ML17264B108: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(4 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:GINNA STATION COLR Cycle 27 Revision 0 CORE OPERATING LIIVIITS REPORT (COL R)Responsible manage i(/iw/ev Effective Date Controlled Copy Ho.9'7ii240i47 97iii7 PDR ADOCK 05000244''DR R.E.Ginna Nuclear Power Plant Core Operating Limits Report Cycle 27 Revision 0 This report is not part of the Technical Specifications.
{{#Wiki_filter:COLR GINNA STATION               Cycle 27 Revision 0 CORE OPERATING LIIVIITS REPORT (COL R)
This report is referenced in the Technical Specifications.
Responsible manage i(/iw/ev Effective Date Controlled Copy Ho.
TABLE OF CONTENTS 1,0 CORE OPERATING LIMITS REPORT 2.0 OPERATING LIMITS........~~2.1 SHUTDOWN MARGIN.....
9'7ii240i47 97iii7 PDR         'DR ADOCK 05000244'
~~2.2 MODERATOR TEMPERATURE COEFFICIENT
 
.2.3 Shutdown Bank Insertion Limit.2.4 Control Bank Insertion Limits.2.5 Heat Flux Hot Channel Factor (FQ(Z))~~2.6 Nuclear Enthalpy Rise Hot Channel Factor (F"~)2.7 AXIAL FLUX DIFFERENCE
R.E. Ginna Nuclear Power Plant Core Operating Limits Report Cycle 27 Revision 0 This report is not part of the Technical Specifications. This report is referenced in the Technical Specifications.
.2.8 RCS Pressure, Temperature, and Flow Departure from Boiling (DNB)Limits 2.9 Boron Concentration
 
.~~~~Nucleate 3 3 3 3 4 4 5 5 3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS
TABLE OF CONTENTS 1,0 2.0 CORE OPERATING OPERATING LIMITS 2.
2.2 1     SHUTDOWN LIMITS REPORT MARGIN.....
MODERATOR TEMPERATURE   COEFFICIENT .
                                                          ~
                                                                    ~  ~
                                                                            ~              3 3
3 2.3       Shutdown Bank Insertion Limit .                                       3 2.4       Control Bank Insertion Limits .                                         4 2.5       Heat Flux Hot Channel Factor (FQ(Z))                 ~ ~
2.6       Nuclear Enthalpy Rise Hot Channel Factor (F"~)
2.7       AXIAL FLUX DIFFERENCE .                                   ~ ~ ~ ~      4 2.8       RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits                                                   5 2.9       Boron Concentration   .                                                5 3.0    UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS
 
==4.0    REFERENCES==
6 FIGURE      - RE(UIRED  SHUTDOWN MARGIN .
1 FIGURE 2    -  CONTROL BANK INSERTION    LIMITS                                        8 FIGURE 3        K(Z)  NORMALIZED  Fo(Z)  AS A FUNCTION OF CORE HEIGHT    o ~ ~ ~ ~   9 FIGURE 4    - AXIAL FLUX DIFFERENCE    ACCEPTABLE OPERATION LIMITS AND TARGET BAND  LIMITS AS A FUNCTION    OF RATED THERMAL POWER . 10 TABLE  1  -  UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT      PARAMETERS.....      11 I
COLR                                                                Cycle 27, Revision  0
 
R.E. Ginna Nuclear Power Plant Core Operating Limits Report Cycle 27 Revision  0 1.O  CORE OPERATING  LIMITS  REPORT This Core Operating Limits Report (COLR) for Ginna Station has been prepared in accordance with the requirements of Technical Specification 5.6.5.
The  Technical Specifications affected by    this report are listed below:
3.1.1      "SHUTDOWN MARGIN (SDM)"
3.1.3      "MODERATOR TEMPERATURE COEFFICIENT    (MTC)"
3.1.5      "Shutdown Bank  Insertion Limit" 3.1.6      "Control Bank Insertion Limits" 3.2.1      "Heat Flux Hot Channel Factor (Fo(Z))"
3.2.2      "Nuclear Enthalpy Rise Hot Channel Factor (F"<<)"
3.2.3      "AXIAL FLUX DIFFERENCE (AFD)"
3.4.1      "RCS  Pressure,  Temperature,  and Flow Departure from Nucleate Boiling  (DNB)  Limits" 3.9.1      "Boron Concentration" COLR                                                          Cycle 27, Revision 0
 
2.0    OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.              These limits have been developed using the NRC approved methodologies specified in Technical Specification 5.6.5. All items that appear in capitalized type are defined in Technical Specification 1. 1, "Definitions."
2.1    SHUTDOWN MARGIN    (LCO 3.1.1)
(Limits generated using Reference        1) 2.1.1        The  SHUTDOWN MARGIN    in MODE 2 with K.<< < 1.0 and MODES 3 and 4  shall be greater    than    or equal to the limits specified in Figure 1 for the    number    of  reactor coolant pumps in operation.
2.1.2        The  SHUTDOWN MARGIN    in  MODE 4    when both reactor coolant pumps are  not OPERABLE and        in operation  and in MODE 5 shall be greater  than or equal to the one        loop operation curve of Figure 1.
2.1.3         The  SHUTDOWN MARGIN required in LCOs 3. 1.4, 3. 1.5, 3. 1.6,
: 3. 1.8, and 3.4.5 shall be greater than the limits specified in Figure 1 for the number of reactor coolant pumps in operation.
2.2  MODERATOR TEMPERATURE COEFFICIENT          (LCO    3.1.3)
(Limits generated using Reference        1) 2.2.1        The Moderator Temperature          Coefficient  (MTC)  limits are:
The BOL ARO/HZP -      MTC shall be less positive than +5.0 pcm/'F for power levels below 70% RTP and less than or equal to 0 pcm/'F for power levels at or'bove 70% RTP.
The EOL ARO/RTP -      MTC  shall    be  less negative than -42.9 pcm/'F.
where:        ARO  stands    for All Rods Out BOL  stands    for Beginning of Cycle Life EOL  stands    for End of Cycle Life HZP  stands    for Hot Zero THERMAL POWER RTP  stands    for RATED THERMAL POWER 2.3    Shutdown Bank  Insertion Limit (LCO 3. 1.5)
(Limits generated using Reference 1) 2.3.1        The shutdown bank      shall    be  fully withdrawn  which  is defined as z 221 steps.
I COLR                                                                  Cycle 27, Revision 0
 
2.4  Control Bank Insertion Limits (LCO 3. 1.6)
(Limits generated using Reference 1) 2.4. 1      The control banks      shall    be  limited in physical insertion      as shown in Figure 2.
2.4.2        The  control banks shall        be moved    sequentially with  a 100
(+5) step overlap between successive              banks.
2.5  Heat Flux Hot Channel    Factor    F  Z      (LCO  3.2. 1)
(Limits generated using References        1  and 2) 2.5.1        Fo(Z)  s ~F J"K(Z)              when  P  ) 0.5 P
Fo(Z) s ~F      *K(Z)            when  P  s 0.5
 
===0.5 where===
Z  is the height in the core, Fo    2.45, K(Z)  is provided in Figure 3,          and THERMAL POWER P        RATED THERMAL POWER 2.6 Nuclear Enthal      Rise Hot Channel Factor            F"      (LCO  3.2.2)
(Limits generated using Reference 1) 2.6.1        F"      F"~      * (1+    PF    * (1-P))
where:          FATP PF~      0.3,    and THERMAL POWER P        RATED THERMAL POWER 2,7  AXIAL FLUX DIFFERENCE      (LCO 3.2.3)
(Limits generated using References          1  and 3) 2.7.1        The AXIAL FLUX DIFFERENCE (AFD) target band is + 5%.. The actual target bands are provided by Procedure RE-11. 1.
2.7.2        The AFD  acceptable operation          limits  are provided in Figure 4.
COLR                                                                    Cycle 27, Revision  0
 
2.8  RCS  Pressure Tem erature and Flow De arture from Nucleate Boilin Li~ i    (ICII 3 4 i)
(Limits generated using Reference 4) 2.8.1        The  pressurizer pressure shall    be z 2205 psig.
2.8.2        The  RCS  average temperature    shall  be z 577.5  F.
2.8.3        The RCS  total flow rate shall    be a 170,200 gpm (includes  4%
minimum  flow  uncertainty  per  Revised  Thermal Design Hethodology).
2.9 Boron Concentration        (LCO 3.9.1)
(Limits generated using References        1 and 5) 2.9. 1 The boron    concentrations of the hydraulically coupled Reactor Coolant System, the refueling canal, and the refueling cavity shall be  z  2300 ppm.
3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS The  setpoints and input parameters for the UFSAR Chapter 15 accident analyses are presented in Table 1. The values presented in this table are organized based on system and major components within each system.
The failure of a component or system to meet the specified Table 1 value does not necessarily mean that the plant is outside the accident analyses since: (1) an indicated value above or below the Table 1 values may be bounded by the Table 1 values, and (2) the setpoint or parameter may not significantly contribute to the accident analyses final results. The major sections within Table 1 are:
1.0  Reactor Coolant System (RCS) 2.0  Hain Feedwater (HFW) 3.0  Auxiliary Feedwater (AFW) 4.0  Hain Steam (HS) System 5.0  Turbine Generator (TG) 6.0  Chemical and Volume Control System (CVCS) 7.0  Emergency Core Cooling System (ECCS) 8.0    Containment 9.0    Control Systems 10.0    Safety System Setpoints 11.0    Steam Generators COLR                                                              Cycle 27, Revision  0


==4.0 REFERENCES==
==4.0 REFERENCES==


6 FIGURE 1-RE(UIRED SHUTDOWN MARGIN.FIGURE 2-CONTROL BANK INSERTION LIMITS................
WCAP-9272-P-A, Westinghouse  Reload Safety Evaluation Hethodology,      July 1985.
8 FIGURE 3 K(Z)NORMALIZED Fo(Z)AS A FUNCTION OF CORE HEIGHT o~~~~9 FIGURE 4-AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS AS A FUNCTION OF RATED THERMAL POWER.10 TABLE 1-UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS.....
: 2. WCAP-10054-P-A and WCAP-10081-NP-A, "Westinghouse Small Break      ECCS Evaluation Model Using the NOTRUMP Code," August 1985.
11 I COLR Cycle 27, Revision 0 R.E.Ginna Nuclear Power Plant Core Operating Limits Report Cycle 27 Revision 0 1.O CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR)for Ginna Station has been prepared in accordance with the requirements of Technical Specification 5.6.5.The Technical Specifications affected by this report are listed below: 3.1.1 3.1.3 3.1.5 3.1.6 3.2.1 3.2.2 3.2.3 3.4.1 3.9.1"SHUTDOWN MARGIN (SDM)""MODERATOR TEMPERATURE COEFFICIENT (MTC)""Shutdown Bank Insertion Limit""Control Bank Insertion Limits""Heat Flux Hot Channel Factor (Fo(Z))""Nuclear Enthalpy Rise Hot Channel Factor (F"<<)""AXIAL FLUX DIFFERENCE (AFD)""RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB)Limits""Boron Concentration" COLR Cycle 27, Revision 0 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.
WCAP-10924-P-A, Volume 1, Rev. 1, and Addenda 1,2,3, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 1: Model Description and Validation," December 1988.
These limits have been developed using the NRC approved methodologies specified in Technical Specification 5.6.5.All items that appear in capitalized type are defined in Technical Specification 1.1,"Definitions." 2.1 SHUTDOWN MARGIN (LCO 3.1.1)(Limits generated using Reference 1)2.1.1 2.1.2 2.1.3 The SHUTDOWN MARGIN in MODE 2 with K.<<<1.0 and MODES 3 and 4 shall be greater than or equal to the limits specified in Figure 1 for the number of reactor coolant pumps in operation.
WCAP-10924-P-A, Volume 2, Rev. 2, and Addenda, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 2:    Application to Two-Loop PWRs Equipped with Upper Plenum Injection," December 1988.
The SHUTDOWN MARGIN in MODE 4 when both reactor coolant pumps are not OPERABLE and in operation and in MODE 5 shall be greater than or equal to the one loop operation curve of Figure 1.The SHUTDOWN MARGIN required in LCOs 3.1.4, 3.1.5, 3.1.6, 3.1.8, and 3.4.5 shall be greater than the limits specified in Figure 1 for the number of reactor coolant pumps in operation.
WCAP-10924-P-A, Rev. 2 and WCAP-12071, "Westinghouse Large-Break LOCA Best Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped With Upper Plenum Injection, Addendum 1: Responses to NRC guestions," December 1988.
2.2 MODERATOR TEMPERATURE COEFFICIENT (LCO 3.1.3)(Limits generated using Reference 1)2.2.1 The Moderator Temperature Coefficient (MTC)limits are: The BOL ARO/HZP-MTC shall be less positive than+5.0 pcm/'F for power levels below 70%RTP and less than or equal to 0 pcm/'F for power levels at or'bove 70%RTP.The EOL ARO/RTP-MTC shall be less negative than-42.9 pcm/'F.where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life HZP stands for Hot Zero THERMAL POWER RTP stands for RATED THERMAL POWER 2.3 Shutdown Bank Insertion Limit (LCO 3.1.5)(Limits generated using Reference 1)2.3.1 The shutdown bank shall be fully withdrawn which is definedas z 221 steps.I COLR Cycle 27, Revision 0 2.4 Control Bank Insertion Limits (LCO 3.1.6)(Limits generated using Reference 1)2.4.1 The control banks shall be limited in physical insertion as shown in Figure 2.2.4.2 The control banks shall be moved sequentially with a 100 (+5)step overlap between successive banks.2.5 Heat Flux Hot Channel Factor F Z (LCO 3.2.1)(Limits generated using References 1 and 2)2.5.1 Fo(Z)s~F J"K(Z)when P)0.5 P Fo(Z)s~F*K(Z)0.5 when P s 0.5 where: Z is the height in the core, Fo 2.45, K(Z)is provided in Figure 3, and THERMAL POWER P RATED THERMAL POWER 2.6 Nuclear Enthal Rise Hot Channel Factor F" (Limits generated using Reference 1)(LCO 3.2.2)2.6.1 F" F"~*(1+PF*(1-P))where: FATP PF~0.3, and THERMAL POWER P RATED THERMAL POWER 2,7 AXIAL FLUX DIFFERENCE (LCO 3.2.3)(Limits generated using References 1 and 3)2.7.1 2.7.2 The AXIAL FLUX DIFFERENCE (AFD)target band is+5%..The actual target bands are provided by Procedure RE-11.1.The AFD acceptable operation limits are provided in Figure 4.COLR Cycle 27, Revision 0 2.8 RCS Pressure Tem erature and Flow De arture from Nucleate Boilin Li~i (ICII 3 4 i)(Limits generated using Reference 4)2.8.1 2.8.2 2.8.3 The pressurizer pressure shall be z 2205 psig.The RCS average temperature shall be z 577.5 F.The RCS total flow rate shall be a 170,200 gpm (includes 4%minimum flow uncertainty per Revised Thermal Design Hethodology).
WCAP-10924-P,  Volume 1, Rev. 1, Addendum 4, "Westinghouse LBLOCA Best Estimate Methodology; Model Description and Validation; Model Revisions," August 1990. [Approved by NRC SER dated 2/8/91]
2.9 Boron Concentration (LCO 3.9.1)(Limits generated using References 1 and 5)2.9.1 The boron concentrations of the hydraulically coupled Reactor Coolant System, the refueling canal, and the refueling cavity shall be z 2300 ppm.3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS The setpoints and input parameters for the UFSAR Chapter 15 accident analyses are presented in Table 1.The values presented in this table are organized based on system and major components within each system.The failure of a component or system to meet the specified Table 1 value does not necessarily mean that the plant is outside the accident analyses since: (1)an indicated value above or below the Table 1 values may be bounded by the Table 1 values, and (2)the setpoint or parameter may not significantly contribute to the accident analyses final results.The major sections within Table 1 are: 1.0 Reactor Coolant System (RCS)2.0 Hain Feedwater (HFW)3.0 Auxiliary Feedwater (AFW)4.0 Hain Steam (HS)System 5.0 Turbine Generator (TG)6.0 Chemical and Volume Control System (CVCS)7.0 Emergency Core Cooling System (ECCS)8.0 Containment 9.0 Control Systems 10.0 Safety System Setpoints 11.0 Steam Generators COLR Cycle 27, Revision 0  
: 3. WCAP-8385, "Power Distribution Control  and Load Following Procedures-Topical Report," September 1974.
: 4. WCAP-11397-P-A, "Revised Thermal Design Procedure",  April  1989.
: 5. WCAP-11596-P-A, "gualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores," June 1988.
COLR                                                      Cycle 27, Revision    0
 
3 ONE LOOP        (0. 2.45)
OPERA'nON 0                  ACCEPTABLE OPERATION l1l 2 0'                                                                                (0, 1.80)
                                                                    ~O LOOP (1500.1.45)                                                OP ERAllON m1      (1 500, 1.00)
UNACCEPTABLE OPERATION xV) 1500                        1000                    500 COOLANT gpRON CONCENTRATION (ppm)
FIGURE I REQUIRED SHUTDOWN MARGIN COLR                                                      Cyc1e 27, Revision 0
 
220                      1834 ~
3 200                B Bank 666,'100,
    ~380
    ~        (0, 164 184)
    $  <6O                                          CB ank
: o. $ 40
    ~  120 DBank
  .a 100 N
80 CL
~
  ~    60 (0,53) ca    40 o    20 (30, 0
0        10      20 30 40 60 ,60 70 80                                90    t00 Core Power (Percent of 1520 Mg/T)
* The fully withdrawn position is defined    as a 221 steps.
FIGURE 2 CONTROL BANK INSERTION LIMITS
~
COLR                                                             Cycle 27, Revision   0
 
0.2 N
        ~  1.0 u0.8 U)
C 65 e 06                      Tota( Fz = 2.460 0
      ~
K
        ~
6$
K
                              ~E't 0.0
                                                ~K 1.0 04 CP 11.783          1.0
    ~
N
      ~
l5 F02 0
0.0 0,0        2.0          4.0          6.0    8.0        10.0    11.783 Elevation (ff)
FIGURE 3 K(Z) - NORMALIZED Fo(Z) AS A FUNCTION OF CORE HEIGHT COLR                                                            Cyc1e 27, Revision 0
 
DO NOT OPERATE IN THIS AREA WITH AFD oUTSIOE THE TARCET  S~
(-11,90)                        (11/0) 80 ACCEPTABLE
      ~O CI OPERATION
                          "" " "" " ""    YAHAFD OUTSaE THE TARO ET BAND WITH <<1 fa PENALTY DEMATION TNE (Q1,60)                                                  P1,60)
I-  40 Cl ACCEPTABLE l~      ~  ~ ~
OPERATION
                                                            ~    ~ y        0~
20 0
                        -20        -10        0      10        20        30 AXIALFLUX DIFFERENCE (%)
FIGURE 4 AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS AS A FUNCTION OF RATED THERMAL POWER COLR                                    10                        Cyc'te 27, Revision 0
 
Table 1:        UPSAR        Chapter                        5  Analysis Setpoints and                  ut parameters Item    4                        Item/Name                                              Value                            Remarks:
1.0    Rcoctor Coolant System (RCS)
Upper head volwre,                                                              300.0            Above upper support  plate.
fto ft'pper Plenum volune,                                                        580.2             Bottom of upper core plate to top of upper support plate. Includes outlet holes in the barrel.
Top  of fuel volune, fto                                                        50.3            Top  of active fuel to bottom of upper plate, inside barreL baffle.    'o Inlet nozzle(s) volune, total of two, ft                                        43.2 outlet nozzle(s) volune, total of two, ft                                        37.4            Includes nozzle forging protrusion into vessel. Does not include mating hole in barrel, this is included in the Upper PLenun volune.
Active fuel volrire, ft3                                                        367.6            Bottom of fuel to top of fuel Bottom of fuel volurre, fto                                                      11.0             Top  of Lower core plate to bottom of active fuel.
Lower PLenrgr volune,              ftc                                        514.3            Below top of lower core plate Downcomer    volunc, above bottom of cold leg,                  ft            138.4            Above bottom of cold leg elevation to bottom of upper support plate Downcomer,    lower core plate to elevation of the                            278.2             Top of Lower core plate to elevation bottom of the cold Leg volune, fts                                                                of bottom of cold Leg Barrel baffle, lower core plate to upper core                                  128.5            Top of Lower core plate to bottom of plate volrmre,    ft                                                                            upper ccrc plate.
Total volunc, fto                                                              2449.1             Includes nozzles Hot leg pipe    volte          per Loop vair              ft>                78.7 Cold leg voluae per Loop + cross over,                        fti    cross over      = 140.7 cold  Leg =  46.8 RC  pmp volunc per pump, f                                                      192 t'old leg pipe ID, In./Purrp suction ID, in.                                 27.5/31 Hot leg pipe ID, in.                                                       29 (28.969)
Design pressure, psig                                                            2485 Design temperature,              F                                                650 Cold Leg and Hot i.eg              Centerline Elevation                      246'0u Reactor Coolant      Prsrrp Head-Capacity and NPSH curves for reactor                                    See HS&L            Homologous Curves are  available in coolanz pumps/Homologous Curves                                                                  RETRAH Rated    RC  pump head and            flow,      ft & gpm                252;    90,000 Rated    RC  pump  torque and efficiency 9 rated                      84K  efficiency at hot head/flow,    ft-lb, fraction                                              conditions RCP  Prmp Rated Power              (hot,        556 degrees  F)             4842  BHP RCP  Hotor Rated Speed,              RPM                                      1189 Moment    of inertia of pump and motor, lb-ftz                                80,000 RC  pump heat, MMt (max/min per pump)                                           5,  4            Pwp power varies with    RCS terrp fram approx 4  MWt to 5 Mwt 1.2    Core COLR                                                                                              Cycle 27, Revision        0
 
Table 1:        UPSAR      Chapter          5   Analysis Setpoints and                        ~ut  Parameters Item    4                      Item/Name                                    Value                              Remarks:
Rated power, HWt                                                      1520 Reactor power uncertainty, g      RTP Bypass, X                                                              6.5               Thimble plugs removed.
Upper head bypass,    g                                        M  proprietary Upper head  tcngerature, degrees    F                                590              High T~ value.
Heat  transfer area,    fthm                                        26,669 Average core heat    flux, Btu/hr ft>                              189,440 1.3      Fuel Assemblies 1.3.1    Height Total, inches ( length from bottom of asscnhty to                  159.935 top nozzle)
Fuel Rod Length, inches (length from bottom of                    149.138 pin to top of pin)
Active, inches                                                      141.4 1.3.2     Fuel Assembly Geometry Hass of fuel, ibm                                                  105,500 Hoss of clad, ibm                                                  25,927 Humber of fuel pins per fuel assembly (FA)                            179 Ho. of Fuel Assemblies                                                121 Fuel pin pitch, in.                                                 0.556 Bottom nozzle weight and votunc                                    9.1 lbs.
31.5 in Top nozzle, w/    insert, weight  and volune                    18.15    lbs.
62.9 delta P -"20 psi in'ore Fuel Asserrhty resistance    (core  dP  f(flow)], psi                                  Thimble plugs removed.
f(lb/hr)                                                   9 flow ~ 170,200 gpn Fuel Assembly    free flow area, in                                  34.75              Single assembly.
1.3.3     Fuel pin geometry Pellet diameter, in.                                                0.3444 Clad 00/IO, in. /in.                                           0.400/0.3514 1.3 4    Control  Rod 4 Instruaent Gurdc Tubes Ho. of control rod guide tubes                                        16 Ho. of instrunent guide tubes Control Rod Guide tube upper part 00/ID, in. /in.                0.49/0.528 Instrunent Guide tube 00/ID, in. /in.                          .0.395/0.350 Guide tube lower part 00/ID, in. /in.                         0.4445/0.4825 Control  Rod Drop Times, maximuns,      scc.                 Hon-LOCA            2.4    Altowanccs are added to the Tech Spec LOCA                3.0    allowable value Control rod maximun withdrawal rate, in./min.                         45 COLR                                                      12                            Cycle 27, Revision        0
 
Table    1= UFSAR          ('-rapter        5  Analysis Setpoints and                         ut parameters Item    g                        Item/Name                                    Value                              Remarks:
Control rod maxim(rs insertion rate, pcm/sec.                         90 Control rod insertion limits                                      See COLR Hot channel  radial peaking factor                                  1.75 Heat  Flux Hot channel factor Fq                                    2.45 1.4      pressurizer code safety valve flow capacity, Lbm/hr                            288,000              Rating at 2485 psig plus 3X accumulation Code  safety valve open time                          0.8 sec seal clearing time        Crosby Model HB-BP-86, size 4K26 Code  safety valve setpoint                                      2485    psig          Tolerance is + 2.4X/-3X.
Spray valve n(rmber                                                    2 Spray valve flow capacity, gpm/vaLve                                  200 Spray valve setpoint- start open/fulL      open                  2260/2310            proportional Spray valve time constant, sec.                                       5                Assed value PORV  number                                                          2 pORV  flow capacity, Lbm/hr                                      179,000              Steam flow st 2335 psig pORV Cv                                                      50  gpm/(psid)1/2          Rating is for liquid relief. Valve characteristic is quick opening see Copes Vulcan Selecting and Sizing Control Valves 8/75, page 8, Table 18 for Cv vs travel curve.
PORV  open time                                          1.65 sec +    transmitter    LTOPs transmitter is Foxboro E11GM-HSAE1, with a time response  of 1  sec (time to 90K of final value for step input)
PORV  close time                                        3.95 sec + transmitter        LTOPs transmitter is Foxboro E11GM-HSAE1, with a time response  of 1  sec (time to 90K of final value for step input) pORV  setpoint [normal) open/close, psig                        2335/2315 pORV  setpoint (LTOP] open/close, psig                              430 pORV  blowdown  characteristic Heater capacity w/ bank capacity and setpoints,                      800 kif Control banks                                            0  kW at  2250 psig and 400 kw  st 2220 psig gackup Heaters                                          Full  on at 2210 psig snd resets at 2220 psig Minimus heater capacity required      for LOOP, k'M                  100 Heater bank controller type                                proportional 400    kM 1.4.1     pressurizer volusc(s)      (100M / Ly( power)
Lister,  ft (100K  /  OX power)                                   396/199 Steam,    ft (100M  /  OX power)                                   404/601 Total,    ft                                                          800 pressurizer    LD, ft-in                                  83 624  in / cladding thickness is 0.188 in COLR                                                    13                              Cyc'1 e  27, Revision 0
 
Table 1:        UFSAR      Chapter          5  Analysis Setpoints and                  ut parameters item    0                      Xtem/Name                                Value                            Remarks:
Surge  line ID, in.                                              8.75          Surge  line is 10 in schedule  140 Spray  linc ID, in.                                             3.062 Surge  line volune  ft                                          18.4 1  4.2    Pressurizer  Level Lower level  tap elevation                                    257' Upper level  tap elevation                                    275' pressurizer  level vs X power                            %power      Level    pressurizer level is ramped linearly 0 X        35X      between these  points. Not used in 100 X        50X      Chapter 15 analyses.
Distance Not Leg Centerline    to Lower Tap,  ft              10.750 Haximm level allowed    for steam bubble, X                      87 1.5      RCS  Plows, Temperature and Pressures Total reactor coolant flow, gpm (15X plugging)                  170,200          Usc  for non DNB Total reactor coolant flow, gpm (15K plugging)                  177,300          Usc  for statistical  DNB Average reactor coolant tecperature, degrees F            559  to 573.5/547      Cycle 26 T~ = 561 (full power/N2P)
Reactor coolant pressure,    psig                                2235 Reactor coolant flow uncertainty, X nominal Reactor coolant temperature uncertainty, degrees F
Reactor coolant pressure uncertainty, psi                        a 30 DNB  Limit (safety analysis limit)                                1.40 1.6      Low  Tcaperature Overprcssurc Protection (LTDP)
Hinimua RCS vent size, square inches No. of Si pcs capable of injection                                0/1 (PDRVs/vent)
Haxiaam    pressurizer level for    RCP start, X                    38 1.7      Fuel Handling/Dose Calculations Haxigull reactor coolant gross      specific activity        100/b pCi/gm Haximm reactor coolant dose equivalent 1.131                  1.0 pCi/gm Haxinxm secondary coolant dose equivalent I-131              0.1 pCi/gm Hinimm reactor coolant boron concentration, ppm                  2000 Hinimia reactor coolant level                            23  ft above flange Hiniaxm spent fuel pool level                            23 ft above fuel Hinimua spent fuel pool boron concentration, ppa                  300 Hjnieun spent fuel pool charcoal filter                            70            TS  testing requires  90K  cff.
efficiency, X methyl iodine removal Hinfnxsa post accident charcoal filter                            70            TS  testing requires  90K  eff.
efficiency, X methyl iodine removal COLR                                                    14                      Cycle 27, Rev>sion          0
 
Item    g                      Item/Name                                    Value                                Remarks:
Minimus control room charcoal        filter efficiency,                70              TS  testing requires  90X  eff.
X methyl iodine removal Minimus time between reactor      criticality and                    100 fuel movement,  hrs.
Source Terms used    for  dose  calculations                      ORGEH      2 Dose  conversion factors                                          ICRP-30 Maximun Gas Decay Tank Xenon-133        concentration,            100,000 Ci 2.0    Main Feedwater (MFII)
Feedwater temperature versus load                          Power    Tecyerature        100X  design temp is 432 degrees  F 102X            425  F 70X          385    F 30X          322    F DX            100  F Feedwater Suction Temperature vs power, nominal            Power      Temperature 98X              345  F 70X              319  F 50X              295  F 30X              259  F Feedwater Suction Pressure vs power, nominal              Power      Pressure 98X      277 psig 70X      282 psig 50X      305      psig 30X      370      psig 2.1      Head-Capacity and    HPSH  curves Head-Capacity and    HPSH  curves  for  main feedwater          Sec HS&L              Selected flow  splits  are provided for pcs                                                                                    model  validation.
Main Feedwater pump " Rated Head Main Feedwater purp - Rated Torque Main Feedwater  pump  - Moment  of inertia                      2150'89.612 Elevation of stcam generator inlet nozzle Elevation of main feedwater pump, ft                              257.75              Elevation is at center of shaft Elevation of condensate pump, ft                                  250.833 MFII regulating valve open time on demand, sec MFII regulating vaLve close time on demand, sec                        10 MFII regulating valve Cv, full stroke                                                  Assuned value. Actual value -"684.
Low Load MFII  regulating valve      Cv, (bypass                    48.7              Effective Cv: includes bypass line valves)
MFll Heater resistance    (delta p)                              see HS&L              Design data on the High Pressure 0              Heaters (2 in parallel) is provided 3.0    Auxiliary Feedwater    (AFM)
Minimus design temperature      of the ~ater source            32(*),      50        Initial AFlJ  water source are the CSTs service water  /  CST  (degrees F)                                                    located in the Service Bldg. Safety Related source is the Service 'Mater system    (lake). " Value different for CHMT  integrity.
Max'~~ design temperature        of the water source              80, 100              initial AFIJ  water source arc the CSTs service water  /  CST  (degrees F)                                                    located in the Service Bldg. Safety Related source is the Service llater system (Lake).
COLR                                                        15                          Cycle 27, Revision          0
 
0 Table 1:      UFSAR    Chapter          5  Analysj.s Setpoi]Its            aTIcL    ,    ut Parameters Item  g                    Item/Name                                    Value                                  Remarks:
Startup time for the auxiliary feedwater Imps,                                          *TOAFM  starts    on LO levet (17K) in sec                                                                                      both gens or    UV on both            unit HDAFM    starts        on SI (seq), or 4'usses.
I.O Level  either    SG, or        trip    of both HFP or AHSAC Hinimm delay for    AFM  start,  sec                      TDAF'M - OI  HDAFM  -  1      HDAFM  acceleration time test results show  approximately 1.5 s.
Haximua delay  for AFM  start,  sec                    HDAFM - 47,    TOAFM  at      For  HDAFM, LOOP on sequencer                  is 47 LO Level  both  SGs        sec. TDAFM starts at nominal                17'n both  SGs AFM  control valve open time    on demand,  sec                    H/A                  HDAFM  control valves are normatly open and throttle closed                to control flow between 200-230 gpm AFM  controL valve Cv[ftow is f(dP)]                                                    NDAFMP  valves are 3 Rockwell model                        &#xb9; A4006JKHY    stop check valves. TDAFM controL valves (4297, 4298) are 3 Fisher &#xb9;470-HS.
TDAFMP,  maximm flow, gpm                                          600 AFM, minimus flows, both generators      intact, gpm        TOAFMP      200/SG        SBLOCA  assunes    200 gpa per            SG          with HDAFMP      200/SG          the faiture of one        DG Hinfmua delay    for standby  AFM  start,  min                        10 4.0    Hain Stem System (HS)
Location (and elevation) of condenser dump                CSD  . elev 256'.875 valves and atmospheric relief valves                      ARV  - elev  289'.563 FulL load steam line pressure drop, psi                          approx 45              This estimate, to the governor valves, is provided for comparison purposes only.
HS  Isolation valve close time [full open to    full          NSIV  - 5.0            The check valve is assuned to close close] close timei sec                                      check vatve - 1.0            in 1 sec under reverse flow.
HS Isolation valve Cv [flow is f (dp)]                        HSIV - 23500 check valve - 17580 4.1    Hain Stem Code Safety Valves Number  of valves (4 per line)
Valve flow capacities - Total, Lbm/hr                            6621000                Rated flow (3X accunutation per ASHE, Section III):
1085 psfg o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 797g700 Lbm/hr    (each) 1140  psig ....  ~ ..... .....
                                                                                                                                ~ ~          837,600 ibm/hr (each)
COLR                                                      16                            Cyc1e 27, Revision 0
 
Item    f                      Item/Name                                    Value                              Remarks:
Valve Flow vs SG pressure (psia),      total per              1110              0 bank (4 valves), ibm/sec.                                    1115            40 1120            91 1125            141 1131            191 1136            222 1141            223 1151            225 1161            227 1166            228 1173            342 1181            494 1190            646 1200            799 1205            859 1209            920 1211            931 Number  of valves in bank                                              4 Valve  sctpoint(s), (first/last three), nominal,                  1085/1140            Valves are Crosby AHA-65 6R10 psig                                                                                                                /
Setpoint tolerance Is +1X -3X.
setpoint at 1.01 Nodel valve (nominal), and fuLL flow at 1.04 (nominaL).
VaLve blowdown    characteristic                                15X max imm 4.2    Atmospheric    relief valves No. Atmospheric    relief valves                                      2 Atmospheric    relief valve setpoint/Air-operated,                  1050              During Hot Standby operation setpoint psig                                                                                    Is lowered to control no load Tavg Atmospheric    relief valve setpoint/Booster,  psig                  1060 Atmospheric    relief valve capacity, Lbm/hr              313550  at  1060  psig    Nax  flow is 380000 5.0    Turbine Generator (TG) 5.1    Condenser No. of condenser disap valves condenser dms valve open time, sec Condenser dms valve close time, sec                                                    Assusing close time    ~ opening time Condenser dump valve setpoint(s)                        For TT: Tavg>555 4 valves,    Gn TT  valves control open at 6.7X/F
                                                                        >563 4 valves;            (PID) above 547 with full open no TT: Tref +12 4 valves,      sctpoints as described. On 10X step Tref+20  4  valves      Load decrease same ratio with a 6F deadband from Tref Condenser dump vaLve Cv    [flow is f(dP)]                                            Oesign Cv (240) from design conditions (302,500 Lbm/hr sat steam at  695  psig) 6.0    Chemical and Voltmc Control System (CVCS)
CVCS  cspsc I ty/pump                                    3 pmys, 60    gpm msx each  Normal ops: 2 charging pumps - onc is manual at 15-20 gpm snd the other in autcmatic. Charging pumps sre PDPs w/ 46 gpm total - 8 gpm to seals - 3 gpm leakage + 5 gpm into RCS. 40 gpm Letdown COLR                                                    17                              Cycle 27, Revision          0
 
Table 1:        UFSAR      (-haPter        5 Analysis Setpoints and                                ut parameters Item    4                    Item/Name                                        Value                                Remarks:
CVCS  mfnfmua/pm', gpm                                                  15 Type of controLLer (e.g.,    p + 1) and gains              PLD  100K,180 sec,10 sec Reactor Hakeup Matei System (QHl)
RHll capacf ty/pulp                                          2  puris,  60 gpa each 7.0      Emergency Core Cooling System (ECCS) 7.1      ECCS  Delivery's  RCS Pressure 7.1.1    Residual Heat Removal (RHR) Delivery vs    RCS  Pressure Hfnfmus RHR Delfvery, train failure                        RCS  Pressure    Delivery      LOCA Appendix  K case. Train  failure (psia)            (gpm)      results fn  one punp running with 10K 155                0      degradation with one line bLocked.
152                0 150                0 140              250 120            648 100            836 80            985 60            1115 40            1232 20            1338 14.7            1365 Hfnfaxja  RHR  Delivery, two fxmys runnfng,  one            RCS  Pressure    Delivery      LOCA Appendix  K case  (offsfte  power line blocked                                                (psfa)            (gpm)      availablc). Two pumps  running with 155                  0      10K degradation with one line 154                  0      blocked.
152              160 150              252 140              516 120              830 100            1056 80            1243 60            1406 40            1552 20            1686 14.7              1720 7 1.2    Safety injection (Sf) Delivery vs RCS Prcssure Hfnfmua Si delivery, 2 pumps operating, onc Line          Press      Delivery      Spill  LOCA  Appendix K case. Train failure spilling                                                (psig)        (gpm)      (gpm)  results in  two punps running wfth 5X 1375          0.0          465  degradation with one Line spi llfng to 1300            62          465  contafcment.
1200          125          465 1100          167          465 1000          201        465 900          229        465 800          253        465 700          273        465 600          289        465 500          305        465 400          321        465 300          336        465 200          352        465 100          368        465 0          394        465 COLR                                                    18                                  Cycle 27, Revision          0
 
Table 1:      UFSAR      Chapter                  5  Analysis Setpoints and                                        parameters Item  4                    Item/Name                                                Value                                    Remarks:
Minimun Si  delivery,          3 punps  operating,  non-LOCA    Press          Oelivcry      (gpm)  Used for  non-LOCA transients,  5X pump (psia)        Loop I gl
                                                                                                      'A'oop      degradation 1390              16          19 1315              87            97 1215            147          163 1115            193          214 1015            231            257 915            266            295 815            297          329 715            325          360 615            352          390 515            377          418 415            400          444 315            423          469 215            445          493 115            465          516 15          485          538 Mininnnn Si delivery,          2 pumps  operating  non-LOCA      Press          Delivery (gpn)        Used for  non-LOCA transients, 5X pump (psia)        Loop  'A'gl Loop    degradation.
1390                8            8 1315              69            71 1215            121          126 1115            162          169 1015            197          206 915            228          239 815            255          269 715          281            296 615          305          322 515          328          346 415          350          369 315          370          391 215          390          412 115          409          432 15          427          452 Maximun Si  delivery,          3 punps  operating,  SGTR        Press        Loop A          Loop 8    The KYPTPE model assunes  no pump (psig)        (gpn)          (gpm)    degradation. Loop A and 8 pressures 1375              76          84    are set equal. Used for SGTR.
1300            128          141 1200            180          198 1100            221          245 1000            258          285 900          '290          321 800            320          354 700            348          385 600            374          413 500            398          440 400            421          466 300          443            490 200          464            514 100          485            536 0        504            558 7.3    Ac~lators Munster of accunulators                                                            2 Total volune, each,                                                            1750 voluncl ft ft'iquid min/max                                        1126/1154 Liquid volunei ft - Best Estimate                                              1140 initial prcssure, psig - Minimun /            Maxlmun                        700/790 COLR                                                              19                                      Cycle 27, Revision        0
 
Table 1:        UFSAR      Chapter          5  Analysis Setpoints and                          ut parameters Item    4                      Item/Name                                      Value                                  Remarks:
initial  temperature,  F                                              105                LBLOCA Boron concentration,    ppm  (mfn/max)                            2100/2600                Hote - Ea analyses use a maximus concentratIon of 3000    ppm 7 4    RMST RUST                      /
TeIIperature, min max, degrees F                              60  / 80 fffnfmua  RWST votIme, gal                                          300,000 RMST  boron concentration, ppm (min/max)                          2300/2600                Hote -  EQ  analyses use  a maxiImm concentration of 3000    ppm 8.0    Contafrment initial contaf~nt      pressure    p ia                          min - 14 '              ~  HfnfmuII  is used for LOCA analysis.
max - 16.7                Haxfmm    is used for the contafwent integrity cases (SI.B).
initial  containment temperature (LOCA/SLB)                        90/120                  LOCA temperature lower for PCT degrees  F                                                                                  calculations. SLB hfgher for contairment integrity initial relative huaidity,      X                                        20 SM  teIIperature min/max, degrees    F                              30~/80                *Vatue  different for auxiliary feedwater HaxfImm    contafment leakage, wtX/day                                  0.2 8.1      ContafImcnt Heat Sinks Listing of Passive    Heat Sinks,    quantities,                  see HSSL metal'fels  ~ and configurations 8.2    Bensities, Thermal Conductfvities and Heat Capacities of Heat Sinks Insulatfon density, conductivity, capacity                      3.7 ibm/fta 0.0208 BTU/hr      F  ft 1.11 BTU/ft        F Concrete density, conductivity, capacity                          150    ibm/ft            note: mfnfImm conductivity 0.81 BTU/hrFf t            corresponds to maximus density,      and 31.5    BTU/fthm F          maxfImm  conductivity corresponds to mfnfmun density.
Steel density, conductivfty, capacity                          490 tbm/ft 28 BTU/hrFft 54.4 BTU/ft      F Stainless steel density, conductfvity, capacfty                496    tbm/ft 15  BTU/hrFft 54.6 BTU/fta F Contafrment free votune, mfn      / max, cu. ft.        1,000,000      /  1,066,000 Ground TNIperature (degrees      F)                                    55                  below grade temperature Outside  Air Temperature,    min  / max, degrees  F              -10    / 100 HTC  for outside surfaces                              1.65  BTU/hr ft degrees        F COLR                                                    20                                  Cycle 27, Revision            0
 
Table 1:          UPSAR      (-hapter          5  Analysis Setpoints and                      i put    Parameters Item        4                      Item/Name                                          Value                            Remarks:
Contairrnent fan cooler performance                            Tenp        Hin      Hax (deg F)      (X106BTU/hr) 120        2.05  4 55 F
220      35.1    99.2 240      40.8 113.8 260      46.8 129.3 280      52.9 145.5 286      54.7 150.4 Contairltent spray  flow,    min  / max,  each, gpm                1300  / 1800 8.3        Oclays  for  CRFCs  and Spray punps CRFC  delay,  offsite  power  available, seconds                          34                includes 2.0 sec SI delay CRFC  delay,  offsite  power not avaf  lable, seconds                    44                includes 2.0 sec SI delay Contafnment Spray, 1300 gpm each        fxlp, maxfmun              28.5 - onc punp          This delay is from the tfme delay, sec                                                        26.8 - two pumps        Containment Hi-Mi setpoint is reached. It includes instrunent delay and spray line  fill time.
Contafreent Spray, 1800    gpm each    punp, mfnfmun            9  / (14  w LoOP)      This delay is from the tfme of break.
dele/, sec ContafrInent Oesfgn pressure,      psig                                    60 Ofstance Basement    floor to Springline, feet                            95 Oistance Sprfngline to top of done,        feet                        52.5 8.4        Contairwent Surp Hinimun wtX of  HaOH  Tank                                              30 9.0        Control Systems (Reactor,      FM,  przr Level, Turbine,  AFIJ)
Tavg versus power                                                        H/A              Tavg ramps Linearly from 547 degrees F at OX power to 561 degrees F at 100K power pressurizer pressure and level algorithms                                N/A              pressurizer pressure setpoint is constant at 2235 psig . Pressurizer leveL reaps from 35K to 50K for 0 to 100K power (547 - 561 degrees F).
SO  secondary level algorithm                                              H/A              Level remains constant at 52X to 100X power. (Power from turbine 1st stage press.)
10.0        Sa fcty System  Setpoints 10.'I      Reactor  Protection    System 10 ~ 1.1    power range  high neutron    flux, high setting nominal                                                                  1.09 accident analysis                                                        1.18 delay time, sec                                                          0.5 10.1.2      Power range high neutron      flux,  Low setting nominal                                                                  0.250 accident analysis                                                        0.350 COLR                                                        21                              Cyc1e 27, Revision 0
 
Xtem    4                    Item/Name                        Value                          Remarks:
delay time, sec                                        0 '
10.1.3    Overtemperature delta T nominal                                              Variable accident analysis                                    Variable delay time, sec                                        6.0            Total delay time - from the time the tenperature difference in the coolant Loops exceeds the trip .setpoint until the rods are free to fall 10.1A      Overpower  delta  T nominal                                              Variable accident analysis                                    Variable          Hot  explicitly modelled in safety analysis delay time, sec                                          2.0 10.1.5    High pressurizer pressure nominal, psig accident analysis, psia                                2410 delay time, sec                                          2.0 10.1.6    Low  pressurizer pressure nominal, psig                                          1873 accident analysis, psia                          1775 (non-LOCA) 1715 (LOCA) 1905 (SGTR) delay time, sec                                          2.0 10.1.7    Low  reactor coolant flow nominal                                  91K  of normal indicated flow accident analysis                                  87X per Loop delay time, sec                                          1.0 10.1.8    Low-Low  SG  level nominal                                      17K of the narrow range    While  trip setpoint  could be as  Low Level span        as 16K, AFll  initiation Limits to  17K accident analysis                          OX  of narrow range Level span delay time, sec                                          2.0 10.1.9    Turbine Trip (low    fluid oil pressure) nominal, psig                                            45 accident analysis                                      H/A            Hot  explicitly modeled in safety analysis delay time, sec                                        2.0 COLR                                        22                          Cycle 27, Revision,       0


==4.0 REFERENCES==
Table 1-        UPSAR
                                      ~
Chapter 15 Analysis Setpoints  .              ~
and Input parameters Item    g                    Item/Name                    Value                        Remarks:
10.1.10    Undervoltage ncminal, V                                          3150 accident analysis                                                Safety analysis assunes RCCAs are released 1.5 scc. after sctpoint is released.
delay time. sec                                      1 ~ 5 10.1.11    Undcrfrcqumcy nominal,  Hz                                        57.7 accident analysis                                    57.0        Analysis is performed but not explicitly modeled in safety analysis.
delay time                                            1.2        Safety analysis assunes RCCAs are released 1 ' sec after setpoint is reached.
10.1.12    Intermediate range nominal,  RTP                                        0.25        Hay  fluctuate duc to core  flux safety analysis,  RTP                              H/A        Hot  explicitly modeled in safety'nalysis delay time, sec                                      H/A 10.1.13    Source Range nominal, cps                                      1.4E+5        Highest nominal value accident analysis, cps                            1 AL OE+5 delay time, sec                                      2.0 10.1.14    High Pressurizer  level nominal                                              0.90 accident analysis                                  0.938 delay time, sec                                      2.0 10.2    Englneercd Safety Features Actuation System 10.2.1    Sa fcty injection System 10.2.1.1  'High con'tailNcAt prcssure Hominal  setpoint, psig                              4.0 Accident Analysis setpoint, psig                    6.0 *        *only modeled in accident analysis for start of containment fan coolers.
oelay time, sec                                        34        Time delays are for start of 44 w/ LOOP      containment fan coolers.
10.2.1.2  Lou  pressurizer pressure Hominal setpoint, psig                              1750 COLR                                          23                  Cycle 27, Revision        0
 
Table 1:
Xtem      4 UFSAR
                                        ~
Xtem/Name Chapter 15 Analysis Setpoints and input parameters Value
                                                                                      ~
Remarks:
Accident Analysis setpoint, psia                            1785, SGTR 1730, non-LOCA 1715, LOCA Delay time, sec                                                  2.0 10 2.1 3    Low ate~ line    pressul e Hominal  setpolnt, psig                                          514 Accident Analysis setpoint, psig                                372.7            See HS&L Delay time, sec                                                  2.0            See NS&L 10.2.2    Contairwmt Spray Hominal Setpoint, psig                                            28 Accident analysis setpoint, psig                                  32.5            Sec HS&L Delay time, sec                                                  28.5            Delay time includes time to    fill lines. See HS&L 10.2.3    AFM  System Lcw low  ate~ generator    water Nominal Setpoint                                      17 X of narrow range instrunent span each steam generator Accident analysis setpoint                              0 X of narrow range      A  positive  11K error has been instrunent span each steam    included to account for the SG level generator          measurement system at a contairraent tecperature of 286 F Delay time, sec                                                  2.0 10.2 4    Steam Line  Isolation 10.2.4.1    High conte irsaent pressure Nominal Setpoint, psig                                            18 Accident analysis setpoint                                        H/A            Not  explicitly modeled Delay time                                                        H/A            Not  explicitly modeled 10.2 4.2    High  stem flow, coincident with low Tavg and SI Hominal Sctpoint                                  0.4E6  lb/hr equivalent  steam Note    flow setpoint is below nominal flow at  755  psig and Tavg < full power    flow and therefore this 545  F          portion of logic is made up at power Accident analysis setpoint                                        N/A            Not  explicitly modeled Delay time                                                        N/A            Hot  explicitly modeled. Steam line isolation is assumed concurrent with SI (i.e. 2 s delay +'5 s valve stroke) 10.2.4.3    High-high stem flow, coincident SI Hominal Setpoint                                  3.6E6  lb/hr equivalent steam flow at 755 psig Accident analysis setpoint                                        N/A            Hot  explic>tly modeled COLR                                                24                            Cycle 27, Revision          0
 
Item      f                      Item/Name                                      Value                              Remarks:
Delay time                                                            H/A              Hot  explicitly modeled.      Steam Line isolation is  assumed    concurrent with si (i.e. 2 s  delay  +  5 s valve stroke) 10.2.5    Feedwater  isolation 10.2.5.1    High  stem  generator water level Hominal Setpoint                                        85X    of the narrow range instrunent span each SG Accident analysis setpoint                              100X of the narrow range instrunent span each SG Delay time                                                            2.0              Lnstrunent loop only 11 0      Bill Stem Generators Heat load per SG, BTU/hr                                        2,602,000,000 Primary flow per SG, Klb/hr                              PluggingX      Flow Klb/hr    Design flows at T,,    ~  573.5  F 0              34950 5              34630 10              34280 15              33850 Steam  flow per SG,  Lb/hr (clean, unplugged)            3,264,358 at 877 psia        conditions for T~    ~  573.5  F Secondary design pressure, psig                                        1085 Secondary design teaperature, F                                        556 Maxicxla moisture carryover, X                                        0.10 Harrow range level tap secondary face locations, inches  above            386/s    / 529/I TS Mide range level tap Locat'ions, inches above TS secondary face 8 /~  /  529 /e SG  Pressure Drops Secondary nozzle    to nozzle  dP Q  full power, psi                14.7              Value  is totaL static pressure drop.
Secondary nozzle    to nozzle  dP  Q  full po~er, psi                  7.5              Pressure drop from top of U-bend to outlet.
primary nozzle to nozzle unrecoverable pressure              PluggingX      ap psi    See  associated flows for      X  plugging.
cirop vs. plugging, psi                                        0              31.01 5              33.27 10              35.82 15              38.72 11.2      SG  Tubes Ho. of tubes per  SG                                                4765 Tube 00, inches                                                      0.750 Tube average  wall thickness    inches                            0.043 Maxinxla tube length, ft                                            70.200              Includes length in tubesheet (2x25.625")
Minimus tube length,    ft                                          55.925              includes length in tubesheet (2x25.625")
Average length,    ft                                              61.988              includes length in tubesheet (2x25.625")
COLR                                                      25                              Cycle 27, Revision            0
 
I Table 1:          UFSAR      (-'hap<<r            5  Analysis Setpoints and                            ut parameters Item      4                      Item/Name                                          Value                            Remarks:
Hlnfaae U-bend radius, inches                                          3.979              Note: this is not the bend radius for the shortest tube.
Haxiaam U-bend  radius, inches                                        54.007 U-bend radius  of shortest tube(s), inches                            4.044 Average U-bend radius, inches                                          24.51 Tube straight Length (one side) above secondary          303  /lg  /  310  /i / 308.182 face, inches (min/max/average)
Secondary heat transfer area,        ft  per SG                        54,001 Primary heat transfer area, ft~ per SG                                47,809 overall bundle height, ft above secondary face                          30.427 of TS Tube material                                                  SB-163    Alloy N06690 SG Tube Haterial Thermal Conductivity,                        Temp F        Conductivity BTU-in/hr-ft'-F                                                200                93 300                100 400                107 500                114.5 600                122 SG  Tube  Haterial Specific Neat BTU/lb.F                    Temp F        Conductivity 200            0.112 300            0. 1155 400          0.119 500            0.1225 600          0.126 Distance from top of tube bundle to fthm 33'RL, ft                  5.703 11.3      SG  Voltmes 11.3.1      SG  Secondary Side  Vol~
secondary  volte, ft (total)                                          4512.7 Secondary volune up to lower        NRL  tap, ft                      1893.2 Secondary volune up    to upper    NRL  tap, ft                      3460.4 11.3.2    Riser Volmes ft'281.8 Secondary side bundle volune (TS to top of U-bend inside shroud),
secondary riser volune, top of U-bend to          spill-                507.0              Equivalent to LOFTRAN  riser volune.
ft'59.6 over point, 11.3.3    Dosncomer Vol mes Downcomer  volune, top of      TS  to top of U-b  &,
ft'owncomer volunc, top of      U  b Qf to spi                          1437.3 point, 11.3.4    SG  Primary Side Valuate Inlet plenua per    SG,  fts                                          129.65 Outlet plenun per    SG,  fthm                                        129.65 COLR                                                        26                              Cycle 27, Revision        0


2.3.4.5.WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Hethodology, July 1985.WCAP-10054-P-A and WCAP-10081-NP-A,"Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.WCAP-10924-P-A, Volume 1, Rev.1, and Addenda 1,2,3,"Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 1: Model Description and Validation," December 1988.WCAP-10924-P-A, Volume 2, Rev.2, and Addenda,"Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped with Upper Plenum Injection," December 1988.WCAP-10924-P-A, Rev.2 and WCAP-12071,"Westinghouse Large-Break LOCA Best Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped With Upper Plenum Injection, Addendum 1: Responses to NRC guestions," December 1988.WCAP-10924-P, Volume 1, Rev.1, Addendum 4,"Westinghouse LBLOCA Best Estimate Methodology; Model Description and Validation; Model Revisions," August 1990.[Approved by NRC SER dated 2/8/91]WCAP-8385,"Power Distribution Control and Load Following Procedures-Topical Report," September 1974.WCAP-11397-P-A,"Revised Thermal Design Procedure", April 1989.WCAP-11596-P-A,"gualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores," June 1988.COLR Cycle 27, Revision 0 3 0 l1l 2 0'm1 x V)(1500.1.45)
Table 1:       UPSAR      Chapter 15 Analysis Setpoints and Input Parameters Xtem    f                      Xtem/Name                                        Value                            Remarks:
(1 500, 1.00)ACCEPTABLE OPERATION ONE LOOP OPERA'nON~O LOOP OP ERAllON UNACCEPTABLE OPERATION (0.2.45)(0, 1.80)1500 1000 500 COOLANT gpRON CONCENTRATION (ppm)FIGURE I REQUIRED SHUTDOWN MARGIN COLR Cyc1e 27, Revision 0 220 3 200~~380$<6O o.$40~120.a 100 N 80 CL~~60 ca 40 o 20 0 0 (0, 164 (0,53)10 B Bank 1834~'666,'100, 184)CB ank ank DB (30, 20 30 40 60 ,60 70 80 90 t00 Core Power (Percent of 1520 Mg/T)*The fully withdrawn position is defined as a 221 steps.FIGURE 2 CONTROL BANK INSERTION LIMITS~COLR Cycle 27, Revision 0 0.2 N~1.0 u0.8 U)C'65 e 06 0 6$~~K K 04 CP N~~l5 F02 0 Tota(Fz=2.460~E't~K 0.0 1.0 11.783 1.0 0.0 0,0 2.0 4.0 6.0 8.0 Elevation (ff)10.0 11.783 FIGURE 3 K(Z)-NORMALIZED Fo(Z)AS A FUNCTION OF CORE HEIGHT COLR Cyc1e 27, Revision 0
Tube primary    velum per  SG,   fta                                  710.3 Primary total volune per    SG,   fthm                                969.6 Circulation ratio (100X power, clean, unplugged)                        5.39              Circulation ratio = bundle flow g steam flow. Assunes 40,000 Lbmghr b lowdown.
(-11,90)DO NOT OPERATE IN THIS AREA WITH AFD oUTSIOE THE TARCET S~(11/0)80~O CI 40 I-Cl l~ACCEPTABLE OPERATION YAH AFD"""""""" OUTSaE THE TARO ET BAND WITH<<1 fa PENALTY DEMATION TNE (Q1,60)P1,60)ACCEPTABLE
Tubesheet  thickness, inches                                        25.625              Includes cladding.
~~~~~y 0~OPERATION 20 0-20-10 0 10 20 30 AXIAL FLUX DIFFERENCE
11.4      SG  Primry Side    Dimensions PHmary head radius, inches                                            58.375              Radius to clad surface.
(%)FIGURE 4 AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS AS A FUNCTION OF RATED THERMAL POWER COLR 10 Cyc'te 27, Revision 0 Table 1: UPSAR Chapter 5 Analysis Setpoints and ut parameters Item 4 Item/Name Value Remarks: 1.0 Rcoctor Coolant System (RCS)Upper head volwre, ft'pper Plenum volune, fto Top of fuel volune, fto Inlet nozzle(s)volune, total of two, ft outlet nozzle(s)volune, total of two, ft Active fuel volrire, ft3 Bottom of fuel volurre, fto Lower PLenrgr volune, ftc Downcomer volunc, above bottom of cold leg, ft Downcomer, lower core plate to elevation of the bottom of the cold Leg volune, fts Barrel baffle, lower core plate to upper core plate volrmre, ft Total volunc, fto Hot leg pipe volte per Loop vair ft>Cold leg voluae per Loop+cross over, fti RC pmp volunc per pump, f t'old leg pipe ID, In./Purrp suction ID, in.Hot leg pipe ID, in.Design pressure, psig Design temperature, F Cold Leg and Hot i.eg Centerline Elevation 300.0 580.2 50.3 43.2 37.4 367.6 11.0 514.3 138.4 278.2 128.5 2449.1 78.7 cross over=140.7 cold Leg=46.8 192 27.5/31 29 (28.969)2485 650 246'0u Above upper support plate.Bottom of upper core plate to top of upper support plate.Includes outlet holes in the barrel.Top of active fuel to bottom of upper'ore plate, inside barreL baffle.Includes nozzle forging protrusion into vessel.Does not include mating hole in barrel, this is included in the Upper PLenun volune.Bottom of fuel to top of fuel Top of Lower core plate to bottom of active fuel.Below top of lower core plate Above bottom of cold leg elevation to bottom of upper support plate Top of Lower core plate to elevation of bottom of cold Leg Top of Lower core plate to bottom of upper ccrc plate.Includes nozzles Reactor Coolant Prsrrp Head-Capacity and NPSH curves for reactor coolanz pumps/Homologous Curves Rated RC pump head and flow, ft&gpm Rated RC pump torque and efficiency 9 rated head/flow, ft-lb, fraction RCP Prmp Rated Power (hot, 556 degrees F)RCP Hotor Rated Speed, RPM Moment of inertia of pump and motor, lb-ftz RC pump heat, MMt (max/min per pump)See HS&L 252;90,000 84K efficiency at hot conditions 4842 BHP 1189 80,000 5, 4 Homologous Curves are available in RETRAH Pwp power varies with RCS terrp fram approx 4 MWt to 5 Mwt 1.2 Core COLR Cycle 27, Revision 0 Table 1: UPSAR Chapter 5 Analysis Setpoints and~ut Parameters Item 4 Item/Name Value Remarks: Rated power, HWt Reactor power uncertainty, g RTP Bypass, X Upper head bypass, g Upper head tcngerature, degrees F Heat transfer area, fthm Average core heat flux, Btu/hr ft>1520 6.5 M proprietary 590 26,669 189,440 Thimble plugs removed.High T~value.1.3 1.3.1 Fuel Assemblies Height Total, inches (length from bottom of asscnhty to top nozzle)Fuel Rod Length, inches (length from bottom of pin to top of pin)Active, inches 159.935 149.138 141.4 1.3.2 Fuel Assembly Geometry Hass of fuel, ibm Hoss of clad, ibm Humber of fuel pins per fuel assembly (FA)Ho.of Fuel Assemblies Fuel pin pitch, in.Bottom nozzle weight and votunc Top nozzle, w/insert, weight and volune Fuel Asserrhty resistance (core dP f(flow)], psi f (lb/hr)Fuel Assembly free flow area, in 105,500 25,927 179 121 0.556 9.1 lbs.31.5 in 18.15 lbs.62.9 in'ore delta P-"20 psi 9 flow~170,200 gpn 34.75 Thimble plugs removed.Single assembly.1.3.3 Fuel pin geometry Pellet diameter, in.Clad 00/IO, in./in.0.3444 0.400/0.3514 1.3 4 Control Rod 4 Instruaent Gurdc Tubes Ho.of control rod guide tubes Ho.of instrunent guide tubes Control Rod Guide tube upper part 00/ID, in./in.Instrunent Guide tube 00/ID, in./in.Guide tube lower part 00/ID, in./in.Control Rod Drop Times, maximuns, scc.Control rod maximun withdrawal rate, in./min.16 0.49/0.528
Divider plate thickness, inches                                        1.875 Inlet and outlet nozzle, inside diametel                              31.200 cylindrical section, inches Nozzle divergence angle, degrees                                      11 30'7.0 Nozzle inside diameter at      plena, inches Nozzle Lengths, inches                                    cylindrical section        8.75 conical section            13.0 total length              21.75 Heigth from SG primary head bottom (outside) to                        90'lle top of Ts, inches Distance tube sheet primary face to hot leg                           6.654 centerline, ft.
.0.395/0.350 0.4445/0.4825 Hon-LOCA 2.4 LOCA 3.0 45 Altowanccs are added to the Tech Spec allowable value COLR 12 Cycle 27, Revision 0 Table 1=UFSAR ('-rapter 5 Analysis Setpoints and ut parameters Item g Item/Name Value Remarks: Control rod maxim(rs insertion rate, pcm/sec.Control rod insertion limits Hot channel radial peaking factor Heat Flux Hot channel factor Fq 90 See COLR 1.75 2.45 1.4 pressurizer code safety valve flow capacity, Lbm/hr Code safety Code safety Spray valve Spray valve Spray valve Spray valve PORV number valve open time valve setpoint n(rmber flow capacity, gpm/vaLve setpoint-start open/fulL open time constant, sec.pORV flow capacity, Lbm/hr pORV Cv PORV open time PORV close time gackup Heaters Minimus heater capacity required for LOOP, k'M Heater bank controller type pORV setpoint[normal)open/close, psig pORV setpoint (LTOP]open/close, psig pORV blowdown characteristic Heater capacity w/bank capacity and setpoints, kif Control banks 288,000 0.8 sec seal clearing time 2485 psig 2 200 2260/2310 5 2 179,000 50 gpm/(psid)1/2 1.65 sec+transmitter 3.95 sec+transmitter 2335/2315 430 800 0 kW at 2250 psig and 400 kw st 2220 psig Full on at 2210 psig snd resets at 2220 psig 100 proportional 400 kM Rating at 2485 psig plus 3X accumulation Crosby Model HB-BP-86, size 4K26 Tolerance is+2.4X/-3X.proportional Assed value Steam flow st 2335 psig Rating is for liquid relief.Valve characteristic is quick opening see Copes Vulcan Selecting and Sizing Control Valves 8/75, page 8, Table 18 for Cv vs travel curve.LTOPs transmitter is Foxboro E11GM-HSAE1, with a time response of 1 sec (time to 90K of final value for step input)LTOPs transmitter is Foxboro E11GM-HSAE1, with a time response of 1 sec (time to 90K of final value for step input)1.4.1 pressurizer volusc(s)(100M/Ly(power)Lister, ft (100K/OX power)Steam, ft (100M/OX power)Total, ft pressurizer LD, ft-in 396/199 404/601 800 83 624 in/cladding thickness is 0.188 in COLR 13 Cyc'1 e 27, Revision 0  
11.5    SG  Secondary Side Dimensions Lower  shell inside diameter, inches                                    122 Lower  shell thickness, inches                                        2.875 Tube shroud inside diameter, inches                                      114 Distance top of tube bundle to top of steam                            298.5 nozzle, inches steam nozzle flow   restricter    area,                                 1.4 secondary face of    TS  to centerline of ft'istance 407'i, feedwater nozzle, inches Distance secondary face of TS to centerline of                           374 feed ring, inches Cross-sectional area of tube bundle ft~                                41.64              This value is total area inside shroud.
Distance top of tube bundle to spill-over point,                       178.0              This value is equivalent to the riser inches                                                                                    height for the DSG.
Primary side roughness, micro-inches                            Hozzles, head    60      values given are conservative Tubes             60      assunptions.
SG Secondary Side Mater Hasses Secondary ~ater inventory, 100)', power, T,, ~                    86,259 liquid            gest estimate value.
573.5, no plugging, ibm                                            5,286 steam Secondary water inventory,     100'ower,             T,           85,547 liquid            gest estimate value.
559, no plugging, Lbn                                              4,675 steam 11.7    SG  Primary Side Head Loss Coefficients COLR                                                       27                              Cycle 27, Revision 0


Table 1: UFSAR Chapter 5 Analysis Setpoints and ut parameters item 0 Xtem/Name Value Remarks: Surge line ID, in.Spray linc ID, in.Surge line volune ft 8.75 3.062 18.4 Surge line is 10 in schedule 140 1 4.2 Pressurizer Level Lower level tap elevation Upper level tap elevation pressurizer level vs X power Distance Not Leg Centerline to Lower Tap, ft Haximm level allowed for steam bubble, X 257'275'%power Level 0 X 35X 100 X 50X 10.750 87 pressurizer level is ramped linearly between these points.Not used in Chapter 15 analyses.1.5 RCS Plows, Temperature and Pressures Total reactor coolant flow, gpm (15X plugging)Total reactor coolant flow, gpm (15K plugging)Average reactor coolant tecperature, degrees F (full power/N2P)
Item  4                      Item/Name                                 Value                             Remarks:
Reactor coolant pressure, psig Reactor coolant flow uncertainty, X nominal Reactor coolant temperature uncertainty, degrees F Reactor coolant pressure uncertainty, psi DNB Limit (safety analysis limit)170,200 177,300 559 to 573.5/547 2235 a 30 1.40 Usc for non DNB Usc for statistical DNB Cycle 26 T~=561 1.6 Low Tcaperature Overprcssurc Protection (LTDP)Hinimua RCS vent size, square inches No.of Si pcs capable of injection (PDRVs/vent)
gG  inlet nozzle/plenum loss coefficient, ft/gpm      1.01E-09  for ID <<31.2<<
Haxiaam pressurizer level for RCP start, X 0/1 38 1.7 Fuel Handling/Dose Calculations Haxigull reactor coolant gross specific activity Haximm reactor coolant dose equivalent 1.131 Haxinxm secondary coolant dose equivalent I-131 Hinimm reactor coolant boron concentration, ppm Hinimia reactor coolant level Hiniaxm spent fuel pool level Hinimua spent fuel pool boron concentration, ppa Hjnieun spent fuel pool charcoal filter efficiency, X methyl iodine removal Hinfnxsa post accident charcoal filter efficiency, X methyl iodine removal 100/b pCi/gm 1.0 pCi/gm 0.1 pCi/gm 2000 23 ft above flange 23 ft above fuel 300 70 70 TS testing requires 90K cff.TS testing requires 90K eff.COLR 14 Cycle 27, Rev>sion 0 Item g Item/Name Value Remarks: Minimus control room charcoal filter efficiency, X methyl iodine removal Minimus time between reactor criticality and fuel movement, hrs.Source Terms used for dose calculations Dose conversion factors Maximun Gas Decay Tank Xenon-133 concentration, Ci 70 100 ORGEH 2 ICRP-30 100,000 TS testing requires 90X eff.2.0 Main Feedwater (MFII)Feedwater temperature versus load Power Tecyerature 102X 425 F 70X 385 F 30X 322 F DX 100 F 100X design temp is 432 degrees F Feedwater Suction Temperature vs power, nominal Feedwater Suction Pressure vs power, nominal Power 98X 70X 50X 30X Power 98X 70X 50X 30X Temperature 345 F 319 F 295 F 259 F Pressure 277 psig 282 psig 305 psig 370 psig 2.1 3.0 Head-Capacity and HPSH curves Head-Capacity and HPSH curves for main feedwater pcs Main Feedwater pump" Rated Head Main Feedwater purp-Rated Torque Main Feedwater pump-Moment of inertia Elevation of stcam generator inlet nozzle Elevation of main feedwater pump, ft Elevation of condensate pump, ft MFII regulating valve open time on demand, sec MFII regulating vaLve close time on demand, sec MFII regulating valve Cv, full stroke Low Load MFII regulating valve Cv, (bypass valves)MFll Heater resistance (delta p)Auxiliary Feedwater (AFM)Minimus design temperature of the~ater source service water/CST (degrees F)Max&#x17d;~~design temperature of the water source service water/CST (degrees F)Sec HS&L 2150'89.612 257.75 250.833 10 48.7 see HS&L 0 32(*), 50 80, 100 Selected flow splits are provided for model validation.
gG  outlet nozzle/plenum loss coefficient,             3.31E-10 for  IO <<31.2<<
Elevation is at center of shaft Assuned value.Actual value-"684.Effective Cv: includes bypass line Design data on the High Pressure Heaters (2 in parallel)is provided Initial AFlJ water source are the CSTs located in the Service Bldg.Safety Related source is the Service'Mater system (lake)." Value different for CHMT integrity.
ft/gpm gG tubing loss coefficient, ft/gpm                    9.62E-09  for OX plugging    For cube ID  <<0.664",  Ao>>  <<11.458 1.32E-08  for 15X plugging   fC2~  A~~>>
initial AFIJ water source arc the CSTs located in the Service Bldg.Safety Related source is the Service llater system (Lake).COLR 15 Cycle 27, Revision 0 0 Table 1: UFSAR Chapter 5 Analysj.s Setpoi]Its aTIcL , ut Parameters Item g Item/Name Value Remarks: Startup time for the auxiliary feedwater Imps, sec Hinimm delay for AFM start, sec Haximua delay for AFM start, sec AFM control valve open time on demand, sec AFM controL valve Cv[ftow is f(dP)]TDAFMP, maximm flow, gpm AFM, minimus flows, both generators intact, gpm Hinfmua delay for standby AFM start, min TDAF'M-OI HDAFM-1 HDAFM-47, TOAFM at LO Level both SGs H/A 600 TOAFMP 200/SG HDAFMP 200/SG 10*TOAFM starts on LO levet (17K)in both gens or UV on both unit 4'usses.HDAFM starts on SI (seq), or I.O Level either SG, or trip of both HFP or AHSAC HDAFM acceleration time test results show approximately 1.5 s.For HDAFM, LOOP on sequencer is 47 sec.TDAFM starts at nominal 17'n both SGs HDAFM control valves are normatly open and throttle closed to control , flow between 200-230 gpm NDAFMP valves are 3 Rockwell model&#xb9;A4006JKHY stop check valves.TDAFM controL valves (4297, 4298)are 3 Fisher&#xb9;470-HS.SBLOCA assunes 200 gpa per SG with the faiture of one DG 4.0 Hain Stem System (HS)Location (and elevation) of condenser dump valves and atmospheric relief valves FulL load steam line pressure drop, psi HS Isolation valve close time[full open to full close]close timei sec HS Isolation valve Cv[f low is f (dp)]CSD.elev 256'.875 ARV-elev 289'.563 approx 45 NSIV-5.0 check vatve-1.0 HSIV-23500 check valve-17580 This estimate, to the governor valves, is provided for comparison purposes only.The check valve is assuned to close in 1 sec under reverse flow.4.1 Hain Stem Code Safety Valves Number of valves (4 per line)Valve flow capacities
assumed  to be uniform.
-Total, Lbm/hr 6621000 Rated flow (3X accunutation per ASHE, Section III): 1085 psfg o~~~~~~~~~~~~~~~797g700 Lbm/hr (each)1140 psig....~.....~~.....837,600 ibm/hr (each)COLR 16 Cyc1e 27, Revision 0 Item f Item/Name Value Remarks: Valve Flow vs SG pressure (psia), total per bank (4 valves), ibm/sec.1110 1115 1120 1125 1131 1136 1141 1151 1161 1166 1173 1181 1190 1200 1205 1209 1211 0 40 91 141 191 222 223 225 227 228 342 494 646 799 859 920 931 Number of valves in bank Valve sctpoint(s), (first/last three), nominal, psig VaLve blowdown characteristic 4 1085/1140 15X max imm Valves are Crosby AHA-65 6R10 Setpoint tolerance Is+1X/-3X.Nodel valve setpoint at 1.01 (nominal), and fuLL flow at 1.04 (nominaL).
SG  Cubing loss  coefficient, sCraight section      4.19E-09  for OX plugging    For tube ID << 0.664<<,   A  << 11.458 (in),   ft/gpm'G 5.73E-09  for 15K plugging    ft, A,~>> "-9.739 ft .
assuned to be uniform.
Plugging is tubing loss coefficient, U-bend section,         1.02E-09  for OX plugging    For tube 10 = 0.664", Ao>> = 11.458 ft/gpm                                               1.40E-09  for 15K plugging    fc', A= 9.739    ft . Plugging is assumed  to be uniform.
        $0  tubing Loss coefficient, straight section        4.41E.09    for OX plugging    For tube ID = 0.664" ~  Ao" -11.458 (out), ft/gpm                                        6.08E-09  for 15X plugging    fthm, Al5>> = 9.739  ft2. Plugging is assumed  to be uniform.
COLR                                                 28                            Cycle 27, Revision           0


===4.2 Atmospheric===
4}}
relief valves No.Atmospheric relief valves Atmospheric relief valve setpoint/Air-operated, psig Atmospheric relief valve setpoint/Booster, psig Atmospheric relief valve capacity, Lbm/hr 2 1050 During Hot Standby operation setpoint Is lowered to control no load Tavg 1060 313550 at 1060 psig Nax flow is 380000 5.0 5.1 Turbine Generator (TG)Condenser No.of condenser disap valves condenser dms valve open time, sec Condenser dms valve close time, sec Condenser dump valve setpoint(s)
Condenser dump vaLve Cv[flow is f(dP)]For TT: Tavg>555 4 valves,>563 4 valves;no TT: Tref+12 4 valves, Tref+20 4 valves Assusing close time~opening time Gn TT valves control open at 6.7X/F (PID)above 547 with full open sctpoints as described.
On 10X step Load decrease same ratio with a 6F deadband from Tref Oesign Cv (240)from design conditions (302,500 Lbm/hr sat steam at 695 psig)6.0 Chemical and Voltmc Control System (CVCS)CVCS cspsc I ty/pump 3 pmys, 60 gpm msx each Normal ops: 2 charging pumps-onc is manual at 15-20 gpm snd the other in autcmatic.
Charging pumps sre PDPs w/46 gpm total-8 gpm to seals-3 gpm leakage+5 gpm into RCS.40 gpm Letdown COLR 17 Cycle 27, Revision 0 Table 1: UFSAR (-haPter 5 Analysis Setpoints and ut parameters Item 4 Item/Name Value Remarks: CVCS mfnfmua/pm', gpm Type of controLLer (e.g., p+1)and gains 15 PLD 100K,180 sec,10 sec Reactor Hakeup Matei System (QHl)RHll capacf ty/pulp 2 puris, 60 gpa each 7.0 7.1 7.1.1 Emergency Core Cooling System (ECCS)ECCS Delivery's RCS Pressure Residual Heat Removal (RHR)Delivery Hfnfmus RHR Delfvery, train failure vs RCS Pressure Hfnfaxja RHR Delivery, two fxmys runnfng, one line blocked RCS Pressure (psia)155 152 150 140 120 100 80 60 40 20 14.7 RCS Pressure (psfa)155 154 152 150 140 120 100 80 60 40 20 14.7 Delivery (gpm)0 0 0 250 648 836 985 1115 1232 1338 1365 Delivery (gpm)0 0 160 252 516 830 1056 1243 1406 1552 1686 1720 LOCA Appendix K case.Train failure results fn one punp running with 10K degradation with one line bLocked.LOCA Appendix K case (offsfte power availablc).
Two pumps running with 10K degradation with one line blocked.7 1.2 Safety injection (Sf)Delivery vs RCS Prcssure Hfnfmua Si delivery, 2 pumps operating, onc Line spilling Press (psig)1375 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 Delivery (gpm)0.0 62 125 167 201 229 253 273 289 305 321 336 352 368 394 Spill LOCA Appendix K case.Train failure (gpm)results in two punps running wfth 5X 465 degradation with one Line spi llfng to 465 contafcment.
465 465 465 465 465 465 465 465 465 465 465 465 465 COLR 18 Cycle 27, Revision 0 Table 1: UFSAR Chapter 5 Analysis Setpoints and parameters Item 4 Item/Name Value Remarks: Minimun Si delivery, 3 punps operating, non-LOCA Press (psia)Oelivcry (gpm)Loop'A'oop Used for non-LOCA transients, 5X pump degradation Mininnnn Si delivery, 2 pumps operating non-LOCA Maximun Si delivery, 3 punps operating, SGTR 1390 1315 1215 1115 1015 915 815 715 615 515 415 315 215 115 15 Press (psia)1390 1315 1215 1115 1015 915 815 715 615 515 415 315 215 115 15 Press (psig)1375 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 I gl 16 87 147 193 231 266 297 325 352 377 400 423 445 465 485 Delivery Loop'A'gl 8 69 121 162 197 228 255 281 305 328 350 370 390 409 427 Loop A (gpn)76 128 180 221 258'290 320 348 374 398 421 443 464 485 504 19 97 163 214 257 295 329 360 390 418 444 469 493 516 538 (gpn)Loop 8 71 126 169 206 239 269 296 322 346 369 391 412 432 452 Loop 8 (gpm)84 141 198 245 285 321 354 385 413 440 466 490 514 536 558 Used for non-LOCA transients, 5X pump degradation.
The KYPTPE model assunes no pump degradation.
Loop A and 8 pressures are set equal.Used for SGTR.7.3 Ac~lators Munster of accunulators Total volune, each, ft'iquid voluncl ft min/max Liquid volunei ft-Best Estimate initial prcssure, psig-Minimun/Maxlmun 2 1750 1126/1154 1140 700/790 COLR 19 Cycle 27, Revision 0 Table 1: UFSAR Chapter 5 Analysis Setpoints and ut parameters Item 4 Item/Name Value Remarks: initial temperature, F Boron concentration, ppm (mfn/max)105 2100/2600 LBLOCA Hote-Ea analyses use a maximus concentratIon of 3000 ppm 7 4 RMST RUST TeIIperature, min/max, degrees F fffnfmua RWST votIme, gal RMST boron concentration, ppm (min/max)60/80 300,000 2300/2600 Hote-EQ analyses use a maxiImm concentration of 3000 ppm 8.0 Contafrment initial contaf~nt pressure p ia initial containment temperature (LOCA/SLB) degrees F initial relative huaidity, X SM teIIperature min/max, degrees F HaxfImm contafment leakage, wtX/day min-14'max-16.7 90/120 20 30~/80 0.2~HfnfmuII is used for LOCA analysis.Haxfmm is used for the contafwent integrity cases (SI.B).LOCA temperature lower for PCT calculations.
SLB hfgher for contairment integrity*Va tue different for auxiliary feedwater 8.1 ContafImcnt Heat Sinks Listing of Passive Heat Sinks, quantities, metal'fels
~and configurations see HSSL 8.2 Concrete density, conductivity, capacity Bensities, Thermal Conductfvities and Heat Capacities of Heat Sinks Insulatfon density, conductivity, capacity 3.7 ibm/fta 0.0208 BTU/hr F ft 1.11 BTU/ft F 150 ibm/ft 0.81 BTU/hrFf t 31.5 BTU/fthm F note: mfnfImm conductivity corresponds to maximus density, and maxfImm conductivity corresponds to mfnfmun density.Steel density, conductivfty, capacity Stainless steel density, conductfvity, capacfty Contafrment free votune, mfn/max, cu.ft.Ground TNIperature (degrees F)Outside Air Temperature, min/max, degrees F HTC for outside surfaces 490 tbm/ft 28 BTU/hrFft 54.4 BTU/ft F 496 tbm/ft 15 BTU/hrFft 54.6 BTU/fta F 1,000,000/1,066,000 55-10/100 1.65 BTU/hr ft degrees F below grade temperature COLR 20 Cycle 27, Revision 0
'Table 1: UPSAR (-hapter 5 Analysis Setpoints and i put Parameters Item 4 Item/Name Value Remarks: Contairrnent fan cooler performance Contairltent spray flow, min/max, each, gpm Tenp Hin Hax (deg F)(X106BTU/hr) 120 2.05 4 F 55 220 35.1 99.2 240 40.8 113.8 260 46.8 129.3 280 52.9 145.5 286 54.7 150.4 1300/1800 8.3 Oclays for CRFCs and Spray punps CRFC delay, offsite power available, seconds CRFC delay, offsite power not avaf lable, seconds Contafnment Spray, 1300 gpm each fxlp, maxfmun delay, sec Contafreent Spray, 1800 gpm each punp, mfnfmun dele/, sec ContafrInent Oesfgn pressure, psig Ofstance Basement floor to Springline, feet Oistance Sprfngline to top of done, feet 34 44 28.5-onc punp 26.8-two pumps 9/(14 w LoOP)60 95 52.5 includes 2.0 sec SI delay includes 2.0 sec SI delay This delay is from the tfme Containment Hi-Mi setpoint is reached.It includes instrunent delay and spray line fill time.This delay is from the tfme of break.8.4 Contairwent Surp Hinimun wtX of HaOH Tank 30 9.0 Control Systems (Reactor, FM, przr Level, Turbine, AFIJ)Tavg versus power pressurizer pressure and level algorithms SO secondary level algorithm H/A N/A H/A Tavg ramps Linearly from 547 degrees F at OX power to 561 degrees F at 100K power pressurizer pressure setpoint is constant at 2235 psig.Pressurizer leveL reaps from 35K to 50K for 0 to 100K power (547-561 degrees F).Level remains constant at 52X to 100X power.(Power from turbine 1st stage press.)10.0 10.'I 10~1.1 Sa fcty System Setpoints Reactor Protection System power range high neutron flux, high setting nominal accident analysis delay time, sec 1.18 0.5 1.09 10.1.2 Power range high neutron flux, Low setting nominal accident analysis 0.250 0.350 COLR 21 Cyc1e 27, Revision 0 Xtem 4 Item/Name Value Remarks: delay time, sec 0'10.1.3 Overtemperature delta T nominal accident analysis delay time, sec Variable Variable 6.0 Total delay time-from the time the tenperature difference in the coolant Loops exceeds the trip.setpoint until the rods are free to fall 10.1A Overpower delta T nominal accident analysis delay time, sec Variable Variable 2.0 Hot explicitly modelled in safety analysis 10.1.5 High pressurizer pressure nominal, psig accident analysis, psia delay time, sec 2410 2.0 10.1.6 Low pressurizer pressure nominal, psig accident analysis, psia delay time, sec 1873 1775 (non-LOCA) 1715 (LOCA)1905 (SGTR)2.0 10.1.7 Low reactor coolant flow nominal accident analysis delay time, sec 91K of normal indicated flow 87X per Loop 1.0 10.1.8 Low-Low SG level nominal accident analysis delay time, sec 17K of the narrow range Level span OX of narrow range Level span 2.0 While trip setpoint could be as Low as 16K, AFll initiation Limits to 17K 10.1.9 Turbine Trip (low fluid oil pressure)nominal, psig accident analysis delay time, sec 45 H/A 2.0 Hot explicitly modeled in safety analysis COLR 22 Cycle 27, Revision, 0
~.~Table 1-UPSAR Chapter 15 Analysis Setpoints and Input parameters Item g Item/Name Value Remarks: 10.1.10 Undervoltage ncminal, V accident analysis delay time.sec 3150 1~5 Safety analysis assunes RCCAs are released 1.5 scc.after sctpoint is released.10.1.11 Undcrfrcqumcy nominal, Hz accident analysis delay time 57.7 57.0 1.2 Analysis is performed but not explicitly modeled in safety analysis.Safety analysis assunes RCCAs are released 1'sec after setpoint is reached.10.1.12 Intermediate range nominal, RTP safety analysis, RTP delay time, sec 0.25 H/A H/A Hay fluctuate duc to core flux Hot explicitly modeled in safety'nalysis 10.1.13 Source Range nominal, cps accident analysis, cps delay time, sec 1.4E+5 1 AL OE+5 2.0 Highest nominal value 10.1.14 High Pressurizer level nominal accident analysis delay time, sec 0.90 0.938 2.0 10.2 10.2.1 10.2.1.1 Englneercd Safety Features Actuation System Sa fcty injection System'High con'tailNcAt prcssure Hominal setpoint, psig Accident Analysis setpoint, psig oelay time, sec 4.0 6.0*34 44 w/LOOP*only modeled in accident analysis for start of containment fan coolers.Time delays are for start of containment fan coolers.10.2.1.2 Lou pressurizer pressure Hominal setpoint, psig 1750 COLR 23 Cycle 27, Revision 0
~..~Table 1: UFSAR Chapter 15 Analysis Setpoints and input parameters Xtem 4 Xtem/Name Value Remarks: Accident Analysis setpoint, psia Delay time, sec 1785, SGTR 1730, non-LOCA 1715, LOCA 2.0 10 2.1 3 Low ate~line pressul e Hominal setpolnt, psig Accident Analysis setpoint, psig Delay time, sec 514 372.7 2.0 See HS&L See NS&L 10.2.2 Contairwmt Spray Hominal Setpoint, psig Accident analysis setpoint, psig Delay time, sec 28 32.5 28.5 Sec HS&L Delay time includes time to fill lines.See HS&L 10.2.3 AFM System Lcw low ate~generator water Nominal Setpoint Accident analysis setpoint Delay time, sec 17 X of narrow range instrunent span each steam generator 0 X of narrow range instrunent span each steam generator 2.0 A positive 11K error has been included to account for the SG level measurement system at a contairraent tecperature of 286 F 10.2 4 10.2.4.1 Steam Line Isolation High conte irsaent pressure Nominal Setpoint, psig Accident analysis setpoint Delay time 18 H/A H/A Not explicitly modeled Not explicitly modeled 10.2 4.2 High stem flow, coincident with low Tavg and SI Hominal Sctpoint Accident analysis setpoint Delay time 0.4E6 lb/hr equivalent steam flow at 755 psig and Tavg<545 F N/A N/A Note flow setpoint is below nominal full power flow and therefore this portion of logic is made up at power Not explicitly modeled Hot explicitly modeled.Steam line isolation is assumed concurrent with SI (i.e.2 s delay+'5 s valve stroke)10.2.4.3 High-high stem flow, coincident SI Hominal Setpoint Accident analysis setpoint 3.6E6 lb/hr equivalent steam flow at 755 psig N/A Hot explic>tly modeled COLR 24 Cycle 27, Revision 0 Item f Item/Name Value Remarks: Delay time H/A Hot explicitly modeled.Steam Line isolation is assumed concurrent with si (i.e.2 s delay+5 s valve stroke)10.2.5 Feedwater isolation 10.2.5.1 High stem generator water level 11 0 Hominal Setpoint Accident analysis setpoint Delay time Bill Stem Generators Heat load per SG, BTU/hr Primary flow per SG, Klb/hr Steam flow per SG, Lb/hr (clean, unplugged)
Secondary design pressure, psig Secondary design teaperature, F Maxicxla moisture carryover, X Harrow range level tap locations, inches above TS secondary face Mide range level tap Locat'ions, inches above TS secondary face 85X of the narrow range instrunent span each SG 100X of the narrow range instrunent span each SG 2.0 2,602,000,000 PluggingX Flow Klb/hr 0 34950 5 34630 10 34280 15 33850 3,264,358 at 877 psia 1085 556 0.10 386/s/529/I 8/~/529/e Lnstrunent loop only Design flows at T,,~573.5 F conditions for T~~573.5 F SG Pressure Drops Secondary nozzle to nozzle dP Q full power, psi Secondary nozzle to nozzle dP Q full po~er, psi primary nozzle to nozzle unrecoverable pressure cirop vs.plugging, psi 14.7 7.5 PluggingX ap psi 0 31.01 5 33.27 10 35.82 15 38.72 Value is totaL static pressure drop.Pressure drop from top of U-bend to outlet.See associated flows for X plugging.11.2 SG Tubes Ho.of tubes per SG Tube 00, inches Tube average wall thickness inches Maxinxla tube length, ft Minimus tube length, ft Average length, ft 4765 0.750 0.043 70.200 55.925 61.988 Includes length in tubesheet (2x25.625")
includes length in tubesheet (2x25.625")
includes length in tubesheet (2x25.625")
COLR 25 Cycle 27, Revision 0 I Table 1: UFSAR (-'hap<<r 5 Analysis Setpoints and ut parameters Item 4 Item/Name Value Remarks: Hlnfaae U-bend radius, inches Haxiaam U-bend radius, inches U-bend radius of shortest tube(s), inches Average U-bend radius, inches Tube straight Length (one side)above secondary face, inches (min/max/average)
Secondary heat transfer area, ft per SG Primary heat transfer area, ft~per SG overall bundle height, ft above secondary face of TS 3.979 54.007 4.044 24.51 303/lg/310/i/308.182 54,001 47,809 30.427 Note: this is not the bend radius for the shortest tube.Tube material SG Tube Haterial Thermal Conductivity, BTU-in/hr-ft'-F SG Tube Haterial Specific Neat BTU/lb.F SB-163 Temp F 200 300 400 500 600 Temp F 200 300 400 500 600 Alloy N06690 Conductivity 93 100 107 114.5 122 Conductivity 0.112 0.1155 0.119 0.1225 0.126 Distance from top of tube bundle to 33'RL, ft 5.703 11.3 11.3.1 SG Voltmes SG Secondary Side Vol~secondary volte, ft (total)Secondary volune up to lower NRL tap, ft Secondary volune up to upper NRL tap, ft 4512.7 1893.2 3460.4 11.3.2 Riser Volmes Secondary side bundle volune (TS to top of U-bend inside shroud), fthm secondary riser volune, top of U-bend to spill-over point, ft'281.8 507.0 Equivalent to LOFTRAN riser volune.11.3.3 Dosncomer Vol mes Downcomer volune, top of TS to top of U-b&, ft'owncomer volunc, top of U b Qf to spi point, ft'59.6 1437.3 11.3.4 SG Primary Side Valuate Inlet plenua per SG, fts Outlet plenun per SG, fthm 129.65 129.65 COLR 26 Cycle 27, Revision 0 Table 1: UPSAR Chapter 15 Analysis Setpoints and Input Parameters Xtem f Xtem/Name Value Remarks: Tube primary velum per SG, fta Primary total volune per SG, fthm Circulation ratio (100X power, clean, unplugged)
Tubesheet thickness, inches 710.3 969.6 5.39 25.625 Circulation ratio=bundle flow g steam flow.Assunes 40,000 Lbmghr b lowdown.Includes cladding.11.4 SG Primry Side Dimensions PHmary head radius, inches Divider plate thickness, inches Inlet and outlet nozzle, inside diametel cylindrical section, inches Nozzle divergence angle, degrees Nozzle inside diameter at plena, inches Nozzle Lengths, inches Heigth from SG primary head bottom (outside)to top of Ts, inches Distance tube sheet primary face to hot leg centerline, ft.58.375 1.875 31.200 11 30'7.0 cylindrical section conical section total length 90'lle 6.654 8.75 13.0 21.75 Radius to clad surface.11.5 SG Secondary Side Dimensions Lower shell inside diameter, inches Lower shell thickness, inches Tube shroud inside diameter, inches Distance top of tube bundle to top of steam nozzle, inches steam nozzle flow restricter area, ft'istance secondary face of TS to centerline of feedwater nozzle, inches Distance secondary face of TS to centerline of feed ring, inches Cross-sectional area of tube bundle ft~Distance top of tube bundle to spill-over point, inches Primary side roughness, micro-inches 122 2.875 114 298.5 1.4 407'i, 374 41.64 178.0 Hozzles, head 60 Tubes 60 This value is total area inside shroud.This value is equivalent to the riser height for the DSG.values given are conservative assunptions.
SG Secondary Side Mater Hasses Secondary~ater inventory, 100)', power, T,,~573.5, no plugging, ibm Secondary water inventory, 100'ower, T, 559, no plugging, Lbn 86,259 liquid 5,286 steam 85,547 liquid 4,675 steam gest estimate value.gest estimate value.11.7 SG Primary Side Head Loss Coefficients COLR 27 Cycle 27, Revision 0 Item 4 Item/Name Value Remarks: gG inlet nozzle/plenum loss coefficient, ft/gpm gG outlet nozzle/plenum loss coefficient, ft/gpm gG tubing loss coefficient, ft/gpm SG Cubing loss coefficient, sCraight section (in), ft/gpm'G tubing loss coefficient, U-bend section, ft/gpm$0 tubing Loss coefficient, straight section (out), ft/gpm 1.01E-09 for ID<<31.2<<3.31E-10 for IO<<31.2<<9.62E-09 for OX plugging 1.32E-08 for 15X plugging 4.19E-09 for OX plugging 5.73E-09 for 15K plugging 1.02E-09 for OX plugging 1.40E-09 for 15K plugging 4.41E.09 for OX plugging 6.08E-09 for 15X plugging For cube ID<<0.664", Ao>><<11.458 f C2~A~~>>assumed to be uniform.For tube ID<<0.664<<, A<<11.458 ft, A,~>>"-9.739 ft.Plugging is assuned to be uniform.For tube 10=0.664", Ao>>=11.458 fc', A=9.739 ft.Plugging is assumed to be uniform.For tube ID=0.664"~Ao"-11.458 fthm, Al5>>=9.739 ft2.Plugging is assumed to be uniform.COLR 28 Cycle 27, Revision 0 4}}

Latest revision as of 10:17, 4 February 2020

Rev 0 to Ginna Station Colr,Cycle 27.
ML17264B108
Person / Time
Site: Ginna Constellation icon.png
Issue date: 11/14/1997
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17264B107 List:
References
NUDOCS 9711240147
Download: ML17264B108 (32)


Text

COLR GINNA STATION Cycle 27 Revision 0 CORE OPERATING LIIVIITS REPORT (COL R)

Responsible manage i(/iw/ev Effective Date Controlled Copy Ho.

9'7ii240i47 97iii7 PDR 'DR ADOCK 05000244'

R.E. Ginna Nuclear Power Plant Core Operating Limits Report Cycle 27 Revision 0 This report is not part of the Technical Specifications. This report is referenced in the Technical Specifications.

TABLE OF CONTENTS 1,0 2.0 CORE OPERATING OPERATING LIMITS 2.

2.2 1 SHUTDOWN LIMITS REPORT MARGIN.....

MODERATOR TEMPERATURE COEFFICIENT .

~

~ ~

~ 3 3

3 2.3 Shutdown Bank Insertion Limit . 3 2.4 Control Bank Insertion Limits . 4 2.5 Heat Flux Hot Channel Factor (FQ(Z)) ~ ~

2.6 Nuclear Enthalpy Rise Hot Channel Factor (F"~)

2.7 AXIAL FLUX DIFFERENCE . ~ ~ ~ ~ 4 2.8 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 5 2.9 Boron Concentration . 5 3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS

4.0 REFERENCES

6 FIGURE - RE(UIRED SHUTDOWN MARGIN .

1 FIGURE 2 - CONTROL BANK INSERTION LIMITS 8 FIGURE 3 K(Z) NORMALIZED Fo(Z) AS A FUNCTION OF CORE HEIGHT o ~ ~ ~ ~ 9 FIGURE 4 - AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS AS A FUNCTION OF RATED THERMAL POWER . 10 TABLE 1 - UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS..... 11 I

COLR Cycle 27, Revision 0

R.E. Ginna Nuclear Power Plant Core Operating Limits Report Cycle 27 Revision 0 1.O CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Ginna Station has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

3.1.1 "SHUTDOWN MARGIN (SDM)"

3.1.3 "MODERATOR TEMPERATURE COEFFICIENT (MTC)"

3.1.5 "Shutdown Bank Insertion Limit" 3.1.6 "Control Bank Insertion Limits" 3.2.1 "Heat Flux Hot Channel Factor (Fo(Z))"

3.2.2 "Nuclear Enthalpy Rise Hot Channel Factor (F"<<)"

3.2.3 "AXIAL FLUX DIFFERENCE (AFD)"

3.4.1 "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits" 3.9.1 "Boron Concentration" COLR Cycle 27, Revision 0

2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Technical Specification 5.6.5. All items that appear in capitalized type are defined in Technical Specification 1. 1, "Definitions."

2.1 SHUTDOWN MARGIN (LCO 3.1.1)

(Limits generated using Reference 1) 2.1.1 The SHUTDOWN MARGIN in MODE 2 with K.<< < 1.0 and MODES 3 and 4 shall be greater than or equal to the limits specified in Figure 1 for the number of reactor coolant pumps in operation.

2.1.2 The SHUTDOWN MARGIN in MODE 4 when both reactor coolant pumps are not OPERABLE and in operation and in MODE 5 shall be greater than or equal to the one loop operation curve of Figure 1.

2.1.3 The SHUTDOWN MARGIN required in LCOs 3. 1.4, 3. 1.5, 3. 1.6,

3. 1.8, and 3.4.5 shall be greater than the limits specified in Figure 1 for the number of reactor coolant pumps in operation.

2.2 MODERATOR TEMPERATURE COEFFICIENT (LCO 3.1.3)

(Limits generated using Reference 1) 2.2.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOL ARO/HZP - MTC shall be less positive than +5.0 pcm/'F for power levels below 70% RTP and less than or equal to 0 pcm/'F for power levels at or'bove 70% RTP.

The EOL ARO/RTP - MTC shall be less negative than -42.9 pcm/'F.

where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life HZP stands for Hot Zero THERMAL POWER RTP stands for RATED THERMAL POWER 2.3 Shutdown Bank Insertion Limit (LCO 3. 1.5)

(Limits generated using Reference 1) 2.3.1 The shutdown bank shall be fully withdrawn which is defined as z 221 steps.

I COLR Cycle 27, Revision 0

2.4 Control Bank Insertion Limits (LCO 3. 1.6)

(Limits generated using Reference 1) 2.4. 1 The control banks shall be limited in physical insertion as shown in Figure 2.

2.4.2 The control banks shall be moved sequentially with a 100

(+5) step overlap between successive banks.

2.5 Heat Flux Hot Channel Factor F Z (LCO 3.2. 1)

(Limits generated using References 1 and 2) 2.5.1 Fo(Z) s ~F J"K(Z) when P ) 0.5 P

Fo(Z) s ~F *K(Z) when P s 0.5

0.5 where

Z is the height in the core, Fo 2.45, K(Z) is provided in Figure 3, and THERMAL POWER P RATED THERMAL POWER 2.6 Nuclear Enthal Rise Hot Channel Factor F" (LCO 3.2.2)

(Limits generated using Reference 1) 2.6.1 F" F"~ * (1+ PF * (1-P))

where: FATP PF~ 0.3, and THERMAL POWER P RATED THERMAL POWER 2,7 AXIAL FLUX DIFFERENCE (LCO 3.2.3)

(Limits generated using References 1 and 3) 2.7.1 The AXIAL FLUX DIFFERENCE (AFD) target band is + 5%.. The actual target bands are provided by Procedure RE-11. 1.

2.7.2 The AFD acceptable operation limits are provided in Figure 4.

COLR Cycle 27, Revision 0

2.8 RCS Pressure Tem erature and Flow De arture from Nucleate Boilin Li~ i (ICII 3 4 i)

(Limits generated using Reference 4) 2.8.1 The pressurizer pressure shall be z 2205 psig.

2.8.2 The RCS average temperature shall be z 577.5 F.

2.8.3 The RCS total flow rate shall be a 170,200 gpm (includes 4%

minimum flow uncertainty per Revised Thermal Design Hethodology).

2.9 Boron Concentration (LCO 3.9.1)

(Limits generated using References 1 and 5) 2.9. 1 The boron concentrations of the hydraulically coupled Reactor Coolant System, the refueling canal, and the refueling cavity shall be z 2300 ppm.

3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS The setpoints and input parameters for the UFSAR Chapter 15 accident analyses are presented in Table 1. The values presented in this table are organized based on system and major components within each system.

The failure of a component or system to meet the specified Table 1 value does not necessarily mean that the plant is outside the accident analyses since: (1) an indicated value above or below the Table 1 values may be bounded by the Table 1 values, and (2) the setpoint or parameter may not significantly contribute to the accident analyses final results. The major sections within Table 1 are:

1.0 Reactor Coolant System (RCS) 2.0 Hain Feedwater (HFW) 3.0 Auxiliary Feedwater (AFW) 4.0 Hain Steam (HS) System 5.0 Turbine Generator (TG) 6.0 Chemical and Volume Control System (CVCS) 7.0 Emergency Core Cooling System (ECCS) 8.0 Containment 9.0 Control Systems 10.0 Safety System Setpoints 11.0 Steam Generators COLR Cycle 27, Revision 0

4.0 REFERENCES

WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Hethodology, July 1985.

2. WCAP-10054-P-A and WCAP-10081-NP-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code," August 1985.

WCAP-10924-P-A, Volume 1, Rev. 1, and Addenda 1,2,3, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 1: Model Description and Validation," December 1988.

WCAP-10924-P-A, Volume 2, Rev. 2, and Addenda, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped with Upper Plenum Injection," December 1988.

WCAP-10924-P-A, Rev. 2 and WCAP-12071, "Westinghouse Large-Break LOCA Best Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped With Upper Plenum Injection, Addendum 1: Responses to NRC guestions," December 1988.

WCAP-10924-P, Volume 1, Rev. 1, Addendum 4, "Westinghouse LBLOCA Best Estimate Methodology; Model Description and Validation; Model Revisions," August 1990. [Approved by NRC SER dated 2/8/91]

3. WCAP-8385, "Power Distribution Control and Load Following Procedures-Topical Report," September 1974.
4. WCAP-11397-P-A, "Revised Thermal Design Procedure", April 1989.
5. WCAP-11596-P-A, "gualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores," June 1988.

COLR Cycle 27, Revision 0

3 ONE LOOP (0. 2.45)

OPERA'nON 0 ACCEPTABLE OPERATION l1l 2 0' (0, 1.80)

~O LOOP (1500.1.45) OP ERAllON m1 (1 500, 1.00)

UNACCEPTABLE OPERATION xV) 1500 1000 500 COOLANT gpRON CONCENTRATION (ppm)

FIGURE I REQUIRED SHUTDOWN MARGIN COLR Cyc1e 27, Revision 0

220 1834 ~

3 200 B Bank 666,'100,

~380

~ (0, 164 184)

$ <6O CB ank

o. $ 40

~ 120 DBank

.a 100 N

80 CL

~

~ 60 (0,53) ca 40 o 20 (30, 0

0 10 20 30 40 60 ,60 70 80 90 t00 Core Power (Percent of 1520 Mg/T)

  • The fully withdrawn position is defined as a 221 steps.

FIGURE 2 CONTROL BANK INSERTION LIMITS

~

COLR Cycle 27, Revision 0

0.2 N

~ 1.0 u0.8 U)

C 65 e 06 Tota( Fz = 2.460 0

~

K

~

6$

K

~E't 0.0

~K 1.0 04 CP 11.783 1.0

~

N

~

l5 F02 0

0.0 0,0 2.0 4.0 6.0 8.0 10.0 11.783 Elevation (ff)

FIGURE 3 K(Z) - NORMALIZED Fo(Z) AS A FUNCTION OF CORE HEIGHT COLR Cyc1e 27, Revision 0

DO NOT OPERATE IN THIS AREA WITH AFD oUTSIOE THE TARCET S~

(-11,90) (11/0) 80 ACCEPTABLE

~O CI OPERATION

"" " "" " "" YAHAFD OUTSaE THE TARO ET BAND WITH <<1 fa PENALTY DEMATION TNE (Q1,60) P1,60)

I- 40 Cl ACCEPTABLE l~ ~ ~ ~

OPERATION

~ ~ y 0~

20 0

-20 -10 0 10 20 30 AXIALFLUX DIFFERENCE (%)

FIGURE 4 AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS AS A FUNCTION OF RATED THERMAL POWER COLR 10 Cyc'te 27, Revision 0

Table 1: UPSAR Chapter 5 Analysis Setpoints and ut parameters Item 4 Item/Name Value Remarks:

1.0 Rcoctor Coolant System (RCS)

Upper head volwre, 300.0 Above upper support plate.

fto ft'pper Plenum volune, 580.2 Bottom of upper core plate to top of upper support plate. Includes outlet holes in the barrel.

Top of fuel volune, fto 50.3 Top of active fuel to bottom of upper plate, inside barreL baffle. 'o Inlet nozzle(s) volune, total of two, ft 43.2 outlet nozzle(s) volune, total of two, ft 37.4 Includes nozzle forging protrusion into vessel. Does not include mating hole in barrel, this is included in the Upper PLenun volune.

Active fuel volrire, ft3 367.6 Bottom of fuel to top of fuel Bottom of fuel volurre, fto 11.0 Top of Lower core plate to bottom of active fuel.

Lower PLenrgr volune, ftc 514.3 Below top of lower core plate Downcomer volunc, above bottom of cold leg, ft 138.4 Above bottom of cold leg elevation to bottom of upper support plate Downcomer, lower core plate to elevation of the 278.2 Top of Lower core plate to elevation bottom of the cold Leg volune, fts of bottom of cold Leg Barrel baffle, lower core plate to upper core 128.5 Top of Lower core plate to bottom of plate volrmre, ft upper ccrc plate.

Total volunc, fto 2449.1 Includes nozzles Hot leg pipe volte per Loop vair ft> 78.7 Cold leg voluae per Loop + cross over, fti cross over = 140.7 cold Leg = 46.8 RC pmp volunc per pump, f 192 t'old leg pipe ID, In./Purrp suction ID, in. 27.5/31 Hot leg pipe ID, in. 29 (28.969)

Design pressure, psig 2485 Design temperature, F 650 Cold Leg and Hot i.eg Centerline Elevation 246'0u Reactor Coolant Prsrrp Head-Capacity and NPSH curves for reactor See HS&L Homologous Curves are available in coolanz pumps/Homologous Curves RETRAH Rated RC pump head and flow, ft & gpm 252; 90,000 Rated RC pump torque and efficiency 9 rated 84K efficiency at hot head/flow, ft-lb, fraction conditions RCP Prmp Rated Power (hot, 556 degrees F) 4842 BHP RCP Hotor Rated Speed, RPM 1189 Moment of inertia of pump and motor, lb-ftz 80,000 RC pump heat, MMt (max/min per pump) 5, 4 Pwp power varies with RCS terrp fram approx 4 MWt to 5 Mwt 1.2 Core COLR Cycle 27, Revision 0

Table 1: UPSAR Chapter 5 Analysis Setpoints and ~ut Parameters Item 4 Item/Name Value Remarks:

Rated power, HWt 1520 Reactor power uncertainty, g RTP Bypass, X 6.5 Thimble plugs removed.

Upper head bypass, g M proprietary Upper head tcngerature, degrees F 590 High T~ value.

Heat transfer area, fthm 26,669 Average core heat flux, Btu/hr ft> 189,440 1.3 Fuel Assemblies 1.3.1 Height Total, inches ( length from bottom of asscnhty to 159.935 top nozzle)

Fuel Rod Length, inches (length from bottom of 149.138 pin to top of pin)

Active, inches 141.4 1.3.2 Fuel Assembly Geometry Hass of fuel, ibm 105,500 Hoss of clad, ibm 25,927 Humber of fuel pins per fuel assembly (FA) 179 Ho. of Fuel Assemblies 121 Fuel pin pitch, in. 0.556 Bottom nozzle weight and votunc 9.1 lbs.

31.5 in Top nozzle, w/ insert, weight and volune 18.15 lbs.

62.9 delta P -"20 psi in'ore Fuel Asserrhty resistance (core dP f(flow)], psi Thimble plugs removed.

f(lb/hr) 9 flow ~ 170,200 gpn Fuel Assembly free flow area, in 34.75 Single assembly.

1.3.3 Fuel pin geometry Pellet diameter, in. 0.3444 Clad 00/IO, in. /in. 0.400/0.3514 1.3 4 Control Rod 4 Instruaent Gurdc Tubes Ho. of control rod guide tubes 16 Ho. of instrunent guide tubes Control Rod Guide tube upper part 00/ID, in. /in. 0.49/0.528 Instrunent Guide tube 00/ID, in. /in. .0.395/0.350 Guide tube lower part 00/ID, in. /in. 0.4445/0.4825 Control Rod Drop Times, maximuns, scc. Hon-LOCA 2.4 Altowanccs are added to the Tech Spec LOCA 3.0 allowable value Control rod maximun withdrawal rate, in./min. 45 COLR 12 Cycle 27, Revision 0

Table 1= UFSAR ('-rapter 5 Analysis Setpoints and ut parameters Item g Item/Name Value Remarks:

Control rod maxim(rs insertion rate, pcm/sec. 90 Control rod insertion limits See COLR Hot channel radial peaking factor 1.75 Heat Flux Hot channel factor Fq 2.45 1.4 pressurizer code safety valve flow capacity, Lbm/hr 288,000 Rating at 2485 psig plus 3X accumulation Code safety valve open time 0.8 sec seal clearing time Crosby Model HB-BP-86, size 4K26 Code safety valve setpoint 2485 psig Tolerance is + 2.4X/-3X.

Spray valve n(rmber 2 Spray valve flow capacity, gpm/vaLve 200 Spray valve setpoint- start open/fulL open 2260/2310 proportional Spray valve time constant, sec. 5 Assed value PORV number 2 pORV flow capacity, Lbm/hr 179,000 Steam flow st 2335 psig pORV Cv 50 gpm/(psid)1/2 Rating is for liquid relief. Valve characteristic is quick opening see Copes Vulcan Selecting and Sizing Control Valves 8/75, page 8, Table 18 for Cv vs travel curve.

PORV open time 1.65 sec + transmitter LTOPs transmitter is Foxboro E11GM-HSAE1, with a time response of 1 sec (time to 90K of final value for step input)

PORV close time 3.95 sec + transmitter LTOPs transmitter is Foxboro E11GM-HSAE1, with a time response of 1 sec (time to 90K of final value for step input) pORV setpoint [normal) open/close, psig 2335/2315 pORV setpoint (LTOP] open/close, psig 430 pORV blowdown characteristic Heater capacity w/ bank capacity and setpoints, 800 kif Control banks 0 kW at 2250 psig and 400 kw st 2220 psig gackup Heaters Full on at 2210 psig snd resets at 2220 psig Minimus heater capacity required for LOOP, k'M 100 Heater bank controller type proportional 400 kM 1.4.1 pressurizer volusc(s) (100M / Ly( power)

Lister, ft (100K / OX power) 396/199 Steam, ft (100M / OX power) 404/601 Total, ft 800 pressurizer LD, ft-in 83 624 in / cladding thickness is 0.188 in COLR 13 Cyc'1 e 27, Revision 0

Table 1: UFSAR Chapter 5 Analysis Setpoints and ut parameters item 0 Xtem/Name Value Remarks:

Surge line ID, in. 8.75 Surge line is 10 in schedule 140 Spray linc ID, in. 3.062 Surge line volune ft 18.4 1 4.2 Pressurizer Level Lower level tap elevation 257' Upper level tap elevation 275' pressurizer level vs X power %power Level pressurizer level is ramped linearly 0 X 35X between these points. Not used in 100 X 50X Chapter 15 analyses.

Distance Not Leg Centerline to Lower Tap, ft 10.750 Haximm level allowed for steam bubble, X 87 1.5 RCS Plows, Temperature and Pressures Total reactor coolant flow, gpm (15X plugging) 170,200 Usc for non DNB Total reactor coolant flow, gpm (15K plugging) 177,300 Usc for statistical DNB Average reactor coolant tecperature, degrees F 559 to 573.5/547 Cycle 26 T~ = 561 (full power/N2P)

Reactor coolant pressure, psig 2235 Reactor coolant flow uncertainty, X nominal Reactor coolant temperature uncertainty, degrees F

Reactor coolant pressure uncertainty, psi a 30 DNB Limit (safety analysis limit) 1.40 1.6 Low Tcaperature Overprcssurc Protection (LTDP)

Hinimua RCS vent size, square inches No. of Si pcs capable of injection 0/1 (PDRVs/vent)

Haxiaam pressurizer level for RCP start, X 38 1.7 Fuel Handling/Dose Calculations Haxigull reactor coolant gross specific activity 100/b pCi/gm Haximm reactor coolant dose equivalent 1.131 1.0 pCi/gm Haxinxm secondary coolant dose equivalent I-131 0.1 pCi/gm Hinimm reactor coolant boron concentration, ppm 2000 Hinimia reactor coolant level 23 ft above flange Hiniaxm spent fuel pool level 23 ft above fuel Hinimua spent fuel pool boron concentration, ppa 300 Hjnieun spent fuel pool charcoal filter 70 TS testing requires 90K cff.

efficiency, X methyl iodine removal Hinfnxsa post accident charcoal filter 70 TS testing requires 90K eff.

efficiency, X methyl iodine removal COLR 14 Cycle 27, Rev>sion 0

Item g Item/Name Value Remarks:

Minimus control room charcoal filter efficiency, 70 TS testing requires 90X eff.

X methyl iodine removal Minimus time between reactor criticality and 100 fuel movement, hrs.

Source Terms used for dose calculations ORGEH 2 Dose conversion factors ICRP-30 Maximun Gas Decay Tank Xenon-133 concentration, 100,000 Ci 2.0 Main Feedwater (MFII)

Feedwater temperature versus load Power Tecyerature 100X design temp is 432 degrees F 102X 425 F 70X 385 F 30X 322 F DX 100 F Feedwater Suction Temperature vs power, nominal Power Temperature 98X 345 F 70X 319 F 50X 295 F 30X 259 F Feedwater Suction Pressure vs power, nominal Power Pressure 98X 277 psig 70X 282 psig 50X 305 psig 30X 370 psig 2.1 Head-Capacity and HPSH curves Head-Capacity and HPSH curves for main feedwater Sec HS&L Selected flow splits are provided for pcs model validation.

Main Feedwater pump " Rated Head Main Feedwater purp - Rated Torque Main Feedwater pump - Moment of inertia 2150'89.612 Elevation of stcam generator inlet nozzle Elevation of main feedwater pump, ft 257.75 Elevation is at center of shaft Elevation of condensate pump, ft 250.833 MFII regulating valve open time on demand, sec MFII regulating vaLve close time on demand, sec 10 MFII regulating valve Cv, full stroke Assuned value. Actual value -"684.

Low Load MFII regulating valve Cv, (bypass 48.7 Effective Cv: includes bypass line valves)

MFll Heater resistance (delta p) see HS&L Design data on the High Pressure 0 Heaters (2 in parallel) is provided 3.0 Auxiliary Feedwater (AFM)

Minimus design temperature of the ~ater source 32(*), 50 Initial AFlJ water source are the CSTs service water / CST (degrees F) located in the Service Bldg. Safety Related source is the Service 'Mater system (lake). " Value different for CHMT integrity.

Max'~~ design temperature of the water source 80, 100 initial AFIJ water source arc the CSTs service water / CST (degrees F) located in the Service Bldg. Safety Related source is the Service llater system (Lake).

COLR 15 Cycle 27, Revision 0

0 Table 1: UFSAR Chapter 5 Analysj.s Setpoi]Its aTIcL , ut Parameters Item g Item/Name Value Remarks:

Startup time for the auxiliary feedwater Imps, *TOAFM starts on LO levet (17K) in sec both gens or UV on both unit HDAFM starts on SI (seq), or 4'usses.

I.O Level either SG, or trip of both HFP or AHSAC Hinimm delay for AFM start, sec TDAF'M - OI HDAFM - 1 HDAFM acceleration time test results show approximately 1.5 s.

Haximua delay for AFM start, sec HDAFM - 47, TOAFM at For HDAFM, LOOP on sequencer is 47 LO Level both SGs sec. TDAFM starts at nominal 17'n both SGs AFM control valve open time on demand, sec H/A HDAFM control valves are normatly open and throttle closed to control flow between 200-230 gpm AFM controL valve Cv[ftow is f(dP)] NDAFMP valves are 3 Rockwell model ¹ A4006JKHY stop check valves. TDAFM controL valves (4297, 4298) are 3 Fisher ¹470-HS.

TDAFMP, maximm flow, gpm 600 AFM, minimus flows, both generators intact, gpm TOAFMP 200/SG SBLOCA assunes 200 gpa per SG with HDAFMP 200/SG the faiture of one DG Hinfmua delay for standby AFM start, min 10 4.0 Hain Stem System (HS)

Location (and elevation) of condenser dump CSD . elev 256'.875 valves and atmospheric relief valves ARV - elev 289'.563 FulL load steam line pressure drop, psi approx 45 This estimate, to the governor valves, is provided for comparison purposes only.

HS Isolation valve close time [full open to full NSIV - 5.0 The check valve is assuned to close close] close timei sec check vatve - 1.0 in 1 sec under reverse flow.

HS Isolation valve Cv [flow is f (dp)] HSIV - 23500 check valve - 17580 4.1 Hain Stem Code Safety Valves Number of valves (4 per line)

Valve flow capacities - Total, Lbm/hr 6621000 Rated flow (3X accunutation per ASHE,Section III):

1085 psfg o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 797g700 Lbm/hr (each) 1140 psig .... ~ ..... .....

~ ~ 837,600 ibm/hr (each)

COLR 16 Cyc1e 27, Revision 0

Item f Item/Name Value Remarks:

Valve Flow vs SG pressure (psia), total per 1110 0 bank (4 valves), ibm/sec. 1115 40 1120 91 1125 141 1131 191 1136 222 1141 223 1151 225 1161 227 1166 228 1173 342 1181 494 1190 646 1200 799 1205 859 1209 920 1211 931 Number of valves in bank 4 Valve sctpoint(s), (first/last three), nominal, 1085/1140 Valves are Crosby AHA-65 6R10 psig /

Setpoint tolerance Is +1X -3X.

setpoint at 1.01 Nodel valve (nominal), and fuLL flow at 1.04 (nominaL).

VaLve blowdown characteristic 15X max imm 4.2 Atmospheric relief valves No. Atmospheric relief valves 2 Atmospheric relief valve setpoint/Air-operated, 1050 During Hot Standby operation setpoint psig Is lowered to control no load Tavg Atmospheric relief valve setpoint/Booster, psig 1060 Atmospheric relief valve capacity, Lbm/hr 313550 at 1060 psig Nax flow is 380000 5.0 Turbine Generator (TG) 5.1 Condenser No. of condenser disap valves condenser dms valve open time, sec Condenser dms valve close time, sec Assusing close time ~ opening time Condenser dump valve setpoint(s) For TT: Tavg>555 4 valves, Gn TT valves control open at 6.7X/F

>563 4 valves; (PID) above 547 with full open no TT: Tref +12 4 valves, sctpoints as described. On 10X step Tref+20 4 valves Load decrease same ratio with a 6F deadband from Tref Condenser dump vaLve Cv [flow is f(dP)] Oesign Cv (240) from design conditions (302,500 Lbm/hr sat steam at 695 psig) 6.0 Chemical and Voltmc Control System (CVCS)

CVCS cspsc I ty/pump 3 pmys, 60 gpm msx each Normal ops: 2 charging pumps - onc is manual at 15-20 gpm snd the other in autcmatic. Charging pumps sre PDPs w/ 46 gpm total - 8 gpm to seals - 3 gpm leakage + 5 gpm into RCS. 40 gpm Letdown COLR 17 Cycle 27, Revision 0

Table 1: UFSAR (-haPter 5 Analysis Setpoints and ut parameters Item 4 Item/Name Value Remarks:

CVCS mfnfmua/pm', gpm 15 Type of controLLer (e.g., p + 1) and gains PLD 100K,180 sec,10 sec Reactor Hakeup Matei System (QHl)

RHll capacf ty/pulp 2 puris, 60 gpa each 7.0 Emergency Core Cooling System (ECCS) 7.1 ECCS Delivery's RCS Pressure 7.1.1 Residual Heat Removal (RHR) Delivery vs RCS Pressure Hfnfmus RHR Delfvery, train failure RCS Pressure Delivery LOCA Appendix K case. Train failure (psia) (gpm) results fn one punp running with 10K 155 0 degradation with one line bLocked.

152 0 150 0 140 250 120 648 100 836 80 985 60 1115 40 1232 20 1338 14.7 1365 Hfnfaxja RHR Delivery, two fxmys runnfng, one RCS Pressure Delivery LOCA Appendix K case (offsfte power line blocked (psfa) (gpm) availablc). Two pumps running with 155 0 10K degradation with one line 154 0 blocked.

152 160 150 252 140 516 120 830 100 1056 80 1243 60 1406 40 1552 20 1686 14.7 1720 7 1.2 Safety injection (Sf) Delivery vs RCS Prcssure Hfnfmua Si delivery, 2 pumps operating, onc Line Press Delivery Spill LOCA Appendix K case. Train failure spilling (psig) (gpm) (gpm) results in two punps running wfth 5X 1375 0.0 465 degradation with one Line spi llfng to 1300 62 465 contafcment.

1200 125 465 1100 167 465 1000 201 465 900 229 465 800 253 465 700 273 465 600 289 465 500 305 465 400 321 465 300 336 465 200 352 465 100 368 465 0 394 465 COLR 18 Cycle 27, Revision 0

Table 1: UFSAR Chapter 5 Analysis Setpoints and parameters Item 4 Item/Name Value Remarks:

Minimun Si delivery, 3 punps operating, non-LOCA Press Oelivcry (gpm) Used for non-LOCA transients, 5X pump (psia) Loop I gl

'A'oop degradation 1390 16 19 1315 87 97 1215 147 163 1115 193 214 1015 231 257 915 266 295 815 297 329 715 325 360 615 352 390 515 377 418 415 400 444 315 423 469 215 445 493 115 465 516 15 485 538 Mininnnn Si delivery, 2 pumps operating non-LOCA Press Delivery (gpn) Used for non-LOCA transients, 5X pump (psia) Loop 'A'gl Loop degradation.

1390 8 8 1315 69 71 1215 121 126 1115 162 169 1015 197 206 915 228 239 815 255 269 715 281 296 615 305 322 515 328 346 415 350 369 315 370 391 215 390 412 115 409 432 15 427 452 Maximun Si delivery, 3 punps operating, SGTR Press Loop A Loop 8 The KYPTPE model assunes no pump (psig) (gpn) (gpm) degradation. Loop A and 8 pressures 1375 76 84 are set equal. Used for SGTR.

1300 128 141 1200 180 198 1100 221 245 1000 258 285 900 '290 321 800 320 354 700 348 385 600 374 413 500 398 440 400 421 466 300 443 490 200 464 514 100 485 536 0 504 558 7.3 Ac~lators Munster of accunulators 2 Total volune, each, 1750 voluncl ft ft'iquid min/max 1126/1154 Liquid volunei ft - Best Estimate 1140 initial prcssure, psig - Minimun / Maxlmun 700/790 COLR 19 Cycle 27, Revision 0

Table 1: UFSAR Chapter 5 Analysis Setpoints and ut parameters Item 4 Item/Name Value Remarks:

initial temperature, F 105 LBLOCA Boron concentration, ppm (mfn/max) 2100/2600 Hote - Ea analyses use a maximus concentratIon of 3000 ppm 7 4 RMST RUST /

TeIIperature, min max, degrees F 60 / 80 fffnfmua RWST votIme, gal 300,000 RMST boron concentration, ppm (min/max) 2300/2600 Hote - EQ analyses use a maxiImm concentration of 3000 ppm 8.0 Contafrment initial contaf~nt pressure p ia min - 14 ' ~ HfnfmuII is used for LOCA analysis.

max - 16.7 Haxfmm is used for the contafwent integrity cases (SI.B).

initial containment temperature (LOCA/SLB) 90/120 LOCA temperature lower for PCT degrees F calculations. SLB hfgher for contairment integrity initial relative huaidity, X 20 SM teIIperature min/max, degrees F 30~/80 *Vatue different for auxiliary feedwater HaxfImm contafment leakage, wtX/day 0.2 8.1 ContafImcnt Heat Sinks Listing of Passive Heat Sinks, quantities, see HSSL metal'fels ~ and configurations 8.2 Bensities, Thermal Conductfvities and Heat Capacities of Heat Sinks Insulatfon density, conductivity, capacity 3.7 ibm/fta 0.0208 BTU/hr F ft 1.11 BTU/ft F Concrete density, conductivity, capacity 150 ibm/ft note: mfnfImm conductivity 0.81 BTU/hrFf t corresponds to maximus density, and 31.5 BTU/fthm F maxfImm conductivity corresponds to mfnfmun density.

Steel density, conductivfty, capacity 490 tbm/ft 28 BTU/hrFft 54.4 BTU/ft F Stainless steel density, conductfvity, capacfty 496 tbm/ft 15 BTU/hrFft 54.6 BTU/fta F Contafrment free votune, mfn / max, cu. ft. 1,000,000 / 1,066,000 Ground TNIperature (degrees F) 55 below grade temperature Outside Air Temperature, min / max, degrees F -10 / 100 HTC for outside surfaces 1.65 BTU/hr ft degrees F COLR 20 Cycle 27, Revision 0

Table 1: UPSAR (-hapter 5 Analysis Setpoints and i put Parameters Item 4 Item/Name Value Remarks:

Contairrnent fan cooler performance Tenp Hin Hax (deg F) (X106BTU/hr) 120 2.05 4 55 F

220 35.1 99.2 240 40.8 113.8 260 46.8 129.3 280 52.9 145.5 286 54.7 150.4 Contairltent spray flow, min / max, each, gpm 1300 / 1800 8.3 Oclays for CRFCs and Spray punps CRFC delay, offsite power available, seconds 34 includes 2.0 sec SI delay CRFC delay, offsite power not avaf lable, seconds 44 includes 2.0 sec SI delay Contafnment Spray, 1300 gpm each fxlp, maxfmun 28.5 - onc punp This delay is from the tfme delay, sec 26.8 - two pumps Containment Hi-Mi setpoint is reached. It includes instrunent delay and spray line fill time.

Contafreent Spray, 1800 gpm each punp, mfnfmun 9 / (14 w LoOP) This delay is from the tfme of break.

dele/, sec ContafrInent Oesfgn pressure, psig 60 Ofstance Basement floor to Springline, feet 95 Oistance Sprfngline to top of done, feet 52.5 8.4 Contairwent Surp Hinimun wtX of HaOH Tank 30 9.0 Control Systems (Reactor, FM, przr Level, Turbine, AFIJ)

Tavg versus power H/A Tavg ramps Linearly from 547 degrees F at OX power to 561 degrees F at 100K power pressurizer pressure and level algorithms N/A pressurizer pressure setpoint is constant at 2235 psig . Pressurizer leveL reaps from 35K to 50K for 0 to 100K power (547 - 561 degrees F).

SO secondary level algorithm H/A Level remains constant at 52X to 100X power. (Power from turbine 1st stage press.)

10.0 Sa fcty System Setpoints 10.'I Reactor Protection System 10 ~ 1.1 power range high neutron flux, high setting nominal 1.09 accident analysis 1.18 delay time, sec 0.5 10.1.2 Power range high neutron flux, Low setting nominal 0.250 accident analysis 0.350 COLR 21 Cyc1e 27, Revision 0

Xtem 4 Item/Name Value Remarks:

delay time, sec 0 '

10.1.3 Overtemperature delta T nominal Variable accident analysis Variable delay time, sec 6.0 Total delay time - from the time the tenperature difference in the coolant Loops exceeds the trip .setpoint until the rods are free to fall 10.1A Overpower delta T nominal Variable accident analysis Variable Hot explicitly modelled in safety analysis delay time, sec 2.0 10.1.5 High pressurizer pressure nominal, psig accident analysis, psia 2410 delay time, sec 2.0 10.1.6 Low pressurizer pressure nominal, psig 1873 accident analysis, psia 1775 (non-LOCA) 1715 (LOCA) 1905 (SGTR) delay time, sec 2.0 10.1.7 Low reactor coolant flow nominal 91K of normal indicated flow accident analysis 87X per Loop delay time, sec 1.0 10.1.8 Low-Low SG level nominal 17K of the narrow range While trip setpoint could be as Low Level span as 16K, AFll initiation Limits to 17K accident analysis OX of narrow range Level span delay time, sec 2.0 10.1.9 Turbine Trip (low fluid oil pressure) nominal, psig 45 accident analysis H/A Hot explicitly modeled in safety analysis delay time, sec 2.0 COLR 22 Cycle 27, Revision, 0

Table 1- UPSAR

~

Chapter 15 Analysis Setpoints . ~

and Input parameters Item g Item/Name Value Remarks:

10.1.10 Undervoltage ncminal, V 3150 accident analysis Safety analysis assunes RCCAs are released 1.5 scc. after sctpoint is released.

delay time. sec 1 ~ 5 10.1.11 Undcrfrcqumcy nominal, Hz 57.7 accident analysis 57.0 Analysis is performed but not explicitly modeled in safety analysis.

delay time 1.2 Safety analysis assunes RCCAs are released 1 ' sec after setpoint is reached.

10.1.12 Intermediate range nominal, RTP 0.25 Hay fluctuate duc to core flux safety analysis, RTP H/A Hot explicitly modeled in safety'nalysis delay time, sec H/A 10.1.13 Source Range nominal, cps 1.4E+5 Highest nominal value accident analysis, cps 1 AL OE+5 delay time, sec 2.0 10.1.14 High Pressurizer level nominal 0.90 accident analysis 0.938 delay time, sec 2.0 10.2 Englneercd Safety Features Actuation System 10.2.1 Sa fcty injection System 10.2.1.1 'High con'tailNcAt prcssure Hominal setpoint, psig 4.0 Accident Analysis setpoint, psig 6.0 * *only modeled in accident analysis for start of containment fan coolers.

oelay time, sec 34 Time delays are for start of 44 w/ LOOP containment fan coolers.

10.2.1.2 Lou pressurizer pressure Hominal setpoint, psig 1750 COLR 23 Cycle 27, Revision 0

Table 1:

Xtem 4 UFSAR

~

Xtem/Name Chapter 15 Analysis Setpoints and input parameters Value

~

Remarks:

Accident Analysis setpoint, psia 1785, SGTR 1730, non-LOCA 1715, LOCA Delay time, sec 2.0 10 2.1 3 Low ate~ line pressul e Hominal setpolnt, psig 514 Accident Analysis setpoint, psig 372.7 See HS&L Delay time, sec 2.0 See NS&L 10.2.2 Contairwmt Spray Hominal Setpoint, psig 28 Accident analysis setpoint, psig 32.5 Sec HS&L Delay time, sec 28.5 Delay time includes time to fill lines. See HS&L 10.2.3 AFM System Lcw low ate~ generator water Nominal Setpoint 17 X of narrow range instrunent span each steam generator Accident analysis setpoint 0 X of narrow range A positive 11K error has been instrunent span each steam included to account for the SG level generator measurement system at a contairraent tecperature of 286 F Delay time, sec 2.0 10.2 4 Steam Line Isolation 10.2.4.1 High conte irsaent pressure Nominal Setpoint, psig 18 Accident analysis setpoint H/A Not explicitly modeled Delay time H/A Not explicitly modeled 10.2 4.2 High stem flow, coincident with low Tavg and SI Hominal Sctpoint 0.4E6 lb/hr equivalent steam Note flow setpoint is below nominal flow at 755 psig and Tavg < full power flow and therefore this 545 F portion of logic is made up at power Accident analysis setpoint N/A Not explicitly modeled Delay time N/A Hot explicitly modeled. Steam line isolation is assumed concurrent with SI (i.e. 2 s delay +'5 s valve stroke) 10.2.4.3 High-high stem flow, coincident SI Hominal Setpoint 3.6E6 lb/hr equivalent steam flow at 755 psig Accident analysis setpoint N/A Hot explic>tly modeled COLR 24 Cycle 27, Revision 0

Item f Item/Name Value Remarks:

Delay time H/A Hot explicitly modeled. Steam Line isolation is assumed concurrent with si (i.e. 2 s delay + 5 s valve stroke) 10.2.5 Feedwater isolation 10.2.5.1 High stem generator water level Hominal Setpoint 85X of the narrow range instrunent span each SG Accident analysis setpoint 100X of the narrow range instrunent span each SG Delay time 2.0 Lnstrunent loop only 11 0 Bill Stem Generators Heat load per SG, BTU/hr 2,602,000,000 Primary flow per SG, Klb/hr PluggingX Flow Klb/hr Design flows at T,, ~ 573.5 F 0 34950 5 34630 10 34280 15 33850 Steam flow per SG, Lb/hr (clean, unplugged) 3,264,358 at 877 psia conditions for T~ ~ 573.5 F Secondary design pressure, psig 1085 Secondary design teaperature, F 556 Maxicxla moisture carryover, X 0.10 Harrow range level tap secondary face locations, inches above 386/s / 529/I TS Mide range level tap Locat'ions, inches above TS secondary face 8 /~ / 529 /e SG Pressure Drops Secondary nozzle to nozzle dP Q full power, psi 14.7 Value is totaL static pressure drop.

Secondary nozzle to nozzle dP Q full po~er, psi 7.5 Pressure drop from top of U-bend to outlet.

primary nozzle to nozzle unrecoverable pressure PluggingX ap psi See associated flows for X plugging.

cirop vs. plugging, psi 0 31.01 5 33.27 10 35.82 15 38.72 11.2 SG Tubes Ho. of tubes per SG 4765 Tube 00, inches 0.750 Tube average wall thickness inches 0.043 Maxinxla tube length, ft 70.200 Includes length in tubesheet (2x25.625")

Minimus tube length, ft 55.925 includes length in tubesheet (2x25.625")

Average length, ft 61.988 includes length in tubesheet (2x25.625")

COLR 25 Cycle 27, Revision 0

I Table 1: UFSAR (-'hap<<r 5 Analysis Setpoints and ut parameters Item 4 Item/Name Value Remarks:

Hlnfaae U-bend radius, inches 3.979 Note: this is not the bend radius for the shortest tube.

Haxiaam U-bend radius, inches 54.007 U-bend radius of shortest tube(s), inches 4.044 Average U-bend radius, inches 24.51 Tube straight Length (one side) above secondary 303 /lg / 310 /i / 308.182 face, inches (min/max/average)

Secondary heat transfer area, ft per SG 54,001 Primary heat transfer area, ft~ per SG 47,809 overall bundle height, ft above secondary face 30.427 of TS Tube material SB-163 Alloy N06690 SG Tube Haterial Thermal Conductivity, Temp F Conductivity BTU-in/hr-ft'-F 200 93 300 100 400 107 500 114.5 600 122 SG Tube Haterial Specific Neat BTU/lb.F Temp F Conductivity 200 0.112 300 0. 1155 400 0.119 500 0.1225 600 0.126 Distance from top of tube bundle to fthm 33'RL, ft 5.703 11.3 SG Voltmes 11.3.1 SG Secondary Side Vol~

secondary volte, ft (total) 4512.7 Secondary volune up to lower NRL tap, ft 1893.2 Secondary volune up to upper NRL tap, ft 3460.4 11.3.2 Riser Volmes ft'281.8 Secondary side bundle volune (TS to top of U-bend inside shroud),

secondary riser volune, top of U-bend to spill- 507.0 Equivalent to LOFTRAN riser volune.

ft'59.6 over point, 11.3.3 Dosncomer Vol mes Downcomer volune, top of TS to top of U-b &,

ft'owncomer volunc, top of U b Qf to spi 1437.3 point, 11.3.4 SG Primary Side Valuate Inlet plenua per SG, fts 129.65 Outlet plenun per SG, fthm 129.65 COLR 26 Cycle 27, Revision 0

Table 1: UPSAR Chapter 15 Analysis Setpoints and Input Parameters Xtem f Xtem/Name Value Remarks:

Tube primary velum per SG, fta 710.3 Primary total volune per SG, fthm 969.6 Circulation ratio (100X power, clean, unplugged) 5.39 Circulation ratio = bundle flow g steam flow. Assunes 40,000 Lbmghr b lowdown.

Tubesheet thickness, inches 25.625 Includes cladding.

11.4 SG Primry Side Dimensions PHmary head radius, inches 58.375 Radius to clad surface.

Divider plate thickness, inches 1.875 Inlet and outlet nozzle, inside diametel 31.200 cylindrical section, inches Nozzle divergence angle, degrees 11 30'7.0 Nozzle inside diameter at plena, inches Nozzle Lengths, inches cylindrical section 8.75 conical section 13.0 total length 21.75 Heigth from SG primary head bottom (outside) to 90'lle top of Ts, inches Distance tube sheet primary face to hot leg 6.654 centerline, ft.

11.5 SG Secondary Side Dimensions Lower shell inside diameter, inches 122 Lower shell thickness, inches 2.875 Tube shroud inside diameter, inches 114 Distance top of tube bundle to top of steam 298.5 nozzle, inches steam nozzle flow restricter area, 1.4 secondary face of TS to centerline of ft'istance 407'i, feedwater nozzle, inches Distance secondary face of TS to centerline of 374 feed ring, inches Cross-sectional area of tube bundle ft~ 41.64 This value is total area inside shroud.

Distance top of tube bundle to spill-over point, 178.0 This value is equivalent to the riser inches height for the DSG.

Primary side roughness, micro-inches Hozzles, head 60 values given are conservative Tubes 60 assunptions.

SG Secondary Side Mater Hasses Secondary ~ater inventory, 100)', power, T,, ~ 86,259 liquid gest estimate value.

573.5, no plugging, ibm 5,286 steam Secondary water inventory, 100'ower, T, 85,547 liquid gest estimate value.

559, no plugging, Lbn 4,675 steam 11.7 SG Primary Side Head Loss Coefficients COLR 27 Cycle 27, Revision 0

Item 4 Item/Name Value Remarks:

gG inlet nozzle/plenum loss coefficient, ft/gpm 1.01E-09 for ID <<31.2<<

gG outlet nozzle/plenum loss coefficient, 3.31E-10 for IO <<31.2<<

ft/gpm gG tubing loss coefficient, ft/gpm 9.62E-09 for OX plugging For cube ID <<0.664", Ao>> <<11.458 1.32E-08 for 15X plugging fC2~ A~~>>

assumed to be uniform.

SG Cubing loss coefficient, sCraight section 4.19E-09 for OX plugging For tube ID << 0.664<<, A << 11.458 (in), ft/gpm'G 5.73E-09 for 15K plugging ft, A,~>> "-9.739 ft .

assuned to be uniform.

Plugging is tubing loss coefficient, U-bend section, 1.02E-09 for OX plugging For tube 10 = 0.664", Ao>> = 11.458 ft/gpm 1.40E-09 for 15K plugging fc', A= 9.739 ft . Plugging is assumed to be uniform.

$0 tubing Loss coefficient, straight section 4.41E.09 for OX plugging For tube ID = 0.664" ~ Ao" -11.458 (out), ft/gpm 6.08E-09 for 15X plugging fthm, Al5>> = 9.739 ft2. Plugging is assumed to be uniform.

COLR 28 Cycle 27, Revision 0

4