ML17334B113: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:gy~cg~~n~>'I....9207280249SOUTHWESTRESEARCHINSTITUTEPostOfficeDrawer28510,6220CulebraRoadSanAntonio,Texas78284REACTORVESSELMATERIALSURVEILLANCEPROGRAMFORDONALDC.COOKUNITNO.2:ANALYSISOFCAPSULEXByP.K.NairM.L.Williams(Consultant)FINALREPORTSwRIProject06-8888May1987APPi";-OVEDApproved:QI'orIndiana&MichiganElectricCompanyDonaldC.CookNuclearPlantBridgeman,Michigan49106COOKPLANTMEDRECORD-MEDCOPYSECTIOI'Jc'i~!GPi!EERD~.TE~pah,vi..xiiiLII'::!i!iEi)A12i(.'I.AHl'722,i~!Y(+IP'"lii<IANENTfbi!0l,".1Ul;"RE7c.w1lONYRS.GeraldR.Leverant,DirectorDepartmentofMaterialsSciences ABSTRACTCapsuleX,thethirdvesselmaterialsurveillancecapsuleremovedfromtheDonaldC.CookUnitNo.2nuclearpowerplanthasbeentested,andtheresultshavebeenevaluated.Theanalysisofthedataindicatesthatthepressurematerialwillretainadequateshelftoughnessthroughoutthe32EFPYdesignlifetime.Heatupandcooldownlimitcurvesfornormaloperationhavebeendevelopedforupto12effectivefullpoweryearsofoperation.  
{{#Wiki_filter:gy~cg~~n~>
'I....9207280249 SOUTHWEST RESEARCHINSTITUTE PostOfficeDrawer28510,6220CulebraRoadSanAntonio,Texas78284REACTORVESSELMATERIALSURVEILLANCE PROGRAMFORDONALDC.COOKUNITNO.2:ANALYSISOFCAPSULEXByP.K.NairM.L.Williams(Consultant)
FINALREPORTSwRIProject06-8888May1987APPi";-OVED Approved:
QI'orIndiana&MichiganElectricCompanyDonaldC.CookNuclearPlantBridgeman, Michigan49106COOKPLANTMEDRECORD-MEDCOPYSECTIOI'J c'i~!GPi!
EERD~.TE~pah,vi..xiii LII'::!i!iE i)A12i(.'I.AHl
'722,i~!Y(+IP'"lii<IANENT fbi!0l,".1Ul;"
RE7c.w1lONYRS.GeraldR.Leverant, DirectorDepartment ofMaterials Sciences ABSTRACTCapsuleX,thethirdvesselmaterialsurveillance capsuleremovedfromtheDonaldC.CookUnitNo.2nuclearpowerplanthasbeentested,andtheresultshavebeenevaluated.
Theanalysisofthedataindicates thatthepressurematerialwillretainadequateshelftoughness throughout the32EFPYdesignlifetime.
Heatupandcooldownlimitcurvesfornormaloperation havebeendeveloped forupto12effective fullpoweryearsofoperation.  


TABLEOFCONTENTSLISTOFFIGURESLISTOFTABLES1.0SUMMARYOFRESULTSANDCONCLUSIONS~Pae1V2.03.04.05.06.0BACKGROUNDDESCRIPTIONOFMATERIALSURVEILLANCEPROGRAMTESTINGOFSPECIMENSFROMCAPSULEX4.1Shipment,Opening,andInspectionofCapsule4.2Neutron,Transport,andDosimetryAnalysis4.3MechanicalPropertyTestsANALYSISOFRESULTSHEATUPANDCOOLDOWNLIMITCURVESFORNORMALOPERATIONOFDONALDC.COOKUNITNO.2121213344
TABLEOFCONTENTSLISTOFFIGURESLISTOFTABLES1.0SUMMARYOFRESULTSANDCONCLUSIONS
~Pae1V2.03.04.05.06.0BACKGROUND DESCRIPTION OFMATERIALSURVEILLANCE PROGRAMTESTINGOFSPECIMENS FROMCAPSULEX4.1Shipment, Opening,andInspection ofCapsule4.2Neutron,Transport, andDosimetry Analysis4.3Mechanical PropertyTestsANALYSISOFRESULTSHEATUPANDCOOLDOWNLIMITCURVESFORNORMALOPERATION OFDONALDC.COOKUNITNO.2121213344


==77.0REFERENCES==
==77.0REFERENCES==
APPENDIXA-DeterminationofAssembly-MiseSourceDistributionforDonaldC.CookUnit2,CapsuleXAnalysisAPPENDIX8-Descriptionofthe3-DFluxSynthesisMethodAPPENDIXC-TensileTestDataRecords61 LISTOFFIGURES~FiereArrangementofSurveillanceCapsulesinthePressureVessel~PaeVesselMaterialSurveillanceSpecimensArrangementofSpecimensinCapsuleXR-8GeometryforDonaldC.CookUnit2.RadiationResponseofDonaldCDCookUnitNo.2VesselShellPlateC5521-2(LongitudinalOrientation)RadiationResponseofDonaldC.CookUnitNo.2VesselShellPlateC5521-2(TransverseOrientation)RadiationResponseofDonaldC.CookUnitNo.2ReactorVesselHeat-AffectedZoneMaterialRadiationResponseofDonaldC.CookUnitNo.2ReactorVesselWeldMaterialEffectofNeutronFluenceonRTNDTShift,DonaldC.CookUnitNo.2154142444910DependenceofCUpperShelfEnergyonNeutronFluence,DonaldC.CookknitNo.211ReactorCoolantSystemPressure-TemperatureLimitsVersus100'F/HourRateCriticalityLimitandHydro-staticTestLimit,12EFPY12ReactorCoolantSystemPressure-TemperatureLimitsVersusCooldownRates,12EFPY13ReactorCoolantSystemPressure-TemperatureLimitsVersus100'F/HourRateCriticalityLimit,andHydro-staticTestLimit,32EFPY(Ref.17)14ReactorCoolantSystemPressure-TemperatureLimitsVersusCooldownRates,32EFPY(Ref.17)57585960 LISTOFTABLESTable3.14.14.24.34.44.5DonaldC.CookUnitNo.2ReactorVesselSurveillanceMaterials[12]47-GroupEnergyStructureReactionCrossSections(Barns)UsedinCalculationsForSequoyahUnit1AbsoluteCalculatedNeutronFluenceRateSpectra[)(E)]AtTheCenterofSurveillanceCapsules(SC)ForDonaldC.CookUnit2CalculatedSaturatedActivitiesAtTheCenterOfSurveillanceCapsulesForDonaldC.CookUnit2DonaldC.CookUnit2Spectrum-AveragedCrossSectionsAtCenterOfSurveillanceCapsules(SC)~Pae16171819194.60CalculatedNeutronFluenceRate[)(E)]SpectraInReactorPressureVesselAtPeakAxialandAximuthalLocation(8=45')ForDonaldC.CookUnit221.AzimuthalVariationof)(>1)InRPVOfDonaldC.CookUnit2204.84.9RadialGradientOfFastFluenceRate[)(E>1]ThroughRPV,AtPeakAzimuthalandAxialLocationsInDonaldC.CookUnit2CalculatedFluenceRatesAndLeadFactorsInDonaldC.CookUnit222234.1OEquationsandDefinitionsForNeutronDosimetryAnalysis254.11ConstantsForProcessingDosimetryData264.12ReactorPower-TimeHistoryForDonaldC.CookUnit2CapsuleX274.13CorrectionFactorsToObtainMeasuredSaturatedActivitiesAtCapsuleXCenterline304.144.15'alculatedSaturatedMidplaneActivitiesInDonaldC.CookUnit2SurveillanceCapsulesComparisonOfMeasuredandCalculatedSaturatedActivitiesForFastThresholdDetectorsThermalNeutronFluenceRateInCapsuleX313233 TableLISTOFTABLES(Continued)~Pae4.17ComparisonOfFastNeutronFluenceRatesFromTransportCalculationsandDosimetryMeasurementsForCapsuleX4.18CalculatedPeakFluencesInPressureVesselBasedonCapsuleXDosimetry4.19CharpyImpactPropertiesofLongitudinalPlateDonaldC.CookUnitNo.2CapsuleX4.20CharpyImpactPropertiesOfTransversePlateDonaldC.CookUnitNo.2CapsuleX353537384.21CharpyImpactPropertiesofHAZHaterialDonaldC.CookUnit2CapsuleX394.22CharpyImpactPropertiesOfMeldMetalDonaldC.CookUnit2CapsuleX4.23EffectofIrradiationOnCapsuleXSurveillanceMaterlaisDonaldC.CookUnitNo.24.24TensilePropertiesOfSurveillanceMaterials,DonaldC.CookUnitNo.24O45465.15.2Pr'ojectedValuesOfRTNDTForDonaldC.CookUnitNo.2ReactorVesselSurveillanceCapsuleRemovalSchedule[16jDonaldC.CookUnitNo.25053 1.0SUMMARYOFRESULTSANDCONCLUSIONSTheanalysisofthethirdmaterialsurveillancecapsuleremovedfromtheDonaldC.CookUnitNo.2reactorpressurevesselledtothefollowingconclusions:(1)Basedonacalculatedneutronspectraldistribution,CapsuleXreceivedafastfluenceof1.002x109neutrons/cm(E>1MeV)atitsradialcenterline.(2)ThesurveillancespecimensofthecorebeltlinematerialsexperiencedshiftsinRTNDTof70'Fto103'Fasaresultofexposureuptothe1986refuellingoutage.(3)ThecorebeltlineplatematerialsexhibitedthelargestshiftsinRTNDT.Sincetheintermediateshellplatematerialhasthehighestinitial(unirradiated)RTNDTitwillcontroltheheatupandcooldownlimitationsthroughoutthedesignlifetimeofthepressurevessel.(4)Theestimatedmaximumneutronfluenceof3.406x10neutrons/cm(E>1MeV)receivedbythevesselwallaccruedin5.273effectivefullpoweryears(EFPY).Theprojectedmaximumneutronfluenceafter32EFPYis2.067x10neutrons/cm(E>1MeV).Thisestimateisbasedontheaveragefluencerateafter5.273EFPYofoperations.(5)BasedontheanalysesofCapsulesT,YandX,theprojectedvaluesofRTNDTfortheDonaldC.CookUnit2vesselcorebeltlineregion,atthe1/4Tand3/4Tpositionsafter12EFPYofoperation,are146'Fand102'F,respectively.Thesevalueswereusedasthebasesforcomputingrevt.sedheat-upandcooldownlimitcurvesforupto12EFPYofoperation.(6)BasedontheanalysesofCapsulesT,YandX,thevaluesofRTNDTfot'heDonaldC.CookUnit2vesselcorebeltlineregion,atthe1/4Tand3/4Tpositions.after32EFPYofoperation,are-projectedtobe163'Fand 130'F,respectively.(7)TheDonaldC.CookUnitNo.2vesselplates,weldmetal,andHAZmateriallocatedinthecorebeltlineregionareprojectedtoretainsufficienttoughnesstomeetthecurrentrequirementsof10CFR50AppendixGthroughoutthedesignlifeoftheunit.


2.0BACKGROUNDTheallowableloadingsonnuclearpressurevesselsaredeterminedbyapplyingtherulesinAppendixG,"FractureToughnessRequirements,"of10CFR50[1].Inthecaseofpressure-retainingcomponentsmadeofferriticmaterials,theallowableloadingsdependonthereferencestressintensityfactor(KIR)curveindexedtothereferencenilductilitytemperature(RTNDT)presentedinAppendixG,"P.otectionAgainstNon-DuctileFailure,"ofSectionIIIoftheASMECode[2].Further,thematerialsinthebeltlineregionofthereactorvesselmustbemonitoredforradiation-inducedchangesinRTNDTpertherequirementsofAppendixH,"ReactorVesselMaterialSurveillanceProgramRequirements,"of10CFR50.TheRTNDTisdefinedinparagraphNB-2331ofSectionIIIoftheASMECodeasthehighestofthefollowingtemperatures:(1)Drop-weightNilDuctilityTemperature(DW-NDT)perASTME208[3];(2)60degFbelowthe50ft-lbCharpyV-notch(Cv)temperature;(3)60degFbelowthe35milCtemoerature.TheRTNDTmustbeestablishedforallmaterials,includingweldmetalandheat-affectedzone(HAZ)materialaswellasbaseplatesandforgings,whichcomprisethereactorcoolantpressureboundary.Itiswellestablishedthatferriticmaterialsundergoanincreaseinstrengthandhardnessandadecreaseinductilityandtoughnesswhenexposedtoneutronfluencesinexcessof10neutronspercm(E>1MeV)[4].Also,ithasbeenestablishedthattrampelements,particularly,copperandphosphorus,affecttheradiationembrittlementresponseofferriticmaterials[5-7].TherelationshipbetweenincreaseinRTNDTandcoppercontentis openingloading(MOL)fracturemechanicsspecimens.CurrenttechnologylimitationsresultinthetestingofthesespecimensattemperatureswellbelowtheminimumservicetemperatureinordertoobtainvalidfracturemechanicsdataperASTME399[10],"StandardMethodofTestforPlane-StrainFractureToughnessofMetallicMaterials."Currently,thesespecimensarebeingstoredpendinganacceptabletestingprocedureliketheJ<fracturetesting[11]hasbeendefined.ThisreportdescribestheresultsobtainedfromtestingthecontentsofCapsuleX.ThesedataandthoseobtainedpreviouslyfromCapsulesTandYareanalyzedtoestimatetheradiation-inducedchangesinthemechanicalpropertiesofthepressurevesselatthetimeoftherefuellingoutageaswellaspredictingthechangesexpectedtooccuratselectedtimesinthefutureoperationoftheDonaldC.CookUnitNo.2powerplant.
APPENDIXA-Determination ofAssembly-Mise SourceDistribution forDonaldC.CookUnit2,CapsuleXAnalysisAPPENDIX8-Descriptionofthe3-DFluxSynthesis MethodAPPENDIXC-TensileTestDataRecords61 LISTOFFIGURES~FiereArrangement ofSurveillance CapsulesinthePressureVessel~PaeVesselMaterialSurveillance Specimens Arrangement ofSpecimens inCapsuleXR-8GeometryforDonaldC.CookUnit2.Radiation ResponseofDonaldCDCookUnitNo.2VesselShellPlateC5521-2(Longitudinal Orientation)
3.0DESCRIPTIONOFMATERIALSURVEILLANCEPROGRAMTheDonaldC.CookUnitNo,2materialsurveillanceprogramisdescribedindetailinMCAP8512[12],datedNovember1975.Eightmaterialssurveillancecapsuleswereplacedinthereactorvesselbetweenthethermalshieldandthevesselwallpriortostartup,seeFigure1.Theverticalcenterofeachcapsuleisoppositetheverticalcenterofthecore.ThecapsuleseachcontainCharpyV-notches,tensile,andWOLSpecimensmachinedfromtheSA533GrB,CL2plate,weldmetal,andheat-affectedzone(HAZ)materialslocatedatthecorebeltline.ThechemistriesandheattreatmentsofthevesselsurveillancematerialsaresummarizedinTable3.1.Alltestspecimensweremachinedfromthetestmaterialsatthequarter-thickness(1/4T)locationafterperformingasimulatedpostweldstress-relievingtreatment.MeldandHAZspecimensweremachinedfromastress-relievedweldmentwhichjoinedsectionsoftheintermediateandlowershellplates.HAZspecimenswereobtainedfromtheplateC5521-2sideoftheweldment.ThelongitudinalbasemetalCspecimenswereorientedwiththeirlongaxisparalleltotheprimaryrollingdirectionandwithV-notchesperpendiculartothemajorplatesurfaces.ThetransversebasemetalCvspecimenswereorientedwiththeirlongaxisperpendiculartotheprimaryrollingdirectionandwithV-notchesperpendiculartothemajorplatesurfaces.Tensilespecimensweremachinedwiththelongitudinalaxisperpendiculartotheplateprimaryrollingdirection.TheMOLspecimensweremachinedwiththesimulatedcrackparalleltotheprimaryrollingdirectionandperpendiculartothemajorplatesurfaces.Allmechanicaltestspecimens,seeFigure2,weretakenatleastoneplatethicknessfromthequenchededgesoftheplatematerial.CapsuleXcontained44CharpyV-notchedspecimens(8longitudinaland X(220')270iV('8>>'')Y(320')2(356'il80'oS(~.)U(140')I90'eac.orVeeselTherr.".alSi'l'ore3arrelT(<0')FIGUREl..ARRANGEMENTOFSURVEILLANCECAPSULESINTHEPRESSUREVESSEL TABLE3.1DONALDC.COOKUNITNO.2REACTORVESSELSURVEILLANCEMATERIALS[12]HeatTreatmentHistorShellPlateMaterial:Heatedto1700Ffor4-1/2hours.waterquenched.Heatedto1600Ffor5hours,waterquenched.Temperedat1250Ffor4-1/2hours,aircooled.Stressrelievedat1150Ffor51-1/2hours,furnacecooled.Weldment:Stressrelievedat1140Ffor9hours,furnacecoo1ed.ChemicalComposition(Percent)MaterialCMnPSiNiMoCuCrPlateC-5521-2PlateC-5521-2WeldMetalWeldMetal(0.211.290.0130.0150.221.280.0170.0140.111.330.0220.0120.081.420.0190.0160.160.580.270.580.440.970.360.960.500.140.550.110.0720.540.0550.0680.050.07(a)LukensSteelanalysis.(b)Westinghouseanalysis.(c)ChicagoBridgeandIronanalysis.  
Radiation ResponseofDonaldC.CookUnitNo.2VesselShellPlateC5521-2(Transverse Orientation)
(293~lOC3~i4I'04ZJ43I(a)Charpvv-notchimpcc'pe~JmenII.CCI'2+9III6II1PS3~~1ItI99I444II.26442I4~al2RQA~i18$,-o~~~V~95+935~ON(b)Temiiesuecimenl,45aeaIIU24~Z<S439I'XT~3IoaR(c)Wedca"enir~loa"Incspe'r."enFIGURE2.VESSELMATERIALSURVEILLANCESPECIMENS 1012transversefromtheplatematerial,plus12eachfromweldmetalandHAZmaterial);4tensilespecimens(2plateand2weldmetal);and4transverseplateWOLspecimens.ThespecimennumberingsystemandlocationwithinCapsuleXisshowninFigure3.CapsuleXalsowasreportedtocontainthefollowingdosimetersfordeterminingtheneutronfluxdensity:TaretElementForm~QuantitIronCopperNickelCobalt(inaluminum)Cobalt(inaluminum)Uranium-238Neptunium-237BarewireBarewireBarewireBarewireCdshieldedwireCdshieldedoxideCdshieldedoxideTwoeutecticalloythermalmonitorshadbeeninsertedinholesinthesteelspacesinCapsuleX.One(locatedatthebottom)was2.5$Agand97.5$Pbwithameltingpointof579'F.Theother(locatedatthetopofthecapsule)was1.75$Ag,0.75$Sn,and97.5$Pbhavingameltingpointof590'F.
Radiation ResponseofDonaldC.CookUnitNo.2ReactorVesselHeat-Affected ZoneMaterialRadiation ResponseofDonaldC.CookUnitNo.2ReactorVesselWeldMaterialEffectofNeutronFluenceonRTNDTShift,DonaldC.CookUnitNo.2154142444910Dependence ofCUpperShelfEnergyonNeutronFluence,DonaldC.CookknitNo.211ReactorCoolantSystemPressure-Temperature LimitsVersus100'F/Hour RateCriticality LimitandHydro-staticTestLimit,12EFPY12ReactorCoolantSystemPressure-Temperature LimitsVersusCooldownRates,12EFPY13ReactorCoolantSystemPressure-Temperature LimitsVersus100'F/Hour RateCriticality Limit,andHydro-staticTestLimit,32EFPY(Ref.17)14ReactorCoolantSystemPressure-Temperature LimitsVersusCooldownRates,32EFPY(Ref.17)57585960 LISTOFTABLESTable3.14.14.24.34.44.5DonaldC.CookUnitNo.2ReactorVesselSurveillance Materials[12]47-GroupEnergyStructure ReactionCrossSections(Barns)UsedinCalculations ForSequoyahUnit1AbsoluteCalculated NeutronFluenceRateSpectra[)(E)]AtTheCenterofSurveillance Capsules(SC)ForDonaldC.CookUnit2Calculated Saturated Activities AtTheCenterOfSurveillance CapsulesForDonaldC.CookUnit2DonaldC.CookUnit2Spectrum-Averaged CrossSectionsAtCenterOfSurveillance Capsules(SC)~Pae16171819194.60Calculated NeutronFluenceRate[)(E)]SpectraInReactorPressureVesselAtPeakAxialandAximuthal Location(8=45')ForDonaldC.CookUnit221.Azimuthal Variation of)(>1)InRPVOfDonaldC.CookUnit2204.84.9RadialGradientOfFastFluenceRate[)(E>1]ThroughRPV,AtPeakAzimuthal andAxialLocations InDonaldC.CookUnit2Calculated FluenceRatesAndLeadFactorsInDonaldC.CookUnit222234.1OEquations andDefinitions ForNeutronDosimetry Analysis254.11Constants ForProcessing Dosimetry Data264.12ReactorPower-Time HistoryForDonaldC.CookUnit2CapsuleX274.13Correction FactorsToObtainMeasuredSaturated Activities AtCapsuleXCenterline 304.144.15'alculated Saturated MidplaneActivities InDonaldC.CookUnit2Surveillance CapsulesComparisonOfMeasuredandCalculated Saturated Activities ForFastThreshold Detectors ThermalNeutronFluenceRateInCapsuleX313233 TableLISTOFTABLES(Continued)
11TOPMT-7LIT-8TENSILELIT-16WOLMT-15WOLMT-14WOLWOLLIW7MWSMW-47MW-48MT-47MT-48MW-45MW-46Mr-45MT-heTENSILECHARPYCHARPYSPECIMENCODE:MT-PLATEC5221-2TRANSVERSE213MW-43MW-44MT-43MT-44LIW-41MW-42MT-41LIT-42MW-39MW-40MT-39MT40LIW>>37MW-38MT-37MT-38CHARPYCHARPYCHARPYCHARPYML-PLATEC5221-2LONGITUDINALMW-WELDMETALMH-WELDHEATAFFECTEDZONEMH-47MH-48ML-31M1.-32CHARPYMH45MH-46ML-29ML-30CHARPYMH-43MH44ML-27M1.-28CHARPYMH-41MH42ML-25M1.-28CHARPYBOTTOMMH-39MH40MH-37MH-38CHARPYFIGURE3.ARRANGEMENTOFSPECIMENSZNCAPSULEX 124.0TESTINGOFSPECIMENSFROMCAPSULEXThecapsuleshipment,capsuleopening,specimentesting,andreportingofresultswenecarriedoutinaccordancewiththeProjectPlanforDonaldC.CookUnitNo.2ReactorVesselIrradiationSurveillanceProgram.TheSwRINuclearProjectsOperatingProcedurescalledoutinthisplaninclude:(1)XI-MS-101-1,"DeterminationofSpecificActivityandAnalysisofRadiationDetectorSpecimens"(2)XI-MS-103-1,"ConductingTensionTestsonMetallicSpecimens"(3)XI-MS-104-1,"CharpyImpactTestsonMetallicSpecimens"(4)XIII-MS-103-1,"OpeningRadiationSurveillanceCapsulesandHandlingandStoringSpecimens"(5)XIII-MS-104-2,"ShipmentofWestinghousePMRVesselMaterialSurveillanceCapsuleUsingSwRICaskandEquipment"CopiesoftheabovedocumentsareonfileatSwRI.4.1ShipmentOoeninandInsectionofCapsuleSouthwestResearchInstitutepreparedProcedureXIII-MS-104-2fortheshipmentofCapsuleXtotheSwRIlaboratories.SwRIpersonnelseveredthecapsulefromitsextensiontube,sectionedtheextensiontubeintoseverallengths,andsupervisedtheloadingofthecapsuleandextensiontubematerialsintotheshippingcaskfortransporttoSanAntonio,Texas.ThecapsulewasopenedandthecontentsidentifiedandstoredinaccordancewithProcedureXIII-MS-103-1.Aftersawingoffthecapsuleends,thelongseamweldsweremilledoffusingaBridgeportverticalmillingmachine.Thetophalfofthecapsuleshellwasremovedandthespecimensandspacerblockswerecarefullyremovedandplacedinindexedreceptaclesidentifyingeachcapsulelocation.Afterthedisassemblyhadbeencompleted,eachspecimenwascarefullycheckedtoinsureagreementwiththe 13identificationandlocationaslistedinMCAP8512.[12]Nodiscrepancieswerefound.Thethermalmonitorsandneutrondosimeterwireswereremovedfromtheholesinthespacers.Thethermalmonitors,containedinquartzvials,wereexaminedandnomeltingwasobserved,thusindicatingthatthemaximumtemperatureduringexposureofCapsuleXdidnotexceed579'F.4.2NeutronTranscrtandDosimetrAnalsisAspartofthesurveillancetestingandevaluationprogram,theneutrontransportanddosimetryanalysisservestwopurposes:(1)todeterminetheneutronfluence(E>1.0MeV)inthesurveillancecapsulewherethemetallurgicaltestspecimensarelocatedand(2)todeterminetheneutronfluence(E>1.0MeV)incidentonandwithinthereactorpressurevessel(RPV).ThecurrentmethodologyforRPVfluencedeterminationisbasedoncombiningresultsoftransportcalculationswithmeasureddosimeteractivities.Thetransportcalculationsprovidethreeimportantsetsofdataintheoverallanalysis:(1)spectrum-weighted,effectivedosimetercrosssections,(2)leadfactorsforvariouslocationsintheRPV,and(3)fluenceratesatlocationsofinterest.Thecalculatedeffectivecrosssectionsfordifferentdosimetersaredividedintothemeasuredreactionratesinordertoobtainthefluencerate(E>1.0MeV)atthecapsulelocation.ThecorrespondingfluenceratesatvariousdepthsintotheRPVareobtainedbydividingthecapsulefluenceratebytheappropriateleadfactors.Boththeeffectivecrosssectionsandtheleadfactorsdependonlyonratiosofcomputedresultssothatabsolute
~Pae4.17Comparison OfFastNeutronFluenceRatesFromTransport Calculations andDosimetry Measurements ForCapsuleX4.18Calculated PeakFluencesInPressureVesselBasedonCapsuleXDosimetry 4.19CharpyImpactProperties ofLongitudinal PlateDonaldC.CookUnitNo.2CapsuleX4.20CharpyImpactPropertiesOfTransverse PlateDonaldC.CookUnitNo.2CapsuleX353537384.21CharpyImpactPropertiesofHAZHaterialDonaldC.CookUnit2CapsuleX394.22CharpyImpactProperties OfMeldMetalDonaldC.CookUnit2CapsuleX4.23EffectofIrradiation OnCapsuleXSurveillance MaterlaisDonaldC.CookUnitNo.24.24TensileProperties OfSurveillance Materials, DonaldC.CookUnitNo.24O45465.15.2Pr'ojected ValuesOfRTNDTForDonaldC.CookUnitNo.2ReactorVesselSurveillance CapsuleRemovalSchedule[16jDonaldC.CookUnitNo.25053


14calculationsarenotrequired.Themeasureddosimeteractivitiesprovidethefluenceratenormalization.However,absolutefluenceratesarecalculatedtocomparewithmeasurementstoprovideameasureoftheuncertaintyinvolvedintheRPVfluencedeterminationprocedure.4.2.1NeutronTransortAnalsisAdiscreteordinatescalculationusingtheDOT[13]codewasperformedtoobtaintheradial(R)andazimuthal(0)fluence-ratedistributionforthegeometryshowninFigure4.TheinclusionofthesurveillancecapsulesintheR-0modelismandatorytoaccountforthesignificantperturbationeffectsfromthephysicalpresenceofthecapsule.The47-groupenergystructurefortheSAILOR[14]cross-sectionlibraryisgiveninTable4.1.AnS8angularstructureandaP3Legendrecross-sectionexpansionwereusedinthecomputations.Thefine-group0dosimetercrosssectionsfortheCu(n,a)CoreactionwereobtainedfromENDF/B-Vfileandwerecollapsedto47groupsusingafissionplus1/Eweightingspectrum.TheotherreactioncrosssectionsweretakenfromtheSAILORcross-sectionlibrary.ThereactioncrosssectionsaregiveninTable4.2.TheresultsofthetransportcalculationsrequiredfortheRPVfluenceanalysisarepresentedinTables4.3through4.9.Table4.3containsthecalculatedabsolutefluence-ratespectraforthecenterlineofthesurveillancecapsulesandinTable4.4arethecalculatedsaturatedactivitiesobtainedbyfoldingtheresultsofTables4.3and4.2Thespectrum-averagecrosssections,Table4.5,areobtainedfromtheresultsofTables4.3and4.4.Table4.6showsthatthepeakfluenceratesattheinnerradius,1/4-T,and3/4-Tlocationsareatthe8=45'zimuthal,andTable4.7arethegroupfluxesatthepeaklocation.Table4.8showstheradialgradientsofthefluencerates(E>1.0MeV)throughthereactorpressurevessel.Thepeak 1540CAPSULEST,U,X,YFORMERPLATErPrRPVDOWNCOMERTHERMALSHlELDWATERGAPBARREL4CAPSULESS,V,W,ZFIGURE4.R-0GeometryfoiDonaldC.CookUnit2.
==1.0 SUMMARYOFRESULTSANDCONCLUSIONS==
'6TABLE4.147-GROUPENERGYSTRUCTUREGroupLowerenergy(MeV)GroupLowerenergy(Mev)101213141516171819202122232414.19*12.2110.008.617.416.074.973.683.012.732.472.372.352.231.921.651.351.000.8210.7430.6080.4980.3690.298252627282930313233343536373839404142434445460.1830.1110.06740.04090.03180.02610.02420.02190.01507.10x3.36x1.59x4.54x2.14x1.01x3+73x1.07x5.04x1.86x8.76x4.14x1.00x1.00x1010310310-4104104101010-610-61071071010-11*TheupperenergyofGroup1is17.33MeV.
Theanalysisofthethirdmaterialsurveillance capsuleremovedfromtheDonaldC.CookUnitNo.2reactorpressurevesselledtothefollowing conclusions:
17TABLE4.2REACTIONCROSSSECTIONS(BARNS)USEDINCALCULATIONSFORDONALDC.COOKUNIT2Group1234'67891011121314151617181920212223242526272829303132333435363738394041424344454647Energy(MeV)1.733E+011'.419E+Ol1.221E+011.000E+Ol8.607E+007.408E+006.065E+004.966E+003.679E+003.012E+002.725E+002.466E+002.365E+002.346E+002.231E+001.920E+001.653E+001.353E+001.003E+008.208E-017.427E-016.081E-014.979E-013.688E-012.972E-011.832E-011.111E-016.738E-024.087E-023.183E-022.606E-022.418E-022.188E-021.503E-027.102E-033.355E-031.585E-034.540E-042.144E-041.013E-043.727E-051.068E-055.043E-061.855E-068.764E-074.140E-071.000E-07U-238(nf)1.275E+001.086E+009.844E-Ol9.864E-019.891E-018.574E-015.849E-015.615E-015.475E-015.463E-015.527E-015.521E-015.512E-015.504E-015.390E-014.685E-012.706E-014.502E-021.102E-022.881E-031.397E-035.378E-041.502E-048.333E-056.168E-054.668E-054.015E-054.000E-056.176E-058.610E-058.700E-058.700E-058.700E-055.650E-054.860E-117.439E-104.199E-041.464E-081.044E-081.243E-081~955E-083.086E-084.770E-087.171E-085.067E-081.881E-081.182E-09Np-237(nf)2.535E+002.320E+002.334E+002.329E+002.248E+001.965E+001.520E+001.538E+001.638E+001.680E+001.697E+001.695E+001.694E+001.693E+001.677E+001.645E+001.604E+001.543E+001.389E+001.205E+009.845E-016.437E-012.642E-018'00E-023.552E-022.043E-021.542E-021.228E-021.088E-021.023E-021.002E-029.906E-039.723E-031.004E-026.506E-038.716E-032.303E-023.701E-026.129E-029.027E-022.296E-021.014E-024.011E-039.350E-031.407E-024.328E-038.332E-02Fe-54(n)2.686E+014.137E-015'76E-015.781E-015.888E-015.590E-014.697E-013.199E-011.762E-011.155E-017.755E-025.111E-024.756E-024.484E-022.008E-024.771E-036.335E-041.311E-0500000000000000000000000000000Ni-58(n)2.962E-014.416E-016.103E-016.588E-016.553E-016.285E-015.365E-Ol3.917E-012.287E-011.658E-011.131E-019.308E-029.232E-028.614E-024.661E-022.660E-031~337E>>024.438E-035.023E-041.729E-044.914E-057.673E-068.903E-074.070E-081.832E-150000000000000000000000C0-63(nn)3.682E-024.540E-025.357E-023.811E-021.906E-029.277E-032.915E-034.437E-043.568E-055.831E-061.707E-066.834E-074.637E-073.430E-071.150E-071.536E-080000000000000000000000000000000 TABLE4.3ABSOLUTECALCULATEDNEUTRONFLUENCERATESPECTRA[4(E))ATTHECENTEROFSURVEILLANCECAPSULES(SC)FORDONALDC.COOKUNIT2GroupUpperEnergy(MeV)SCat40'Cat44(E)*n'cm2's"11234567891011121314151617181920212223242526272829303132331.733E+011.419E+011.221E+011.000E+018.607E+007.408E+006.065E+004.966E+003.679E+003.012E+002.725E+002.466E+002.365E+002.346E+002.231E+001.920E+001.653E+001.353E+001.003E+008.208E-017.427E-016.081E-014.979E-013.688E-012.972E-011.832E-011.111E-016.738E-024.087E-023.183E-022.606E-022.418E-022.188E-026.93656E+063.09479E+071.27275E+082.59658E+084.64990E+081.10830E+091.59842E+093.24363E+092.93332E+092.36696E+092.89003E+091.42825E+094.42338E+082.12501E+095.48432E+09.7.12292E+091.03149E+102.05020E+101.54321E+106.80836E+092.08115E+101.90620E+101.87027E+101.87067E+102.59350E+102.32048E+101.63390E+101.52521E+105.03766E+091.71555E+095.79265E+093.69441E+098.14806E+095.76403E+062.51896E+079.75622E+071.92220E+083.27455E+087.51266E+081.00403E+091.79877E+091.45231E+091.12970E+091.33287E+096.52104E+081.98677E+089.45496E+082.41337E+092.98454K+094.21588E+097.93826E+095.72833E+092.54752E+097.26207E+096.55344E+096.48139E+096.28913E+098.87760E+097.80143E+095.48592E+095.10511E+091.69700E+096.14043E+081.78767E+091.19550E+092.67201E+09 19TABLE4.4CALCULATEDSATURATEDACTIVITIESATTHECENTEROFSURVEILLANCECAPSULESFORDONALDC.COOKUNIT2ReactionSurveillanceCapsuleat4'Bq/g)SurveillanceCapsuleat40'Bq/g)54Fe(n,p)54Mn5Ni(n,p)Co63Cu(n,a)60CoNp(n,f)3Cs238U(nf)137Cs1.535E+62.260E+72.026E+51.119E+71.561E+62.648E+64.054E+72.867E+52.749E+73.260E+6TABLE4.5DONALDC.COOKUNIT2SPECTRUM-AVERAGEDCROSSSECTIONSATCENTEROFSURVEILLANCECAPSULES(SC)a(barns)(Reaction54Fe(n,p)58Ni(n~p)Cu(n,n)7Np(n,f)238U(nf)46Ti(n,p)SCat400.06780.09270.0007002.7630.344SCat4'.08940.11740.001132.5580.3740.0152/0o(E)y(E)dE(1)Jl$(E)dE TABLE4.620AZIMUTHALVARIATIONOF](>1)INRPVOFDONALDC.COOKUNITy(E>1.0MeV)n/cm's0-TR~219.781/4-TR~225.193/4-TR~236.1421234567890111213141516171819202122232425262728293031323334353637383940414243c,g46474849501.563.284.004.725.948.0010.0012.0014.0016.0018.0020.0021.5022.5023.5024.3925.0225.4826.3127.4928.3028.7429.4830.5031.5032.4733.4734.5035.2535.7536.2536.7537.2537.7538.2538.8139.2839.6640.0040.3440.7241.0541.4541.9242.3942.8743.3443.8244.2944.769.480E+099.169E+099.025E+099.486E+091.015E+101.085E+101.150E+101.217E+101.286E+101.350E+101.402E+101.432E+101.427E+101.418E+101.408E+101.401E+101.399E+101.399E+101.399E+101.408E+101.424E+101.434E+101.449E+101.482E+101.522E+101.568E+101.620E+101.678E+101.722E+101.751E+101.778E+101.800E+101.815E+101.822E+101.817E+101.804E+101.776E+101.766E+101.779E+101.802E+101.852E+101.899E+101.955E+102.008E+10-2.047E+102.075E+102.097E+102.112E+102.121E+102.125E+105.221E+095.176E+095.175E+095.037E+095.597E+096.001E+096.375E+096.749E+097.122E+097.466E+097.738E+097.883E+097.876E+097.839E+097.799E+097.779E+097.781E+097.784E+097;787E+097.847E+097.937E+097.990E+098.078E+098.251E+098.469E+098.712E+098.983E+099.277E+099.498E+099.630E+099.741E+099.828E+099.887E+099.908E+099.900E+099.902E+099.924K+099.975E+091.006E+101.016E+101.032E+101.046E+101.066E+101.090E+101.112E+101.130E+101.144E+101.154E+101.161E+101.164E+101.028E+091.041E+091.052E+091.073E+091.106E+091.175E+091.247E+091.320E+091.389E+091.450E+091.497E+091.523E+091~527E+091.527E+091.526E+091.527E+091.530E+091.532E+091.537E+091.551E+091.568E+091.578E+091.597E+091.628E+091.666E+091.708E+091.754E+091,803E+091.837E+091.858E+091.877E+091,893E+091.907E+091.920E+091.935E+091.954E+091.975E+091.994E+092.012E+092.028K+092.047E+092.064E+092.085E+092.112E+092.139E+092.165E+092.186E+092.203E+092.215E+092.221E+09 2'ABLE4.7CALCULATEDNEUTRONFLUENCERATE[$(E)JSPECTRAINREACTORPRESSUREVESSELATPEAKAXIALANDAXIMUTHALLOCATION(645')FORDONALDC.COOKUNIT2GroupUpperEnergy(MeV)0-TR=219.78$(E)1.0MeV)n/cm's1/4-TR~225.193/4-TR=236.142123456789011121314151617181920212223242526272829303132331.733E+011.419E+011.221E+011.000E+018.607E+007.408E+006.065E+004'66E+003.679E+003.012E+002.725E+002.466E+002.365E+002.346E+002.231E+001.920E+001.653E+001.353E+001.003E+008.208E-017.427E-016.081E-014.979E-013.688E-012.972E-011.832E-011.111E-016.738E-024.087E-023.183E-022.606E-022.418E-022.188E-020.53166E+070.23088E+080.90374E+080.17693E+090.30438E+090.71052E+090.97912E+090.17730E+100.13497E+100.10299E+100.11992E+100.60323E+090.17406E+090.80461E+090.19961E+100.22153E+100.30608E+100.47574E+100.31781E+100.16647E+100.43628E+100.38778E+100.42456E+100.41077E+100'0974E+100.55796E+100.42564E+100.37388E+100.15103E+100.99039E+090.13253E+100.90043E+090.22970E+100.22286E+070.97553E+070.36426E+080.70333E+080.11754E+090.26569E+090.35272E+090.64140E+090.53264E+090.43784E+090.53614E+090.27104E+090.84240E+080.40595E+090.10353E+100.13200E+100.19119E+100.36067E+100.27155E+100.11772E+100.46686E+100.40155E+100.45651E+100.53608E+100.61226E+100.62975E+100.41358E+100.33406E+100.89469E+090.28232E+090.18702E+100.11019E+100.20128E+100.36063E+060.15732E+070.53124E+070.96453E+070.14818E+080.30518E+080.37525E+080.67721E+080.63806E+080.55198E+080.70522E+080.36044E+080.12500E+080.62522E+080.15980E+090.25036E+090.38146K+090.96084E+090.92694E+090.35203E+090.19763E+100.18109E+100.20894E+100.29320E+100.29813E+100.33266E+100.20823E+100.15865E+100.40075E+090.12523E+090.10917E+100.71618E+090.11316E+10 22TABLE4.8RADIALGRADIENTOFFASTFLUENCERATE[P(E>1)JTHROUGHRPV,ATPEAKAZIMUTHALANDAXIALLOCATIONSINDONALDC.COOKUNIT2R(1)(cm)y(E>1)cm-s219.978221.14222.92224.70226.48228.26230.04231.82233.60235.39237.17238.95240.732.109E+101.922E+101.572E+101.239E+109.649E+97.452E+95.721E+94.369E+93.316E+92.494E+91.849E+91.331E+98.723E+9(1)RPVlinerbeginsatR=219.71cm.RPVbeginsat220.25andendsat241.62cm.1/4-T~225.19cm.3/4-T~236.14cm.  
(1)Basedonacalculated neutronspectraldistribution,CapsuleXreceivedafastfluenceof1.002x109neutrons/cm (E>1MeV)atitsradialcenterline.(2)Thesurveillance specimens ofthecorebeltlinematerials experienced shiftsinRTNDTof70'Fto103'Fasaresultofexposureuptothe1986refuelling outage.(3)Thecorebeltlineplatematerialsexhibited thelargestshiftsinRTNDT.Sincetheintermediate shellplatematerialhasthehighestinitial(unirradiated)
RTNDTitwillcontroltheheatupandcooldownlimitations throughoutthedesignlifetimeofthepressurevessel.(4)Theestimated maximumneutronfluenceof3.406x10neutrons/cm (E>1MeV)receivedbythevesselwallaccruedin5.273effective fullpoweryears(EFPY).Theprojectedmaximumneutronfluenceafter32EFPYis2.067x10neutrons/cm (E>1MeV).Thisestimateisbasedontheaveragefluencerateafter5.273EFPYofoperations.
(5)BasedontheanalysesofCapsulesT,YandX,theprojected valuesofRTNDTfortheDonaldC.CookUnit2vesselcorebeltlineregion,atthe1/4Tand3/4Tpositions after12EFPYofoperation, are146'Fand102'F,respectively.
Thesevalueswereusedasthebasesforcomputing revt.sedheat-upandcooldownlimitcurvesforupto12EFPYofoperation.
(6)BasedontheanalysesofCapsulesT,YandX,thevaluesofRTNDTfot'heDonaldC.CookUnit2vesselcorebeltlineregion,atthe1/4Tand3/4Tpositions.
after32EFPYofoperation, are-projected tobe163'Fand 130'F,respectively.
(7)TheDonaldC.CookUnitNo.2vesselplates,weldmetal,andHAZmateriallocatedinthecorebeltlineregionareprojected toretainsufficient toughness tomeetthecurrentrequirements of10CFR50AppendixGthroughout thedesignlifeoftheunit.  


23TABLE4.9CALCULATEDFLUENCERATESANDLEADFACTORSINDONALDC.COOKUNIT2Location.Radius(cm)FluenceRate[n/(cm2'"1)]LeadFactors4'apsule40'apsulecapsulesIDs,V,W,Z(4')T$U$X$Y(40)VesselIDVessel1/4-TVessel3/4-T211.41211.41219.71225.19236.142.746E+106.245E+102.125E+101.164E+102.221E+91.292.3612.362.945.3728.12 fluenceratesattheinnerradius,1/4-T,and3/4-TlocationsinTable4.9areobtainedfromTable4.8byinterpolation(orextrapolation).ThecapsulefluenceratesandtheleadfactorsarealsosummarizedinTable4.9.4.4.2NeutronDosimeterTestinandAnalsisThegammaactivitiesofthedosimetersweredeterminedinaccordancewithProcedureXI-MS-101-0usinganIT-5400multi-channelanalyzerandaGe(Li)coaxialdetectorsystem.ThecalibrationoftheequipmentwasaccomplishedwithMn,Co,and3CsradioactivitystandardsobtainedfromtheU.S.DepartmentofCommerceNationalBureauofStandards.ThedosimeterwireswereweighedonaMettler-TypeH6Tbalance.Allactivitieswerecorrectedtothetime-of-removal(TOR)atreactorshutdown.ThereferencesfortheproceduresusedinprocessingthedosimetersASTME181-82,"DetectorCalibrationandAnalysisRadionuclides"ASTME261-77,"DeterminingNeutronflux,Fluence,andSpectraRadioactiveTechniques"ASTME262-85,DeterminingThermalNeutronFluxbyRadioactiveTechniquesASTM-E263-82,"DeterminingFastNeutronFluxbyRadioactivationofIron"ASTME264-82,"DeterminingFastNeutronFluxbyRadioactivationofNickel"ASTME523-82,"MeasuringFastNeutronFluxDensityofRadioactivationofCopperASTME704-84,"DeterminingFastNeutronFluxDensitybyRadioactivationofUranium-238"ASTME705-84,"DeterminingFastNeutronFluxDensitybyRadioactivationofNeptunium-237"TheresultsoftheneutrondosimetryanalysisprocedurearesummarizedinTables4.10to4.16.Theequationsanddefinitionsusedforneutrondosimetryanalysisaresummarizedintable4.10.Theneutron 25TABLE4r10EQUATIONSANDDEFINITIONSFORNEUTRONDOSVifETRYANALYSIS/JATOg~NoFJo(E)d(E)dEQPj(lmLTJ)el(Ttj)j~LhereATOR~produceauc'Lideactivitracandofirradiacion,bq/ag;o(E)renergy-dependeataccivacioncrossseccioa(ca)fordosineccra,29(E)~energyHepcndentfluenceraceatsurvcillaacelocacioa;Yproductnuclideperrcactioa(fissionyield);l~decaycoastaatoftheproductauclidc(d1);Pj~fractionoffullpoverduringoperacingperiodj;T.rlcagchoftineforirradiacioniatcrvalj;k~rinefroabeginaingofirradiationtocineofrcnovaL;r..>elapsedcinefronbeginningofirradiaciontocadofincervalj;Nrnuaberoftargetsconepcragindosinetcr;and0Jrnuaberofirradiattonintervaled.+WASATJo(E)d(E)dg0vbercASAT~reactiooracepertargetnucleus.(C.1)(C.2)f.Wo(E)d(K)dgs4(E)dgKr.ASATd(K>gt)(4.3)vheteog~cftcccivcspectrua-averagedcrossseccionaadtd(K)dE~flucnccraceforneutronsvithenergiesgreaterthanEtNeV(s(K>gt)).tSubstitutingEq.(2.2)iotoEq.(2.1)andsolvingforASAT,oneobca'LasAhgT~TORSATNoTQPJ(1-c"j)e"j)j~LReplacingASATinEq.(2.4)byASATiaEq.(2.3),oocobtainsd(E>E)~ATORJNoYogQPj(L-eLTj)el(T-tj)jeLThetocalfluenceischengivenby(C.4)(4.5)JKE>gt)~d(E>gt)QPjTjjRThecharnelneutronfluencerace(ptb)isdaterainedfroarbebareaodcsdniua-coveredcobaltactivici<<susingEq.(2.F)belov.h~'bCdNoc(P.(1c-XTj)e-A(T-j)j-lwereAbbarecobaltactiviry(dpsing),AOd~cadniun-coveredcobalr.activity(dps/ag),No~nuaberofcobalt-59sconeperagofcobalt,andooi3F.Lbarns.(4.6)(C.y)DefinitionaTheLeadfaccor(LF)risdefinedasfollovs>doeucroafluea<<erace(E>gr)atthecapsulecenteraaxtauaaeutronflucnccraceatthePVsanerradtusThcsaturaciontacror(SF)isgivenbrSF~1JpP'(1-elTj)el(T-cJ)jaL~Anoregeneraldefiaicioncanbcstatedbyreplacingthedeaoaiaatorbytheuaxiuuaneutronfinancerateacanypointiathepressurevessel(PV)~
==2.0 BACKGROUND==
TABLE4.11CONSTANTSFORPROCESSINGDOSIMETRYDATAReactionN0(atoms/mg)HalE-Life(day-1)X-rayBranchingFissionAtomAtomicIntensityYieldFractionWeight54Fe(n,p)4Mn6.254x10312.50d2.218x1030.99978835keV0.99449811keV7004x101870'85d9.783x105Ni(n,p)Co59Co(n,y)Co1.022x105.271y3.600x100.9990Q1173keV0.999891332keV"Ti(n,p)4Sc1.018x1083.85d8.261x100.99989889keV0.999991120.keV0.08147.900.05855.8470.682758.701.000058.933263Cu(n,a)Co6.555x105.271y3.600x100.9990Q1173keV0.999881332keV0.691763.546237Np(n,f)3Cs2.540x1030.17y6.290x100.8530Q662ke'V6.267.1.0000237.0482238U(nf)137Cs2'30x101830.17y6'90x100'5309662keVF00010000238'508CSi 27TABLE4.12REACTORPOWER-TIMEHISTORYFORDONALDC.COOKUNIT2CAPSULETaleStep12345678910ll1213141516171819202122232425262728293031323334i35363738394041OperatingPeriod3/784/785/786/787/788/789/7810/7811/7812/781/79z/793/794/795/796/797/798/799/7910/7911/7912/791/80Z/803/804/805/806/807/808/809/8010/8011/8012/801/812/813/814/815/816/817/81FractionofFullPower*P]0.24370.15440.25940.63820.43960.60660.85310.88250.48080.92570.92570.92570.92570.91420.58350.00000.90330.96560.96560.59180.00000.00000.44470.91910.91910.91910.91910.82720.59260.96690.96690.56140.00000.59790.97820.97820.44180.00000.35250.78060.7201IrradiationIntervalTJ1030313031313031303131283130313031313031303131293130313031313031303131283130313031DecayT11MT-t328912861283028002769273827082677264726162585255725262496246524352404237323432312228222512220219121602130209920692038200719771946191618851854182617951765173417041673 2vTABLE4.12(Continued)REACTORPOWER-TIMEHISTORYFORDONALDC.COOKUNIT2CAPSULETimeStepOperatingPeriodFractionofFullPower*P]IrradiationIntervalTjDecayTimeT-t'2434445464748495051525354555657585960616263646566676869707172737475767778798081828/819/8110/8111/8112/811/822/823/824/825/826/827/828/829/8210/8211/8212/821/832/833/834/835/836/837/838/839/8310/8311/8312/831/842/843/844/845/846/847/848/849/8410/8411/8412/840.95160.95160.13430.96120.96120.96120.96120.40280.95690.95690.95690.95690.41150.90760.92150.66690.00000.12170.97480.99890.99300.96920.77120.66730.91570.91720.48150.16590.93970.96230.94100.30540.00000.00000.00000.54240.92000.94300.95750.84720.432131303130313128313031303131303130313128313031303131303130313129313031303131303130311642161215811551152014891461143014001369133913081277124712161186115511241096106510351004974943912882851821790759730699669638608577546516485455424 29TABLE4.12(Continued)REACTORPOWER-TIMEHISTORYFORDONALDC.COOKUNIT2CAPSULEXTimeStepOperatingPeriodFractionofFullPower*P~IrradiationIntervalTgDecay~*--,T"lme-''-t~J838485868788899091929394951/852/853/854/855/856/857/858/859/8510/8511/8512/851/862/860.52080.99160.97640.99240.99860.99850.42950.02370.00000.06410.54370.79420.80000.59973128313031303131303130313128*FullpowerlevelforCookUnit2is3391HWt.Timeofremovalisreferencedto2/28/86,2400hr.3933653343042732432121811511209059280 30TABLE4.13CORRECTIONFACTORSTOOBTAINMEASUREDSATURATEDACTIVITIESATCAPSULEXCENTERLINEReactionSaturationFactorGradientFactorImpurityFactor*5Fe(n,p)Mn58Ni(n,p)58Co63Cu(n,a)Co237Np(nf)137Cs238U(nf)137Cs39Co(n,y)60Co1.6311.7202.3409.0379.0372.3401.0511.1640.95381.01.01.1641.01.01.01.01.01.0*Impuritieswereassumednegligible.
Theallowable loadingsonnuclearpressurevesselsaredetermined byapplyingtherulesinAppendixG,"Fracture Toughness Requirements,"
TABLE4.14CALCULATEDSATURATEDMIDPLANEACTIVITIESINDONALDC.COOKUNIT2SURVEILLANCECAPSULESDosimeterorFluxSaturatedActivitiesfor40'urveillanceCasuleB/R=210.41cmR=211.41cmR=212.41cmSaturatedActivitiesfor4'urveillanceCasuleBq/R=210.41cmR=211.41cmR=212.41cm54Fe(n,p)4Mn58Ni(n,p)Co63Cu(n,a)Co237Np(n~f)137Cs238U(n,f)13Cs46Ti(n,p)46Sc$(E>1.0MeV)g(E>0.1MeV)2.506E+112.111E+111.717E+113.240E+062.648E+062.170E+064.953E+074.054E+073.313E+073.471E+052.867E+052.390E+053.279E+072.749E+072.234E+073.963E+063.260E+062.640E+067.872E+056;454E+055.337E+057.544E+106.245E+105.048E+101.856E+061.535E+061.275E+062.732E+072.260E+071.847E+072.428E+052.026E+051.704E+051.332E+071.119E+079.241E+061.880E+061.561E+061.286E+065.114K+054.240E+053.545E+053.297E+102.746E+102.258E+109.354E+107.901E+106.521E+10 32TABLE4.15COMPARISONOFMEASUREDANDCALCULATEDSATURATEDACTIVITIESFORFASTTHRESHOLDDETECTORSReactionIDRadialLocation(cm)TimeofRemovalActivity,ATOR(Bq/mg)MeasuredSaturatedActivity,AESAT(Bq/mg)CalculatedSaturatedActivity,AGSAT(Bq/mg)Calculated(C)DividedbyMeasures(E)Activity(Bq/mg)54Fe(n)54MnTopTop-middleMiddleBottom-middleBottom211.68211.68211.68211.68211.681.375E+31.407E+31.399E+31.423E+31.367E+3Average1.394a0.023E+32.390E+32.648E+31.1083Cu(na)0Coop-middleMiddleBottom-middle211.18211.18211.181.197E+21.202E+21.216E+2Average1.205~0.010E+22.689E+22.867E+21.066Ni(n)CoTop-middleMiddleBottom-middle212.18212.18212.181.837E+41.808E+41.840E+4Average1.828a0.018E+43.660E+44.054E+41.108237N(nf)137CsMiddle211.413.142E+32.839E+42.749E+40.9683238U(nf)137Csiddle211.413.763E+23.400E+33.260E+30.9588 33TABLE4.16THERMALNEUTRONFLUENCERATEINCAPSULEXAxialLocationBareCadmium-CoveredSaturatedActivity(Bq/mg)ThermalFluenceRate[n/(cms1)]TopCoBottomCoAverage3.448E+073.402E+071.445E+071.445E+07*5.283E+105.161E+105.222E+10+Assumedtobesameastopvalue.
of10CFR50[1].Inthecaseofpressure-retaining components madeofferriticmaterials, theallowable loadingsdependonthereference stressintensity factor(KIR)curveindexedtothereference nilductility temperature (RTNDT)presented inAppendixG,"P.otectionAgainstNon-Ductile Failure,"
34dosimetersandtheconstantsusedinprocessingthedosimetersaregivenin~~Table4.11.Thereactorpower-timehistorydatagiveninTable4.12areusedtocalculatethesaturationfactors(seedefinition,Table4.10)showninTable4.13.InTable4.13,thegradientcorrectionfactorsareobtainedfromthetransportcalculationsgiveninTable4.14andtheimpuritycorrectionfactorsareassumedtobenegligible.EachofthemeasuredactivitiesAT0R,Table4.15aremultipliedbythethreeappropriatecorrectionfactorsinTable4.13toobtainthemeasuredsaturatedactivitiesASAT,forcomparisonwiththecalculatedvalues.Theresults(Table4.15)indicatethatthecalculatedvaluesare+11(to-4$fromthemeasuredvalues.ThethermalneutronfluenceratesaregiveninTable4.16andareobtainedusingEq.(4.7)fromTable4.10.Thesevaluesweretoolowtocauseanysignificantburninorburnout~~~corrections.4.2.3ResultsofNeutronTransortandDosimetrAnalsisThecomparisonofthecalculatedandthederivedfluenceratesinTable4.17indicatesverygoodagreement:6.019x10fromthemeasurementsand6.245x10fromthecalculations.ThederivedfluenceratefromthemeasurementsisusedtodeterminethefluencesshowninTable4.18.Theassembly-wisesourcedistributionforDonaldC.CookUnit2CapsuleXanalysisisprovidedinAppendixA.Thethree-dimensional(3-D)fluxsynthesismethodusedinthisreportisgiveninAppendixB.4.3MechanicalProcrtTestsTheirradiatedCharpyV-notchspecimensweretestedonacalibrated"SATECModelSI-1K240ft-lb,16ft/secimpactmachineinaccordancewithProcedureXI-MS-104-1.Thetesttemperatures,selectedtodeveloptheductile-brittletransitionanduppershelfr'egions,wereobtainedusingaliquidconditioning
ofSectionIIIoftheASMECode[2].Further,thematerials inthebeltlineregionofthereactorvesselmustbemonitored forradiation-induced changesinRTNDTpertherequirements ofAppendixH,"ReactorVesselMaterialSurveillance ProgramRequirements,"
of10CFR50.TheRTNDTisdefinedinparagraph NB-2331ofSectionIIIoftheASMECodeasthehighestofthefollowing temperatures:
(1)Drop-weight NilDuctility Temperature (DW-NDT)perASTME208[3];(2)60degFbelowthe50ft-lbCharpyV-notch(Cv)temperature; (3)60degFbelowthe35milCtemoerature.
TheRTNDTmustbeestablished forallmaterials, including weldmetalandheat-affected zone(HAZ)materialaswellasbaseplatesandforgings, whichcomprisethereactorcoolantpressureboundary.
Itiswellestablished thatferriticmaterials undergoanincreaseinstrengthandhardnessandadecreaseinductility andtoughness whenexposedtoneutronfluencesinexcessof10neutronspercm(E>1MeV)[4].Also,ithasbeenestablished thattrampelements, particularly, copperandphosphorus, affecttheradiation embrittlement responseofferriticmaterials[5-7].Therelationship betweenincreaseinRTNDTandcoppercontentis openingloading(MOL)fracturemechanics specimens.
Currenttechnology limitations resultinthetestingofthesespecimens attemperatures wellbelowtheminimumservicetemperature inordertoobtainvalidfracturemechanics dataperASTME399[10],"Standard MethodofTestforPlane-Strain FractureToughness ofMetallicMaterials."
Currently, thesespecimens arebeingstoredpendinganacceptable testingprocedure liketheJ<fracturetesting[11]hasbeendefined.Thisreportdescribes theresultsobtainedfromtestingthecontentsofCapsuleX.Thesedataandthoseobtainedpreviously fromCapsulesTandYareanalyzedtoestimatetheradiation-induced changesinthemechanical properties ofthepressurevesselatthetimeoftherefuelling outageaswellaspredicting thechangesexpectedtooccuratselectedtimesinthefutureoperation oftheDonaldC.CookUnitNo.2powerplant.  


35TABLE4.17COMPARISONOFFASTNEUTRONFLUENCERATESFROMTRANSPORTCALCULATIONSANDDOSIMETRYMEASUREMENTSFORCAPSULEXReactionMeasuredSaturatedActivity(Bq/mg)FluenceRateDerivedfromMeasurements[n/(cm2.s1))CalculatedFluenceRate(n/(cm2s1)]CalculatedDividedbyDerivedFluenceRateFe(n,p)Mn63Cu(n,0)Co5Ni(n,p)Co2.390E+032.689E+023.660E+04238U(nf)137Cs3.400E+03Average3Np(n,f)Cs2.839E+045.637E+105.860E+105.637E+106.452E+106.511E+106.019~0.432E+106.245E+106.245E+106.245E+106.245E+106.245E+106.245E+101.1081.0661.1080.96790.95911.042+0.074TABLE4.18CALCULATEDPEAKFLUENCESINPRESSUREVESSELBASEDONCAPSULEXDOSIMETRYLocation5.273EFPYFluence(ncm2)10EFPYFluence(ncm2)15EFPYFluence(ncm2)32EFPYFluence(ncm2)SurveillanceCapsule*PressureVesselIRPressureVessel1/4-TPressureVessel3/4-T1.002E+193.406E+181.865E+183.562E+171.899E+196.460E+183.538E+186.753E+172.849E+199.690E+185.306E+181.013E+186.078E+192.067E+191.132E+192.161E+18*Basedonaveragedfluenceratederivedfromdosimetrymeasurements.
==3.0 DESCRIPTION==
36bothmonitoredwithaFlukeModel2168Adigitalthermometer.TheCharpyV-notchimpactdataobtainedbySwRIonthespecimenscontainedinCapsuleXarepresentedinTables4.19through4.22.TheshiftsintheCharpyV-notchtransitiontemperaturesdeterminedforthevesselplate,theweldmetalandtheHAZmaterialsareshowninFigures5through8.TheCapsuleTandYresultsareincludedforcomparison.AsummaryoftheshiftsinRTNDTdeterminedat,the30ft-lblevelasspecifiedinAppendixGto10CFR50[1],andthereductioninCuppershelfenergiesforeachmaterial,ispresentedinTable4.23.TensiletestswerecarriedoutinaccordancewithProcedureXI-MS-103-1usinga22-kipcapacityMTSModel810MaterialTestSystemequippedwithanInstronCatalogueNo.G-51-13A2-in.straingageextensometerandHewlettPackardModel7004BX-Yautographicrecordingequipment.Tensiletestsontheplatematerialandtheweldmetalwererunat250Fand550'Fatastrainrateof0.005in/in/min.throughthe0.2$offsetyieldstrengthusingservocontrolandrampgenerator.Theresults,alongwithtensiledatareportedbyWestinghouseontheunirradiatedmaterials[12],arepresentedinTable4.24.Theload-strainrecordsareincludedinAppendixC.TestingoftheWOLspecimenswasdeferredattherequestofIndiana4MichiganElectricCompany.ThespecimensareinstorageattheSwRIradiationlaboratory.InspectedandcalibratedusingspecimensandproceduresobtainedfromtheArmyMaterialsandMechanicsResearchCenter.
OFMATERIALSURVEILLANCE PROGRAMTheDonaldC.CookUnitNo,2materialsurveillance programisdescribed indetailinMCAP8512[12],datedNovember1975.Eightmaterialssurveillance capsuleswereplacedinthereactorvesselbetweenthethermalshieldandthevesselwallpriortostartup,seeFigure1.Theverticalcenterofeachcapsuleisoppositetheverticalcenterofthecore.ThecapsuleseachcontainCharpyV-notches, tensile,andWOLSpecimens machinedfromtheSA533GrB,CL2plate,weldmetal,andheat-affectedzone(HAZ)materials locatedatthecorebeltline.
37TABLE4.19CHARPYIMPACTPROPERTIESOFLONGITUDINALPLATEDONALDC.COOKUNIT2CAPSULEXSouthwestResearchInstituteDepartmentofMaterlaisSciencesCHARPYTESTDATASHEETMATERIAL-LONGITUDINALProjectNo.06-8888-001Date4/28/87SPECIMENNO.TEMPoFENERGYFT-LBSLATERALEXPANSIONFRACTUREAPPEARANCEPHOTOGRAPHML-25RT-7117.0.017ML-26+10028.5.026ML-32+12530.5.02615ML-27+15040.0.03730~%wt'L-31+17570.0.06145ML-28+20083.5.07290ML-29+25099.0.085100ML-30+300107.0.085300,Q+)
Thechemistries andheattreatments ofthevesselsurveillance materialsaresummarized inTable3.1.Alltestspecimens weremachinedfromthetestmaterialsatthequarter-thickness (1/4T)locationafterperforming asimulated postweldstress-relieving treatment.
MeldandHAZspecimens weremachinedfromastress-relieved weldmentwhichjoinedsectionsoftheintermediate andlowershellplates.HAZspecimens wereobtainedfromtheplateC5521-2sideoftheweldment.
Thelongitudinal basemetalCspecimens wereorientedwiththeirlongaxisparalleltotheprimaryrollingdirection andwithV-notches perpendicular tothemajorplatesurfaces.
Thetransverse basemetalCvspecimens wereorientedwiththeirlongaxisperpendicular totheprimaryrollingdirection andwithV-notches perpendicular tothemajorplatesurfaces.Tensilespecimens weremachinedwiththelongitudinal axisperpendicular totheplateprimaryrollingdirection.
TheMOLspecimens weremachinedwiththesimulated crackparalleltotheprimaryrollingdirection andperpendicular tothemajorplatesurfaces.
Allmechanical testspecimens, seeFigure2,weretakenatleastoneplatethickness fromthequenchededgesoftheplatematerial.
CapsuleXcontained 44CharpyV-notched specimens (8longitudinal and X(220')270iV('8>>'')Y(320')2(356'il80'oS(~.)U(140')I90'eac.or VeeselTherr.".al Si'l'ore3arrelT(<0')FIGUREl..ARRANGEMENT OFSURVEILLANCE CAPSULESINTHEPRESSUREVESSEL TABLE3.1DONALDC.COOKUNITNO.2REACTORVESSELSURVEILLANCE MATERIALS
[12]HeatTreatment HistorShellPlateMaterial:
Heatedto1700Ffor4-1/2hours.waterquenched.
Heatedto1600Ffor5hours,waterquenched.
Temperedat1250Ffor4-1/2hours,aircooled.Stressrelievedat1150Ffor51-1/2hours,furnacecooled.Weldment:
Stressrelievedat1140Ffor9hours,furnacecoo1ed.ChemicalComposition (Percent)
MaterialCMnPSiNiMoCuCrPlateC-5521-2PlateC-5521-2WeldMetalWeldMetal(0.211.290.0130.0150.221.280.0170.0140.111.330.0220.0120.081.420.0190.0160.160.580.270.580.440.970.360.960.500.140.550.110.0720.540.0550.0680.050.07(a)LukensSteelanalysis.
(b)Westinghouse analysis.
(c)ChicagoBridgeandIronanalysis.
(293~lOC3~i4I'04ZJ43I(a)Charpvv-notchimpcc'pe~Jmen II.CCI'2+9III6II1PS3~~1ItI99I444II.26442I4~al2RQA~i18$,-o~~~V~95+935~ON(b)Temiiesuecimenl,45aeaIIU24~Z<S439I'XT~3IoaR(c)Wedca"enir~loa"Incspe'r."enFIGURE2.VESSELMATERIALSURVEILLANCE SPECIMENS 1012transversefromtheplatematerial, plus12eachfromweldmetalandHAZmaterial);
4tensilespecimens (2plateand2weldmetal);and4transverse plateWOLspecimens.
Thespecimennumbering systemandlocationwithinCapsuleXisshowninFigure3.CapsuleXalsowasreportedtocontainthefollowing dosimeters fordetermining theneutronfluxdensity:TaretElementForm~QuantitIronCopperNickelCobalt(inaluminum)
Cobalt(inaluminum)
Uranium-238 Neptunium-237 BarewireBarewireBarewireBarewireCdshieldedwireCdshieldedoxideCdshieldedoxideTwoeutecticalloythermalmonitorshadbeeninsertedinholesinthesteelspacesinCapsuleX.One(locatedatthebottom)was2.5$Agand97.5$Pbwithameltingpointof579'F.Theother(locatedatthetopofthecapsule)was1.75$Ag,0.75$Sn,and97.5$Pbhavingameltingpointof590'F.
11TOPMT-7LIT-8TENSILELIT-16WOLMT-15WOLMT-14WOLWOLLIW7MWSMW-47MW-48MT-47MT-48MW-45MW-46Mr-45MT-heTENSILECHARPYCHARPYSPECIMENCODE:MT-PLATEC5221-2TRANSVERSE 213MW-43MW-44MT-43MT-44LIW-41MW-42MT-41LIT-42MW-39MW-40MT-39MT40LIW>>37MW-38MT-37MT-38CHARPYCHARPYCHARPYCHARPYML-PLATEC5221-2LONGITUDINAL MW-WELDMETALMH-WELDHEATAFFECTEDZONEMH-47MH-48ML-31M1.-32CHARPYMH45MH-46ML-29ML-30CHARPYMH-43MH44ML-27M1.-28CHARPYMH-41MH42ML-25M1.-28CHARPYBOTTOMMH-39MH40MH-37MH-38CHARPYFIGURE3.ARRANGEMENT OFSPECIMENS ZNCAPSULEX 124.0TESTINGOFSPECIMENS FROMCAPSULEXThecapsuleshipment, capsuleopening,specimentesting,andreporting ofresultswenecarriedoutinaccordance withtheProjectPlanforDonaldC.CookUnitNo.2ReactorVesselIrradiation Surveillance Program.TheSwRINuclearProjectsOperatingProcedures calledoutinthisplaninclude:(1)XI-MS-101-1, "Determination ofSpecificActivityandAnalysisofRadiation DetectorSpecimens" (2)XI-MS-103-1, "Conducting TensionTestsonMetallicSpecimens" (3)XI-MS-104-1, "CharpyImpactTestsonMetallicSpecimens" (4)XIII-MS-103-1, "OpeningRadiation Surveillance CapsulesandHandlingandStoringSpecimens" (5)XIII-MS-104-2, "Shipment ofWestinghouse PMRVesselMaterialSurveillance CapsuleUsingSwRICaskandEquipment" Copiesoftheabovedocuments areonfileatSwRI.4.1ShipmentOoeninandInsectionofCapsuleSouthwest ResearchInstitute preparedProcedure XIII-MS-104-2 fortheshipmentofCapsuleXtotheSwRIlaboratories.
SwRIpersonnelseveredthecapsulefromitsextension tube,sectioned theextension tubeintoseverallengths,andsupervised theloadingofthecapsuleandextension tubematerialsintotheshippingcaskfortransporttoSanAntonio,Texas.Thecapsulewasopenedandthecontentsidentified andstoredinaccordance withProcedure XIII-MS-103-1.
Aftersawingoffthecapsuleends,thelongseamweldsweremilledoffusingaBridgeport verticalmillingmachine.Thetophalfofthecapsuleshellwasremovedandthespecimens andspacerblockswerecarefully removedandplacedinindexedreceptacles identifying eachcapsulelocation.
Afterthedisassembly hadbeencompleted, eachspecimenwascarefully checkedtoinsureagreement withthe 13identification andlocationaslistedinMCAP8512.[12]
Nodiscrepancies werefound.Thethermalmonitorsandneutrondosimeter wireswereremovedfromtheholesinthespacers.Thethermalmonitors, contained inquartzvials,wereexaminedandnomeltingwasobserved, thusindicating thatthemaximumtemperature duringexposureofCapsuleXdidnotexceed579'F.4.2NeutronTranscrtandDosimetrAnalsisAspartofthesurveillance testingandevaluation program,theneutrontransport anddosimetry analysisservestwopurposes:
(1)todetermine theneutronfluence(E>1.0MeV)inthesurveillance capsulewherethemetallurgical testspecimens arelocatedand(2)todetermine theneutronfluence(E>1.0MeV)incidentonandwithinthereactorpressurevessel(RPV).Thecurrentmethodology forRPVfluencedetermination isbasedoncombining resultsoftransport calculations withmeasureddosimeter activities.
Thetransport calculations providethreeimportant setsofdataintheoverallanalysis:
(1)spectrum-weighted, effective dosimeter crosssections, (2)leadfactorsforvariouslocations intheRPV,and(3)fluenceratesatlocations ofinterest.
Thecalculated effective crosssectionsfordifferent dosimeter saredividedintothemeasuredreactionratesinordertoobtainthefluencerate(E>1.0MeV)atthecapsulelocation.
Thecorresponding fluenceratesatvariousdepthsintotheRPVareobtainedbydividingthecapsulefluenceratebytheappropriate leadfactors.Boththeeffective crosssectionsandtheleadfactorsdependonlyonratiosofcomputedresultssothatabsolute


TABLE)1.20CHARPYIMPACTPROPERTIESOFTRANSVERSEPLATEDONALDC.COOKUNITNO.2CAPSULEXSouthwestResearchInstituteDepartmentofMaterialsSciencesCHARPYTESTDATASHEETMATERIAL-TRANSVERSEProjectNo.06-8888-001Date1!/28/87SPECIMENNO.TEMP'FE?tERGYFT-LBSU\TERALEXPANSIONFRACTUREAPPEARANCEPHOTOGRAPHYiMT-48+508.0F0070MT-37RT-7114.5.0130MT-38+10023.0.02215MT-46+10020.5.01910MT-47+12524.5.02410MT-39+15030.0.02920I'irgMT-40+20050.0.04830<<)T-45.20i)53.i).050~0IIi)T-44Ii".22">..60.l)..<)5580err4[~.2'.0!'>':"~r'a3N
14calculations arenotrequired.Themeasureddosimeter activities providethefluenceratenormalization.
However,absolutefluenceratesarecalculated tocomparewithmeasurements toprovideameasureoftheuncertaintyinvolvedintheRPVfluencedetermination procedure.4.2.1NeutronTransortAnalsisAdiscreteordinatescalculation usingtheDOT[13]codewasperformed toobtaintheradial(R)andazimuthal (0)fluence-rate distribution forthegeometryshowninFigure4.Theinclusion ofthesurveillance capsulesintheR-0modelismandatory toaccountforthesignificant perturbation effectsfromthephysicalpresenceofthecapsule.The47-groupenergystructure fortheSAILOR[14]cross-section libraryisgiveninTable4.1.AnS8angularstructureandaP3Legendrecross-section expansion wereusedinthecomputations.
Thefine-group 0dosimeter crosssectionsfortheCu(n,a)CoreactionwereobtainedfromENDF/B-Vfileandwerecollapsed to47groupsusingafissionplus1/Eweighting spectrum.
TheotherreactioncrosssectionsweretakenfromtheSAILORcross-section library.ThereactioncrosssectionsaregiveninTable4.2.Theresultsofthetransport calculations requiredfortheRPVfluenceanalysisarepresented inTables4.3through4.9.Table4.3containsthecalculated absolutefluence-rate spectraforthecenterline ofthesurveillance capsulesandinTable4.4arethecalculated saturated activities obtainedbyfoldingtheresultsofTables4.3and4.2Thespectrum-average crosssections, Table4.5,areobtainedfromtheresultsofTables4.3and4.4.Table4.6showsthatthepeakfluenceratesattheinnerradius,1/4-T,and3/4-Tlocations areatthe8=45'zimuthal, andTable4.7arethegroupfluxesatthepeaklocation.
Table4.8showstheradialgradients ofthefluencerates(E>1.0MeV)throughthereactorpressurevessel.Thepeak 1540CAPSULEST,U,X,YFORMERPLATErPrRPVDOWNCOMER THERMALSHlELDWATERGAPBARREL4CAPSULESS,V,W,ZFIGURE4.R-0GeometryfoiDonaldC.CookUnit2.
'6TABLE4.147-GROUPENERGYSTRUCTURE GroupLowerenergy(MeV)GroupLowerenergy(Mev)101213141516171819202122232414.19*12.2110.008.617.416.074.973.683.012.732.472.372.352.231.921.651.351.000.8210.7430.6080.4980.3690.298252627282930313233343536373839404142434445460.1830.1110.06740.04090.03180.02610.02420.02190.01507.10x3.36x1.59x4.54x2.14x1.01x3+73x1.07x5.04x1.86x8.76x4.14x1.00x1.00x1010310310-4104104101010-610-61071071010-11*TheupperenergyofGroup1is17.33MeV.
17TABLE4.2REACTIONCROSSSECTIONS(BARNS)USEDINCALCULATIONS FORDONALDC.COOKUNIT2Group1234'67891011121314151617181920212223242526272829303132333435363738394041424344454647Energy(MeV)1.733E+011'.419E+Ol 1.221E+01 1.000E+Ol 8.607E+00 7.408E+00 6.065E+00 4.966E+00 3.679E+00 3.012E+00 2.725E+00 2.466E+00 2.365E+00 2.346E+00 2.231E+00 1.920E+00 1.653E+00 1.353E+00 1.003E+00 8.208E-01 7.427E-01 6.081E-01 4.979E-01 3.688E-01 2.972E-01 1.832E-01 1.111E-01 6.738E-02 4.087E-02 3.183E-02 2.606E-02 2.418E-02 2.188E-02 1.503E-02 7.102E-03 3.355E-03 1.585E-03 4.540E-04 2.144E-041.013E-04 3.727E-05 1.068E-05 5.043E-06 1.855E-06 8.764E-07 4.140E-07 1.000E-07 U-238(nf)1.275E+00 1.086E+00 9.844E-Ol 9.864E-01 9.891E-01 8.574E-01 5.849E-01 5.615E-01 5.475E-01 5.463E-01 5.527E-01 5.521E-01 5.512E-01 5.504E-01 5.390E-01 4.685E-01 2.706E-01 4.502E-02 1.102E-02 2.881E-03 1.397E-03 5.378E-04 1.502E-04 8.333E-05 6.168E-05 4.668E-05 4.015E-05 4.000E-05 6.176E-05 8.610E-05 8.700E-05 8.700E-05 8.700E-05 5.650E-05 4.860E-11 7.439E-10 4.199E-04 1.464E-08 1.044E-08 1.243E-08 1~955E-083.086E-08 4.770E-08 7.171E-08 5.067E-08 1.881E-08 1.182E-09 Np-237(nf)2.535E+002.320E+00 2.334E+00 2.329E+00 2.248E+00 1.965E+00 1.520E+00 1.538E+00 1.638E+00 1.680E+00 1.697E+00 1.695E+00 1.694E+00 1.693E+00 1.677E+00 1.645E+00 1.604E+00 1.543E+00 1.389E+00 1.205E+00 9.845E-01 6.437E-01 2.642E-01 8'00E-023.552E-02 2.043E-02 1.542E-02 1.228E-02 1.088E-02 1.023E-02 1.002E-02 9.906E-03 9.723E-03 1.004E-02 6.506E-03 8.716E-03 2.303E-02 3.701E-02 6.129E-029.027E-022.296E-02 1.014E-02 4.011E-03 9.350E-03 1.407E-02 4.328E-03 8.332E-02 Fe-54(n)2.686E+01 4.137E-01 5'76E-015.781E-01 5.888E-01 5.590E-01 4.697E-01 3.199E-01 1.762E-01 1.155E-01 7.755E-02 5.111E-02 4.756E-02 4.484E-02 2.008E-02 4.771E-03 6.335E-04 1.311E-05 00000000000000000000000000000Ni-58(n)2.962E-01 4.416E-01 6.103E-01 6.588E-01 6.553E-01 6.285E-01 5.365E-Ol 3.917E-01 2.287E-01 1.658E-01 1.131E-01 9.308E-02 9.232E-02 8.614E-02 4.661E-02 2.660E-03 1~337E>>024.438E-03 5.023E-04 1.729E-04 4.914E-05 7.673E-06 8.903E-07 4.070E-08 1.832E-15 0000000000000000000000C0-63(nn)3.682E-02 4.540E-02 5.357E-02 3.811E-02 1.906E-02 9.277E-03 2.915E-03 4.437E-04 3.568E-05 5.831E-06 1.707E-06 6.834E-07 4.637E-07 3.430E-07 1.150E-07 1.536E-08 0000000000000000000000000000000 TABLE4.3ABSOLUTECALCULATED NEUTRONFLUENCERATESPECTRA[4(E))ATTHECENTEROFSURVEILLANCE CAPSULES(SC)FORDONALDC.COOKUNIT2GroupUpperEnergy(MeV)SCat40'Cat44(E)*n'cm2's"11234567891011121314151617181920212223242526272829303132331.733E+01 1.419E+01 1.221E+01 1.000E+01 8.607E+00 7.408E+00 6.065E+00 4.966E+00 3.679E+00 3.012E+00 2.725E+00 2.466E+00 2.365E+00 2.346E+00 2.231E+00 1.920E+00 1.653E+00 1.353E+00 1.003E+00 8.208E-01 7.427E-01 6.081E-01 4.979E-01 3.688E-01 2.972E-01 1.832E-01 1.111E-01 6.738E-02 4.087E-02 3.183E-02 2.606E-02 2.418E-02 2.188E-02 6.93656E+06 3.09479E+07 1.27275E+08 2.59658E+08 4.64990E+08 1.10830E+09 1.59842E+09 3.24363E+09 2.93332E+09 2.36696E+09 2.89003E+09 1.42825E+09 4.42338E+08 2.12501E+09 5.48432E+09
.7.12292E+09 1.03149E+10 2.05020E+10 1.54321E+10 6.80836E+09 2.08115E+10 1.90620E+10 1.87027E+10 1.87067E+10 2.59350E+10 2.32048E+10 1.63390E+10 1.52521E+10 5.03766E+09 1.71555E+09 5.79265E+09 3.69441E+09 8.14806E+09 5.76403E+06 2.51896E+07 9.75622E+07 1.92220E+08 3.27455E+08 7.51266E+08 1.00403E+09 1.79877E+09 1.45231E+09 1.12970E+09 1.33287E+09 6.52104E+08 1.98677E+08 9.45496E+08 2.41337E+09 2.98454K+09 4.21588E+09 7.93826E+09 5.72833E+09 2.54752E+09 7.26207E+09 6.55344E+09 6.48139E+09 6.28913E+09 8.87760E+09 7.80143E+09 5.48592E+09 5.10511E+09 1.69700E+09 6.14043E+08 1.78767E+09 1.19550E+09 2.67201E+09 19TABLE4.4CALCULATED SATURATED ACTIVITIES ATTHECENTEROFSURVEILLANCE CAPSULESFORDONALDC.COOKUNIT2ReactionSurveillance Capsuleat4'Bq/g)Surveillance Capsuleat40'Bq/g)54Fe(n,p)54Mn 5Ni(n,p)Co63Cu(n,a)60CoNp(n,f)3Cs238U(nf)137Cs1.535E+62.260E+72.026E+51.119E+71.561E+62.648E+64.054E+72.867E+52.749E+73.260E+6TABLE4.5DONALDC.COOKUNIT2SPECTRUM-AVERAGED CROSSSECTIONSATCENTEROFSURVEILLANCE CAPSULES(SC)a(barns)(Reaction54Fe(n,p) 58Ni(n~p)
Cu(n,n)7Np(n,f)238U(nf)46Ti(n,p)
SCat400.06780.09270.0007002.7630.344SCat4'.08940.11740.001132.5580.3740.0152/0o(E)y(E)dE (1)Jl$(E)dE TABLE4.620AZIMUTHAL VARIATION OF](>1)INRPVOFDONALDC.COOKUNITy(E>1.0MeV)n/cm's0-TR~219.781/4-TR~225.193/4-TR~236.1421234567890111213141516171819202122232425262728293031323334353637383940414243c,g46474849501.563.284.004.725.948.0010.0012.0014.0016.0018.0020.0021.5022.5023.5024.3925.0225.4826.3127.4928.3028.7429.4830.5031.5032.4733.4734.5035.2535.7536.2536.7537.2537.7538.2538.8139.2839.6640.0040.3440.7241.0541.4541.9242.3942.8743.3443.8244.2944.769.480E+09 9.169E+09 9.025E+09 9.486E+09 1.015E+10 1.085E+10 1.150E+10 1.217E+10 1.286E+10 1.350E+10 1.402E+10 1.432E+10 1.427E+10 1.418E+10 1.408E+10 1.401E+10 1.399E+10 1.399E+10 1.399E+10 1.408E+10 1.424E+10 1.434E+10 1.449E+10 1.482E+10 1.522E+10 1.568E+10 1.620E+10 1.678E+10 1.722E+10 1.751E+10 1.778E+10 1.800E+10 1.815E+10 1.822E+10 1.817E+10 1.804E+10 1.776E+10 1.766E+10 1.779E+10 1.802E+10 1.852E+10 1.899E+10 1.955E+10 2.008E+10-2.047E+10 2.075E+10 2.097E+10 2.112E+10 2.121E+10 2.125E+10 5.221E+09 5.176E+09 5.175E+09 5.037E+09 5.597E+09 6.001E+09 6.375E+09 6.749E+09 7.122E+09 7.466E+09 7.738E+09 7.883E+09 7.876E+09 7.839E+09 7.799E+09 7.779E+09 7.781E+09 7.784E+09 7;787E+09 7.847E+09 7.937E+09 7.990E+09 8.078E+09 8.251E+09 8.469E+09 8.712E+09 8.983E+09 9.277E+09 9.498E+09 9.630E+09 9.741E+09 9.828E+09 9.887E+09 9.908E+09 9.900E+09 9.902E+09 9.924K+09 9.975E+09 1.006E+10 1.016E+10 1.032E+10 1.046E+10 1.066E+10 1.090E+10 1.112E+101.130E+10 1.144E+10 1.154E+10 1.161E+10 1.164E+10 1.028E+09 1.041E+09 1.052E+09 1.073E+09 1.106E+09 1.175E+09 1.247E+09 1.320E+09 1.389E+09 1.450E+09 1.497E+09 1.523E+09 1~527E+091.527E+09 1.526E+09 1.527E+09 1.530E+09 1.532E+09 1.537E+09 1.551E+09 1.568E+09 1.578E+09 1.597E+09 1.628E+09 1.666E+09 1.708E+09 1.754E+09 1,803E+09 1.837E+09 1.858E+09 1.877E+09 1,893E+09 1.907E+09 1.920E+09 1.935E+09 1.954E+09 1.975E+09 1.994E+09 2.012E+09 2.028K+09 2.047E+09 2.064E+09 2.085E+09 2.112E+09 2.139E+09 2.165E+09 2.186E+09 2.203E+09 2.215E+09 2.221E+09 2'ABLE4.7CALCULATED NEUTRONFLUENCERATE[$(E)JSPECTRAINREACTORPRESSUREVESSELATPEAKAXIALANDAXIMUTHAL LOCATION(645')FORDONALDC.COOKUNIT2GroupUpperEnergy(MeV)0-TR=219.78$(E)1.0MeV)n/cm's1/4-TR~225.193/4-TR=236.142123456789011121314151617181920212223242526272829303132331.733E+01 1.419E+01 1.221E+01 1.000E+01 8.607E+00 7.408E+00 6.065E+00 4'66E+003.679E+00 3.012E+00 2.725E+00 2.466E+00 2.365E+00 2.346E+00 2.231E+00 1.920E+00 1.653E+00 1.353E+00 1.003E+00 8.208E-01 7.427E-01 6.081E-01 4.979E-01 3.688E-01 2.972E-01 1.832E-01 1.111E-01 6.738E-02 4.087E-02 3.183E-02 2.606E-02 2.418E-02 2.188E-02 0.53166E+07 0.23088E+08 0.90374E+08 0.17693E+09 0.30438E+09 0.71052E+09 0.97912E+09 0.17730E+10 0.13497E+10 0.10299E+10 0.11992E+10 0.60323E+09 0.17406E+09 0.80461E+09 0.19961E+10 0.22153E+10 0.30608E+10 0.47574E+10 0.31781E+10 0.16647E+10 0.43628E+10 0.38778E+10 0.42456E+10 0.41077E+10 0'0974E+10 0.55796E+10 0.42564E+10 0.37388E+10 0.15103E+10 0.99039E+09 0.13253E+10 0.90043E+09 0.22970E+10 0.22286E+07 0.97553E+07 0.36426E+08 0.70333E+08 0.11754E+09 0.26569E+09 0.35272E+09 0.64140E+09 0.53264E+09 0.43784E+09 0.53614E+09 0.27104E+09 0.84240E+08 0.40595E+09 0.10353E+10 0.13200E+10 0.19119E+10 0.36067E+10 0.27155E+10 0.11772E+10 0.46686E+10 0.40155E+10 0.45651E+10 0.53608E+10 0.61226E+10 0.62975E+10 0.41358E+10 0.33406E+10 0.89469E+09 0.28232E+09 0.18702E+10 0.11019E+10 0.20128E+10 0.36063E+06 0.15732E+07 0.53124E+07 0.96453E+07 0.14818E+08 0.30518E+08 0.37525E+08 0.67721E+08 0.63806E+08 0.55198E+08 0.70522E+08 0.36044E+08 0.12500E+08 0.62522E+08 0.15980E+09 0.25036E+09 0.38146K+09 0.96084E+09 0.92694E+09 0.35203E+09 0.19763E+10 0.18109E+10 0.20894E+10 0.29320E+10 0.29813E+10 0.33266E+100.20823E+10 0.15865E+10 0.40075E+09 0.12523E+09 0.10917E+10 0.71618E+09 0.11316E+10 22TABLE4.8RADIALGRADIENTOFFASTFLUENCERATE[P(E>1)JTHROUGHRPV,ATPEAKAZIMUTHAL ANDAXIALLOCATIONS INDONALDC.COOKUNIT2R(1)(cm)y(E>1)cm-s219.978221.14222.92224.70226.48228.26230.04231.82233.60235.39237.17238.95240.732.109E+101.922E+10 1.572E+10 1.239E+10 9.649E+97.452E+95.721E+94.369E+93.316E+92.494E+91.849E+91.331E+98.723E+9(1)RPVlinerbeginsatR=219.71cm.RPVbeginsat220.25andendsat241.62cm.1/4-T~225.19cm.3/4-T~236.14cm.


39TABLE4.21CHARPYIMPACTPROPERTIESOFHAZMATERIALDONALDC.COOKUNIT2CAPSULEXSouthwestResearchInstituteDepartmentofMaterialsSciencesCHARPYTESTDATASHEETMATERIAL-HAZProjectNo.06-8888-001Date4/28/87PHOTOGRAPHSPECIMENNO.TEMPoFENERGYFT-LBS.LATERALEXPANSIONFRACTUREAPPEARANCEMH-432525.0.01810MH-47+5048.5.03945H-37RT+7141.5.03640MH-45+10064.5.05460MH-38+10095.0.06870MH-48+125117.0.082100MH"42+15097.0.06780MH"41+200100.0F081100MH-40+20071.0.061100Mll-46+225110.0.076100.'ill-441+250119.0.08310011-39+300103.0.080100 4OTABLE4.22CHARPYIMPACTPROPERTIESOFMELDMETALDONALDC.COOKUNIT2CAPSULEXSouthwestResearchInstituteDepartmentofMaterialsSciencesCHARPYTESTDATASHEETMATERIAL-WELOProjectNo.06-8888-001Date4/28/87SPECINENNO.TEMP0FENERGYFT-LBSLATERALEXPANSIONFRACTUREAPPEARANCEPHOTOGRAPHXMW-47-2524.5.02210MW-4816.0.018MW-45+5019.5.01710MW-37RT+7124.0.02015MW-38+10027.0.03025MW-46+12561.5.05745MW-40+15070.5.064100MW"39+20075.5~069100MW-43+20061.0.058MW-42MW41+250+25064.0ee.o.061.057100IitooMW-44+300I't68.5t.069100 DliV~t~I~'~~l C0e:':'parr'ia'.e.--'-CapsuleT--e--CamisoleY,CapsleXe'O115'F103'FIcier0100200300400530a~4pce804F0ag./Wr7r~e~-:000100200Tes:.e,.Fera.ere,'c'OvcsFIGURE6.RADIATIONRESPONSEOFDONALDC.COOKUNITNO.2VESSELSHELLPLATEC5521-2(TRANSVERSEORIENTATION)  
23TABLE4.9CALCULATED FLUENCERATESANDLEADFACTORSINDONALDC.COOKUNIT2Location.Radius(cm)FluenceRate[n/(cm2'"1)]LeadFactors4'apsule40'apsule capsulesIDs,V,W,Z(4')T$U$X$Y(40)VesselIDVessel1/4-TVessel3/4-T211.41211.41219.71225.19236.142.746E+10 6.245E+10 2.125E+10 1.164E+10 2.221E+91.292.3612.362.945.3728.12 fluenceratesattheinnerradius,1/4-T,and3/4-Tlocations inTable4.9areobtainedfromTable4.8byinterpolation (orextrapolation).
Thecapsulefluenceratesandtheleadfactorsarealsosummarized inTable4.9.4.4.2NeutronDosimeter TestinandAnalsisThegammaactivities ofthedosimeters weredetermined inaccordance withProcedure XI-MS-101-0 usinganIT-5400multi-channel analyzerandaGe(Li)coaxialdetectorsystem.Thecalibration oftheequipment wasaccomplished withMn,Co,and3Csradioactivity standards obtainedfromtheU.S.Department ofCommerceNationalBureauofStandards.
Thedosimeter wireswereweighedonaMettler-Type H6Tbalance.Allactivities werecorrected tothetime-of-removal (TOR)atreactorshutdown.
Thereferences fortheprocedures usedinprocessing thedosimeter sASTME181-82,"Detector Calibration andAnalysisRadionuclides" ASTME261-77,"Determining Neutronflux,Fluence,andSpectraRadioactive Techniques" ASTME262-85,Determining ThermalNeutronFluxbyRadioactive Techniques ASTM-E263-82, "Determining FastNeutronFluxbyRadioactivation ofIron"ASTME264-82,"Determining FastNeutronFluxbyRadioactivation ofNickel"ASTME523-82,"Measuring FastNeutronFluxDensityofRadioactivation ofCopperASTME704-84,"Determining FastNeutronFluxDensitybyRadioactivation ofUranium-238" ASTME705-84,"Determining FastNeutronFluxDensitybyRadioactivation ofNeptunium-237" TheresultsoftheneutrondosimetryanalysisprocedurearesummarizedinTables4.10to4.16.Theequations anddefinitions usedforneutrondosimetry analysisaresummarized intable4.10.Theneutron 25TABLE4r10EQUATIONS ANDDEFINITIONS FORNEUTRONDOSVifETRY ANALYSIS/JATOg~NoFJo(E)d(E)dEQ Pj(lmLTJ)el(Ttj)j~LhereATOR~produceauc'Lideactivitracandofirradiacion, bq/ag;o(E)renergy-dependeat accivacion crossseccioa(ca)fordosineccr a,29(E)~energyHepcndent fluenceraceatsurvcillaace locacioa; Yproductnuclideperrcactioa(fissionyield);l~decaycoastaatoftheproductauclidc(d1);Pj~fractionoffullpoverduringoperacing periodj;T.rlcagchoftineforirradiacion iatcrvalj;k~rinefroabeginaing ofirradiation tocineofrcnovaL;r..>elapsedcinefronbeginning ofirradiacion tocadofincervalj;Nrnuaberoftargetsconepcragindosinetcr; and0Jrnuaberofirradiatton intervaled
.+WASATJo(E)d(E)dg 0vbercASAT~reactiooracepertargetnucleus.(C.1)(C.2)f.Wo(E)d(K)dgs4(E)dgKr.ASATd(K>gt)(4.3)vheteog~cftcccivc spectrua-averaged crossseccionaadtd(K)dE~flucnccraceforneutronsvithenergiesgreaterthanEtNeV(s(K>gt)).
tSubstituting Eq.(2.2)iotoEq.(2.1)andsolvingforASAT,oneobca'LasAhgT~TORSATNoTQPJ(1-c"j)e"j)j~LReplacing ASATinEq.(2.4)byASATiaEq.(2.3),oocobtainsd(E>E)~ATORJNoYogQPj(L-eLTj)el(T-tj)jeLThetocalfluenceischengivenby(C.4)(4.5)JKE>gt)~d(E>gt)QPjTjjRThecharnelneutronfluencerace(ptb)isdaterained froarbebareaodcsdniua-covered cobaltactivici<<s usingEq.(2.F)belov.h~'bCdNoc(P.(1c-XTj)e-A(T-j)j-lwereAbbarecobaltactiviry(dpsing),
AOd~cadniun-covered cobalr.activity(dps/ag),
No~nuaberofcobalt-59 sconeperagofcobalt,andooi3F.Lbarns.(4.6)(C.y)DefinitionaTheLeadfaccor(LF)risdefinedasfollovs>doeucroafluea<<erace(E>gr)atthecapsulecenteraaxtauaaeutronflucnccraceatthePVsanerradtusThcsaturacion tacror(SF)isgivenbrSF~1JpP'(1-elTj)el(T-cJ)jaL~Anoregeneraldefiaicion canbcstatedbyreplacing thedeaoaiaator bytheuaxiuuaneutronfinancerateacanypointiathepressurevessel(PV)~
TABLE4.11CONSTANTS FORPROCESSING DOSIMETRY DATAReactionN0(atoms/mg)
HalE-Life (day-1)X-rayBranching FissionAtomAtomicIntensity YieldFractionWeight54Fe(n,p) 4Mn6.254x10312.50d2.218x1030.99978835keV0.99449811keV7004x101870'85d9.783x105Ni(n,p)Co59Co(n,y)
Co1.022x105.271y3.600x100.9990Q1173keV0.999891332keV"Ti(n,p)4Sc1.018x1083.85d8.261x100.99989889keV0.999991120.keV0.08147.900.05855.8470.682758.701.000058.933263Cu(n,a)
Co6.555x105.271y3.600x100.9990Q1173keV0.999881332keV0.691763.546237Np(n,f) 3Cs2.540x1030.17y6.290x100.8530Q662ke'V6.267.1.0000237.0482238U(nf)137Cs2'30x101830.17y6'90x100'5309662keVF00010000238'508CSi 27TABLE4.12REACTORPOWER-TIME HISTORYFORDONALDC.COOKUNIT2CAPSULETaleStep12345678910ll1213141516171819202122232425262728293031323334i35363738394041Operating Period3/784/785/786/787/788/789/7810/7811/7812/781/79z/793/794/795/796/797/798/799/7910/7911/7912/791/80Z/803/804/805/806/807/808/809/8010/8011/8012/801/812/813/814/815/816/817/81FractionofFullPower*P]0.24370.15440.25940.63820.43960.60660.85310.88250.48080.92570.92570.92570.92570.91420.58350.00000.90330.96560.96560.59180.00000.00000.44470.91910.91910.91910.91910.82720.59260.96690.96690.56140.00000.59790.97820.97820.44180.00000.35250.78060.7201Irradiation IntervalTJ1030313031313031303131283130313031313031303131293130313031313031303131283130313031DecayT11MT-t328912861283028002769273827082677264726162585255725262496246524352404237323432312228222512220219121602130209920692038200719771946191618851854182617951765173417041673 2vTABLE4.12(Continued)
REACTORPOWER-TIME HISTORYFORDONALDC.COOKUNIT2CAPSULETimeStepOperating PeriodFractionofFullPower*P]Irradiation IntervalTjDecayTimeT-t'2434445464748495051525354555657585960616263646566676869707172737475767778798081828/819/8110/8111/8112/811/822/823/824/825/826/827/828/829/8210/8211/8212/821/832/833/834/835/836/837/838/839/8310/8311/8312/831/842/843/844/845/846/847/848/849/8410/8411/8412/840.95160.95160.13430.96120.96120.96120.96120.40280.95690.95690.95690.95690.41150.90760.92150.66690.00000.12170.97480.99890.99300.96920.77120.66730.91570.91720.48150.16590.93970.96230.94100.30540.00000.00000.00000.54240.92000.94300.95750.84720.432131303130313128313031303131303130313128313031303131303130313129313031303131303130311642161215811551152014891461143014001369133913081277124712161186115511241096106510351004974943912882851821790759730699669638608577546516485455424 29TABLE4.12(Continued)REACTORPOWER-TIME HISTORYFORDONALDC.COOKUNIT2CAPSULEXTimeStepOperatingPeriodFractionofFullPower*P~Irradiation IntervalTgDecay~*--,T"lme-'
'-t~J838485868788899091929394951/852/853/854/855/856/857/858/859/8510/8511/8512/851/862/860.52080.99160.97640.99240.99860.99850.42950.02370.00000.06410.54370.79420.80000.59973128313031303131303130313128*FullpowerlevelforCookUnit2is3391HWt.Timeofremovalisreferenced to2/28/86,2400hr.3933653343042732432121811511209059280 30TABLE4.13CORRECTION FACTORSTOOBTAINMEASUREDSATURATED ACTIVITIES ATCAPSULEXCENTERLINE ReactionSaturation FactorGradientFactorImpurityFactor*5Fe(n,p)Mn58Ni(n,p)58Co 63Cu(n,a)
Co237Np(nf)137Cs238U(nf)137Cs39Co(n,y)60Co 1.6311.7202.3409.0379.0372.3401.0511.1640.95381.01.01.1641.01.01.01.01.01.0*Impurities wereassumednegligible.
TABLE4.14CALCULATED SATURATED MIDPLANEACTIVITIES INDONALDC.COOKUNIT2SURVEILLANCE CAPSULESDosimeter orFluxSaturated Activities for40'urveillance CasuleB/R=210.41cmR=211.41cmR=212.41cmSaturated Activities for4'urveillance CasuleBq/R=210.41cmR=211.41cmR=212.41cm54Fe(n,p) 4Mn58Ni(n,p)
Co63Cu(n,a)
Co237Np(n~f)137Cs 238U(n,f)13 Cs46Ti(n,p)46Sc
$(E>1.0MeV)g(E>0.1MeV)2.506E+112.111E+111.717E+11 3.240E+062.648E+062.170E+064.953E+07 4.054E+07 3.313E+073.471E+05 2.867E+05 2.390E+05 3.279E+07 2.749E+07 2.234E+07 3.963E+06 3.260E+06 2.640E+06 7.872E+05 6;454E+05 5.337E+05 7.544E+10 6.245E+10 5.048E+10 1.856E+06 1.535E+06 1.275E+06 2.732E+072.260E+071.847E+072.428E+05 2.026E+05 1.704E+05 1.332E+07 1.119E+07 9.241E+06 1.880E+06 1.561E+06 1.286E+06 5.114K+05 4.240E+05 3.545E+05 3.297E+10 2.746E+10 2.258E+10 9.354E+10 7.901E+10 6.521E+10 32TABLE4.15COMPARISON OFMEASUREDANDCALCULATED SATURATED ACTIVITIES FORFASTTHRESHOLD DETECTORS ReactionIDRadialLocation(cm)TimeofRemovalActivity, ATOR(Bq/mg)MeasuredSaturated
: Activity, AESAT(Bq/mg)Calculated SaturatedActivity, AGSAT(Bq/mg)Calculated (C)DividedbyMeasures(E)Activity(Bq/mg)54Fe(n)54MnTopTop-middle MiddleBottom-middle Bottom211.68211.68211.68211.68211.681.375E+31.407E+31.399E+31.423E+31.367E+3Average1.394a0.023E+32.390E+32.648E+31.1083Cu(na)0Coop-middle MiddleBottom-middle 211.18211.18211.181.197E+21.202E+21.216E+2Average1.205~0.010E+22.689E+22.867E+21.066Ni(n)CoTop-middle MiddleBottom-middle 212.18212.18212.181.837E+41.808E+41.840E+4Average1.828a0.018E+43.660E+44.054E+41.108237N(nf)137CsMiddle211.413.142E+32.839E+42.749E+40.9683238U(nf)137Csiddle211.413.763E+23.400E+33.260E+30.9588 33TABLE4.16THERMALNEUTRONFLUENCERATEINCAPSULEXAxialLocationBareCadmium-Covered Saturated Activity(Bq/mg)ThermalFluenceRate[n/(cms1)]TopCoBottomCoAverage3.448E+07 3.402E+07 1.445E+07 1.445E+07*
5.283E+105.161E+105.222E+10+Assumedtobesameastopvalue.
34dosimeter sandtheconstants usedinprocessing thedosimeters aregivenin~~Table4.11.Thereactorpower-time historydatagiveninTable4.12areusedtocalculate thesaturation factors(seedefinition, Table4.10)showninTable4.13.InTable4.13,thegradientcorrection factorsareobtainedfromthetransport calculations giveninTable4.14andtheimpuritycorrectionfactorsareassumedtobenegligible.
Eachofthemeasuredactivities AT0R,Table4.15aremultiplied bythethreeappropriate correction factorsinTable4.13toobtainthemeasuredsaturated activities ASAT,forcomparison withthecalculated values.Theresults(Table4.15)indicatethatthecalculated valuesare+11(to-4$fromthemeasuredvalues.ThethermalneutronfluenceratesaregiveninTable4.16andareobtainedusingEq.(4.7)fromTable4.10.Thesevaluesweretoolowtocauseanysignificant burninorburnout~~~corrections.
4.2.3ResultsofNeutronTransortandDosimetrAnalsisThecomparison ofthecalculated andthederivedfluenceratesinTable4.17indicates verygoodagreement:


4316C-Cade:Un1rradlated--CapsuleT--o--CapsuleY~CapsuieX'e4I75'F4c.-72'F0-1001002CQ40C5CCM'-I684F-I0-lCC100200.esTeaoerat"re,F420FIGURE7.RADIATIONRESPONSEOFDONALDC.COOKUNITNO.2REACTORVESSELMEAT-AFFECTEDZONEMATERIAL 4410".CoCeUAltradlatedCapsule--o--Ca:suleY-uaCapsuleX0rassJ../-7~60'F/70'F1CC01002M300400500CshPC20600FleCG01002CGxestie~cerdture,FnJMVFIGURES.RADIATIONRESPONSEOFDONALDC.COOKUNITNO.2REACTORVESSEIWELDMATERIAL TABLE4.23EFFECTOFIRRADIATIONONCAPSULEXSURVEILLANCEMATERIALSDONALDC.COOKUNITNO.2Criterion(1)MeldMetalHAZ(2)Trans.PlateLongPlateHaterialC5521-2(3)C5521-2(3~5)TransitionTemperatureShift850ft-lb830ft-lb835mil(4)NDTCvUpperShelfDrop60F70F60F70Fllft-lb(15%)75F72F68'F72F46ft-lb(38%)115F103'F80'F103F23ft-lb(27%)105F95F98F95F42ft-lb(33%)(1)RefertoFigures4-7.(2)Fluence=8.53x1018n/cm2,E>1MeV.(3)Fluence=1.05x10n/cm,E>1MeV.(4)Transitiontemperatureshiftat30ft-lb(46ft-lbforlongitudinalplate).(5)Transitiontemperaturesat77ft-lb,and54milsf17].
==6.0 19x10fromthemeasurements==
TABLE4.24TENSILEPROPERTIESOFSURVEILLANCEMATERIALSDONALDC.COOKUNITNO.2ConditionTestMaterialSpec.No.Temp.0.2%YS('F)(ksi)UTS(ksi)FractureLoad(lb)FractureStress(ksi)UniformElongation(%)-TotalElongation(%)R.A.(/)CapsuleXPlateC5521-2MT-8(a)(Transverse)HT-725055076.072.193.992.335883672156.0163.915.014.818.717.352.854.0WeldMetalMW-8HW-721055079.973.794.592.531123148183.1166.613.911.421.465.318.861.4(b)PlateC5521-2(Transverse)RoomRoom30030055055367.465.458.860.557.558.987.385.978.679.583.083.1320029502650267532253150161.2156.4146.1157.6142.1145.613.415.013.010.611.512.723.427.122.619.819.020.559.661.763.165.453.856.0WeldMetalRoom75.7Room76.930070.730071.055070'55068.293.291.388.085.387.287.8285029502900287531603050173.4178.8171.0179.0157.2166.013.912.210.710.310.19.325.722.620.721.219.220.266.866.666.067.559.662.8(a)Fluence=1.002x10m/cm,E)1MeV.(b)Unirradiated[12].
and6.245x10fromthecalculations.
5.0ANALYSISOFRESULTSTheanalysisofdataobtainedfromsurveillanceprogramspecimenshasthefollowinggoals:(1)EstimatetheperiodoftimeoverwhichthepropertiesofthevesselbeltlinematerialswillmeetthefracturetoughnessrequirementsofAppendixGof10CFR50.ThisrequiresaprojectionofthemeasuredreductioninCuppershelfenergytothevesselwallusingknowledgeoftheenergyandVspatialdistributionoftheneutronfluxandthedependenceofCuppershelfenergyontheneutronfluence.(2)Developheatupandcooldowncurvestodescribetheoperationallimitationsforselectedperiodsoftime.ThisrequiresaprojectionofthemeasuredshiftinRTNDTtothevesselwallusingknowledgeofthedependenceoftheshiftinRTNDTontheneutronfluenceandtheenergyandspatialdistributionoftheneutronflux.TheenergyandspatialdistributionoftheneutronfluxforDonaldC.CookUnitNo.2wascalculatedforCapsuleXwithadiscreteordinatestransportCode.Thisanalysis,predictedthattheleadfactor(ratiooffastfluxatthecapsulelocationtothemaximumpressurevesselflux)was2.94atthecapsulecenterline,3.09forthecore-sideCharpylayer,and2.50forthevessel-sideCharpylayer(seeTable4.9).Thisanalysisalsopredictedthatthefastfluxatthe1/4Tand3/4Tpositionsinthe8.5-in.pressurevesselwallwouldbe55(and11)respectivelyofthatatthevesselI.D.AmethodforestimatingtheincreaseinRTNDTasafunctionofneutronfluenceandchemistryisgiveninRegulatoryGuide1.99,Revision1[81.However,theGuidealsopermitsinterpolationbetweencrediblesurveillancedataandextrapolationbyextendingtheresponsecurvesparallel 48totheGuidetrendcurves.ThedatafromCapsulesT,YandXaredeemedtobecrediblebecause(1)thesurveillancematerialsarejudgedtobecontrollingwithregardtoradiationdamage,(2)thescatterinthetransverseplateandweldmetalCharpydataissmall,and(3)thechangesinyieldstrengthareconsistentwiththeCharpycurveshifts.Exceptforthelongitudinalplatematerial,theslopesoftheresponsecurvesconstructedinFigure9arelessthanthesquarerootoffluenceutilizedinRegulatoryGuide1.99.Althoughrecentwork[7]indicatesthatthesquarerootoffluencedependencemaybetoohigh,theprojectedresponsesoftheDonaldC.CookUnitNo.2vesselbeltlinematerialsarebasedonthetrendcurvesofFigure9whichwereconstructedinaccordancewithRegulatoryGuide1.99procedures.TheDonaldC.CookUnitNo.2vesselplatesurveillancematerialismoresensitivethantheweldmetal'andHAZsurveillancematerialstoirradiationembrittlement.SincetheunirradiatedvaluesofRTNDTfortheintermediateshellplateC5521-2ishigherthanthoseoftheweldandHAZmaterials[16],thebeltlineregionplatematerialisprojectedtocontroltheadjustedvalueofRTNDTthroughthe32EFPYdesignlifeofDonaldC.CookUnitNo.2.AsummaryoftheprojectedvaluesofRTNDTfor12and32EFPYofoperationofDonaldC.CookUnitNo.2,ispresentedinTable5.1.AmethodforestimatingthereductioninCuppershelfenergyasafunctionofneutronfluenceisalsogiveninRegulatoryGuide1.99,Revision1[8].TheresultsfromCapsulesT[16],Y[17],andXarecomparedtoaportionofFigure2oftheRegulatoryGuide1.99,Revision1,inFigure10.AlthoughtheshelfenergyresponseoftheweldsurveillancematerialfromCapsulesXfallbelowthem,thepredictivetrendcurvesofRegulatoryGuide1.99,Revision1,willbeusedinthisanalysisforconservatism..ResponsecurveshavebeendrawnthroughtheHAZTransversePlateandLongitudinalplate
Thederivedfluenceratefromthemeasurements isusedtodetermine thefluencesshowninTable4.18.Theassembly-wise sourcedistribution forDonaldC.CookUnit2CapsuleXanalysisisprovidedinAppendixA.Thethree-dimensional (3-D)fluxsynthesis methodusedinthisreportisgiveninAppendixB.4.3Mechanical ProcrtTestsTheirradiated CharpyV-notchspecimens weretestedonacalibrated" SATECModelSI-1K240ft-lb,16ft/secimpactmachineinaccordance withProcedure XI-MS-104-1.
Thetesttemperatures, selectedtodeveloptheductile-brittle transition anduppershelfr'egions, wereobtainedusingaliquidconditioning


600II4002001006040Reg.Guide1.99UpperLimiteCode;:0Trans.PlateGLong.Plate''+HeldMetal:~HAZMaterialI~Il)ili,jIlijls[III.202xlpll1pl8NeutronFluence,nlcm2(E>1MeV)1pl9IIIII'll6x1019FIGURE9.EFFECTOFt/EUTRpffFLUENCEOf)RTffDTSHIFT,Dpf(ALDC.COOKUNITNO.2 50TABLE5.1PROJECTEDVALUESOFRTNDTFORDONALDC.COOKUNITNO.2EFPYP.V.MaterialLocationhRTNDTFluence(a)ARTRpT~Ad'.RTRpT12PlateC5521-2I.D.1/4T3/4T58'F(b)7.8x10'858'F4.3x1058'F8.1xlp171018844159146102HAZMaterial7.8x10184.3Xlp188.1x1017I.D.20'F741.4T20'F633/4T20'F31g48351WeldMetalI.D.1/4T3/4TO'()7.8x10''F4.3xlp18O'F8.1x1017664723664723584F()2.1x10958'F1.1x10958'F2.2x101832PlateC5521-2I.D.1401/4T1053/4T721g8163130HAZMaterialI.D.1/4T3/4T'04F(b)2.1x1p1920'F1.1x109204F2.2x10-1138450133104(70WeldMetalI.D.p'F()2.1x101081/4TO'F1.1x10803/4TOoF2.2x10184p1088040(a)Neutrons/cm,E>1MeV.(b)Reference16.(c)EstimatedperReference18 l~6040Req.Guide1.99UpperLimitIjlIj,II'I'5-g20Reg.Guide1.99C7l5-QJCW100.15KCuPlate0.05$CuMeldcnC)4:Code:k:0Trans.PlateLong.Plate+WeldMetal:~HAZMaterialIjIIIs.IIII2x1P171P181P19NeutronFluence,n/cm2(E>1MeV)6xlPFIGURE>oDEPENDEtlCEOFCyUPPERSIIELFENERGY0thNEUTRONFLUENCEDptNLDCCOOKUNITNp2
35TABLE4.17COMPARISON OFFASTNEUTRONFLUENCERATESFROMTRANSPORT CALCULATIONS ANDDOSIMETRY MEASUREMENTS FORCAPSULEXReactionMeasuredSaturated Activity(Bq/mg)FluenceRateDerivedfromMeasurements
[n/(cm2.s1))CalculatedFluenceRate(n/(cm2s1)]Calculated DividedbyDerivedFluenceRateFe(n,p)Mn63Cu(n,0)Co5Ni(n,p)Co2.390E+03 2.689E+02 3.660E+04 238U(nf)137Cs3.400E+03 Average3Np(n,f)Cs2.839E+04 5.637E+10 5.860E+10 5.637E+10 6.452E+10 6.511E+10 6.019~0.432E+10 6.245E+10 6.245E+10 6.245E+10 6.245E+10 6.245E+10 6.245E+10 1.1081.0661.1080.96790.95911.042+0.074TABLE4.18CALCULATED PEAKFLUENCESINPRESSUREVESSELBASEDONCAPSULEXDOSIMETRY Location5.273EFPYFluence(ncm2)10EFPYFluence(ncm2)15EFPYFluence(ncm2)32EFPYFluence(ncm2)Surveillance Capsule*PressureVesselIRPressureVessel1/4-TPressureVessel3/4-T1.002E+193.406E+181.865E+183.562E+17 1.899E+19 6.460E+183.538E+18 6.753E+17 2.849E+19 9.690E+18 5.306E+18 1.013E+18 6.078E+19 2.067E+19 1.132E+19 2.161E+18
*Basedonaveragedfluenceratederivedfromdosimetry measurements.
36bothmonitoredwithaFlukeModel2168Adigitalthermometer
.TheCharpyV-notchimpactdataobtainedbySwRIonthespecimens contained inCapsuleXarepresented inTables4.19through4.22.TheshiftsintheCharpyV-notchtransition temperatures determined forthevesselplate,theweldmetalandtheHAZmaterialsareshowninFigures5through8.TheCapsuleTandYresultsareincludedforcomparison.
AsummaryoftheshiftsinRTNDTdetermined at,the30ft-lblevelasspecified inAppendixGto10CFR50[1],andthereduction inCuppershelfenergiesforeachmaterial, ispresented inTable4.23.Tensiletestswerecarriedoutinaccordance withProcedure XI-MS-103-1 usinga22-kipcapacityMTSModel810MaterialTestSystemequippedwithanInstronCatalogue No.G-51-13A2-in.straingageextensometer andHewlettPackardModel7004BX-Yautographic recording equipment.
Tensiletestsontheplatematerialandtheweldmetalwererunat250Fand550'Fatastrainrateof0.005in/in/min.
throughthe0.2$offsetyieldstrengthusingservocontrol andrampgenerator
.Theresults,alongwithtensiledatareportedbyWestinghouse ontheunirradiated materials
[12],arepresented inTable4.24.Theload-strain recordsareincludedinAppendixC.TestingoftheWOLspecimens wasdeferredattherequestofIndiana4MichiganElectricCompany.Thespecimens areinstorageattheSwRIradiation laboratory.
Inspected andcalibrated usingspecimens andprocedures obtainedfromtheArmyMaterials andMechanics ResearchCenter.
37TABLE4.19CHARPYIMPACTPROPERTIES OFLONGITUDINAL PLATEDONALDC.COOKUNIT2CAPSULEXSouthwest ResearchInstitute DepartmentofMaterlaisSciencesCHARPYTESTDATASHEETMATERIAL-LONGITUDINAL ProjectNo.06-8888-001 Date4/28/87SPECIMENNO.TEMPoFENERGYFT-LBSLATERALEXPANSION FRACTUREAPPEARANCE PHOTOGRAPH ML-25RT-7117.0.017ML-26+10028.5.026ML-32+12530.5.02615ML-27+15040.0.03730~%wt'L-31+17570.0.06145ML-28+20083.5.07290ML-29+25099.0.085100ML-30+300107.0.085300,Q+)  


datasincetheseresultsfallabovetheplatetrendcurve.Referringtotheconservativetrendcurvesfor0.05$CuweldmetalandtheHAZandplateresponsecurves,theprojectedCvshelfenergiesofthevesselmaterialsareasfollows:oPlateC5521-2(UnirradiatedCShelf=86ft-lb)32EFPYatI.D.-60ft-lb(30$reduction)32EFPYat1/4T--63ft-lb(27$reduction)32EFPYat3/4T-71ft-lb(171reduction)Note:Forshelfenergiesbelowthe0.15$Cuplatecurvetheconservativeplatecurveisused.oWeldMetal(UnirradiatedCShelf=75ft-lb)v32EFPYatI.D.--58ft-lb(237reduction)32EFPYat1/4T-60ft-lb(20$reduction)32EFPYat3/4T--65ft-lb(13$reduction)oHAZMaterial(UnirradiatedCShelf=122ft-lb)v32EFPYatI.D.-68ft-lb(44$reduction)32EFPYat1/4T-73ft-lb(40$reduction)32EFPYat3/4T--100ft-lb(18(reduction)TheseprojectionsindicatethatthecorebeltlinematerialsintheDonaldC.CookUnitNo.2pressurevesselmaterialwillretainadequateshelftoughnessthroughoutthe32EFPYdesignlifetime.ThecurrentDonaldC.CookUnitNo.2reactorvesselsurveillanceprogramremovalschedule,revisedtoconformtoASTM185-79[9],issummarizedinTable5.2.Therearefivecapsulesremaininginthevessel,ofwhichthreearestandbys.
TABLE)1.20CHARPYIMPACTPROPERTIES OFTRANSVERSE PLATEDONALDC.COOKUNITNO.2CAPSULEXSouthwest ResearchInstitute Department ofMaterials SciencesCHARPYTESTDATASHEETMATERIAL-TRANSVERSE ProjectNo.06-8888-001 Date1!/28/87SPECIMENNO.TEMP'FE?tERGYFT-LBSU\TERALEXPANSION FRACTUREAPPEARANCE PHOTOGRAPH YiMT-48+508.0F0070MT-37RT-7114.5.0130MT-38+10023.0.02215MT-46+10020.5.01910MT-47+12524.5.02410MT-39+15030.0.02920I'irgMT-40+20050.0.04830<<)T-45.20i)53.i).050~0IIi)T-44Ii".22">..60.l)..<)5580err4[~.2'.0!'>':"~r'a3N
53TABLE5.2REACTORVESSELSURVEILLANCECAPSULEREMOVALSCHEDULE[16]DONALDC.COOKUNITNO.2~CasuleWOLMaterialWeldMetalWeldMetalTrans.PlateWeldMetalTrans.PlateTrans.PlateTrans.PlateWeldMetalRemovalTime1.08EFPY(a)324EFPY(b)5.27EFPY(')9EFPY32EFPYStandbyStandbyStandbyEquivalentVesselFluence3.4EFPYatI.D.11EFPYatI.D.E.O.L.at1/4TE.O.L.atI.D.E.O.L.atI.D.(a)Removedaftercorecycle1.(b)Removedaftercorecycle3.(c)Removedaftercorecycle5.
 
6.0HEATUPANDCOOLDOWNLIMITCURVESFORNORMALOPERATIONOFDONALDC.COOKUNITNO.2DonaldC.CookUnitNo.1isa3391MwtpressurizedwaterreactoroperatedbyIndianaandMichiganElectricCompany.Theunithasbeeprovidedwithareactorvesselmaterialsurveillanceprogramasrequiredby10CFR50,AppendixH.Thethirdsurveillancecapsule(CapsuleX)wasremovedduringthe1986refuellingoutage.Thiscapsulewastestedasdescribedinearliersectionsofthisreport.Insummary,thesetestresultsindicatethat:(1)TheRTNDTofthesurveillanceplatematerialinCapsuleXincreased103'Fasaresultofexposuretoaneutronfluenceof1.002x1019neutrons/cm(E>1MeV).(2)BasedonananalysisofthedosimetersinCapsuleX,thevesselwallfluenceattheI.D.was3.406x10neutrons/cm(E>1MeV)atthetimeofitsremoval.(3)ThemaximumRTNDTafter12effectivefullpoweryears(EFPY)ofoperationwaspredictedtobe146'Fatthe1/4Tand102'Fatthe3/4Tvesselwalllocations,ascontrolledbythecorebeltlineshellplate.TheseprojectionsarecomparabletothoseresultingfromtheevaluationofthedatafromcapsuleY.(4)ThemaximumRTNDTafter32EFPYofoperationwaspredictedtobe163'Fatthe1/4Tand130'Fatthe3/4Tvesselwalllocations,ascontrolledbythecorebeltlineshellplate.ThesepredictionsarelowerthanthatpredictedfromCapsuleYanalysis.TheUnitNo.2heatupandcooldownlimitcurvesfor12EFPYand32EFPYhavebeencomputedonthebasesof(3)and(4)above.Thefollowing 55pressurevesselcontentswereemployedasinputdatainthisanalysis:VesselInnerRadius,VesselOuterRadius,rOperatingPressure,PInitialTemperature,TFinalTemperature,TfEffectiveCoolantFlowRate,QEffectiveFlowArea,AEffectiveHydraulicDiameter,D86.50in.,includingcladding95.2in.2235psig70oF550oF134.6x10lb/hr26.72ft215.05in.TheSwRIcomputerprogramcalculatestheallowablepressureoverthetemperaturerange70'F-550Fsuchthatthereferencestressintensityfactor,KIR,isalwaysgreaterthanthesumoftwiceKI(pressureinduced)andKIt(thermalgradientinduced)asdictatedbyAppendixGoftheCode(2].ThecurrentversionoftheSwRIprogramincorporatesthephysicalpropertydataspecifiedbyAppendixIoftheCodethroughthe1982SummerAdenda.Thechangesinthermalconductivitycodeallowablesmadeintheearly1980'sreducedthecalculatedallowablepressureatcoolanttemperaturesbelowabout200'Ffromthatobtainedwhenusingthepreviouslyspecifiedvalues.Heatupcurveswerecomputedforaheatuprateof100'F/hr.Sincelowerratestendtoraisethecurveinthecentralregion,thesecurvesapplytoallheatingratesupto100'F/hr.CooldowncurveswerecomputedforcooldownratesofO'/hr(steadystate),20'F,40'F/hr,60'F/hr,and100'F/hr.The20'F/hrcurvewouldapplytocooldownratesupto20'F/hr;the40'F/hrcurvewouldapplytoratesupto40'F/hr;the60'F/hrcurvewouldapplytoratesupto60'F/hr;the100'F/hrcurvewouldapplytoratesupto 100'F/hr.TheunitNo.2heatupandcooldowncurvesdevelopedforupto12EFPYafterCapsuleYisidenticaltotheCapsuleXdata.Itisrecommendedthatthecurrenttechnicalspecificationfor12EFPYnotbechanged.ThesecurvesarereproducedinFigures11and12.ThelimitcurvesdevelopedintheCapsuleYreportfor32EFPYisconservativecomparedtothedatageneratedhereforCapsuleX.ThesecurvesarereproducedinFigures13and14.
39TABLE4.21CHARPYIMPACTPROPERTIES OFHAZMATERIALDONALDC.COOKUNIT2CAPSULEXSouthwest ResearchInstitute Department ofMaterials SciencesCHARPYTESTDATASHEETMATERIAL-HAZProjectNo.06-8888-001 Date4/28/87PHOTOGRAPH SPECIMENNO.TEMPoFENERGYFT-LBS.LATERALEXPANSION FRACTUREAPPEARANCE MH-432525.0.01810MH-47+5048.5.03945H-37RT+7141.5.03640MH-45+10064.5.05460MH-38+10095.0.06870MH-48+125117.0.082100MH"42+15097.0.06780MH"41+200100.0F081100MH-40+20071.0.061100Mll-46+225110.0.076100.'ill-441+250119.0.08310011-39+300103.0.080100 4OTABLE4.22CHARPYIMPACTPROPERTIES OFMELDMETALDONALDC.COOKUNIT2CAPSULEXSouthwest ResearchInstitute Department ofMaterials SciencesCHARPYTESTDATASHEETMATERIAL-WELOProjectNo.06-8888-001 Date4/28/87SPECINENNO.TEMP0FENERGYFT-LBSLATERALEXPANSION FRACTUREAPPEARANCE PHOTOGRAPH XMW-47-2524.5.02210MW-4816.0.018MW-45+5019.5.01710MW-37RT+7124.0.02015MW-38+10027.0.03025MW-46+12561.5.05745MW-40+15070.5.064100MW"39+20075.5~069100MW-43+20061.0.058MW-42MW41+250+25064.0ee.o.061.057100IitooMW-44+300I't68.5t.069100 DliV~t~I~'~~l C0e:':'parr'ia'.e.--'-CapsuleT--e--Camisole Y,CapsleXe'O115'F103'FIcier0100200300400530a~4pce804F0ag./Wr7r~e~-:000100200Tes:.e,.Fera.ere,
2600'40022002000180016001400!il!,iJ!IIliiIII!illljiIiIIMATERIALPROPERTYBASISBASEl%TALCU=0.14<:,INITIALRTNDT=58'F.12EFPYRTNDT(1/4T)~146F(3/4T)~102oF.ILEAKTESTLIMITUNACCEPTABLEOPERATION12001000800PRESSURE-TEMPERATlNELIMITFORHEATUPRATESUPTO100'F/HR.REACTORCOOLANTSYSTEMHEATUPLIMITATIONSAP-.'PLICABLEFORFIRST12EFFECTIVEFULLPOHER,'YEARS,(MtQGINSOF60PSIGAND10'FAREIH-jCLUDEDFORPOSSIBLEINSTRlNENTERROR)jjIIi::IljIIIIACCEPTABLE}OPERATION!".,ijj:IIIIlI'!ijII600400200Ijjj}}CAPS}ULEYTACRITICALITYLIMITII1!jjIjj}II'jl60100150200250300350400450AVERAGEREACTORCOOLAI'lTSYSTEMTEN'ERATlNE<F>FIGURE11.REACTORCOOLANTSYSTEMPRESSURE-TEMPERATURELIMITSVERSUS100'F/HRRATE,CRITICALITYLIMITAHOIIYDROSTATICTESTLIMIT,12EFPYIII 2600240022002000180016001400>-12001000SOO8600400200.:i.',il.:!I,fiif;fIII':I:II~IIMATERIALPROPERTYBASISI'ASEMETALCU=0~14>INITIALRTNDT=~8~12EFPYRTNDT(1/4T)=146F(3/4T)=1020FUNACCEPTABLEOPERATIONPRESSURE-TBPERATULIMITSICRATEFIIRQ~20~a40".1!!Oll'I~f:ImI',ll!I':'!!::Ifi:REACTORCOOLANTSYSTEMCOOLIXWLIMITATIONS:IAPPLICABLEFORFIRST12EFFECTIVEFULLPCNFR~YEARSS(MARGINSOF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBLEINSTRlNENTERROR,)]ACCEPTABK-OPERATIONIIIII''I.,:III~.II~060100150200250300350400450AVERAGEREACTORCOOLANTSYS/EMTEMPERATURE(F)FIGURE12.REACTORCOOLANTSYSTEMPRESSURE-TEMPERATURELIMITSVERSUSCOOLDOWtlRATES,12EFPY  
'c'OvcsFIGURE6.RADIATION RESPONSEOFDONALDC.COOKUNITNO.2VESSELSHELLPLATEC5521-2(TRANSVERSE ORIENTATION)
.26002400I22002000lSOO16001400120010008005600g4oo200BASEMETALCU=O.l4'tINITIALRTNPT=58F!32EFPYRTNPT(1/4T)(3/4TIe=175oF=135'Fe'INACCEPTAHLE:.OPERATIONjIIj,PRESSURE-TEMPERATURELIMITFORllEATUPRATESUPTO100'F/HRREACTORCOOuelTSYSTEMHEATUPLIMITATIONSAPIPLICABLEFORFIRST32EFFECTIVEFULLPOWERYEARS(MARGINS.OF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBL'EINSTRINENTERROR)ilill!!.,II!,I!I!I!!IIIIII~',IISTj'l.:,itI:I:eleiLIIIiTiii.il';IIIeII:lie,e'Illliij.'i)Il,iI~I:~'lIile~il.:li,e~leiilj"ACCEPTABLE:OPERATIONileIillIllI",ii".,I.i.~eeJjCRITICALITYI"'IMITij'60100150200300350250400450AVERAGEREACTORCOOLANTSYSTEMTEMPERATURE('F)FIGURE13.REACTORCOOLA>lTSYSTEMPRESSURE-TEMPERATURELIMITSVERSUS100'F/HRRATE,CRITICALITYLIMITANDIIYDROSTATICTESTLIMIT,32EFPY(Ref.17) 26002400220020001800160014000-12001000'g800g.80040020006.'jREACTORCOOLANTSYSTEMCOOLDON)LIMITATIONS!:IAPPLICABLEFORFIRST32EFFECTIVEFULLPNERjYEARSe(NARGINSOF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBLEINSTRlNENTERRORS)jIIMATERIALPROPERTYBASIS)BASE%TALCU=0.14%IINITIALRT=58'F'2EFPYRTNDT(NDT1/4r)=1754'NACCEPTABLEOPERATION34T50FPRESSURE"lEMPERATURE'IMITS/R'IlRATE..'..020-.40.s.60100~IljlI'tIIIIItII.0100]50200250300'I!IIlj'.ACCEPTABLF.::OPERATICH350julIIIIjlI1j'.Ij400~I450AVERAGEREACTORCOOLANTSYSTEMTEI'IPERATURE(F)FIGURE14.REACTORCOOLANTSYSTEMPRESSURE-TEtfPERATURELIMITSVERSUSCOOLDONlRATES,32EFPY(Ref.17) 6
 
4316C-Cade:Un1rradlated--CapsuleT--o--CapsuleY~CapsuieX'e4I75'F4c.-72'F0-1001002CQ40C5CCM'-I684F-I0-lCC100200.esTeaoerat"re, F420FIGURE7.RADIATION RESPONSEOFDONALDC.COOKUNITNO.2REACTORVESSELMEAT-AFFECTED ZONEMATERIAL 4410".CoCeUAltradlatedCapsule--o--Ca:sule Y-uaCapsuleX0rassJ../-7~60'F/70'F1CC01002M300400500CshPC20600FleCG01002CGxestie~cerdture, FnJMVFIGURES.RADIATION RESPONSEOFDONALDC.COOKUNITNO.2REACTORVESSEIWELDMATERIAL TABLE4.23EFFECTOFIRRADIATION ONCAPSULEXSURVEILLANCE MATERIALS DONALDC.COOKUNITNO.2Criterion (1)MeldMetalHAZ(2)Trans.PlateLongPlateHaterialC5521-2(3)
C5521-2(3~5)
Transition Temperature Shift850ft-lb830ft-lb835mil(4)NDTCvUpperShelfDrop60F70F60F70Fllft-lb(15%)75F72F68'F72F46ft-lb(38%)115F103'F80'F103F23ft-lb(27%)105F95F98F95F42ft-lb(33%)(1)RefertoFigures4-7.(2)Fluence=8.53x1018n/cm2,E>1MeV.(3)Fluence=1.05x10n/cm,E>1MeV.(4)Transition temperature shiftat30ft-lb(46ft-lbforlongitudinal plate).(5)Transition temperatures at77ft-lb,and54milsf17].
TABLE4.24TENSILEPROPERTIES OFSURVEILLANCE MATERIALS DONALDC.COOKUNITNO.2Condition TestMaterialSpec.No.Temp.0.2%YS('F)(ksi)UTS(ksi)FractureLoad(lb)FractureStress(ksi)UniformElongation
(%)-TotalElongation
(%)R.A.(/)CapsuleXPlateC5521-2MT-8(a)(Transverse)
HT-725055076.072.193.992.335883672156.0163.915.014.818.717.352.854.0WeldMetalMW-8HW-721055079.973.794.592.531123148183.1166.613.911.421.465.318.861.4(b)PlateC5521-2(Transverse)
RoomRoom30030055055367.465.458.860.557.558.987.385.978.679.583.083.1320029502650267532253150161.2156.4146.1157.6142.1145.613.415.013.010.611.512.723.427.122.619.819.020.559.661.763.165.453.856.0WeldMetalRoom75.7Room76.930070.730071.055070'55068.293.291.388.085.387.287.8285029502900287531603050173.4178.8171.0179.0157.2166.013.912.210.710.310.19.325.722.620.721.219.220.266.866.666.067.559.662.8(a)Fluence=1.002x10m/cm,E)1MeV.(b)Unirradiated
[12].
5.0ANALYSISOFRESULTSTheanalysisofdataobtainedfromsurveillance programspecimens hasthefollowing goals:(1)Estimatetheperiodoftimeoverwhichtheproperties ofthevesselbeltlinematerialswillmeetthefracturetoughness requirements ofAppendixGof10CFR50.Thisrequiresaprojection ofthemeasuredreduction inCuppershelfenergytothevesselwallusingknowledge oftheenergyandVspatialdistributionoftheneutronfluxandthedependence ofCuppershelfenergyontheneutronfluence.(2)Developheatupandcooldowncurvestodescribetheoperational limitations forselectedperiodsoftime.Thisrequiresaprojection ofthemeasuredshiftinRTNDTtothevesselwallusingknowledge ofthedependence oftheshiftinRTNDTontheneutronfluenceandtheenergyandspatialdistributionoftheneutronflux.Theenergyandspatialdistribution oftheneutronfluxforDonaldC.CookUnitNo.2wascalculated forCapsuleXwithadiscreteordinates transportCode.Thisanalysis, predicted thattheleadfactor(ratiooffastfluxatthecapsulelocationtothemaximumpressurevesselflux)was2.94atthecapsulecenterline, 3.09forthecore-side Charpylayer,and2.50forthevessel-side Charpylayer(seeTable4.9).Thisanalysisalsopredicted thatthefastfluxatthe1/4Tand3/4Tpositions inthe8.5-in.pressurevesselwallwouldbe55(and11)respectively ofthatatthevesselI.D.Amethodforestimating theincreaseinRTNDTasafunctionofneutronfluenceandchemistry isgiveninRegulatory Guide1.99,Revision1[81.However,theGuidealsopermitsinterpolation betweencrediblesurveillance dataandextrapolation byextending theresponsecurvesparallel 48totheGuidetrendcurves.ThedatafromCapsulesT,YandXaredeemedtobecrediblebecause(1)thesurveillance materialsarejudgedtobecontrolling withregardtoradiationdamage,(2)thescatterinthetransverseplateandweldmetalCharpydataissmall,and(3)thechangesinyieldstrengthareconsistent withtheCharpycurveshifts.Exceptforthelongitudinal platematerial, theslopesoftheresponsecurvesconstructed inFigure9arelessthanthesquarerootoffluenceutilizedinRegulatory Guide1.99.Althoughrecentwork[7]indicates thatthesquarerootoffluencedependence maybetoohigh,theprojected responses oftheDonaldC.CookUnitNo.2vesselbeltlinematerials arebasedonthetrendcurvesofFigure9whichwereconstructed inaccordance withRegulatory Guide1.99procedures.
TheDonaldC.CookUnitNo.2vesselplatesurveillance materialismoresensitive thantheweldmetal'andHAZsurveillance materials toirradiation embrittlement.
SincetheunirradiatedvaluesofRTNDTfortheintermediate shellplateC5521-2ishigherthanthoseoftheweldandHAZmaterials[16],thebeltlineregionplatematerialisprojected tocontroltheadjustedvalueofRTNDTthroughthe32EFPYdesignlifeofDonaldC.CookUnitNo.2.Asummaryoftheprojected valuesofRTNDTfor12and32EFPYofoperation ofDonaldC.CookUnitNo.2,ispresented inTable5.1.Amethodforestimating thereduction inCuppershelfenergyasafunctionofneutronfluenceisalsogiveninRegulatory Guide1.99,Revision1[8].TheresultsfromCapsulesT[16],Y[17],andXarecomparedtoaportionofFigure2oftheRegulatory Guide1.99,Revision1,inFigure10.Althoughtheshelfenergyresponseoftheweldsurveillance materialfromCapsulesXfallbelowthem,thepredictivetrendcurvesofRegulatory Guide1.99,Revision1,willbeusedinthisanalysisforconservatism..
ResponsecurveshavebeendrawnthroughtheHAZTransverse PlateandLongitudinal plate
 
600II4002001006040Reg.Guide1.99UpperLimiteCode;:0Trans.PlateGLong.Plate''+HeldMetal:~HAZMaterialI~Il)ili,jIlijls[III.202xlpll1pl8NeutronFluence,nlcm2(E>1MeV)1pl9IIIII'll6x1019FIGURE9.EFFECTOFt/EUTRpff FLUENCEOf)RTffDTSHIFT,Dpf(ALDC.COOKUNITNO.2 50TABLE5.1PROJECTED VALUESOFRTNDTFORDONALDC.COOKUNITNO.2EFPYP.V.MaterialLocationhRTNDTFluence(a)ARTRpT~Ad'.RTRpT12PlateC5521-2I.D.1/4T3/4T58'F(b)7.8x10'858'F4.3x1058'F8.1xlp171018844159146102HAZMaterial7.8x10184.3Xlp188.1x1017I.D.20'F741.4T20'F633/4T20'F31g48351WeldMetalI.D.1/4T3/4TO'()7.8x10''F4.3xlp18O'F8.1x1017664723664723584F()2.1x10958'F1.1x10958'F2.2x101832PlateC5521-2I.D.1401/4T1053/4T721g8163130HAZMaterialI.D.1/4T3/4T'04F(b) 2.1x1p1920'F1.1x109204F2.2x10-1138450133104(70WeldMetalI.D.p'F()2.1x101081/4TO'F1.1x10803/4TOoF2.2x10184p1088040(a)Neutrons/cm
,E>1MeV.(b)Reference 16.(c)Estimated perReference 18 l~6040Req.Guide1.99UpperLimitIjlIj,II'I'5-g20Reg.Guide1.99C7l5-QJCW100.15KCuPlate0.05$CuMeldcnC)4:Code:k:0Trans.PlateLong.Plate+WeldMetal:~HAZMaterialIjIIIs.IIII2x1P171P181P19NeutronFluence,n/cm2(E>1MeV)6xlPFIGURE>oDEPENDEtlCE OFCyUPPERSIIELFENERGY0thNEUTRONFLUENCEDptNLDCCOOKUNITNp2
 
datasincetheseresultsfallabovetheplatetrendcurve.Referringtotheconservative trendcurvesfor0.05$CuweldmetalandtheHAZandplateresponsecurves,theprojected Cvshelfenergiesofthevesselmaterials areasfollows:oPlateC5521-2(Unirradiated CShelf=86ft-lb)32EFPYatI.D.-60ft-lb(30$reduction) 32EFPYat1/4T--63ft-lb(27$reduction) 32EFPYat3/4T-71ft-lb(171reduction)
Note:Forshelfenergiesbelowthe0.15$Cuplatecurvetheconservative platecurveisused.oWeldMetal(Unirradiated CShelf=75ft-lb)v32EFPYatI.D.--58ft-lb(237reduction) 32EFPYat1/4T-60ft-lb(20$reduction) 32EFPYat3/4T--65ft-lb(13$reduction) oHAZMaterial(UnirradiatedCShelf=122ft-lb)v32EFPYatI.D.-68ft-lb(44$reduction) 32EFPYat1/4T-73ft-lb(40$reduction) 32EFPYat3/4T--100ft-lb(18(reduction)
Theseprojections indicatethatthecorebeltlinematerials intheDonaldC.CookUnitNo.2pressurevesselmaterialwillretainadequateshelftoughness throughout the32EFPYdesignlifetime.
ThecurrentDonaldC.CookUnitNo.2reactorvesselsurveillance programremovalschedule, revisedtoconformtoASTM185-79[9],issummarized inTable5.2.Therearefivecapsulesremaining inthevessel,ofwhichthreearestandbys.
53TABLE5.2REACTORVESSELSURVEILLANCE CAPSULEREMOVALSCHEDULE[16]DONALDC.COOKUNITNO.2~CasuleWOLMaterialWeldMetalWeldMetalTrans.PlateWeldMetalTrans.PlateTrans.PlateTrans.PlateWeldMetalRemovalTime1.08EFPY(a)324EFPY(b)5.27EFPY(')9EFPY32EFPYStandbyStandbyStandbyEquivalent VesselFluence3.4EFPYatI.D.11EFPYatI.D.E.O.L.at1/4TE.O.L.atI.D.E.O.L.atI.D.(a)Removedaftercorecycle1.(b)Removedaftercorecycle3.(c)Removedaftercorecycle5.
6.0HEATUPANDCOOLDOWNLIMITCURVESFORNORMALOPERATION OFDONALDC.COOKUNITNO.2DonaldC.CookUnitNo.1isa3391MwtpressurizedwaterreactoroperatedbyIndianaandMichiganElectricCompany.Theunithasbeeprovidedwithareactorvesselmaterialsurveillance programasrequiredby10CFR50,AppendixH.Thethirdsurveillance capsule(CapsuleX)wasremovedduringthe1986refuelling outage.Thiscapsulewastestedasdescribed inearliersectionsofthisreport.Insummary,thesetestresultsindicatethat:(1)TheRTNDTofthesurveillance platematerialinCapsuleXincreased 103'Fasaresultofexposuretoaneutronfluenceof1.002x1019neutrons/cm (E>1MeV).(2)Basedonananalysisofthedosimeters inCapsuleX,thevesselwallfluenceattheI.D.was3.406x10neutrons/cm (E>1MeV)atthetimeofitsremoval.(3)ThemaximumRTNDTafter12effective fullpoweryears(EFPY)ofoperation waspredicted tobe146'Fatthe1/4Tand102'Fatthe3/4Tvesselwalllocations, ascontrolled bythecorebeltlineshellplate.Theseprojections arecomparable tothoseresulting fromtheevaluation ofthedatafromcapsuleY.(4)ThemaximumRTNDTafter32EFPYofoperation waspredicted tobe163'Fatthe1/4Tand130'Fatthe3/4Tvesselwalllocations, ascontrolled bythecorebeltlineshellplate.Thesepredictions arelowerthanthatpredicted fromCapsuleYanalysis.
TheUnitNo.2heatupandcooldownlimitcurvesfor12EFPYand32EFPYhavebeencomputedonthebasesof(3)and(4)above.Thefollowing 55pressurevesselcontentswereemployedasinputdatainthisanalysis:
VesselInnerRadius,VesselOuterRadius,rOperating
: Pressure, PInitialTemperature, TFinalTemperature, TfEffective CoolantFlowRate,QEffective FlowArea,AEffective Hydraulic
: Diameter, D86.50in.,including cladding95.2in.2235psig70oF550oF134.6x10lb/hr26.72ft215.05in.TheSwRIcomputerprogramcalculates theallowable pressureoverthetemperature range70'F-550Fsuchthatthereferencestressintensity factor,KIR,isalwaysgreaterthanthesumoftwiceKI(pressure induced)andKIt(thermalgradientinduced)asdictatedbyAppendixGoftheCode(2].ThecurrentversionoftheSwRIprogramincorporates thephysicalpropertydataspecified byAppendixIoftheCodethroughthe1982SummerAdenda.Thechangesinthermalconductivity codeallowables madeintheearly1980'sreducedthecalculated allowable pressureatcoolanttemperatures belowabout200'Ffromthatobtainedwhenusingthepreviously specified values.Heatupcurveswerecomputedforaheatuprateof100'F/hr.
Sincelowerratestendtoraisethecurveinthecentralregion,thesecurvesapplytoallheatingratesupto100'F/hr.
CooldowncurveswerecomputedforcooldownratesofO'/hr(steadystate),20'F,40'F/hr,60'F/hr,and100'F/hr.
The20'F/hrcurvewouldapplytocooldownratesupto20'F/hr;the40'F/hrcurvewouldapplytoratesupto40'F/hr;the60'F/hrcurvewouldapplytoratesupto60'F/hr;the100'F/hrcurvewouldapplytoratesupto 100'F/hr.
TheunitNo.2heatupandcooldowncurvesdeveloped forupto12EFPYafterCapsuleYisidentical totheCapsuleXdata.Itisrecommended thatthecurrenttechnical specification for12EFPYnotbechanged.Thesecurvesarereproduced inFigures11and12.Thelimitcurvesdeveloped intheCapsuleYreportfor32EFPYisconservative comparedtothedatagenerated hereforCapsuleX.Thesecurvesarereproduced inFigures13and14.
2600'40022002000180016001400!il!,iJ!IIliiIII!illlji IiIIMATERIALPROPERTYBASISBASEl%TALCU=0.14<:,INITIALRTNDT=58'F.12EFPYRTNDT(1/4T)~146F(3/4T)~102oF.ILEAKTESTLIMITUNACCEPTABLE OPERATION 12001000800PRESSURE-TEMPERATlNE LIMITFORHEATUPRATESUPTO100'F/HR.REACTORCOOLANTSYSTEMHEATUPLIMITATIONS AP-.'PLICABLE FORFIRST12EFFECTIVE FULLPOHER,'YEARS,(MtQGINSOF60PSIGAND10'FAREIH-jCLUDEDFORPOSSIBLEINSTRlNENT ERROR)jjIIi::IljIIIIACCEPTABLE
}OPERATION
!".,ijj:IIIIlI'!ijII600400200Ijjj}}CAPS}ULEYTACRITICALITY LIMITII1!jjIjj}II'jl60100150200250300350400450AVERAGEREACTORCOOLAI'lT SYSTEMTEN'ERATlNE
<F>FIGURE11.REACTORCOOLANTSYSTEMPRESSURE-TEMPERATURE LIMITSVERSUS100'F/HRRATE,CRITICALITY LIMITAHOIIYDROSTATIC TESTLIMIT,12EFPYIII 2600240022002000180016001400>-12001000SOO8600400200.:i.',il.:!I, fiif;fIII':I:II~IIMATERIALPROPERTYBASISI'ASEMETALCU=0~14>INITIALRTNDT=~8~12EFPYRTNDT(1/4T)=146F(3/4T)=1020FUNACCEPTABLE OPERATION PRESSURE-TBPERATU LIMITSICRATEFIIRQ~20~a40".1!!Oll'I~f:ImI',ll!I':'!!::Ifi:REACTORCOOLANTSYSTEMCOOLIXWLIMITATIONS:I APPLICABLE FORFIRST12EFFECTIVE FULLPCNFR~YEARSS(MARGINSOF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBLEINSTRlNENT ERROR,)]ACCEPTABK-OPERATION IIIII''I.,:III~.II~060100150200250300350400450AVERAGEREACTORCOOLANTSYS/EMTEMPERATURE (F)FIGURE12.REACTORCOOLANTSYSTEMPRESSURE-TEMPERATURE LIMITSVERSUSCOOLDOWtl RATES,12EFPY  
.26002400I22002000lSOO16001400120010008005600g4oo200BASEMETALCU=O.l4'tINITIALRTNPT=58F!32EFPYRTNPT(1/4T)(3/4TIe=175oF=135'Fe'INACCEPTAHLE
:.OPERATION jIIj,PRESSURE-TEMPERATURE LIMITFORllEATUPRATESUPTO100'F/HRREACTORCOOuelTSYSTEMHEATUPLIMITATIONS APIPLICABLE FORFIRST32EFFECTIVE FULLPOWERYEARS(MARGINS.
OF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBL'E INSTRINENT ERROR)ilill!!.,
II!,I!I!I!!IIIIII~',IISTj'l.:,itI:I:eleiLIIIiTiii.il';IIIeII:lie,e'Illliij.'i)Il,iI~I:~'lIile~il.:li,e~leiilj"ACCEPTABLE:
OPERATION ileIillIllI",ii".,I.i.~eeJjCRITICALITYI"'IMITij'60100150200300350250400450AVERAGEREACTORCOOLANTSYSTEMTEMPERATURE
('F)FIGURE13.REACTORCOOLA>lTSYSTEMPRESSURE-TEMPERATURE LIMITSVERSUS100'F/HRRATE,CRITICALITY LIMITANDIIYDROSTATIC TESTLIMIT,32EFPY(Ref.17) 26002400220020001800160014000-12001000'g800g.80040020006.'jREACTORCOOLANTSYSTEMCOOLDON)LIMITATIONS
!:IAPPLICABLE FORFIRST32EFFECTIVE FULLPNERjYEARSe(NARGINSOF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBLEINSTRlNENT ERRORS)jIIMATERIALPROPERTYBASIS)BASE%TALCU=0.14%IINITIALRT=58'F'2EFPYRTNDT(NDT1/4r)=1754'NACCEPTABLE OPERATION 34T50FPRESSURE"lEMPERATURE
'IMITS/R'IlRATE..'..
020-.40.s.60100~IljlI'tIIIIItII.0100]50200250300'I!IIlj'.ACCEPTABLF.
::OPERATICH350julIIIIjlI1j'.Ij400~I450AVERAGEREACTORCOOLANTSYSTEMTEI'IPERATURE (F)FIGURE14.REACTORCOOLANTSYSTEMPRESSURE-TEtfPERATURE LIMITSVERSUSCOOLDONlRATES,32EFPY(Ref.17) 6


==17.0REFERENCES==
==17.0REFERENCES==
Title10,CodeofFederalRegulations,Part50,"LicensingofProductionandUtilizationFacilities."2.ASMEBoilerandPressureVesselCode,SectionIII,"NuclearPowerPlantComponents."3.ASTME208-81,"StandardMethodforConductingDrop-WeightTesttoDetermineNi-DuctilityTransitionTemperatureofFerriticSteels,"1982AnnualBookofASTMStandards'.5.Steele,L.E.,andSerpan,C.Z.,Jr.,"AnalysisofReactorVesselRadiationEffectsSurveillancePrograms,"ASTMSTP481,December1970.Steele,L.E.,"NeutronIrradiationEmbrittlementofReactorPressureVesselSteels,"InternationalAtomicEnergyAgency,TechnicalReportsSeriesNo.163,1975.6.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInserviceInspectionofNuclearPowerPlantComponents,"1974Edition.7~Randall,P.N.,"NRCPerspectiveofSafetyandLicensingIssuesRegardingReactorVesselSteelEmbrittlement-CriteriaforTrendCurveDevelopment,"presentedattheAmericanNuclearSocietyAnnualMeeting,Detroit,Michigan,June14,1983.8.RegulatoryGuide1.99,Revision1,OfficeofStandardsDevelopment,U.S.NuclearRegulatoryCommission,April1977.9-ASTME185-79,"StandardRecommendedPracticeforSurveillanceTestsforNuclearReactorVessels,"1981AnnualBookofASTMStandards.10.ASTME399-81,"StandardMethodofTestforPlane-StrainFractureToughnessofMetallicMaterials,"1982AnnualBookofASTMStandards.ASTME813-81,"StandardTestMethodforJI,AMeasureofFractureToughness,"1982AnnualBookofASTMStandards."12.13."AmericanElectricPowerServiceCorporationDonaldC.CookUnitNo.2ReactorVesselRadiationSurveillanceProgram,"WCAP-8512,November1975.W.A.RhoadesandR.L.Childs,AnUdatedVersionoftheDot4One-andTwo-DimensionalNeutron/PhotonTranscrtCode,ORNL-5851,OakRidgeNationalLaboratory,OakRidge,TN,July1982.G.L.SimonsandR.Roussin,SAILOR-ACoupledCrossSectionLibraryforLightWaterReactors,DLC-76,RSIC.DonaldC.CookUnitNo.2TechnicalSpecifications.
 
Title10,CodeofFederalRegulations, Part50,"Licensing ofProduction andUtilization Facilities."
2.ASMEBoilerandPressureVesselCode,SectionIII,"NuclearPowerPlantComponents."
3.ASTME208-81,"Standard MethodforConducting Drop-Weight TesttoDetermine Ni-Ductility Transition Temperature ofFerriticSteels,"1982AnnualBookofASTMStandards'.
5.Steele,L.E.,andSerpan,C.Z.,Jr.,"Analysis ofReactorVesselRadiation EffectsSurveillance Programs,"
ASTMSTP481,December1970.Steele,L.E.,"NeutronIrradiation Embrittlement ofReactorPressureVesselSteels,"International AtomicEnergyAgency,Technical ReportsSeriesNo.163,1975.6.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInservice Inspection ofNuclearPowerPlantComponents,"
1974Edition.7~Randall,P.N.,"NRCPerspective ofSafetyandLicensing IssuesRegarding ReactorVesselSteelEmbrittlement
-CriteriaforTrendCurveDevelopment,"
presented attheAmericanNuclearSocietyAnnualMeeting,Detroit,Michigan, June14,1983.8.Regulatory Guide1.99,Revision1,OfficeofStandards Development, U.S.NuclearRegulatory Commission, April1977.9-ASTME185-79,"Standard Recommended PracticeforSurveillance TestsforNuclearReactorVessels,"
1981AnnualBookofASTMStandards.
10.ASTME399-81,"Standard MethodofTestforPlane-Strain FractureToughness ofMetallicMaterials,"1982AnnualBookofASTMStandards.
ASTME813-81,"StandardTestMethodforJI,AMeasureofFractureToughness,"
1982AnnualBookofASTMStandards."
12.13."American ElectricPowerServiceCorporation DonaldC.CookUnitNo.2ReactorVesselRadiation Surveillance Program,"
WCAP-8512, November1975.W.A.RhoadesandR.L.Childs,AnUdatedVersionoftheDot4One-andTwo-Dimensional Neutron/Photon TranscrtCode,ORNL-5851, OakRidgeNationalLaboratory, OakRidge,TN,July1982.G.L.SimonsandR.Roussin,SAILOR-ACoupledCrossSectionLibraryforLightWaterReactors, DLC-76,RSIC.DonaldC.CookUnitNo.2Technical Specifications.
0 6
0 6


==27.0REFERENCES==
==27.0REFERENCES==
(continued)16.Norris,E.B~,"ReactorVesselMaterialSurveillanceProgramforDonaldc.CookUnitNo.2;AnalysisofCapsuleT,"SwRIReport06-5928,September16,1981.17.Norris,E.B.,"ReactorVesselMaterialSurveillanceProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleY,"SwRIReport06-7244-002,February1984.18.USNRCStandardReviewPlan,NUREG-75/087,Section5.3.2,Pressure-TemperatureLimits,November24,1975' APPENDIXADeterminationofAssembly-WiseSourceDistributionforDonaldC.CookUnit2,CapsuleXAnalysis DETERMINATIONOFASSEMBLY-WISESOURCEDISTRIBUTIONFORDONALDC.COOKUNIT2,CAPSULEXANALYSISSurveillance-capsuleXwasinthereactorforcycles1-5.TableA.1showsthecycle-averagerelativeassembly-wise.powerdistributionforeachofthesefivecycles.ThesevalueswereobtainedbyaveragingBOC,MOC,andEOCpowerdistributionsprovidedforeachcycle.Theresultingassembly-wiserelativepowerdistributionshowninthelastcolumnofTableA.1formedthebasisofthespace-dependentsourceusedinthetransportcalculations.Therelativepowervaluesshowninthistableweremultipliedbyavalueof17.6MWthperassemblytoobtaintheabsolutepowerproducedbyeachassembly.TableA.2showsthefinalabsolutepowerproducedbyeachassembly.TableA.2showsthefinalabsoluteassembly-wisepowerdistributionforaquartercoremodel(notethatsomeassembliesappearasfractionsinthequartercore,whichreducestheirabsolutepowerproduced).Theabsolutepowervaluesareconvertedtoaneutronsourcebymultiplyingbytheconversionfactorof8.163x10neutrons/sperMW.Apin-wiseintra-assemblydistributionwasusedtorepresentthespatialpowervariationwithineachoftheperipheralassemblies,whileaflatdistributionisusedforinteriorassemblies.Therelativepin-powerdistributionwasprovidedbytheDonaldC.CookUnit2sup-portstaff.Thenormalized,space-dependentsourcedistributionisthentransformedtotheDOTR8meshbyusingacomputerprogramwhichperformsthenecessaryinterpolationandrenormalizationcalculations.Theoutputofthissourceroutine,whichincludesalistingofthefinalDOTR9spatialsourcedistribution,isincluded.Thesourceenergydistributioncorrespondstoan~~~~~~ENDF/B-VWattfissionspectrum.
TableA.l.Cycle-AverageAssemblyRelativePowerforDonaldC.CookUnit2DistributionZoneCYCLEAverage2*3*4*5*6*7*8*9*1011121314151617*1819202122232425*2627282930313233*34353637383940*4142434445461.1461.1881.1511.2051.1171.1230.9720.7311.1921.1511.1841.1401.1731.0691.0390.7511.1671.1891.1431.1991.1081.0970.9290.6561.2241.1651.2011.1391.1341.0360.9650.5451.1691.1991.1271.1461.1660.9830.8141.0951.0851.1481.0701.0190.9730.4970.8611.0370.9681.1350.9881.0730.9310.9441.0310.9641.0531.0771.2181.0881.1660.9280.9801.0661~0121.2371.0151.1940.9050.8291.1271.0771.2421.0111.1780.9421.0810.5561.0041.2331.0261.1840.9120.9840.9011.0451.0961.1940.9560.9861.0510.5470.8541.060l.1171.2061.1131.0791.0840.8731.0471.0831.2131.1141.1811.1451.1200.8511.1221.2161.1101.19.61.0981.1801.0480.7521.2111.1191.1990.9701.1251.0340.9990.4231.1191.1931.0171.1271.0520.9550.7811.0751.1511.1911.0390.9410.8930.4010.8500.9620.9871.0380.9821.0701.0150.8550.9741.0641~1821.0661.1850.9991.1060.7590.9971.1831.0891.0741.1101.2251.0470.8261.0421.076l.1041.0981.2441.0731.1180.5630.9941.1981.1211.2491.0381.1730.7671.0620.9941.2171.0671~1821.0140.4041.0131.1391.1831.2501.1711.1861.0230.9441.1461.1871.2151.1531.2391.1381.1560.9551.1871.2201.2341.2781.2191.2501.1060.8531.2571.1631~2921.2331.2161.1831.1190.4591.1951.2651.2261.2581.2161.2150.7731.1821.1731.2531.2031.2101.0070.3890.9451.0771.0811.1651.0741.1061.005~0.8691.0781.0901.1691.110l.1991.0881.117~0.8491.0911.1751.1181.1971.1101.1891.0070.448~o.ass1.1721.1201.2081.0901.1791.0541.056~0.5091.0961.2181.1031.1931.0771.062~0.8071.0921.1001.2011.0671.0680.988*1/4assemblyin1/4~1/2assemblyin1/4NOTZ:Circledvaluescore.core.correspondtoperipheralassemblies.
TableA.2.AbsoluteAssemblyTotalPower3391MWthNo.ofassemblies~193(i.e.,Zone)PowerforDonaldC.CookUnit23391MWPperassembly~-=17.57193assemblyZone]~2*3*4*5*6*7*8*9*1011121314151617*1819202122232425*2627282930313233*34353637383940*414243444546RelativePower0.9451.0771.0811.1671.0741.1061.0050.8691.0781.0901.1691.1101.1991.0881.1170.8491.0911.1751.1181.1971.1101.1891.0070.7831.1721.1201.2081.0901.1791.0541.0560.5091.0961.1221.1031.1931.0771.0620.8071.0921.1001.2011.0671.0680.9880.448AbsolutePower'.1519.4619.49710.2529.4359.7168.8297.6349.7019.15120.53919.50321.06619.11619.62614.9179.58420.64519.64321.03119.50320.89113.75710.29619.67821.22419.15120.71518.51918.548.9439.62819.71019.38020.96118.92318.659~14.1799.59319.32721.10218.74718.76517.3597.871~1/4assemblyin1/4core.*1/2assemblyin1/4core.NOTE:Circledvaluescorrespondtoperipheralassemblies.
FigureA.l.IdentificationofAssemblyNomenclatureUsedinSourceDetermination4041424344454633343536373839252627282930313217181920212223241011121314151623478 APPENDIXBDescriptionofthe3-DFluxSynthesisMethod


DESCRIPTIONOFTHE3-DFLUXSYNTHESISMETHODA3-D(RBZ)fluxdistributionissynthesizedusingthefollowingwellestablishedapproximation:$(R,e,Z)=pe(Re)RZ'OREA(RZ)(R,Z)4R(R)B.1where4R~isthefluxobtainedfromtheRB.DOTcalculation;andA(R,Z)"RZ~axialdistributionfunctionobtainedbyrepresentingthe~RRZflux=(QRZ)distributionanddividingitbytheintegraloverZoftheRZflux;i.e.,4RJ4RZdZ.ZInsomepreviousstudies,theRZfluxdistributionwasrepresentedbytheresultsobtainedfromaDOTRZcalculation,whiletheradialflux4Rwasobtainedfromaone-dimensionalcalculation.However,ithasbeendiscoveredthatasimplerapproximationgivessimilarresults(withinafewpercent)astheresultofthesetransportcalculationsforlocationsnotoutsideoftheRPVandnearthereactormidplane.Inthisapproach,werepresentA(RZ)RZ-"(Z)J4RZZfP(>>dZZZB.2whereP(Z)istheaverageaxialdistributionofpowerinthecore.Thefunc-tionP(Z)hasbeenrepresentedby61discretenodalvaluesprovidedbyAmericanElectricPower.Thesevalues,whichareshowninTableB.1andB.2,correspondtotheaveragerelativepowerfor61six-centimeternodesdefinedoverthecoreheight.TableB.listheMOCaxialdistributionforatwice-burnedperipheralassembly,whileTableB.2isforafreshperipheralassembly.
(continued) 16.Norris,E.B~,"ReactorVesselMaterialSurveillance ProgramforDonaldc.CookUnitNo.2;AnalysisofCapsuleT,"SwRIReport06-5928,September 16,1981.17.Norris,E.B.,"ReactorVesselMaterialSurveillance ProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleY,"SwRIReport06-7244-002, February1984.18.USNRCStandardReviewPlan,NUREG-75/087, Section5.3.2,Pressure-Temperature Limits,November24,1975' APPENDIXADetermination ofAssembly-Wise SourceDistribution forDonaldC.CookUnit2,CapsuleXAnalysis DETERMINATION OFASSEMBLY-WISE SOURCEDISTRIBUTION FORDONALDC.COOKUNIT2,CAPSULEXANALYSISSurveillance
EmployingtheexpressioninEq.B.2,wefindA(R,Z)=A(Z)AK='1,61PKAZi=1EvaluatingthedenominatorbysummingthevaluesinTablesB.landB.2,andmultiplyingbyhZ=6givesaxialfluxfactorfornodeKforburnedassemblyPK(PKtakenfromTableB.l)AK~KaxialfluxfactorfornodeKforfreshassemblyP15o~8(PKtakenfromTableB.2)Theaxialfactors(AK)usedinsynthesizingtheRSZfluxesarealsoshowninTablesB.landB.2.Notefromthesetablesthattheaxialfluxfactorshavedifferentaxialvariationsforthefreshandburnedassemblies(indicatingadifferenceintherelativefluxshape).However,thepeakvalueineachcaseisnearlyidentical(>>3.1E-3),andoccursatapproximatelythesamelocation(-35inchesbelowthemidplane).Theaxialdistributionisfairlyflatinbothcases,andvariesbyonlyabout10Xoverthemiddle9feetofthecore.SincesurveillancecapsuleXaswellasthepeakRPVfluxarelocatedoppo-siteatwice-burnedassembly,theaxialdistributionfactorsinTableB.1aremoreappropriateforthisanalysis.Inordertocomputethe3-Dfluxoractivityatsomeaxialnodei(corre-spondingtoaheightZinTablesB.1andB.2),forsomeR8locationonemust1.findthefluxoractivityattheappropriate(RI,8J)locationintheDOTRBrun2.findtheaxialfluxfactorattheappropriatenodeK3.computethe3-Dvalueusingexpression$(RIOJ,ZI)4R6(RI6g)+AK
-capsuleXwasinthereactorforcycles1-5.TableA.1showsthecycle-average relativeassembly-wise.
(*)Forexample,thereactormidplanecorrespondstonode31.FromTableB.l,itcanbeseenthattheaxialfluxfactorfornode31isequalto3.063x10Therefore,allactivitiesandfluxesintheDOTReoutputshouldbemultipliedbythisfactorinordertoobtainthecorrespondingmidplanevalues.Allofthedosimeterresultsgiveninthetablespresentedpreviouslycorrespondtomidplanevaluesobtainedinthismanner.Themaximumvaluesoccurbelowthemidplaneandareobtainedbyusinganaxialfactorof3.143x10 TableB.l.AxialDistributionFactorsforBurnedPeripheralAssemblyinDonaldC.CookUnit2NodeZk(cm)(relativepower)Ak(axialfluxfactor)~Midlane123456789101112131415161718192021222324252627282930313233343536373839404142434445463.09.015.021.027.033.039.045.051.057.063.0'9.075.081.087.093.099.0105.0111.0117.0123.0129.0135.0141.0147.0153.0159.0165.0171.0177.0183.0189.0195.0201.0207.0213.0219.0225.0231.0237.0243.0249.0255.0261.0267.0273.00.2120.2120.2680.3180.3590.3860.3680.4110.4440.4560.4630.4740.4770.4790.4700.4130.4700.4830.4880.4940.4960.4980.4940.4620.4440.4880.4910.4960.4990.5010.4990.4930.4380.4760.4960.4980.4990.5040.5040.5030.4910.4380.497-0.5070.5120.5121.301,E-31.301E-31.645E-31.952E-32.204E>>32.369E-32.259E-32.523E-32.725E-32.799E-32.842E-32.910E-32.928E-32.940E-32.885E-32.535E-32.885E-32.965E-32.995E-33.032E-33.045E-33.057E-33.032E-32.836E-32.725E-32.995E-33.014E-33.045E-33.063E-33.075E-33.063E-33.026E-32.689E-32.922E-33.045E-33.057E-33.063E-33.094E-33.094E-33.088E-33.014E-32.689E-33.051E-33.112E-33.143E-33.143E-3 TableB.l.(continued)Node21c(c)(relativepower)Ak(axialfluxfactor)474849505152535455565758596061279.0285.0291.0297.0303.0309.0315.0321.0327.0333.0339.0345.0351.0357.0363.00.5110.5070.4990.4620.4420.4840.4820.4770.4660.4490.4220.3810.3320.2660.1333.137E-33.112E-33.063E-32.836E-32.713E-32.971E-32.959E-32.928E-32.860E-32.756E-32.590E-32.339E-32.037E-31.632E-38.160E-4 TableB.2.AxialDistributionFactorsforFreshPeripheralAssemblyinDonaldC.CookUnit2Nodezk(cm)(relativepover)Ak(axialfluxfactor)dlane12356789101112131415161718192021222324252627282930313233343536373839404142434445463.09.015.021.027.033.039.045.051.057.063.069.075.081.087.093.099.0105.0111.0117.0123.0129.0135.0141.0147.0153.0159.0165.0171.0177.0183.0189.0195.0201.0207.0213.0219.0225.0231.0237.0243.0249.0255.0261.0267.0273.00.1740.1830.2380.2830.3200.3470.3480.3730.4030.4160.4270.4320.4340.4350.4280.4050.4310.4360.4380.4420.4440.4450~444.0.4200.4250.4500.4570.4580.4600.4590.4610.4540.4270.4510.4610.4640.4660.4670.4670.4650.4470.4360.4650.4730.4760.4781.154E-31.214E-31.578E-31.877E-32.122E-32.301E-32.308E-32.474E-32.673E-32.759E-32.832E-32.865E-32.878E-32.885E-32.839E-32.686E-32.858E-32.892E-32.905E-32.931E-32.945E-32.951E-32.945E-32.786E-32.819E-32.984E-33.031E-33.038E-33.051E-33.044E-33.057E-33.011E-32.832E-32.991E-33.057E-33.077K-33.091E-33.097E-33.097E-33.084E-32.965E-32.892E-33.084E-33.137K-33.157E-33.170E-3 TableB.2.(continued)Node2k(cm)Pk(relativepower)Ak(axialfluxfactor)Bottom474849505152535455565758596061279.0285.0291.0297.0303.0309.0315.0321.0327.0333.0339.0345.0351.0357.0363.00.4780.4780.4730.4420.4610.4660.4580.4500.4340.4130.382.0.3420.2860.2070.2073.170E-33.170E-33.137E-32.931E-33.057E-33.091E-33.038E-32.984E-32.878E-32.739E-32.533E-32.268E-31.897E-31.373E-31.373E-3 APPENDIXCTensileTestDataRecords SouthwestResearchInsiuteOepartmentofMaterialsSciencesTENSILETESTOATASHE"iSpecimenNo.ri-8TestTemperature/NrStrainRate.aaMrw.ritYw.~projectHo.Q8'-+w>4->-rrMachineIdent.DataofTest4/~rk7InitialOiameter.Z.nInitialArealltllggLgSpecimenTemperaure:TopT.C.MiddleT.C.BottomT.C.~/n"~FinalOiameter.r+'7FinalAreaw/7;i"FinalGageLength.'~r~.'aximumLoad0.2~OffsetLoadFracureLoadllg.tg*.Lg~U.T.S.=MaximumLoad/InitialArea0.2..Y.S.=0.2OffsetLoad/InitialAreaFratureStress=FractureLoad/FinalArea"R.A.100(Init.Area-FinalArea)/Init.Area"TotalElong.=100(FinalG.L.-Init.G.L.)/Init.G.L...UniformElong.=100(Elong.toMax.Load)/Init.G.L.Pr',5NTestPerformedby:CalculationsPerormedby:CalculationsCheckedby:~-.W.~~~~~(Oate(Oate)~/7/~~  
powerdistribution foreachofthesefivecycles.Thesevalueswereobtainedbyaveraging BOC,MOC,andEOCpowerdistributions providedforeachcycle.Theresulting assembly-wiserelativepowerdistribution showninthelastcolumnofTableA.1formedthebasisofthespace-dependent sourceusedinthetransport calculations.
Therelativepowervaluesshowninthistableweremultiplied byavalueof17.6MWthperassemblytoobtaintheabsolutepowerproducedbyeachassembly.
TableA.2showsthefinalabsolutepowerproducedbyeachassembly.
TableA.2showsthefinalabsoluteassembly-wise powerdistribution foraquartercoremodel(notethatsomeassemblies appearasfractions inthequartercore,whichreducestheirabsolutepowerproduced).
Theabsolutepowervaluesareconverted toaneutronsourcebymultiplying bytheconversion factorof8.163x10neutrons/s perMW.Apin-wiseintra-assembly distribution wasusedtorepresent thespatialpowervariation withineachoftheperipheral assemblies, whileaflatdistribution isusedforinteriorassemblies.
Therelativepin-power distribution wasprovidedbytheDonaldC.CookUnit2sup-portstaff.Thenormalized, space-dependent sourcedistribution isthentransformed totheDOTR8meshbyusingacomputerprogramwhichperformsthenecessary interpolation andrenormalization calculations.
Theoutputofthissourceroutine,whichincludesalistingofthefinalDOTR9spatialsourcedistribution, isincluded.
Thesourceenergydistribution corresponds toan~~~~~~ENDF/B-VWattfissionspectrum.
TableA.l.Cycle-Average AssemblyRelativePowerforDonaldC.CookUnit2Distribution ZoneCYCLEAverage2*3*4*5*6*7*8*9*1011121314151617*1819202122232425*2627282930313233*34353637383940*4142434445461.1461.1881.1511.2051.1171.1230.9720.7311.1921.1511.1841.1401.1731.0691.0390.7511.1671.1891.1431.1991.1081.0970.9290.6561.2241.1651.2011.1391.1341.0360.9650.5451.1691.1991.1271.1461.1660.9830.8141.0951.0851.1481.0701.0190.9730.4970.8611.0370.9681.1350.9881.0730.9310.9441.0310.9641.0531.0771.2181.0881.1660.9280.9801.0661~0121.2371.0151.1940.9050.8291.1271.0771.2421.0111.1780.9421.0810.5561.0041.2331.0261.1840.9120.9840.9011.0451.0961.1940.9560.9861.0510.5470.8541.060l.1171.2061.1131.0791.0840.8731.0471.0831.2131.1141.1811.1451.1200.8511.1221.2161.1101.19.61.0981.1801.0480.7521.2111.1191.1990.9701.1251.0340.9990.4231.1191.1931.0171.1271.0520.9550.7811.0751.1511.1911.0390.9410.8930.4010.8500.9620.9871.0380.9821.0701.0150.8550.9741.0641~1821.0661.1850.9991.1060.7590.9971.1831.0891.0741.1101.2251.0470.8261.0421.076l.1041.0981.2441.0731.1180.5630.9941.1981.1211.2491.0381.1730.7671.0620.9941.2171.0671~1821.0140.4041.0131.1391.1831.2501.1711.1861.0230.9441.1461.1871.2151.1531.2391.1381.1560.9551.1871.2201.2341.2781.2191.2501.1060.8531.2571.1631~2921.2331.2161.1831.1190.4591.1951.2651.2261.2581.2161.2150.7731.1821.1731.2531.2031.2101.0070.3890.9451.0771.0811.1651.0741.1061.005~0.8691.0781.0901.1691.110l.1991.0881.117~0.8491.0911.1751.1181.1971.1101.1891.0070.448~o.ass1.1721.1201.2081.0901.1791.0541.056~0.5091.0961.2181.1031.1931.0771.062~0.8071.0921.1001.2011.0671.0680.988*1/4assemblyin1/4~1/2assemblyin1/4NOTZ:Circledvaluescore.core.correspond toperipheral assemblies.
TableA.2.AbsoluteAssemblyTotalPower3391MWthNo.ofassemblies
~193(i.e.,Zone)PowerforDonaldC.CookUnit23391MWPperassembly~-=17.57193assemblyZone]~2*3*4*5*6*7*8*9*1011121314151617*1819202122232425*2627282930313233*34353637383940*414243444546RelativePower0.9451.0771.0811.1671.0741.1061.0050.8691.0781.0901.1691.1101.1991.0881.1170.8491.0911.1751.1181.1971.1101.1891.0070.7831.1721.1201.2081.0901.1791.0541.0560.5091.0961.1221.1031.1931.0771.0620.8071.0921.1001.2011.0671.0680.9880.448AbsolutePower'.1519.4619.49710.2529.4359.7168.8297.6349.7019.15120.53919.50321.06619.11619.62614.9179.58420.64519.64321.03119.50320.89113.75710.29619.67821.22419.15120.71518.51918.548.9439.62819.71019.38020.96118.92318.659~14.1799.59319.32721.10218.74718.76517.3597.871~1/4assemblyin1/4core.*1/2assemblyin1/4core.NOTE:Circledvaluescorrespond toperipheral assemblies.
FigureA.l.Identification ofAssemblyNomenclature UsedinSourceDetermination 4041424344454633343536373839252627282930313217181920212223241011121314151623478 APPENDIXBDescription ofthe3-DFluxSynthesis Method
 
DESCRIPTION OFTHE3-DFLUXSYNTHESIS METHODA3-D(RBZ)fluxdistribution issynthesized usingthefollowing wellestablished approximation:
$(R,e,Z)=pe(Re)RZ'OREA(RZ)(R,Z)4R(R)B.1where4R~isthefluxobtainedfromtheRB.DOTcalculation; andA(R,Z)"RZ~axialdistribution functionobtainedbyrepresenting the~RRZflux=(QRZ)distribution anddividingitbytheintegraloverZoftheRZflux;i.e.,4RJ4RZdZ.ZInsomepreviousstudies,theRZfluxdistribution wasrepresented bytheresultsobtainedfromaDOTRZcalculation, whiletheradialflux4Rwasobtainedfromaone-dimensional calculation.
However,ithasbeendiscovered thatasimplerapproximation givessimilarresults(withinafewpercent)astheresultofthesetransport calculations forlocations notoutsideoftheRPVandnearthereactormidplane.
Inthisapproach, werepresent A(RZ)RZ-"(Z)J4RZZfP(>>dZZZB.2whereP(Z)istheaverageaxialdistribution ofpowerinthecore.Thefunc-tionP(Z)hasbeenrepresented by61discretenodalvaluesprovidedbyAmericanElectricPower.Thesevalues,whichareshowninTableB.1andB.2,correspond totheaveragerelativepowerfor61six-centimeter nodesdefinedoverthecoreheight.TableB.listheMOCaxialdistribution foratwice-burnedperipheral
: assembly, whileTableB.2isforafreshperipheral assembly.
Employing theexpression inEq.B.2,wefindA(R,Z)=A(Z)AK='1,61PKAZi=1Evaluating thedenominator bysummingthevaluesinTablesB.landB.2,andmultiplying byhZ=6givesaxialfluxfactorfornodeKforburnedassemblyPK(PKtakenfromTableB.l)AK~KaxialfluxfactorfornodeKforfreshassemblyP15o~8(PKtakenfromTableB.2)Theaxialfactors(AK)usedinsynthesizing theRSZfluxesarealsoshowninTablesB.landB.2.Notefromthesetablesthattheaxialfluxfactorshavedifferent axialvariations forthefreshandburnedassemblies (indicating adifference intherelativefluxshape).However,thepeakvalueineachcaseisnearlyidentical
(>>3.1E-3),andoccursatapproximately thesamelocation(-35inchesbelowthemidplane).
Theaxialdistribution isfairlyflatinbothcases,andvariesbyonlyabout10Xoverthemiddle9feetofthecore.Sincesurveillance capsuleXaswellasthepeakRPVfluxarelocatedoppo-siteatwice-burned
: assembly, theaxialdistribution factorsinTableB.1aremoreappropriate forthisanalysis.
Inordertocomputethe3-Dfluxoractivityatsomeaxialnodei(corre-spondingtoaheightZinTablesB.1andB.2),forsomeR8locationonemust1.findthefluxoractivityattheappropriate (RI,8J)locationintheDOTRBrun2.findtheaxialfluxfactorattheappropriate nodeK3.computethe3-Dvalueusingexpression
$(RIOJ,ZI)4R6(RI6g)+AK
(*)Forexample,thereactormidplanecorresponds tonode31.FromTableB.l,itcanbeseenthattheaxialfluxfactorfornode31isequalto3.063x10Therefore, allactivities andfluxesintheDOTReoutputshouldbemultiplied bythisfactorinordertoobtainthecorresponding midplanevalues.Allofthedosimeter resultsgiveninthetablespresented previously correspond tomidplanevaluesobtainedinthismanner.Themaximumvaluesoccurbelowthemidplaneandareobtainedbyusinganaxialfactorof3.143x10 TableB.l.AxialDistribution FactorsforBurnedPeripheral AssemblyinDonaldC.CookUnit2NodeZk(cm)(relative power)Ak(axialfluxfactor)~Midlane123456789101112131415161718192021222324252627282930313233343536373839404142434445463.09.015.021.027.033.039.045.051.057.063.0'9.075.081.087.093.099.0105.0111.0117.0123.0129.0135.0141.0147.0153.0159.0165.0171.0177.0183.0189.0195.0201.0207.0213.0219.0225.0231.0237.0243.0249.0255.0261.0267.0273.00.2120.2120.2680.3180.3590.3860.3680.4110.4440.4560.4630.4740.4770.4790.4700.4130.4700.4830.4880.4940.4960.4980.4940.4620.4440.4880.4910.4960.4990.5010.4990.4930.4380.4760.4960.4980.4990.5040.5040.5030.4910.4380.497-0.5070.5120.5121.301,E-3 1.301E-31.645E-31.952E-32.204E>>32.369E-32.259E-32.523E-32.725E-32.799E-32.842E-32.910E-32.928E-32.940E-32.885E-32.535E-32.885E-32.965E-32.995E-33.032E-33.045E-33.057E-33.032E-32.836E-32.725E-32.995E-33.014E-33.045E-33.063E-33.075E-33.063E-33.026E-32.689E-32.922E-33.045E-33.057E-33.063E-33.094E-33.094E-33.088E-33.014E-32.689E-33.051E-33.112E-33.143E-33.143E-3 TableB.l.(continued)
Node21c(c)(relative power)Ak(axialfluxfactor)474849505152535455565758596061279.0285.0291.0297.0303.0309.0315.0321.0327.0333.0339.0345.0351.0357.0363.00.5110.5070.4990.4620.4420.4840.4820.4770.4660.4490.4220.3810.3320.2660.1333.137E-33.112E-33.063E-32.836E-32.713E-32.971E-32.959E-32.928E-32.860E-32.756E-32.590E-32.339E-32.037E-31.632E-38.160E-4 TableB.2.AxialDistribution FactorsforFreshPeripheral AssemblyinDonaldC.CookUnit2Nodezk(cm)(relative pover)Ak(axialfluxfactor)dlane12356789101112131415161718192021222324252627282930313233343536373839404142434445463.09.015.021.027.033.039.045.051.057.063.069.075.081.087.093.099.0105.0111.0117.0123.0129.0135.0141.0147.0153.0159.0165.0171.0177.0183.0189.0195.0201.0207.0213.0219.0225.0231.0237.0243.0249.0255.0261.0267.0273.00.1740.1830.2380.2830.3200.3470.3480.3730.4030.4160.4270.4320.4340.4350.4280.4050.4310.4360.4380.4420.4440.4450~444.0.4200.4250.4500.4570.4580.4600.4590.4610.4540.4270.4510.4610.4640.4660.4670.4670.4650.4470.4360.4650.4730.4760.4781.154E-31.214E-31.578E-31.877E-32.122E-32.301E-32.308E-32.474E-32.673E-32.759E-32.832E-32.865E-32.878E-32.885E-32.839E-32.686E-32.858E-32.892E-32.905E-32.931E-32.945E-32.951E-32.945E-32.786E-32.819E-32.984E-33.031E-33.038E-33.051E-33.044E-33.057E-33.011E-32.832E-32.991E-33.057E-33.077K-33.091E-33.097E-33.097E-33.084E-32.965E-32.892E-33.084E-33.137K-33.157E-33.170E-3 TableB.2.(continued)
Node2k(cm)Pk(relative power)Ak(axialfluxfactor)Bottom474849505152535455565758596061279.0285.0291.0297.0303.0309.0315.0321.0327.0333.0339.0345.0351.0357.0363.00.4780.4780.4730.4420.4610.4660.4580.4500.4340.4130.382.0.3420.2860.2070.2073.170E-33.170E-33.137E-32.931E-33.057E-33.091E-33.038E-32.984E-32.878E-32.739E-32.533E-32.268E-31.897E-31.373E-31.373E-3 APPENDIXCTensileTestDataRecords Southwest ResearchInsiuteOepartment ofMaterials SciencesTENSILETESTOATASHE"iSpecimenNo.ri-8TestTemperature
/NrStrainRate.aaMrw.ritYw.~projectHo.Q8'-+w>4->-r rMachineIdent.DataofTest4/~rk7InitialOiameter.Z.nInitialArealltllggLgSpecimenTemperaure:TopT.C.MiddleT.C.BottomT.C.~/n"~FinalOiameter.r+'7FinalAreaw/7;i"FinalGageLength.'~r~.'aximum Load0.2~OffsetLoadFracureLoadllg.tg*.Lg~U.T.S.=MaximumLoad/Initial Area0.2..Y.S.=0.2OffsetLoad/Initial AreaFratureStress=FractureLoad/Final Area"R.A.100(Init.Area-Final Area)/Init.
Area"TotalElong.=100(FinalG.L.-Init.
G.L.)/Init.
G.L...UniformElong.=100(Elong.toMax.Load)/Init.
G.L.Pr',5NTestPerformed by:Calculations Perormedby:Calculations Checkedby:~-.W.~~~~~(Oate(Oate)~/7/~~  
~ih1 lIC'jt1(IJ'y  
~ih1 lIC'jt1(IJ'y  
,.iSouthwestResearchInst'teDepartmentofMaterialsSciencesTENSILETESTDATASHEETSpecimenNo.TestTemperature~.StrainRate.an</'s~~.~ProjectNo.w~-,<PAA'~fMachineIdent.DataofTestu/~a/a7fillgiInitialArea.n<;gglgSpecimenTemperature:TopT.C.MiddleT.C.BottomT.C./jAn/H'fFinalDiameterFinalAreafl1gglgg~MaximumLoadll.g'llg~FractureLoadFlong.toMax.LoadU.T.S.=MaximumLoad/InitialArea0.2~Y.S.=0.2"OffsetLoad/InitialAreaFratureStress=Frac.ureLoad/FinalAreaR.A.=100(Init.Area-FinalArea)/Init.Area,".Total"long.=100(FinalG.L.-Init.G.L.)/Init.G.L...UniformElong.=100(Elong.toMax.Load)/Init.G.L-g/+Z//jil~nTestPertoeeedby:!CalculationsPerormedby:CalculationsCheckedby:(Date(Date)~7/(7 rI'gII'I'IIilllI'!I;~.I'I.11I'III~!Il~II:IIIjjIIj;I.III11iiI11III'.,'ll11illjli.'jiijiIIIIllll,ii',I:j::.i'.ji!!il""II.'llIiIijl!I,II,II'II;'jl:I~ll,iljj:II::.(,'I;jj.'I,II:I:',II!j'!IIj:IiII."Ij::I::ll'::lj~,'IIj!iI~I~jIill,i,I~Ijl'lIII'ilI11~IIIIIsil"i'i!::I:.jl!.I':1'jljlIII;:!ii,'ljlIII~I~'11'I'IIIIIaIIjjjlIII:lIIjjI~~IiIIIl,'!IIIlI;IIIiIji11I:I'lilIIIII.IjIIilII)IIIjIIiII.j.,jI~IIIIII'.ji:,li'I!:IjlIjl:IjIIII!jliIIIIIll1!Iij'Ili.I:iIIIjIIII,IlIIIIIIIjIIIII IgIII,Ij:I!,,IIi!I'f1~II:IIIII~~'IiiIIIIII!iIIIIIII:!jljil~~
,.iSouthwest ResearchInst'teDepartment ofMaterials SciencesTENSILETESTDATASHEETSpecimenNo.TestTemperature
SouhwestResearchinstfueOeparimentofMaierfalsSciencesi~HSil~Tc.STOATASH=":-7SpecimenHo.TesiTemoeratureP.objectNo.Machineiden..SirainRaie~+~g~>>~g~pOateofTestinitialOiameterw/7iniifalAreainfifaIGageLengthr.~.'>SpecimenTemoerature:TopT.C.MiddleT.C.m/SI.C~FinalOiameterFinalAreaFinalGageLengtnMaximumLoadC.Z.".OffsetLoaa;"racurLoad=long.toMax.Load>>~/d7.U.T.S.=MaxmumLoad/initialAreaO.Z..Y.S.=O.Z..OffsetLoad/iniiialArea7/,nFraureSi.essFrac.ureLoad/FinalArea..Toal"iona...Uniform="Iong.100(FinaIG.L.-inii.G.L.)/';nit.G.L.=100(=long.toMax.Load)/in''"'-L.~R.A."-100(inilArea-FinalArea)/init.Areal7/~'g>5.D~Tes.>erarwe",byCalculaiionsPerformedby:CalculationsCheckedby:  
~.StrainRate.an</'s~~.~ProjectNo.w~-,<PAA'~f MachineIdent.DataofTestu/~a/a7fillgiInitialArea.n<;gglgSpecimenTemperature:
TopT.C.MiddleT.C.BottomT.C./jAn/H'fFinalDiameterFinalAreafl1gglgg~MaximumLoadll.g'llg~FractureLoadFlong.toMax.LoadU.T.S.=MaximumLoad/Initial Area0.2~Y.S.=0.2"OffsetLoad/InitialAreaFratureStress=Frac.ureLoad/Final AreaR.A.=100(Init.Area-Final Area)/Init.
Area,".Total"long.=100(FinalG.L.-Init.
G.L.)/Init.
G.L...UniformElong.=100(Elong.toMax.Load)/Init.
G.L-g/+Z//jil~nTestPertoeeed by:!Calculations Perormedby:Calculations Checkedby:(Date(Date)~7/(7 rI'gII'I'IIilllI'!I;~.I'I.11I'III~!Il~II:IIIjjIIj;I.III11iiI11III'.,'ll11illjli.'jiijiIIIIllll,ii',I:j::.i'.ji!!il""II.'llIiIijl!I,II,II'II;'jl:I~ll,iljj:II::.(,'I;jj.'I,II:I:',II!j'!IIj:IiII."Ij::I::ll'::lj~,'IIj!iI~I~jIill,i,I~Ijl'lIII'ilI11~IIIIIsil"i'i!::I:.jl!.I':1'jljlIII;:!ii,'ljlIII~I~'11'I'IIIIIaIIjjjlIII:lIIjjI~~IiIIIl,'!IIIlI;IIIiIji11I:I'lilIIIII.IjIIilII)IIIjIIiII.j.,jI~IIIIII'.ji:,li'I!:IjlIjl:IjIIII!jliIIIIIll1!Iij'Ili.I:iIIIjIIII,IlIIIIIIIjIIIII IgIII,Ij:I!,,IIi!I'f1~II:IIIII~~'IiiIIIIII!iIIIIIII:!jljil~~
SouhwestResearchinstfueOepariment ofMaierfals Sciencesi~HSil~Tc.STOATASH=":-7SpecimenHo.TesiTemoerature P.objectNo.Machineiden..SirainRaie~+~g~>>~g~pOateofTestinitialOiameterw/7iniifalAreainfifaIGageLengthr.~.'>SpecimenTemoerature:TopT.C.MiddleT.C.m/SI.C~FinalOiameterFinalAreaFinalGageLengtnMaximumLoadC.Z.".OffsetLoaa;"racurLoad=long.toMax.Load>>~/d7.U.T.S.=MaxmumLoad/initial AreaO.Z..Y.S.=O.Z..OffsetLoad/iniiial Area7/,nFraureSi.essFrac.ureLoad/Final Area..Toal"iona...Uniform="Iong.100(FinaIG.L.-inii.G.L.)/';nit.G.L.=100(=long.toMax.Load)/in''"'-L.
~R.A."-100(inilArea-Final Area)/init.
Areal7/~'g>5.D~Tes.>erarwe",byCalculaiions Performed by:Calculations Checkedby:  


a)t(I()I'I'''I.:llI')("r1~L'II):(I)I,Il'ilII:',IIiII!iIIIi)I!I~)~'~I','1t:!):'III'I',i,IIII~~IIli):)i'I!iI))I'lI,I~)I)iillIiI  
a)t(I()I'I'''I.:llI')("r1~L'II):(I)I,Il'ilII:',IIiII!iIIIi)I!I~)~'~I','1t:!):'III'I',i,IIII~~IIli):)i'I!iI))I'lI,I~)I)iillIiI  


.Southwes.ResearchIns..uteOeoartmentofMaterialsSciencsTENSILETZSTOATASH"-:-TSpiNYTSrainRate/rg~y~~i~/ProjectNo.MacnineIder..~~/OateofTesteJ~"J<W,Ini.ialOiameterIni.ialAreaInitialGageLenctnSpecimenTempe.a:ure:TopT.C.MiddleT.C.HottomT.C.rVC7:n+nPw470.2"..Y.S.=0.2'.lOffsetLoad/InitialAreaFinalOiameterFinalAreaFinalGageLengthMaximumLoadQ.Z.''rac=ureLoadalong.toMax.Load/7',r>FratureStress=Frac.ureLoad/FinalArea",.R.A.=100(Init.Area-FinalArea)/.nst.Area"..Toallong,=100(FinalG.L.-Init.G.L.)/;r..'-.G.L...Uniform=long.=100(along.toMax.Load)/n't.G.L./4.9',.~/p+,'znTes.Pe.formedby:Q.CalculationsPerfor,edby:-'i".m.rt~~(OateCa1cu1aticnsCheckedby:~-~~.(Date)5'/7/<7 I,sI!,I~ss'Isl~s I~~CIj~i:Ilie~lj'liII',C~.IIIIIIII~Ic!llIII~,I<<~!ilIlli'<<I'I'IlCI~:Ill~I'I.'.I1~I;(I,:lj:I'.l:<<'Iilli~~li<<:I'I'-~I.'ll,IliIII~I;IIII.I.Cl~I.II:''!I<<III.I~,'I',:~I:I~~~I1III.<<l<<lliII.":~l!:'.Iijl'll!Iiil!:IIIIII"':,1.I'1iI<<~II::1I''<<<<II'lll:IilII'IIIIIIIIIil!II.'I~jilljil!il'IliI'illiiIIIijjlIl!!iIIII.iIIIIIIIIj,1IIC<<I!III(Ii!iI)IlII:I:II!Il<<iIIIII:III!I;I~1I~jIII'II".II,Ci~<<ll.1 TABLE4.1-12ORCOOCODSgor~oe~etReactorVesselFullLengthControlRodDrfveMechanismsSteamGeneratorsReactor-CoolantPumpCasingsPressurizerPressurizerSafetyValvesgodeASHEIII*ClassAASHEIII*ClassAASMEIZZ*ClassANoCode(DesignedwithASMEIIIArticle4asaGuide)ASMEIII*CLassAASMEIII*Unit1ddedaandCodeCases1965Ed.through1966WinterAddenda,CodeCases1332-2,1358,1339-'2,1335,1359-1,1338-3,13361965Ed.through1966WinterAddenda1965Ed.through1966WinterAddenda1968Edition1965Ed.throughWinter1966Addenda,CodeCases1401,14591968EditionPowerOperatedRely.efValvesB-16.5HainReactorCoolantSystemPipingReactorCoolantSystemValvesB31.1B-16.5orHSS-SP-66,andASHEIII,1968Edition*1967EditionASMEBoilerandPressureVesselCode,SectionIZI-NuclearVesselsRepairsandreplacementsareconductedin";ordancewithASMESectionXI4.1-40July1991 V~<<,'$
.Southwes.ResearchIns..uteOeoartment ofMaterials SciencsTENSILETZSTOATASH"-:-TSpiNYTSrainRate/rg~y~~i~/ProjectNo.MacnineIder..~~/OateofTesteJ~"J<W,Ini.ialOiameterIni.ialAreaInitialGageLenctnSpecimenTempe.a:ure:TopT.C.MiddleT.C.HottomT.C.rVC7:n+nPw470.2"..Y.S.=0.2'.lOffsetLoad/Initial AreaFinalOiameterFinalAreaFinalGageLengthMaximumLoadQ.Z.''rac=ure Loadalong.toMax.Load/7',r>FratureStress=Frac.ureLoad/Final Area",.R.A.=100(Init.Area-Final Area)/.nst.
TABLE4.1-12(cont'd.)8Hoc/~en~5pa~ggg.goragone~tReactorVesselFullLengthControlRodDriveMechanisms~odASMEIXIClassAASMEIXXClassAUnit2ddendaandCodeCases1968Ed.(1968SummerAddenda)-CodaCase1335-41968Ed.'NoAdd.)SteamGeneratorsASMEIXXClassA1968Ed.throughMinter1968Addenda,CodeCases1401,1498forupperassembliesand1983Ed.throughSummer1984forreplacementlowerassembliesReactorCoolantPumpCasingsPressurizerPressurizerSafeeyValvesNoCode(Desi~edwithASMEXIIArtic3.e4asaGuide)ASMEIXI*ClassAASMEIXI*1968EditionthroughSummer1969Addenda1965Ed.throughWincer1966Addenda1968EditionPowerOperatedReliefValvesB-16.5MainReactor.CoolantSystemPipingReactorCoolantSystemValvesB31.1B-16.5orMSS-SP-66,andASMEIXX,1968Edition+1967Edition*ASMEBoilerandPressureVesselCode,SectionIIX-NuclearVesselsRepairsandreplacamenesareconductedinaccordancewithASMESectionXI4.1-41July1991  
Area"..Toallong,=100(FinalG.L.-Init.
.EF":.ScMICHIGANPOWERCOMPiJ...r~..ucYI'1C,.Hovaxiber7,1977DonaldC.CookNuclearPlantQn3.tHo'DocketHo'0-315DPRNo~58rI'EdsonG.Case,ActingDirectorOfficeofNuclearReactorRegulationU.S~NuclearRegulatoryCommissionshington,D.C.20555earMrCasecT?d.sletterrespondstoMrsDonK.Davis'etteroi20,1977requestingreactorvesselmaterialpropertyinformationDtheDonaldC.CookNuclearplantInourletterdated*uly25,1977,weinformedyouthatwewouldneedadditionaltimetoprovidetherequestedinformation.Enclosedherewitharethree(3)copiesofadocumententitled,"D.CCookUnitHo.1ReactorVesselMaterialurveillanceProgram"whichsuppliestheinformationrequested.Verytrulyyours,ohnTzdlinghatVicePresideJT~mamSwornandsubscribedtobeforemeonthis7dayofNovember1977inNewYorkCounty,NewYorkNotaryPlicGfiEGOiTYM.Gi:Z~VilrHataryPublic.St:teat<'tewYuritHa.31-46<3<31GualiTiedinNewYarkCountyCommiss'anExpiresMsrch30,19?5  
G.L.)/;r..'-.
\~."''&~EgGCase~l'~P~sIICharnoff,H,SteketeeVollenCCallenNalshVShaller-Bridgman~N~tuxgensenQePo'eRiRiDiRop~glgbc:S-ZMilioti/P.W.Daley8'~GFeinsteinM.H.Fletcher-'RCM.M.Mlynczak-NRCDC-N-6015.XDC-N-6079~,~0Xov.Lr7,1977g'rt'5,,'~>~I<</~,t'~I  
G.L...Uniform=long.=100(along.toMax.Load)/n't.G.L./4.9',.~/p+,'znTes.Pe.formed by:Q.Calculations Perfor,ed by:-'i".m.rt~~(OateCa1cu1aticns Checkedby:~-~~.(Date)5'/7/<7 I,sI!,I~ss'Isl~s I~~CIj~i:Ilie~lj'liII',C~.IIIIIIII~Ic!llIII~,I<<~!ilIlli'<<I'I'IlCI~:Ill~I'I.'.I1~I;(I,:lj:I'.l:<<'Iilli~~li<<:I'I'-~I.'ll,IliIII~I;IIII.I.Cl~I.II:''!I<<III.I~,'I',:~I:I~~~I1III.<<l<<lliII.":~l!:'.Iijl'll!Iiil!:IIIIII"':,1.I'1iI<<~II::1I''<<<<II'lll:IilII'IIIIIIIIIil!II.'I~jilljil!il'IliI'illiiIIIijjlIl!!iIIII.iIIIIIIIIj,1IIC<<I!III(Ii!iI)IlII:I:II!Il<<iIIIII:III!I;I~1I~jIII'II".II,Ci~<<ll.1 TABLE4.1-12ORCOOCODSgor~oe~et ReactorVesselFullLengthControlRodDrfveMechanisms SteamGenerators Reactor-CoolantPumpCasingsPressurizer Pressurizer SafetyValvesgodeASHEIII*ClassAASHEIII*ClassAASMEIZZ*ClassANoCode(Designed withASMEIIIArticle4asaGuide)ASMEIII*CLassAASMEIII*Unit1ddedaandCodeCases1965Ed.through1966WinterAddenda,CodeCases1332-2,1358,1339-'2,1335,1359-1,1338-3,13361965Ed.through1966WinterAddenda1965Ed.through1966WinterAddenda1968Edition1965Ed.throughWinter1966Addenda,CodeCases1401,14591968EditionPowerOperatedRely.efValvesB-16.5HainReactorCoolantSystemPipingReactorCoolantSystemValvesB31.1B-16.5orHSS-SP-66, andASHEIII,1968Edition*1967EditionASMEBoilerandPressureVesselCode,SectionIZI-Nuclear VesselsRepairsandreplacements areconducted in";ordancewithASMESectionXI4.1-40July1991 V~<<,'$
>>~4~~D.C.COOKUNITNO.l:"$Rei'd)l.hs'es>>W'.Q?'.:;..-''REACTORVESSELMATERIALSURVEILLANCEPROGRAM'pp'.grrsi>>~"-.tm''~r>>'~~1~-:T;)Theestimatedmaximumfluence(E>>IMev)atthejnnerSurfaceofthereactorvesselasofMarch31,1977is8.38x10n/cm~.:-;2.}'.:-'-.;.3.)~r.:.',,:.4.)surveysa~I.Theeffectivefullpoweryears(EFPY)ofoperationaccumulatedasofMarch.31,1977is1.34EFPY.Fab~icationofthereactor.vesselwasperformedbyCombustionEngineering,IncaP.a.)Sketchofthereactorvesselshowingmaterialsinthebelt1ineregion'...isshowninFigurel.b.').Informationoneachoftheweldsinthebeltlineregionisshownin~..Tables1through4.c'.)InformationoneachoftheplatesinthebeltlineregionisshowninTables4through8.>>InformationrelativetotheweldandplatematerialinthematerialllanceprogramisshowninTables1through3and5through8.~sI~.'r1>>>>a,.rr>>~raie<<u>>~.~.  
TABLE4.1-12(cont'd.)
'+i:~'g.t+jj+'k8~fFIGURE1.,"'.p~p'g,IDENTIFICATIONANDLOCATIONOFD.C.COOKUNITNO.1REACTORVESSELBELTLINEREGIONWELDANDPLATENTERIAL~~r1~~r,.'~~9vV05=3l~,r.'.I.-.~'I~VlCQ9'lz,AC~i/9VZC31105-2.5~~~~~'~~~I~~I'308'Sob"AleO8'SvoG-33-V'/ZA~gqvol3gqvo7-l.a'.~ol'~.a~~.03-99"8IQO0~~~302709'j'/07-2 MeldLocationNozzleShellVerticalSeams1-442A,88(CIs~~TAIDENTIFICATIONANDLOCATIONOFD.C'OOKVNITN0.,1~~~VESSELBELTLINEREGIONMELDMETAL':'-''*".'.:.'.-,.",'.-,-,-,'.-..'lux~TeLotNo.PostMeldHeatTreatment::WeldWeldWirettrdttttttt.t~tttl.SubmergedArcB-4Mod.13253(TandemMire).B-4Mod..'12008Lande10923791'.1125-1175'F-40HR-FCMl.14LowerShell.VerticalSeams3-442A,85CSurveillanceMeldSubmergedArc(TandemMire)SubmergedArc~dNozzleShelltoSubmergedArcInterShellCircleSeam8-442Inter.ShellSubmergedArcVerticalSeams(TandemMire)2-442A,85C.Inter.toLowerSubmergedArcShellCircleSeam9-442Ml.18M1.14M1.14mM1.42.'.1125-1175'F<<40HR-FC.;rg~'J,:.1125-11754F-40HR-FC..:=...'.1125-1175'F-40HR-FG-'-..:,'-:IS'~l--;;..1125-1175'F-.40HR-FC',;~.:.1125-1175'F-40HR-FC-.:-,.'.*r~~~..~~,.~'0s~r0r~,r~092.'791Linde1"B-4Mod.13253B-4Mod.:12008'I'I~B-4Mod.:IP3571092-.3958:Linde1'',~s~'J'r,~oI092';3791'-4Mod.13253.Lande1B-4Mod..12008.8-4Mod.'13253.Unde1092'.3791~d~'sId..-dd'1+~d'B-4Mod.20291.'inde1092,3833 CHEMICALCOMPOSITION0WeldMireT~eHeat.No.i~Te13253Linde109212008'Linde109220291Linde1092IP3571Linde1092SurveillanceMeldFluxSiNi'Mo".'Cr.Cu"V.06.72'45~.04',07.05.99.51.-:.06.13.-'.*.03.74.51.21.82.54.-':.40.18.74.44.02..27.001.Ii~~~,~~~I'ItI~'I4~~~REGIONMELDMETAL'ShelfYS'TS..Elong,'AFt-Lbo.KSI:KSI:0*--63.380.127.5'9.770.588.0.25.5.67.1.'I69.084.0,'.28.0.69,4'":c1155>>>>,>>>>>'>>111~:.67.181.926.869.2LotNo.C37913791.38333958PS=..013.015,010.015.008.009.017:.009.023.014,15.13.16.12.26"1.831.921.921.381.3384Mod.84Mod.84Miod.84Miod.*MireAnalysis-NoAsDepositedMeldAnalysiswasPerformedTABLE3MECHANICALPROPERTIESOFYESSELBELTLINEEnergyat10'FFt-LbsRTNPToFFluxMeldMireT~e.HeatNo.84Mod.13253)84Mod.12008J84Mod.2029184Mod.IP3571SurveillanceMeldSurveillanceMeldTNDToFLotNo.Linde109237910*.84,74,70Linde1092Linde1092CETestsWTests3833.'*39580*>>7035,50,48'*40,46,460*54~54~73,>>5683,84,92-70~M~1IA:':::.':',:-:...--.-FYESSELBELTLINEREGIONMELOMETAL)5MeihtPercent*EstimatedperNRCStandardReviewPlanSection5.3.2~I~i.c''')",~I<~I~~+'I~~~lg~~~)~I,~),~V~yo~''.-::.'M~'
8Hoc/~en~
g~~~)~,I....~'~i~'~TABLXIMUMEND-OF-LIFEFLUENCEATVESSELINNERMALLLOCATIONSh~'I.~~.NozzleShellIIIIleShellr.ShellII'lr.ShellrShellIIIIleShellIIIIr.ShellIIIIrShellVertiIIIItoInVerticalSeamllIIter.ShecalSeamIIIIwerShelalSeamllCircleSeam"--.:''.',t~I.',~1CircleSeamNozzInte'nteLowetoLoVerticNozzPlateIIIIPlateInte')1LowePlateIIIII~''PlateorMeldSeamLocation1-442A1-442B1-442C8-4422-442A2-442B2-442C9-4423-442A3-442B3-442CB4405-1B4405-284405-3B4406-1B4406-2B4406-3B4407-1B4407-2B4407-3'I~~~~rr'~~4~IPlateor-.SeamNo...'Fluene:~IIC4;2.4x1013.9x1017'.9x1017.3x10176.2x10181.1x10191.1x10192.0x101911x1019'*6.2x10181.1x10197,3x10177,3x101777.3x102.0x102,.0x10192.Ox1O192.0x102.0x101192.0x10r'~I)~~~JihIh~)I~~~l\'~'.,rhh~)h~~,~h  
5pa~ggg.goragone~t ReactorVesselFullLengthControlRodDriveMechanisms
~odASMEIXIClassAASMEIXXClassAUnit2ddendaandCodeCases1968Ed.(1968SummerAddenda)-Coda Case1335-41968Ed.'NoAdd.)SteamGenerators ASMEIXXClassA1968Ed.throughMinter1968Addenda,CodeCases1401,1498forupperassemblies and1983Ed.throughSummer1984forreplacement lowerassemblies ReactorCoolantPumpCasingsPressurizer Pressurizer SafeeyValvesNoCode(Desi~edwithASMEXIIArtic3.e4asaGuide)ASMEIXI*ClassAASMEIXI*1968EditionthroughSummer1969Addenda1965Ed.throughWincer1966Addenda1968EditionPowerOperatedReliefValvesB-16.5MainReactor.CoolantSystemPipingReactorCoolantSystemValvesB31.1B-16.5orMSS-SP-66,andASMEIXX,1968Edition+1967Edition*ASMEBoilerandPressureVesselCode,SectionIIX-NuclearVesselsRepairsandreplacamenes areconducted inaccordance withASMESectionXI4.1-41July1991  
.EF":.ScMICHIGANPOWERCOMPiJ...r~..ucYI'1C,.Hovaxiber 7,1977DonaldC.CookNuclearPlantQn3.tHo'DocketHo'0-315DPRNo~58rI'EdsonG.Case,ActingDirectorOfficeofNuclearReactorRegulation U.S~NuclearRegulatory Commission
: shington, D.C.20555earMrCasecT?d.sletterrespondstoMrsDonK.Davis'etter oi20,1977requesting reactorvesselmaterialpropertyinformation DtheDonaldC.CookNuclearplantInourletterdated*uly25,1977,weinformedyouthatwewouldneedadditional timetoprovidetherequested information.
Enclosedherewitharethree(3)copiesofadocumententitled, "D.CCookUnitHo.1ReactorVesselMaterialurveillance Program"whichsuppliestheinformation requested.
Verytrulyyours,ohnTzdlingha tVicePresideJT~mamSwornandsubscribed tobeforemeonthis7dayofNovember1977inNewYorkCounty,NewYorkNotaryPlicGfiEGOiTY M.Gi:Z~Vilr HataryPublic.St:teat<'tewYuritHa.31-46<3<31 GualiTied inNewYarkCountyCommiss'an ExpiresMsrch30,19?5  
\~."''&~EgGCase~l'~P~sIICharnoff,H,SteketeeVollenCCallenNalshVShaller-Bridgman~N~tuxgensen QePo'eRiRiDiRop~glgbc:S-ZMilioti/P.
W.Daley8'~GFeinstein M.H.Fletcher-'RCM.M.Mlynczak-NRCDC-N-6015.X DC-N-6079
~,~0Xov.Lr7,1977g'rt'5,,'~>~I<</~,t'~I  
>>~4~~D.C.COOKUNITNO.l:"$Rei'd)l.hs'es>>W'.Q?
'.:;..-''REACTOR VESSELMATERIALSURVEILLANCE PROGRAM'pp'.grrsi>>~"-.tm''~r>>'~~1~-:T;)Theestimated maximumfluence(E>>IMev)atthejnnerSurfaceofthereactorvesselasofMarch31,1977is8.38x10n/cm~.:-;2.}'.:-'-.;.3.)~r.:.',,:.4.)
surveysa~I.Theeffective fullpoweryears(EFPY)ofoperation accumulated asofMarch.31, 1977is1.34EFPY.Fab~ication ofthereactor.vesselwasperformed byCombustion Engineering, IncaP.a.)Sketchofthereactorvesselshowingmaterials inthebelt1ineregion'...isshowninFigurel.b.').Information oneachoftheweldsinthebeltlineregionisshownin~..Tables1through4.c'.)Information oneachoftheplatesinthebeltlineregionisshowninTables4through8.>>Information relativetotheweldandplatematerialinthematerialllanceprogramisshowninTables1through3and5through8.~sI~.'r1>>>>a,.rr>>~raie<<u>>~.~.  
'+i:~'g.t+jj+'k8~fFIGURE1.,"'.p~p'g,IDENTIFICATION ANDLOCATIONOFD.C.COOKUNITNO.1REACTORVESSELBELTLINEREGIONWELDANDPLATENTERIAL~~r1~~r,.'~~9vV05=3l~,r.'.I.-.~'I~VlCQ9'lz,AC~i/9VZC31105-2.5~~~~~'~~~I~~I'308'Sob"AleO8'SvoG-33-V'/ZA~gqvol3gqvo7-l.a'.~ol'~.a~~.03-99"8IQO0~~~302709'j'/07-2 MeldLocationNozzleShellVerticalSeams1-442A,88(CIs~~TAIDENTIFICATION ANDLOCATIONOFD.C'OOKVNITN0.,1~~~VESSELBELTLINEREGIONMELDMETAL':'-''*".'.:.
'.-,.",'.-,-,-,'.-..'lux
~TeLotNo.PostMeldHeatTreatment
::WeldWeldWirettrdttttttt.t~tttl.Submerged ArcB-4Mod.13253(TandemMire).B-4Mod..'12008Lande10923791'.1125-1175'F-40HR-FC Ml.14LowerShell.VerticalSeams3-442A,85CSurveillance MeldSubmerged Arc(TandemMire)Submerged Arc~dNozzleShelltoSubmerged ArcInterShellCircleSeam8-442Inter.ShellSubmerged ArcVerticalSeams(TandemMire)2-442A,85C.Inter.toLowerSubmerged ArcShellCircleSeam9-442Ml.18M1.14M1.14mM1.42.'.1125-1175'F<<40HR-FC
.;rg~'J,:.1125-11754F-40HR-FC
..:=...'.1125-1175'F-40HR-FG
-'-..:,'-:IS'~l--;;..1125-1175'F-.40HR-FC
',;~.:.1125-1175'F-40HR-FC
-.:-,.'.*r~~~..~~,.~'0s~r0r~,r~092.'791Linde1"B-4Mod.13253B-4Mod.:12008'I'I~B-4Mod.:IP3571092-.3958:Linde1'',~s~'J'r,~oI092';3791'-4Mod.13253.Lande1B-4Mod..12008.8-4Mod.'13253.Unde1092'.3791~d~'sId..-dd'1+~d'B-4Mod.20291.'inde1092,3833 CHEMICALCOMPOSITION 0WeldMireT~eHeat.No.i~Te13253Linde109212008'Linde109220291Linde1092IP3571Linde1092Surveillance MeldFluxSiNi'Mo".'Cr.Cu"V.06.72'45~.04',07.05.99.51.-:.06.13.-'.*.03.74.51.21.82.54.-':.40.18.74.44.02..27.001.Ii~~~,~~~I'ItI~'I4~~~REGIONMELDMETAL'ShelfYS'TS..Elong,'AFt-Lbo.KSI:KSI:0*--63.380.127.5'9.770.588.0.25.5.67.1.'I69.084.0,'.28.0.69,4'":c1155>>>>,>>>>>'>>111~:.67.181.926.869.2LotNo.C37913791.38333958PS=..013.015,010.015.008.009.017:.009.023.014,15.13.16.12.26"1.831.921.921.381.3384Mod.84Mod.84Miod.84Miod.*MireAnalysis-NoAsDeposited MeldAnalysiswasPerformed TABLE3MECHANICAL PROPERTIES OFYESSELBELTLINEEnergyat10'FFt-LbsRTNPToFFluxMeldMireT~e.HeatNo.84Mod.13253)84Mod.12008J84Mod.2029184Mod.IP3571Surveillance MeldSurveillance MeldTNDToFLotNo.Linde109237910*.84,74,70Linde1092Linde1092CETestsWTests3833.'*39580*>>7035,50,48'*40,46,460*54~54~73,>>5683,84,92-70~M~1IA:':::.':',:-:...-
-.-FYESSELBELTLINEREGIONMELOMETAL)5MeihtPercent*Estimated perNRCStandardReviewPlanSection5.3.2~I~i.c''')",~I<~I~~+'I~~~lg~~~)~I,~),~V~yo~''.-::.'M~'
g~~~)~,I....~'~i~'~TABLXIMUMEND-OF-LIFE FLUENCEATVESSELINNERMALLLOCATIONS h~'I.~~.NozzleShellIIIIleShellr.ShellII'lr.ShellrShellIIIIleShellIIIIr.ShellIIIIrShellVertiIIIItoInVerticalSeamllIIter.ShecalSeamIIIIwerShelalSeamllCircleSeam"--.:''.',t
~I.',~1CircleSeamNozzInte'nteLowetoLoVerticNozzPlateIIIIPlateInte')1LowePlateIIIII~''PlateorMeldSeamLocation1-442A1-442B1-442C8-4422-442A2-442B2-442C9-4423-442A3-442B3-442CB4405-1B4405-284405-3B4406-1B4406-2B4406-3B4407-1B4407-2B4407-3'I~~~~rr'~~4~IPlateor-.SeamNo...'Fluene:~IIC4;2.4x1013.9x1017'.9x1017.3x10176.2x10181.1x10191.1x10192.0x101911x1019'*6.2x10181.1x10197,3x10177,3x101777.3x102.0x102,.0x10192.Ox1O192.0x102.0x101192.0x10r'~I)~~~JihIh~)I~~~l\'~'.,rhh~)h~~,~h  


~~.Is'DENTIFI..'eatNo.C3594C3594C3872C1260C3506.*C3506C3929C3932C3929~ComonentPlateNo84405-184405-284405-384406-184406-284406-384407-184407-284407-3ozzieShellIIiIInter.ShellIIIIowerShellIIIIIIIISurve)llanceMaterialsameasInter.ShellPlateCHEPlateNo.SS$'21.20.24.25.24.21'21.20.22.24llancePlate84405-1~84405-284405-384406-184406-284406-384407-184407-284407384406-3**Survei'~~sTAB~,~'"~~IONOFVESSELBELTLINEREGIONPLATEMATERIALMat'l.Heat'Treatment.'Sec.No.,~SuIIer'ustenltlze~Temer.---.-'tressReliefA5338Cl.1Lukens1600'F+50'F-4HRMg1225'F+25'F-4HR-AC.))50'F+25'F-40HR-FCA5338Cl.1Lukens,.IIIIA5338Cl.1Lukens;,'-II.II.IIA5338Cl.1.Lukens'..II'l....,IIA5338Cl.1Lukens.-A5338Cl.1Lukens':"A5338Cl.1.LukensA5538Cl.1LukensA5538Cl.1Lukens'....-B4406-3~~TABLE6MICALCOMPOSITIONOFVESSELBELTLINEREGIONPLATEMATERIALh..IMeihtPercentC*MnPN$MoCu''.42.007..018.26.46".47.141.41.006.018.25:-.45.47".14-'30.008.013.30.48.46.141.17.016'025.29'52..49'.121.41..00&':.015.28..50.47..151.40..009.015.25:'.49''.46.1S1.35.010.014.29.55:.53..141.25.012..014.22.59.54.121.32.010.014.24.50.55'l41.40.009.015.25;.49,.46.14AnalysisPerformedbyWest)nghouse~al  
~~.Is'DENTIFI..'eatNo.C3594C3594C3872C1260C3506.*C3506C3929C3932C3929~ComonentPlateNo84405-184405-284405-384406-184406-284406-384407-184407-284407-3ozzieShellIIiIInter.ShellIIIIowerShellIIIIIIIISurve)llance MaterialsameasInter.ShellPlateCHEPlateNo.SS$'21.20.24.25.24.21'21.20.22.24llancePlate84405-1~84405-284405-384406-184406-284406-384407-184407-284407384406-3**Survei'~~sTAB~,~'"~~IONOFVESSELBELTLINEREGIONPLATEMATERIALMat'l.Heat'Treatment
~~',C'r>~~'.~c,''~~~\UTS,'....Elong.':..-.,.;"RA..'KSI81.3".-.29.5'.,';:,::.;-:.-6&.l;-.'.'5.8.'-.:...::.28.5,::;.".':-66.886.4':'.."::.25.5".;;-"i-'.66.586.3''.':'.'.27.0::.'-..'.";".'67.1'-'.89.7..,".""26.2:~"'::.':68.0'88.8-"'.26.2:.:",;-':.68.0,."-'')86.7'.'&.0'.:,:;:.'-':::,.'9.684.1.'.:27.2";-;.-:.70.6;~86.4.::::.;..27.2'".;:J,'.-;69.7'-'."'.ReviewPlanSect)on5.3.2'I~Q'FLATESPERFORMEDBYMESTINGHOUSE'".-:.hElong."~RA~..'t90.4'.."27.5"::-'..'0.0m~0\':..:.i~'!+~'4!~~~y.C'~'helf.EnerTNDTRTNDT*oFYS'SIFt-LsNMWD*87,~92808080.578.5:85.590.5lODoFPlateNo.rrI134142123123124121133149139100~0"-10-10-10-20-20023440-8172756,362.964.463.3.'7.266.864.162.163.784405-184405-284405-384406-184406-284406-384407-184407-284407-35-1501intheMajor"~'ion(MUD)perNRC'St*EstimatedfromDataandardMorkingDirecTABLE8MECHANICALPROPERTIESOFSURVEILLANCEPLATE5OTHERBELTLINEPShelfEnerslODNMMDNDT'FNDToFYSKSIUTSKSIPlateNo..8396981031261085334028-123884406-184406-284406-384407-184407-284407-3'68.4130~I~~I~~J!~'ABMECHANICALPROPERTIESOFVESSELTLINEREGIONPLATEMATERIAL::.'4~1~(I'!',''!0a.7 gPgchm.4'7f4+topl5Providethefollowinginformationforthepressuzevessel:l.Aschematicofthereactozvesselshowingallweldsinthebelt-lineregion.Weldsshouldbeidentifiedbyashopcontzolnumber(suchasapzoceduzequalificationnumber)andtheheatoffillermetal,typeandbatchnumberofflux,etc.2.Foreachoftheabovewelds,andforweldsinthevesselmaterialsurveillanceprograms,anidentificationoftheweldingprocess(subarc,electroslag,manualmetalarc,etc.).Also,alistingofthefollowinginformationoneachofthesewelds:chemicalcomposition(particularlyCu,PandScontent),dropweightT~,RT,uppershelfCharpyenergyandtensileproperties.3.ThemaximumendoflifefluenceatthevesselI.D.foreachweldinthebeltline.ReferenceNRCletterdatedHay20,1977toFw.JohnTillinghast,VicePresident,IndianaandMichiganElectricCompanyontheabovesubjectandaddi-tionalrequestedinformation.ForDonaldC.CookUnit2reactorvesseltheresponsetotheabovequestionandtotheadditionalrequestedinformationinthereferencedletterisprovidedbelow:l.NotApplicable.2NotApplicable.3.ChicagoBridgeandIron.4aAsketchofthereactorvesselshowingallmaterialweldsinthebeltlineregionisshowninFigure1.b.InformationrelativetoeachoftheweldsinthebeltlineregionisshowninTables1through4.AppendixgUntt2121.2-1jgENDHEHT77JULY,1977  
.'Sec.No.,~SuIIer'ustenltlze
~Temer.---.-'tress ReliefA5338Cl.1Lukens1600'F+50'F-4HR Mg1225'F+25'F-4HR-AC
.))50'F+25'F-40HR-FC A5338Cl.1Lukens,.IIIIA5338Cl.1Lukens;,'-
II.II.IIA5338Cl.1.Lukens'..
II'l....,IIA5338Cl.1Lukens.-A5338Cl.1Lukens':"A5338Cl.1.LukensA5538Cl.1LukensA5538Cl.1Lukens'....-
B4406-3~~TABLE6MICALCOMPOSITION OFVESSELBELTLINEREGIONPLATEMATERIALh..IMeihtPercentC*MnPN$MoCu''.42.007..018.26.46".47.141.41.006.018.25:-.45.47".14-'30.008.013.30.48.46.141.17.016'025.29'52..49'.121.41..00&':.015.28..50.47..151.40..009.015.25:'.49''.46.1S1.35.010.014.29.55:.53..141.25.012..014.22.59.54.121.32.010.014.24.50.55'l41.40.009.015.25;.49,.46.14AnalysisPerformed byWest)nghouse
~al  
~~',C'r>~~'.~c,''~~~\UTS,'....Elong.':..-.,.;"RA..'KSI81.3".-.29.5'.,';:,::.;-:.-
6&.l;-.'.
'5.8.'-.:...::.
28.5,::;.".':-
66.886.4':'.."::.25.5".;;-"i-'.
66.586.3''.':'.'.27.0::.'-..'.";".'
67.1'-'.89.7..,".""26.2:~"'::.
':68.0'88.8-"'.26.2:.:",;-':.
68.0,."-'')86.7'.'&.0'.:,:;:.'-':::,.
'9.684.1.'.:27.2";-;.-:.70.6;~86.4.::::.;..
27.2'".;:J,'.-;
69.7'-'."'.ReviewPlanSect)on5.3.2'I~Q'FLATESPERFORMED BYMESTINGHOUSE
'".-:.hElong."~RA~..'t90.4'.."27.5"::-'..'0.0m~0\':..:.i~'!+~'4!~~~y.C'~'helf.EnerTNDTRTNDT*oFYS'SIFt-LsNMWD*87,~92808080.578.5:85.590.5lODoFPlateNo.rrI134142123123124121133149139100~0"-10-10-10-20-20023440-8172756,362.964.463.3.'7.266.864.162.163.784405-184405-284405-384406-184406-284406-384407-184407-284407-35-1501intheMajor"~'ion(MUD)perNRC'St*Estimated fromDataandardMorkingDirecTABLE8MECHANICAL PROPERTIES OFSURVEILLANCE PLATE5OTHERBELTLINEPShelfEnerslODNMMDNDT'FNDToFYSKSIUTSKSIPlateNo..8396981031261085334028-123884406-184406-284406-384407-184407-284407-3'68.4130~I~~I~~J!~'ABMECHANICAL PROPERTIES OFVESSELTLINEREGIONPLATEMATERIAL::.
'4~1~(I'!',''!0a.7 gPgchm.4'7f4+topl5Providethefollowing information forthepressuzevessel:l.Aschematic ofthereactozvesselshowingallweldsinthebelt-lineregion.Weldsshouldbeidentified byashopcontzolnumber(suchasapzoceduze qualification number)andtheheatoffillermetal,typeandbatchnumberofflux,etc.2.Foreachoftheabovewelds,andforweldsinthevesselmaterialsurveillance
: programs, anidentification oftheweldingprocess(subarc,electroslag, manualmetalarc,etc.).Also,alistingofthefollowing information oneachofthesewelds:chemicalcomposition (particularly Cu,PandScontent),
dropweightT~,RT,uppershelfCharpyenergyandtensileproperties.
3.ThemaximumendoflifefluenceatthevesselI.D.foreachweldinthebeltline.
Reference NRCletterdatedHay20,1977toFw.JohnTillinghast, VicePresident, IndianaandMichiganElectricCompanyontheabovesubjectandaddi-tionalrequested information.
ForDonaldC.CookUnit2reactorvesseltheresponsetotheabovequestionandtotheadditional requested information inthereferenced letterisprovidedbelow:l.NotApplicable.
2NotApplicable.
3.ChicagoBridgeandIron.4aAsketchofthereactorvesselshowingallmaterialweldsinthebeltlineregionisshowninFigure1.b.Information relativetoeachoftheweldsinthebeltlineregionisshowninTables1through4.AppendixgUntt2121.2-1jgENDHEHT 77JULY,1977  


c.InformationrelativetoeachoftheplatesinthebeltlineregionisshowninTables4through7.5~InformationrelativetotheweldandplatematerialincludedinthevesselmaterialsurveillanceprogramisshowninTables1through3and:5through7.AppendixgVnit2121.2-2AMENDMENT7y~ULY.1S77 Figuregl21.2-1gggckmrnf7p~~3+IDReactorVesselBeltlineReionMeldsD.C.CookUnit2PlateC5521-2OoPlateC5556-L80'700Soo80oCOREI80oOoPlateC5540-2C)270o.SOoI80oPlateC5592-1MAX.EHDOFI.IFEWELDORIENT.WELDLOCATIOHFLUENCEH/cm<VERTICALl70o4350o7.7xIOI8VERTICAL90o4270o6.3xIOI8CIRCUMFERENTIALINTER.TOLONERSHELL2.0xIO9AppendixgUnit2321.2-3SlENDHENT77dULY,1977 TABLE1IDENTIFICATIONOFREACTORVESSELBELTLINEREGIONWELDMATERIALInter.Shell(VerticalSeams)Inter.toLowerShell(CircleSeam)LowerShell(VerticalSeains)SurveillanceMeldWeldingWeldProcess~oal.No.Sub.Arc*MPS-1323-2F4F6WeldWireFlux~TeHeatNo.~TeLotNo.PostWeldNeatTrADCOMTNMMS3986LINDE1249341125-1150'9-622/2NES-PC1115-1165'F-9HRS-FC<WeldsfabricatedusingbothsingleandtandemwiresPs aa~l3c+fDfOCLWe~OcTABLE2BELTLINEREGIONWELDMATERIALCllEMICALCOMPOSITIONWELDWIREFLUXWEIGIITPERCENTTYPE-IIEATNO.LOTNOCMnPSSi,NiMoCrCoADCOMINllMS39B6SURVEILLANCEWELDLine124934(SingleWire)(TandemWire).0801.42.019~016~36.96~0921.46~019.015;35~97~1101.33.022,012~44!~97~07~05~53~07~06.54~07.055 TABLE3HECHANICALPROPERTIESOFBELTLINEREGIONMELDMATERIALWELDMIRETYPENEATNO.FLUXTYPELOTNO.NDTNDTF'FS}IELFENERGYYSFT-LBBKBIUTSELONGBhKSIXXADCOMIN19fS3986LINDE124934(SingleWire)(TandemWire)27*27*77*71.886.530.068.677*74'91.225.5660SURVEILLANCEMELD<<40277776.392.324.266.7*EstimatedfromsurveillancewelddataI g6acl~a~I-7p~p)$/DMAXIMUMENDMF-LIFEFLUENCEATINNERMALLREACTORVESSELLOCATIONSlater.Shell(Ve'rticalSeams)Inter.,ShelltoLowerShell(CircleSeam)FLUENCE(n/cm)27'x1020x10LowerShell(VerticalSeams)Inter6LowerShellPlates63K1020xloAppendixgUnit2121.2-7AMENDblBlT77JULY,]g77 TABLE5IDENTIFICATIONOPBELTLINEREGIONPLATEMATERIALCOMPONENTPLATECODENO.HEATNO.MATUALSPECSUPPLIERHEATTREATMENTInter.Shell10>>1C5556-2A533B,CLolLUKENS1650-1750'P-5HR-WQ1550-1650F-43/4HR-WQ1200-1300P-5HR-AC1100-i175'P-621/21R-PCInter.Shell10-2C5521-2.A533B,CL,1LUKENS1650-1750'P-41/2HR-WQ'550-1650'P-5HR-WQ1200-1300'P-41/2HR-AC1100-1175F-621/2HR-PCLowerShellLowerShellSunreillance9-19-2PlateC5540-2C5592-1C5521-2A533B,CL+1LUKENSA533B,CL,1LUKENSA533B,CL,1LUKENS1650-1750'P-41/2HR-WQ1550-1650'P-5HR-WQ1200-1300'F-41/2HR-AC1100>>1175'F-621/2.HR-FC1650-1750'P-41/2HR-WQ1550-1650F-41/2HR-gQ1200-1300'P-41/2HR-AC1100-1175'P-621/2HR-PC1650-1750'P-41/2HR-WQ,1550-1650'P-5HR-WQ1200-1300'P-41/2HR-AC1125-1175'F-511/21R>>PCS!cA,~
c.Information relativetoeachoftheplatesinthebeltlineregionisshowninTables4through7.5~Information relativetotheweldandplatematerialincludedinthevesselmaterialsurveillance programisshowninTables1through3and:5through7.AppendixgVnit2121.2-2AMENDMENT 7y~ULY.1S77 Figuregl21.2-1gggckmrnf 7p~~3+IDReactorVesselBeltlineReionMeldsD.C.CookUnit2PlateC5521-2OoPlateC5556-L80'700Soo80oCOREI80oOoPlateC5540-2C)270o.SOoI80oPlateC5592-1MAX.EHDOFI.IFEWELDORIENT.WELDLOCATIOHFLUENCEH/cm<VERTICALl70o4350o7.7xIOI8VERTICAL90o4270o6.3xIOI8CIRCUMFERENTIAL INTER.TOLONERSHELL2.0xIO9AppendixgUnit2321.2-3SlENDHENT 77dULY,1977 TABLE1IDENTIFICATION OFREACTORVESSELBELTLINEREGIONWELDMATERIALInter.Shell(Vertical Seams)Inter.toLowerShell(CircleSeam)LowerShell(Vertical Seains)Surveillance MeldWeldingWeldProcess~oal.No.Sub.Arc*MPS-1323-2F4F6 WeldWireFlux~TeHeatNo.~TeLotNo.PostWeldNeatTrADCOMTNMMS3986LINDE1249341125-1150'9-62 2/2NES-PC1115-1165'F-9 HRS-FC<Weldsfabricated usingbothsingleandtandemwiresPs aa~l3c+fDfOCLWe~OcTABLE2BELTLINEREGIONWELDMATERIALCllEMICAL COMPOSITION WELDWIREFLUXWEIGIITPERCENTTYPE-IIEATNO.LOTNOCMnPSSi,NiMoCrCoADCOMINllM S39B6SURVEILLANCE WELDLine124934(SingleWire)(TandemWire).0801.42.019~016~36.96~0921.46~019.015;35~97~1101.33.022,012~44!~97~07~05~53~07~06.54~07.055 TABLE3HECHANICAL PROPERTIES OFBELTLINEREGIONMELDMATERIALWELDMIRETYPENEATNO.FLUXTYPELOTNO.NDTNDTF'FS}IELFENERGYYSFT-LBBKBIUTSELONGBhKSIXXADCOMIN19f S3986LINDE124934(SingleWire)(TandemWire)27*27*77*71.886.530.068.677*74'91.225.5660SURVEILLANCE MELD<<40277776.392.324.266.7*Estimated fromsurveillance welddataI g6acl~a~I-7p~p)$/DMAXIMUMENDMF-LIFE FLUENCEATINNERMALLREACTORVESSELLOCATIONS later.Shell(Ve'rtical Seams)Inter.,Shell toLowerShell(CircleSeam)FLUENCE(n/cm)27'x1020x10LowerShell(Vertical Seams)Inter6LowerShellPlates63K1020xloAppendixgUnit2121.2-7AMENDblBlT 77JULY,]g77 TABLE5IDENTIFICATION OPBELTLINEREGIONPLATEMATERIALCOMPONENT PLATECODENO.HEATNO.MATUALSPECSUPPLIERHEATTREATMENT Inter.Shell10>>1C5556-2A533B,CLol LUKENS1650-1750'P-5HR-WQ 1550-1650 F-43/4HR-WQ1200-1300 P-5HR-AC1100-i175'P-62 1/21R-PCInter.Shell10-2C5521-2.A533B,CL,1 LUKENS1650-1750'P-4 1/2HR-WQ'550-1650'P-5HR-WQ 1200-1300'P-4 1/2HR-AC1100-1175 F-621/2HR-PCLowerShellLowerShellSunreillance 9-19-2PlateC5540-2C5592-1C5521-2A533B,CL+1LUKENSA533B,CL,1LUKENSA533B,CL,1 LUKENS1650-1750'P-4 1/2HR-WQ1550-1650'P-5HR-WQ 1200-1300'F-4 1/2HR-AC1100>>1175'F-62 1/2.HR-FC1650-1750'P-4 1/2HR-WQ1550-1650 F-41/2HR-gQ1200-1300'P-4 1/2HR-AC1100-1175'P-62 1/2HR-PC1650-1750'P-4 1/2HR-WQ,1550-1650'P-5HR-WQ 1200-1300'P-4 1/2HR-AC1125-1175'F-511/21R>>PCS!cA,~
TABLE6CHEMICALCOMPOSITIONOPBELTLINEREGIONPLATEMATERIALPLATECODENO.10-110-29-2HEAT'O.C5556-2C5521-2C5540-2C5592-1PLATELOCATIONCTOP,24BOT.TOP~21~22BOT,TOPBOT,~21~21~19BOT,.20TOP~201.341.38lo281,291+311.341351,25~012~014~012~013.015.011.010~012HEIGHTPERCENTSSi~015.19~014~18~016,18.015~16~014~20~015.~18~015.19~014ol8Ni.56~58.57~58~64~63,60.57Mo~55.55;54.50~57.56.53~50Cu.14~15~14~14.11.10~14.14SURVEILLANCEPLATE.22128.017~014~27.58~55~ll TABLE7MECHANICALPROPERTIESOFBELTLINEREGIONPLATEMATERIALPLATECODENO.10<<110-29-19-2HEATNO.C5556-2C5521-2C5540-2C5592-1NDT'P0103886-20-20110-2020103SHELFNDT.ENERGYFPT-LBS90.YSKSI67.264.565.870.0UTSKSI87'85'85788,1ELONG~X25'25;526'24.5RhXSURVEILLANCEPLATE1038.8666.486'25.260.6 Ugff'4c"/tor~~~7gINDIANA&MICHIGANPOWERCOMPANYP.0,BOX18BOWLINGGREENSTATIONNEWYORK,N.Y.10004July3,1979AEP:NRC:00097CDonaldC.CookNuclearPlantUnitNo~1DocketNo.50-315LicenseNo.DPR-58Mr.JamesG.Keppler,DirectorU.S.Nuclea~RegulatoryCommissionRegionIII799RooseveltRoadGlenEllyn,Illinois60137
TABLE6CHEMICALCOMPOSITION OPBELTLINEREGIONPLATEMATERIALPLATECODENO.10-110-29-2HEAT'O.C5556-2C5521-2C5540-2C5592-1PLATELOCATIONCTOP,24BOT.TOP~21~22BOT,TOPBOT,~21~21~19BOT,.20TOP~201.341.38lo281,291+311.341351,25~012~014~012~013.015.011.010~012HEIGHTPERCENTSSi~015.19~014~18~016,18.015~16~014~20~015.~18~015.19~014ol8Ni.56~58.57~58~64~63,60.57Mo~55.55;54.50~57.56.53~50Cu.14~15~14~14.11.10~14.14SURVEILLANCE PLATE.22128.017~014~27.58~55~ll TABLE7MECHANICAL PROPERTIES OFBELTLINEREGIONPLATEMATERIALPLATECODENO.10<<110-29-19-2HEATNO.C5556-2C5521-2C5540-2C5592-1NDT'P0103886-20-20110-2020103SHELFNDT.ENERGYFPT-LBS90.YSKSI67.264.565.870.0UTSKSI87'85'85788,1ELONG~X25'25;526'24.5RhXSURVEILLANCE PLATE1038.8666.486'25.260.6 Ugff'4c"/tor~~~7gINDIANA&MICHIGANPOWERCOMPANYP.0,BOX18BOWLINGGREENSTATIONNEWYORK,N.Y.10004July3,1979AEP:NRC:00097C DonaldC.CookNuclearPlantUnitNo~1DocketNo.50-315LicenseNo.DPR-58Mr.JamesG.Keppler,DirectorU.S.Nuclea~Regulatory Commission RegionIII799Roosevelt RoadGlenEllyn,Illinois60137


==DearHr.Keppler:==
==DearHr.Keppler:==


==References:==
==References:==
(;)NRCIEBULLETINNOS.78-12,78-12A,78-128"ATYPICALWELDMATERIALREACTORPRESSUREVESSELS"(2)"COMBUSTIONENGINEERINGREPORTINCOMPLIANCEWITHNRCIEBULLETIN78-12,DATEDJUNE8,1979ThisletteranditsattachmentsareinresponsetotheabovereferencedI.E.BulletinsastheyapplytoUnit1oftheDonaldC.CookNuclearPlant.CombustionEngineering,manufacturerofthereactorvesselforUnit1hassubmittedtotheNRC,onJune8,1979,agenericreport(ref-erence2)providingtherequiredweldmaterialinformationonallreactorvesselsfabricatedbythem.WestinghouseandAmericanElectricPowerhavereviewedtheabovereferencedreportandconcludedthatitrepresentsadequatelythedatafortheweldmentmaterialusedinthereactorvesselof Ae.t':Nii.:Uoi)9/i//Qcci'ngfgr3~7/PUnit1oftheDonaldC.CookNuclearPlant.WestinghousehasnotedsomediscrepanciesintheCombustionEngineeringreport..TheseareeditorialinnatureandwillbesubmittedtotheNRCasarevisionbyCombustionEngineering,Inc.Verytrulyyours,ohnE.DolanicePresidentAttachments:1)CombustionEngineeringlettertoNRCdatedJune8,19792)CombustionEngineeringreviewcertificationletterdatedJune8,19793)WestinghouselettertoAEPdated6/25/79cc:R.C.CallenG.CharnoffD.V.Shaller-8ridgmanR.S.HunterR.W.Jurgensen


Hr.J.G.Keppler,Directorbc:S.J.Milioti/J.I.Castresana/T.SatyanR.F.Hering/S.H.Steinhart/J.A.KobyraH.N.Scherer,Jr.R.F.KroegerJ.F.Stietzel-BridgmanD.Migginton-NRCCookPlantRegionIIIResidentInspectorAEP:NRC:00097CR.C.Kopeiow/J.R.JensenOC-N-6015.3.1~PEP:NRC0097Cegg~'F)i~~i.g'-g~~~/4  
(;)NRCIEBULLETINNOS.78-12,78-12A,78-128"ATYPICAL WELDMATERIALREACTORPRESSUREVESSELS"(2)"COMBUSTION ENGINEERING REPORTINCOMPLIANCE WITHNRCIEBULLETIN78-12,DATEDJUNE8,1979Thisletteranditsattachments areinresponsetotheabovereferenced I.E.Bulletins astheyapplytoUnit1oftheDonaldC.CookNuclearPlant.Combustion Engineering, manufacturer ofthereactorvesselforUnit1hassubmitted totheNRC,onJune8,1979,agenericreport(ref-erence2)providing therequiredweldmaterialinformation onallreactorvesselsfabricated bythem.Westinghouse andAmericanElectricPowerhavereviewedtheabovereferenced reportandconcluded thatitrepresents adequately thedatafortheweldmentmaterialusedinthereactorvesselof Ae.t':Nii.:Uoi)9/i//Qcci'ng fgr3~7/PUnit1oftheDonaldC.CookNuclearPlant.Westinghouse hasnotedsomediscrepancies intheCombustion Engineering report..These areeditorial innatureandwillbesubmitted totheNRCasarevisionbyCombustion Engineering, Inc.Verytrulyyours,ohnE.DolanicePresident Attachments:
1)Combustion Engineering lettertoNRCdatedJune8,19792)Combustion Engineering reviewcertification letterdatedJune8,19793)Westinghouse lettertoAEPdated6/25/79cc:R.C.CallenG.CharnoffD.V.Shaller-8ridgmanR.S.HunterR.W.Jurgensen
 
Hr.J.G.Keppler,Directorbc:S.J.Milioti/J.
I.Castresana/T.
SatyanR.F.Hering/S.
H.Steinhart/J.
A.KobyraH.N.Scherer,Jr.R.F.KroegerJ.F.Stietzel-BridgmanD.Migginton
-NRCCookPlantRegionIIIResidentInspector AEP:NRC:00097C R.C.Kopeiow/J.
R.JensenOC-N-6015.3.1
~PEP:NRC0097Cegg~'F)i~~i.g'-g~~~/4  


Qgf:pv<'pi~~i..i".s~~Comcu!ion-<:r..r.'.irq.Ihc)QQQPivSPOCii'uitiOOd.Windsor.Gonhcc:icui0609'ci~'>>g<~"~toiITelex93"97Attachment1AEP:HRC:00097C:..--POWER'~SYSTEViS+gzicl~mc~'7p'du~~'+c>+INJune8,1979LD-79-036Hr.HaroldD.ThornburgDivisionofReactorCons;iuctionInspectionOfficeofInspectionardEnforce.-:ntU.S.NuclearPeguiatoryCommissionWashington,D.C..20555
Qgf:pv<'pi~~i..i".s~~Comcu!ion
-<:r..r.'.irq.
Ihc)QQQPivSPOCii'uitiOOd.Windsor.
Gonhcc:icui 0609'ci~'>>g<~"~toiITelex93"97Attachment 1AEP:HRC:00097C
:..--POWER'~SYSTEViS+gzicl~mc~'7p'du~~'+c>+INJune8,1979LD-79-036 Hr.HaroldD.Thornburg DivisionofReactorCons;iuctionInspection OfficeofInspection ardEnforce.-:
ntU.S.NuclearPeguiatory Commission Washington, D.C..20555


==Subject:==
==Subject:==
I5E8ulletin78-12,"Atypicaliteldt',aterialinPeactorPressureVessel';.'elds"
I5E8ulletin78-12,"Atypical iteldt',aterial inPeactorPressureVessel';.'elds"


==Deartir.Thornburg:==
==Deartir.Thornburg:==
Enclosedpleasefind;hree(3copiesofadocu",ententitled"Infer:-'onRequeted;yV*:-Bulletin7o-12,~typical'i'eldi"-terialinRe=ctoiPres-sureVessel'h'elds."Thisrepoitisbeir,"s..';.'.itteddirectlytothei'=:b.Cc;:bustionEi::-.ine-eringasperr:itt".by::.:'olc..n.Atothe,"ulletn.Itisexpecto"',aholdersoiCons'ructo::Per;.-.i-.sandu>".ei*atingLic:..".sesv:il',re:.ere:.cethis'eportinrespondingtothebulletinonthe;rindividualdeci,e:s.Shouldyouhaveanyc"estior.s,pleasefeelfreetocallr,",eorfl;.E.H.Kennedyofmystaffa"(203)6"'31911,extension2o2G.Verytrulyyours,COf18USTIOllEiiG!.",EER!,'lG,IilC.AES:dagEnclosureLicensirgl',anager


~~C.EpowerSystemsCprnbUstlonFngineering.tnc9]tQ/,VieII1StreetCttgttanooga.Tennessee3y't02PODER:SYSIEi',Sl.JTel,615;26~463:LiAttachment2AEP:HRC:00097Crki5&c-'.~~HgJune8r1979Ihereb'icert''ha7S-12and73-12'".sknot;ilcdeeand~el1979re:ltit'ed,In:oEtlforce:t:e::ttullePressurekressels",inthe'acr'cationotherecordcotiplc"tnere.o-t.r:"..;.>>'tl:xe'u70-1~ti".'er01lo'w'lse,.rchrcruirLdbJI.Eedaildt"a>>,tothebeIt'E~M~At,pica1t'cldlateriaiotiea>>aQ'ca'e,atengreactorvesel:D;tiletinstof:'ynJut%>>Mr"nd'Rcactor'ialsuscGC-EContractr,'o.:23366Uti1ity/Sit;e:Indiana-'.ichic'anElectricCo.DonaldCook<1N.A.Stone,Jr.,tlanagerNuclearQuali".AssuranceChattat>oo>a'.nuclearOpration" WestinghouseElectricCorporationPriverSystemsCompanyAEP:t(RC:00097CP+~h~~.ypH<N:learServiceOw<sio<<<axn<SpilisD<'<g'<pennsy<vzn<a15230June25,1979AEP-79-17Hr.J.R.Jensenttechanica1EngiiiiiiingDivisionAmericanElectricPowerServiceCorp.2BroadwayHewYork,HY1000)
Enclosedpleasefind;hree (3copiesofadocu",ent entitled"Infer:-'on Requeted;yV*:-Bulletin7o-12,~typical'i'eldi"-terial inRe=ctoiPres-sureVessel'h'elds."
Thisrepoitisbeir,"s..';.'.i tteddirectlytothei'=:b.Cc;:bustion Ei::-.ine-eringasperr:itt".by::.:'olc
..n.Atothe,"ullet n.Itisexpecto"',a holdersoiCons'ruct o::Per;.-.i-.s andu>".ei*ating Lic:..".ses v:il',re:.ere:.ce this'eport inresponding tothebulletinonthe;rindividual deci,e:s.
Shouldyouhaveanyc"estior.s, pleasefeelfreetocallr,",eorfl;.E.H.Kennedyofmystaffa"(203)6"'3 1911,extension 2o2G.Verytrulyyours,COf18USTIOll EiiG!.",EER!,'lG, IilC.AES:dagEnclosure Licensirg l',anager
 
~~C.EpowerSystemsCprnbUstlon Fngineering.
tnc9]tQ/,VieII1StreetCttgttanooga.
Tennessee 3y't02PODER:SYSIEi',Sl.JTel,615;26~463:LiAttachment 2AEP:HRC:00097C rki5&c-'.~~
HgJune8r1979Ihereb'icert''ha7S-12and73-12'".sknot;ilcde eand~el1979re:ltit'ed, In:oEtlforce:t:e::t tullePressurekressels",
inthe'acr'cation otherecordcotiplc"tnere.o-t.r:"..;.>>'tl:xe'u70-1~ti".'er01lo'w'lse,.rchrcruirLdbJI.Eedaildt"a>>,tothebeIt'E~M~At,pica1t'cldlateriaiotiea>>aQ'ca'e,atengreactorvesel:D;tiletinstof:'ynJut%>>Mr"nd'Rcactor'ialsuscGC-EContractr,'o.:23366Uti1ity/Sit;e:Indiana-'.ichic'an ElectricCo.DonaldCook<1N.A.Stone,Jr.,tlanagerNuclearQuali".Assurance Chattat>oo>a'.nuclear Opration" Westinghouse ElectricCorporation PriverSystemsCompanyAEP:t(RC:00097C P+~h~~.ypH<N:learServiceOw<sio<<<axn<SpilisD<'<g'<
pennsy<vzn<a 15230June25,1979AEP-79-17 Hr.J.R.Jensenttechanica1EngiiiiiiingDivisionAmericanElectricPowerServiceCorp.2BroadwayHewYork,HY1000)


==Deart'Ir.Jensen:==
==Deart'Ir.Jensen:==
NRCIEBULLETIttS='78-125;-.'78-12A"At~4<1teldimmaterialinReactorP.essure",essel'lds"Baseduponourt<<tinicalevaluationofthein,ormationcontainedinthcnrcrep<<<<o"piledtvCo-'.bustionEnginering,Inc.tosatisfytherequir.;,.en.sore-sentedintheU'.<<uclearRegulator"Cor.:;,.issionIEBulletins="78-12~~=7:-<2.-'.,>lestinghouseha"<onclud"dthatthe'weldraterialdataandotherrequired'n-'-r-prt'rnt.l,otheD.C.CookUnit1reactoivesselareincludedinCo.":3"5-tionEngineering,Inc.report.Thisrepoi'thasI<reviouslybeensubmittedtoieU.S.NuclearRegulatoryCo:.-;.'s-sion>aseviden>>'<lbyCo.",:bustionEngineering,inc.transmittalletero-.Ju,".1979to<<e"S'<<<<:learRegulatoryCor<i7ission,acopyofwhichisenclosedforyourinformatioil,Additionally,w"tiaveenclosedforyourfilesacopyofCombustionEneincrine,Inc.letterto".",tinghouse,datedJune5,1979andattachedcertific.=t'.onstatingtha".h~ioner'.creportsubmittedtoUSl<uclearRegulatoryconta'nsc'.a-:.fortheD.C.Cool;Unit1i-eactorvessel.Mestinghouseau<latedthecontentofthesubjectreportagainsttheAS'':ECocoandHE-Spec.r('iiiire,ntsorthD.C.CookUnit'eactorvess1built'".CombustionEnoiii<<iinInc.ThereportcontainsdatapertainingtotheD.C.CookUnitI<,oac..vesselardisconsi"eredtobeinco."iipli=.ncewiththeUShRCBull<iirisand';<estinghouserequirements.However,someapparenterrorswerenot<Iinthcreport.Thesediscrepancies,verebrouchttot'.".eattentionofC<><.,!ii:tionEngineering,Inc.andCoirbustionEngireering,Iiic.iscurrentlyev.<t<<~tiflgtileol~Theyhaveagreedtoresolvethecor.:ments:oMestingnouss'<ii'lctiona<idwillsubmitrevisedpagesfortherepoi.tto..':eVuclearRegula'<<IvCommissionandl(estinghouseatalaterdate.  
NRCIEBULLETIttS
-'1QQI',r,J.R.Jersen-2-June25,1979++4'c!pm'',+gAEP-79-171A$g1<<j+InadditiontothedatasuppliedbyCombustionEngineering,Inc.inthesubJectreport,westinghousehasdevelopedsurveillancev<eldrentdata.Thisdataiscontainedinthefollowingreport,vihichhaspreviouslybeentransmittedtoyou:O.C.CookUnit1,MCAP'8047,datedHarch,1973AsstatedintheirreportCombustionEngineering,Inc.doesnotmaintainarchivematerialforthefieldsrepresentedbythisreport.Inaddition,Westinghouseinventoried-ourarchivesurveillance<;eldmentmaterialandnoneexistsfortheD.C.CookUnit1reactorvessel..Inconclusion,.thisletterprovidesassurancethattheD.C.CookUnit1reactorvesselis+overedinthesubjectreport,andfulfillsl!estinghouse'sobligationsrelativetotheReactorYessel'ldflaterialProgramcontractedfor'yk:,ericarElectricPoi;erServiceCorporation.'rEAcopyoftheCo;..bustionEngineering,Inc,genericreportapplicabletotheD.C.CookUnit1reactorvesselissubmitted,oryourrecords.Sincerely,(/JDC/ejattachmentsF.t/oon,t!anagerEasternRegion8Ht(ISupportcc:D.Y.Shaller*R.H.Jurgensen*J.G.'ern**withoutattachment  
='78-125;-.'78-12A "At~4<1teldimmaterial inReactorP.essure",essel'lds"Baseduponourt<<tinicalevaluation ofthein,ormation contained inthcnrcrep<<<<o"piled tvCo-'.bustion Enginering,Inc.tosatisfytherequir.;,.en.s ore-sentedintheU'.<<uclearRegulator" Cor.:;,.ission IEBulletins
~IC-8PowerSystemsCombustionEngineering,Inc.911W.MainStreetChattanooga,Tennessee374Q2,IgPOWER5SYSTEMSTel.615(265-463;~rgp~8'p)9~FI+~urnBiv-cLt.MNFORMATIONREQUESTEDBYNUCLEARREGULATORYCOMMISSIONINSPECTION&ENFORCEMENTBULLETINNO.78-12"ATYPICALWELDMATERIALINREACTORPRESSUREVESSELWELDS" INFORMATIONREQUESTEDBYNUCLEARREGULATORYCOMMISSIONINSPECTION&ENFORCEMENTBULLETINNO'8-12"ATYPICALWELDMATERIALINREACTORPRESSUREVESSELWELDS"PreparedbyCOMBUSTIONENGINEERING,INC.NUCLEARPOWERSYSTEMSJune',1979 V~&>~r.r+~*REACTORPRESSUREVESSELSFABRICATEDBYCR1BUSTEONENGINEERING,INC.Page1of4Ajjkc4~+g.~/o//+-.;.-C-ECTHO.:=-164'=-26417765198652966ACUSTOMERGeneralElectircGeneralElectricWestinghouseGeneralElectricCEiPD-WindsorASMECODEI&VIII,1962I&VIIE,W-63III,W-65IIE,S-65III,1965OWNERNiagaraMohawkJerseyCentralConsolidatedEdisonCo.NortheastUtilitiesConsumersPublicPowerSITENineMilePointPlOysterCreekIndianPoint/f2Millstone81Palisades326633666866WestinghouseWestinghouseWestinghouseEII,W-65III,W-65III,W-65PublicServiceofN.J.ConsolidatedEdisonCo.CarolinaP&LSalem!31IndianPoint83Robinson82213666621566GeneralElectricGeneralElectricGeneralElectricIII,W-66EIE,W-66IIIW-66ConsumersPublicPowerBostonEdisonCo.PowerAuthorityStateN.Y.CooperSitePilgrimFitzpatrick2306623366WestinghouseWestinghouseIII,W-66III,W-66PacificGas&ElectricIndiana-MichiganElec.Co.DiabloCanyon81DonaldCooki'P.l711662067216726672867CEMD-WindsorWestinghouseWestinghouseGeneralElectricGeneralElect'ricIEI,W-67III,'rT-66III,S-71III%S-69EII,W-69OmahaPublicServiceofN.J.DukePowerCompanyDetroitEdisonCommonwealthEdisonFt.CalhounSalem82McGuire81FermiLaSalle3067GeneralElectricIIE,S-68LongIslandLightingCo.Shoreham3167GeneralElectricIIE,W-66SouthernServicesHtch81i677316774167CENPD-WindsorCENPD-WindsorCENPD-WindsorIII,W<<67EEI,W-67EII,W-67BaltimoreGas&Electric.BaltimoreGas&ElectricFloridaPower&LightCalvertCliffCalvertCliffSt.LucieI SUMMARYOFWELDMATERWIRE/FLUXIDTESTMELDINGMATERIALSNmmERANDDATESOFTESTSVENDORADCOHRACO3RACO3WIRE/ELECTRODETYPEHEAT/LOTNO.12008'0541433A277VENDORI.IHDE1INDELIHDEFLUXTYPE109210921092LOTNO.3947'9473947NO.OFTESTSDATE(S)4-1-704-8-70WIRE/FLUXORELECTRODEWELDDEPOSITTESTPLATESC-ECODENO.Ml.37Ml.37M1.38REFER.ATTACHEDNON-CONFORM.REPORTADCOHReid-Aver-vrHMHReid-Avery)BQfReid-AveryIIHH30542430541412008305414305414LINDELINDELIHDELINDELINDE109210921092109210923947395139513951395f)4-10-705-4-705-11-706-2-70ill.39M1.40M1.41M1.41M1.42Reid-AverReil-AverReid-AverIIHH1P35711P35711P3571LINDELINDELIHDE109210921092395839583958NA6-9-70M1.42M1.43l)1.43NhIIHHReid-AveryHMIReid-Avery)IHHADCOH1P35713054142720451989LIHDELIHDELINDELINDE1092109212412439583958368736876-3>>706-3-707-11-67Ml.44M1.44E1.01E1.01ADCOH)IHM27204LIHDE124368710-10-67E1.02Reid-AverIBIHReid-AveryIBBI348009349009LIHDE).IHDE124124368736882-28-682-7-69E1.03El.04NANAReid-AverIBIHIBIHIBIHA-8746A>>874633A277LIHDEI.INDELIHDE1241241243688387838785-7-699-10-6910-29-69E1.05El.06E1.07Page6of21  
="78-12~~=7:-<2.-'.,
;WIRE/FLUXINDEXHeatofWire~PluxTneLotTestResultsO646B428661H57786054-B12485458V-521439B19634B009'7204124201325313253&120082029171148746IP2809IP28152193533A277305424305414IP3571885T409009935C1919013610120101376329637518745187651907606L4051922.51923519123P4767836408364283653836484P517483637&836505P5622'36462P57554P6052870058760088118LindeLindeArcos8080B-5AreasLindeAreasB-580B-5Linde1092Linde80Linde1092LindeLindeLindeLindeLindeLindeLindeLinde10921092109210921092109210921092Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde1092Linde1092Linde1092Linde1092Linde1092Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091;Linde0091Linde0091Linde0091Linde0091Linde0091817481744D4F4D5F4K13F82085613F3617840537243724372437743791383338543854385438693869&865138893947395839223922392239773999399939993458345834583489&345834893489349034903490353635363536112211221122112211220145014501450145Page1Page1Page2Page3Page4Page5Page6Page7Page8Page8Page9Page10Page11Page12Page13Page14Pages15Pages17Pages20Pages22Pages24Pages26Pages28Pages30Page32Pages33Pages35Pages37Pages39Pages41Pages43Pages45Pages47Pages50Pages52Pages54Pages57~Pages59Pages61Pages63Pages65Pages67Pages69Pages72Pages74Pages76Pages78Pages80Pages82Pages84&16thru19&21&23&25&27&29&31&34&36&38&40&42&44&46thru49&51&53thru56&58&60&62&64&'6&68thru71&73&75&77&79&81&83&85 fROM~OhTCVFeldingMaterialQualification-...toRequirementsofASME.SectionIIl'A-32255~.".810560MetallurgicalResearchaad.DevelopmentDepartment-ChattanoogaJune9,1970~~~~~~~I~zo~I~~~Ir~~Thefollowingtestdataisfor3/16"diameterbhrewire,typeB-4.MOD.,.heatnumber1P3571(tandem),fluxtype1092,lotnumber3958.a~~'vrelddepositwasmadeusingtheaboveheatofwireandlotofQux.'A'eldinq~erasdoneinaccoraarcewithC.E.'A'eidingProcedureSpecificat'onSAA"33-H3~~,'hecompletedveldmentwasgivenapostweldheattreatmentof1150'F25'F.for40hoursardiurnacecooledto600F.~~~~estCodeVZ~~Reouirements79,68,64'0Ft.,Ebs.@+10FCharovV-NotchimpactsPtbs.+10'F~~~AllWeldMetal.505Ter.sile0YieldStrength~.....KSI~~.'0.5\~UltimateTensileStrenathKSI86.8~~1~I~&>>27.0Elongationin2IIReductionof'rea/067.0~~~~~~~~~~~~~~~~~p~I~~.~~~~~~~~~~I,~~~~~~'~~~~~0~\~\~~~  
>lestinghouse ha"<onclud"dthatthe'weldraterialdataandotherrequired'n-'-r-prt'rnt.l,otheD.C.CookUnit1reactoivesselareincludedinCo.":3"5-tionEngineering,Inc.report.Thisrepoi'thasI<reviously beensubmitted toieU.S.NuclearRegulatory Co:.-;.'s-sion>aseviden>>'<lbyCo.",:bustion Engineering, inc.transmittal letero-.Ju,".1979to<<e"S'<<<<:learRegulatory Cor<i7ission, acopyofwhichisenclosedforyourinformatioil, Additionally, w"tiaveenclosedforyourfilesacopyofCombustion Eneincrine,Inc.letterto".",tinghouse, datedJune5,1979andattachedcertific.=t'.on statingtha".h~ioner'.creportsubmitted toUSl<uclearRegulatory conta'nsc'.a-:.fortheD.C.Cool;Unit1i-eactorvessel.Mestinghouse au<latedthecontentofthesubjectreportagainsttheAS'':ECocoandHE-Spec.r('iiiire, ntsorthD.C.CookUnit'eactorvess1built'".Combustion Enoiii<<iinInc.Thereportcontainsdatapertaining totheD.C.CookUnitI<,oac..vesselardisconsi"ered tobeinco."iipli=.nce withtheUShRCBull<iirisand';<estinghouse requirements.
However,someapparenterrorswerenot<Iinthcreport.Thesediscrepancies, verebrouchttot'.".eattention ofC<><.,!ii:tionEngineering, Inc.andCoirbustion Engireering, Iiic.iscurrently ev.<t<<~tiflg tileol~Theyhaveagreedtoresolvethecor.:ments:o Mestingnous s'<ii'lctiona<idwillsubmitrevisedpagesfortherepoi.tto..':eVuclearRegula'<<I vCommission andl(estinghouse atalaterdate.  
-'1QQI',r,J.R.Jersen-2-June25,1979++4'c!pm'',+g AEP-79-171A$g1<<j+InadditiontothedatasuppliedbyCombustion Engineering, Inc.inthesubJectreport,westinghouse hasdeveloped surveillance v<eldrent data.Thisdataiscontained inthefollowing report,vihichhaspreviously beentransmitted toyou:O.C.CookUnit1,MCAP'8047, datedHarch,1973AsstatedintheirreportCombustion Engineering, Inc.doesnotmaintainarchivematerialforthefieldsrepresented bythisreport.Inaddition, Westinghouse inventoried
-ourarchivesurveillance
<;eldmentmaterialandnoneexistsfortheD.C.CookUnit1reactorvessel..Inconclusion,
.thisletterprovidesassurance thattheD.C.CookUnit1reactorvesselis+overedinthesubjectreport,andfulfillsl!estinghouse's obligations relativetotheReactorYessel'ldflaterial Programcontracted for'yk:,ericar ElectricPoi;erServiceCorporation.
'rEAcopyoftheCo;..bustion Engineering, Inc,genericreportapplicable totheD.C.CookUnit1reactorvesselissubmitted, oryourrecords.Sincerely,
(/JDC/ejattachmentsF.t/oon,t!anagerEasternRegion8Ht(ISupportcc:D.Y.Shaller*R.H.Jurgensen*
J.G.'ern**withoutattachment  
~IC-8PowerSystemsCombustion Engineering, Inc.911W.MainStreetChattanooga, Tennessee 374Q2,IgPOWER5SYSTEMSTel.615(265-463;
~rgp~8'p)9~FI+~urnBiv-cLt.MNFORMATION REQUESTED BYNUCLEARREGULATORY COMMISSION INSPECTION
&ENFORCEMENT BULLETINNO.78-12"ATYPICAL WELDMATERIALINREACTORPRESSUREVESSELWELDS" INFORMATION REQUESTED BYNUCLEARREGULATORY COMMISSION INSPECTION
&ENFORCEMENT BULLETINNO'8-12"ATYPICAL WELDMATERIALINREACTORPRESSUREVESSELWELDS"PreparedbyCOMBUSTION ENGINEERING, INC.NUCLEARPOWERSYSTEMSJune',1979 V~&>~r.r+~*REACTORPRESSUREVESSELSFABRICATED BYCR1BUSTEON ENGINEERING, INC.Page1of4Ajjkc4~+g.~/o//+-.;.-C-ECTHO.:=-164'=-26417765198652966ACUSTOMERGeneralElectircGeneralElectricWestinghouse GeneralElectricCEiPD-WindsorASMECODEI&VIII,1962I&VIIE,W-63III,W-65IIE,S-65III,1965OWNERNiagaraMohawkJerseyCentralConsolidated EdisonCo.Northeast Utilities Consumers PublicPowerSITENineMilePointPlOysterCreekIndianPoint/f2Millstone 81Palisades 326633666866Westinghouse Westinghouse Westinghouse EII,W-65III,W-65III,W-65PublicServiceofN.J.Consolidated EdisonCo.CarolinaP&LSalem!31IndianPoint83Robinson82213666621566GeneralElectricGeneralElectricGeneralElectricIII,W-66EIE,W-66IIIW-66Consumers PublicPowerBostonEdisonCo.PowerAuthority StateN.Y.CooperSitePilgrimFitzpatrick 2306623366Westinghouse Westinghouse III,W-66III,W-66PacificGas&ElectricIndiana-Michigan Elec.Co.DiabloCanyon81DonaldCooki'P.l711662067216726672867CEMD-WindsorWestinghouse Westinghouse GeneralElectricGeneralElect'ric IEI,W-67III,'rT-66III,S-71III%S-69EII,W-69OmahaPublicServiceofN.J.DukePowerCompanyDetroitEdisonCommonwealth EdisonFt.CalhounSalem82McGuire81FermiLaSalle3067GeneralElectricIIE,S-68LongIslandLightingCo.Shoreham3167GeneralElectricIIE,W-66SouthernServicesHtch81i677316774167CENPD-WindsorCENPD-WindsorCENPD-WindsorIII,W<<67EEI,W-67EII,W-67Baltimore Gas&Electric.
Baltimore Gas&ElectricFloridaPower&LightCalvertCliffCalvertCliffSt.LucieI SUMMARYOFWELDMATERWIRE/FLUX IDTESTMELDINGMATERIALS NmmERANDDATESOFTESTSVENDORADCOHRACO3RACO3WIRE/ELECTRODE TYPEHEAT/LOTNO.12008'05414 33A277VENDORI.IHDE1INDELIHDEFLUXTYPE109210921092LOTNO.3947'9473947NO.OFTESTSDATE(S)4-1-704-8-70WIRE/FLUX ORELECTRODE WELDDEPOSITTESTPLATESC-ECODENO.Ml.37Ml.37M1.38REFER.ATTACHEDNON-CONFORM.
REPORTADCOHReid-Aver
-vrHMHReid-Avery
)BQfReid-Avery IIHH30542430541412008305414305414LINDELINDELIHDELINDELINDE109210921092109210923947395139513951395f)4-10-705-4-705-11-706-2-70ill.39M1.40M1.41M1.41M1.42Reid-Aver Reil-Aver Reid-Aver IIHH1P35711P35711P3571LINDELINDELIHDE109210921092395839583958NA6-9-70M1.42M1.43l)1.43NhIIHHReid-Avery HMIReid-Avery
)IHHADCOH1P35713054142720451989LIHDELIHDELINDELINDE1092109212412439583958368736876-3>>706-3-707-11-67Ml.44M1.44E1.01E1.01ADCOH)IHM27204LIHDE124368710-10-67E1.02Reid-Aver IBIHReid-Avery IBBI348009349009LIHDE).IHDE124124368736882-28-682-7-69E1.03El.04NANAReid-Aver IBIHIBIHIBIHA-8746A>>874633A277LIHDEI.INDELIHDE1241241243688387838785-7-699-10-6910-29-69E1.05El.06E1.07Page6of21  
;WIRE/FLUX INDEXHeatofWire~PluxTneLotTestResultsO646B428661H57786054-B12485458V-521439B19634B009'7204124201325313253&120082029171148746IP2809IP28152193533A277305424305414IP3571885T409009935C1919013610120101376329637518745187651907606L4051922.51923519123P4767836408364283653836484P517483637&836505P5622'3646 2P57554P6052870058760088118LindeLindeArcos8080B-5AreasLindeAreasB-580B-5Linde1092Linde80Linde1092LindeLindeLindeLindeLindeLindeLindeLinde10921092109210921092109210921092Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde1092Linde1092Linde1092Linde1092Linde1092Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091;Linde0091Linde0091Linde0091Linde0091Linde0091817481744D4F4D5F4K13F82085613F3617840537243724372437743791383338543854385438693869&865138893947395839223922392239773999399939993458345834583489&345834893489349034903490353635363536112211221122112211220145014501450145Page1Page1Page2Page3Page4Page5Page6Page7Page8Page8Page9Page10Page11Page12Page13Page14Pages15Pages17Pages20Pages22Pages24Pages26Pages28Pages30Page32Pages33Pages35Pages37Pages39Pages41Pages43Pages45Pages47Pages50Pages52Pages54Pages57~Pages59Pages61Pages63Pages65Pages67Pages69Pages72Pages74Pages76Pages78Pages80Pages82Pages84&16thru19&21&23&25&27&29&31&34&36&38&40&42&44&46thru49&51&53thru56&58&60&62&64&'6&68thru71&73&75&77&79&81&83&85 fROM~OhTCVFeldingMaterialQualification
-...toRequirements ofASME.SectionIIl'A-32255~.".810560Metallurgical Researchaad.Development Department
-Chattanooga June9,1970~~~~~~~I~zo~I~~~Ir~~Thefollowing testdataisfor3/16"diameterbhrewire,typeB-4.MOD.,.heatnumber1P3571(tandem),
fluxtype1092,lotnumber3958.a~~'vrelddepositwasmadeusingtheaboveheatofwireandlotofQux.'A'eldinq
~erasdoneinaccoraarcewithC.E.'A'eiding Procedure Specificat'on SAA"33-H3
~~,'hecompleted veldmentwasgivenapostweldheattreatment of1150'F25'F.for40hoursardiurnacecooledto600F.~~~~estCodeVZ~~Reouirement s79,68,64'0Ft.,Ebs.@+10FCharovV-NotchimpactsPtbs.+10'F~~~AllWeldMetal.505Ter.sile0YieldStrength~.....KSI~~.'0.5\~UltimateTensileStrenathKSI86.8~~1~I~&>>27.0Elongation in2IIReduction of'rea/067.0~~~~~~~~~~~~~~~~~p~I~~.~~~~~~~~~~I,~~~~~~'~~~~~0~\~\~~~  


J~~~~'4~~%~~~I~~~~~~~~rSAIIPLENO.LABIlO.TYPEAIRESIZE"llRETHO./P3Z7/'CHEHICr:.LAi'!ALYSISGFI'lIr"'"--FLUX"-'TESTMELOCOUPONLOTIIO."S'I'.;S/HOCU.NI.s/877+o~~~~0 INDIANAIIMICHIGANPOWERCOMPANYP.O.BOX18BOWLINGGREENSTATIONNEWYORK,N.Y.10004June1,1979AEP:NRC:00097DonaldC.CookNuclearPlant,UnitNo.2DocketNo.50-316LicenseNos.DPR-74Mr.JamesG.Keppler,DirectorU.S.NuclearRegulatoryCommissionRegionIII799RooseveltRoadGlenEllyn,Illinois60137
J~~~~'4~~%~~~I~~~~~~~~rSAIIPLENO.LABIlO.TYPEAIRESIZE"llRETHO./P3Z7/'CHEHICr:.L Ai'!ALYSISGFI'lIr"'"--FLUX
"-'TESTMELOCOUPONLOTIIO."S'I'.;S/HOCU.NI.s/877+o~~~~0 INDIANAIIMICHIGANPOWERCOMPANYP.O.BOX18BOWLINGGREENSTATIONNEWYORK,N.Y.10004June1,1979AEP:NRC:00097 DonaldC.CookNuclearPlant,UnitNo.2DocketNo.50-316LicenseNos.DPR-74Mr.JamesG.Keppler,DirectorU.S.NuclearRegulatory Commission RegionIII799Roosevelt RoadGlenEllyn,Illinois60137


==DearMr.Keppler:==
==DearMr.Keppler:==


==References:==
==References:==
(1)NRCIEBULLETINNOS.78-12,78-12A,78-12BATYPICALWELDMATERIALINREACTORPRESSUREVESSELS(2)"CHICAGOBRIDGE5IRONCOMPANYREPORTINCOMPI-ANCEWITHTHENRCBULLETINS78-12AND78-12A",DAT-DAPRIL24,1979ThisletteranditsattachmentsareinresponsetotheabovereferencedI.E.BulletinsastheyapplytoUnitNo.2oftheD.C.CookNuclearPlant.ChicagoBridge8Iron(CB8I),manufacturerofthereactorvesselforUnit2,hassubmittedtotheNRC,onApril24,1979,agenericreport(reference2)providingtherequiredweldmaterialinformationonallreactorvesselsfabricatedbyCBEI.WestinghouseandAmericanElectricPowerhavereviewedtheabovereferenced.reportandconcludedthatitrepresentsadequatelythedatafortheweldmentmaterialusedinthereactor.vesselofUnitNo.2oftheDonaldC.CookNuclearPlant.Weld-mentmaterialthatmightbeusedforverificationpurposes,isavailableinthearchivesoftheWestinghouseElectricCorporation.


Hr.JamesG.Keppler,Director-2-AEP:NRC:00097yAsstatedinourletterNo,AEP:NRC:000978datedMay21,1979,theaboveinformationforDonaldC.CookUnitNo.1reactorvesselwillbesubmittedbyJuly2,1979VerytrulyyoursJED:emohnE.DolanicePresidentAttacnments:1)CBIIIreviewcertificationlettertotheNRCdated4/24/792)C88IlettertotheNRCdated4/24/793)WestinghouselettertoAEPdated5/23/79cc:R.C.CallenG.CharnoffD.Y.Shaller-BridgmanR.W.Jurgensen  
(1)NRCIEBULLETINNOS.78-12,78-12A,78-12BATYPICALWELDMATERIALINREACTORPRESSUREVESSELS(2)"CHICAGOBRIDGE5IRONCOMPANYREPORTINCOMPI-ANCEWITHTHENRCBULLETINS 78-12AND78-12A",DAT-DAPRIL24,1979Thisletteranditsattachments areinresponsetotheabovereferenced I.E.Bulletins astheyapplytoUnitNo.2oftheD.C.CookNuclearPlant.ChicagoBridge8Iron(CB8I),manufacturer ofthereactorvesselforUnit2,hassubmitted totheNRC,onApril24,1979,agenericreport(reference 2)providing therequiredweldmaterialinformation onallreactorvesselsfabricated byCBEI.Westinghouse andAmericanElectricPowerhavereviewedtheabovereferenced
.reportandconcluded thatitrepresents adequately thedatafortheweldmentmaterialusedinthereactor.vesselofUnitNo.2oftheDonaldC.CookNuclearPlant.Weld-mentmaterialthatmightbeusedforverification
: purposes, isavailable inthearchivesoftheWestinghouse ElectricCorporation.
 
Hr.JamesG.Keppler,Director-2-AEP:NRC:00097 yAsstatedinourletterNo,AEP:NRC:000978 datedMay21,1979,theaboveinformation forDonaldC.CookUnitNo.1reactorvesselwillbesubmitted byJuly2,1979VerytrulyyoursJED:emohnE.DolanicePresident Attacnments:
1)CBIIIreviewcertification lettertotheNRCdated4/24/792)C88IlettertotheNRCdated4/24/793)Westinghouse lettertoAEPdated5/23/79cc:R.C.CallenG.CharnoffD.Y.Shaller-Bridgman R.W.Jurgensen  


Hr.J.G.Keppler,DirectorJpp9AEP:NRC:00097bc:S.J.Milioti/J.I,Castresana/T.SatyanR.F.Hering/S.H.SteinhartH.N.Scherer,Jr.R.F.KroegerJ.F.Stietzel-BridgmanD.Higginton-NRCCookPlantRegionIIIResidentInspectorAEP:NRC:00097DC-N-Gois.atR.C.Kopelow/J.Jensen  
Hr.J.G.Keppler,DirectorJpp9AEP:NRC:00097 bc:S.J.Milioti/J.I,Castresana/T.Satyan R.F.Hering/S.
'rat:MEiirr'>+8="00.-"~iroank".northoUs:onrad'ChicagoBridge&IronCompanygoox'00rgRoustc~.T~;;as77040ThedocumentationandinformationrequiredbyNRCBulletins78-l2and78-I2A,andWestinghousePO//546-MVC-40I945-MNforCBIContract$$68-3262VesselD.C.CookIIarecontainedintheattachedreport.Weldingconsumableswerere-reviewedagainsttheoriginalrequirementsinaccordancewiththeabovelisteddocuments.Nodeviationswerefound.Baseduponourrecords,Icertify,tothebestofmyknowledge,thisreportiscorrect.RalphE.KelleyManager,CQAServicesDate~',r'1','~'~~,~~1~~
H.Steinhart H.N.Scherer,Jr.R.F.KroegerJ.F.Stietzel-Bridgman D.Higginton-NRC CookPlantRegionIIIResidentInspector AEP:NRC:00097 DC-N-Gois.a tR.C.Kopelow/J.
Akir4~jP~ATTACHMENT2WPEga'p'hicagoBridge5tronCompany'.6000FairbanksnorthHoustonroadpobox40066Houston,Texas77040telephone7i3.4667661.April24,1979OfficeofInspecti'on&Enforcement'.S.NuclearRegulatoryCommissionWashington,D.C.20555Attention:Mr.G.W.ReinmuthRE:NRCBULLETINS78-12678-12AGentlemen:.InaccordancewiththeabovelistedBulletinsandrequirementsfromWestinghouseandGeneralElectric,enclosedisonecopyofourreport.ilThisreportincludesinformationfromallcompletedReactorVesselsconstructedbyChicagoBridge&IronCo.Verytrulyyours,CHCAGOBRIDGE6IRONCO.REK:mksEnclosureRalphE.Kelley,MagerCQAServicesHoustonOperationsII''!',~~Vi~,V-qi  
Jensen  
'rat:MEiirr'>+8="00.-"~iroank".
northoUs:onrad'ChicagoBridge&IronCompanygoox'00rgRoustc~.T~;;as77040Thedocumentation andinformation requiredbyNRCBulletins 78-l2and78-I2A,andWestinghouse PO//546-MVC-40I 945-MNforCBIContract$$68-3262VesselD.C.CookIIarecontained intheattachedreport.Weldingconsumables werere-reviewed againsttheoriginalrequirements inaccordance withtheabovelisteddocuments.
Nodeviations werefound.Baseduponourrecords,Icertify,tothebestofmyknowledge, thisreportiscorrect.RalphE.KelleyManager,CQAServicesDate~',r'1','~'~~,~~1~~
Akir4~jP~
ATTACHMENT 2WPEga'p'hicago Bridge5tronCompany'.6000Fairbanks northHoustonroadpobox40066Houston,Texas77040telephone 7i3.4667661.April24,1979OfficeofInspecti'on
&Enforcement'.
S.NuclearRegulatory Commission Washington, D.C.20555Attention:
Mr.G.W.ReinmuthRE:NRCBULLETINS 78-12678-12AGentlemen:
.Inaccordance withtheabovelistedBulletins andrequirements fromWestinghouse andGeneralElectric, enclosedisonecopyofourreport.ilThisreportincludesinformation fromallcompleted ReactorVesselsconstructed byChicagoBridge&IronCo.Verytrulyyours,CHCAGOBRIDGE6IRONCO.REK:mksEnclosure RalphE.Kelley,MagerCQAServicesHoustonOperations II''!',~~Vi~,V-qi  


0I-"'ATTACHMENT3WestinghouseElectricCorporationWaterReactorOlvislonsNuctearServiceOivisionBox2728PittsburghPennsytvanta15230May23,1979AEP-79-10MechanicaEgineeringDivisionAmerican1ctricPowerServiceCorp.2BroadwayNewYork,NY10004
0I-"'ATTACHMENT 3Westinghouse ElectricCorporation WaterReactorOlvislons NuctearServiceOivisionBox2728Pittsburgh Pennsytvanta 15230May23,1979AEP-79-10 Mechanica Egineering DivisionAmerican1ctricPowerServiceCorp.2BroadwayNewYork,NY10004


==DearMr.Jensen:==
==DearMr.Jensen:==
NRCIEBulletins878-12&878-12A"AticalWeldMaterialinReactorPressureYesselMelds"~BaseduponourtechnicalevaluationoftheinformationcontainedinthegenericreportcompiledbyChicagoBridge&IronCompanytosatisfytherequirementspresentedintheU.S.NuclearRegulatoryCommissionIEBulle-tinsf78-12andf78-12A,MestinghousehasconcludedthattheweldmaterialdataandotherrequiredinformationpertinenttotheD.C.CookUnit2reactorvesselareincludedinChicagoBridge&Iron'sreport.ThisreporthaspreviouslybeensubmittedtotheU.S.NuclearRegulatoryCommission,asevidencedbyChicagoBridge&IronCompany'stransmittalletterof.April24,1979totheU.S.NuclearRegulatoryCommission,acopyofwhichisenclosedforyourinformation.'dditionally,wehaveenclosedfor.yourfilesacopyofChicagoBridge&IronCompany'slettertoWestinghouse,datedApril24,1979,providingfurtherconfirmationthatthegenericreportpreparedby"'vendorincludesrecordspertainingtotheO.C.CookUnit2reactorvessel.TheChi'cagoBridge&IroncertificationsstatingthatthereportcontainsdatafortheO.C.CookUnit2reactorvesselisincludedinPart2ofthereport.HestinghouseauditedthesubjectreportagainsttheASME"andME-Spec.requirementsfortheD.C.CookUnit2reactorvesselbuiltbyChicagoBridge&Iron.ThereportcontainsdatapertainingtotheD.C.CookUnit2reactorvesselandisconsideredtobeincompliancewiththeU.S;NuclearRegulatoryCommissionbulletinsandWestinghouserequirements.InadditiontothedatasuppliedbyChicagoBridge&IronCompanyinthesubjectreport,'llestinghousehasdevelopedsurveillanceweldmentdata.Thisdataiscontainedinthefollowingreport,whichhaspreviouslybeentransmittedtoyou:O.C.CookUnit2,MCAP-8512,datedNovember,1975 J.R.Jensen72May23,179AsstatedintheirreportChicagoBridge5IronCompanyhasnoarchivematerialfortheweldsrepresentedbythisreport.Westinghouseinven-toriedourarchiveweldmentmaterialwhichcouldbeusedforverificationpurposesontheO.C.CookUnit2reactorvessel.Thismaterialconsistsofonefullthicknessweldmentmadeupofweldwirefromheatnumber53986andLindeFlux124fromlotnumber934.Inconclusion,thisletterprovidesassurancethattheO.C.CookUnit2reactorvesseliscoveredinthesubjectreport,andfulfillsWestinghouse'sobligationsrelativetotheReactorVesselWeldMaterialProgramcontractedforbyAmericanElectricPowerServiceCorporation.AcopyoftheChicagoBridgeandIrongenericreportapplicabletotheD.C.CookUnit2issubmittedforyourrecords.Sincerely,JDC/plAttachmentscc:O.V.ShallerR.W.JurgensenJ.G...Kernoon,ManagerEasternServiceRegion i
NRCIEBulletins 878-12&878-12A"AticalWeldMaterialinReactorPressureYesselMelds"~Baseduponourtechnical evaluation oftheinformation contained inthegenericreportcompiledbyChicagoBridge&IronCompanytosatisfytherequirements presented intheU.S.NuclearRegulatory Commission IEBulle-tinsf78-12andf78-12A,Mestinghouse hasconcluded thattheweldmaterialdataandotherrequiredinformation pertinent totheD.C.CookUnit2reactorvesselareincludedinChicagoBridge&Iron'sreport.Thisreporthaspreviously beensubmitted totheU.S.NuclearRegulatory Commission, asevidenced byChicagoBridge&IronCompany's transmittal letterof.April24,1979totheU.S.NuclearRegulatory Commission, acopyofwhichisenclosedforyourinformation.'dditionally, wehaveenclosedfor.yourfilesacopyofChicagoBridge&IronCompany's lettertoWestinghouse, datedApril24,1979,providing furtherconfirmation thatthegenericreportpreparedby"'vendor includesrecordspertaining totheO.C.CookUnit2reactorvessel.TheChi'cagoBridge&Ironcertifications statingthatthereportcontainsdatafortheO.C.CookUnit2reactorvesselisincludedinPart2ofthereport.Hestinghouse auditedthesubjectreportagainsttheASME"andME-Spec.requirements fortheD.C.CookUnit2reactorvesselbuiltbyChicagoBridge&Iron.Thereportcontainsdatapertaining totheD.C.CookUnit2reactorvesselandisconsidered tobeincompliance withtheU.S;NuclearRegulatory Commission bulletins andWestinghouse requirements.
A/4.g,pywp~/PChicagoBridge5Ironompany3I'~>.gc./GGGOFairb".."ks".<"".Houstct:roa"p0Qox+CGGGHousIcsI.TexGSi.G-'01~il)0eisy,CHICAGOBRIDGE&IRONCOMPANYREPORTINCOMPLIANCEWITHTHENUCLEARREGULATORYCOMMISSIONtC3E3KPLANTMEDRECQRD-MEDGQPYENGINEER~+~DATEHPLANiTL(rETIAM'iECATETCPI'iIIT,C3NQNP'Rt'Al<~!ITMININUHRETENTIONYRS.BULLETINS78-12&78-I2AReportpreporedbyRalphE.KelleyMgr.,CQAServicesILV-2I-7Date  
InadditiontothedatasuppliedbyChicagoBridge&IronCompanyinthesubjectreport,'llestinghouse hasdeveloped surveillance weldmentdata.Thisdataiscontained inthefollowing report,whichhaspreviously beentransmitted toyou:O.C.CookUnit2,MCAP-8512, datedNovember, 1975 J.R.Jensen72May23,179AsstatedintheirreportChicagoBridge5IronCompanyhasnoarchivematerialfortheweldsrepresented bythisreport.Westinghouse inven-toriedourarchiveweldmentmaterialwhichcouldbeusedforverification purposesontheO.C.CookUnit2reactorvessel.Thismaterialconsistsofonefullthickness weldmentmadeupofweldwirefromheatnumber53986andLindeFlux124fromlotnumber934.Inconclusion, thisletterprovidesassurance thattheO.C.CookUnit2reactorvesseliscoveredinthesubjectreport,andfulfillsWestinghouse's obligations relativetotheReactorVesselWeldMaterialProgramcontracted forbyAmericanElectricPowerServiceCorporation.
AcopyoftheChicagoBridgeandIrongenericreportapplicable totheD.C.CookUnit2issubmitted foryourrecords.Sincerely, JDC/plAttachments cc:O.V.ShallerR.W.Jurgensen J.G...Kernoon,ManagerEasternServiceRegion i
A/4.g,pywp~/PChicagoBridge5Ironompany3I'~>.gc./GGGOFairb".."ks
".<"".Houstct:roa"p0Qox+CGGGHousIcsI.
TexGSi.G-'01~il)0eisy,CHICAGOBRIDGE&IRONCOMPANYREPORTINCOMPLIANCE WITHTHENUCLEARREGULATORY COMMISSION tC3E3KPLANTMEDRECQRD-MEDGQPYENGINEER~+~DATEHPLANiTL(rETIAM'iECATETCPI'iIIT,C3NQNP'Rt'Al<~!
ITMININUHRETENTION YRS.BULLETINS 78-12&78-I2AReportpreporedbyRalphE.KelleyMgr.,CQAServicesILV-2I-7Date  


PARTILISTOFREACTORVESSELSINCLUDEDWESTINGHOUSEVESSELSCBICONTRACT68-326268-37807I-26317I-26327I-2633VESSELDCCookIITrojanVirgilC.SummerIShearonHarrisIShearonHarrisIIGENERALELECTRICVESSELS9-56249-620I68-247I68-247268-333168-333269-296769-482469-496269-512869-540I69-540269-557I73-6735hhonticelloVermontYankeeBrunswickIBrunswickIISusquehannaISusquehannaIIDuaneArnoldQuadCitiesII(CBIPortion)PeachBottomII(CBIPortion)PeachBottomIII(CBIPortion)LimerickILimerickIIZimmerICIintonI  
PARTILISTOFREACTORVESSELSINCLUDEDWESTINGHOUSE VESSELSCBICONTRACT68-326268-37807I-26317I-26327I-2633VESSELDCCookIITrojanVirgilC.SummerIShearonHarrisIShearonHarrisIIGENERALELECTRICVESSELS9-56249-620I68-247I68-247268-333168-333269-296769-482469-496269-512869-540I69-540269-557I73-6735hhonticell oVermontYankeeBrunswick IBrunswick IISusquehanna ISusquehanna IIDuaneArnoldQuadCitiesII(CBIPortion)PeachBottomII(CBIPortion)PeachBottomIII(CBIPortion)LimerickILimerickIIZimmerICIintonI  


ChicagoBridge8IronCompany3.CO.=circa.".r..ncr".Hcus:c.".road@cox>>OA'6Ccc~o1,'asII0'l0~Ph~it4.rA)t.~i)tThedocumentationandinformationrequiredbyNRCBulletins78-l2and78-I2A,andWestinghousePO8546-MVC-40I945-MNforCBIContract/368-3262VesselD.C.CookIIarecontainedintheattachedreport.Weldingconsumableswerere-reviewedagainsttheoriginalrequirementsinaccordancewiththeabovelisteddocuments.Nodeviationswerefound.Baseduponourrecords,Icertify,tothebestofmyknowledge,thisreportiscorrect.RalphE.KelleyManager,CQAServicesDate IumberIPrlgrS!IvrllulruthlIWllllll)Cf00/((///(rcf~c69'.~~itrr/NUCLI:.RlhRECORDINDEXDESC((IPTIONWIREWIREWIREFLUXFLUXSIZEHEATNO.RUNORLOTTESTNO.SPECIFICATIONSIM(t/ib(-JP(IIgr'CtmtQIb'c+l(.wtlo'Rq2z~%OCQarlroAI.I.q'j./(,~7~lr/'i}.jc,/-IP~'~"Zt~~QP(r~erIn(9-pgZt~I((.Ig.(Q.C'<~t0>.(I.7c~.3l07'~l~a~("(.-(('.~fqI}8(C.t.-t=-/7PE/!/7C+yp~I"'n~47,c'8-I(}t(IItl~IIII>>'lI(~..~aPI.gr.'g-273gZP4f~09~103V-I"r-l93%(8llIII')rill>>r~I~rI)vlIIIIllytl>>c>>>>II~llr.rl:IIililIIIeCr)t)lCu-('~Idl:oI-/)'~gr-@~II'r/f07i""tDDilteSi(I>>lro)<CCOOKPLANTMEDRECORD-MEOCOPYSECTIONENGINEER+~PLANTLlfETIME~KZfLP.LhQNONPERMANENTQtlirl~Cr)llr(.I.I":III'rIIIIiiICIIIIII,I('I('IIIIIII)1'II~P>>t~rkl.ofI,llIIrp7JAkl)S vI,.Q>l..=.rtB'~CHICAGOBRIDGE&IRONCOMPANYCarbon.Manganese.Chromium.Nieke1...Silicon.Columbium.Tantalum...~Molybdenum,Tungsten.'.Copper.Titanium.Phosphorus.Sulfur.'.".'jtanadium.',.'ron.'~,.Schaeff1erCobalte~.05.022.016er'rr,~,fASMECODE,.COMPANYoratory',.:',',''i;.Iv'ateta'Y,'0trMaterialsEvaluatiorFerri'te..033r,~~vv'vn.IIIoftheThismaterialconformstoSectioParagraphN511.3.'vvv'vevtCHICAGOBRIDGEANDIRONBirminghamMaterialsLab~~vvevry~g~P~>~'ByP>a!v.'nchargeaPProvedbyofTestingfolAteriahs">>nein<er1500N.50THST.P.0.BOX277,BBRMlNGHAM,ALABAMA35202~vv}TWXB10-7333554-:"-\WesternUnionWUX~e'l~...AreaCode:205595-1191'II'ERTIFICATEOFANALYSISPURCHASEORDERNUMBER:.MECHANICALTESTS:..'estNumber:PT200AHeatTreatment50=.Hours91125/1150TypeElectrode:AdcomlNtlM/Linde124FarenheitTradeName:'dcomltlH;i>(ireTensileProperties9RoomTemp.'..':..'iameter:3/16"Type:,505"FluxLotNumber:3877-Run934-Linde12CJTS89,000PSI'.:,~'!;.::~-:,tteireHeatNumber:S3986""YLP70,100PSIXElongationin2'inches=23.5~CHEMICALTESTSXReductionof.Area;:=65:..'..~.101.,ImpactProperties1.49'Type:CharpyVeeNotch.12.Orientation:1ToIieldDirection..'::..92)))'.-,TestTemperature+1-0''.:.41Foot-lbs.67:.5,6~,65,004'.5'Shear60,60,55LateralExpansion61,58,52.53v.~~~  
ChicagoBridge8IronCompany3.CO.=circa.".r..
.AA.z~,.p9CHICAGOBRIDGL'IBOiNCO1VIPAiXX'~0~8OX13308,MEMPHIS,TENNESSEE3e't13CERTIFICATEOFNALYSIS901947-311'aMECHEiNICALTESTRESULTSPurchaseOrderNumber:M30506-3262/3780TestNumber:WO5337C(TandemNire)HeatTreatment1150'F+25'-50'Ffor621/2HoursTensilePropertiesTypeElectrode:Adcom1N)~J"./Linde124(20x150)FluxTradeName:AdcomlNMMType:.505'yUTS92g000PSIElectrodeDiameter:3/16"LotL~umber:HeatNumber:S3986YLP78,800PSI%Elongationin2inches=ReductionofArea=57.326iFluxBatchNumber:Run934Lot3878CHEI1IC..LTESTRESULTSImpactPopertiesType:CharpyVeeNotchOrientation:~toHeldDirec"ionTestTemperature+10'FFoot-Lbs.Carbon~~~~~~~~Manganese......089l.47hromium......c)wel~~~~~oo~o~~JSl1leon~~~~o~~.9039,53,3836,44,35LateralExpansionShear.4740,50,40C01umb1ume~~~~Tantalum......2)olybdenum....Tungsten......Coooer~.~~~~~~~.53.06T3tQIl3.um)losphorus.....028Sulfur........,.014Vanadium......Ironi~~~~~~~~~SchaefflerFerrite..CHICAGOBRIDGE&IRONCO)1PANYThismateialconformstoSECTIONIIIoftheASMECODE,ParagraphN511.3BYDATEMcr~~Z~.r2~P  
ncr".Hcus:c.".
road@cox>>OA'6Ccc~o1,'asII0'l0~Ph~it4.rA)t.~i)tThedocumentation andinformation requiredbyNRCBulletins 78-l2and78-I2A,andWestinghouse PO8546-MVC-40 I945-MNforCBIContract/368-3262VesselD.C.CookIIarecontained intheattachedreport.Weldingconsumables werere-reviewed againsttheoriginalrequirements inaccordance withtheabovelisteddocuments.
Nodeviations werefound.Baseduponourrecords,Icertify,tothebestofmyknowledge, thisreportiscorrect.RalphE.KelleyManager,CQAServicesDate IumberIPrlgrS!Ivrllulrut hlIWllllll)Cf00/((///(rcf~c 69'.~~itrr/NUCLI:.Rlh RECORDINDEXDESC((IPTIONWIREWIREWIREFLUXFLUXSIZEHEATNO.RUNORLOTTESTNO.SPECIFICATIONS IM(t/ib(-JP(IIgr'CtmtQIb'c+l(.wtlo'Rq2z~%OCQarlroAI.I.q'j./(,~7~lr/'i}.jc,/-IP~'~"Zt~~QP(r~erIn(9-pgZt~I((.Ig.(Q.C'<~t0>.(I.7c~.3l07'~l~a~("(.-(('.~fqI}8(C.t.-t=-/7PE/!/7C+yp~I"'n~47,c'8-I(}t(IItl~IIII>>'lI(~..~aPI.gr.'g-273gZP4f~09~103V-I"r-l93%(8llIII')rill>>r
~I~rI)vlIIIIllytl>>c>>>>II~llr.rl:IIililIIIeCr)t)lCu-('~Idl:oI-/)'~gr-@~II'r/f07i""tDDilteSi(I>>lro)<
CCOOKPLANTMEDRECORD-MEOCOPYSECTIONENGINEER+~PLANTLlfETIME~KZfLP.Lh QNONPERMANENT Qtlirl~Cr)llr(.I.I":III'rIIIIiiICIIIIII,I('I('IIIIIII)1'II~P>>t~rkl.ofI,llIIrp7JAkl)S vI,.Q>l..=.rtB'~CHICAGOBRIDGE&IRONCOMPANYCarbon.Manganese.
Chromium.Nieke1...Silicon.Columbium.
Tantalum...
~Molybdenum, Tungsten.'.
Copper.Titanium.
Phosphorus
.Sulfur.'.".'jtanadium.',
.'ron.'~,.Schaeff1erCobalte~.05.022.016er'rr,~,fASMECODE,.COMPANYoratory',.:',',''i;.Iv'ateta'Y,'0trMaterialsEvaluatiorFerri'te..033r,~~vv'vn.IIIoftheThismaterialconformstoSectioParagraph N511.3.'vvv'vevtCHICAGOBRIDGEANDIRONBirmingham Materials Lab~~vvevry~g~P~>~'ByP>a!v.'nchargeaPProvedbyofTestingfolAteriahs">>nein<er1500N.50THST.P.0.BOX277,BBRMlNGHAM, ALABAMA35202~vv}TWXB10-7333554-:"-\WesternUnionWUX~e'l~...AreaCode:205595-1191'II'ERTIFICATE OFANALYSISPURCHASEORDERNUMBER:.MECHANICAL TESTS:..'estNumber:PT200AHeatTreatment 50=.Hours 91125/1150 TypeElectrode:
AdcomlNtlM/Linde 124Farenheit TradeName:'dcomltlH;i>(ireTensileProperties 9RoomTemp.'..':..'iameter:
3/16"Type:,505"FluxLotNumber:3877-Run934-Linde 12CJTS89,000PSI'.:,~'!;.::~-:,t teireHeatNumber:S3986""YLP70,100PSIXElongation in2'inches=23.5~CHEMICALTESTSXReduction of.Area;:=65:..'..~.101.,ImpactProperties1.49'Type:CharpyVeeNotch.12.Orientation:
1ToIieldDirection
..'::..92)))'.-,TestTemperature
+1-0''.:.41Foot-lbs.67:.5,6~,65,004'.5'Shear60,60,55LateralExpansion 61,58,52.53v.~~~  
.AA.z~,.p 9CHICAGOBRIDGL'IBOiNCO1VIPAiXX'
~0~8OX13308,MEMPHIS,TENNESSEE 3e't13CERTIFICATE OFNALYSIS901947-311'a MECHEiNICAL TESTRESULTSPurchaseOrderNumber:M30506-3262/3780 TestNumber:WO5337C(TandemNire)HeatTreatment 1150'F+25'-50'F for621/2HoursTensileProperties TypeElectrode:
Adcom1N)~J"./Linde 124(20x150)FluxTradeName:AdcomlNMMType:.505'yUTS92g000PSIElectrode Diameter:
3/16"LotL~umber:HeatNumber:S3986YLP78,800PSI%Elongation in2inches=Reduction ofArea=57.326iFluxBatchNumber:Run934Lot3878CHEI1IC..L TESTRESULTSImpactPopertiesType:CharpyVeeNotchOrientation:
~toHeldDirec"ion TestTemperature
+10'FFoot-Lbs.Carbon~~~~~~~~Manganese.....
.089l.47hromium......
c)wel~~~~~oo~o~~JSl1leon~~~~o~~.9039,53,3836,44,35LateralExpansion Shear.4740,50,40C01umb1ume~~~~Tantalum......
2)olybdenum....
Tungsten......
Coooer~.~~~~~~~.53.06T3tQIl3.um)losphorus....
.028Sulfur........
,.014Vanadium......
Ironi~~~~~~~~~Schaeffler Ferrite..
CHICAGOBRIDGE&IRONCO)1PANYThismateialconformstoSECTIONIIIoftheASMECODE,Paragraph N511.3BYDATEMcr~~
Z~.r2~P  


PurchaseOrderNumber:M30506-3262/3780TestNumber:NOI337C(SingleWire)TypeElectrode:Adcom1NMM/Linde124(20x150)FluxTradeName:Adcom1NtB1HeatTreatment1150';+25'-50'Ffor621/2HoursTensilePropertiesType:.505"p(gg.rI'p;(.~!-~<!lgi'!e.i~KAn~a(VC~HE~5++1~CFIICAGORRIDGHEz,IH,ONCOMPANYP~O.8OX13308eMEMPHIS'EtlNESSEE38113hgaCERTIFlCATEOFANALYSISgp/+/0MECHANICALTESTRESULTCarbono~~~~~~~Manganese......076l.44hromium.10ElectrodeDiameter:3/16"gfLotNulnber:HeatDumber:S3986FluxBatchNumber:Run934Lot3878CHEt4ICALTESTRESULTSUTS89,500P-IYLP74,300PSI4Elongationin2inches=27%%ReductionofArea=675ImpactPropertiesType:CharpyVeeNotchOrientation:toNeldDirectionTestTemperature+10'F.ckel......g.Silicon.......JColumbium.....Tantalum......Mol;bdenum....Tungsten....'..Coppelo~~~~~~~Tit.anium......Phosphorus'.Sulfur.........81.46.50.06.026.017Foot-Lbs.50,49,62LateralFxpansion45,44,53%Shear35,35,40ThismaterialconformstoSECTIOtlIIIoftheAStlECODE,ParagraphN511.3Vanadi.um......Irono~~~~~~~~~SchaefflerFerrite..CHICAGOBRIDGE&IROt'lCOtlPANY")~
PurchaseOrderNumber:M30506-3262/3780 TestNumber:NOI337C(SingleWire)TypeElectrode:
CitiCAGOHaiDC;8tt:IRONCoxIpAi>Y'500N50TH5T.P.O.BOX2TT.BtRMtNGRAM.At-ABAMA35202TWX810-733-3654WesternVnion-WUXPURCHASEORDERNU<BER:CERTIFICATEOFANALYSISMECHANICALTESTSAreaCoae:205595-1191TestNumber:PTa200-Single'.lireHeatTreatment62-1/2hours91125/1150TypeElectrode:AdcomInmm/Linde124TradeName:AdcomInmm';lireTensilePropertiesAtRoomTemPeraturDiarneter:3/16"g0505llgLotNumber:387>"Run934"Li.nde1%".:,'UTS'6,500'lireHeatNumber:S-3g86YLP71,800CHE)IICALTESTSElongationi'n2inches=30.0"ReductionofArea.=68.'60.080.1.420.070.960.360.520.050.0190.016rrite.Carbon.Manganese.Chromium.Nickel~.v.'i1icon.Y'.Columbium.Tantalum.ffolybdenum...Tungsten....Copper.Titanium.Phosphorus...Sulfur.Vanadium.Iron.SchaefflerFeImpactProoertitsType:CharPyVeetlotchOrientation:~,'le1dDirectionTestTemperaturePlus10'FFoot-lbs.46-51-49Shear40-40-40LateralExpansion38-44-43ThismaterialconformstoSectionIIIoftheASHECODEParagraph.'l511.37CHICAGOBRIDGEANDIRONCOMPANYBirminghamMaterialsLaboratoryuy+~pc.m4~~Datew-yz-45'nchargeofTestingforNaterialsEvaluation CHICAGOBRIDGENPROXCO>rPAr'V1500nBOTHST.P.0BOX27'7.BiRMINQ>AM,ALABAMA35202TWX810-733-3654WesierniJn.onWVXAreaCooe205595-119'iCENTIFICATEOFAi'lALYSISPURCHASEORDERtlU:<GER'ECHAtllCALTESTSTesttlumber:PTg2'30-Tanden':lireHeatTreatment62-1/2hours31125/TypeElectrode:AdcomInnm/Linde1241150eFTradetlar.e:AdcomInmm';lireTensilePropertieshtRoomTemperatureDiameter:3/16"g~Type:0,5'35"9Lot.Number:3876-Pun934TLande'~41'.1'~UTS91,2.'3:3---"';li-eHeatNumber.:S39B6-YLP74,700Elongationin2inches=25.5',CHEMICALTESTSReductionofArea.=66.0Carbon.Manganese.Chromium.Nickel.Silicon.Columbium.Tanta1um.Molybdenum...Tungsten.Copper.Titanium.Phosphorus...Sulfur.Vanadium.Iron.SchaefflerFeh0.0921.460.070:970.350.530.06-0.0190.015rrite.ImpactPropertiesType:Charpy1t'ee!totchOrientation:4toMe]dOirectionTestTemperaturet'~us,10'FFoot-lbs.41-45-.46XShear50-55-55LateralExpansion49-44-41ThismaterialconformstoSectionIIIoftheAS;!ECODE,Paragraph.'l511.3CHICAGOBRIDGEANOIRONCOMPANYBirminghamMaterialsLaboratoryPByH~4M~~gDate5-/Z-8InchargeofTestingforMaterialsEvaluatio' NUCLEARRECORDINDEXOocumentNumberNumberofPagesapeEl'ectrodeSizeHeatNo.0ESCRIPTIONBAREWIREANDFLUXCOREDWIRELotNo.SpecificationsAtc-csrtINrrtMx'AB.L-4Rat.Cgl~LCSL+Q(hzCOPIESofdocumentscoveredbythisindexareccrtificdtobetruecopiesDateOfficeCodeSignatureClass>f>cat>onContractNum!>c>Foidcrof  
Adcom1NMM/Linde 124(20x150)FluxTradeName:Adcom1NtB1HeatTreatment 1150';+25'-50'F for621/2HoursTensileProperties Type:.505"p(gg.rI'p;(.
~"~r/A&Ar4+~(~"()CIXXCA.Gu33RIDGL'TR.OMCOMPA.i>'YP~0~80X13308~MKMPHIS~TKNN8SSES38113CERTIFICATEOF2;IrKLYSIS.601947-3:Purchase0cerNu.-.ver:lZCH&3'ICALTES'ESULTS"iiu,he>>;LS1016&N.O.12D2~peE1ectode:GTAFillerMetal.TradeName:ADCO:i1N&"1Elect.rodeD'ameter:3/32LotYu...her-HeatNu-..~er:S3986FluxBa"ch!'~-.e'er:Shield'ncGas:ArgonCH&!IC.-.LT:-6RESULTSHeatTreatment621/2Hoursat.1150'25'-50'FTensilePropertiesType:0.505"gfVTS95,700psiL-YLP95i200psi/8Elonge"Zoo'n2icchee=2&i~0ReductionoPvea=66.1%ImpactProper"ies&rQOn~~~~~e~~Hangnese.....IArOm>>ule~~e~~ele->>1I@ele~~~e~~~~g~Cun~~~~~~~Co1u.-;wiL~.....antalu-L~~~~~~1Wr>>~i~'&oly~~e.&i&.i~~TQngstn~~~~~~Cooper~~~e'~~~Titan'z......Phosphorus....1~evSuleL~~~~~~~~.0812.0.08.97.03.48.09.015.014Type:CharpyVeePotchOrientat'on:toteldDi"e"'cnTestTempeature-20'FFoot-Lbs.123,92,158'5Shear100,100,100,,I.4'-.!LateralExpansion.'..~.Sl;:.7p"'Kl>~!2rgThismatialconormstoSECTIO'.lofthe~~.S;:.ECODE,paagreh~t511.3Vanadium......~Iron~~~~~~~~~~Schae=lerFerrite..cHzcAGoDRzDGE&z.DNcQ!!pNzc.'r-.Jyg/gr('Y,~J<~.,vr~~rrypv!/DBTEWvieirw/~rVrr'A  
~!-~<!lgi'!e.i
~\tre'(~PlVLMANUFACT<JRERSOFTECHNICALLYCOSTROLLEDVe'IRROONICKLIt<CO((ElINCONELX,IIJCOLOY.AOCC'ISTA!t(LESSSTEELS.ALLOYCO'HAD<eJGSTE=LS.HIGHAI.LOYSTEFLS.LO'ea(<<LLOYSTEELS,Ve'DINGALLOYS,LO'<V,t:.EO,t<HIGHWELDINGELECTRODES.'~ADCOF<t'LT.I''5.COT(<PANY,INC.<.It(TERSTATCIt(DVSTRI(LPAR!C-ICSATBEAVERRUIJIRO:,CsTL<at'T>>,G>>.POSTOFFICEBOX2SECS-PHOI<CC431121CUSTOACE(SORO.RNO.H-102('s01ADCO'.'RDERNO.761DATLSHIPPED!l-I'3-SPECIFICATION'P?EOTOChicacoBridee6IronBox13308Yse..p.lis,Tenn.36113MAR)~ED:ITEt:<CONSlSTI:lGOF3C'32"x36"1Y,."-~1,'zc'-GE<vTLEie'sE>a'".EIHEraBYCFP<TIFYTHATfdATERIALf'<EFEP.:.ED10ABOVECOi~.'FOl<i"<S.TOTHPHYSICALAlaaDCIIEfealCr<LTESTSASFOLLO':Shf!DISlfiACCOr<DAfCE'V!ITHSPECIFICATIOs.'S:-IIEC.a:..!s.!s.!o.!c.!e:.Cu.t,;nFc.AlCa966~161.97!.07!.012,010..010!1.07.03.006~55aa":e'ITEt'SILESisaEGTiilYIELDSTREVGTII201,700PS3.ELOtJ.G<<AI<aaSI?.EROCaaaTr.4,'iga;'.-'SHEARII'gs-',NOTARY~'OUPEQUESTEDrhlSlii'LP0PwIAj'aITli<ICQ2iI'IpTlQIglAOCOiltlETALSCO'I?A"Y.IIJC./e/,.(,nf,)/.fAUTHORIZFDOFrICI<<LPLEASEG(VETOYOUP.PURCHASINGAGENT.
~KAn~a(VC~HE~5++1~CFIICAGORRIDGHEz,IH,ONCOMPANYP~O.8OX13308eMEMPHIS'EtlNESSEE 38113hgaCERTIFlCATE OFANALYSISgp/+/0MECHANICAL TESTRESULTCarbono~~~~~~~Manganese.....
hl ElstaterReactorOivisionsI'1p~+V'c,r<.lat">~1l)/IIWestinghouseElectricCorporatfon1NUCLEAROPS.DXVISZON'"'wZ785Reed:Resy....,....,.Xtt.Person:NuclearServicestote@ationDivisionSg.tpO,f.y'ox2128PittsouryPennsylvania15230.2l28Jffjtt(,.'qittl5,AEP-85-641June14,1985CIerlctMr.H.P.Alexich,VicePresidt"andDirectorNuclearOperationsAmericanElectricPowerServiceCorporationOneRiversidePlazaColumbus,Ohio43216.AHERICANELECTRICPOHERSERVICECORPORATIOND.C.COOKUNITIReactorVesselBeltlineReaionHeldChemistr
.076l.44hromium.10Electrode Diameter:
3/16"gfLotNulnber:HeatDumber:S3986FluxBatchNumber:Run934Lot3878CHEt4ICAL TESTRESULTSUTS89,500P-IYLP74,300PSI4Elongation in2inches=27%%Reduction ofArea=675ImpactProperties Type:CharpyVeeNotchOrientation:
toNeldDirection TestTemperature
+10'F.ckel......g.
Silicon.......
JColumbium.....
Tantalum......
Mol;bdenum....
Tungsten....'..
Coppelo~~~~~~~Tit.anium......
Phosphorus'.
Sulfur........
.81.46.50.06.026.017Foot-Lbs.50,49,62LateralFxpansion 45,44,53%Shear35,35,40ThismaterialconformstoSECTIOtlIIIoftheAStlECODE,Paragraph N511.3Vanadi.um......
Irono~~~~~~~~~SchaefflerFerrite..CHICAGOBRIDGE&IROt'lCOtlPANY")~
CitiCAGOHaiDC;8tt:IRONCoxIpAi>Y'500N50TH5T.P.O.BOX2TT.BtRMtNGRAM.At-ABAMA35202TWX810-733-3654 WesternVnion-WUX PURCHASEORDERNU<BER:CERTIFICATE OFANALYSISMECHANICAL TESTSAreaCoae:205595-1191TestNumber:PTa200-Single
'.lireHeatTreatment62-1/2hours91125/1150 TypeElectrode:
AdcomInmm/Linde 124TradeName:AdcomInmm';lireTensileProperties AtRoomTemPeratur Diarneter:3/16"g0505llgLotNumber:387>"Run934"Li.nde1%".:,'UTS
'6,500'lireHeatNumber:S-3g86YLP71,800CHE)IICALTESTSElongationi'n2inches=30.0"ReductionofArea.=68.'60.080.1.420.070.960.360.520.050.0190.016rrite.Carbon.Manganese.
Chromium.Nickel~.v.'i1icon.Y'.Columbium.
Tantalum.
ffolybdenum...
Tungsten....
Copper.Titanium.Phosphorus
...Sulfur.Vanadium.Iron.SchaefflerFeImpactProoertit sType:CharPyVeetlotchOrientation:~,'le1dDirectionTestTemperaturePlus10'FFoot-lbs.46-51-49Shear40-40-40LateralExpansion 38-44-43ThismaterialconformstoSectionIIIoftheASHECODEParagraph
.'l511.37CHICAGOBRIDGEANDIRONCOMPANYBirmingham Materials Laboratory uy+~pc.m4~~Datew-yz-45'n chargeofTestingforNaterialsEvaluation CHICAGOBRIDGENPROXCO>rPAr'V 1500nBOTHST.P.0BOX27'7.BiRMINQ>AM, ALABAMA35202TWX810-733-3654 WesierniJn.onWVXAreaCooe205595-119'i CENTIFICATEOFAi'lALYSIS PURCHASEORDERtlU:<GER'ECHAtll CALTESTSTesttlumber:PTg2'30-Tanden
':lireHeatTreatment 62-1/2hours31125/TypeElectrode:
AdcomInnm/Linde 1241150eFTradetlar.e:AdcomInmm';lireTensilePropertiesht RoomTemperature Diameter:
3/16"g~Type:0,5'35"9Lot.Number:3876-Pun934TLande'~41'.1'~UTS 91,2.'3:3
---"';li-eHeatNumber.:S39B6-YLP74,700Elongation in2inches=25.5',
CHEMICALTESTSReduction ofArea.=66.0Carbon.Manganese.
Chromium.Nickel.Silicon.Columbium.
Tanta1um.Molybdenum...
Tungsten.Copper.Titanium.
Phosphorus...
Sulfur.Vanadium.
Iron.SchaefflerFeh0.0921.460.070:970.350.530.06-0.0190.015rrite.ImpactProperties Type:Charpy1t'ee!totchOrientation:4toMe]dOirectionTestTemperature t'~us,10'FFoot-lbs.41-45-.46XShear50-55-55LateralExpansion 49-44-41ThismaterialconformstoSectionIIIoftheAS;!ECODE,Paragraph
.'l511.3CHICAGOBRIDGEANOIRONCOMPANYBirmingham Materials Laboratory PByH~4M~~gDate5-/Z-8InchargeofTestingforMaterialsEvaluatio' NUCLEARRECORDINDEXOocumentNumberNumberofPagesapeEl'ectrode SizeHeatNo.0ESCRIPTIONBAREWIREANDFLUXCOREDWIRELotNo.Specifications Atc-csrtINrrtMx'AB.L-4Rat.Cgl~LCSL+Q(hzCOPIESofdocuments coveredbythisindexareccrtificdtobetruecopiesDateOfficeCodeSignature Class>f>cat>on ContractNum!>c>Foidcrof  
~"~r/A&Ar4+~(~"()CIXXCA.Gu 33RIDGL'TR.OMCOMPA.i>'Y P~0~80X13308~MKMPHIS~TKNN8SSES38113CERTIFICATE OF2;IrKLYSIS.
601947-3:Purchase0cerNu.-.ver:
lZCH&3'ICAL TES'ESULTS"iiu,he>>;LS1016&N.O.12D2~peE1ectode:GTAFillerMetal.TradeName:ADCO:i1N&"1Elect.rodeD'ameter:
3/32LotYu...her-HeatNu-..~er:
S3986FluxBa"ch!'~-.e'er:
Shield'nc Gas:ArgonCH&!IC.-.LT:-6RESULTSHeatTreatment 621/2Hoursat.1150'25'-50'F TensileProperties Type:0.505"gfVTS95,700psiL-YLP95i200psi/8Elonge"Zoo
'n2icchee=2&i~0Reduction oPvea=66.1%ImpactProper"ies&rQOn~~~~~e~~Hangnese.....
IArOm>>ule~~e~~ele->>1I@ele~~~e~~~~g~Cun~~~~~~~Co1u.-;wiL~.....antalu-L~~~~~~1Wr>>~i~'&oly~~e.&
i&.i~~TQngstn~~~~~~Cooper~~~e'~~~Titan'z......
Phosphorus....
1~evSuleL~~~~~~~~.0812.0.08.97.03.48.09.015.014Type:CharpyVeePotchOrientat'on:
toteldDi"e"'cnTestTempeature-20'FFoot-Lbs.123,92,158
'5Shear100,100,100,,
I.4'-.!LateralExpansion.'..
~.Sl;:.7p"'Kl
>~!2rgThismatialconormstoSECTIO'.l ofthe~~.S;:.ECODE,paagreh~t511.3Vanadium......
~Iron~~~~~~~~~~Schae=lerFerrite..cHzcAGoDRzDGE&z.DNcQ!!pNzc.'r-.Jyg/gr('Y,~J<~.,vr~~rrypv!/
DBTEWvieirw/~rVrr'A  
~\tre'(~PlVLMANUFACT<JRERS OFTECHNICALLY COSTROLLEDVe'IRROONICKLIt<CO((El INCONELX,IIJCOLOY.
AOCC'ISTA!t(LESS STEELS.ALLOYCO'HAD<eJGSTE=LS.HIGHAI.LOYSTEFLS.LO'ea(<<LLOYSTEELS,Ve'DINGALLOYS,LO'<V,t:.EO,t<HIGHWELDINGELECTRODES.
'~ADCOF<t'LT.I''5.COT(<PANY, INC.<.It(TERSTATC It(DVSTRI(
LPAR!C-ICSATBEAVERRUIJIRO:,CsTL<at'T>>,
G>>.POSTOFFICEBOX2SECS-PHOI<CC431121CUSTOACE(
SORO.RNO.H-102('s01 ADCO'.'RDER NO.761DATLSHIPPED!l-I'3-SPECIFICATION'P?EOTOChicacoBridee6IronBox13308Yse..p.lis, Tenn.36113MAR)~ED:ITEt:<CONSlSTI:lG OF3C'32"x36"1Y,."-~1,'zc'-GE<vTLEie'sE>a'".E IHEraBYCFP<TIFYTHATfdATERIAL f'<EFEP.:.ED 10ABOVECOi~.'FOl<i"<S.TO THPHYSICALAlaaDCIIEfealCr<L TESTSASFOLLO':Shf!DISlfiACCOr<DAf CE'V!ITHSPECIFICATIOs.'S:-
IIEC.a:..!s.!s.!o.!c.!e:.Cu.t,;nFc.AlCa966~161.97!.07!.012,010..010!1.07.03.006~55aa":e'ITEt'SILESisaEGTiilYIELDSTREVGTII 201,700PS3.ELOtJ.G<<AI<aaSI?.EROCaaaTr.
4,'iga;'.-'SHEARII'gs-',NOTARY~'OUPEQUESTED rhlSlii'LP0PwIAj'aITli<ICQ2iI'IpTlQIglAOCOiltlETALSCO'I?A"Y.
IIJC./e/,.(,nf,)/.fAUTHORIZFD OFrICI<<LPLEASEG(VETOYOUP.PURCHASING AGENT.
hl ElstaterReactorOivisions I'1p~+V'c,r<.lat">~1l)/IIWestinghouse ElectricCorporatfon 1NUCLEAROPS.DXVISZON'"'wZ785Reed:Resy....,....,.
Xtt.Person:NuclearServicestote@ation DivisionSg.tpO,f.y'ox2128Pittsoury Pennsylvania 15230.2l28 Jffjtt(,.'qittl5,AEP-85-641 June14,1985CIerlctMr.H.P.Alexich,VicePresidt"andDirectorNuclearOperations AmericanElectricPowerServiceCorporation OneRiverside PlazaColumbus, Ohio43216.AHERICANELECTRICPOHERSERVICECORPORATION D.C.COOKUNITIReactorVesselBeltlineReaionHeldChemistr


==DearHr.Alexich:==
==DearHr.Alexich:==
caaKPLANTMEDRECORD-MEDCOPYSEGTIQNENG1NEERDATFElPLANTLIFETIMEDATETOPLANT,~~ClNONPERMANENTMINIMuMRETENTIDHYRS.AreviewoftheweldwireandfluxusedtofabricatetheweldseamsinthecorebeltlineregionoftheD.C.CookUnitIreactorvesselwasconductedpertherequestofD.HaferofAmericanElectricPowerServiceCorporationtodeterminetheasdepositedcopper,nickelandphosphorouscontentoftheasdepositedweldseams.Thecircumferentialgirthseambetwentheintermediateandlowershellisconsideredtobethelimitingweldseaminthevessel.ThisseamwasfabricatedwithweldwireheatnumberIP3571andLinde1092fluxlotnumber3958.Eightseparatechemica'Ianalysesareknowntohavebeenperformedonthiscombinationofthewireandfluxandtheresultsarepresentedbelow:SourceCuNiPCEHeldgua1CEHeIdgualKewauneeUniMaineYankeeMaineYankeeMaineYankeeMaineYankeeHaineYankeeificationTest(SingleHire)ificationTest(TandemHire)rradiatedSurveillanceHeldUnirradiatedSurveillanceHeldIrradiatedCharpySpecimenIrradiatedCharpySpecimenIrradiatedCharpySpecimenIrradiatedCharpySpecimen.40.37.20.36.25.25.33.33.82.75.77.78.70.66.71.70.017.01T.016.015.030.020.040.040Average.31.74.024Sasedupontheabovedata,itisHestinghouse'srecommendationthattheaverageoftheab'ovedatapointsbeusedfortheCuandNicontent,sincethiswouldbemorerealisticthanusinganysingledatapoint.ThisapproachhasbeenacceptedbytheNRConotherapplications.  
caaKPLANTMEDRECORD-MEDCOPYSEGTIQNENG1NEERDATFElPLANTLIFETIMEDATETOPLANT,~~ClNONPERMANENT MINIMuMRETENTIDH YRS.Areviewoftheweldwireandfluxusedtofabricate theweldseamsinthecorebeltlineregionoftheD.C.CookUnitIreactorvesselwasconducted pertherequestofD.HaferofAmericanElectricPowerServiceCorporation todetermine theasdeposited copper,nickelandphosphorous contentoftheasdeposited weldseams.Thecircumferential girthseambetwentheintermediate andlowershellisconsidered tobethelimitingweldseaminthevessel.Thisseamwasfabricated withweldwireheatnumberIP3571andLinde1092fluxlotnumber3958.Eightseparatechemica'I analysesareknowntohavebeenperformed onthiscombination ofthewireandfluxandtheresultsarepresented below:SourceCuNiPCEHeldgua1CEHeIdgualKewauneeUniMaineYankeeMaineYankeeMaineYankeeMaineYankeeHaineYankeeification Test(SingleHire)ification Test(TandemHire)rradiated Surveillance HeldUnirradiated Surveillance HeldIrradiated CharpySpecimenIrradiated CharpySpecimenIrradiated CharpySpecimenIrradiated CharpySpecimen.40.37.20.36.25.25.33.33.82.75.77.78.70.66.71.70.017.01T.016.015.030.020.040.040Average.31.74.024Sasedupontheabovedata,itisHestinghouse's recommendation thattheaverageoftheab'ovedatapointsbeusedfortheCuandNicontent,sincethiswouldbemorerealistic thanusinganysingledatapoint.ThisapproachhasbeenacceptedbytheNRConotherapplications.  


0AEP-85-641Mr.M.P.Alexich-2-June14,1985A+gchmenTIOp~Z,q~Thephosphorouscontentreportedfortheirradiatedspecimensisconsideredtobehighlysuspect.Hestinghouseconsiderstheaverageofthefourunirradiatedvalues(.016WTX)tobearealisticphosphorouscontentfortheweld.jThelongitudinalweldseamsintheheitlineregionofthevesselweremadewithatandemsubmergedarc.processusingweldwireheats12008and13253withLinde1092fluxlot3791.Hoasdepositedweldchemistryexistsforthiscombinationo'fwi'resandflux.Fourothertandemweldswhichcontainedwireheatnumber12008showedasdepositedcoppercontentsof0.19to27'X.Thesurveillanceweldwhichwasmadefromwire13253and,Linde1092fluxlot3791andwhichhasacoppercontentof0.27'Lisconsideredtobehighly.,'.representativeofthelongitudinalweldseamsandtheuseofitschemistr$forthelongitudinalweldseamsappearsappropriate.TheapplicationofnewcopperandnickelvaluestothebeltlineregiongirthweldseamoftheD.C.CookreactorvesselwillnotresultinthevesselexceedingthePTSscreeninglimitsimposedbytheNRC.PleasecallshouldyourequiremoreinformationVerytrulyyours,gA.P.Suda,ManagerGreatLakesAreaProjectsDepartmentAPS/debi4496f:12cc:M.P.Alexich,1LD.Hafer,1LN.G.Smith,.1LJ.Feinstein,'lL  
0AEP-85-641 Mr.M.P.Alexich-2-June14,1985A+gchmenT IOp~Z,q~Thephosphorous contentreportedfortheirradiated specimens isconsidered tobehighlysuspect.Hestinghouse considers theaverageofthefourunirradiated values(.016WTX)tobearealistic phosphorous contentfortheweld.jThelongitudinal weldseamsintheheitlineregionofthevesselweremadewithatandemsubmerged arc.process usingweldwireheats12008and13253withLinde1092fluxlot3791.Hoasdeposited weldchemistry existsforthiscombination o'fwi'resandflux.Fourothertandemweldswhichcontained wireheatnumber12008showedasdeposited coppercontentsof0.19to27'X.Thesurveillance weldwhichwasmadefromwire13253and,Linde1092fluxlot3791andwhichhasacoppercontentof0.27'Lisconsidered tobehighly.,'.representative ofthelongitudinal weldseamsandtheuseofitschemistr$forthelongitudinal weldseamsappearsappropriate.
Theapplication ofnewcopperandnickelvaluestothebeltlineregiongirthweldseamoftheD.C.Cookreactorvesselwillnotresultinthevesselexceeding thePTSscreening limitsimposedbytheNRC.Pleasecallshouldyourequiremoreinformation Verytrulyyours,gA.P.Suda,ManagerGreatLakesAreaProjectsDepartment APS/debi4496f:12cc:M.P.Alexich,1LD.Hafer,1LN.G.Smith,.1LJ.Feinstein,
'lL  
)
)
gyiiSlecc:-4rP.T.0.P.A.S.J~J.G.S.P.R.F.J.F.0.H.J.J.R.I.J.B.S.H.0.H.UNITEDSTATESNUCLEARREGULATORYCOMMISSlONWASHINGTON,O.C.20555June9,198950"RR-.;-'.DocketNo.Mr.MiltonP.Alexich,VicePresidentIndianaMichigan-.PowerCompanyc/oAmericanElectricPowerServiceCorporation1RiversidePlaza-'olumbus,Ohio43216AlexicalArgentaBarrettBrewerFeinsteinKiementowiczKroegerKurganMalinMarkowskyPawligerShinnockSteinhartWilliams,Jr.
gyiiSlecc:-4rP.T.0.P.A.S.J~J.G.S.P.R.F.J.F.0.H.J.J.R.I.J.B.S.H.0.H.UNITEDSTATESNUCLEARREGULATORYCOMMISSlON WASHINGTON, O.C.20555June9,198950"RR-.;-'.DocketNo.Mr.MiltonP.Alexich,VicePresident IndianaMichigan-.Power Companyc/oAmericanElectricPowerServiceCorporation 1Riverside Plaza-'olumbus, Ohio43216AlexicalArgentaBarrettBrewerFeinstein Kiementowicz KroegerKurganMalinMarkowsky PawligerShinnockSteinhart
: Williams, Jr.


==DearMr.Alexich.SUBJECT:==
==DearMr.Alexich.SUBJECT:==
AMENDMENTNO.126TOFACILITYOPERATINGLICENSENO.DPR-58(TACNO',71062)TheCommissionhasissuedtheenclosedAmendmentNo.126toFacilityOperatingLicenseNo.OPR-58fortheD.C.CookNuclearPlant,UnitNo.l.TheamendmentconsistsofchangestotheTechnicalSpecifications(TSs)inresponsetoyourapplicationdatedOctober14,1988andsupplementsdatedDecember30,1988,andJune5,1989.Thisamendment,revisestheTSstoallowoperationoffuturereloadcyclesofO.C.CookUnit1;atreducedpimarycoolantsystemtemperatureandpressureco'nditions.Thereducedtemperatureandpressure(RTP)conditionswilldecreasethesteamgeneratorU-tubestresscorrosioncrackingofthetypeobservedatD.C.CookUnit2.AcopyofourrelatedSafetyEvaluationisalsoenclosed.NoticeofIssuancewi11beinc1udedintheCommission'biweeklyFederal~Reisternotice.Sincerely,
AMENDMENT NO.126TOFACILITYOPERATING LICENSENO.DPR-58(TACNO',71062)TheCommission hasissuedtheenclosedAmendment No.126toFacilityOperating LicenseNo.OPR-58fortheD.C.CookNuclearPlant,UnitNo.l.Theamendment consistsofchangestotheTechnical Specifications (TSs)inresponsetoyourapplication datedOctober14,1988andsupplements datedDecember30,1988,andJune5,1989.Thisamendment, revisestheTSstoallowoperation offuturereloadcyclesofO.C.CookUnit1;atreducedpimarycoolantsystemtemperature andpressureco'nditions.
Thereducedtemperature andpressure(RTP)conditions willdecreasethesteamgenerator U-tubestresscorrosion crackingofthetypeobservedatD.C.CookUnit2.AcopyofourrelatedSafetyEvaluation isalsoenclosed.
NoticeofIssuancewi11beinc1udedintheCommission' biweeklyFederal~Reisternotice.Sincerely,


==Enclosures:==
==Enclosures:==
l.AmendmentNo.126toDPR-582.SafetyEvaluationccw/enclosures:SeenextpagetC!LI,u.Q..1Qjh.JigJohnF.Stang,ProjectManagerProjectDirectorateIII-1DivisionofReactorProjects"III,IV,V8SpecialProjectsOfficeofNuclearReactorRegulation  
 
,~htoo~o4~oX03/~~OUNITEDSTATESNUCLEARREGULATORYCOMMISSIONWASHINGTON,D.C.206551~r.INDIANAMICHIGANPOWERCOMPANYDOCKETNO.50-315DONALDC.COOKNUCLEARPLANTUNITNO.1AMENDMENTTOFACILITYOPERATINGLICENSEAmendmentNo.126LicenseNo.DPR-581.TheNuclearRegulatoryCommission(theCommission)hasfoundthat:A.TheapplicationforamendmentbyIndianaMichiganPowerCompany(thelicensee)datedOctober14,1988assupplementedDecember30,1988,andJune5,1989,complieswiththestandardsandrequirementsoftheAtomicEnergyActof1954,asamended(theAct),andtheCommission'srulesandregulationssetforthin10CFRChapterI;8.Thefacilitywi11operateinconformitywiththeapplication,theprovisionsoftheAct,andtherulesandregulationsoftheCommission;C.Thereisreasonableassurance(i)thattheactivitiesauthorizedbythisamendmentcanbeconductedwithoutendangeringthehealth.andsafetyofthepublic,and(ii)thatsuchactivitieswillbeconductedincompliancewiththeCommission'sregulations;D.Theissuanceofthisamendmentwillnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic;andE.Theissuanceofthisamendmentisinaccordancewith10CFRPart51oftheCommission'sregulationsandallapplicablerequirementshavebeensatisfied.
l.Amendment No.126toDPR-582.SafetyEvaluation ccw/enclosures:
2.Accordingly,thelicenseisamendedbychangestotheTechnicalSpecificationsasindicatedintheattachmenttothislicenseamendment,andparagraph2.C.(2)ofFacilityOperatingLicenseNo.DPR"58is'erebyamendedtoreadasfollows:TechnicalSecificationsTheTechnicalSpecificationscontainedinAppendicesAandB,asrevisedthroughAmendmentNo.126,areherebyincorporatedinthelicense.ThelicenseeshalloperatethefacilityinaccordancewiththeTechnicalSpecifications.3.Thislicenseamendmentiseffectiveasofthedateofitsissuance.FORTHENUCLEARREGULATORYCOMMISSION
SeenextpagetC!LI,u.Q..1 Qjh.JigJohnF.Stang,ProjectManagerProjectDirectorate III-1DivisionofReactorProjects"III,IV,V8SpecialProjectsOfficeofNuclearReactorRegulation  
,~htoo~o4~oX03/~~OUNITEDSTATESNUCLEARREGULATORY COMMISSION WASHINGTON, D.C.206551~r.INDIANAMICHIGANPOWERCOMPANYDOCKETNO.50-315DONALDC.COOKNUCLEARPLANTUNITNO.1AMENDMENT TOFACILITYOPERATING LICENSEAmendment No.126LicenseNo.DPR-581.TheNuclearRegulatory Commission (theCommission) hasfoundthat:A.Theapplication foramendment byIndianaMichiganPowerCompany(thelicensee) datedOctober14,1988assupplemented December30,1988,andJune5,1989,complieswiththestandards andrequirements oftheAtomicEnergyActof1954,asamended(theAct),andtheCommission's rulesandregulations setforthin10CFRChapterI;8.Thefacilitywi11operateinconformity withtheapplication, theprovisions oftheAct,andtherulesandregulations oftheCommission; C.Thereisreasonable assurance (i)thattheactivities authorized bythisamendment canbeconducted withoutendangering thehealth.andsafetyofthepublic,and(ii)thatsuchactivities willbeconducted incompliance withtheCommission's regulations; D.Theissuanceofthisamendment willnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic;andE.Theissuanceofthisamendment isinaccordance with10CFRPart51oftheCommission's regulations andallapplicable requirements havebeensatisfied.
2.Accordingly, thelicenseisamendedbychangestotheTechnical Specifications asindicated intheattachment tothislicenseamendment, andparagraph 2.C.(2)ofFacilityOperating LicenseNo.DPR"58is'erebyamendedtoreadasfollows:Technical Secifications TheTechnical Specifications contained inAppendices AandB,asrevisedthroughAmendment No.126,areherebyincorporated inthelicense.Thelicenseeshalloperatethefacilityinaccordance withtheTechnical Specifications.
3.Thislicenseamendment iseffective asofthedateofitsissuance.
FORTHENUCLEARREGULATORY COMMISSION


==Attachment:==
==Attachment:==
ChangestotheTechnicalSpecificationsDateofIssuance:June9,1989LawrenceA.Yandell,ActingDirectorProjectDirectorateIII-1DivisionofReactorProjects-III,IV,V8SpecialProjectsOfficeofNuclearReactorRegulation


Hr.HiltonAlexichIndianaMichiganPowerCompanyDonaldC.CookNuclearPlantCC:RegionalAdministrator,RegionIIIU.S.NuclearRegulatoryCommission799RooseveltRoadGlenEllyn,Il1inois60137AttorneyGeneralDepartmentofAttorneyGeneral525WestOttawaStreetLansing,Michigan48913TownshipSupervisorLakeTownshipHallPostOfficeBox818Bridgeman,Michigan49106W.G.Smith,Jr.,PlantManagerDonaldC.CookNuclearPlantPostOfficeBox458Bridgman,Michigan49106,U.S.NuclearRegulatoryCommissionResidentInspectorsOffice7700RedArrowHighwayStevensville,Michigan49127GeraldCharnoff,EsquireShaw,Pittman,PottsandTrowbridge2300NStreet,N.W.Washington,OC20037Mayor,CityofBridgemanPostOfficeBox366Bridgeman,Michigan49106SpecialAssistanttotheGovernorRoom1-StateCapitolLansing,Michigan48909Nuclea~FacilitiesandEnvironmentalMonitoringSectionOfficeDivisionofRadiologicalHealthDepartmentof.PublicHealth3500N.LoganStreetPostOfficeBox30035Lansing,Michigan48909Mr.S.8'rewerAmericanElectricPowerServiceCorporation1Riverside;PlazaColumbus,Ohio43216 I~Illy~c+>>~4O~AOCe/~n~O+>>*++UNITEDSTATESNUCLEARREGULATORYCQMMlSSIONWASHINGTON,D.C.20555SAFETYEVALUATIONBYTHEOFFICEOFNUCLEARREACTORREGULATIONRELATEDTOAMENDMENTN0.126TOFACILITYOPERATINGLICENSENO.OPR"58INDIANAMICHIGANPOWERCOMPANYDONALDC.COOKNUCLEARPLANTUNITNO.1DOCKETNO.50-31
ChangestotheTechnical Specifications DateofIssuance:
June9,1989LawrenceA.Yandell,ActingDirectorProjectDirectorate III-1DivisionofReactorProjects-III,IV,V8SpecialProjectsOfficeofNuclearReactorRegulation
 
Hr.HiltonAlexichIndianaMichiganPowerCompanyDonaldC.CookNuclearPlantCC:RegionalAdministrator, RegionIIIU.S.NuclearRegulatory Commission 799Roosevelt RoadGlenEllyn,Il1inois60137AttorneyGeneralDepartment ofAttorneyGeneral525WestOttawaStreetLansing,Michigan48913TownshipSupervisorLakeTownshipHallPostOfficeBox818Bridgeman,Michigan49106W.G.Smith,Jr.,PlantManagerDonaldC.CookNuclearPlantPostOfficeBox458Bridgman, Michigan49106,U.S.NuclearRegulatory Commission ResidentInspectors Office7700RedArrowHighwayStevensvil le,Michigan49127GeraldCharnoff, EsquireShaw,Pittman,PottsandTrowbridge 2300NStreet,N.W.Washington, OC20037Mayor,CityofBridgeman PostOfficeBox366Bridgeman, Michigan49106SpecialAssistant totheGovernorRoom1-StateCapitolLansing,Michigan48909Nuclea~Facilities andEnvironmental Monitoring SectionOfficeDivisionofRadiological HealthDepartment of.PublicHealth3500N.LoganStreetPostOfficeBox30035Lansing,Michigan48909Mr.S.8'rewerAmericanElectricPowerServiceCorporation 1Riverside;Plaza
: Columbus, Ohio43216 I~Illy~c+>>~4O~AOCe/~n~O+>>*++UNITEDSTATESNUCLEARREGULATORY CQMMlSSION WASHINGTON, D.C.20555SAFETYEVALUATION BYTHEOFFICEOFNUCLEARREACTORREGULATION RELATEDTOAMENDMENT N0.126TOFACILITYOPERATING LICENSENO.OPR"58INDIANAMICHIGANPOWERCOMPANYDONALDC.COOKNUCLEARPLANTUNITNO.1DOCKETNO.50-31


==51.0INTRODUCTION==
==51.0INTRODUCTION==
ByletterdatedOctober14,1988,assupplementedDecember30,1988,and-June5,1989,theIndianaMichiganPowerCompany(thelicensee)requestedanamendmenttotheTechnicalSpecifications(TSs)appendedtoFacilityOperatingLicenseNo.DPR-58fortheDonaldC.CookNuclearPlant,UnitNo.1.TheproposedamendmentwouldpermittheoperationoffuturereloadcyclesofUnit1atreducedprimarysystemtemperatureandpressureconditions.Thereducedtemperatureandpressure(RTP)conditionswilldecreasethesteamgenerator~~~~~~~~~~~~~U-tubestresscorrosioncrackingofthetypeobservedattheD.C.CookNuclearPlant,Unit2.Thelicensee'scontractor(Westinghouse)hasdeterminedthatIthisRTPprogramshouldmorethandoublethetimetoreachagivenlevelof.steamgeneratorU-tubecorrosionincomparisontotheoriginaltemperaturesandpressure.D.C.Cook,Unit1ispresentlylicensedtooperateat3250MWt,whichisratedthermalpowerdefinedbyDefinition1.3oftheTechnicalSpecifications.Sometransientandaccidentanalysesareperformedat"ahigherpowerleveltopositionUnit1forapotentialpoweruprating.However,notalloftheanalyseshavebeenperformedatthishigherpowerlevel.Thesmallbreakloss-of-coolantaccident(LOCA)analysiswas,forexampleperformedatapoweroflevelof3250MWtwiththehighheadsafetyinjectioncross-tievalveshutandat3588MWtforallotheranalyzedplantconditions.Thestaff'sreviewoftheRTPprogramforUnit1didnotconsideranyissuesrelatedtoafuturepoweruprating.ThelicenseeperformedanalysesandevaluationstosupporttheRTPprogramforD.C.Cook,Unit1.Thelicensee'seffortsaddressedfullratedthermalpo~e~operation(3250MWt)witharangeofvesselaveragetemperaturebetween547Fand576.3F.Twodiscretevaluesofthepressure,2100psiaand2250psia,wereusedintheanalysesandevaluations.Theanalysesandevaluationssupportamaximumaveragetubeplugginglevelof10K,withapeaksteamgeneratortubeplugginglevelof15K.Thelicenseewillselectthedesiredoperatingtemperatureandthepressureonacycle-by-cyclebasis.Thelicenseeperformedthesafetyanalysesandevaluationsatconservatively~~~~~~highpowerlevelsandhighprimarysystemtemperaturesinordertopositionbothoftheO.C.CookunitsforfuturepowerupratingandinordertosupportpotentialfutureoperationofUnit2atreducedtemperaturesandpressure.ThepotentialupratedpowerforUnit1thatispartiallysupportedbythisanalysisandevaluationis3425MWt,whichcorrespondstoareactorpowerlevelof3413MWt.ThedesignpowercapabilityparametersaregiveninTable2.1-1ofReference2.


2.0EVALUATION2.1NUCLEARSTEAMSUPPLYSYSTEMNSSS2.1.1Lare.andSmallBreakLOCAAnalsesThelicenseeperformedalargebreakLOCAanalysisusingthe1981versionoftheMestinghouseECCSEvaluationModel,whichusestheBASHcomputercode.Theanalysisassumptionsincludeatotalpeakingfactor,F,of2.15,ahotchannelenthalpyrisefactor,F-deltaH,of1.55,10Ksafetyinjectionflowdegradation,areactorpowerlevelof3413MWt,and15Kuniformsteamgeneratortubeplugginglevel.Arangeofhot-legtemperaturesof580.7'Fto611.2'Fandarangeofcold-legtemperaturesof513.3Fto546.2'F,consistentwiththetemperaturerangeoftheRTPprogram,wereconsideredintheanalysis.Intheanalysis,thereactorcoolantsystempressurewasvariedtojustifyplantoperationateither2100psiaor2250psia.Alarge-breakLOCAanalysiswasalsoperformedwiththeRHR.cross-tievalveclosed.Forthiscase,areducedcorepowerof3250NMtwasusedtocompensateforthereductioninsafetyinjectionflowcausedbytheclosedRHRcross-tievalve.Forthoselimitingpressureandtemperatureconditionswhichproducedthelargestpeakcladtemperature,afullbreakspectrumofdischargecoefficientswasperformed.Thelimitingbreaksizewasdeterminedtobeacold-legguillotinebreakwithadischargecoefficient,C,of0.6,ahot-legtemperatureof611.2Fandaprimarysystempressureo)2250psia,assumingmaximumsafetyinjectionflow.Thepeakcladtemperaturewascalculatedtobe2180.5'F.Basedontheseresults,therequirementsof10CFR50.46havebeenmetfortheUnit1large-breakLOCAanalysis.Thelicenseeperformedasmall-breakLOCAanalysisusingtheMestinghousesmall-breakECCSEvaluationModel,whichusestheNOTRUMPcode.Theanalysisassumptionsincludedatotalpeakingfactorof2.32,ahotchannelenthalpyrisefactorof1.55,safetyinjectionflowratesbasedonpumpperformancecurvesdegraded10Kbelowdesignheadandincludingtheeffectofclosureofthehighheadsafetyinjectioncross-tievalve,andauniform15Ksteamgeneratortubeplugginglevel.Theanalysiswasperformedatacorepowerlevelof3250MWt,arangeofoperatingcoreaveragetemperaturesof547'Fto581.3F,andreactorpressureofeither2100psiaor2250psia.Allotherplantconditionswereanalyzedatapowerof3588HMt.Thelicenseeanalyzedaspectrumofcold-legbreaksatthelimitingreactorcoolantsystemtemperatureandpressureconditions.Thelimitingbreaksizefromthisanalysiswasthenanalyzedatothertemperatureandpressurepointsoftheoperatingrange.Thelimitingcasewasdeterminedtobeathree-inchdiametercold-legbreakatapressureof2100psiaandatacoreaveragetemperatureof5474F.Thislimiting.breakresultedinapeakcladtemperatureof2122F.Basedontheseresults,therequirementsof10CFR50.46havebeenmetfortheUnit1small-breakLOCAanalysis.ThelicenseereviewedtheeffectoftheRTPprogramonthepost-LOCAhot-legrecirculationtimetopreventboronprecipitation.Thistimeisaffectedbypowerlevelandvarioussystems'atervolumesandboronconcentrations.Becausethesesystems'atervolumesandboronconcentrationsarenotaffectedbytheRTPprogram,thereisnoeffectonthepost-LOCAhot-legswitchovertime.
ByletterdatedOctober14,1988,assupplemented December30,1988,and-June5,1989,theIndianaMichiganPowerCompany(thelicensee) requested anamendment totheTechnical Specifications (TSs)appendedtoFacilityOperating LicenseNo.DPR-58fortheDonaldC.CookNuclearPlant,UnitNo.1.Theproposedamendment wouldpermittheoperation offuturereloadcyclesofUnit1atreducedprimarysystemtemperature andpressureconditions.
0  ThelicenseereviewedtheeffectoftheRTPprogramonthepost-LOCAhydrogengenerationrates.Theassumptionof120Fmaximumnormaloperationscontainmenttemperaturebounds,fortheanalysisofrecord,theeffectoftheprimarysystemtemperaturechangesoftheRTPprogramonthepost-LOCAhydrogengenerationrates.2.1.2Non-LOCATransientsandAccidentsThelicenseehasevaluatedtheimpactoftheRTPprogramonthenon-LOCAeventspresentedinChapter14oftheD.C.Cook,Unit1FSAR.Theapprovedreloadcoredesignmethodologyanddesigncodeswereused.TheevaluationswereperformedtosupporttheoperationofUnit1atacorepowerof3250MMtoveravesselaveragetemperaturerangebetween547'Fand576.3'Fataprimarysystempressureofeither2100psiaor2250psia.Theevaluationassumesasteamgeneratortubeplugginglevelof10K,withapeaksteamgeneratortubeplugginglevelof15K.Thenon-LOCAsafetyevaluationsupportstheparametersoftheRTPprogramwiththeexceptionsofthesteamlinebreakmassandenergyreleasesoutsidecontainment,whichwereevaluatedatafullpowervesselaveragetemperaturenogreaterthanthecurrentD.C.CookUnit1fullpoweraveragetemperature,T,of567.8'F.avg'heevaluationperformedbythelicenseealsoconsideredtheparametersforapotentialupratingofUnit1toreactorcorepowerlevelof3413MMt,withavesselaveragetemperaturerangebetween547Fand578.7'Fataprimarysystempressureof'ither2100psiaor2250psia.ThesteamgeneratortubeplugginglevelisassumedtobethesameasfortheRTPprogram.Eventhoughthenon-LOCAevaluationmayhavebeenperformedfortheupratedcorepoweranditsassociatedparameters,thestaff'sreviewofthislicenseamendmentdoesnotaddressaD.C.CookUnit1poweruprating.Thelicenseerevisedcertainreactortripandengineeredsafeguardsfeatures(ESF)setpointstoprovideadequateoperatingmarginsfortheRTPoperatingconditions.Revisedreactortripsetpointswereincorporatedintheovertemperature-deltaT(OTDT)andoverpower-deltaT(OPDT)tripfunctions.TherevisedESFsetpointsaffectsthelowsteamlinepressurevalueofthehigh-highsteamlineflowcoincidentwithalowsteamlinepressureactuationlogic.ThenewOPDTandOTDTreactortripsetpointsweredevelopedbythelicenseeforanewsetofcorethermalsafetylimitsfortheRTPprogramatareactorcorepowerlevelof3413MMt.TheapprovedsetpointmethodologyofReference3wasused.ForthoseeventsanalyzedwiththeapprovedImprovedThermalDesignProcedure(ITDP).,Reference4,asafety-limitvalueof1.45wasusedfortheDeparturefromNucleateBoilingRatio(DNBR).ThisisconservativecomparedtothedesignDNBRvalueof1.32forathimblecelland1,33foratypicalcellrequiredtomeettheDNBdesignbasis.InthesafetyanalysisforD.C.Cook,Unit1,thelicenseeassumedthehighpressurizerwaterleveltripsetpointof100K(nominalreactorsetpoint).Furthermore,thereferenceaveragetemperatureusedintheOPDTandOTDTtripsetpointequationsarerescaledtothefullpoweraveragetemperatureeachtimethecycleaveragetemperatureischanged.Similarly,theappropriatevalueofprimarysystempressureofeither2100or2250psiawasusedinthetwotripsetpointequations.FortherevisedESFsetpointofthehigh-highsteamlineflowcoincidentwithlowsteamlinepressure,thelowsteamlinepressuresetpointwasloweredfrom600psigto500psigtoaccommodatetherangeofconditionsoftheRTPprogramandapotentialpoweruprating.
Thereducedtemperature andpressure(RTP)conditions willdecreasethesteamgenerator
2.1.3SteamlineBreakMass/EnerReleasesThecurrentmassandenergyreleasesfortheinsidecontainmentanalysisisbasedonanalysesperformedforCookUnit2,whicharealsoapplicabletoCookUnit1.DataarerepresentedinChapter14oftheFSARforUnit2atpowerlevelsof0,30,70,and100%power.Forthe"atpower"analyses,theinitialprimarysystemtemperatureandsecondarysteampressuresoftheRTPprogramarelowerthanthoseintheUnit2FSARanalyses.Themassblowdownrateisdependentonsteampressureandsincethesteampressurewi11be-lessthan-the-current--analyses,theinitialmassblowdownratewi11belower.---The..lowersteamlinepressuresetpoint(500psig)oftheESFactuationsignaldoesnotsignificantlyimpacttheanalysisbecausethelead-lagcompensationresultsinasteamlinepressuresignalwhichanticipatestherapiddecreaseinpressurecausedbyasteamlinebreak.Basedontheseconsiderations,thelicenseeconcludesthattheRTPprogramwi11resultinalowerintegratedenergyreleaseintocontainmentandthatthedatausedintheUnit2FSARremainsbounding.AstudywasperformedforUnit1ofthemassandenergyreleaseoutsidecontainmenttoaddressequipmentqualificationissues(Ref.5).Casesat70%and100%powerwereanalyzed.TheanalysispresentedinReference5assumed.thefullpowervesselaveragetemperaturetobe567.8'F~AnyreductioninfullpowerTfromtheanalyzedTandtheassociatedreductionininitialsearnpressurePillresultinlesslkmltingreleases.Thelowsteamlinepressurevalueassumedintheanalysissupportsthereducedvalueofthesetpointto500psig.Theincreasedlevelofsteamgeneratortubepluggingisacceptablebecausetheanalysisassumedbetterheattransfercharacteristics.ThelicenseeconcludesthatthecurrentmassandenergyreleaseanalysisisacceptablefortheRTPprogramaslongasthefullpowerTisequaltoorlessthan567.8F.avg2.l.4StartuofanInactiveLooThelicenseeevaluatedthestartupofaninactiveloopevent.ThiseventcannotoccurabovetheP-7permissivesetpointof10%powerasrestrictedbytheTechnicalSpecifications.TheparametersassumedintheFSARanalysisforthree-pumpoperationat10%powerremainboundingfortheparametersfor10%powercondition.Thelicenseeconcludes,therefore,thattheconclusionspresentedintheFSARremainvalid.2.1.5UncontrolledRodBankWithdrawalfromaSubcriticalConditionTheuncontrolledrodbankwithdrawalfromasubcriticalconditiontransientcausesapowerexcursion.Thispowerexcursionisterminated,afterafastpowerrise,bythenegativeDopplerreactivitycoefficientofthefuel,andareactortriponsource,intermediate,orpowerrangefluxinstrumentation.Thepowerexcursionresultsinaheatupofthemoderator/coolantandthefuel.Theanalysisusedareacti~ityinsertionrateof75pcm(notethatonepcmisequaltoareactivityof10deltaK/K).Thisreactivityinsertionrateisgreaterthanforthesimultaneouswithdrawalofthetwosequentialcontrolbankshavingthegreatestcombinedworthatthemaximumspeedof45inches/minute.Theneutronfluxovershootsthenominalfullpowervalue;however,thepeakheatfluxismuchlessthanthefullpowernominalvaluebecauseoftheinherentthermallagofthefuel.Theanalysis,withthereducedsystempressureof2100psia,yieldstheminimumvalueof'NBR.TheanalysisisperformedusingtheStandardThermalDesignProcedure(STOP).TheW-3ONBcorrelationwasissuedtoevaluateONBRinthespanbetweenthelowernon-mixingvanegridand
~~~~~~~~~~~~~U-tubestresscorrosion crackingofthetypeobservedattheD.C.CookNuclearPlant,Unit2.Thelicensee's contractor (Westinghouse) hasdetermined thatIthisRTPprogramshouldmorethandoublethetimetoreachagivenlevelof.steamgenerator U-tubecorrosion incomparison totheoriginaltemperatures andpressure.
D.C.Cook,Unit1ispresently licensedtooperateat3250MWt,whichisratedthermalpowerdefinedbyDefinition 1.3oftheTechnical Specifications.
Sometransient andaccidentanalysesareperformed at"ahigherpowerleveltopositionUnit1forapotential poweruprating.
However,notalloftheanalyseshavebeenperformed atthishigherpowerlevel.Thesmallbreakloss-of-coolant accident(LOCA)analysiswas,forexampleperformed atapoweroflevelof3250MWtwiththehighheadsafetyinjection cross-tie valveshutandat3588MWtforallotheranalyzedplantconditions.
Thestaff'sreviewoftheRTPprogramforUnit1didnotconsideranyissuesrelatedtoafuturepoweruprating.
Thelicenseeperformed analysesandevaluations tosupporttheRTPprogramforD.C.Cook,Unit1.Thelicensee's effortsaddressed fullratedthermalpo~e~operation (3250MWt)witharangeofvesselaveragetemperature between547Fand576.3F.Twodiscretevaluesofthepressure, 2100psiaand2250psia,wereusedintheanalysesandevaluations.
Theanalysesandevaluations supportamaximumaveragetubeplugginglevelof10K,withapeaksteamgenerator tubeplugginglevelof15K.Thelicenseewillselectthedesiredoperating temperature andthepressureonacycle-by-cycle basis.Thelicenseeperformed thesafetyanalysesandevaluations atconservatively
~~~~~~highpowerlevelsandhighprimarysystemtemperatures inordertopositionbothoftheO.C.Cookunitsforfuturepowerupratingandinordertosupportpotential futureoperation ofUnit2atreducedtemperatures andpressure.
Thepotential upratedpowerforUnit1thatispartially supported bythisanalysisandevaluation is3425MWt,whichcorresponds toareactorpowerlevelof3413MWt.Thedesignpowercapability parameters aregiveninTable2.1-1ofReference
: 2.
 
==2.0 EVALUATION==
2.1NUCLEARSTEAMSUPPLYSYSTEMNSSS2.1.1Lare.andSmallBreakLOCAAnalsesThelicenseeperformed alargebreakLOCAanalysisusingthe1981versionoftheMestinghouse ECCSEvaluation Model,whichusestheBASHcomputercode.Theanalysisassumptions includeatotalpeakingfactor,F,of2.15,ahotchannelenthalpyrisefactor,F-deltaH,of1.55,10Ksafetyinjection flowdegradation, areactorpowerlevelof3413MWt,and15Kuniformsteamgenerator tubeplugginglevel.Arangeofhot-legtemperatures of580.7'Fto611.2'Fandarangeofcold-legtemperatures of513.3Fto546.2'F,consistent withthetemperature rangeoftheRTPprogram,wereconsidered intheanalysis.
Intheanalysis, thereactorcoolantsystempressurewasvariedtojustifyplantoperation ateither2100psiaor2250psia.Alarge-break LOCAanalysiswasalsoperformed withtheRHR.cross-tie valveclosed.Forthiscase,areducedcorepowerof3250NMtwasusedtocompensate forthereduction insafetyinjection flowcausedbytheclosedRHRcross-tie valve.Forthoselimitingpressureandtemperature conditions whichproducedthelargestpeakcladtemperature, afullbreakspectrumofdischarge coefficients wasperformed.
Thelimitingbreaksizewasdetermined tobeacold-legguillotine breakwithadischarge coefficient, C,of0.6,ahot-legtemperature of611.2Fandaprimarysystempressureo)2250psia,assumingmaximumsafetyinjection flow.Thepeakcladtemperature wascalculated tobe2180.5'F.Basedontheseresults,therequirements of10CFR50.46havebeenmetfortheUnit1large-break LOCAanalysis.
Thelicenseeperformed asmall-break LOCAanalysisusingtheMestinghouse small-break ECCSEvaluation Model,whichusestheNOTRUMPcode.Theanalysisassumptions includedatotalpeakingfactorof2.32,ahotchannelenthalpyrisefactorof1.55,safetyinjection flowratesbasedonpumpperformance curvesdegraded10Kbelowdesignheadandincluding theeffectofclosureofthehighheadsafetyinjection cross-tie valve,andauniform15Ksteamgenerator tubeplugginglevel.Theanalysiswasperformed atacorepowerlevelof3250MWt,arangeofoperating coreaveragetemperatures of547'Fto581.3F,andreactorpressureofeither2100psiaor2250psia.Allotherplantconditions wereanalyzedatapowerof3588HMt.Thelicenseeanalyzedaspectrumofcold-legbreaksatthelimitingreactorcoolantsystemtemperature andpressureconditions.
Thelimitingbreaksizefromthisanalysiswasthenanalyzedatothertemperature andpressurepointsoftheoperating range.Thelimitingcasewasdetermined tobeathree-inch diametercold-legbreakatapressureof2100psiaandatacoreaveragetemperature of5474F.Thislimiting.breakresultedinapeakcladtemperature of2122F.Basedontheseresults,therequirements of10CFR50.46havebeenmetfortheUnit1small-break LOCAanalysis.
ThelicenseereviewedtheeffectoftheRTPprogramonthepost-LOCA hot-legrecirculation timetopreventboronprecipitation.
Thistimeisaffectedbypowerlevelandvarioussystems'ater volumesandboronconcentrations.
Becausethesesystems'ater volumesandboronconcentrations arenotaffectedbytheRTPprogram,thereisnoeffectonthepost-LOCA hot-legswitchover time.
0  ThelicenseereviewedtheeffectoftheRTPprogramonthepost-LOCA hydrogengeneration rates.Theassumption of120Fmaximumnormaloperations containment temperature bounds,fortheanalysisofrecord,theeffectoftheprimarysystemtemperature changesoftheRTPprogramonthepost-LOCA hydrogengeneration rates.2.1.2Non-LOCATransients andAccidents Thelicenseehasevaluated theimpactoftheRTPprogramonthenon-LOCAeventspresented inChapter14oftheD.C.Cook,Unit1FSAR.Theapprovedreloadcoredesignmethodology anddesigncodeswereused.Theevaluations wereperformed tosupporttheoperation ofUnit1atacorepowerof3250MMtoveravesselaveragetemperature rangebetween547'Fand576.3'Fataprimarysystempressureofeither2100psiaor2250psia.Theevaluation assumesasteamgenerator tubeplugginglevelof10K,withapeaksteamgenerator tubeplugginglevelof15K.Thenon-LOCAsafetyevaluation supportstheparameters oftheRTPprogramwiththeexceptions ofthesteamline breakmassandenergyreleasesoutsidecontainment, whichwereevaluated atafullpowervesselaveragetemperature nogreaterthanthecurrentD.C.CookUnit1fullpoweraveragetemperature, T,of567.8'F.avg'heevaluation performed bythelicenseealsoconsidered theparameters forapotential upratingofUnit1toreactorcorepowerlevelof3413MMt,withavesselaveragetemperature rangebetween547Fand578.7'Fataprimarysystempressureof'ither2100psiaor2250psia.Thesteamgenerator tubeplugginglevelisassumedtobethesameasfortheRTPprogram.Eventhoughthenon-LOCAevaluation mayhavebeenperformed fortheupratedcorepoweranditsassociated parameters, thestaff'sreviewofthislicenseamendment doesnotaddressaD.C.CookUnit1poweruprating.
Thelicenseerevisedcertainreactortripandengineered safeguards features(ESF)setpoints toprovideadequateoperating marginsfortheRTPoperating conditions.
Revisedreactortripsetpoints wereincorporated intheovertemperature-delta T(OTDT)andoverpower-delta T(OPDT)tripfunctions.
TherevisedESFsetpoints affectsthelowsteamline pressurevalueofthehigh-high steamline flowcoincident withalowsteamline pressureactuation logic.ThenewOPDTandOTDTreactortripsetpoints weredeveloped bythelicenseeforanewsetofcorethermalsafetylimitsfortheRTPprogramatareactorcorepowerlevelof3413MMt.Theapprovedsetpointmethodology ofReference 3wasused.ForthoseeventsanalyzedwiththeapprovedImprovedThermalDesignProcedure (ITDP).,Reference 4,asafety-limit valueof1.45wasusedfortheDeparture fromNucleateBoilingRatio(DNBR).Thisisconservative comparedtothedesignDNBRvalueof1.32forathimblecelland1,33foratypicalcellrequiredtomeettheDNBdesignbasis.InthesafetyanalysisforD.C.Cook,Unit1,thelicenseeassumedthehighpressurizer waterleveltripsetpointof100K(nominalreactorsetpoint).
Furthermore, thereference averagetemperature usedintheOPDTandOTDTtripsetpointequations arerescaledtothefullpoweraveragetemperature eachtimethecycleaveragetemperature ischanged.Similarly, theappropriate valueofprimarysystempressureofeither2100or2250psiawasusedinthetwotripsetpointequations.
FortherevisedESFsetpointofthehigh-high steamline flowcoincident withlowsteamline
: pressure, thelowsteamline pressuresetpointwasloweredfrom600psigto500psigtoaccommodate therangeofconditions oftheRTPprogramandapotential poweruprating.
2.1.3Steamline BreakMass/Ener ReleasesThecurrentmassandenergyreleasesfortheinsidecontainment analysisisbasedonanalysesperformed forCookUnit2,whicharealsoapplicable toCookUnit1.Dataarerepresented inChapter14oftheFSARforUnit2atpowerlevelsof0,30,70,and100%power.Forthe"atpower"analyses, theinitialprimarysystemtemperature andsecondary steampressures oftheRTPprogramarelowerthanthoseintheUnit2FSARanalyses.
Themassblowdownrateisdependent onsteampressureandsincethesteampressurewi11be-lessthan-the-current--
: analyses, theinitialmassblowdownratewi11belower.---The..lower steamline pressuresetpoint(500psig)oftheESFactuation signaldoesnotsignificantly impacttheanalysisbecausethelead-lagcompensation resultsinasteamline pressuresignalwhichanticipates therapiddecreaseinpressurecausedbyasteamline break.Basedontheseconsiderations, thelicenseeconcludes thattheRTPprogramwi11resultinalowerintegrated energyreleaseintocontainment andthatthedatausedintheUnit2FSARremainsbounding.
Astudywasperformed forUnit1ofthemassandenergyreleaseoutsidecontainment toaddressequipment qualification issues(Ref.5).Casesat70%and100%powerwereanalyzed.
Theanalysispresented inReference 5assumed.thefullpowervesselaveragetemperature tobe567.8'F~Anyreduction infullpowerTfromtheanalyzedTandtheassociated reduction ininitialsearnpressurePillresultinlesslkmltingreleases.
Thelowsteamline pressurevalueassumedintheanalysissupportsthereducedvalueofthesetpointto500psig.Theincreased levelofsteamgenerator tubepluggingisacceptable becausetheanalysisassumedbetterheattransfercharacteristics.
Thelicenseeconcludes thatthecurrentmassandenergyreleaseanalysisisacceptable fortheRTPprogramaslongasthefullpowerTisequaltoorlessthan567.8F.avg2.l.4StartuofanInactiveLooThelicenseeevaluated thestartupofaninactiveloopevent.ThiseventcannotoccurabovetheP-7permissive setpointof10%powerasrestricted bytheTechnical Specifications.
Theparameters assumedintheFSARanalysisforthree-pump operation at10%powerremainboundingfortheparameters for10%powercondition.
Thelicenseeconcludes, therefore, thattheconclusions presented intheFSARremainvalid.2.1.5Uncontrolled RodBankWithdrawal fromaSubcritical Condition Theuncontrolled rodbankwithdrawal fromasubcritical condition transient causesapowerexcursion.
Thispowerexcursion isterminated, afterafastpowerrise,bythenegativeDopplerreactivity coefficient ofthefuel,andareactortriponsource,intermediate, orpowerrangefluxinstrumentation.
Thepowerexcursion resultsinaheatupofthemoderator/coolant andthefuel.Theanalysisusedareacti~ity insertion rateof75pcm(notethatonepcmisequaltoareactivity of10deltaK/K).Thisreactivity insertion rateisgreaterthanforthesimultaneous withdrawal ofthetwosequential controlbankshavingthegreatestcombinedworthatthemaximumspeedof45inches/minute.
Theneutronfluxovershoots thenominalfullpowervalue;however,thepeakheatfluxismuchlessthanthefullpowernominalvaluebecauseoftheinherentthermallagofthefuel.Theanalysis, withthereducedsystempressureof2100psia,yieldstheminimumvalueof'NBR.Theanalysisisperformed usingtheStandardThermalDesignProcedure (STOP).TheW-3ONBcorrelation wasissuedtoevaluateONBRinthespanbetweenthelowernon-mixing vanegridand
 
thefirstmixingvanegrid.TheMRB-1ONBcorrelation isappliedtotheremainder ofthefuelassembly.
Fromtheanalysisperformed, thelicenseeconcludes thattheONBdesignbasesaremetforallregionsofthecore,andtherefore, theconclusions intheFSARremainapplicable forareduction innominalsystea,pressure to2100psia.2.1.6Uncontrolled ControlRodAssemblBankWithdrawal atPowerTheuncontrolled rodbankwithdrawal fromapowercondition transient leadstoapowerincrease.
Thetransient resultsinanincreaseinthecoreheatfluxandanincreaseinthereactormoderator/coolant temperature.
Thereduction inpressurefortheRTPprogramisnon-conservative withrespecttoONB.Inaddition, arevisedOvertemperature Oelta-TsetpointequationisbeingassumedintheCookUnit1analyses.
ThePowerRangeHighNeutronFluxandOvertempera-tureOelta-Treactortripsprovidetheprimaryprotection againstONB.Bothminimumandmaximumreactivity caseswereanalyzedoverarangeofreactivity insertion rates.Thelicenseeprovidedquantitative resultsforthemaximumreactivity feedbackcaseforpowerlevelsof10K,60K,and100Kpowerforarangeofreactivity insertion rates.TheresultsindicatethattheONBRlimitismetforallthecases.Thelicenseeexaminedanumberofcasesassociated withthepressurizer watervolumetransient causedbyanuncontrolled controlrodassemblybankwithdrawal-at-powerevent.Itwasdetermined thatcreditforhighpressurizer waterlevelreactortripwasrequiredtopreventthepressurizer fromfilling.Thelicenseeassumedavalueof100Knarrowrangespan(NRS)forthehighpressurizer waterlevelreactortripsetpoint.
Atimedelayof2secondswasassumedfortripactuation unti1rodmotionbecomesadequatetoterminate thetransient.
Thusthehighneutronfluxandovertemperature-delta Treactortripsprovideadequateprotection overtherangeofpossiblereactivity insertion ratesinthattheminimumvalueofONBRremainsabovethesafety-limit ONBRvalue.Inaddition, thehighpressurizer waterlevelreactortrippreventsthepressurizer fromfilling.2.1.7RodClusterAssemblMisalinmentTherodclustercontrolassemblymisalignment eventsconsistofthreeseparateevents:(1)adroppedcontrolrod,(2)adroppedcontrolbank,and(3)astatically misaligned controlrod.Theseeventswerereanalyzed becausethereduction inpressurefortheRTPprogramisnonconservative withrespecttotheONBtransient.
Adroppedcontrolrodorcontrolbankmaybedetectedinthefollowing manner:(1)byasuddendropinthecorepowerasseenbythenuclearinstrumentation system;(2)byanasymmetric powerdistribution asseenbytheexcoreneutrondetectors orthecoreexitthermocouples; (3)byrodbottomsignal;(4)bytherodpositiondeviation monitor;and(5)byrodpositionindicators.
Amisaligned controlrodmaybedetectedinthefollowing manner;(1)byanasymmetric powerdistribution asseenbytheexcoreneutrondetectors orthecoreexitthermocouples; (2)bytherodpositiondeviation monitor;and(3)byrodpositionindicators.
Theresolution oftherodpositionindicator channel's
+5percentor+12steps(+7.5inches).Oeviation ofanycontrolrodfromitsgroupbytwicethisdistance(+24stepsort15inches)willnotcausepowerdistribution worsethanthedesignlimits.Therodpositiondeviation monitorprovidesanalarmbeforearoddeviation canexceed+24stepsor+15inches. Thedroppedrodeventwasanalyzedusinganapprovedmethodology (Ref.6).Adroppedrodorrodsfromthesamegroupwillresultinanegativereactivity insertion whichmaybedetectedbythenegativeneutronfluxratetripcircuitry.
Ifdetected, ireactortripoccursinabout2.5seconds.ForthosedroppedrodeventsforwMchareactortripoccurs,thecoreisnotadversely impactedbecausetherapiddecreaseinreactorpowerwillreachanequilibrium valuedependent onthereactivity feedbackorcontrolbankwithdrawal (ifinautomatic control).
Thelimitingcaseforthisclassofeventsisthecasewiththereactorinautomatic control.Forthiscaseapowerovershoot occursbeforeanequilibrium powercondition isreached.Thelicenseestatesthat,usingthemethodology ofReference 6,allanalyzedcasesresultinONBRvalueswhicharewithinthesafety-limit ONBRvalue.Thelicenseestatesthatadroppedrodbankresultsinareactivity insertion ofatleast500pcm.Thiswillbedetectedbythenegativeneutronfluxratetripcircuitry andcauseareactortripwithinabout2.5secondsoftheinitialmotionoftherodbank.Powerdecreases rapidlyandthereis,therefore, noadverseimpactonthereactorcore.Themostseveremisalignment cases,withrespecttoONBR,arethoseinwhichonecontrolrodisfullyinsertedorwherecontrolbank"0"isfullyinsertedbutwithonecontrolrodfullywithdrawn.
Multiplealarmsalerttheoperatorbeforeadverseconditions arereached.Thecontrolbankcanbeinsertedtoitsinsertion limitwithanycontrolrodfullywithdrawn withoutONBRfallingbelowthesafety-limit ONBRvalue,asshownbyanalysis.
Anevaluation performed bythelicenseeindicates thatcontrolrodbanksotherthanthecontrolbankwouldgivelesssevereresults.Forthecasewithonerodfullyinserted, ONBRremainsabovethesafety-limit ONBRvalue.Forallcasesfollowing identification ofacontrolrodmisalignment, theoperatorisrequiredtoperformactionsinaccordance withplantTechnical Specifications andprocedures.
2.1.8ChemicalandVolumeControlSstemMalfunction Theborondilutioneventwasanalyzedbythelicenseeforstartupandpoweroperation.
Theanalysisisperformed toshowthatsufficient timeisavailable totheoperatortodetermine thecauseofthedilutioneventandtakecorrective actionbeforetheshutdownmarginislost.Thelicenseereportsthat45minutesisavailable forMode1(poweroperation) and68minutesfor,Modes2or3(startuporhotstandbyconditions)
(Ref.7).2.1.9LossofReactorCoolantFlowTheloss-of-flow transient causesthereactorpowertoincreaseuntilthereactortripsoneitheralow-flowtripsignalorreactorcoolantpumppowersupplyundervoltage signal.Thereactorpowerincreasecausesareactormoderator/coolant temperature increase.
Thisinitialcoolanttemperature increasecausesapositivereactivity insertion becauseofthepositivemoderator temperature coefficient.
Thelicenseeanalyzedbothapartialloss-of-flow (lossofonepumpwithfourcoolantloopsinoperation) transient andacompleteloss-of-flow transient (lossoffourpumpswithfourcoolantloopsinoperation).
Forthepartialloss-of-flow transient, thereactorisassumedtobetrippedonalow-flowsignal.Foracompleteloss-of-flow transient, thereactorisassumedtobetrippedonapumpundervoltage signal.Foreitherevent,theaverageandhotchannelheatfluxesdonotincreasesignificantly abovetheirinitialvaluesandtheONBRremainsabovethesafety-limit ONBRvalue.
2.l.10LockedRotorAccidentThelockedrotoraccidentcausesarapidreduction inthefluidflowthroughtheaffectedloop.Thereactortripsonalow-flowsignalwhichrapidlyreducestheneutronfluxuponcontrolrodinsertion.
Controlrodmotionstarts1secondaftertheflowintheaffectedloopreaches87Kofitsnominalvalue.Thelicenseeevaluated thisaccidentassumingthatoffsitepowerisavailable.
Nocreditistakenforthepressure-reducing effectofthepressurizer reliefvalves,pressurizer spray,steamdump,orcontrolled feedwater flowafterreactortrip.Thelicenseeperformed ananalysistodetermine theONBtransient andtodemonstrate thatthepeaksystempressureandthepeakcladtemperature remainbelowlimitvalues.Thepeakreactorcoolantsystempressureof2588psiareachedduringthetransient islessthanthatwhichwouldcausestressestoexceedthefaultedconditions stresslimits.Thepeakcladtemperature reachedis1959'F.Lessthan4.5XofthefuelrodsinthemostlimitingfuelassemblyreachvaluesofDNBRlessthanthesafety-limit DNBRvalue.TheseresultsindicatethattheRTPprogramassumptions giveacceptable consequences forthelockedrotoraccident.
2.1.11LossofExternalElectrical LoadoTheloss-of-external-electrical-load eventwasanalyzedbythelicenseetoshowtheadequacyofpressure-relieving devicesandtodemonstrate coreprotection.
Thisreanalysis wasnecessary becauseofchangesinreactorpressureandtemperature conditions fortheRTPprogramandbecauseofchangestotheOvertemperature-Delta Treactortripsetpointequation.
Maximumandminimumreactivity feedbackcaseswereexamined, withthecaseanalyzedwithandwithoutcreditforpressurizer spraysandpower-operated reliefvalves.Fortheminimumreactivity feedbackcasewithpressurizer pressurecontrol,thereactortripsonahighpressurizer pressuresignal.Forthemaximumreactivity feedbackcasewithpressurizer pressurecontrol,thereactortripsonalow-lowsteamgenerator waterlevelsignal.Fortheminimumreactivity feedbackcasewithoutpressurizer pressurecontrol,thereactortripsonahighpressurizer pressuresignal.Forallfourcases,theminimumvalueofONBRremainswellabovethesafety-limit ONBRvalueandtheOvertemperature-Delta Tsetpointwasnotreached.Theanalysisconfirmsthattheconclusions oftheFSARremainvalidforthiseventfortheRTPprogram.2.1.12LossofNormalFeedwater FlowTheloss-of-normal-feedwater-flow eventwasanalyzedbythelicenseetoshowthattheauxiliary feedwater systemiscapableofremovingthestoredanddecayheat,thuspreventing overpressurization ofthereactorcoolantsystemoruncovering thecore,andreturning theplanttoasafecondition.
Thereanalysis wasbasedonapositivemoderator temperature coefficient.
Aconservative decayheatmodelbasedontheANSI/ANS-5.
1-1979decayheatstandard(Ref.8)wasused.Pressurizer poweroperatedreliefvalvesandthemaximumpressurizer sprayflowratewereassumedtobeavailable sincealowerpressureresultsinagreatersystemexpansion.
Theinitialpressurizer waterlevelwasassumedtobeatthemaximumnominalsetpointof62Knarrowrangespan.Reactortripoccurredwhenthelow-lowsteamgenerator waterleveltripsetpointwasreached.Theresultsoftheanalysisshowthatalossofnormalfeedwater doesnotadversely affectthereactorcore,thereactorcoolantsystem,orthesteamsystem,andthattheauxiliary feedwater systemissufficient topreventwatetreliefthroughthepressurizer relieforsafetyvalves.Thepressurizer does notfilland,therefore, theconclusions oftheFSARremainvalidforthisevent,including RTPconditions.
2.1.13Excessive HeatRemovalOuetoFeedwater SstemMalfunctions Theexcessive-heat-removal eventduetofeedwater systemmalfunction wasanalyzedbythelicenseetodemonstrate coreprotection.
Thisanalysiswasnecessary becauseofchangesinreactorcoretemperatures andpressurefortheRTPprogramandbecauseofchangestotheOTDTandOPDTtripsetpoints.
Thiseventisanexcessive-feedwater-addition eventcausedbyacontrolsystemmalfunction oranoperatorerrorwhichallowsafeedwater controlvalvetoopenfully.Thelicenseeanalyzedbothfullpowerandhotzeropowercases.Bothcasesassumedaconservatively largenegativemoderator temperature coefficient.
Thefullpowercaseassumedthereactorwasinautomatic ormanualcontrol.TheImprovedThermalDesignProcedure (ITOP)ofReference 4wasusedintheanalysis.
Fortheaccidental fullopeningofonefeedwater controlvalvewiththereactorathot-zeropowerconditions, thelicenseedetermined thatthemaximumreactivity insertion rateislessthanthemaximumreactivity insertion rateanalyzedintheUncontrolled-Rod-Cluster-Assembly-Bank-Withdrawal-at-Subcritical-Condition event.Thus,thishot-zeropowercaseisboundedbytheresultsobtainedpreviously fortheotherevent.Inaddition, iftheeventweretooccuratahot-zeropowerandanexactlycriticalcondition, thepowerrangehighneutronfluxtrip(lowsetting)ofabout25Kofnominalfullpowerwilltripthereactor.Thehot-fullpo~ercasewiththereactorinautomatic controlismoreseverethanthecasewiththereactorinmanualcontrol.Forallexcessive feedwater cases,continuous additionofcoldfeedwater isprevented byautomatic closureofallfeedwater isolation valvesonsteamgenerator high-high levelsignal.Aturbinetripistheninitiated andareactortriponaturbinetripisthenassumed.Theresultspresented bythelicenseedemonstrate thesaferesponseofCookUnit1totheevent,athot-fullpowerandinautomatic control,withtheONBRremaining wellabovethesafety-limit ONBRvalue.2.l.14Excessive IncreaseinSecondarSteamFlowTheexcessive-increase-in-secondary-steam-.flow eventwasanalyzedbythelicenseetodemonstrate coreprotection.
Thiseventisanoverpower transient forwhichthefueltemperatur ewillrise.Itwasanalyzedbecauseofreactorcoretemperature andpressurechangesfortheRTPprogramandbecauseofchangestotheOTOTandOPOTsetpoints.
TheCookUnit1reactorcontrolsystemisdesignedtoaccommodate a10Ksteploadincreaseanda5X-per-minute ramploadincreaseovertherangeof15to100percentoffullpower.Loadincreaseinexcessoftheserateswouldprobablyresultinareactortrip.Fourcaseswereanalyzedbythelicensee.
Theseincludedminimumandmaximumreactivity feedbackcaseswitheachcaseanalyzedforbothmanualandautomatic reactorcontrol.fortheminimumreactivity feedbackcases,azeromoderator temperature coefficient wasassumedtoboundthepositivemoderator temperature coefficient..
Foral'1thecases,nocreditwastakenforthepressurizer heaters.TheanalysesusedtheITDPofReferences 4.Thestudiesshowthatthereactorreachesanewequilibrium condition forallthecasesstudied,withONBRremaining wellabovethesafety-limit ONBRvalue.Theoperators wouldfollownormalplantprocedures toreducepowertoanacceptable valuetoconcludetheevent.
II 2.1.15LossofallACPowertothePlantAuxiliaries Theloss-of"all-AC-power-to-the-plant-auxiliaries eventwasanalyzedtodemonstrate theadequacyoftheheatremovalcapability oftheauxiliary feedwater system.Thistransient isthelimitingtransient withrespecttothepossibility ofpressurizer overfill.
Thiseventismoreseverethantheloss-of-loadeventbecausethelossofACpowerresultsinaflowcoastdown duetothelossofallfourreactorcoolantpumps.Thisresultsinareducedcapacityoftheprimarycoolanttoremoveheatfromthecore.Apositivemoderator temperature coefficient wasassumedintheanalysis.
Aconservative decayheatmodelbasedontheANSI/ANS-5.1-1979 decayheatstandard(Ref.8)wasused.Nocreditistakenfortheimmediate releaseofthecontrolrodscausedbythelossofoffsitepower.Insteadareactortripisassumedtooccuronasteamgenerator low-lowlevelsignal.Pressurizer poweroperatedreliefvalvesandthemaximumpressurizer sprayflowratewasassumedtobeavailable sincealowerpressureresultsinagreatersystemexpansion.
Theinitialpressurizer waterlevelisassumedtobeatthemaximumnominalsetpointof62Knarrowrangespanplusuncertainties of5Xnarrowrangespan.Theresultsdemonstrate thatnaturalcirculation flowissufficient toprovideadequatedecayheatremovalfollowing reactortripandreactorcoolantpumpcoastdown.
Thepressurizer doesnotfill.Thus,thelossofACpowerdoesnotadversely affectthecore,thereactorcoolantsystem,orthesteamsystem,andtheauxiliary feedwater systemissufficient topreventwaterreliefthroughthepressurizer relieforsafetyvalves.2.1.16SteamlineBreakThesteamline breakaccidentwasanalyzedbythelicenseetoassesstheimpactofthereducedreactorcoolantsystempesssureoftheRTPprogramandthelowsteampressuresetpoint(loweredfrom600psigto500psig)ofthecoincidence logicwithhigh-high steamflowforsteamline isolation andsafetyinjection actuation.
Anend-of-life shutdownmarginof1.6XdeltaK/Kfornoload,equilibrium xenonconditions, withthemostreactivecontrolrodstuckinitsfullywithdrawn
: position, wasassumed.Anegativemoderator temperature coefficient corresponding totheend-of-line roddedcorewasassumed.Thelicenseeevaluated fourcombinations ofbreaksizesandinitialplantconditions todetermine thecorepowertransient whichcanresultfromlargeareapipebreaks.Thefirstcasewasthecompleteseverance ofapipedownstream ofthesteamflowrestrictor withtheplantatno-loadconditions andallreactorcoolantpumpsrunning.Thesecondcasewasthecompleteseverance ofapipeinsidethecontainment attheoutletofthesteamgenerator withtheplantatno-loadconditions andallreactorcoolantpumpsrunning.Thethirdcaseisthesameasthefirstcasewiththelossofoffsitepowersimultaneous withthegeneration ofaSafetyInjection Signal(lossofoffsitepowerresultsinreactorcoolantpumpcoastdown).
Thefourthcaseisthesameasthesecondcasewithlossofoffsitepowersimultaneous withthegeneration ofaSafetyInjection Signal.Afifthcasewasperformed toshowthattheONBRremainsabovethesafety-limit ONBRvalueintheeventofthespuriousopeningofasteamdumporreliefvalve.Thelicenseedetermined thatthefirstcasewasthelimitingcase,thatis,thedouble-ended ruptureofamainsteampipelocatedupstreamoftheflowrestrictor withoffsitepoweravailable andatno-loadconditions.
Theresultsindicatethatthecorebecomescriticalwiththecontrolrodsinserted(however, withthemostreactivecontrolrodstuckout)beforeboronsolutionat2400ppmentersthereactorcoolantsystem.Thecorepowerpeaksatlessthanthenominalfullcorepower.TheONBanalysisshowedthatthe
 
minimumDNBRremainedabovethesafetylimitONBRvalue,eventhoughthiseventisclassified asanaccidentwithfuelrodsundergoing.DNB notprecluded.
Theanalysisperformed bythelicenseedemonstrates thatasteamline breakaccidentwillnotresu'ftinunacceptable consequences.
2.1.17RutureofControlRodOriveMechanism HousinRodE'ectionAccidentTherodejectionaccidentisanalyzedatfullpowerandhot,zero-power conditions forbothbeginning-of-cycle (BOC)andend-of-cycle (EOC).Theanalysisusedejectedrodworthandtransientspeakingfactorsthatareconservative.
Reactorprotection forarodejectionisprovidedbyneutronfluxtrip,highandlowsetting,andbythehighrateofneutronfluxincreasetrip.Theanalysismodeledthehighneutronfluxtriponly.Themaximumfueltemperature andenthalpyoccurredforhot,full-power BOCcase.Thepeakfuelenthalpywas,however,below200cal/gmforallthecasesanalyzed.
Forthehot,full-power cases,theamountoffuelmeltinginthehotpelletwaslessthan10K.Becausefuelandcladtemperatures andthefuelenthalpydonotexceedtheFSARlimits,theconclusions oftheFSARremainvalid.Basedonareviewofthelicensee's evaluation andanalysisofthenon-LOCAtransients andaccidents (2.1.3through2.l.17)forthereducedtemperature andpressureoperation (theRTPprogram),
thestaffconcludes thattheyareacceptable because(1)approvedmethodologies andcomputercodeshavebeenused,and(2)allapplicable safetycriteriahavebeenmet.Thisreviewisbasedon(1)afullpowervesselaveragetemperature oflessthanorequal'to567.8'F,(2)asteamgenerator tubeplugginglevelof10Kwithapeaktubeplugginglevelof15K,and(3).theminimummeasuredflowrequirement of91,600gpmperloo'pismet.2.1.18SteamGenerator TubeRutureSGTR)AccidentThelicenseeanalyzedthesteamgenerator tuberupture(SGTR)eventforCookUnit1usingmethodology andassumptions consistent withthoseusedfortheCookFSARSGTRanalysis.
Therangeofparameters associated withafuturereratingprogramandtheRTPprogramwereusedinsensitivity analysestoassesstheimpactoftheseprogramsontheprimary-to-secondary breakflowandthesteamreleasedtotheatmosphere bytheaffectedsteamgenerator.
Thesetwofactorsaffecttheradiological consequences ofanSGTRaccident.
Inaddition, thelicensee's evaluation oftheradiological dosesconsiders theeffectofthenoblegasconcentrations.
Thelicenseestatesthattheresultsoftheanalysesshowthatthedosesremainwithinasmallfraction(10K)ofthe10CFRPart100guidelines forboththethyroidandwholebodydoses.Sincetheworstcasedosesarewithinthe10CFRPart100guidelines, thestaffconcludes thattheanalysisoftheSGTRisacceptable 2.1.19FuelStructural Evaluation Thefuelassemblyliftandbuoyancyforcesareincreased fortheRTPprogramatCookUnit1becauseareduction inreactorcoolantsystemtemperature ofabout20'Fwillincreasethecoolantdensitybyabout3X.Thelicenseeevaluated thisforceincreaseagainstthefuelassemblyallowable holddownload.Theresultsoftheevaluation showthattheincreased forceiswellwithintheminimumspringholddownforcedesignmargin.Inaddition, thelicenseedetermined thatthecold-legbreakremainsthemostlimitingpiperupturetransient withrespecttolateralandverticalhydraulic forces.Basedonthelicensee's review,thestaffconcludes thatthe15xl5fuelassemblydesignremainsacceptable.
Thefuelroddesignwasevaluated toassesstheimpactoffuturererating.
Thelicenseedetermined thattherodinternalpressurecriterion willcontinuetobethemoreimportant factorinfuelburnupcapabilities.
Thefuelwillalsoundergomoreseverefueldutybecauseoftheupratedpower.Thelicenseeplanstoperformcycle-specific verification foreachreloadtoassurethatallfuelroddesigncriteriaaremet.'-2;1;20-.-Justification for.Pressurizer LevelThepurposeofthePressurizer HighLevelLimitistoensurethatasteambubbleispresentinthepressurizer priortopoweroperation tominimizetheconsequences ofoverpressure transients andthepossibility ofpassingwaterthroughthereliefandsafetyvalves.Thesafetyanalysisassumesamaximumwatervolumewhichcorresponds toabout65Kindicated level.Thisnominalindicated levelismaintained duringnormaloperation bythepressurizer
.levelcontrolsystem.Thelicensee(andthefuelsupplier-Westinghouse) recommends theuseof92KforthePressurizer HighLeveltriplimit.Theystatethatthisnewtriplimitwi11stillensurethepresenceofasteambubbleinthepressurizer.
Thepressurizer levelwill,however,becontrolled tothenominalvalue.Fornormaloperations (Condition Ievent),thereactorparameters, including thepressurizer level,donosignificantly deviatefromtheirnominalvalues.Thelicenseeconcludes that,forthepressurizer leveltoexceedthenominallevel,a~~~~~~~~transient oraccidentmustoccurforwhichprotective actionisprovidedbytheReactorProtection System.Anyotherpossibleconditions forwhichthenominallevelwouldbeexceededbeforeandduringatransient wouldrequireatransient'r transients beyondthoseusuallyconsidered foranFSARtypeofanalysis.
Thestaffconcludes onthebasisofthelicensee's evaluat>on thataPressurizer HighLevelTripof92~isacceptable.
2.2BALANCEOFPLANTSYSTEMSThelicenseestatesthatbalanceofplant(BOP)systemsandcomponents wereanalyzedfortheeffectsofoperation atreducedtemperature andpressureconditions.
Thesecondary sideconditions fortheseanalysesweredetermined usingthePerformance Evaluation andPowerSystemEfficiencies (PEPSE)heatbalancedata(14.20E6lb/hrmainsteamflowandmainfeedflow).Thesystemsreviewedwerethenonsafety-related secondary sidepowergenerating andnonpowergenerating systems.Includedinthelicensee's analysiswereportionsofthemainfeedwater, mainsteam,steamgenerator blowdown(SGBS),component coolingwater(CCWS),auxiliary feedwater (AFS),heating,ventilation, andairconditioning (HVAC),servicewater,wastedisposal, fireprotection, radiation monitoring, andspentfuelpool(SFP)coolingandcleanupsystems.Theperformance oftheaboveBOPsystemswasevaluated atthereducedtemperature andpressurebyusingthenewprimarysideNSSSdata(14.20E6lb/hrmainsteamandmainfeedflow,and434'Fmainfeedtemperature) furnished byWestinghouse.
Thelicenseestatesthattheimpactoncontainment pressures andtemperatures
~~~~~~following apostulated designbasismainsteamlinebreakwasevaluated anditseffectonequipment qualification wasverified.
Thefloodinganalysisinsafety-relatedareasoftheplantasaresultofapostulated pipebreakwasreevaluated duetotheslightincreaseinflowratesinthemainfeed,condensate, andmainsteamsystems.Theturbine-generator systemwasalsoevalutedtoconfirmitsintegrity andperformance attheincreased steamvolumetric flowrateandtoverifythattheoriginalturbinemissileanalysisremainsvalid. Thelicensee's analysisofBOPsystemperformance providedthefollowing findings~~~~~~~concerning theRTPconditions atthepresentlicensedpowerlevelof3250HMtNSSSpower:(a)(b)(c)The:capability ofthesafety-related portionofthemainfeedwater systemwillnotbeaffectedandwillcontinuetoperformitssafetyfunctionbecausetheproposedRTPconditions areboundedbytheexistingmainfeedwater systemdesign.Thelicensee's analysisofthepressure/temperature ratingconditions forthesystemconfirmsthatpressureboundaryintegrity willnotbeaffected.
Inaddition, themainfeedwater systemisolation valveclosuretimeisnotaffectedbytheRTP"imposed conditions.
Thecapability ofthesteamgenerator blowdownsystemtoremoveimpurities fromthesecondary sideremainsessentially thesamefortheRTP-imposed conditions duringnormaloperation basedontheexsisting design.Thereactormakeupwatersystem's(HSM)capability toprovidedemineralized waterformakeupandflushingoperations throughout theNSSSauxilliaries, theradwastesystems,andfuelpoolcoolingandcleanupsystemisnotchaIlenged becausetheexistingsystemdesignisbasedontheworstcasedemandwhichboundstheRTPconditions.
(d)Thelicenseeconfirmed thatsafety-related equipment willnotbeaffectedbychangesinthefloodinganalysisduetotheRTPconditions.
Floodingintheauxiliary buildingduetofailureofnonseismic ClassIpipinghasbeenreviewed.
Thelicenseeanalyzedsystemshavingaccesstolargewatervolumesand/orpotentially largeflowrates wereconsidered asdiscussed intheFSAR.Theonlysuchsystemisthemainfeedwater system.Sincethechangesinflowinthemainfeedwater systemarestillwithinthedesignlimits,theresultsconcerning floodingdiscussed intheFSARarestillapplicable.
Floodinginthecontainment isslightlyincreased duetothelargerinitialwatermassinthereactorcoolantsystembecauseofthehigherdensityatthereducedtemperature.
Thischangewasfoundtobewithinthevolumemarginsusedtodetermine themaximumflood-upelevation.
Thecontainment floodingevaluation intheFSARremainsvalidattheRTP-induced conditions.
(e)TheadequacyoftheAFMsystemforaccidentmitigation wasdemonstrated intheMestinghouse accidentanalysisperformed insupport'f theRTPprogramunderthefollowing scenarios:
1.Lossofmainfeedwater 2.Lossofoffsitepower3.HainsteamlineruptureEachaccidentanalysisdemonstrated acceptance criteriasuchassystemoverpressure limitsorONBlimits.TheAFMsystem'sabilityfordesignbasisaccidentdecayheatremovalcalculated intheRTPanalysisisunaffected.


thefirstmixingvanegrid.TheMRB-1ONBcorrelationisappliedtotheremainderofthefuelassembly.Fromtheanalysisperformed,thelicenseeconcludesthattheONBdesignbasesaremetforallregionsofthecore,andtherefore,theconclusionsintheFSARremainapplicableforareductioninnominalsystea,pressureto2100psia.2.1.6UncontrolledControlRodAssemblBankWithdrawalatPowerTheuncontrolledrodbankwithdrawalfromapowerconditiontransientleadstoapowerincrease.Thetransientresultsinanincreaseinthecoreheatfluxandanincreaseinthereactormoderator/coolanttemperature.ThereductioninpressurefortheRTPprogramisnon-conservativewithrespecttoONB.Inaddition,arevisedOvertemperatureOelta-TsetpointequationisbeingassumedintheCookUnit1analyses.ThePowerRangeHighNeutronFluxandOvertempera-tureOelta-TreactortripsprovidetheprimaryprotectionagainstONB.Bothminimumandmaximumreactivitycaseswereanalyzedoverarangeofreactivityinsertionrates.Thelicenseeprovidedquantitativeresultsforthemaximumreactivityfeedbackcaseforpowerlevelsof10K,60K,and100Kpowerforarangeofreactivityinsertionrates.TheresultsindicatethattheONBRlimitismetforallthecases.Thelicenseeexaminedanumberofcasesassociatedwiththepressurizerwatervolumetransientcausedbyanuncontrolledcontrolrodassemblybankwithdrawal-at-powerevent.Itwasdeterminedthatcreditforhighpressurizerwaterlevelreactortripwasrequiredtopreventthepressurizerfromfilling.Thelicenseeassumedavalueof100Knarrowrangespan(NRS)forthehighpressurizerwaterlevelreactortripsetpoint.Atimedelayof2secondswasassumedfortripactuationunti1rodmotionbecomesadequatetoterminatethetransient.Thusthehighneutronfluxandovertemperature-deltaTreactortripsprovideadequateprotectionovertherangeofpossiblereactivityinsertionratesinthattheminimumvalueofONBRremainsabovethesafety-limitONBRvalue.Inaddition,thehighpressurizerwaterlevelreactortrippreventsthepressurizerfromfilling.2.1.7RodClusterAssemblMisalinmentTherodclustercontrolassemblymisalignmenteventsconsistofthreeseparateevents:(1)adroppedcontrolrod,(2)adroppedcontrolbank,and(3)astaticallymisalignedcontrolrod.TheseeventswerereanalyzedbecausethereductioninpressurefortheRTPprogramisnonconservativewithrespecttotheONBtransient.Adroppedcontrolrodorcontrolbankmaybedetectedinthefollowingmanner:(1)byasuddendropinthecorepowerasseenbythenuclearinstrumentationsystem;(2)byanasymmetricpowerdistributionasseenbytheexcoreneutrondetectorsorthecoreexitthermocouples;(3)byrodbottomsignal;(4)bytherodpositiondeviationmonitor;and(5)byrodpositionindicators.Amisalignedcontrolrodmaybedetectedinthefollowingmanner;(1)byanasymmetricpowerdistributionasseenbytheexcoreneutrondetectorsorthecoreexitthermocouples;(2)bytherodpositiondeviationmonitor;and(3)byrodpositionindicators.Theresolutionoftherodpositionindicatorchannel's+5percentor+12steps(+7.5inches).Oeviationofanycontrolrodfromitsgroupbytwicethisdistance(+24stepsort15inches)willnotcausepowerdistributionworsethanthedesignlimits.Therodpositiondeviationmonitorprovidesanalarmbeforearoddeviationcanexceed+24stepsor+15inches. Thedroppedrodeventwasanalyzedusinganapprovedmethodology(Ref.6).Adroppedrodorrodsfromthesamegroupwillresultinanegativereactivityinsertionwhichmaybedetectedbythenegativeneutronfluxratetripcircuitry.Ifdetected,ireactortripoccursinabout2.5seconds.ForthosedroppedrodeventsforwMchareactortripoccurs,thecoreisnotadverselyimpactedbecausetherapiddecreaseinreactorpowerwillreachanequilibriumvaluedependentonthereactivityfeedbackorcontrolbankwithdrawal(ifinautomaticcontrol).Thelimitingcaseforthisclassofeventsisthecasewiththereactorinautomaticcontrol.Forthiscaseapowerovershootoccursbeforeanequilibriumpowerconditionisreached.Thelicenseestatesthat,usingthemethodologyofReference6,allanalyzedcasesresultinONBRvalueswhicharewithinthesafety-limitONBRvalue.Thelicenseestatesthatadroppedrodbankresultsinareactivityinsertionofatleast500pcm.Thiswillbedetectedbythenegativeneutronfluxratetripcircuitryandcauseareactortripwithinabout2.5secondsoftheinitialmotionoftherodbank.Powerdecreasesrapidlyandthereis,therefore,noadverseimpactonthereactorcore.Themostseveremisalignmentcases,withrespecttoONBR,arethoseinwhichonecontrolrodisfullyinsertedorwherecontrolbank"0"isfullyinsertedbutwithonecontrolrodfullywithdrawn.Multiplealarmsalerttheoperatorbeforeadverseconditionsarereached.ThecontrolbankcanbeinsertedtoitsinsertionlimitwithanycontrolrodfullywithdrawnwithoutONBRfallingbelowthesafety-limitONBRvalue,asshownbyanalysis.Anevaluationperformedbythelicenseeindicatesthatcontrolrodbanksotherthanthecontrolbankwouldgivelesssevereresults.Forthecasewithonerodfullyinserted,ONBRremainsabovethesafety-limitONBRvalue.Forallcasesfollowingidentificationofacontrolrodmisalignment,theoperatorisrequiredtoperformactionsinaccordancewithplantTechnicalSpecificationsandprocedures.2.1.8ChemicalandVolumeControlSstemMalfunctionTheborondilutioneventwasanalyzedbythelicenseeforstartupandpoweroperation.Theanalysisisperformedtoshowthatsufficienttimeisavailabletotheoperatortodeterminethecauseofthedilutioneventandtakecorrectiveactionbeforetheshutdownmarginislost.Thelicenseereportsthat45minutesisavailableforMode1(poweroperation)and68minutesfor,Modes2or3(startuporhotstandbyconditions)(Ref.7).2.1.9LossofReactorCoolantFlowTheloss-of-flowtransientcausesthereactorpowertoincreaseuntilthereactortripsoneitheralow-flowtripsignalorreactorcoolantpumppowersupplyundervoltagesignal.Thereactorpowerincreasecausesareactormoderator/coolanttemperatureincrease.Thisinitialcoolanttemperatureincreasecausesapositivereactivityinsertionbecauseofthepositivemoderatortemperaturecoefficient.Thelicenseeanalyzedbothapartialloss-of-flow(lossofonepumpwithfourcoolantloopsinoperation)transientandacompleteloss-of-flowtransient(lossoffourpumpswithfourcoolantloopsinoperation).Forthepartialloss-of-flowtransient,thereactorisassumedtobetrippedonalow-flowsignal.Foracompleteloss-of-flowtransient,thereactorisassumedtobetrippedonapumpundervoltagesignal.Foreitherevent,theaverageandhotchannelheatfluxesdonotincreasesignificantlyabovetheirinitialvaluesandtheONBRremainsabovethesafety-limitONBRvalue.
13Asevaluated intheRTPanalysis, theheatloadsinboththeprimaryandsecondary systemsduetoreactordecayheatremainunchanged.
2.l.10LockedRotorAccidentThelockedrotoraccidentcausesarapidreductioninthefluidflowthroughtheaffectedloop.Thereactortripsonalow-flowsignalwhichrapidlyreducestheneutronfluxuponcontrolrodinsertion.Controlrodmotionstarts1secondaftertheflowintheaffectedloopreaches87Kofitsnominalvalue.Thelicenseeevaluatedthisaccidentassumingthatoffsitepowerisavailable.Nocreditistakenforthepressure-reducingeffectofthepressurizerreliefvalves,pressurizerspray,steamdump,orcontrolledfeedwaterflowafterreactortrip.ThelicenseeperformedananalysistodeterminetheONBtransientandtodemonstratethatthepeaksystempressureandthepeakcladtemperatureremainbelowlimitvalues.Thepeakreactorcoolantsystempressureof2588psiareachedduringthetransientislessthanthatwhichwouldcausestressestoexceedthefaultedconditionsstresslimits.Thepeakcladtemperaturereachedis1959'F.Lessthan4.5XofthefuelrodsinthemostlimitingfuelassemblyreachvaluesofDNBRlessthanthesafety-limitDNBRvalue.TheseresultsindicatethattheRTPprogramassumptionsgiveacceptableconsequencesforthelockedrotoraccident.2.1.11LossofExternalElectricalLoadoTheloss-of-external-electrical-loadeventwasanalyzedbythelicenseetoshowtheadequacyofpressure-relievingdevicesandtodemonstratecoreprotection.ThisreanalysiswasnecessarybecauseofchangesinreactorpressureandtemperatureconditionsfortheRTPprogramandbecauseofchangestotheOvertemperature-DeltaTreactortripsetpointequation.Maximumandminimumreactivityfeedbackcaseswereexamined,withthecaseanalyzedwithandwithoutcreditforpressurizerspraysandpower-operatedreliefvalves.Fortheminimumreactivityfeedbackcasewithpressurizerpressurecontrol,thereactortripsonahighpressurizerpressuresignal.Forthemaximumreactivityfeedbackcasewithpressurizerpressurecontrol,thereactortripsonalow-lowsteamgeneratorwaterlevelsignal.Fortheminimumreactivityfeedbackcasewithoutpressurizerpressurecontrol,thereactortripsonahighpressurizerpressuresignal.Forallfourcases,theminimumvalueofONBRremainswellabovethesafety-limitONBRvalueandtheOvertemperature-DeltaTsetpointwasnotreached.TheanalysisconfirmsthattheconclusionsoftheFSARremainvalidforthiseventfortheRTPprogram.2.1.12LossofNormalFeedwaterFlowTheloss-of-normal-feedwater-floweventwasanalyzedbythelicenseetoshowthattheauxiliaryfeedwatersystemiscapableofremovingthestoredanddecayheat,thuspreventingoverpressurizationofthereactorcoolantsystemoruncoveringthecore,andreturningtheplanttoasafecondition.Thereanalysiswasbasedonapositivemoderatortemperaturecoefficient.AconservativedecayheatmodelbasedontheANSI/ANS-5.1-1979decayheatstandard(Ref.8)wasused.Pressurizerpoweroperatedreliefvalvesandthemaximumpressurizersprayflowratewereassumedtobeavailablesincealowerpressureresultsinagreatersystemexpansion.Theinitialpressurizerwaterlevelwasassumedtobeatthemaximumnominalsetpointof62Knarrowrangespan.Reactortripoccurredwhenthelow-lowsteamgeneratorwaterleveltripsetpointwasreached.Theresultsoftheanalysisshowthatalossofnormalfeedwaterdoesnotadverselyaffectthereactorcore,thereactorcoolantsystem,orthesteamsystem,andthattheauxiliaryfeedwatersystemissufficienttopreventwatetreliefthroughthepressurizerrelieforsafetyvalves.Thepressurizerdoes notfilland,therefore,theconclusionsoftheFSARremainvalidforthisevent,includingRTPconditions.2.1.13ExcessiveHeatRemovalOuetoFeedwaterSstemMalfunctionsTheexcessive-heat-removaleventduetofeedwatersystemmalfunctionwasanalyzedbythelicenseetodemonstratecoreprotection.ThisanalysiswasnecessarybecauseofchangesinreactorcoretemperaturesandpressurefortheRTPprogramandbecauseofchangestotheOTDTandOPDTtripsetpoints.Thiseventisanexcessive-feedwater-additioneventcausedbyacontrolsystemmalfunctionoranoperatorerrorwhichallowsafeedwatercontrolvalvetoopenfully.Thelicenseeanalyzedbothfullpowerandhotzeropowercases.Bothcasesassumedaconservativelylargenegativemoderatortemperaturecoefficient.Thefullpowercaseassumedthereactorwasinautomaticormanualcontrol.TheImprovedThermalDesignProcedure(ITOP)ofReference4wasusedintheanalysis.Fortheaccidentalfullopeningofonefeedwatercontrolvalvewiththereactorathot-zeropowerconditions,thelicenseedeterminedthatthemaximumreactivityinsertionrateislessthanthemaximumreactivityinsertionrateanalyzedintheUncontrolled-Rod-Cluster-Assembly-Bank-Withdrawal-at-Subcritical-Conditionevent.Thus,thishot-zeropowercaseisboundedbytheresultsobtainedpreviouslyfortheotherevent.Inaddition,iftheeventweretooccuratahot-zeropowerandanexactlycriticalcondition,thepowerrangehighneutronfluxtrip(lowsetting)ofabout25Kofnominalfullpowerwilltripthereactor.Thehot-fullpo~ercasewiththereactorinautomaticcontrolismoreseverethanthecasewiththereactorinmanualcontrol.Forallexcessivefeedwatercases,continuousadditionofcoldfeedwaterispreventedbyautomaticclosureofallfeedwaterisolationvalvesonsteamgeneratorhigh-highlevelsignal.Aturbinetripistheninitiatedandareactortriponaturbinetripisthenassumed.TheresultspresentedbythelicenseedemonstratethesaferesponseofCookUnit1totheevent,athot-fullpowerandinautomaticcontrol,withtheONBRremainingwellabovethesafety-limitONBRvalue.2.l.14ExcessiveIncreaseinSecondarSteamFlowTheexcessive-increase-in-secondary-steam-.floweventwasanalyzedbythelicenseetodemonstratecoreprotection.Thiseventisanoverpowertransientforwhichthefueltemperaturewillrise.ItwasanalyzedbecauseofreactorcoretemperatureandpressurechangesfortheRTPprogramandbecauseofchangestotheOTOTandOPOTsetpoints.TheCookUnit1reactorcontrolsystemisdesignedtoaccommodatea10Ksteploadincreaseanda5X-per-minuteramploadincreaseovertherangeof15to100percentoffullpower.Loadincreaseinexcessoftheserateswouldprobablyresultinareactortrip.Fourcaseswereanalyzedbythelicensee.Theseincludedminimumandmaximumreactivityfeedbackcaseswitheachcaseanalyzedforbothmanualandautomaticreactorcontrol.fortheminimumreactivityfeedbackcases,azeromoderatortemperaturecoefficientwasassumedtoboundthepositivemoderatortemperaturecoefficient..Foral'1thecases,nocreditwastakenforthepressurizerheaters.TheanalysesusedtheITDPofReferences4.Thestudiesshowthatthereactorreachesanewequilibriumconditionforallthecasesstudied,withONBRremainingwellabovethesafety-limitONBRvalue.Theoperatorswouldfollownormalplantprocedurestoreducepowertoanacceptablevaluetoconcludetheevent.
Therefore, theComponent CoolingWaterSystem(CCWS)analysisandservicewatersystem(SWS)analysisintheFSARremainvalid.(g)(h)(k)Formainsteamlinebreaksinsidethecontainment structure, thepressureandtemperature willremainwithintheboundsofthepeakpressureandtemperature usedintheevaluation ofcontainment performance.
II 2.1.15LossofallACPowertothePlantAuxiliariesTheloss-of"all-AC-power-to-the-plant-auxiliarieseventwasanalyzedtodemonstratetheadequacyoftheheatremovalcapabilityoftheauxiliaryfeedwatersystem.Thistransientisthelimitingtransientwithrespecttothepossibilityofpressurizeroverfill.Thiseventismoreseverethantheloss-of-loadeventbecausethelossofACpowerresultsinaflowcoastdownduetothelossofallfourreactorcoolantpumps.Thisresultsinareducedcapacityoftheprimarycoolanttoremoveheatfromthecore.Apositivemoderatortemperaturecoefficientwasassumedintheanalysis.AconservativedecayheatmodelbasedontheANSI/ANS-5.1-1979decayheatstandard(Ref.8)wasused.Nocreditistakenfortheimmediatereleaseofthecontrolrodscausedbythelossofoffsitepower.Insteadareactortripisassumedtooccuronasteamgeneratorlow-lowlevelsignal.Pressurizerpoweroperatedreliefvalvesandthemaximumpressurizersprayflowratewasassumedtobeavailablesincealowerpressureresultsinagreatersystemexpansion.Theinitialpressurizerwaterlevelisassumedtobeatthemaximumnominalsetpointof62Knarrowrangespanplusuncertaintiesof5Xnarrowrangespan.Theresultsdemonstratethatnaturalcirculationflowissufficienttoprovideadequatedecayheatremovalfollowingreactortripandreactorcoolantpumpcoastdown.Thepressurizerdoesnotfill.Thus,thelossofACpowerdoesnotadverselyaffectthecore,thereactorcoolantsystem,orthesteamsystem,andtheauxiliaryfeedwatersystemissufficienttopreventwaterreliefthroughthepressurizerrelieforsafetyvalves.2.1.16SteamlineBreakThesteamlinebreakaccidentwasanalyzedbythelicenseetoassesstheimpactofthereducedreactorcoolantsystempesssureoftheRTPprogramandthelowsteampressuresetpoint(loweredfrom600psigto500psig)ofthecoincidencelogicwithhigh-highsteamflowforsteamlineisolationandsafetyinjectionactuation.Anend-of-lifeshutdownmarginof1.6XdeltaK/Kfornoload,equilibriumxenonconditions,withthemostreactivecontrolrodstuckinitsfullywithdrawnposition,wasassumed.Anegativemoderatortemperaturecoefficientcorrespondingtotheend-of-lineroddedcorewasassumed.Thelicenseeevaluatedfourcombinationsofbreaksizesandinitialplantconditionstodeterminethecorepowertransientwhichcanresultfromlargeareapipebreaks.Thefirstcasewasthecompleteseveranceofapipedownstreamofthesteamflowrestrictorwiththeplantatno-loadconditionsandallreactorcoolantpumpsrunning.Thesecondcasewasthecompleteseveranceofapipeinsidethecontainmentattheoutletofthesteamgeneratorwiththeplantatno-loadconditionsandallreactorcoolantpumpsrunning.ThethirdcaseisthesameasthefirstcasewiththelossofoffsitepowersimultaneouswiththegenerationofaSafetyInjectionSignal(lossofoffsitepowerresultsinreactorcoolantpumpcoastdown).ThefourthcaseisthesameasthesecondcasewithlossofoffsitepowersimultaneouswiththegenerationofaSafetyInjectionSignal.AfifthcasewasperformedtoshowthattheONBRremainsabovethesafety-limitONBRvalueintheeventofthespuriousopeningofasteamdumporreliefvalve.Thelicenseedeterminedthatthefirstcasewasthelimitingcase,thatis,thedouble-endedruptureofamainsteampipelocatedupstreamoftheflowrestrictorwithoffsitepoweravailableandatno-loadconditions.Theresultsindicatethatthecorebecomescriticalwiththecontrolrodsinserted(however,withthemostreactivecontrolrodstuckout)beforeboronsolutionat2400ppmentersthereactorcoolantsystem.Thecorepowerpeaksatlessthanthenominalfullcorepower.TheONBanalysisshowedthatthe
Theinitialprimarytemperatures andsecondary steampressures undertheRTPconditions willbelowerthanthoseusedintheFSARanalysis.
Thelicenseehasconfirmed thatcontainment environmental qualification ofequipment insidecontainment isnotaffected.
Thesuperheated massandenergyreleaseanalysisoutsidecontainment wasevaluated toaddressequipment qualification issues.Theprimarytemperatures andsecondary steampressures resulting fromtheRTPconditions willbelowerthanthoseusedintheFSAR'analysis.
Themassandenergyreleasewillbelowerandoperation withRTPwillresultinlowertemperatures inthebreakareas.Assuch,thecurrentsuperheat massandenergyreleaseanalysisoutsidecontainment remainsboundingprovidedthefullpowervesselaveragetemperature isrestricted tothecurrently-licensed 567.8'Fandbelow.Thesecondary pressureconditions assumedir.thehighenergysteamlinebreakanalysiswi11belowerthanthosepresented intheFSAR.TheseboundtheproposedRTPconditions andtherefore thecurrentanaIysisissufficient.
Theprimaryfunctionofthespentfuelpoolcoolingsystem(SFPCS)istoremovedecayheatthatisgenerated bytheelementsstoredinthepool.Decayheatgeneration isproportional totheamountofradioactive decayintheelementsstoredinthepoolwhichisproportional tothereactorpowerhistory.Sincetheplant'sratedpowerlevelof3250NWtremainsunchanged, thedemandontheSFPCSisnotincreased.
Thepurification functioniscontrolled bySFPCSdemineralization andfiltration ratesthatarenotaffectedbytheRTPconditions.
Thefireprotection systemsandfirehazardsareindependent oftheplantoperating characteristics withtheexception oftheslightlyincreased currentrequirements fortheelectricmotordrivenpumpsintheprimarysystem.Theincreased loadisduetothemoredensewaterbeingpumpedundertheRTPconditions.
Theincreased currentrequiredissmallandtherefore isnotconsidered tobeafirehazard.Thelicenseeconfirmed thatBOPsystemshavethecapability tomaintainplantoperation undertheRTP-induced conditions withoutmodification totheexistingdesign.ThestaffhasreviewedtheFSARandlicenseesubmittals inordertoverifythatsafety-related BOPsystemperformance capability, asanalyzed, boundsthe changesindesignbasisaccidentassumptions createdbytheRTPoperation.
Thestaffhasconfirmed thatsafety-related BOPsystemdesigncapability, floodingprotection, aadequipment qualifications areboundedfortheproposedreratingandtherefore areconsidered acceptable asis.Basedontheabove,thestaffconcludes thattheproposedlicenseamendment fortheD.C.CookNuclearPlantUnit1concerning theReducedTemperature andPressureiswithintheexistingsafety-related BOPsystemdesigncapability fordesignbasisaccidentmitigation and,therefore, thestaff'spreviousapprovalagainsttheapplicable licensing criteriaforthemainsteamsystem,mainfeedsystem,CCWS,SWS,AFS,MSW,SGBS,SFPCS,floodingprotection, containment performance, andequipment qualifications remainvalid.Thestaff,therefore, findstheBOPsystemsconcerned acceptable forcontinued operation attheproposedreducedtemperature andpressure.
2.3REACTORVESSELANOVESSELINTERNALS ThereactorvesselisdesignedtotheASMEBoilerandPressureVesselCode,SectionIII(1965Editionwithaddendathroughthewinter1966).Thelicenseehasdetermined thattheoperation ofthereactorvesselunderthemostlimitingconditions oftheRTPreratingisacceptable fotitsoriginal40-yeardesignobjective.
Allofthestressintensity andusagefactorlimitsoftheapplicable codefortheUnit1reactorvesselarestillsatisfied whentheRTPisincorporated, withtheexception ofthe3SmlimitfortheControlRodOriveMotor(CROM)housingsandoutletnozzlesafeend.However,thecodepermitsexceeding the3Smlimitprovidedplasticorelastic/plastic analysiscriteriaaremet.Thelicensee's reviewofthereactorvesselsinternals fortheRTPprogramincludedthreeseperateareas:athermal/hydraulic assessment, aRCCAdroptimeevaluation, andastructural assessment.
Forceincreases werecalculated fortheuppercoreplate,acrossthecorebarrel,andintheupperinternals neartheoutletnozzles.Intheseareastheexistingmarginwasdetermined tobesufficient toaccommodate theincreased stresses.
Theresultsofthisreviewindicatethattheoriginalreactorinternals components remainincompliance withthecurrentdesignrequire-ments whenoperating atthenewrangeofprimarytemperatures andpressures.
ThePTSrulerequiresthatattheend-of-life ofthereactorvessel,theprojected reference temperature (calculated bythemethodgivenin10CFR50.61(b)(2),
RT/pts)valueforthematerials inthereactorvesselbeltlinebelessthanthescreening criterion in10CFR50.61(b)(2).
TheRT/ptsvalueisdependent upontheinitialreference temperature, marginsforuncertainty intheinitialreference temperature andcalculational procedures, theamountsofnickelandcopperinthematerial, andtheneutronfluenceattheend-of-life ofthereactorvessel.Oftheseproperties, onlyneutronfluenceisaffectedbyreratingwithRTP.Sincethecoldercoolantinthedowncomer regionismoredenseandthusprovidesforamoreefficient neutronshieldforthereactorvessel,fluenceestimates arelowerthanthoseatcurrentoperating conditions.
Allotherproperties areindependent oftheRTP-induced conditions.
TheeffectsofNRCGenericletter88-11,datedJuly12,1988,regarding Regulatory Guide1.99Rev.2wereevaluated byWestinghouse anddetermined tonotbesignificant forRTP.TheeffectofRTPwillbeincorporated bythelicenseeinfuturePTSsubmittals. Anevaluation wasperformed todetermine theimpactofRTPreratingontheapplicability ofthePTSscreening criteriaintermsofvesselfailure.Aprobabilistic fracturemechanics sensitivity studyoflimitingPTStransient characteristics, startingfromaloweroperating temperature, showedthattheconditional probability ofreactorvesselfailurewillnotbeadversely affected.
Therefore, theoverallriskofvesselfailurewillnotbeadversely
: impacted, meaningthatthescreening criteriainthePTSRulearestillapplicable fortheO.C.CookNuclearPlantUnit1reactorvessel'relative toreratedconditions.
AnalysisoftheCROMhousingsandtheoutletnozzlesafeendshowsthemaximumrangeofprimaryplussecondary stressintensity exceedthe3Smlimit.Thelicensee, however,performed asimplified elastic/plastic analysisinaccordance withparagraph NB-3228.3 oftheASMEBoilerandPressureVesselCode,SectionIII(1971orlateredition)andthehigherrangeofstressintensity isjustified.
Therefore, basedonthelicensee's reviewsandanalysisoftheaboveportionsofthereactorvesselandinternals, thestaffconcludes thattheconditons imposedonthereactorvesselandinternals bytheRTPreratingareacceptable.
2.4TURBINEMISSILESTheFSARturbinemissileanalysisisbasedonalowpressureturbinefailure.Thelicensee's analysisoftheslightlychangedsteamconditions enteringthelowpressureturbineshowsthattheprobabilty ofalowpressureturbinemissileisvirtually unaffected.
Thefactorsthatdirectlyorindirectly causestresscorrosion crackinginthelowpressureturbinewheelsaresteampressureandtemperature, massflowrate,steammoisturecontent,waterchemistry, oxygenlevel,andturbinespeed.Thelicenseereportedthatchangesinthesefactorsarenegligible duetotheRTP-inducedconditions.
Theonlynoticeable changethatthestaffcandetermine isa1.0Xincreaseinthesteamflowrate.Thestaff'sconclusion, basedonthelicensee's review,isthattheturbinemissilehazardisneglibily affectedbytheRTPconditons andis,therefore, acceptable.
2.5PLANTSTRUCTURAL ANOTHERMALDESIGNTheNSSSreviewconsisted ofcomparing theexistingNSSSdesignwiththeperformance requirements atthereratedRTPconditions.
Thecurrentcomponents oftheCookUnitI/model51steamgenerators continuetosatisfytherequirements oftheASMEB8PVCode,SectionIII,(thecodeapplicable forthedesignoftheCookNuclearPlantUnit1),forthisprogram.Inaddition, thermalhydraulic evaluations ofthesteamgenerators showacceptable stability andcirculation ratiosattheRTPreratedconditions.
Circulation ratioisprimarily afunctionofpower,whichisunchanged, therefore isitselfvirtually unchanged.
Thedampening factorcharacterizes thethermalandhydraulic stability ofthesteamgenerator.
Mestinghouse hasdetermined thatalldampening factorsarenegativeatnearlythesamevalueasthecurrentoperating conditions.
Anegativedampening factorindicates astabledevice.Sincethecoderequirements continuetobesatisfied, andsincestability andcirculation ratioshavebeendetermined byMestinghouse tobe withinthedesigncriteria, thestaffconcludes thatRTPoperation isacceptable fortheModel'1steamgenerators.
Thepressurizer.
structural analysiswasperformed bymodifying theoriginalO.C.CookNuclearPlantPressurizer analysis("Model51SeriesPressurizer Report").Theanalysiswasperformed totherequirements oftheASHECode1968Edition,whichisthedesignbasisfortheO.C.CookNuclearUnits.TheonlyASMECoderequirement affectedbythetransient modifications wasfatigue.Thelimitingcomponents forfatigueusagefactorsaretheuppershellandthespraynozzle,whicharecalculated tobe0.97and0.99respectively.
Theseremain,however,withintheASMEacceptance criteriaof1.0andare,therefore, acceptable tothestaff.Reactorcoolantpumphydraulics andmotoradequacywerereviewedfortheproposedRTPconditions byWestinghouse.
Theincreased hothorsepower andstatortemperature conditions arewithintheNEHAClassBlimits.AreviewofgenericReactorCoolantPumpstressreportsformodel93ApumpsbyWestinghouse findsthatallthedesignrequirements provideadequateboundingoftheRTP-induced conditions and,therefore, thestafffindsthisacceptable.
Ouetolowertemperatures fromtheRTPprogram,theRCSwillnotexpandasmuchascurrently designed.
Thiswillresultinsupportgapsbeingpresentinlocations thatwerepreviously zero.Thesmallgapsinthesupportstructure mayresultinincreased dynamicloading(bothseismicandLOCA)inlocalized areas.TheoverallLOCAloadingsontheRCS,however,remainapproximately thesameforthefollowing reasons:ThelowerRCStemperatures yieldlowerthermalloadings.
2.The0.C.CookNuclearPlanthasaleakbeforebreakdesignmethodology whichallowsthefaultedcondition evaluation toproceedwithouthavingtoconsiderloadingsfrompostulated breaksintheprimarylooppiping.Theseismicmarginavailable forthisplantisalsosignificant whichmeansthattherearenocomponents inthesystemwhichareclosetotheirallowable stresses.
Basedontheabove,thetemperatures associated withtheRTPreratingare,therefore, acceptable tothestaffforthelooppiping,theloopsupports, andtheprimaryequipment nozzles.TheeffectsoftheO.C.CookNuclearPlantRTPreratingontheoperability anddesignbasisanalysisoftheCROM'sofUnit1werereviewed.
TheRTPreratingdoesnotaffecttheoperability orservicedurationoftheCROMlatchassembly, driverod,orcoilstack.TheCROMlatchassemblyanddriverodwereoriginally designedfor650'F,andthedesignbasisstressandfatiguecalculations remainrepresentative forthesecomponents sincethecomponents areexposedtothehotlegtemperature, whichhasnotincreased.
Thecoilstackislocatedontheoutsideofthepressurehousingwhichissubjecttoambientcontainment temperatures, whichhavenotchanged.Anevaluation wasperformed ontheimpactoftheRTPreratedoperating conditions onthestructural analysisoftheCROMpressurehousing.Thecomponent ofthepressurehousingwhichexperiences thegreateststressrangeandhasthehighestfatigueusagefactoristheuppercanopy.Thisisthepressurehousingsealweldbetweentherodtravelhousingandthecap.Mestinghouse providedareviewontheimpactofthedifferences betweentheoriginalnormalandupsetcondition transients andthoseoftheRTPonthecodeallowable stresslevelsandfatigueusagefactors.Theresultsoftheevaluation are:2.Themaximumstressintensity rangeisequalto109,960psi,whichislessthanthemaximumallowable rangeofthermalstressof127,105psiwhichwaspreviously foundtobeacceptable.
Thetotalfatigueusagefactorisequalto0.672,whichislessthantheallowable limitof1.0(ASMESectionIII,1971Edit>on).
Thestaffconcludes, basedonlicenseeevaluations, thattheimpactoftheRTPprogramontheCRDM'siswithindesigncriteriaand,therefore, isfoundtobeacceptable.
2.6CONTAINMENT EVALUATION Short-Term Containment ResonseAspartoftheanalysistosupportRTPoperation, thereactorcavityandloopsubcompartments short-term pressurization intheeventofabreakoflargecoolantpipingorasteamlinewasreanalyzed byWestinghouse..
Insomeofthoseareas,theanalyzedpressureexceededthestructural limitsasexpressed intheFSAR.Thesestructures werereevaluated usingthepeakpressures obtainedfromtheRTPanalysis, WCAP11902(ref.2),toconfirmthattheacceptance criteriaofSection5.2.2.3oftheupdatedFSAR,titled"Containment DesignStressCriteria,"
weremet.Theoriginaldesignofthecontainment includedanumberofconsiderations ofwhichthesubcompartment pressures werebutone.Forexample,radiation shielding requirements mayhavedictatedathickerconcreteslabthanwasnecessary fromastructural perspective.
Theactualcapacityisgenerally-greaterthanthedesignpressures statedintheFSAR,andisfurtherincreased duetothefactthatthematerials usedarestrongerthantherequiredminimumdesignstrengths.
IntheRTPstructural review,advantage wastakenofthesegreatercapacities byperforming manualorfiniteelementevaluations oftheaffectedstructural elements.
Thegreatermaterial.
strengths wereusedintheanalysiswhereappropriate.
LooSubcomartmentsThecontainment buildingsubcompartments arethefullyorpartially enclosedspaceswithinthecontainment whichcontainhighenergypiping.Thesubcompartments aredesignedtolimittheadverseeffectsofapostulated highenergypiperupture.Theresultsoftheshorttermcontainment analysesandevaluations fortheD.C.CookNuclearPlantUnit1demonstrate that,forthepressurizer enclosure, thefanaccumulator room,andthesteamgenerator enclosure, theresulting peakpressures remainbelowtheallowable designpeakpressures'or theloopcompartments, thepeakcalculated pressures attheRTPreratedconditions arehigherthantheFSARdesignallowables.
Fortheseareas,structural evaluations wereperformed asdiscussed abovefortherevisedpeakpressures, andthestructural adequacyofthecontainment subcompartments havebeenconfirmed (Ref.10)asfollows:  1V~~~~~~'eDifferential PressureNode1or6toNode25,Thisisthedifferential pressurefromthereactorcoolantloopcompartments adjacenttatherefueling canalnodes1or6acrosstheoperating decktotheuppercontainment.
OriginalDesignpressureOriginalCalculated pressureNewCalculated pressure16.6psi14.1psi18.7psiThelicenseedemonstrated theincreased differential pressuretobeacceptable byreviewofexistingcomputeranalysisofthereactorcoolantpumphatchcoversandreevaluation oftheoperating deckloadcarryingcapacity.
Differential PressureNode2or5toNode25Thisisthedifferential pressureacrosstheoperating deckfromthereactorcoolantloopcompartments located90degreesfromtherefueling canaltotheuppercontainment.
OriginalDesignpressureOriginalCalculated pressureNewCalculated pressure12.0psi10.6psi13.0psiThelicenseedemonstrates theincreased differential pressuretobeacceptable bycomparison toNode1andNode6areas,Theslabsinbothareasarethesame.PeakShellPressureThisisthedifferential pressureacrossthecontainment shelltotheoutside,fornodeslocatedintheicecondenser inletareasclosesttotherefueling canal.OriginalDesignpressureOriginalCalculated pressureNewCalculated pressure12.0psi10.8psi14.0psiThelicenseedemonstrates theincreased pressuretobeacceptable byevaluation onalocalized basis.Thecontainment shellcanhandlepressures wellinexcessoftheoverall12psidesignpressure.
Theaveragepressureoverthestructurally significant portionofthecontainment shellsurrounding andincluding thesenodesissmallerthanthe12psicontainment shelldesignpressure.
ReactorCavitThereactorcavityisthestructure surrounding thereactorwithpenetrations forthemaincoolantpiping.Thisstructure isdesignedtolimittheadverseeffectsoftheinitialpressureresponsetoalossofcoolantaccident.
Theresultsofthereactorcavityanalysisandevaluations fortheD.C.Cook.NuclearPlantUnit1demonstrate that,forthereactorvesselannulusandpipeannulus,theresulting*peak pressures attheRTPreratedconditions arewithintheFSARdesignallowables.
Fortheupperandlowerreactorcavitiesthepeakcalculated pressures underRTPconditions exceededthestructural designpressures (Ref.2,Sections3.7.2and3.7.3)asstatedintheFSAR.Forthese 0  areas,structural evaluations wereperformed fortherevisedpeakpressures,
~~andthestructural adequacyofthecontainment subcompartment hasbeenconfirmed (Ref.10)asfollows:MissileShieldRefuelinCanalBulkheadBlocksandUerReactorCavitalsferentlaressuresTheupperreactorcavitywallssurroundthereactorhead.Themissileshieldsandtherefueling canalbulkheads areblocksseparating theupperreactorcavityfromuppercontainment.
Themissileshieldisbolteddownduringoperation, andisremovable forrefueling.
Therefueling canalbulkheads fitsnuglyingroovesintheupperreactorcavitywalls.~CiII11Wi1Sli11andBulkheads OriginalOesignpressureOriginalCalculated pressureNewCalculated pressure48.0psi44.1psi48.4psi48.0psi44.1psi54.3psiThelicenseedemonstrates theincreased pressureforthecavitywalltobeacceptable byfiniteelementanalysisoftheentireupperreactorcavitywall.Thelicenseehasdemonstrated theincreased pressureforthemissileshieldsandthebulkheads tobeacceptable bymanualcalculation.
Thetestcylinderbreakstrengthoftheconcrete, whichishigherthanthedesignstrength, wasalsotakenintoconsideration.
PeakLowerCavitPressureThisisthecavitylocatedunderthereactorvessel.Thepeakpressureisusedinthestructural analysisratherthanthedifferential pressuresincemostofthecavitywallsareinthefoundation mat.OriginalOesignpressureOriginalCalculated pressureNewCalculated pressure15.0psi13.8psi18.5psiThelicenseedemonstrated thattheincreased pressures areacceptable bymanualcalulation.
Thestaffconcludes, basedonthelicensee's demonstration, thatthe0.C.CookNuclearPlant'sdesignbasispertaining tocontainment shorttermresponse, asstatedinChapter5.2.7.3oftheFSAR,isadequateforRTPoperation, andtherefore, isacceptable.
ThelicenseemustupdatetheFSARtoreflectthehigherstructural designvalues.LonTermContainment PressureThelongtermpeakcontainment pressureanalysissupportsoperation withtheRHRcrosstievalvesclosedatapowerlevelof3425NMtforbothUnits1and2containment structure..
Thisanalysiscontained additional justification foroperation undertheRTPconditions (Ref.11)andwasapprovedbythestaffSafetyEvaluation datedJanuary30,1989(Ref.12).
I HII-20-~~2.7NUCLEAR,PROCESSANDPOST-ACCIDENT SAMPLINGSYSTEMSTheNuclearSamplingSystem(NSS)fsdesignedtoproviderepresentative samplesforlaboratory.
analysesusedtoguidetheoperation ofvariousprimaryandsecondary systemsthroughout theplantduringnormaloperation.
Sincereduction ofsamplepressureandtemperature, whennecessary, isalreadybeingdonebyheatexchangers andneedlevalves,theparameters associated withtheRTPprogramdonotaffecttheperformance oftheNSS.Withnopowerupratfng, thesourcetermremainsunchanged.
Therefore, thestaffconcludes thatoperation underRTPconditions fsacceptable fortheNSS.Thestafffindsthat,sincenopowerupratingisbeingproposedatthistime,thereisaninsignificant effectonthepost-accident containment thermalconditions andtherefore theexistingpost-accident samplingsystemremainsadequateandisacceptable.
Operation underRTPconditions resultsinslightreductions insecondary sfdetemperatures andpressures withnochangeinthesourceterm.Thestaffconcludes thatthechangeca'nbeaccommodated bytheprocesssamplingsystemwithoutcausingdegradation oftheirperformance, andfs,therefore, acceptable.
2.8ELECTRICSYSTEMSDESIGNOperation underRTPconditions resultsinminorchangestothe.heatbalance.Theonlyimpactnotedontheelectrical systemsistheslightincreaseinmotorcurrentforthemotorsusedasprimemoversofprimarycoolant.Therequiredpowerfsincreased bythehigherdensities encountered duetotheRTPprogram.Thelicenseehasreviewedcablepenetratfons, busses,andmotorratingstoconcludethatthereissufficient designmargintohandletheincreased load.Thestafffinds,basedonthelicensee's evaluation, thattheproposedRTPprogramminimally affectstheelectricpowersystemandassociated loadsandfstherefore, acceptable.


minimumDNBRremainedabovethesafetylimitONBRvalue,eventhoughthiseventisclassifiedasanaccidentwithfuelrodsundergoing.DNBnotprecluded.Theanalysisperformedbythelicenseedemonstratesthatasteamlinebreakaccidentwillnotresu'ftinunacceptableconsequences.2.1.17RutureofControlRodOriveMechanismHousinRodE'ectionAccidentTherodejectionaccidentisanalyzedatfullpowerandhot,zero-powerconditionsforbothbeginning-of-cycle(BOC)andend-of-cycle(EOC).Theanalysisusedejectedrodworthandtransientspeakingfactorsthatareconservative.Reactorprotectionforarodejectionisprovidedbyneutronfluxtrip,highandlowsetting,andbythehighrateofneutronfluxincreasetrip.Theanalysismodeledthehighneutronfluxtriponly.Themaximumfueltemperatureandenthalpyoccurredforhot,full-powerBOCcase.Thepeakfuelenthalpywas,however,below200cal/gmforallthecasesanalyzed.Forthehot,full-powercases,theamountoffuelmeltinginthehotpelletwaslessthan10K.BecausefuelandcladtemperaturesandthefuelenthalpydonotexceedtheFSARlimits,theconclusionsoftheFSARremainvalid.Basedonareviewofthelicensee'sevaluationandanalysisofthenon-LOCAtransientsandaccidents(2.1.3through2.l.17)forthereducedtemperatureandpressureoperation(theRTPprogram),thestaffconcludesthattheyareacceptablebecause(1)approvedmethodologiesandcomputercodeshavebeenused,and(2)allapplicablesafetycriteriahavebeenmet.Thisreviewisbasedon(1)afullpowervesselaveragetemperatureoflessthanorequal'to567.8'F,(2)asteamgeneratortubeplugginglevelof10Kwithapeaktubeplugginglevelof15K,and(3).theminimummeasuredflowrequirementof91,600gpmperloo'pismet.2.1.18SteamGeneratorTubeRutureSGTR)AccidentThelicenseeanalyzedthesteamgeneratortuberupture(SGTR)eventforCookUnit1usingmethodologyandassumptionsconsistentwiththoseusedfortheCookFSARSGTRanalysis.TherangeofparametersassociatedwithafuturereratingprogramandtheRTPprogramwereusedinsensitivityanalysestoassesstheimpactoftheseprogramsontheprimary-to-secondarybreakflowandthesteamreleasedtotheatmospherebytheaffectedsteamgenerator.ThesetwofactorsaffecttheradiologicalconsequencesofanSGTRaccident.Inaddition,thelicensee'sevaluationoftheradiologicaldosesconsiderstheeffectofthenoblegasconcentrations.Thelicenseestatesthattheresultsoftheanalysesshowthatthedosesremainwithinasmallfraction(10K)ofthe10CFRPart100guidelinesforboththethyroidandwholebodydoses.Sincetheworstcasedosesarewithinthe10CFRPart100guidelines,thestaffconcludesthattheanalysisoftheSGTRisacceptable2.1.19FuelStructuralEvaluationThefuelassemblyliftandbuoyancyforcesareincreasedfortheRTPprogramatCookUnit1becauseareductioninreactorcoolantsystemtemperatureofabout20'Fwillincreasethecoolantdensitybyabout3X.Thelicenseeevaluatedthisforceincreaseagainstthefuelassemblyallowableholddownload.Theresultsoftheevaluationshowthattheincreasedforceiswellwithintheminimumspringholddownforcedesignmargin.Inaddition,thelicenseedeterminedthatthecold-legbreakremainsthemostlimitingpiperupturetransientwithrespecttolateralandverticalhydraulicforces.Basedonthelicensee'sreview,thestaffconcludesthatthe15xl5fuelassemblydesignremainsacceptable.
==3.0 TECHNICAL==
Thefuelroddesignwasevaluatedtoassesstheimpactoffuturererating.Thelicenseedeterminedthattherodinternalpressurecriterionwillcontinuetobethemoreimportantfactorinfuelburnupcapabilities.Thefuelwillalsoundergomoreseverefueldutybecauseoftheupratedpower.Thelicenseeplanstoperformcycle-specificverificationforeachreloadtoassurethatallfuelroddesigncriteriaaremet.'-2;1;20-.-Justificationfor.PressurizerLevelThepurposeofthePressurizerHighLevelLimitistoensurethatasteambubbleispresentinthepressurizerpriortopoweroperationtominimizetheconsequencesofoverpressuretransientsandthepossibilityofpassingwaterthroughthereliefandsafetyvalves.Thesafetyanalysisassumesamaximumwatervolumewhichcorrespondstoabout65Kindicatedlevel.Thisnominalindicatedlevelismaintainedduringnormaloperationbythepressurizer.levelcontrolsystem.Thelicensee(andthefuelsupplier-Westinghouse)recommendstheuseof92KforthePressurizerHighLeveltriplimit.Theystatethatthisnewtriplimitwi11stillensurethepresenceofasteambubbleinthepressurizer.Thepressurizerlevelwill,however,becontrolledtothenominalvalue.Fornormaloperations(ConditionIevent),thereactorparameters,includingthepressurizerlevel,donosignificantlydeviatefromtheirnominalvalues.Thelicenseeconcludesthat,forthepressurizerleveltoexceedthenominallevel,a~~~~~~~~transientoraccidentmustoccurforwhichprotectiveactionisprovidedbytheReactorProtectionSystem.Anyotherpossibleconditionsforwhichthenominallevelwouldbeexceededbeforeandduringatransientwouldrequireatransient'rtransientsbeyondthoseusuallyconsideredforanFSARtypeofanalysis.Thestaffconcludesonthebasisofthelicensee'sevaluat>onthataPressurizerHighLevelTripof92~isacceptable.2.2BALANCEOFPLANTSYSTEMSThelicenseestatesthatbalanceofplant(BOP)systemsandcomponentswereanalyzedfortheeffectsofoperationatreducedtemperatureandpressureconditions.ThesecondarysideconditionsfortheseanalysesweredeterminedusingthePerformanceEvaluationandPowerSystemEfficiencies(PEPSE)heatbalancedata(14.20E6lb/hrmainsteamflowandmainfeedflow).Thesystemsreviewedwerethenonsafety-relatedsecondarysidepowergeneratingandnonpowergeneratingsystems.Includedinthelicensee'sanalysiswereportionsofthemainfeedwater,mainsteam,steamgeneratorblowdown(SGBS),componentcoolingwater(CCWS),auxiliaryfeedwater(AFS),heating,ventilation,andairconditioning(HVAC),servicewater,wastedisposal,fireprotection,radiationmonitoring,andspentfuelpool(SFP)coolingandcleanupsystems.TheperformanceoftheaboveBOPsystemswasevaluatedatthereducedtemperatureandpressurebyusingthenewprimarysideNSSSdata(14.20E6lb/hrmainsteamandmainfeedflow,and434'Fmainfeedtemperature)furnishedbyWestinghouse.Thelicenseestatesthattheimpactoncontainmentpressuresandtemperatures~~~~~~followingapostulateddesignbasismainsteamlinebreakwasevaluatedanditseffectonequipmentqualificationwasverified.Thefloodinganalysisinsafety-relatedareasoftheplantasaresultofapostulatedpipebreakwasreevaluatedduetotheslightincreaseinflowratesinthemainfeed,condensate,andmainsteamsystems.Theturbine-generatorsystemwasalsoevalutedtoconfirmitsintegrityandperformanceattheincreasedsteamvolumetricflowrateandtoverifythattheoriginalturbinemissileanalysisremainsvalid. Thelicensee'sanalysisofBOPsystemperformanceprovidedthefollowingfindings~~~~~~~concerningtheRTPconditionsatthepresentlicensedpowerlevelof3250HMtNSSSpower:(a)(b)(c)The:capabilityofthesafety-relatedportionofthemainfeedwatersystemwillnotbeaffectedandwillcontinuetoperformitssafetyfunctionbecausetheproposedRTPconditionsareboundedbytheexistingmainfeedwatersystemdesign.Thelicensee'sanalysisofthepressure/temperatureratingconditionsforthesystemconfirmsthatpressureboundaryintegritywillnotbeaffected.Inaddition,themainfeedwatersystemisolationvalveclosuretimeisnotaffectedbytheRTP"imposedconditions.ThecapabilityofthesteamgeneratorblowdownsystemtoremoveimpuritiesfromthesecondarysideremainsessentiallythesamefortheRTP-imposedconditionsduringnormaloperationbasedontheexsistingdesign.Thereactormakeupwatersystem's(HSM)capabilitytoprovidedemineralizedwaterformakeupandflushingoperationsthroughouttheNSSSauxilliaries,theradwastesystems,andfuelpoolcoolingandcleanupsystemisnotchaIlengedbecausetheexistingsystemdesignisbasedontheworstcasedemandwhichboundstheRTPconditions.(d)Thelicenseeconfirmedthatsafety-relatedequipmentwillnotbeaffectedbychangesinthefloodinganalysisduetotheRTPconditions.FloodingintheauxiliarybuildingduetofailureofnonseismicClassIpipinghasbeenreviewed.Thelicenseeanalyzedsystemshavingaccesstolargewatervolumesand/orpotentiallylargeflowrateswereconsideredasdiscussedintheFSAR.Theonlysuchsystemisthemainfeedwatersystem.Sincethechangesinflowinthemainfeedwatersystemarestillwithinthedesignlimits,theresultsconcerningfloodingdiscussedintheFSARarestillapplicable.Floodinginthecontainmentisslightlyincreasedduetothelargerinitialwatermassinthereactorcoolantsystembecauseofthehigherdensityatthereducedtemperature.Thischangewasfoundtobewithinthevolumemarginsusedtodeterminethemaximumflood-upelevation.ThecontainmentfloodingevaluationintheFSARremainsvalidattheRTP-inducedconditions.(e)TheadequacyoftheAFMsystemforaccidentmitigationwasdemonstratedintheMestinghouseaccidentanalysisperformedinsupport'ftheRTPprogramunderthefollowingscenarios:1.Lossofmainfeedwater2.Lossofoffsitepower3.HainsteamlineruptureEachaccidentanalysisdemonstratedacceptancecriteriasuchassystemoverpressurelimitsorONBlimits.TheAFMsystem'sabilityfordesignbasisaccidentdecayheatremovalcalculatedintheRTPanalysisisunaffected.  
SPECIFICATIONS 1.Definition 1.38ondesignthermalpowerfsbeingdeletedonpage1-7oftheTechnical Specifications (TS's)becausetherefsnolongerasingledesignthermalpoweratwhichallthetransient andaccidentanalyseshavebeenperformed.
ThelicensedpowerlevelforCook1remains3,250MWt.Thischangeisacceptable.
2.Table1-3onpage1-10isbeingdeletedbecauseftpreviously gaveinformation ontheanalysesperformed atthedesignthermalpower.Thischangefsacceptable becausethedefinition ofdesignthermalpowerisbeingdeletedalso.3.Figure2.1-1onpage2-2fsbeingrevisedtoreflecttherevisedDNBRsafetylimitof1.45.Thischangeisacceptable becauseitissupported bythesafetyanalysis.
4.Thepressurizer pressurelowsetpoint(Item9ofTable2.2-1onpage2-5)fsincreased by10psig.Thisisacceptable becauseftwasassumedinthelarge-andsmall-break LOCAanalyses.
"21"~~~~~3.0TECHNICAL SPECIFICATIONS 1.Oefinition 1.38ondesignthermalpowerisbeingdeletedonpage1-7oftheTechnical Specifications (TS's)becausethereisnolongerasingledesignthermalpoweratwhichallthetransient andaccidentanalyseshavebeenperformed.
ThelicensedpowerlevelforCook1remains3,250HHt.Thischangeisacceptable.
2.3.4.6.7.Table1-3onpage1-10isbeingdeletedbecauseitpreviously gaveinformation ontheanalysesperformed atthedesignthermalpower.Thischangeisacceptable becausethedefinition ofdesignthermalpowerisbeingdeletedalso.Figure2.1.-1onpage2-2isbeingrevisedtoreflecttherevisedONBRsafetylimitof1.45.Thischangeisacceptable becauseitissupported bythesafetyanalysis.
Thepressurizer pressurelowsetpoint(Item9ofTable2.2-1onpage2-5)isincreased by10psig.Thisisacceptable becauseitwasassumedinthelarge-andsmall-break LOCAanalyses.
TheOvertemperature-Oelta Ttripsetpointequation(pages2-7and2-8)isbeingrevisedintermsofratedthermalpowerratherthandesignthermalpower.Inaddition, thisrevisedOTDTtripsetpointprotectsthecoresafetylimitsofFigure2.1-1.Thischangeisacceptable becauseitissupported bythenon-LOCAsafetyanalyses.
TheOverpower-Oelta Ttripsetpointequation(page2-9)isbeingrevisedtoreflecttherevisedcoresafetylimitsofFigure2.1-1.Thisequationisalsobeingdefinedintermsoftheindicated Tatratedthermalpower.Thesechangesareacceptable becausetilearesupported bythesafetyanalysisfortheRTPprogram.Technical Specification 3.2.2onpage3/42-5isbeingrevisedfromamaximumFof2.10to2.15.Thischangeisacceptable becauseitissupportetl bythelarge-break LOCAanalysis.
TheFvaluesforExxonfuelarebeingdeletedbecausethisfuelwilln3longerbeusedatCookUnit1.8.TheK(Z)curveapplicable toExxonfuel(page3/42-7)isbeingdeleted.Thisisacceptable becauseExxonfuelwillnolongerbeusedatCookUnit1.9.10.TheK(Z)curveforMestinghouse fuel(page3/42-8)isbeingrevised.Thisisacceptable becauseitissupported bythenewLOCAanalysisforCookUnitl.TheF-OeltaHlimitapplicable toExxonfuel(page3/42-9)isbeingdeleted.Thisisacceptable becauseExxonfuelwillnolongerbeusedatCookUnitl.Table3.2-1onpage3/42-14onONBparameters isbeingrevised.Tmustbelessthanorequalto570.9'F,thepressurizer l
-22"pressuremustbelessthanorequalto2050psig,andthereactorcoolantsystemtotalflowratemustbegreaterthanorequalto366,400gpm.Thesechangesareacceptable becausetheyreflectthesafetyanalysisfortheRTPprogram.Technical Specification 3.2.6onpage3/42-15isbeingrevisedtochangeFintheAPLlimitto2.15.Thischangeisacceptable because3treflectsthenewFlimitofSpecification 3.2.2.ThelimitsonAPLapplicable toE)xonfuelarebeingdeletedbecauseExxonfuelwillnolongerbeusedatCookUnitl.Functional Units2and11ofTable3.2-2onpage3/43-10arebeingchanged.Functional Unit2incorporates aneditorial changetoindicatethattheresponsetimeisapplicable toboththehighandlowsetpoints ofthePowerRangeNeutronFluxtrip.Thischangeisacceptable becauseitiseditorial innature.Functional Unitllisbeingchangedfromaresponsetimeof"notapplicable" to"equaltoorlessthan2seconds."
Thisisacceptable becausethistriponpressurizer water.level-high wasmodeledintheanalysisofthecontrolrodwithdrawal-at-power event.Functional Units1.fand4.dofTable3.3-4onpages3/43-24and3/43-26arebeingchangedtodecreasethesteamline pressurelowsetpointby100psig.Thesechangesareacceptable becausetheyaresupported bythesteamline breakanalysisandthesteamline breakmassandenergyevaluations.
Tec'hnical Specification 3.4.4onpage3/44-6isbeingrevisedto92Kofspan.Thischangeisacceptable becauseitissupported bythesafetyanalysis.
Technical Specification 3.5.l.bonpage3/45-1isbeingrevisedfromanaccumulator boratedminimumwatervolumeof929to921cubicfeet.Thischangeisacceptable becauseitisconsistent withtheLOCAanalysisforCookUnit1.Surveillance Requirement 4.5.2.fisbeingrevisedtoreducethedischarge pressureofthesafetyinjection pumpandtheresidualheatremovalpump.Thesechangesareacceptable becausetheyareconsistent withtheLOCAanalyses.
Surveillance Requirement 4.5.2.hisbeingrevisedbyaddingarequirement toverifythatthechargingpumpdischarge coefficient iswithinaspecified rangefollowing ECCSmodifications.
Thefootnoteisbrokenintofourpartsforclarity.Thischangeisacceptable becauseitensuresthattheflowdelivered tothecorebythechargingpumpsintheeventofaLOCAiswithintheanalyzedvalues.Surveillance Requirement 4.7.1.2on,page3/47-5isbeingrevisedtochangethedischarge pressurerequirements ofthemotorandturbinedrivenauxiliary feedwater pumpsto1375psigand1285psig,respectively.
Thiscorresponds toa5Xdegradation ofthepumps
,~l23fromthemanufacturer's pumpheadcurve.Thesechangesareacceptable becausetheyareconsistent withthechangesfortheRTPprogl'am>>
20.BasispageB2-1(a)isbeingchangedtoincorporate thedesignlimitandsafetyanalysislimitDNBRvalues.TheDNBlimitsforExxonfuelarebeingdeletedsinceExxonfuelisnolongerusedatCookUnit1.ThedesignlimitandsafetyanalysislimitDNBRvaluesareacceptable becausetheyareconsistent withtheRTPprogram.21.BasispageB2-2isbeingrevisedtodeletereference toF-DeltaHforExxonfuelandtodesignthermalpower.Thesechangesareacceptable becausereferences tobothitemshavebeendeletedintheSpecifications.
22.BasespageB2-4isbeingrevisedtoreflectthechangestotheOvertemperature-Delta Ttripfunction.
Thechangesareacceptable becausetheyreflectchangesmadetotheSpecifications.
23.BasespageB2-5isbeingrevisedtoreflectthechangestotheOverpower-Delta Ttripfunctionandthepressurizer waterlevel-high tr'ip.Thesechangesareacceptable becausetheyreflectchangestotheSpecifications.
24.BasespageB3/42-1isbeingrevisedtoreplacetheminimumDNBRvalueof1.69bythewords"thesafetylimitDNBR".Thischangeisacceptable becauseitwillavoidchangestotheBasesifthesafetylimitDNBRvalueischanged.25.Surveillance Requirement 4.1.1.5.bisbeingchangedtorequireTdetermination ofTevery30minuteswhenthereactoriscriti87and-TislesstQP545'F.Thischangeissupported byReference 9and57lowsafullpowerTof550'FforCookUnit1Cyclellwithoutrequiring amonitor)(II every30minuteswhileatfullpower,whichthepreviousvalueof551'Fwouldhaverequired.
Thischangeisacceptable becausetheintentofmaintaining theminimumcoolanttemperature forcriticality ofSpecification 3.1.1.5ispreserved.


13AsevaluatedintheRTPanalysis,theheatloadsinboththeprimaryandsecondarysystemsduetoreactordecayheatremainunchanged.Therefore,theComponentCoolingWaterSystem(CCWS)analysisandservicewatersystem(SWS)analysisintheFSARremainvalid.(g)(h)(k)Formainsteamlinebreaksinsidethecontainmentstructure,thepressureandtemperaturewillremainwithintheboundsofthepeakpressureandtemperatureusedintheevaluationofcontainmentperformance.TheinitialprimarytemperaturesandsecondarysteampressuresundertheRTPconditionswillbelowerthanthoseusedintheFSARanalysis.Thelicenseehasconfirmedthatcontainmentenvironmentalqualificationofequipmentinsidecontainmentisnotaffected.Thesuperheatedmassandenergyreleaseanalysisoutsidecontainmentwasevaluatedtoaddressequipmentqualificationissues.TheprimarytemperaturesandsecondarysteampressuresresultingfromtheRTPconditionswillbelowerthanthoseusedintheFSAR'analysis.ThemassandenergyreleasewillbelowerandoperationwithRTPwillresultinlowertemperaturesinthebreakareas.Assuch,thecurrentsuperheatmassandenergyreleaseanalysisoutsidecontainmentremainsboundingprovidedthefullpowervesselaveragetemperatureisrestrictedtothecurrently-licensed567.8'Fandbelow.Thesecondarypressureconditionsassumedir.thehighenergysteamlinebreakanalysiswi11belowerthanthosepresentedintheFSAR.TheseboundtheproposedRTPconditionsandthereforethecurrentanaIysisissufficient.Theprimaryfunctionofthespentfuelpoolcoolingsystem(SFPCS)istoremovedecayheatthatisgeneratedbytheelementsstoredinthepool.Decayheatgenerationisproportionaltotheamountofradioactivedecayintheelementsstoredinthepoolwhichisproportionaltothereactorpowerhistory.Sincetheplant'sratedpowerlevelof3250NWtremainsunchanged,thedemandontheSFPCSisnotincreased.ThepurificationfunctioniscontrolledbySFPCSdemineralizationandfiltrationratesthatarenotaffectedbytheRTPconditions.Thefireprotectionsystemsandfirehazardsareindependentoftheplantoperatingcharacteristicswiththeexceptionoftheslightlyincreasedcurrentrequirementsfortheelectricmotordrivenpumpsintheprimarysystem.TheincreasedloadisduetothemoredensewaterbeingpumpedundertheRTPconditions.Theincreasedcurrentrequiredissmallandthereforeisnotconsideredtobeafirehazard.ThelicenseeconfirmedthatBOPsystemshavethecapabilitytomaintainplantoperationundertheRTP-inducedconditionswithoutmodificationtotheexistingdesign.ThestaffhasreviewedtheFSARandlicenseesubmittalsinordertoverifythatsafety-relatedBOPsystemperformancecapability,asanalyzed,boundsthe changesindesignbasisaccidentassumptionscreatedbytheRTPoperation.Thestaffhasconfirmedthatsafety-relatedBOPsystemdesigncapability,floodingprotection,aadequipmentqualificationsareboundedfortheproposedreratingandthereforeareconsideredacceptableasis.Basedontheabove,thestaffconcludesthattheproposedlicenseamendmentfortheD.C.CookNuclearPlantUnit1concerningtheReducedTemperatureandPressureiswithintheexistingsafety-relatedBOPsystemdesigncapabilityfordesignbasisaccidentmitigationand,therefore,thestaff'spreviousapprovalagainsttheapplicablelicensingcriteriaforthemainsteamsystem,mainfeedsystem,CCWS,SWS,AFS,MSW,SGBS,SFPCS,floodingprotection,containmentperformance,andequipmentqualificationsremainvalid.Thestaff,therefore,findstheBOPsystemsconcernedacceptableforcontinuedoperationattheproposedreducedtemperatureandpressure.2.3REACTORVESSELANOVESSELINTERNALSThereactorvesselisdesignedtotheASMEBoilerandPressureVesselCode,SectionIII(1965Editionwithaddendathroughthewinter1966).ThelicenseehasdeterminedthattheoperationofthereactorvesselunderthemostlimitingconditionsoftheRTPreratingisacceptablefotitsoriginal40-yeardesignobjective.AllofthestressintensityandusagefactorlimitsoftheapplicablecodefortheUnit1reactorvesselarestillsatisfiedwhentheRTPisincorporated,withtheexceptionofthe3SmlimitfortheControlRodOriveMotor(CROM)housingsandoutletnozzlesafeend.However,thecodepermitsexceedingthe3Smlimitprovidedplasticorelastic/plasticanalysiscriteriaaremet.Thelicensee'sreviewofthereactorvesselsinternalsfortheRTPprogramincludedthreeseperateareas:athermal/hydraulicassessment,aRCCAdroptimeevaluation,andastructuralassessment.Forceincreaseswerecalculatedfortheuppercoreplate,acrossthecorebarrel,andintheupperinternalsneartheoutletnozzles.Intheseareastheexistingmarginwasdeterminedtobesufficienttoaccommodatetheincreasedstresses.Theresultsofthisreviewindicatethattheoriginalreactorinternalscomponentsremainincompliancewiththecurrentdesignrequire-mentswhenoperatingatthenewrangeofprimarytemperaturesandpressures.ThePTSrulerequiresthatattheend-of-lifeofthereactorvessel,theprojectedreferencetemperature(calculatedbythemethodgivenin10CFR50.61(b)(2),RT/pts)valueforthematerialsinthereactorvesselbeltlinebelessthanthescreeningcriterionin10CFR50.61(b)(2).TheRT/ptsvalueisdependentupontheinitialreferencetemperature,marginsforuncertaintyintheinitialreferencetemperatureandcalculationalprocedures,theamountsofnickelandcopperinthematerial,andtheneutronfluenceattheend-of-lifeofthereactorvessel.Oftheseproperties,onlyneutronfluenceisaffectedbyreratingwithRTP.Sincethecoldercoolantinthedowncomerregionismoredenseandthusprovidesforamoreefficientneutronshieldforthereactorvessel,fluenceestimatesarelowerthanthoseatcurrentoperatingconditions.AllotherpropertiesareindependentoftheRTP-inducedconditions.TheeffectsofNRCGenericletter88-11,datedJuly12,1988,regardingRegulatoryGuide1.99Rev.2wereevaluatedbyWestinghouseanddeterminedtonotbesignificantforRTP.TheeffectofRTPwillbeincorporatedbythelicenseeinfuturePTSsubmittals. AnevaluationwasperformedtodeterminetheimpactofRTPreratingontheapplicabilityofthePTSscreeningcriteriaintermsofvesselfailure.AprobabilisticfracturemechanicssensitivitystudyoflimitingPTStransientcharacteristics,startingfromaloweroperatingtemperature,showedthattheconditionalprobabilityofreactorvesselfailurewillnotbeadverselyaffected.Therefore,theoverallriskofvesselfailurewillnotbeadverselyimpacted,meaningthatthescreeningcriteriainthePTSRulearestillapplicablefortheO.C.CookNuclearPlantUnit1reactorvessel'relativetoreratedconditions.AnalysisoftheCROMhousingsandtheoutletnozzlesafeendshowsthemaximumrangeofprimaryplussecondarystressintensityexceedthe3Smlimit.Thelicensee,however,performedasimplifiedelastic/plasticanalysisinaccordancewithparagraphNB-3228.3oftheASMEBoilerandPressureVesselCode,SectionIII(1971orlateredition)andthehigherrangeofstressintensityisjustified.Therefore,basedonthelicensee'sreviewsandanalysisoftheaboveportionsofthereactorvesselandinternals,thestaffconcludesthattheconditonsimposedonthereactorvesselandinternalsbytheRTPreratingareacceptable.2.4TURBINEMISSILESTheFSARturbinemissileanalysisisbasedonalowpressureturbinefailure.Thelicensee'sanalysisoftheslightlychangedsteamconditionsenteringthelowpressureturbineshowsthattheprobabiltyofalowpressureturbinemissileisvirtuallyunaffected.Thefactorsthatdirectlyorindirectlycausestresscorrosioncrackinginthelowpressureturbinewheelsaresteampressureandtemperature,massflowrate,steammoisturecontent,waterchemistry,oxygenlevel,andturbinespeed.ThelicenseereportedthatchangesinthesefactorsarenegligibleduetotheRTP-inducedconditions.Theonlynoticeablechangethatthestaffcandetermineisa1.0Xincreaseinthesteamflowrate.Thestaff'sconclusion,basedonthelicensee'sreview,isthattheturbinemissilehazardisneglibilyaffectedbytheRTPconditonsandis,therefore,acceptable.2.5PLANTSTRUCTURALANOTHERMALDESIGNTheNSSSreviewconsistedofcomparingtheexistingNSSSdesignwiththeperformancerequirementsatthereratedRTPconditions.ThecurrentcomponentsoftheCookUnitI/model51steamgeneratorscontinuetosatisfytherequirementsoftheASMEB8PVCode,SectionIII,(thecodeapplicableforthedesignoftheCookNuclearPlantUnit1),forthisprogram.Inaddition,thermalhydraulicevaluationsofthesteamgeneratorsshowacceptablestabilityandcirculationratiosattheRTPreratedconditions.Circulationratioisprimarilyafunctionofpower,whichisunchanged,thereforeisitselfvirtuallyunchanged.Thedampeningfactorcharacterizesthethermalandhydraulicstabilityofthesteamgenerator.Mestinghousehasdeterminedthatalldampeningfactorsarenegativeatnearlythesamevalueasthecurrentoperatingconditions.Anegativedampeningfactorindicatesastabledevice.Sincethecoderequirementscontinuetobesatisfied,andsincestabilityandcirculationratioshavebeendeterminedbyMestinghousetobe withinthedesigncriteria,thestaffconcludesthatRTPoperationisacceptablefortheModel'1steamgenerators.Thepressurizer.structuralanalysiswasperformedbymodifyingtheoriginalO.C.CookNuclearPlantPressurizeranalysis("Model51SeriesPressurizerReport").TheanalysiswasperformedtotherequirementsoftheASHECode1968Edition,whichisthedesignbasisfortheO.C.CookNuclearUnits.TheonlyASMECoderequirementaffectedbythetransientmodificationswasfatigue.Thelimitingcomponentsforfatigueusagefactorsaretheuppershellandthespraynozzle,whicharecalculatedtobe0.97and0.99respectively.Theseremain,however,withintheASMEacceptancecriteriaof1.0andare,therefore,acceptabletothestaff.ReactorcoolantpumphydraulicsandmotoradequacywerereviewedfortheproposedRTPconditionsbyWestinghouse.TheincreasedhothorsepowerandstatortemperatureconditionsarewithintheNEHAClassBlimits.AreviewofgenericReactorCoolantPumpstressreportsformodel93ApumpsbyWestinghousefindsthatallthedesignrequirementsprovideadequateboundingoftheRTP-inducedconditionsand,therefore,thestafffindsthisacceptable.OuetolowertemperaturesfromtheRTPprogram,theRCSwillnotexpandasmuchascurrentlydesigned.Thiswillresultinsupportgapsbeingpresentinlocationsthatwerepreviouslyzero.Thesmallgapsinthesupportstructuremayresultinincreaseddynamicloading(bothseismicandLOCA)inlocalizedareas.TheoverallLOCAloadingsontheRCS,however,remainapproximatelythesameforthefollowingreasons:ThelowerRCStemperaturesyieldlowerthermalloadings.2.The0.C.CookNuclearPlanthasaleakbeforebreakdesignmethodologywhichallowsthefaultedconditionevaluationtoproceedwithouthavingtoconsiderloadingsfrompostulatedbreaksintheprimarylooppiping.Theseismicmarginavailableforthisplantisalsosignificantwhichmeansthattherearenocomponentsinthesystemwhichareclosetotheirallowablestresses.Basedontheabove,thetemperaturesassociatedwiththeRTPreratingare,therefore,acceptabletothestaffforthelooppiping,theloopsupports,andtheprimaryequipmentnozzles.TheeffectsoftheO.C.CookNuclearPlantRTPreratingontheoperabilityanddesignbasisanalysisoftheCROM'sofUnit1werereviewed.TheRTPreratingdoesnotaffecttheoperabilityorservicedurationoftheCROMlatchassembly,driverod,orcoilstack.TheCROMlatchassemblyanddriverodwereoriginallydesignedfor650'F,andthedesignbasisstressandfatiguecalculationsremainrepresentativeforthesecomponentssincethecomponentsareexposedtothehotlegtemperature,whichhasnotincreased.Thecoilstackislocatedontheoutsideofthepressurehousingwhichissubjecttoambientcontainmenttemperatures,whichhavenotchanged.AnevaluationwasperformedontheimpactoftheRTPreratedoperatingconditionsonthestructuralanalysisoftheCROMpressurehousing.Thecomponentofthepressurehousingwhichexperiencesthegreateststressrangeandhasthehighestfatigueusagefactoristheuppercanopy.Thisisthepressurehousingsealweldbetweentherodtravelhousingandthecap.Mestinghouseprovidedareviewontheimpactofthedifferences betweentheoriginalnormalandupsetconditiontransientsandthoseoftheRTPonthecodeallowablestresslevelsandfatigueusagefactors.Theresultsoftheevaluationare:2.Themaximumstressintensityrangeisequalto109,960psi,whichislessthanthemaximumallowablerangeofthermalstressof127,105psiwhichwaspreviouslyfoundtobeacceptable.Thetotalfatigueusagefactorisequalto0.672,whichislessthantheallowablelimitof1.0(ASMESectionIII,1971Edit>on).Thestaffconcludes,basedonlicenseeevaluations,thattheimpactoftheRTPprogramontheCRDM'siswithindesigncriteriaand,therefore,isfoundtobeacceptable.2.6CONTAINMENTEVALUATIONShort-TermContainmentResonseAspartoftheanalysistosupportRTPoperation,thereactorcavityandloopsubcompartmentsshort-termpressurizationintheeventofabreakoflargecoolantpipingorasteamlinewasreanalyzedbyWestinghouse..Insomeofthoseareas,theanalyzedpressureexceededthestructurallimitsasexpressedintheFSAR.ThesestructureswerereevaluatedusingthepeakpressuresobtainedfromtheRTPanalysis,WCAP11902(ref.2),toconfirmthattheacceptancecriteriaofSection5.2.2.3oftheupdatedFSAR,titled"ContainmentDesignStressCriteria,"weremet.Theoriginaldesignofthecontainmentincludedanumberofconsiderationsofwhichthesubcompartmentpressureswerebutone.Forexample,radiationshieldingrequirementsmayhavedictatedathickerconcreteslabthanwasnecessaryfromastructuralperspective.Theactualcapacityisgenerally-greaterthanthedesignpressuresstatedintheFSAR,andisfurtherincreasedduetothefactthatthematerialsusedarestrongerthantherequiredminimumdesignstrengths.IntheRTPstructuralreview,advantagewastakenofthesegreatercapacitiesbyperformingmanualorfiniteelementevaluationsoftheaffectedstructuralelements.Thegreatermaterial.strengthswereusedintheanalysiswhereappropriate.LooSubcomartmentsThecontainmentbuildingsubcompartmentsarethefullyorpartiallyenclosedspaceswithinthecontainmentwhichcontainhighenergypiping.Thesubcompartmentsaredesignedtolimittheadverseeffectsofapostulatedhighenergypiperupture.TheresultsoftheshorttermcontainmentanalysesandevaluationsfortheD.C.CookNuclearPlantUnit1demonstratethat,forthepressurizerenclosure,thefanaccumulatorroom,andthesteamgeneratorenclosure,theresultingpeakpressuresremainbelowtheallowabledesignpeakpressures'ortheloopcompartments,thepeakcalculatedpressuresattheRTPreratedconditionsarehigherthantheFSARdesignallowables.Fortheseareas,structuralevaluationswereperformedasdiscussedabovefortherevisedpeakpressures,andthestructuraladequacyofthecontainmentsubcompartmentshavebeenconfirmed(Ref.10)asfollows:  1V~~~~~~'eDifferentialPressureNode1or6toNode25,Thisisthedifferentialpressurefromthereactorcoolantloopcompartmentsadjacenttatherefuelingcanalnodes1or6acrosstheoperatingdecktotheuppercontainment.OriginalDesignpressureOriginalCalculatedpressureNewCalculatedpressure16.6psi14.1psi18.7psiThelicenseedemonstratedtheincreaseddifferentialpressuretobeacceptablebyreviewofexistingcomputeranalysisofthereactorcoolantpumphatchcoversandreevaluationoftheoperatingdeckloadcarryingcapacity.DifferentialPressureNode2or5toNode25Thisisthedifferentialpressureacrosstheoperatingdeckfromthereactorcoolantloopcompartmentslocated90degreesfromtherefuelingcanaltotheuppercontainment.OriginalDesignpressureOriginalCalculatedpressureNewCalculatedpressure12.0psi10.6psi13.0psiThelicenseedemonstratestheincreaseddifferentialpressuretobeacceptablebycomparisontoNode1andNode6areas,Theslabsinbothareasarethesame.PeakShellPressureThisisthedifferentialpressureacrossthecontainmentshelltotheoutside,fornodeslocatedintheicecondenserinletareasclosesttotherefuelingcanal.OriginalDesignpressureOriginalCalculatedpressureNewCalculatedpressure12.0psi10.8psi14.0psiThelicenseedemonstratestheincreasedpressuretobeacceptablebyevaluationonalocalizedbasis.Thecontainmentshellcanhandlepressureswellinexcessoftheoverall12psidesignpressure.Theaveragepressureoverthestructurallysignificantportionofthecontainmentshellsurroundingandincludingthesenodesissmallerthanthe12psicontainmentshelldesignpressure.ReactorCavitThereactorcavityisthestructuresurroundingthereactorwithpenetrationsforthemaincoolantpiping.Thisstructureisdesignedtolimittheadverseeffectsoftheinitialpressureresponsetoalossofcoolantaccident.TheresultsofthereactorcavityanalysisandevaluationsfortheD.C.Cook.NuclearPlantUnit1demonstratethat,forthereactorvesselannulusandpipeannulus,theresulting*peakpressuresattheRTPreratedconditionsarewithintheFSARdesignallowables.FortheupperandlowerreactorcavitiesthepeakcalculatedpressuresunderRTPconditionsexceededthestructuraldesignpressures(Ref.2,Sections3.7.2and3.7.3)asstatedintheFSAR.Forthese 0  areas,structuralevaluationswereperformedfortherevisedpeakpressures,~~andthestructuraladequacyofthecontainmentsubcompartmenthasbeenconfirmed(Ref.10)asfollows:MissileShieldRefuelinCanalBulkheadBlocksandUerReactorCavitalsferentlaressuresTheupperreactorcavitywallssurroundthereactorhead.Themissileshieldsandtherefuelingcanalbulkheadsareblocksseparatingtheupperreactorcavityfromuppercontainment.Themissileshieldisbolteddownduringoperation,andisremovableforrefueling.Therefuelingcanalbulkheadsfitsnuglyingroovesintheupperreactorcavitywalls.~CiII11Wi1Sli11andBulkheadsOriginalOesignpressureOriginalCalculatedpressureNewCalculatedpressure48.0psi44.1psi48.4psi48.0psi44.1psi54.3psiThelicenseedemonstratestheincreasedpressureforthecavitywalltobeacceptablebyfiniteelementanalysisoftheentireupperreactorcavitywall.Thelicenseehasdemonstratedtheincreasedpressureforthemissileshieldsandthebulkheadstobeacceptablebymanualcalculation.Thetestcylinderbreakstrengthoftheconcrete,whichishigherthanthedesignstrength,wasalsotakenintoconsideration.PeakLowerCavitPressureThisisthecavitylocatedunderthereactorvessel.Thepeakpressureisusedinthestructuralanalysisratherthanthedifferentialpressuresincemostofthecavitywallsareinthefoundationmat.OriginalOesignpressureOriginalCalculatedpressureNewCalculatedpressure15.0psi13.8psi18.5psiThelicenseedemonstratedthattheincreasedpressuresareacceptablebymanualcalulation.Thestaffconcludes,basedonthelicensee'sdemonstration,thatthe0.C.CookNuclearPlant'sdesignbasispertainingtocontainmentshorttermresponse,asstatedinChapter5.2.7.3oftheFSAR,isadequateforRTPoperation,andtherefore,isacceptable.ThelicenseemustupdatetheFSARtoreflectthehigherstructuraldesignvalues.LonTermContainmentPressureThelongtermpeakcontainmentpressureanalysissupportsoperationwiththeRHRcrosstievalvesclosedatapowerlevelof3425NMtforbothUnits1and2containmentstructure..ThisanalysiscontainedadditionaljustificationforoperationundertheRTPconditions(Ref.11)andwasapprovedbythestaffSafetyEvaluationdatedJanuary30,1989(Ref.12).
==4.0 ENYIRONNENTAL==
I HII-20-~~2.7NUCLEAR,PROCESSANDPOST-ACCIDENTSAMPLINGSYSTEMSTheNuclearSamplingSystem(NSS)fsdesignedtoproviderepresentativesamplesforlaboratory.analysesusedtoguidetheoperationofvariousprimaryandsecondarysystemsthroughouttheplantduringnormaloperation.Sincereductionofsamplepressureandtemperature,whennecessary,isalreadybeingdonebyheatexchangersandneedlevalves,theparametersassociatedwiththeRTPprogramdonotaffecttheperformanceoftheNSS.Withnopowerupratfng,thesourcetermremainsunchanged.Therefore,thestaffconcludesthatoperationunderRTPconditionsfsacceptablefortheNSS.Thestafffindsthat,sincenopowerupratingisbeingproposedatthistime,thereisaninsignificanteffectonthepost-accidentcontainmentthermalconditionsandthereforetheexistingpost-accidentsamplingsystemremainsadequateandisacceptable.OperationunderRTPconditionsresultsinslightreductionsinsecondarysfdetemperaturesandpressureswithnochangeinthesourceterm.Thestaffconcludesthatthechangeca'nbeaccommodatedbytheprocesssamplingsystemwithoutcausingdegradationoftheirperformance,andfs,therefore,acceptable.2.8ELECTRICSYSTEMSDESIGNOperationunderRTPconditionsresultsinminorchangestothe.heatbalance.Theonlyimpactnotedontheelectricalsystemsistheslightincreaseinmotorcurrentforthemotorsusedasprimemoversofprimarycoolant.TherequiredpowerfsincreasedbythehigherdensitiesencounteredduetotheRTPprogram.Thelicenseehasreviewedcablepenetratfons,busses,andmotorratingstoconcludethatthereissufficientdesignmargintohandletheincreasedload.Thestafffinds,basedonthelicensee'sevaluation,thattheproposedRTPprogramminimallyaffectstheelectricpowersystemandassociatedloadsandfstherefore,acceptable.3.0TECHNICALSPECIFICATIONS1.Definition1.38ondesignthermalpowerfsbeingdeletedonpage1-7oftheTechnicalSpecifications(TS's)becausetherefsnolongerasingledesignthermalpoweratwhichallthetransientandaccidentanalyseshavebeenperformed.ThelicensedpowerlevelforCook1remains3,250MWt.Thischangeisacceptable.2.Table1-3onpage1-10isbeingdeletedbecauseftpreviouslygaveinformationontheanalysesperformedatthedesignthermalpower.Thischangefsacceptablebecausethedefinitionofdesignthermalpowerisbeingdeletedalso.3.Figure2.1-1onpage2-2fsbeingrevisedtoreflecttherevisedDNBRsafetylimitof1.45.Thischangeisacceptablebecauseitissupportedbythesafetyanalysis.4.Thepressurizerpressurelowsetpoint(Item9ofTable2.2-1onpage2-5)fsincreasedby10psig.Thisisacceptablebecauseftwasassumedinthelarge-andsmall-breakLOCAanalyses.
CONSIDERATION Pursuantto10CFR51.21,51.32and51.35,anenvironmental assessment andfindingofnosignificant impacthavebeenpreparedandpublished intheFederal~RelateronJune9,1989(94FR24774).Accordin917, basedupanutieenvsronmental assessment, wehavedetermined thattheissuanceofheamendment willnothaveasignificant effectonthequalityofthehumanenvironment.
"21"~~~~~3.0TECHNICALSPECIFICATIONS1.Oefinition1.38ondesignthermalpowerisbeingdeletedonpage1-7oftheTechnicalSpecifications(TS's)becausethereisnolongerasingledesignthermalpoweratwhichallthetransientandaccidentanalyseshavebeenperformed.ThelicensedpowerlevelforCook1remains3,250HHt.Thischangeisacceptable.2.3.4.6.7.Table1-3onpage1-10isbeingdeletedbecauseitpreviouslygaveinformationontheanalysesperformedatthedesignthermalpower.Thischangeisacceptablebecausethedefinitionofdesignthermalpowerisbeingdeletedalso.Figure2.1.-1onpage2-2isbeingrevisedtoreflecttherevisedONBRsafetylimitof1.45.Thischangeisacceptablebecauseitissupportedbythesafetyanalysis.Thepressurizerpressurelowsetpoint(Item9ofTable2.2-1onpage2-5)isincreasedby10psig.Thisisacceptablebecauseitwasassumedinthelarge-andsmall-breakLOCAanalyses.TheOvertemperature-OeltaTtripsetpointequation(pages2-7and2-8)isbeingrevisedintermsofratedthermalpowerratherthandesignthermalpower.Inaddition,thisrevisedOTDTtripsetpointprotectsthecoresafetylimitsofFigure2.1-1.Thischangeisacceptablebecauseitissupportedbythenon-LOCAsafetyanalyses.TheOverpower-OeltaTtripsetpointequation(page2-9)isbeingrevisedtoreflecttherevisedcoresafetylimitsofFigure2.1-1.ThisequationisalsobeingdefinedintermsoftheindicatedTatratedthermalpower.ThesechangesareacceptablebecausetilearesupportedbythesafetyanalysisfortheRTPprogram.TechnicalSpecification3.2.2onpage3/42-5isbeingrevisedfromamaximumFof2.10to2.15.Thischangeisacceptablebecauseitissupportetlbythelarge-breakLOCAanalysis.TheFvaluesforExxonfuelarebeingdeletedbecausethisfuelwilln3longerbeusedatCookUnit1.8.TheK(Z)curveapplicabletoExxonfuel(page3/42-7)isbeingdeleted.ThisisacceptablebecauseExxonfuelwillnolongerbeusedatCookUnit1.9.10.TheK(Z)curveforMestinghousefuel(page3/42-8)isbeingrevised.ThisisacceptablebecauseitissupportedbythenewLOCAanalysisforCookUnitl.TheF-OeltaHlimitapplicabletoExxonfuel(page3/42-9)isbeingdeleted.ThisisacceptablebecauseExxonfuelwillnolongerbeusedatCookUnitl.Table3.2-1onpage3/42-14onONBparametersisbeingrevised.Tmustbelessthanorequalto570.9'F,thepressurizer l
-22"pressuremustbelessthanorequalto2050psig,andthereactorcoolantsystemtotalflowratemustbegreaterthanorequalto366,400gpm.ThesechangesareacceptablebecausetheyreflectthesafetyanalysisfortheRTPprogram.TechnicalSpecification3.2.6onpage3/42-15isbeingrevisedtochangeFintheAPLlimitto2.15.Thischangeisacceptablebecause3treflectsthenewFlimitofSpecification3.2.2.ThelimitsonAPLapplicabletoE)xonfuelarebeingdeletedbecauseExxonfuelwillnolongerbeusedatCookUnitl.FunctionalUnits2and11ofTable3.2-2onpage3/43-10arebeingchanged.FunctionalUnit2incorporatesaneditorialchangetoindicatethattheresponsetimeisapplicabletoboththehighandlowsetpointsofthePowerRangeNeutronFluxtrip.Thischangeisacceptablebecauseitiseditorialinnature.FunctionalUnitllisbeingchangedfromaresponsetimeof"notapplicable"to"equaltoorlessthan2seconds."Thisisacceptablebecausethistriponpressurizerwater.level-highwasmodeledintheanalysisofthecontrolrodwithdrawal-at-powerevent.FunctionalUnits1.fand4.dofTable3.3-4onpages3/43-24and3/43-26arebeingchangedtodecreasethesteamlinepressurelowsetpointby100psig.Thesechangesareacceptablebecausetheyaresupportedbythesteamlinebreakanalysisandthesteamlinebreakmassandenergyevaluations.Tec'hnicalSpecification3.4.4onpage3/44-6isbeingrevisedto92Kofspan.Thischangeisacceptablebecauseitissupportedbythesafetyanalysis.TechnicalSpecification3.5.l.bonpage3/45-1isbeingrevisedfromanaccumulatorboratedminimumwatervolumeof929to921cubicfeet.ThischangeisacceptablebecauseitisconsistentwiththeLOCAanalysisforCookUnit1.SurveillanceRequirement4.5.2.fisbeingrevisedtoreducethedischargepressureofthesafetyinjectionpumpandtheresidualheatremovalpump.ThesechangesareacceptablebecausetheyareconsistentwiththeLOCAanalyses.SurveillanceRequirement4.5.2.hisbeingrevisedbyaddingarequirementtoverifythatthechargingpumpdischargecoefficientiswithinaspecifiedrangefollowingECCSmodifications.Thefootnoteisbrokenintofourpartsforclarity.ThischangeisacceptablebecauseitensuresthattheflowdeliveredtothecorebythechargingpumpsintheeventofaLOCAiswithintheanalyzedvalues.SurveillanceRequirement4.7.1.2on,page3/47-5isbeingrevisedtochangethedischargepressurerequirementsofthemotorandturbinedrivenauxiliaryfeedwaterpumpsto1375psigand1285psig,respectively.Thiscorrespondstoa5Xdegradationofthepumps
,~l23fromthemanufacturer'spumpheadcurve.ThesechangesareacceptablebecausetheyareconsistentwiththechangesfortheRTPprogl'am>>20.BasispageB2-1(a)isbeingchangedtoincorporatethedesignlimitandsafetyanalysislimitDNBRvalues.TheDNBlimitsforExxonfuelarebeingdeletedsinceExxonfuelisnolongerusedatCookUnit1.ThedesignlimitandsafetyanalysislimitDNBRvaluesareacceptablebecausetheyareconsistentwiththeRTPprogram.21.BasispageB2-2isbeingrevisedtodeletereferencetoF-DeltaHforExxonfuelandtodesignthermalpower.ThesechangesareacceptablebecausereferencestobothitemshavebeendeletedintheSpecifications.22.BasespageB2-4isbeingrevisedtoreflectthechangestotheOvertemperature-DeltaTtripfunction.ThechangesareacceptablebecausetheyreflectchangesmadetotheSpecifications.23.BasespageB2-5isbeingrevisedtoreflectthechangestotheOverpower-DeltaTtripfunctionandthepressurizerwaterlevel-hightr'ip.ThesechangesareacceptablebecausetheyreflectchangestotheSpecifications.24.BasespageB3/42-1isbeingrevisedtoreplacetheminimumDNBRvalueof1.69bythewords"thesafetylimitDNBR".ThischangeisacceptablebecauseitwillavoidchangestotheBasesifthesafetylimitDNBRvalueischanged.25.SurveillanceRequirement4.1.1.5.bisbeingchangedtorequireTdeterminationofTevery30minuteswhenthereactoriscriti87and-TislesstQP545'F.ThischangeissupportedbyReference9and57lowsafullpowerTof550'FforCookUnit1Cyclellwithoutrequiringamonitor)(IIevery30minuteswhileatfullpower,whichthepreviousvalueof551'Fwouldhaverequired.ThischangeisacceptablebecausetheintentofmaintainingtheminimumcoolanttemperatureforcriticalityofSpecification3.1.1.5ispreserved.4.0ENYIRONNENTALCONSIDERATIONPursuantto10CFR51.21,51.32and51.35,anenvironmentalassessmentandfindingofnosignificantimpacthavebeenpreparedandpublishedintheFederal~RelateronJune9,1989(94FR24774).Accordin917,basedupanutieenvsronmentalassessment,wehavedeterminedthattheissuanceofheamendmentwillnothaveasignificanteffectonthequalityofthehumanenvironment.


==5.0CONCLUSION==
==5.0CONCLUSION==
.ThestaffhasreviewedtherequestbytheIndianaandMichiganPowerCompanytooperatetheDonaldC.CookNuclearPlantUnit1atthereducedtemperaturesandpressuresoftheRTPprogram.ReactoroperationisrestrictedtoanupperlimitonTof567.8'Fbecausethesteamlinebreakmassandenergyreleaseinsidecon$kfnmentwasnotreanalyzedaspartoftheRTPprogram.Althoughthe "24"~~~~~~~~~~~~~~~~safetyanalysiswasperformedatpowerratingswhichwouldsupportapossiblepowerupratingforCookUnit1,powerupratingisnotaddressedinthestaff'sreview.ThepowerofO.C.CookNuclearPlantUnit1islimitedtothepresentratedthermal'owerof3250MMt.Basedonitsreview,thestaffconcludesthatappropriatematerialwassubmittedandthatnormaloperationandthetransientsandaccidentsthatwereevaluatedandanalyzedareacceptable.TheTechnicalSpecificationssubmittedforthislicenseamendmentsuitablyreflectthenecessarymodificationsfortheoperationofCookUnitl.Thestaffhasconcluded,basedontheconsiderationsdiscussedabove,that(1)thereisreasonableassurancethatthehealthandsafetyofthepublicwillnotbeendangeredbyoperationintheproposedmanner,and(2)suchactivitieswillbeconductedincompliancewiththeCommissionsregulations,andtheissuanceoftheamendmentwillnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic.Oate:'June9,1989PrincipalContributors:DanFienoJohnStang,NRRAnthonyGody,NRR   
 
.ThestaffhasreviewedtherequestbytheIndianaandMichiganPowerCompanytooperatetheDonaldC.CookNuclearPlantUnit1atthereducedtemperatures andpressures oftheRTPprogram.Reactoroperation isrestricted toanupperlimitonTof567.8'Fbecausethesteamline breakmassandenergyreleaseinsidecon$kfnmentwasnotreanalyzed aspartoftheRTPprogram.Althoughthe "24"~~~~~~~~~~~~~~~~safetyanalysiswasperformed atpowerratingswhichwouldsupportapossiblepowerupratingforCookUnit1,powerupratingisnotaddressed inthestaff'sreview.ThepowerofO.C.CookNuclearPlantUnit1islimitedtothepresentratedthermal'ower of3250MMt.Basedonitsreview,thestaffconcludes thatappropriate materialwassubmitted andthatnormaloperation andthetransients andaccidents thatwereevaluated andanalyzedareacceptable.
TheTechnical Specifications submitted forthislicenseamendment suitablyreflectthenecessary modifications fortheoperation ofCookUnitl.Thestaffhasconcluded, basedontheconsiderations discussed above,that(1)thereisreasonable assurance thatthehealthandsafetyofthepublicwillnotbeendangered byoperation intheproposedmanner,and(2)suchactivities willbeconducted incompliance withtheCommission sregulations, andtheissuanceoftheamendment willnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic.Oate:'June9,1989Principal Contributors:
DanFienoJohnStang,NRRAnthonyGody,NRR   


==6.0REFERENCES==
==6.0REFERENCES==
1.Letter(AEP:NRC:1067)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedOctober14,1988.2."ReducedTemperatureandPressureOperationforDonaldC.CookNuclearPlantUnit1-LicensingReport,"D.L.CecchettandD.B.Augustine,WCAP-11902,October1988.3.EllenbergerS.L.,etal.,"DesignBasesfortheThermalOverpower-DeltaTandThermalOvertemperature-DeltaTTripFunctions,"WCAP-8746,March1977.4.Che'lerner,H.;Boman,L.H.;Sharp,D.R.,"ImprovedThermalDesignProcedures,"WCAP-8567,July1975.5.Butler,J.C.,andLove,D.S.,"SteamlineBreakMass/EnergyReleasesforEquipmentqualificationOutsideContainment,"WCAP-10961,Rev.1(proprietary)andWCAP-11184(nonproprietary),October1985.6.Morita,T,,etal.,"DroppedRodMethodologyforNegativeFluxRateTripPlants,"WCAP-10297-P-A(proprietary)andWCAP-10298-A(nonproprietary),June1983.7.Letter(AEP:NRC:10678)fromM.P,Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedFebruary6,1989.8."AmericanNationalStandardforDecayHeatPowerinLightWaterReactors,"ANSI/ANS-5.1-1979,August1979.9.Letter(AEP:NRC:1067A)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedDecember30,1988.10.Letter(AEP:NRC:1067C)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedMarch14,1989.11.Letter(AEP:NRC:1024D)fromM.P.AlexichtoT.E.Murley(NRC),datedAugust22,1988.IncludesWCAP-11908,"ContainmentIntegrityAnalysisforDonaldC.CookNuclearPlants,Units1and2."12.Letter,J.F.Stang(NRC)toM.P.Alexich(IMECo),datedJanuary30,1989.}}
 
1.Letter(AEP:NRC:1067) fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedOctober14,1988.2."ReducedTemperature andPressureOperation forDonaldC.CookNuclearPlantUnit1-Licensing Report,"D.L.CecchettandD.B.Augustine, WCAP-11902, October1988.3.Ellenberger S.L.,etal.,"DesignBasesfortheThermalOverpower-Delta TandThermalOvertemperature-Delta TTripFunctions,"
WCAP-8746, March1977.4.Che'lerner, H.;Boman,L.H.;Sharp,D.R.,"Improved ThermalDesignProcedures,"
WCAP-8567, July1975.5.Butler,J.C.,andLove,D.S.,"Steamline BreakMass/Energy ReleasesforEquipment qualification OutsideContainment,"
WCAP-10961, Rev.1(proprietary) andWCAP-11184 (nonproprietary),
October1985.6.Morita,T,,etal.,"DroppedRodMethodology forNegativeFluxRateTripPlants,"WCAP-10297-P-A (proprietary) andWCAP-10298-A (nonproprietary),
June1983.7.Letter(AEP:NRC:
10678)fromM.P,Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedFebruary6,1989.8."American NationalStandardforDecayHeatPowerinLightWaterReactors,"
ANSI/ANS-5.
1-1979,August1979.9.Letter(AEP:NRC:
1067A)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedDecember30,1988.10.Letter(AEP:NRC:
1067C)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedMarch14,1989.11.Letter(AEP:NRC:
1024D)fromM.P.AlexichtoT.E.Murley(NRC),datedAugust22,1988.IncludesWCAP-11908, "Containment Integrity AnalysisforDonaldC.CookNuclearPlants,Units1and2."12.Letter,J.F.Stang(NRC)toM.P.Alexich(IMECo),datedJanuary30,1989.}}

Revision as of 07:31, 29 June 2018

Reactor Vessel Matl Surveillance Program for DC Cook Unit 2:Analysis of Capsule X, Final Rept on Swri Project 06-8888
ML17334B113
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 05/31/1987
From: LEVERANT G R, NAIR P K, WILLIAMS M L
SOUTHWEST RESEARCH INSTITUTE
To:
Shared Package
ML17325A184 List:
References
NUDOCS 8707020216
Download: ML17334B113 (221)


Text

gy~cg~~n~>

'I....9207280249 SOUTHWEST RESEARCHINSTITUTE PostOfficeDrawer28510,6220CulebraRoadSanAntonio,Texas78284REACTORVESSELMATERIALSURVEILLANCE PROGRAMFORDONALDC.COOKUNITNO.2:ANALYSISOFCAPSULEXByP.K.NairM.L.Williams(Consultant)

FINALREPORTSwRIProject06-8888May1987APPi";-OVED Approved:

QI'orIndiana&MichiganElectricCompanyDonaldC.CookNuclearPlantBridgeman, Michigan49106COOKPLANTMEDRECORD-MEDCOPYSECTIOI'J c'i~!GPi!

EERD~.TE~pah,vi..xiii LII'::!i!iE i)A12i(.'I.AHl

'722,i~!Y(+IP'"lii<IANENT fbi!0l,".1Ul;"

RE7c.w1lONYRS.GeraldR.Leverant, DirectorDepartment ofMaterials Sciences ABSTRACTCapsuleX,thethirdvesselmaterialsurveillance capsuleremovedfromtheDonaldC.CookUnitNo.2nuclearpowerplanthasbeentested,andtheresultshavebeenevaluated.

Theanalysisofthedataindicates thatthepressurematerialwillretainadequateshelftoughness throughout the32EFPYdesignlifetime.

Heatupandcooldownlimitcurvesfornormaloperation havebeendeveloped forupto12effective fullpoweryearsofoperation.

TABLEOFCONTENTSLISTOFFIGURESLISTOFTABLES1.0SUMMARYOFRESULTSANDCONCLUSIONS

~Pae1V2.03.04.05.06.0BACKGROUND DESCRIPTION OFMATERIALSURVEILLANCE PROGRAMTESTINGOFSPECIMENS FROMCAPSULEX4.1Shipment, Opening,andInspection ofCapsule4.2Neutron,Transport, andDosimetry Analysis4.3Mechanical PropertyTestsANALYSISOFRESULTSHEATUPANDCOOLDOWNLIMITCURVESFORNORMALOPERATION OFDONALDC.COOKUNITNO.2121213344

77.0REFERENCES

APPENDIXA-Determination ofAssembly-Mise SourceDistribution forDonaldC.CookUnit2,CapsuleXAnalysisAPPENDIX8-Descriptionofthe3-DFluxSynthesis MethodAPPENDIXC-TensileTestDataRecords61 LISTOFFIGURES~FiereArrangement ofSurveillance CapsulesinthePressureVessel~PaeVesselMaterialSurveillance Specimens Arrangement ofSpecimens inCapsuleXR-8GeometryforDonaldC.CookUnit2.Radiation ResponseofDonaldCDCookUnitNo.2VesselShellPlateC5521-2(Longitudinal Orientation)

Radiation ResponseofDonaldC.CookUnitNo.2VesselShellPlateC5521-2(Transverse Orientation)

Radiation ResponseofDonaldC.CookUnitNo.2ReactorVesselHeat-Affected ZoneMaterialRadiation ResponseofDonaldC.CookUnitNo.2ReactorVesselWeldMaterialEffectofNeutronFluenceonRTNDTShift,DonaldC.CookUnitNo.2154142444910Dependence ofCUpperShelfEnergyonNeutronFluence,DonaldC.CookknitNo.211ReactorCoolantSystemPressure-Temperature LimitsVersus100'F/Hour RateCriticality LimitandHydro-staticTestLimit,12EFPY12ReactorCoolantSystemPressure-Temperature LimitsVersusCooldownRates,12EFPY13ReactorCoolantSystemPressure-Temperature LimitsVersus100'F/Hour RateCriticality Limit,andHydro-staticTestLimit,32EFPY(Ref.17)14ReactorCoolantSystemPressure-Temperature LimitsVersusCooldownRates,32EFPY(Ref.17)57585960 LISTOFTABLESTable3.14.14.24.34.44.5DonaldC.CookUnitNo.2ReactorVesselSurveillance Materials[12]47-GroupEnergyStructure ReactionCrossSections(Barns)UsedinCalculations ForSequoyahUnit1AbsoluteCalculated NeutronFluenceRateSpectra[)(E)]AtTheCenterofSurveillance Capsules(SC)ForDonaldC.CookUnit2Calculated Saturated Activities AtTheCenterOfSurveillance CapsulesForDonaldC.CookUnit2DonaldC.CookUnit2Spectrum-Averaged CrossSectionsAtCenterOfSurveillance Capsules(SC)~Pae16171819194.60Calculated NeutronFluenceRate[)(E)]SpectraInReactorPressureVesselAtPeakAxialandAximuthal Location(8=45')ForDonaldC.CookUnit221.Azimuthal Variation of)(>1)InRPVOfDonaldC.CookUnit2204.84.9RadialGradientOfFastFluenceRate[)(E>1]ThroughRPV,AtPeakAzimuthal andAxialLocations InDonaldC.CookUnit2Calculated FluenceRatesAndLeadFactorsInDonaldC.CookUnit222234.1OEquations andDefinitions ForNeutronDosimetry Analysis254.11Constants ForProcessing Dosimetry Data264.12ReactorPower-Time HistoryForDonaldC.CookUnit2CapsuleX274.13Correction FactorsToObtainMeasuredSaturated Activities AtCapsuleXCenterline 304.144.15'alculated Saturated MidplaneActivities InDonaldC.CookUnit2Surveillance CapsulesComparisonOfMeasuredandCalculated Saturated Activities ForFastThreshold Detectors ThermalNeutronFluenceRateInCapsuleX313233 TableLISTOFTABLES(Continued)

~Pae4.17Comparison OfFastNeutronFluenceRatesFromTransport Calculations andDosimetry Measurements ForCapsuleX4.18Calculated PeakFluencesInPressureVesselBasedonCapsuleXDosimetry 4.19CharpyImpactProperties ofLongitudinal PlateDonaldC.CookUnitNo.2CapsuleX4.20CharpyImpactPropertiesOfTransverse PlateDonaldC.CookUnitNo.2CapsuleX353537384.21CharpyImpactPropertiesofHAZHaterialDonaldC.CookUnit2CapsuleX394.22CharpyImpactProperties OfMeldMetalDonaldC.CookUnit2CapsuleX4.23EffectofIrradiation OnCapsuleXSurveillance MaterlaisDonaldC.CookUnitNo.24.24TensileProperties OfSurveillance Materials, DonaldC.CookUnitNo.24O45465.15.2Pr'ojected ValuesOfRTNDTForDonaldC.CookUnitNo.2ReactorVesselSurveillance CapsuleRemovalSchedule[16jDonaldC.CookUnitNo.25053

1.0 SUMMARYOFRESULTSANDCONCLUSIONS

Theanalysisofthethirdmaterialsurveillance capsuleremovedfromtheDonaldC.CookUnitNo.2reactorpressurevesselledtothefollowing conclusions:

(1)Basedonacalculated neutronspectraldistribution,CapsuleXreceivedafastfluenceof1.002x109neutrons/cm (E>1MeV)atitsradialcenterline.(2)Thesurveillance specimens ofthecorebeltlinematerials experienced shiftsinRTNDTof70'Fto103'Fasaresultofexposureuptothe1986refuelling outage.(3)Thecorebeltlineplatematerialsexhibited thelargestshiftsinRTNDT.Sincetheintermediate shellplatematerialhasthehighestinitial(unirradiated)

RTNDTitwillcontroltheheatupandcooldownlimitations throughoutthedesignlifetimeofthepressurevessel.(4)Theestimated maximumneutronfluenceof3.406x10neutrons/cm (E>1MeV)receivedbythevesselwallaccruedin5.273effective fullpoweryears(EFPY).Theprojectedmaximumneutronfluenceafter32EFPYis2.067x10neutrons/cm (E>1MeV).Thisestimateisbasedontheaveragefluencerateafter5.273EFPYofoperations.

(5)BasedontheanalysesofCapsulesT,YandX,theprojected valuesofRTNDTfortheDonaldC.CookUnit2vesselcorebeltlineregion,atthe1/4Tand3/4Tpositions after12EFPYofoperation, are146'Fand102'F,respectively.

Thesevalueswereusedasthebasesforcomputing revt.sedheat-upandcooldownlimitcurvesforupto12EFPYofoperation.

(6)BasedontheanalysesofCapsulesT,YandX,thevaluesofRTNDTfot'heDonaldC.CookUnit2vesselcorebeltlineregion,atthe1/4Tand3/4Tpositions.

after32EFPYofoperation, are-projected tobe163'Fand 130'F,respectively.

(7)TheDonaldC.CookUnitNo.2vesselplates,weldmetal,andHAZmateriallocatedinthecorebeltlineregionareprojected toretainsufficient toughness tomeetthecurrentrequirements of10CFR50AppendixGthroughout thedesignlifeoftheunit.

2.0 BACKGROUND

Theallowable loadingsonnuclearpressurevesselsaredetermined byapplyingtherulesinAppendixG,"Fracture Toughness Requirements,"

of10CFR50[1].Inthecaseofpressure-retaining components madeofferriticmaterials, theallowable loadingsdependonthereference stressintensity factor(KIR)curveindexedtothereference nilductility temperature (RTNDT)presented inAppendixG,"P.otectionAgainstNon-Ductile Failure,"

ofSectionIIIoftheASMECode[2].Further,thematerials inthebeltlineregionofthereactorvesselmustbemonitored forradiation-induced changesinRTNDTpertherequirements ofAppendixH,"ReactorVesselMaterialSurveillance ProgramRequirements,"

of10CFR50.TheRTNDTisdefinedinparagraph NB-2331ofSectionIIIoftheASMECodeasthehighestofthefollowing temperatures:

(1)Drop-weight NilDuctility Temperature (DW-NDT)perASTME208[3];(2)60degFbelowthe50ft-lbCharpyV-notch(Cv)temperature; (3)60degFbelowthe35milCtemoerature.

TheRTNDTmustbeestablished forallmaterials, including weldmetalandheat-affected zone(HAZ)materialaswellasbaseplatesandforgings, whichcomprisethereactorcoolantpressureboundary.

Itiswellestablished thatferriticmaterials undergoanincreaseinstrengthandhardnessandadecreaseinductility andtoughness whenexposedtoneutronfluencesinexcessof10neutronspercm(E>1MeV)[4].Also,ithasbeenestablished thattrampelements, particularly, copperandphosphorus, affecttheradiation embrittlement responseofferriticmaterials[5-7].Therelationship betweenincreaseinRTNDTandcoppercontentis openingloading(MOL)fracturemechanics specimens.

Currenttechnology limitations resultinthetestingofthesespecimens attemperatures wellbelowtheminimumservicetemperature inordertoobtainvalidfracturemechanics dataperASTME399[10],"Standard MethodofTestforPlane-Strain FractureToughness ofMetallicMaterials."

Currently, thesespecimens arebeingstoredpendinganacceptable testingprocedure liketheJ<fracturetesting[11]hasbeendefined.Thisreportdescribes theresultsobtainedfromtestingthecontentsofCapsuleX.Thesedataandthoseobtainedpreviously fromCapsulesTandYareanalyzedtoestimatetheradiation-induced changesinthemechanical properties ofthepressurevesselatthetimeoftherefuelling outageaswellaspredicting thechangesexpectedtooccuratselectedtimesinthefutureoperation oftheDonaldC.CookUnitNo.2powerplant.

3.0 DESCRIPTION

OFMATERIALSURVEILLANCE PROGRAMTheDonaldC.CookUnitNo,2materialsurveillance programisdescribed indetailinMCAP8512[12],datedNovember1975.Eightmaterialssurveillance capsuleswereplacedinthereactorvesselbetweenthethermalshieldandthevesselwallpriortostartup,seeFigure1.Theverticalcenterofeachcapsuleisoppositetheverticalcenterofthecore.ThecapsuleseachcontainCharpyV-notches, tensile,andWOLSpecimens machinedfromtheSA533GrB,CL2plate,weldmetal,andheat-affectedzone(HAZ)materials locatedatthecorebeltline.

Thechemistries andheattreatments ofthevesselsurveillance materialsaresummarized inTable3.1.Alltestspecimens weremachinedfromthetestmaterialsatthequarter-thickness (1/4T)locationafterperforming asimulated postweldstress-relieving treatment.

MeldandHAZspecimens weremachinedfromastress-relieved weldmentwhichjoinedsectionsoftheintermediate andlowershellplates.HAZspecimens wereobtainedfromtheplateC5521-2sideoftheweldment.

Thelongitudinal basemetalCspecimens wereorientedwiththeirlongaxisparalleltotheprimaryrollingdirection andwithV-notches perpendicular tothemajorplatesurfaces.

Thetransverse basemetalCvspecimens wereorientedwiththeirlongaxisperpendicular totheprimaryrollingdirection andwithV-notches perpendicular tothemajorplatesurfaces.Tensilespecimens weremachinedwiththelongitudinal axisperpendicular totheplateprimaryrollingdirection.

TheMOLspecimens weremachinedwiththesimulated crackparalleltotheprimaryrollingdirection andperpendicular tothemajorplatesurfaces.

Allmechanical testspecimens, seeFigure2,weretakenatleastoneplatethickness fromthequenchededgesoftheplatematerial.

CapsuleXcontained 44CharpyV-notched specimens (8longitudinal and X(220')270iV('8>>)Y(320')2(356'il80'oS(~.)U(140')I90'eac.or VeeselTherr.".al Si'l'ore3arrelT(<0')FIGUREl..ARRANGEMENT OFSURVEILLANCE CAPSULESINTHEPRESSUREVESSEL TABLE3.1DONALDC.COOKUNITNO.2REACTORVESSELSURVEILLANCE MATERIALS

[12]HeatTreatment HistorShellPlateMaterial:

Heatedto1700Ffor4-1/2hours.waterquenched.

Heatedto1600Ffor5hours,waterquenched.

Temperedat1250Ffor4-1/2hours,aircooled.Stressrelievedat1150Ffor51-1/2hours,furnacecooled.Weldment:

Stressrelievedat1140Ffor9hours,furnacecoo1ed.ChemicalComposition (Percent)

MaterialCMnPSiNiMoCuCrPlateC-5521-2PlateC-5521-2WeldMetalWeldMetal(0.211.290.0130.0150.221.280.0170.0140.111.330.0220.0120.081.420.0190.0160.160.580.270.580.440.970.360.960.500.140.550.110.0720.540.0550.0680.050.07(a)LukensSteelanalysis.

(b)Westinghouse analysis.

(c)ChicagoBridgeandIronanalysis.

(293~lOC3~i4I'04ZJ43I(a)Charpvv-notchimpcc'pe~Jmen II.CCI'2+9III6II1PS3~~1ItI99I444II.26442I4~al2RQA~i18$,-o~~~V~95+935~ON(b)Temiiesuecimenl,45aeaIIU24~Z<S439I'XT~3IoaR(c)Wedca"enir~loa"Incspe'r."enFIGURE2.VESSELMATERIALSURVEILLANCE SPECIMENS 1012transversefromtheplatematerial, plus12eachfromweldmetalandHAZmaterial);

4tensilespecimens (2plateand2weldmetal);and4transverse plateWOLspecimens.

Thespecimennumbering systemandlocationwithinCapsuleXisshowninFigure3.CapsuleXalsowasreportedtocontainthefollowing dosimeters fordetermining theneutronfluxdensity:TaretElementForm~QuantitIronCopperNickelCobalt(inaluminum)

Cobalt(inaluminum)

Uranium-238 Neptunium-237 BarewireBarewireBarewireBarewireCdshieldedwireCdshieldedoxideCdshieldedoxideTwoeutecticalloythermalmonitorshadbeeninsertedinholesinthesteelspacesinCapsuleX.One(locatedatthebottom)was2.5$Agand97.5$Pbwithameltingpointof579'F.Theother(locatedatthetopofthecapsule)was1.75$Ag,0.75$Sn,and97.5$Pbhavingameltingpointof590'F.

11TOPMT-7LIT-8TENSILELIT-16WOLMT-15WOLMT-14WOLWOLLIW7MWSMW-47MW-48MT-47MT-48MW-45MW-46Mr-45MT-heTENSILECHARPYCHARPYSPECIMENCODE:MT-PLATEC5221-2TRANSVERSE 213MW-43MW-44MT-43MT-44LIW-41MW-42MT-41LIT-42MW-39MW-40MT-39MT40LIW>>37MW-38MT-37MT-38CHARPYCHARPYCHARPYCHARPYML-PLATEC5221-2LONGITUDINAL MW-WELDMETALMH-WELDHEATAFFECTEDZONEMH-47MH-48ML-31M1.-32CHARPYMH45MH-46ML-29ML-30CHARPYMH-43MH44ML-27M1.-28CHARPYMH-41MH42ML-25M1.-28CHARPYBOTTOMMH-39MH40MH-37MH-38CHARPYFIGURE3.ARRANGEMENT OFSPECIMENS ZNCAPSULEX 124.0TESTINGOFSPECIMENS FROMCAPSULEXThecapsuleshipment, capsuleopening,specimentesting,andreporting ofresultswenecarriedoutinaccordance withtheProjectPlanforDonaldC.CookUnitNo.2ReactorVesselIrradiation Surveillance Program.TheSwRINuclearProjectsOperatingProcedures calledoutinthisplaninclude:(1)XI-MS-101-1, "Determination ofSpecificActivityandAnalysisofRadiation DetectorSpecimens" (2)XI-MS-103-1, "Conducting TensionTestsonMetallicSpecimens" (3)XI-MS-104-1, "CharpyImpactTestsonMetallicSpecimens" (4)XIII-MS-103-1, "OpeningRadiation Surveillance CapsulesandHandlingandStoringSpecimens" (5)XIII-MS-104-2, "Shipment ofWestinghouse PMRVesselMaterialSurveillance CapsuleUsingSwRICaskandEquipment" Copiesoftheabovedocuments areonfileatSwRI.4.1ShipmentOoeninandInsectionofCapsuleSouthwest ResearchInstitute preparedProcedure XIII-MS-104-2 fortheshipmentofCapsuleXtotheSwRIlaboratories.

SwRIpersonnelseveredthecapsulefromitsextension tube,sectioned theextension tubeintoseverallengths,andsupervised theloadingofthecapsuleandextension tubematerialsintotheshippingcaskfortransporttoSanAntonio,Texas.Thecapsulewasopenedandthecontentsidentified andstoredinaccordance withProcedure XIII-MS-103-1.

Aftersawingoffthecapsuleends,thelongseamweldsweremilledoffusingaBridgeport verticalmillingmachine.Thetophalfofthecapsuleshellwasremovedandthespecimens andspacerblockswerecarefully removedandplacedinindexedreceptacles identifying eachcapsulelocation.

Afterthedisassembly hadbeencompleted, eachspecimenwascarefully checkedtoinsureagreement withthe 13identification andlocationaslistedinMCAP8512.[12]

Nodiscrepancies werefound.Thethermalmonitorsandneutrondosimeter wireswereremovedfromtheholesinthespacers.Thethermalmonitors, contained inquartzvials,wereexaminedandnomeltingwasobserved, thusindicating thatthemaximumtemperature duringexposureofCapsuleXdidnotexceed579'F.4.2NeutronTranscrtandDosimetrAnalsisAspartofthesurveillance testingandevaluation program,theneutrontransport anddosimetry analysisservestwopurposes:

(1)todetermine theneutronfluence(E>1.0MeV)inthesurveillance capsulewherethemetallurgical testspecimens arelocatedand(2)todetermine theneutronfluence(E>1.0MeV)incidentonandwithinthereactorpressurevessel(RPV).Thecurrentmethodology forRPVfluencedetermination isbasedoncombining resultsoftransport calculations withmeasureddosimeter activities.

Thetransport calculations providethreeimportant setsofdataintheoverallanalysis:

(1)spectrum-weighted, effective dosimeter crosssections, (2)leadfactorsforvariouslocations intheRPV,and(3)fluenceratesatlocations ofinterest.

Thecalculated effective crosssectionsfordifferent dosimeter saredividedintothemeasuredreactionratesinordertoobtainthefluencerate(E>1.0MeV)atthecapsulelocation.

Thecorresponding fluenceratesatvariousdepthsintotheRPVareobtainedbydividingthecapsulefluenceratebytheappropriate leadfactors.Boththeeffective crosssectionsandtheleadfactorsdependonlyonratiosofcomputedresultssothatabsolute

14calculations arenotrequired.Themeasureddosimeter activities providethefluenceratenormalization.

However,absolutefluenceratesarecalculated tocomparewithmeasurements toprovideameasureoftheuncertaintyinvolvedintheRPVfluencedetermination procedure.4.2.1NeutronTransortAnalsisAdiscreteordinatescalculation usingtheDOT[13]codewasperformed toobtaintheradial(R)andazimuthal (0)fluence-rate distribution forthegeometryshowninFigure4.Theinclusion ofthesurveillance capsulesintheR-0modelismandatory toaccountforthesignificant perturbation effectsfromthephysicalpresenceofthecapsule.The47-groupenergystructure fortheSAILOR[14]cross-section libraryisgiveninTable4.1.AnS8angularstructureandaP3Legendrecross-section expansion wereusedinthecomputations.

Thefine-group 0dosimeter crosssectionsfortheCu(n,a)CoreactionwereobtainedfromENDF/B-Vfileandwerecollapsed to47groupsusingafissionplus1/Eweighting spectrum.

TheotherreactioncrosssectionsweretakenfromtheSAILORcross-section library.ThereactioncrosssectionsaregiveninTable4.2.Theresultsofthetransport calculations requiredfortheRPVfluenceanalysisarepresented inTables4.3through4.9.Table4.3containsthecalculated absolutefluence-rate spectraforthecenterline ofthesurveillance capsulesandinTable4.4arethecalculated saturated activities obtainedbyfoldingtheresultsofTables4.3and4.2Thespectrum-average crosssections, Table4.5,areobtainedfromtheresultsofTables4.3and4.4.Table4.6showsthatthepeakfluenceratesattheinnerradius,1/4-T,and3/4-Tlocations areatthe8=45'zimuthal, andTable4.7arethegroupfluxesatthepeaklocation.

Table4.8showstheradialgradients ofthefluencerates(E>1.0MeV)throughthereactorpressurevessel.Thepeak 1540CAPSULEST,U,X,YFORMERPLATErPrRPVDOWNCOMER THERMALSHlELDWATERGAPBARREL4CAPSULESS,V,W,ZFIGURE4.R-0GeometryfoiDonaldC.CookUnit2.

'6TABLE4.147-GROUPENERGYSTRUCTURE GroupLowerenergy(MeV)GroupLowerenergy(Mev)101213141516171819202122232414.19*12.2110.008.617.416.074.973.683.012.732.472.372.352.231.921.651.351.000.8210.7430.6080.4980.3690.298252627282930313233343536373839404142434445460.1830.1110.06740.04090.03180.02610.02420.02190.01507.10x3.36x1.59x4.54x2.14x1.01x3+73x1.07x5.04x1.86x8.76x4.14x1.00x1.00x1010310310-4104104101010-610-61071071010-11*TheupperenergyofGroup1is17.33MeV.

17TABLE4.2REACTIONCROSSSECTIONS(BARNS)USEDINCALCULATIONS FORDONALDC.COOKUNIT2Group1234'67891011121314151617181920212223242526272829303132333435363738394041424344454647Energy(MeV)1.733E+011'.419E+Ol 1.221E+01 1.000E+Ol 8.607E+00 7.408E+00 6.065E+00 4.966E+00 3.679E+00 3.012E+00 2.725E+00 2.466E+00 2.365E+00 2.346E+00 2.231E+00 1.920E+00 1.653E+00 1.353E+00 1.003E+00 8.208E-01 7.427E-01 6.081E-01 4.979E-01 3.688E-01 2.972E-01 1.832E-01 1.111E-01 6.738E-02 4.087E-02 3.183E-02 2.606E-02 2.418E-02 2.188E-02 1.503E-02 7.102E-03 3.355E-03 1.585E-03 4.540E-04 2.144E-041.013E-04 3.727E-05 1.068E-05 5.043E-06 1.855E-06 8.764E-07 4.140E-07 1.000E-07 U-238(nf)1.275E+00 1.086E+00 9.844E-Ol 9.864E-01 9.891E-01 8.574E-01 5.849E-01 5.615E-01 5.475E-01 5.463E-01 5.527E-01 5.521E-01 5.512E-01 5.504E-01 5.390E-01 4.685E-01 2.706E-01 4.502E-02 1.102E-02 2.881E-03 1.397E-03 5.378E-04 1.502E-04 8.333E-05 6.168E-05 4.668E-05 4.015E-05 4.000E-05 6.176E-05 8.610E-05 8.700E-05 8.700E-05 8.700E-05 5.650E-05 4.860E-11 7.439E-10 4.199E-04 1.464E-08 1.044E-08 1.243E-08 1~955E-083.086E-08 4.770E-08 7.171E-08 5.067E-08 1.881E-08 1.182E-09 Np-237(nf)2.535E+002.320E+00 2.334E+00 2.329E+00 2.248E+00 1.965E+00 1.520E+00 1.538E+00 1.638E+00 1.680E+00 1.697E+00 1.695E+00 1.694E+00 1.693E+00 1.677E+00 1.645E+00 1.604E+00 1.543E+00 1.389E+00 1.205E+00 9.845E-01 6.437E-01 2.642E-01 8'00E-023.552E-02 2.043E-02 1.542E-02 1.228E-02 1.088E-02 1.023E-02 1.002E-02 9.906E-03 9.723E-03 1.004E-02 6.506E-03 8.716E-03 2.303E-02 3.701E-02 6.129E-029.027E-022.296E-02 1.014E-02 4.011E-03 9.350E-03 1.407E-02 4.328E-03 8.332E-02 Fe-54(n)2.686E+01 4.137E-01 5'76E-015.781E-01 5.888E-01 5.590E-01 4.697E-01 3.199E-01 1.762E-01 1.155E-01 7.755E-02 5.111E-02 4.756E-02 4.484E-02 2.008E-02 4.771E-03 6.335E-04 1.311E-05 00000000000000000000000000000Ni-58(n)2.962E-01 4.416E-01 6.103E-01 6.588E-01 6.553E-01 6.285E-01 5.365E-Ol 3.917E-01 2.287E-01 1.658E-01 1.131E-01 9.308E-02 9.232E-02 8.614E-02 4.661E-02 2.660E-03 1~337E>>024.438E-03 5.023E-04 1.729E-04 4.914E-05 7.673E-06 8.903E-07 4.070E-08 1.832E-15 0000000000000000000000C0-63(nn)3.682E-02 4.540E-02 5.357E-02 3.811E-02 1.906E-02 9.277E-03 2.915E-03 4.437E-04 3.568E-05 5.831E-06 1.707E-06 6.834E-07 4.637E-07 3.430E-07 1.150E-07 1.536E-08 0000000000000000000000000000000 TABLE4.3ABSOLUTECALCULATED NEUTRONFLUENCERATESPECTRA[4(E))ATTHECENTEROFSURVEILLANCE CAPSULES(SC)FORDONALDC.COOKUNIT2GroupUpperEnergy(MeV)SCat40'Cat44(E)*n'cm2's"11234567891011121314151617181920212223242526272829303132331.733E+01 1.419E+01 1.221E+01 1.000E+01 8.607E+00 7.408E+00 6.065E+00 4.966E+00 3.679E+00 3.012E+00 2.725E+00 2.466E+00 2.365E+00 2.346E+00 2.231E+00 1.920E+00 1.653E+00 1.353E+00 1.003E+00 8.208E-01 7.427E-01 6.081E-01 4.979E-01 3.688E-01 2.972E-01 1.832E-01 1.111E-01 6.738E-02 4.087E-02 3.183E-02 2.606E-02 2.418E-02 2.188E-02 6.93656E+06 3.09479E+07 1.27275E+08 2.59658E+08 4.64990E+08 1.10830E+09 1.59842E+09 3.24363E+09 2.93332E+09 2.36696E+09 2.89003E+09 1.42825E+09 4.42338E+08 2.12501E+09 5.48432E+09

.7.12292E+09 1.03149E+10 2.05020E+10 1.54321E+10 6.80836E+09 2.08115E+10 1.90620E+10 1.87027E+10 1.87067E+10 2.59350E+10 2.32048E+10 1.63390E+10 1.52521E+10 5.03766E+09 1.71555E+09 5.79265E+09 3.69441E+09 8.14806E+09 5.76403E+06 2.51896E+07 9.75622E+07 1.92220E+08 3.27455E+08 7.51266E+08 1.00403E+09 1.79877E+09 1.45231E+09 1.12970E+09 1.33287E+09 6.52104E+08 1.98677E+08 9.45496E+08 2.41337E+09 2.98454K+09 4.21588E+09 7.93826E+09 5.72833E+09 2.54752E+09 7.26207E+09 6.55344E+09 6.48139E+09 6.28913E+09 8.87760E+09 7.80143E+09 5.48592E+09 5.10511E+09 1.69700E+09 6.14043E+08 1.78767E+09 1.19550E+09 2.67201E+09 19TABLE4.4CALCULATED SATURATED ACTIVITIES ATTHECENTEROFSURVEILLANCE CAPSULESFORDONALDC.COOKUNIT2ReactionSurveillance Capsuleat4'Bq/g)Surveillance Capsuleat40'Bq/g)54Fe(n,p)54Mn 5Ni(n,p)Co63Cu(n,a)60CoNp(n,f)3Cs238U(nf)137Cs1.535E+62.260E+72.026E+51.119E+71.561E+62.648E+64.054E+72.867E+52.749E+73.260E+6TABLE4.5DONALDC.COOKUNIT2SPECTRUM-AVERAGED CROSSSECTIONSATCENTEROFSURVEILLANCE CAPSULES(SC)a(barns)(Reaction54Fe(n,p) 58Ni(n~p)

Cu(n,n)7Np(n,f)238U(nf)46Ti(n,p)

SCat400.06780.09270.0007002.7630.344SCat4'.08940.11740.001132.5580.3740.0152/0o(E)y(E)dE (1)Jl$(E)dE TABLE4.620AZIMUTHAL VARIATION OF](>1)INRPVOFDONALDC.COOKUNITy(E>1.0MeV)n/cm's0-TR~219.781/4-TR~225.193/4-TR~236.1421234567890111213141516171819202122232425262728293031323334353637383940414243c,g46474849501.563.284.004.725.948.0010.0012.0014.0016.0018.0020.0021.5022.5023.5024.3925.0225.4826.3127.4928.3028.7429.4830.5031.5032.4733.4734.5035.2535.7536.2536.7537.2537.7538.2538.8139.2839.6640.0040.3440.7241.0541.4541.9242.3942.8743.3443.8244.2944.769.480E+09 9.169E+09 9.025E+09 9.486E+09 1.015E+10 1.085E+10 1.150E+10 1.217E+10 1.286E+10 1.350E+10 1.402E+10 1.432E+10 1.427E+10 1.418E+10 1.408E+10 1.401E+10 1.399E+10 1.399E+10 1.399E+10 1.408E+10 1.424E+10 1.434E+10 1.449E+10 1.482E+10 1.522E+10 1.568E+10 1.620E+10 1.678E+10 1.722E+10 1.751E+10 1.778E+10 1.800E+10 1.815E+10 1.822E+10 1.817E+10 1.804E+10 1.776E+10 1.766E+10 1.779E+10 1.802E+10 1.852E+10 1.899E+10 1.955E+10 2.008E+10-2.047E+10 2.075E+10 2.097E+10 2.112E+10 2.121E+10 2.125E+10 5.221E+09 5.176E+09 5.175E+09 5.037E+09 5.597E+09 6.001E+09 6.375E+09 6.749E+09 7.122E+09 7.466E+09 7.738E+09 7.883E+09 7.876E+09 7.839E+09 7.799E+09 7.779E+09 7.781E+09 7.784E+09 7;787E+09 7.847E+09 7.937E+09 7.990E+09 8.078E+09 8.251E+09 8.469E+09 8.712E+09 8.983E+09 9.277E+09 9.498E+09 9.630E+09 9.741E+09 9.828E+09 9.887E+09 9.908E+09 9.900E+09 9.902E+09 9.924K+09 9.975E+09 1.006E+10 1.016E+10 1.032E+10 1.046E+10 1.066E+10 1.090E+10 1.112E+101.130E+10 1.144E+10 1.154E+10 1.161E+10 1.164E+10 1.028E+09 1.041E+09 1.052E+09 1.073E+09 1.106E+09 1.175E+09 1.247E+09 1.320E+09 1.389E+09 1.450E+09 1.497E+09 1.523E+09 1~527E+091.527E+09 1.526E+09 1.527E+09 1.530E+09 1.532E+09 1.537E+09 1.551E+09 1.568E+09 1.578E+09 1.597E+09 1.628E+09 1.666E+09 1.708E+09 1.754E+09 1,803E+09 1.837E+09 1.858E+09 1.877E+09 1,893E+09 1.907E+09 1.920E+09 1.935E+09 1.954E+09 1.975E+09 1.994E+09 2.012E+09 2.028K+09 2.047E+09 2.064E+09 2.085E+09 2.112E+09 2.139E+09 2.165E+09 2.186E+09 2.203E+09 2.215E+09 2.221E+09 2'ABLE4.7CALCULATED NEUTRONFLUENCERATE[$(E)JSPECTRAINREACTORPRESSUREVESSELATPEAKAXIALANDAXIMUTHAL LOCATION(645')FORDONALDC.COOKUNIT2GroupUpperEnergy(MeV)0-TR=219.78$(E)1.0MeV)n/cm's1/4-TR~225.193/4-TR=236.142123456789011121314151617181920212223242526272829303132331.733E+01 1.419E+01 1.221E+01 1.000E+01 8.607E+00 7.408E+00 6.065E+00 4'66E+003.679E+00 3.012E+00 2.725E+00 2.466E+00 2.365E+00 2.346E+00 2.231E+00 1.920E+00 1.653E+00 1.353E+00 1.003E+00 8.208E-01 7.427E-01 6.081E-01 4.979E-01 3.688E-01 2.972E-01 1.832E-01 1.111E-01 6.738E-02 4.087E-02 3.183E-02 2.606E-02 2.418E-02 2.188E-02 0.53166E+07 0.23088E+08 0.90374E+08 0.17693E+09 0.30438E+09 0.71052E+09 0.97912E+09 0.17730E+10 0.13497E+10 0.10299E+10 0.11992E+10 0.60323E+09 0.17406E+09 0.80461E+09 0.19961E+10 0.22153E+10 0.30608E+10 0.47574E+10 0.31781E+10 0.16647E+10 0.43628E+10 0.38778E+10 0.42456E+10 0.41077E+10 0'0974E+10 0.55796E+10 0.42564E+10 0.37388E+10 0.15103E+10 0.99039E+09 0.13253E+10 0.90043E+09 0.22970E+10 0.22286E+07 0.97553E+07 0.36426E+08 0.70333E+08 0.11754E+09 0.26569E+09 0.35272E+09 0.64140E+09 0.53264E+09 0.43784E+09 0.53614E+09 0.27104E+09 0.84240E+08 0.40595E+09 0.10353E+10 0.13200E+10 0.19119E+10 0.36067E+10 0.27155E+10 0.11772E+10 0.46686E+10 0.40155E+10 0.45651E+10 0.53608E+10 0.61226E+10 0.62975E+10 0.41358E+10 0.33406E+10 0.89469E+09 0.28232E+09 0.18702E+10 0.11019E+10 0.20128E+10 0.36063E+06 0.15732E+07 0.53124E+07 0.96453E+07 0.14818E+08 0.30518E+08 0.37525E+08 0.67721E+08 0.63806E+08 0.55198E+08 0.70522E+08 0.36044E+08 0.12500E+08 0.62522E+08 0.15980E+09 0.25036E+09 0.38146K+09 0.96084E+09 0.92694E+09 0.35203E+09 0.19763E+10 0.18109E+10 0.20894E+10 0.29320E+10 0.29813E+10 0.33266E+100.20823E+10 0.15865E+10 0.40075E+09 0.12523E+09 0.10917E+10 0.71618E+09 0.11316E+10 22TABLE4.8RADIALGRADIENTOFFASTFLUENCERATE[P(E>1)JTHROUGHRPV,ATPEAKAZIMUTHAL ANDAXIALLOCATIONS INDONALDC.COOKUNIT2R(1)(cm)y(E>1)cm-s219.978221.14222.92224.70226.48228.26230.04231.82233.60235.39237.17238.95240.732.109E+101.922E+10 1.572E+10 1.239E+10 9.649E+97.452E+95.721E+94.369E+93.316E+92.494E+91.849E+91.331E+98.723E+9(1)RPVlinerbeginsatR=219.71cm.RPVbeginsat220.25andendsat241.62cm.1/4-T~225.19cm.3/4-T~236.14cm.

23TABLE4.9CALCULATED FLUENCERATESANDLEADFACTORSINDONALDC.COOKUNIT2Location.Radius(cm)FluenceRate[n/(cm2'"1)]LeadFactors4'apsule40'apsule capsulesIDs,V,W,Z(4')T$U$X$Y(40)VesselIDVessel1/4-TVessel3/4-T211.41211.41219.71225.19236.142.746E+10 6.245E+10 2.125E+10 1.164E+10 2.221E+91.292.3612.362.945.3728.12 fluenceratesattheinnerradius,1/4-T,and3/4-Tlocations inTable4.9areobtainedfromTable4.8byinterpolation (orextrapolation).

Thecapsulefluenceratesandtheleadfactorsarealsosummarized inTable4.9.4.4.2NeutronDosimeter TestinandAnalsisThegammaactivities ofthedosimeters weredetermined inaccordance withProcedure XI-MS-101-0 usinganIT-5400multi-channel analyzerandaGe(Li)coaxialdetectorsystem.Thecalibration oftheequipment wasaccomplished withMn,Co,and3Csradioactivity standards obtainedfromtheU.S.Department ofCommerceNationalBureauofStandards.

Thedosimeter wireswereweighedonaMettler-Type H6Tbalance.Allactivities werecorrected tothetime-of-removal (TOR)atreactorshutdown.

Thereferences fortheprocedures usedinprocessing thedosimeter sASTME181-82,"Detector Calibration andAnalysisRadionuclides" ASTME261-77,"Determining Neutronflux,Fluence,andSpectraRadioactive Techniques" ASTME262-85,Determining ThermalNeutronFluxbyRadioactive Techniques ASTM-E263-82, "Determining FastNeutronFluxbyRadioactivation ofIron"ASTME264-82,"Determining FastNeutronFluxbyRadioactivation ofNickel"ASTME523-82,"Measuring FastNeutronFluxDensityofRadioactivation ofCopperASTME704-84,"Determining FastNeutronFluxDensitybyRadioactivation ofUranium-238" ASTME705-84,"Determining FastNeutronFluxDensitybyRadioactivation ofNeptunium-237" TheresultsoftheneutrondosimetryanalysisprocedurearesummarizedinTables4.10to4.16.Theequations anddefinitions usedforneutrondosimetry analysisaresummarized intable4.10.Theneutron 25TABLE4r10EQUATIONS ANDDEFINITIONS FORNEUTRONDOSVifETRY ANALYSIS/JATOg~NoFJo(E)d(E)dEQ Pj(lmLTJ)el(Ttj)j~LhereATOR~produceauc'Lideactivitracandofirradiacion, bq/ag;o(E)renergy-dependeat accivacion crossseccioa(ca)fordosineccr a,29(E)~energyHepcndent fluenceraceatsurvcillaace locacioa; Yproductnuclideperrcactioa(fissionyield);l~decaycoastaatoftheproductauclidc(d1);Pj~fractionoffullpoverduringoperacing periodj;T.rlcagchoftineforirradiacion iatcrvalj;k~rinefroabeginaing ofirradiation tocineofrcnovaL;r..>elapsedcinefronbeginning ofirradiacion tocadofincervalj;Nrnuaberoftargetsconepcragindosinetcr; and0Jrnuaberofirradiatton intervaled

.+WASATJo(E)d(E)dg 0vbercASAT~reactiooracepertargetnucleus.(C.1)(C.2)f.Wo(E)d(K)dgs4(E)dgKr.ASATd(K>gt)(4.3)vheteog~cftcccivc spectrua-averaged crossseccionaadtd(K)dE~flucnccraceforneutronsvithenergiesgreaterthanEtNeV(s(K>gt)).

tSubstituting Eq.(2.2)iotoEq.(2.1)andsolvingforASAT,oneobca'LasAhgT~TORSATNoTQPJ(1-c"j)e"j)j~LReplacing ASATinEq.(2.4)byASATiaEq.(2.3),oocobtainsd(E>E)~ATORJNoYogQPj(L-eLTj)el(T-tj)jeLThetocalfluenceischengivenby(C.4)(4.5)JKE>gt)~d(E>gt)QPjTjjRThecharnelneutronfluencerace(ptb)isdaterained froarbebareaodcsdniua-covered cobaltactivici<doeucroafluea<<erace(E>gr)atthecapsulecenteraaxtauaaeutronflucnccraceatthePVsanerradtusThcsaturacion tacror(SF)isgivenbrSF~1JpP'(1-elTj)el(T-cJ)jaL~Anoregeneraldefiaicion canbcstatedbyreplacing thedeaoaiaator bytheuaxiuuaneutronfinancerateacanypointiathepressurevessel(PV)~

TABLE4.11CONSTANTS FORPROCESSING DOSIMETRY DATAReactionN0(atoms/mg)

HalE-Life (day-1)X-rayBranching FissionAtomAtomicIntensity YieldFractionWeight54Fe(n,p) 4Mn6.254x10312.50d2.218x1030.99978835keV0.99449811keV7004x101870'85d9.783x105Ni(n,p)Co59Co(n,y)

Co1.022x105.271y3.600x100.9990Q1173keV0.999891332keV"Ti(n,p)4Sc1.018x1083.85d8.261x100.99989889keV0.999991120.keV0.08147.900.05855.8470.682758.701.000058.933263Cu(n,a)

Co6.555x105.271y3.600x100.9990Q1173keV0.999881332keV0.691763.546237Np(n,f) 3Cs2.540x1030.17y6.290x100.8530Q662ke'V6.267.1.0000237.0482238U(nf)137Cs2'30x101830.17y6'90x100'5309662keVF00010000238'508CSi 27TABLE4.12REACTORPOWER-TIME HISTORYFORDONALDC.COOKUNIT2CAPSULETaleStep12345678910ll1213141516171819202122232425262728293031323334i35363738394041Operating Period3/784/785/786/787/788/789/7810/7811/7812/781/79z/793/794/795/796/797/798/799/7910/7911/7912/791/80Z/803/804/805/806/807/808/809/8010/8011/8012/801/812/813/814/815/816/817/81FractionofFullPower*P]0.24370.15440.25940.63820.43960.60660.85310.88250.48080.92570.92570.92570.92570.91420.58350.00000.90330.96560.96560.59180.00000.00000.44470.91910.91910.91910.91910.82720.59260.96690.96690.56140.00000.59790.97820.97820.44180.00000.35250.78060.7201Irradiation IntervalTJ1030313031313031303131283130313031313031303131293130313031313031303131283130313031DecayT11MT-t328912861283028002769273827082677264726162585255725262496246524352404237323432312228222512220219121602130209920692038200719771946191618851854182617951765173417041673 2vTABLE4.12(Continued)

REACTORPOWER-TIME HISTORYFORDONALDC.COOKUNIT2CAPSULETimeStepOperating PeriodFractionofFullPower*P]Irradiation IntervalTjDecayTimeT-t'2434445464748495051525354555657585960616263646566676869707172737475767778798081828/819/8110/8111/8112/811/822/823/824/825/826/827/828/829/8210/8211/8212/821/832/833/834/835/836/837/838/839/8310/8311/8312/831/842/843/844/845/846/847/848/849/8410/8411/8412/840.95160.95160.13430.96120.96120.96120.96120.40280.95690.95690.95690.95690.41150.90760.92150.66690.00000.12170.97480.99890.99300.96920.77120.66730.91570.91720.48150.16590.93970.96230.94100.30540.00000.00000.00000.54240.92000.94300.95750.84720.432131303130313128313031303131303130313128313031303131303130313129313031303131303130311642161215811551152014891461143014001369133913081277124712161186115511241096106510351004974943912882851821790759730699669638608577546516485455424 29TABLE4.12(Continued)REACTORPOWER-TIME HISTORYFORDONALDC.COOKUNIT2CAPSULEXTimeStepOperatingPeriodFractionofFullPower*P~Irradiation IntervalTgDecay~*--,T"lme-'

'-t~J838485868788899091929394951/852/853/854/855/856/857/858/859/8510/8511/8512/851/862/860.52080.99160.97640.99240.99860.99850.42950.02370.00000.06410.54370.79420.80000.59973128313031303131303130313128*FullpowerlevelforCookUnit2is3391HWt.Timeofremovalisreferenced to2/28/86,2400hr.3933653343042732432121811511209059280 30TABLE4.13CORRECTION FACTORSTOOBTAINMEASUREDSATURATED ACTIVITIES ATCAPSULEXCENTERLINE ReactionSaturation FactorGradientFactorImpurityFactor*5Fe(n,p)Mn58Ni(n,p)58Co 63Cu(n,a)

Co237Np(nf)137Cs238U(nf)137Cs39Co(n,y)60Co 1.6311.7202.3409.0379.0372.3401.0511.1640.95381.01.01.1641.01.01.01.01.01.0*Impurities wereassumednegligible.

TABLE4.14CALCULATED SATURATED MIDPLANEACTIVITIES INDONALDC.COOKUNIT2SURVEILLANCE CAPSULESDosimeter orFluxSaturated Activities for40'urveillance CasuleB/R=210.41cmR=211.41cmR=212.41cmSaturated Activities for4'urveillance CasuleBq/R=210.41cmR=211.41cmR=212.41cm54Fe(n,p) 4Mn58Ni(n,p)

Co63Cu(n,a)

Co237Np(n~f)137Cs 238U(n,f)13 Cs46Ti(n,p)46Sc

$(E>1.0MeV)g(E>0.1MeV)2.506E+112.111E+111.717E+11 3.240E+062.648E+062.170E+064.953E+07 4.054E+07 3.313E+073.471E+05 2.867E+05 2.390E+05 3.279E+07 2.749E+07 2.234E+07 3.963E+06 3.260E+06 2.640E+06 7.872E+05 6;454E+05 5.337E+05 7.544E+10 6.245E+10 5.048E+10 1.856E+06 1.535E+06 1.275E+06 2.732E+072.260E+071.847E+072.428E+05 2.026E+05 1.704E+05 1.332E+07 1.119E+07 9.241E+06 1.880E+06 1.561E+06 1.286E+06 5.114K+05 4.240E+05 3.545E+05 3.297E+10 2.746E+10 2.258E+10 9.354E+10 7.901E+10 6.521E+10 32TABLE4.15COMPARISON OFMEASUREDANDCALCULATED SATURATED ACTIVITIES FORFASTTHRESHOLD DETECTORS ReactionIDRadialLocation(cm)TimeofRemovalActivity, ATOR(Bq/mg)MeasuredSaturated

Activity, AESAT(Bq/mg)Calculated SaturatedActivity, AGSAT(Bq/mg)Calculated (C)DividedbyMeasures(E)Activity(Bq/mg)54Fe(n)54MnTopTop-middle MiddleBottom-middle Bottom211.68211.68211.68211.68211.681.375E+31.407E+31.399E+31.423E+31.367E+3Average1.394a0.023E+32.390E+32.648E+31.1083Cu(na)0Coop-middle MiddleBottom-middle 211.18211.18211.181.197E+21.202E+21.216E+2Average1.205~0.010E+22.689E+22.867E+21.066Ni(n)CoTop-middle MiddleBottom-middle 212.18212.18212.181.837E+41.808E+41.840E+4Average1.828a0.018E+43.660E+44.054E+41.108237N(nf)137CsMiddle211.413.142E+32.839E+42.749E+40.9683238U(nf)137Csiddle211.413.763E+23.400E+33.260E+30.9588 33TABLE4.16THERMALNEUTRONFLUENCERATEINCAPSULEXAxialLocationBareCadmium-Covered Saturated Activity(Bq/mg)ThermalFluenceRate[n/(cms1)]TopCoBottomCoAverage3.448E+07 3.402E+07 1.445E+07 1.445E+07*

5.283E+105.161E+105.222E+10+Assumedtobesameastopvalue.

34dosimeter sandtheconstants usedinprocessing thedosimeters aregivenin~~Table4.11.Thereactorpower-time historydatagiveninTable4.12areusedtocalculate thesaturation factors(seedefinition, Table4.10)showninTable4.13.InTable4.13,thegradientcorrection factorsareobtainedfromthetransport calculations giveninTable4.14andtheimpuritycorrectionfactorsareassumedtobenegligible.

Eachofthemeasuredactivities AT0R,Table4.15aremultiplied bythethreeappropriate correction factorsinTable4.13toobtainthemeasuredsaturated activities ASAT,forcomparison withthecalculated values.Theresults(Table4.15)indicatethatthecalculated valuesare+11(to-4$fromthemeasuredvalues.ThethermalneutronfluenceratesaregiveninTable4.16andareobtainedusingEq.(4.7)fromTable4.10.Thesevaluesweretoolowtocauseanysignificant burninorburnout~~~corrections.

4.2.3ResultsofNeutronTransortandDosimetrAnalsisThecomparison ofthecalculated andthederivedfluenceratesinTable4.17indicates verygoodagreement:

6.0 19x10fromthemeasurements

and6.245x10fromthecalculations.

Thederivedfluenceratefromthemeasurements isusedtodetermine thefluencesshowninTable4.18.Theassembly-wise sourcedistribution forDonaldC.CookUnit2CapsuleXanalysisisprovidedinAppendixA.Thethree-dimensional (3-D)fluxsynthesis methodusedinthisreportisgiveninAppendixB.4.3Mechanical ProcrtTestsTheirradiated CharpyV-notchspecimens weretestedonacalibrated" SATECModelSI-1K240ft-lb,16ft/secimpactmachineinaccordance withProcedure XI-MS-104-1.

Thetesttemperatures, selectedtodeveloptheductile-brittle transition anduppershelfr'egions, wereobtainedusingaliquidconditioning

35TABLE4.17COMPARISON OFFASTNEUTRONFLUENCERATESFROMTRANSPORT CALCULATIONS ANDDOSIMETRY MEASUREMENTS FORCAPSULEXReactionMeasuredSaturated Activity(Bq/mg)FluenceRateDerivedfromMeasurements

[n/(cm2.s1))CalculatedFluenceRate(n/(cm2s1)]Calculated DividedbyDerivedFluenceRateFe(n,p)Mn63Cu(n,0)Co5Ni(n,p)Co2.390E+03 2.689E+02 3.660E+04 238U(nf)137Cs3.400E+03 Average3Np(n,f)Cs2.839E+04 5.637E+10 5.860E+10 5.637E+10 6.452E+10 6.511E+10 6.019~0.432E+10 6.245E+10 6.245E+10 6.245E+10 6.245E+10 6.245E+10 6.245E+10 1.1081.0661.1080.96790.95911.042+0.074TABLE4.18CALCULATED PEAKFLUENCESINPRESSUREVESSELBASEDONCAPSULEXDOSIMETRY Location5.273EFPYFluence(ncm2)10EFPYFluence(ncm2)15EFPYFluence(ncm2)32EFPYFluence(ncm2)Surveillance Capsule*PressureVesselIRPressureVessel1/4-TPressureVessel3/4-T1.002E+193.406E+181.865E+183.562E+17 1.899E+19 6.460E+183.538E+18 6.753E+17 2.849E+19 9.690E+18 5.306E+18 1.013E+18 6.078E+19 2.067E+19 1.132E+19 2.161E+18

  • Basedonaveragedfluenceratederivedfromdosimetry measurements.

36bothmonitoredwithaFlukeModel2168Adigitalthermometer

.TheCharpyV-notchimpactdataobtainedbySwRIonthespecimens contained inCapsuleXarepresented inTables4.19through4.22.TheshiftsintheCharpyV-notchtransition temperatures determined forthevesselplate,theweldmetalandtheHAZmaterialsareshowninFigures5through8.TheCapsuleTandYresultsareincludedforcomparison.

AsummaryoftheshiftsinRTNDTdetermined at,the30ft-lblevelasspecified inAppendixGto10CFR50[1],andthereduction inCuppershelfenergiesforeachmaterial, ispresented inTable4.23.Tensiletestswerecarriedoutinaccordance withProcedure XI-MS-103-1 usinga22-kipcapacityMTSModel810MaterialTestSystemequippedwithanInstronCatalogue No.G-51-13A2-in.straingageextensometer andHewlettPackardModel7004BX-Yautographic recording equipment.

Tensiletestsontheplatematerialandtheweldmetalwererunat250Fand550'Fatastrainrateof0.005in/in/min.

throughthe0.2$offsetyieldstrengthusingservocontrol andrampgenerator

.Theresults,alongwithtensiledatareportedbyWestinghouse ontheunirradiated materials

[12],arepresented inTable4.24.Theload-strain recordsareincludedinAppendixC.TestingoftheWOLspecimens wasdeferredattherequestofIndiana4MichiganElectricCompany.Thespecimens areinstorageattheSwRIradiation laboratory.

Inspected andcalibrated usingspecimens andprocedures obtainedfromtheArmyMaterials andMechanics ResearchCenter.

37TABLE4.19CHARPYIMPACTPROPERTIES OFLONGITUDINAL PLATEDONALDC.COOKUNIT2CAPSULEXSouthwest ResearchInstitute DepartmentofMaterlaisSciencesCHARPYTESTDATASHEETMATERIAL-LONGITUDINAL ProjectNo.06-8888-001 Date4/28/87SPECIMENNO.TEMPoFENERGYFT-LBSLATERALEXPANSION FRACTUREAPPEARANCE PHOTOGRAPH ML-25RT-7117.0.017ML-26+10028.5.026ML-32+12530.5.02615ML-27+15040.0.03730~%wt'L-31+17570.0.06145ML-28+20083.5.07290ML-29+25099.0.085100ML-30+300107.0.085300,Q+)

TABLE)1.20CHARPYIMPACTPROPERTIES OFTRANSVERSE PLATEDONALDC.COOKUNITNO.2CAPSULEXSouthwest ResearchInstitute Department ofMaterials SciencesCHARPYTESTDATASHEETMATERIAL-TRANSVERSE ProjectNo.06-8888-001 Date1!/28/87SPECIMENNO.TEMP'FE?tERGYFT-LBSU\TERALEXPANSION FRACTUREAPPEARANCE PHOTOGRAPH YiMT-48+508.0F0070MT-37RT-7114.5.0130MT-38+10023.0.02215MT-46+10020.5.01910MT-47+12524.5.02410MT-39+15030.0.02920I'irgMT-40+20050.0.04830<<)T-45.20i)53.i).050~0IIi)T-44Ii".22">..60.l)..<)5580err4[~.2'.0!'>':"~r'a3N

39TABLE4.21CHARPYIMPACTPROPERTIES OFHAZMATERIALDONALDC.COOKUNIT2CAPSULEXSouthwest ResearchInstitute Department ofMaterials SciencesCHARPYTESTDATASHEETMATERIAL-HAZProjectNo.06-8888-001 Date4/28/87PHOTOGRAPH SPECIMENNO.TEMPoFENERGYFT-LBS.LATERALEXPANSION FRACTUREAPPEARANCE MH-432525.0.01810MH-47+5048.5.03945H-37RT+7141.5.03640MH-45+10064.5.05460MH-38+10095.0.06870MH-48+125117.0.082100MH"42+15097.0.06780MH"41+200100.0F081100MH-40+20071.0.061100Mll-46+225110.0.076100.'ill-441+250119.0.08310011-39+300103.0.080100 4OTABLE4.22CHARPYIMPACTPROPERTIES OFMELDMETALDONALDC.COOKUNIT2CAPSULEXSouthwest ResearchInstitute Department ofMaterials SciencesCHARPYTESTDATASHEETMATERIAL-WELOProjectNo.06-8888-001 Date4/28/87SPECINENNO.TEMP0FENERGYFT-LBSLATERALEXPANSION FRACTUREAPPEARANCE PHOTOGRAPH XMW-47-2524.5.02210MW-4816.0.018MW-45+5019.5.01710MW-37RT+7124.0.02015MW-38+10027.0.03025MW-46+12561.5.05745MW-40+15070.5.064100MW"39+20075.5~069100MW-43+20061.0.058MW-42MW41+250+25064.0ee.o.061.057100IitooMW-44+300I't68.5t.069100 DliV~t~I~'~~l C0e:':'parr'ia'.e.--'-CapsuleT--e--Camisole Y,CapsleXe'O115'F103'FIcier0100200300400530a~4pce804F0ag./Wr7r~e~-:000100200Tes:.e,.Fera.ere,

'c'OvcsFIGURE6.RADIATION RESPONSEOFDONALDC.COOKUNITNO.2VESSELSHELLPLATEC5521-2(TRANSVERSE ORIENTATION)

4316C-Cade:Un1rradlated--CapsuleT--o--CapsuleY~CapsuieX'e4I75'F4c.-72'F0-1001002CQ40C5CCM'-I684F-I0-lCC100200.esTeaoerat"re, F420FIGURE7.RADIATION RESPONSEOFDONALDC.COOKUNITNO.2REACTORVESSELMEAT-AFFECTED ZONEMATERIAL 4410".CoCeUAltradlatedCapsule--o--Ca:sule Y-uaCapsuleX0rassJ../-7~60'F/70'F1CC01002M300400500CshPC20600FleCG01002CGxestie~cerdture, FnJMVFIGURES.RADIATION RESPONSEOFDONALDC.COOKUNITNO.2REACTORVESSEIWELDMATERIAL TABLE4.23EFFECTOFIRRADIATION ONCAPSULEXSURVEILLANCE MATERIALS DONALDC.COOKUNITNO.2Criterion (1)MeldMetalHAZ(2)Trans.PlateLongPlateHaterialC5521-2(3)

C5521-2(3~5)

Transition Temperature Shift850ft-lb830ft-lb835mil(4)NDTCvUpperShelfDrop60F70F60F70Fllft-lb(15%)75F72F68'F72F46ft-lb(38%)115F103'F80'F103F23ft-lb(27%)105F95F98F95F42ft-lb(33%)(1)RefertoFigures4-7.(2)Fluence=8.53x1018n/cm2,E>1MeV.(3)Fluence=1.05x10n/cm,E>1MeV.(4)Transition temperature shiftat30ft-lb(46ft-lbforlongitudinal plate).(5)Transition temperatures at77ft-lb,and54milsf17].

TABLE4.24TENSILEPROPERTIES OFSURVEILLANCE MATERIALS DONALDC.COOKUNITNO.2Condition TestMaterialSpec.No.Temp.0.2%YS('F)(ksi)UTS(ksi)FractureLoad(lb)FractureStress(ksi)UniformElongation

(%)-TotalElongation

(%)R.A.(/)CapsuleXPlateC5521-2MT-8(a)(Transverse)

HT-725055076.072.193.992.335883672156.0163.915.014.818.717.352.854.0WeldMetalMW-8HW-721055079.973.794.592.531123148183.1166.613.911.421.465.318.861.4(b)PlateC5521-2(Transverse)

RoomRoom30030055055367.465.458.860.557.558.987.385.978.679.583.083.1320029502650267532253150161.2156.4146.1157.6142.1145.613.415.013.010.611.512.723.427.122.619.819.020.559.661.763.165.453.856.0WeldMetalRoom75.7Room76.930070.730071.055070'55068.293.291.388.085.387.287.8285029502900287531603050173.4178.8171.0179.0157.2166.013.912.210.710.310.19.325.722.620.721.219.220.266.866.666.067.559.662.8(a)Fluence=1.002x10m/cm,E)1MeV.(b)Unirradiated

[12].

5.0ANALYSISOFRESULTSTheanalysisofdataobtainedfromsurveillance programspecimens hasthefollowing goals:(1)Estimatetheperiodoftimeoverwhichtheproperties ofthevesselbeltlinematerialswillmeetthefracturetoughness requirements ofAppendixGof10CFR50.Thisrequiresaprojection ofthemeasuredreduction inCuppershelfenergytothevesselwallusingknowledge oftheenergyandVspatialdistributionoftheneutronfluxandthedependence ofCuppershelfenergyontheneutronfluence.(2)Developheatupandcooldowncurvestodescribetheoperational limitations forselectedperiodsoftime.Thisrequiresaprojection ofthemeasuredshiftinRTNDTtothevesselwallusingknowledge ofthedependence oftheshiftinRTNDTontheneutronfluenceandtheenergyandspatialdistributionoftheneutronflux.Theenergyandspatialdistribution oftheneutronfluxforDonaldC.CookUnitNo.2wascalculated forCapsuleXwithadiscreteordinates transportCode.Thisanalysis, predicted thattheleadfactor(ratiooffastfluxatthecapsulelocationtothemaximumpressurevesselflux)was2.94atthecapsulecenterline, 3.09forthecore-side Charpylayer,and2.50forthevessel-side Charpylayer(seeTable4.9).Thisanalysisalsopredicted thatthefastfluxatthe1/4Tand3/4Tpositions inthe8.5-in.pressurevesselwallwouldbe55(and11)respectively ofthatatthevesselI.D.Amethodforestimating theincreaseinRTNDTasafunctionofneutronfluenceandchemistry isgiveninRegulatory Guide1.99,Revision1[81.However,theGuidealsopermitsinterpolation betweencrediblesurveillance dataandextrapolation byextending theresponsecurvesparallel 48totheGuidetrendcurves.ThedatafromCapsulesT,YandXaredeemedtobecrediblebecause(1)thesurveillance materialsarejudgedtobecontrolling withregardtoradiationdamage,(2)thescatterinthetransverseplateandweldmetalCharpydataissmall,and(3)thechangesinyieldstrengthareconsistent withtheCharpycurveshifts.Exceptforthelongitudinal platematerial, theslopesoftheresponsecurvesconstructed inFigure9arelessthanthesquarerootoffluenceutilizedinRegulatory Guide1.99.Althoughrecentwork[7]indicates thatthesquarerootoffluencedependence maybetoohigh,theprojected responses oftheDonaldC.CookUnitNo.2vesselbeltlinematerials arebasedonthetrendcurvesofFigure9whichwereconstructed inaccordance withRegulatory Guide1.99procedures.

TheDonaldC.CookUnitNo.2vesselplatesurveillance materialismoresensitive thantheweldmetal'andHAZsurveillance materials toirradiation embrittlement.

SincetheunirradiatedvaluesofRTNDTfortheintermediate shellplateC5521-2ishigherthanthoseoftheweldandHAZmaterials[16],thebeltlineregionplatematerialisprojected tocontroltheadjustedvalueofRTNDTthroughthe32EFPYdesignlifeofDonaldC.CookUnitNo.2.Asummaryoftheprojected valuesofRTNDTfor12and32EFPYofoperation ofDonaldC.CookUnitNo.2,ispresented inTable5.1.Amethodforestimating thereduction inCuppershelfenergyasafunctionofneutronfluenceisalsogiveninRegulatory Guide1.99,Revision1[8].TheresultsfromCapsulesT[16],Y[17],andXarecomparedtoaportionofFigure2oftheRegulatory Guide1.99,Revision1,inFigure10.Althoughtheshelfenergyresponseoftheweldsurveillance materialfromCapsulesXfallbelowthem,thepredictivetrendcurvesofRegulatory Guide1.99,Revision1,willbeusedinthisanalysisforconservatism..

ResponsecurveshavebeendrawnthroughtheHAZTransverse PlateandLongitudinal plate

600II4002001006040Reg.Guide1.99UpperLimiteCode;:0Trans.PlateGLong.Plate+HeldMetal:~HAZMaterialI~Il)ili,jIlijls[III.202xlpll1pl8NeutronFluence,nlcm2(E>1MeV)1pl9IIIII'll6x1019FIGURE9.EFFECTOFt/EUTRpff FLUENCEOf)RTffDTSHIFT,Dpf(ALDC.COOKUNITNO.2 50TABLE5.1PROJECTED VALUESOFRTNDTFORDONALDC.COOKUNITNO.2EFPYP.V.MaterialLocationhRTNDTFluence(a)ARTRpT~Ad'.RTRpT12PlateC5521-2I.D.1/4T3/4T58'F(b)7.8x10'858'F4.3x1058'F8.1xlp171018844159146102HAZMaterial7.8x10184.3Xlp188.1x1017I.D.20'F741.4T20'F633/4T20'F31g48351WeldMetalI.D.1/4T3/4TO'()7.8x10F4.3xlp18O'F8.1x1017664723664723584F()2.1x10958'F1.1x10958'F2.2x101832PlateC5521-2I.D.1401/4T1053/4T721g8163130HAZMaterialI.D.1/4T3/4T'04F(b) 2.1x1p1920'F1.1x109204F2.2x10-1138450133104(70WeldMetalI.D.p'F()2.1x101081/4TO'F1.1x10803/4TOoF2.2x10184p1088040(a)Neutrons/cm

,E>1MeV.(b)Reference 16.(c)Estimated perReference 18 l~6040Req.Guide1.99UpperLimitIjlIj,II'I'5-g20Reg.Guide1.99C7l5-QJCW100.15KCuPlate0.05$CuMeldcnC)4:Code:k:0Trans.PlateLong.Plate+WeldMetal:~HAZMaterialIjIIIs.IIII2x1P171P181P19NeutronFluence,n/cm2(E>1MeV)6xlPFIGURE>oDEPENDEtlCE OFCyUPPERSIIELFENERGY0thNEUTRONFLUENCEDptNLDCCOOKUNITNp2

datasincetheseresultsfallabovetheplatetrendcurve.Referringtotheconservative trendcurvesfor0.05$CuweldmetalandtheHAZandplateresponsecurves,theprojected Cvshelfenergiesofthevesselmaterials areasfollows:oPlateC5521-2(Unirradiated CShelf=86ft-lb)32EFPYatI.D.-60ft-lb(30$reduction) 32EFPYat1/4T--63ft-lb(27$reduction) 32EFPYat3/4T-71ft-lb(171reduction)

Note:Forshelfenergiesbelowthe0.15$Cuplatecurvetheconservative platecurveisused.oWeldMetal(Unirradiated CShelf=75ft-lb)v32EFPYatI.D.--58ft-lb(237reduction) 32EFPYat1/4T-60ft-lb(20$reduction) 32EFPYat3/4T--65ft-lb(13$reduction) oHAZMaterial(UnirradiatedCShelf=122ft-lb)v32EFPYatI.D.-68ft-lb(44$reduction) 32EFPYat1/4T-73ft-lb(40$reduction) 32EFPYat3/4T--100ft-lb(18(reduction)

Theseprojections indicatethatthecorebeltlinematerials intheDonaldC.CookUnitNo.2pressurevesselmaterialwillretainadequateshelftoughness throughout the32EFPYdesignlifetime.

ThecurrentDonaldC.CookUnitNo.2reactorvesselsurveillance programremovalschedule, revisedtoconformtoASTM185-79[9],issummarized inTable5.2.Therearefivecapsulesremaining inthevessel,ofwhichthreearestandbys.

53TABLE5.2REACTORVESSELSURVEILLANCE CAPSULEREMOVALSCHEDULE[16]DONALDC.COOKUNITNO.2~CasuleWOLMaterialWeldMetalWeldMetalTrans.PlateWeldMetalTrans.PlateTrans.PlateTrans.PlateWeldMetalRemovalTime1.08EFPY(a)324EFPY(b)5.27EFPY(')9EFPY32EFPYStandbyStandbyStandbyEquivalent VesselFluence3.4EFPYatI.D.11EFPYatI.D.E.O.L.at1/4TE.O.L.atI.D.E.O.L.atI.D.(a)Removedaftercorecycle1.(b)Removedaftercorecycle3.(c)Removedaftercorecycle5.

6.0HEATUPANDCOOLDOWNLIMITCURVESFORNORMALOPERATION OFDONALDC.COOKUNITNO.2DonaldC.CookUnitNo.1isa3391MwtpressurizedwaterreactoroperatedbyIndianaandMichiganElectricCompany.Theunithasbeeprovidedwithareactorvesselmaterialsurveillance programasrequiredby10CFR50,AppendixH.Thethirdsurveillance capsule(CapsuleX)wasremovedduringthe1986refuelling outage.Thiscapsulewastestedasdescribed inearliersectionsofthisreport.Insummary,thesetestresultsindicatethat:(1)TheRTNDTofthesurveillance platematerialinCapsuleXincreased 103'Fasaresultofexposuretoaneutronfluenceof1.002x1019neutrons/cm (E>1MeV).(2)Basedonananalysisofthedosimeters inCapsuleX,thevesselwallfluenceattheI.D.was3.406x10neutrons/cm (E>1MeV)atthetimeofitsremoval.(3)ThemaximumRTNDTafter12effective fullpoweryears(EFPY)ofoperation waspredicted tobe146'Fatthe1/4Tand102'Fatthe3/4Tvesselwalllocations, ascontrolled bythecorebeltlineshellplate.Theseprojections arecomparable tothoseresulting fromtheevaluation ofthedatafromcapsuleY.(4)ThemaximumRTNDTafter32EFPYofoperation waspredicted tobe163'Fatthe1/4Tand130'Fatthe3/4Tvesselwalllocations, ascontrolled bythecorebeltlineshellplate.Thesepredictions arelowerthanthatpredicted fromCapsuleYanalysis.

TheUnitNo.2heatupandcooldownlimitcurvesfor12EFPYand32EFPYhavebeencomputedonthebasesof(3)and(4)above.Thefollowing 55pressurevesselcontentswereemployedasinputdatainthisanalysis:

VesselInnerRadius,VesselOuterRadius,rOperating

Pressure, PInitialTemperature, TFinalTemperature, TfEffective CoolantFlowRate,QEffective FlowArea,AEffective Hydraulic
Diameter, D86.50in.,including cladding95.2in.2235psig70oF550oF134.6x10lb/hr26.72ft215.05in.TheSwRIcomputerprogramcalculates theallowable pressureoverthetemperature range70'F-550Fsuchthatthereferencestressintensity factor,KIR,isalwaysgreaterthanthesumoftwiceKI(pressure induced)andKIt(thermalgradientinduced)asdictatedbyAppendixGoftheCode(2].ThecurrentversionoftheSwRIprogramincorporates thephysicalpropertydataspecified byAppendixIoftheCodethroughthe1982SummerAdenda.Thechangesinthermalconductivity codeallowables madeintheearly1980'sreducedthecalculated allowable pressureatcoolanttemperatures belowabout200'Ffromthatobtainedwhenusingthepreviously specified values.Heatupcurveswerecomputedforaheatuprateof100'F/hr.

Sincelowerratestendtoraisethecurveinthecentralregion,thesecurvesapplytoallheatingratesupto100'F/hr.

CooldowncurveswerecomputedforcooldownratesofO'/hr(steadystate),20'F,40'F/hr,60'F/hr,and100'F/hr.

The20'F/hrcurvewouldapplytocooldownratesupto20'F/hr;the40'F/hrcurvewouldapplytoratesupto40'F/hr;the60'F/hrcurvewouldapplytoratesupto60'F/hr;the100'F/hrcurvewouldapplytoratesupto 100'F/hr.

TheunitNo.2heatupandcooldowncurvesdeveloped forupto12EFPYafterCapsuleYisidentical totheCapsuleXdata.Itisrecommended thatthecurrenttechnical specification for12EFPYnotbechanged.Thesecurvesarereproduced inFigures11and12.Thelimitcurvesdeveloped intheCapsuleYreportfor32EFPYisconservative comparedtothedatagenerated hereforCapsuleX.Thesecurvesarereproduced inFigures13and14.

2600'40022002000180016001400!il!,iJ!IIliiIII!illlji IiIIMATERIALPROPERTYBASISBASEl%TALCU=0.14<:,INITIALRTNDT=58'F.12EFPYRTNDT(1/4T)~146F(3/4T)~102oF.ILEAKTESTLIMITUNACCEPTABLE OPERATION 12001000800PRESSURE-TEMPERATlNE LIMITFORHEATUPRATESUPTO100'F/HR.REACTORCOOLANTSYSTEMHEATUPLIMITATIONS AP-.'PLICABLE FORFIRST12EFFECTIVE FULLPOHER,'YEARS,(MtQGINSOF60PSIGAND10'FAREIH-jCLUDEDFORPOSSIBLEINSTRlNENT ERROR)jjIIi::IljIIIIACCEPTABLE

}OPERATION

!".,ijj:IIIIlI'!ijII600400200IjjjCAPS}ULEYTACRITICALITY LIMITII1!jjIjj}II'jl60100150200250300350400450AVERAGEREACTORCOOLAI'lT SYSTEMTEN'ERATlNE <F>FIGURE11.REACTORCOOLANTSYSTEMPRESSURE-TEMPERATURE LIMITSVERSUS100'F/HRRATE,CRITICALITY LIMITAHOIIYDROSTATIC TESTLIMIT,12EFPYIII 2600240022002000180016001400>-12001000SOO8600400200.:i.',il.:!I, fiif;fIII':I:II~IIMATERIALPROPERTYBASISI'ASEMETALCU=0~14>INITIALRTNDT=~8~12EFPYRTNDT(1/4T)=146F(3/4T)=1020FUNACCEPTABLE OPERATION PRESSURE-TBPERATU LIMITSICRATEFIIRQ~20~a40".1!!Oll'I~f:ImI',ll!I':'!!::Ifi:REACTORCOOLANTSYSTEMCOOLIXWLIMITATIONS:I APPLICABLE FORFIRST12EFFECTIVE FULLPCNFR~YEARSS(MARGINSOF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBLEINSTRlNENT ERROR,)]ACCEPTABK-OPERATION IIIIII.,:III~.II~060100150200250300350400450AVERAGEREACTORCOOLANTSYS/EMTEMPERATURE (F)FIGURE12.REACTORCOOLANTSYSTEMPRESSURE-TEMPERATURE LIMITSVERSUSCOOLDOWtl RATES,12EFPY .26002400I22002000lSOO16001400120010008005600g4oo200BASEMETALCU=O.l4'tINITIALRTNPT=58F!32EFPYRTNPT(1/4T)(3/4TIe=175oF=135'Fe'INACCEPTAHLE

.OPERATION jIIj,PRESSURE-TEMPERATURE LIMITFORllEATUPRATESUPTO100'F/HRREACTORCOOuelTSYSTEMHEATUPLIMITATIONS APIPLICABLE FORFIRST32EFFECTIVE FULLPOWERYEARS(MARGINS.

OF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBL'E INSTRINENT ERROR)ilill!!., II!,I!I!I!!IIIIII~',IISTj'l.:,itI:I:eleiLIIIiTiii.il';IIIeII:lie,e'Illliij.'i)Il,iI~I:~'lIile~il.:li,e~leiilj"ACCEPTABLE: OPERATION ileIillIllI",ii".,I.i.~eeJjCRITICALITYI"'IMITij'60100150200300350250400450AVERAGEREACTORCOOLANTSYSTEMTEMPERATURE ('F)FIGURE13.REACTORCOOLA>lTSYSTEMPRESSURE-TEMPERATURE LIMITSVERSUS100'F/HRRATE,CRITICALITY LIMITANDIIYDROSTATIC TESTLIMIT,32EFPY(Ref.17) 26002400220020001800160014000-12001000'g800g.80040020006.'jREACTORCOOLANTSYSTEMCOOLDON)LIMITATIONS !:IAPPLICABLE FORFIRST32EFFECTIVE FULLPNERjYEARSe(NARGINSOF60PSIGAND10'FAREIN-CLUDEDFORPOSSIBLEINSTRlNENT ERRORS)jIIMATERIALPROPERTYBASIS)BASE%TALCU=0.14%IINITIALRT=58'F'2EFPYRTNDT(NDT1/4r)=1754'NACCEPTABLE OPERATION 34T50FPRESSURE"lEMPERATURE 'IMITS/R'IlRATE..'.. 020-.40.s.60100~IljlI'tIIIIItII.0100]50200250300'I!IIlj'.ACCEPTABLF.

OPERATICH350julIIIIjlI1j'.Ij400~I450AVERAGEREACTORCOOLANTSYSTEMTEI'IPERATURE (F)FIGURE14.REACTORCOOLANTSYSTEMPRESSURE-TEtfPERATURE LIMITSVERSUSCOOLDONlRATES,32EFPY(Ref.17) 6

17.0REFERENCES

Title10,CodeofFederalRegulations, Part50,"Licensing ofProduction andUtilization Facilities." 2.ASMEBoilerandPressureVesselCode,SectionIII,"NuclearPowerPlantComponents." 3.ASTME208-81,"Standard MethodforConducting Drop-Weight TesttoDetermine Ni-Ductility Transition Temperature ofFerriticSteels,"1982AnnualBookofASTMStandards'. 5.Steele,L.E.,andSerpan,C.Z.,Jr.,"Analysis ofReactorVesselRadiation EffectsSurveillance Programs," ASTMSTP481,December1970.Steele,L.E.,"NeutronIrradiation Embrittlement ofReactorPressureVesselSteels,"International AtomicEnergyAgency,Technical ReportsSeriesNo.163,1975.6.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInservice Inspection ofNuclearPowerPlantComponents," 1974Edition.7~Randall,P.N.,"NRCPerspective ofSafetyandLicensing IssuesRegarding ReactorVesselSteelEmbrittlement -CriteriaforTrendCurveDevelopment," presented attheAmericanNuclearSocietyAnnualMeeting,Detroit,Michigan, June14,1983.8.Regulatory Guide1.99,Revision1,OfficeofStandards Development, U.S.NuclearRegulatory Commission, April1977.9-ASTME185-79,"Standard Recommended PracticeforSurveillance TestsforNuclearReactorVessels," 1981AnnualBookofASTMStandards. 10.ASTME399-81,"Standard MethodofTestforPlane-Strain FractureToughness ofMetallicMaterials,"1982AnnualBookofASTMStandards. ASTME813-81,"StandardTestMethodforJI,AMeasureofFractureToughness," 1982AnnualBookofASTMStandards." 12.13."American ElectricPowerServiceCorporation DonaldC.CookUnitNo.2ReactorVesselRadiation Surveillance Program," WCAP-8512, November1975.W.A.RhoadesandR.L.Childs,AnUdatedVersionoftheDot4One-andTwo-Dimensional Neutron/Photon TranscrtCode,ORNL-5851, OakRidgeNationalLaboratory, OakRidge,TN,July1982.G.L.SimonsandR.Roussin,SAILOR-ACoupledCrossSectionLibraryforLightWaterReactors, DLC-76,RSIC.DonaldC.CookUnitNo.2Technical Specifications. 0 6

27.0REFERENCES

(continued) 16.Norris,E.B~,"ReactorVesselMaterialSurveillance ProgramforDonaldc.CookUnitNo.2;AnalysisofCapsuleT,"SwRIReport06-5928,September 16,1981.17.Norris,E.B.,"ReactorVesselMaterialSurveillance ProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleY,"SwRIReport06-7244-002, February1984.18.USNRCStandardReviewPlan,NUREG-75/087, Section5.3.2,Pressure-Temperature Limits,November24,1975' APPENDIXADetermination ofAssembly-Wise SourceDistribution forDonaldC.CookUnit2,CapsuleXAnalysis DETERMINATION OFASSEMBLY-WISE SOURCEDISTRIBUTION FORDONALDC.COOKUNIT2,CAPSULEXANALYSISSurveillance -capsuleXwasinthereactorforcycles1-5.TableA.1showsthecycle-average relativeassembly-wise. powerdistribution foreachofthesefivecycles.Thesevalueswereobtainedbyaveraging BOC,MOC,andEOCpowerdistributions providedforeachcycle.Theresulting assembly-wiserelativepowerdistribution showninthelastcolumnofTableA.1formedthebasisofthespace-dependent sourceusedinthetransport calculations. Therelativepowervaluesshowninthistableweremultiplied byavalueof17.6MWthperassemblytoobtaintheabsolutepowerproducedbyeachassembly. TableA.2showsthefinalabsolutepowerproducedbyeachassembly. TableA.2showsthefinalabsoluteassembly-wise powerdistribution foraquartercoremodel(notethatsomeassemblies appearasfractions inthequartercore,whichreducestheirabsolutepowerproduced). Theabsolutepowervaluesareconverted toaneutronsourcebymultiplying bytheconversion factorof8.163x10neutrons/s perMW.Apin-wiseintra-assembly distribution wasusedtorepresent thespatialpowervariation withineachoftheperipheral assemblies, whileaflatdistribution isusedforinteriorassemblies. Therelativepin-power distribution wasprovidedbytheDonaldC.CookUnit2sup-portstaff.Thenormalized, space-dependent sourcedistribution isthentransformed totheDOTR8meshbyusingacomputerprogramwhichperformsthenecessary interpolation andrenormalization calculations. Theoutputofthissourceroutine,whichincludesalistingofthefinalDOTR9spatialsourcedistribution, isincluded. Thesourceenergydistribution corresponds toan~~~~~~ENDF/B-VWattfissionspectrum. TableA.l.Cycle-Average AssemblyRelativePowerforDonaldC.CookUnit2Distribution ZoneCYCLEAverage2*3*4*5*6*7*8*9*1011121314151617*1819202122232425*2627282930313233*34353637383940*4142434445461.1461.1881.1511.2051.1171.1230.9720.7311.1921.1511.1841.1401.1731.0691.0390.7511.1671.1891.1431.1991.1081.0970.9290.6561.2241.1651.2011.1391.1341.0360.9650.5451.1691.1991.1271.1461.1660.9830.8141.0951.0851.1481.0701.0190.9730.4970.8611.0370.9681.1350.9881.0730.9310.9441.0310.9641.0531.0771.2181.0881.1660.9280.9801.0661~0121.2371.0151.1940.9050.8291.1271.0771.2421.0111.1780.9421.0810.5561.0041.2331.0261.1840.9120.9840.9011.0451.0961.1940.9560.9861.0510.5470.8541.060l.1171.2061.1131.0791.0840.8731.0471.0831.2131.1141.1811.1451.1200.8511.1221.2161.1101.19.61.0981.1801.0480.7521.2111.1191.1990.9701.1251.0340.9990.4231.1191.1931.0171.1271.0520.9550.7811.0751.1511.1911.0390.9410.8930.4010.8500.9620.9871.0380.9821.0701.0150.8550.9741.0641~1821.0661.1850.9991.1060.7590.9971.1831.0891.0741.1101.2251.0470.8261.0421.076l.1041.0981.2441.0731.1180.5630.9941.1981.1211.2491.0381.1730.7671.0620.9941.2171.0671~1821.0140.4041.0131.1391.1831.2501.1711.1861.0230.9441.1461.1871.2151.1531.2391.1381.1560.9551.1871.2201.2341.2781.2191.2501.1060.8531.2571.1631~2921.2331.2161.1831.1190.4591.1951.2651.2261.2581.2161.2150.7731.1821.1731.2531.2031.2101.0070.3890.9451.0771.0811.1651.0741.1061.005~0.8691.0781.0901.1691.110l.1991.0881.117~0.8491.0911.1751.1181.1971.1101.1891.0070.448~o.ass1.1721.1201.2081.0901.1791.0541.056~0.5091.0961.2181.1031.1931.0771.062~0.8071.0921.1001.2011.0671.0680.988*1/4assemblyin1/4~1/2assemblyin1/4NOTZ:Circledvaluescore.core.correspond toperipheral assemblies. TableA.2.AbsoluteAssemblyTotalPower3391MWthNo.ofassemblies ~193(i.e.,Zone)PowerforDonaldC.CookUnit23391MWPperassembly~-=17.57193assemblyZone]~2*3*4*5*6*7*8*9*1011121314151617*1819202122232425*2627282930313233*34353637383940*414243444546RelativePower0.9451.0771.0811.1671.0741.1061.0050.8691.0781.0901.1691.1101.1991.0881.1170.8491.0911.1751.1181.1971.1101.1891.0070.7831.1721.1201.2081.0901.1791.0541.0560.5091.0961.1221.1031.1931.0771.0620.8071.0921.1001.2011.0671.0680.9880.448AbsolutePower'.1519.4619.49710.2529.4359.7168.8297.6349.7019.15120.53919.50321.06619.11619.62614.9179.58420.64519.64321.03119.50320.89113.75710.29619.67821.22419.15120.71518.51918.548.9439.62819.71019.38020.96118.92318.659~14.1799.59319.32721.10218.74718.76517.3597.871~1/4assemblyin1/4core.*1/2assemblyin1/4core.NOTE:Circledvaluescorrespond toperipheral assemblies. FigureA.l.Identification ofAssemblyNomenclature UsedinSourceDetermination 4041424344454633343536373839252627282930313217181920212223241011121314151623478 APPENDIXBDescription ofthe3-DFluxSynthesis Method

DESCRIPTION OFTHE3-DFLUXSYNTHESIS METHODA3-D(RBZ)fluxdistribution issynthesized usingthefollowing wellestablished approximation: $(R,e,Z)=pe(Re)RZ'OREA(RZ)(R,Z)4R(R)B.1where4R~isthefluxobtainedfromtheRB.DOTcalculation; andA(R,Z)"RZ~axialdistribution functionobtainedbyrepresenting the~RRZflux=(QRZ)distribution anddividingitbytheintegraloverZoftheRZflux;i.e.,4RJ4RZdZ.ZInsomepreviousstudies,theRZfluxdistribution wasrepresented bytheresultsobtainedfromaDOTRZcalculation, whiletheradialflux4Rwasobtainedfromaone-dimensional calculation. However,ithasbeendiscovered thatasimplerapproximation givessimilarresults(withinafewpercent)astheresultofthesetransport calculations forlocations notoutsideoftheRPVandnearthereactormidplane. Inthisapproach, werepresent A(RZ)RZ-"(Z)J4RZZfP(>>dZZZB.2whereP(Z)istheaverageaxialdistribution ofpowerinthecore.Thefunc-tionP(Z)hasbeenrepresented by61discretenodalvaluesprovidedbyAmericanElectricPower.Thesevalues,whichareshowninTableB.1andB.2,correspond totheaveragerelativepowerfor61six-centimeter nodesdefinedoverthecoreheight.TableB.listheMOCaxialdistribution foratwice-burnedperipheral

assembly, whileTableB.2isforafreshperipheral assembly.

Employing theexpression inEq.B.2,wefindA(R,Z)=A(Z)AK='1,61PKAZi=1Evaluating thedenominator bysummingthevaluesinTablesB.landB.2,andmultiplying byhZ=6givesaxialfluxfactorfornodeKforburnedassemblyPK(PKtakenfromTableB.l)AK~KaxialfluxfactorfornodeKforfreshassemblyP15o~8(PKtakenfromTableB.2)Theaxialfactors(AK)usedinsynthesizing theRSZfluxesarealsoshowninTablesB.landB.2.Notefromthesetablesthattheaxialfluxfactorshavedifferent axialvariations forthefreshandburnedassemblies (indicating adifference intherelativefluxshape).However,thepeakvalueineachcaseisnearlyidentical (>>3.1E-3),andoccursatapproximately thesamelocation(-35inchesbelowthemidplane). Theaxialdistribution isfairlyflatinbothcases,andvariesbyonlyabout10Xoverthemiddle9feetofthecore.Sincesurveillance capsuleXaswellasthepeakRPVfluxarelocatedoppo-siteatwice-burned

assembly, theaxialdistribution factorsinTableB.1aremoreappropriate forthisanalysis.

Inordertocomputethe3-Dfluxoractivityatsomeaxialnodei(corre-spondingtoaheightZinTablesB.1andB.2),forsomeR8locationonemust1.findthefluxoractivityattheappropriate (RI,8J)locationintheDOTRBrun2.findtheaxialfluxfactorattheappropriate nodeK3.computethe3-Dvalueusingexpression $(RIOJ,ZI)4R6(RI6g)+AK (*)Forexample,thereactormidplanecorresponds tonode31.FromTableB.l,itcanbeseenthattheaxialfluxfactorfornode31isequalto3.063x10Therefore, allactivities andfluxesintheDOTReoutputshouldbemultiplied bythisfactorinordertoobtainthecorresponding midplanevalues.Allofthedosimeter resultsgiveninthetablespresented previously correspond tomidplanevaluesobtainedinthismanner.Themaximumvaluesoccurbelowthemidplaneandareobtainedbyusinganaxialfactorof3.143x10 TableB.l.AxialDistribution FactorsforBurnedPeripheral AssemblyinDonaldC.CookUnit2NodeZk(cm)(relative power)Ak(axialfluxfactor)~Midlane123456789101112131415161718192021222324252627282930313233343536373839404142434445463.09.015.021.027.033.039.045.051.057.063.0'9.075.081.087.093.099.0105.0111.0117.0123.0129.0135.0141.0147.0153.0159.0165.0171.0177.0183.0189.0195.0201.0207.0213.0219.0225.0231.0237.0243.0249.0255.0261.0267.0273.00.2120.2120.2680.3180.3590.3860.3680.4110.4440.4560.4630.4740.4770.4790.4700.4130.4700.4830.4880.4940.4960.4980.4940.4620.4440.4880.4910.4960.4990.5010.4990.4930.4380.4760.4960.4980.4990.5040.5040.5030.4910.4380.497-0.5070.5120.5121.301,E-3 1.301E-31.645E-31.952E-32.204E>>32.369E-32.259E-32.523E-32.725E-32.799E-32.842E-32.910E-32.928E-32.940E-32.885E-32.535E-32.885E-32.965E-32.995E-33.032E-33.045E-33.057E-33.032E-32.836E-32.725E-32.995E-33.014E-33.045E-33.063E-33.075E-33.063E-33.026E-32.689E-32.922E-33.045E-33.057E-33.063E-33.094E-33.094E-33.088E-33.014E-32.689E-33.051E-33.112E-33.143E-33.143E-3 TableB.l.(continued) Node21c(c)(relative power)Ak(axialfluxfactor)474849505152535455565758596061279.0285.0291.0297.0303.0309.0315.0321.0327.0333.0339.0345.0351.0357.0363.00.5110.5070.4990.4620.4420.4840.4820.4770.4660.4490.4220.3810.3320.2660.1333.137E-33.112E-33.063E-32.836E-32.713E-32.971E-32.959E-32.928E-32.860E-32.756E-32.590E-32.339E-32.037E-31.632E-38.160E-4 TableB.2.AxialDistribution FactorsforFreshPeripheral AssemblyinDonaldC.CookUnit2Nodezk(cm)(relative pover)Ak(axialfluxfactor)dlane12356789101112131415161718192021222324252627282930313233343536373839404142434445463.09.015.021.027.033.039.045.051.057.063.069.075.081.087.093.099.0105.0111.0117.0123.0129.0135.0141.0147.0153.0159.0165.0171.0177.0183.0189.0195.0201.0207.0213.0219.0225.0231.0237.0243.0249.0255.0261.0267.0273.00.1740.1830.2380.2830.3200.3470.3480.3730.4030.4160.4270.4320.4340.4350.4280.4050.4310.4360.4380.4420.4440.4450~444.0.4200.4250.4500.4570.4580.4600.4590.4610.4540.4270.4510.4610.4640.4660.4670.4670.4650.4470.4360.4650.4730.4760.4781.154E-31.214E-31.578E-31.877E-32.122E-32.301E-32.308E-32.474E-32.673E-32.759E-32.832E-32.865E-32.878E-32.885E-32.839E-32.686E-32.858E-32.892E-32.905E-32.931E-32.945E-32.951E-32.945E-32.786E-32.819E-32.984E-33.031E-33.038E-33.051E-33.044E-33.057E-33.011E-32.832E-32.991E-33.057E-33.077K-33.091E-33.097E-33.097E-33.084E-32.965E-32.892E-33.084E-33.137K-33.157E-33.170E-3 TableB.2.(continued) Node2k(cm)Pk(relative power)Ak(axialfluxfactor)Bottom474849505152535455565758596061279.0285.0291.0297.0303.0309.0315.0321.0327.0333.0339.0345.0351.0357.0363.00.4780.4780.4730.4420.4610.4660.4580.4500.4340.4130.382.0.3420.2860.2070.2073.170E-33.170E-33.137E-32.931E-33.057E-33.091E-33.038E-32.984E-32.878E-32.739E-32.533E-32.268E-31.897E-31.373E-31.373E-3 APPENDIXCTensileTestDataRecords Southwest ResearchInsiuteOepartment ofMaterials SciencesTENSILETESTOATASHE"iSpecimenNo.ri-8TestTemperature /NrStrainRate.aaMrw.ritYw.~projectHo.Q8'-+w>4->-r rMachineIdent.DataofTest4/~rk7InitialOiameter.Z.nInitialArealltllggLgSpecimenTemperaure:TopT.C.MiddleT.C.BottomT.C.~/n"~FinalOiameter.r+'7FinalAreaw/7;i"FinalGageLength.'~r~.'aximum Load0.2~OffsetLoadFracureLoadllg.tg*.Lg~U.T.S.=MaximumLoad/Initial Area0.2..Y.S.=0.2OffsetLoad/Initial AreaFratureStress=FractureLoad/Final Area"R.A.100(Init.Area-Final Area)/Init. Area"TotalElong.=100(FinalG.L.-Init. G.L.)/Init. G.L...UniformElong.=100(Elong.toMax.Load)/Init. G.L.Pr',5NTestPerformed by:Calculations Perormedby:Calculations Checkedby:~-.W.~~~~~(Oate(Oate)~/7/~~ ~ih1 lIC'jt1(IJ'y ,.iSouthwest ResearchInst'teDepartment ofMaterials SciencesTENSILETESTDATASHEETSpecimenNo.TestTemperature ~.StrainRate.an</'s~~.~ProjectNo.w~-,<PAA'~f MachineIdent.DataofTestu/~a/a7fillgiInitialArea.n<;gglgSpecimenTemperature: TopT.C.MiddleT.C.BottomT.C./jAn/H'fFinalDiameterFinalAreafl1gglgg~MaximumLoadll.g'llg~FractureLoadFlong.toMax.LoadU.T.S.=MaximumLoad/Initial Area0.2~Y.S.=0.2"OffsetLoad/InitialAreaFratureStress=Frac.ureLoad/Final AreaR.A.=100(Init.Area-Final Area)/Init. Area,".Total"long.=100(FinalG.L.-Init. G.L.)/Init. G.L...UniformElong.=100(Elong.toMax.Load)/Init. G.L-g/+Z//jil~nTestPertoeeed by:!Calculations Perormedby:Calculations Checkedby:(Date(Date)~7/(7 rI'gII'I'IIilllI'!I;~.I'I.11I'III~!Il~II:IIIjjIIj;I.III11iiI11III'.,'ll11illjli.'jiijiIIIIllll,ii',I:j::.i'.ji!!il""II.'llIiIijl!I,II,II'II;'jl:I~ll,iljj:II::.(,'I;jj.'I,II:I:',II!j'!IIj:IiII."Ij::I::ll'::lj~,'IIj!iI~I~jIill,i,I~Ijl'lIII'ilI11~IIIIIsil"i'i!::I:.jl!.I':1'jljlIII;:!ii,'ljlIII~I~'11'I'IIIIIaIIjjjlIII:lIIjjI~~IiIIIl,'!IIIlI;IIIiIji11I:I'lilIIIII.IjIIilII)IIIjIIiII.j.,jI~IIIIII'.ji:,li'I!:IjlIjl:IjIIII!jliIIIIIll1!Iij'Ili.I:iIIIjIIII,IlIIIIIIIjIIIII IgIII,Ij:I!,,IIi!I'f1~II:IIIII~~'IiiIIIIII!iIIIIIII:!jljil~~ SouhwestResearchinstfueOepariment ofMaierfals Sciencesi~HSil~Tc.STOATASH=":-7SpecimenHo.TesiTemoerature P.objectNo.Machineiden..SirainRaie~+~g~>>~g~pOateofTestinitialOiameterw/7iniifalAreainfifaIGageLengthr.~.'>SpecimenTemoerature:TopT.C.MiddleT.C.m/SI.C~FinalOiameterFinalAreaFinalGageLengtnMaximumLoadC.Z.".OffsetLoaa;"racurLoad=long.toMax.Load>>~/d7.U.T.S.=MaxmumLoad/initial AreaO.Z..Y.S.=O.Z..OffsetLoad/iniiial Area7/,nFraureSi.essFrac.ureLoad/Final Area..Toal"iona...Uniform="Iong.100(FinaIG.L.-inii.G.L.)/';nit.G.L.=100(=long.toMax.Load)/in"'-L. ~R.A."-100(inilArea-Final Area)/init. Areal7/~'g>5.D~Tes.>erarwe",byCalculaiions Performed by:Calculations Checkedby:

a)t(I()I'II.:llI')("r1~L'II):(I)I,Il'ilII:',IIiII!iIIIi)I!I~)~'~I','1t:!):'III'I',i,IIII~~IIli):)i'I!iI))I'lI,I~)I)iillIiI

.Southwes.ResearchIns..uteOeoartment ofMaterials SciencsTENSILETZSTOATASH"-:-TSpiNYTSrainRate/rg~y~~i~/ProjectNo.MacnineIder..~~/OateofTesteJ~"J<W,Ini.ialOiameterIni.ialAreaInitialGageLenctnSpecimenTempe.a:ure:TopT.C.MiddleT.C.HottomT.C.rVC7:n+nPw470.2"..Y.S.=0.2'.lOffsetLoad/Initial AreaFinalOiameterFinalAreaFinalGageLengthMaximumLoadQ.Z.rac=ure Loadalong.toMax.Load/7',r>FratureStress=Frac.ureLoad/Final Area",.R.A.=100(Init.Area-Final Area)/.nst. Area"..Toallong,=100(FinalG.L.-Init. G.L.)/;r..'-. G.L...Uniform=long.=100(along.toMax.Load)/n't.G.L./4.9',.~/p+,'znTes.Pe.formed by:Q.Calculations Perfor,ed by:-'i".m.rt~~(OateCa1cu1aticns Checkedby:~-~~.(Date)5'/7/<7 I,sI!,I~ss'Isl~s I~~CIj~i:Ilie~lj'liII',C~.IIIIIIII~Ic!llIII~,I<<~!ilIlli'<<I'I'IlCI~:Ill~I'I.'.I1~I;(I,:lj:I'.l:<<'Iilli~~li<<:I'I'-~I.'ll,IliIII~I;IIII.I.Cl~I.II:!I<<III.I~,'I',:~I:I~~~I1III.<<l<<lliII.":~l!:'.Iijl'll!Iiil!:IIIIII"':,1.I'1iI<<~II::1I<<<<II'lll:IilII'IIIIIIIIIil!II.'I~jilljil!il'IliI'illiiIIIijjlIl!!iIIII.iIIIIIIIIj,1IIC<<I!III(Ii!iI)IlII:I:II!Il<<iIIIII:III!I;I~1I~jIII'II".II,Ci~<<ll.1 TABLE4.1-12ORCOOCODSgor~oe~et ReactorVesselFullLengthControlRodDrfveMechanisms SteamGenerators Reactor-CoolantPumpCasingsPressurizer Pressurizer SafetyValvesgodeASHEIII*ClassAASHEIII*ClassAASMEIZZ*ClassANoCode(Designed withASMEIIIArticle4asaGuide)ASMEIII*CLassAASMEIII*Unit1ddedaandCodeCases1965Ed.through1966WinterAddenda,CodeCases1332-2,1358,1339-'2,1335,1359-1,1338-3,13361965Ed.through1966WinterAddenda1965Ed.through1966WinterAddenda1968Edition1965Ed.throughWinter1966Addenda,CodeCases1401,14591968EditionPowerOperatedRely.efValvesB-16.5HainReactorCoolantSystemPipingReactorCoolantSystemValvesB31.1B-16.5orHSS-SP-66, andASHEIII,1968Edition*1967EditionASMEBoilerandPressureVesselCode,SectionIZI-Nuclear VesselsRepairsandreplacements areconducted in";ordancewithASMESectionXI4.1-40July1991 V~<<,'$ TABLE4.1-12(cont'd.) 8Hoc/~en~ 5pa~ggg.goragone~t ReactorVesselFullLengthControlRodDriveMechanisms ~odASMEIXIClassAASMEIXXClassAUnit2ddendaandCodeCases1968Ed.(1968SummerAddenda)-Coda Case1335-41968Ed.'NoAdd.)SteamGenerators ASMEIXXClassA1968Ed.throughMinter1968Addenda,CodeCases1401,1498forupperassemblies and1983Ed.throughSummer1984forreplacement lowerassemblies ReactorCoolantPumpCasingsPressurizer Pressurizer SafeeyValvesNoCode(Desi~edwithASMEXIIArtic3.e4asaGuide)ASMEIXI*ClassAASMEIXI*1968EditionthroughSummer1969Addenda1965Ed.throughWincer1966Addenda1968EditionPowerOperatedReliefValvesB-16.5MainReactor.CoolantSystemPipingReactorCoolantSystemValvesB31.1B-16.5orMSS-SP-66,andASMEIXX,1968Edition+1967Edition*ASMEBoilerandPressureVesselCode,SectionIIX-NuclearVesselsRepairsandreplacamenes areconducted inaccordance withASMESectionXI4.1-41July1991 .EF":.ScMICHIGANPOWERCOMPiJ...r~..ucYI'1C,.Hovaxiber 7,1977DonaldC.CookNuclearPlantQn3.tHo'DocketHo'0-315DPRNo~58rI'EdsonG.Case,ActingDirectorOfficeofNuclearReactorRegulation U.S~NuclearRegulatory Commission

shington, D.C.20555earMrCasecT?d.sletterrespondstoMrsDonK.Davis'etter oi20,1977requesting reactorvesselmaterialpropertyinformation DtheDonaldC.CookNuclearplantInourletterdated*uly25,1977,weinformedyouthatwewouldneedadditional timetoprovidetherequested information.

Enclosedherewitharethree(3)copiesofadocumententitled, "D.CCookUnitHo.1ReactorVesselMaterialurveillance Program"whichsuppliestheinformation requested. Verytrulyyours,ohnTzdlingha tVicePresideJT~mamSwornandsubscribed tobeforemeonthis7dayofNovember1977inNewYorkCounty,NewYorkNotaryPlicGfiEGOiTY M.Gi:Z~Vilr HataryPublic.St:teat<'tewYuritHa.31-46<3<31 GualiTied inNewYarkCountyCommiss'an ExpiresMsrch30,19?5 \~."&~EgGCase~l'~P~sIICharnoff,H,SteketeeVollenCCallenNalshVShaller-Bridgman~N~tuxgensen QePo'eRiRiDiRop~glgbc:S-ZMilioti/P. W.Daley8'~GFeinstein M.H.Fletcher-'RCM.M.Mlynczak-NRCDC-N-6015.X DC-N-6079 ~,~0Xov.Lr7,1977g'rt'5,,'~>~I<</~,t'~I >>~4~~D.C.COOKUNITNO.l:"$Rei'd)l.hs'es>>W'.Q? '.:;..-REACTOR VESSELMATERIALSURVEILLANCE PROGRAM'pp'.grrsi>>~"-.tm~r>>'~~1~-:T;)Theestimated maximumfluence(E>>IMev)atthejnnerSurfaceofthereactorvesselasofMarch31,1977is8.38x10n/cm~.:-;2.}'.:-'-.;.3.)~r.:.',,:.4.) surveysa~I.Theeffective fullpoweryears(EFPY)ofoperation accumulated asofMarch.31, 1977is1.34EFPY.Fab~ication ofthereactor.vesselwasperformed byCombustion Engineering, IncaP.a.)Sketchofthereactorvesselshowingmaterials inthebelt1ineregion'...isshowninFigurel.b.').Information oneachoftheweldsinthebeltlineregionisshownin~..Tables1through4.c'.)Information oneachoftheplatesinthebeltlineregionisshowninTables4through8.>>Information relativetotheweldandplatematerialinthematerialllanceprogramisshowninTables1through3and5through8.~sI~.'r1>>>>a,.rr>>~raie<>~.~. '+i:~'g.t+jj+'k8~fFIGURE1.,"'.p~p'g,IDENTIFICATION ANDLOCATIONOFD.C.COOKUNITNO.1REACTORVESSELBELTLINEREGIONWELDANDPLATENTERIAL~~r1~~r,.'~~9vV05=3l~,r.'.I.-.~'I~VlCQ9'lz,AC~i/9VZC31105-2.5~~~~~'~~~I~~I'308'Sob"AleO8'SvoG-33-V'/ZA~gqvol3gqvo7-l.a'.~ol'~.a~~.03-99"8IQO0~~~302709'j'/07-2 MeldLocationNozzleShellVerticalSeams1-442A,88(CIs~~TAIDENTIFICATION ANDLOCATIONOFD.C'OOKVNITN0.,1~~~VESSELBELTLINEREGIONMELDMETAL':'-*".'.:. '.-,.",'.-,-,-,'.-..'lux ~TeLotNo.PostMeldHeatTreatment

WeldWeldWirettrdttttttt.t~tttl.Submerged ArcB-4Mod.13253(TandemMire).B-4Mod..'12008Lande10923791'.1125-1175'F-40HR-FC Ml.14LowerShell.VerticalSeams3-442A,85CSurveillance MeldSubmerged Arc(TandemMire)Submerged Arc~dNozzleShelltoSubmerged ArcInterShellCircleSeam8-442Inter.ShellSubmerged ArcVerticalSeams(TandemMire)2-442A,85C.Inter.toLowerSubmerged ArcShellCircleSeam9-442Ml.18M1.14M1.14mM1.42.'.1125-1175'F<<40HR-FC

.;rg~'J,:.1125-11754F-40HR-FC ..:=...'.1125-1175'F-40HR-FG -'-..:,'-:IS'~l--;;..1125-1175'F-.40HR-FC ',;~.:.1125-1175'F-40HR-FC -.:-,.'.*r~~~..~~,.~'0s~r0r~,r~092.'791Linde1"B-4Mod.13253B-4Mod.:12008'I'I~B-4Mod.:IP3571092-.3958:Linde1,~s~'J'r,~oI092';3791'-4Mod.13253.Lande1B-4Mod..12008.8-4Mod.'13253.Unde1092'.3791~d~'sId..-dd'1+~d'B-4Mod.20291.'inde1092,3833 CHEMICALCOMPOSITION 0WeldMireT~eHeat.No.i~Te13253Linde109212008'Linde109220291Linde1092IP3571Linde1092Surveillance MeldFluxSiNi'Mo".'Cr.Cu"V.06.72'45~.04',07.05.99.51.-:.06.13.-'.*.03.74.51.21.82.54.-':.40.18.74.44.02..27.001.Ii~~~,~~~I'ItI~'I4~~~REGIONMELDMETAL'ShelfYS'TS..Elong,'AFt-Lbo.KSI:KSI:0*--63.380.127.5'9.770.588.0.25.5.67.1.'I69.084.0,'.28.0.69,4'":c1155>>>>,>>>>>'>>111~:.67.181.926.869.2LotNo.C37913791.38333958PS=..013.015,010.015.008.009.017:.009.023.014,15.13.16.12.26"1.831.921.921.381.3384Mod.84Mod.84Miod.84Miod.*MireAnalysis-NoAsDeposited MeldAnalysiswasPerformed TABLE3MECHANICAL PROPERTIES OFYESSELBELTLINEEnergyat10'FFt-LbsRTNPToFFluxMeldMireT~e.HeatNo.84Mod.13253)84Mod.12008J84Mod.2029184Mod.IP3571Surveillance MeldSurveillance MeldTNDToFLotNo.Linde109237910*.84,74,70Linde1092Linde1092CETestsWTests3833.'*39580*>>7035,50,48'*40,46,460*54~54~73,>>5683,84,92-70~M~1IA:':::.':',:-:...- -.-FYESSELBELTLINEREGIONMELOMETAL)5MeihtPercent*Estimated perNRCStandardReviewPlanSection5.3.2~I~i.c')",~I<~I~~+'I~~~lg~~~)~I,~),~V~yo~.-::.'M~' g~~~)~,I....~'~i~'~TABLXIMUMEND-OF-LIFE FLUENCEATVESSELINNERMALLLOCATIONS h~'I.~~.NozzleShellIIIIleShellr.ShellII'lr.ShellrShellIIIIleShellIIIIr.ShellIIIIrShellVertiIIIItoInVerticalSeamllIIter.ShecalSeamIIIIwerShelalSeamllCircleSeam"--.:.',t ~I.',~1CircleSeamNozzInte'nteLowetoLoVerticNozzPlateIIIIPlateInte')1LowePlateIIIII~PlateorMeldSeamLocation1-442A1-442B1-442C8-4422-442A2-442B2-442C9-4423-442A3-442B3-442CB4405-1B4405-284405-3B4406-1B4406-2B4406-3B4407-1B4407-2B4407-3'I~~~~rr'~~4~IPlateor-.SeamNo...'Fluene:~IIC4;2.4x1013.9x1017'.9x1017.3x10176.2x10181.1x10191.1x10192.0x101911x1019'*6.2x10181.1x10197,3x10177,3x101777.3x102.0x102,.0x10192.Ox1O192.0x102.0x101192.0x10r'~I)~~~JihIh~)I~~~l\'~'.,rhh~)h~~,~h

~~.Is'DENTIFI..'eatNo.C3594C3594C3872C1260C3506.*C3506C3929C3932C3929~ComonentPlateNo84405-184405-284405-384406-184406-284406-384407-184407-284407-3ozzieShellIIiIInter.ShellIIIIowerShellIIIIIIIISurve)llance MaterialsameasInter.ShellPlateCHEPlateNo.SS$'21.20.24.25.24.21'21.20.22.24llancePlate84405-1~84405-284405-384406-184406-284406-384407-184407-284407384406-3**Survei'~~sTAB~,~'"~~IONOFVESSELBELTLINEREGIONPLATEMATERIALMat'l.Heat'Treatment .'Sec.No.,~SuIIer'ustenltlze ~Temer.---.-'tress ReliefA5338Cl.1Lukens1600'F+50'F-4HR Mg1225'F+25'F-4HR-AC .))50'F+25'F-40HR-FC A5338Cl.1Lukens,.IIIIA5338Cl.1Lukens;,'- II.II.IIA5338Cl.1.Lukens'.. II'l....,IIA5338Cl.1Lukens.-A5338Cl.1Lukens':"A5338Cl.1.LukensA5538Cl.1LukensA5538Cl.1Lukens'....- B4406-3~~TABLE6MICALCOMPOSITION OFVESSELBELTLINEREGIONPLATEMATERIALh..IMeihtPercentC*MnPN$MoCu.42.007..018.26.46".47.141.41.006.018.25:-.45.47".14-'30.008.013.30.48.46.141.17.016'025.29'52..49'.121.41..00&':.015.28..50.47..151.40..009.015.25:'.49.46.1S1.35.010.014.29.55:.53..141.25.012..014.22.59.54.121.32.010.014.24.50.55'l41.40.009.015.25;.49,.46.14AnalysisPerformed byWest)nghouse ~al ~~',C'r>~~'.~c,~~~\UTS,'....Elong.':..-.,.;"RA..'KSI81.3".-.29.5'.,';:,::.;-:.- 6&.l;-.'. '5.8.'-.:...::. 28.5,::;.".':- 66.886.4':'.."::.25.5".;;-"i-'. 66.586.3.':'.'.27.0::.'-..'.";".' 67.1'-'.89.7..,".""26.2:~"'::. ':68.0'88.8-"'.26.2:.:",;-':. 68.0,."-)86.7'.'&.0'.:,:;:.'-':::,. '9.684.1.'.:27.2";-;.-:.70.6;~86.4.::::.;.. 27.2'".;:J,'.-; 69.7'-'."'.ReviewPlanSect)on5.3.2'I~Q'FLATESPERFORMED BYMESTINGHOUSE '".-:.hElong."~RA~..'t90.4'.."27.5"::-'..'0.0m~0\':..:.i~'!+~'4!~~~y.C'~'helf.EnerTNDTRTNDT*oFYS'SIFt-LsNMWD*87,~92808080.578.5:85.590.5lODoFPlateNo.rrI134142123123124121133149139100~0"-10-10-10-20-20023440-8172756,362.964.463.3.'7.266.864.162.163.784405-184405-284405-384406-184406-284406-384407-184407-284407-35-1501intheMajor"~'ion(MUD)perNRC'St*Estimated fromDataandardMorkingDirecTABLE8MECHANICAL PROPERTIES OFSURVEILLANCE PLATE5OTHERBELTLINEPShelfEnerslODNMMDNDT'FNDToFYSKSIUTSKSIPlateNo..8396981031261085334028-123884406-184406-284406-384407-184407-284407-3'68.4130~I~~I~~J!~'ABMECHANICAL PROPERTIES OFVESSELTLINEREGIONPLATEMATERIAL::. '4~1~(I'!',!0a.7 gPgchm.4'7f4+topl5Providethefollowing information forthepressuzevessel:l.Aschematic ofthereactozvesselshowingallweldsinthebelt-lineregion.Weldsshouldbeidentified byashopcontzolnumber(suchasapzoceduze qualification number)andtheheatoffillermetal,typeandbatchnumberofflux,etc.2.Foreachoftheabovewelds,andforweldsinthevesselmaterialsurveillance

programs, anidentification oftheweldingprocess(subarc,electroslag, manualmetalarc,etc.).Also,alistingofthefollowing information oneachofthesewelds:chemicalcomposition (particularly Cu,PandScontent),

dropweightT~,RT,uppershelfCharpyenergyandtensileproperties. 3.ThemaximumendoflifefluenceatthevesselI.D.foreachweldinthebeltline. Reference NRCletterdatedHay20,1977toFw.JohnTillinghast, VicePresident, IndianaandMichiganElectricCompanyontheabovesubjectandaddi-tionalrequested information. ForDonaldC.CookUnit2reactorvesseltheresponsetotheabovequestionandtotheadditional requested information inthereferenced letterisprovidedbelow:l.NotApplicable. 2NotApplicable. 3.ChicagoBridgeandIron.4aAsketchofthereactorvesselshowingallmaterialweldsinthebeltlineregionisshowninFigure1.b.Information relativetoeachoftheweldsinthebeltlineregionisshowninTables1through4.AppendixgUntt2121.2-1jgENDHEHT 77JULY,1977

c.Information relativetoeachoftheplatesinthebeltlineregionisshowninTables4through7.5~Information relativetotheweldandplatematerialincludedinthevesselmaterialsurveillance programisshowninTables1through3and:5through7.AppendixgVnit2121.2-2AMENDMENT 7y~ULY.1S77 Figuregl21.2-1gggckmrnf 7p~~3+IDReactorVesselBeltlineReionMeldsD.C.CookUnit2PlateC5521-2OoPlateC5556-L80'700Soo80oCOREI80oOoPlateC5540-2C)270o.SOoI80oPlateC5592-1MAX.EHDOFI.IFEWELDORIENT.WELDLOCATIOHFLUENCEH/cm<VERTICALl70o4350o7.7xIOI8VERTICAL90o4270o6.3xIOI8CIRCUMFERENTIAL INTER.TOLONERSHELL2.0xIO9AppendixgUnit2321.2-3SlENDHENT 77dULY,1977 TABLE1IDENTIFICATION OFREACTORVESSELBELTLINEREGIONWELDMATERIALInter.Shell(Vertical Seams)Inter.toLowerShell(CircleSeam)LowerShell(Vertical Seains)Surveillance MeldWeldingWeldProcess~oal.No.Sub.Arc*MPS-1323-2F4F6 WeldWireFlux~TeHeatNo.~TeLotNo.PostWeldNeatTrADCOMTNMMS3986LINDE1249341125-1150'9-62 2/2NES-PC1115-1165'F-9 HRS-FC<Weldsfabricated usingbothsingleandtandemwiresPs aa~l3c+fDfOCLWe~OcTABLE2BELTLINEREGIONWELDMATERIALCllEMICAL COMPOSITION WELDWIREFLUXWEIGIITPERCENTTYPE-IIEATNO.LOTNOCMnPSSi,NiMoCrCoADCOMINllM S39B6SURVEILLANCE WELDLine124934(SingleWire)(TandemWire).0801.42.019~016~36.96~0921.46~019.015;35~97~1101.33.022,012~44!~97~07~05~53~07~06.54~07.055 TABLE3HECHANICAL PROPERTIES OFBELTLINEREGIONMELDMATERIALWELDMIRETYPENEATNO.FLUXTYPELOTNO.NDTNDTF'FS}IELFENERGYYSFT-LBBKBIUTSELONGBhKSIXXADCOMIN19f S3986LINDE124934(SingleWire)(TandemWire)27*27*77*71.886.530.068.677*74'91.225.5660SURVEILLANCE MELD<<40277776.392.324.266.7*Estimated fromsurveillance welddataI g6acl~a~I-7p~p)$/DMAXIMUMENDMF-LIFE FLUENCEATINNERMALLREACTORVESSELLOCATIONS later.Shell(Ve'rtical Seams)Inter.,Shell toLowerShell(CircleSeam)FLUENCE(n/cm)27'x1020x10LowerShell(Vertical Seams)Inter6LowerShellPlates63K1020xloAppendixgUnit2121.2-7AMENDblBlT 77JULY,]g77 TABLE5IDENTIFICATION OPBELTLINEREGIONPLATEMATERIALCOMPONENT PLATECODENO.HEATNO.MATUALSPECSUPPLIERHEATTREATMENT Inter.Shell10>>1C5556-2A533B,CLol LUKENS1650-1750'P-5HR-WQ 1550-1650 F-43/4HR-WQ1200-1300 P-5HR-AC1100-i175'P-62 1/21R-PCInter.Shell10-2C5521-2.A533B,CL,1 LUKENS1650-1750'P-4 1/2HR-WQ'550-1650'P-5HR-WQ 1200-1300'P-4 1/2HR-AC1100-1175 F-621/2HR-PCLowerShellLowerShellSunreillance 9-19-2PlateC5540-2C5592-1C5521-2A533B,CL+1LUKENSA533B,CL,1LUKENSA533B,CL,1 LUKENS1650-1750'P-4 1/2HR-WQ1550-1650'P-5HR-WQ 1200-1300'F-4 1/2HR-AC1100>>1175'F-62 1/2.HR-FC1650-1750'P-4 1/2HR-WQ1550-1650 F-41/2HR-gQ1200-1300'P-4 1/2HR-AC1100-1175'P-62 1/2HR-PC1650-1750'P-4 1/2HR-WQ,1550-1650'P-5HR-WQ 1200-1300'P-4 1/2HR-AC1125-1175'F-511/21R>>PCS!cA,~ TABLE6CHEMICALCOMPOSITION OPBELTLINEREGIONPLATEMATERIALPLATECODENO.10-110-29-2HEAT'O.C5556-2C5521-2C5540-2C5592-1PLATELOCATIONCTOP,24BOT.TOP~21~22BOT,TOPBOT,~21~21~19BOT,.20TOP~201.341.38lo281,291+311.341351,25~012~014~012~013.015.011.010~012HEIGHTPERCENTSSi~015.19~014~18~016,18.015~16~014~20~015.~18~015.19~014ol8Ni.56~58.57~58~64~63,60.57Mo~55.55;54.50~57.56.53~50Cu.14~15~14~14.11.10~14.14SURVEILLANCE PLATE.22128.017~014~27.58~55~ll TABLE7MECHANICAL PROPERTIES OFBELTLINEREGIONPLATEMATERIALPLATECODENO.10<<110-29-19-2HEATNO.C5556-2C5521-2C5540-2C5592-1NDT'P0103886-20-20110-2020103SHELFNDT.ENERGYFPT-LBS90.YSKSI67.264.565.870.0UTSKSI87'85'85788,1ELONG~X25'25;526'24.5RhXSURVEILLANCE PLATE1038.8666.486'25.260.6 Ugff'4c"/tor~~~7gINDIANA&MICHIGANPOWERCOMPANYP.0,BOX18BOWLINGGREENSTATIONNEWYORK,N.Y.10004July3,1979AEP:NRC:00097C DonaldC.CookNuclearPlantUnitNo~1DocketNo.50-315LicenseNo.DPR-58Mr.JamesG.Keppler,DirectorU.S.Nuclea~Regulatory Commission RegionIII799Roosevelt RoadGlenEllyn,Illinois60137

DearHr.Keppler:

References:

(;)NRCIEBULLETINNOS.78-12,78-12A,78-128"ATYPICAL WELDMATERIALREACTORPRESSUREVESSELS"(2)"COMBUSTION ENGINEERING REPORTINCOMPLIANCE WITHNRCIEBULLETIN78-12,DATEDJUNE8,1979Thisletteranditsattachments areinresponsetotheabovereferenced I.E.Bulletins astheyapplytoUnit1oftheDonaldC.CookNuclearPlant.Combustion Engineering, manufacturer ofthereactorvesselforUnit1hassubmitted totheNRC,onJune8,1979,agenericreport(ref-erence2)providing therequiredweldmaterialinformation onallreactorvesselsfabricated bythem.Westinghouse andAmericanElectricPowerhavereviewedtheabovereferenced reportandconcluded thatitrepresents adequately thedatafortheweldmentmaterialusedinthereactorvesselof Ae.t':Nii.:Uoi)9/i//Qcci'ng fgr3~7/PUnit1oftheDonaldC.CookNuclearPlant.Westinghouse hasnotedsomediscrepancies intheCombustion Engineering report..These areeditorial innatureandwillbesubmitted totheNRCasarevisionbyCombustion Engineering, Inc.Verytrulyyours,ohnE.DolanicePresident Attachments: 1)Combustion Engineering lettertoNRCdatedJune8,19792)Combustion Engineering reviewcertification letterdatedJune8,19793)Westinghouse lettertoAEPdated6/25/79cc:R.C.CallenG.CharnoffD.V.Shaller-8ridgmanR.S.HunterR.W.Jurgensen

Hr.J.G.Keppler,Directorbc:S.J.Milioti/J. I.Castresana/T. SatyanR.F.Hering/S. H.Steinhart/J. A.KobyraH.N.Scherer,Jr.R.F.KroegerJ.F.Stietzel-BridgmanD.Migginton -NRCCookPlantRegionIIIResidentInspector AEP:NRC:00097C R.C.Kopeiow/J. R.JensenOC-N-6015.3.1 ~PEP:NRC0097Cegg~'F)i~~i.g'-g~~~/4

Qgf:pv<'pi~~i..i".s~~Comcu!ion -<:r..r.'.irq. Ihc)QQQPivSPOCii'uitiOOd.Windsor. Gonhcc:icui 0609'ci~'>>g<~"~toiITelex93"97Attachment 1AEP:HRC:00097C

..--POWER'~SYSTEViS+gzicl~mc~'7p'du~~'+c>+INJune8,1979LD-79-036 Hr.HaroldD.Thornburg DivisionofReactorCons;iuctionInspection OfficeofInspection ardEnforce.-:

ntU.S.NuclearPeguiatory Commission Washington, D.C..20555

Subject:

I5E8ulletin78-12,"Atypical iteldt',aterial inPeactorPressureVessel';.'elds"

Deartir.Thornburg:

Enclosedpleasefind;hree (3copiesofadocu",ent entitled"Infer:-'on Requeted;yV*:-Bulletin7o-12,~typical'i'eldi"-terial inRe=ctoiPres-sureVessel'h'elds." Thisrepoitisbeir,"s..';.'.i tteddirectlytothei'=:b.Cc;:bustion Ei::-.ine-eringasperr:itt".by::.:'olc ..n.Atothe,"ullet n.Itisexpecto"',a holdersoiCons'ruct o::Per;.-.i-.s andu>".ei*ating Lic:..".ses v:il',re:.ere:.ce this'eport inresponding tothebulletinonthe;rindividual deci,e:s. Shouldyouhaveanyc"estior.s, pleasefeelfreetocallr,",eorfl;.E.H.Kennedyofmystaffa"(203)6"'3 1911,extension 2o2G.Verytrulyyours,COf18USTIOll EiiG!.",EER!,'lG, IilC.AES:dagEnclosure Licensirg l',anager

~~C.EpowerSystemsCprnbUstlon Fngineering. tnc9]tQ/,VieII1StreetCttgttanooga. Tennessee 3y't02PODER:SYSIEi',Sl.JTel,615;26~463:LiAttachment 2AEP:HRC:00097C rki5&c-'.~~ HgJune8r1979Ihereb'icertha7S-12and73-12'".sknot;ilcde eand~el1979re:ltit'ed, In:oEtlforce:t:e::t tullePressurekressels", inthe'acr'cation otherecordcotiplc"tnere.o-t.r:"..;.>>'tl:xe'u70-1~ti".'er01lo'w'lse,.rchrcruirLdbJI.Eedaildt"a>>,tothebeIt'E~M~At,pica1t'cldlateriaiotiea>>aQ'ca'e,atengreactorvesel:D;tiletinstof:'ynJut%>>Mr"nd'Rcactor'ialsuscGC-EContractr,'o.:23366Uti1ity/Sit;e:Indiana-'.ichic'an ElectricCo.DonaldCook<1N.A.Stone,Jr.,tlanagerNuclearQuali".Assurance Chattat>oo>a'.nuclear Opration" Westinghouse ElectricCorporation PriverSystemsCompanyAEP:t(RC:00097C P+~h~~.ypH<N:learServiceOw<sio<<<axn<SpilisD<'<g'< pennsy<vzn<a 15230June25,1979AEP-79-17 Hr.J.R.Jensenttechanica1EngiiiiiiingDivisionAmericanElectricPowerServiceCorp.2BroadwayHewYork,HY1000)

Deart'Ir.Jensen:

NRCIEBULLETIttS ='78-125;-.'78-12A "At~4<1teldimmaterial inReactorP.essure",essel'lds"Baseduponourt<<tinicalevaluation ofthein,ormation contained inthcnrcrep<<<<o"piled tvCo-'.bustion Enginering,Inc.tosatisfytherequir.;,.en.s ore-sentedintheU'.<<uclearRegulator" Cor.:;,.ission IEBulletins ="78-12~~=7:-<2.-'., >lestinghouse ha"<onclud"dthatthe'weldraterialdataandotherrequired'n-'-r-prt'rnt.l,otheD.C.CookUnit1reactoivesselareincludedinCo.":3"5-tionEngineering,Inc.report.Thisrepoi'thasI<reviously beensubmitted toieU.S.NuclearRegulatory Co:.-;.'s-sion>aseviden>>'<lbyCo.",:bustion Engineering, inc.transmittal letero-.Ju,".1979to<<e"S'<<<<:learRegulatory Cor<i7ission, acopyofwhichisenclosedforyourinformatioil, Additionally, w"tiaveenclosedforyourfilesacopyofCombustion Eneincrine,Inc.letterto".",tinghouse, datedJune5,1979andattachedcertific.=t'.on statingtha".h~ioner'.creportsubmitted toUSl<uclearRegulatory conta'nsc'.a-:.fortheD.C.Cool;Unit1i-eactorvessel.Mestinghouse au<latedthecontentofthesubjectreportagainsttheAS:ECocoandHE-Spec.r('iiiire, ntsorthD.C.CookUnit'eactorvess1built'".Combustion Enoiii<<iinInc.Thereportcontainsdatapertaining totheD.C.CookUnitI<,oac..vesselardisconsi"ered tobeinco."iipli=.nce withtheUShRCBull<iirisand';<estinghouse requirements. However,someapparenterrorswerenot<Iinthcreport.Thesediscrepancies, verebrouchttot'.".eattention ofC<><.,!ii:tionEngineering, Inc.andCoirbustion Engireering, Iiic.iscurrently ev.<t<<~tiflg tileol~Theyhaveagreedtoresolvethecor.:ments:o Mestingnous s'<ii'lctiona<idwillsubmitrevisedpagesfortherepoi.tto..':eVuclearRegula'<<I vCommission andl(estinghouse atalaterdate. -'1QQI',r,J.R.Jersen-2-June25,1979++4'c!pm,+g AEP-79-171A$g1<<j+InadditiontothedatasuppliedbyCombustion Engineering, Inc.inthesubJectreport,westinghouse hasdeveloped surveillance v<eldrent data.Thisdataiscontained inthefollowing report,vihichhaspreviously beentransmitted toyou:O.C.CookUnit1,MCAP'8047, datedHarch,1973AsstatedintheirreportCombustion Engineering, Inc.doesnotmaintainarchivematerialforthefieldsrepresented bythisreport.Inaddition, Westinghouse inventoried -ourarchivesurveillance <;eldmentmaterialandnoneexistsfortheD.C.CookUnit1reactorvessel..Inconclusion, .thisletterprovidesassurance thattheD.C.CookUnit1reactorvesselis+overedinthesubjectreport,andfulfillsl!estinghouse's obligations relativetotheReactorYessel'ldflaterial Programcontracted for'yk:,ericar ElectricPoi;erServiceCorporation. 'rEAcopyoftheCo;..bustion Engineering, Inc,genericreportapplicable totheD.C.CookUnit1reactorvesselissubmitted, oryourrecords.Sincerely, (/JDC/ejattachmentsF.t/oon,t!anagerEasternRegion8Ht(ISupportcc:D.Y.Shaller*R.H.Jurgensen* J.G.'ern**withoutattachment ~IC-8PowerSystemsCombustion Engineering, Inc.911W.MainStreetChattanooga, Tennessee 374Q2,IgPOWER5SYSTEMSTel.615(265-463; ~rgp~8'p)9~FI+~urnBiv-cLt.MNFORMATION REQUESTED BYNUCLEARREGULATORY COMMISSION INSPECTION &ENFORCEMENT BULLETINNO.78-12"ATYPICAL WELDMATERIALINREACTORPRESSUREVESSELWELDS" INFORMATION REQUESTED BYNUCLEARREGULATORY COMMISSION INSPECTION &ENFORCEMENT BULLETINNO'8-12"ATYPICAL WELDMATERIALINREACTORPRESSUREVESSELWELDS"PreparedbyCOMBUSTION ENGINEERING, INC.NUCLEARPOWERSYSTEMSJune',1979 V~&>~r.r+~*REACTORPRESSUREVESSELSFABRICATED BYCR1BUSTEON ENGINEERING, INC.Page1of4Ajjkc4~+g.~/o//+-.;.-C-ECTHO.:=-164'=-26417765198652966ACUSTOMERGeneralElectircGeneralElectricWestinghouse GeneralElectricCEiPD-WindsorASMECODEI&VIII,1962I&VIIE,W-63III,W-65IIE,S-65III,1965OWNERNiagaraMohawkJerseyCentralConsolidated EdisonCo.Northeast Utilities Consumers PublicPowerSITENineMilePointPlOysterCreekIndianPoint/f2Millstone 81Palisades 326633666866Westinghouse Westinghouse Westinghouse EII,W-65III,W-65III,W-65PublicServiceofN.J.Consolidated EdisonCo.CarolinaP&LSalem!31IndianPoint83Robinson82213666621566GeneralElectricGeneralElectricGeneralElectricIII,W-66EIE,W-66IIIW-66Consumers PublicPowerBostonEdisonCo.PowerAuthority StateN.Y.CooperSitePilgrimFitzpatrick 2306623366Westinghouse Westinghouse III,W-66III,W-66PacificGas&ElectricIndiana-Michigan Elec.Co.DiabloCanyon81DonaldCooki'P.l711662067216726672867CEMD-WindsorWestinghouse Westinghouse GeneralElectricGeneralElect'ric IEI,W-67III,'rT-66III,S-71III%S-69EII,W-69OmahaPublicServiceofN.J.DukePowerCompanyDetroitEdisonCommonwealth EdisonFt.CalhounSalem82McGuire81FermiLaSalle3067GeneralElectricIIE,S-68LongIslandLightingCo.Shoreham3167GeneralElectricIIE,W-66SouthernServicesHtch81i677316774167CENPD-WindsorCENPD-WindsorCENPD-WindsorIII,W<<67EEI,W-67EII,W-67Baltimore Gas&Electric. Baltimore Gas&ElectricFloridaPower&LightCalvertCliffCalvertCliffSt.LucieI SUMMARYOFWELDMATERWIRE/FLUX IDTESTMELDINGMATERIALS NmmERANDDATESOFTESTSVENDORADCOHRACO3RACO3WIRE/ELECTRODE TYPEHEAT/LOTNO.12008'05414 33A277VENDORI.IHDE1INDELIHDEFLUXTYPE109210921092LOTNO.3947'9473947NO.OFTESTSDATE(S)4-1-704-8-70WIRE/FLUX ORELECTRODE WELDDEPOSITTESTPLATESC-ECODENO.Ml.37Ml.37M1.38REFER.ATTACHEDNON-CONFORM. REPORTADCOHReid-Aver -vrHMHReid-Avery )BQfReid-Avery IIHH30542430541412008305414305414LINDELINDELIHDELINDELINDE109210921092109210923947395139513951395f)4-10-705-4-705-11-706-2-70ill.39M1.40M1.41M1.41M1.42Reid-Aver Reil-Aver Reid-Aver IIHH1P35711P35711P3571LINDELINDELIHDE109210921092395839583958NA6-9-70M1.42M1.43l)1.43NhIIHHReid-Avery HMIReid-Avery )IHHADCOH1P35713054142720451989LIHDELIHDELINDELINDE1092109212412439583958368736876-3>>706-3-707-11-67Ml.44M1.44E1.01E1.01ADCOH)IHM27204LIHDE124368710-10-67E1.02Reid-Aver IBIHReid-Avery IBBI348009349009LIHDE).IHDE124124368736882-28-682-7-69E1.03El.04NANAReid-Aver IBIHIBIHIBIHA-8746A>>874633A277LIHDEI.INDELIHDE1241241243688387838785-7-699-10-6910-29-69E1.05El.06E1.07Page6of21

WIRE/FLUX INDEXHeatofWire~PluxTneLotTestResultsO646B428661H57786054-B12485458V-521439B19634B009'7204124201325313253&120082029171148746IP2809IP28152193533A277305424305414IP3571885T409009935C1919013610120101376329637518745187651907606L4051922.51923519123P4767836408364283653836484P517483637&836505P5622'3646 2P57554P6052870058760088118LindeLindeArcos8080B-5AreasLindeAreasB-580B-5Linde1092Linde80Linde1092LindeLindeLindeLindeLindeLindeLindeLinde10921092109210921092109210921092Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde1092Linde1092Linde1092Linde1092Linde1092Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091Linde0091;Linde0091Linde0091Linde0091Linde0091Linde0091817481744D4F4D5F4K13F82085613F3617840537243724372437743791383338543854385438693869&865138893947395839223922392239773999399939993458345834583489&345834893489349034903490353635363536112211221122112211220145014501450145Page1Page1Page2Page3Page4Page5Page6Page7Page8Page8Page9Page10Page11Page12Page13Page14Pages15Pages17Pages20Pages22Pages24Pages26Pages28Pages30Page32Pages33Pages35Pages37Pages39Pages41Pages43Pages45Pages47Pages50Pages52Pages54Pages57~Pages59Pages61Pages63Pages65Pages67Pages69Pages72Pages74Pages76Pages78Pages80Pages82Pages84&16thru19&21&23&25&27&29&31&34&36&38&40&42&44&46thru49&51&53thru56&58&60&62&64&'6&68thru71&73&75&77&79&81&83&85 fROM~OhTCVFeldingMaterialQualification

-...toRequirements ofASME.SectionIIl'A-32255~.".810560Metallurgical Researchaad.Development Department -Chattanooga June9,1970~~~~~~~I~zo~I~~~Ir~~Thefollowing testdataisfor3/16"diameterbhrewire,typeB-4.MOD.,.heatnumber1P3571(tandem), fluxtype1092,lotnumber3958.a~~'vrelddepositwasmadeusingtheaboveheatofwireandlotofQux.'A'eldinq ~erasdoneinaccoraarcewithC.E.'A'eiding Procedure Specificat'on SAA"33-H3 ~~,'hecompleted veldmentwasgivenapostweldheattreatment of1150'F25'F.for40hoursardiurnacecooledto600F.~~~~estCodeVZ~~Reouirement s79,68,64'0Ft.,Ebs.@+10FCharovV-NotchimpactsPtbs.+10'F~~~AllWeldMetal.505Ter.sile0YieldStrength~.....KSI~~.'0.5\~UltimateTensileStrenathKSI86.8~~1~I~&>>27.0Elongation in2IIReduction of'rea/067.0~~~~~~~~~~~~~~~~~p~I~~.~~~~~~~~~~I,~~~~~~'~~~~~0~\~\~~~

J~~~~'4~~%~~~I~~~~~~~~rSAIIPLENO.LABIlO.TYPEAIRESIZE"llRETHO./P3Z7/'CHEHICr:.L Ai'!ALYSISGFI'lIr"'"--FLUX "-'TESTMELOCOUPONLOTIIO."S'I'.;S/HOCU.NI.s/877+o~~~~0 INDIANAIIMICHIGANPOWERCOMPANYP.O.BOX18BOWLINGGREENSTATIONNEWYORK,N.Y.10004June1,1979AEP:NRC:00097 DonaldC.CookNuclearPlant,UnitNo.2DocketNo.50-316LicenseNos.DPR-74Mr.JamesG.Keppler,DirectorU.S.NuclearRegulatory Commission RegionIII799Roosevelt RoadGlenEllyn,Illinois60137

DearMr.Keppler:

References:

(1)NRCIEBULLETINNOS.78-12,78-12A,78-12BATYPICALWELDMATERIALINREACTORPRESSUREVESSELS(2)"CHICAGOBRIDGE5IRONCOMPANYREPORTINCOMPI-ANCEWITHTHENRCBULLETINS 78-12AND78-12A",DAT-DAPRIL24,1979Thisletteranditsattachments areinresponsetotheabovereferenced I.E.Bulletins astheyapplytoUnitNo.2oftheD.C.CookNuclearPlant.ChicagoBridge8Iron(CB8I),manufacturer ofthereactorvesselforUnit2,hassubmitted totheNRC,onApril24,1979,agenericreport(reference 2)providing therequiredweldmaterialinformation onallreactorvesselsfabricated byCBEI.Westinghouse andAmericanElectricPowerhavereviewedtheabovereferenced .reportandconcluded thatitrepresents adequately thedatafortheweldmentmaterialusedinthereactor.vesselofUnitNo.2oftheDonaldC.CookNuclearPlant.Weld-mentmaterialthatmightbeusedforverification

purposes, isavailable inthearchivesoftheWestinghouse ElectricCorporation.

Hr.JamesG.Keppler,Director-2-AEP:NRC:00097 yAsstatedinourletterNo,AEP:NRC:000978 datedMay21,1979,theaboveinformation forDonaldC.CookUnitNo.1reactorvesselwillbesubmitted byJuly2,1979VerytrulyyoursJED:emohnE.DolanicePresident Attacnments: 1)CBIIIreviewcertification lettertotheNRCdated4/24/792)C88IlettertotheNRCdated4/24/793)Westinghouse lettertoAEPdated5/23/79cc:R.C.CallenG.CharnoffD.Y.Shaller-Bridgman R.W.Jurgensen

Hr.J.G.Keppler,DirectorJpp9AEP:NRC:00097 bc:S.J.Milioti/J.I,Castresana/T.Satyan R.F.Hering/S. H.Steinhart H.N.Scherer,Jr.R.F.KroegerJ.F.Stietzel-Bridgman D.Higginton-NRC CookPlantRegionIIIResidentInspector AEP:NRC:00097 DC-N-Gois.a tR.C.Kopelow/J. Jensen 'rat:MEiirr'>+8="00.-"~iroank". northoUs:onrad'ChicagoBridge&IronCompanygoox'00rgRoustc~.T~;;as77040Thedocumentation andinformation requiredbyNRCBulletins 78-l2and78-I2A,andWestinghouse PO//546-MVC-40I 945-MNforCBIContract$$68-3262VesselD.C.CookIIarecontained intheattachedreport.Weldingconsumables werere-reviewed againsttheoriginalrequirements inaccordance withtheabovelisteddocuments. Nodeviations werefound.Baseduponourrecords,Icertify,tothebestofmyknowledge, thisreportiscorrect.RalphE.KelleyManager,CQAServicesDate~',r'1','~'~~,~~1~~ Akir4~jP~ ATTACHMENT 2WPEga'p'hicago Bridge5tronCompany'.6000Fairbanks northHoustonroadpobox40066Houston,Texas77040telephone 7i3.4667661.April24,1979OfficeofInspecti'on &Enforcement'. S.NuclearRegulatory Commission Washington, D.C.20555Attention: Mr.G.W.ReinmuthRE:NRCBULLETINS 78-12678-12AGentlemen: .Inaccordance withtheabovelistedBulletins andrequirements fromWestinghouse andGeneralElectric, enclosedisonecopyofourreport.ilThisreportincludesinformation fromallcompleted ReactorVesselsconstructed byChicagoBridge&IronCo.Verytrulyyours,CHCAGOBRIDGE6IRONCO.REK:mksEnclosure RalphE.Kelley,MagerCQAServicesHoustonOperations II!',~~Vi~,V-qi

0I-"'ATTACHMENT 3Westinghouse ElectricCorporation WaterReactorOlvislons NuctearServiceOivisionBox2728Pittsburgh Pennsytvanta 15230May23,1979AEP-79-10 Mechanica Egineering DivisionAmerican1ctricPowerServiceCorp.2BroadwayNewYork,NY10004

DearMr.Jensen:

NRCIEBulletins 878-12&878-12A"AticalWeldMaterialinReactorPressureYesselMelds"~Baseduponourtechnical evaluation oftheinformation contained inthegenericreportcompiledbyChicagoBridge&IronCompanytosatisfytherequirements presented intheU.S.NuclearRegulatory Commission IEBulle-tinsf78-12andf78-12A,Mestinghouse hasconcluded thattheweldmaterialdataandotherrequiredinformation pertinent totheD.C.CookUnit2reactorvesselareincludedinChicagoBridge&Iron'sreport.Thisreporthaspreviously beensubmitted totheU.S.NuclearRegulatory Commission, asevidenced byChicagoBridge&IronCompany's transmittal letterof.April24,1979totheU.S.NuclearRegulatory Commission, acopyofwhichisenclosedforyourinformation.'dditionally, wehaveenclosedfor.yourfilesacopyofChicagoBridge&IronCompany's lettertoWestinghouse, datedApril24,1979,providing furtherconfirmation thatthegenericreportpreparedby"'vendor includesrecordspertaining totheO.C.CookUnit2reactorvessel.TheChi'cagoBridge&Ironcertifications statingthatthereportcontainsdatafortheO.C.CookUnit2reactorvesselisincludedinPart2ofthereport.Hestinghouse auditedthesubjectreportagainsttheASME"andME-Spec.requirements fortheD.C.CookUnit2reactorvesselbuiltbyChicagoBridge&Iron.Thereportcontainsdatapertaining totheD.C.CookUnit2reactorvesselandisconsidered tobeincompliance withtheU.S;NuclearRegulatory Commission bulletins andWestinghouse requirements. InadditiontothedatasuppliedbyChicagoBridge&IronCompanyinthesubjectreport,'llestinghouse hasdeveloped surveillance weldmentdata.Thisdataiscontained inthefollowing report,whichhaspreviously beentransmitted toyou:O.C.CookUnit2,MCAP-8512, datedNovember, 1975 J.R.Jensen72May23,179AsstatedintheirreportChicagoBridge5IronCompanyhasnoarchivematerialfortheweldsrepresented bythisreport.Westinghouse inven-toriedourarchiveweldmentmaterialwhichcouldbeusedforverification purposesontheO.C.CookUnit2reactorvessel.Thismaterialconsistsofonefullthickness weldmentmadeupofweldwirefromheatnumber53986andLindeFlux124fromlotnumber934.Inconclusion, thisletterprovidesassurance thattheO.C.CookUnit2reactorvesseliscoveredinthesubjectreport,andfulfillsWestinghouse's obligations relativetotheReactorVesselWeldMaterialProgramcontracted forbyAmericanElectricPowerServiceCorporation. AcopyoftheChicagoBridgeandIrongenericreportapplicable totheD.C.CookUnit2issubmitted foryourrecords.Sincerely, JDC/plAttachments cc:O.V.ShallerR.W.Jurgensen J.G...Kernoon,ManagerEasternServiceRegion i A/4.g,pywp~/PChicagoBridge5Ironompany3I'~>.gc./GGGOFairb".."ks ".<"".Houstct:roa"p0Qox+CGGGHousIcsI. TexGSi.G-'01~il)0eisy,CHICAGOBRIDGE&IRONCOMPANYREPORTINCOMPLIANCE WITHTHENUCLEARREGULATORY COMMISSION tC3E3KPLANTMEDRECQRD-MEDGQPYENGINEER~+~DATEHPLANiTL(rETIAM'iECATETCPI'iIIT,C3NQNP'Rt'Al<~! ITMININUHRETENTION YRS.BULLETINS 78-12&78-I2AReportpreporedbyRalphE.KelleyMgr.,CQAServicesILV-2I-7Date

PARTILISTOFREACTORVESSELSINCLUDEDWESTINGHOUSE VESSELSCBICONTRACT68-326268-37807I-26317I-26327I-2633VESSELDCCookIITrojanVirgilC.SummerIShearonHarrisIShearonHarrisIIGENERALELECTRICVESSELS9-56249-620I68-247I68-247268-333168-333269-296769-482469-496269-512869-540I69-540269-557I73-6735hhonticell oVermontYankeeBrunswick IBrunswick IISusquehanna ISusquehanna IIDuaneArnoldQuadCitiesII(CBIPortion)PeachBottomII(CBIPortion)PeachBottomIII(CBIPortion)LimerickILimerickIIZimmerICIintonI

ChicagoBridge8IronCompany3.CO.=circa.".r.. ncr".Hcus:c.". road@cox>>OA'6Ccc~o1,'asII0'l0~Ph~it4.rA)t.~i)tThedocumentation andinformation requiredbyNRCBulletins 78-l2and78-I2A,andWestinghouse PO8546-MVC-40 I945-MNforCBIContract/368-3262VesselD.C.CookIIarecontained intheattachedreport.Weldingconsumables werere-reviewed againsttheoriginalrequirements inaccordance withtheabovelisteddocuments. Nodeviations werefound.Baseduponourrecords,Icertify,tothebestofmyknowledge, thisreportiscorrect.RalphE.KelleyManager,CQAServicesDate IumberIPrlgrS!Ivrllulrut hlIWllllll)Cf00/((///(rcf~c 69'.~~itrr/NUCLI:.Rlh RECORDINDEXDESC((IPTIONWIREWIREWIREFLUXFLUXSIZEHEATNO.RUNORLOTTESTNO.SPECIFICATIONS IM(t/ib(-JP(IIgr'CtmtQIb'c+l(.wtlo'Rq2z~%OCQarlroAI.I.q'j./(,~7~lr/'i}.jc,/-IP~'~"Zt~~QP(r~erIn(9-pgZt~I((.Ig.(Q.C'<~t0>.(I.7c~.3l07'~l~a~("(.-(('.~fqI}8(C.t.-t=-/7PE/!/7C+yp~I"'n~47,c'8-I(}t(IItl~IIII>>'lI(~..~aPI.gr.'g-273gZP4f~09~103V-I"r-l93%(8llIII')rill>>r ~I~rI)vlIIIIllytl>>c>>>>II~llr.rl:IIililIIIeCr)t)lCu-('~Idl:oI-/)'~gr-@~II'r/f07i""tDDilteSi(I>>lro)< CCOOKPLANTMEDRECORD-MEOCOPYSECTIONENGINEER+~PLANTLlfETIME~KZfLP.Lh QNONPERMANENT Qtlirl~Cr)llr(.I.I":III'rIIIIiiICIIIIII,I('I('IIIIIII)1'II~P>>t~rkl.ofI,llIIrp7JAkl)S vI,.Q>l..=.rtB'~CHICAGOBRIDGE&IRONCOMPANYCarbon.Manganese. Chromium.Nieke1...Silicon.Columbium. Tantalum... ~Molybdenum, Tungsten.'. Copper.Titanium. Phosphorus .Sulfur.'.".'jtanadium.', .'ron.'~,.Schaeff1erCobalte~.05.022.016er'rr,~,fASMECODE,.COMPANYoratory',.:',',i;.Iv'ateta'Y,'0trMaterialsEvaluatiorFerri'te..033r,~~vv'vn.IIIoftheThismaterialconformstoSectioParagraph N511.3.'vvv'vevtCHICAGOBRIDGEANDIRONBirmingham Materials Lab~~vvevry~g~P~>~'ByP>a!v.'nchargeaPProvedbyofTestingfolAteriahs">>nein<er1500N.50THST.P.0.BOX277,BBRMlNGHAM, ALABAMA35202~vv}TWXB10-7333554-:"-\WesternUnionWUX~e'l~...AreaCode:205595-1191'II'ERTIFICATE OFANALYSISPURCHASEORDERNUMBER:.MECHANICAL TESTS:..'estNumber:PT200AHeatTreatment 50=.Hours 91125/1150 TypeElectrode: AdcomlNtlM/Linde 124Farenheit TradeName:'dcomltlH;i>(ireTensileProperties 9RoomTemp.'..':..'iameter: 3/16"Type:,505"FluxLotNumber:3877-Run934-Linde 12CJTS89,000PSI'.:,~'!;.::~-:,t teireHeatNumber:S3986""YLP70,100PSIXElongation in2'inches=23.5~CHEMICALTESTSXReduction of.Area;:=65:..'..~.101.,ImpactProperties1.49'Type:CharpyVeeNotch.12.Orientation: 1ToIieldDirection ..'::..92)))'.-,TestTemperature +1-0.:.41Foot-lbs.67:.5,6~,65,004'.5'Shear60,60,55LateralExpansion 61,58,52.53v.~~~ .AA.z~,.p 9CHICAGOBRIDGL'IBOiNCO1VIPAiXX' ~0~8OX13308,MEMPHIS,TENNESSEE 3e't13CERTIFICATE OFNALYSIS901947-311'a MECHEiNICAL TESTRESULTSPurchaseOrderNumber:M30506-3262/3780 TestNumber:WO5337C(TandemNire)HeatTreatment 1150'F+25'-50'F for621/2HoursTensileProperties TypeElectrode: Adcom1N)~J"./Linde 124(20x150)FluxTradeName:AdcomlNMMType:.505'yUTS92g000PSIElectrode Diameter: 3/16"LotL~umber:HeatNumber:S3986YLP78,800PSI%Elongation in2inches=Reduction ofArea=57.326iFluxBatchNumber:Run934Lot3878CHEI1IC..L TESTRESULTSImpactPopertiesType:CharpyVeeNotchOrientation: ~toHeldDirec"ion TestTemperature +10'FFoot-Lbs.Carbon~~~~~~~~Manganese..... .089l.47hromium...... c)wel~~~~~oo~o~~JSl1leon~~~~o~~.9039,53,3836,44,35LateralExpansion Shear.4740,50,40C01umb1ume~~~~Tantalum...... 2)olybdenum.... Tungsten...... Coooer~.~~~~~~~.53.06T3tQIl3.um)losphorus.... .028Sulfur........ ,.014Vanadium...... Ironi~~~~~~~~~Schaeffler Ferrite.. CHICAGOBRIDGE&IRONCO)1PANYThismateialconformstoSECTIONIIIoftheASMECODE,Paragraph N511.3BYDATEMcr~~ Z~.r2~P

PurchaseOrderNumber:M30506-3262/3780 TestNumber:NOI337C(SingleWire)TypeElectrode: Adcom1NMM/Linde 124(20x150)FluxTradeName:Adcom1NtB1HeatTreatment 1150';+25'-50'F for621/2HoursTensileProperties Type:.505"p(gg.rI'p;(. ~!-~<!lgi'!e.i ~KAn~a(VC~HE~5++1~CFIICAGORRIDGHEz,IH,ONCOMPANYP~O.8OX13308eMEMPHIS'EtlNESSEE 38113hgaCERTIFlCATE OFANALYSISgp/+/0MECHANICAL TESTRESULTCarbono~~~~~~~Manganese..... .076l.44hromium.10Electrode Diameter: 3/16"gfLotNulnber:HeatDumber:S3986FluxBatchNumber:Run934Lot3878CHEt4ICAL TESTRESULTSUTS89,500P-IYLP74,300PSI4Elongation in2inches=27%%Reduction ofArea=675ImpactProperties Type:CharpyVeeNotchOrientation: toNeldDirection TestTemperature +10'F.ckel......g. Silicon....... JColumbium..... Tantalum...... Mol;bdenum.... Tungsten....'.. Coppelo~~~~~~~Tit.anium...... Phosphorus'. Sulfur........ .81.46.50.06.026.017Foot-Lbs.50,49,62LateralFxpansion 45,44,53%Shear35,35,40ThismaterialconformstoSECTIOtlIIIoftheAStlECODE,Paragraph N511.3Vanadi.um...... Irono~~~~~~~~~SchaefflerFerrite..CHICAGOBRIDGE&IROt'lCOtlPANY")~ CitiCAGOHaiDC;8tt:IRONCoxIpAi>Y'500N50TH5T.P.O.BOX2TT.BtRMtNGRAM.At-ABAMA35202TWX810-733-3654 WesternVnion-WUX PURCHASEORDERNU<BER:CERTIFICATE OFANALYSISMECHANICAL TESTSAreaCoae:205595-1191TestNumber:PTa200-Single '.lireHeatTreatment62-1/2hours91125/1150 TypeElectrode: AdcomInmm/Linde 124TradeName:AdcomInmm';lireTensileProperties AtRoomTemPeratur Diarneter:3/16"g0505llgLotNumber:387>"Run934"Li.nde1%".:,'UTS '6,500'lireHeatNumber:S-3g86YLP71,800CHE)IICALTESTSElongationi'n2inches=30.0"ReductionofArea.=68.'60.080.1.420.070.960.360.520.050.0190.016rrite.Carbon.Manganese. Chromium.Nickel~.v.'i1icon.Y'.Columbium. Tantalum. ffolybdenum... Tungsten.... Copper.Titanium.Phosphorus ...Sulfur.Vanadium.Iron.SchaefflerFeImpactProoertit sType:CharPyVeetlotchOrientation:~,'le1dDirectionTestTemperaturePlus10'FFoot-lbs.46-51-49Shear40-40-40LateralExpansion 38-44-43ThismaterialconformstoSectionIIIoftheASHECODEParagraph .'l511.37CHICAGOBRIDGEANDIRONCOMPANYBirmingham Materials Laboratory uy+~pc.m4~~Datew-yz-45'n chargeofTestingforNaterialsEvaluation CHICAGOBRIDGENPROXCO>rPAr'V 1500nBOTHST.P.0BOX27'7.BiRMINQ>AM, ALABAMA35202TWX810-733-3654 WesierniJn.onWVXAreaCooe205595-119'i CENTIFICATEOFAi'lALYSIS PURCHASEORDERtlU:<GER'ECHAtll CALTESTSTesttlumber:PTg2'30-Tanden ':lireHeatTreatment 62-1/2hours31125/TypeElectrode: AdcomInnm/Linde 1241150eFTradetlar.e:AdcomInmm';lireTensilePropertiesht RoomTemperature Diameter: 3/16"g~Type:0,5'35"9Lot.Number:3876-Pun934TLande'~41'.1'~UTS 91,2.'3:3 ---"';li-eHeatNumber.:S39B6-YLP74,700Elongation in2inches=25.5', CHEMICALTESTSReduction ofArea.=66.0Carbon.Manganese. Chromium.Nickel.Silicon.Columbium. Tanta1um.Molybdenum... Tungsten.Copper.Titanium. Phosphorus... Sulfur.Vanadium. Iron.SchaefflerFeh0.0921.460.070:970.350.530.06-0.0190.015rrite.ImpactProperties Type:Charpy1t'ee!totchOrientation:4toMe]dOirectionTestTemperature t'~us,10'FFoot-lbs.41-45-.46XShear50-55-55LateralExpansion 49-44-41ThismaterialconformstoSectionIIIoftheAS;!ECODE,Paragraph .'l511.3CHICAGOBRIDGEANOIRONCOMPANYBirmingham Materials Laboratory PByH~4M~~gDate5-/Z-8InchargeofTestingforMaterialsEvaluatio' NUCLEARRECORDINDEXOocumentNumberNumberofPagesapeEl'ectrode SizeHeatNo.0ESCRIPTIONBAREWIREANDFLUXCOREDWIRELotNo.Specifications Atc-csrtINrrtMx'AB.L-4Rat.Cgl~LCSL+Q(hzCOPIESofdocuments coveredbythisindexareccrtificdtobetruecopiesDateOfficeCodeSignature Class>f>cat>on ContractNum!>c>Foidcrof ~"~r/A&Ar4+~(~"()CIXXCA.Gu 33RIDGL'TR.OMCOMPA.i>'Y P~0~80X13308~MKMPHIS~TKNN8SSES38113CERTIFICATE OF2;IrKLYSIS. 601947-3:Purchase0cerNu.-.ver: lZCH&3'ICAL TES'ESULTS"iiu,he>>;LS1016&N.O.12D2~peE1ectode:GTAFillerMetal.TradeName:ADCO:i1N&"1Elect.rodeD'ameter: 3/32LotYu...her-HeatNu-..~er: S3986FluxBa"ch!'~-.e'er: Shield'nc Gas:ArgonCH&!IC.-.LT:-6RESULTSHeatTreatment 621/2Hoursat.1150'25'-50'F TensileProperties Type:0.505"gfVTS95,700psiL-YLP95i200psi/8Elonge"Zoo 'n2icchee=2&i~0Reduction oPvea=66.1%ImpactProper"ies&rQOn~~~~~e~~Hangnese..... IArOm>>ule~~e~~ele->>1I@ele~~~e~~~~g~Cun~~~~~~~Co1u.-;wiL~.....antalu-L~~~~~~1Wr>>~i~'&oly~~e.& i&.i~~TQngstn~~~~~~Cooper~~~e'~~~Titan'z...... Phosphorus.... 1~evSuleL~~~~~~~~.0812.0.08.97.03.48.09.015.014Type:CharpyVeePotchOrientat'on: toteldDi"e"'cnTestTempeature-20'FFoot-Lbs.123,92,158 '5Shear100,100,100,, I.4'-.!LateralExpansion.'.. ~.Sl;:.7p"'Kl >~!2rgThismatialconormstoSECTIO'.l ofthe~~.S;:.ECODE,paagreh~t511.3Vanadium...... ~Iron~~~~~~~~~~Schae=lerFerrite..cHzcAGoDRzDGE&z.DNcQ!!pNzc.'r-.Jyg/gr('Y,~J<~.,vr~~rrypv!/ DBTEWvieirw/~rVrr'A ~\tre'(~PlVLMANUFACT<JRERS OFTECHNICALLY COSTROLLEDVe'IRROONICKLIt<CO((El INCONELX,IIJCOLOY. AOCC'ISTA!t(LESS STEELS.ALLOYCO'HAD<eJGSTE=LS.HIGHAI.LOYSTEFLS.LO'ea(<<LLOYSTEELS,Ve'DINGALLOYS,LO'<V,t:.EO,t<HIGHWELDINGELECTRODES. '~ADCOF<t'LT.I5.COT(<PANY, INC.<.It(TERSTATC It(DVSTRI( LPAR!C-ICSATBEAVERRUIJIRO:,CsTL<at'T>>, G>>.POSTOFFICEBOX2SECS-PHOI<CC431121CUSTOACE( SORO.RNO.H-102('s01 ADCO'.'RDER NO.761DATLSHIPPED!l-I'3-SPECIFICATION'P?EOTOChicacoBridee6IronBox13308Yse..p.lis, Tenn.36113MAR)~ED:ITEt:<CONSlSTI:lG OF3C'32"x36"1Y,."-~1,'zc'-GE<vTLEie'sE>a'".E IHEraBYCFP<TIFYTHATfdATERIAL f'<EFEP.:.ED 10ABOVECOi~.'FOl<i"<S.TO THPHYSICALAlaaDCIIEfealCr<L TESTSASFOLLO':Shf!DISlfiACCOr<DAf CE'V!ITHSPECIFICATIOs.'S:- IIEC.a:..!s.!s.!o.!c.!e:.Cu.t,;nFc.AlCa966~161.97!.07!.012,010..010!1.07.03.006~55aa":e'ITEt'SILESisaEGTiilYIELDSTREVGTII 201,700PS3.ELOtJ.G<<AI<aaSI?.EROCaaaTr. 4,'iga;'.-'SHEARII'gs-',NOTARY~'OUPEQUESTED rhlSlii'LP0PwIAj'aITli<ICQ2iI'IpTlQIglAOCOiltlETALSCO'I?A"Y. IIJC./e/,.(,nf,)/.fAUTHORIZFD OFrICI<<LPLEASEG(VETOYOUP.PURCHASING AGENT. hl ElstaterReactorOivisions I'1p~+V'c,r<.lat">~1l)/IIWestinghouse ElectricCorporatfon 1NUCLEAROPS.DXVISZON'"'wZ785Reed:Resy....,....,. Xtt.Person:NuclearServicestote@ation DivisionSg.tpO,f.y'ox2128Pittsoury Pennsylvania 15230.2l28 Jffjtt(,.'qittl5,AEP-85-641 June14,1985CIerlctMr.H.P.Alexich,VicePresidt"andDirectorNuclearOperations AmericanElectricPowerServiceCorporation OneRiverside PlazaColumbus, Ohio43216.AHERICANELECTRICPOHERSERVICECORPORATION D.C.COOKUNITIReactorVesselBeltlineReaionHeldChemistr

DearHr.Alexich:

caaKPLANTMEDRECORD-MEDCOPYSEGTIQNENG1NEERDATFElPLANTLIFETIMEDATETOPLANT,~~ClNONPERMANENT MINIMuMRETENTIDH YRS.Areviewoftheweldwireandfluxusedtofabricate theweldseamsinthecorebeltlineregionoftheD.C.CookUnitIreactorvesselwasconducted pertherequestofD.HaferofAmericanElectricPowerServiceCorporation todetermine theasdeposited copper,nickelandphosphorous contentoftheasdeposited weldseams.Thecircumferential girthseambetwentheintermediate andlowershellisconsidered tobethelimitingweldseaminthevessel.Thisseamwasfabricated withweldwireheatnumberIP3571andLinde1092fluxlotnumber3958.Eightseparatechemica'I analysesareknowntohavebeenperformed onthiscombination ofthewireandfluxandtheresultsarepresented below:SourceCuNiPCEHeldgua1CEHeIdgualKewauneeUniMaineYankeeMaineYankeeMaineYankeeMaineYankeeHaineYankeeification Test(SingleHire)ification Test(TandemHire)rradiated Surveillance HeldUnirradiated Surveillance HeldIrradiated CharpySpecimenIrradiated CharpySpecimenIrradiated CharpySpecimenIrradiated CharpySpecimen.40.37.20.36.25.25.33.33.82.75.77.78.70.66.71.70.017.01T.016.015.030.020.040.040Average.31.74.024Sasedupontheabovedata,itisHestinghouse's recommendation thattheaverageoftheab'ovedatapointsbeusedfortheCuandNicontent,sincethiswouldbemorerealistic thanusinganysingledatapoint.ThisapproachhasbeenacceptedbytheNRConotherapplications.

0AEP-85-641 Mr.M.P.Alexich-2-June14,1985A+gchmenT IOp~Z,q~Thephosphorous contentreportedfortheirradiated specimens isconsidered tobehighlysuspect.Hestinghouse considers theaverageofthefourunirradiated values(.016WTX)tobearealistic phosphorous contentfortheweld.jThelongitudinal weldseamsintheheitlineregionofthevesselweremadewithatandemsubmerged arc.process usingweldwireheats12008and13253withLinde1092fluxlot3791.Hoasdeposited weldchemistry existsforthiscombination o'fwi'resandflux.Fourothertandemweldswhichcontained wireheatnumber12008showedasdeposited coppercontentsof0.19to27'X.Thesurveillance weldwhichwasmadefromwire13253and,Linde1092fluxlot3791andwhichhasacoppercontentof0.27'Lisconsidered tobehighly.,'.representative ofthelongitudinal weldseamsandtheuseofitschemistr$forthelongitudinal weldseamsappearsappropriate. Theapplication ofnewcopperandnickelvaluestothebeltlineregiongirthweldseamoftheD.C.Cookreactorvesselwillnotresultinthevesselexceeding thePTSscreening limitsimposedbytheNRC.Pleasecallshouldyourequiremoreinformation Verytrulyyours,gA.P.Suda,ManagerGreatLakesAreaProjectsDepartment APS/debi4496f:12cc:M.P.Alexich,1LD.Hafer,1LN.G.Smith,.1LJ.Feinstein, 'lL ) gyiiSlecc:-4rP.T.0.P.A.S.J~J.G.S.P.R.F.J.F.0.H.J.J.R.I.J.B.S.H.0.H.UNITEDSTATESNUCLEARREGULATORYCOMMISSlON WASHINGTON, O.C.20555June9,198950"RR-.;-'.DocketNo.Mr.MiltonP.Alexich,VicePresident IndianaMichigan-.Power Companyc/oAmericanElectricPowerServiceCorporation 1Riverside Plaza-'olumbus, Ohio43216AlexicalArgentaBarrettBrewerFeinstein Kiementowicz KroegerKurganMalinMarkowsky PawligerShinnockSteinhart

Williams, Jr.

DearMr.Alexich.SUBJECT:

AMENDMENT NO.126TOFACILITYOPERATING LICENSENO.DPR-58(TACNO',71062)TheCommission hasissuedtheenclosedAmendment No.126toFacilityOperating LicenseNo.OPR-58fortheD.C.CookNuclearPlant,UnitNo.l.Theamendment consistsofchangestotheTechnical Specifications (TSs)inresponsetoyourapplication datedOctober14,1988andsupplements datedDecember30,1988,andJune5,1989.Thisamendment, revisestheTSstoallowoperation offuturereloadcyclesofO.C.CookUnit1;atreducedpimarycoolantsystemtemperature andpressureco'nditions. Thereducedtemperature andpressure(RTP)conditions willdecreasethesteamgenerator U-tubestresscorrosion crackingofthetypeobservedatD.C.CookUnit2.AcopyofourrelatedSafetyEvaluation isalsoenclosed. NoticeofIssuancewi11beinc1udedintheCommission' biweeklyFederal~Reisternotice.Sincerely,

Enclosures:

l.Amendment No.126toDPR-582.SafetyEvaluation ccw/enclosures: SeenextpagetC!LI,u.Q..1 Qjh.JigJohnF.Stang,ProjectManagerProjectDirectorate III-1DivisionofReactorProjects"III,IV,V8SpecialProjectsOfficeofNuclearReactorRegulation ,~htoo~o4~oX03/~~OUNITEDSTATESNUCLEARREGULATORY COMMISSION WASHINGTON, D.C.206551~r.INDIANAMICHIGANPOWERCOMPANYDOCKETNO.50-315DONALDC.COOKNUCLEARPLANTUNITNO.1AMENDMENT TOFACILITYOPERATING LICENSEAmendment No.126LicenseNo.DPR-581.TheNuclearRegulatory Commission (theCommission) hasfoundthat:A.Theapplication foramendment byIndianaMichiganPowerCompany(thelicensee) datedOctober14,1988assupplemented December30,1988,andJune5,1989,complieswiththestandards andrequirements oftheAtomicEnergyActof1954,asamended(theAct),andtheCommission's rulesandregulations setforthin10CFRChapterI;8.Thefacilitywi11operateinconformity withtheapplication, theprovisions oftheAct,andtherulesandregulations oftheCommission; C.Thereisreasonable assurance (i)thattheactivities authorized bythisamendment canbeconducted withoutendangering thehealth.andsafetyofthepublic,and(ii)thatsuchactivities willbeconducted incompliance withtheCommission's regulations; D.Theissuanceofthisamendment willnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic;andE.Theissuanceofthisamendment isinaccordance with10CFRPart51oftheCommission's regulations andallapplicable requirements havebeensatisfied. 2.Accordingly, thelicenseisamendedbychangestotheTechnical Specifications asindicated intheattachment tothislicenseamendment, andparagraph 2.C.(2)ofFacilityOperating LicenseNo.DPR"58is'erebyamendedtoreadasfollows:Technical Secifications TheTechnical Specifications contained inAppendices AandB,asrevisedthroughAmendment No.126,areherebyincorporated inthelicense.Thelicenseeshalloperatethefacilityinaccordance withtheTechnical Specifications. 3.Thislicenseamendment iseffective asofthedateofitsissuance. FORTHENUCLEARREGULATORY COMMISSION

Attachment:

ChangestotheTechnical Specifications DateofIssuance: June9,1989LawrenceA.Yandell,ActingDirectorProjectDirectorate III-1DivisionofReactorProjects-III,IV,V8SpecialProjectsOfficeofNuclearReactorRegulation

Hr.HiltonAlexichIndianaMichiganPowerCompanyDonaldC.CookNuclearPlantCC:RegionalAdministrator, RegionIIIU.S.NuclearRegulatory Commission 799Roosevelt RoadGlenEllyn,Il1inois60137AttorneyGeneralDepartment ofAttorneyGeneral525WestOttawaStreetLansing,Michigan48913TownshipSupervisorLakeTownshipHallPostOfficeBox818Bridgeman,Michigan49106W.G.Smith,Jr.,PlantManagerDonaldC.CookNuclearPlantPostOfficeBox458Bridgman, Michigan49106,U.S.NuclearRegulatory Commission ResidentInspectors Office7700RedArrowHighwayStevensvil le,Michigan49127GeraldCharnoff, EsquireShaw,Pittman,PottsandTrowbridge 2300NStreet,N.W.Washington, OC20037Mayor,CityofBridgeman PostOfficeBox366Bridgeman, Michigan49106SpecialAssistant totheGovernorRoom1-StateCapitolLansing,Michigan48909Nuclea~Facilities andEnvironmental Monitoring SectionOfficeDivisionofRadiological HealthDepartment of.PublicHealth3500N.LoganStreetPostOfficeBox30035Lansing,Michigan48909Mr.S.8'rewerAmericanElectricPowerServiceCorporation 1Riverside;Plaza

Columbus, Ohio43216 I~Illy~c+>>~4O~AOCe/~n~O+>>*++UNITEDSTATESNUCLEARREGULATORY CQMMlSSION WASHINGTON, D.C.20555SAFETYEVALUATION BYTHEOFFICEOFNUCLEARREACTORREGULATION RELATEDTOAMENDMENT N0.126TOFACILITYOPERATING LICENSENO.OPR"58INDIANAMICHIGANPOWERCOMPANYDONALDC.COOKNUCLEARPLANTUNITNO.1DOCKETNO.50-31

51.0INTRODUCTION

ByletterdatedOctober14,1988,assupplemented December30,1988,and-June5,1989,theIndianaMichiganPowerCompany(thelicensee) requested anamendment totheTechnical Specifications (TSs)appendedtoFacilityOperating LicenseNo.DPR-58fortheDonaldC.CookNuclearPlant,UnitNo.1.Theproposedamendment wouldpermittheoperation offuturereloadcyclesofUnit1atreducedprimarysystemtemperature andpressureconditions. Thereducedtemperature andpressure(RTP)conditions willdecreasethesteamgenerator ~~~~~~~~~~~~~U-tubestresscorrosion crackingofthetypeobservedattheD.C.CookNuclearPlant,Unit2.Thelicensee's contractor (Westinghouse) hasdetermined thatIthisRTPprogramshouldmorethandoublethetimetoreachagivenlevelof.steamgenerator U-tubecorrosion incomparison totheoriginaltemperatures andpressure. D.C.Cook,Unit1ispresently licensedtooperateat3250MWt,whichisratedthermalpowerdefinedbyDefinition 1.3oftheTechnical Specifications. Sometransient andaccidentanalysesareperformed at"ahigherpowerleveltopositionUnit1forapotential poweruprating. However,notalloftheanalyseshavebeenperformed atthishigherpowerlevel.Thesmallbreakloss-of-coolant accident(LOCA)analysiswas,forexampleperformed atapoweroflevelof3250MWtwiththehighheadsafetyinjection cross-tie valveshutandat3588MWtforallotheranalyzedplantconditions. Thestaff'sreviewoftheRTPprogramforUnit1didnotconsideranyissuesrelatedtoafuturepoweruprating. Thelicenseeperformed analysesandevaluations tosupporttheRTPprogramforD.C.Cook,Unit1.Thelicensee's effortsaddressed fullratedthermalpo~e~operation (3250MWt)witharangeofvesselaveragetemperature between547Fand576.3F.Twodiscretevaluesofthepressure, 2100psiaand2250psia,wereusedintheanalysesandevaluations. Theanalysesandevaluations supportamaximumaveragetubeplugginglevelof10K,withapeaksteamgenerator tubeplugginglevelof15K.Thelicenseewillselectthedesiredoperating temperature andthepressureonacycle-by-cycle basis.Thelicenseeperformed thesafetyanalysesandevaluations atconservatively ~~~~~~highpowerlevelsandhighprimarysystemtemperatures inordertopositionbothoftheO.C.Cookunitsforfuturepowerupratingandinordertosupportpotential futureoperation ofUnit2atreducedtemperatures andpressure. Thepotential upratedpowerforUnit1thatispartially supported bythisanalysisandevaluation is3425MWt,whichcorresponds toareactorpowerlevelof3413MWt.Thedesignpowercapability parameters aregiveninTable2.1-1ofReference

2.

2.0 EVALUATION

2.1NUCLEARSTEAMSUPPLYSYSTEMNSSS2.1.1Lare.andSmallBreakLOCAAnalsesThelicenseeperformed alargebreakLOCAanalysisusingthe1981versionoftheMestinghouse ECCSEvaluation Model,whichusestheBASHcomputercode.Theanalysisassumptions includeatotalpeakingfactor,F,of2.15,ahotchannelenthalpyrisefactor,F-deltaH,of1.55,10Ksafetyinjection flowdegradation, areactorpowerlevelof3413MWt,and15Kuniformsteamgenerator tubeplugginglevel.Arangeofhot-legtemperatures of580.7'Fto611.2'Fandarangeofcold-legtemperatures of513.3Fto546.2'F,consistent withthetemperature rangeoftheRTPprogram,wereconsidered intheanalysis. Intheanalysis, thereactorcoolantsystempressurewasvariedtojustifyplantoperation ateither2100psiaor2250psia.Alarge-break LOCAanalysiswasalsoperformed withtheRHR.cross-tie valveclosed.Forthiscase,areducedcorepowerof3250NMtwasusedtocompensate forthereduction insafetyinjection flowcausedbytheclosedRHRcross-tie valve.Forthoselimitingpressureandtemperature conditions whichproducedthelargestpeakcladtemperature, afullbreakspectrumofdischarge coefficients wasperformed. Thelimitingbreaksizewasdetermined tobeacold-legguillotine breakwithadischarge coefficient, C,of0.6,ahot-legtemperature of611.2Fandaprimarysystempressureo)2250psia,assumingmaximumsafetyinjection flow.Thepeakcladtemperature wascalculated tobe2180.5'F.Basedontheseresults,therequirements of10CFR50.46havebeenmetfortheUnit1large-break LOCAanalysis. Thelicenseeperformed asmall-break LOCAanalysisusingtheMestinghouse small-break ECCSEvaluation Model,whichusestheNOTRUMPcode.Theanalysisassumptions includedatotalpeakingfactorof2.32,ahotchannelenthalpyrisefactorof1.55,safetyinjection flowratesbasedonpumpperformance curvesdegraded10Kbelowdesignheadandincluding theeffectofclosureofthehighheadsafetyinjection cross-tie valve,andauniform15Ksteamgenerator tubeplugginglevel.Theanalysiswasperformed atacorepowerlevelof3250MWt,arangeofoperating coreaveragetemperatures of547'Fto581.3F,andreactorpressureofeither2100psiaor2250psia.Allotherplantconditions wereanalyzedatapowerof3588HMt.Thelicenseeanalyzedaspectrumofcold-legbreaksatthelimitingreactorcoolantsystemtemperature andpressureconditions. Thelimitingbreaksizefromthisanalysiswasthenanalyzedatothertemperature andpressurepointsoftheoperating range.Thelimitingcasewasdetermined tobeathree-inch diametercold-legbreakatapressureof2100psiaandatacoreaveragetemperature of5474F.Thislimiting.breakresultedinapeakcladtemperature of2122F.Basedontheseresults,therequirements of10CFR50.46havebeenmetfortheUnit1small-break LOCAanalysis. ThelicenseereviewedtheeffectoftheRTPprogramonthepost-LOCA hot-legrecirculation timetopreventboronprecipitation. Thistimeisaffectedbypowerlevelandvarioussystems'ater volumesandboronconcentrations. Becausethesesystems'ater volumesandboronconcentrations arenotaffectedbytheRTPprogram,thereisnoeffectonthepost-LOCA hot-legswitchover time. 0 ThelicenseereviewedtheeffectoftheRTPprogramonthepost-LOCA hydrogengeneration rates.Theassumption of120Fmaximumnormaloperations containment temperature bounds,fortheanalysisofrecord,theeffectoftheprimarysystemtemperature changesoftheRTPprogramonthepost-LOCA hydrogengeneration rates.2.1.2Non-LOCATransients andAccidents Thelicenseehasevaluated theimpactoftheRTPprogramonthenon-LOCAeventspresented inChapter14oftheD.C.Cook,Unit1FSAR.Theapprovedreloadcoredesignmethodology anddesigncodeswereused.Theevaluations wereperformed tosupporttheoperation ofUnit1atacorepowerof3250MMtoveravesselaveragetemperature rangebetween547'Fand576.3'Fataprimarysystempressureofeither2100psiaor2250psia.Theevaluation assumesasteamgenerator tubeplugginglevelof10K,withapeaksteamgenerator tubeplugginglevelof15K.Thenon-LOCAsafetyevaluation supportstheparameters oftheRTPprogramwiththeexceptions ofthesteamline breakmassandenergyreleasesoutsidecontainment, whichwereevaluated atafullpowervesselaveragetemperature nogreaterthanthecurrentD.C.CookUnit1fullpoweraveragetemperature, T,of567.8'F.avg'heevaluation performed bythelicenseealsoconsidered theparameters forapotential upratingofUnit1toreactorcorepowerlevelof3413MMt,withavesselaveragetemperature rangebetween547Fand578.7'Fataprimarysystempressureof'ither2100psiaor2250psia.Thesteamgenerator tubeplugginglevelisassumedtobethesameasfortheRTPprogram.Eventhoughthenon-LOCAevaluation mayhavebeenperformed fortheupratedcorepoweranditsassociated parameters, thestaff'sreviewofthislicenseamendment doesnotaddressaD.C.CookUnit1poweruprating. Thelicenseerevisedcertainreactortripandengineered safeguards features(ESF)setpoints toprovideadequateoperating marginsfortheRTPoperating conditions. Revisedreactortripsetpoints wereincorporated intheovertemperature-delta T(OTDT)andoverpower-delta T(OPDT)tripfunctions. TherevisedESFsetpoints affectsthelowsteamline pressurevalueofthehigh-high steamline flowcoincident withalowsteamline pressureactuation logic.ThenewOPDTandOTDTreactortripsetpoints weredeveloped bythelicenseeforanewsetofcorethermalsafetylimitsfortheRTPprogramatareactorcorepowerlevelof3413MMt.Theapprovedsetpointmethodology ofReference 3wasused.ForthoseeventsanalyzedwiththeapprovedImprovedThermalDesignProcedure (ITDP).,Reference 4,asafety-limit valueof1.45wasusedfortheDeparture fromNucleateBoilingRatio(DNBR).Thisisconservative comparedtothedesignDNBRvalueof1.32forathimblecelland1,33foratypicalcellrequiredtomeettheDNBdesignbasis.InthesafetyanalysisforD.C.Cook,Unit1,thelicenseeassumedthehighpressurizer waterleveltripsetpointof100K(nominalreactorsetpoint). Furthermore, thereference averagetemperature usedintheOPDTandOTDTtripsetpointequations arerescaledtothefullpoweraveragetemperature eachtimethecycleaveragetemperature ischanged.Similarly, theappropriate valueofprimarysystempressureofeither2100or2250psiawasusedinthetwotripsetpointequations. FortherevisedESFsetpointofthehigh-high steamline flowcoincident withlowsteamline

pressure, thelowsteamline pressuresetpointwasloweredfrom600psigto500psigtoaccommodate therangeofconditions oftheRTPprogramandapotential poweruprating.

2.1.3Steamline BreakMass/Ener ReleasesThecurrentmassandenergyreleasesfortheinsidecontainment analysisisbasedonanalysesperformed forCookUnit2,whicharealsoapplicable toCookUnit1.Dataarerepresented inChapter14oftheFSARforUnit2atpowerlevelsof0,30,70,and100%power.Forthe"atpower"analyses, theinitialprimarysystemtemperature andsecondary steampressures oftheRTPprogramarelowerthanthoseintheUnit2FSARanalyses. Themassblowdownrateisdependent onsteampressureandsincethesteampressurewi11be-lessthan-the-current--

analyses, theinitialmassblowdownratewi11belower.---The..lower steamline pressuresetpoint(500psig)oftheESFactuation signaldoesnotsignificantly impacttheanalysisbecausethelead-lagcompensation resultsinasteamline pressuresignalwhichanticipates therapiddecreaseinpressurecausedbyasteamline break.Basedontheseconsiderations, thelicenseeconcludes thattheRTPprogramwi11resultinalowerintegrated energyreleaseintocontainment andthatthedatausedintheUnit2FSARremainsbounding.

Astudywasperformed forUnit1ofthemassandenergyreleaseoutsidecontainment toaddressequipment qualification issues(Ref.5).Casesat70%and100%powerwereanalyzed. Theanalysispresented inReference 5assumed.thefullpowervesselaveragetemperature tobe567.8'F~Anyreduction infullpowerTfromtheanalyzedTandtheassociated reduction ininitialsearnpressurePillresultinlesslkmltingreleases. Thelowsteamline pressurevalueassumedintheanalysissupportsthereducedvalueofthesetpointto500psig.Theincreased levelofsteamgenerator tubepluggingisacceptable becausetheanalysisassumedbetterheattransfercharacteristics. Thelicenseeconcludes thatthecurrentmassandenergyreleaseanalysisisacceptable fortheRTPprogramaslongasthefullpowerTisequaltoorlessthan567.8F.avg2.l.4StartuofanInactiveLooThelicenseeevaluated thestartupofaninactiveloopevent.ThiseventcannotoccurabovetheP-7permissive setpointof10%powerasrestricted bytheTechnical Specifications. Theparameters assumedintheFSARanalysisforthree-pump operation at10%powerremainboundingfortheparameters for10%powercondition. Thelicenseeconcludes, therefore, thattheconclusions presented intheFSARremainvalid.2.1.5Uncontrolled RodBankWithdrawal fromaSubcritical Condition Theuncontrolled rodbankwithdrawal fromasubcritical condition transient causesapowerexcursion. Thispowerexcursion isterminated, afterafastpowerrise,bythenegativeDopplerreactivity coefficient ofthefuel,andareactortriponsource,intermediate, orpowerrangefluxinstrumentation. Thepowerexcursion resultsinaheatupofthemoderator/coolant andthefuel.Theanalysisusedareacti~ity insertion rateof75pcm(notethatonepcmisequaltoareactivity of10deltaK/K).Thisreactivity insertion rateisgreaterthanforthesimultaneous withdrawal ofthetwosequential controlbankshavingthegreatestcombinedworthatthemaximumspeedof45inches/minute. Theneutronfluxovershoots thenominalfullpowervalue;however,thepeakheatfluxismuchlessthanthefullpowernominalvaluebecauseoftheinherentthermallagofthefuel.Theanalysis, withthereducedsystempressureof2100psia,yieldstheminimumvalueof'NBR.Theanalysisisperformed usingtheStandardThermalDesignProcedure (STOP).TheW-3ONBcorrelation wasissuedtoevaluateONBRinthespanbetweenthelowernon-mixing vanegridand

thefirstmixingvanegrid.TheMRB-1ONBcorrelation isappliedtotheremainder ofthefuelassembly. Fromtheanalysisperformed, thelicenseeconcludes thattheONBdesignbasesaremetforallregionsofthecore,andtherefore, theconclusions intheFSARremainapplicable forareduction innominalsystea,pressure to2100psia.2.1.6Uncontrolled ControlRodAssemblBankWithdrawal atPowerTheuncontrolled rodbankwithdrawal fromapowercondition transient leadstoapowerincrease. Thetransient resultsinanincreaseinthecoreheatfluxandanincreaseinthereactormoderator/coolant temperature. Thereduction inpressurefortheRTPprogramisnon-conservative withrespecttoONB.Inaddition, arevisedOvertemperature Oelta-TsetpointequationisbeingassumedintheCookUnit1analyses. ThePowerRangeHighNeutronFluxandOvertempera-tureOelta-Treactortripsprovidetheprimaryprotection againstONB.Bothminimumandmaximumreactivity caseswereanalyzedoverarangeofreactivity insertion rates.Thelicenseeprovidedquantitative resultsforthemaximumreactivity feedbackcaseforpowerlevelsof10K,60K,and100Kpowerforarangeofreactivity insertion rates.TheresultsindicatethattheONBRlimitismetforallthecases.Thelicenseeexaminedanumberofcasesassociated withthepressurizer watervolumetransient causedbyanuncontrolled controlrodassemblybankwithdrawal-at-powerevent.Itwasdetermined thatcreditforhighpressurizer waterlevelreactortripwasrequiredtopreventthepressurizer fromfilling.Thelicenseeassumedavalueof100Knarrowrangespan(NRS)forthehighpressurizer waterlevelreactortripsetpoint. Atimedelayof2secondswasassumedfortripactuation unti1rodmotionbecomesadequatetoterminate thetransient. Thusthehighneutronfluxandovertemperature-delta Treactortripsprovideadequateprotection overtherangeofpossiblereactivity insertion ratesinthattheminimumvalueofONBRremainsabovethesafety-limit ONBRvalue.Inaddition, thehighpressurizer waterlevelreactortrippreventsthepressurizer fromfilling.2.1.7RodClusterAssemblMisalinmentTherodclustercontrolassemblymisalignment eventsconsistofthreeseparateevents:(1)adroppedcontrolrod,(2)adroppedcontrolbank,and(3)astatically misaligned controlrod.Theseeventswerereanalyzed becausethereduction inpressurefortheRTPprogramisnonconservative withrespecttotheONBtransient. Adroppedcontrolrodorcontrolbankmaybedetectedinthefollowing manner:(1)byasuddendropinthecorepowerasseenbythenuclearinstrumentation system;(2)byanasymmetric powerdistribution asseenbytheexcoreneutrondetectors orthecoreexitthermocouples; (3)byrodbottomsignal;(4)bytherodpositiondeviation monitor;and(5)byrodpositionindicators. Amisaligned controlrodmaybedetectedinthefollowing manner;(1)byanasymmetric powerdistribution asseenbytheexcoreneutrondetectors orthecoreexitthermocouples; (2)bytherodpositiondeviation monitor;and(3)byrodpositionindicators. Theresolution oftherodpositionindicator channel's +5percentor+12steps(+7.5inches).Oeviation ofanycontrolrodfromitsgroupbytwicethisdistance(+24stepsort15inches)willnotcausepowerdistribution worsethanthedesignlimits.Therodpositiondeviation monitorprovidesanalarmbeforearoddeviation canexceed+24stepsor+15inches. Thedroppedrodeventwasanalyzedusinganapprovedmethodology (Ref.6).Adroppedrodorrodsfromthesamegroupwillresultinanegativereactivity insertion whichmaybedetectedbythenegativeneutronfluxratetripcircuitry. Ifdetected, ireactortripoccursinabout2.5seconds.ForthosedroppedrodeventsforwMchareactortripoccurs,thecoreisnotadversely impactedbecausetherapiddecreaseinreactorpowerwillreachanequilibrium valuedependent onthereactivity feedbackorcontrolbankwithdrawal (ifinautomatic control). Thelimitingcaseforthisclassofeventsisthecasewiththereactorinautomatic control.Forthiscaseapowerovershoot occursbeforeanequilibrium powercondition isreached.Thelicenseestatesthat,usingthemethodology ofReference 6,allanalyzedcasesresultinONBRvalueswhicharewithinthesafety-limit ONBRvalue.Thelicenseestatesthatadroppedrodbankresultsinareactivity insertion ofatleast500pcm.Thiswillbedetectedbythenegativeneutronfluxratetripcircuitry andcauseareactortripwithinabout2.5secondsoftheinitialmotionoftherodbank.Powerdecreases rapidlyandthereis,therefore, noadverseimpactonthereactorcore.Themostseveremisalignment cases,withrespecttoONBR,arethoseinwhichonecontrolrodisfullyinsertedorwherecontrolbank"0"isfullyinsertedbutwithonecontrolrodfullywithdrawn. Multiplealarmsalerttheoperatorbeforeadverseconditions arereached.Thecontrolbankcanbeinsertedtoitsinsertion limitwithanycontrolrodfullywithdrawn withoutONBRfallingbelowthesafety-limit ONBRvalue,asshownbyanalysis. Anevaluation performed bythelicenseeindicates thatcontrolrodbanksotherthanthecontrolbankwouldgivelesssevereresults.Forthecasewithonerodfullyinserted, ONBRremainsabovethesafety-limit ONBRvalue.Forallcasesfollowing identification ofacontrolrodmisalignment, theoperatorisrequiredtoperformactionsinaccordance withplantTechnical Specifications andprocedures. 2.1.8ChemicalandVolumeControlSstemMalfunction Theborondilutioneventwasanalyzedbythelicenseeforstartupandpoweroperation. Theanalysisisperformed toshowthatsufficient timeisavailable totheoperatortodetermine thecauseofthedilutioneventandtakecorrective actionbeforetheshutdownmarginislost.Thelicenseereportsthat45minutesisavailable forMode1(poweroperation) and68minutesfor,Modes2or3(startuporhotstandbyconditions) (Ref.7).2.1.9LossofReactorCoolantFlowTheloss-of-flow transient causesthereactorpowertoincreaseuntilthereactortripsoneitheralow-flowtripsignalorreactorcoolantpumppowersupplyundervoltage signal.Thereactorpowerincreasecausesareactormoderator/coolant temperature increase. Thisinitialcoolanttemperature increasecausesapositivereactivity insertion becauseofthepositivemoderator temperature coefficient. Thelicenseeanalyzedbothapartialloss-of-flow (lossofonepumpwithfourcoolantloopsinoperation) transient andacompleteloss-of-flow transient (lossoffourpumpswithfourcoolantloopsinoperation). Forthepartialloss-of-flow transient, thereactorisassumedtobetrippedonalow-flowsignal.Foracompleteloss-of-flow transient, thereactorisassumedtobetrippedonapumpundervoltage signal.Foreitherevent,theaverageandhotchannelheatfluxesdonotincreasesignificantly abovetheirinitialvaluesandtheONBRremainsabovethesafety-limit ONBRvalue. 2.l.10LockedRotorAccidentThelockedrotoraccidentcausesarapidreduction inthefluidflowthroughtheaffectedloop.Thereactortripsonalow-flowsignalwhichrapidlyreducestheneutronfluxuponcontrolrodinsertion. Controlrodmotionstarts1secondaftertheflowintheaffectedloopreaches87Kofitsnominalvalue.Thelicenseeevaluated thisaccidentassumingthatoffsitepowerisavailable. Nocreditistakenforthepressure-reducing effectofthepressurizer reliefvalves,pressurizer spray,steamdump,orcontrolled feedwater flowafterreactortrip.Thelicenseeperformed ananalysistodetermine theONBtransient andtodemonstrate thatthepeaksystempressureandthepeakcladtemperature remainbelowlimitvalues.Thepeakreactorcoolantsystempressureof2588psiareachedduringthetransient islessthanthatwhichwouldcausestressestoexceedthefaultedconditions stresslimits.Thepeakcladtemperature reachedis1959'F.Lessthan4.5XofthefuelrodsinthemostlimitingfuelassemblyreachvaluesofDNBRlessthanthesafety-limit DNBRvalue.TheseresultsindicatethattheRTPprogramassumptions giveacceptable consequences forthelockedrotoraccident. 2.1.11LossofExternalElectrical LoadoTheloss-of-external-electrical-load eventwasanalyzedbythelicenseetoshowtheadequacyofpressure-relieving devicesandtodemonstrate coreprotection. Thisreanalysis wasnecessary becauseofchangesinreactorpressureandtemperature conditions fortheRTPprogramandbecauseofchangestotheOvertemperature-Delta Treactortripsetpointequation. Maximumandminimumreactivity feedbackcaseswereexamined, withthecaseanalyzedwithandwithoutcreditforpressurizer spraysandpower-operated reliefvalves.Fortheminimumreactivity feedbackcasewithpressurizer pressurecontrol,thereactortripsonahighpressurizer pressuresignal.Forthemaximumreactivity feedbackcasewithpressurizer pressurecontrol,thereactortripsonalow-lowsteamgenerator waterlevelsignal.Fortheminimumreactivity feedbackcasewithoutpressurizer pressurecontrol,thereactortripsonahighpressurizer pressuresignal.Forallfourcases,theminimumvalueofONBRremainswellabovethesafety-limit ONBRvalueandtheOvertemperature-Delta Tsetpointwasnotreached.Theanalysisconfirmsthattheconclusions oftheFSARremainvalidforthiseventfortheRTPprogram.2.1.12LossofNormalFeedwater FlowTheloss-of-normal-feedwater-flow eventwasanalyzedbythelicenseetoshowthattheauxiliary feedwater systemiscapableofremovingthestoredanddecayheat,thuspreventing overpressurization ofthereactorcoolantsystemoruncovering thecore,andreturning theplanttoasafecondition. Thereanalysis wasbasedonapositivemoderator temperature coefficient. Aconservative decayheatmodelbasedontheANSI/ANS-5. 1-1979decayheatstandard(Ref.8)wasused.Pressurizer poweroperatedreliefvalvesandthemaximumpressurizer sprayflowratewereassumedtobeavailable sincealowerpressureresultsinagreatersystemexpansion. Theinitialpressurizer waterlevelwasassumedtobeatthemaximumnominalsetpointof62Knarrowrangespan.Reactortripoccurredwhenthelow-lowsteamgenerator waterleveltripsetpointwasreached.Theresultsoftheanalysisshowthatalossofnormalfeedwater doesnotadversely affectthereactorcore,thereactorcoolantsystem,orthesteamsystem,andthattheauxiliary feedwater systemissufficient topreventwatetreliefthroughthepressurizer relieforsafetyvalves.Thepressurizer does notfilland,therefore, theconclusions oftheFSARremainvalidforthisevent,including RTPconditions. 2.1.13Excessive HeatRemovalOuetoFeedwater SstemMalfunctions Theexcessive-heat-removal eventduetofeedwater systemmalfunction wasanalyzedbythelicenseetodemonstrate coreprotection. Thisanalysiswasnecessary becauseofchangesinreactorcoretemperatures andpressurefortheRTPprogramandbecauseofchangestotheOTDTandOPDTtripsetpoints. Thiseventisanexcessive-feedwater-addition eventcausedbyacontrolsystemmalfunction oranoperatorerrorwhichallowsafeedwater controlvalvetoopenfully.Thelicenseeanalyzedbothfullpowerandhotzeropowercases.Bothcasesassumedaconservatively largenegativemoderator temperature coefficient. Thefullpowercaseassumedthereactorwasinautomatic ormanualcontrol.TheImprovedThermalDesignProcedure (ITOP)ofReference 4wasusedintheanalysis. Fortheaccidental fullopeningofonefeedwater controlvalvewiththereactorathot-zeropowerconditions, thelicenseedetermined thatthemaximumreactivity insertion rateislessthanthemaximumreactivity insertion rateanalyzedintheUncontrolled-Rod-Cluster-Assembly-Bank-Withdrawal-at-Subcritical-Condition event.Thus,thishot-zeropowercaseisboundedbytheresultsobtainedpreviously fortheotherevent.Inaddition, iftheeventweretooccuratahot-zeropowerandanexactlycriticalcondition, thepowerrangehighneutronfluxtrip(lowsetting)ofabout25Kofnominalfullpowerwilltripthereactor.Thehot-fullpo~ercasewiththereactorinautomatic controlismoreseverethanthecasewiththereactorinmanualcontrol.Forallexcessive feedwater cases,continuous additionofcoldfeedwater isprevented byautomatic closureofallfeedwater isolation valvesonsteamgenerator high-high levelsignal.Aturbinetripistheninitiated andareactortriponaturbinetripisthenassumed.Theresultspresented bythelicenseedemonstrate thesaferesponseofCookUnit1totheevent,athot-fullpowerandinautomatic control,withtheONBRremaining wellabovethesafety-limit ONBRvalue.2.l.14Excessive IncreaseinSecondarSteamFlowTheexcessive-increase-in-secondary-steam-.flow eventwasanalyzedbythelicenseetodemonstrate coreprotection. Thiseventisanoverpower transient forwhichthefueltemperatur ewillrise.Itwasanalyzedbecauseofreactorcoretemperature andpressurechangesfortheRTPprogramandbecauseofchangestotheOTOTandOPOTsetpoints. TheCookUnit1reactorcontrolsystemisdesignedtoaccommodate a10Ksteploadincreaseanda5X-per-minute ramploadincreaseovertherangeof15to100percentoffullpower.Loadincreaseinexcessoftheserateswouldprobablyresultinareactortrip.Fourcaseswereanalyzedbythelicensee. Theseincludedminimumandmaximumreactivity feedbackcaseswitheachcaseanalyzedforbothmanualandautomatic reactorcontrol.fortheminimumreactivity feedbackcases,azeromoderator temperature coefficient wasassumedtoboundthepositivemoderator temperature coefficient.. Foral'1thecases,nocreditwastakenforthepressurizer heaters.TheanalysesusedtheITDPofReferences 4.Thestudiesshowthatthereactorreachesanewequilibrium condition forallthecasesstudied,withONBRremaining wellabovethesafety-limit ONBRvalue.Theoperators wouldfollownormalplantprocedures toreducepowertoanacceptable valuetoconcludetheevent. II 2.1.15LossofallACPowertothePlantAuxiliaries Theloss-of"all-AC-power-to-the-plant-auxiliaries eventwasanalyzedtodemonstrate theadequacyoftheheatremovalcapability oftheauxiliary feedwater system.Thistransient isthelimitingtransient withrespecttothepossibility ofpressurizer overfill. Thiseventismoreseverethantheloss-of-loadeventbecausethelossofACpowerresultsinaflowcoastdown duetothelossofallfourreactorcoolantpumps.Thisresultsinareducedcapacityoftheprimarycoolanttoremoveheatfromthecore.Apositivemoderator temperature coefficient wasassumedintheanalysis. Aconservative decayheatmodelbasedontheANSI/ANS-5.1-1979 decayheatstandard(Ref.8)wasused.Nocreditistakenfortheimmediate releaseofthecontrolrodscausedbythelossofoffsitepower.Insteadareactortripisassumedtooccuronasteamgenerator low-lowlevelsignal.Pressurizer poweroperatedreliefvalvesandthemaximumpressurizer sprayflowratewasassumedtobeavailable sincealowerpressureresultsinagreatersystemexpansion. Theinitialpressurizer waterlevelisassumedtobeatthemaximumnominalsetpointof62Knarrowrangespanplusuncertainties of5Xnarrowrangespan.Theresultsdemonstrate thatnaturalcirculation flowissufficient toprovideadequatedecayheatremovalfollowing reactortripandreactorcoolantpumpcoastdown. Thepressurizer doesnotfill.Thus,thelossofACpowerdoesnotadversely affectthecore,thereactorcoolantsystem,orthesteamsystem,andtheauxiliary feedwater systemissufficient topreventwaterreliefthroughthepressurizer relieforsafetyvalves.2.1.16SteamlineBreakThesteamline breakaccidentwasanalyzedbythelicenseetoassesstheimpactofthereducedreactorcoolantsystempesssureoftheRTPprogramandthelowsteampressuresetpoint(loweredfrom600psigto500psig)ofthecoincidence logicwithhigh-high steamflowforsteamline isolation andsafetyinjection actuation. Anend-of-life shutdownmarginof1.6XdeltaK/Kfornoload,equilibrium xenonconditions, withthemostreactivecontrolrodstuckinitsfullywithdrawn

position, wasassumed.Anegativemoderator temperature coefficient corresponding totheend-of-line roddedcorewasassumed.Thelicenseeevaluated fourcombinations ofbreaksizesandinitialplantconditions todetermine thecorepowertransient whichcanresultfromlargeareapipebreaks.Thefirstcasewasthecompleteseverance ofapipedownstream ofthesteamflowrestrictor withtheplantatno-loadconditions andallreactorcoolantpumpsrunning.Thesecondcasewasthecompleteseverance ofapipeinsidethecontainment attheoutletofthesteamgenerator withtheplantatno-loadconditions andallreactorcoolantpumpsrunning.Thethirdcaseisthesameasthefirstcasewiththelossofoffsitepowersimultaneous withthegeneration ofaSafetyInjection Signal(lossofoffsitepowerresultsinreactorcoolantpumpcoastdown).

Thefourthcaseisthesameasthesecondcasewithlossofoffsitepowersimultaneous withthegeneration ofaSafetyInjection Signal.Afifthcasewasperformed toshowthattheONBRremainsabovethesafety-limit ONBRvalueintheeventofthespuriousopeningofasteamdumporreliefvalve.Thelicenseedetermined thatthefirstcasewasthelimitingcase,thatis,thedouble-ended ruptureofamainsteampipelocatedupstreamoftheflowrestrictor withoffsitepoweravailable andatno-loadconditions. Theresultsindicatethatthecorebecomescriticalwiththecontrolrodsinserted(however, withthemostreactivecontrolrodstuckout)beforeboronsolutionat2400ppmentersthereactorcoolantsystem.Thecorepowerpeaksatlessthanthenominalfullcorepower.TheONBanalysisshowedthatthe

minimumDNBRremainedabovethesafetylimitONBRvalue,eventhoughthiseventisclassified asanaccidentwithfuelrodsundergoing.DNB notprecluded. Theanalysisperformed bythelicenseedemonstrates thatasteamline breakaccidentwillnotresu'ftinunacceptable consequences. 2.1.17RutureofControlRodOriveMechanism HousinRodE'ectionAccidentTherodejectionaccidentisanalyzedatfullpowerandhot,zero-power conditions forbothbeginning-of-cycle (BOC)andend-of-cycle (EOC).Theanalysisusedejectedrodworthandtransientspeakingfactorsthatareconservative. Reactorprotection forarodejectionisprovidedbyneutronfluxtrip,highandlowsetting,andbythehighrateofneutronfluxincreasetrip.Theanalysismodeledthehighneutronfluxtriponly.Themaximumfueltemperature andenthalpyoccurredforhot,full-power BOCcase.Thepeakfuelenthalpywas,however,below200cal/gmforallthecasesanalyzed. Forthehot,full-power cases,theamountoffuelmeltinginthehotpelletwaslessthan10K.Becausefuelandcladtemperatures andthefuelenthalpydonotexceedtheFSARlimits,theconclusions oftheFSARremainvalid.Basedonareviewofthelicensee's evaluation andanalysisofthenon-LOCAtransients andaccidents (2.1.3through2.l.17)forthereducedtemperature andpressureoperation (theRTPprogram), thestaffconcludes thattheyareacceptable because(1)approvedmethodologies andcomputercodeshavebeenused,and(2)allapplicable safetycriteriahavebeenmet.Thisreviewisbasedon(1)afullpowervesselaveragetemperature oflessthanorequal'to567.8'F,(2)asteamgenerator tubeplugginglevelof10Kwithapeaktubeplugginglevelof15K,and(3).theminimummeasuredflowrequirement of91,600gpmperloo'pismet.2.1.18SteamGenerator TubeRutureSGTR)AccidentThelicenseeanalyzedthesteamgenerator tuberupture(SGTR)eventforCookUnit1usingmethodology andassumptions consistent withthoseusedfortheCookFSARSGTRanalysis. Therangeofparameters associated withafuturereratingprogramandtheRTPprogramwereusedinsensitivity analysestoassesstheimpactoftheseprogramsontheprimary-to-secondary breakflowandthesteamreleasedtotheatmosphere bytheaffectedsteamgenerator. Thesetwofactorsaffecttheradiological consequences ofanSGTRaccident. Inaddition, thelicensee's evaluation oftheradiological dosesconsiders theeffectofthenoblegasconcentrations. Thelicenseestatesthattheresultsoftheanalysesshowthatthedosesremainwithinasmallfraction(10K)ofthe10CFRPart100guidelines forboththethyroidandwholebodydoses.Sincetheworstcasedosesarewithinthe10CFRPart100guidelines, thestaffconcludes thattheanalysisoftheSGTRisacceptable 2.1.19FuelStructural Evaluation Thefuelassemblyliftandbuoyancyforcesareincreased fortheRTPprogramatCookUnit1becauseareduction inreactorcoolantsystemtemperature ofabout20'Fwillincreasethecoolantdensitybyabout3X.Thelicenseeevaluated thisforceincreaseagainstthefuelassemblyallowable holddownload.Theresultsoftheevaluation showthattheincreased forceiswellwithintheminimumspringholddownforcedesignmargin.Inaddition, thelicenseedetermined thatthecold-legbreakremainsthemostlimitingpiperupturetransient withrespecttolateralandverticalhydraulic forces.Basedonthelicensee's review,thestaffconcludes thatthe15xl5fuelassemblydesignremainsacceptable. Thefuelroddesignwasevaluated toassesstheimpactoffuturererating. Thelicenseedetermined thattherodinternalpressurecriterion willcontinuetobethemoreimportant factorinfuelburnupcapabilities. Thefuelwillalsoundergomoreseverefueldutybecauseoftheupratedpower.Thelicenseeplanstoperformcycle-specific verification foreachreloadtoassurethatallfuelroddesigncriteriaaremet.'-2;1;20-.-Justification for.Pressurizer LevelThepurposeofthePressurizer HighLevelLimitistoensurethatasteambubbleispresentinthepressurizer priortopoweroperation tominimizetheconsequences ofoverpressure transients andthepossibility ofpassingwaterthroughthereliefandsafetyvalves.Thesafetyanalysisassumesamaximumwatervolumewhichcorresponds toabout65Kindicated level.Thisnominalindicated levelismaintained duringnormaloperation bythepressurizer .levelcontrolsystem.Thelicensee(andthefuelsupplier-Westinghouse) recommends theuseof92KforthePressurizer HighLeveltriplimit.Theystatethatthisnewtriplimitwi11stillensurethepresenceofasteambubbleinthepressurizer. Thepressurizer levelwill,however,becontrolled tothenominalvalue.Fornormaloperations (Condition Ievent),thereactorparameters, including thepressurizer level,donosignificantly deviatefromtheirnominalvalues.Thelicenseeconcludes that,forthepressurizer leveltoexceedthenominallevel,a~~~~~~~~transient oraccidentmustoccurforwhichprotective actionisprovidedbytheReactorProtection System.Anyotherpossibleconditions forwhichthenominallevelwouldbeexceededbeforeandduringatransient wouldrequireatransient'r transients beyondthoseusuallyconsidered foranFSARtypeofanalysis. Thestaffconcludes onthebasisofthelicensee's evaluat>on thataPressurizer HighLevelTripof92~isacceptable. 2.2BALANCEOFPLANTSYSTEMSThelicenseestatesthatbalanceofplant(BOP)systemsandcomponents wereanalyzedfortheeffectsofoperation atreducedtemperature andpressureconditions. Thesecondary sideconditions fortheseanalysesweredetermined usingthePerformance Evaluation andPowerSystemEfficiencies (PEPSE)heatbalancedata(14.20E6lb/hrmainsteamflowandmainfeedflow).Thesystemsreviewedwerethenonsafety-related secondary sidepowergenerating andnonpowergenerating systems.Includedinthelicensee's analysiswereportionsofthemainfeedwater, mainsteam,steamgenerator blowdown(SGBS),component coolingwater(CCWS),auxiliary feedwater (AFS),heating,ventilation, andairconditioning (HVAC),servicewater,wastedisposal, fireprotection, radiation monitoring, andspentfuelpool(SFP)coolingandcleanupsystems.Theperformance oftheaboveBOPsystemswasevaluated atthereducedtemperature andpressurebyusingthenewprimarysideNSSSdata(14.20E6lb/hrmainsteamandmainfeedflow,and434'Fmainfeedtemperature) furnished byWestinghouse. Thelicenseestatesthattheimpactoncontainment pressures andtemperatures ~~~~~~following apostulated designbasismainsteamlinebreakwasevaluated anditseffectonequipment qualification wasverified. Thefloodinganalysisinsafety-relatedareasoftheplantasaresultofapostulated pipebreakwasreevaluated duetotheslightincreaseinflowratesinthemainfeed,condensate, andmainsteamsystems.Theturbine-generator systemwasalsoevalutedtoconfirmitsintegrity andperformance attheincreased steamvolumetric flowrateandtoverifythattheoriginalturbinemissileanalysisremainsvalid. Thelicensee's analysisofBOPsystemperformance providedthefollowing findings~~~~~~~concerning theRTPconditions atthepresentlicensedpowerlevelof3250HMtNSSSpower:(a)(b)(c)The:capability ofthesafety-related portionofthemainfeedwater systemwillnotbeaffectedandwillcontinuetoperformitssafetyfunctionbecausetheproposedRTPconditions areboundedbytheexistingmainfeedwater systemdesign.Thelicensee's analysisofthepressure/temperature ratingconditions forthesystemconfirmsthatpressureboundaryintegrity willnotbeaffected. Inaddition, themainfeedwater systemisolation valveclosuretimeisnotaffectedbytheRTP"imposed conditions. Thecapability ofthesteamgenerator blowdownsystemtoremoveimpurities fromthesecondary sideremainsessentially thesamefortheRTP-imposed conditions duringnormaloperation basedontheexsisting design.Thereactormakeupwatersystem's(HSM)capability toprovidedemineralized waterformakeupandflushingoperations throughout theNSSSauxilliaries, theradwastesystems,andfuelpoolcoolingandcleanupsystemisnotchaIlenged becausetheexistingsystemdesignisbasedontheworstcasedemandwhichboundstheRTPconditions. (d)Thelicenseeconfirmed thatsafety-related equipment willnotbeaffectedbychangesinthefloodinganalysisduetotheRTPconditions. Floodingintheauxiliary buildingduetofailureofnonseismic ClassIpipinghasbeenreviewed. Thelicenseeanalyzedsystemshavingaccesstolargewatervolumesand/orpotentially largeflowrates wereconsidered asdiscussed intheFSAR.Theonlysuchsystemisthemainfeedwater system.Sincethechangesinflowinthemainfeedwater systemarestillwithinthedesignlimits,theresultsconcerning floodingdiscussed intheFSARarestillapplicable. Floodinginthecontainment isslightlyincreased duetothelargerinitialwatermassinthereactorcoolantsystembecauseofthehigherdensityatthereducedtemperature. Thischangewasfoundtobewithinthevolumemarginsusedtodetermine themaximumflood-upelevation. Thecontainment floodingevaluation intheFSARremainsvalidattheRTP-induced conditions. (e)TheadequacyoftheAFMsystemforaccidentmitigation wasdemonstrated intheMestinghouse accidentanalysisperformed insupport'f theRTPprogramunderthefollowing scenarios: 1.Lossofmainfeedwater 2.Lossofoffsitepower3.HainsteamlineruptureEachaccidentanalysisdemonstrated acceptance criteriasuchassystemoverpressure limitsorONBlimits.TheAFMsystem'sabilityfordesignbasisaccidentdecayheatremovalcalculated intheRTPanalysisisunaffected.

13Asevaluated intheRTPanalysis, theheatloadsinboththeprimaryandsecondary systemsduetoreactordecayheatremainunchanged. Therefore, theComponent CoolingWaterSystem(CCWS)analysisandservicewatersystem(SWS)analysisintheFSARremainvalid.(g)(h)(k)Formainsteamlinebreaksinsidethecontainment structure, thepressureandtemperature willremainwithintheboundsofthepeakpressureandtemperature usedintheevaluation ofcontainment performance. Theinitialprimarytemperatures andsecondary steampressures undertheRTPconditions willbelowerthanthoseusedintheFSARanalysis. Thelicenseehasconfirmed thatcontainment environmental qualification ofequipment insidecontainment isnotaffected. Thesuperheated massandenergyreleaseanalysisoutsidecontainment wasevaluated toaddressequipment qualification issues.Theprimarytemperatures andsecondary steampressures resulting fromtheRTPconditions willbelowerthanthoseusedintheFSAR'analysis. Themassandenergyreleasewillbelowerandoperation withRTPwillresultinlowertemperatures inthebreakareas.Assuch,thecurrentsuperheat massandenergyreleaseanalysisoutsidecontainment remainsboundingprovidedthefullpowervesselaveragetemperature isrestricted tothecurrently-licensed 567.8'Fandbelow.Thesecondary pressureconditions assumedir.thehighenergysteamlinebreakanalysiswi11belowerthanthosepresented intheFSAR.TheseboundtheproposedRTPconditions andtherefore thecurrentanaIysisissufficient. Theprimaryfunctionofthespentfuelpoolcoolingsystem(SFPCS)istoremovedecayheatthatisgenerated bytheelementsstoredinthepool.Decayheatgeneration isproportional totheamountofradioactive decayintheelementsstoredinthepoolwhichisproportional tothereactorpowerhistory.Sincetheplant'sratedpowerlevelof3250NWtremainsunchanged, thedemandontheSFPCSisnotincreased. Thepurification functioniscontrolled bySFPCSdemineralization andfiltration ratesthatarenotaffectedbytheRTPconditions. Thefireprotection systemsandfirehazardsareindependent oftheplantoperating characteristics withtheexception oftheslightlyincreased currentrequirements fortheelectricmotordrivenpumpsintheprimarysystem.Theincreased loadisduetothemoredensewaterbeingpumpedundertheRTPconditions. Theincreased currentrequiredissmallandtherefore isnotconsidered tobeafirehazard.Thelicenseeconfirmed thatBOPsystemshavethecapability tomaintainplantoperation undertheRTP-induced conditions withoutmodification totheexistingdesign.ThestaffhasreviewedtheFSARandlicenseesubmittals inordertoverifythatsafety-related BOPsystemperformance capability, asanalyzed, boundsthe changesindesignbasisaccidentassumptions createdbytheRTPoperation. Thestaffhasconfirmed thatsafety-related BOPsystemdesigncapability, floodingprotection, aadequipment qualifications areboundedfortheproposedreratingandtherefore areconsidered acceptable asis.Basedontheabove,thestaffconcludes thattheproposedlicenseamendment fortheD.C.CookNuclearPlantUnit1concerning theReducedTemperature andPressureiswithintheexistingsafety-related BOPsystemdesigncapability fordesignbasisaccidentmitigation and,therefore, thestaff'spreviousapprovalagainsttheapplicable licensing criteriaforthemainsteamsystem,mainfeedsystem,CCWS,SWS,AFS,MSW,SGBS,SFPCS,floodingprotection, containment performance, andequipment qualifications remainvalid.Thestaff,therefore, findstheBOPsystemsconcerned acceptable forcontinued operation attheproposedreducedtemperature andpressure. 2.3REACTORVESSELANOVESSELINTERNALS ThereactorvesselisdesignedtotheASMEBoilerandPressureVesselCode,SectionIII(1965Editionwithaddendathroughthewinter1966).Thelicenseehasdetermined thattheoperation ofthereactorvesselunderthemostlimitingconditions oftheRTPreratingisacceptable fotitsoriginal40-yeardesignobjective. Allofthestressintensity andusagefactorlimitsoftheapplicable codefortheUnit1reactorvesselarestillsatisfied whentheRTPisincorporated, withtheexception ofthe3SmlimitfortheControlRodOriveMotor(CROM)housingsandoutletnozzlesafeend.However,thecodepermitsexceeding the3Smlimitprovidedplasticorelastic/plastic analysiscriteriaaremet.Thelicensee's reviewofthereactorvesselsinternals fortheRTPprogramincludedthreeseperateareas:athermal/hydraulic assessment, aRCCAdroptimeevaluation, andastructural assessment. Forceincreases werecalculated fortheuppercoreplate,acrossthecorebarrel,andintheupperinternals neartheoutletnozzles.Intheseareastheexistingmarginwasdetermined tobesufficient toaccommodate theincreased stresses. Theresultsofthisreviewindicatethattheoriginalreactorinternals components remainincompliance withthecurrentdesignrequire-ments whenoperating atthenewrangeofprimarytemperatures andpressures. ThePTSrulerequiresthatattheend-of-life ofthereactorvessel,theprojected reference temperature (calculated bythemethodgivenin10CFR50.61(b)(2), RT/pts)valueforthematerials inthereactorvesselbeltlinebelessthanthescreening criterion in10CFR50.61(b)(2). TheRT/ptsvalueisdependent upontheinitialreference temperature, marginsforuncertainty intheinitialreference temperature andcalculational procedures, theamountsofnickelandcopperinthematerial, andtheneutronfluenceattheend-of-life ofthereactorvessel.Oftheseproperties, onlyneutronfluenceisaffectedbyreratingwithRTP.Sincethecoldercoolantinthedowncomer regionismoredenseandthusprovidesforamoreefficient neutronshieldforthereactorvessel,fluenceestimates arelowerthanthoseatcurrentoperating conditions. Allotherproperties areindependent oftheRTP-induced conditions. TheeffectsofNRCGenericletter88-11,datedJuly12,1988,regarding Regulatory Guide1.99Rev.2wereevaluated byWestinghouse anddetermined tonotbesignificant forRTP.TheeffectofRTPwillbeincorporated bythelicenseeinfuturePTSsubmittals. Anevaluation wasperformed todetermine theimpactofRTPreratingontheapplicability ofthePTSscreening criteriaintermsofvesselfailure.Aprobabilistic fracturemechanics sensitivity studyoflimitingPTStransient characteristics, startingfromaloweroperating temperature, showedthattheconditional probability ofreactorvesselfailurewillnotbeadversely affected. Therefore, theoverallriskofvesselfailurewillnotbeadversely

impacted, meaningthatthescreening criteriainthePTSRulearestillapplicable fortheO.C.CookNuclearPlantUnit1reactorvessel'relative toreratedconditions.

AnalysisoftheCROMhousingsandtheoutletnozzlesafeendshowsthemaximumrangeofprimaryplussecondary stressintensity exceedthe3Smlimit.Thelicensee, however,performed asimplified elastic/plastic analysisinaccordance withparagraph NB-3228.3 oftheASMEBoilerandPressureVesselCode,SectionIII(1971orlateredition)andthehigherrangeofstressintensity isjustified. Therefore, basedonthelicensee's reviewsandanalysisoftheaboveportionsofthereactorvesselandinternals, thestaffconcludes thattheconditons imposedonthereactorvesselandinternals bytheRTPreratingareacceptable. 2.4TURBINEMISSILESTheFSARturbinemissileanalysisisbasedonalowpressureturbinefailure.Thelicensee's analysisoftheslightlychangedsteamconditions enteringthelowpressureturbineshowsthattheprobabilty ofalowpressureturbinemissileisvirtually unaffected. Thefactorsthatdirectlyorindirectly causestresscorrosion crackinginthelowpressureturbinewheelsaresteampressureandtemperature, massflowrate,steammoisturecontent,waterchemistry, oxygenlevel,andturbinespeed.Thelicenseereportedthatchangesinthesefactorsarenegligible duetotheRTP-inducedconditions. Theonlynoticeable changethatthestaffcandetermine isa1.0Xincreaseinthesteamflowrate.Thestaff'sconclusion, basedonthelicensee's review,isthattheturbinemissilehazardisneglibily affectedbytheRTPconditons andis,therefore, acceptable. 2.5PLANTSTRUCTURAL ANOTHERMALDESIGNTheNSSSreviewconsisted ofcomparing theexistingNSSSdesignwiththeperformance requirements atthereratedRTPconditions. Thecurrentcomponents oftheCookUnitI/model51steamgenerators continuetosatisfytherequirements oftheASMEB8PVCode,SectionIII,(thecodeapplicable forthedesignoftheCookNuclearPlantUnit1),forthisprogram.Inaddition, thermalhydraulic evaluations ofthesteamgenerators showacceptable stability andcirculation ratiosattheRTPreratedconditions. Circulation ratioisprimarily afunctionofpower,whichisunchanged, therefore isitselfvirtually unchanged. Thedampening factorcharacterizes thethermalandhydraulic stability ofthesteamgenerator. Mestinghouse hasdetermined thatalldampening factorsarenegativeatnearlythesamevalueasthecurrentoperating conditions. Anegativedampening factorindicates astabledevice.Sincethecoderequirements continuetobesatisfied, andsincestability andcirculation ratioshavebeendetermined byMestinghouse tobe withinthedesigncriteria, thestaffconcludes thatRTPoperation isacceptable fortheModel'1steamgenerators. Thepressurizer. structural analysiswasperformed bymodifying theoriginalO.C.CookNuclearPlantPressurizer analysis("Model51SeriesPressurizer Report").Theanalysiswasperformed totherequirements oftheASHECode1968Edition,whichisthedesignbasisfortheO.C.CookNuclearUnits.TheonlyASMECoderequirement affectedbythetransient modifications wasfatigue.Thelimitingcomponents forfatigueusagefactorsaretheuppershellandthespraynozzle,whicharecalculated tobe0.97and0.99respectively. Theseremain,however,withintheASMEacceptance criteriaof1.0andare,therefore, acceptable tothestaff.Reactorcoolantpumphydraulics andmotoradequacywerereviewedfortheproposedRTPconditions byWestinghouse. Theincreased hothorsepower andstatortemperature conditions arewithintheNEHAClassBlimits.AreviewofgenericReactorCoolantPumpstressreportsformodel93ApumpsbyWestinghouse findsthatallthedesignrequirements provideadequateboundingoftheRTP-induced conditions and,therefore, thestafffindsthisacceptable. Ouetolowertemperatures fromtheRTPprogram,theRCSwillnotexpandasmuchascurrently designed. Thiswillresultinsupportgapsbeingpresentinlocations thatwerepreviously zero.Thesmallgapsinthesupportstructure mayresultinincreased dynamicloading(bothseismicandLOCA)inlocalized areas.TheoverallLOCAloadingsontheRCS,however,remainapproximately thesameforthefollowing reasons:ThelowerRCStemperatures yieldlowerthermalloadings. 2.The0.C.CookNuclearPlanthasaleakbeforebreakdesignmethodology whichallowsthefaultedcondition evaluation toproceedwithouthavingtoconsiderloadingsfrompostulated breaksintheprimarylooppiping.Theseismicmarginavailable forthisplantisalsosignificant whichmeansthattherearenocomponents inthesystemwhichareclosetotheirallowable stresses. Basedontheabove,thetemperatures associated withtheRTPreratingare,therefore, acceptable tothestaffforthelooppiping,theloopsupports, andtheprimaryequipment nozzles.TheeffectsoftheO.C.CookNuclearPlantRTPreratingontheoperability anddesignbasisanalysisoftheCROM'sofUnit1werereviewed. TheRTPreratingdoesnotaffecttheoperability orservicedurationoftheCROMlatchassembly, driverod,orcoilstack.TheCROMlatchassemblyanddriverodwereoriginally designedfor650'F,andthedesignbasisstressandfatiguecalculations remainrepresentative forthesecomponents sincethecomponents areexposedtothehotlegtemperature, whichhasnotincreased. Thecoilstackislocatedontheoutsideofthepressurehousingwhichissubjecttoambientcontainment temperatures, whichhavenotchanged.Anevaluation wasperformed ontheimpactoftheRTPreratedoperating conditions onthestructural analysisoftheCROMpressurehousing.Thecomponent ofthepressurehousingwhichexperiences thegreateststressrangeandhasthehighestfatigueusagefactoristheuppercanopy.Thisisthepressurehousingsealweldbetweentherodtravelhousingandthecap.Mestinghouse providedareviewontheimpactofthedifferences betweentheoriginalnormalandupsetcondition transients andthoseoftheRTPonthecodeallowable stresslevelsandfatigueusagefactors.Theresultsoftheevaluation are:2.Themaximumstressintensity rangeisequalto109,960psi,whichislessthanthemaximumallowable rangeofthermalstressof127,105psiwhichwaspreviously foundtobeacceptable. Thetotalfatigueusagefactorisequalto0.672,whichislessthantheallowable limitof1.0(ASMESectionIII,1971Edit>on). Thestaffconcludes, basedonlicenseeevaluations, thattheimpactoftheRTPprogramontheCRDM'siswithindesigncriteriaand,therefore, isfoundtobeacceptable. 2.6CONTAINMENT EVALUATION Short-Term Containment ResonseAspartoftheanalysistosupportRTPoperation, thereactorcavityandloopsubcompartments short-term pressurization intheeventofabreakoflargecoolantpipingorasteamlinewasreanalyzed byWestinghouse.. Insomeofthoseareas,theanalyzedpressureexceededthestructural limitsasexpressed intheFSAR.Thesestructures werereevaluated usingthepeakpressures obtainedfromtheRTPanalysis, WCAP11902(ref.2),toconfirmthattheacceptance criteriaofSection5.2.2.3oftheupdatedFSAR,titled"Containment DesignStressCriteria," weremet.Theoriginaldesignofthecontainment includedanumberofconsiderations ofwhichthesubcompartment pressures werebutone.Forexample,radiation shielding requirements mayhavedictatedathickerconcreteslabthanwasnecessary fromastructural perspective. Theactualcapacityisgenerally-greaterthanthedesignpressures statedintheFSAR,andisfurtherincreased duetothefactthatthematerials usedarestrongerthantherequiredminimumdesignstrengths. IntheRTPstructural review,advantage wastakenofthesegreatercapacities byperforming manualorfiniteelementevaluations oftheaffectedstructural elements. Thegreatermaterial. strengths wereusedintheanalysiswhereappropriate. LooSubcomartmentsThecontainment buildingsubcompartments arethefullyorpartially enclosedspaceswithinthecontainment whichcontainhighenergypiping.Thesubcompartments aredesignedtolimittheadverseeffectsofapostulated highenergypiperupture.Theresultsoftheshorttermcontainment analysesandevaluations fortheD.C.CookNuclearPlantUnit1demonstrate that,forthepressurizer enclosure, thefanaccumulator room,andthesteamgenerator enclosure, theresulting peakpressures remainbelowtheallowable designpeakpressures'or theloopcompartments, thepeakcalculated pressures attheRTPreratedconditions arehigherthantheFSARdesignallowables. Fortheseareas,structural evaluations wereperformed asdiscussed abovefortherevisedpeakpressures, andthestructural adequacyofthecontainment subcompartments havebeenconfirmed (Ref.10)asfollows: 1V~~~~~~'eDifferential PressureNode1or6toNode25,Thisisthedifferential pressurefromthereactorcoolantloopcompartments adjacenttatherefueling canalnodes1or6acrosstheoperating decktotheuppercontainment. OriginalDesignpressureOriginalCalculated pressureNewCalculated pressure16.6psi14.1psi18.7psiThelicenseedemonstrated theincreased differential pressuretobeacceptable byreviewofexistingcomputeranalysisofthereactorcoolantpumphatchcoversandreevaluation oftheoperating deckloadcarryingcapacity. Differential PressureNode2or5toNode25Thisisthedifferential pressureacrosstheoperating deckfromthereactorcoolantloopcompartments located90degreesfromtherefueling canaltotheuppercontainment. OriginalDesignpressureOriginalCalculated pressureNewCalculated pressure12.0psi10.6psi13.0psiThelicenseedemonstrates theincreased differential pressuretobeacceptable bycomparison toNode1andNode6areas,Theslabsinbothareasarethesame.PeakShellPressureThisisthedifferential pressureacrossthecontainment shelltotheoutside,fornodeslocatedintheicecondenser inletareasclosesttotherefueling canal.OriginalDesignpressureOriginalCalculated pressureNewCalculated pressure12.0psi10.8psi14.0psiThelicenseedemonstrates theincreased pressuretobeacceptable byevaluation onalocalized basis.Thecontainment shellcanhandlepressures wellinexcessoftheoverall12psidesignpressure. Theaveragepressureoverthestructurally significant portionofthecontainment shellsurrounding andincluding thesenodesissmallerthanthe12psicontainment shelldesignpressure. ReactorCavitThereactorcavityisthestructure surrounding thereactorwithpenetrations forthemaincoolantpiping.Thisstructure isdesignedtolimittheadverseeffectsoftheinitialpressureresponsetoalossofcoolantaccident. Theresultsofthereactorcavityanalysisandevaluations fortheD.C.Cook.NuclearPlantUnit1demonstrate that,forthereactorvesselannulusandpipeannulus,theresulting*peak pressures attheRTPreratedconditions arewithintheFSARdesignallowables. Fortheupperandlowerreactorcavitiesthepeakcalculated pressures underRTPconditions exceededthestructural designpressures (Ref.2,Sections3.7.2and3.7.3)asstatedintheFSAR.Forthese 0 areas,structural evaluations wereperformed fortherevisedpeakpressures, ~~andthestructural adequacyofthecontainment subcompartment hasbeenconfirmed (Ref.10)asfollows:MissileShieldRefuelinCanalBulkheadBlocksandUerReactorCavitalsferentlaressuresTheupperreactorcavitywallssurroundthereactorhead.Themissileshieldsandtherefueling canalbulkheads areblocksseparating theupperreactorcavityfromuppercontainment. Themissileshieldisbolteddownduringoperation, andisremovable forrefueling. Therefueling canalbulkheads fitsnuglyingroovesintheupperreactorcavitywalls.~CiII11Wi1Sli11andBulkheads OriginalOesignpressureOriginalCalculated pressureNewCalculated pressure48.0psi44.1psi48.4psi48.0psi44.1psi54.3psiThelicenseedemonstrates theincreased pressureforthecavitywalltobeacceptable byfiniteelementanalysisoftheentireupperreactorcavitywall.Thelicenseehasdemonstrated theincreased pressureforthemissileshieldsandthebulkheads tobeacceptable bymanualcalculation. Thetestcylinderbreakstrengthoftheconcrete, whichishigherthanthedesignstrength, wasalsotakenintoconsideration. PeakLowerCavitPressureThisisthecavitylocatedunderthereactorvessel.Thepeakpressureisusedinthestructural analysisratherthanthedifferential pressuresincemostofthecavitywallsareinthefoundation mat.OriginalOesignpressureOriginalCalculated pressureNewCalculated pressure15.0psi13.8psi18.5psiThelicenseedemonstrated thattheincreased pressures areacceptable bymanualcalulation. Thestaffconcludes, basedonthelicensee's demonstration, thatthe0.C.CookNuclearPlant'sdesignbasispertaining tocontainment shorttermresponse, asstatedinChapter5.2.7.3oftheFSAR,isadequateforRTPoperation, andtherefore, isacceptable. ThelicenseemustupdatetheFSARtoreflectthehigherstructural designvalues.LonTermContainment PressureThelongtermpeakcontainment pressureanalysissupportsoperation withtheRHRcrosstievalvesclosedatapowerlevelof3425NMtforbothUnits1and2containment structure.. Thisanalysiscontained additional justification foroperation undertheRTPconditions (Ref.11)andwasapprovedbythestaffSafetyEvaluation datedJanuary30,1989(Ref.12). I HII-20-~~2.7NUCLEAR,PROCESSANDPOST-ACCIDENT SAMPLINGSYSTEMSTheNuclearSamplingSystem(NSS)fsdesignedtoproviderepresentative samplesforlaboratory. analysesusedtoguidetheoperation ofvariousprimaryandsecondary systemsthroughout theplantduringnormaloperation. Sincereduction ofsamplepressureandtemperature, whennecessary, isalreadybeingdonebyheatexchangers andneedlevalves,theparameters associated withtheRTPprogramdonotaffecttheperformance oftheNSS.Withnopowerupratfng, thesourcetermremainsunchanged. Therefore, thestaffconcludes thatoperation underRTPconditions fsacceptable fortheNSS.Thestafffindsthat,sincenopowerupratingisbeingproposedatthistime,thereisaninsignificant effectonthepost-accident containment thermalconditions andtherefore theexistingpost-accident samplingsystemremainsadequateandisacceptable. Operation underRTPconditions resultsinslightreductions insecondary sfdetemperatures andpressures withnochangeinthesourceterm.Thestaffconcludes thatthechangeca'nbeaccommodated bytheprocesssamplingsystemwithoutcausingdegradation oftheirperformance, andfs,therefore, acceptable. 2.8ELECTRICSYSTEMSDESIGNOperation underRTPconditions resultsinminorchangestothe.heatbalance.Theonlyimpactnotedontheelectrical systemsistheslightincreaseinmotorcurrentforthemotorsusedasprimemoversofprimarycoolant.Therequiredpowerfsincreased bythehigherdensities encountered duetotheRTPprogram.Thelicenseehasreviewedcablepenetratfons, busses,andmotorratingstoconcludethatthereissufficient designmargintohandletheincreased load.Thestafffinds,basedonthelicensee's evaluation, thattheproposedRTPprogramminimally affectstheelectricpowersystemandassociated loadsandfstherefore, acceptable.

3.0 TECHNICAL

SPECIFICATIONS 1.Definition 1.38ondesignthermalpowerfsbeingdeletedonpage1-7oftheTechnical Specifications (TS's)becausetherefsnolongerasingledesignthermalpoweratwhichallthetransient andaccidentanalyseshavebeenperformed. ThelicensedpowerlevelforCook1remains3,250MWt.Thischangeisacceptable. 2.Table1-3onpage1-10isbeingdeletedbecauseftpreviously gaveinformation ontheanalysesperformed atthedesignthermalpower.Thischangefsacceptable becausethedefinition ofdesignthermalpowerisbeingdeletedalso.3.Figure2.1-1onpage2-2fsbeingrevisedtoreflecttherevisedDNBRsafetylimitof1.45.Thischangeisacceptable becauseitissupported bythesafetyanalysis. 4.Thepressurizer pressurelowsetpoint(Item9ofTable2.2-1onpage2-5)fsincreased by10psig.Thisisacceptable becauseftwasassumedinthelarge-andsmall-break LOCAanalyses. "21"~~~~~3.0TECHNICAL SPECIFICATIONS 1.Oefinition 1.38ondesignthermalpowerisbeingdeletedonpage1-7oftheTechnical Specifications (TS's)becausethereisnolongerasingledesignthermalpoweratwhichallthetransient andaccidentanalyseshavebeenperformed. ThelicensedpowerlevelforCook1remains3,250HHt.Thischangeisacceptable. 2.3.4.6.7.Table1-3onpage1-10isbeingdeletedbecauseitpreviously gaveinformation ontheanalysesperformed atthedesignthermalpower.Thischangeisacceptable becausethedefinition ofdesignthermalpowerisbeingdeletedalso.Figure2.1.-1onpage2-2isbeingrevisedtoreflecttherevisedONBRsafetylimitof1.45.Thischangeisacceptable becauseitissupported bythesafetyanalysis. Thepressurizer pressurelowsetpoint(Item9ofTable2.2-1onpage2-5)isincreased by10psig.Thisisacceptable becauseitwasassumedinthelarge-andsmall-break LOCAanalyses. TheOvertemperature-Oelta Ttripsetpointequation(pages2-7and2-8)isbeingrevisedintermsofratedthermalpowerratherthandesignthermalpower.Inaddition, thisrevisedOTDTtripsetpointprotectsthecoresafetylimitsofFigure2.1-1.Thischangeisacceptable becauseitissupported bythenon-LOCAsafetyanalyses. TheOverpower-Oelta Ttripsetpointequation(page2-9)isbeingrevisedtoreflecttherevisedcoresafetylimitsofFigure2.1-1.Thisequationisalsobeingdefinedintermsoftheindicated Tatratedthermalpower.Thesechangesareacceptable becausetilearesupported bythesafetyanalysisfortheRTPprogram.Technical Specification 3.2.2onpage3/42-5isbeingrevisedfromamaximumFof2.10to2.15.Thischangeisacceptable becauseitissupportetl bythelarge-break LOCAanalysis. TheFvaluesforExxonfuelarebeingdeletedbecausethisfuelwilln3longerbeusedatCookUnit1.8.TheK(Z)curveapplicable toExxonfuel(page3/42-7)isbeingdeleted.Thisisacceptable becauseExxonfuelwillnolongerbeusedatCookUnit1.9.10.TheK(Z)curveforMestinghouse fuel(page3/42-8)isbeingrevised.Thisisacceptable becauseitissupported bythenewLOCAanalysisforCookUnitl.TheF-OeltaHlimitapplicable toExxonfuel(page3/42-9)isbeingdeleted.Thisisacceptable becauseExxonfuelwillnolongerbeusedatCookUnitl.Table3.2-1onpage3/42-14onONBparameters isbeingrevised.Tmustbelessthanorequalto570.9'F,thepressurizer l -22"pressuremustbelessthanorequalto2050psig,andthereactorcoolantsystemtotalflowratemustbegreaterthanorequalto366,400gpm.Thesechangesareacceptable becausetheyreflectthesafetyanalysisfortheRTPprogram.Technical Specification 3.2.6onpage3/42-15isbeingrevisedtochangeFintheAPLlimitto2.15.Thischangeisacceptable because3treflectsthenewFlimitofSpecification 3.2.2.ThelimitsonAPLapplicable toE)xonfuelarebeingdeletedbecauseExxonfuelwillnolongerbeusedatCookUnitl.Functional Units2and11ofTable3.2-2onpage3/43-10arebeingchanged.Functional Unit2incorporates aneditorial changetoindicatethattheresponsetimeisapplicable toboththehighandlowsetpoints ofthePowerRangeNeutronFluxtrip.Thischangeisacceptable becauseitiseditorial innature.Functional Unitllisbeingchangedfromaresponsetimeof"notapplicable" to"equaltoorlessthan2seconds." Thisisacceptable becausethistriponpressurizer water.level-high wasmodeledintheanalysisofthecontrolrodwithdrawal-at-power event.Functional Units1.fand4.dofTable3.3-4onpages3/43-24and3/43-26arebeingchangedtodecreasethesteamline pressurelowsetpointby100psig.Thesechangesareacceptable becausetheyaresupported bythesteamline breakanalysisandthesteamline breakmassandenergyevaluations. Tec'hnical Specification 3.4.4onpage3/44-6isbeingrevisedto92Kofspan.Thischangeisacceptable becauseitissupported bythesafetyanalysis. Technical Specification 3.5.l.bonpage3/45-1isbeingrevisedfromanaccumulator boratedminimumwatervolumeof929to921cubicfeet.Thischangeisacceptable becauseitisconsistent withtheLOCAanalysisforCookUnit1.Surveillance Requirement 4.5.2.fisbeingrevisedtoreducethedischarge pressureofthesafetyinjection pumpandtheresidualheatremovalpump.Thesechangesareacceptable becausetheyareconsistent withtheLOCAanalyses. Surveillance Requirement 4.5.2.hisbeingrevisedbyaddingarequirement toverifythatthechargingpumpdischarge coefficient iswithinaspecified rangefollowing ECCSmodifications. Thefootnoteisbrokenintofourpartsforclarity.Thischangeisacceptable becauseitensuresthattheflowdelivered tothecorebythechargingpumpsintheeventofaLOCAiswithintheanalyzedvalues.Surveillance Requirement 4.7.1.2on,page3/47-5isbeingrevisedtochangethedischarge pressurerequirements ofthemotorandturbinedrivenauxiliary feedwater pumpsto1375psigand1285psig,respectively. Thiscorresponds toa5Xdegradation ofthepumps ,~l23fromthemanufacturer's pumpheadcurve.Thesechangesareacceptable becausetheyareconsistent withthechangesfortheRTPprogl'am>> 20.BasispageB2-1(a)isbeingchangedtoincorporate thedesignlimitandsafetyanalysislimitDNBRvalues.TheDNBlimitsforExxonfuelarebeingdeletedsinceExxonfuelisnolongerusedatCookUnit1.ThedesignlimitandsafetyanalysislimitDNBRvaluesareacceptable becausetheyareconsistent withtheRTPprogram.21.BasispageB2-2isbeingrevisedtodeletereference toF-DeltaHforExxonfuelandtodesignthermalpower.Thesechangesareacceptable becausereferences tobothitemshavebeendeletedintheSpecifications. 22.BasespageB2-4isbeingrevisedtoreflectthechangestotheOvertemperature-Delta Ttripfunction. Thechangesareacceptable becausetheyreflectchangesmadetotheSpecifications. 23.BasespageB2-5isbeingrevisedtoreflectthechangestotheOverpower-Delta Ttripfunctionandthepressurizer waterlevel-high tr'ip.Thesechangesareacceptable becausetheyreflectchangestotheSpecifications. 24.BasespageB3/42-1isbeingrevisedtoreplacetheminimumDNBRvalueof1.69bythewords"thesafetylimitDNBR".Thischangeisacceptable becauseitwillavoidchangestotheBasesifthesafetylimitDNBRvalueischanged.25.Surveillance Requirement 4.1.1.5.bisbeingchangedtorequireTdetermination ofTevery30minuteswhenthereactoriscriti87and-TislesstQP545'F.Thischangeissupported byReference 9and57lowsafullpowerTof550'FforCookUnit1Cyclellwithoutrequiring amonitor)(II every30minuteswhileatfullpower,whichthepreviousvalueof551'Fwouldhaverequired. Thischangeisacceptable becausetheintentofmaintaining theminimumcoolanttemperature forcriticality ofSpecification 3.1.1.5ispreserved.

4.0 ENYIRONNENTAL

CONSIDERATION Pursuantto10CFR51.21,51.32and51.35,anenvironmental assessment andfindingofnosignificant impacthavebeenpreparedandpublished intheFederal~RelateronJune9,1989(94FR24774).Accordin917, basedupanutieenvsronmental assessment, wehavedetermined thattheissuanceofheamendment willnothaveasignificant effectonthequalityofthehumanenvironment.

5.0CONCLUSION

.ThestaffhasreviewedtherequestbytheIndianaandMichiganPowerCompanytooperatetheDonaldC.CookNuclearPlantUnit1atthereducedtemperatures andpressures oftheRTPprogram.Reactoroperation isrestricted toanupperlimitonTof567.8'Fbecausethesteamline breakmassandenergyreleaseinsidecon$kfnmentwasnotreanalyzed aspartoftheRTPprogram.Althoughthe "24"~~~~~~~~~~~~~~~~safetyanalysiswasperformed atpowerratingswhichwouldsupportapossiblepowerupratingforCookUnit1,powerupratingisnotaddressed inthestaff'sreview.ThepowerofO.C.CookNuclearPlantUnit1islimitedtothepresentratedthermal'ower of3250MMt.Basedonitsreview,thestaffconcludes thatappropriate materialwassubmitted andthatnormaloperation andthetransients andaccidents thatwereevaluated andanalyzedareacceptable. TheTechnical Specifications submitted forthislicenseamendment suitablyreflectthenecessary modifications fortheoperation ofCookUnitl.Thestaffhasconcluded, basedontheconsiderations discussed above,that(1)thereisreasonable assurance thatthehealthandsafetyofthepublicwillnotbeendangered byoperation intheproposedmanner,and(2)suchactivities willbeconducted incompliance withtheCommission sregulations, andtheissuanceoftheamendment willnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic.Oate:'June9,1989Principal Contributors: DanFienoJohnStang,NRRAnthonyGody,NRR

6.0REFERENCES

1.Letter(AEP:NRC:1067) fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedOctober14,1988.2."ReducedTemperature andPressureOperation forDonaldC.CookNuclearPlantUnit1-Licensing Report,"D.L.CecchettandD.B.Augustine, WCAP-11902, October1988.3.Ellenberger S.L.,etal.,"DesignBasesfortheThermalOverpower-Delta TandThermalOvertemperature-Delta TTripFunctions," WCAP-8746, March1977.4.Che'lerner, H.;Boman,L.H.;Sharp,D.R.,"Improved ThermalDesignProcedures," WCAP-8567, July1975.5.Butler,J.C.,andLove,D.S.,"Steamline BreakMass/Energy ReleasesforEquipment qualification OutsideContainment," WCAP-10961, Rev.1(proprietary) andWCAP-11184 (nonproprietary), October1985.6.Morita,T,,etal.,"DroppedRodMethodology forNegativeFluxRateTripPlants,"WCAP-10297-P-A (proprietary) andWCAP-10298-A (nonproprietary), June1983.7.Letter(AEP:NRC: 10678)fromM.P,Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedFebruary6,1989.8."American NationalStandardforDecayHeatPowerinLightWaterReactors," ANSI/ANS-5. 1-1979,August1979.9.Letter(AEP:NRC: 1067A)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedDecember30,1988.10.Letter(AEP:NRC: 1067C)fromM.P.Alexich(IndianaandMichiganPowerCompany)totheUSNRC,datedMarch14,1989.11.Letter(AEP:NRC: 1024D)fromM.P.AlexichtoT.E.Murley(NRC),datedAugust22,1988.IncludesWCAP-11908, "Containment Integrity AnalysisforDonaldC.CookNuclearPlants,Units1and2."12.Letter,J.F.Stang(NRC)toM.P.Alexich(IMECo),datedJanuary30,1989.}}