0 0 0 0 0 0 0 0 1 0 0 1 6.1 96 -----3 4 1 1 0 7 9.9 96 -----1 0 0 1 0 0 9.9 96 -9* ------2 0 0 0 0 2 9.8 96 -10* ------1 l 1 1 0 2 10.0 96 -----1 0 1 0 0 2 10.7 96 -----0 1 0 0 0 1 10.3 96 -8* ------1 0 1 0 0 2 10.7 96 -7 0 0 0 0 0 0 0 0 1 0 0 1 10.4 96 9 -1 0 0 0 0 1 0 0 0 0 0 0 10.0 96 10 9 0 0 1 0 0 1 0 2 1 0 0 3 6.7 96 10 6 1 0 0 0 0 1 0 1 0 0 0 1 2.0 96 6* 9 1 0 0 0 0 1 3 1 0 2 0 2 2.5 96 9 10 00 1 0 0 1 2 0 0 0 0 2 * * ----------Cf\ I N Cf\ - Ambient Delta Test Mean Length Date Salinity Temp** T* Duration (llllll TL) (MMDDYY) (ppt) ( OC) (oC) (hr) Intake Discharge 062282 4.0 23.S 3.0 96 8 6 062282 s.o 24.0 ll.O 96 8 9 062282 S.5 23.5 9.5 96 8 -062882 s.o 24.0 8.0 96 --062982 5.0 24.1 7.9 96 -8 062982 s.o 24.0 8.0 gi; -10 062982 4.5 23.5 9.0 9b 6 -062982 s.o 23.0 9.5 96 --062982 s.o 24.8 9.2 96 --071382 6.0 24.0 14.0 96 5 -071382 6.0 24.0 14.0 96 10 -071382 6.0 24.1 12.1 96 -7 071382 5.0 25.7 12.1 96 -8 071382 6.0 26.5 11.5 96 8 -071382 5.0 26.0 12.0 96 -10 071982 10.0 28.S 9.5 96 -10 072082 9.0 29.0 8.5 96 5 -072082 7.0 28.5 9.4 96 -9 072082 8.0 28.5 9.5 96 --072682 8.0 27 .o 10*5 96 -8 072682 7.0 27.0 10.5 96 --072782 8.0 27.5 12.0 96 --072782 6.0 26.5 12.0 96 -10 072782 8.0 27.0 11. 5 96 9 -091482 9.0 25.0 9.2 96 9 -091482 8.5 24.0 8.8 96 9 -*Temperature recorded during entrainment survival sampling program. **Three or less specimens measured. Table 6-7 Continued INTAKE (Control) Initial Uve Stunned Dead Live 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 .o 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 Latent Stunned Dead 0 1 0 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 l 0 1 0 1

  • DISCHARGE (Experimental)

Initial Latent I.i ve Stunned Dead Live Stunned Dead 1 1 1 0 0 3 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 J 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a-I 0 0 0 0 0 0 N 0 0 5 0 0 5 -..J 0 0 3 0 0 3 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Taolt:: 6-8 Number of weakfish O+, by condition category, in entrainment survival samples initially and during latent observation period. INTAKE (Control) DISCHARGE (Experimental) Ambient Delta Test Mean Length Date Salinity Temp.* T* Duration (mm TL) Initial Latent Initial Latent (MMDDYY) (ppt) (°C) ( oc) (hr) Intake Discharge L:I, ve Stunned Dead Live Stunned Dead Live Stunned Dead Live Stunned Dead 062878 4.0 26.8 3.4 12 31 34 11 0 0 11 0 0 24 0 2 22 2 2 062878 5.8 24.5 5.4 12 34 29 15 0 J 15 0 1 8 0 1 8 0 1 062878 6.0 25.0 4.2 12 40 26 0 0 2 0 0 2 9 0 2 9 0 2 062878 5.5 21.0 8.0 12 31 30 8 0 6 6 1 7 3 0 l 11 0 21 062978 5.0 23.2 6.8 12 29 34 5 0 33 5 0 33 16 0 0 14 1 1 062978 5.5 23.7 6.3 12 27 40 0 0 12 0 0 12 3 0 1 3 0 1 062978 5.5 23.7 6.3 12 28 32 1 0 3 1 0 3 7 0 l 7 0 1 062480 7.0 22.5 7.7 24 -28 0 0 0 0 0 0 1 0 0 1 0 0 062580 8.0 22.5 8.0 24 --0 0 0 0 0 0 l 0 1 0 0 2 072180 7.0 30.0 8.0 96 15 -1 0 0 1 0 0 0 0 0 0 0 0 072180 6.0 29.5 7.3 96 13 -2 0 0 2 0 0 0 0 1 0 0 1 072280 s.o 29.0 7.7 96 -13 0 0 0 0 0 0 1 0 0 1 0 0 Q"\ 062981 ---96 -21 0 0 0 0 0 0 0 0 1 0 0 1 t-.J 063081 ---96 -20 0 0 0 0 0 0 0 0 1 0 0 1 OJ 070781 11.0 26.0 11.0 96 20 -0 0 1 0 0 1 0 0 0 0 0 0 070881 11. 5 26.5 7.5 95 41 -1 0 0 0 0 1 0 0 0 0 0 0 071481 11.0 26.0 8.0 96 -37 0 0 0 0 0 0 1 0 0 1 0 :0 071481 13.0 --96 -29 0 0 0 0 0 0 1 0 0 1 0 0 071581 16.0 26.2 7.3 'l6 28 38 0 1 0 0 0 1 3 0 0 2 0 1 071581 12.0 28.0 6.5 96 43 14 1 0 0 1 0 0 0 0 1 0 0 1 071581 11.0 27 .o 8.0 96 31 33 3 1 1 4 0 1 6 4 4 4 0 10 072081 15.0 27.0 7.5 96 -45 0 0 0 0 0 0 1 0 3 1 0 3 072081 13.0 27.0 7.5 96 51 -1 0 0 1 0 0 0 0 0 0 0 0 072151 13.0 27 .0 9.0 96 -36 0 0 0 0 0 0 0 0 1 0 0 1 072781 11.0 25.5 9.0 96 -49 0 0 0 0 0 0 1 0 1 1 0 1 072881 11.0 26.5 8.0 96 45 -2 0 0 1 0 1 0 0 0 0 0 0 072881 12.0 25.8 7.7 96 44 49 2 0 0 1 0 1 1 0 1 1 0 1 072881 13.0 26.5 8.5 96 43 46 1 0 0 1 0 0 2 1 2 0 1 4 072881 13.0 26.5 8.0 96 40 -1 0 0 0 0 1 0 0 0 0 0 0 081081 10.0 26. s 0.5 96 -50 1 0 0 1 0 0 3 0 0 0 0 3 081081 10.0 25.S 0.5 96 -48 0 0 0 0 0 0 12 1 0 2 0 11 081181 8.0 26.0 1.0 96 -46 0 0 0 0 0 0 4 0 1 0 0 5 081181 8.0 28.5 3.4 96 -24** 1 0 0 l 0 0 2 0 0 1 0 .1 081181 6.S 27.5 5.0 96 -42** 0 0 0 0 0 0 3 3 0 3 0 3 081181 6.3 27 .. 5 5.6 96 -75 0 0 0 0 0 0 0 0 1 0 0 1 081781 7.0 25.0 8.0 96 -3/f 0 0 0 0 0 0 -1 1 0 0 2 081881 10.0 25.8 6.2 96 53 -3 0 0 1 0 2 0 0 0 0 0 0 081881 7.0 24 .8 1.2 96 26 51 2 0 0 2 0 0 2 2 0 0 0 4 081881 8.0 25.0 8.0 96 59 24 l 0 0 0 0 1 1 0 0 0 0 1 060982 * --96 -12 1 0 0 1 0 1 0 1 -0 061582 21.0 10.0 96 11 13 2 0 0 3 2 1 1 1 3 --* Ta bl

  • Continued
  • INTAKE (Control)

DISCHARGE (Experimental) Ambient Delta Test Hean Length Date Salinity Temp.* T* Duration (mm TL) Initial La'tent Initial Latent (MMDDYY) (ppt) (QC) (QC) (hr) Intake Discharge Live Stunned Dead Live Stunned Dead Live Stunned Dead Live Stunned Dead 061582 6.0 20.8 6.7 96 11 12 1 0 0 *O 0 1 4 1 0 0 0 5 061582 4.0 18.8 10. 7 96 -14 0 0 0 0 0 0 0 2 1 0 0 2 061582 4.0 20.7 8.8 96 11 -0 1 0 0 0 1 0 0 0 0 0 0 061682 ---96 18 14 1 0 l 0 0 2 1 0 l 0 0 2 061682 ---96 18 -1 0 0 1 0 0 0 0 0 0 0 0 062182 4.0 22.0 2.0 96 18 16 1 0 1 0 0 2 l 0 0 0 0 1 062282 4.0 21. 5 2.0 96 16 16 6 0 0 2 0 4 3 0 1 0 0 4 062282 4.0 20.5 2.5 96 22 17 3 1 1 0 0 5 21 2 2 5 0 20 062282 4.0 21.0 2.0 96 26 21 4 0 0 0 0 4 8 1 0 1 0 8 062282 s.o 24.0 11.0 96 12 22 1 0 0 0 0 1 0 0 3 0 0 3 062282 4.0 23.5 11. 5 96 -17 0 0 0 0 0 0 0 0 4 0 0 4 062282 4.0 24.0 11.0 96 --0 0 0 0 0 0 0 0 6 0 0 6 062282 5.5 23.5 9.5 96 11 14 0 0 1 0 0 1 0 1 1 0 0 2 062282 4.0 23.5 3.0 96 18 24 10 0 1 0 0 11 6 0 1 3 0 4 062662 5.0 24.0 8.0 96 -13.5 0 0 0 0 0 0 0 1 0 0 0 1 062982 5.0 --96 --0 0 0 0 0 0 l 0 1 1 0 l O'\ 062982 5.0 24.0 8.0 96 27 22.5 2 0 l 2 0 1 2 0 0 1 0 l I 062982 6.0 26.0 9.0 % 17 2 0 0 2 0 0 0 0 0 0 0 0 N -'° 062982 5.0 24.0 8.0 96 -28 0 0 0 0 0 0 0 0 l 0 0 1 062982 5.0 --96 -19 0 0 0 0 0 0 J 2 2 1 0 6 062982 4.5 23.4 9.0 96 36 -3 1 0 3 0 1 0 0 0 0 0 0 062982 5.0 23.0 9.5 96 35 -l 0 0 0 0 l 0 0 0 0 0 0 062982 4.0 25.5 9.0 96 -20 2 1 0 2 0 1 0 2 6 0 0 8 062982 4.0 25.0 9.0 96 36 32 13 4 1 6 0 12 1 0 1 1 0 1 062982 5.0 24.8 9.2 96 51 29 0 1 0 0 0 1 1 0 1 0 0 2 071282 5.0 --96 -23 0 0 0 0 0 0 0 0 l 0 0 1 071382 6.0 24.0 14.0 96 -18 0 0 0 0 0 0 0 0 5 0 0 5 071382 5.0 --96 -12 0 0 0 0 0 0 0 0 1 0 0 l 071382 ---96 -17** 0 0 0 0 0 0 0 0 2 0 0 2 071382 6.0 --96 -16 0 0 0 0 0 0 0 0 3 0 0 3 071382 5.0 --96 -17 0 0 0 0 0 0 0 0 4 0 0 4 071382 6.0 26.5 11. 5 96 27 -3 0 0 3 0 0 0 0 0 0 0 0 071382 5.0 26.0 12.0 96 38 -l 0 0 1 0 0 0 0 0 0 0 0 071982 10.0 28.5 9.5 96 29 -4 0 2 4 0 2 0 0 0 0 0 0 072082 8.0 28.5 9.5 96 22 -1 0 0 0 0 l 0 0 0 0 0 0 072082 9.0 29.0 8.5 96 42 22 1 0 0 0 0 1 0 0 l 0 0 1 072082 9.0 28.0 8.0 96 25 -3 0 0 1 0 2 0 0 0 0 0 0 072782 6.0 26.2 11.8 96 -39 0 0 0 0 0 0 0 0 5 0 0 5 072782 6.0 26.5 12.0 96 37 26 0 1 0 0 0 1 0 0 2 0 0 2 072782 8.0 27.0 11.5 96 22 36 2 0 0 1 0 1 0 0 1 0 0 1 072782 8.0 28.0 11.5 96 44 40 1 0 0 1 0 0 0 0 l 0 0 1 072782 9.0 28.0 9.5 96 40 -1 0 0 0 0 0 0 0 0 0 0 0 Table 6-8 INTAKE (Control) DISCHARGE (Experimental) Ambient Delta Test Hean Length Date Salinity Temp.* T* Duration (mm TL) Initial Latent Initial Latent (MMDDYY) (ppt) (oC) (°C) (hr) Intake Discharge Live Stunned Dead Live Stunned Dead Live Stunned Dead Live Stunned Dead 081082 8.5 27. 5 8.7 96 53 -1 0 0 0 0 1 0 0 0 0 0 0 081082 9.5 27.5 5.6 96 52 -1 0 1 1 0 1 0 0 0 0 0 0 081082 8.0 27.9 8.9 96 42 -1 0 0 0 0 1 0 0 0 0 0 0 081182 7.0 27 .o 8.6 96 37 -4 0 0 1 0 3 0 0 0 0 0 0 081182 9.0 28.5 8.6 96 22 -3 0 0 1 0 2 0 0 0 0 0 0 082382 6.9 25.0 10.4 96 52 0 0 0 1 0 0 1 0 0 0 0 0 0 091382 9.0 25.0 8.2 96 -36 0 0 0 0 0 0 b 0 0 5 0 1 091382 9.0 25.0 8.1 96 -12 0 0 0 0 0 0 1 0 0 0 0 1 091482 9.0 25.0 7.9 96 -38 0 0 0 0 0 0 3 0 0 3 0 0 091482 8.0 25.0 19 0 0 0 0 0 0 2 0 0 1 0 1 091482 8.0 25.0 7.9 96 -38 0 0 0 0 0 0 1 0 0 1 0 0 091482 9.0 24.5 8.8 96 50** -3 0 0 1 0 2 0 0 0 0 0 0 091482 9.0 25.0 9.0 96 -32 0 0 0 0 0 0 6 1 1 0 0 .0 '091482 9.0 25.0 9.4 96 35 -2 0 0 0 0 2 0 0 0 0 0 0 091482 9.0 25.0 9.2 96 49 28 1 0 0 l 0 0 4 0 1 1 0 4 092882 7.0 20.5 11.4 96 34** -2 0 0 l 0 l 0 0 0 0 0 0 °' 092882 8.5 21.5 11.9 96 30 -1 0 0 l 0 0 0 0 0 0 0 0 I 'J.J 0 *Temperature recorded during entrainment survival sampling program. **Three oi less specimens measured . *

  • Summary of weakfish larvae survival history in entrainment latent moctality studies in 1980-1982. (Terms are defined in Appendix I* survival intervals expressed in hours). , WEAKFISH LARVAE -1960-1982 INTAKE INTERVAL NUMBER NU"BER NUMBER NUMBER CUMULATIVE STANDARD ERROR START ENTERING WITHOUWN EXPOSED OF PROPORTION PROPORTION PROPORTION OF CUMULATIVE TIME THIS DURING TO TERMINAL TERMINUING SURYIY!NG SURVIVING SURVIVAL INTERVAL INTERVAL RISK EVENTS AT END ----------------------------------------------------



o.o 42.0 o.o 42.0 6.0 0.1429 o. 8571 o. 8571 0.0540 1.0 36.0 o.o 36.0 5.0 0.1389 0.8611 a. ns1 0.0678 3 .o 31.0 a.a 31.0 4.0 0.1290 0.8710 0.6429 0.0739 6.0 :27.0 o.o 27.0 9.0 o. 3333 0.6667 0.4286 0.0764 12.0 18.0 o.o 18.0 3.0 0.1667 0.8333 0.3571 0.0739 24.0 15.0 o.o 15.0 1.0 0.0667 0.9333 o. 3333 0.0727 48.0 14.0 o.o 14.0 o.o o.o 1.0000 o. 3333 0.0727 12.0 14.0 a.a 14.0 o.o o.o 1.0000 0. 3333 0.0727 CUMULATIVE SURVIVAL TO 96. = 0.3333 +/-0.1426 95% C.I. Cl' I w .__. WEAKFISH LARVAE -1980-1982 DISCHARGE INTERVAL NUMBER NUMBER NUMBER NUMBER CUMULATIVE STANDARD ERROR START ENTERING WITHDRAWN EXPOSED OF PROPORTION PROPORTION PROPORTION OF CUMULATIVE TIME THIS DURING TO TERMINAL TERMINATING SURVIVING SURVIVING SURVIVAL INTERVAL INTERVAL RISK. EVENTS AT END ---------------------------------------------------




o.o 74.0 o.o 74.0 36.0 Q.4!!65 0.5135 0.5135 0.0581 ' 1.0 38.0 o.o 38.0 13.0 0.3421 0.6579 o. 3378 0.0550 3.0 25.0 o.o 25.0 3.0 0.1200 0.8800 0.2973 0.0531 6.0 22.0 o.o 22.0 2.0 0.0909 0.9091 0.2703 0.0516 12.0 20.0 o.a 20.0 2.0 0.1000 0.9000 0.2432 0.0499 24.0 18.0 o.o 18.0 6.0 0.3333 0.6667 0.1622 o.042a 48.0 12.0 o.o 12.0 1.0 0.0833 o. 916? 0-1486 0.0414 72.0 11.0 o.o 11.0 o.o o.o 1. 0000 0.1486 0.0414 CUMULATIVE SURVIVAL TO 96. = 0.1486 +I-0.0811 95% c.I. Table 6-10 Summary of weakfish O+ survival history in entrainment latent mor:tality studies in 1981 and 1982. (Terms ar:e defined in Appendix I; survival inter:vals expressed in hours). WEAKFISH 0+ -1981 INTAKE INTERVAL START TIME o.o 1.0 3.0 6.0 12.0 24.0 48.0 72.0 NUMBER ENTERING THIS INTERVAL 22.0 20.0 20.0 20.0 18.0 15s0 13.0 12.0 NUMBER WITHDRAWN DURING INTERVAL o.o o.o o.o o.o o.o o.o o.o o.o CUMULATIVE SURVIVAL TO 96. WEAKFISH 0+ -1981 DISCHARGE INTERVAL START TIME o.o 1.0 3.0 6.0 12.0 24.0 48.0 72.0 NUMBER ENTERING THIS INTERVAL 71.0 55.0 51.0 so.a 48.0 30.0 19.0 19.0 NUMBER WITH OR AWN DUR ING INTERVAL a.a a.a o.o a.a o.o a.a a.a a.a NUMBER EXPO SEO TO RISK 22.0 20.0 20.0 20.0 18.0 15.0 13.0 12.0 NUMBER OF TERMINAL EVENTS 2.0 o.o o.o 2.0 3.0 2.0 1.0 o.o PROPORTION TERMINATING 0.0909 o.o 0.0 0.1000 0.1667 0.1333 0.0769 o.o o.5455 +1-0.2081 95X c.I. NU,.BER EXPOSED TO RISK 71.0 55.0 51.0 50.0 48.u :rn.o 19.0 19.0 NUMBER OF TERMINAL EV ENT S 16.0 4.0 1.0 2.0 13.Q 11.0 o.o o.o PROPORTION TERMINATING 0.2254 0.0727 0.0196 0.0400 0.3750 0.3667 o.o o.o CUMULATIVE SURVIVAL TO 96. = 0.2676 +/-0.1030 95X C.1.u *

  • PROPORTION SURVIVING 0.9091 1.0000 1.oooa 0.9000 0.8333 0.8667 o. 9231 1.0000 PROPORTION SURVIVING 0.7746 0.9273 0.9804 0.9600 0.6250 0.6333 1.0000 1.0000 CUMULATIVE PROPORTION SURVIVING AT END 0.9091 o. 9091 0.9091 0.8182 0.6818 0.5909 0.5455 0.5455 CUMULATIVE PROPORTION SURVIVING AT ENO 0.7746 o. 71 83 0.7042 0.6761 0.4225 0.2676 0.2676 0.2676 STANDARD ERROR OF CUMULATIVE SURVIVAL 0.0613 0.0613. 0.0613 0.0822 0.0993 0.1048 0.1062 0.1062 STANDARD ERROR OF CUMULATIVE SURVIVAL 0.0496 0.0534 0.0542 0.0555 0.0586 0.0525 0.0525 0.0525 0\ I w N
  • WE AK FI SH o+ -1982 INTAKE INTERVAL NUMBER NU11BE!l START ENTERING WITHDRAWN TIME THIS DURING INTERVAL INTERVAL -------------------------o.o 103.0 o.o 1.0 92.0 2.0 3.0 80.0 a.a 6.0 75.0 o.o '12 .o *63.0 1.0 24.0 52.0 1.0 48.0 41.0 a.a 72.0 37.0 o.o CUMULATIVE SURYIVlL TO 96. "' WEAKFISH O+ -1982 DISCHARGE INTERVAL NUMBER NUMBER START ENTERING WITHDRAWN TIME THIS DURING INTERVAL INTERVAL -------------------------c.o 144.0 o.o 1.0 69.0 2.0 3.0 6a.a a.o 6.0 sa.o a.a 12.0 45.0 1.0 24.0 38.0 o.o 48.0 29.0 a.a 72.0 23.0 o.o CUMULATIVE SURVIVAL TO 96. = NUMBER EXPO SEO TO RISK --------103.0 91.0 so.a 75.0 62.5 51.5 41.0 37.0 Table 6-10 Continued NUMBER OF PROPORTION TERMINAL TERMINATING EVENTS -------------------

11.0 0.1068 10.0 0.1099 5.0 0.0625 12.0 0.1600 10.0 0.1600 10.0 0.1942 4.0 0.0976 2.0 0.0541 o. 3618 +/-0.0946 95% C.I. NUl'IBER NUMBER EXPOSED OF PROPORTION TO' TERMINAL TERMINATING RISK EVENTS --------------------------- 144.0 75.0 0.5208 63.0 7.0 0.1029 6().(1 10.0 0.1667 50.0 5.0 0.1000 44.5 6.0 0.1348 38.0 9.0 0.2368 29.Q 6.0 0.2069 23.0 7.0 0.3043 0.1174 +/-0.0537 95X c.r. --CUMULATIVE STANDARD ERROR PROPORTION PROPORTION OF CUMULATIVE SURVIVING SURVIVING SURVIVAL AT ENO ----------



0.8932 0.8932 0.0304 o. 8901 0.7950 0.0399 0.9375 0.7454 0.0431 0.8400 0.6261 0.0481 0.8400 0.5259 0.0497 0.8058 0.4238 0.0495 0.9024 0.3825 0.0488 0.9459 0.3618 0.0483 CJ"\ I w w CUMULATIVE STANDARD ERROR PROPORTION PROPORTION OF CUMULATIVE SURVIVING SUR YI VI NG SURVIVAL AT END ----------



0.4792 0.4792 0.0416 0.8971 a.4298 0.0413 a.8333 0.3582 0.0402 0.9000 0.3224 0.0392 0.8652 a.2789 0.0377 0.7632 0.2129 0.0346 o. 7931 0.1688 0.0318 0.6957 0.1174 0.0274 6-34 Table 6-11 Pressure/time profile Salem simulation, compiled March 25, 1974 186,000 GPM at 8.0 FPS, Transit time simulation= 4.75 min total test time 9.7 min Time and Simulated Stage A. 0:00 to 0:05 Entry into water pump bell housing and circulation pump B. 0:05 to 2:05 Duration of test segment (sec) 5 Passage to the condenser with a drop in elevation 120 C. 2: 05 to 2: 35 Passage through the condenser D. 2:35 to 4:45 Passage through the discharge pipe to the point of discharge E. 4:45 to 9:40 Mixing of discharge and river water 30 130 295 Pressure in cm Hg reading Rapid increase 76 to 136 Gradual decrease 136 to 123 Rapid decrease 123 to 69 Gradual increase 69 to 180 Gradual decrase 180 to 76 *

  • 6-35 Table 6-12 Pressure/time profile Salem simulation compiled November 15, 1978 Unit 23B 2 pumps/condenser shell 186,000 GPM at 10.2 FPS, transit time simulation

= 6.0 min total test time 6.5 min Test time and stage (Simulated) Duration of test segment (sec) A. 0:00 to 0:05 Entry into water pump bell mouth B. 0:05 to 0:35 Entry into the circulation pump C. 0:35 to 0:40 Discharge from circulation pump D. 0:40 to 2:37 A distance traveled of 1300 ft with a 6 ft head loss E. 2:37 to ?.:56 A drop in elevation of 12 ft 4 in F. 2: 56 to 3: 00 Vertical upward flow-toward the inlet bay G. 3:00 to 3:10 Passage through the condenser H. 3:10 to 3:15 Passage toward the discharge pipe I. 3:15 to 3:20 Entry into the discharge pipe J. 3: 20 to 6: 00 Passage to the point of discharge K. 6: 00 to 6: 04 5 30 5 117 19 4 10 5 5 160 Decrease to ambient simulating 4 mixing discharge and river water 1. 6: 04 to 6: 30 Organisms removed from test apparatus and placed in a 1400 ml container 26 Pressure in cm Hg reading Rapid increase 76 to 121 Rapid decrease 121 to 22 Rapid increase 22 to 141 Gradual decrease 141 to 128 Gradual increase 128 to 157 Rapid decrease 157 to 122 Rapid decrease 122 to 35 Rapid increase 35 to 94 Rapid increase 94 to 107 Gradual increase 107 to 147 Rapid decrease 147 to 76 76 6-36 Table 6-13 Estimated pressure/time profile Salem simulation compiled May 1, 1982 total test time 9.6 min Test time and stage (Simulated) Duration of test segment (sec) A. 0:00 to 0:08 Entry into water pump bell mouth B. 0:08 to 0:52 Entry into the circulation pump C. 0:52 to l:OO Discharge from circulation pump D. 1:00 to 3:56 A distance traveled of 1300 ft with a 6 ft head loss E. 3: 56 to 4: 24 A drop in elevation of 12 ft 4 in F. 4:24 to 4:30 Vertical upward toward the inlet bay G. 4:30 to 4:45 Passage through the condenser H. 4:45 to 4:52 Passage toward the discharge pipe I. 4:52 to 5:00 Entry into the discharge pipe J. 5:00 to 9:00 Passage to the point of discharge K. 9: 00 to 9: 06 Decrease to ambient simulating mixing and river water L. 9:06 to 9:38 Organisms removed from test apparatus and placed in a 1400 ml container 8 44 8 176 28 6 15 7 8 240 6 32 Pressure in cm Hg reading Rapid increase 76 to 121 Rapid decrease 121 to 22 Rapid increase 22 to 141 Gradual decrease 141 to 128 Gradual increase 128 to 157 Rapid decrease 157 to 122 Rapid decrease 122 to 35 Rapid increase 35 to 94 Rapid increase 94 to 107 Gradual increase 107 to 147 Rapid decrease 147 to 76 76 ] 1 *

  • . 6-37 Table 6-14 Estimated pressure/time profile Salem simulation compiled May 1, 1982 Test time and stage (Simulated)

A. 0:00 to 0:10 Entry into water pump bell mouth B. 0:10 to 1:10 Entry into the circulation pump C. 1: 10 to 1: 20 Discharge from circulation pump D. 1:20 to 5:14 A distance traveled of 1300 with a 6 ft head loss E. 5:14 to 5:52 A drop in elevation of 12 ft 4 in F. 5:52 to 6:00 Vertical upward toward the inlet bay G. 6:00 to 6:20 Passage through the condenser H. 6:20 to 6:30 Passage toward the discharge pipe I. 6: 30 to 6: 40 Entry into the discharge pipe J. 6:40 to 12:00 Passage to the point of discharge K. 12:00 to 12:08 Decrease to ambient simulating mixing and river water L. 12:08 to 12:42 total test time 12.7 min Duration of test segment (sec) 10 60 10 234 38 8 20 10 10 320 8 Organisms removed from test apparatus and placed in a 1400 ml container 34 Pressure in cm Hg reading Rapid increase 76 to 121 Rapid decrease 121 to 22 Rapid increase 22 to 141 Gradual decrease 141 to 128 Gradual increase 128 to 157 Rapid decrease 157 to 122 Rapid decrease 122 to 35 Rapid increase 35 to 94 Rapid increase 94 to 107 Gradual increase 107 to 147 Rapid decrease 147 to 76 76 6-38 Table 6-15 Estimated pressure/time profile Salem simulation compiled May 1, 1982 Test time and stage (Simulated) A. 0:00 to 0:12 Entry into water pump bell mouth B. 0:12 to 1:28 Entry into the circulation pump C. 1:28 to 1:40 Discharge from circulation pump D. 1:40 to 6:32 A distance traveled of 1300 ft with a 6 ft head loss E. 6:32 to 7:20 A drop in elevation of 12 ft 4 in F. 7:20 to 7:30 Vertical upward toward the inlet bay G. 7:30 to 7:55 Passage through the condenser H. 7:55 to 8:08 Passage toward the discharge pipe I. 8:08 to 8:20 Entry into the discharge pipe J. 8:20 to 15:00 Passage to the point of discharge K. 15:00 to 15:10 Decrease to ambient simulating mixing and river water L. 15:10 to 15:46 total test time 15.8 min Duration of test segment (sec) 12 76 12 292 48 10 25 13 12 400 10 Organisms removed from test apparatus and placed in a 1900 ml container 36 Pressure in cm Hg reading Rapid increase 76 to 121 Rapid decrease 121 to 22 Rapid increase 22 to 141 Gradual decrease 141 to 128 Gradual increase 128 to 157 Rapid decrease 157 to 122 Rapid increase 122 to 35 Rapid increase 35 to 94 Rapid increase 94 to 107 Gradual increase 107 to'l47 Rapid decrease 147 to 76 76 l J

  • Table Summary of 24-hr simulated entrainment data for weakfish.

LIFE STAGE yy ,., .. DO T t ST ACC. SALINITY AN DELTA T PRESSURE EXPOSUP.E NO. AT NO. LIVE 24 HR TYPE TEMP. (PPT) TOTH ([) CODE DURATION START AFTER HOR TALI TY (C) LENGTtt (HIN) 24 HR (PERCENT) (M"l 0 25 C1 23.J 2s.o 2.4 o. '.) 0 o.o 26 1 s 30.8 e *J 6 25 C1 23.) 20.0 2.4 o.o 0 0.0 25 20 20.0 6 ?5 c 1 2 H.O 2.4 o.o 0 J.O 1 2 7 41. 7 6 25 c 1 21. J B.O 2 * .4 :J.:i 0 o.o 13 9 30.8 5lJM 76 54 8.} 0 25 CZ 21. *J 18.0 2.4 o.o 0 6. 5 1 2 2 83.3 eJ 6 25 (2 2 3. 0 18.D 2.4 o.o 0 6.5 13 3 76.9 e:i 0 25 CZ 23.0 20.0 2.4 1.0 0 6.5 22 16 42.9 n i 25 C2 23.0 20.0 2.4

  • 5 0 6.5 21 15 28.6 SU"l 74 36 f *J 6 25 El 2 3. :J 20. Q 2.4 .5 2 6.5 29 19 32.1 8) 6 25 E 1 2 3. *) 20.J 2.4 .5 2 6.5 23 16 30.4 0\ I 51 35 w \0 BJ 0 25 EZ 23.u 20.0 2.4 11.J 2 6.5 26 14 46.2 6 c5 E 2 23.J 23. ') 2.4 11.) 2 6.5 1Q 11 42.1 45 25 EJ 25 E '<

20.0 2.4 1 a. J 0 6.5 2:1 13 43.5 25 E 3 2'.J 20.Q 2.4 11.J 0 6.5 u 17 41.4 5 30 EJ 6 25 E4 2 3. ') 20.0 2.4 1 9. J 2 6.5 21 0 100.D n 6 25 E4 23.0 20.a 2.4 n.5 2 o.S 24 2 91.7 SU" 45 2 n 25 E5 23. *J 20.0 2.4 19. J 0 6. 5 24 0 100.0 E :; 25 E5 2 0 20.0 2.4 1 9. '} 0 6.5 33 c 100.0 57 0 ii J 0 25 Xl 21. J 1 2.4 0.-J 0 .7 22 6 72. 7 E :1 25 11 23.J 1 J 2.4 J.Q ".' .7 1 2 6 50.0 12 eJ " 25 X2 2 3. J 1s.o 2.4 O.J 2 7.?. 20 10 50.0 LIFE STAGE POST LARVAE SUM

  • SUM SUM SUM .::1 E3 Xl X3 X4 0 yy M'4 DD TES r* ACC. SALINITY Table 6-16 Continued WEUFISH MEAN DEL Tl T PllESSURc**

EXPOSURE NO. AT TYPE TEMP. ( PPT) TOTAL CC> CODE DURATION START (() LENGTH {Pill'.) (MM) 80 6 25 X2 21. 0 18.0 2.4 o. Q 2 1.2 eo 6 25 X3 23.0 18.0 2.4 1 a. a 2 7.2 80 6 .25 X3 21. :J 18.0 2.4 1 o. () 2 7.2 80 6 25 X4 21.0 18.0 2.4 18.0 2 7.Z 80 6 25 X4 23.0 18.0 2.4 18.0 2 7.Z control: C2 =apparatus treatment: El= pressure only; l2 = low delta T +pressure: low delta T E4 = high delta T + oressure: ES = high delta T only. extraction pressure only: X2 = extraction pressure

  • pressure extraction pressure + experimental pressure + low T; extraction oressure + experimental pressure +

T. 20 40 18 16 34 19 18 37 545 NO. LIVE 24 HR AFTER MORTALITY 24 HR (PERCENT> 13 35.0 23 12 33.3 3 50.0 20 94.7 94.4 2 239 no pressure; l 1974 pressure regimen (see Table 6-11); 2 1978 pressure regimen (see Table 6-12). 0\ I .p. 0 -,-._.__, ...,,,.........

  • Summary of 48-hr simulated entrainment data for weakfish.

WEAKFIS!i LIFE SHGE yy ""' i:;o TE!: T

  • HC. SALINITY MEAN DELTA T NO. AT NO. LIVE 4S 11R TYP: TE "iP. (?PT) TOTAL (C) CODE DURATION ST HT AFTER MORTALITY CC) L':NGTH' (141N) 48 HR (PERCENT) (MM) " 21 ( 1 23.0 24. '.l 2.6 0.0 0 0.0 n 11 15. 4 78 6 21 C1 23.0 24.IJ 2.o 0.0 0 o. ') 1 5 14 6.7 8J 20 (1 20. *J 2 '.). 0 2. '.l o.o 0 o.o 2 28 o.o 8) 6 2J C1 2 J * .J 2J.O 2.G ().0 0 o. 0 22 22 o.o e.J 2 i) Cl 1 E. J 20. '.l 2. Cl 0.0 0 o.o 1 6 16 o.o 8*) 6 2*J c 1 18. 0 20.0 2.0 0.0 0 o.o 34 32 5.9 123 73 6 21 C2 23.0 24.0 2.6 -.3 I) 9.7 , 1 10 9.1 7S 6 21 C? 23.0 24.0 -.3 0 9.7 12 11 8.3 80 b 20 C2 13.0 20.0 2.0 1.0 0 6.5 29 26 10. 3 E*J 6 2) (2 1 " * .) 2G. J 2.0 1. 5 0 6.5 24 19 20.8 eo b 2J C2 20. *J 2]. ') 2. Cl 1.0 0 6.5 19 19 o.o 60 6 20 C2 2J.O 20.0 2. iJ 1. J 0 6.5 25 21 16.0 (l'\ 106 I t 21 ..,.. 7S 6 21 E1 23.D 2.6 -.3 1 9.7 1 t 8 27.3 78 6 <1 E1 23.J 24. :J 2.6 -.3 1 9.7 1e 13 27. 8 BJ 0 2 *) El 2 J. fJ 2J. Ci 2.0 o.o 2 6.5 26 25 3.B 80 2) E 1 2 J. '.) 20.[) 2.0 1 * .J 2 6.5 27 25 7.4 eJ 2'.l E 1 n.o 2Cl. 0 2.0 2.J 2 6.5 14 12 14.3 eci 0 2:J E1 , e. o 2a .. o 2.') 1. 5 2 6.5 17 15 11
  • 8 SUM 113 98 73 21 E 2 23.J ?4.0 2. 6 8.7 1 9.7 7 3(). () 73 6 21 E 2 i 3. *J 24 * .'j 2.6 1J. 7 1 9.7 1 2 8 33. 3 8.) 6 2-' E2 1:. J 2'J. 'J 2. ') 11
  • J 2 6.5 19 14 26.3 8*) 6 2J n 1 5. J 20.8 2.0 11. ') 2 6.5 36 31 13. 9 : +j 0 2 :* E2 2J.J 20.D 2.J 1 0. *J 2 6.5 23 23 0.() BO 2J E2 2 J. ') 20.0 2.J 11 .') 2 6.5 2J 1 5 25.0 SUM 12J 99 73 6 21 E3 23.0 24. 2.0 1 o. 7 I) 9.7 1 3 !> 53.8 73 0 21 E 2 3. *J 24. 2.6 9.7 0 Q.7 11 9 18. 2 8J t, 2*:: f3 20.Q 2J. 2. IJ 11.0 a 6.5 18 21.7 C} 0 2J E3 20 *. J 2J. l.O 11.0 .o 6. 5 22 17 22.7 n 2 :1 E3 1B.) 2J. 2. ') 11. ') 0 6.S 27 24 11.1 E3 is. J 2J. 2. IJ 11.J I) 6. 5 25 20 2G.O SU"I 121 94 Ta 6-17 Continued WEAK fl SH LIFE STAGt yy MM co To ST" ACC. SALINITY MEAN DELTA T PRESSURE**

EXPOSURE NO. OT NO. LIVE 4 8 HR TEMP. ( ppT) L. co CODE DURATION ST 4R T AFTER MORTALITY (Cl LENG 1H (MIN) 48 HR (PERCENT) (_MM) PROLARVAE 7S 0 21 E4 2 3. 'j 2 ... 14. () 1 9.7 1 2 7 41. 7 n 6 21 E4 23.0 24. '.) 2.6 13.2 1 9.7 1 6 50.0 eo 0 2J E4 1 '.) 20.0 2. ') , 8. 0 2 6.5 2) 1 2 52.0 8(J t 20 E4 2J.*o 20.0 2.Q 1 7. I) 2 6.5 1 9 11 42.1 81) 6 2) £4 1 3 *. J 2:i. c; 2. 'l 18.J 2 6.5 Z4 1:l 5e.3 80 2 C.' E4 2'J. 0 20.D 2. '.l 17 .o 2 6.5 1 Q 8 57.9 SUM 111 54 78 6 21 ES 23.0 24.0 2.6 1 o. 7 '} 9.7 13 3 76.9 78 0 21 E5 23.) 24.0 2.6 14. 7 0 9.7 6 4 33.3 8'.J 6 E5 2 J. '.! 2'.l. J 2.0 17.) 0 6.5 27 7 74.1 so 0 2) ES 2 }. '.) 2 ). ') 2.0 17. 0 0 b.5 22 7 6e.2 SJ 6 20 E5 ia.o 20.0 2.0 17.5 0 6.5 23 14 39.1 eo 6 z.j ES 1S.) 2J.O 2.0 19. 0 0 6.5 23 8 65.2 SUM 114 43 Q'\ I SUM 827 616 N * * *

  • LIFE STAGE yy I';\ DD TE Sr TYP f> HUQVAE 78 1 C1 7:, , 2 c, 0 6 r.1 7: 6 6 C1 7-:; 8 C1 70 c 8 C1 70 0 13 C1 n 6 13 C1 79 6 1 9 ( 1 79 6 1 Q C1 79 6 25 C1 79 6 25 C1 *-} 5 29 C1 5 29 C1 6 11 C1 e:; 6 11 C1 eJ 1 2 (1 8J 6 17 c 1 6 23 c 1 f.J t 23 ( 1 23 (1 EJ 23 c 1 I?: 7 3 C1 eJ 7 3 c 1 8J 7 3 ( 1 eJ 7 7 ( 1 E J 7 16 ( 1 7 1 6 CI eJ 7 1 C1 73 7: 0 7o " 6 ( 75 . 0 ( n 6 8 ( 79 0 9 c. 79 6 13 ( n e n c 7'i " 1 , c 7? n c 70 6 "< < J ( 77 25 c E::: ?Y ACC. SUINITY TEMP. (PPT) (() 21. '.) 20.Q 21
  • J 2J. 'l 20.5 2'.l. a 20. 5 20.0 22.0 19.0 22. ') 19.0 1 9. Cl 21. I) 1 9. J 21.a 1 9. a 22. 0 19. ') 22.a n.o 15.0 n.o 15.0 21. 5 23.0 21
  • 5 23.a 17. 5 22. a 17.S 2 2. i) 17. 5 22. J 1 Q. 5 2?.:) 1 ') 20.J 1 s. J 20.0 2 J. 0 20.C 2*'.l. 0 :?J.G 26. Cl , 4. 0 26. '.} , .l. (i 2t. 0 1:,. j 2 2 .. J 15.0 2 0.) 15. '.) 26.) 15. J 2 t.. J 1 5. Cl 21.J 2J. 0 21. J 2 :1 .. 0 2J.5 ?3 * .:* 2 '). 5 2*J. J 22.J 10.Q 2 2. ;J 1 Q. i) 19.) 21. I) 1 9. '.) 21. Q 19. J 22.J P.J 2 2. ') 1 , * -] 15.0 1 :;i. J 1 5. '.} 21. 5 23.J Table Continued WE HF I SH MEAN DELTA T TOTAL (() LENGTH CHM) 3.1 o. ') 3.1 o. '.) 4.9 o. 0 4. 9 O.J 2.5 a .. 'J 2.5 3.2 0.1) 3.2 a.1 4.4 o.o 4.4 o.a 7.6 0.0 7.6 o.o 2.6 a.a 2.6 a.a 9.4 O.J 9.4 O.J 9.5 a.*) , 4. o.o 1. 4 o. ') 1. 4 o. *J 1.4 a.I) 1.4 a.J o. '.l 4.o o .. o 4.6 0 ., 14.'.l a. J 1IJ.1 o. ')
o. *) 1o.1 Cl.: 3.1 -1.J 3.1 .5 4.9 .2 4.9 .7 2.5 2.3 2. 5 2.1 3.2 1. 5 3.2 1. 5 4.4 1.} 4.4 1. s 2. J 7.6 1. :* 2.6 1. 5
  • PRESSURE"" EXPOSURE NO. AT ND. LIVE 45 HP CODE OUR AT ION ST ART AFTER MORTALITY (MIN) 48 HR CPERCENrl 0 o.o 27 22 18.5 0 a. 'J 1 4 8 42.9 ') O.J 17 16 5.9 0 o.o 17 1 6 5.9 0 o. 0 i 1 4 63.6 0 O.Q 12 5 58.3 0 o.o 9 , o.o a o.o 1a 10 0.0 0 o.o 14 14 o.o a o. *J 1 5 1S o.o a a.o 11 11 o.o 0 o.o 1 2 12 0.0 a o.o 1 5 13 13.3 0 a.a 17 15 11. 8 0 a.o 1 4 14 a.a a 0.0 1 2 12 a.o *J a. I) 10 1a a.(I Q'\ 0 o. ::J 10 1J a.a I fj a.o 39 9 76.9 ""' 0 o.o 24 1 2 5a.o w 0 a.a 4'.l 32 20.(1 a o.a 47 29 38.3 0 o.o 16 10 c.o a a.o 1 3 1:? 7.7 0 J.) , 9 0.0 0 o.o 9 8 o.o D o. '.) 1Q c.o 0 :J. *) 1 5 14 6.7 I} o.o 11 11 o.o 479 I) 9.7 20 1 5 25. () '.) 9.7 17 9 52.9 0 9.7 h 13 1B.8 '.l 9.7 1 6 13 1e .8 0 6. 5 1' 4 60.0 0 6.5 9 1 88.9 0 6.5 1'J 10 ().() lJ 6.5 11 11 o.o 0 6. 5 n 16 11.1 0 6.5 1 5 1 5 o.o D 6.5 11 11 o.o 0 6.5 11 11 o.c J 6.5 1 5 14 6.7 LIFE STAGE yy ,..'1 DO TEST* TYPE DQ5TLARVAE eJ 5 . 2; C2 eJ 6 11 C2 EJ 6 11 C2 BJ 6 1 2 C2 n 6 17 C2 8) 6 23 CZ 8} 6 23 ( 2 80 b 23 CZ 80 b 23 C2 80 7 3 C2 80 7 3 C2 80 7 3 C2 8') 7 7 C2 ea 7 16 (2 eJ 7 16 C2 e.J 7 16 C2 SU"I 7S 6 1 E1 78 2 u B 6 6 E1 6 6 r1 n 3 E 1 7'I t 8 E 1 7Y 6 13 El n 6 13 El 79 0 1Q E 1 n 6 H E 1 79 0 25 E 1 n b E 1 3] 5 2 'I El f *J 5 z; E 1 eJ ,. 11 El n 11 E1 E) 6 23 E1 EJ 6 23 El eJ 6 23 E1 0 23 E 1 EJ 7 3 E1 7 3 E1 ? 7 E1 .: 7 10 El C' *. J 7 15 E 1 SU"I
  • ACC. SALINITY TEMP. CPPT) (() 21. 5 23.0 1?. 5 2?.o 17. 5 22.J 17. 5 22.0 1 9. 5 2 2. '.) 1 8. 0 20.IJ 1 s. 0 2 ').) 2'J. 0 20.0 2J.J 20.Q 26.0 14.0 2 5. '.l 14. 0 26.0 14. 0 2 2. ') 1 5. ) 2 6. :J 15.0 20.Cl 15.0 26.0 15.0 21.0 21J. J 21. J 2a.o 2 Cl. 5 20 .. 5 2oJ. G 22. ') n. o 22.) P. C 19.i) 21. 0 19.J 21.G 1 Q. '] 2 2. *J 19.') 22.J P.J 1 5 *. ; P.J , 5 .. : 21. 5 23 .. :. 21. 5 2 3. C* 17. 5 :? 2. :* 17. 5 n.:: n.1 20. '.' l'l.) 2).) 2 '.).Cl 2:;.: 2 J.) 2:: .. J 26.Q 14. ') 2 6 * .J H.J 2 2.:: 1 5. *'.' 26. J 15. Q 2 e. J 1 5. Table 6-17 Continued WEAKFISH 11EAN DELTA T TOTAL (() LENGTH 2.6
  • 5 9.4 o. a 9.4
  • 5 9.5 'i. D 14. 3 J. J 1. 4 1. 0 1.4 1.5 1.4 2.0 1. 4 4.6 0.0 4.6 o.o 4.6 o.o 14. '.) o.o 10.1 o.o 10.1 0 n 10.1 O.u 3.1
  • 5 3.1 ).0 .7 4.9 .2 2. 5 1. 5 2.5 2 .. Q 3.2 1. 5 3.2 1. J 4.4 ). ') 4.4 O.J 7.o 1.) 7.6 1. *'.' 2 .. 6
  • 5 2.6
  • 5 '1.4
  • 5 'J.4 -.5 1.4 2. *J 1.4 1. *) 1. 4 1.5 1. 4 o. ,) -.5 4.6 (). ') 1 4. Cl 0.0 1!}.1 1.0 1'.l.1 J.*'.J PRESSUR!:'" EXPOSURE NO. AT NO. LIVE HR CODE DURA TIOlll STHT AFTER MORTAL rTY (MIH) 48 HR (PERCENT) 0 6.5 1 5 15 (l.(l 0 6.5 13 13 o.o 0 6.5 12 1 2 Q.(' 0 6.5 1 2 1 2 o.c 0 6.5 1 2 1 0 H.7 0 6.5 35 1 6 54.3 0 6.5 16 4 75.0 0 6.5 26 13 SC.Cl '.) 6.5 66 43 34.8 0 6.5 14 14 o.o 0 6.5 13 13 o.o 0 6.5 14 13 7 .1 '.) 6.5 8 a.o Q 6.5 9 8 11 .1 0 6.5 9 9 o.o 0 6.5 13 1 2 7.7 466 357 J\ 1 9.7 21 19 9.5 I P-1 9.7 13 3 76.9 P-1 9.7 1 5 12 zc.o 1 9.7 16 13 H.S 2 6.5 9 6 33.3 2 6.5 12 8 33. 3 '2 6.5 Q 9 c. Q 2 6. 5 7 7 c. (' 2 6.5 1 ') 10 c. () 2 6.5 11 11 o. (\ 2 6.5 11 Q H.2 2 6.5 13 12 7.7 2 6.5 14 1 3 7.1 2 6.5 16 14 12. 5 2 6. 5 13 13 c:.o 2 6. 5 13 13 ('. 0 2 6.5 4J 11 72. 5 2 6.5 21 q 57.1 2 6.5 5g 33 43.1 2 6.5 61 35 42.6 2 6.5 16 15 6.3 2 5 14 13 7.1 2 6.5 7 6 14. 3 2 6.5 1 1 5 6.3 2 6.5 1 2 11 e.3 -4 4 32'.l *
  • Tabl.7
  • Continued
  • .* :I WEAKFISH LIFE STAGE yy , ... , DD T" ACC. SALIN! TT HEAN DELTA T PRESSURE."EXPDSURE

!<'.). AT NO. LIVE 48 HR TYPE TE MP. ( PPT l TOTAL (C) COuE DURA TIO'"l ST AP.T AFTEP. MORTALITY cc) LENGTH OHN) 48 HR CPERCENTl (MM) POSTLARYH 7?. 6 1 E2 21. J 20.0 3.1 1 o. 7 1 9.7 21 7 6e. 7 73 6 2 t. 21.) 20. r:J 3.1 9.0 1 9.7 1 9 6 6e.4 73 e 6 E2 2 '.). 5 ZJ. ,) 4.9 9.7 1 9.7 B 1 2 25.0 1e 6 6 E 2 2J.S 2r:J. '.i 4.'I 1o.5 1 9.7 1 6 13 18.8 79 6 B E 2 2 2. ,J 19. 0 2.5 1o.5 2 6.5 17 5 70.6 79 6 8 2 J 19. 0 2.5 11 * ') 2 6.5 1 4 6 57 .1 79 6 13 E 2 19.J 21. '.) 3.2 11.0 2 6.5 11 8 27.3 7'J 6 13 E2 1 9 * .J 21. 0 3.2 10.5 2 6.5 14 12 14.3 79 6 19 E2 1Q.'.l 22. Cl 4.4 1 o. 5 2 6.5 1 2 12 o.o n 6 1 9 E2 1 21 22.0 4.4 1a.0 2 6.5 14 14 a.a 79 6 25 E2 19.::; 15.0 7.6 11. 0 2 6.5 9 7 22.2 79 6 25 E2 15.a 7.6 10.D 2 6.5 13 13 (l. 0 8J 5 29 E? 21. 5 23.0 2.6 1 o. 5 2 6.5 17 13 23.5 BO 5 29 2,. 5 2 3. *J 2.6 10.5 2 6.5 15 9 40. (.' 8J 6 11 E2 1 7. 5 22.Q 9.4 1o.5 2 6.S 1 2 1 2 o.a BJ 6 11 E2 17. 5 22.f} 9.4 9.5 2 6.5 14 14 o.o Q"\ BJ 6 23 E2 18. J 20.0 1.4 10. D 2 6.5 25 B 66.0 I p. EJ 0 23 E 2 n .. j 2J.O 1. 4 11.0 2 6.5 4o 23 50.0 \.J1 BD 6 23 E2 20.J 2Cr.G 1.4 10.5 2 6.5 41 17 58.5 e:* , 23 E2 2 *J.-} 20. *J 1. 4 11. a 2 6.5 53 36 37 .9 EJ 7 3 E 2 2 ,_ J 14.:' 4.6 9.5 2 6.5 1 2 11 8.3 eJ 7 ! E2 26.J 14. f} 4.o 9.5 2 6.5 1 4 14 o.o f:J 7 1o f2 20.) 15.0 10.1 1 o. ,J 2 6. 5 14 9 35.7 n 7 1 2t.J 15. 'J 10.1 1o.0 2 6.5 1 4 14 o.o suw 295 7S 6 1 E3 21.) 2J.O 3.1 11.0 a 2J 4 80.0 7: 2 E3 21

  • J
3. 1 11
  • J 0 Q.7 1 4 3 78.6 . 6 E3 2 *;. 2J.) 4.9 9.9 ') 9.7 1:i 13 18. e 73 t. 6 2). 5 2 J. *) 4.9 1 *j. 7 ') 9.7 B 1 2 33.3 70 5 2::. *: 19. ') ? .. 5 1 0. J 0 6. 5 1) 4 60.C 7 0 " f3 ??.*:: 10.J 2.5 1 o. 5 J 6.5 1 2 2 70 0 1 3 F 1 0. J 21. 1 3.2 1 '.J. 5 Q 6.5 9 9 o.c 7 i c 13 E" 1 ., ."l y., 21. 8 3.2 1a.3 J 6.5 1J 4 60.C 7'1 c 1 Q E3 n.: 22. *) 4.4 11. *J 0 6.5 16 16 c.o n 19 E 3 1 ".} 22. ') 4.4 1 'l. D () 6.S 22 22 o.c n = 25 E3 1 5. ') 7.6 1o.0 IJ 6.5 9 9 o. 0 n 25 E3 P.; 15.0 7. '5 11 * 'J 0 6.5 1 2 11 8.3 < 29 E3 21. 5 23.0 2.6 11.0 0 6.5 16 12 25. () '1 J 5 20 E3 21. 5 23.J 2.6 1 '1. 5 0 6.5 1 5 8 46.7 ?) 6 11 E3 1 7. 5 22. J 9.4 1 D. 5 0 6.5 n 13 o.o e: c 11 E3 17. 5 22.0 9.4 1J.5 0 6.5 12 12 o.o e 23 E 3 1 2*1 1 1. 4 11. IJ c 6.5 13 50.0 E} 23 E 3 1 3. : 2J.O 1. 4 11. '.l .o 6. 5 25 8 6e.o Table .6-17 Continued LIFE STAGE TT l'.M DD TEST* ACC. SALi tHT f MEAN DELTA T PRESSURE'

.. EXPOSURE NO. AT t>O. LIYE 48 HR TYPE TE '4P. (PPT) TOTAL cc> COD!: DURATION ST ART AFTFR MORTALITY CC> LENGTH (l'!Nl 48 HR (PERCENT) (MM) POSTURVAE BJ 0 23 E 2*J. 8 2'.l.0 1.4 11 -J 0 6.5 2Q 11 62.1 8.0 23 E3 2]. *J 0 1.4 11.:) 0 6.5 47 1 4 7C.2 7 3 E3 2 6. () 14.0 4.6 10. *} 0 6.5 1 5 8 46.7 f.J 7 3 E3 26.J 14 .o 4.6 1 0. '.) 0 6.5 20 1 2 40.C eJ 7 1C u 15.0 1). 1 1 o. J '.) 6.5 1 5 14 6.7 BD 7 1 6 E3 2 0. I) 1 5. I) 10.1 1o.0 0 6.5 1 4 13 7 .1 SUM 415 247 78 6 1 E4 21. 0 2/). 0 3.1 14. 2 1 9.7 23 9 60.9 73 t 2 E4 21.0 20.0 3.1 13. 7 1 9.7 1 e 6 66.7 73 0 6 E4 2:J. 5 20.0 4.Q 14. 2 1 9.7 16 12 25.0 78 e 6 E4 20. 5 20.0 4.9 n. e 1 9.7 17 17 o.o n 0 s E4 2 2. 0 19. o 2.5 17. 0 2 6.5 11 0 1 oo.o 79 8 c4 22. '.l 19. 0 2.5 17. ') 2 6.5 1 2 0 100.0 7'f 0 1 ! E4 19. 0 21. 0 3.2 17.') 2 6.5 13 11 15.4 O'\ 70 0 13 E4 19.0 21. t) 3.2 15.'.l 2 6.5 12 8 33.3 I 7Y 1 9 E4 19.J 22.0 4.4 18.0 2 6.5 1 5 6 60.0 +:--n n E" 19.0 ,, 4.4 17.'.J 2 6.5 1 5 1 93.3 O'\ -'-...... n 6 25 f: 4 1 Q. '.l 15.0 7.6 18.0 2 6.5 11 3 72. 7 n 0 25 E4 P.8 1 5.:) 7.6 1 3. J 2 6.5 1 4 1 92. 0 EJ s 29 E4 21

  • 5 23. !) 2. 13.5 2 6.5 B 6 66.7 eJ 5 29 E4 21. 5 23.0 2.6 ia. 5 2 6.5 19 7 63.2 eJ t 11 E4 17. 5 22. 0 9.4 17. s 2 6.5 1 2 11 8.3 EJ c , 1 E4 17. 5 22.0 13. 5 2 6.5 1 2 5 58.3 s 6 25 E4 19.J 20. '.) 1. 4 1 9. 5 2 6.5 16 7 56.3 e :1 23 E4 2J.J 2*J. 0 1
  • 4 1 0. J 2 6. 5 59 10 82.B s:; 0 '3 E4 13.0 2J.0 1. 4 2 6.5 10 72. 2 " , ' E* z,j. J 2). 0 1. 4 19.0 2 6.5 31) 7 71:. 7 < -EJ 7 3 E4 26. J 4.6 19 * .J 2 6.5 1 5 0 1oc.0 ej 7 t 4 26.J 14.0 1?.0 2 6.5 1 4 0 1 a n 7 10 E4 2:; ... J 15.0 1 J. 1 1 6. J 2 6.5 17 0 1JG.0 :; 7 1 t E 4 £'J. J 15.0 10.1 1 =* 2 6.5 , 3 IJ 100. 0 SU'1 437 137 7l 0 1 E 5 21. *) 2J *. J 3.1 11.9 0 9.7 n 9 57.Q 7S " 2 ES 2,. J 20.0 3.1 13.*J 8 9.7 1<' 3 B 1. 3 B E5 2J.5 20.0 4.9 13. z (l 9.7 H 12 36.e 7g " 0 E5 2 '.l. 5 2'l. J 4." 14. I) 0 9.7 1 ;> 11 42.1 7-:, e s E 5 2 2. 'J 19.0 2.5 17. 5 0 6.5 11 0 100.0 7;> l 3 E5 2 ::! *. J n.o 2.5 13.) 0 6.5 10 0 100.0 n t n ES 1 0. *J 21. IJ 3.Z 1?.0 0 6.5 13 a no.a 7" , n E5 19.) 21. J 3.2 n.2 0 6.5 , 1 2 81.8 7 :i e 1 0 ES 1 ;>.,) 22.0 4.4 1 7 .* *] a 6.5 13 6 53.8 7'I e 19 ES 1 -4.; 22.Q 4.4 1 s. :> 0 6.5 25 8 68.0 * * -'-----

LIFE STAGE yy l'l"I DD HST" TYPE PCSTLARVAE 79 6 f5 H 6 (') ES n 5 29 ES E} 5 2? E 5 e, 6 11 E 5 8J 6 11 E 5 n 6 23 t5 e,j 6 23 ES e ;J 6 23 E 5 8) 6 23 ES 80 7 3 ES eo 7 3 ES so 7 16 ES eJ 7 1 6 ES SU>! 8J 6 12 x 1 eJ 6 17 X1 &J 7 3 X1 7 7 X1 eJ 7 16 Y1 SU" 1 2 X2 0 17 )2 7 -x? f,j 7 7 xz E: ? 1 0 xz SU"' 1 2 X3 1 7 x 7 3 X3 7 7 u .. -*' 7 1 e X3 suw 0 1 2 X.4 1 7 x" ., 3 xi. 7 7 7 , 0 X4 SU": SU 111 ACC. SALfNITT Tf'IP. ( PFT) (CJ 1 9. 0 15.0 1 Q. ') 15. J 21. 5 2 3. I) 21

  • 5 23.:; 17. 5
17. 5 22.0 13. Q 2). ) 2J.) 2:J.Q 20.) 20.J 1 *J 20.0 2 6. !) 14.J 26. ') 14. *) 20.:i 15. ') 26. 'l 15.0 17. 5 22. 1 9. 5 2?. 26.0 14. ;: 2.) 1 5. ?6.) 15. 1?. 5 22 .. 1 Q. 5 22. 2 J 1 *. 22. J 15. 25. ') 1 5. 1?. 5 2!. P.5 22 .. 2 J 1.:.. 2 J 15. 2 6. J 15. 17.5 2 2. 19. 5 "' L-* 2 ':). *J ,._ 2 2. :* 1 5. 2 5. ) 1 5. Tabl _ Continued WEHFISH MEAN DEL TA T TOTAL (Cl LENGTH om> 7.6 1B.0 7.o 17 .D 2.6 1 s. s 2.6 19. 5 9.4 1 9.:) 9.4 1S. 0 1
  • 4 17.'J 1.4 19.0 1.4 17 .o 1. 4 19.0 4.6 16.0 4.6 18.0 10. 1 17.Cl 1'l.1 18. I) 9.5 o.o 1L8 o.o 4.6 :J. 0 14.0 Q.I) 1'J.1 o.o Q.5 *J. 0 14. O.Cl 4.6 o.o 1 4.-) ').'.) 1G.1 o.o 9.5 1J.0 14.S 1 o. c 4.6 lC!. ') 14.0 1 '). J 10.1 1 o. 'J 9.5 is. J 14.8 1S.') 4. 6 13.) 14.J 1 8. J 10.1 1 8. (o ---------._.....
  • PRESSURE""EXPOSURE N'.l. NO. LIVE 48 liR CODE DUR A TIO"i STHT AFTER MORTALITY (MIN) 48 HR (PERCENT>

D 6.5 11 0 1 oo.o ') 6.5 12 5 58.3 0 6.5 17 6 64.7 I) 6. 5 0 1 IJO. (' D 6. 5 n 2 S3.3 0 6.5 11 1 90.9 0 6.5 45 1 2 73. 3 0 6. 5 45 0 1 oo.o 0 6.5 56 12 78.6 0 6.5 23 1 95.7 Q 6.5 11 0 1 oo.o 0 6. 11 0 100.0 0 6.5 15 0 1JO.O 0 6.5 1 5 0 1')('.0 89 0 .7 9 9 o.o °' 0 .7 11 10 9.1 I 0 .7 12 11 8.3 -...J 0 .7 7 12.S 0 .7 11 10 9.1 51 47 2 7.2 1 'J 1J o.o 2 7. 2 13 13 o.o 2 7.2 11 9 18. 2 2 7.2 1 :' s ?O. C' 2 7.2 9 8 0.0 2 7. 2 11 11 G.O 2 7.2 11 1-J 9.1 2 7.2 7 6 14.3 2 7.2 , B o.o 2 7.2 B 1 57.5 45 36 2 7.2 , ? 6 SC. C' 2 7.2 11 0 100.0 2 7.2 1 5 ') 1 JO.O 2 7.2 0 1 *JC'. G 2 7.2 s 0 1 JO. 0 5 6 330'. 1Q6J Table 6-17 Continued WEAKFISH LI FE S T.<GE yy l'M !JD T: 5 T" ACC. SALINITY HEAN DELTA T PRE SS URE** E XPOSUH NO. AT NO. LIVE 48 HR TYPE (PPT) TOTAL (() C:JOE DURATION STAU AFTER HORT ALI TY cc) LENGTri OIINl 48 HR (PERCENT) (HM) B C1 1Q. j 1 *J 17. B O.J 0 0.0 9 9 o.o C1 1 9. *) 1 5.) 17. B o.o 0 o.o 1J 10 o.o 1 9 19 1e 5 C2 19.) 15. '.l 17.8 1. 7 0 9.7 10 9 1 o.o 78 s C2 19. j 15.0 17.S 0 9.7 10 10 o.o 2') 19 78 5 E1 1 9.J 15.0 17. B 2.a 1 9.7 10 1 !) o.o 73 E1 1 9. !) 15.0 17. 8 1.7 1 9.7 10 10 o.o SU'4 2J 20 CJ' 78 s E2 19.J 1 5. IJ 17. 8 1 O.J 9.7 s 8 o.o I 7S E2 19. 0 15.J 17.8 9.7 9.7 9 9 o.o .,.. co SU'4 17 17 73 E3 19.Cl 1 5. () 17. 8 1a.1 0 9.7 11 10 9.1 B E3 19. 0 15. u 11.e 10.7 0 9.7 HJ 8 20.0 SU1'1 21 18 7?. s 19.) 15.0 17. 8 14. 7 9.7 1J 10 e.o 7" 3 E4 1 ". 'J 15.Q 17. B 14. 7 9.7 10 10 0.0 2) 20 73 P.J 1s.o 17. 1 4. J -9.7 9 e 11.1 7o ES P.J 15.: 17. e 14. Q 9.7 1' 9 1 D. C 1'I 17 136 13*) * * *

  • Table 6-17 Continued WEAKFISH LIFE STAGE yy M-: DD TEST* AL C. SALINITY HEAN DELTA T PRESSURE""EXPOSURE NO. AT N'l. LIVE 4S HR TYP: TEMP. (PPT) TOTAL (Cl CODE DURATION Sl ART AFTER MORTALITY

(() LENGTH OHNl 46 HR (PERCENT) ( '1M) YOUN\; 7 3 8 7 Cl 2c .. s 1t .o 26.5 o.a 0 o.o 11 1 o.o 7: e 7 Cl

16. :) 2o.5 o.) 0 a. J 1 J 1 '.) 0.0 7S 6 18 C1 1 9.) 1 5. J 33.5 '.J. J '.J o. a 5 5 0.0 78 8 H C1 1 9. ,) 15.0 3 5 ().() J 0.0 5 5 o.o 79 7 2 ( 1 2a.0 16. I) 18.0 G.J 0 o.o 10 10 o. 0 ;9 7 2 Cl 20.0 16.0 1 6. 9 0.0 0 a.a 10 10 o.o 80 7 23 Cl 23.) 20.'J 22.3 O.'J 0 o.o 9 9 o.o .) 7 23 Cl 20.0 22.3 c .. J D o.o 6 6 o.o B:J 7 23 Cl 20 * .J 22.3 0.0 () o. J 6 6 o.o SJ 7 28 Cl 3') .J 26.0 31. 3 O.J 0 o.o s 5 o.o n 7 2 3 Cl 31. J 26.0 31.3 D. J 0 o.o s 5 o.o 8.J 7 29 Cl 3 J. 0 26. ,, 31.3 Q.J 0 o. ') 5 5 0.0 87 67 73 a 7 t2 2-C.5 26.5 .5 0 9.7 10 10 o.o ()'\ 5 7 C? 2 '.!. 5 1 6. *) 26.5 .5 0 9.7 1J 10 o.o I 79 s 1's C2 10.;) 15.0 33.S .3 '.l 9.7 5 s o.o B 3 1 C2 19. 0 1 5. 0 33.S 1.J 0 9.7 s 5 o.o ..., 79 7 2 C2 2*). 0 1 *. J 18.9 (). J 0 6.5 1 J 10 0.0 n 7 2 (2 2*J. *J B.'J 18.Q .5 Q 6.5 10 10 (\.0 eJ 7 23 ( 2 2 5. ') 20. *J 22.3 a Q 9 o.o eJ ? 23 c::

2J.J 22.3 -.5 'J 6.5 0 6 o.o 7 23 C? 2 g * .J 2.J.O 22.3 -1. ') '.) 6 6 c.o 8} 7 23 c:? 3j.J 2o. *:; 31.3 -1.'J 0 6.5 5 5 o.o E':! 7 ZS 3 J. 26.:: -.5 Q I:. 5 5 0 100.0 e 7 :? (2 3(1. 0 26. fJ 31. 3 '.!. J (l 6.5 5 2 60.0 SU!'! 86 78 7 'l 7 ::1 2 .J. 5 ,1,. 2 0. 5 .1 , o.7 3 8 o.o 7:; .; 7 u 2 :*. 5 1 6. c 20.s

  • 5 1 ** 7 9 9 o.c B 8 10 E 1 1 9.-) 15.0 33.S .7 1 9.7 5 5 c.o 7:; B 1 e fl 19. J 15.0 33.5 .6 1 '*? 5 5 c.o 7' 7 2 E 1 2 '.1. J 1 0 *. ) 18.9 ()_ J 2 1') 1 J o.o 7' 7 2 E 1 2 J. O 10.0 1 8. 9
  • s 2 6.5 1 *J 1 'J 0.0 7 3 E 1
20. ') 22.3 -1.J 2 6.5 s 3 40.0 n 7 3 E 1 23.) 2J.O 22.3 -1.J 2 6.5 6 6 o.o E.O 7 , E 1 30 .. 'J
31. 3 -1.J 2 6. 5 5 2 60.0 *J 7 =1 0 26.J 31. 3 -1.) 2 6.5 s J 100.c E J 7 'I E1 3*'.). J 26 .. 0 31.3 '.J. J 2 6. 5 5 5 o.o 73 63 7 0 .. 7 = ? 2 *}. s 1 6. *] 26.5 1 =** J 1 9.7 1 *J 1J o.o LIFt STAGE YT MM UD T" 4CC ..

TYPE l f "p. (PPT) ([) YOUNG B 7 E2 20.5 B.O 79 0 15 E ::! 1 9. *J 1 5. (j 78 3 B E2 1 9. *J 15. (! 79 7 2 EZ 2 J. ') 16.0 7'1 7 2 £2 2J. J 8C1 7 23 E 2 2 3. '.l 2J. I) eo 7 23 u 2'.l. J BO 7 28 E2 3 0. J 26.0 80 7 20 E2 3J.J 26.0 SUP'! 78 7 E3 2 '.'. 5 16. 0 B s 7 n 2c.5 16.0 73 s 1 g E3 n.'J 15.0 79 3 1 '! £3 1 **. ) 15.0 79 7 2 E3 2 '. '.J H.C' 79 7 2 E3 2 J. J , 'J. J BJ 7 23 E3 2 5. *J 20.*J 8J 7 23 E3 2;.o 2*). J e :J 7 E3 30.) BO 7 23 E3 3).J 2?. (' suw 78 5 7 E 4 <

  • s 1 e. 73 s 7 tit 2 .5 16. 7S 1 f4 1 .'.l 1 5. 73 s 13 E4 1 .*J 1 5. 79 7 , E4 ' * .:1 , 0. 7'I 7 2 F;, 2
  • J , :, .. EJ 7 23 E;, 2 .J 2'.l. t: -2:! E; 2
  • J 2*J .. 80 7 ?C EI. 3 . , eJ 7 25 H : . -25. s \J"' 7 :: 7 t 5 2
  • 5 H. 7 s 7 2
  • 5 1 t. 7 5 1 3 1
  • J 15. 7 1 ES 1 , , ) .
  • J 7 7 2 E 5 2 .J 1 7 7 2 E 5 2
  • 1 E 7 23 ES 2 .. ') . 7 -* (. t5 " . *] 2 *
  • Table 6-17 Continued WEAKFISH M.E AN DELTA T TOTAL (() LENG Ht (HM) 26.5 n.a 33.5 1'J. 3 3 3. 5 10. 3 1 8. 9 18. 5 18. 9 10.5 22.3 11. 0 22.3 1 J.;) 31.3 n.o 31. 3 1 o. J 26.5 10.J 26.S 10.5 33.5 10.4 33.5 1 IJ. 3 19.9 1o.0 , 8. 9 10. 5 22.3 11. '.l 22.3 9.0 31.3 1 o. *J 31.3 10.5 26.5 14. 3 26.S 1 4. J 33.5 1 4. 3 33.5 14.3 B.9 19.J 18.9 18.J 22.3 2 D. 1 2 2. 3 2). 5 31.3 1e. J 31. 3 1*.) 26. s 13. s 33.5 14."5 33.S 1 4. 3 13. Q B.5 B.'1 1 a. J 2.2. 2C'. J 2 2 .. ' 1 s.]
  • PRESSURE""EXPOSURE CODE DURATION CMINl J 1 9.7 1 9.7 1 9.7 2 6.5 2 6.5 2 6.5 2 6. 5 2 6.5 2 6.S 0 9.7 0 9.7 0 9.7 0 9.7 0 6.5 0 6.5 0 6.5 0 6.5 0 6.5 0 6. s 1 9.7 1 9.7 1 9.7 1 '1.7 2 o.S 2 6.5 2 6.5 2 6.5 2 !>. 5 2 5 0 9. 7 0 9.7 *) 9.7 0 9.7 0 6.5 0 6.5 0 6.5 0 6.5 NO. AT NO. LIVE 48 HR 5 T ART AFTER MORTALITY 48 (PERCENT) 1 '.l 10 0.0 5 5 o.o 5 5 o.o 1CI n 0.0 11 11 o.o 6 2 66.7 5 2 60.0 5 0 100.0 5 0 100. 0 72 55 10 9 1C.O 1 *) 4 60.0 5 5 0.0 5 5 o.o 11 11 o.o 11) 10 o.o CJ\ 5 1 80.0 I 6 2 66.7 lJ1 5 1 80.0 0 s 0 1 '.lO. D 72 1 'J 5 50.0 10 5 50.0 5 5 c.o 5 5 o.o 1 2 3 75.0 1 J 0 1'.lC.0 6 0 1'.lC.0 0 1'JO.0 5 '} 110.0 4 .J 10('.0 73 23 11) 10 0.0 10 5 sc.c *5 0 1 oo.o s 4 20.0 1 J 1 9().0 1-J 0 nc.o Q 100. c 6 0 no.a * .._.

LIFE STAGE YOUNG SUH Continued yy H'1 DD TEST" ACC. SALINITY HEAN DELTA T PRESSURE""EXPOSURE TYPE TEMP. (ppT) TOTAL (() CODE DURATION (() LENGTH (Miii) (MM) 80 7 28 E5 30.J 26.0 31. 3 18. 0 0 6.5 80 7 28 E5 3o.a 26.0 31. 3 1 8. I) a 6.5 SUM 8'.l 7 23 X1 28.Q 20.0 22.3 o.o 0 .7 BO 7 29 X1 30.0 26.0 31. 3 o.o 0 .1 SUM eJ 7 23 X2 28.0 20.D 22.3 o.o 2 7.2 80 7 29 X2 30.Q 26.0 31. 3 o.o 2 7.2 SUM 80 7 23 X3 2!1.0 20.0 22.3 1o.0 2 7.2 8] 7 29 X3 3'). J 26.0 31. 3 1 o. :J 2 7.2 SUH 8.J 7 23 X4 2'8. *J 20.0 22. 3 H.O 2 7.2 8!) 7 29 X4 30.;) 26.0 31.3 18. 0 2 7.2 su ..

  • Cl
  • control C2 = apparatus treatment; El = pressure only; E2 = low delta T + pressure; E3 low de! a T only; E4 = high delta T + pressure; ES = high delta T only. Xl extract on pressure only; X2 = extraction pressure + experimental pressure regimen; X3 extract on pressure + experimental pressure + low delta T; X4 extract 6n pressure + experimental pressure + high delta T. NIJ. AT NO. LIVE ST ART AFTER 48 HR 5 0 5 0 72 20 9 9 s 5 14 14 7 7 5 5 12 12 8 7 5 0 13 7 8 a 4 0 12 0 586 407 **o no pressure; l = 1974 pressure regimen (see Table 6-11); 2 = 1978 pressure regimen {see Table 6-12). 48 HR MORTALITY 100.0 100.0 o.o o.o o.o 0.0 12.5 1 oo.o a-. I V1 I-' 1 oo.o 100.0 Table 6-18 Summary of 96-hr simulated entrainment data for weakfisl1.

llEHFISH LIFE SHGE YT CD TEST" ACC. MEAN DELTA T PRF.SSURE'"£XPOSURE NO. AT NO. LIVE 96 HR TTPE ( PPT) TOTAL (C) CODE OUR AT ION START AFTER MORHL !TT (C) LENGTH (HIN) 96 HR (PfRCENTl (MM) PCS TL ARVA E t 1 0 22 ( 1 24.S 22.0 23.6 J. ') 0 o.o 9 c.o Pl 0 23 Cl 24.J 24.0 1

  • 9 (). J ') o.o 23 1 5 34.8 e1 0 23 (1 24.:; 24. *J 1. Q O.J 0 o. *) 10 16 E1 :, 3 *"] ( 1 H.J n.J J. '.l 0 o.o 3!) 27 10.0 E 1 6 E c 1 1 19.0 5.9 o. J 0 J.O 23 20 13.C Bl 7 1 Cl 1 6. 0 2J.O 4.5 0 J.O 2) 17 15.0 E 1 7 1 Cl 16. 0 20.D 4.5 O.D () o.o B 18 o.o e1 7 16 Cl ze.o 18.D 22.0 0.0 0 o. *) 5 37.5 El 7 16 Cl 28.0 1S.O 22.0 o.o 0 :J. 0 g 7 e2 7 1 2 Cl 2 5. J 20.J 17.7 o.J 0 o.o 5 2 60.() t 2 7 1? C1 2S.O 21.0 15.4 D.J 0 :i.o 14 8 42.9 E2 7 19 Cl 28.0 21. 0 15.4 0.0 0 J.O 17 8 52.9 82 7 Cl 26 .*J 2'.l. *J 23.0 ",. .. .., D o.o 7 4 42.9 2C1 156 e1 e 22 C:? 24.5 J 23.6 1.J 0 6.5 9 9 0.() 0\ I El .-s. ', < J C2 1
  • 9 ' u. , !) 6.5 25 15 40.0 VI El t 23 (2 2 ** a t c; 1.9 .5 [) 6.5 29 12 58.6 N Sl 6 3: c 13.'.l 1 0 *. ) 5.9 1.0 0 6.5 23 18 21. 7 81 t 3 :. C2 n.J 5.9 2.) D 6.S "s 25 o.o 31 7 1 C2 16.Q 20.J 4.5 2.5 [I 6.5 n 22 (). 0 e 1 7 1 C2 1 J lJ.J 4.5 1.') 0 6.5 13 11 15.4 !:1 7 , :

1 3 .. 0 22.0 0.:; Q 6.5 g 6 25.Q E 1 7 1 C2 25.J 1'3. 0 22.0 Q.J 0 6.5 ::> 1.:JG.O ? 1 9 C2 .. J 21. J 1 s. 4 2.) 0 15. 8 11 4 63.6 7 19 C? 2: .. j 21. J 1 5. 4 1.J Q g 5 37.5 7 ?:. u 2 c. ') 2*). J 2 3 .. 0 J.J Q 1 5. 8 7 6 14.3 , 8 133 ,.

  • I t ;2 El 24.5 22.)

1.: 2 6. 5 B 6 25. 0 E1 : El 2 .... J 2 .. , -,

  • 9 C.J 2 6.5 3 'J 19 36.7 1 0 23 El 24 .. 'J '. -.:-. ...... 1. 9
  • 5 2 6. 5 22 7 6e.2 E 1 7
  • E 1 1:.) 1 9. 8 5.9 1.) 2 6.5 27 27 o.o £1 3 J f1 1'5. '.) 1-i .. 0 5.9 1. :' 2 6.5 27 26 3.7 C1 7 1 1 , -J 28.0 4.5 2 6.5 2'.l 20 a.a e1 7 1 El b.} 2 J .. *J 4.5 , . ':' 2 6.5 B 1 8 0.0 E 1 . i E 1 2 s.: 19. 0 22.0 ::. ] 2 6. 5 7 5 28.6 ? 1, El 29.J 1 C* 22. ') -.5 2 6.5 8 s 37 .5 Sl.J"" 1 t.? 133 f I , 23 f?. 24. j 2.:..: 1.9 2 6.5 24 12 sc.o ei c ?3 f 2 2 't. J 24.J 1.9 , :
  • 5 2 6.5 23 1 2 47.8 *

,------* Continued >1EAKFISH LIFE STAGE n "" nsr* ACC. SAl.INilT 'IEAN DEL TA T PRESSURE". EXPOSURE NO. AT NO. LIVE 96 HR TYPE Tf 'IP. (PPTJ TOTAL co CODE OURATIO"I ST ART AFTf R MORTALITY (CJ LENGTH (MIN> . 96 HR (PE RC ENT> ('IM) POSTLARVAE 81 6 !O E 2 , 0 19. J 5.9 11). 5 2 6.5 25 24 4.0 e1 6 30 E2 13.J 1Y.: 5.9 1a.0 2 6.5 2S 22 12.0 81 1 1 E2 ie. 0 2.). 4.5 11.1) 2 6.5 17 16 5.9 e1 7 1 E 2 1 5. '.) 2 J. ) 4.5 11. 5 2 I:. 5 1 9 19 o.o 81 7 1o E2 2 9. ) io. 22.') 1J.5 2 6. 5 9 2 75.0 e1 7 16 E2 1 s. :* 22.*) 11. () 2 .6. 5 e 1 5 SU"1 149 108 e1 23 E3 24 *. J 24.0 1.9 1 o. 5 0 6.5 29 11 60.7 81 6 23 E3 24.Q 24 .o 1. 9 1a.5 0 6.5 26 8 69.2 e1 6 3J E3 1 :J 5.9 11.0 a 6.5 23 20 13. () e 1 I> 3J E3 13.J 19. J 5.9 11.0 0 6.5 26 24 7.7 81 7 1 E3 H.'.) 2J.' 4.5 11.a D 6.5 10 16 15.8 81 7 1 E3 1 6. D 2 j. ) 4.5 11.5 0 6.5 19 1 8 5.3 81 7 H n 2 9. '.) 15.) 22. '.l 10.5 J 6.5 d 2 75.0 81 7 10 E3

19. l' 22.J 11. 0 D 6.5 8 1 87.5 :J\ I 157 100 U1 w 6 23 E4 24. '] 2J.. .. ,_, 19. IJ 2 6.5 34 1 97.1 E1 23 E4 2 4. 1} 24. 1. Q 15.,) 2 6.5 31 '.) 1 ao. o e.1 6 3.*) E4 B.j n. 5.9 18. 5 2 6.5 27 0 1 'JO.O Sl 6 3J E4 13. J 1,. 5., 18. IJ 2 6.5 24 2 91. 7 El 7 1 E4 16.J 2 J. 4.5 19.5 2 6.5 1 g 1 6 11.1 e1 7 1 E4 10. J 2J. ... 5 19. 2 6 ;5 13 11 15.4 El 7 16 E4 2 :' ,, . 22. *'.' B.O 2 6.5 0 1oc.0 S1 7 16 E4 ? .. J 22.) 17. 5 2 6.5 9 0 1'JO.O 1l3 3'J E1 23 E5 24. 2'*. 1. 9 1 l3. J 0 6.5 23 '.l 100.0 t 1 :i E. 5 24. 2 ** 1." 17.5 0 6.5 34 I) 1JO.O £1 :i .j ES 1 , 11. 5.9 B.J J 6.5 24 I) 100.0 : 1 0 3.; E5 1'. P. 5. :;i 19.J " 6. 5 25 '2 1IJO.0 Sl 7 1 E: 1 2 ). 4.5 1 s. :1 (I 6.5 14 7 50.D ei 7 1 ES 1;,. 2). 4.5 2 o. o 0 6.5 1 'I 9 52.6 ei 7 1 6 ES 29. 1 22.) 1 8. 5 '.' 6.5 9 J 1QO.O 01 7 1t ES 2 5. n. 22.J 17. 5 J 6.5 5 0 1:JO.0 SLJ# 161 16 7 1 vx 2 2
  • 17. 7 14.*) 4 1 l. 7 4 1 75.0 7 1 vx 2
  • 2
  • 17.? 1 2. ) 4 12.7 4 33.3 7 1 v >i ? . 2
  • 17. 7 1 5. *) 3 9.6 1 2 2 83.3 vx 2 . 2
  • 17. 7 1 0. 5 3 9.6 6 2 66.7 Table 6-18 Continued WEAHISH LIFE STAGE yr M.lt. DD TEST' 4CC. S4L Il\rTY folEAN DEL TA T PRESSUR='°" EXPOSURE NO. AT NO. LIVE 96 HR TE.,P. (PP T) TOTAL (C) COD!: DURATION ST ART AFTER MORTALITY

([) LENGTH (MIN) 96 HR (PF.RCENTl (Ml<) POSTLARVAE e2 7 , 9 vx 2 s .. j 21.0 1 5. 4 11. 5 3 9.6 1 5 1 93.3 e2 7 19 vx L J 21. 1 5. 4 9.0 3 9.6 14 1 2 14.3 P. 2 7 p vx 23.J 21 * *j 1 5 -4 13.0 5 15. 6 n 0 1 OD. D EZ 7 1 <; vx 2 s. J 21. 0 1 5. 4 11

  • 5 5 15. 8 14 1 92.9 e2 7 19 vx 2 .. J 21.0 1 5. 4 12. G 4 12. 7 1 !, 0 100.0 1 1 9 vx 2 3. J 21. iJ 1 5. 4 1 O.J 4 1 2.? 11 6 45.5 7 1 Q vx 2".o 21.0 1 5. 4 11.0 3 C/. 6 1J, 1 9?.9 ez 7 1 vx 23.J 21. 0 1 5. 4 9.0 3 9.6 n 6 53.8 S2 7 19 vx 2 '.) 21. 0 1 5 -4 1o.0 5 15.8 1 7 5 70.6 e2 7 1 Q vx 26.D 21. 0 15. 4 9.0 5 15.8 15 11 26.7 E2 7 19 vx 2e.o 21 -0 1 5. 4 1 o. o 4 12. 7 1 6 2 87.5 e2 7 1 9 vx 29.0 21.0 15.4 9.0 4 1 2 -7 9 6 33.3 82 7 II X 2 6. *J 20.0 23. '.l 13.0 3 9.6 6 0 1 oc. c *2 7 26 vx 26.J 2J.O 23.0 1 0. 5 3 9.o B 4 50.C 82 7 26 vx 20.0 2.J. Q 23.0 13.0 5 15.B 7 0 1')0.C ez 7 2o vx 2 6. IJ 2 3. '.l 11.0 5 15.8 7 3 57.1 e2 7 26 vx 26.'.l 20. (' 23.0 12. 0 4 12. 7 7 1 85.7 e2 7 ;: 6 vx 2 b. ') 2J.C 2 3. 0 11.0 4 12.7 5 3 40.0 e2 7 26 vx 26.0 20.0 23.C 11
  • 5 3 9. 6 6 0 1 oo.o J\ I \J1 suw 71 ..,.. ., 6 22 X1 24 .. 5 22. o 23.6 O. IJ 0 .7 Q 9 o.o 9 Q 81 : 22 X2 24.5 22.Q 23.6 1.0 2 7.2 9 s 11 .1 9 p 1 0 2 :' X3 24.5 22.0 23.6 11. 5 2 7.2 9 9 ().{) 9 SU"' E1 6 22 X4 2". 5 22.: 23.5 18.5 2 7.2 9 0 100.0 9 0 SU"' 1461 773 * * ..__
  • LIFE YOUNG SUM SHGE
  • Cl E4 X4 3 5 yy HH DD TEST" ACC. TYPE TEMP. (() 81 7 22 C1 26. 0 81 7 22 C1 26.0 SUH 81 7 22 C2 26.0 81 7 22 C2 26.0 SUM 81 7 22 E1 26.0 81 7 22 E1 26.0 SUH 81 7 22 E2 26.0 81 7 22 E2 26.0 SU'1 81 7 22 E3 26.0 el 7 22 E3 26.J SU'1 81 7 22 E4 26.0 81 7 22 E4 26.0 SUM 81 7 22 ES 26.0 81 7 22 E5 26.0 SUM SALINITY (PPT) 15.0 15.0 15.0 15.0 15.0 15. o_ 15.0 15.0 15.0 15.0 15.0 15. o 15. 0 15.0 Table Continued WEAKFISH HEAN DELTA T TOTAL (C) LEN(; TH ( HH) 31.4 o.o 31.4 o.o 31.4 .5 31.4 .5 31.4 -.5 31.4 .5 31.4 1o.5 31.4 11.0 31.4 1 o. 5 31.4 1 o. 5 31.4 19. Q 31.4 17. 5 31.4 17.5 31. 4 18. 0 PRESSURit" EXPOSUR= NO. AT NO. LIVE CODE DUR AT ION ST APT AFTER (MIN) 96 HR 0 o.o s 8 0 o.o 7 16 15 0 6.5 s 7 0 6.5 8 8 16 15 2 6. 5 8 7 2 6.5 8 8 16 15 2 6.5 8 7 2 6.5 7 6 1 s 13 0 *6. 5 8 7 J 6.5 9 5 16 12 2 6.5 8 0 2 6.5 8 0 16 0 0 6.5 8 0 !J 6.5 8 0 16 0 111 70 control; C2 = apparatus treatment; El = pressure only; E2 = low delta T + pressure; E3 = low delta T only; high delta T + pressure; ES = high delta T only1 Xl = extraction pressure only; X2 = extraction pressure + experimentai pressure regimen; X3 = extraction pressure + experimental pressure + low delta T; extraction pressure + experimental pressure + high delta T. no pressure; l = 1974 pressure regimen (see Table 6-11); 2 = 1978 pressure regimen (see Table 6-12); 96 HR MORTALITY (PERCENT>

o.o 12.5 12.5 0.0 12.5 o.o 12. 5 14.3 12.5 37.5 1 oo.o 1 oo.o 1 oo.o 100.0 1982 pressure regimen, 9.6 min test time (Table 6-13); 4 = 1982 pressure regimen, 12.7 min test (Table 6-14); 1982 pressure regimen, 15.8 min test time (Table 6-15); VX =various delta T's and pressures. °' I V1 V1 6-1)6 Table 6-19 Summary of 96-hr mortality resulting from simulated entrainment tests with weakfish, 1981. Number Initial Alive at 96-hr Number End Mortality (total) (total) (proportion) Postlarvae Cl 158 134 0.1519 C2 162 118 0.2716 El 167 133 0.2046 E2 149 108 0.2752 E3 157 100 0.3631 E4 163 30 0.8160 E5 161 16 0.9006 Xl 9 9 0.0000 X2 9 8 0.1111 X3 9 9 0.0000 X4 9 0 1. 0000 Young Cl 16 15 0.0625 C2 16 15 El 16 15 0.0625 E2 15 13 0.1333 E3 16 12 0.2500 E4 16 0 1.0000 E5 16 0 1. 0000 Cl = control; C2 = apparatus (handling) treatment; El = pressure only; E2 = low delta T and pressure; E3 = low delta T only; E4 =high delta T and pressure; ES = high delta T only; Xl = extraction pressure only; X2 = extraction pressure and experimental pressure; X3 = extraction and experimental pressure and low delta T; X4 =extraction and experimental pressure and high delta T. l I * *

  • 6-57 Table 6-20 Summary of 96-hr mortality resulting from simulated entrainment tests with weakfish, 1982. Number Initial Alive at 96-hr Number End Mortality (total) (total) (proportion) postlarvae Cl 43 22 0.4884 C2 26 15 0.4231 Vl 55 25 0.5455 V2 39 3 0.9231 VJ 41 17 0.5854 V4 31 6 0.8065 vs 39 19 0.5128 V6 34 1 0.9706 Cl control; C2 -apparatus (handling) treatment; Vl = delta T < ll.0°C, 9 min transit time and delta p in Table 6-l3; V2 delta T > ll.5°C, 9 min transit time and delta p in Table 6-l3; V3 = delta T < ll.0°C, 12 min transit time and delta p in Table 6-14; V4 = delta T > ll.5°C, 12 min transit time and delta p in Table 6-14; vs = delta T < ll.0°c, 15 min transit time and delta p j_n Table 6-Ts; V6 = delta T > ll.5°C, 15 min transit time and delta p in Table 6-Ts.

6-58 Table 6-21 Summary of 48-and 96-hr mortality resulting from simulated entrainment tests with weakfish, 1978. Number Initial Alive at 48-96 hr Number End Mortality (total) (total) (proportion) Prolarvae Cl 28 2S 0.1071 C2 23 21 0.0870 El 29 21 0.27S9 E2 22 lS 0.3182 E3 24 lS 0.37SO E4 24 13 0.4S83 ES 19 7 0.6316 Postlarvae Cl 7S 62 0.1733 C2 69 49 0.2899 El 6S 47 0.2769 E2 72 38 0.4722 E3 68 32 O.S294 E4 74 44 0.40S4 ES 73 34 O.S342 Postlarvae/ Young Cl 19 19 0.0000 C2 20 19 o.osoo El 20 20 0.0000 E2 17 17 0.0000 E3 21 18 0.1429 E4 20 20 0.0000 ES 19 17 0.10S3 Young Cl 31 31 0.0000 C2 30 30 0.0000 El 27 27 0.0000 E2 30 30 0.0000 E3 30 23 0.2333 E4 30 20 0.3333 ES 30 19 0.3667 Cl = control; C2 = apparatus (handling) treatment; El = pressure only; E2 = low delta T and pressure; E3 = low delta T only; E4 = high delta T and pressure; ES = high delta T only; Xl = extraction pressure only; X2 = extraction pressure and experimental pressure; X3 = extraction and experimenta 1 pressure and low delta T; X4 =extraction and experimental pressure and high delta T. 1 * .. **. 6-59 Table 6-22 Summary of 48-and 96-hr mortality resulting from simulated entrainment tests with weakfish, 1979-1981. Number Initial Alive at 48-96 hr Number End Mortality (total) (total) (proportion) Pro larvae Cl 100 98 0.0200 C2 97 85 0.1237 El 84 77 0.0833 E2 98 83 0.1531 E3 97 79 0.1856 E4 87 41 0.5287 ES 95 36 0.6211 Postlarvae Cl 562 450 0.1993 C2 S59 426 0.2379 El 5SO 406 0.2618 E2 S35 365 0.3178 E3 S04 31S 0.37SO E4 S26 123 0.7662 ES S44 71 0.869S Xl 60 S6 0.0667 X2 61 S6 0.0820 X3 S4 4S 0.1667 X4 64 6 0.9063 Young Cl 72 71 0.0139 C2 72 63 o.12so El 62 Sl 0.1774 E2 S7 38 0.3333 E3 S8 37 0.3621 E4 S9 3 0.9492 ES S8 1 0.9828 Xl 14 14 0.0000 X2 12 12 0.0000 X3 13 7 0.461S X4 12 0 1. 0000 Cl = control; C2 = apparatus (handling) treatment; El = pressure only; E2 = low delta T and pressure; E3 = low delta T only; E4 =high delta T and pressure; ES = high delta T only; Xl = extraction pressure only; X2 = extraction pressure and experimental pressure; X3 = extraction and experimental pressure and low delta T; X4 =extraction and experimental pressure and high delta T. .WEAKFISH EGGS 1977 if) ril 8-f-i ril ::?J u. 7-1-1 p:i ::::> u 6-0 0 ..-I 5-ril P-t 4-°' ril I °' m 0 ::?J 3-::::> z ..__, 2-f-i 1-1 [/) z 1-ril z 0 I I I I I I I -r I I ,-I ril JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ::?J Mean density of weakfish eggs in entrainment abundance samples PUBLIC SERVICE ELECTRIC AND GAS COMPANY at Salem -.1977. SALEM 316(b) STUDY Figure 6-1 0 7-1-i l'Il 0 6-0 0 -rl I JAN MAR PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY *wEAKFI SH EGGS i978 I A 6 I A APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density of {,reakfish eggs in entrainment abundance samples at Salem -1978. Figure 6-2 u 'l-1-t p::i u 6-0 0 rl WEAKFISH

  • EGGS IA t I I I A I ,/ I <' I <' I <' I .-" A 1979 1 1 1 1 1 -1 A 4 1 JAN F'EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Mean density of weakfish eggs in entrainment abundance samples at Salem -1979. Figure 6-3 O'\ I O'\ N
  • ,--.-. (/) 8 r:il u 7 1-1 l:Q u 6 0 0 ..--1 Pil flt 5 4. Pil l:Q 3 b 2 E--c 1-1 Cf) z 1 Pil *wEAKFlSlf EGGS t II r, 1, II r r I I I I I ,.1 I I .f>, I I I I I I I I I I 1980 LEGEND A OBSERVED --*--MOVING
  • -AV'ElfAGE Z

rJ JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density of weakfish eggs in entrainment abundance samples PUBLIC SERVICE ELECTRIC AlID GAS COMPANY at Salem -1980. SALEM 316(b) STUDY Figure 6-4 * °' I °' w ,--... Cf) r:il 8 [:-I r:il u 7 f-1 0 u 6 0 0 ..-t 5 r:il 4 r:il 3 0 z '--" PUBLIC SERVICE F.LECTRIC AND GAS COMPANY SALEM 316(b) STUDY * *wEAKFI SI-I EGGS -1981 £ i\ ii ,, , , I\ I I I JUL AUG SEP Mean density of weakfish eggs in entrainment at Salem -1981. Figure 6-5 OCT NOV DEC abundance samples *

  • ,..--... if) P::i E-i P::i u 1-1 CQ ::.:J u 0 0 ..-! P::i P::i CQ z "'--./. 20-15-10-5-* *wEAKFI SF[ EGGS II> I ' ' 11 11 If If 11 11 11 If 11 If 11 I 1 I 1 I 1 I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1982 I I A

..... JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density of weakfish eggs in entrainment abundance samples PUBLIC SERVICE ELECTRIC AND GAS COMPANY at Salem -1982. SALEM 316(b) STUDY Figure 6-6 ..-if) r:il 70-1:-! r:il ::g u 60-1-i m :=> u 0 50-0 rl 40-r:il P-t r:il m 30-:=> z ..__, 20-:>-i 1:-! 1-i l/) 10-z µ:i z 0 <x: I I µ:i JAN FEB MAR PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY I WEA:KFI SI-I LARVAE 1977 ' I I I I ... I I *-APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density of weakfish lar.vae in entrainment abundance samples at Salem -1977. Figure 6-7 **.* 0\ I °' °' I

  • * ...........

WEAKFISI-1 LARVAE 1978 [/) r:il 70-r:il u 60-1-i r:Il t. u r' 50-r' 0 CI 0 r I ..--! C I I I I \ r:il 40-I \ ' I r r I I r:il I I r:Il 30-I I °' r I I r °' r .._. z r '--" 20-r I r r I :>--< r I r \ 1-i r \ [/) I z 10-_..-A \ I r:il --.,.. --\ r::i ,. .,.. \ z b.---A--*--. 0-e¢ e. , & 4" e. 6. <!! I -I I I I ..., I I r:il JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Mean density of weakfish larvae in entrainment abundance samples PUBLIC SERVICE ELECTRIC Alfi GAS COMPANY at Salem -1978. SALEM 316(b) STUDY . Figure 6-8 ,--... *wEAKFISF[ LARVAE 1979 (fJ. '-* ril 70-E-t ril u 60-1-1 p:i 0 u 0 50-0 ..-i 40-ril P-t r.:i:::i Q"\ p:i 30-I Q"\ ?:) 0 z ...__, 20-fl' E-t 1-1 11. [/) 10-(I z I I I I r£J I I 0 --*t. I I z e.--A---. 0 I I I I I I I -I I .... I I < JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ril Mean density of weakfish larvae in entrainment abundance samples PUBLIC SERVICE ELECTRIC AND GAS COMPANY at Salem -1979. SALEM 316(b) STUDY Figure 6-9

  • WEAKFISI-I LARVAE 1980 if) 70 !A E-1 I I :::g R II 0 60 II LEGEND 1-1 II p::i II A OBSERVED p II :-*-*-

II 0 Ii 50 11 0 11 0 11 .-l 11 I I I I r.£1 40 I I I I I I I I I r.£1 I I Cf\ p::i 30 I I :::g I Cf\ I I *.o p I I z I I '-......,/ 20 I 4 I .ti. I I II I I E-1 I\ I I 1-1 I \ I if) 10 f I z f I I r.£1 f fo f z 0 -::r: JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC r.£1 Mean density of weakfish larvae in entrainment abundance samples PUBLIC SERVICE ELECTRIC AND GAS COMPANY at Salem -1980. SALEM 316(b) STUDY Figure 6-10 ..---.. (/) 70-µ:i u 60-p::i WEA:KFI SI-:£ LARVAE -1981 LEGEND A OBSERVED ::::> u *-*-*-*-l\3:DVING-AV'IfR.AC:E! 0 50-0 ..-i :>-< [;) 101 z --* .Mh . 3 0 AAA A'"1 f .- AAAAA:!p AAAAA!i I JAN FEB MAR APR MAY JUN .JUL AUG SEP OCT NOV DEC PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Mean density of weakfish larvae in entrainment abundance samples at Salem -1981. Figure 6-11 * * ,--... VJ 70-r:i::i u 60-t-< p::i u 0 50-0 ..-I PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY

  • WEA:KFI SI-I LARVAE Mean density of weakfish larvae at Salem -1982. . Figure 1982 LEGEND A OBSERVED *-*-**MoVlNG-AV'El{AGE in entrainment abundance samples 6-12

..--.. WEAKFISH O*+ 1977 if) µ::i 11-E--t µ::i 10-u t--1 p::i 9-u 8-0 0 -rl 7-µ::i 6-P-t 5-°' ril I p::i ---! N 4-z ..__, 3-:>--< E--t t--1 2-b_ if) z ril 1---z 0 -I I I I I I I I I I I ril JAN li'EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC H' Mean density of weakfish o+ in entrainment abundance samples PUBLIC SERVICE ELECTRIC AND GAS COMPANY at Salem -1977. SALEM 316(b) STUDY Figure 6-13 * *

  • ,---. (/) 125 u (::Q 100 0 u 0 0 'l"""i 75 50 25 0 j /!i(x A JAN FEB MAR PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY WEAKFI SI-1 0*+ 1978 I I I / I I f I ' a APR / I / I I I I I I I I I MAY I / I / I I / fl' I I t I I I I I I I l I I I / I l I I I 1 1 1 l 1 I 1 JUN 1 1 1 I 1 1 I I 1 l 4 \ \ \ \ \ \ \ ,.,. ---t:r --*-.;. *--er ---I JUL AUG SEP A .fr AJA OCT NOV DEC Hean density of weakfish o+ in entrainment abundance samples at Salem -1978. Figure 6-14
  • L 11-10-u 1-l P'.:l 9-u 0 0 ..--! 8-'7 5-4. 1-JAN PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY * *wEAKFISFJ:

o+ 1979 {!.. *, .... .... ..... !'-..... ..... '.&. / ..... / ..... I / ..... I / ..... ..... / I / ti... .fi I I I I JUN JUL AUG SEP NOV DEC Mean density of weakfish o+ in entrainment abundance samples at Salem -1979. Figure 6-15 *

  • * * ,.---. *wEAKFI SI-I 0*+ 1980 ifl r:il 11 E-i r:il 1 .t. 10 \ 11 u r 11 LEGEND II 11 1--i II 11 OBSERVED CQ 9 r, if r i !:i. II II I I 1 *--*-**lVioVrN G-AV'lfRAG E u II ,1 JI I I 8 I II II I I 0 I II JI I l I ,1 II I l 0 I I I II rl 7 I I I II I I I 11 I I I I 11 I r:il 6 I I I I I I I I r I I . l I I I I I I I I I I 5 r I I I II °' r:il I CQ I II ---.! I I II U1 I I II 4. I II I I II z I I 11 ...._,, I I r I 3 4 : JI I ! I I E-i I I 1--i 2 II II [/) II ti z II ti I r:il 1 II A I 4>. I I fl A A I \ z 0 A A qA A &1 <:r: JAN li'EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC r:il -Mean density of weakfish O+ in entrainment abundance samples PUBLIC SERVICE ELECTRIC AND GAS COMPANY at Salem -1980. SALEM 316(b) STUDY Figure 6-16 u 0 0 -rl B-7-PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY * *wEAKFISI-I 0*+ -1981 Mean density of weakfish at Salem -1981.
  • LEGEND t. OBSERVED :--*-**Mo*vrNG-AVER.AGE o+ in entrainment abundance samples Figure 6-17 *
  • * * ,,--... WEA:KFISf[

o+ 1982 if) µ:] 11 E-i µ:] 10 u LEGEND t-1 rq 9 D. OBSERVED p *-*-*-**M:ovrNG-AVEI{AGE u 8 0 0 ..--i 7 µ:] 6 5 0\ µ:] -1' I p::i Ii -..J 11 -..J 4-It p I I z I l I I 3 4' I I E-i I t-1 2 if) z µ:] 1 Q z 0-<l! JAN MAR APR MAY JUN JUL AUG SEP OCT NOV DEC µ:] Mean density of weakfish o+ in entrainment abundance samples PUBLIC SERVICE ELECTRIC AND GAS COMPANY at saiem -1982. SALEM 316(b) STUDY Figure 6-18 6-78 --* 0.5-JUN. 3-4 1981 E.t'fTRAINMENT ' 0.4-0.3-NO SAMPLES 0.2-,......... CJ) 0.1-r=:l E-t 0.0 I I I

  • I I I I *
  • I I 0.20-W101 (ICHTHYOPLANKTON) u I 1--1 0.15-p:i u 0.10-0 0 .,.-! 0.05-r=:l 0.00 I 0.... I I I I I I I I o.5 i W101-W103 (FISHERIES) r=:l p:i 0.4 0 0.3-:z; * ...._, :>-< 0.2-E-t 1--1 0.1-rn z 0.0 I r=:l I I I I I I I I Q 0.5-IMPINGEMEJ.'l'T z < 0.4-r=:l 0.3-0.2-01-0.0 \ I I I I . -.---r--i I I I 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs.

SALEM 316(b) STUDY Figure 6-19 *

  • 6-70 0.5-' JUN. 15-16, 1981 ENTRAINMENT 0.4-0.3-NO SAMPLES 0.2-,.--.... ::.n. 0.1-x r:::i :::-< 0.0 I r:::i r . T I I I I I I I Z5.0 i W101 (ICHTifYOPLlu'IKfON) u -20.0 m :::> fa01 u 0 10.0 0 n 5.0 r:::i 0.0 ; r I ' I I r I r 0.5-W101-W103 (FISHERIES) r::::i m 0.4-0 0.3-z .....__,.

>-E-4 -CfJ z r:::i 0.0 I I I I I I I. r l Q z IMPINGEMENT < 0.4 r::::i 02 0.11 0.0 I I I I I I I I I I I I I I I I

  • I I I I I I I I I I I I I I 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs.

SALEM 316(b) STUDY Figure 6-20

  • ...... 6-80 ---------*I l I l 125 ENTRAINMENT JUN. 22-23, 1981 LOO 0.75 0.50 ...-r:n 0.251 c-. 0.00 I r:::i 2.5 W101 (I CHTHYOPLAL"\"'KTON) u 1-1 2.0 m 0 L5 u 0 LO 0 ..-i 0.5 r::£l 0.0 0-t W101-W103 (FiSHERIES) m Q4 --0 0.3 --z ...._, >--< 02 E-< 1-1 0.1 r:n z 0.0 I q 0.5 z IMPINGEMENT

< 0.4 r::£l ::2! 0.3 02 0.1 0.0 0 25 50 75 100 125 150 175 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-21 * .. ** . *. . " . . . -. -. . .. .... *-* .. ::**, :*. ; .. 6-81 JUN. 29 -JUL. 2, 1981 1.00 ENTRAINMENT . 0.75 0.50 ,,......_ en 0.25 r;i::i E-i 0.00 r;i::i 0.5 W101 (ICHTHYOPUJ.'iKTON) 0 -0.4 m ::::> 0.3' 0 NO SAMPLES 0 0 C.2 -.-! 01 r:il 0.0 I 0.5 W101-W103 (FISHERIES) r:il m 0.4 ::::> 0.3 z 0.2 E-1 -0.1 en z 0.0 r:il Cl 0.0100 z IMPINGEMENT -< 0.0075 r:il 0.0050 0.0025 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) ST!JDY Figure 6-22 . * ... * *:, ... * .. _, * .... .* __ *::: ,* ... : . 6-82 '. JUL. 4-9 1981 I 4.0 ' ENTRAINMENT '* *;* l 1:: 3.0 2.0 1 ....-en 10 r:il E-t 0.0 r:il 2.5 W101 (ICHTHYOPLAL'IB:TON} u 2.0 1-1 Ill :::> 15 u 0 10 0 <-I 0.5 r:il P-i 0.125 W101-W103 (FISHERIES) r:il Ill 0.100 :::> 0.075 z '-" :>-t 0.050 E-t 1-1 0.025 en z 0.000 r:il 0.04 z < 0.03 r:il 0.02 0.01 0.00 0 25 50 75 100 125 150 !75 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-23

  • .. . :*'_; ' .... :** : .. ,: .. . : 6-83 0.6 JUL. 15-17, 1981 ENTRAINMENT 0.5 0.4 0.3 ............

0.2 rn. 0.1 E-i 0.0 r:i:::l 15.0 W101 (ICHTHYOPLANKTON) u -p:i 10.0 :::J u 0 0 5.0 ...-! r::::l 0.0 I p... 0.05 W101-W103 (FISHERIES) r::::l p:i 0.04 ::::2l :::J 0.03 z ...._ >4 0.02 E-i -0.01 rn. z 0.00 r::::l ,::) 0.075 z IMPINGEMENT r::::l 0.050 ::::a! 0.025 0.000 -+-........ ........... ...........,,....,.....,........,__,.......,.-,_;;;:...,.......,.-r-.,--,.--.-- ........ -.-........ .....--........ -.--........ -.--,.........--.-- .......... 0 25 50 75 100 125 150 175 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC A."ID GAS COMPA.'ff and river sampling programs

  • SALEM 3l6(b) STUDY Figure 6-24

. *;-.. . :.* ... '* .. . ___ ,. ... ::.::-.. : ;_._ ::_.; 6-84

  • 10.0 ENTRAINMENT JUL. 20-22, 1981 8.0 6.0 4.0 2.0 0.075 W101-Wl03 (FISHERIES) 0.050 0.025 0.000 0.0751 0.050 IMPINGEMENT 0.025 o.ooo-1-..--.-..,......,.-Lr-.........,r-r-........,--r--.-.--r-........,--r="'I-..-..-....-.--.-

.......... --.--...--..--.--.,........,.--.--.,........,.-.-.,........,.......-.,...., 0 25 50 75 100 125 150 175. 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA..'n and river sampling programs. SALEM 3l6(b) STUDY Figure 6-25 __J . : .,.:' ._* ;--------;---. .-.-.. -. ;*-.-.:-.. .. :**..:. *: *. . .. ... : *, * ... . . 6-85

  • JUL. 27-29, 1981 2.5 ENTRAINMENT 2.0 15 10 '-"" r:n 0.5 E-i 0.0 0.5 WlOl (I CHTHYOPLAJ.'IB:TON) u 1--f 0.4 m ::::> 0.3 u NO SAMPLES 0 0 0.2 .,....; 01 r:i:l 0.0 1 p... 015 W101-W103 (FISHERIES) m 010 0 z ....._ :;:.... 0.05 E-i 1--f r:n z 0.00 Q 0.100 z IMPINGEMENT

< 0.075 i::r:l 0.050 0.025 0.000 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs.

  • SALEM 316(b) STUDY Figure 6-26

. : *:: *:.*. *:. ** .. _-;.: : ....

:. -... * . ;. ... ; . _ . ._ ... 6-86 AUG. 5-6 1981
  • 0.3 -ENTRAINMENT

' 0.2-..--.. 0.1-en f-4 0.0 I I I I I I I I I I 020 W101 (I CHTHYOPLAL'iKTON) u ....... 0.15 m :::> u 010 0 0 ..-! 0.05 r=:J 0.00 P-t 0.5 W101-W:103 (FISHERIES) r=:J m 0.4 :::> 0.3 z NO SAMPLES ...__,, !>-t 0.2 f-4 ....... 0.1 Cfi z o.o Q 0.075 z IMPINGEMENT < r=:J 0.050 0.025 0.000 0 25 50 75 100 125 150 175 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA.-.Y and river sampling programs. SALEM 316(b) STUDY Figure 6-27 *

    • .** * .. ;:. ; .. :. : .. :*/,...., .. *** -** >" ;.* *** : . . .

.. _.:.,_:_:*_ .. 6-87

  • AUG. 9-11 1981 l25 ENTRAINMENT

' LOO 0.75 0.50 ..-.... rn 0.25 P:! r=:l E-t 0.00 r=:l 0.5 W101 (I CHTHYOPLA.l'n\TON) 0 ......, 0.4 CQ :::> 0.3 0 NO SAMPLES 0 0 0.2 ...-! er: 0.1 r:l Q.O I er: 0.15 W101-W103 (F1SHERIES)

  • r£I CQ 0.10 :::> z ...._,, 0.05 E-t ......, rn z 0.00 r:r:l 0 0.15 z IMPINGEMENT

< r£I 0.10 0.05 o.oo 0 25 50 75 100 125 150 !75 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMP.ANY and ri'ver sampling programs. SALEM 316(b) STUDY Figure 6-28 L . i* *. 6-88 125 AUG. 17-19, 1981 ENTRAINMENT 100 0.75 0.50 ......... (fl 0.25 f;£j E-t 0.QO I f;£j 0.5 WlOl (ICHTHYOPLANKTON) u -0.4 m 0 0.3 u NO SAMPLES 0 0.2 0 0.1 f;£j 0.0., °"1 0.05 W101-Wl03 (FISHERIES) r:::l m 0.04

  • 0 0.03 z ...__, >i 0.02 E-t -0.01 (fl z 0.00 f;£j 0 0.100 z IMPINGEMENT

< 0.075 r:::l 0.050 0.025 0.000 0 25 50 75 100 125 150 175 200 TOTAL LENG TH (MM) Density of by length in on-site PUBLIC SERVICE ELECTRIC AND GAS and river sampling programs. SALEM 316(b) STUDY Figure 6-29

  • -*,' *. :
  • f.* ..........

Cfl E-i 0 CQ 0 0 a a ..--I r:::I r:::I CQ * :;;s 0 z ..__, !>-t E-i Cfl z 0 z < r:::I :::"2! 0.5 0.4 0.3 02 0.1 0.0 I 0.5 0.4 0.3 0.2 0.1 0.0 ; 0.04 0.03 0.02 0.01 0.00 0.01751 0.0150 0.0125 0.0100 0.0075 0.0050 0.0025 : .... ;**.".;: ** ... :.. 6-89 AUG. 25-26, 1981 ENTRAINMENT W101 (ICHTHYOPLANKTON) NO SAMPLES* W101-W103 (FISHERIES) IMPINGEMENT 0.0000 -,-.,.....,....,..-.-....-'-r_,..,.......-'-T-r-T"""T"-r--r-T""..,........,--r--r-r--r-.-r>'--r-ir--r--r-><-r_,.>..T"""T"-,--r-T"..,..-,r--r--.---. 0 25 50 75 100 125 150 175 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA.-..Y and river sampling programs. SALEM 316(b) ST(!_DY Figure 6-30 .. : .. _,;*_,. _*:* ..... . *. . ......... : 6-90

  • AUG. 31 -SEP. 3, 1981 0.5 ENTRAINMENT 0.4 0.3 0.2 ..........

C/.J 0.1 r:i::l E--< 0.0 r:i::l ::?l 0.5 W101 (I CHTHYOPLA.i."'mTON) u ....-! 0.4 ::::> 0.3 NO SAMPLES u 0 0.2 0 M P::: 0.1 r:i::l 0.0 P::: . W101-W103 (FISHERIES) r:i::l m :2! 0.03 ::::> z 0.02 ...__,. :;,... E--< 0.01 r:n z 0.00 I r:i::l Cl 0.0100 z IMPINGEID:NT < 0.0075 :2! 0.0050 0.0025 0.0000 I 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA.'n' and river sampling programs. SALEM 316(b) STUDY Figure 6-31 .. --* -------**-* __ * *. **.:_ .... , -* 6-91 0.5 SEP. ENTRAINMENT 8-11, 1981 0.4 0.3 02 ,-.,. r.n 0.1 r£I E-4 0.0 r£I 0.5 W101 (I CHTHYOPLA.L"'iKTON) u 1-4 0.4 o:l 0 0.3 NO SAMPLES u 0 02 0 ...-l 0.1 r£I 0.Q I 0... 0.03 W101-W103 (FISHERIES) r£I o:l :21 0.02 0 z ....._ :>--E-4 0.01 1-4 r.n z 0.00 I r£I i:::i 0.0100 IMPINGEMENT z < 0.0075 r£I 0.0050 0.0025 0.0000 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs.

  • ---SALEM 316(b) STCJDY *-Figure 6-32
  • .:* -.. : ::...;:. :: 0.5 0.4 0.3 02 0.1 ENTRAINMENT

.. : : 6-92 SEP. 14-* 15, 1981 0.0 -t-.,.......,..-?-,_....,..-,-,........,...-,.-..-.--,-,........,...-.--..-.-...,......,..-.--.---...-.--.---.--,.......--.-.-...,......,--.-..,.......,-,...-..,.......,-,...-.........., 0.5 0.4 0.3 a 0.2 a ..-l 0.1 W101 (ICHTHYOPL.ANKTON) . NO SAMPLES 0.0 ........... --.-........... 0.0!751 W101-W103 (FISHERIES) 0.0150 I . 0.0125 0.0100 0.0075 0.0050 r:n 0.0025 z r:::I 0 z < r:::I 0.0100 0.0075 0.0050 0.0025 IMPINGEMENT 0.0000 -t-......... -.--..-.--.--..-.--.-- ............ -.-.--.--.--..-.-...,--,..-.-...--.-.-..,.......,-..,.......,-,...-..,.....,.-,...-..,......,.....,........,.....,.....,............., 0 25 so* 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA.."fi' and river sampling programs. SALEM 316(b) STUDY Figure 6-33 -;I I I I .l I

. ,* . . . . : . 6-93 0.5 SEP. 22-25, 1981 ENTRAINMENT 0.4 0.3 0.2 ....--.. . en 0.1 t::::l E-< 0.0 t::::l :2! 0.5 W101 (I CHTHYOPLANKTON) u 1-4 0.4 m 0 0.3 NO SAMPLES u 0 0.2 0 ..-! 0.1 t::::l 0.0 I P-t 0.0100 W101-W103 (FISHERIES)
  • r:.c:i m ::2l 0.0075 0 b 0.0050 :>-t E-< 1-4 0.0025 en z 0.0000 r:.c:i 0 0.0100 z IMPINGEMENT

< 0.0075 r:.c:i 0.0050 0.0025 0.0000 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDt Figure ... . _: . . . . . . -*. _:_._:. *' .. .. .. * .. *: _* 6-94

  • SEP. 29 -OCT. 1, 1981 0.5 EN'l'RAINMENT 0.4 0.3 0.2 ........ r:n 0.1 r=:i E-i 0.0 r:::I 0.5 W101 (ICHTHYOPL.Ai.'IB:TON) u 1-t 0.4 co ::> u 0.3 NO SAMPLES a 0.2 a ..-! 0.1 r:::I 0.0 I 0.. 0.0100 W101-W103 (FISHERIES) r:.:I co ::21 0.0075 ::> z 0.0050 ....__, :;:.... E-i 0.0025 1-t rn z 0.0000 I r:.:I 0 0.0100 z IMPINGEMENT

< 0.0075 r:::I :2J 0.0050 0.0025 ......... ............ ................... 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMP.A.-.Y and river sampling programs. SALEM 316(b) STUDY Figure 6-35

  • L_. 0.5 0.4 0.3 02 0.1 ENTRAINMENT

-.:::>: -** :::*.: .: .. .. ' . '* :. -.:. -. *---** -* ---' _:*: __ ._: .. *. :' . *. 6-95 OCT. 6-9, 1981 0.0 -+-............ ...,.......,,........,......,.......,-,-.,........--,-........,......,.......,-,-.,........_,_.,..-,-_,.-..-.......,.......,-,-..,..-,.--.-....-.--.--,........,......,......., .................... 0.5 0.4 0.3 a 0.2 a .,.-j >4 E--t 0.0025 rn W101 (I CHTHYOPLAi'IB:TON) NO SAMPLES W101-W103 (FISHERIES) 0.0000 -+-.......... Cl z < r£J O.Of75 0.0150 0.0125 0.0100 0.0075 0.0050 0.0025 IMPINGEMENT 0.0000 -+-............ ...,.......,......,.....,.....,......,....,........--,-........,......,.......,,......... ............ --.-............ ...,.......,..-.........-.---.--r><-r-r'-.,......,..._,..,..,r-..-...,.......,......,.......-. 0 25 50 75 100 125 150 f75 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-36

  • '

.. . .. * '." .. ;* ..

_. .. ,_,
c< .. :*
  • , ,_: .. : .. -.

-'--*"--**-*'** _. .;: .=.,:1 6-% 1 0.5 OCT. 12-15, 1981 ENTRAINMENT 0.4 .*, 0.3 02 ........_ r:n 0.1 r:::::i E-t 0.0 I r:::::i :::al 0.5 W101 (ICHTHYOPLANKTON) C,) 1-1 0.4 ca 0 0.3 C,) NO SAMPLES a 0.2 a ...-! 011 f:il 0.0 I. l1i O.OlOOl W101-W103 (FISHERIES) r:::::i m 0.0075-0 z 0.0050-"'-J >i E-t 1-1 0.0025-rn I z 0.0000 r:::::i I I I I I I I I Cl 0.0100 z IMPINGEMENT < 0.0075 r:i:l 0.0050 0.0025 0.0000 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-37

  • r I I * . . _. __ * ... :*_ . . .. _:_ -* -. .. _* .. : .. * .. _* 6-97 0.5 OCT. 20-23, 1981 ENTRAINMENT 0.4 0.3 oz ........_

rn 0.1 r=:I E-< 0.0 r=:I 0.5-, W101 (ICHTHYOPLANKTON) u I-! 0.4 m :::> 0.3 NO SAMPLES C,) 0 0 0.2 T-1 0.1 r=:I Q.0 1 P.. 0.0100 Wl01-W103 (FISHERIES) i::c:l A m 0.0075 :::> z 0.0050 ...._ !>t E-< I-! 0.0025 rn z 0.0000 r=:I Q 0.0100 IMP INGEMEi'IT z < 0.0075 r=:I 0.0050 0.0025 0.0000 0 25 50 75 100 125 150 175 200 TOTAL LENG TH (MM) Density of weakfish by length*in on-site PUBLIC SERVICE ELECTRIC AND GAS and river sampling programs. SALEM 3l6(b) STUDY Fi ure 6-38 I

  • ___ .:._, *-----_:* . .. -.*. ::* *. .. -..:_***.:***

.. '" 6-98 MAY 31 -JUN. 2, 1982 5.0 ENTRAINMENT 4.0 3.0 2.0 ............ rn 10 E--1 0.5 W101 (I CHTHYOPLANKTON) u 0.4 1-4 CQ :::> 0.3 0 NO SAMPLES 0 0.2 0 T'""'! , 0.1 0.0 I P-t 0.5 W101-W103 (FISHERIES) CQ 0.4 :::> 0.3 z .......,, >i 0.2 E--1 1-4 0.1 rn :z; 0.0 Q 0.51 :z; IMPINGEMENT < 0.4 0.3 0.2 0.1 0.0 0 25 50 75 100 125 150 f75 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA.'fi and river sampling programs. SALEM 316(b) STUDY Figure 6-39

  • *. **-. ____ : .. *_,. ___ *-. . .. ., ____ . ;,,, ' .. : --. -:: .. -**** ...

.. ** "-** . __ ,:.* __ . __ ; *. >::: '** -*-

'.
  • . '* .. ':, .. 6-99 2.5 JUN. 8-9, 1982 ENTRAINMENT 2.0 15 10 ...-en 0.5 r=:l 0.0 r=:l :::21 ao W101 (I CHTHYOPLANKTON) u 7.0 -6.0 m :::> 5.0 u 4.0 0 3.0 0 ....-! 2.0 1.0 r=:l l1i 0.5 W101-W103 (FISHERIES) m 0.4 :::21 :::> 0.3 z ...__, 0.2 -0.1 en z 0.0-0 0.5 z IMPINGEMENT

< 0.4 :::21 0.3 0.2 01 0.0 0 25 50 75 100 125 150 r75 200 TOTAL LENGTH (MM) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Density of weakfish by length in on-site and river sampling programs. Figure 6-40 '" ... ---** . -._ *.*.**. *. .. *;, * *** # .. . . .. ,.* .. 6-100 ,;: .. * .. 3.5 JUN. 12-15, 1982 ENTRAINMENT . ..; 3.0 2.5 2.0 15 ...-10 '(./) 0.5 E-t 0.0 0.4 u ...... 0.3 m 0 u 02 0 0 '<-! 01 0.0 P-t I 0.100 1'1101-W103 (FISHERIES} m 0.075 0 z 0.050 ...._ E-t 0.025 ...... '(./) z 0.000 P::i 0.5 z IMPINGEMENT < 0.4 r:i::i 0.3 0.2 01 0.0 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA...-.Y and river sampling programs. SALEM 316(b) STlJDY Figure 6-41 --. :. ;:_, .. .. *:. *::*, *:-z -* .... ::-. 6-101

  • 6.0 JUN. 20-22, 1982 ENTRAINMENT 5.0 4.0 3.0 ..-2.0 {/). p::: 10 E-t 0.0 3.0 W101 (I CHTHYOPLANKTON) 0 -2.0 :::> 0 0 0 1.0 ..-! p::: 0.0 P-i p::: 100 W101-W103 (FISHERIES) 0.75 :::> z 0.50 ...._.,. :;,... E-t -0.25 {/). z 0.00 0 0.0100 z IMPINGEMENT

< 0.0075 0.0050 0.0025 0.0000 0 25 50 75 100 125 150 f75 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC A.'ID GAS COMPANY and river sampling programs. SALEM 316(b) STODY Figure 6-42 . . .-... :: ... ...... *.> . ;.'.,,. *:! ' .. . ..:. -. .. .. *:.: :**.;:.' .. : .. * .. 6-102 ':: ....---.. r:n P::: E-1 r:il u -m :::> ' u ! 0 0 I,. .-l P::: I. r£I p... P::: ril m :::> z ..._ :>-i E-1 -r:n z r:il 0 z < ril Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA..-.Y and river sampling programs. SALEM 316(b) ST!IDY Figure 6-43 ........ ... __ .. _,_,*.,: . :** ... *.* 6-103 1.75 JUL. ENTRAINMENT 6-8 ' 1982 1.50 1.25 1.00 0.75 ,....... 0.50 Cf) 0.25 r:::l E--1 0.0Q J r:::l 10.0 W101 (ICHTHYOPLANKTON) u 1-1 7.5 l:Q 0 u 5.0 0 0 ..--! 2.5 r:::l 0.0 P-t

  • 0.20 W101-W103 (FISHERIES) r:::l m 015 0 z 010 ...._., >i E--1 0.05 1--4 Cf) z Q.00 J r:::l 0 0.025 IMPINGEMENT z (\ < 0.020 r:::l 0.015 0.010 . 0.005 0.000-1 0 25 50 75 100 125 150 175 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs.
  • SALEM 316(b) STUDY Figure 6
  • .. . . *;, .. : .. * .** .. . *. . :,,. . .. ' . *. __ , .* .. ,.;,*. . *--...... _.: ,.,-.: .. . .*. " " " 6-104
  • 1.25 JUL. 10-15, 1982 ENTRAINMENT 100 *.*: 0.75 0.50 rn 0.25 E-4 ::21 u 2.0 l W101 (ICHTHYOPLANKTON)

....... 1.5 l:Q 0 u 10 0 0 ...-4 0.5 P-4 0.175 W101-W103 (FISHERIES) til 0.150 0.125 0 z Q.100 -..._.;o 0.075 >i 0.050 E-4 -rn 0.025 z 0.000 I 0 0.04 z IMPINGEMENT < 0.03 0.02 0.01 0.00 0 25 50 75 100 125 150 f75 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-45

  • 125 1.00 0.75 0.50 0.25 ENTRAINMENT

.. : __ ::' *** ... , *_; .*_.*;._ ... ::.* *. :-***. .:, . .: .;.-. .*!*._--.. ...... 6-105 JUL. 19-21, 1982 0.00 -'1..i..,.......-.......1-r-....-....-.--..,.........--.-.,........,.-r-.,........,.-r-T""""""T"-r-r-r--r-r--r--r-r--r--r-r--r--r-r--r--r-ir-r-r-ic--,-, 5.0..., WlOl (ICHTHYOPLA.l'IB:TON) 4.0 \ 3.0 2.0 k .... ,-. o.5 1 W101-W103 (FISHERIES) 0.4 0.3 0.2 0.1 0.0 0.020 IMPINGEMENT 0.015 0.010 0.005 0.000-+-..--r-r-,......,-""'i-r-T"-r-r-r--r-ir-r--r-1-r--r-T--r"'-r-T-r-T"'"'"T-r-T"'"'"T-r-T"""T-r--r-r-.--r-r-r-,..-, 0 25 50 75 100 125 150 f75 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-46

  • ." *** ** *-:* 0 .L * .'. .. * . -*** . >{.. *.** .. : .. .,. . . .: . .** ! * * * : . -**-' .. __ : *._* .* ...

... ::: . .: _,. :*; . .* *** *:::. .* . . ....

  • 0.5 JUL. 26-28, 1982 ENTRAINMENT 0.4 0.3 02 .............

(/) 0.1 r:r:l E-1 0.Q 1 r:r:l ;:;s 0.5 W101 (ICHTHYOPLANKTON) u 1--t 0.4 m 0.3 u NO SAMPLES 0 0 02 ..-I 01 r:r:l 0.0 I 0... 020 W101-W103 (FISHERIES) r:r:l m ::2! 015 z 010 ..._,,. E-1 0.05 1--t (/) z 0.00 r:r:l Q 0.025 z IMPINGEMENT < 0.020 r:r:l ;:;s 0.015 0.010 0.005 0.000 0 25 50 75 100 125 150 f75 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STU1lY Figure *6-47 * .. "* . .: .

  • .1:2 . : ..... :* .. *---.. _ ..:.*.: _.; ..... :. :". *, ___ .: .::. * ..

6-107 Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA..'IT and river sampling programs. SALEM 316(b) STUDY Figure 6-48 L_ ______ _ .. . . * *,* . --*. " : *._ . : : . ., . .. ... ... *:. .. * . ... _ . :. -*-*. 6-108

  • 0.5 AUG. 9-10 1982 ENTRAINMENT

' 0.4 0.3 02 . ,.......... en 0.1 r:i:.1 E-4 0.0 I r:i:.1 0.5 W101 (ICHTHYOPLANKTON) u 0.4 -P'.l :::> 0.3 NO SAMPLES u 0 0.2 0 ..-! 0.1 r::i::i 0.0 I o..i 0.03 W101-W103 (FISHERIES) r:i:.1 !Il :21 0.02 :::> z ....__, >i 0.01 E-4 -rn z 0.0Q I r:i:.1 Cl 0.015 z IMPINGEMENT < r:i:.1 0.010 0.005 0.000 ....---.-.--T-, 0 25 50 75 100 125 150 f/5 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-49

  • L .

-.- .-------;------. *-*_; .. ::. :*

.. ;.. .. : ... *._*_*_.*

... .... ***::*. .. ... :_*: .*. ---***-.* _ ... 6-109

  • 0.5 AUG. 15-17, 1982 ENTRAINMENT 0.4 0.3 0.2 rn 0.1 r.£l E-< 0.0 r.£l :2l 0.5 WlOl (ICHTHYOPLANKTON) u 0.4 1-f fJ'.l :::> 0.3 NO SAMPLES u 0 0.2 0 ..-! 0.1 r.£l 0.0 0... 0.020 W101-W103 (FISHERIES) r.£l fJ'.l :2l 0.015 :::> z 0.010 ......_, E-< 0.005 1-f rn. :z; 0.000 I r:r:I 0 0.0125 IMPINGEMENT z < 0.0100 r:r:I :2l 0.0075 0.0050 0.0025 0.0000 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM). Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs.

SALEM 316(b) STUDY Figure 6-50 0.5 .0.4 0.3 0.2 0.1 0.5 0.4 6.3 0.2 0.1 : ... .:.* _,_ .... *. . _. ....... ..... :. : .. ."* .* t: -*. * .. 6-110 ENTRAINMENT AUG. 1982 W101 (I CHTHYOPLAJ.'IB:TON) NO SAMPLES 0.0 _jl--r--r-r-r-r-r,.-..,r-r-.,--r--r--.--r-r-r-r--,-,,...,--r-.--,--..,..,---r-..-.-....,..-r-r-r-ir-r-,--r--r-T-r-, 0.05 W101-W103 0.04 0.03 0.02 0.0150 0.0125 0.0100 0.0075 0.0050 0.0025 IMPINGEMENT 0.0000 0 25 50 75 100 125 150 175 200 TOTAL LENG TH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS and river sampling programs. SALEY. 316(b) STUDY Figure 6-51 *

  • I----*----*_ ... _.: __ .. __ . I '* I I

.* *: : -* ;_. ___ ._.,_, ... ****---** .. * .. :,.;.. _-,::.*-6-111 0.5' -AUG. 31 SEP. 2, 1982 ENTRAINMENT 0.4 0.3 0.2 ,.--,. rn 0.1 r.:£l E-r 0.0 I r.:£l 0.5 W101 (I CHTHYOPLANKTON) C,.) 0.4 1-t t::tl :::> 0.3 C,.) NO SAMPLES 0 0.2 0 0.1 r.:£l 0.0 I l1i 0.0100 W101-W103 (FISHERIES) r.:£l t::tl 0.0075 :::> z 0.0050 ..__, :>-t E-r 1-t 0.0025 rn z 0.0000 r.:£l q 0.0100 z IMPINGEMENT < 0.0075 r.:£l 0.0050 0.0025 Q.0000 I 0 25 50 75 100 125 150 f75 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY , Figure 6-52

  • ,.*. *:.:._*. ____ .,'.:* .* *. . "* :'.:..::*.
    • _;:_. __ :. ::.:_ _:_ -*-6-112
  • 0.6 SEP. 7-9 1982 ENTRAINMENT

' 0.5 0.4 0.3 ..--. 0.2 rn. 0.1 r£l E-i 0.0 I r::4 0.5 W101 u 1---j 0.4 m 0 0.3 u NO SAMPLES 0 0.2 0 ..-t 01 r::4 0.0 1 P-t 0.075 W101-W103 (FISHERIES)

  • r::4 m 0 0.050 z ..._..,; >i 0.025 E-i 1---j rn. z 0.000 r::4 Cl 0.0100 z IMPINGEMENT

< 0.0075 r::4 0.0050 0.0025 0.0000 0 25 50 75 100 125 150 f75 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-53 *

  • .. . -. . .. '*. -*. : . .. .. ... .':.*'. .** *-..... -* .. , . :. __ . .-***.* ............. . 6-113 Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and.river sampling programs.

SALEM 3l6(b) STUDY Figure 6-54 .. . . : :. '. ....... : . . . .. :.:: -**-*. ' .. .... __ . __ : ------*. . -.:**. *;

  • -... _., . ..:.: 6-114 '*
  • 0.6 SEP. 23-25, 1982 ENTRAINMENT 0.5 0.4 0.3 ,..--., 02 en P:: 0.1 E-t 0.0 ::21 0.5i W101 (ICHTI!YOPLANKTON) u 0.4 . l:Il 0 0.3 NO SAMPLES u a 0.2 a P:: 0.1 0.0 P-. I P:: 0.020 W101-W103 (FISHERIES)
    • IIl :::2! 0.015 0 z 0.010 ..__, >i E-t 0.005 en z 0.000 I 0 0.0100 IMPINGEMENT z < 0.0075 ::21 0.0050 0.0025 0.0000 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs.

SALEM 316(b) STUDY Figure 6-55 *

      • . *-** -. ....--...

C/2 r£l E-< r£l u 1--1 m :::> u a a ..-! r£l Pot r£l m :::;g :::> z ...__, :>-t E-< 1--1 C/2 z r£l 0 z < r£l ::::21 ,*_. 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.5 0.4 0.3 0.2 0.1 0.0 1 0.0100-0.0075-0.0050-0.0025-0.0000 0.0125 0.0100 0.0075 0.0050 0.0025 0.0000 0 ..... _ _:...': ...... -. **,* . .. . .. . ****-. __ :__:;__:* __ ;..,_ ,,*:_;: __ ______ .. _°?* ** *.: ** : _.*_,_.;_- ---*-*-* :

  • ____ : 6-115 SEP. 27-30, 1982 ENTRAINMENT W101 (I CHTHYOPLA.i'flCTON)

NO SAMPLES W101-W103 (FISHERµf3) n I I I I I I I I I IMPINGEMENT 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs.

  • SALEM 316(b) STUDY Figure 6-56

.... **-*--:* __ .:_ _: ____ .:: ___ ---------*-*-: .

      • -'-***. --.. *.:': :. --* : '!: ,* .. : *. :_: *-:. * -:
.:. . 6-116 0.5 OCT. 4-7 1982 ' ENTRAINMENT 0.4 0.3 0.2 0.1 0.0 -f-r-r_,.-,,............,.-,,............,.__,---.-..,.-,---.--r--1---.-......--r---.-"T""""""T--r--r-1'--r--r-T--r-T""""T--r--r--r-.-...--r-r-T-i 0.5 0.4 0.3 0 0.2 0 01 0.0100 0.0075 0.0050 0.0050 0.0025 W101 (ICHTHYOPLANKTON)

NO SAMPLES W101-W103 (FISHERIES) IMP ING EME.i.'fT 0.0000 0 25 50 75 100 125 150 f75 200 TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPA.'lY and river sampling programs. SALEM 316(b) STUDY Figure 6-57 *

  • I 1* I
  • 6-117 0.5-OCT. 14-15, 1982 ENTRAINMENT 0.4-0.3-02-,......._

[fl 0.1-0::: i::J 0.0 5=:l I I I I I I I I I ::z 0.5-7f101 (I CHTIITOPLA.t'i'KTON) u I-! 0.4-c::l ;::::, 0.3-u NO SAMPLES a 02j a ..-4 0::: 0.1 0.0 I '1.. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 0::: 0.0100-Wl01-W103 (FISHERIES) i::J p:i n 0.0075-;::::, z 0.0050-:>-t E--t 0.0025-I-! [fl z 0.0000 I I I I I r=:l I I I I I I I I I Cl 0.0100-z IMP INGEMEJ.'i'T < 0.0075-r=:l 0.0050-0.00251 ' .00,., ,<';>,{'>, 0.0QOO I I I I I I I I I I I I I I I I I I 1-I I I I 0 25 50 75 100 125 150 175 200 TOTAL LENGTH (MM) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Density of weakfish by length in on-site and river sampling programs. Figure 6-58 I .....----------. l OCT. 18-21, 1982 J 6-118 0.5 0.4 0.3 02 0.5 0.4 0.3 0 0.2 0 ..-l 0.1 0.03 0.02 0.01 0.00 I i:::l 0.0100 z < 0.0075 :2l 0.0050 ENTRAINMENT W101 (I CHTHYOPL.AJ.'\f"tUON) NO SAMPLES W101-W103 (FISHERIES) IMPINGEM&'fT

  • .... l--r--r-r-1......,...1 I

--,-,.......,...* '--,-r-r'"T--r'-r-' ...,.._* ,....,...* ..... * -*r-. ..--r-r-..--r-r-T"-T1 --,-.,.-,, I o m TOTAL LENGTH (MM) Density of weakfish by length in on-site PUBLIC SERVICE ELECTRIC AND GAS COMPANY and river sampling programs. SALEM 316(b) STUDY Figure 6-59 -**-I

  • 6-119 1.25 JUN. 23, 1981 1.00 0.75 0.50 ,.-.... (/) 0.25 0.00 E--1 r:r:i JUL. 6-7 1981 u i25i ' .-1.00 :::> . 0.751 u 0 0.50* 0 ..--! 0.25 0.00 r:r:i tlt JUL. 15-16, 1981 .r:r:i 7.01 ' 6.0 :::> 5.0 z 4.0 ..._, 3.0 >4 2.0 -1.0 (/) z 0.0 r:c:i 0 JUL. 21-22, 1981 z . 5.0 < r:r:i 4.0 ::al 3.0 2.0 10 0.0 0 1 2 3 4 5 6 7 8 9 10 11 TOTAL LENGTH (MM) PUBLIC SERVICE ELECTRIC AND GAS COMPA..'rl SALEM 316(b) STUDY Mean density, by length interval, of weakfish larvae taken in entrainment samples at Salem unshaded) and in plankton I --Figure 6-60 6-120
  • 3.5 JUN. 8-9 ' 1982 3.0 2.5 2.0 15 .....-.. 10 if). 0.5 r:::::i 0.0 1 E-i r:::::i N. 14-15, 1982 u 0.25 1--i m 020 0 0.15 u 0 0 0.10 ...-! 0.05 0.00 r:::::i 21-22, 1982,
  • r:::::i p:i 0.7 :2l 0.6 0 0.5 z .._ 0.4 0.3 E-i 02 1--i 01 if). z 0.0 f:il Q JUL. 6-7, 1982 z 3.0 r:::::i :2! 1.5 1.0 0.5 0.0 0 1 2 3 4 5 6 7 8 9 10 11 TOTAL LENG TH (MM) Mean density, by length interval, of weakfish larvae taken in entrainment PUBLIC SERVICE ELECTRIC AND GAS COMPANY samples at Salem (unshaded) and in plankton SALEM 316(b) STUDY samples at W-101 (shaded) -1982. Figure 6-61 6-121 * ,...........

\12 r£I E-i r=:l JUL. 12-13: 1982 u 0.51 -0.41 m (..) 0 0 ...-l 0.1 Q.0 I r£I JUL. 20-21, 1982 m 1.50 ::21 0 125 z LOO ...._,, 0.75 :>-i 0.50 E-i -025 \12 / z 0.00 r£I 0 1 2 3 4 5 6 7 8 9 10 11 0 TOTAL LENG TH (MM) z <!; ::21 PUBLIC SERVICE ELECTRIC AND GAS COMPANY

  • SALEM 316(b) STUDY Figure 6-61 (continued)

WEAKFISH LARVAE -1980-1982 INTAKE 1.0 ,.--.,. z 0.9 0 f-i E-1 0.8 0 P-t 0 0.7 P-t ....._,. .....:! 0.6 f-i 0.5 :> 0 0.4 if.J r:r.:i :> 0.3 f-i 0.2 ....:I 0 0 0.1 u 0.0 I I I I I I I I I I I I I I I I I I I I I I I I 0 12 24 36 4.0 60 72 84 96 ELAPSED TIME (HOURS) Cumulative mean survival (+95% C.I.) of entrained weakfish larvae PUBLIC SERVICE ELECTRIC Alfi GAS COMPANY collected at Salem intake -=-1980-1982. SALEM 316(b) STUDY Figure 6-62 * * * -°' I f-' N N

  • WEAKFISH LARVAE -1980-1982 DISCHARGE 1.0 ... ..-z 0.9-0 0.8-0 P-i 0 0.7-P-i '-/ .....:I 0.6-0.5-:> \ p 0.4-rJ) r:r:i :> 0.3-r---_ ti --< l .....:I 0.2-t p p 0.1-u -0.0-I I I I I I Iii I I,. I I I I I I I I I I I I I Ii I I I I I I I I I I I I I I Ii I I I 1 *I I I I j,j I I I I I I I I I I I I I I I I I' I I I I I I I I I I I' I I I I I I I I I I I 96 0 12 24 36 48 60 72 84 ELAPSED TI ME (HOURS) Cumulative mean survival (+95% C.I.) of entrained weakfish larvae PUBLIC SERVICE ELECTRIC AND GAS COMPANY collected at Salem discharge

-1980-1982. SALEM 316(b) STUDY Figure 6-63 °' I f--1 N (J.) WEAKFISH 0+ -1981 I NTA:KE 1.0 ,.-... z 0 0.9 E-l 0.8 0 P-t 0 0.7 P-t ..._,, H 0.6 0.5 :> 0 0.4 U) r:il :> 0.3 H 0.2 0 0 0.1 0 0.0 0 12 24 36 48 60 72 84 96 ELAPSED TI ME (HOURS) Cumulative mean survival (+95% C.I.) of entrained weakfish o+ PUBLIC SERVICE ELECTRIC AND GAS COMPANY collected at Salem intake ::-1981. SALEM 316(b) STUDY F.i.2'.ure 6-64 * *

  • * *wEAKFI SH o+ -1981 DISCHARGE 1.0 ,.,...,, z 0.9 0 0.8 0 P-t 0 0.7 P-t "-._/ i--:1 0.6 0.5 p.. 0 0.4 if) p.. 0.3 <11 0.2 ....:i 0 0 0.1 (.) 0.0 Ii I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I_. I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I 0 12 24 36 4-8 60 72 84 96 ELAPSED TIME (HOURS) Cumulative mean survival (+95% C.I.) of entrained weakfish O+ PUBLIC SERVICE ELECTRIC AlID GAS COMPANY collected at Salem discharge

-1981. SALEM 316(b) STUDY Figure 6-65 CJ'\ I I-' N \J1 WEAKFISH 0+ 1982 I NTA:KE 1.0 ...-z 0.9 0 1-1 0.8 0 P-t 0 0.7 P-t ............ ....:! 0.6 t-t 0.5 :> 0 0.4 if) !".:ii :> 0.3 t-t 0.2 ....:I p p 0.1 u 0.0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I' I I I I I I I I I I I I I I Ii I I I I I I,. I I I I I I I I I I I I I I I I I I I I I I I 0 12 24 36 48 60 84 96 ELAPSED TI ME (HOURS) Cumulative mean survival (+95% C.I.) of entrained weakfish o+ PUBLIC SERVICE ELECTRIC AlID GAS COMPANY collected at Salem intake :=-1982. SALEM 316(b) STUDY Figure 6 WEAKFISH 0+ 1982 DI 1.0 --z 0.9 0 t--1 t-i 0.8 0 0 0.7 ..__, .-:I 0.6 :31 t--1 0.5 :> p 0.4 '(/) r;i! :> 0.3 t--1 t-.::i 0.2 p p 0.1 (.) 0.0 0 I I I I I I I I I I I I' I I I I I I I I I I,. I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I 12 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY 24 36 48 60. 72 84 ELAPSED TI ME (HOURS) Cumulative mean survival (+95% C.I.) of entrained weakfish O+ collected at Salem discharge -1982. Figure 6-67 96 WEAKFISH o+ DISCHARG*E 15.0-14.0-100 13.0-,..-... u 12.0-100 ..._., µ:i 11.0-100 if) < 10.0-µ:i 9.0-78 90 100 u z 38 72 f--1 8.0-µ:i 7.0-100 Cl' 6.0-I I-' E-t N < 50 5.0-µ:i P-t 4.0-80 57 µ:i 3.0-E-t 2.0-89 1.0 -89 00 I I I I I I I I I I 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 AMBIENT TEMPERATURE (C) Percent mortality (96-hr) of entrained weakfish O+ collected in PUBLIC SERVICE ELECTRIC AND GAS Salem discharge sampling, 1981-1982. SALEM 316{b) STUDY Figure 6-68

  • WEAKFISH PRO LARVAE -20.0-19.0-...-18.0-55 0 .._ 17.0-50 [/) < 16.0-0 15.0-z 14.0-42 50 0\ I :::::> 13.0-N '° 12.0-P-i 11.0-18 25 ::2l 33 E-t 10.0-0 9.0-30 8.0 I I I I I I I I I I I I I 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 ACCLIMATION TEMPERATURE (C) Percent mortality (48-hr) of weakfish prolarvae in simulated PUBLIC SERVICE ELECTRIC AND GAS COMPANY entrainment tests (treatments E2 + E4). SALEM 316(b) STUDY Figure 6-69 \ J 20.0-19.0-65 ...-18.0-52 0 -.._,,, f:il 17.0-(/) 16.0-f:il 0 15.0-z 1--1 f:il 14.0-p 13.0-E-4 12.0-f:il P-t 11.0 -23 f:il E-4 10.0-9.0-8.0 I I 17.0 18.0 19.0 PUBLIC SERVICE ELECTRIC Alfi GAS COMPANY SALEM 316(b) STUDY WEAKFISH PRO LARVAE 62 33 42 50 23 55 0 18 30 I I I I T I I I I 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 ACCLIMATION TEMPERATURE (C) Percent mortality (48-hr) of weakfish prolarvae in simulated entrainment tests (treatments E2, E3, E4 +ES). Figure 6-70 .. ** .... O'\ I f-' (.,.) 0 I I 29.0 30.0
  • *
  • WEAKFISH POSTLARVAE 20.0-11 19.0-15 97 100 ...-18.0-92 100 100 0 100 ...._ f£I 17.0-Cf) <r: 16.0-r:il 0 15.0-63 z 1-1 14.0-*15 r:il 100 100 CJ'\ :::i 13.0-I f-i t-' w <i: 12.0-33 66 100 t-' f£I 0 100 93 11.0 -6 50 91 4. 49 67 50 75 f£I E-t 10.0-12 70 9.0-31 8.0-I I I I I I I I I I I I I 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 26.0 ACCLIMATION TEMPERATURE (c) Percent mortality (96-hr) of weakfish postlarvae in simulated PUBLIC SERVICE ELECTRIC AUD GAS COMPANY entrainment tests (treatments E2, E4). SALEM 316(b) STUDY -Figure 6-71 j WEAKFISH POSTLARVAE 20.0-19.0-83 100 58 56 65 ...-16.0-72 65 77 100 u 8 ..._,, J::t'.l 17.0-57 100 rt) < 16.0-100 J::t'.l u 15.0-z 1-1 25 61 J::t'.l 14.0-0 67 CJ\ I t--' :::> 13.0-w N 12.0-J::t'.l P-t 11.0-50 25 36 57 0 8 59 rn 67 31 71 J::t'.l E-4 10.0-66 0 18 0 25 4 9.0-68 8.0 I I I I I I I I I I I I I 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 ACCLIMATION TEMPERATURE (C) Percent mortality (48-hr) of weakfish postlarvae in simulated PUBLIC SERVlCE ELECTRIC AND GAS COMPANY entrainment tests (treatments E2, E4). SALEM 316(b) STUDY Figure 6-/"2 * -------

_________ __.. __

  • Percent mortality of weakfish postlarvae in simulated entrainment PUBLIC SERVICE ELECTRIC AND GAS COMPANY tests (combined 48-and 96-hr tests; treatments El, E5). SALEM 316(b) STUDY Figure 6-73 WEAKFISH POS.TLARVAE 20.0-19.0-,,---. 18.0-50 100 100 100 u ...._,, r.:Ll 17.0-[/) <I! 16.0-r.:Ll u 15.0-z 1-t r.:Ll 14.0-°' I :=> 13.0-f--' l>.l .p.. 12.0-r.:Ll p.. 11.0-r.:Ll 0 9 0 53 f-:l 10.0-9.0-8.0 I I I I I I I I I I I I I 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 ACCLIMATION TEMPERATURE (C) Percent mortality (48-hr) of weakfish postlarvae in simulated PUBLIC SERVICE ELECTRIC AND GAS COMPANY entrainment tests incorporating extraction pressure (treatments X3, X4). SALEM 316(b) STUDY Figure 6-74 *
  • WEAKFISH POSTLARVAE 20.0-19.0-100 ,--.. 18.0-0 ---r:i::i 17.0-(/) < 16.0-r.r.:i 0 15.0-z 1-1 r:i::i 14*.0-13.0-E-4 < 12.0-r.r.:i 0 11.0-r:i::i E-4 10.0-9.0-8.0-I I I I I I I I I I I I I 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 ACCLIMATION TEMPERATURE (C) Percent mortality (96-hr) or weak.fish postlarvae in simulated entrainment PUBLIC SERVICE ELECTRIC AND GAS COMPANY tests incorporating extraction pressure (treatments X3, X4). SALEM 316(b) STUDY Figure 6-75 20.0-19.0-..-... 18.0-0 r£t 11.0-If) -::t: 16.0-r£t p:: 0 15.0-z t-t r£t . 14.0-p:: 13.0-E--1 -::t: 12.0-p:: r£t P-t 11.0-r£t E--1 10.0-9.0-8.0 I I I 15.0 16.0 17.0 18.0 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY
  • WEAKFISH YOUNG I I I I I I 19.0 20.0 21.0 22.0 23.0 24.0 ACCLIMATION TEMPERATURE (C) Percent mortality ( 96-hr) of weakfish o+ in tests (treatments E2, E4}. Figure 6-76
  • I 25.0 100 100 14 13 I 26.0 I 27.0 simulated entrainment I 28.0 *
  • 20.0-19.0-...-18.0-u ..__ ril 17.0-(/) < 16.0-ril u 15.0-z 1-t 0 r:il 14.0-0 13.0-12.0-ril P-i 11.0-ril 0 E-4 10.0-9.0-B.O I I 17.0 16.0 19.0 PUBLIC SERVICE ELECTRIC AlID GAS COMPANY SALEM 316(b) STUDY WEAKFISH YOUNG 100 100 86 50 50 67 0 0 60 I I I I I I I I I I 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 ACCLIMATION TEMPERATURE (C) Percent mortality (48-hr) of weakfish O+ in simulated entrainment tests (treatments E2, E4). Fi ure 6-77 100 Q'\ I I I-' w I ...... 100 I 30.0 WEAKFISH o+ 20.0-100 19.0-90 ---18.0-100 100 100 100 0 100 ...__, r:r:i 17.0-ifJ <I! 16.0-r:r:i 0 15.0-z I-! 60 14.0-11 0 CJ'> r:r:i 50 I I-' (,,,) 13.0-00 12.0-r:r:i P-i 11.0-80 14 0 60 25 r:r:i 0 E-4 10.0-0 10 80 9.0-67 8.0 I I I I I I I I I I I I I 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 A CCLI MATI ON TEMPERATURE (c) Percent mortality of weakfish O+ in simulated entrainment tests PUBLIC SERVICE ELECTRIC AlID GAS COMPANY (combined 48-hr and 96-hr tests; treatments E3, ES). SALEM 316(b) STUDY Figure 6-78
  • WEAKFISH YOUNG 20.0-19.0----18.0-0 100 iz:l 17.0-Cf) < 16.0-r:il 0 15.0-z ....... r:il 14.0-:::> 13.0-E-t < 12.0-r:il 0-i 11.0-r:il 10.0-13 9.0-6.0 I I I I I I I I I I I I 17.0 16.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 26.0 29.0 ACCLIMATION TEMPERATURE (C) Percent mortality (48-hr) of weakfish O+ in simulated entrainment PUBLIC SERVICE ELECTRIC AND GAS COMPANY tests incorporating extraction pressure (treatments X3, X4). SALEM 316(b) STUDY Figure 6-79
  • 100 100 I 30.0 ()'\ I ...... w \0 I I '* I 7.1 7-1 SECTION 7.0 IMPINGEMENT DENSITY IN INTAKE WATER Weakfish are susceptible to impingement at Salem primarily from mid-June through October, with peaks typically during late June-August.

Daily estimates of density, as number of fish per million cubic meters (l.OE6m ) of intake water, calculated using a double-exponentially-weighted 7-day moving average process (Appendix I) applied to the individual observations. During the period 1977 through 1982 maximum daily density occurred on July 6, June 29, July 5, August 15, August 11 and August 26, with maximum values 5anging from 4,620.l/10.E6m in 1982 to 89,858.0/l.OE6m in 1978 (Table 7-1). In all years expect 1978 the occurrence of weakfish at Salem was characterized by generally fluctuating densities and no distinctive period of peak abundance (Figs. 7-1 through 7-6). During 1978 a extremely strong O+ year-class was noted baywide (Section 4.2.4), and a period of relatively high abundance existed from late June through mid-July. Monthly average density was calculated as the simple arithmetic mean of all observations within that month {Table 7-2; Fig. 7-7). Densities were relatively in July or August; the highest was 23,021.1 per l.OE6m in July 1978. Individual impingement sample rates were reflected against patterns of time, tide, salinity and light-dark periods within five-day intervals during periods of high impingement (Figs. 7-8 through 7-17). There was no apparent relationship between impingement rate and time or salinity; however, a pattern of increased impingement rate during ebbing tide is readily apparent. 7.2 AGE-CLASS COMPOSITION Impinged specimens were not aged directly; age composition was inferred from the impingement sample length-frequency distribution (Figs. 7-18 through 7-23) and the known age relationship. Size-at-age was interpolated from growth information presented in Section 3.7.3, i.e., 0.2 mm/day for 7 days after hatching, 1.1 mm/day through September, 0.3 mm/day through October, followed by 0.0 mm/day into the spring. Expected distribution around each monthly mean size was approximated from the standard deviations reported by 7-2 Seagraves (198la) and reproduced in Tables 3-13 and 3-15. Of the 70,910 impinged weakfish measured during 1977-1982, all but 34 were likely age 0+ (Table 7-3). 7.3 COLLECTION EFFICIENCY Collection efficiency tests were performed on weakfish 31-100 mm FL (Table 7-4); for procedures see Appendix I. Mean collection efficiency (excluding size intervals with only single specimens) ranged from 40.5 percent for fish 31-35 mm FL to 96.5 percent for fish 96-100 mm FL, and generally increased with specimen length (Fig. 7-24*). Probit regression analysis of collection efficiency tests for. resulted in a median recovery length of 34.8 mm FL (R = 0.8214), a value very similar to the combined-species (measured in fork length) value of 32.3 mm FL. 7.5 SURVIVAL Weakfish taken in impingement survival during 1977 through 1982 were classified as either live, dead or damaged (see PSE&G, 1980 for classification criteria). The number of individuals in each of the three categories, by month and year, is summarized by age group in Table 7-5. Most specimens were to the river; however, some 3,800 live and/or damaged specimens were held for a 96-hr latent mortality study; for procedures see in Appendix I. Initial Mortality Initial mortality (MI), i.e., the proportion of weakfish killed immediately by the impingement process, is calculated as: MI = Dd/(L + Dm + Dd) where L = number live Dm = number damaged Dd = number dead *

  • 7-3 Of the total 66,092 age 0+ young examined and measured, 46,337 were classified as live, 16,085 dead and 3,670 damaged (Table 7-5). The average mortality rate was 24.3 percent, with the mean monthly rate ranging from 10.0 percent in December to 37.4 percent in June and generally declining from June through December.

Of the total 25 age l+ weakfish examined and measured, 7 were classified as live, 11 dead and 7 damaged with an average mortality of 44.0 percent (Table 7-5). Monthly mortality rates of age l+ fish could not be calculated because of the small sample size. Since a number of factors are known to influence initial mortality, further analyses were conducted. Monthly mean length (TL mm), water 3 temperature (°C), salinity (ppt), detrital load (g/lOOm intake water), number of circulating pumps in service and approximate fish age in months (Table 7-6) were entered as independent variables into a step-wise multiple regression. Only observations with ten or more fish were used and the initial mortality values (MI) were transformed to logits. Of the six variables, only age was significant (p < 0.05); it explained 57.l percent of the total variance (Table 7-7). Mortality decreased with increasing age. The final equation was: where logit MI = ( R2 = -0.163 0.283A 0.571; n = 33; p < 0.05) A = age of fish in months. Latent Mortality An estimate of latent mortality was obtained by holding impinge0 and non-impinged (controls) weakfish through 96-hr periods; for procedures see .Appendix I. During 1978-1982, 601 test groups with 3,819 impinged weakfish and 93 control groups (833 fish) were held at ambient water temperatures from 5.'.:* to 30.0°C *and salinities from 3.5 to 15.5 ppt (Table 7-8). Test groups included 525 with 3,159 fish initially classified as live, and 76 with 660 fish initially classified as damaged. Control specimens were collected by beach seine. Cumulative percentage survival to 96 hr was determined by month for control, live and damaged specimens (Tables 7-9 through 7-11) using Survival Analysis (Appendix I) and the 7-4 results were plotted (with 95% confidence intervals) at 24, 48, 72 and 96 hr (Figs. 7-25 through 7-45). Cumulative 96-hr survival (+ 95% C.I.) for all control fish was 88.9 + 2.1 percent (Table 7-9; Fig. 7-25); in months with> 10 specimens tested, it ranged from 71.3 + 7.5 percent in September (Fig. 7-29) to 100 percent in June (Fig. 7-26) and October (Fig. 7-30). Monthly data summarized for the period 1978-1982 indicate control survival was generally highest in June and October and lowest in September (Fig. 7-46). Cumulative 96-hr survival (95% C.I.) for all live-category fish was 62.4 + 1.7 percent (Table 7-10; Fig. 7-31); in months > 10 specimens tested, it ranged from 43.7 + 10.9 percent-in October (Fig. 7-36) to 72.6 + 8.2 percent in June (Fig. 7-32); intermediate levels were + 2.7 percent in July (Fig. 7-33), 57.8 + 2.8 percent in August (Fig. 7-34), and 66.6 + 3.8 percent in September (Fig. 7-35). Monthly data summarized for the period 1978-1982 indicate that survival was highest in June, generally decreased through the summer and was lowest in October (Fig. 7-47). Cumulative 96-hr survival (+ 95% C.I.) for all category fish was 21.9 + 3.2 percent (Table 7-11; Fig. 7-38). The cumulative 96=hr survival for damaged-category fish ranged from in December (Fig. 7-45) to 26.6 + 8.9 percent in September (Fig. 7-42). Data summarized for-the period 1978-1982 indicate that survival of this category was high during the summer and generally decreased through fall (Fig. 7-48). Since a number of factors are known to influence latent mortality, further analyses were conducted. Temperature (°C), salinity (ppt), number of circulating pumps in service, number of traveling screens in service and mean total length (mm) of specimens being tested (Table 7-12) were independent variables in a step-wise regression analysis. Only observations with 10 or more fish were used, and the latent mortality values (M ) were transformed to legits. Only temperature, the num8er of screens in service, and the number of pumps in service were significant (p < 0.05) for live-category fish. However, together they -accounted for only about 11 percent of the variability. For damaged-category fish, only salinity and the number of pumps in service were significant (p < 0.05), together accounting for about 21 percent of the varTability. Loss of equilibrium (LOE) is a condition seen in some damaged-category impinged species. However, only 9 of the 3,819 weakfish tested were LOE at the 96-hr observation, and LOE related mortality is apparently not a significant factor among impinged weakfish. .I I I l * *

  • 7-5 Total Mortality Total mortality (M), i.e., the proportion of all individuals which are killed initially (MI) or die within 96 hr is calculated as: MT = l -(l -MI) * (1 -MWL). Monthly total mortality ranged from 47.3 percent in September to 65.5 percent in October for 0+ fish and 71.2 percent in July to 78.3 percent in June for l+ fish (Table 7-13) .

Year 1977 1978 1979 19 80 1981 1982 7-6 Table 7-1 Dates of initial, maximum and last occurrences of weakfish at Salem CWS 1977-1Q82. Maximum mean daily density in parenthesis is based on number per million cubic meters intake volume and calculated using a double-exponentially-weighted seven-day moving average. First Last Occurrence Peak Occurrence June 16 July 6 November 2 (11,112.2) June 19 June 29 December 20 (89,858.0) June 21 July 5 November 16 (25,551.6) May 24 August 15 November 8 June 30 August 11 December 17 (18,558.4) May 12 August 26 December i9 (4,620.1)

  • *

* *

  • Table 7-2 Weakfish impingement per million cubic meters of Salem cws flow. Density Mean (Number per million Number Volume Number of cubic meters) of Minutes Sampled Pumps in Number Number Number Number Total Standard Date Samples Sampled (cubic meters) Service Live Damaged Dead Undetermined Number Mean Deviation 1977 January* 0 0 0 February*

0 0 0 March* 0 0 0 April* 0 0 0 May 44 132 499,122 5.39 0 0 0 0 0 o.o o.o June 62 186 650,754 4.98 312 23 448 0 783 1,160.0247 2,955.0851 July 65 195 749,735 5.48 2,475 193 1,973 0 4,641 5,955.8798 6, 773.0090 August 72 216 806,597 5.32 1,280 64 617 0 1, 961 2,483.8650 3,540.8485 September 91 273 633,906 3.31 530 39 130 0 699 654.5925 1,900.4492 October* 8 24 16. 848 1.00 1 0 0 0 1 59.3542 167.8791 November 92 276 322,218 1.66 1 0 0 0 1 5.1612 49.5048 December 98 294 1,090,907 5.29 0 0 0 0 0 o.o o.o 1978 '-I January 81 243 659,178 3.86 0 c 0 0 0 0.0 o.o I '-I February 79 237 939,275 5.65 0 0 0 0 0 o.o o.o March* 51 153 577 ,044 5.37 0 0 0 0 0 o.o o.o April* 77 231 162,162 1.00 0 0 0 0 0 o.o o.o May* 0 0 0 June 66 196 604,422 4.41 6,182 397 7,371 137 14,087 18,625.6065 61,984.2691 July 202 350 1,196,207 4.85 10,365 849 4,032 12,873 28, 119 23. 021.1116 45,128.6695 August 400 522 1,805,543 4.92 2,292 253 635 2,870 6,050 3,544.9519 5,515.6123 September 337 467 1,678,481 5.12 1, 9_28 162 268 282 2,640 1,590.3180 3,272.8764 October 297 419 677. 430 2.35 90 10 6 1 107 126.9688 378.4683 November 330 446 852,228 2.68 4 1 0 1 6 4.9642 49.4380 December 275 530 2,063,879 5.55 3 5 1 0 9 3.4794 22.9770 1979 January 282 793 3,166, 719 5.70 0 0 0 0 0 o.o o.o February 288 722 2, 7311, 288 5.42 0 0 0 0 0 o.o o.o March 315 665 2,662,684 5.76 0 0 0 0 0 o.o o.o April 172 508 680,940 2.29 0 0 0 0 0 o.o o.o May 207 642 450,684 1.00 0 0 0 0 0 o.o o.o June 242 726 509,652 1.00 136 8 99 0 243 476.7960 1,740.2203 July 328 937 657,774 1.00 2,350 178 1,216 477 4,221 7,911.4842 19, 773.6746 August 215 618 433,836 LOO 1,648 50 458 55 2,211 5,366. 7266 7,417.9485 September 248 698 523,692 1.06 974 104 297 0 1,375 2,891.1256 5,939.4440 October 309 843 1,182,167 2.02 206 68 60 37 371 334.8425 813.2802 November 324 956 1,423,655 2.12 4 6 1 1 12 8.7932 48.6373 December 296 886 1,540,889 2.48 0 0 0 0 0 o.o o.o J 'l'able 7-2 Continued Density Mean (Number per million Number Volume Number of cubic meters) of Minutes Sampled Pumps in Number Number Numb<!r Number Total Standard Date Samples Sampled (cubic meters) Service Livr. Damaged Dead Undetermined Number Mean Deviation 1980 January 297 873 3, 387, 1117 5.53 0 0 0 0 0 o.o o.o February 308 900 3,585,813 .5.68 0 0 0 0 0 o.o o.o March 296 774 3,088,798 5.70 0 0 0 0 0 o.o o.o April 319 779 3,034,042 5.52 0 0 0 0 0 o.o o.o May 313 727 2, 97<'.., 371 5.85 0 1 0 0 1 0.3034 5.3678 June 259 623 2,466,124 5.61 480 33 129 113 755 334.8720 845.6146 July 334 826 4,024,563 6.93 6,478 267 1,759 3,492 11, 996 3, 631.3666 5,314.8551 August 301 831 4,072,299 1.00 9,340 177 7,533 19,883 5,475.9125 8, 141. 9169 September 273 729 3,319,756 6.49 1,815 68 557 1,405 3,855 1,618.4947 4, 311. 8820 October 297 2,532 2,306,069 1.32 210 12 21 11 254 107.0775 259.5808 November 286 2,888 2,020,355 1.00 1 0 0 0 1 0.4981 8.4233 December 296 1,930 2,337,659 2.65 0 0 0 0 0 o.o o.o 1981 -..J I January 416 2,928 10,658,459 5.43 0 0 0 0 0 o.o o.o ".lO February 375 1,564 5,752,184 5.29 0 0 0 0 0 o.o o.o March 390 1,418 3,846,256 4.46 0 0 0 0 0 o.o o.o April 293 2,096 1,792,205

1. 56 0 0 0 0 0 o.o o.o May 295 553 2,241,485 6.00 0 0 1 0 1 0.3219 5.5292 June 288 839 1,726,919 4.06 1 0 1 0 2 1.4132 23.9827 July 333 386 2,341,871
8. 71 3,464 202 1,286 1,665 6,617 3,269.6758 4,972.7067 August 290 312 2,244,293 10.23 4,230 348 1,243 2,986 8,807 4,117.9626 6,205.6503 September 248 565 3,126,706 7.94 454 46 99 559 1,158 519.7487 1,137.5868 Qctober 280 569 3,144,958 8.10 232 26 43 745 1,046 483.0229 1,290.2432 November 265 520 3,191,992 8.81 25 15 5 79 124 50.8213 114.9184 Decell\ber 295 590 3,894,694 9.49 5 8 2 43 58 14.1154 55.8617 1982 January 380 1,772 5,281,846 0 0 0 0 0 o.o o.o February 356 1, 716 5, 961, 381 5.00 0 0 0 0 0 o.o o.o March 384 1,336 4. 764,471 5.13 0 0 0 0 0 o.o o.o April 337 781 3,722,002 7.20 0 0 0 0 0 o.o o.o May 161 180 1,194,101 9.49 0 1 0 0 1 0.8043 10.2060 June 293 293 2,257,631 10.98 251 11 70 66 398 177. 7693 593.8020 July 330 331 2,386,097 10.27 2,284 214 536 1,026 4,060 1,724.6358 2,134.0861 August 299 312 2,151,629 9.84 2,366 175 435 1,004 3,980 1,831.1178 3,649.8384 September 273 277 1,849,769 9.51 724 46 95 205 1,070 575.7144 914.2284 October 273 475 2,118,635 7.25 238 50 38 140 466 229.6214 370.4037 November 304 896 3,042,466 4.85 70 39 27 27 163 51.02.38 123.6835 December 307 917 3,101,434 4.81 13 3 1 5 22 6.9343 27.4939
  • onolyomo, insufficient volume or temporal coverage.
  • * --------
  • Table 7-3 Age composition of weakfish taken in Salem impingement samples 1977-1982.

o+ t MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB HAR APR Age in Months 1 2 3 4 5 6 7 8 9 10 11 12 1977 612 3,470 1,747 613 l 1 1978 1,853 6,062 4,471 2,440 105 6 9 1979 242 3,624 2,167 1,372 355 12 1980 658 7,909 9,988 2,385 249 l 1981 2 4,869 5,461 770 536 120 58 1982 374 3,655 3,219 918 372 149 21 Total 3,741 29,589 27,053 8,498 1,618 289 88 ---1 I '° l+ Age in Months t 13 14 15 16 17 18 19 20 21 22 23 24 1977 1978 2 2 2 1979 l 2 1 1980 l 2 1981 3 2 l 1982 l 2 l 4 l l Total 1 6 6 10 5 1 Grand Total 3* 3,747 29,598* 27,063 8,503 1,619 289 88 Percentage o+ 0.0 99.84 99.97 99.96 99.94 99.94 100.0 100.0 Percentage l+ 33.33 0.16 0.02 0.04 0.06 0.06 o.o 0.0 t Assuming May 1 birthdate.

  • includes 2+ and older.

Table 7-4 Collection efficie11.cy for weakfish at Salem CWS. * *

  • Table 7-5 Monthly number and percent mortality by age of weakfish in Salem impingement samples. o+ MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR TOTAL Age in Months 1 2 3 4 5 6 7 8 9 10 11 12 o+. Number 1977 286 1,879 1,097 448 1 1 live 1978 817 3,672 2,151 1,732 89 4 3 1979 136 2, 199 1,648 974 205 4 1980 480 5,877 7,239 1,742 210 1 1981 1 3,165 3,793 452 232 25 5 1982 250 2, 284 2,191 724 238 '70 12 Total 1,970 19,076 18, 119 6,072 975 105 20 46,337 Number 1977 303 1, 398 586 128 dead 1978 777 1,458 621 265 6 1 1979 98 1,127 456 297 60 1 1980 126 1,642 2,443 509 20 1981 1 1, 272 1, 195 96 42 5 2 ....... 1982 68 519 411 89 35 27 l I I-' I-' Total 1,373 7,416 5, 712 1,384 163 33 4 16,085 Number 1977 23 193 64 37 damaged 1978 256 617 253 161 10 1 5 1979 8 177 49 101 67 6 1980 32 266 173 60 12 1981 193 348 44 25 15 8 1982 10 213 108 45 49 38 3 Total 329 1,659 995 448 163 60 16 3, 670 Mortality ( % ) Initial Mean 37.4 26.3 23.0 17.5 12.5
16. 7 10.0 24.3 Upper 95% c. I. 38.9 26.9 23.5 18.4 14.3 21. 9 23.1 24.7 Lower 95% c .r. 35.9 25.8 22.5 16.7 10. 7 11.5 2.8 24.0 Latent 1 Mean 14.3 8.0 5.2 6.9 14.3 36.4 44.4 7.3 Upper 95% c.r. 15.7 8.4 5.5 7.5 16.4 44.7 60.7 7.6 Lower 95% c .r. 12.9 7.6 4.9 6.3 12.3 29.0 28.2 7.1 l+ HAY JUN JUL AUG Age in Months 13 14 15 16 Number 1977 live 1978 1 1 1979 1980 1981 1 2 1982 1 *rotal 1 2 3 Number 1977 6 dead 1978 1 1979 1 1 1980 1 1981 1982 Total 2 1 7 Number 1977 damaged 1978 1 1979 1 1 1980 1981 1 1982 1 1 1 Total 1 2 1 2 Hortalit:t:

(%) Initial Hean Upper 95% c.r. .r.s. I.S. r.s. I.S. Lower 95% c .I. Latent 1 Mean Upper 95% c.r. r.s. I. s. r.s. I.S. Lower 95% c .I. 1 assumed all live fish live, all damaged fish die

  • Table 7-5 Continued SEP OCT 17 18 1 1 1 1 1 r.s. r.s. r.s. r.s.
  • NOV DEC JAN FEB MAR 19 20 21 22 23 .... *** ..... .** APR TOTAL Grand 24 l+ Total 7 46, 344 11 16,096 -..J I I-' N 7 3,677 44.0 24.3 65.1 24.7 24.4 24.0 50.0 7.4 55.7 7.6 16.4 7.1

,-----* Ta ll"!l!r 7 -6 Weakfish monthly initial mortality with monthly mean temperature, salinity, detritus and number of pumps in service at Salem 1977-1982. WEUFISH YEAR llONTH AGf TOTAL INITIAL llEAN WATER SAL IN ITT DETRITUS llEAN NO. INITIAL LOG IT (llONTHS) NUllBER NUHeER FORK TEMP. (ppl) (GRAMS PER PUMPS IN llORTAL ITT INITIAL lllPINGED ALIVE LENGTH (C) 100 CUBIC SERVICE (PERCEIH) llORHLITY CLIVE, DEAD, (LJVE & (HM) FIETER S) DlHAGfD) OAl*A GED) 1977 JUN 2 612 309 54 23.5 9.4 85.8 5.0 49. 5 -.0196 JUL 3 3470 207Z 64 27.4 9.1 85.2* 5.5 40. 3 -.3931 AUG 4 1747 1161 66 27.1 9.9 66.2 5.3 :n.5 -.6830 SEP 5 613 485 72 23.5 9.6 54.1 3.3 20.9 -1.3304 OCT 6 1 1 123 18 .1 3.4 1!. 6 1. () o.o -7.6014 NOV 7 1 1 93 11.6 Z.2 64.9 1.7 o. 0 -7.6014 SUM 6444 4029 1978 JUN 2 1850 10?3 42 23.4 5.3 149. 3 4.4 42.0 -.3224 JUL :3 5747 4269 56 25.6 1.6 131.6 4.B 25.4 -1.0777 AUG 4 3025 2404 65 27.3 7.2 80.7 4.9 20.5 -1.3518 SEP 5 2158 1e93 75 23.8 7.8 63.'3 5.1 12.3 -1.9627 OCT 6 1C5 99 99 16.1 7.9 52.1 2.3 5.7 -2.7952 '-I I NOV 7 5 5 140 12.4 10.2 90.4 2.7 o.o -7.6014 ...... DEC 8 9 8 104 6.3 4.6 68.9 5.6 11.1 -2.0755 w JUN 14 2 2 249 23.4 5.3 149.3 4.4 o.:i -7.6014 JUL 15 2 1 246 25.6 7.6 131.6 ". 8 50.0 -.oooo SUM 12903 9774 1979 JUN z 242 144 50 21 .1 4.8 66.5 1.0 40.5 -. 3845 JUL 3 3503 2376 60 24 .8 7.4 53.9 1. 0 32.Z -. 7450 AUG 4 2153 1697 63 24.7 8.Z 68.1 1. 0 21.2 -1.3124 5 1372 1075 80 23.5 5.5 61.7 1. 1 21.6 -1. 284 7 OCT 6 332 272 122 16. 3. 3.2 56.9 2.0 19.1 -1.5093 NOV 7 11 10 115 12. 7 4.B 149.4 2.1 9.1 -2.2977 JUN 14 1 c 125 21.1 4.8 66.5 1.0 100.D 7.6015 AUG 10 2 1 264 24.7 B.2 68.1 1.0 50. () -.0000 !.Ef' 17 1 1 245 23.5 5.5 61. 7 1.1 o.o -7.6014 SUM 7617 5576 1930 JUN 2 63 B 512 50 23.1 7.0 32.2 5.6 19. 7 -1.4001 JUL 3 7785 6143 67 27.3 8. () 36.7 6.9 21.1 -1. 3177 AUG 4 9855 7412 61 27.7 9.7 18. B 7. 'J 24.e -1.1085 SEP 5 2311 1802 74 24.5 11.2 40.6 6.5 22.0 -1.2626 OCT t 242 222 116 16.5 11.1 28.5 1. 3 !I. 3 -2.4015 NOV 7 1 1 93 9.3 12. 6 33.8 1. a o.o -7.6014 JUN 14 1 0 245 23.1 1.0 32.2 5.6 1 O'.l.O 7. 6015 r--** Table 7-6 Continued WEAKFISH HAR MONTH AGE TOTAL I NIT UL HEAN WUER SALINIH HEAN NO. INITIAL LOG IT (MONTHS) NUMBER NUMBER FORK TEMP. (:"PT> (GRAMS PER PUMPS IN MORTALITY INITIAL l'IPINGED ALIVE LENGTH (C) 100 CUBIC SERVICE (PERCEl,IT) MORTALITY (LIVE. OEAD1 CLIVE g CHM) METERS) DAMAGED) DAMAGED) SUH 20833 16092 1981 JUN 2 2 1 33 24.2 !I. 2 64. 8 4.1 50.0 -.oooo JUL 3 4630 3358 52 26.6 11.1 43.6 8.7 27.5 -.9696 AUG 4 5336 4141 65 26.1 10.5 17.6 1 o. 2 22.4 -1.2412 SEP 5 59Z 496 83 22.4 9.5 30.4 7.9 16.2 -1.6397 OCT 6 299 257 94 14.9 10. 2 32.1 8.1 14.D -1.8084 hOV 7 45 40 90 10.9 11.2 30.2 8.8 11.1 -2.0755 DEC 8 15 13 72 4.7 1o.7 26.6 9.5 13.3 -1.8666 JUL 15 2 2 248 26.6 11.1 43.6 8.7 o.o -7.6014 AUG 16 2 2 191 26.1 10.5 17.6 10.2 o.o -7.6014 SEP 17 1 1 190 22.4 9.5 30.4 7.9 0.0 -7.6014 SUH 10924 8311 ....... I I-' -!>-1982 JUN 2 328 260 36 21.8 5.9 35.7 11.0 20.7 -1.3394 JUL 3 3016 2497 63 25.7 6.6 55.3 1 o. 3 17. 2 -1.5686 AUG 4 271J 2299 74 25.5 32.9 9.3 15.2 -1. 7189 SEP 5 8B 769 76 22.6 8.5 21.4 9.5 10.4 -2.1522 OCT 6 322 287 106 17.B 1 o. 7 18.2 7.2 1o.9 -2.1001 NOY 7 135 10e 120 12.3 1o.6 19. 8 4.? 20.0 -1.3844 OEC. !! 16 15 93 7.8 9.2 21.5 4.3 6.3 -2.7006 MAY 13 1 1 225 18 .1 5.9 45.2 9.5 o.c -7.6014 14 1 1 227 21.8 5.9 35.7 11.a o.o -7.6014 AUG 16 2 2 232 25.5 8.J 32.9 9. ii o.o -7.6014 OCT 18 1 c 230 17.8 1a.1 18. 2 7.2 100.0 7. 601 s SUM 7390 0239

  • I :. l J 7-15 Table 7-7 Summary of initial mortality step-wise multiple*

regression analysis for impinged weakfish. Variable R2 Age (A) 0.571 Detritus ( D) 0.593 Salinity ( s ) 0.626 Pumps ( p) 0.639 Length ( L) o. 647 Temperature ( T) 0.648 Final model Logit M 1 = -0.163 -0.283A 2 (R = 0.571; n = 33; p < 0.05) 2 R change 0.571 0.022 o. 033 0.013 0.008 0.001 ' I I '( Taible 7-8 Summary of weakfish latent impingement survival tests, 1978-82. WEAKFISH TYPE. H HH DD TEST WATER SALINITY HEAN cws TRAVELING NO. AT NO. DEAD NO. LOE 96 HR 96 HR TYPE TEMP. (PPT> TOTAL PUMPS SCREENS START AFTER AFTER HORT AL ITV HORTA LI TY' CC) LENGTH IN IN 96 HR* 96 HR* II IT HOUT WITH (MH) SERVICE SERVICE LOE LOE (PERCENT) (PERCENT> CONTROL 7S 7 19 L!VE -99.9 -99.Q 71.2 a 0 15 0 a o.o o.o 73 7 19 LIVE -99.9 -99.9 77.6 0 0 18 1 a 5.6 5.6 76 7 . 19 LIVE -99.9 -99.9 79.9 0 0 15 0 a . o. 0 o.o 78 7 Z7 LIVE 27.0 7.0 60.0 0 0 20 3 0 15.0 15 .o 76 7 H LIVE 27.0 7.0 6 8.3 a 0 18 0 0 o.o o.o 78 7 27 LIVE 27.0 7.0 65.7 0 0 20 1 0 5.0 5.0 . 78 8 2 LIVE -99.9 -99.9 70.4 0 0 20 5 0 25.0 25.0 78 8 2 LIVE -99.9 -99.9 69. 8 0 0 20 5 0 25.0 25.0 78 8 2 LIVE -99.9 -99.9 73.4 0 0 20 2 0 10.0 10.0 7S 8 10 LIVE -99.9 -91.9 67.2 0 0 20 9 0 45.0 45.0 73 s 10 LIVE -99.9 -99.9 6 8. 8 0 I) 20 1 0 s.o 5.0 78 8 10 LIVE -99.9 -99.9 66.0 0 0 20 2 0 1o.0 10.0 7!1 8 16 LIVE -9'1.9 -99.9 71.5 0 0 20 10 0 50.0 so.a 73 9 7 LIVE -99.9 -99.9 6 5. 4 0 0 10 0 0 o.o o.o 7'l 9 7 L:VE -9.9. 9 -99.9 11.0 a 0 8 1 0 12. 5 12.5 ---J 79 7 3 LIVE -99.9 -99.9 .49. 5 0 0 10 0 0 o.o o.o I f-' 79 7 18 LIVE -99.9 -99.9 66.4 0 0 10 0 0 o.o o.o °' 79 7 26 LIVE -99.9 -99.9 90.7 0 0 10 0 0 a.a o.o 79 8 21 LIVE -99.9 -99.9 85.6 0 0 10 0 0 o.o o.o 79 !l 29 LIVE -99.9 -99.9 72. 7 0 0 9 1 0 11.1 11.1 79 9 10 LIVE -99.9 -99.9 5 3. 8 0 0 9 0 0 o.o. o.o 79 9 17 LIVE -c;9.9 -99.9 53.8 0 0 10 2 0 20.0 20.0 80 6 24 LIVE -99.9 -99.9 55.8 0 0 11 0 0 o.o o.o 80 6 30 LIVE -99.9 -99.9 75.2 0 0 10 0 0 o.o o.o 80 7 8 LIV2 -99.9 -99.9 75.2 0 0 10 0 o. o.o o.o 80 7 15 LIVE -99.9 -99.9 8 oJ. 3 0 0 10 0 0 o.o o.o 80 7 22 LIVE -99.9 -99.9 76. 0 0 0 9 0 0 o.o o.o 80 7 29 LIVE -99.9 -99.9 75.3 0 0 10 0 0 o.o o.o 80 8 5 LIVE -99.9 -99.9 55.8 0 0 9 0 0 o.o o.o 80 8 12 LIVE -99.9 -99.9 109. 5 0 0 7 0 0 o.o o.o 80 8 19 LIVE -99.9 -99.9 4 7 .1 0 0 10 2 1 20.0 30.0 80 8 27 LIVE -99.9 -99.9 67.6 0 0 10 0 0 o.o o.o 80 9 2 LIVE -99.9 -99.9 69.1 0 0 9 9 0 100.0 1 oo.o 80 9 12 LIVE -99.9 -99.9 80.4 0 0 11 7 2 63.6 81. 8 80 9 15 LIVE -99.9 -99.9 80.7 0 0 20 10 0 50.0 50.0 80 9 19 LIVE -99.9 -99.9 69.0 0 0 8 0 0 o.o o.o 80 10 3 LIVE -99.9 -99.9 100.9 0 0 10 6 1 60.0 10.0 81 7 8 LIVE -99.9 -99.9 24. 6 0 0 20 4 0 20.0 20.0 81 7 13 LIVE -99.9 -99.9 51.0 0 0 6 0 0 o.o o.o 81 7 15 LIVE -99.9 -99.9 4 4. 4 0 0 17 2 0 11.s 11.8 81 7 16 LIVE -99.9 -99.9 4 5. 5 0 0 11 0 0 o.o o.o 81 7 20 LIVE -99.9 -99.9 44. 8 0 0 19 0 0 o.o o.o 81 7 20 LIVE -99.9 -99.9 45. 3 0 0 25 0 0 o.o o.o * = CONTROLS MAY TERMINATE PRIOR TO 96 HR IF ALL TEST SPECIMENS DEAD. -99.9 = CONTROLS HELO AT AHBIENT RIVER CONDITIONS. ------------ ..-_ .......--* Tab 7-8 Co

  • WEAKF H TYPE yy HH DD TEST WATER SALINITY MEAN cws TRAVELING NO. AT NO. DEAD NO. LOE 96 HR 96 HR TYPE TEHP. (PPT> TOTAL PUMPS SCR E EllS Sf ART AfTER AFTER MOiHALITY HORT ALITY (C) LENGTH IN IN 96 HR* 96 HR* WITHOUT WITH (MH) SERVICE SERVICE LOE LOE C PERCE NT> (PE RC ENT) 81 7 21 LIVE -99.9 -99.9 62.1 0 0 16 0 0 o.o o.o 81 7 29 LIVE -99.9 -99.9 61.4 0 0 15 7 0 46.7 46.7 81 8 6 LIVE -99.9 -99.9 81.3 0 0 20 0 0 o.o o.o 81 8 11 LIVE -99.9 -99.9 73.0 0 0 5 0 0 o.o o.o 81 8 12 LIVE -99.9 -99.9 83.5 0 0 18 0 0 o.o o.o 81 8 12 LIVE -99.9 -99.9 83.1 0 0 10 0 0 o.o o.o 81 8 19 LIVE -99.9 -99.9 7S.8 0 0 16 0 0 o.o o.o 81 8 20 LIVE -99.9 -99.9 *79.6 0 0 8 0 0 0.0 o.o 81 8 24 LIVE -99.9 -99.9 90.1 0 0 8 0 0 o.o o.o 81 8 26 LIVE -99.9 -99.9 82.7 0 0 10 0 0 o.o o.o 81 9 2 LIVE -99.9 -99.9 89.3 0 0 8 0 0 o.o o.o 81 9 11 LIVE -99.9 -99.9 9 5.8 0 0 5 0 0 o.o o.o 81 9 15 LIVE -99.9 :-99.9 11o.3 0 0 3 0 0 o.o o.o 81 9 16 LIVE -99.9 -99.9 99.6 0 0 5 0 0 o.o o.o 81 9 22 LIVE -99.9 -99.9 120.6 0 0 3 0 0 o.o o.o 81 9 22 LIVE -99.9 -99.9 111.7 0 0 4 0 0 o.o o.o 81 9 29 LIVE -99.9 -99.9 124.0 0 0 2 0 0 o.a o.o 81 10 5 LIVE -99.9 -99.9 114. 0 0 0 5 0 0 o.o o.o 81 10 13 LIVE -99.9 -99.9 10 5 .o 0 0 5 0 a a.a o.o 81 11 6 LIVE -99.9 -99.9 90.0 0 0 1 1 0 100.0 1 oo.o 82 6 30 LIVE -99.9 -99.9 38. 0 0 0 1 0 0 o.o o.o 82 6 30 LIVE -99.9 -99.9 3 6. 0 0 0 1 0 0 o.o o.o -...J 82 7 13. LIVE -99.9 -99.9 64.0 0 .0 1 0 0 o.o o.o I 82 7 13 LIVE -99.9 -99.9 75.0 0 0 1 0 0 o.o o.o ...... 82 7 26 LIVE -99.9 -99.9 96.0 0 0 1 0 0 o.o o.o -...J 82 8 3 LIVE -99.9 -99.9 98.0 0 a 4 a 0 a.o a.a 82 8 11 LIVE -99.9 -99.9 157.0 0 a 1 0 0 o.a o.o 82 8 12 LIVE -99.9 -99.9 124.a 0 0 5 0 0 a.a o.o 82 8 16 LIVE -99.9 -99.9 76 .1 0 0 24 a 0 o.o o.o 82 8 17 LIVE. -99.9 -99.9 14 2.0 0 0 1 1 0 100.0 1 oo.o 82 8 24 LIVE -99.9 -99. 9 o.a 0 0 1 a 0 a.a o.a 82 8 24 LIVE -99.9 -99.9 68.a a a 1 0 0 a.a o.a 82 8 25 LIVE -99.9 -99.9 8 8.1 0 0 17 0 0 a.a a.o 82 8 31 LIVE -99.9 -99.9 84.a 0 a 1 a a a.a o.o 82 8 31 LIVE -99.9 -99.9 123.0 0 0 1 a 0 o.o o.o 82 8. 31 LIVE -99.9 -99.9 109.0 0 0 1 0 0 o.o o.o 82 8 31 LIVE .-99.9 -99.9 74.0 0 0 1 0 0 o.o o.o 82 8 31 LIVE -99.9 -99.9 134.0 0 0 1 a a a.a o.o 82 8 31 LIVE -99.9 -99.9 159.0 0 0 1 0 0 a.a o.o 82 8. 31 LIVE -99.9 -99.9 98.0 0 0 1 0 0 o.o o.o 82 8 31 LIVE -99.9 -99.9 87.0 0 0 1 0 0 a.a o.o 82 8 31 LIVE -99.9 -99.9 79. 2 0 0 10 0 0 a.a o.a 82 8 31 LIVE -99.9 -99.9 78.8 0 0 10 0 0 o.o o.o 82 8 31 LIVE -99.9 -99.9 102. 3 0 0 10 0 0 o.o o.o *
  • CONTROLS MAY TERMINATE PRIOR TO 96 HR IF All TEST SPECIMENS DEAD. -99.9
  • CONTROLS HELO AT AMBIENT RIVER CONDITIONS.

Tabl,e .7-8 Continued. WEAKFISH TYPE yy llH DD TEST WATER SALINITY MEAN cws TRAVELING NO. AT NO. DEAO NO. LOE 96 HR 96 HR TYPE TEMP. (ppl) TOTAL PUMPS SCREENS' START AFTER AFTER MORT AL !TY llORTALITY cc) LENGTH IN IN 96 HR* 96 HR* llITHOUT WITH (llH) SERVICE SERVICE LOE LOE (PERCENT) (PERCENT) 82 9 7 LIVE -99.9 -99.9 12 o.o 0 0 9 2 0 22.2 22.2 82 9 20 LIVE -99.9 -99.9 108.6 0 0 3 0 0 o.o 0.0 82 12 6 LIVE -99.9 -99.9 136 .o 0 0 1 0 0 o.o o.o SUM 861 94 4 TEST 78 7 19 LIVE 26.0 6.0 55.8 .5 4 20 3 0 1 5.0 15. 0 78 7 19 LIVE 26.0 6.0 55.0 5 4 20 0 0 o.o o.o 78 7 19 LIVE 26.0 6.0 53. 4 5 4 20 7 0 35.0 35.0 78 7 19 LIVE 26.0 6.0 53.4 5 4 19 7 a 36.8 36.8 78 7 19 LIVE 26.0 6.0 55.8 5 4 19 3 a 15.8 15.8 78 7 19 LIVE 26.0 6.0 5 5. I) 5 4 1 8 7 0 38.9 38.9 78 7 27 LIVE 27.Q 7.0 56.5 5 5 20 3 0 15.0 15.0 78 7 27 LIVE 27.0 7.0 55.2 5 5 20 2 0 1 a. o 10.0 78 7 27 LIVE 27.0 7.0 6 3.0 5 5 20 4 a 20.0 20.0 -....J 78 8 2 LIVE 25.0 7.5 6 3.1 6 6 20 5 0 25.0 25.0 I I-' 78 8 2 LIVE 7.5 ,66.4 6 6 20 13 a 65.0 65.0 00 78 8 2 LIVE 25.0 7.5 66.3 6 6 20 7 a 35.0 35.0 78 8 10 LIVE 27.0 7.0 66.S 5 6 20 12 0 60.0 60.0 78 8 10 LIVE 27.0 7.0 6 5. 7 5 6 20 14 a 70.0 70.0 73 6 10 LIVE 27.0 7.0 65. 0 5 6 20 14 0 70.0 70.0 78 8 16 LIVE 28.0 6.0 66.1 5 5 20 7 0 35.0 35.0 78 9 7 LIVE 26.0 6.0 77 .1 4 5 8 1 . 0 1 2. 5 12.5 78 9 7 LIVE 26.0 6.0 86.3 4 5 10 0 0 0.0 o.o 79 7 3 LIVE 24.0 3.5 53.3 1 1 10 4 a 40.0 40.0 79 7 3 LIVE 24.0 3.5 5 3. 8 1 1 10 5 0 so.a so.a 79 1 3 LIVE 24.0 3.5 52.4 1 1 10 4 0 40.0 40.0 79 7 3 LIVE 24.0 3.5 51.7 1 1 10 9 0 90.0 90.0 79 7 3 LIVE 24.0 3.5 5 5. 6 1 1 10 6 1 60.0 10.0 79 7 3 LIVE 24.0 3.5 53.6 1 1 10 4 1 40.0 so.a 79 7 3 LIVE 24 .a 3.5 55.4 1 1 10 2 0 20.') 20.0 79 7 3 LIVE 24.0 3.5 54.S 1 1 10 9 0 90.0 <lO.O 79 7 3 LIVE 24.0 3.5 5 3. 2 1 1 *10 9 a 90.0 90.0 79 7 18 LIVE 26.0 6.0 66.3 1 1 20 3 0 15.0 15.0 79 7 18 LIVE 26.0 6.0 69.0 1 1 9 4 0 44.4 44.4 79 7 1 8 LIVE 26.0 6.0 76.0 1 1 B 3 a 37.5 37.5 79 7 18 LIVE 26.0 6.0 69.6 1 1 10 4 0 40.() 40.0 79 7 18 LIVE 26.0 6.0 76.1 1 1 20 0 *o 0.0 0.0 79 7 19 LIVE 25.0 6. ') 77. 3 1 1 10 2 a 20. Cl 20.0 79 7 1? LIVE 25.0 6.0 6 2. 3 1 1 10 6 a 60.0 60.0 79 7 26 LIVE 2S.O 1.0 75.2 1 1 ii 3 0 37.5 31.5 79 7 26 LIVE 28.0 7.0 75.7 1 1 , 10 5 a 50.0 so.a * = CONTROLS MAY TERMINATE PRIOR TO 96 HR IF ALL TEST SPECIMENS OEAD. -99.9 = CONTROLS HELD AT AMBIENT RIVER CONDITIONS.

  • e * -

Tab Cont-a. WEAKFISH TYPE H 1111 00 TEST WATER SALINITY HEAN cws TRAVELING NO. AT NO. DEAD NO. I.OE 96 HR 96 HR TYPE TEMP. (?PT> TOTAL PUMPS SCREENS ST.ART AFTER AFTER MORTALITY HORT ALI TY CC) LENGTH IN IN 96 HR* 96 HR* WITnOUT WITH (MH) SERVICE SERVICE LOE LOE (PERCENT> (PERC EtH) 79 8 14 LIVE 25.0 1.0 72. 8 1 1 10 3 0 30.0 30.0 79 3 14 LIVE 25.0 7.5 74.0 1 :1 10 6 0 60.0 60.0 79 8 14 LIVE 25.0 7.5 6 3. 6 1 1 10 2 a 20.0 20.0 79 8 21 LIVE 24.0 1 a .* a 75.4 1 1 10 1 0 10. 0 10.0 79 8 21 LIVE 24.Q 1 o. a 6 2 .1 1 1 10 0 ,0 o.o o.o 79 8 21 LIVE 23. 5 1 o.o 84.0 1 1 10 3 0 30.0 30.0 79 9 21 LIVE 23.5 10.0 10 7. 6 1 1 10 7 a 70.0 70.0 79 s 29 LIVE 27.0 b.O 6 3. 3 1 1 s 3 0 37.5 :37 .s 79 s '29 LIVE 27.0 6.0 7 3. 2 1 1 9 7 0 77.8 77 .8 79 8 29 UVE 26.5 7.0 58.3 1 1 9 2 0 22.2 22.2 79 9 10 LIVE 26.0 5.0 107.5 1 1 2 a a o.o 0.0 79 9 10 LIVE 26.0 5.0 77 .o 1 1 10. 10 0 100. 0 100.0 79 9 17 LIVE 23.5 5.5 87.8 1 1 5 1 0 20.0 20.0 79 9 17 LIVE 23.5 5.5 66.4 1 1 5 3 0 60.0 60.0 79 9 17 LIVE 23.5 5.5 96.2 1 1 5 1 a 20.0 20.0 79 9 1 7 LIVE 23.5 5.5 8 9. 6 1 1 5 2 a 40. '.) 40.0 79 9 17 LIVE 23.5 5.5 66.4 1 1 5 3 0 60.0 6a.a Jg 9 17 LIVE 23.5 5.5 8 9. 6 1 1 5 2 a 40.0 4a.o 79 9 17 LIVE 23.5 5.5 92.2 1 1 5 1 a 20.a 2a.o -..J 79 9 17 LIVE 23.5 5.5 62.3 1 1 s 2 a 25.0 25.0 I I-' 79 9 17 LIVE 23.5 5.5 9 3.0 1 1 10 7 a 7a.o 10.a '° 79 9 17 LIV!: 23.5 5.5 69.0 1 1 10 5 a 50.0 50.a 79 10 22 LIVE 17.a 5.a 1H.O 2 2 9 7 0 77.8 77.8 79 10 3a LIVE 14.0 4.a 13 8.0 2 2 7 6 a 85.7 85.7 80 6 23 LIVE 23.0 5.0 43.2 5 5 1a 2 a 20.0 2a.a 80 6 23 LIVE 23.a 5.0 47.7 5 5 1a 3 a 30.a 3a.o sa 6 3a LIVE 25. a 5.0 58.9 6 6 1a 1 a 10.0 1 a.a 80 6 30 LIVE 25.0 5.0 58.5 6 6 11 a a a.a a.a 80 6 30 LIVE 25.a 5.0 59.5 6 6 9 a a o.a a.a 80 6 30 LIVE 25.0 5.0 59.3 5 5 10 2 a 20.a 2a.o -8a 6 3a LIVE 25.a 5.0 63.7 5 5 1a 2 a 20.a 2a.a ea 6 3a LIVE 25.a 5.a 5 9.1 5 5 1a 2 a 2a.a 2a.a 8a 6 30 LIVE 2 5 .. a s.o 57 .6 5 5 1a 4 a 4a.a 40.0 8a 6 30 LIVE 25.a 5.a 57.2 5 5 7 2 1 28.6 42.9 8a 7 2 LIVE 26.a 1 a. a ' 5 9.1 6 5 10 2 a 2a.o 20.a 80 7 2 26.a 10.a 5 8. 8 6 5 1a 0 0 a.a a.a 80 7 7 LIVE 25.0 6.0 6 4 .1 5 5 10 3 a 30.0 3a.a 80 7 7 LIVE 25.a 6.a 1a.1 5 5 1a 1 a 1a.a 10.a 80 7 7 LIVE 25.a 6.a 66.9 5 5 11 3 a 27.3 27.3 80 7 7 LIVE 25.a 6.a 67.1 5 5 10 7 0 70.0 70.0 80 7 7 LIVE 25.a 6.a 68.2 5 5 1a 3 0 30.a 3a.o 80 7 7 LIVE 25.a 6.a 1a.a 5 5 6 1 0 16. 7 16.7 8a 7 7 LIVE 25.a 6.0 6 S.4 5* 5 10 4 a 40.a 4a.o 8a 7 7 LIVE 25.0 6.0 6 7 .1 5 5, 1 (, :5 a 3a.o 3a.a * = CONTROLS HAY TERMINATE PRIOR TO 96 HR IF ALL TEST SPECIMENS DEAD. -99.9 = CONTROLS HELO AT AMBIENT RIVER CONDITIONS. TYPE VY HH DO TEST llATER SALINITY TYPE TEMP. (PPT) (C) 80 7 9 LIVE 27.0 8.5 80 *7 9 LIVE 27.0 8.5 80 7 12 LIVE 27.0 6.0 80 7 12 LIVE 27.0 6.0 80 7 14 LIVE 20.0 6.0 80 7 18 LIVE 27. 5 1 o. a 80 7 21 LIVE 30.0 s.o 80 7 21 LIVE 30.0 8.0 80 7 21 LIVE 30.0 8.0 80 7 21 LIVE 30.0 0.0 eo 7 21 LIVE 30.0 8.0 80 7 21 LIVE 30.0 8.0 80 7 21 LIVE 3u.O 8.0 80 7 21 LIVE 30.0 6.0 ea 7 21 LIVE 30.0 8.0 80 7 21 LIVE 30.0 8.0 80 7 21 LIVE 30.0 8.0 80 7 21 LIVE 30.0 e.o eo 7 21 LIVE 30.0 *s.o 80 7 21 LIVE 30.0 8.0 80 7 21 LIVE 3u.O 8.0 80 7 28 LIVE 28.0 9.D 80 7 26 LIVE 28.0 9.0 80 7 ZS LIVE 28.0 9.0 80 7 28 LIVE 28.0 9.0 80 8 4 LIVE 29.0 5.5 80 8 4 LIVE 29.0 5.5 80 8 4 LIVE 29.0 5.5 ao 8 4 LIVE 29.1) 5.5 80 8 4 LIVE 29.0 5.5 80 8 4 LIVE 29.0 5.5 80 8 4 LIVE 29.0 5.5 80 6 4 LIVE 29.0 5.5 80 8 4 LIVE 29.0 5.5 80 8 5 LIVE 30.0 7.5 80 8 5 LIVE 30.0 7.5 80 a 11 LIVE 28.0 8.5 so 8 11 LIVE 28.0 8.5 80 8 16 LIVE 26.5 5.5 80 8 1 B LIVE 27.0 8.0 80 8 18 LIVE 27. 0 a.a 80 8 18 LIVE 27.0 a.a 80 8 18 LIVE 27.0 a.a 80 8 18 LIVE 27.0 8.0 MEAN TOTAL LENGTH (llH) 67.0 5 B. 3 5 8.0 70.3 713 .1 71.8 8 3. 2 78.8 7 6.4 74.5 77.3 80. 4 74.8 7 6.0 79.7 73.8 79. 6 80.8 76.6 71.0 71.5 76.5 56.6 e 9.1 53.5 5 3. 2 90. 6 61. 8 73. 9 78.0 59. 4 52.5

51. 9 63.5 64.8 5 3. 0 52. 6 104 .1 5 8. 6 106.2 5 8. 7 50.6 5 9. 2 Table 7-8 Continued.

WEAKFISH cws TRAVELING NO. AT PUMPS SCREENS START IN IN SERVICE SERVICE 5 5 9 5 5 10 7 8 10 7 8 10 6 6 12 8 6 1J 8 8 15 8 8 1 5 8 8 15 8 8 14 8 8 10 8 8 7 8 8 10 8 8 10 8 8 15 8 8 15 8 8 15 8 8 14 8 8 15 8 s 15 8 8 14 8 8 9 8 8 10 8 8 ? 8 8 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 7 7 10 6 6 16 6 6 20 7 7 5 7 7 10 7 7 3 8 8 10 8 8 7 8 8 10 8 8 9 8 8 10

  • CONTROLS MAY TERMINATE PRIOR TO 96 IF ALL TEST SPECIMENS DEAD. -99.9
  • CONTROLS HELO AT AMBIENT RIVER CONDITIONS.
  • NO. DEAD NO. L 0 E 91) HR 96 HR AFTER AFTER MORT AL !TY HOR TAL Ill' 96 HR* 96 HR* II ITtiOUT I/ITH LOE LOE (PERCENT) 2 0 22. 2 22.2 0 0 o.o o.o 10 0 100.0 100.0 9 0 90.0 90.0 5 0 41. 7 41.7 5 0 50.0 50.0 0 0 o.o a.a 2 0 13. 3 13.3 1 0 6.7 6.7 0 a a.a a.a 1 0 10.0 10.0 1 a 14.3 14.3 2 a 20.0 20.0 0 0 o.o o.o 2 0 13.3 13.3 1 0 6.7 6.7 0 0 o.o o.o 1 0 7.1 7.1 -....J 0 0 o.o o.o I N 1 1 6.7 13.3 0 2 0 14. 3 14.3 0 0 o.o 0.0 1 0 1o.0 10.0 3 0 3 3. 3 33.3 2 0 20.0 20.0 8 0 so.a 80.0 4 0 40.0 40.0 5 0 50.0 50.0 3 0 30.0 30.0 4 0 40.0 40.0 3 0 30.0 30.0 4 0 40.0 40.0 1 1 1 o. a 20.0 4 0 40.0 40.0 5 a 31.3 31.3 7 0 35.0 35.0 a 0 o.o a.a a 0 o.o a.a 0 0 o.o o.o 0 0 o.o a.a 2 0 28.6 28.6 1 a 1 a. o 1 a. o 2 0 22.2 22.2 2 0 20.0 20.0 ---

e 7-:8

  • WEAKFISH TYPE YY llH DD TEST WATER SALINITY HEAN cws TRAVELING NO. AT NO. DEAD NO. LOE 96 HR 96 HR TYPE TEMP. (PPT) TOTAL PUMPS SCREENS START AFTER AFTER llORTALITY llORTALITY (C) LENGTH IN IN 96 HR* 96 HR* WITHOUT WITH (MM) SERVICE SERVICE LOE LOE (PERCENT) (PERCENT) 80 8 18 LIVE 27.0 8.0 5 6. 6 8 8 10 1 0 1o.0 1o.0 80 8 18 LIVE 27.0 8.0 51.7 8 8 10 3 0 30.0 30.0 20 8 18 LIVE 27.0 s.o s 8.4 6 a 10 0 0 a.a o.o ea 8 18 LIVE 27.a B.a 5 5. 4 8 8 1a a a a.a o.a BO 8 18 LIVE 27.0 8.0 63.2 8 8 1a a 0 a.a o.o 80 8 21 LIVE 26.0 14.0 59.4 7 7 12 1 0 8.3 8.3 80 8 27 LIVE 26.0 12.0 67.2 8 8 1a 1 0 10.a 10.0 80 9 1 LIVE 27.0 6.0 57.6 7 7 10 0 0 a.a a.o 8a 9 1 LIVE 27.a 6.a 64.0 7 7 1a 2 0 2a.o 20.0 ea 9 1 LIVE 27.a 6.a 62.6 7 7 10 0 a a.a a.a ea 9 1 LIVE 27.0 6.0 67.5 7 7 10 2 0 2a.o 20.0 80 9 1 LIVE 27.0 6.0 6 6. 5 *7 7 10 1 0 1o.0 1o.o 80 9 1 LIVE 27.0 6.0 5 3. 2 7 7 5 1 0 20.0 20.0 80 9 1 LIVE 27.0 6.0 5 8. 7 7 7 10 1 0 10.0 1 o.o 80 9 1 LIVE 27.0 6.0 6 2. 3 7. 7 10 1 0 1c.0 10.0 80 9 1 LIVE 27.0 6.0 5 8. 9 7 7 10 1 0 1o.0 1o.0 80 9 1 LIVE 27.0 6.0 66.7 7 7 10 1 0 1o.0 10.0 80 9 1 LIVE 21 .o 6.0 86. 2 7 7 9 1 0 11 .1 11.1 80 9 4 LIVE 29.0 12.0 63.4 7 9 10 3 0 30.0 30.0 80 9 8 LIVE 26.0 12. 0 80.1 8 8 11 2 0 18. 2 18.2 -...J 80 9 9 LIVE *26. 0 12. 0 7 3. 3 9 9 10 2 0 20.0 20.0 I N 80 9 1 5 LIVE 25.0 8.0 9 3.1 9 9 s 4 0 50.0 50.0 t-' 80 9 15 LIVE 25.0 a.a 96. 7 9 9 20 4 0 20.0 20.0 60 9 15 LIVE 25.0 8.0 94.1 9 9 10 7 0 70.0 7a.a 80 9 15 LIVE 25.a 8.0 102. 2 9 9 10 3 a 30.0 3a.a 80 9 15 LIVE 25.0 8.a 92.8 9 9 10 5 a so.a sa.o 80 9 15 LIVE 25.0 8.0 97.4 9 9 10 0 0 o.o 0.0 80 9 15 LIVE 25.0 a.a 98. 7 9 9 1a 2 a 2a.a 2a.a 80 9 15 LIVE 25.a 8.0 95.6 9 9 1a 1 a 1 a. a 1a.a 8a 9 15 LIVE 25.0 .a.a 99.4 9 9 2a 11 0 55.0 ss.o 80 9 19 LIVE 24.0 10. 0 8 7. 4 7 8 9 3 0 33.3 33.3 80 9 22 LIVE 2.4. 0 12.0 94.3 8 8 8 8 0 100.0 100.0 80 9 22 LIVE 24.0 12. 0 109. 7 8 8 8 8 0 1oa.o 100.0 80 9 2.9 LIVE 21.a 9.0 1aa.4 1 4 5 4 a 80.a a a.a 81 7 7 LIVE 26.a 1 a.a 5 2 .o 9 9 2a 7 0 35.a 35.a 81 7 7 LIVE 26.a 1 o. a 4 7. 7 9 9 8 4 a so.a 50.a 81 7 8 LIVE 26.0 6.0 47.8 9 9 6 2 0 :n. 3 33.3 81 7 14 LIVE 26.0 1.a 5 5. a 9 9 6 2 0 33.3 33.3 81 7 14 LIVE 26.0 10.5 4 5 .2 9 9 17 7 0 41.2 41.2 81 7 14 LIVE 26.0 1a.5 5 6. 7 9 9 15 8 a 53.3 53.3 81 7 14 LIVE 26.a 10.5 42. 9 9 9 2a 13 0 65.0 65.0 81 7 16 LIVE 27.a 1 2. a 3 5. 7 8 8 9 6 a 66.7 66.7 81 7 16 LIVE 27.0 12.0 38.a 8 8 10 8 0 so.a 80.0 81 7 16 LIVE 27.a 12. a 4 6. 3 8 s 1a 8 0 so.a so.a * ; CONTROLS HAY TERMINATE PRIOR TO 96 HR IF All TEST SPECIMENS DEAO. -99.9 3 CONTROLS HELD AT AMBIENT RIVER CONDITIONS.

', Table 7-8 Continued. WE Al< FISH TYPE YT HH OD TEST WATER SALINITY CWS TRAVELING NO. AT NO. DEAD NO. LOE 9!> HR 96 HR TYPE TEMP. (ppT) TOTAL PUMPS SCREENS START AFTER AFTER MORTALITY MORTALITY (C) LENGTH IN IN 96 HR* 96 HR* WITHOUT WITH CHM) SERVICE LOE LOE CF ER CENT> 81 7 16 LIVE 27. I) 12. 0 43.5 8 8 10 7 0 71J. IJ 70.0 81 7 16 LIVE 27.0 12.0 4 4 .1 8 8 11 8 0 72.7 72.7 81 7 21J LIVE 27.0 10. 0 4 5. 8 9 10 25 19 0 76.0 76.0 81 7 20 uv: 26.0 1o.0 59.7 9 10 20 12 0 60.0 60.0 81 7 20 LIVE 27.0 1o.0 3 5. 2 9 10 4 2 0 50.0 50.0 81 7 22 LIVE 27.0 1 o.o 54.9 9 9 10 4 0 40.0 40.0 81 7 22 LIVE 27 .o . 10. 0 68.8 9 9 9 8 0 83.9 88.9 81 7 22 LIVE 27.0 1 a. o 6 3.8 9 9 9 7 0 77.8 77.8 81 7 22 LIVE 27.0 1 a.a 57.3 9 9 25 15 0 60.0 60.0 81 7 22 LIVE 27.0 10.0 56.2 9 9 25 18 0 72.0 72.0 51 7 24 LIVE 27.0 8.5 4 3. 5 9 11 6 1 0 1 6. 7 16.7 IS 1 7 2? LIVE 27.0 14.0 58.3 10 11 6 3 0 50.0 50.0 81 s 5 LIVE 28.0 13. 5 73.5 12 12 12 4 0 3 3. 3 33.3 81 8 5 LIVE za.o 13. 5 82.6 12 12 10 4 0 40.0 40.0 81 8 7 LIVE 26.0 9.0 6 9.1 10 12 10 4 0 40.0 40.0 81 8 7 LIVE 26.0 9.0 93. 6 10 12 6 3 0 50. :J 50.0 81 8 7 LIVE 26.0 9.0 6 6. 3 10 12 10 6 0 60.0 60.0 81 8 7 LIVE 26.0 9.0 6 6. 5 10 12 10 4 0 40.0 40.0 81 s 7 LIVE 26.0 9.0 66.8 10 12 9 2 0 22.2 22.2 '-I 81 8 12 LIVE 27.0 6.5 57.3 11 12 16 6 0 37.5 37.5 I N 81 8 12 LIVE 27.0 6.5 83.9 11 12 10 5 0 50.0 50.0 N 81 8 12 LIVE 27.0 6.5 73.0 11 12 15 6 0 40.0 40.0 81 8 12 LIVE 27.0 6.5 6 5. 5 11 12 25 24 0 96.0 96.0 81 8 12 LIVE 27.0 6.5 51.6 11 12 12 4 0 33.3 33.3 81 8 13 LIVE 28.0 6.0 60.4 11 12 10 5 0 50.0 so.a 81 8 13 LIVE 28.0 6.0 57.8 11 12 8 2 0 25.0 25.0 81 8 n LIVE 28.0 6.0 63.7 11 12 10 3 0 30.0 30.0 81 8 13 LIVE 28.0 6.0 66.4 11 12 10 4 0 40.0 40.0 81 8 13 LIVE 28.0 6.0 61.0 11 12 10 6 0 60.0 60.0 81 8 13 LIVE 28.0 6.0 7 8. 5 11 12 1 'l 10 0 1 oo.o 100.0 81 8 13 LIV!: 28.0 6.0 89.4 11 10 10 0 1 oo.o 100.0 81 8 13 LIVE 28.0 6.0 86.2 11 12 10 10 0 100.0 1 oo.o 81 8 13 LIVE 28.0 6.0 78.7 11 12 10 5 0 50.0 so.a 81 8 13 LIVE 28.0 6.0 81.1 11 12 7 2 0 28.6 28.6 81 8 13 LIVE 2S.O 6.0 60.6 11 12 6 3 0 50. IJ 50.0 81 8 17 LIVE 26.0 8.0 54.4 11 11 7 7 0 100.0 100.0 81 8 17 LIVE 26.0 8.0 6 8. 5 11 11 8 7 0 87.5 87.5 81 8 17 LIVE 26.0 8.0 92.6 11 11 20 16 0 80.0 so.a 81 8 17 LIVE 26.0 8.0 61.7 11 11 25 21 0 84.0 84.0 81 8 20 LIVE 25.0 8.0 5 9.1 9 10 8 5 0 62.5 62.5 81 8 20 LIVE 25.0 8.0 5 9.0 9 10 9 5 0 5 5. 6 55.6 81 8 20 LIVE 25.0 8.0 84.3 9 10. 6 1 0 16.7 16. 7 81 8 20 LIV:: 25.0 8.0 51.7 9 10 12 6 0 50.0 50.0 81 8 20 LIVE 25.0 s.o 78.2 9 10 10 7 0 70.0 70.0 *

  • CONTROLS MAY TERMINATE PRIOR TO 96 HR IF ALL TEST SPECIMENS DEAD. -99.9
  • CONTROLS HELO AT fMBIENT RIVER CONDITIONS.

e Tab.o Cont .* -WEAKFISH TYPE yy llH DO TEST WATER SALINITY HEAN . cws TRAVELING NO. AT NO. DEAD NO. LOE 96 HR 96 HR TYPE TEMP. (PPT) TOTAL PUMPS SCREENS START AFTER AFTER MORTALITY MORTALITY (Cl LENGTH IN IN 96 HR* 96 HR* WITHOUT WITH (HM) SERVICE SERVICE LIJE LOE (PERCEIJT) (PERCENT) 81 8 20 LIVE 25.0 a.a 8 5 .1 9 10 11 3 0 27. 3 27.3 81 8 20 LIVE 25.0 9.0 64.6 9 10* . 10 6 0 60.0 60.0 81 s 20 LIVE 2 5. () 8.0 57.7 9 10 1G 7 0 70.0 70.0 81 8 21 LIVE 26.0 1o.0 65.3 10 10 10 7 0 70.0 70.0 81 8 21 LIVE 26.0 1o.0 62.8 10 10 8 8 0 100.0 100.0 81 s 21 LIVE 26.0 1 o. o 64.0 10 10 10 9 0 90.0 90.0 81 8 21 LIVE 26.0 10.0 64. 6 10 10 10 8 0 80.0 80.0 81 8 25 LIVE 26.0 1 o.o 8 8. 9 11 10 10 3 0 30.0 30.0 81 8 27 LIVE 25.5 11.0 13 5. 2 11 11 4 3 0 75.0 75.0 81 8 27 LIVE 25.5 11.0 111.5 11 11 4 1 0 25.0 25.0 81 8 27 LIVE 25.5 11.0 90.3 11 11 6 5 0 83.3 33.3 81 8 27 LIVE 25.5 11

  • 0 85.5 11 11 10 9 0 90.0 90.0 81 8 27 LIVE 25.5 11.0 76.6 11 11 10 7 0 70.0 70.0 81 s 31 LIVE 25.5 1 o.o 70.5 8 8 10 4 0 40.0 40.0 81 8 31 LIVE 25.5 1 o.o 97 .3 8 8 9 1 0 11 .1 11 .1 81 8 31 LIVE 25.5 10.0 70.5 8 8 7 2 0 28.6 28.6 81 8 31 LIVE 25.5 10.0 7 5 .1 8 8 10 1 0 1 o.o 10.0 81 8 31 LIVE 25. 5 1o.0 104.6 8 8 5 3 0 60.0 60.0 81 . 8 31 LIVE 25.5 10.0 88.9 8 8 14 6 0 42.9 42.9 81 8 31 LIVE 25.5 10.0 83. '3 8 8 11 5 0 45.5 45.5 -...J 81 8 31 LIVE 25.5 1o.0 90.0 8 a 10 4 0 40.0 4C.O I 81 9 2 LIVE 25.0 1 o.o 60. 5 7 8 11 8 0 72. 7 72. 7 N w 81 9 2 LIVE 25.0 10.0 80.8 7 s 10 4 0 40.0 40.0 81 9 2 LIVE 25.0 10.0 77.3 7 8 10 1 0 10.0 1o.0 81 9 2 LIVE 25.0 1 o.o 101. 4 7 8 10 5 0 50.0 50.0 81 9 2 LIVE 25.Q 1o.0 71.3 7 8 10 1 0 1 o.o 1 o.o e1 9 2 LIVE 25.0 10.0 56. 7 7 s 10 3 0 30.0 30.0 81 9 2 LIVE 25.0 1o.0 7 2. 3 7 8 3 1 0 33.3 33.3 81 9 2 LIVE 25.0 10.0 69.0 7 8 11 7 0 63.6 63.6 81 9 2 LIVE 25.0 10.0 73. 7 7 8 12 7 0 58.3 58.3 81 9 9 LIVE 25.0 3.0 88.8 10 10 11 3 0 27.3 27.3 81 9 11 LIV!; . 23.5 9.0 91.7 10 10 11 4 0 36.4 36.4 81 9 11 LIVE 23.5 1 o.o 84.4 10 10 10 6 0 60.0 '60.0 81 9 14 LIVE 24.5 9.5 5 6. 5 10 10 4 1 0 25.0 25.0 81 9 14 LIVE 24.5 9.5 101.6 10 10 3 1 0 33.3 33.3 e1 9 15 LIVE 24.0 11
  • 5 74.9 10 10 14 3 0 21.4 21. 4 81 9 16 LIV'! 22.5 1o.0 6 6. 7 9 10 4 0 0 o.o o.o 81 9 16 LIVE 22.5 1o.0 76. 3 9 10 10 1 0 1 o.o 1 o.o 81 9 16 LIVE 22.5 10.0 55.7 9 10 7 3 0 42.9 42.9 81 9 16 LIVE .,2. 5 1 o. o 92. 7 9 10 10 2 0 20.0 20.0 81 9 22 LIVE 22.0 3.0 71.6 10 10 5 2 0 40.0 40.0 81 9 22 LIVE 22.0 8.0 11o.6 10 10 3 0 0 o.o o.o 81 9 22 LIVE 22. 0 8.0 51.5 10 10 2 1 0 50.0 so.a 81 9 29 LIVE 2o.o 10. 0 106. 5 6 6 2 1 0 so.a 50.0 * = CONTROLS HAY TERMINATE PRIOR TO 96 HR IF ALL TEST SPECIKENS OEAO. -99.9 CONTROLS HELO AT AMBIENT RIVER CONDITIONS.

,-TYPE yy HM DD TEST WATER SALINITY TYPE TEMP. CPPT) CC> 81 10 5 LIVE 17.0 9.0 81 10 5 LIVE 17.0 9.0 81 10 5 LIVE 17.0 9.0 81 10 5 LIVE 17.0 9.0 81 10 6 LIVE 16.5 s.o 81 1 O* 7 LIVE 15.0 1 o.o 81 10 12 LIVE 15.0 15.5 81 10 12 LIVE 15.0 15.5 81 10 22 LIVE 15.0 12. 0 81 10 22 LIVE 15.0 1*2. 0 a1 10 22 LIVE 15.0 12.0 81 10 22 LIVE 15.0 12.0 81 10 22 LIVE 15.0 12. 0 81 10 29 LIVE 14.0 11.0 81 11 10 LIVE 13. 0 12.0 81 12 3 LIVE 8.0 12.0 82 6 21 LIVE 19.5 6.0 82 6 24 LIVE 20.0 4.0 82 6 24 LIVE 20.0 4.0 82 6 2S LIVE 26.0 6.a 82 6 213 LIVE 26.a 6.0 82 6 28 LIVE 26.0 6.0 82 6 28 LIVE 26.0 6.0 82 6 28 LIVE 26.0 6.0 82 6 28 LIVE 26.0 6.0 82 6 30 LIVE 25.5 6.0 82 6 30 LIVE 25.5 6.0 82 6 30 LIVE 25.5 6.0 82 6 30 LIVE 25.5 6.0 82 6 3a LIVE 25.5 6.0 82 7 6 LIVE 24.5 7.0 82 7 6 LIVE 24.5 7.0 82 7 6 LIVE 24.5 7.0 82 7 6 LIVE 24.5 7.a 82 7 6 LIVE 24.5 1.0 82 7 6 LIVE 24.5 1.0 82 7 6 LIVE 24.5 1.a 82 7 6 LIVE 24.5 7.a 82 7 6 LlVE 24.5 7.0 82 7 6 LIVE 24.5 7.0 82 7 6 LIVE 24.5 7.0 82 7 12 LIVE 26.5 6.a 82 7 12 LIVE 26.5 6.0 82 7 12 LIVE 26.0 6.o MEAN TOTAL LENGTH CH 'I) 146.0 75.6 95.S 49.0 83.3 125.5 113.0 75.0 94.7 125 .o 19 5 .o 62.5 14 5. 0 98.0 74.0 94.0 26.0 36. 0 25.0 25.a 4 2.0 37.a 41.0 36.0 77.0 40.0 41.0 36.0 58.a 61.0 66.0 75.0 56.0 60.a 61.3 6a.o 4 7.0 45.0 50.a 47.0 63.5 72.0 73.0 Table 7-B Continued. WEAKFISH CWS TRAVELING NO. AT PUMPS SCREENS START IN IN SERVICE SERVICE 4 4 1 4 4 3 4 4 7 4 4 13 4 4 18 7 7 2 10 12 4 10 12 1 9 9 .1 9 9 3 9 9 1 9 9 2 9 9 1 9 9 1 9 10 4 10 10 1 10 11 2 1 [j 10 1 10 10 1 10 10 1 10 10 1 1a 10 1 10 10 1 10 10 1 10 10 1 12 12 1 12 12 2 12 12 1 12 12 1 12 12 1 9 9 1 9 9 1 9 9 2 9 9 1 9 9 1 9 9 9 9 9 1 9 9 1 9 9 1 9 9 1 9 9 1 10 11 4 10 11 1 1a 11 1 * = CONTROLS MAY TERMINATE PRIOR TO 96 HR IF All TEST SPECIMENS DEAD. -99.9 CONTROLS HELO AT AMBIENT RIVER CONDITIONS.

  • NO. DEAD NO. L 0 E 96 HR 96 HR AFTER AFTER MORULITY MORTALITY 96 HR* 96 HR* WITHOUT WITH LOE LOE (PERCENT) (PERCENT) 0 0 o.o o.o 0 0 0.0 o.o 2 0 28.6 28.6 9 0 69.2 69.2 11 0 61.1 61.1 2 0 100.0 100.0 1 0 25.0 25.D 0 0 o.o o.o 4 0 s 7 .1 57.1 2 0 66.7 66.7 0 0 o.o o.o 1 0 50.0 50.0 1 0 100.0 1 oo.o 0 0 o.o o.o 3 0 75.0 75.0 0 1 o.o 100.0 2 0 100.0 100.0 1 0 100. 0 100.0 -...J 1 0 100. 0 1 oa.o I 1 0 100.0 1 oa.a N .j>-0 a o.o o.o 1 0 10a.o 100.0 1 0 1oa.0 1 oo.o 0 0 0.0 o.o 0 0 a.a o.o 1 0 1oo.0 1 oo.o 2 0 100.0 1oa.o 0 0 o.o o.a 1 0 100.0 100.0 a a o.o o.o 1 0 100.0 100.0 0 0 0.0 o.a 0 a o.o o.a 1 a 100.0 1 aa.a 0 a o.o a.o 5 0 55.6 55.6 0 0 o.o o.o 0 0 a.o a.o 1 0 100.0 1 aa.o 0 a a.a o.o 0 0 a.a o.a 0 a a.a o.o 1 0 1 ao.o 1 ao.o 0 0 o.o o.o * .............

---

  • Tab.8 Conti '.
  • WEAKFISH TYPE TY HH OD TEST WATER SALINITY MEAN cws TRAVELING NO. f.T NO. DEAD NO. LOE 96 HR 96 HR TYPE TEMP. (ppT) TOTAL PUMPS SCREENS START AFTER AFTER MORTALITY MORTALITY CC) LENGTH IN IN 96 HR* 96 HR* wrTHOUT WITH (MM) SERVICE SERVICE LOE LOE (PERCENT) (PERCENT) 82 7 12 LIVE 26.0 6.0 66.8 10 11 8 4 0 50.0 50.0 82 7 12 LIVE 26.0 6.a 4 5.0 10 11 1 0 a a.a o.o 82 7 12 LIVE 26.5 6.a 5 9. a 1a 11 6 3 0 so.a so.a 82 7 14 LIVE 26. 0 4.0 67.5 10 10 4 1 0 25.0 25.0 82 7 14 LIVE 2ci. a 4.a 6 3 .a 1a 10 1 a a '.l. 0 o.a 82 7 14 LIVc 26.a 4.0 6 6. a 10 10 1 a a o.o o.a 82 7 14 LIVE 26. 0 4.a 51.0 10 10 1 0 a a.o o.a 82 7 14 LIVE 26.a 4.a 5 a.a 10 1a 1 a 0 a.a o.o 82 7 14 LIVE 26.a 4.a 5 9. a 10 1a 1 0 0 a.a o.o 82 7 14 LIVE 26.a 4.0 1a.o 10 10 1 a a a.o 0.0 82 7 14 LIVE 26.0 4.0 62.0 10 1a 4 a a a.a o.o 82 7 14 LIVE 26.0 4.0 62.2 10 1a 4 1 0 25.0 25.a 82 7 14 LIVE 26.0 4.0 6 2.0 10 10 1 0 0 o.o o.o 82 7 14 LIVE 26.0 4.a 4 8. 0 10 10 1 0 0 o.o o.o 82 7 14 LIVE 26.0 4.a 67.0 10 10 1 0 0 o.o o.o e2 7 14 LIVE 26.0 4.0 5 8.0 10 10 2 1 0 50.0 so.a 82 7 14 LIVE 26.0 4.0 6 2. 0 10 10 3 0 0 0.0 0.0 82 7 14 LIVE 26.0 4.0 57.0 10 10 1 1 0 100.a 1ao.a 82 7 14 LIVE 26.0 4.0 66.0 1a 1a 1 1 0 100. a 1 oa.o '-I 82 7 14 LIVE 26.0 4.0 54.0 10 10 1 1 a 100.0 1ao.a I 82 7 14 LIVE 26.0 4.0 60.0 10 10 1 0 0 o.o o.o l',;J 82 7 20 LIVE 28.0 7.0 51.0 11 11 1 0 0 o.o o.o \J1 82 7 20 UVE 28.0 7.0 5 5. *J 11 11 1 0 0 o.o 0.0 82 7 20 LIVE 28.0 7.0 9 2.0 11 11 1 a 0 o.a o.o 82 7 20 l He 23.0 7.0 6 8. 0 11 11 1 0 0 o.o 0.0 82 7 20 LIVE 28.0 7.0 58.0 11 11 1 0 0 o.o o.o 82 7 20 LIVE 28.0 1.a 96.0 11 11 1 1 0 1oa.0 100.0 82 7 20 LIVE 28.0 7.0 5 0. 0 11 11 1 0 0 a.o o.o 82 7 20 LIVE 28.0 7.0 70.0 11 11 1 0 0 0.0 0.0 82 7 20 LIVE 28. 0 7.0 75.0 11 11 1 0 0 o.o o.o 82 7 20 LIVE 28.0 7.0 85.0 11 11 1 0 0 a.a o.o 82 7 2a LIVE 28.0 7.0 5 9. 0 11 11 1 1 0 1ao.a 1 oo.o 82 7 20 LIVE 7.0 65 .a 11 11 1 1 0 100.0 100.0 82 7 2a LIVE 28.0 7.0 6 3. 0 11 11 1 a a a.a a.a 82 7 2a LIH 28.a 7.a 62.0 11 11 1 0 0 a.a a.o 82 7 20 LIVE 28.a 1.a 74.a 11 11 1 1 a 1 oa.o 1 oa.a 82 7 20 LIVE 2s.o 7.0 65.a 11 11 1 1 0 1ao.a 1 oo.a 82 7 20 LIVE 28.a 7.0 11.0 11 11 1 0 0 0.0 o.a 82 7 2a LIVE 28.0 1.a so.a 11 11 1 0 a 0.0 o.o 82 7 20 LIVE 28.0 1.a 8 2.0 11 11 1 a 0 a.a a.a 82 7 2a LIVE 28.0 7.a a.o 11 11 1 1 0 1ao.o 1 oa.o 82 7 20 LIVE 28.0 7.0 8a.a 11 11 1 a 1 o.o 1 ao.o 82 7 20 LIVE 28.a 1.a 67.0 11 11 1 a 0 o.o o.a 82 7 20 LIVE 28.0 7.0 82.a 11 11 1 0 0 a.a o.o *
  • CONTROLS HAY TERMINATE PRIOR TO 96 HR IF All TEST SPECIMENS DEAD. -99.9 a CONTROLS HELD AT AMBIENT RIVER CONDITIONS.

Table 7-8 Continued. WEAKFISH TYPE yy HH OD TEST WATER SALINITY MEAN cws TRAVELING NO. AT NO. DEAD NO. LOE HR 96 HR TYPE TEMP. CPPT) TOTAL PUMPS SCREEllS START AFTER AFTER MORT 4L ITY MORTALITY CC) LENGTH IN IN 96 HR* 96 HR .. WITHOUT WITH (MM} SERVICE SERVI.CE LOE LOE (PERCENT> (PERCENT> 82 7 20 LIVE 28.0 7.0 81.0 11 11 1 1 0 100.0 1 oo.o 82 7 20 LIVE 28.0 7.0 86.0 11 11 1 0 0 o.a 0.0 82 7 . 2a LIVE 23.0 1.a 7 2. a 11 11 1 0 0 O. IJ o.o 82 8 2 LIVE 27.5 9.5 66.o* 10 10 1 0 a 0.0 o.o 82 8 2 LIVE 27.5 9.5 79.0 10 10 1 0 0 o.o 0.0 82 8 2 LIVE 27.5 9.5 105.0 1a 10 1 a 0 a. IJ o.o 82 8 2 LIVE 27.5 9.a 77.0 10 10 1 1 0 1 oo.o 1oa.o 82 8 .2 LIVE 27.5 9.0 8 7 .a 1a 1a 1 0 a o.a o.o 82 8 2 LIVE 27.5 9.a 81.0 1a 1a 1 1 0 100.0 1 oa.a 82 8 2 LIVE 27.5 9.0 79.a 1a 10 1 1 a 1 aa.o 100.0 82 8 2 LIVE 27.5 9.0 74.0 10 10 1 a 0 o.o a.a 82 8 2 LIVE 27.5 9.a 94.0 10 10 1 1 a 1oa.o 1 oo.o 82 8 2 LIVE 27.5 9.a 79.0 10 10 1 a 0 a.a a.a 82 8 2 LIVE 27.5 9.5 5 B.O 1a 10 1 0 0 a.a o.o 82 8 2 LIVE 27.5 9.0 65.a 10 10 1 0 0 a.o o.o 82 d 2 LIVE 27.5 9.0 63.0 1a 10 1 a 0 a.o a.a -....J 82 8 2 LIVE 27.5 9.0 73.0 10 1a 1 0 0 0.0 o.o i 82 8 2 LIV= 27.5 9.0 41.a 10 1a 1 1 0 100.0 100.0 N 82 8 2 LIV!: 27. 5 9.0 77 .o 1a 10 1 0 a 0.0 o.o 0\ 82 8 9 LIVE 26.5 7.0 57.0 10 10 1 1 0 100.0 100.0 82 8 9 LIVE 26.5 1.a 86.0 10 10 1 1 0 1Ga.o 1 oo.o 82 s 9 LIVE 26.5 7.0 42.0 10 10 1 a 0 o.a o.o 82 8 9 LIVE 26.5 7.0 60. a 10 10 1 1 0 100.0 1 oo.o 82 8 9 LIVE 26.5 7.0 45.0 10 10 1 0 a o.o a.o 82 8 9 LIVE 26.5 7.0 50.0 10 10 1 1 a 100.0 100.0 82 8 9 LIVE 26.5 1.a 93. 0 10 10 1 1 0 100.0 100. a 82 8 1a LIVE 27.0 8.5 so.a 9 10 1 1 0 1 oo.*o 1 oo.o 82 8 10 LIVE !I. 5 88.0 9 10 1 0 0 o.a 0.0 82 8 10 LIVE 27.a 8.5 70.0 9 10 1 1 0 1 OIJ. O 100. 0 82 8 1 () LIVE 27.0 8.5 71.6 9 1a 3 1 1 33.3 66.7 82 8 1a LIVE 27.0 8.5 65.6 9 1a 3 2 0 66.7 66.7 82 5* 10 LIVE 27.a 8.5 63.5 9 1a 2 0 0 o.a 0.0 82 8 10 LIVE 27.0 8.5 6 5.5 9 10 2 1 0 50.0 50.0 82 8 10 LIVE 27.0 8.5 90.0 9 10 1 0 0 o.o a.a 82 8 1a LIVE 21.a 8.5 9 3.0 9 10 1 1 0 100.0 1 ac.o 82 8 10 LIVE 27.0 8.5 104.0 9 1a 1 1 0 100.a 1ao.o 82 8 10 LIVE 27.a 8.5 75.0 9 1a 1 1 0 100.a 1 oo.o 82 8 10 LIV!: 27.0 8.5 8 3.0 9 10 1 a a o.a o.o 82 8 16 LIVE 26.0 e.5 65.0 9 11 1 a 0 o.o o.a 82 8 16 LIVE 26.0 8.5 77 .o 9 11 1 0 0 0.0 o.o 82 8 16 LIVE 26.0 8.5 72.0 9 11 2 0 0 o.o 0.0 82 8 16 LIVE 25.Q 7.0 74.a 9 11 1 0 0 o.o o.o 82 8 16 LIVE 25.0 7.0 86.0 9 11 1 0 0 a.o o.o 82 8 16 LIVE 25.0 7.0 64.0 9 11 1 0 0 o.o o.o * = CONTROLS HAY TERMINATE PRIOR TO 96 HR IF ALL TEST SPECIMENS DEAD. -99.9 '" CONTROLS HELD AT AMBIENT RIVER CONDITIONS.

  • * *
  • Ta.1 7-R ,. Con ed. . WEAKFISH TYPE YY HH OD TEST WATER SALINITY CWS TRAVELING NO. AT NO. DEAO LOE 96 HR 96 HR TYPE TEHP. (PPT) TOTAL PUHPS SCREENS START AFTER AFTER MORTALITY MORTALITY (C) LENGTH IN IN 96 HR* 96 HR* WITHOUT WITH (HH) SERVICE SERVICE LOE LOE CPERCENTt (PERCENT) 82 8 16 LIVE 25.0 7.0 74.5 9 11 2 0 0 0.0 0.0 82 8 16 LIVE 26.0 8.5 56.0 9 11 1 1 0 100.0 100.0 82 3 16 LIVE 26.0 8.5 99.0 9 11 1 0 0 O.O 0.0 82 8 16 LIVE 26.0 8.5 66.0 9 11 1 0 0 0.0 0.0 82 8 16 LIVE 26.0 8.5 86.0 9 11 1 0 0 0.0 0.0 82 8 16 26.0 8.5 67.0 9 11 1 0 0 0.0 0.0 82 8 *16 LIVE 26.0 8.5 82.0 9 11 1 1 0 100.0 100.0 82 8 16 LIVE 26.0 8.5 86.0 9 11 1 0 0 0.0 0.0 82 8 16 LIVE 26.0 8.5 59.0 9 11 1 0 0 a.a o.o 82 8 16 LIVE 26.0 8.5 53.0 9* 11 1 0 0 0.0 0.0 82 8 16 LIVE 26.0 8.5 68.0 9 11 1 0 0 0.0 0.0 82 8 16 LIVE 26.0 8.5 73.0 9 11 1 0 0 0.0 O.O 82 8 16 LIVE 26.0 8.5 73.0 9 11 1 1 0 100.0 100.0 a2 8 16 LIVE 26.o 8.5 so.a 9 11 1 o o o.o o.o S2 8 16 LIVE 26.0 8.5 56.0 9 11 1 0 0 0.0 0.0 82 8 23 LIVE 25.0 7.0 103.0 9 9 1 0 0 0.0 0.0 82 8 23 LIVE 25.0 7.0 49.0 9 9 1 1 0 100.0 100.0 e2 8 23 LIVE 25.0 7.0 s1.o 9 9 1 1 0 100.0 100.0 *...J 82 8 23 LIVE 25*.0 7.0 56.0 9 9 1 1 0 100.0 100.0 82 8 23 LIVE 25'.0 7.0 87.0 9 9 1 0 0 0.0 0.0 '-I 82 8 24 LIVE 25.5 7.0 68.0 10 10 1 0 0 0.0 0.0 82 8 24 LIVE 25.5 7.0 S1.0 10 10 1 0 0 0.0 0.0 S2 8 24 LIVE 25.5 7.0 72.0 10 10 1 0 0 0.0 0.0 82 8 24 LIVE 25.5 7.0 61.0 10 10 1 0 0 0.0 0.0 82 8 24 LIVE 25.5 7.0 56.0 10 10 1 0 0 0.0 0.0 82 8 24 LIVE 25.5 7.0 44.0 10 10 1 0 0 0.0 0.0 82 8 24 LIVE 25.5 7.0 60.0 10 10 1 0 0 0.0 0.0 82 8 24 LIVE 25.5 7.0 64.0 10 10 1 0 0 0.0 0.0 S2 8 24 LIVE 25.5 7.iJ 54.0 10 10 1 0 0 0.0 0.0 82 d 24 LIVE 25.5 7.0 51.0 10 10 1 0 0 0.0 0.0 82 8 24 LIVE 25.5 7.0 57.0 10 10 1 0 0 :J.O 0.0 82 8 24 LIVE 25.5 7.0 0.0 10 10 1 1 0 100.0 100.0 82 !S 24 LIVE 25.5 7.a 62.a, 10 10 1 0 0 0.0 0.0 82 8 24 LIVE 25.5 7.0 55.a 10 10 1 0 0 a.a o.o S2 8 24 LIVE 25.5 7.iJ 63.0 10 1a 1 a 0 O.O 0.0 82 8 24 LIVE 25.5 7.a 87.0 1a 1a 1 0 0 O.O O.a 82 8 24 LIVE 25.5 7.0 98.0 1a 10 1 a a a.O a.O S2 8 24 LIVE 25.5 7.a 77.a 1a 10 1 0 a 0.0 0.0 82 8 24 LIVE 25.5 7.0 69.a 1a 10 1 0 a a.a 0.0 82 a 24 uvc 25.5 1.a 99.a 10 1a 1 a o a.a a.a 82 8 24 LIVE 25.5 7.0 101.0 1a 10 1 a a a.O 0.0 82 8 24 LIVE 25.5 7.0 79.0 1a 10 1 a 0 a.a a.o 82 8 24 LIVE 25.5 7.a 86.Q 1a 10 1 iJ a O.O a.O 82 8 24 LIVE 25.5 7.a so.a 10 10 1 1 a 1ao.o 100.0 * = CONTROLS HAY TERMINATE pqIQR TO 96 HR IF ALL TEST SPECIMENS DEAD. -99.9
  • CONTROLS HELD AT AMBIENT RIVER CONDITIONS.

.. -; -.. -:.1,*,. . Table 7-8 Continued. WEAKFISH TYPE yy HM OD TEST WATER SAL IN ITY HEAN cws TRAVELING NO. AT NO. DEAD ND. LOE 96 HR 96 HR TYPE TEMP. (ppT) TOTAL PUMPS SCREENS START AFTER AFTER HORT AL ITY MORTALITY CC) LENGT!i IN IN 96 HR* 96 HR* II IT HOUT WITH (HM) SERVICE SERVICE LOE LOE (PERCENT) (PERCENT> 82 8 24 LIVE 25.5 7.0 8 B. 0 10 10 1 0 0 o.o o.o 82 8 24 LIVE 25.5 7.0 8 9. 0 10 10 1 0 0 o.o o.o 82 8 24 LIVE 25.5 7.0 93.0 10 10 1 1 0 100.0 100.0 82 8 24 LIVE 25.5 7.0 79.0 10 10 1 0 0 o.o 0.0 82 8 24 LIVE 25.5 7.0 75.0 10 10 1 0 0 o.o o.o 82 8 24 LIVE 25.5 1.0 62.0 10 10 1 1 0 1 aa. a 1 ao.a 82 8 24 LIVE 25.5 7.0 74.0 10 10 1 1 0 10*). 0 1 oa.o 82 8 24 LIVE 25.5 7.0 72.0 10 10 1 0 0 o.a o.o 82 8 24 LIVE 25.j 7.0 74.0 10 10 1 0 a o.a o.o 82 6 24 LIVE 25.5 7.a 67.a 1a *10 ., 0 0 o.o a.a 82 8 24 LIVE 25.5 7.0 o.o 10 1 oJ 1 1 0 1ao.o 1 ao.o 82 8 24 LIVE 25.5 7.0 . 72.0 10 10 1 0 0 o.o o.o 82 8 24 LIVE 25.5 1.0 5 o. 0 10 10 1 1 0 100.0 1 oo.o 82 8 24 LIVE 25.5 7.0 9 7 .o 1a 10 1 0 0 o.o o.o 82 8 24 LIVE 25.5 7.0 69.0 10 10 1 0 0 o.o o.o 82 8 24 LIVE 25.5 7.0 58.0 10 10 1 1 0 100.0 100.0 82 8 24 LIVE 25.5 7.0 77.0 1a 10 1 0 0 o.o o.o 82 s 24 LIVE 25.5 7.0 87.0 10 10 1 0 0 a.o o.a 82 8 30 LIVE 22.a 7.5 84.0 8 8 1 0 0 o.o o.a -..,J 82 B 30 LIVE 24.a 7.5 62.0 8 s 1 0 0 a.o o.a ( 82 8 30 LIVE 24.0 7.5 68.0 8 8 1 0 0 a.o o.o N 82 8 3a LIVE 24.a 7.5 65.0 8 8 1 0 0 a.a a.a o:i 82 8 30 LIVE 24.0 7.5 11.0 8 8 1 0 0 a.a a.o 82 8 3a LIVE 24.0 7.5 93.0 8 8* 1 a a a.o o.o 82 8 3a LIVE 24.a 7.5 6a.o 8 8 1 0 a a.o o.a 82 8 30 LIVE 24.0 7.5 57.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 22.0 7.5 83.a 9 9 1 1 0 100.a 1 oa.o 82 8 3a LIVE 24.0 7.5 1 a2.0 8 8 1 0 0 a.o o.o 82 8 30 LIVE 24.0 7.5 57 .o 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 71.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 72.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 5 s.o 8 8 1 0 0 0.0 o.o 82 8 30 LIVE 24.0 7.5 79.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 84.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 64.0 8 s 1 0 0 o.o o.o 82 8 30 Liv*E 24.0 7.5 79.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 100.0 8 8 1 0 0 o.o o.o 82 B 30 LIVE 24.0 7.5 73.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 78.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 67.0 8 8 1 0 0 o.o o.o 82 B 30 LIVE 24.0 7.5 6 2.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24. () 7.5 67.0 8 8 1 0 0 o.o 0.0 82 8 30 LIVE 24. ') 7.5 6 7 .o 8 8 1 1 0 100.0 100.0 82 8 30 LIVE 24.0 7.5 81.0 8 8 1 1 0 100.0 100.0

  • CONTROLS HAY TERMINATE PRIOR TO 96 HR IF ALL TEST SPECIMENS DEAO. -99.9 CONTROLS HELD AT AMBIENT RIVER CONDITIONS.
  • *
  • Con
  • WEAKFISH TYPE TY OD TEST :.IATER SALINITY MEAN CWS TRAVELING NO. AT NO. DEAD NO. LOE 96 HR 96 HR TYPE TEllP. (ppT) TOTAL PUMPS SCREENS START AFTER AFTER llDRTALITY HORHLITY CC) LENGTH IN IN 96 HR* 96 HR* WITrlOUT WITH CM H) SERVICE SERVICE LOE LCE (PERCENT> (PERCENT) 82 8 30 LIVE 24.0 7.5 8 8.0 8 8 1 1 0 100.0 1 oo.o 82 8 30 LIVE 21 ** 0 7.5 87.0 8 8 1 0 0 o.o o.o 82 8 30 LIVE 24.0 7.5 64.0 8 8 1 a 0 o.a a.a 82 8 3a LIVE 24.0 7.5 72.a 8 8 1 0 0 0.0 o.a 82 8 30 LIVE 24.0 7.5 8 2.0 8 8 1 0 0 0.0 o.a 82 8 30 LIVE 24.0 7.5 70.0 8 8 1 0 0 0.0 0.0 82 8 30 LIVE 24.0 7.5 6 7 .o 8 8 1 0 0 0.0 0.0 82 8 30 LIVE 24.0 7.5 79.0 8 8 1 0 0 0.0 o.o 82 a 30 LIVE 24.0 7.5 57.0 8 .8 1 0 0 o.o o.o 82 8 30 LIVE 24. :J 7.5 93.0 8 8 1 0 0 o.o o.o 82 9 7 LIVE 23.0 7.0 58.0 10 10 1 a 0 o.o o.o 82 9 1 LIVE 23.0 7.0 10 3. 0 11 9 1 1 0 1 oo. a 100.0 82 9 7 LIVE 23.0 7.0 14 8. 0 11 9 1 0 0 o.o a.o 82 9 7 LIVE 23.a 1.0 137.0 11 9 1 1 0 100.0 1 oa.o 82 9 7 LIVE 23.0 7.a 1a1.a 11 9 1 a 0 a.o a.a 82 9 7 LIVE 23.0 7.0 7 2. 0 10 1a 1 a 0 o.o a.o 82 9 7 LIVE 23.0 7.0 11o.0 1a 1a 1 0 a a.a a.a 82 9 7 LIVE 23.a 1.a 76. a 1a 1a 1 0 0 a.a a.a S2 9 7 LIVE 23.0 7.a n.a 10 1a 1 a a o.o a.o 82 9 13 LIVE 24.0 6.a 105.a 8 8 1 1 a 1 oo. a 1 ao.o 82 9 13 LIVE 24.0 6.a 11 2. a 8 8 1 1 a 100.0 1 ao.o -...! 82 9 13 LIVE 24.a 6.0 77.0 8 8 1 1 a 100.0 1 oo.a u i*:} 82 9 13 LIVE 24.0 6.a 87.0 8 8 1 0 0 a.a o.o ...::; 82 9 13 LIVE 24.0 6.0 91.0 8 8 1 0 0 o.o o.o 82 9 13 LIVE 24.0 6.0 101.0 8 8 1 a 0 o.o o.o 82 9 13 LIVE 24.0 6.0 111. 0 8 8 1 0 0 o.o o.o 82 9 13 LIV:: 24.0 6.0 8 .5. 0 8 8" 1 0 0 a.a a.a 82 9 13 LIVE 24.a 8.5 88.a 8 8 1 0 0 a.a o.a 82 9 13 LIVE 24.a 8.5 90.a 8 8 1 0 0 o.o o.o 82 9 13 LIVE 24.0 8.5 92.a 8 8 1 0 0 o.o o.o 82 . 9 13 LIVE 24.0 8.5 61.0 8 8 1 1 0 100.0 100.0 82 9 13 LIVE 24.0 8.5 100.a 8 3 1 1 0 100.0 1 oo.a 82 9 13 LIVE 24.0 8.5 8 6.0 8 8 1 0 0 o.a o.o 82 9 13 LIVE 24.0 B.5 91.0 8 8 1 0 0 o.a o.o 82 9 13 LIVE 24.0 8.5 141.a, 8 g 1 0 0 o.o o.o 82 9 13 LIVE 24.0 8.5 1a1.o 8 8 1 0 0 a.a o.o 82 9 14 LIVE 24.5 8.0 95.6 9 9 3 1 0 33.3 33.3 82 9 14 LIVE 24.5 8.0 97.8 9 9 5 s a 100.0 100.0 82 9 14 LIVE 24.5 8.0 97.0 9 9 3 0 0 a.o a.o 82 9 14 LIVE 24.5 8.o 98.5 9 9 2 1 0 50.0 50.0 82 9 14 LIVE 24.5 8.0 87.0 9 9 2 0 0 a.a o.o 82 9 14 LIVE 24.5 B.O 90. 5 9 9 2 1 0 50.0 50.0 82 9 20 LIVE 21. 0 9.5 151.0 9 9 1 1 0 100.0 1 oo.o 82 9 20 LIVE 21. 0 9.5 106.0 9 9 1 0 a o.o o.o
  • CONTROLS HAY TERMINATE PRIOR TO 96 HR Il' ALL TEST SPEC I HENS DEAD. -99.9
  • CONTROLS HELD AT AMBIENT RIVER CONDITIONS.

rrable 7-8 Continuea. WEAKFISH TYPE yy HH 00 TEST WATER SALINITY HEAN cws TRAVELING NO. AT NO. DEAD NO. LOE 96 HR 96 HR TYPE TEMP. (ppT) TOTAL PUMPS SCREENS STA.RT AFTER AFTER MOR7 ALI TY MORTALITY CC) LENGTH IN IN 96 HR* 96 HR* WIT HOUT WITH (HH) SERVICE SERVICE LOE LOt (PERCENT) CPERCENT> 82 9 20 LIVE 21. 0 9.5 -47 .o 9 9. 1 0 0 a.a o.o 82 9 20 LIVE 21.0 9.5 5 6.0 9 9 1 0 0 0.0 o.o 82 9 23 LIVE 21.0 9.5 106.0 10 11 1 1 0 100.0 1 oo.o 82 9 23 LIVE 21.0 9.5 11o.0 10 11 1 0 0 o.o o.o SUll 3130 1133 8 TEST 19 7 3 24.0 3.5 51.2 1 1 5 5 0 1 oo.o 100.0 79 9 10 24.5 5.0 8 3.1 1 1 10 6 0 60.0 60.0 79 9 10 OAl"AGEO 24.5 5.0 74.8 1 1 11 8 0 72.7 72. 7 79 9 10 OAHAGEO 26.0 5.0 86.2 1 1 10 9 0 9J.O 90.0 80 9 15 DAMAGED 25. *J a.o 94.7 9 9 17 13 0 76.5 76.5 80 9 15 DAMAGED 25.0 8.0 9 9.3 9 9 20 11 0 55.0 55.0 81 7 6 DAMAGED 26.0 8.0 46.8 9 9 20 19 0 95.0 95.0 81 7 7 DAMAGED 26.0 10.0 40.0 9 9 8 8 0 1 G0.0 1 oo.o 81 7 7 DAMAGED 26.0 1 o.a H.4 9 9 11 11 0 100. 0 1 oo.o 81 7 8 DAMAGED 26.0 6.0 3 9. 7 9 9 20 19 0 95.0 95.0 '-J 81 7 14 DAMAGED 26.0 10.5 47.7 9 9 17 16 0 94.1 94.1 I 81 7 22 DAMAGED 27 .,0 10.0 6 5.9 9 9 24 18 0 75.0 75.0 w 0 81 7 22 DAMAGi:O 21.0 1o.0 40.0 9 9 7 6 0 85.7 85.7 81 7 24 DAMAGED 21.0 8.5 5 6. 2 9 11 11 5 0 45.5 45.5 81 7 24 DAMAGED 21.0 8.5 s 9.1 9 11 11 10 0 91). 9 90.9 81 7 24 DAMAGED 27.0 S.5 50.8 9 11 13 8 0 61. 5 61. 5 81 7 24 DAMAGED 21.0 8.5 5 3.0 9 11 12 8 0 66.7 66.7 81 7 24 DAMAGED 27.0 8.5 54.8 9 11 12 6 0 50.0 50.0 81 7 27 DAI' AGED 21.0 12. 0 51.6 11 11 18 s 1 27.3 33.3 81 8 5 DAMAGED 28. 0 13. 5 52.6 12 12 20 9 0 45.0 45.0 81 8 5 DAMAGED 28.0 13.5 61.9 12 12 18 7 0 39.9 38.9 81 8 1 DAMAGED 26. 0 9.0 57. 3 10 12 1C <,; 0 90.0 90.0 81 8 1 DAMAGED 26.0 9.0 5 5. 7 10 12 5 0 45.5 45.5 81 8 7 DAMAGED 26. 0 9.0 69. 6 10 12 10 6 0 .60.0 60.0 81 8 10 DAMAGED 26.5 12. 5 64.6 11 12 5 5 0 100.0 1 oo.o 81 8 12 DAMAGED 27.0 6.5 6 3 .1 11 12 11 11 0 1oo.0 1 oo.o 81 8 13 D4MAGEO 28.0 6.0 65.5 11 12 20 20 0 100.0 1 oo.o 81 8 13 DAMAGED 28. 0 6.0 59.2 11 12 12 12 0 100.0 100.0 81 8 13 CAMAGED 28.0 6.0 68.8 11 12 18 18 0 100.0 100.0 81 8 13 DAMAGED 28.0 6.0 13 8. 0 11 12 1 1 0 100.0 100.0 81 8 17 DAMAGED 26.0 s.o 81.7 11 11 25 15 0 60.0 60.0 81 8 17 DAMAGED 26.0 8.o 66.5 11 11 26 18 0 69.2 69.2 81 8 17 DAMAGED 26.0 8.0 9 3 .1 11 11 24 20 0 e3. 3 83.3 81 8 17 DAM4GEO 26.0 8.0 63.2 11 11 27 27 0 100.0 1 oo.o 81 8 17 DAMAGED 26.0 8.0 6 7.5 11 11 25 17 0 68.0 68.0 * " CONTROLS HAY TERMINATE PRIOR TO 96 HR IF ALL TEST SPECIMENS DEAD. -99.9 .. COIHROLS HELO AT AMBIENT RIVER CONDITIONS.

  • ..............

_

  • Tab.8 Cont .
  • WEAKFISH TYPE TY HH DD TEST WATER SALINITY MEAN cws TRAVELING NO. AT NO. DEAD NO. LOE 96 HR 96 HR TYPE TEMP. (PPT) TOTAL PUMPS SCREENS START AFTER AFTER MORTALITY (C) LENGTH ItJ IN 96 HR* 96 HR* II ITH OUT I/ITH CM M) SERVICE SERVICE LOE LOE (PERCENT) (PERCENT) 81 s 20 DAMAGED 25.0 8.0 5 2. 8 9 10 7 7 0 100.0 1 oo.o 81 8 20 DAMAGED 25.0 8.0 60.B 9 10 16 16 0 100.0 1 oo.o 81 B 21 OAMAGEO 26.0 1o.0 69.5 10 .10 10 8 0 80.0 80.0 81 3 25 DAMAGED 26.0 1 o. a 6 4. 3 11 1 !) 3 3 0 1CO.O 1 oo.o e1 s 27 DAMAGED 25.5 11.0 9 5 .6 11 11 3 3 0 1 DO.O 1 oo.o e1 8 31 DAMAGED 25.5 10.0 76.7 8 8 17 12 0 70.6 70.6 81 9 2 DAMA GEO 25.0 1 o.o 65.5 7 8 17 17 0 100.0 1 oo.o 81 9 11 DAMAGED 23.5 10.0 87.0 10 10 1 1 0 100.0 100.0 81' 9 14 DAMG!:D 24.5 9.5 6 3.0 10 10 1 1 0 1 oo.o 100.0 81 9 22 DAMAGED 22.0 8.0 88.6 10 10 3 3 0 100.0 100.0 81 10 5 DAMAGED 17. 0 9.0 51.7 4 4 9 9 0 100.0 100.0 81 10 12 DAMAGED 15.0 15.5 so.a 10 12 1 1 0 100.0 100.0 81 10 22 DAMAGED 15.0 12.0 78.0 9 9 3 3 0 100.0 100.0 81 10 22 DAMAGED 15.0 12. 0 125.2 9 9 7 4 0 57 .1 57.1 81 10 22 DAMAGED 15.0 12.0 9 9 2 2 0 100.0 1 oo.o e1 11 16 DAMAGED 10.5 14. 0 113. 0 9 9 1 1 0 1 oo.o 1 oo.o 81 11 23 DAMAGED 8.5 1 o.o 67.0 9 9 2 2 0 100.0 100.0 81 1Z 5 CAMAGED 7.5 11.0 64. 8 10 10 6 6 0 1DO.O 100.0 81 12 7 DAMAGED 7.0 12.0 8D.O 10 10 2 2 0 1DO.O 1 oo.o 81 1Z 9 DAMAGED 5.5 11.0 97.0 10 10 1 1 0 1oo.0 100. 0 82 6 24 DAMAGED 20.0 4.0 26.0 10 10 1 1 0 100.0 100.0 -..,J I 82 6 24 DAMAGED 20.0 4.0 30. 0 10 10 1 1 0 100.0 1 oo.o w 82 6 24 DAMAGED 20.0 4.0 25.0 10 10 1 1 0 100. 0 1 oo.o I-' 82 6 30 CHll\GEO 26.0 6.0 40.0 12 12 1 1 0 100.0 1 oo.o 82 6 30 DAMAGED 25.5 6.0 37.0 12 12 1 1 0 100.0 100.0 82 6 30 DAMAGED 25.5 6.0 39.0 12 12 1 1 0 100.0 100.0 82 7 6 DAMAGED 24.5 7.0 71.0 9 9 1 1 0 100.0 1 oo.o 82 7 12 DAMAGED 26.5 6.0 47.0 10 11 1 1 0 100.0 100.0 82 7 12 DAMAGED 26.5 6.0 55.0 10 11 1 1 0 1CO.O 100.0 82 7 12 DAMaGEO 26.5 6.0 56.0 10 11 1 1 0 100.0 100.0 82 7 12 26.5 6.0 57.0 10 11 1 1 0 100.0 100.0 82 7 12 DAMAGED 26.5 6.0 65. 5 10 11 2 2 0 100.0 100. 0 82 7 12 DAMAGED 26.5 6.0 68.0 10 11 1 1 0 100.0 1 :>o.o 82 7 12 CAMAGEO 2 !>. 5 6.0 73.0 10 11 1 0 0 o.o o.o 82 7 20 DAMAGED 28.0 7.0 83.0 11 11 1 1 0 1 oo.o 1 co.a 82 8 10 DAMAGED 27.0 8.5 67.3 9 10 3 3 0 100.0 100.0 82 8 16 DAMAGED 26.0 8.5 107.0 9 11 1 1 0 100.0 1 oo.o 82 8 30 DAMAGED 22.0 7.5 96.0 9 9 1 1 0 100.0 100.0 82 9 20 DAMAGED 21. 0 9.5 91.0 9 9 1 0 0 0.0 o.o 82 12 6 DAMAGED 12.0 9.0 99.0 11 11 1 1 0 100.0 1 oo.o SUH 655 514 * " CONTROLS HAY TERHINATE PRIOR TO 96 HR IF ALL TEST SPECIMENS DEAD. -99.9 " CONTROLS HELD AT AMBIENT RIVER CONDITIONS.

Table 7-9 Summary of 96-hr weakfish control survival history in impingement latent mortality studies 1978-1982. (Terms are defined in Appendix I; survival intervals expressed in hours). IH:.\KFISt< <CO"lnCL) -COl'l:HNEJ (Fig. 7-25) INTE 'IUMB !:R NUM3ER "IUM!! !:R S TA'H ENH:R ING iorlTHDR.l.1.N EXPOS!:O TI"' E THIS DURING TO I"4TERVAL INTERVAL RISK ---------------------------------c.a 8 33.G 2. J 8 2. 0 24.0 S64.C :j. J !!64.a 48.0 829.0 9. J d25.0 72.0 8]7.0 41.J 786.5 SURVIVH TO 96. -t /-lolEHFISH (CONTROL) -JUNE (Fig. 7-26) INTE qvAL NU"1B:R NUMBER NUMBER START ENT':RING HlTHDUi..N EXPOSED TI I" E HHS OUR ING TO INTERVAL RISK ---------------------------------c.a 23.0 o * .J 23.0 24.0 n .a *J. o 23.0 48.0 23.0 '). J 23.0 n .o 23.0 o. J 23.0 CU:-IULATIVE SURVIVAL TO 96. 1.oaoo WEAKFISH (CONTROL) -JULY (Fig. 7-27) INTERVo\L START TrME a.a :u ** o 48.a NUMBER ENTERING THIS INTERVAL 314.0 309.0 303.0 296.0 WITHDRAW'4 DURING INTERVAL ---------Q. Q J.O 3.0 4. ') NUMBER EXPOSEIJ TO RISK --------314.Q 309.0 301.5 294.0 NU)o!BER OF PROPORTION TER'4IN4L TERMINATING EV!:IHS ------------------- 17.0 c.a193 35.a 0.0405 14.0 o. 0170 31.0 c.a394 95% C.I. NU01!!ER OF PROPORTION TERMINAL TERMINATING EVENTS --------------.:...---- a.a a.a o.o a.o a.o o.a o.o o.c NUM!lER OF PROPORTION TERMINAL TERMINATING EVENTS ------------------- 5.C 0.0159 6.0 a.0194 4.0 0.0133 3.0 0.0102 i LATIYE SURVIVAL TO 96. 0.9424 +/- 95% c. PROPORTION SURVIVING


a.9807 0.9595 0.9830 0.9606 PROPORTION SURVIVING


1.0000 1.aoaa 1.ooao 1.oaoo PROPORTION SURVIVING a.9841 a.98a6 0.9867 0.9898 CUMULATIVE PROPORTION SURVIVING AT ENO ----------- 0.941a 1).9250 .)

  • 8 8 3 6 CUMULATIVE PROPORTION SURVIVING AT ENO -----------

1.0000 1.ooao 1.0000 1.0000 CUMULATIVE PROPORTION SURVIVING AT END t).9841 0.9650 0.9522 0.9424 STANDARD ERROR OF CUHIJUTIVE SURVIVAL -------------- 0.0146 a. aan 0.0089 a.a101 STANDARD ERROR OF CUMULATIVE SURVIVAL -------------- a.a a.a a.a o.a ST A NOUD ERROR OF CUMULATIVE SUR YI VAL a.ao11 0.0104 a.0121 0.0132 * ...... I UJ N W'O<lKFISH (CONTROL) -INT:'RVAL NU'4BER STAn ENTER!NG TIME THIS INTERVAL ----------------c.o H3.0 24.0 380.a H.G 367.0 72 .o 359.0 AUGUST (Fig. 7-23) NUMSER "lUMeER ,.ITH DR Al.IN EXPOSED OUR !t>;G TO INTERVAL RISK -----------------2.0 392.J J.O 380.J 3.J 365.5 35.J 3 41. 5 Table 7-9 Continued NUHB=R OF PROPORTION TERMINAL TERMINATING EVENTS ------------------- 11.0 0.0281 13.0 O.C342 s.o 0.0137 9.0 0.0264 SURVIVAL TO 96. 0.9C14 +/-0.0298 95% C.I. ME AK FISH (CONTROL) -SEPTE"41!ER (Fig. 7-29) NUMB':R NUMBER lllUMBER NUMBER s r111n ENTERING oilTHJRAliN EXPOSED OF PROPORTION Trl'IE THIS OUR ING TO TERMINATING INTERVAL INTERVAL RISK EVENTS -----------------------------------------


o.o 141. 0 J.O 141.Q 1.0 0.0071 140.0 a .. J 140.u 16.C 0.1143 48.0 124.0 2. '] 123.0 5.0 0.0407 72 .o 117.0 2. J 1H.O 18.0 0.1552 CUMULATIVE SURVIVAL TO 96. = 0. 7129 +/-0.0752 95% c.r. wfAKFISH (CONTROL) -CCTCBEll (Fig. 7-30) INTERHL NUMBER NUMSER 5 <: R NU MSC R START ING wITHORhN EXPOSED OF PROPORTION Tr THIS DUR Hui TO T=RMINAL TERMINATING HlTERVAL INTERVSL RISK EVENTS ---------------------------------------------------- c.o 1c.c a. 'J 1).':) a.a o.o 24.0 10.0 '.). J 1J. J a.a o.a a. a 10.0 J.O 1.J. J o.o a.a 72 .o 10.0 O. Q 10.J c.o o.o SURVIVAL TO 96. 1. JC.JO CUMULATIVE PROPORTION PROPORTION SURVIVING SURVIVING 4T ENO ----------


G.971? Q.9719 0.9658 ).9337 0.9863 0.9258 0.9736 .J.9014 CUMULATIVE PROPORTION PROPORTION SURVIVING SURVIVING AT ENO ----------


0.9929 0.9929 0.8857 0.8794 0.9593 0.8437 0.8448 0.7128 CUMULATIVE PROPORTION PROPORTION SURVIVING SUR 'IIVING AT ENO ----------


1

  • 0000 1.0000 1. aooa 1.0000 1.0000 1.0000 1.oodo 1.0000
  • STANDARD ERROR OF CUMULATIVE SURVIVAL --------------(J.0083 0.0121 0.0133 0.0152 STANDARD ERROR OF CUMULATIVE SURVIVAL --------------

0.0071 0.0274 0.0306 0.0384 STANDARD ERROR OF CUMULATIVE SURVIVAL -------------- o.o a.a o.o o.o ....... I w w *: .. ICE AK. I SH (CONTROL) -NOV'.:M:!ER INTERVAL NUMeER NUM3ER START ENT!:RING Trl'4E THIS CURING INTERVH INTERVAL -------------------------c.o 1. 0 0. *} 24.0 1. G Q., J 48.0 1. Q :) * .J 72. G 1.0 j. *) SURVIVAL TO 96. (CONTROL) -DECEMSER HHERVAL NU,.BF.R NUMBER ENTER ING IHTHDR .\\IN TIM!: TYIS DURING INTERVAL INTERVAL -------------------------c.o 1.0 Q.J 24.C 1.0 \). 0 1+8. 0 1.0 o.o 72.0 1. a a.o CU11ULATil/E SURVIVAL TO 96. = NU'4BE:R EXP05ED TO RISIC --------1 * ) 1 * :) 1 * \) 1

  • J Table 7-9 Continued OF PROPORTION TERMINAL TERMINATING EVENTS -------------------

0.0 a.a o.o o.o o.o o.o 1.c 1.0*Jao '). J +1-a.a 9H C. I. NUl'4e::R NUMBER EXPOSE!:> OF PROPORTION TO TERMINAL TERMINATING RISK EVENTS --------------------------- 1 * :J a.a o.o 1.0 o.o a.a 1.a a.a a.a 1.0 a.a o.o 1. ac Jo 't/-o.o 95¥ c.r.

  • CUMULATIVE STANDARD ERROR PROPORTION PROPORTION OF CUMULATIVE SURVIVING SURVIVING SURVIVAL AT END ----------


1.aaoa 1.oaoo a.a 1.coao 1.oaoo a.a 1. ooaa 1. JOaO a.a a.a '). 0 a.a *-.J CUMULATIVE STANDARD ERROR I w PROPOIHION PROPORTION OF CUMULATIVE .po. SURVIVING SURVIVING SURVIVAL AT END ----------



1.aooo 1.oaoo a.a 1.0'JOO 1.oaoo o.o 1.0000 1. OOQO o.o 1.0000 1. 0000 o.o Table 7-10 Summary of 96-hr weakfish (live) survival history in impingement latent mortality studies 1978-1982. (Terms are defined in Appendix-I; survival intervals expressed in hours). wE.UFISH CLIVE) -COMB INEO (fig. 7-31) INTERVAL NU'1BER NUMBER *'lUMBER NU.'1BER CUMULATIVE STANDARD ERROR ENTERING IHTHDRAliN

XPOSEO OF PROPORTION PROPORTIOM PROPORTION OF CIJMULATIVE TI 1'I !: T'HS OUR ING TO TERMINAL TERMINATING SURVIVING SURVIVAL INTERVAL INTERVAL RI 51( EVENTS AT END ----------------------------------------------------



c.o 3159.0 1

  • f) 3153.5 774.0 0.2451 0.754'1 *]. 7549 0.0077 24.0
9. J 2379.5 313. 0 C.1315 0.8685 0.6556 0.0085 48.G 2062.0 4.J 2J6J.o 57.0 0.0277 0.9723 *J.6375 0. O'J!l6 ?2.0 2001.0 e 2. 'J 1f7J.J 42.Q 0.0213 0.9787 J.!1239 0.0086 CCMULATIVE SURVIVAL TO 96. J.6239 +/-0.0169 C.I. \./EH FISH CLIVE) -JUNE (Fig. 7-32)

NU"!BER NUMBER NUMB<:R NUMBER CUMULATIVE STANDARD ERROR START ENTERING llITHDRU1N CXPCSED OF PROPORTION PROPORTION PR OP ORT ION OF CUMULATIVE TIME Trl IS DUR ING TO TER!1INAL TERMINATING SURVIVING SURVIVING SURVIVAL IIHi:RVAL INTERVAL RI SIC EVENTS AT ENO ----------------------------------------------------




C.G 113. 0 a.a 113. 0 2C.O 0.1770 0.3230 o.e230 0.0359 24.0 93.0 a.a 93.;) 7.0 0.0753 0.9247 0.7611 0.0401 42.0 i3 6. 0 a. 'J 8!i.J 2.0 0.0233* 0.9767 0.7434 0.0411 72.Q d4.0 a. o 1!4.J 2.0 0.0238 0.9762 :). 7257 0.0420 CUMULATIVE SURVIVAL TO 96. = '). 7257 +/-0.0323 95t C. I. lfE H.FI 5H CLIVE) -JULY (Fig. 7-33) INTERVAL NUMBcR NUMBER NU Me ER NU"1BER CUMULATIVE STANDARD ERROR START Er--ITERING ioHTHORAliN EXPOSED OF PROFORTION PROPORTION OF CUMULATIVE TIME THIS DUR ING TO TERMINAL TERMINATING SURVIVING SURVIVING SURVIVAL INTERVAL INTERVAL RI SIC EVENTS AT ENO ----------------------------------------------------




a.a 1155.0 1

  • a 1154.5 235.0 0.2469 0.7531 0.7531 0.0127 24.0 869.0 o.a 969.0 95.0 0.1093 0.8907 0.6708 0.0138 4S.O 774.0 4.0 772.0 10.0 0.0130 0.9870 0.6621 0.0139 e:LATIVE 11.a 754.5 9.0 119 0.9881 0.6542 0.0140
  • SURVIVAL TO 96. = :J.6H2 +I-0.0274 95% c. . ----------....J I w \.J1

--

  • Table 1-1n Continued WE H.FI SH CLIVE) -AUGUST (Fig. 7-34)

NUMBER NUM!'IER IJUMBeR CUMULATIVE STANDARD ERROR START ENTER ING WITHDRAWN EXPOSED OF PROPORTION PROPORTION PR OP ORT ION OF CUMULATIVE Tlf'IE THIS DURING TO TERMINAL TERMINATING SURVIVING SURVIVING SURVIVAL INTERVAL It-.TERVAL RI SK EVENTS AT ENO ----------------------------------------------------



c.o 1207.0 0.8 12C7.'J 3 38 .o 0.2300 0.7200 0.7200 0.0129 2 t,. 0 (!69.0 3.0 36 5. ') 1 40 .o 0.1618 0.!!382 0.6034 0.0141 I . I 48.0 721.0 o.o 721.:} 19.0 0.0264 0.9736 0.5875 0.0142 *' 72 .o 7'J2.0 so.a 0 7 7. :) 11.0 0.0162 0.9!!38 'J. 57 BO 0.0142 CU'4ULATIVE SURVIVA-L TO 9 6. J. 57 3D +/-C.0279 95'{ C. I. 'WEAKFISH CLIVE) -SEPTE"43ER (Fig. 7-35) ....... I w INTERVAL NUMBER NUMBER NUMBER CUMULATIVE STANDARD ERROR IJ' START ENTERING wITHDRAWN EXPOSED OF PROPORTION PROPORTION PROPORTION OF CUMULATIVE TIME THIS DURING TO TERMINAL TERMINATING SURVIVING SURVIVING SURVIVAL INTERVAL INTERVAL RISK EVENTS AT ENO ----------------------------------------------------




o.o 599.0 a.a 5H.*J 11 s .a 0.1970 0.8030 0.8030 0.0163 24.0 481.0 1.0 41!0.5 49.0 0.1020 0.8980 0.7211 0.0183 48.0 431.0 a.a 431.J 15.0 0.0348 0.9652 0.6960 0.0188 72.0 416.0 o.o 416.Q 18.0 0.0433 0.9567 0.6659 0.0193 CUMULATIVE SURVIVAL TO 9 6. 0.6659 +/- 95% C. I* WEAKFISH CLIVE) -OCTOtlER (Fig. 7-36) INTE'lVAL NUHBi:R NUMBER NU'4BER NUMBER CUMULATIVE STANDARD ERROR START ENTERING i<l!THORAWN EXPCSEO OF PROPORTION PROPORTION PROPORTION OF CUMULATIVE TIME THIS DURING TO TERMINAL TERMINATING SURVIVING SUR VIVI NG SURVIVAL INTERVAL INTERVAL RISK EV!:NTS 4T END ----------------------------------------------------




a.a 80.0 o. '.) so.o 13.0 G.1625 0.8375 0.8375 0.0412 24.0 67.0 I). 0 67. (J 22.0 0.3284 0.6716 IJ.5625 0.0555 48. 0 45.C a.a 45.0 9.0 0.2000 0.8000 0.4500 0.0556 72.0 36.0 1.0 35.5 1.0 0.0282 0.9718 0.4373 0.0555 CUMULATIVE SURVIY.AL TO 'J.4373 +I-0.1087 95% C.I. Table 7-10 Continued (LIVE) -NOVEMBER (Fig. 7-37) HiTEQVAL NUM:IER START ENTERrNG EXPOSED OF PROPORTION Til'E PH 5 GUQrNG TO HR MINAL -TE "<MINH ING INT:ORVAL INT ERV AL RrSK EV !:NTS -----------------------------------------


c.o 4. iJ ::J. J 4. *J o.o o.o 4.G J.J 4. t) o.a o.o 0 ". 0 J. *J 4.0 2.0 c.saoo 72. 0 2.C J. ;J 2.J 1. 0 0.5000 SURVIVAL TO 9 '5. o.2sac +1-c.4244 95% c.r. CLIVE) -QECEMB:'.R INTERVAL NU .. BER NUMBER NUMBER NUMBER START ENTER ING i4ITHQRAWN EXPOSED OF PROPORTION TIME THIS DUR ING TO TER!>IINAL TERMINATING INT!:RVAL INTERVAL RISK EVENTS ---------------------------------------------------- o.o 1.0 a.a 1.C a.a o.o 24.0 1.0 J.O 1 -0 o.o o.o 48.0 1.0 o.o 1. u c.o o.o ?2 .o 1.0 G.O 1

  • 0 o.o o.o SURVIVAL TO 96. 1.000G +/-O.O 95% c.r. CUMULATIVE STANDARD ERROR PROPORTION PROPORTION OF CUMULATIVE SURVIVI.'Hi SURVIVING SURVIVAL AT END ----------

1. OQO'J 1.0000 o.o 1. cooo 1.0000 o.o O.S'JOJ J. 5 0 00 0.2500 o.sooo 0.2500 0.2165 CU"1ULATIVE STANDARD ERROR PROPORTION PROPORTION OF CUMULATIVE SURVIVING SURVIVING SURVIVAL AT ENO ----------


1.0000 1. aooo o.o 1.0000 1 -00 00 o.o 1.0000 1. 0000 o.o 1.0000 1.0000 o.o * ---*--- Table Summary of 96-or weakfish (damaged) survival history in impingement latent mortality studies (Terms are defined in Appendix I; survival intervals expressed in hours). \IEAKFISH (DAMAGED) -COMBINED (Fig. 7-38) rNTERVAL START TI" E G.O

.e. o NUMBER EIHERING THIS INTERVAL 660.0 246.0 166.0 1s2. a 1'cUM3ER .iITHORAWN DURil.G INTE'lVAL J. 0 1.0 3.Q 1. J NU Me ER EX POSED TO RISK 560.0 245.5 164.5 1s1. 5 NUMBER OF TERMINAL !:VENTS 414.0 79.0 11. 0 11
  • 0 PROPORTION TERMINATING 0.6273 Q.3218 0.0669 0.0726 SURVIVAL TO 95.

+1-o.OJ16 95% c.r. 'l<EAKFISH (DA"4AGEIJ) -JUNE* (Fig. 7-39) INTERV.\L START TIM:'. o.o NUMSER ENTERING THIS INTERVAL ______ ... _ 6.0 t.U,.SER ;.i ITHQRA\iN DURING INTERVAL 0. '] NU"leER EXPOSE!) TO RI SK 6 * .] SURVIVAL TO 24. = o.o NEAKFI5H <DAMAGED) -JULY (Fig. 7-40) START TIME o.o 24.0 48.C 72.0 NUM!!ER ENTERING THIS PHERVAL 2 G 57.0 4!!. 0. 48.0 NUMBER .I ITH DRAWN DURING O.J 1

  • J o.o 1
  • IJ NU"4BER EXPOSED TO RI SK 201.0 56.5 43.'J 47.5 OF TERMINAL EVENTS 6.0 PROPORTION TERMINATING 1.0000 +/-c.o 95X NUMBER OF TERMINAL EV!:NTS 1 44. a 8.C o.o 2.0 PROPORTION TERMINATING 0.7164 C.1416 o.o 0.0421 SURVIVAL TO 96. = 0.2332 +1-o.0586 95% c.r. PROPORTION SURVIVING 0.3727 0.6?82 o. 9331 0.9274 PROPORTION SURVIVING a.a PROPORTION SURVIVING 0.2'336 0.8584* 1. 0000 a. 9 579 CUMULATIVE PROPORTION SURVIVING AT END !). 3727 D.2528 0.2359 0.2188 CUMULATIVE PROPORTION SURVIVING 4T END a. rJ CUMULATIVE PROPORTION SURVIVING AT END 0.2836 o. 2434 0.2434 Q.2332 1978-1982
    • STANDARD ERROR OF CUMULATIVE SURVIVAL 0.0188 0.0169 0.0165 0.0161 STANDARD ERROR OF CUMULATIVE SURVIVAL o.o STANDARD ERROR OF CUMULATIVE SURVIVAL 0.0313 0.0303 0.0303 0.0299 -...J I w 00 Table 7-11 Continued WE.\KFISH (DAMAGED)

-AUGUST (Fig. 7-41) NUMBER NUMBER \UM!!:R CUMULATIVE STANDARD ERROR START E'lTER ING .II TH OR AWN EXPO SEO OF PROPORTION PROPORTION OF CUMULATIVE TIME THIS DURING TO TERMINAL TERMINATING SURVIVING SUR VIVI NG SURVIVAL INTERVAL INTERVAL RISK EVENTS AT ENO ----------------------------------------------------




c.o 324.0 u.O 324.i] 201. 0 0.6204 0.3796 o. 3796 0.0210' 24. o 123.0 Q. ') 123.J 40.0 o. 3 2sz o.674a Q.2562 0.0243 48.0 83.Q *J. a 8 3. ') a.a 0.0964 0.9036 0.2315 0.0234 72.G 75.0 J.Q 75.J 5.0 Q.0667 0.9333 Ci.2160 0.0229 CU,.ULATIVE SURVIVAL TO 96. 'J.216C +I-a.044S 9H C. I. WEAKFISH COAMAGEil) -SEPTEMBER (Fig. 7-42) -..J INTERVAL NUMBER NUMBER NUMBER NUMBER CUMULATIVE STANDARD ERROR I w START ENTERING \IITHDRAl!N EXPOSED OF PROPORTION PROPORTION PROPORTION OF CUMULATIVE '° TIME THIS OUR ING TO TERMINAL TERMINATING SURVIVING SURVIVING SURVIVAL INTERVAL INTERVAL RISK EVENTS AT END ----------------------------------------------------




o.o 94.0 o.o 94.0 46.0 0.4.'394 0.5106 0.5106 0.0516 24.0 48.0 o.o 48.0 23.0 0.4792 0.5208 i).2660 0.0456 48.0 25.0 3.0 23.5 a.a o.o 1.0000 0.2660 0.0456 72.0 22.0 o.o 22.a o.a o.o 1.0000 0.2660 0.0456 CUMULATIVE SURVIVAL TO 96. 0.2660 +/-0.0393 95% C. I. WEHFISH <DAMAGED) -ocros ER (Fig. 7-43! INTE'lVAL NU,.3ER NUMBER NUMBER CUMULATIVE STANDARD ERROR ST.ART ENTERING WITHDRUIN EXPOSED OF PROPORTION PROPORTION PROPORTION OF CUMULATIVE Trl4E THIS DURING TC HRMINAL TERMINATING SURVIVING SURVIVING SURVIVAL INiERVAl INTERVAL RISK EVENTS AT END ----------------------------------------------------




c.o 22.0 ']. '.) 22.C 14.0 0.636 .. 0.3636 0.3636 0.1026 24.0 a.a o.o s.o 2.0 0.2500 0.7500 0.2727 0.0950 41!. a 6.0 o.o 6.0 1.0 0.1667 0.8333 0.2273 0.0893 e"*' 5.0 oJ.O 5.G 2.0 0.4000 0.6000 0.1364 0.07. CUMULATIVE SURVIVAL TO 96. = IJ.1364 +I-G.1434 95 wE AKFI SH -NOVEM9ER PH ERV.AL NUMBER START EOITERING wITHuRAlliN TI,.E THIS DURING I"lTERVAL INTERVAL -------------------------c.o 3.0 I). 0 :?4. 0 2.0 o.o .+ e. o 2.0 J.J 72 .o 2.0 '). '.) CU'1ULATIVE SURVIVAL TO 96. WEAK.FISH (DAMAGED) -GECEM3ER INTERVAL NUMBER NUMi3ER SHRT ENTER ING \I IT HOR AWN T Il'IE THIS DURING INTERVAL INTERVAL -------------------------0.0 10.0 Q.Q 24.0 8.0 O.J 48.0 2.0 0. Cl ( !"ig. 7-44) !:XPCSEO TO RI SK. --------3. ,J 2.) 2. ') 2.J Table 7-11 Continued NUMBER OF PROPORTION TERMINAL TERMINATING EVENTS ------------------- 1.C 0.3333 o.o o.o 0.0 o.o 2.0 1.0QOO '). J +!-0.5334 95X C.I. (Fig. 7-45) NUMBER NUMBER EXPOSED OF PROPORTION TO T!:RMINAL TERIHNATING RI S It !:VENTS --------------------------- 1J. 2.0 0.2000 3.0 6.0 0.7500 2.0 2.0 1.0JOO SURVIVAL TO 12. = a.a +1-o.2479 c.r. CIJ,.ULATIVE PROPORTION PROPORTION SURVIVING SUR flVING AT END ----------


0.6667 ).6667 1.0000 u. o6H 1.COOO 0.6667 o.o *J. 0 CUMULATIVE PROPORTION PROPORTION SURVIVING SURVIVING AT END ----------


0.8000 D.3000 0.2500 0.2000 o.o o.o

  • STANDARD ERROR OF CUMULATIVE SURVIVAL --------------

0.2722 o. 2722 0. 272 2 0.2122 STANDARD ERROR OF CUMULATIVE SURVIVAL -------------- 0.1265 0.1265 0.1265 -.J I +:-0 7-41 Table 7-12 Summary of latent mortality step-wise multiple regression analysis for live-and damaged-category weakfish. Live Category LOE Assumed Dead LOE Assumed Alive Variable R2 R2 change R2 2 R change Temperature (T) 0.027 0.027 0.028 0.028 Screens (Sc) 0. 063 0.036 0.065 0.037 Pumps (P) 0.109 0.046 0.111 0.046 Salinity ( s) 0.123 0.013 0.124 0.013 Length (L) 0.123 0.000 0.124 0.000 Final model with LOE assumed dead. Logit = 7.126 -0.306T + l.315SC -l.178P -0.1728 (R 2 = 0.123; n = *187; p < 0.05) Final model with LOE assumed alive. Logit = 7.201 -0.311T + l.318SC -l.179P -0.1678 (R 2 = 0.124; n = 187; p < 0.05) Damaged Category LOE Assumed Dead LOE Assumed Alive Variable R2 R2 change R2 2 R change Salinity ( s ) 0.108 0.108 0.110 0.110 Pumps ( p) 0.207 0.099 0.209 0.099 Length (L) 0.254 0.047 o. 255 0.047 Screens (Sc) 0.276 0.022 0.277 0.021 Temperature (T) 0.277 0.001 o. 277 0.001 Final model with LOE assumed dead. No variables are significant at p < 0.05 level (n = 34). Final model with LOE assumed alive. No variables are significant at p < 0.05 level (n = 34). *

  • Table 7-13 Estimated monthly initial, latent and total mortality of weak.fish taken in Salem impingeaent samples, 1977-1982.

o+ l MAY JUN JUL AUG SEP OCT NOV DEC JAN Age in !!onths 2 3 4 5 6 7 8 9 Initial Mortality ('t) 37.4 26.3 23.0 17 .5 12.5 16.7 10.0 Latent 2 Live Category 37.6 3 37.6 3 Mortality (%) 27.4 34.6 42.2 33.4 56.3 Number live 1,970 19. 076 18, 119 6,072 97 s 105 20 Proportion of 0.8569 0.9200 0.9479 o. 9313 0.8568 0.6364 0.5556 impinged live Damaged Category 10.1 4 Mortality (%) 76.7 78.4 73.4 86.4 10.1 4 78.1 4 Numb<*r damaged 329 1,659 995 448 163 60 16 Proportion of 0.1431 0.0800 0.0521 0.0687 0.1432 0.3636 o. 4444 impinged damaged lJeighted Latent Mortality (%) 34.7 38.0 44.l 36.l 60.6 52.3 55.6 Total Mortality (%) 59.l 54.3 56.9 47.3 65.5 60.3 60.0 l+ l MAY JUN JUL A[JG SEP OCT NOV DEC JAN Age in Honths 13 14 15 16 17 18 19 20 21 Initial Mortality (%) r.s.6 44.0 5 44.o 5 44.0 5 44.0 5 Latent 2 Live Category Honality (%) 0 27.4 34.6 42.2 33.4 Number live 0 l 2 3 1 Proportion of 0.3333 0.6667 0.6000 0.5000 Impinged live Damaged Category 10.1 4 Mortality (%) 76.7 78.4 73.4 Number damaged 2 l 2 l Proportion of Q.6667 0. 3333 o. 4000 o. 5000 impinged damaged \leighted Latent I. s. 6 Mortality (t) 61.2 48.6 56.7 53.4 Total Mortallty (%) I. s. 6 78.3 71.2 75.7 73.9 1 Assumed Hay birthday. 2 Based on survival test results. Insufficient sample size, used value of average :aortality for live category. !, Insufficient sample size, used value of average mortality for damaged category. Insufficient sample size, used value of average initial mortality. 6 Ins>1ff1c1enc sample size.

  • FEB HAR APR 10 11 12 -...J I -I>-N FEB HAR APR 22 23 24

..--. if) WEAKFISH 1977 p::j r:il E-i 90000 r:il 0 80000 1--1 m 0 70000 0 z 0 60000 1--1 ....:! ....:! 1--1 50000 . ....._,_ --.! p::j I r:il 40000 -!"-m w 0 30000 z ......_.,. 20000 E-i 1--1 if) z 10000 r:il i:'.:l z 0--:::i: JAN li'EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Estimated daily mean density of weakfish (number per million cubic PUBLIC SERVICE ELECTRIC AND GAS COMPANY meters flow) in Salem impingement samples -1977, based on seven-day SALEM 316(b) STUDY moving average. Figure 7-1 *

  • ...---. Cf) WEA:KFI SI-I 1978 r.:r:l E-t 90000 r.:r:l' u 80000 1--1 p:i p 70000 u z 0 60000 1-1 ....:i ....:i 1-1 50000 ."--.. 40000 µ:i ...... m I .!'-.!'-p 30000 z '-../ !>--< 20000 E-t 1--1 if) z 10000 r.:r:l z 0 <t1 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC µ:i Estimated daily mean density of weakfish (number per million cubic PUBLIC SERVICE ELECTRIC Alffi GAS COMPANY meters flow) in Salem impingement samples -1978, based on seven-day SALEM 316(b) STUDY moving average. Figure 7-2

.. *.* .. * . ..--.. 1979 if} "WEAKFISH r:i::i 90000 E-1 r:r.l u 80000 1-1 p:.) p 70000 u z 0 60000 1-1 .-:l .-:l 1-1 50000 ........... 40000 r.i1 p:.) ....... I .p. p 30000 U1 z 20000 E-1 1-1 lf) z 10000 r.i1 i::i z 0 <G JAN lt,EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC r.i1 Estimated daily mean density of weakfish (number per million cubic PUBLIC SERVICE ELECTRIC AND GAS COMPANY meters flow) in Salem impingement samples -1979, based on seven-day SALEM 316(b) STUDY moving average. Figure 7-3 * *


.-

  • * .....-...

r/'.J WEAKFISH 1980 ril E-t 90000 ril u 80000 1-1 70000 u z 0 60000 1-1 .-:I .-:I 1-1 50000 ."-..,. 40000 ril ._.... I 30000 °' z ._... :>-< 20000 E-t 1-1 r/'.J z 10000 ril Q z 0 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ril Estimated daily mean density of weakfish (number per million cubic PUBLIC SERVICE ELECTRIC AND GAS COMPANY meters flow) in Salem impingement samples -1980, based on seven-day SALEM 316(b) STUDY moving average. Figure .---..... if} *wEAKFISH 1981 r1l 90000 E-i r1l u 80000 1-4 m p 70000 u z 0 60000 1-4 .....:i .....:i 1-i 50000 .""' 40000 r1l p::i ....... I .p.. p 30000 ....... z '--"' 20000 E-i 1-i if} z 10000 r1l i:::i z 0 JAN F'EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC r1l Estimated daily mean density of weakfish (number per million cubic PUBLIC SERVICE ELECTRIC AND GAS COMPANY meters flow) in Salem impingement samples -1981, based on seven-day SALEM 316(b) STUDY moving average. l!'i6ure 7-5 *

  • * * ,..--....

if} WEAKFISH 1982 r:r:I E-l 90000-r:r:I 0 80000-1-1 r.::o p 70000-0 z 0 60000-1-1 ._:i ._:i 1-1 50000-'"-... .. 40000-r:r.1 --.J r.::o I 00 p 30000-z '-../ 20000 -E-l 1-1 if} z 10000-r:r:I i:::i *-..... .Ob. -z 0 I I I I I I I <r: JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC r:r:I Estimated daily mean density of weakfish (number per million cubic PUBLIC SERVICE ELECTRIC AlID GAS COMPANY meters flow) in Salem impingement samples -1982. based on seven-day SALEM 316(b) STUDY moving average. Figure 7-6 ............ (/) WEAKFISI-I r.x:i 25000 f-1 r.x:i u t--4 r:o 20000 0 u z 0 H H 15000 H H "'-... ........ r.x:i I r:o 10000. '° 0 z ..__ f-1 5000 H (/) z µ::i I'.:! z 0 1977 1978 1979 1980 1981 1982 r.x:i ::;a Monthly mean density (number per million cubic meters flow) in Salem PUBLIC SERVICE ELECTRIC AND GAS COMPANY impingement samples -1977-1982. SALEM 316(b) STUDY Figure 7-7 * *

  • 1 5 1978 -JUL. 10 TO , . / * // WEAKFISH 0 , \ / 95 e GAS COMPANY VICE ELECTRIC AND PUBLIC SER 316(b) STUDY SALEM . . S lem impingemen (shaded).

kfish in a d darkness Density of (open) an -t samples vs and hours o Figure 7-8 . ht (ft) tidal heig --.J I Lil 0 ,-WEAKFISH -JUL 3 TO 8, 1979 g -fQ 250000 ,A/, ,A , ... 0 % ' E-t 200000 z \,/ \ l \, l \j ! 90 8 f15000 s w 5 25000 z 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY

  • 12 18 0 TI ME (HOURS) Density of weakfish in Salem impingement samples vs tidal height (ft) and hours of daylight (open) and darkness (shaded).

Fi ure 7-9

  • c a 5 -* . . ..
  • .' .: .. ;*.: '* ........ I \J1 f-' .* I , .

....-... fQ 60000 E-i 55000 50000 u 1--1 r:n 45000 :::i u 40000 z 0 35000 1--1 .....:l 30000 "-...... 25000 20000 15000 ....._ 6 12 18 0 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY 0 6 12 18 0 6 12 18 0 6 12 18 0 TI ME (HOURS)

  • Density of weakfish in Salem impingement samples v)s tidal height (ft) and hours of daylight (open) and darkness (shaded . Figure 7-10 ....... I V1 N

.. *.*:. WEAKFISH -SEP. 1 TO 6, 1980 --E-t ....-95 (/) 40000 % ',/, Pi:.. f":t:l 37500 I\ ' a.. t" ,A, '._/ E-t E-t f":t:l 35000 :Il 32500 90 u --30000 :Il 27500 .....:! u 85 z 25000 0 --22500 E-t . .....:! .....:! 20000 -...... I ll1 "'-. I w. 15000 12500 10000 z ..__, 7500 E-t 5000 -(/) 2500 z 0 I 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 TI ME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY Density of weakfish in Salem impingement samples vs tidal height (ft) and hours of daylight (open) and darkness (shaded). SALEM 316(b) STUDY Figure 7-11 * ---{f.) 15000 14000 13000 U 12000 I ....... § 11000 u 10000 a 9000 ....... :j 8000 i 7000 6000 5000 s 4000 b 3000 2000 ....... U) z r..::l

  • 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 . TI ME (HOURS) 1 tidal height (ft) f kfish in Salem impingement samp es vs . Density o wfead l' gh t (open) and darkness (shaded) .

SALEM 316(b) STUDY L.-, Figure 7-12 ii) 300000 ' r:il 280000 f-4 280000 u 240000 I-< p:i 220000 u 200000 5 180000 160000 t-l i 140000 120000 100000 s 80000 b 60000 40000 f-4 Ci) 20000 z r:il 0 GAS COMPANY TRIC AND RVICE ELEC PUBLIC SE 316(b) STUDY SALEM 0 6 12 18 0 12 18 TI ME (HOURS)

  • alinity (ppt) 1 vs s t samp es . Salem impinge:e:ss (shaded).

f weakfish in en) and dar n . Density o f daylight (op nd hours o 7-'3 a Figur.e i . --.J I \JI \JI ...-fQ 250000 225000 (.) 200000 I-< p::i 8 1?5000 z 0 150000 .....:i 125000 100000 p::i 75000 z ..._, 50000 t 25000 if) z 0. 0 6 12 18 0 6 12 18 0 6 .12 18 0 6 12 18 0 '6 12 18 0 TI ME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY Density of weakfish in Salem impingement samples vs salinity (ppt) and hours of daylight (open) and darkness (shaded). SALEM 316(b) STU))Y Figure 7-14 ...-{/) 80000 E-t ::g u m 45000 u 40000 z 0 35000 ......:J ......:J 30000 25000 r=c:I m 20000 :::J 15000 z ...._ 10000 E-t 5000 {/) z 0 0 6 12 18 0 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 TI ME (HOURS) Density of weakfish in Salem impingement samples vs salinity (ppt) and hours of daylight (open) and darkness (shaded). Figure 7-15 * . .*. . *,* ' ....... I U1 ....... . i I I s COMPANY RVICE ELECTRIC Alffi GA PUBLIC SE 316(b) STUDY SALEM 6 12 18 0 . 6 . lem iro1pingement . . kfish in Sa . nd darkness Density of (open) a and hours o e 7-16 Figur -..J I \JI 00 WEAKFISH -OCT. 6 TO 11, 19Sl / 20 15000 w . 3000 2000 /) '/ ,// 1-i if) 1000 0 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 TI ME (HOURS) . Density of weakfish in Salem impingement samples ;s salinity (ppt) PUBLIC SERVICE ELECTRIC AND GAS COMPANY and hours of daylight (open) and darkness (shaded . SALEM 316(b) STUDY Figure 1-17

  • 10 z 5 < ....... I U1 *..o

[ l

  • 7-60 WEAKFISH -1977 IMPINGEMENT u INSUFFICIENT SAMPLE SIZE J'.Ai"l' N=O o, u INSUFFICIENT SAMPLE SIZE FEB N= 0 Q n INSUFFICIENT SAMPLE SIZE MAR 11 N= 0 O*, APR n INSUFFICIENT SAMPLE SIZE N= 0 0 ii MAY n INSUFFICIENT SAMPLE SIZE N= 0 r=l 0 <:!J A, JUN Q 10 N= it: 5-j 612 1%1 :i. o-.. I' II 1** ' 'I* ** I I I' I r:n 1t ... A .. --: :>< JUL Q* N= 3470 ii '"i' ' ... , ... ' I 'I ' ... ' ,. I a 1%1 P:: AUG r=. 13 N = m? 0 ' I I i' I 'I I I SEP N= 613 o, ' I I I I I I ' I q INSUFFICIENT SAMPLE SIZE OCT N"= 1 0 ' I I' I I I I I I I H INSUFFICIENT SAMPLE SIZE NOV N= 1 O* u INSUFFICIENT SAMPLE SIZE DEC N*= 0 0 ' I I ' I I I I ' I I I 0 50 100 150 200 250 300 3:;0 400 4"50 FORK LENGTii (MM) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Length-frequency distribution of weakfish in Salem impingement samples -1977. Figure 7-18 I I. 7-61 WEAKF1SH -1978 IMPINGEMENT INSUFFICIENT SAMPLE SIZE 'I' I' ""I I" I ii Ii I I jll I it .. INSUFFICIENT SAMPLE SIZE " I Ii' I ' 'I.. I Ii 'I I ii ii I
  • I I I
  • I INSUFFICIENT SAMPLE SIZE INSUFFICIENT SAYPLE SIZE INSUFFICIENT SAMPLE SIZE ,...... . ...... .. ... ........... . ,. I 201 1 ..... A ..... .. 'I ..... , ... I ..... .., 'I JAi"I{ N = 0 FEB N=O MAR N 7= 0 APR N = 0 MAY N=O JUN N = 1855 JUL N = 6064 AUG N = 4473 SEP .......

....................... ............... ... ....... .............. N = 2440 i::i............l .. ..................

FORK LENGTH (MM) OCT N = 106 NOV N=6 DEC N=9 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Length-frequency distribution of weakfish in Salem impingement samples -1978. Figure 7-19 *
  • 7-62 WEAKFISH -1979 IMPINGEMENT

!L ....... JAN INSUFFICIENT SAMPLE SIZE N= 0 I" ii Ii I I I I ii Ii I iJ lL FEB INSUFFICIENT SAMPLE SIZE N=O , .. I' I 11 I' ii Iii Jilli 'I' ll MAR INSUFFICIENT SAMPLE SIZE N= 0 *** . , , . il APR INSUFFICIENT SAMPLE SIZE N= 0 jil I" lji I I ...... ij MAY INSUFFICIENT SAMPLE SIZE N= 0 i=:i 1j ji .... I *** ii "'I I I I I I c. ;i. .. 1 ...... , .... JUN N= 243 Pc (I.I ... rur. < A ..... i N= 3624 'I ij I' Of ;i AUG ii! ..... '"" N= 2169 'I' 'I .. SEP N= 1373 0 *' I' 'I il OCT N= 355 .. n nmn o.n NOV N= 12 0 I il DEC INSUFFICIENT SAMPLE SIZE N= 0 I I fl' I I' I I I I 0 so 100 200 250 300 :350 400 450 FORK LENGTH (MY) PUBLIC SERVICE ELECTRIC AND GAS COMPA.'n'. distribution of in Salem impingement samples -1979 . SALEM 316(b) STUDY Fi ure 7-20 7-63 WEAKFISH -1980 IMPINGEMENT H JAN INSUFFICIENT SAMPLE SIZE N=O 0 ll FEB INSUFFICIENT SAMPLE SIZE N=O II ii I ' I ' iii I ii , .. ' I ii ' I .. I ii I ' ' .. , u MAR INSUFFICIENT. SAMPLE SIZE N= 0 0 u APR INSUFFICIENT SAMPLE SIZE N= 0 0 !l MAY INSUFFICIENT SAMPLE SIZE N= 1 t:'l 0, I I ' I Ii I" ii I I ' ' ,. ' I' '"""I I I 0 JUN N= 859 il ii ii ..... I ' I ii I ' I ' I p. ' ' I ii I ,. tll 20, JUL < Ulj ** N= 7910. 01 ' .. I ii I .I I I I 'I I a AUG t:'l ll:l N= 9988 i=. 01 ji I I I"""' I'" ' I I 1l SEP N= 2387 0, ' I' I ' I I I I 1l .Jl, __ OCT N= 249 I Fl 'I I I I I .. , ::i NOV H INSUFFICIENT SAMPLE SIZE N= 1 0 !l DEC INSUFFICIENT SAMPLE SIZE N= 0 I I ,. I I I I I 11 I 0 50 100 mo 200 250 3CO 360 400 400 FORK LENGTH (MY) PUBLIC SERVICE ELECTRIC AND GAS COMPA..-.Y SALEM 3l6(b) STUDY Length-frequency distribution of weakfish in Salem impingement samples -1980. * ** * . I I J

  • l 7-64 WEAKFISH -1981 IMPINGEMENT INSUFFICIENT S.AlilPLE SIZE N = 0 0 il INSUFFICIENT SAMPLE SIZE FEB N= 0 II I I 111 ' Ill ii ii I' .... ' .. 'I ... ' ... I ' ' ' I H INSUFFICIENT SAMPLE MAR SIZE N = 0 0-, ll INSUFFICIENT SAMPLE SIZE APR N= 0 I I 1111 I I ' I* 'I ii ' I' iii I I ll. INSUFFICIENT SAUF'...E SIZE MAY N= l :=:i I II I I I I 11 11 I ii ' (.!] I ' I iii 'I' ... I I ' I ES H z JUN i=l INSUFFICIENT SAMPLE SIZE 0 &i N= 2 ::i. 0 Ul <: .Al JUL N= 48?1 0, ' ' I' ' ' I iij ' ' .... , I ' I ' ' I 2' 0:: AUG ;.;., N= 5483 0 j I ii ' ** ' ' 'I ' ii I""" I I ' I ' I .* , SEP N;,. 771 0 ' ' I' I ., I I I lH OCT N= 536 0 ' ii I i' ' ' "I'" I I ' ' I A R1 Ff1 . N= 120 0 I' ' ' I' I I I ' ., Jk DEC N= 58 0, I ii m ji ,m,, I' ' I I ' ' ' 'I I I 0 50 100 150 200 250 300 :i:;o 400 450 FORK LENGTH (MM) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Length-frequency distribution of weakfish in Salem impingement samples -1981. Figure 7-22 7-65 WEAKFISH 1982 IMPINGEMENT JAN INSUFFICIENT SAMPLE SIZE N=O H .... I I lL FEB INSUFFICIENT SAMPLE SIZE N= 0 I ' I 11 MAR INSUFFICIENT SAMPLE SIZE N= 0 ,. u APR INSUFFICIENT SAMPLE SIZE N= 0 0 MAY INSUFFICIENT SAMPLE SIZE N= 1 l=I Cl ;; JUN e S2 . N= 376 &1 c.. 01 I I 'I' tll it JUL < N= ' , .. I' ;:::i a i! l=I .Allin-AUG ii:: ""' N= 3221 0, ,. .,. ' I 11 ..

SEP N= 919 0 ' I OCT N= 373 21 0 I ** 'I lu rUJillJm,JiL , n NOV N= 149 0 ' I 'I ... cilnr DEC N= 21 . rm. n, ii 0, ij I I I I I 0 50 100 150 200 250 300 350 400 450 FORK LENGTH {MM) PUBLIC SERVICE ELECTRIC AND GAS SALEM 316(b) STUDY Length-frequency distribution of weakfish in Salem impingement samples -1982. Figure 7-23

  • 1 ] 1 I I I
  • IMPINGE:MENT COLLECTION EFFICIENCY 100 + 90 80 + .............

+ 70 z r:il u 60 r:il ()... ....__,. + 50 -..J I r:il 40 + "' > "' 0 u 30 20 LEGEND * + = WEAK FI SH 10 0 0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 MEAN LENGTH (MM) PUBLIC SERVICE ELECTRIC AlW GAS COMPANY Weakfish impingement collection efficiency. .. SALEM 316(b) STUDY Figure 7-24 ...--... z 0 .-0 !l.t 0 !l.t "'-.../ H f3l .-:>-0 if) :>-.-H 0 :::21 0 {,) 1.0 0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1-WEAKFISH (CONTROL) ' T COMBINED l T l ,, 0.0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 0 IB U 00 M 00 ELAPSED TIME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Cumulative mean survival (+ 95% C.I.) of control-category weakfish -1978-1982. Figure 7-25 * * *


1.0 ...-z 0.9-0 1-1 0.8-0 !li 0 0.7-!li ---....:i 0.6-1-1 0.5-p 0.4-ifj ri:I :> 0.3-1-1 ....:i 0.2-p p 0.1-u 0.0 l 0 12 -PUBLIC SERVICE ELECTRIC AlID GAS COMPANY SALEM 316(b) STUDY

  • WEAKFISH (CONTROL)

-J'UNE I I I I I I 24 36 48 60 72 84 ELAPSED TIME (HOURS) Cumulative mean survival 95% C.I.) of control-category weakfish in June *-1978-1982. Figure 7-26 -----------* -....J I CJ' o:l ' 96 1.0 ..-z 0.9-0 1-4 0.8-0 P-t 0 0.7-P-t .._,, i--:1 0.6-1-4 0.5-::> p 0.4-r/) r:x::i > 0.3-1-4 0.2-....:! p p 0.1-0 o.o 0 WEAKFISH (CONTROL) .. l T J'ULY-I T ** .. , 1 T I I I I I I I I I I I I' I I I I I I I I I I,. I I I I I I I I I I I' I I'**' I 1.1 I I I I I I I I I I I I Ii I I' I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I U 00 M 00 ELAPSED TI ME (HOURS) PUBLIC SERVICE ELEC'l'RIC AND GAS COMPANY Cumulative mean survival (:t 95% c. I.) of control-category weakfish in July -1978-1982. SALEM 316(b) STUDY Figure 7-27

  • 1.0 ..--.... z 0.9-0 1-1 f-i 0.8-0 0 0.7-'-" H 0.6-:31 1-1 0.5-:> p Q,4.-lfJ r:c::i :> 0.3-1-1 f-i H 0.2-p p 0.1-l) 0.0-0 ---*

WEAKFISH (CONTROL) l T l r l T

  • l T I I I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I '*I ra u oo n M oo ELAPSED TI ME (HOURS) ..... I ..... 0 PUBLIC SERVICE ELECTRIC AND GAS COMPANY Cumulative mean survival ( .:!:. 95% c. I.) of control-category weakfish in August 1978-1982.

--SALEM 316(b) STUDY Figure 7-28 WEAKFISH (CONTROL) SEPTE:MBER 1.0 ..--. z 0.9 0 .-E-4 0.8 0 0 o.rl ....._, i--1 0.6 .-0.5 p 0.4 '(/') r:il > 0.3 .-i--1 0.2 p p 0.1 u 0.0-0 12 I I I I I I I I I I I I I I I I I I I I I I I I I I I *.* I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I U 00 M 00 ELAPSED TI ME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Cumulative mean survival (_:t 95% C. I.) of control*-category weakfish in September -1978-1982. Figure 7-29 * *



--..-.-----

  • WEAKFISH (CONTROL)

-OCTOBER 1.0 ,..-.... z 0.9-0 1-4 0.8-0 0 0.7-...._ .-::I 0.6-1-4 0.5-> :=> 0.4-rJ) P::l > 0.3-1-4 ...-:1 0.2-0 :=> 0.1-0 0.0 I 0 12 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY I I I I I I 24 36 48 60 72 84 ELAPSED TI ME (HOURS) Cumulative mean survival (!_ 95% C.I.) of control-category weakfish in October -1978-1982. Figure 7-30 ....... I ....... N I 96 WEAKFISH (LI VE) COMBINED 1.0 --z 0.9 0 t-t E-! Cl:: 0.8 0 l'li 0 0.7 Cl:: ii.. ...._,,, .....:! 0.6 t-t 0.5 :> Cl:: p 0.4* (/) r:r:i :> 0.3 t-t E-! .....:! 0.2 p p 0.1 u 0.0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 0 W . n M 00 ELAPSED TI ME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY Cumulative mean survival ( .::!.:. 95% c. I.) of impinged live-category weakfish -1978-1982. SALEM 316(b) STUDY Figure 7-31 * * ----------_____________________________________ .__ ____ __.. _______ _

  • 1.0 --z 0.9 0 t-t 0.8 0 0 0.7 ..._.,, .-:t 0.6 t-t 0.5 :> 0 0.4 Cf) fx1 :> 0.3 t-t .-:t 0.2 0 :::21 0 0.1 {.) 0.0 0 12 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY
  • WEAKFI SI-f (LI VE) -JUNE 24-I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I 00 n M 00 ELAPSED TI ME (HOURS) Cumulative mean survival (+ 95% C.I.) of impinged live-category weakfish in June -1978-19S2.

Figure 7-32 1.0 ............ z 0.9 0 t-1 0.8 0 P-t 0 0.7 P-t ..__,, i--:1 0.6 t-1 0.5 :>-p 0.4 (/) 0.3 t-1 i--:1 0.2 p p 0.1 0 o.o 0 12 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY

  • WEAKFISH (LI VE) JULY I I I I I I I I I I I I' I I I I I I I I I I I' I,*, I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I 24 36 48 60 72 84 96 ELAPSED TIME (HOURS) Cumulative mean survival 95% C.I.) of impinged live-category weakfish in July -1978-1982.

Figure 7-33 * ....... I ....... l/1 / --\ --WEAKFISH (LIVE) -AUGUST 1.0 ..-6 0.9 t-4 f-4 0.8 0 p... 0 0.7 p... ..._ ....:I 0.6 t-4 0.5 > p 0.4* (/) r.:i:I > 0.3 t-4 ....:I 0.2 ::i!l 0.1 (.) 0.0 I 0 12 24 36 4.a 60 '72 84 96 ELAPSED TI ME (HOURS) Cumulative mean survival ( .:!: 95% c. I.) of impinged live-category PUBLIC SERVICE ELECTRIC AND GAS COMPANY weakfish in August -1978-1982. SAI.EM 316(b) STui>Y Figure 7-34 WEA:KFI SH (LI VE) SEPTEMBER 1.0 _.._ z 0.9 0 t-1 0.8 0 0 0.7 ...._,, r--:1 0.6 0.5 :=> 0.4** (j) µ::i :> 0.J t-1 E--1 <11 0.2 .....:! :=> ::2l 0.1 u 0.0 I I I I I I I I I I I,., I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 0 00 M 00 ELAPSED TI ME (HOURS) Cumulative mean survival (_:!: 95% C.I.) of impinged live-category PUBLIC SERVICE ELECTRIC Alffi GAS COMPANY weakfish in September 1978-1982. -SALEM 316(b) STUDY Figure 7-35 *

  • WEAKFISH (LI VE) -OCTOBER 1.0 ..--.. z 0.9 0 1-1 E-t 0.8 0 P-t 0 0.7 P-t '--' i-::1 0.6 1-1 0.5 -..J ?-I p :JO rn 0.4 r.:i ?-0.3 1-1 E-t -::t: 0.2 i-::1 p p 0.1 (.) 0.0 0 12 24 36 48 60 '72 64 96 ELAPSED TI ME (HOURS) Cumulative mean survival <.:t .95% c. I.) of impinged live-category PUBLIC SERVICE ELECTRIC Alfi GAS COMPANY weakfish in October -1978-1982.

SALEM 316(b) STUDY Figure 7-36 WEAKFISH (LI VE) -NOVEMBER 1.0 ,.......... z 0.9 0 E:: 0.8 o. 0 0.7 ..__, H 0.6 r3l 1-t 0.5 :> p 0.4 ifj r:c:i :> 0.3 1-t 0.2 H p ::;a p 0.1 u 0.0 0 12 PUBLIC SERVICE EI.ECTRIC AND GAS COMPANY SALEM 316(b) STUDY "'""""!""" 24 36 4.8 60 72 84 ELAPSED TIME (HOURS) Cumulative mean survival (+ 95% C.I.) of impinged live-category weakfish in November -197B-1982. Figure 7-37 * . . . I 96

  • WEA:KFISH (DAMAGED) co:MBINED 1.0 0.9 0.8 0.7 0.6 0.5 0.4* 0.3 0.2 :.:J' '''I''''''

I'''''' I'''''' I'''''' I*'******' I**'**'*,*, I'*********' I 0 W 00 n M 00 ELAPSED TI ME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY Cumulative mean survival (.:!: 95% c. I.) of impinged damaged-category weakfish -1979-1982. SALEM 316(b) STUDY Figure 7-38 -...! I CXl 0 WEAKFISH (DAMAGED) J'U:NE 1.0 --z 0.9 0 t-t 0.8 0 0 0.7 ....__,, H 0.6 t-t 0.5 :> 0 0.4* UJ r:il :> 0.3 t-t 1:-i <11 H 0.2 p p 0.1 u 0.0-I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 0 12 24 36 48 60 72 84 96 ELAPSED TI ME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY Cumulative mean survival 95% c. I.) of impinged damaged-category weakfish in June -1979-1982. SALEM 316(b) STUDY Figure 7-39 *

  • 1.0 ..-.... z 0.9 0 t-t E-1 0.8 0 P-. 0 0.7 p:: P-. ..._ ....:! 0.6 t-t 0.5 :> p:: p 0.4 Cf) ril :> 0.3 t-t E-1 ..-.: ....:! 0.2 p p 0.1 u 0.0-0 12 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY WEA:KFISH (DAMAGED)

J"ULY I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 24 36 48 60 72 84 96 ELAPSED TI ME (HOURS) Cumulative mean survival ( .:t 95% c. I.) of impinged damaged-category weakfish in July -1979-1982. Figure 7-40 ...... I co N WEAKFISH (DAMAGED) 10 ..-z 0.9 0 1-t 0.8 0 P-. 0 0.7 P-. ...__,. .....:l 0.6 1-1 a.5 > p 0.4* U) r:il > 0.3 1-t i-.:i a.2 p p 0.1 u a.a I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I 0 12 24 36 4-8 60 72 84 96 ELAPSED TI ME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY Cumulative mean survival (+ 95% C.I.) of impinged damaged-category weakfish in August -1979-l982. Figure 7-41 * ...... I 00 w WEAKFISH (DAMAGED) SEPTE.MBER 1.0 ....-z 0.9 0 1-4 0.8 0 0 0.7 p:: ..._ ._:i 0.6 1-4 0.5 :> 0 0.4-{/) r:il :> 0.3 1-4 <i: 0.2 _._:i 0 0 0.1 u 0.0 I I I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 0 IB U M n M 00 ELAPSED TIME (HOURS) PUBLIC SERVICE ELECTRIC AW> GAS COMPANY SALEM 316(b) STUDY Cumulative mean survival 95% C.I.) of impinged damaged-category weakfish in September -1979-1982. Figure 7-42 WEAKFISH (DAMAGED) -OCTOBER 1.0 ...-.... z 0.9 0 t-1 E-4 0.8 0 P.. 0 0.7 P.. ...._ H 0.6 t-1 0.5 :> 0 0.4 (/) f:il :> 0.3 t-1 0.2 H 0 ::;a 0 0.1 u o.o ....,.,..,....,. 0 12 PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM 316(b) STUDY 24 36 48 60 72 84 ELAPSED TIME (HOURS) Cumulative mean survival 95% C.I.) of impinged damaged-category weakfish in October -1979-1982. Figure 7-43

  • 96 -...J I co U1
  • WEAKFISH (DAMAGED)

-NOVEMBER 1.0 ..--... z OJ) 0 1-4 f-i 0.8 0 0 0.7 ...__,, ....:! 0.6 1-4 0.5 ::> 0 -..J 0.4 I ifl 00 0-::> 0.3 1-4 0.2 ....:! 0 0 0.1-u 0.0 0 12 24 36 48 60 72 54. 96 ELAPSED TI ME (HOURS) PUBLIC SERVICE ELECTRIC AND GAS COMPANY Cumulative mean survival 95% c. I.) of impinged damaged-category weakfish in November -1979-1982. SALEM 316(b) STUDY Figure 7-44 WEAKFISH (DAMAGED) -DECEN[BER 1.0 --z 0.9 0 1-t &-! 0.8 0 P-t 0 0.7 P-t ....._ i--::1 0.6 1-t 0.5 :> '-I 0 0.4 I (/) so '-I ::> 0.3 1-t &-! <i: 0.2 i--::1 0 0 0.1 u 0.0 0 12 24* 36 4..8 60 72 84 96 ELAPSED TI ME (HOURS) Cumulative mean survival ( .:t 95% c. I.) of impinged damaged-category PUBLIC SERVICE ELECTRIC AND GAS COMPANY weakfish in December -1979-1982. SALEM 316(b) STUDY Figure 7-45 --* *

  • I WEAKFISH (CONTROL)

-1978-1982 1.0 0.9 I _......_. z 0 0.8 1-t f-1 0 0.7 0 0.6 ...__,, 1-1 0.5 ...... . 1-t I > 0.4-00 00 :::> (/} 0.3 :J:: 0.2 I CD m 0.1 0.0 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PUBLiC SERVICE ELECTRIC AND GAS COMPANY Monthly mean survival 1978-1982. (.:!;. 95% c. I.) of control-category weakfish -SALEM 316(b) STUDY Figure 7-46 I WEAKFISH* (LIVE) -* 1978-1982 1.01 0.9 ,......._ z 0 0.8 1-t 0 0.7 11-i 0 0.6 11-i ...._ t--1 0.5 1-t :> 0.4 Cf) 0.3 m 0.2 I C!) m 0.1 0.0 JAN Ji'EB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PUBLIC SERVICE ELECTRIC AND GAS COMPANY Monthly mean-survival (:!:_ 95% C.I.) of impinged live-category weakfish -1978-1982. SALEM 316(b) STUDY /.Et:; Figure 7-47 * --WEAKFISH (DAMAGED) -1979-1982 1.0 0.9 ........... z 0. 0.8 ....... f--i r:t: 0 0.7 P-c 0 0.6 P-c .._,,, .....::i 0.5 ....... > 0.4 :::> en 0.3 :I: 0.2 I co m 0.1 0.0 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PUBLIC SERVICE ELECTRIC AlID GAS COMPANY Monthly mean survival <.:t 95% c. I. ) of impinged damaged-category weakfish -1979-1982. SALEM 316(b) STUDY Figure 7-48 -...... I l.O 0 l 1 Literature Cited Abbott, W. s. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265-267. Alperin, I. M. 1953. A racial study of the weakfish, Cynoscion regalis, from the Middle Atlantic coast, with special reference to the New York area. M.S. Thesis, New York Univ., New York, NY. 39 p. (Not seen; cited in Wilk, 1979). Anderson, W. W. and J. W. Gehringer. 1965. statistical census of the species entering fisheries in the Cape Canaveral area. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. 514:1-79. Austin, H. M. 1973. The ecology of Lake Montauk: Planktonic fish eggs and larvae. N.Y. Ocean Sci. Lab. Tech. Rept. 0021. 37 p. (Not seen; cited in Martin and Drewry, 1978). 1976. Distribution and abundance of ichthyoplankton in the New York Bight during the fall in 1971. N.Y. Fish Game J. 23(1):58-72. 1979. Recommendations on Virginia territorial sea trawl mesh size. Va. Mar. Res. Rep. No. 79-3:1-5. 1981. Assessment and monitoring of sciaenid stocks, with particular reference to the weakfish, Cynciscion regalis. Annual Meeting ASMFC, Charleston, SC, Oct. 1981. Va. Mar. Resour. Rep. No. 81-10:1-18. (Not seen; cited in Mercer, 1983). Bason, W. H. 1971. Ecology and early life history of striped bass, Marone saxatilis, in the Delaware estuary. Assciciates, Middletown, DE., Bull. No. 4:1-122. Bason, W. H., S. E. Allison, L. 0. Horseman, W. H. Keirsey, P. E. LaCivita, R. D. Sander, and c. A. Shirey. 1976. Fishes. Volume I in Ecological studies in the vicinity of the proposed Summit Power Station. Annual interpretive report, January through December 1975. Ichthyological Associates, Inc., Summit, DE. 392 p. Bigelow, H. B. and W. C. Schroeder. 1953. Fishes of the Gulf of Maine. U.S. Fish Wildl. Serv. Fish Bull. 53(74):1-577. I I *' -1 I

  • I '* I I I * .! ** , ** *: 2 Bloch and Schneider.

1801. Syst. Ichthyol., 75, 1801. Holbrook, Ichthyol. S. Carolina, 127, *plate 18, fig. 1 (South Carolina). (Not seen; cited in Jordan and Eigenmann, 1890). Botsford, L. W. 1981. The effects of increased population growth rates on depressed population size. Am. Nat. 117(1) :38-63. Chao, L. N. 1978. A basis for classifying western Atlantic Sciaenidae (Teleostei:Perciformes). U.S. Dep. Commer., NOAA Tech. Rep. NMFS Circ. 415:1-64. Chao, L. N. and J. A. Musick. 1977. Life history, feeding habits, and functional morphology of juvenile sciaenid fishes in the York River estuary, Virginia. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 75(4):657-702. Clark, J. R. 1962. The 1960 salt-water angling survey. U.S. Bur. Sport Fish. Wildl. Circ. 153:1-36. Cole, J. N. 1978. Stri?er. Little, Brown & Co. Boston, M.l\. 269 p. Colton, J.B., Jr., W. G. Smith, A. W. Kendall, Jr., P. L. Berrien, and M. P. Fahay. 1979. Principal spawning areas and times of marine fishes, Cape Sable to Cape Hatteras. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 76(4):911-915. Crawford, M. and C. B. Grimes. 1983. Stock identity of weakfish (Cynoscion regalis) in the middle Atlantic region. Presentation at 39th Annual N.E. Fish and Wildl. Conf., May 15-18, 1983. Mt. Snow, VT. Crozier, W. J. and S. Hecht. 1914. Correlations of weight, length, and other body measurements in the weakfish, Cynoscion regalis. Bull. U.S. Bur. Fish. 33 (1913), Bur. Fish. Doc. 800:141-147. Cushing, D. H. 1973. Recruitment and parent stock in fishes. Univ. Washington Press, Seattle, WA. WSG 73-1. 197 p. (Not seen; cited in Seagraves, 198la). Cuvier and Valenciennes. 1830. Hist. Nat. Poiss., V. 67. (Not seen; cited in Jordan and Eigenmann, 1890). Dahlberg, M. D. 1970. Frequencies of abnormalities in Georgia estuarine fishes. Trans. Am. Fish. Soc. 99(1) :95-96

  • 3 1972. An ecological study of Georgia coastal fishes. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 70(2):323-353.

Dahlberg, M. D. and E. P. Odum. 1970. Annual cycles of species occurrence, abundance and diversity in Georgia estuarine fish populations. Am. Midl. Nat. 83(2):382-392. Daiber, F. C. 1954. Fisheries research program, Univ. Del. Mar. Lab. Biennial Rep. 1953-1954, 2:50-64. 1955a. The bimodal nature of the gray squeteague population of Delaware Bay. Mimeo. Mar. Lab. Univ. Del. 18 p. 1955b. Trawl fishery investigation. Rep. Mar. Lab. Univ. Del. Prepared for Delaware General Assembly. 1956a. Marine sports fishing investigation. Univ. Del. Mar. Lab., Ref. 56-8. Annual report of the period* July 1, 1955-June 30, 1956. 1956b. Marine sports fishing investigation. Univ. Del. Mar. Lab. Report for period July 1, 1954-June 30, 1955. 1957. The sea trout. Estuarine Bull. 2(5):2-6. Daiber, F. c. and R. Feldheim. 1976. An analysis of the weakfish population in Delaware Bay, 1972-73. Final Dingell-Johnson Report to Del. Div. Fish Wildl., Proj * . F-13-R-15. Job No. I-8. 10 p. Daiber, F. c. and R. w. Smith. 1969. An analysis of fish populations in the Delaware Bay area. 1968-69 annual Dingell-Johnson Rep. to Delaware Board of Game and Fish Commissioners. Proj. F-13-R-12, Job No. I-1. 52 p. 1971. An analysis of the weakfish population in Delaware Bay, 1970-1971. Annual Dingell-Johnson Rep. to Delaware Div. Fish Wildl. Proj.: F-13-R-13. 43 p. Daiber, F. c., L. L. Thornton, K. A. Bolster, T. G. Campbell, O. W. Crichton, G. L. Esposito, D. R. Jones, and J. M. Tyrawski. 1976. An atlas of Delaware's wetlands and estuarine resources. Univ. Del. Coll. Mar. Stud. Tech. Rep. No. 2:1-528. * '* I 4 D. P., F. A. Kalber, Jr. and C. N. Shuster, Jr. 1962. Fishes and ecological conditions in the shore zone of the Delaware River estuary with notes on other species collected in deeper water. Univ. Del. Mar. Lab. Inform. Series, Publ. No. 5:1-164. Deuel, D. G. 1973. The 1970 salt-water angling survey. U.S. Natl. Mar. Fish. Serv., Current Fish. Stat. No. 6200:1-54. Deuel, D. G. and J. R. Clark. 1968. The 1965 salt-water angling survey. U.S. Bur. Sport Fish. Wildl., Resour. Publ. 67:1-51. DeVries, D. A. 1981. Stock assessment of adult fishes in the Core Sound, NC area. N.C. Dep. Nat. Resour. Comm. Dev., Div. Mar. Fish. Proj. Rep. 2-326-R. 54 p. Dovel, W. L. and A. J. Lippson. 1973. Spot, croaker, and weakfish. Pages 42-43 in A. J. Lippson (ed.), The Chesapeake Bay in Maryland. An atlas of natural resources. Johns Hopkins Univ. Press, Baltimore, MD. Earll, R. E. 1887. New Jersey and its fisheries. Pages 381-400 in G. B. Goode (ed.). The fisheries and fishery industries of the United States, Vol. I, Sect. II, Part VII, Misc. Doc. 124. U.S. Gov. Print. Office, Washington, DC. EA {Ecological Analysts, Inc.). 1976. Ecological studies in the vicinity of the Indian River Power Plant for the period June 1974 through August 1976. Volumes I-V. Ecological Analysts, Inc. Towson, MD. Falk, J. A., W. P. DuBose IV and A. R. Graefe. 1981. 1981 Milford world championship weakfish tournament: A socio-economic analysis. Del. Sea Grant Coll. Program Del-SG-25-81. 41 p. Feldheim, R. P. 1975. Age distribution and growth rate of weakfish, Cynoscion regalis (Bloch and Schneider), in Delaware Bay. M.S. Thesis, Univ. Delaware, Newark, DE. 63 p. Figley, B. and J. McClain. 1981. The 1980 spring fishery in Delaware Bay, N.J. Div. Fish., Game, and Dep. Environ. Prat., Trenton, NJ. Frank, M. 1973. Relative sensitivity of different embyronic stages of carp to thermal shock. Pages 171-176 in J. W. Gibbons and R.R. Sharitz (eds.). Thermal Ecology, AEC Syrop. Series. Conf. 730505.

  • .j * *. i .* 5 Freeman, B. L. and L. A. Walford. 1974a. to the United States Atlantic coast. Passamaquoddy Bay, Maine to Cape Cod. Office, Washington, DC. 16 p. Anglers' guide Section I, U.S. Gov. Print. 1974b. Anglers' guide to the United States Atlantic coast. Section II, Nantucket Shoals to Long Island Sound. U.S. Gov. Print. Office, Washington, DC. 16 p. 1974c. Anglers' guide to the United States Atlantic coast. Section III, Block Island to Cape May, New Jersey. U.S. Gov. Print. Office, Washington, DC. 21 p. 1974d. Anglers' guide to the United States Atlantic coast. Section IV, Bay to False Cape, Virginia.

U.S. Gov. Print. Office, Washington, DC. 17 p. 1976a. Anglers' guide to the United States Atlantic coast. Section v, Chesapeake Bay. 5.S. Gov. Print. Office, Washington, DC. 17 p. 1976b. Anglers' guide to the United States Atlantic coast. Section VI, False Cape, Virginia to Altamaha Sound, Georgia. U.S. Gov. Print. Office, Washington, DC. 21 p. 1976c. Anglers' guide to the United States Atlantic coast. Section VII, Altamaha Sound, Georgia to Fort Pierce Inlet, Florida. U.S. Gov. Print. Office, Washington, DC. 21 p. 1976d. Anglers' guide to the United States Atlantic coast. Section VIII, St. Lucie Inlet, Florida to the Dry Tortugas. U.S. Gov. Print. Office, Washington, DC. 25 p. Gill. 1862. Proc. Acad. Nat. Sci. Phila., 18. cited in Jordan and Eigenmann, 1890). (Not seen; Ginsburg, I. 1929. Review of the weakfishes (Cynoscion) of the Atlantic and Gulf coasts of the United States, with a description of a new species. Bull. U.S. Bur. Fish. 45:71-85. (Not seen; cited in Weinstein and Yerger, 1976). Godwin, W. F., M. W. Street and T. R. Rickman. 1971. History and status of North Carolina's marine fisheries. Inform. Ser. No. 2. N.C, Dep. Conser. and Dev. Div. Comm. Sports Fish. Raleigh, NC. 77 p.

  • i I J l I * * .: *. : .. :-. 6 Gold, J. R., W. J. Karel and M. R. Strand. 1980. Chromosome formulae of North American fishes. Prog. Fish. Cult. 42(1):10-23.

Greenwood, P. H., D. E. Rosen, s. H. Weitzman, and G. s. Myers. 1966. Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull. Am. Mus. Nat. Hist. 131:339-455. Greges, M. P. and J. R. Schubel. 1979. of weakfish eggs and larvae. Mar. State Univ. New York, Stony Brook, Spec. Rep. 22:1-48. Thermal resistance Sci. Res. Center, NY. Ref. 79-5, Harmic, J. L. 1958. Some aspects of the development and the ecology of the pelagic phase of the gray squeteague Cynoscion regalis (Bloch and Schneider) in the Delaware estuary. M.S. Thesis, Univ. Delaware, Newark, DE. 164 p. 1961 (unpubl. manu.). Marine fish catch and effort statistics. Dingell-Johnson Rep. Proj. F-15-R-l Board of Game Fish Comm., Dover, DE. 12 p. Harmon, P. L. and D. C. Smith. 1975. An ecological study of the Delaware River in the vicinity of Eddystone Generating Station. Progress Report No. 4. Ichthyological Associates, Inc., Pottstown, PA. 207 p. Herman, S. S. 1958. The planktonic fish eggs and larvae of Narragansett Bay. M.S. Thesis, Univ. Rhode Island. 65 p. (Not seen: cited in Martin and Drewry, 1978). 1963. Planktonic fish eggs and larvae of Narragansett Bay. Limnol. Oceanogr. 8(1):103-109. Higgins, E. and J. C. Pearson. 1927. Examination of the summer fisheries of Pamlico and Core Sounds, NC with special reference to the destruction of undersized fish and the protection of the gray trout, Cynoscion regalis (Bloch.and Schneider). Appendix II, Rep. U.S. Comm. Fish. 1927 (1928), pp. 29-65, 15 Figs., Washington, DC. Hildebrand, s. F. and L. E. Cable. 1934. Reproduction and development of whitings or kingfishes, drums, spot, croaker and weakfishes or sea trouts Family Sciaenidae, of the,Atlantic coast of the United States. Bull. Bur. Fish. 16:41-117. Hildebrand, S. F. and W. C. Schroeder. 1928. Fishes of Chesapeake Bay. Bull. U.S. Bur. Fish. 1):1-388. 7 Himchak, P. J. 1981. Monitoring of the striped bass population in New Jersey. Final Rep. Proj. No. AFC-3-1. NJ Dep. Environ. Prot. 107 p. 1982. Distribution and abundance of larval and young finfishes the Maurice River and in the waterways near Atlantic City, NJ. M.S. Thesis, Rutgers Univ., New Brunswick, NJ. 78 p. Hopkins, S. R. and J. M. Dean. 1975. The response of developmental stages of Fundulus to acute thermal shock. Pages 301-313 in F. J. Yernberg (ed.). Physiological ecology of estuarine organisms. Bell Baruch Library in Marine Science. No. 3. Horseman, L. o. 1979. An evaluation of the hook and line method to obtain weakfish, Cynoscion regalis, for artificial spawning. Drum and Croaker 19(1):15-22. Johnson, G. D. 1978. Development of fishes of the Mid-Atlantic Bight. An of eggs, larval and juvenile stages. Vol. IV. Carangidae through Ephippidae. U.S. Fish Wild. Serv. FWS/OBS-78-12:1-314. Jordan, D. S. and C. H. Eigenmann. 1890 (1889). A review of the Sciaenidae of America and Europe. Rep. U.S. Comm. Fish., 1886:343-451. Jordan, D. s. and B. W. Evermann. of North and Middle America. 47(Part 2):1241-2183. 1896-1900. The fishes U.S. Natl. Mus. Bull. Jorgenson, S. C. and G. L. Miller. 1968. Length relations of some marine fishes from coastal Georgia. U.S. Fish Wildl. Serv., SSRF 575. 16 p. Joseph, E. B. 1972. The status of the sciaenid stocks of the Middle Atlantic coast. Chesapeake Sci. 13(2):87-100. Kesteven, G. L. (ed.). fisheries biology. 1960. Manual of field methods in FAQ Man. Fish. Sci. I:l-152. Lascara, J. 1981. Fish predator-prey interactions in areas of eelgrass (Zostera marina). M.S. Thesis, Coll. William and Mary, Williamsburg, VA. 81 p. J I

  • *
  • 8 Lauer, G. J., W. T. Waller, D. W. Bath, W. Meeks, R. Heffner, T. Ginn, L. Zubarik, P. Bibko, and P. c. Storm. 1974. Entrainment studies on Hudson River organisms Pages 35-82 in L. D. Jensen (ed.). Entrainment and intake-Screening:

Proceedings of the second entrainment and intake screening workshop. Electric Power Research Institute, Palo Alto, CA. EPRI Publ. No. 74-049-005. Lawler, A. R. 1979. North American fishes reported as hosts of Amyloodinium ocellatum (Brown, 1931). Drum and Croaker. 19(1):8-14. Lesser, C. A. 1968 (unpubl. manu.) survey. Del. Div. Fish Wildl. Marine fisheries. 21 p. 1982. Marine fisheries management. Del. Fish. Bull. 3(3):1-3. Lindsay, J. A. and R. L. Moran. 1976. Relationship of parasitic isopods Leroneca ovalis and Olencira praegustator to marine fish hosts in Bay. Trans. Am. Fish. Soc. 105(2):327-332. Lippson, A. J. (ed.). 1973. The Chesapeake Bay in Maryland: An atlas of natural resources. Johns Hopkins Univ. Press, Baltimore, MD. 55 p. Lippson, A. J., M. S. J. Jensen, R. L. Richkus. 1979. Estuary. Resour. Power 280 p. Haire, A. F. Holland, F. Jacobs, Moran-Johnson, T. T. Polgar and W. A. Environmental atlas of the Potomac Plant Siting Program, Md. Dep. Nat. Lippson, A. J. and R. L. Moran. 1974. Manual for identification of early developmental stages of fishes of the Potomac River estuary. Power Plant Siting Program, Md. Dep. Nat. Resour. PPSP-MP-13. 282 p. Long, D. and W. Figley. 1982. New Jersey's recreational and commercial ocean fishing grounds. N.J. Dep. Environ. Protect., Div. Fish, Game, Wildl., Mar. Fish. Admin., Bur. Mar. Fish. Tech. Ser. 82-1:1-38. Loos, J. 1975. Shore and tributary distribution of ichthyoplankton and juvenile fish with a study of their food habits. Power Plant Siting Program, Maryland Dep. Nat. Resour. (Not seen; cited in Lippson et al., 1979). Mahoney, J. B., F. H. Midlige, and D. G. Deuel. 1973. A fin rot disease of marine and euryhaline fishes of the New York Bight. Trans. Am. Fish. Soc. 102(3):596-605. 9 Mahood, R. K. 1974. Seatrout of the genus Cynoscion in coastal waters of Georgia. Ga. Dept. Nat. Resour. Game Fish Div. Coast. Fish. Office, Contrib. No. 26:1-36. Maiden, A. L., s. R. Goldman, and D. A. Randle. 1976. A study of ichthyoplankton in the Delaware River in the vicinity of Artificial Island. Pages 304-482 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress report for the period January through December, 1974. Vol. I. Ichthyological Associates, Inc., Middletown, DE. Maiden, A. L. and D. A. Randle. 1977. Abundance and distribution of ichthyoplankton. Pages 314-376* in v. J. Schuler (ed.) An ecological study of the Delaware River in the vicinity of Artificial Island. Progress report for January through December, 1975. Ichthyological Associates, Inc., Middletown, DE. Maiden, A. L., D. A. Randle, ands. R. Goldman. 1977. Abundance and distribution of ichthyoplankton. Pages 302-364 in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress report for the period January through December, 1976. Ichthyological Associates, Inc., Middletown, DE. Martin, c. c. 1973. Sport survey of the Delaware estuary. Fed. Aid Fish. Rester. Proj. F-24-R, Final Rep. Del. Fish Wild!., Dover, DE. 15 p. 1974. Delaware's tidal streams. Del. Dep. Nat. Resour. Environ. Cont., Div. Fish Wildl. 32 p. Martin, F. D. and G. E. Drewry. 1978. Development of fishes of the mid-Atlantic Bight. Vol. VI. Stromateidae through Ogcocephalidae. U.S. Fish Wildl. Serv. FWS/OBS-78/12. 416 p. Massman, W. H. 1963a. Age and size composition of weakfish, Cynoscion regalis from pound nets in Chesapeake Bay, Virginia, 1954-1958. Chesapeake Sci. 4(1):43-51. 1963b. Annulus formation on the scales of weakfish, Cynoscion regalis of Chesapeake Bay. Chesapeake Sci. 4(1):54-56. Massman, W. H., J. P. Whitcomb, and A. L. Pacheco. 1958. Distribution and abundance of gray weakfish in the York River system, Virginia. Trans. 23rd N.A. Wildl. Conf.: 361-369. I I * * '* l *

  • 10 McHugh, J. L. 1972. Marine fisheries of New York State. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 70(3):585-610.

1977. Fisheries and fishery resources of New York Bight. U.S. Dept. Comm., NOAA Tech. Rep. NMFS Circ. 401:1-50. 1979. Status of the fisheries of the Middle Atlantic Bight region. State Univ. New York, Mar. Sci. Res. Cent., Spec. Rep. 31:1-56. 1980. History and management of' weakfish fisheries. Pages 63-70 in Proc. Red Drum Seatrout Colloq., Oct. 19-20, 1978":" Gulf States Mar. Fish. Comm. No. 5. 1981. Marine fisheries of Delaware. U.S. Fish Wildl. Serv. Fish. Bull. 79(4):575-599. Meldrim, J. W. 1979. Cold shock, secondary (plume) entrainment and critical thermal maxima (CTM) studies conducted 1978-1979. Ichthyological Assoc., Inc., Middletown, DE. Mercer, L. P. 1983. A biological and fisheries profile of weakfish, Cynoscion regalis. Special Scientific Report No. 39. N.C. Dep. Nat. Resour. Commun. Devel. Div. Mar. Fish. 107 p. Merriman, D. and R. C. Sclar. 1952. The pelagic fish eggs and larvae of Block Island Sound. Bull. Bingham. Oceanogr. Collect. Yale Univ. 13(3):156-219. Merriner, J. V. 1973. of the weakfish resource, a suggested management plan, and aspects of life history in North Carolina. Ph.D. Thesis, North Carolina State Univ., Raleigh, NC. 201 p. 1975. Food habits of the weakfish, Cynoscion regalis, in North Carolina waters. Chesapeake Sci. 16(1):74-76. 1976. Aspects of the reproductive biology of the weakfish, Cynoscion regalis (Sciaenidae), in North Carolina. U.S. Fish Wildl. Serv. Fish. Bull. 74(1):18-26. Merriner, J. V., W. H. Kreite and G. c. Grant. 1976. Seasonal abundance and diversity of fishes in the Piankatank River, Virginia (1970-1971). Chesapeake Sci. 17(4):238-245

  • 11 Meyer, H. L., and J. V. Merriner.

1976. Relation and escapement characteristics of pound nets as a function of pound-head mesh size. Trans. Am. Fish. Soc. 105(3):370-379. Miller, R. W. Delaware. Div. Fish. 28 p. 1978. Marine recreational fishing in Fed. Aid Fish. Restor. Proj. F-29-R. Del. Wildl., Dover, DE, Doc. No. 40-04/78/01/18. 1980. Delaware marine fishing survey, 1978. Fed. Aid Fish Rester. Proj. F-29-R. Del. Div. Fish Wildl., Dover, DE, Doc. No. 3 and 4. 27 p. Mitchill. (Not 1814. Report in part fishes New York, 26. seen: cited in Jordan and Eigenmann, 1890). 1815. Trans. Lit. and Phil. Soc. New York, 396, plate 2, fig. 1. (Not seen: cited in Jordan and Eigenmann, 1890). Moenkhaus, W. J. 1911. Cress fertilization among fishes. Proc. Ind. Acad. Sci. (1910):353-393. Morrisson, N. J., III and Associates. 1976. An ecological study of the Delaware River in the vicinity of the Edge Moor Power Station. Ichthyological Associates, Inc., Wilmington, DE. 727 p. Moshin, A. K. M. 1973. Comparative osteology of the weakfishes (Cynoscion) of the Atlantic and Gulf coasts of the United States. Ph.D. thesis, Texas A & M Univ., College Station, TX. 148 p. (Not seen: cited in Wilk, 1979). Muller, W. A. 1976. Fishing for weakfish. Fisherman's Publ. Corp., Deer Park, NY. 82 p. Murawski, s. A. 1977. A preliminary assessment of weakfish in the Middle Atlantic bight. Natl. Mar. Fish. Serv., N.E. Fish. Center, Woods Hole Lab., Lab. Ref. 77-26:1-13. Nesbit, R. A. 1954. Weakfish migration in relation to its conservation. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 115:1-81. Olney, J. E. 1983. Eggs and early larvae of the bay anchovy, Anchoa mitchilli, and the weakfish, Cynoscion regalis, in lower Chesapeake Bay with notes on associated ichthyoplankton. Estuaries 6(1):20-35. I I I ' I ' J '* l *

  • 12 Oviatt, C. A. and S. W. Nixon. 1974. The demersal fish of Narragansett Bay: An analysis of community structure, distribution and abundance.

Estuarine Mar. Sci. 1(4):361-378. Pearson, J. C. 1932. Winter trawl fishery off the Virginia and North Carolina coasts. Bull. Bur. Fish. 10:1-31. 1941. The young of some marine fishes taken in lower Chesapeake Bay, Virginia, with special reference to the gray sea trout, Cynoscion regalis (Bloch). U.S. -Fish Wildl. Serv. Fish. Bull. 50:79-102. Peck, J. I. 1896. The sources of marine food. Bull. U.S. Fish. Comm. 40(1895):351-368. Perlmutter, A. 1939. An ecological survey of the young fish and eggs identified from tow net collections. Pages 11-71 in A biological survey of the saltwaters of Long Is land, 1938. Pa rt I I, Sect ion I. N. Y Conserv. Dep. Salt-water Survey 1938(15). 1959. Changes in the populations of fishes and in their fisheries in the Middle Atlantic and Chesapeake regions, 1930 to 1955. Trans. NY Acad. Sci., Ser. II, 21:484-496. Perlmutter, A., W. S. Miller and J.C. Poole. 1956. The weakfish (Cynoscion regalis) in New York waters. NY Fish Game J. 3(1):1-43. Polgar, T. T., J. K. Summers and M. S. Haire. 1979. Evaluation of the effects of the Morgantown Steam Electric Station cooling system on spawning and nursery areas of representative important species. Martin Marietta Corp. for Maryland Power Plant Siting Program. PPSP-MP-27. Powles, H. and B. W. Stender. 1978. Taxonomic data on the early life history stages of Sciaenidae of the South Atlantic Bight of the United States. s.c. Wildl. Mar. Resour. Dep., Tech. Rep. No. 31:1-63. PSE&G (Public Service Electric & Gas Co.). 1978. 1977 Annual environmental operating report radiological), January 1 through December 31, 1977. Salem Nuclear Generating Station -Unit No. 1. Vol. 3. Special surveillance and studies. Public Service Electric and Gas Company, Newark, NJ

  • 13 1979. 1978 Annual environmental operating report non-radiological), January 1 through December 31, 1978. Salem Nuclear Generating Station -Unit No. 1. Special surveillance and studies. Public Service Electric and Gas Company, Newark, NJ. 1980. First interim report 316(b) studies March-November 1979. Salem Nuclear Generating Station. Public Service Electric and Gas Co., Newark, NJ. Reintjes, J. W. and C. M. Roithmayr.

1960. Survey of the ocean fisheries off Delaware Bay -supplemental report, 1954-57. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. No. 347:1-18. Ricker, W. E. 1958. Handbook of computations for biological statistics of fish populations. Bull. Fish. Res. Board Can. 119:1-300. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191:1-382. Ritchie, D. E., Jr. and T. s. Y. Koo. 1973. Fish survey in Maryland portion of C and D Canal region. Appendix VI in Hydrographic and ecological effects of enlargement of the Chesapeake and Delaware Canal. Univ. Maryland, Chesapeake Bio. Lab. 28 p. Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea and W. B. Scott. 1980. A list of common and scientific names of fishes from the United States and Canada. 4th ed. Am. Fish. Soc. Spec. Publ. No. 12:1-174. Rohde, F.* c. and V. J. Schuler. 1974. Abundance and distribution of fishes in the Delaware River. Pages 1-232 in V. J. Schuler (ed.). An ecological study of the Delaware in the vicinity of Artificial Island. Progress report for January-December 1971. Ichthyological Associates, Inc., Middletown, DE. Russell, H. A. and J. E. Jeffrey. 1979. Serum transferrin polymorphism in grey trout, Cynoscion regalis, from the lower Rappahannock River. Estuaries 2(4):269-270. Schuler, V. J. 1971. An ecological study of the Delaware River in the vicinity of Artificial Island. Ichthyological Associates, Inc., Middletown, DE. 384 p. *

  • I I. I ' * *
  • 14 1976. An ecological study of the in the vicinity of Artificial Island. for 1974. Ichthyological Associates, DE. 517 p. Delaware River Progress report Inc., Middletown, Schwartz, F. J. 1964a. Effects of winter water conditions on fifteen species of captive marine fishes. Am. Midl.

71(2):434-444. 1964b. Fishes of of Wight and Assawoman bays near Ocean City, Maryland. Chesapeake Sci. 5(4):172-193. Schwartz, F. J., P. Perschbacher, L. Davidson, C. Simpson, M. McAdams, K. Sanday, J. Duncan and D. Mason. 1979. An ecological study of fishes and invertebrate macrofauna utilizing the Cape Fear estuary, Carolina Beach Inlet, and adjacent Atlantic Ocean, summary report, Vol. XIV. Institute Mar. Sci., Univ. North Carolina. Morehead City, NC. 571 p. Schwartz, F. J. and Associates. 1980. Food analyses of selected fishes captured in Cape Fear Estuary and adjacent Atlantic Ocean, North Carolina, 1973-1978. Inst. Mar. Sci., Univ. North Carolina, Morehead City, NC. Seagraves, R. J. 198la. A comparative study of the size and age composition and growth rate of weakfish (Cynoscion regalis) populations in Delaware Bay. M.S. Thesis, Univ. Delaware, Newark, DE. 102 p. 198lb. Annual report of catch and effort statistics. Part II in Delaware Coast. Zone Manage. Annual Rep. Del. Div.-Pish Wildl., Doc. NA-79-AA D-C2 101-1. 198lc. Delaware marine fishing survey. Del. Fish. Bull. 2(3):2-5. 1982a. 1982 saltwater fishing forecast. Del. Fish. Bull. 3(2):10-15. 1982b. 1981 Delaware marine fishing surveys. Del. Fish. Bull. 3(1):13-16. Seagraves, R. J. and D. Rockland. 1983a. Survey of the sport fishery of Delaware Bay. Proj. No. F-33-R-2. State Doc. No. 40-05/83/03/09. Del. Div. Fish Wildl. 61 p

  • 15 1983b. Annual report of gill net catch and effort statistics in Delaware.

U.S. Dep. Commer. Natl. Mar. Fish. Serv. Rep. 25 p. Seguin, R. T. 1960. Variation in the Middle Atlantic coast population of the grey squeteague, Cynoscion regalis (Bloch and Schneider), 1801. Ph.D. Thesis, Univ. Delaware, Newark, DE. 70 p. Seymour, H. 1975. Weakfish -catch a queen for dinner. Sea Grant Bull. No. 3., Univ. Del. Coll. Mar. Stud., Newark, DE. Shepherd, G. R. 1982. Growth, reproduction and mortality of weakfish, Cynoscion regalis, and size/age structure of the fisheries in the middle Atlantic region. M.S. Thesis, Rutgers Univ., New Brunswick, NJ. 99 p. Shepherd, G. and C. B. Grimes. (unpubl. manu.) Age and growth variations of weakfish, Cynosion regalis, in the Middle Atlantic Bight. 1982. Growth and reproduction variations in Cynoscion regalis. Presentation at 62nd Annual Meeting Am. Soc. of Ichthyologists and Herpetologists, DeKalb, IL. June 13-19, 1982. Sholar, T. M. 1979. Adult stock assessment. Pages 24-49 in A plan for management of North Carolina's estuarine fisheries -Phase I. N.C. Dep. Nat. Resour. Commun. Develop. Div. Mar. Fish. Sindermann, C. J., S. C. Esser, E. Gould. B. B. McCain, J. L. McHugh, R. P. Morgan II, R. A. Murchelano, M. J. Sherwood and P. R. Spitzer. 1982. Effects of pollutants on fishes. Pages 23-38 in Garry F. Majer (ed.). Ecological stress and the New York Bight: Science and management. Estuarine Research Federation, Columbia, SC. 715 p. Smith, B. A. 1971. The fishes of four low-salinity tidal tributaries of the Delaware River Estuary. Part V in An ecological study of the Delaware River in the vicinity of Artificial Island. Progress report for the period January-December 1970. Bull. No. 5. Icht hyolog ical Associates, Inc., Middletown, DE. 291 p.

  • I I I I. I I r r .
  • 16 Smith, C. F., J. R. Schubel, M. P. Greges, N. Itzkowitz, s. J. DiPiero, J. Longo and M. A. Morgan. 1979. Thermal resistance characteristics of early life history stages of finfish from Long Island waters. Spec. Rep. 26. Mar. Sci. Res. Center. State Univ. New York, Stony Brook, NY. Ref. 79-9. 64 p. Smith, H. M. 1907. The fishes of North Carolina.

N.C. Geol. Econ. Surv. II. 453 p. Smith, R. W. 1980. Analysis of shore zone fishes in the Delaware estuary. Annual Dingell-Johnson Rep. Proj. No. F-31-R, Job No. I-2. Del. Div. Fish Wildl., Dover, DE. 70 p. 1981. Survey of selected marine fish populations in Delaware Bay. Appendix B, Part I Coastal Fisheries Assistance Program annual report, Contract No. D-CZlOl-l. Div. Fish. Wildl., Dep. Nat. Res. Environ. Control, State of Delaware, Dover, DE. 9 p. 1982. Changing marine fish populations. Del. Fish. Bull. 3(3):4-6. smith, W. G., J. D. Sibunka, and A. Wells. 1975. Seasonal distributions of larval flatfishes (Pleuronectiformes) on the continental shelf between Cape Cod, Massachusetts, and Cape Lookout, North Carolina, 1965-1966. NOAA Tech. Rept. NMFS SSRF-691. 68 p. Stickney, R. R., G. L. Taylor and D. B. White. 1975. Food habits of five species of young southeastern U.S. estuarine Sciaenidae. Chesapeake Sci. 16(2):104-114. Sullivan, B., J. Bonaventura, C. Bonaventura, L. Pennel, J. Elliot, R. Boyum and W. Lambie. 1975. The structure and evolution of parvalbumins.

1. Amino acid composition studies of parvalbumins for four perciform species. J. Mol. Evol. 5:103-116.

Talbot, G. B. 1967. Urinary calculi in striped marlin * . Trans. Am. Fish. Soc. 96(3):355-356. Tatham, T. R., D. J. Danila, D. L. Thomas and Associates. 1977. Ecological studies for the Oyster Creek Generating Station. Progress report for the period September 1975-August 1976. Vol. 1. Fin-and shellfish. Ichthyological Associates, Inc., Ithaca, NY. 338 p

  • 17 Tatham, T. R., D. P. Swiecicki, and F. C. Stoop. 1974. Ichthyoplankton.

Pages 88-106 in D. L. Thomas, c. B. Milstein, T. R. Tatham, R. C. Bieder, F. J. Margraf, D. J. Danila, H. K. Hoff, E. A. Illjes, M. M. McCullough, and F. A. Swiecicki (eds.). Ecological studies in the bays and other waterways near Little Egg Inlet and in the ocean in the vicinity of the proposed site for the Atlantic Generating Station, New Jersey. Vol. I -Fishes. Progress report, January through December, 1973. (Prepared for Public Service Electric and Gas Co.). Ichthyological Associates, Inc., Absecon, NJ. 709 p. Taylor, H. F. 1916. The structure and growth of the scales of the squeteague and the pigfish as indicative of life history. Bull. U.S. Bur. Fish. 34:285-330. Taylor, M. H., R. W. Smith, L. M. Katz, F. C. Daiber and V. Lotrich. 1973. C & D Canal ecological survey. Biological survey of the canal and its approaches. Appendix VII -Delaware fish survey. Final report. Dep. Biol. Sci. Coll. Mar. Sci., Univ. Del., Newark, DE. 75 p. Thomas, D. L. 1971. An ecological study of the Delaware River in the vicinity of Artificial Island, Part III. The early life history and ecology of six species of drum (Sciaenidae) in the lower Delaware River, a brackish tidal estuary. Bull. No. 3. Ichthyological Associates, Inc., Middletown, DE. 247 p. Tower, R. W. 1902. Biliary calculi in the squeteague. U.S. Fish. Comm. Bull. (1901) 21:131-135. (Not seen; cited in Talbot, 1967.). Tracy, H. C. 1908. The fishes of Rhode Island. VI. A description of two young specimens of squeteague (Cynoscion regalis), with notes on their rate of growth. 38th Ann. Rep. Commerc. Inland Fish, State of Rhude Island and Providence Plantation: 85-91. (Not seen; cited in Welsh and Breder, 1923.) U.S. EPA (Environmental Protection Agency). 1983. Chesapeake Bay Program: A profile of environmental change. E. G. Macalaster, D. A. Barker, M. W. Kasper, eds. United States Environmental Protection Agency. Region 3. Philadelphia, PA. 200 p. U.S. Fish and Wildlife Service. 1977. 1975 national survey of hunting, fishing and wildlife -associated recreation. FWS, USDI, Washington, DC. 91 p.

  • I I I. I r I
  • 18 U.S. National Marine Fisheries Service. 1977. Economic activity associated with marine recreational fishing. U.S. Natl. Mar. Fish. Serv., U.S. DOC, Washington, DC. 206 p. 1980. Marine recreational fishery statistics survey, Atlantic and Gulf coasts, 1979. U.S. Natl. Mar. Fish. Serv., Curr. Fish. Stat. No. 8063:1-139.

Walton, T. E., III and R. Patrick (eds.). 1973. The Delaware estuary system, environmental impacts and socio-economic effects. Acad. Nat. Sci., Univ. Delaware and Rutgers Univ. Report to NSF, RANN Prag. 174 p. Wang, J. c. s. and R. J. Kernehan. 1979. Fishes of the Delaware estuaries: A guide to the early life histories. EA Communications. Towson, MD. 410 p. ware, D. M. 1975. Relation between egg size, growth, and natural mortality of larval fish. J. Res. Board Can. 32(12):2503-2512. Weatherley, A. H. populations

  • 1972. Growth and ecology of fish Academic Press, NY. 293 p. Weinstein, M. P., S. L. Weiss and M. F. Walters. 1980. Multiple determinants of community structure in shallow marsh habitats, Cape Fear estuary, North Carolina, U.S.A. Mar. Biol. 58:227-243.

Weinstein, M. P. and R. W. Yerger. 1976. Protein taxonomy of the Gulf of Mexico and Atlantic Ocean seatrouts, genus Cynoscion. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 74:599-607. Welsh, W. W. and C. M. Breder, Jr. 1923. Contributions to life histories of Sciaenidae of the eastern United States coast. Bull. Bur. Fish. 39:141-201. Wenner, E. L., W. P. Coon III, M. H. Shealy and P. A. Sandifer. 1981. Species assemblages, distribution and abundance of fishes and decapod crustaceans from the Winyah Bay estuarine system, SC. Tech. Rep. No. 3, Contrib. No. 137. S.C. Mar. Resour. Center. 61 p. Wenner, E. L., M. H. Shealy, Jr. and P. A. Sandifer. 1982. A profile of the fish and decapod crustacean community in a South Carolina estuarine prior to flow alteration. Natl. Mar. Fish. Serv. Tech. Rep. SSRF-757. 17 p. 19 Weston. 1982. Near-field and far-field current velocity and circulation studies in the vicinity of the Salem Nuclear Generating Station, Delaware River Estuary. Final report. (Prepared for Public Service Electric and Gas Company, Newark, NJ). Wheatland, S. B. 1956. Oceanography of Long Island Sound, 1952-1954. Part VII. Pelagic fish eggs and larvae. Bull. Bingham Oceanogr. Collect. 15:234-314. Wilk, S. J. 1976. The weakfish -a wide ranging species. Atl. States Mar. Fish. Comm., Mar. Resour. Atl. Coast, Fish. Leaf. No. 18:1-4. 1979. Biological and fisheries data on weakfish, Cynoscion regalis (Bloch and Schneider) U.S. Dep. Commer., Natl. Mar. Fish. Serv. Tech. Ser. Rep. No. 21:1-49. 1981. A review of the fisheries for Atlantic croaker, spot, and weakfish, 1940-1979. Paper presented at the Marine Recreational Fisheries Symposium IV;. Houston, Texas, March 19-20, 1981. Wilk, s. J., w. W. Morse, and D. E. Ralph. 1978. weight relationships of fishes collected in the New York Bight. Bull. NJ Acad. Sci. 23(2):58-64. Wilk, S. J. and M. J. 1976. Summer benthic fish fauna of Sandy Hook Bay, New Jersey. NOAA Tech. Rep. NMFS SSRF-698. 16 p. Wolff, M. 1972. A study of North Carolina scrap fishery. N.C. Dep. Nat. Econom. Resour. Div. Comm. Sports Fish., Spec. Sci. Rep. 20:1-29 (NTIS COM 72-10918).

  • * . I *}}