ML17265A630: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML17265A630
| number = ML17265A630
| issue date = 04/18/1999
| issue date = 04/18/1999
| title = Rev 1 to Cycle 28 Colr for Re Ginna Npp.
| title = Rev 1 to Cycle 28 COLR for Re Ginna Npp.
| author name =  
| author name =  
| author affiliation = ROCHESTER GAS & ELECTRIC CORP.
| author affiliation = ROCHESTER GAS & ELECTRIC CORP.
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:GINNA STATION COLR Cycle 28 Revision t CORE OPERATING LIIVIITS REPORT (COL R)Re ponsible Hanaget H/I E/9 9'ffective Date Controlled Copy No.(9q04290042 990419 PDR ADOCK 05000244i P PDRI I 0
{{#Wiki_filter:COLR GINNA STATION                       Cycle 28 Revision t CORE OPERATING LIIVIITS REPORT (COL R)
R.E.Ginna Nuclear Power Plant Core Operating Limits Report Cycle 28 Revision 1 This report is not part of the Technical Specifications.
Re ponsible Hanaget H/IE/9 9'ffective Date Controlled Copy No.
This report is referenced in the Technical Specifications.
9q04290042 990419
TABLE OF CONTENTS 1.0 CORE OPERATING LIMITS REPORT 2.0 OPERATING LIMITS 2.1 SHUTDOWN MARGIN.2.2 MODERATOR TEMPERATURE COEFFICIENT
( PDR ADOCK 05000244i P             PDRI I
.2.3 Shutdown Bank Insertion Limit.2.4 Control Bank Insertion Limits.2.5 Heat Flux Hot Channel Factor (Fo(Z))2.6 Nuclear Enthalpy Rise Hot Channel Factor (F"~2.7 AXIAL FLUX DIFFERENCE
.2.8 RCS Pressure, Temperature, and Flow Departure Boiling (DNB)Limits 2.9 Boron Concentration
.~~~)~~~~~~~from Nucleate~~~~~3 3 3 3 4 4 4 5 5 3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS
.....5


==4.0 REFERENCES==
0 R.E. Ginna Nuclear Power Plant Core Operating  Limits Report Cycle 28 Revision  1 This report is not part of the Technical Specifications. This report is referenced in the Technical Specifications.


6 FIGURE 1-REQUIRED SHUTDOWN MARGIN....................7 FIGURE 2-CONTROL BANK INSERTION LIMITS................
TABLE OF CONTENTS 1.0   CORE OPERATING   LIMITS REPORT 2.0   OPERATING LIMITS                                                             3 2.1     SHUTDOWN MARGIN .                                                     3 2.2     MODERATOR TEMPERATURE COEFFICIENT .                                   3 2.3     Shutdown Bank Insertion Limit .                                       3 2.4     Control Bank Insertion Limits .                                       4 2.5     Heat Flux Hot Channel Factor (Fo(Z))             ~ ~ ~
8 FIGURE 3-K(Z)-NORMALIZED Fo(Z)AS A FUNCTION OF CORE HEIGHT.....
2.6     Nuclear Enthalpy Rise Hot Channel Factor (F"~ )                       4 2.7     AXIAL FLUX DIFFERENCE .                           ~ ~ ~ ~ ~ ~ ~      4 2.8     RCS Pressure,  Temperature, and Flow Departure from Nucleate Boiling  (DNB) Limits                                                 5 2.9     Boron Concentration   .                           ~ ~ ~ ~ ~          5 3.0   UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS        .....         5
9 FIGURE 4-AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS-AS A FUNCTION OF RATED THERMAL POWER TABLE 1-UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS.
10 11 COLR Cycle 28Revision 1 R.E.Ginna Nuclear Power Plant Core Operating Limits Report Cycle 28 Revision 1=1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR)for Ginna Station has been prepared in accordance with the requirements of Technical Specification 5.6.5.The Technical Specifications affected by this report are listed below: 3.1.1 3.1.3 3.1.5 3.1.6 3.2.1 3.2.2 3.2.3 3.4.1 3.9.1"SHUTDOWN MARGIN (SDM)""MODERATOR TEMPERATURE COEFFICIENT (MTC)""Shutdown Bank Insertion Limit""Control Bank Insertion Limits""Heat Flux Hot Channel Factor (Fo(Z))""Nuclear Enthalpy Rise Hot Channel Factor (F"~)""AXIAL FLUX DIFFERENCE (AFD)""RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB)Limits""Boron Concentration" COLR Cycle 28, Revision 1 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.
These limits have been developed using the NRC approved methodologies specified in Technical Specification 5.6.5.All items that appear in capitalized type are defined in Technical Specification 1.1,"Definitions." 2.1 SHUTDOWN MARGIN (LCO 3.1.1)(Limits generated using Reference 1)The SHUTDOWN MARGIN in MODE 2 with K,<<(1.0 and MODES 3 and 4 shall be greater than or equal to the limits specified in Figure 1 for the number of reactor coolant pumps in operation (non main feedwater operation).
2.1.2 2.1.3 The SHUTDOWN MARGIN in MODE 4 when both reactor coolant pumps are not OPERABLE and in operation and in MODE 5 shall be greater than or equal to the one loop operation curve of Figure 1.The SHUTDOWN MARGIN required in LCOs 3.1.4, 3.1.5, 3.1.6, 3.1.8, and 3.4,5 shall be greater than the limits specified in Figure 1 for the number of reactor coolant pumps in operation and the status of the main feedwater system.2.2 MODERATOR TEMPERATURE COEFFICIENT (LCO 3.1.3)(Limits generated using Reference 1)2.2.1 The Moderator Temperature Coefficient (MTC)limits are: The BOL ARO/HZP-MTC shall be less positive than+5.0 pcm/'F for power levels below 70%RTP and less than or equal to 0 pcm/'F for power levels at or above 70%RTP.The EOL ARO/RTP-MTC shall be less negative than-42.9 pcm/'F.where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life HZP stands for Hot Zero THERMAL POWER RTP stands for RATED THERMAL POWER 2.3 Shutdown Bank Insertion Limit (LCO 3.1.5)(Limits generated using Reference 1)2.3.1 The shutdown bank shall be fully withdrawn which is defined as z 221 steps.COLR Cycle 28, Revision 1 2.4 Control Bank Insertion Limits (LCO 3.1.6)(Limits generated using Reference 1)2.4.1 2.4.2 The control banks shall be limited in physical insertion as shown in Figure 2.The control banks shall be moved sequentially with a 100 (+5)step overlap between successive banks.2.5 Heat Flux Hot Channel Factor F Z (LCO 3.2.1)(Limits generated using References 1 and 2)F (Z)s~F/*K(Z)P Fo(Z)~QFog*K(Z)0.5 when P>0.5 when P s 0.5 where: 2 is the height in the core, Fo~2.45, K(Z)is provided in Figure 3, and THERMAL POWER P=RATED THERMAL POWER 2.6 Nuclear Enthal Rise Hot Channel Factor F" (LCO 3.2.2)(Limits generated using Reference 1)2.6.1 F"~s F"~*(1+PF~*(1-P))where: PF~-0.3, and THERMAL POWER'RATED THERMAL POWER 2.7 AXIAL FLUX DIFFERENCE (LCO 3.2.3)(Limits generated using References 1 and 3)2.7.1 2.7.2 The AXIAL FLUX DIFFERENCE (AFD)target band is+5%.The actual target bands are provided by Procedure RE-11.1.The AFD acceptable operation limits are provided in Figure 4.COLR Cycle 28, Revision 1 0
3 2.8 RCS Pressure Tem erature and Flow De arture from Nucleate Boilin~DNB Li it LLBB 3.4.13 (Limits generated using Reference 4)2.8.1 2.8.2 2.8.3 The pressurizer pressure shall be>2205 psig.The RCS average temperature shall be s 577.5 F.The RCS total flow rate shall be a 177,300 gpm (includes 4%minimum flow uncertainty per Revised Thermal Design Hethodology).
2.9 Boron Concentration (LCO 3.9.1)(Limits generated using Reference 1)2.9.1 The boron concentrations of the hydraulically coupled Reactor Coolant System, the refueling canal, and the refueling cavity shall be)2300 ypm.3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAHETERS The setpoints and input parameters for the UFSAR Chapter 15 accident analyses are presented in Table 1.The values presented in this table are organized based on system and major components within each system.The failure of a component or system to meet the specified Table 1 value does not necessarily mean that the plant is outside the accident analyses since: (1)an indicated value above or below the Table 1 values may be bounded by the Table 1 values, and (2)the setpoint or parameter may not significantly contribute to the accident analyses final results.The major sections within Table 1 are: 1.0 Reactor Coolant System (RCS)2.0 Hain Feedwater (HFW)3.0 Auxiliary Feedwater (AFW)4.0 Hain Steam (HS)System 5.0 Turbine Generator (TG)6.0 Chemical and Volume Control System (CVCS)7.0 Emergency Core Cooling System (ECCS)8.0 Containment 9.0 Control Systems 10.0 Safety System Setpoints 11.0 Steam Generators COLR Cycle 28, Revision 1


==4.0 REFERENCES==
==4.0   REFERENCES==
6
            - REQUIRED SHUTDOWN MARGIN    .              .  .  . .  . . . . .  . 7 FIGURE  1                              .  . . . . . . .          .
FIGURE 2    - CONTROL BANK INSERTION  LIMITS                                        8 FIGURE 3 -    K(Z) -  NORMALIZED Fo(Z)  AS A FUNCTION OF CORE  HEIGHT.....          9 FIGURE 4 - AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS -AS A FUNCTION OF RATED THERMAL POWER        10 TABLE  1  - UFSAR CHAPTER 15 ANALYSIS SETPOINTS  AND INPUT PARAMETERS.            11 COLR                                                            Cycle 28 Revision  1


1.WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology, Quly 1985.2.WCAP-10054-P-A and WCAP-10081-A,"Westinghouse Small Break ECCS Evaluation Model Using the NOTRUHP Code," August 1985.WCAP-10924-P-A, Volume 1, Revision 1,"Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 1: Model Description and Validation Responses to NRC Questions," and Addenda 1,2,3, December 1988.WCAP-10924-P-A, Volume 2, Revision 2,"Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped with Upper Plenum Injection," and Addendum 1, December 1988.WCAP-10924-P-A, Volume 1, Revision 1, Addendum 4,"Westinghouse Large-Break LOCA Best-Estimate Hethodology, Volume 1: Model Description and Validation, Addendum 4: Model Revisions," March 1991.WCAP-13677-P-A,"10 CFR 50.46 Evaluation Model Report: WCOBRA/TRAC Two-Loop Upper Plenum Injection Model Updates to Support ZIRLO&#x17d;Cladding Option," February 1994.WCAP-12610-P-A,"VANTAGE+Fuel Assembly Reference Core Report," April 1995.WCAP-8385,"Power Distribution Control and Load Following Procedures-Topical Report," September 1974.4.WCAP-11397-P-A,"Revised Thermal Design Procedure", April 1989.COLR Cycle 28, Revision 1  
R.E. Ginna Nuclear Power Plant Core Operating Limits Report Cycle 28 Revision 1
=
1.0  CORE OPERATING  LIMITS  REPORT This Core Operating Limits Report (COLR) for Ginna Station has been prepared in accordance with the requirements of Technical Specification 5.6.5.
The Technical Specifications affected    by  this report are listed  below:
3.1.1        "SHUTDOWN MARGIN (SDM)"
3.1.3        "MODERATOR TEMPERATURE COEFFICIENT    (MTC)"
3.1.5        "Shutdown Bank    Insertion Limit" 3.1.6        "Control Bank Insertion Limits" 3.2.1       "Heat Flux Hot Channel Factor (Fo(Z))"
3.2.2       "Nuclear Enthalpy Rise Hot Channel Factor (F"~)"
3.2.3        "AXIAL FLUX DIFFERENCE (AFD)"
3.4.1        "RCS  Pressure, Temperature,   and Flow Departure  from Nucleate Boiling  (DNB) Limits" 3.9.1        "Boron Concentration" COLR                                                           Cycle 28, Revision   1


===2.5 ACCEPTABLE===
2.0    OPERATING LIMITS The  cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.              These limits have been developed using the    NRC  approved methodologies specified in Technical Specification 5.6.5. All items that appear in capitalized type are defined in Technical Specification 1. 1, "Definitions."
OPERATION~~(0.2 45)(0.2 40)O MO b D Q LLJ rL z P-D x (o 1.5 (1500.1,45)
2.1    SHUTDOWN MARGIN    (LCO 3.1.1)
I I 1 (1500,1,00)
(Limits generated using Reference      1)
I 0.5 UNACCEPTABLE OPERATION (0,1,80)0 1500 ANTE: 1000 500 COOLANT BORON CONCENTRATION (ppm)D I DDT<<I\D<<~MTW-T I TDD~MTW Two Loop Operation-non MFW means that the main feedwater system is not supplying the steam generators Two Loop Operation-MFW means that the main feedwater system is supplying the steam generators FIGURE I RE(UIRED SHUTDOWN MARGIN COLR Cycle 28, Revision I CL I (0 O~~V)O CL 6$~CL 220 200 1 80 (0,164 160 140 120 100 80 60 (0, 53)40 20 B Bank 1em.')(30.C Bank 66.6,'B ank (tel.$64)0 10 20 30 40 50 60 70 80 90 100 Core Power (Percent of 1520 MWT)*The fully withdrawn position is defined as a 221 steps.FIGURE 2 CONTROL BANK INSERTION LIMITS COLR Cycle 28, Revision 1  
The  SHUTDOWN MARGIN    in MODE 2 with K,<< ( 1.0 and MODES 3 and 4  shall  be  greater than or equal to the limits specified in Figure 1 for the number of reactor coolant pumps in operation (non main feedwater operation).
2.1.2        The  SHUTDOWN MARGIN    in MODE 4 when both reactor coolant pumps are    not  OPERABLE  and in operation and in MODE 5 shall be greater    than  or  equal    to the one loop operation curve of Figure  1.
2.1.3        The  SHUTDOWN MARGIN    required in      LCOs 3.1.4, 3.1.5, 3.1.6,
: 3. 1.8, and 3.4,5 shall be greater than the limits specified in Figure 1 for the number of reactor coolant pumps in operation and the status of the main feedwater system.
2.2    MODERATOR TEMPERATURE COEFFICIENT          (LCO  3. 1.3)
(Limits generated using Reference      1) 2.2.1       The Moderator Temperature          Coefficient  (MTC)  limits are:
The BOL ARO/HZP -      MTC shall be less positive than +5.0 pcm/'F for power levels below 70% RTP and less than or equal to 0 pcm/'F for power levels at or above 70% RTP.
The EOL ARO/RTP -      MTC shall    be  less negative than -42.9 pcm/'F.
where:          ARO stands    for All Rods Out BOL stands    for Beginning of Cycle Life EOL stands    for End of Cycle Life HZP stands    for Hot Zero THERMAL POWER RTP stands    for RATED THERMAL POWER 2.3    Shutdown Bank   Insertion Limit (LCO 3. 1.5)
(Limits generated using Reference 1) 2.3.1        The shutdown bank      shall    be  fully withdrawn   which is defined as z 221 steps.
COLR                                                                   Cycle 28, Revision   1


1.2 N+1.0 pP 0.8 Ul C C$I 06 Q.C~~X 0.4 QP N~~lg 202 0 R Total Fo=2.450 E~ft~K 0.0 1.0 11.783 1.0 0,0 0.0 2.0 4.0 6.0 8.0 Elevation (ft)10.0 11.783 FIGURE 3 K(Z)NORMALIZED Fq(Z)AS A FUNCTION OF CORE HEIGHT COLR Cycle 28, Revision I
2.4 Control Bank Insertion Limits (LCO 3. 1.6)
(.11,90)00 NOT OPERATE IN THIS AREA WITH AFD OUTSIOE THE TARGET BAt4)(11/0)80~O a Q 60 Q.ACCEPTABl.E OP ERAT)ON WlTH AFD"--'--""'UTSDE THE'AROET BAND WlTH<<1 t%PENALTY DEVIATlON THE (41,60)(31,60)40 x a I~ACCEPTABLE
(Limits generated using Reference 1) 2.4.1       The control banks      shall    be  limited in physical insertion      as shown in Figure 2.
.OP ERAT)ON 20-30-20-10 0 10 20 30 AXIAL FLUX DIFFERENCE
2.4.2       The  control banks shall        be moved  sequentially with   a 100
(%)FIGURE 4 AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS AS A FUNCTION OF RATED THERMAL POWER COLR 10 Cycle 28, Revision I Tah3.e 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: 1.0 Reactor Coolant System (RCS)Upper head volune, ft Upper PL'enure volune, fts Top of fuel volte, ft Inlet nozzle(s)volma, total of two, ft Outlet nozzle(s)volune, total of two, ft Active fuel volume, ft Bottom of fuel volune, ft Lover PLefwn volte, ft Downcomer volune, above bottom of cold leg, ft Downcomer, lo~er core plate to elevation of the bottom of the cold Leg volune, ft'arrel baffle, lower core plate to upper core plate volte, ft'otal volte, fthm Hot leg pipe volune per loop volune, fto Cold leg volune per loop+cross over, fts RC purp volune per pm@, ft Cold Leg pipe ID, in./Pwp suction ID, in.Hot Leg pipe IO, in.Design pressure, psig Design temperature, F Cold Leg and Hot Leg Centerline Elevation 300.0 580.2 50.3 43.2 37.4 367.6 11.0 514.3 138.4 278.2 128.5 2449.1 78.7 cross over=140.7 cold leg~46.8 192 27.5/31 29 (28.969)2485 650 246'0" Above upper support plate.Bottom of upper core plate to top of upper support plate.Includes outlet holes in the barrel.Top of active fuel to bottcm of upper core plate, inside barrel baffle.Includes nozzle forging protrusion into vessel.Does not include mating hole in barrel, this is included in the Upper PLenua volune.Bottom of fuel to top of fuel Top of lower core plate to bottom of active fuel.Below top of lower core plate Above bottcm of cold leg elevation tc bottom of upper support plate Top of lower core plate to elevation of bottom of cold leg Top of lower core plate to bottcm of upper core plate.Includes nozzl es Reactor Coolant Puap Head-Capacity and NPSH curves for reactor coolant pNps/Homologous Curves Rated RC pap head and flow, ft&gpll Rated RC pump torque and efficiency Q rated head/flow, ft-lb, fraction RCP Pmp Rated Power (hot, 556 degrees F)RCP Hotpr Rated Speed, RPH Homent of inertia of punp and motor, Lb-ft'C pump heat, HQt (max/min per pap)See Engineering 252;90,000 84K efficiency at hot condi t I ons 4842 BHP 1189 80,000 5, 4 Homologous Curves are available in RETRAH Pwp power varies with RCS temp from approx 4 Wt to 5 H'Mt 1.2 Core COLR Cycle 28, Revision 1 Tab3.e 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: Rated power, HMt Reactor power tncertainty, X RTP Bypass, X Upper head bypass, X Upper head tenyerature, degrees F Heat transfer area, ft Average core heat flux, Btu/hr-ft 1520 6.5 M proprietary 590 26,669 189,440 Thimble plugs removed.High T value.1.3 1.3.1 Fuel Assemblies Height Total, inches (length from bottom of assenhly to top nozzle)Fuel Rod Length, inches (length from bottom of pin to top of pin)Active, inches 159,935 149.138 141.4 1.3.2 Fuel Assembly Geometry Hass of fuel, lbn Hass of clad, ibm Hunber of fuel pins per fuel assenhty (FA)Ho.of Fuel Assemblies Fuel pin pitch, in.Bottom nozzle weight and volune Top nozzle, w/insert, weight and volune Fuel Assembly resistance
(+5) step overlap between successive            banks.
[core dP f(flow)],,psi f(lb/hr)Fuel Assenhly free flow area, in 105,500 25,927 179 121 0.556 9.1 lbs.31.5 in 18.15 lbs.62.9 inn core delta P~20 psi Q flow~170,200 gpn 34.75 Thimble plugs removed.Single assembly.1.3.3 Fuel pin geometry Pellet diameter, in.Clad OD/ID, in./in.0.3444 0.400/0.3514 1.3.4 Control Rod C Tnstnmat Guide T~Ho.of control rod guide tubes Ho.of instrunent guide tubes Control Rod Guide tube upper part (X)/ID, in./in.instrunent Guide tube OD/1D, in./in.Guide tube lower part OD/1D, in./in.Control Rod Drop Times, maxinuns, sec.Control rod maxinun withdrawal rate, in./min.16 0.49/0.528 0.395/0.350 0.4445/0.4825 Kon-LOCA 2.4 LOCA 3.0 45 Allowances are added to the Tech Spec allowable value.COLR 12 Cyc1e 28, Revision 1 Table 1: UPSAR Chapter 15 Analysis Setpoints and Input parameters em j Item/Name Value Remarks: Control rod maxiaxsa insertion rate, pcm/sec.Control rod insertion limits Hot charnel radial peaking factor Heat Flux Hot channel factor FQ 90 See COLR 1.75 2.45 1.4 Pressurizer Code safety valve flow capacity, ibm/hr Code safety valve open time Code safety valve setpoint Spray valve Spray valve Spray valve Spray valve PORV nunber flow capacity, gpa/valve setpoint-start open/full open time constant, sec~PORV f low capacity, ibm/hr PORV Cv PORV open time PORV close time Backup Heaters Hiniaasn heater capacity required for LOOP, kM Heater bank controller type PORV setpoint[normal)open/close, psig PORV setpoint (LTOP)open/close, psig PORV blowdown characteristic Hester capacity w/bank capacity and setpoints, kM Control banks 288,000 0.8 sec seal clearing time 2485 psig 2 200 2260/2310 5 2 179,000 50 gpm/(paid)1/2 1.65 sec+transmitter 3.95 sec+transmitter 2335/2315 430 800 0 kM at 2250 psig and 400 kM at 2220 psig Full on at 2210 psig and resets at 2220 psig 100 proportional 400 kM Rating at 2485 psig plus 3X accuml at i on Crosby Hodel HB-BP-86, size 4K26 Tolerance is+2.4X/-3X.Proportional Assumed value Steam flow at 2335 psig Rating is for liquid relief.Valve characteristic is quick opening see Copes Vulcan Selecting and Sizing Control Valves 8/75, page 8, Table 18 for Cv vs travel curve.LTOPs transmitter is Foxboro E11GH.HSAE1, with a time response of 1 sec (time to 90X of final value for step input)LTOPs transmitter is Foxboro E11GH-HSAE1, with a time response of 1 sec (time to 90X of final value for step input)1.4.1 Pressurizer vol~(s)(100X/OX power)Mater, ft'100X/OX power)Steam, ft (100X/OX power)Total, fts Pressurizer iD, ft-in 396/199 404/601 800 83.624 in/cladding thickness is 0.188 in COLR 13 Cycle 28, Revision 1 Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: Surge line LD, in.Spray line 10, in.Surge line volume, fthm'8.75 3.062 18.4 Surge line is 10 in schedule 140 1.4.2 Pressw izer Level Lower level tap elevation Upper Level tap elevation Pressurizer level vs X power Distance Hot Leg Centerline to Lower Tap, ft Haxiaxm level allowed for steam bubble, X 257'275'Xpower Level 0 X 35X 100 X 50X 10.750 87 Pressurizer level is ramped linearly between these points.Hot used in Chapter 15 analyses.1.5 RCS FLows, Tcaperature and Pressures Total reactor coolant flow, gpm (15X plugging)Total reactor coolant flow, gpn (15X plugging)Average reactor coolant teeperature, degrees F (Full power/HZP)
2.Heat Flux Hot Channel    Factor F Z            (LCO  3.2. 1)
Reactor coolant pressure, psig Reactor coolant flow mcertainty, X nominal Reactor coolant tetperature certainty, degrees F Reactor coolant pressure mcertainty, psi DNB Limit (safety analysis limit)170,200 177,300 559 to 573.5/547 2235 s 30 1.40 Use for non DNB Use for statistical DHB Cycle 28 T ,-" 561 1.6 Low Temperature Overpressure Protection (LTOP)Hiniaam RCS vent size, square inches~No.of SI ixsrps capable of injection (PORVs/vent)
(Limits generated using References        1 and 2)
Haxinam pressurizer level for RCP start, X 0/1 38 1.7 Fuel Handling/Dose Calculaticns Haxitmm reactor coolant gross specific activity Haxinxm reactor coolant dose equivalent i-131 Haxitmm secondary coolant dose equivalent I-131 kininam reactor coolant boron concentration, ppm Hinilmm reactor coolant Level Hinicxm spent fuel pool Level Hlnlaxm spent fuel pool boron concentration, ppm Hinislm spent fuel pool charcoal filter efficiency, X methyl iodine removaL Hiniaxm post accident charcoal filter efficiency, X methyl iodine removal 100/t pCi/gm 1~0 pCi/gm 0.1 pCi/gm 2000 23 ft above flange 23 ft above fuel 300 70 70 TS testing requires 90X eff.TS testing requires 90X eff.COLR 14 Cycle 28, Revision 1
F (Z) s ~F /*K(Z)             when  P >  0.5 P
.Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: Hinisua control rocm charcoal filter efficiency, X methyl iodine removal HInisass time between reactor criticality and fuel movement, hrs.Source Terse used for dose calculations Dose conversion factors Haxisxza Gas Decay Tank Xenon.133 concentration, Ci 70 100 ORGEN 2 ICRP-30 100,000 TS testing requires 90X eff.2.0 Hain Feedwater (HFM)Feedwater tesperature versus load Power Teeperature 102X 425 F 70X 385 F 30X 322 F OX 100 F 100X design teffp is 432 degrees F Feedwater Suction Temperature vs Power, nominal Feedwater Suction Pressure vs Po~er, nominal Power 98X 70X 50X 30X Power 98X 70X SOX 30X Temperature 345 F 319 F 295 F 259 F Pressure 277 psig 282 psig 305 psig 370 psig 3.0 Head-Capacity and NPSN curves Head-Capacity and NPSN curves for main feedwater Fxmps Hain Feedwater Ixgp-Rated Head Hain Feedwater pmp-Rated Torque Hain Feedwater punp~Homent of Inertia Elevation of steam generator inlet nozzle Elevation of main feedwater pump, ft Elevation of condensate punp, ft HFM regulating valve open time on demand, sec HFM regulating valve close time on demand, sec HFll regulating valve Cv, full stroke Low load HFll regulating valve Cv, (bypass valves)HFM Neater resistance (delta P)Auxiliary Feedwater (AFM)Hinieasn design temperature of the water source service~ster/CST (degrees F)Haxisxsa design tecperature of the water source service water/CST (degrees F)See Engineering 2150'89.612 257.75 250.833 10 725 l8.7 see Engineering 30, 32 80, 100 Selected flow splits are provided for model validation.
Fo(Z) ~ QFog*K(Z)               when  P s 0.5
Elevation is at center of shaft Assuned value.Actual value=684.Effective Cv: includes bypass line Design data on the Nigh Pressure Heaters (2 in parallel)is provided Initial AFM~ster source are the CSTs located in the Service Bldg.Safety Related source is the Service Mater system (I eke).Initial AFM water source are the CSTs located in the Service Bldg.Safety Related source is the Service Mater system (lake).COLR 15 Cycle 28, Revision 1


Tab9.e 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em g Item/Name Value Remarks: Startup time for the auxiliary feedwater@cps, SCC HiniImNI delay for AFM start, sec HaxiImsn delay for AFM start, sec AFM control valve open time on demand, sec AFM control valve Cv[f low is f(dP))TDAFMP, maxiImsn flow, gpm AFM, minirmIII flows, both generators intact, gpm HiniImmI delay for standby AFM start, min TDAFM.0, HDAFM 1 H/A 600 TOAFMP 200/SG HDAFMP 200/SG 10~TDAFM starts on LO level (17K)in both gens or IN on both unit 4Kv busses.HDAFM starts on SI (seq), or LO level either SG, or trip of both HFP or AHSAC NOAFM acceleration time test results show approximately 1.5 s.Increased time of 600 sec.will be used in future analysis HDAFM control valves are normally open and throttle closed to control flow between 200'30 gpm HDAFMP valves are 3 Rockwell model&#xb9;A4006JKHY stop check valves.TDAFM control valves (4297, 4298)are 3 Fisher&#xb9;470-HS.SBLOCA assunes 200 gpn per SG with the fai lure of one OG 4.0 Nein Stem System (NS)Location (and elevation) of condenser ckmp valves and atmosphcl"Ic I'clicf valves Full load steam line pressure drop, psi HS Isolation valve close time[full open to full close)close.time, sec NS Isolation valve Cv[flow is f(dP))CSO.elev 256'.875 ARV-elev 289'.563 approx 45 HSIV-5.0 check valve-1.0 HSIV-23500 check valve.17580 This estimate, to the governor valves, is provided for comparison purposes only.The check valve is asswIed to close in 1 sec under reverse flow.4.1 Nain Stam Code Safety Valves HImher of valves (4 per line)Valve flow capacities
===0.5 where===
-Total, ibm/hr 6621000 Rated flow (3X accImalation per ASHE, Section III): 1085 psig................
2  is the height in the core, Fo ~  2.45, K(Z)   is provided in Figure 3,         and THERMAL POWER P  =    RATED THERMAL POWER 2.6  Nuclear Enthal    Rise Hot Channel Factor          F"      (LCO  3.2.2)
797,700 lbn/hr (each)1140 psig..~..............
(Limits generated using Reference 1) 2.6.1       F"~ s  F"
837,600 Ibm/hr (each)COLR 16 Cycle 28, Revision 1  
                              ~ *    (1 + PF~    * (1-P))
~Table 1: UPSAR Chapter 15 Analysi:s Setpoints and Input Parameters em 4 Item/Name Value Remarks: Valve Floe vs SG pressure (psia), total per bank (4 valves), ibm/sec.Nunber of valves in bank 1110 1115 1120 1125 1131 1136 1141 1151 1161 1166 1173 1181 1190 1200 1205 1209 1211 0 40 91 141 191 222 223 225 227 228 342 494~646 799 859 920 931 Valve setpoint(s), (first/last three), nominal, psig Valve bloudo1a1 characteristic 1085/1140 15X max 1 SMS Valves are.Crosby&#xb9;HA-65 6R10 Setpoint tolerance is+1X/-3X.Nodel valve setpoint at 1.01 (nominal), and full flo11 at 1.04 (nominal).
where:
Atmospheric relief valves No.Atmospheric relief valves Atmospheric relief valve setpoint/Air-operated, ps 1 9 Atmospheric reLief valve setpoint/Booster, psig Atmospheric relief valve capacity, Lbn/hr 1050 1060 During Hot Standby operation setpoint is Lowered to control no load Tavg 313550 at 1060 psig Nax floM is 380000 5.0 Turbine Generator (TG)5.1 Condenser No.of condenser du1p valves Condenser d1S1p valve open time, sec Condenser cklp valve close time, sec Condenser cANp valve setpoint(s)
PF~  - 0.3,   and THERMAL POWER' RATED THERMAL POWER 2.7  AXIAL FLUX DIFFERENCE      (LCO 3.2.3)
Condenser dip valve Cv[floe is f(dP))for TT: Tavg>555 4 valves,>563 4 valves;no TT: Tref+12 4 valves, Tref+20 4 valves ASS1N1ing close time=opening time On TT valves control open at 6.7X/F (PID)above 547 111th full open setpoints as described.
(Limits generated using References        1   and 3)
On 10X step load decrease same ratio with a 6F deadband from Tref Design Cv (240)from design conditions (302,500 ibm/hr sat steam at 695 psig)6.0 Chemicat and Vol~Control System (CVCS)CVCS capac1 ty/pump 3 pcs, 60 gpn max each Normal ops: 2 charging punps-one is manual at 15-20 gpn and the other in automatic.
: 2. 7.1      The AXIAL FLUX DIFFERENCE (AFD) target band is + 5%. The actual target bands are provided by Procedure RE-11. 1.
Charging pcs are PDPs w/46 gpm total-8 gp11 to seals-3 gpm Leakage+5 gp11 into RCS.40 gpm Letdo1a1 COLR 17 Cycle 28, Revision 1 Tahie 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters
2.7.2        The AFD  acceptable operation        limits  are provided in Figure 4.
\Item/Name Value Remarks: CVCS minimtsa/IxN0P, 9Pm Type of controller (e.g., P+I)and gains 15 PID 100X,180 sec,10 sec 6.1 Reactor Nak~Mater System (RW)RNM capac I ty/pep 2 Ixmps, 60 gpm each 7.0 7.1 7.1.1 Emergency Core Cooling System (ECCS)ECCS Delivery vs RCS Pressure Residual Heat Removal (RHR)Delivery vs RCS Pressure Ninisass RHR Delivery, train failure Nininasa RHR Delivery, two Ixmps ruwing, one line blocked RCS Pressure (psia)155 152 150 140 120 100 80 60 40 20 14.7 RCS Pressure (psia)155 154 152 150 140 120 100 80 60 40 20 14.7 Delivery (gpm)0 0 0 250 648&36 985 1115 1232 1338 1365 Delivery (gpm)0 0 160 252 516 830 1056 1243 1406 1552 1686 1720 LOCA Appendix K case.Train failure results in one pup running with 10X degradation with one line blocked.LOCA Appendix K case (offsite po~er available).
COLR                                                                  Cycle 28, Revision  1
Two pcs running with 10X degradation with one line blocked.7.1.2 Safety Injection (Sl)Delivery vs RCS Pressure Nininua SI delivery, 2 Ixmps operating, one line spilling Press (psig)1375 1300 1200 1100 1000 900 800 700.600 500 400 300 200 100 0 Delivery (gpn)0.0 62 125 167 201 229 253 273 289 305 321 336 352 368 384 Spill LOCA Appendix K case.Train failure (gpm)results in two Ixmps running with SX 465 degradation with one line spilling to 465 contaireent.
 
465 465 465 465 465 465 465 465 465 465 465 465 465 COLR 18 Cycle 28, Revision 1 Table 1:.UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: Hinisxsa Sl delivery, 3 purps operating, non-LOCA Hinisxsa Si delivery, 2 pwys operating non-LOCA Press (psia)1390 1315 1215 1115 1015 915 815 715 615 515 415 315 215 115 15 Press (psia)1390 1315 1215 1115 1015 915 81$715 615 515 415 315 215 115 15 Delivery Loop'A'BI 16 87 147 193 231 266 297 325 352 377 400 423 445 465 485 Delivery Loop'A'BI 8 69 121 162 197 228 255 281 305 328 350 37D 390 409 427 (gpm)Loop 19 97 163 214 257 295 329 360 390 418 444 469 493 516 538 (gpm)Loop 8 71 126 169 206 239 269 296 322 346 369 391 412 432 452 Used for non-LOCA transients, SX pump degradation Used for non.LOCA transients, 5X punp degradation.
0 3
Hex(asm Si delivery, 3 pcs operating, SGTR Press (psig)1375 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 Loop A (gpn)76 128 180 221 258 290 320 348 374 398 421 443 464 485 504 Loop B (gpm)84 141 198 245 285 321 354 385 413 440 466 490 514 536 558 The KYPIPE model asswes no pm'egradation.
2.8  RCS  Pressure Tem erature and Flow De arture from Nucleate Boilin
Loop A and B pressures are set equal.Used for SGTR.7.3 Acnmslators Nwker of accumulators Total volune, each, fts Liquid volune, fts-min/max Liquid volune, ft'Best Estimate initial pressure, psig-Hinisxla/Haxinua 2 1750 1111/1139 1140 700/790 COLR 19 Cycle 28., Revision I Tah9.e 1: UPSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks: initial te<<perature, F Boron concentration, ppm (min/max)105 2100/2600 LBLOCA Hote.EQ analyses use a maxi<<un concentration of 3000 ppn 7A RMST RMST Te<<perature, min/max, degrees F Ninitmsn RMST volw>>, gal RMST boron concentration, ppm (min/max)60/80 300,000 2300/2600 Upper limit increased to 104 Note-EQ analyses use a maxinxin concentration of 3000 ppn 8.0 Conte i~t initial contairment pressure, psia initial contaim>>nt te<<perature (LOCA/SLB) degrees F initial relative hunidity, X SM temperature min/max, degrees F Haxitmln contaim>>nt leakage, wtX/day min-14.5 max-15.7 90/120~'0 30/$5 0.2 lfinitmjn is used for LOCA analysis.Haxi<<xsn is used for the containment integrity cases (SLB).LOCA te<<perature lower for PCT calculations.
      ~DNB Li    it      LLBB 3.4.13 (Limits generated using Reference 4) 2.8.1            The  pressurizer pressure shall    be > 2205  psig.
SLB higher for contaim>>nt integrity" Contairment Heat Sinks Listing of Passive Heat Sinks, quantities, materials, and configurations see Engineering 8.2 Oensities, Therm<1 Conductivities and Heat Capacities of Hest Sinks insulation density, conductivity, capacity 3.7 lbn/ft 0.0208 BTU/hr F ft 1.11 BTU/ft F Concrete density, conductivity, capacity'50 lbn/fthm 0.81 BTU/hrfft 31.5 BTU/ft F note: miniaun conductivity corresponds to maxi<<nxn density, and maxi<<xln conductivity corresponds to minimsn density.Steel density, conductivity, capacity Stainless steel density, conductivity, capacity Contaim>>nt free volune, min/max, cu.ft.Ground Te<<perature (degrees F)Outside Air Temperature, min/max, degrees f HTC for outside surfaces C90 lbn/f tn 28 BTU/hrfft 54.4 BTU/ft F C96 lbn/fthm 15 BTU/hrFft 54.6 BTU/ft F 1,000,000/1,066,000 55-10/100 1.65 BTU/hr ft degrees F below grade te<<perature COLR 20 Cycle 28, Revision 1
2.8.2            The  RCS average temperature    shall  be s 577.5  F.
~Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: Containnent fan cooler performance Contairment spray flow, min./max, each, gpm Tea@Hin Hax (deg F)(X1068TU/hr) 120 2.05 4.55 2?0 35.1 99.2 240 40.8 113.8 260 46.8 129.3 280 52.9 145.5 286 54.7 150.4 1300/1800 8.3 1 Delays for CRFCs and Spray Pumps CRFC delay, offsite power available, seconds CRFC delay, offsite power not available, seconds Contaiwent Spray, 1300 gpn each pwp, maxisxsn delay, sec Contaim>>nt Spray, 1800 gpn each pm', mininasn delay, sec Contaiment Design pressure, psig Distance Basement floor to Springline, feet Distance Springline to top of dome, feet 44 28.5.one pap 26.8-two punps 9/(14 w LOOP)60 95 52.5 includes 2.0 sec Sl delay includes 2.0 sec Sl delay This delay is from the time Contaireent Hi-Hi setpoint is reached.lt includes lnstrut>>nt delay and spray line fill time.This delay is from the time of break.8.4 Contairment Sump Hinimum/maxiaus wtX of HaOH Tank 30/35 9.0 Control Systems (Reactor, FU, Przr Level, Turbine, AFM)Tavg versus power Pressurizer pressure and level algorithms SG secondary level algorithm H/A H/A H/A Tavg reaps linearly from 547 degrees F at OX power to 561 degrees F at 100X power Pressurizer pressure setpoint is constant at 2235 psig.Pressurizer level ramps from 35X to 50X for 0 to 100X power (547-561 degrees F).Level remains constant at 52X to 100X power.(Power from turbine 1st stage press,)10.0 10.1 10.1.1 Safety System Setpoints Reactor Protect 1m System Power range high neutrcn flux, high setting nominal accident analysis delay time, sec 1.08 1.18 0.5 10.1.2 Power range high neutron flux, low setting nominal accident analysis 0,240 0.350 COLR 21 Cycle 28, Revision 1
2.8.3            The RCS  total flow rate shall    be a 177,300 gpm (includes  4%
<Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks: delay tilllc, scc 0.5 10.1.3 Overtcmpera~
minimum  flow uncertainty per    Revised  Thermal Design Hethodology).
delta T nominal accident analysis delay time, scc 10.1.4 Overpcwer delta T nominal accident analysis delay time, sec Variable Variable 6.0 Variable Variable 2.0 Total delay time-from the time the temperature difference In the coolant loops exceeds the trip setpoint until the rods are free.to fall Hot explicitly modelled in safety analysis 10.1.5 High pressurizer prcssure nominal, psig accident analysis, psia delay tilllc~scc 2410 2.0 10.1.6 Lou pressurizer pressure nominal, psig accident analysis, psia delay timey scc 1873 1775 (non-LOCA) 1730 (LOCA)1905 (SGTR)2.0 10.1.7 Lou reactor coollHlt flow nomina l accident analysis delay time, sec 91X of normal indicated fiou 87X per loop 1.0 10.,1.8 Lcw-lou SG level nominal accident analysis delay time, sec 17X of the narrow range level span OX of narrow range level span 2.0 Hhlle trip setpoint could be as loll as 16X, AFM initiation limits to 17X 10.1.9 Turbine Trip (lou fluid oil pressure)nolllina l i ps l 9 accident analysis delay time, sec 45 M/A 2.0 Hot explicitly modeled in safety analysis COLR 22 Cycle 28, Revision 1
2.9  Boron Concentration          (LCO  3.9. 1)
'able 1: UPSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: 10.1.10 Unck~l tage nominal, V accident'nalys is delay time+sec 3150 1.5 Safety analysis assunes RCCAs are released 1'sec.after setpoint is released.10.1.11 Underfrequency nominal, Hz accident analysis delay't'Ime 57.7 57.0 1.2 Analysis is performed but not explicitly modeled in safety analysis.Safety analysis assw>>s RCCAs are released 1.2 sec after setpoint is reached.10.1.12 intermediate range ncminal, RTP safety analysis, RTP delay time, sec 0'5 H/A H/A Hay fluctuate due to core flux Hot explicitly modeled in safety analysis.1.13 Source Range~~~nominal, cps accident analysis, cps delay time, sec 1.DE+5 1.DE+5 2.0 10.1.14 High Pressurizer level nominal accident analysis delay time, sec 0.90 0.938 2.0 10.2 10.2.1 10.2.1.1 Engineered Safety Features Actuation System Safety Tnjecticn System High contai~t pressure Hominal setpoint, psig Accident Analysis setpoint, psig Delay time, sec 4.0 60~34 44 w/LOOP~only modeled in accident analysis for start of contaireent fan coolers.Time delays are for start of contain>>nt fan coolers.10.2.1.2 Lou pressurizer pressure Hominal setpoint, psig 1750 COLR 23 Cycle 28, Revision 1 I Tab'ie 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks: Accident Analysis setpoint, psia Delay time, sec 1785, SGTR 1730, non-LOCA 1715, LOCA 2.0 10.2.1.3 Low stem line press~Nominal setpoint, psig Accident Analysis setpoint, psig Delay time, sec 514 372.7 2.0 See Engineering See Engineering 10.2.2 Contai~t Spray Nominal Setpoint, psig Accident analysis setpoint, psig Delay time, sec 28 32~5 28.5 See Engineering Delay time includes time to fill lines.See Engineering 10.2.3 AFM System Low-low stem generator water level Nominal Setpoint Accident analysis setpoint Delay time, sec 17 X of narrow range instrunent span each steam generator 0 X of narrow range instrunent span each steam generator 2.0 A positive 11X error has been included to account for the SG level measurement system at a contairvnent teIIyerature of 286 F 10.2.4 Stem Line Isolation 10.2.4.1 High cIntai~t pressure Nominal Setpoint, psig Accident analysis setpoint Delay time 18 H/A H/A Not explicitly modeled Not explicitly modeled 10.2.4.2 High stem flow, coincident with low Tavg and SI Nemine l Setpoint Accident analysis setpoint Delay time O.CE6 lb/hr equivalent steam flow at 755 psig and Tavg<545 F N/A H/A Note: flow setpoint is below nominal full power flow and therefore this portion of logic is made up at po~er Hot explicitly modeled Hot explicitly modeled.Steam line isolation is assuned concurrent with SI (I.e.2 s delay+5 s valve stroke)10.2.4.3 High-high stem flow, coincident SI Hominal Setpoint Accident analysis setpoint 3.6E6 lb/hr equivalent steam flow at 755 psig H/A Hot explicitly modeled COLR 24 Cycle 28, Revision 1 I'ab e 1:"UPSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: Delay time N/A Not explicitly modeled.Steam line isolation is assuaed concurrent with SI (I.e.2 s delay+5 s valve stroke)10.2.5 10.2.5.1 11.0 Feedwater isolation Nigh stem generator water Level Nominal Setpoint Accident analysis setpoint Delay time BMI Stmm Generators Heat Load per SG, BTU/hr Primary flow per SG, KLb/hr Steam flow per SG, lb/hr (clean, unplugged)
(Limits generated      using Reference    1) 2.9. 1 The boron      concentrations of the hydraulically coupled Reactor Coolant System, the refueling canal, and the refueling cavity shall    be  )  2300 ypm.
Secondary design pressure, psig Secondary design temperature, F Naximzn moisture carryover, X Narro~range level tap Locations, inches above TS secondary face Wide range Level tap locations, inches above TS secondary face 85K of the narrow range instrunent span each SG IOOX of the narrow range instrunent span each SG 2.0 2,602,000,000 Plugging%FLow KLb/hr 0 , 34950 5 34630 10 34280 15~33850 3,264,358 at 877 psia 1085 556 0.10 386//529/8/4/529/e Instrunent Loop only Design flows at T,~=573.5 F Conditions for T,~=573.5 F SG Pressure Drops Secondary nozzle to nozzle dP Q full po~er, psi Secondary nozzle to nozzle dP Q full power, psi Primary nozzle to nozzle unrecoverable pressure drop vs.plugging, psi 14.7 7.5 Plugging%0 5'0 15 ap psi 31.01 33.27 35:82 38.72 Value is total static pressure drop.Pressure drop from top of U-bend to outlet.See associated flows for X plugging.11.2 No.of tubes per SG Tube (I, inches Tube average wall thickness, inches Naximss tube length, ft Hiniaxza tube length, ft Average Length, ft 4765 0.750 0.043 70.200 55.925 61.988 Includes Length in tubesheet (2x25.625")
3.0  UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAHETERS The  setpoints    and input parameters for the UFSAR Chapter 15 accident analyses    are  presented    in Table 1. The values presented in this table are organized      based  on  system  and major components within each system.
Includes Length in tubesheet (2x25.625")
The  failure    of  a  component  or  system to meet the specified Table 1 value does not necessarily mean that the plant is outside the accident analyses since: (1) an indicated value above or below the Table 1 values may be bounded by the Table 1 values, and (2) the setpoint or parameter may not significantly contribute to the accident analyses final results. The major sections within Table 1 are:
Includes length in tubesheet (2x25.625")
1.0    Reactor Coolant System (RCS) 2.0  Hain Feedwater (HFW) 3.0  Auxiliary Feedwater (AFW) 4.0    Hain Steam (HS) System 5.0    Turbine Generator (TG) 6.0    Chemical and Volume Control System (CVCS) 7.0    Emergency Core Cooling System (ECCS) 8.0    Containment 9.0    Control Systems 10.0    Safety System Setpoints 11.0    Steam Generators COLR                                                                Cycle 28, Revision  1
COLR 25 Cycle 28, Revision 1
 
'abi.e 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks: Hinisasa U-bend radius, inches Haxisua U.bend radius, inches U-bend radius of shortest tube(s), inches Average U-bend radius, inches Tube straight length (one side)above secondary face, inches (min/max/average)
==4.0  REFERENCES==
Secondary heat transfer area, ft per SG Primary heat transfer area, ft per SG Overall bundle height, ft above secondary face of TS Tube material SG Tube Haterial Thermal Conductivity, BTU-in/hr-ft-F 3.979 54,001 47,809 30.427 SB-163 Temp F 200 300 400 500 600 Alloy N06690 Conductivity 93 100 107 114.5 122 54.007 4.044 24.51 303'/u/310'/i/308 182 Hote: this is not the bend radius for the shortest tube.SG Tube Haterial,Specific Heat, BTU/lb-F Distance from top of tube bundle to 33X NRL, ft Teap F 200 300 400 500 600 Conductivity 0.112 0.1155 0.119 0.1225 0.126 5.703 11.3 11.F 1 SG Vol~SG Secondary Side Vol~Secondary voiune, f t (total)Secondary voiune up to lower HRL tap, ft Secondary volune up to upper HRL tap, ft 4512.7 1893.2 3460.4'1.3.2 Riser Vol~Secondary side bundle voiuae (TS to top of U-bend inside shroud), ft'econdary riser voiuoe, top of U-bend to spill-over point, ft 1281.8 507.0 Equivalent to LOFTRAN riser voiune.11.3.3 fancier Vot~Downcomer voiune, top of TS to top of U-bend, ft Downcomer voiuae, top of U-bend to spill.over point, ft'359.6 1437.3SG Primary Side Vol~Inlet plenun per SG, ft Outlet pienun per SG, ft 129.65 129.65 COLR 26 Cycle 28, Revision 1 A
: 1. WCAP-9272-P-A, Westinghouse  Reload Safety Evaluation Methodology, Quly 1985.
'able 1: UPSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks: Tube primary volune per SG, f t Primary total volune per SG, ft Circulation ratio (100X pwer, clean, unplugged)
: 2. WCAP-10054-P-A and WCAP-10081-A, "Westinghouse Small Break    ECCS Evaluation Model Using the NOTRUHP Code," August 1985.
Tubesheet thickness, inches 710.3 969.6 5.39 25.625 Circulation ratio~bundle flol5/steam floe.Assunes 40,000 ibm/hr bl ow5ovn.Includes cladding.11 4 11.5 SG Primary Side Dimemlm>>Primary head radius, inches Divider plate thickness, inches inlet and outlet nozzle, inside diameter cylindrical section, inches Nozzle divergence angle, degrees Nozzle inside diameter at plenun, inches Nozzle lengths, inches Heigth fran SG primary heed bottom (outside)to top of TS, inches Distance tube sheet primary face to hot leg centerline, ft SG Secondary Side Dimensions Lover shell inside diameter, inches LoMer shell thickness, inches Tube shroud inside diameter, inches Distance top of tube bundle to top of steam nozzle, inches Steam nozzle floN restricter area, ft'istance secondary face of TS to centerline of feedvater nozzle, inches Distance secondary face of TS to centerline of feed ring, inches Cross-sectional area of tube bundle, ft Distance top of tube bundle to spill-over point, inches Primary side roughness, micro-inches 58.375 1.875 31.200 11'30'7.0 ,cylindrical section conical section total length 90/,e 6.654 122 2.875 114 298.5 1,4 407/0 374 41.64 178.0 Nozzles, head 60 Tubes 60 8.75 13.0 21.75 Radius to clad surface.This value is total area inside shroud.This value is equivalent to the riser height for the OSG.Values given are conservative assu5ytions.
WCAP-10924-P-A, Volume 1, Revision 1, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 1: Model Description and Validation Responses to NRC Questions," and Addenda 1,2,3, December 1988.
11.6 SG Secondary Side Mater Nasses Secondary Mater inventory, 100X poger, T~=573.5, no plugging, ibm Secondary eater inventory, 100X poMer, T 559, no plugging, lba 11.7 SG Primry Side Head Loss Coefficients 86,259 liquid 5,286 steam 85,547 liquid 4,675 steam Best estimate value.Best est imate va lue.COLR 27 Cycle 28, Revision 1  
WCAP-10924-P-A, Volume 2, Revision 2, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped with Upper Plenum Injection," and Addendum 1, December 1988.
~Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks: SG inlet nozzle/planus Loss coefficient, ft/gpm'G outlet nozzle/plenun loss coefficient, f t/gpn SG tubing loss coefficient, ft/gpn SG tubing loss coefficient, straight section (in), ft/gpn'G tubing loss coefficient, U-bend section, ft/gpm'G tubing Loss coefficient, straight section (out), ft/gpn'.01E-09 for lD*31.2>>3.31E-10 for ID>>31.2>>9.62E-09 for OX plugging 1.32E-08 for 15X plugging 4'9E-09 for OX plugging 5.73E.09 for 15X plugging 1.02E-09 for OX plugging 1.40E-09 for 15X plugging 4.41E.09 for OX plugging 6.08E-09 for 15X plugging For tube ID>>0.664", Ao>>11.C58 ft, Au>>9.739 ft.Plugging is assuned to be uniform.for tube LD=0.664", A=11.C58 ft, Au>>9.739 ft.Plugging is assumed to be uniform.For tube ID=0.664", A=11.458 ft, Au>>=9.739 ft.Plugging is assuned to be uniform.For tube LD=0.664>>, A,>>11.458 ft, Au>>9.739 ft.Plugging is assuned to be uniform.COLR 28 Cycle 28, Revision 1}}
WCAP-10924-P-A, Volume 1, Revision 1, Addendum 4, "Westinghouse Large-Break LOCA Best-Estimate Hethodology, Volume 1: Model Description and Validation, Addendum 4: Model Revisions," March 1991.
WCAP-13677-P-A, "10 CFR 50.46 Evaluation Model Report: WCOBRA/TRAC Two-Loop Upper Plenum Injection Model Updates to Support ZIRLO' Cladding Option," February 1994.
WCAP-12610-P-A, "VANTAGE + Fuel Assembly Reference    Core Report," April 1995.
WCAP-8385, "Power Distribution Control  and Load Following Procedures-Topical Report," September  1974.
: 4. WCAP-11397-P-A, "Revised Thermal Design Procedure",   April  1989.
COLR                                                        Cycle 28, Revision 1
 
ACCEPTABLE 2.5                                                                                               (0.2 45)
OPERATION (0.2 40)
                                                                                        ~ ~
MO O
b                                                                                                    (0,1,80)
D Q
LLJ rL 1.5 z      (1500.1,45)
I I
1 (1500,1,00) I P-D x(o                                                                UNACCEPTABLE 0.5                                                              OPERATION 0
1500                            1000                          500 COOLANT BORON CONCENTRATION (ppm)
D  I DDT <<          I \ D <<  ~  MTW    T I TDD      ~ MTW ANTE:
Two Loop Operation - non MFW means that the main feedwater system is not supplying the steam generators Two Loop Operation  - MFW means that the main feedwater system is supplying the steam generators FIGURE I RE(UIRED SHUTDOWN MARGIN COLR Cycle 28, Revision I
 
220                      1em.')                               66.6, 200                B Bank (tel. $ 64) 1 80 160 (0,164 C Bank
                                                                                'B I(0 140 CL 120 ank
  ~
O
      ~  100 V)
O    80 CL 60 (0, 53) 6$
40
~ CL 20 (30.
0         10      20 30            40      50      60    70      80      90        100 Core Power (Percent of 1520 MWT)
* The  fully withdrawn position is     defined as a 221    steps.
FIGURE 2 CONTROL BANK INSERTION  LIMITS COLR                                                                    Cycle 28, Revision        1
 
1.2 N
    +   1.0 pP 0.8 Ul C
Q.
I 06 C$
Total Fo
                                          = 2.450
    ~
C
      ~
X E~ft 0.0
                                              ~K 1.0 0.4 11.783            1.0 QP
    ~
N
      ~
lg 202 0
R 0,0 0.0      2.0          4.0          6.0    8.0        10.0    11.783 Elevation (ft)
FIGURE 3 K(Z) NORMALIZED Fq(Z) AS A FUNCTION OF CORE HEIGHT COLR                                                          Cycle 28, Revision I
 
00 NOT OPERATE IN THIS AREA WITH AFD OUTSIOE THE TARGET BAt4)
(.11,90)                                (11/0) 80 ACCEPTABl.E
    ~O                                  OP ERAT)ON a
                          "--'-- " "'UTSDEWlTH AFD BAND THE'AROET WlTH <<1 t%
PENALTY Q    60                             DEVIATlON Q.                                       THE (41,60)                                                         (31,60) x    40 a
ACCEPTABLE .
I~                                   OP ERAT)ON 20
                  -30    -20        -10        0              10        20      30 AXIALFLUX DIFFERENCE (%)
FIGURE 4 AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND  TARGET BAND LIMITS AS A FUNCTION OF RATED THERMAL POWER COLR                                        10                              Cycle 28, Revision I
 
Tah3.e 1: UFSAR            Chapter 15 Analysis Setpoints and Input Parameters em 4                                Item/Name                                          Value                          Remarks:
1.0   Reactor Coolant System (RCS)
Upper head volune,            ft                                                  300.0           Above upper support    plate.
Upper  PL'enure  volune, fts                                                    580.2          Bottom of upper core plate to top of upper  support plate. Includes outlet holes in the barrel.
Top  of fuel    volte, ft                                                        50.3           Top of active fuel to bottcm of upper core plate, inside barrel baffle.
Inlet nozzle(s) volma, total of two, ft                                            43.2 Outlet nozzle(s) volune, total of two, ft                                          37.4            Includes nozzle forging protrusion into vessel. Does not include mating hole in barrel, this is included in the Upper PLenua volune.
Active fuel volume, ft                                                            367.6          Bottom of fuel to top of fuel Bottom of fuel volune,          ft                                                11.0          Top  of lower core plate to bottom of active fuel.
Lover PLefwn      volte, ft                                                      514.3          Below top of lower core plate Downcomer    volune, above bottom of cold leg,                      ft            138.4          Above bottcm of cold leg elevation tc bottom of upper support plate Downcomer,     lo~er core plate to elevation of the                              278.2          Top of lower core plate to elevation bottom of the cold Leg volune,                                                                    of bottom of cold leg baffle, lower core plate to              upper core                    128. 5          Top of lower core plate to bottcm of ft'arrel plate  volte,                                                                                    upper core plate.
volte,                                                                                    Includes nozzl es ft'otal fthm                                                          2449.1 Hot leg pipe volune per loop volune,                  fto                          78.7 Cold leg volune per loop + cross over,                        fts      cross over      = 140.7 cold leg      ~ 46.8 RC  purp volune per pm@,           ft                                              192 Cold Leg pipe ID, in./Pwp suction ID, in.                                      27.5/31 Hot Leg pipe IO, in.                                                        29  (28.969)
Design pressure, psig                                                             2485 Design temperature,          F                                                    650 Cold Leg and Hot Leg Centerline Elevation                                      246'0" Reactor Coolant Puap Head-Capacity and NPSH curves for reactor                                  See  Engineering      Homologous Curves are    available in coolant pNps/Homologous Curves                                                                    RETRAH Rated  RC  pap      head and  flow,  ft & gpll                            252;    90,000 Rated  RC  pump      torque and efficiency        Q        rated    84K  efficiency at hot head/flow,     ft-lb, fraction                                                condi t I ons RCP  Pmp Rated Power (hot, 556 degrees                         F)              4842    BHP RCP  Hotpr Rated Speed,         RPH                                                1189 Homent  of inertia of punp and motor,                Lb-ft'C 80,000 pump  heat,     HQt (max/min     per pap)                                     5,   4          Pwp power varies with    RCS  temp from approx 4  Wt to 5 H'Mt 1.2    Core COLR                                                                                              Cycle 28, Revision          1
 
Tab3.e 1: UFSAR          Chapter 15 Analysis Setpoints and Input Parameters em 4                      Item/Name                                    Value                          Remarks:
Rated power, HMt                                                    1520 Reactor power  tncertainty,   X RTP Bypass, X                                                            6.5           Thimble plugs removed.
Upper head bypass,    X                                      M  proprietary Upper head tenyerature,    degrees  F                              590          High  T  value.
Heat  transfer area,  ft                                          26,669 Average core heat    flux, Btu/hr-ft                              189,440 1.3    Fuel Assemblies 1.3.1  Height Total, inches ( length from bottom of assenhly to                  159,935 top nozzle)
Fuel Rod Length, inches    ( length from bottom  of              149. 138 pin to top of pin)
Active, inches                                                      141.4 1.3.2    Fuel Assembly Geometry Hass  of fuel, lbn                                                105,500 Hass of clad, ibm                                                  25,927 Hunber of fuel pins per fuel assenhty (FA)                          179 Ho. of Fuel Assemblies                                              121 Fuel pin pitch, in.                                                 0.556 Bottom nozzle weight and volune                                  9.1 lbs.
31.5 in Top  nozzle, w/ insert, weight and volune                      18.15    lbs.
62.9 inn Fuel Assembly resistance    [core dP  f(flow)],,psi    core delta P ~ 20 psi    Thimble plugs removed.
f( lb/hr)                                                Q flow ~ 170,200 gpn Fuel Assenhly  free flow area, in                                  34.75          Single assembly.
1.3.3    Fuel pin geometry Pellet diameter, in.                                               0.3444 Clad OD/ID,  in./in.                                          0.400/0.3514 1.3.4   Control Rod C Tnstnmat Guide        T~
Ho. of control rod guide tubes                                        16 Ho. of instrunent guide tubes Control Rod Guide tube upper part (X)/ID,    in./in.          0.49/0.528 instrunent Guide tube OD/1D, in. /in.                          0.395/0.350 Guide tube lower    part  OD/1D,  in./in.                    0.4445/0.4825 Control  Rod Drop Times, maxinuns,   sec.                  Kon-LOCA      2.4    Allowances are added to the Tech Spec LOCA          3.0    allowable value.
Control rod maxinun withdrawal rate, in./min.                        45 COLR                                                    12                        Cyc1e 28, Revision        1
 
Table 1:      UPSAR      Chapter 15 Analysis Setpoints and Input parameters em   j                    Item/Name                                 Value                               Remarks:
Control rod maxiaxsa insertion rate, pcm/sec.                     90 Control rod insertion limits                                  See COLR Hot charnel radial peaking factor                                1.75 Heat Flux Hot channel factor FQ                                  2.45 1.4    Pressurizer Code safety valve flow capacity, ibm/hr                        288,000            Rating at 2485 psig plus 3X accuml at i on Code  safety valve open time                        0.8 sec seal clearing time    Crosby Hodel HB-BP-86, size 4K26 Code safety valve setpoint                                    2485    psig        Tolerance is + 2.4X/-3X.
Spray valve                                                        2 Spray valve flow capacity, gpa/valve                              200 Spray valve setpoint- start open/full open                    2260/2310            Proportional Spray valve time constant, sec    ~                                  5            Assumed    value PORV  nunber                                                        2 PORV  f low capacity, ibm/hr                                  179,000            Steam  flow at  2335  psig PORV Cv                                                  50  gpm/(paid)1/2        Rating is for      liquid relief. Valve characteristic is quick opening see Copes Vulcan    Selecting and Sizing Control Valves 8/75, page 8, Table      18 for Cv vs travel curve.
PORV  open time                                      1.65 sec +    transmitter  LTOPs transmitter is Foxboro E11GH.HSAE1, with a time response      of 1  sec (time  to 90X of final value for step input)
PORV  close time                                      3.95 sec  +  transmitter  LTOPs transmitter is Foxboro E11GH-HSAE1, with a time response      of 1  sec (time to 90X of    final value for step input)
PORV  setpoint [normal) open/close, psig                      2335/2315 PORV  setpoint (LTOP) open/close, psig                            430 PORV  blowdown  characteristic Hester capacity w/ bank capacity and setpoints,                  800 kM Control banks                                        0 kM  at 2250 psig and 400 kM  at 2220 psig Backup Heaters                                      Full on at 2210 psig and resets at 2220 psig Hiniaasn heater  capacity required for  LOOP, kM                  100 Heater bank    controller type                          proportional      400 kM 1.4.1    Pressurizer    vol~(s) (100X /    OX power)
Mater,    ft'100X / OX power)                                  396/199 Steam,    ft (100X / OX power)                                  404/601 Total, fts                                                        800 Pressurizer iD,   ft-in                              83.624  in / cladding thickness is 0.188 in COLR                                                13                            Cycle 28, Revision            1
 
Table 1:    UFSAR        Chapter 15 Analysis Setpoints and Input Parameters em 4                        Item/Name                                  Value                            Remarks:
Surge  line LD, in.                                                '8.75          Surge  line is  10 in schedule  140 Spray line 10, in.                                                  3.062 Surge line volume,    fthm                                            18.4 1.4.2    Pressw izer Level Lower  level tap elevation                                      257' Upper Level tap elevation                                          275' Pressurizer level vs X power                               Xpower          Level  Pressurizer level is ramped linearly 0 X          35X  between these points. Hot used in 100 X          50X   Chapter  15 analyses.
Distance Hot Leg Centerline to Lower Tap,       ft                  10.750 Haxiaxm level allowed for steam bubble, X                              87 1.5    RCS  FLows, Tcaperature  and Pressures Total reactor coolant flow, gpm (15X plugging)                    170,200          Use  for non DNB Total reactor coolant flow, gpn (15X plugging)                    177,300          Use  for statistical  DHB to 573.5/547      Cycle 28 T    -" 561 Average reactor coolant teeperature, degrees F            559                                  ,
(Full  power/HZP)
Reactor coolant pressure,      psig                                  2235 Reactor coolant flow      mcertainty, X nominal Reactor coolant tetperature certainty, degrees F
Reactor coolant pressure      mcertainty, psi                        s 30 DNB  Limit (safety analysis limit)                                    1.40 1.6    Low Temperature    Overpressure Protection (LTOP)
Hiniaam    RCS vent size, square inches
        ~No. of SI ixsrps capable    of injection                              0/1 (PORVs/vent)
Haxinam    pressurizer level for    RCP start, X                        38 1.7    Fuel Handling/Dose Calculaticns Haxitmm    reactor coolant gross specific activity            100/t pCi/gm Haxinxm reactor coolant dose equivalent i-131                  1  ~  0 pCi/gm Haxitmm secondary coolant dose equivalent I-131                0.1 pCi/gm kininam reactor coolant boron concentration, ppm                      2000 Hinilmm reactor coolant Level                            23  ft above flange Hinicxm spent fuel pool Level                            23 ft above fuel Hlnlaxm spent fuel pool boron concentration,      ppm                  300 Hinislm spent fuel pool charcoal filter                                70        TS testing requires    90X eff.
efficiency, X methyl iodine removaL Hiniaxm post accident charcoal filter                                  70        TS testing requires    90X  eff.
efficiency, X methyl iodine removal COLR                                                      14                        Cycle 28, Revision          1
 
. Table 1:    UFSAR      Chapter 15 Analysis Setpoints and Input Parameters em 4                      Item/Name                                    Value                            Remarks:
Hinisua control rocm charcoal      filter efficiency,              70              TS  testing requires      90X eff.
X methyl iodine removal HInisass time between reactor      criticality and                  100 fuel  movement,  hrs.
Source Terse used    for  dose  calculations                    ORGEN      2 Dose conversion    factors                                      ICRP-30 Haxisxza Gas Decay Tank Xenon.133      concentration,             100,000 Ci 2.0   Hain Feedwater (HFM)
Feedwater tesperature    versus load                    Power    Teeperature      100X  design teffp is 432 degrees      F 102X          425  F 70X          385  F 30X          322  F OX          100  F Feedwater Suction Temperature vs Power, nominal          Power      Temperature 98X            345  F 70X            319  F 50X            295  F 30X            259  F Feedwater Suction Pressure      vs Po~er, nominal        Power      Pressure 98X      277 psig 70X      282 psig SOX      305    psig 30X      370    psig Head-Capacity and    NPSN  curves Head-Capacity and    NPSN  curves for main feedwater        See Engineering        Selected flow      splits are provided for Fxmps                                                                              model  validation.
Hain Feedwater Ixgp - Rated Head Hain Feedwater pmp - Rated Torque 2150'89.612 Hain Feedwater punp ~ Homent of Inertia Elevation of steam generator inlet nozzle Elevation of main feedwater pump, ft                              257. 75          Elevation is at center of shaft Elevation of condensate punp, ft                                250.833 HFM regulating valve open time on demand, sec HFM regulating valve close time on demand, sec                      10 HFll regulating valve Cv, full stroke                              725            Assuned value.       Actual value  =  684.
Low load HFll regulating valve Cv, (bypass                        l8.7            Effective  Cv: includes bypass      line valves)
HFM Neater resistance (delta P)                              see Engineering        Design data on the Nigh Pressure Heaters (2 in parallel) is provided 3.0   Auxiliary Feedwater    (AFM)
Hinieasn design temperature    of the water source              30, 32            Initial AFM ~ster      source are the CSTs service ~ster  / CST  (degrees  F)                                                located in the Service Bldg. Safety Related source is the Service Mater system ( I eke) .
Haxisxsa design  tecperature of the water source                80, 100            Initial AFM water      source are the CSTs service water  /  CST  (degrees F)                                                  located in the Service Bldg. Safety Related source is the Service Mater system ( lake).
COLR                                                    15                          Cycle 28, Revision              1
 
Tab9.e 1: UFSAR        Chapter        15    Analysis Setpoints and Input Parameters em g                      Item/Name                                  Value                            Remarks:
Startup time for the auxiliary feedwater @cps,                                   ~TDAFM    starts on LO level (17K) in SCC                                                                              both gens or IN on both unit 4Kv busses. HDAFM starts on SI (seq), or LO level either SG, or trip of both HFP  or  AHSAC HiniImNI delay   for AFM start, sec                     TDAFM  . 0,  HDAFM  1 NOAFM    acceleration time test results show  approximately 1.5 s.
HaxiImsn delay for  AFM start,  sec                                              Increased time of 600 sec. will be used in future analysis AFM  control valve open time   on demand,   sec                   H/A          HDAFM control valves are normally open and throttle closed to control flow between 200 '30 gpm AFM  control valve Cv[flow is f(dP))                                              HDAFMP valves are 3 Rockwell model &#xb9; A4006JKHY stop check valves. TDAFM control valves (4297, 4298) are 3 Fisher &#xb9;470-HS.
TDAFMP, maxiImsn  flow, gpm                                        600 AFM, minirmIII flows, both generators intact,  gpm        TOAFMP      200/SG    SBLOCA    assunes  200 gpn per  SG  with HDAFMP      200/SG    the fai lure of one  OG HiniImmI delay  for standby AFM  start,  min                      10 4.0  Nein Stem System (NS)
Location (and elevation) of condenser ckmp              CSO  . elev 256'.875 valves and atmosphcl"Ic I'clicf valves                  ARV  - elev 289'.563 Full load steam line pressure drop, psi                        approx 45          This estimate, to the governor valves, is provided for comparison purposes only.
HS  Isolation valve close time [full open to    full          HSIV - 5.0         The check    valve is asswIed to close close) close. time, sec                                    check valve - 1.0      in  1 sec under reverse flow.
NS Isolation valve Cv [flow is f(dP))                        HSIV - 23500 check valve . 17580 4.1  Nain Stam Code Safety Valves HImher  of valves (4 per line)
Valve flow capacities - Total, ibm/hr                            6621000          Rated flow (3X accImalation per ASHE, Section III):
1085 psig   ................ 797,700 lbn/hr (each) 1140  psig  .. ..............
                                                                                                            ~                837,600 Ibm/hr (each)
COLR                                                    16                        Cycle 28, Revision            1
 
~
Table 1:      UPSAR        Chapter      15  Analysi:s Setpoints and Input Parameters em 4                          Item/Name                                    Value                              Remarks:
Valve Floe vs SG pressure (psia),         total per            1110            0 bank (4 valves), ibm/sec.                                       1115            40 1120            91 1125          141 1131          191 1136          222 1141          223 1151          225 1161          227 1166          228 1173          342 1181          494 1190    ~      646 1200          799 1205          859 1209          920 1211          931 Nunber of valves in bank Valve setpoint(s),      (first/last  three), nominal,              1085/1140          Valves are. Crosby &#xb9;HA-65 6R10 psig                                                                                   Setpoint tolerance is +1X -3X.      /
Nodel valve      setpoint at      1.01 (nominal), and      full   flo11  at 1.04 (nominal).
Valve bloudo1a1 characteristic                                    15X max 1 SMS Atmospheric      relief valves No. Atmospheric      relief valves Atmospheric      relief valve setpoint/Air-operated,                 1050            During Hot Standby operation setpoint ps 1 9                                                                                is Lowered to control no load Tavg Atmospheric reLief valve setpoint/Booster,        psig               1060 Atmospheric relief valve capacity, Lbn/hr                    313550  at  1060  psig  Nax  floM is 380000 5.0    Turbine Generator (TG) 5.1     Condenser No. of condenser du1p valves Condenser    d1S1p valve open time, sec Condenser cklp valve close time, sec                                                  ASS1N1ing  close time = opening time Condenser cANp valve setpoint(s)                        for  TT: Tavg>555 4 valves,   On TT  valves control open at 6.7X/F
                                                                            >563 4 valves;        (PID) above 547      111th  full    open no TT: Tref +12 4 valves,   setpoints    as  described.      On 10X step Tref+20 4 valves        load decrease same      ratio    with a 6F deadband    from Tref Condenser    dip  valve Cv  [floe is f(dP))                                          Design Cv (240) from design conditions (302,500 ibm/hr sat steam at  695  psig) 6.0   Chemicat and      Vol~ Control    System (CVCS)
CVCS    capac1 ty/pump                                    3 pcs,   60 gpn max each  Normal ops: 2 charging punps - one            is manual at 15-20 gpn and the other            in automatic.     Charging
                                                                                                                        - 8 pcsto    are PDPs seals - 3 w/ 46 gpm    total        gp11 gpm Leakage + 5 gp11      into    RCS. 40 gpm Letdo1a1 COLR                                                      17                            Cycle 28, Revision                1
 
Tahie 1:      UFSAR      Chapter 15 Analysis Setpoints and Input Parameters                            \
Item/Name                                          Value                                Remarks:
CVCS  minimtsa/IxN0P, 9Pm                                                  15 Type  of controller (e.g.,    P + I) and gains              PID 100X,180 sec,10 sec 6.1    Reactor  Nak~ Mater    System (RW)
RNM  capac I ty/pep                                          2 Ixmps, 60 gpm each 7.0     Emergency Core Cooling System (ECCS) 7.1    ECCS  Delivery vs  RCS Pressure 7.1.1    Residual Heat Removal (RHR) Delivery vs      RCS  Pressure Ninisass  RHR  Delivery, train failure                      RCS    Pressure    Delivery      LOCA  Appendix  K  case. Train failure (psia)            (gpm)        results in  one  pup running with 10X 155                0       degradation with one line blocked.
152                0 150                0 140              250 120              648 100              &36 80            985 60          1115 40          1232 20          1338 14.7            1365 Nininasa  RHR  Delivery, two Ixmps ruwing,    one            RCS    Pressure    Delivery      LOCA Appendix  K  case  (offsite  po~er line blocked                                                  (psia)             (gpm)      available). Two  pcs    running with 155                  0      10X degradation with one line 154                  0      blocked.
152                160 150                252 140                516 120                830 100              1056 80            1243 60            1406 40            1552 20            1686 14.7              1720 7.1.2    Safety Injection (Sl) Delivery vs RCS Pressure Nininua SI delivery, 2 Ixmps operating, one line          Press        Delivery        Spill  LOCA  Appendix K case. Train failure spilling                                                  (psig)         (gpn)       (gpm)  results in   two Ixmps running with SX 1375            0.0        465    degradation with one line      spilling to 1300            62        465    contaireent.
1200            125        465 1100            167        465 1000            201        465 900            229        465 800            253        465 700            273        465
                                                                      .600           289        465 500            305        465 400            321        465 300            336        465 200            352          465 100           368          465 0          384          465 COLR                                                      18                                  Cycle 28, Revision            1
 
Table 1:.UFSAR Chapter                  15  Analysis Setpoints and Input Parameters em 4                     Item/Name                                          Value                                  Remarks:
Hinisxsa Sl delivery,   3 purps operating,   non-LOCA    Press        Delivery (gpm)        Used  for non-LOCA  transients,               SX pump (psia)      Loop  'A'    Loop  degradation BI 1390            16            19 1315            87          97 1215          147          163 1115          193          214 1015          231          257 915          266          295 815        297          329 715        325          360 615        352            390 515        377            418 415        400            444 315        423            469 215        445            493 115        465            516 15        485            538 Hinisxsa Si  delivery,   2  pwys operating  non-LOCA      Press        Delivery (gpm)       Used  for non.LOCA  transients,               5X punp (psia)    Loop  'A'BI Loop  degradation.
1390            8            8 1315            69          71 1215          121          126 1115          162          169 1015          197          206 915        228          239 81$        255          269 715        281          296 615        305          322 515        328          346 415        350          369 315        37D          391 215        390          412 115        409          432 15        427          452 Hex(asm Si  delivery,   3  pcs  operating,  SGTR        Press        Loop A        Loop B    The KYPIPE model asswes no (psig)        (gpn)        (gpm)                  Loop A and B pressures pm'egradation.
1375            76            84    are set equal. Used for SGTR.
1300          128          141 1200          180          198 1100          221          245 1000          258          285 900        290          321 800        320          354 700        348          385 600        374          413 500        398          440 400        421          466 300        443          490 200        464          514 100        485          536 0        504          558 7.3    Acnmslators Nwker of accumulators                                                      2 Total volune, each, fts                                                  1750 Liquid volune, fts - min/max                                          1111/1139 Liquid volune,   ft'   Best Estimate                                    1140 initial  pressure,  psig - Hinisxla / Haxinua                        700/790 COLR                                                      19                                    Cycle 28., Revision I
 
Tah9.e 1: UPSAR         Chapter 15 Analysis Setpoints and Input Parameters Item/Name                                       Value                                     Remarks:
initial  te<<perature,   F                                            105                    LBLOCA Boron concentration,     ppm  (min/max)                           2100/2600                  Hote . EQ  analyses use  a maxi<<un concentration of 3000 ppn 7A    RMST RMST  Te<<perature,  min  / max,  degrees  F                      60  /    80              Upper  limit  increased to    104 Ninitmsn RMST  volw>>, gal                                          300,000 RMST  boron concentration,     ppm  (min/max)                     2300/2600                  Note -  EQ  analyses use  a maxinxin concentration of 3000 ppn 8.0  Conte i ~t initial  contairment pressure,     psia                          min - 14.5                  lfinitmjn is used for  LOCA  analysis.
max - 15.7                  Haxi<<xsn    is used for the containment integrity  cases (SLB).
initial  contaim>>nt te<<perature      (LOCA/SLB)                    90/120                    LOCA  te<<perature lower for PCT degrees  F                                                                                    calculations. SLB higher for
                                                                                    ~
contaim>>nt integrity initial relative hunidity,
                                                                                      '0 X
SM  temperature min/max, degrees      F                              30/$ 5 Haxitmln  contaim>>nt leakage, wtX/day                                  0.2
"        Contairment Heat Sinks Listing of Passive Heat Sinks, quantities, materials, and configurations see Engineering lbn/fthm 8.2  Oensities, Therm<1 Conductivities and Heat Capacities of Hest Sinks insulation density, conductivity, capacity                      3.7 lbn/ft 0.0208 BTU/hr          F  ft
: 1. 11 BTU/ft          F Concrete density, conductivity, capacity                        '50                          note: miniaun conductivity 0.81 BTU/hrfft                corresponds to maxi<<nxn density,      and 31.5 BTU/ft F                  maxi<<xln  conductivity corresponds to minimsn density.
Steel density, conductivity, capacity                          C90    lbn/f tn 28  BTU/hrfft 54.4 BTU/ft          F Stainless steel density, conductivity, capacity                C96 lbn/fthm 15 BTU/hrFft 54.6 BTU/ft F Contaim>>nt free volune, min      /  max, cu. ft.       1,000,000      /    1,066,000 Ground Te<<perature    (degrees F)                                      55                    below grade te<<perature Outside  Air Temperature,  min  /  max, degrees  f              -10  / 100 HTC  for outside surfaces                              1.65  BTU/hr ft degrees          F COLR                                                   20                                    Cycle 28, Revision           1
 
~
Table 1:     UFSAR     Chapter 15 Analysis Setpoints and Input Parameters em 4                     Item/Name                                     Value                           Remarks:
Containnent fan cooler performance                        Tea@      Hin      Hax (deg F)     (X1068TU/hr) 120        2.05    4.55 2?0        35.1    99.2 240        40.8 113.8 260        46.8 129.3 280        52.9 145.5 286        54.7 150.4 Contairment spray  flow, min./    max, each,  gpm              1300  / 1800 1
8.3    Delays  for CRFCs and Spray Pumps CRFC  delay, offsite power available, seconds                                        includes 2.0 sec Sl delay CRFC delay, offsite power not available, seconds                      44            includes 2.0 sec Sl delay Contaiwent Spray, 1300 gpn each pwp, maxisxsn                28.5 . one pap        This delay is from the time delay, sec                                                    26.8 - two punps      Contaireent Hi-Hi setpoint is reached. lt includes lnstrut>>nt delay and spray line  fill time.
Contaim>>nt Spray, 1800 gpn each pm', mininasn                9  / (14  w LOOP)    This delay is from the time of break.
delay, sec Contaiment Design pressure, psig                                      60 Distance Basement floor to Springline, feet                          95 Distance Springline to top of dome, feet                            52.5 8.4    Contairment  Sump Hinimum/maxiaus wtX of  HaOH  Tank                                30/35 9.0    Control Systems (Reactor,    FU, Przr Level, Turbine,  AFM)
Tavg versus power                                                    H/A            Tavg reaps linearly from 547 degrees F at OX power to 561 degrees F at 100X power Pressurizer pressure and level algorithms                            H/A            Pressurizer pressure setpoint is constant at 2235 psig . Pressurizer level ramps from 35X to 50X for 0 to 100X power (547 - 561 degrees F).
SG  secondary level algorithm                                        H/A            Level remains constant at 52X to 100X power. (Power from turbine 1st stage press,)
10.0    Safety System Setpoints 10.1    Reactor Protect 1m System 10.1.1    Power range high neutrcn flux, high setting nominal                                                              1.08 accident analysis                                                    1.18 delay time, sec                                                      0.5 10.1.2    Power range high neutron  flux,  low setting nominal                                                            0,240 accident analysis                                                  0.350 COLR                                                    21                            Cycle 28, Revision        1
 
Table 1:      UFSAR          Chapter 15 Analysis Setpoints and Input Parameters Item/Name                          Value                          Remarks:
delay tilllc, scc                                            0.5 10.1.3    Overtcmpera~ delta            T nominal                                                    Variable accident analysis                                          Variable delay time, scc                                              6.0            Total delay time - from the time the temperature difference In the coolant loops exceeds the trip setpoint until the rods are free.to fall 10.1.4    Overpcwer      delta  T nominal                                                    Variable accident analysis                                          Variable        Hot  explicitly modelled in safety analysis delay time, sec                                              2.0 10.1.5    High pressurizer prcssure nominal, psig accident analysis, psia                                      2410 delay tilllc~ scc                                            2.0 10.1.6    Lou  pressurizer pressure nominal, psig                                                1873 accident analysis, psia                              1775 (non-LOCA) 1730 (LOCA) 1905 (SGTR) delay timey scc                                              2.0 10.1.7    Lou  reactor coollHlt flow nomina  l                                    91X  of normal indicated fiou accident analysis                                      87X per loop delay time, sec                                              1.0 10.,1.8    Lcw-lou    SG  level nominal                                          17X  of the narrow range  Hhlle  trip setpoint  could be as loll level span        as 16X,  AFM initiation limits to 17X accident analysis                              OX  of narrow range level span delay time, sec                                              2.0 10.1.9    Turbine Trip (lou        fluid oil pressure) nolllina l i ps l 9                                            45 accident analysis                                            M/A          Hot  explicitly modeled in safety analysis delay time, sec                                              2.0 COLR                                            22                          Cycle 28, Revision          1
 
'able      1:  UPSAR        Chapter    15 Analysis Setpoints and Input Parameters em 4                          Item/Name                  Value                    Remarks:
10.1.10    Unck~l tage nominal,    V                                      3150 accident'nalys is                                            Safety analysis assunes RCCAs are released 1 ' sec. after setpoint is released.
delay time+ sec                                      1.5 10.1.11    Underfrequency nominal,      Hz                                    57.7 accident analysis                                  57.0    Analysis is performed but not explicitly modeled in safety analysis.
delay  't'Ime                                        1.2    Safety analysis assw>>s RCCAs are released 1.2 sec after setpoint is reached.
10.1.12    intermediate range ncminal,    RTP                                    0 '5    Hay  fluctuate due  to core flux safety analysis,    RTP                            H/A    Hot explicitly modeled in safety analysis delay time, sec                                      H/A
    .1.13
    ~  ~    Source Range nominal, cps
                        ~
: 1. DE+5 accident analysis, cps                            1.DE+5 delay time, sec                                      2.0 10.1.14    High Pressurizer      level nominal                                            0.90 accident analysis                                  0.938 delay time, sec                                      2.0 10.2      Engineered Safety Features Actuation System 10.2.1    Safety Tnjecticn System 10.2.1.1    High contai~t pressure Hominal    setpoint, psig                            4.0 Accident Analysis setpoint, psig                    60~      ~only modeled in accident analysis for start of contaireent fan coolers.
Delay time, sec                                      34      Time delays are  for start of 44 w/ LOOP  contain>>nt fan coolers.
10.2.1.2    Lou pressurizer pressure Hominal setpoint, psig                              1750 COLR                                          23              Cycle 28, Revision        1
 
I Tab'ie 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name                                  Value                            Remarks:
Accident Analysis setpoint, psia                              1785, SGTR 1730, non-LOCA 1715, LOCA Delay time, sec                                                    2.0 10.2.1.3  Low  stem line press~
Nominal setpoint, psig                                            514 Accident Analysis setpoint, psig                                372.7              See  Engineering Delay time, sec                                                    2.0              See  Engineering 10.2.2    Contai  ~t    Spray Nominal  Setpoint, psig                                            28 Accident analysis setpoint, psig                                  32 ~ 5            See  Engineering Delay time, sec                                                  28.5            Delay time includes time to    fill lines. See Engineering 10.2.3    AFM  System Low-low  stem generator water level Nominal Setpoint                                        17 X of narrow range instrunent span each steam generator Accident analysis setpoint                              0 X of narrow range        A  positive 11X  error  has been instrunent span each steam    included to account for the SG level generator            measurement system at a contairvnent teIIyerature of 286 F Delay time, sec                                                    2.0 10.2.4    Stem Line Isolation 10.2.4.1    High cIntai~t pressure Nominal  Setpoint, psig                                            18 Accident analysis setpoint                                        H/A              Not  explicitly modeled Delay time                                                        H/A              Not  explicitly modeled 10.2.4.2    High  stem flow, coincident with low Tavg and SI Nemine l Setpoint                                O.CE6  lb/hr equivalent  steam  Note: flow setpoint is below nominal flow at  755  psig and Tavg <  full power  flow and therefore this 545    F          portion of logic is    made up at po~er Accident analysis setpoint                                        N/A              Hot  explicitly modeled Delay time                                                        H/A            Hot  explicitly modeled. Steam line isolation is assuned concurrent with SI ( I.e. 2 s delay + 5 s valve stroke) 10.2.4.3    High-high stem flow, coincident SI Hominal Setpoint                                  3.6E6  lb/hr equivalent steam flow at 755 psig Accident analysis setpoint                                        H/A              Hot explicitly modeled COLR                                                24                              Cycle 28, Revision          1
 
I
'ab      e 1:"UPSAR Chapter 15                  Analysis Setpoints and Input Parameters em 4                        Item/Name                                    Value                                Remarks:
Delay time                                                            N/A                Not  explicitly modeled. Steam line isolation is    assuaed concurrent with SI  (I.e. 2 s delay + 5 s valve stroke) 10.2.5    Feedwater    isolation 10.2.5.1  Nigh  stem generator water Level Nominal Setpoint                                        85K  of the narrow range instrunent span each SG Accident analysis setpoint                            IOOX of the narrow range instrunent span each SG Delay time                                                            2.0                Instrunent  Loop  only 11.0    BMI  Stmm Generators Heat Load per SG, BTU/hr                                        2,602,000,000 Primary flow per    SG, KLb/hr                          Plugging%        FLow  KLb/hr  Design flows at T,~      =  573.5  F 0        ,      34950 5                34630 10                34280 15          ~    33850 Steam  flow per SG, lb/hr (clean, unplugged)            3,264,358 at 877 psia          Conditions for T,~    =  573.5  F Secondary design pressure, psig                                      1085 Secondary design temperature, F                                        556 Naximzn moisture carryover, X                                        0.10 Narro~ range level tap Locations, inches above                386/      /  529/
TS secondary face Wide range Level tap locations, inches above TS                  8/4  /    529/e secondary face SG  Pressure Drops Secondary nozzle    to nozzle dP Q full po~er, psi                  14.7                Value  is total static pressure drop.
Secondary  nozzle  to nozzle dP Q full power, psi                    7.5                Pressure drop from top of U-bend to outlet.
Primary nozzle to nozzle unrecoverable pressure            Plugging%        ap psi      See  associated  flows for    X plugging.
drop vs. plugging, psi                                      0                31.01
                                                                        '0 5                33. 27 35:82 15                38.72 11.2 No. of tubes per  SG                                              4765 Tube  (I,  inches                                                  0.750 Tube average  wall thickness, inches                              0.043 Naximss tube length, ft                                            70.200                Includes Length in tubesheet (2x25.625")
Hiniaxza tube length,  ft                                          55.925                Includes Length in tubesheet (2x25.625")
Average Length,    ft                                              61.988                Includes length in tubesheet (2x25.625")
COLR                                                  25                                  Cycle 28, Revision            1
 
'abi.e    1:    UFSAR      Chapter 15 Analysis Setpoints and Input Parameters Item/Name                                                  Value                                    Remarks:
Hinisasa U-bend radius,              inches                                    3.979                      Hote: this is not the bend radius for the shortest tube.
Haxisua U.bend radius, inches                                                  54.007 U-bend radius    of shortest tube(s), inches                                    4.044 Average U-bend radius, inches                                                    24.51 Tube straight length (one side) above secondary                      303'/u  /  310'/i          / 308  182 face, inches (min/max/average)
Secondary heat transfer area,                ft  per  SG                      54,001 Primary heat transfer area,              ft  per  SG                        47,809 Overall bundle height,              ft above  secondary face                  30.427 of TS Tube  material                                                        SB-163  Alloy N06690 SG Tube Haterial Thermal Conductivity,                                Temp  F              Conductivity BTU-in/hr-ft -F                                                        200                        93 300                      100 400                      107 500                      114.5 600                      122 SG  Tube  Haterial,Specific Heat, BTU/lb-F                            Teap F                Conductivity 200                  0.112 300                  0.1155 400                  0.119 500                  0. 1225 600                  0.126 Distance from top of tube bundle to 33X                  NRL, ft                5.703 11.3    SG  Vol~
11.F 1    SG  Secondary Side  Vol~
Secondary voiune,    ft (total)                                                4512.7 Secondary voiune up to lower                HRL  tap,  ft                      1893.2 Secondary volune up to upper                HRL  tap,  ft 3460.4'1.3.2 Riser  Vol~
Secondary side bundle voiuae (TS to top of U-                                    1281.8 bend  inside shroud),
riser voiuoe, top of ft'econdary U-bend to    spill-                    507.0                  Equivalent to LOFTRAN riser voiune.
over point,  ft 11.3.3 Downcomer ft      ft'359.6 fancier Vot~
Downcomer point, voiune, top of voiuae, top of U-bend to TS  to top of U-bend, spill. over                    1437.3 SG  Primary Side  Vol~
Inlet plenun per  SG,  ft                                                        129.65 Outlet pienun per  SG, ft                                                        129.65 COLR                                                                26                                      Cycle 28, Revision        1
 
A
'able    1:    UPSAR      Chapter 15 Analysis Setpoints and Input Parameters Item/Name                                            Value                              Remarks:
Tube primary volune per SG,      ft                                      710.3 Primary total volune per      SG,  ft                                      969.6 Circulation ratio    (100X  pwer, clean, unplugged)                        5.39              Circulation ratio ~ bundle flol5 /
steam floe. Assunes 40,000 ibm/hr bl ow5ovn.
Tubesheet    thickness, inches                                            25.625              Includes cladding.
11  4  SG  Primary Side Dimemlm>>
Primary head radius, inches                                                58.375              Radius to clad surface.
Divider plate thickness, inches                                            1.875 inlet and outlet nozzle, inside diameter                                  31.200 cylindrical section, inches Nozzle divergence angle, degrees                                          11'30'7.0 Nozzle inside diameter at plenun, inches Nozzle lengths, inches                                      ,cylindrical section      8.75 conical section          13.0 total length            21.75 Heigth fran SG primary heed bottom (outside) to                          90    /,e top of TS, inches Distance tube sheet primary face to hot leg                                6.654 centerline,    ft 11.5        SG  Secondary Side Dimensions Lover shell inside diameter,      inches                                    122 LoMer  shell thickness, inches                                            2.875 Tube shroud inside diameter, inches                                          114 Distance top of tube bundle to top of steam                                298.5 nozzle, inches Steam nozzle floN    restricter  area,                                    1,4 secondary face of    TS  to centerline of ft'istance 407 /0 feedvater nozzle, inches Distance secondary face of      TS  to centerline of                        374 feed ring, inches Cross-sectional    area of tube bundle,              ft                    41.64              This value is total area inside shroud.
Distance top of tube bundle to spill-over point,                          178.0              This value is equivalent to the riser inches                                                                                      height for the OSG.
Primary side roughness, micro-inches                              Nozzles, head    60        Values given are conservative Tubes            60        assu5ytions.
11.6    SG  Secondary Side Mater Nasses Secondary Mater inventory, 100X poger,                  T~ =          86,259 liquid            Best estimate value.
573.5, no plugging, ibm                                                5,286 steam Secondary eater inventory, 100X poMer,                  T            85,547 liquid            Best est imate va lue.
559, no plugging, lba                                                  4,675 steam 11.7    SG  Primry Side    Head Loss  Coefficients COLR                                                            27                            Cycle 28, Revision        1
 
~
Table 1:        UFSAR        Chapter 15 Analysis Setpoints and Input Parameters em 4                          Item/Name                                  Value                            Remarks:
SG      inlet nozzle/planus  Loss coefficient, ft/gpm'G for lD
* 31.2>>
outlet nozzle/plenun loss coefficient,            3.31E-10  for ID>> 31.2>>
ft/gpn tubing loss coefficient, ft/gpn                  9.62E-09  for OX plugging  For tube  ID>> 0.664", Ao>>      11.C58 SG 1.32E-08  for 15X plugging  ft, Au>> be9.739uniform.
ft . Plugging is SG (in),      ft/gpn'G ft/gpn'.01E-09 tubing loss coefficient, straight section        4 '9E-09  for OX plugging 5.73E.09 for 15X plugging assuned ft, to for tube LD = 0.664", A = 11.C58 Au>> 9.739 ft . Plugging is assumed  to be uniform.
tubing loss coefficient, U-bend section,          1.02E-09  for OX plugging  For tube ID = 0.664",    A  = 11.458 ft/gpm'G 1.40E-09  for 15X plugging  ft, Au>>    = 9.739  ft . Plugging is assuned  to be uniform.
tubing Loss coefficient, straight section        4.41E.09  for OX plugging  For tube  LD = 0.664>>,  A,>>  11.458 (out),                                                  6.08E-09  for 15X plugging  ft, Au>> 9.739     ft . Plugging is assuned to be uniform.
COLR                                                       28                           Cycle 28, Revision           1}}

Latest revision as of 10:10, 4 February 2020

Rev 1 to Cycle 28 COLR for Re Ginna Npp.
ML17265A630
Person / Time
Site: Ginna Constellation icon.png
Issue date: 04/18/1999
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17265A628 List:
References
NUDOCS 9904290042
Download: ML17265A630 (35)


Text

COLR GINNA STATION Cycle 28 Revision t CORE OPERATING LIIVIITS REPORT (COL R)

Re ponsible Hanaget H/IE/9 9'ffective Date Controlled Copy No.

9q04290042 990419

( PDR ADOCK 05000244i P PDRI I

0 R.E. Ginna Nuclear Power Plant Core Operating Limits Report Cycle 28 Revision 1 This report is not part of the Technical Specifications. This report is referenced in the Technical Specifications.

TABLE OF CONTENTS 1.0 CORE OPERATING LIMITS REPORT 2.0 OPERATING LIMITS 3 2.1 SHUTDOWN MARGIN . 3 2.2 MODERATOR TEMPERATURE COEFFICIENT . 3 2.3 Shutdown Bank Insertion Limit . 3 2.4 Control Bank Insertion Limits . 4 2.5 Heat Flux Hot Channel Factor (Fo(Z)) ~ ~ ~

2.6 Nuclear Enthalpy Rise Hot Channel Factor (F"~ ) 4 2.7 AXIAL FLUX DIFFERENCE . ~ ~ ~ ~ ~ ~ ~ 4 2.8 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 5 2.9 Boron Concentration . ~ ~ ~ ~ ~ 5 3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS ..... 5

4.0 REFERENCES

6

- REQUIRED SHUTDOWN MARGIN . . . . . . . . . . . 7 FIGURE 1 . . . . . . . . .

FIGURE 2 - CONTROL BANK INSERTION LIMITS 8 FIGURE 3 - K(Z) - NORMALIZED Fo(Z) AS A FUNCTION OF CORE HEIGHT..... 9 FIGURE 4 - AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS -AS A FUNCTION OF RATED THERMAL POWER 10 TABLE 1 - UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAMETERS. 11 COLR Cycle 28 Revision 1

R.E. Ginna Nuclear Power Plant Core Operating Limits Report Cycle 28 Revision 1

=

1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Ginna Station has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

3.1.1 "SHUTDOWN MARGIN (SDM)"

3.1.3 "MODERATOR TEMPERATURE COEFFICIENT (MTC)"

3.1.5 "Shutdown Bank Insertion Limit" 3.1.6 "Control Bank Insertion Limits" 3.2.1 "Heat Flux Hot Channel Factor (Fo(Z))"

3.2.2 "Nuclear Enthalpy Rise Hot Channel Factor (F"~)"

3.2.3 "AXIAL FLUX DIFFERENCE (AFD)"

3.4.1 "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits" 3.9.1 "Boron Concentration" COLR Cycle 28, Revision 1

2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Technical Specification 5.6.5. All items that appear in capitalized type are defined in Technical Specification 1. 1, "Definitions."

2.1 SHUTDOWN MARGIN (LCO 3.1.1)

(Limits generated using Reference 1)

The SHUTDOWN MARGIN in MODE 2 with K,<< ( 1.0 and MODES 3 and 4 shall be greater than or equal to the limits specified in Figure 1 for the number of reactor coolant pumps in operation (non main feedwater operation).

2.1.2 The SHUTDOWN MARGIN in MODE 4 when both reactor coolant pumps are not OPERABLE and in operation and in MODE 5 shall be greater than or equal to the one loop operation curve of Figure 1.

2.1.3 The SHUTDOWN MARGIN required in LCOs 3.1.4, 3.1.5, 3.1.6,

3. 1.8, and 3.4,5 shall be greater than the limits specified in Figure 1 for the number of reactor coolant pumps in operation and the status of the main feedwater system.

2.2 MODERATOR TEMPERATURE COEFFICIENT (LCO 3. 1.3)

(Limits generated using Reference 1) 2.2.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOL ARO/HZP - MTC shall be less positive than +5.0 pcm/'F for power levels below 70% RTP and less than or equal to 0 pcm/'F for power levels at or above 70% RTP.

The EOL ARO/RTP - MTC shall be less negative than -42.9 pcm/'F.

where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life HZP stands for Hot Zero THERMAL POWER RTP stands for RATED THERMAL POWER 2.3 Shutdown Bank Insertion Limit (LCO 3. 1.5)

(Limits generated using Reference 1) 2.3.1 The shutdown bank shall be fully withdrawn which is defined as z 221 steps.

COLR Cycle 28, Revision 1

2.4 Control Bank Insertion Limits (LCO 3. 1.6)

(Limits generated using Reference 1) 2.4.1 The control banks shall be limited in physical insertion as shown in Figure 2.

2.4.2 The control banks shall be moved sequentially with a 100

(+5) step overlap between successive banks.

2.5 Heat Flux Hot Channel Factor F Z (LCO 3.2. 1)

(Limits generated using References 1 and 2)

F (Z) s ~F /*K(Z) when P > 0.5 P

Fo(Z) ~ QFog*K(Z) when P s 0.5

0.5 where

2 is the height in the core, Fo ~ 2.45, K(Z) is provided in Figure 3, and THERMAL POWER P = RATED THERMAL POWER 2.6 Nuclear Enthal Rise Hot Channel Factor F" (LCO 3.2.2)

(Limits generated using Reference 1) 2.6.1 F"~ s F"

~ * (1 + PF~ * (1-P))

where:

PF~ - 0.3, and THERMAL POWER' RATED THERMAL POWER 2.7 AXIAL FLUX DIFFERENCE (LCO 3.2.3)

(Limits generated using References 1 and 3)

2. 7.1 The AXIAL FLUX DIFFERENCE (AFD) target band is + 5%. The actual target bands are provided by Procedure RE-11. 1.

2.7.2 The AFD acceptable operation limits are provided in Figure 4.

COLR Cycle 28, Revision 1

0 3

2.8 RCS Pressure Tem erature and Flow De arture from Nucleate Boilin

~DNB Li it LLBB 3.4.13 (Limits generated using Reference 4) 2.8.1 The pressurizer pressure shall be > 2205 psig.

2.8.2 The RCS average temperature shall be s 577.5 F.

2.8.3 The RCS total flow rate shall be a 177,300 gpm (includes 4%

minimum flow uncertainty per Revised Thermal Design Hethodology).

2.9 Boron Concentration (LCO 3.9. 1)

(Limits generated using Reference 1) 2.9. 1 The boron concentrations of the hydraulically coupled Reactor Coolant System, the refueling canal, and the refueling cavity shall be ) 2300 ypm.

3.0 UFSAR CHAPTER 15 ANALYSIS SETPOINTS AND INPUT PARAHETERS The setpoints and input parameters for the UFSAR Chapter 15 accident analyses are presented in Table 1. The values presented in this table are organized based on system and major components within each system.

The failure of a component or system to meet the specified Table 1 value does not necessarily mean that the plant is outside the accident analyses since: (1) an indicated value above or below the Table 1 values may be bounded by the Table 1 values, and (2) the setpoint or parameter may not significantly contribute to the accident analyses final results. The major sections within Table 1 are:

1.0 Reactor Coolant System (RCS) 2.0 Hain Feedwater (HFW) 3.0 Auxiliary Feedwater (AFW) 4.0 Hain Steam (HS) System 5.0 Turbine Generator (TG) 6.0 Chemical and Volume Control System (CVCS) 7.0 Emergency Core Cooling System (ECCS) 8.0 Containment 9.0 Control Systems 10.0 Safety System Setpoints 11.0 Steam Generators COLR Cycle 28, Revision 1

4.0 REFERENCES

1. WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology, Quly 1985.
2. WCAP-10054-P-A and WCAP-10081-A, "Westinghouse Small Break ECCS Evaluation Model Using the NOTRUHP Code," August 1985.

WCAP-10924-P-A, Volume 1, Revision 1, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 1: Model Description and Validation Responses to NRC Questions," and Addenda 1,2,3, December 1988.

WCAP-10924-P-A, Volume 2, Revision 2, "Westinghouse Large-Break LOCA Best-Estimate Methodology, Volume 2: Application to Two-Loop PWRs Equipped with Upper Plenum Injection," and Addendum 1, December 1988.

WCAP-10924-P-A, Volume 1, Revision 1, Addendum 4, "Westinghouse Large-Break LOCA Best-Estimate Hethodology, Volume 1: Model Description and Validation, Addendum 4: Model Revisions," March 1991.

WCAP-13677-P-A, "10 CFR 50.46 Evaluation Model Report: WCOBRA/TRAC Two-Loop Upper Plenum Injection Model Updates to Support ZIRLO' Cladding Option," February 1994.

WCAP-12610-P-A, "VANTAGE + Fuel Assembly Reference Core Report," April 1995.

WCAP-8385, "Power Distribution Control and Load Following Procedures-Topical Report," September 1974.

4. WCAP-11397-P-A, "Revised Thermal Design Procedure", April 1989.

COLR Cycle 28, Revision 1

ACCEPTABLE 2.5 (0.2 45)

OPERATION (0.2 40)

~ ~

MO O

b (0,1,80)

D Q

LLJ rL 1.5 z (1500.1,45)

I I

1 (1500,1,00) I P-D x(o UNACCEPTABLE 0.5 OPERATION 0

1500 1000 500 COOLANT BORON CONCENTRATION (ppm)

D I DDT << I \ D << ~ MTW T I TDD ~ MTW ANTE:

Two Loop Operation - non MFW means that the main feedwater system is not supplying the steam generators Two Loop Operation - MFW means that the main feedwater system is supplying the steam generators FIGURE I RE(UIRED SHUTDOWN MARGIN COLR Cycle 28, Revision I

220 1em.') 66.6, 200 B Bank (tel. $ 64) 1 80 160 (0,164 C Bank

'B I(0 140 CL 120 ank

~

O

~ 100 V)

O 80 CL 60 (0, 53) 6$

40

~ CL 20 (30.

0 10 20 30 40 50 60 70 80 90 100 Core Power (Percent of 1520 MWT)

  • The fully withdrawn position is defined as a 221 steps.

FIGURE 2 CONTROL BANK INSERTION LIMITS COLR Cycle 28, Revision 1

1.2 N

+ 1.0 pP 0.8 Ul C

Q.

I 06 C$

Total Fo

= 2.450

~

C

~

X E~ft 0.0

~K 1.0 0.4 11.783 1.0 QP

~

N

~

lg 202 0

R 0,0 0.0 2.0 4.0 6.0 8.0 10.0 11.783 Elevation (ft)

FIGURE 3 K(Z) NORMALIZED Fq(Z) AS A FUNCTION OF CORE HEIGHT COLR Cycle 28, Revision I

00 NOT OPERATE IN THIS AREA WITH AFD OUTSIOE THE TARGET BAt4)

(.11,90) (11/0) 80 ACCEPTABl.E

~O OP ERAT)ON a

"--'-- " "'UTSDEWlTH AFD BAND THE'AROET WlTH <<1 t%

PENALTY Q 60 DEVIATlON Q. THE (41,60) (31,60) x 40 a

ACCEPTABLE .

I~ OP ERAT)ON 20

-30 -20 -10 0 10 20 30 AXIALFLUX DIFFERENCE (%)

FIGURE 4 AXIAL FLUX DIFFERENCE ACCEPTABLE OPERATION LIMITS AND TARGET BAND LIMITS AS A FUNCTION OF RATED THERMAL POWER COLR 10 Cycle 28, Revision I

Tah3.e 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

1.0 Reactor Coolant System (RCS)

Upper head volune, ft 300.0 Above upper support plate.

Upper PL'enure volune, fts 580.2 Bottom of upper core plate to top of upper support plate. Includes outlet holes in the barrel.

Top of fuel volte, ft 50.3 Top of active fuel to bottcm of upper core plate, inside barrel baffle.

Inlet nozzle(s) volma, total of two, ft 43.2 Outlet nozzle(s) volune, total of two, ft 37.4 Includes nozzle forging protrusion into vessel. Does not include mating hole in barrel, this is included in the Upper PLenua volune.

Active fuel volume, ft 367.6 Bottom of fuel to top of fuel Bottom of fuel volune, ft 11.0 Top of lower core plate to bottom of active fuel.

Lover PLefwn volte, ft 514.3 Below top of lower core plate Downcomer volune, above bottom of cold leg, ft 138.4 Above bottcm of cold leg elevation tc bottom of upper support plate Downcomer, lo~er core plate to elevation of the 278.2 Top of lower core plate to elevation bottom of the cold Leg volune, of bottom of cold leg baffle, lower core plate to upper core 128. 5 Top of lower core plate to bottcm of ft'arrel plate volte, upper core plate.

volte, Includes nozzl es ft'otal fthm 2449.1 Hot leg pipe volune per loop volune, fto 78.7 Cold leg volune per loop + cross over, fts cross over = 140.7 cold leg ~ 46.8 RC purp volune per pm@, ft 192 Cold Leg pipe ID, in./Pwp suction ID, in. 27.5/31 Hot Leg pipe IO, in. 29 (28.969)

Design pressure, psig 2485 Design temperature, F 650 Cold Leg and Hot Leg Centerline Elevation 246'0" Reactor Coolant Puap Head-Capacity and NPSH curves for reactor See Engineering Homologous Curves are available in coolant pNps/Homologous Curves RETRAH Rated RC pap head and flow, ft & gpll 252; 90,000 Rated RC pump torque and efficiency Q rated 84K efficiency at hot head/flow, ft-lb, fraction condi t I ons RCP Pmp Rated Power (hot, 556 degrees F) 4842 BHP RCP Hotpr Rated Speed, RPH 1189 Homent of inertia of punp and motor, Lb-ft'C 80,000 pump heat, HQt (max/min per pap) 5, 4 Pwp power varies with RCS temp from approx 4 Wt to 5 H'Mt 1.2 Core COLR Cycle 28, Revision 1

Tab3.e 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

Rated power, HMt 1520 Reactor power tncertainty, X RTP Bypass, X 6.5 Thimble plugs removed.

Upper head bypass, X M proprietary Upper head tenyerature, degrees F 590 High T value.

Heat transfer area, ft 26,669 Average core heat flux, Btu/hr-ft 189,440 1.3 Fuel Assemblies 1.3.1 Height Total, inches ( length from bottom of assenhly to 159,935 top nozzle)

Fuel Rod Length, inches ( length from bottom of 149. 138 pin to top of pin)

Active, inches 141.4 1.3.2 Fuel Assembly Geometry Hass of fuel, lbn 105,500 Hass of clad, ibm 25,927 Hunber of fuel pins per fuel assenhty (FA) 179 Ho. of Fuel Assemblies 121 Fuel pin pitch, in. 0.556 Bottom nozzle weight and volune 9.1 lbs.

31.5 in Top nozzle, w/ insert, weight and volune 18.15 lbs.

62.9 inn Fuel Assembly resistance [core dP f(flow)],,psi core delta P ~ 20 psi Thimble plugs removed.

f( lb/hr) Q flow ~ 170,200 gpn Fuel Assenhly free flow area, in 34.75 Single assembly.

1.3.3 Fuel pin geometry Pellet diameter, in. 0.3444 Clad OD/ID, in./in. 0.400/0.3514 1.3.4 Control Rod C Tnstnmat Guide T~

Ho. of control rod guide tubes 16 Ho. of instrunent guide tubes Control Rod Guide tube upper part (X)/ID, in./in. 0.49/0.528 instrunent Guide tube OD/1D, in. /in. 0.395/0.350 Guide tube lower part OD/1D, in./in. 0.4445/0.4825 Control Rod Drop Times, maxinuns, sec. Kon-LOCA 2.4 Allowances are added to the Tech Spec LOCA 3.0 allowable value.

Control rod maxinun withdrawal rate, in./min. 45 COLR 12 Cyc1e 28, Revision 1

Table 1: UPSAR Chapter 15 Analysis Setpoints and Input parameters em j Item/Name Value Remarks:

Control rod maxiaxsa insertion rate, pcm/sec. 90 Control rod insertion limits See COLR Hot charnel radial peaking factor 1.75 Heat Flux Hot channel factor FQ 2.45 1.4 Pressurizer Code safety valve flow capacity, ibm/hr 288,000 Rating at 2485 psig plus 3X accuml at i on Code safety valve open time 0.8 sec seal clearing time Crosby Hodel HB-BP-86, size 4K26 Code safety valve setpoint 2485 psig Tolerance is + 2.4X/-3X.

Spray valve 2 Spray valve flow capacity, gpa/valve 200 Spray valve setpoint- start open/full open 2260/2310 Proportional Spray valve time constant, sec ~ 5 Assumed value PORV nunber 2 PORV f low capacity, ibm/hr 179,000 Steam flow at 2335 psig PORV Cv 50 gpm/(paid)1/2 Rating is for liquid relief. Valve characteristic is quick opening see Copes Vulcan Selecting and Sizing Control Valves 8/75, page 8, Table 18 for Cv vs travel curve.

PORV open time 1.65 sec + transmitter LTOPs transmitter is Foxboro E11GH.HSAE1, with a time response of 1 sec (time to 90X of final value for step input)

PORV close time 3.95 sec + transmitter LTOPs transmitter is Foxboro E11GH-HSAE1, with a time response of 1 sec (time to 90X of final value for step input)

PORV setpoint [normal) open/close, psig 2335/2315 PORV setpoint (LTOP) open/close, psig 430 PORV blowdown characteristic Hester capacity w/ bank capacity and setpoints, 800 kM Control banks 0 kM at 2250 psig and 400 kM at 2220 psig Backup Heaters Full on at 2210 psig and resets at 2220 psig Hiniaasn heater capacity required for LOOP, kM 100 Heater bank controller type proportional 400 kM 1.4.1 Pressurizer vol~(s) (100X / OX power)

Mater, ft'100X / OX power) 396/199 Steam, ft (100X / OX power) 404/601 Total, fts 800 Pressurizer iD, ft-in 83.624 in / cladding thickness is 0.188 in COLR 13 Cycle 28, Revision 1

Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

Surge line LD, in. '8.75 Surge line is 10 in schedule 140 Spray line 10, in. 3.062 Surge line volume, fthm 18.4 1.4.2 Pressw izer Level Lower level tap elevation 257' Upper Level tap elevation 275' Pressurizer level vs X power Xpower Level Pressurizer level is ramped linearly 0 X 35X between these points. Hot used in 100 X 50X Chapter 15 analyses.

Distance Hot Leg Centerline to Lower Tap, ft 10.750 Haxiaxm level allowed for steam bubble, X 87 1.5 RCS FLows, Tcaperature and Pressures Total reactor coolant flow, gpm (15X plugging) 170,200 Use for non DNB Total reactor coolant flow, gpn (15X plugging) 177,300 Use for statistical DHB to 573.5/547 Cycle 28 T -" 561 Average reactor coolant teeperature, degrees F 559 ,

(Full power/HZP)

Reactor coolant pressure, psig 2235 Reactor coolant flow mcertainty, X nominal Reactor coolant tetperature certainty, degrees F

Reactor coolant pressure mcertainty, psi s 30 DNB Limit (safety analysis limit) 1.40 1.6 Low Temperature Overpressure Protection (LTOP)

Hiniaam RCS vent size, square inches

~No. of SI ixsrps capable of injection 0/1 (PORVs/vent)

Haxinam pressurizer level for RCP start, X 38 1.7 Fuel Handling/Dose Calculaticns Haxitmm reactor coolant gross specific activity 100/t pCi/gm Haxinxm reactor coolant dose equivalent i-131 1 ~ 0 pCi/gm Haxitmm secondary coolant dose equivalent I-131 0.1 pCi/gm kininam reactor coolant boron concentration, ppm 2000 Hinilmm reactor coolant Level 23 ft above flange Hinicxm spent fuel pool Level 23 ft above fuel Hlnlaxm spent fuel pool boron concentration, ppm 300 Hinislm spent fuel pool charcoal filter 70 TS testing requires 90X eff.

efficiency, X methyl iodine removaL Hiniaxm post accident charcoal filter 70 TS testing requires 90X eff.

efficiency, X methyl iodine removal COLR 14 Cycle 28, Revision 1

. Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

Hinisua control rocm charcoal filter efficiency, 70 TS testing requires 90X eff.

X methyl iodine removal HInisass time between reactor criticality and 100 fuel movement, hrs.

Source Terse used for dose calculations ORGEN 2 Dose conversion factors ICRP-30 Haxisxza Gas Decay Tank Xenon.133 concentration, 100,000 Ci 2.0 Hain Feedwater (HFM)

Feedwater tesperature versus load Power Teeperature 100X design teffp is 432 degrees F 102X 425 F 70X 385 F 30X 322 F OX 100 F Feedwater Suction Temperature vs Power, nominal Power Temperature 98X 345 F 70X 319 F 50X 295 F 30X 259 F Feedwater Suction Pressure vs Po~er, nominal Power Pressure 98X 277 psig 70X 282 psig SOX 305 psig 30X 370 psig Head-Capacity and NPSN curves Head-Capacity and NPSN curves for main feedwater See Engineering Selected flow splits are provided for Fxmps model validation.

Hain Feedwater Ixgp - Rated Head Hain Feedwater pmp - Rated Torque 2150'89.612 Hain Feedwater punp ~ Homent of Inertia Elevation of steam generator inlet nozzle Elevation of main feedwater pump, ft 257. 75 Elevation is at center of shaft Elevation of condensate punp, ft 250.833 HFM regulating valve open time on demand, sec HFM regulating valve close time on demand, sec 10 HFll regulating valve Cv, full stroke 725 Assuned value. Actual value = 684.

Low load HFll regulating valve Cv, (bypass l8.7 Effective Cv: includes bypass line valves)

HFM Neater resistance (delta P) see Engineering Design data on the Nigh Pressure Heaters (2 in parallel) is provided 3.0 Auxiliary Feedwater (AFM)

Hinieasn design temperature of the water source 30, 32 Initial AFM ~ster source are the CSTs service ~ster / CST (degrees F) located in the Service Bldg. Safety Related source is the Service Mater system ( I eke) .

Haxisxsa design tecperature of the water source 80, 100 Initial AFM water source are the CSTs service water / CST (degrees F) located in the Service Bldg. Safety Related source is the Service Mater system ( lake).

COLR 15 Cycle 28, Revision 1

Tab9.e 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em g Item/Name Value Remarks:

Startup time for the auxiliary feedwater @cps, ~TDAFM starts on LO level (17K) in SCC both gens or IN on both unit 4Kv busses. HDAFM starts on SI (seq), or LO level either SG, or trip of both HFP or AHSAC HiniImNI delay for AFM start, sec TDAFM . 0, HDAFM 1 NOAFM acceleration time test results show approximately 1.5 s.

HaxiImsn delay for AFM start, sec Increased time of 600 sec. will be used in future analysis AFM control valve open time on demand, sec H/A HDAFM control valves are normally open and throttle closed to control flow between 200 '30 gpm AFM control valve Cv[flow is f(dP)) HDAFMP valves are 3 Rockwell model ¹ A4006JKHY stop check valves. TDAFM control valves (4297, 4298) are 3 Fisher ¹470-HS.

TDAFMP, maxiImsn flow, gpm 600 AFM, minirmIII flows, both generators intact, gpm TOAFMP 200/SG SBLOCA assunes 200 gpn per SG with HDAFMP 200/SG the fai lure of one OG HiniImmI delay for standby AFM start, min 10 4.0 Nein Stem System (NS)

Location (and elevation) of condenser ckmp CSO . elev 256'.875 valves and atmosphcl"Ic I'clicf valves ARV - elev 289'.563 Full load steam line pressure drop, psi approx 45 This estimate, to the governor valves, is provided for comparison purposes only.

HS Isolation valve close time [full open to full HSIV - 5.0 The check valve is asswIed to close close) close. time, sec check valve - 1.0 in 1 sec under reverse flow.

NS Isolation valve Cv [flow is f(dP)) HSIV - 23500 check valve . 17580 4.1 Nain Stam Code Safety Valves HImher of valves (4 per line)

Valve flow capacities - Total, ibm/hr 6621000 Rated flow (3X accImalation per ASHE,Section III):

1085 psig ................ 797,700 lbn/hr (each) 1140 psig .. ..............

~ 837,600 Ibm/hr (each)

COLR 16 Cycle 28, Revision 1

~

Table 1: UPSAR Chapter 15 Analysi:s Setpoints and Input Parameters em 4 Item/Name Value Remarks:

Valve Floe vs SG pressure (psia), total per 1110 0 bank (4 valves), ibm/sec. 1115 40 1120 91 1125 141 1131 191 1136 222 1141 223 1151 225 1161 227 1166 228 1173 342 1181 494 1190 ~ 646 1200 799 1205 859 1209 920 1211 931 Nunber of valves in bank Valve setpoint(s), (first/last three), nominal, 1085/1140 Valves are. Crosby ¹HA-65 6R10 psig Setpoint tolerance is +1X -3X. /

Nodel valve setpoint at 1.01 (nominal), and full flo11 at 1.04 (nominal).

Valve bloudo1a1 characteristic 15X max 1 SMS Atmospheric relief valves No. Atmospheric relief valves Atmospheric relief valve setpoint/Air-operated, 1050 During Hot Standby operation setpoint ps 1 9 is Lowered to control no load Tavg Atmospheric reLief valve setpoint/Booster, psig 1060 Atmospheric relief valve capacity, Lbn/hr 313550 at 1060 psig Nax floM is 380000 5.0 Turbine Generator (TG) 5.1 Condenser No. of condenser du1p valves Condenser d1S1p valve open time, sec Condenser cklp valve close time, sec ASS1N1ing close time = opening time Condenser cANp valve setpoint(s) for TT: Tavg>555 4 valves, On TT valves control open at 6.7X/F

>563 4 valves; (PID) above 547 111th full open no TT: Tref +12 4 valves, setpoints as described. On 10X step Tref+20 4 valves load decrease same ratio with a 6F deadband from Tref Condenser dip valve Cv [floe is f(dP)) Design Cv (240) from design conditions (302,500 ibm/hr sat steam at 695 psig) 6.0 Chemicat and Vol~ Control System (CVCS)

CVCS capac1 ty/pump 3 pcs, 60 gpn max each Normal ops: 2 charging punps - one is manual at 15-20 gpn and the other in automatic. Charging

- 8 pcsto are PDPs seals - 3 w/ 46 gpm total gp11 gpm Leakage + 5 gp11 into RCS. 40 gpm Letdo1a1 COLR 17 Cycle 28, Revision 1

Tahie 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters \

Item/Name Value Remarks:

CVCS minimtsa/IxN0P, 9Pm 15 Type of controller (e.g., P + I) and gains PID 100X,180 sec,10 sec 6.1 Reactor Nak~ Mater System (RW)

RNM capac I ty/pep 2 Ixmps, 60 gpm each 7.0 Emergency Core Cooling System (ECCS) 7.1 ECCS Delivery vs RCS Pressure 7.1.1 Residual Heat Removal (RHR) Delivery vs RCS Pressure Ninisass RHR Delivery, train failure RCS Pressure Delivery LOCA Appendix K case. Train failure (psia) (gpm) results in one pup running with 10X 155 0 degradation with one line blocked.

152 0 150 0 140 250 120 648 100 &36 80 985 60 1115 40 1232 20 1338 14.7 1365 Nininasa RHR Delivery, two Ixmps ruwing, one RCS Pressure Delivery LOCA Appendix K case (offsite po~er line blocked (psia) (gpm) available). Two pcs running with 155 0 10X degradation with one line 154 0 blocked.

152 160 150 252 140 516 120 830 100 1056 80 1243 60 1406 40 1552 20 1686 14.7 1720 7.1.2 Safety Injection (Sl) Delivery vs RCS Pressure Nininua SI delivery, 2 Ixmps operating, one line Press Delivery Spill LOCA Appendix K case. Train failure spilling (psig) (gpn) (gpm) results in two Ixmps running with SX 1375 0.0 465 degradation with one line spilling to 1300 62 465 contaireent.

1200 125 465 1100 167 465 1000 201 465 900 229 465 800 253 465 700 273 465

.600 289 465 500 305 465 400 321 465 300 336 465 200 352 465 100 368 465 0 384 465 COLR 18 Cycle 28, Revision 1

Table 1:.UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

Hinisxsa Sl delivery, 3 purps operating, non-LOCA Press Delivery (gpm) Used for non-LOCA transients, SX pump (psia) Loop 'A' Loop degradation BI 1390 16 19 1315 87 97 1215 147 163 1115 193 214 1015 231 257 915 266 295 815 297 329 715 325 360 615 352 390 515 377 418 415 400 444 315 423 469 215 445 493 115 465 516 15 485 538 Hinisxsa Si delivery, 2 pwys operating non-LOCA Press Delivery (gpm) Used for non.LOCA transients, 5X punp (psia) Loop 'A'BI Loop degradation.

1390 8 8 1315 69 71 1215 121 126 1115 162 169 1015 197 206 915 228 239 81$ 255 269 715 281 296 615 305 322 515 328 346 415 350 369 315 37D 391 215 390 412 115 409 432 15 427 452 Hex(asm Si delivery, 3 pcs operating, SGTR Press Loop A Loop B The KYPIPE model asswes no (psig) (gpn) (gpm) Loop A and B pressures pm'egradation.

1375 76 84 are set equal. Used for SGTR.

1300 128 141 1200 180 198 1100 221 245 1000 258 285 900 290 321 800 320 354 700 348 385 600 374 413 500 398 440 400 421 466 300 443 490 200 464 514 100 485 536 0 504 558 7.3 Acnmslators Nwker of accumulators 2 Total volune, each, fts 1750 Liquid volune, fts - min/max 1111/1139 Liquid volune, ft' Best Estimate 1140 initial pressure, psig - Hinisxla / Haxinua 700/790 COLR 19 Cycle 28., Revision I

Tah9.e 1: UPSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks:

initial te<<perature, F 105 LBLOCA Boron concentration, ppm (min/max) 2100/2600 Hote . EQ analyses use a maxi<<un concentration of 3000 ppn 7A RMST RMST Te<<perature, min / max, degrees F 60 / 80 Upper limit increased to 104 Ninitmsn RMST volw>>, gal 300,000 RMST boron concentration, ppm (min/max) 2300/2600 Note - EQ analyses use a maxinxin concentration of 3000 ppn 8.0 Conte i ~t initial contairment pressure, psia min - 14.5 lfinitmjn is used for LOCA analysis.

max - 15.7 Haxi<<xsn is used for the containment integrity cases (SLB).

initial contaim>>nt te<<perature (LOCA/SLB) 90/120 LOCA te<<perature lower for PCT degrees F calculations. SLB higher for

~

contaim>>nt integrity initial relative hunidity,

'0 X

SM temperature min/max, degrees F 30/$ 5 Haxitmln contaim>>nt leakage, wtX/day 0.2

" Contairment Heat Sinks Listing of Passive Heat Sinks, quantities, materials, and configurations see Engineering lbn/fthm 8.2 Oensities, Therm<1 Conductivities and Heat Capacities of Hest Sinks insulation density, conductivity, capacity 3.7 lbn/ft 0.0208 BTU/hr F ft

1. 11 BTU/ft F Concrete density, conductivity, capacity '50 note: miniaun conductivity 0.81 BTU/hrfft corresponds to maxi<<nxn density, and 31.5 BTU/ft F maxi<<xln conductivity corresponds to minimsn density.

Steel density, conductivity, capacity C90 lbn/f tn 28 BTU/hrfft 54.4 BTU/ft F Stainless steel density, conductivity, capacity C96 lbn/fthm 15 BTU/hrFft 54.6 BTU/ft F Contaim>>nt free volune, min / max, cu. ft. 1,000,000 / 1,066,000 Ground Te<<perature (degrees F) 55 below grade te<<perature Outside Air Temperature, min / max, degrees f -10 / 100 HTC for outside surfaces 1.65 BTU/hr ft degrees F COLR 20 Cycle 28, Revision 1

~

Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

Containnent fan cooler performance Tea@ Hin Hax (deg F) (X1068TU/hr) 120 2.05 4.55 2?0 35.1 99.2 240 40.8 113.8 260 46.8 129.3 280 52.9 145.5 286 54.7 150.4 Contairment spray flow, min./ max, each, gpm 1300 / 1800 1

8.3 Delays for CRFCs and Spray Pumps CRFC delay, offsite power available, seconds includes 2.0 sec Sl delay CRFC delay, offsite power not available, seconds 44 includes 2.0 sec Sl delay Contaiwent Spray, 1300 gpn each pwp, maxisxsn 28.5 . one pap This delay is from the time delay, sec 26.8 - two punps Contaireent Hi-Hi setpoint is reached. lt includes lnstrut>>nt delay and spray line fill time.

Contaim>>nt Spray, 1800 gpn each pm', mininasn 9 / (14 w LOOP) This delay is from the time of break.

delay, sec Contaiment Design pressure, psig 60 Distance Basement floor to Springline, feet 95 Distance Springline to top of dome, feet 52.5 8.4 Contairment Sump Hinimum/maxiaus wtX of HaOH Tank 30/35 9.0 Control Systems (Reactor, FU, Przr Level, Turbine, AFM)

Tavg versus power H/A Tavg reaps linearly from 547 degrees F at OX power to 561 degrees F at 100X power Pressurizer pressure and level algorithms H/A Pressurizer pressure setpoint is constant at 2235 psig . Pressurizer level ramps from 35X to 50X for 0 to 100X power (547 - 561 degrees F).

SG secondary level algorithm H/A Level remains constant at 52X to 100X power. (Power from turbine 1st stage press,)

10.0 Safety System Setpoints 10.1 Reactor Protect 1m System 10.1.1 Power range high neutrcn flux, high setting nominal 1.08 accident analysis 1.18 delay time, sec 0.5 10.1.2 Power range high neutron flux, low setting nominal 0,240 accident analysis 0.350 COLR 21 Cycle 28, Revision 1

Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks:

delay tilllc, scc 0.5 10.1.3 Overtcmpera~ delta T nominal Variable accident analysis Variable delay time, scc 6.0 Total delay time - from the time the temperature difference In the coolant loops exceeds the trip setpoint until the rods are free.to fall 10.1.4 Overpcwer delta T nominal Variable accident analysis Variable Hot explicitly modelled in safety analysis delay time, sec 2.0 10.1.5 High pressurizer prcssure nominal, psig accident analysis, psia 2410 delay tilllc~ scc 2.0 10.1.6 Lou pressurizer pressure nominal, psig 1873 accident analysis, psia 1775 (non-LOCA) 1730 (LOCA) 1905 (SGTR) delay timey scc 2.0 10.1.7 Lou reactor coollHlt flow nomina l 91X of normal indicated fiou accident analysis 87X per loop delay time, sec 1.0 10.,1.8 Lcw-lou SG level nominal 17X of the narrow range Hhlle trip setpoint could be as loll level span as 16X, AFM initiation limits to 17X accident analysis OX of narrow range level span delay time, sec 2.0 10.1.9 Turbine Trip (lou fluid oil pressure) nolllina l i ps l 9 45 accident analysis M/A Hot explicitly modeled in safety analysis delay time, sec 2.0 COLR 22 Cycle 28, Revision 1

'able 1: UPSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

10.1.10 Unck~l tage nominal, V 3150 accident'nalys is Safety analysis assunes RCCAs are released 1 ' sec. after setpoint is released.

delay time+ sec 1.5 10.1.11 Underfrequency nominal, Hz 57.7 accident analysis 57.0 Analysis is performed but not explicitly modeled in safety analysis.

delay 't'Ime 1.2 Safety analysis assw>>s RCCAs are released 1.2 sec after setpoint is reached.

10.1.12 intermediate range ncminal, RTP 0 '5 Hay fluctuate due to core flux safety analysis, RTP H/A Hot explicitly modeled in safety analysis delay time, sec H/A

.1.13

~ ~ Source Range nominal, cps

~

1. DE+5 accident analysis, cps 1.DE+5 delay time, sec 2.0 10.1.14 High Pressurizer level nominal 0.90 accident analysis 0.938 delay time, sec 2.0 10.2 Engineered Safety Features Actuation System 10.2.1 Safety Tnjecticn System 10.2.1.1 High contai~t pressure Hominal setpoint, psig 4.0 Accident Analysis setpoint, psig 60~ ~only modeled in accident analysis for start of contaireent fan coolers.

Delay time, sec 34 Time delays are for start of 44 w/ LOOP contain>>nt fan coolers.

10.2.1.2 Lou pressurizer pressure Hominal setpoint, psig 1750 COLR 23 Cycle 28, Revision 1

I Tab'ie 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks:

Accident Analysis setpoint, psia 1785, SGTR 1730, non-LOCA 1715, LOCA Delay time, sec 2.0 10.2.1.3 Low stem line press~

Nominal setpoint, psig 514 Accident Analysis setpoint, psig 372.7 See Engineering Delay time, sec 2.0 See Engineering 10.2.2 Contai ~t Spray Nominal Setpoint, psig 28 Accident analysis setpoint, psig 32 ~ 5 See Engineering Delay time, sec 28.5 Delay time includes time to fill lines. See Engineering 10.2.3 AFM System Low-low stem generator water level Nominal Setpoint 17 X of narrow range instrunent span each steam generator Accident analysis setpoint 0 X of narrow range A positive 11X error has been instrunent span each steam included to account for the SG level generator measurement system at a contairvnent teIIyerature of 286 F Delay time, sec 2.0 10.2.4 Stem Line Isolation 10.2.4.1 High cIntai~t pressure Nominal Setpoint, psig 18 Accident analysis setpoint H/A Not explicitly modeled Delay time H/A Not explicitly modeled 10.2.4.2 High stem flow, coincident with low Tavg and SI Nemine l Setpoint O.CE6 lb/hr equivalent steam Note: flow setpoint is below nominal flow at 755 psig and Tavg < full power flow and therefore this 545 F portion of logic is made up at po~er Accident analysis setpoint N/A Hot explicitly modeled Delay time H/A Hot explicitly modeled. Steam line isolation is assuned concurrent with SI ( I.e. 2 s delay + 5 s valve stroke) 10.2.4.3 High-high stem flow, coincident SI Hominal Setpoint 3.6E6 lb/hr equivalent steam flow at 755 psig Accident analysis setpoint H/A Hot explicitly modeled COLR 24 Cycle 28, Revision 1

I

'ab e 1:"UPSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

Delay time N/A Not explicitly modeled. Steam line isolation is assuaed concurrent with SI (I.e. 2 s delay + 5 s valve stroke) 10.2.5 Feedwater isolation 10.2.5.1 Nigh stem generator water Level Nominal Setpoint 85K of the narrow range instrunent span each SG Accident analysis setpoint IOOX of the narrow range instrunent span each SG Delay time 2.0 Instrunent Loop only 11.0 BMI Stmm Generators Heat Load per SG, BTU/hr 2,602,000,000 Primary flow per SG, KLb/hr Plugging% FLow KLb/hr Design flows at T,~ = 573.5 F 0 , 34950 5 34630 10 34280 15 ~ 33850 Steam flow per SG, lb/hr (clean, unplugged) 3,264,358 at 877 psia Conditions for T,~ = 573.5 F Secondary design pressure, psig 1085 Secondary design temperature, F 556 Naximzn moisture carryover, X 0.10 Narro~ range level tap Locations, inches above 386/ / 529/

TS secondary face Wide range Level tap locations, inches above TS 8/4 / 529/e secondary face SG Pressure Drops Secondary nozzle to nozzle dP Q full po~er, psi 14.7 Value is total static pressure drop.

Secondary nozzle to nozzle dP Q full power, psi 7.5 Pressure drop from top of U-bend to outlet.

Primary nozzle to nozzle unrecoverable pressure Plugging% ap psi See associated flows for X plugging.

drop vs. plugging, psi 0 31.01

'0 5 33. 27 35:82 15 38.72 11.2 No. of tubes per SG 4765 Tube (I, inches 0.750 Tube average wall thickness, inches 0.043 Naximss tube length, ft 70.200 Includes Length in tubesheet (2x25.625")

Hiniaxza tube length, ft 55.925 Includes Length in tubesheet (2x25.625")

Average Length, ft 61.988 Includes length in tubesheet (2x25.625")

COLR 25 Cycle 28, Revision 1

'abi.e 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks:

Hinisasa U-bend radius, inches 3.979 Hote: this is not the bend radius for the shortest tube.

Haxisua U.bend radius, inches 54.007 U-bend radius of shortest tube(s), inches 4.044 Average U-bend radius, inches 24.51 Tube straight length (one side) above secondary 303'/u / 310'/i / 308 182 face, inches (min/max/average)

Secondary heat transfer area, ft per SG 54,001 Primary heat transfer area, ft per SG 47,809 Overall bundle height, ft above secondary face 30.427 of TS Tube material SB-163 Alloy N06690 SG Tube Haterial Thermal Conductivity, Temp F Conductivity BTU-in/hr-ft -F 200 93 300 100 400 107 500 114.5 600 122 SG Tube Haterial,Specific Heat, BTU/lb-F Teap F Conductivity 200 0.112 300 0.1155 400 0.119 500 0. 1225 600 0.126 Distance from top of tube bundle to 33X NRL, ft 5.703 11.3 SG Vol~

11.F 1 SG Secondary Side Vol~

Secondary voiune, ft (total) 4512.7 Secondary voiune up to lower HRL tap, ft 1893.2 Secondary volune up to upper HRL tap, ft 3460.4'1.3.2 Riser Vol~

Secondary side bundle voiuae (TS to top of U- 1281.8 bend inside shroud),

riser voiuoe, top of ft'econdary U-bend to spill- 507.0 Equivalent to LOFTRAN riser voiune.

over point, ft 11.3.3 Downcomer ft ft'359.6 fancier Vot~

Downcomer point, voiune, top of voiuae, top of U-bend to TS to top of U-bend, spill. over 1437.3 SG Primary Side Vol~

Inlet plenun per SG, ft 129.65 Outlet pienun per SG, ft 129.65 COLR 26 Cycle 28, Revision 1

A

'able 1: UPSAR Chapter 15 Analysis Setpoints and Input Parameters Item/Name Value Remarks:

Tube primary volune per SG, ft 710.3 Primary total volune per SG, ft 969.6 Circulation ratio (100X pwer, clean, unplugged) 5.39 Circulation ratio ~ bundle flol5 /

steam floe. Assunes 40,000 ibm/hr bl ow5ovn.

Tubesheet thickness, inches 25.625 Includes cladding.

11 4 SG Primary Side Dimemlm>>

Primary head radius, inches 58.375 Radius to clad surface.

Divider plate thickness, inches 1.875 inlet and outlet nozzle, inside diameter 31.200 cylindrical section, inches Nozzle divergence angle, degrees 11'30'7.0 Nozzle inside diameter at plenun, inches Nozzle lengths, inches ,cylindrical section 8.75 conical section 13.0 total length 21.75 Heigth fran SG primary heed bottom (outside) to 90 /,e top of TS, inches Distance tube sheet primary face to hot leg 6.654 centerline, ft 11.5 SG Secondary Side Dimensions Lover shell inside diameter, inches 122 LoMer shell thickness, inches 2.875 Tube shroud inside diameter, inches 114 Distance top of tube bundle to top of steam 298.5 nozzle, inches Steam nozzle floN restricter area, 1,4 secondary face of TS to centerline of ft'istance 407 /0 feedvater nozzle, inches Distance secondary face of TS to centerline of 374 feed ring, inches Cross-sectional area of tube bundle, ft 41.64 This value is total area inside shroud.

Distance top of tube bundle to spill-over point, 178.0 This value is equivalent to the riser inches height for the OSG.

Primary side roughness, micro-inches Nozzles, head 60 Values given are conservative Tubes 60 assu5ytions.

11.6 SG Secondary Side Mater Nasses Secondary Mater inventory, 100X poger, T~ = 86,259 liquid Best estimate value.

573.5, no plugging, ibm 5,286 steam Secondary eater inventory, 100X poMer, T 85,547 liquid Best est imate va lue.

559, no plugging, lba 4,675 steam 11.7 SG Primry Side Head Loss Coefficients COLR 27 Cycle 28, Revision 1

~

Table 1: UFSAR Chapter 15 Analysis Setpoints and Input Parameters em 4 Item/Name Value Remarks:

SG inlet nozzle/planus Loss coefficient, ft/gpm'G for lD

  • 31.2>>

outlet nozzle/plenun loss coefficient, 3.31E-10 for ID>> 31.2>>

ft/gpn tubing loss coefficient, ft/gpn 9.62E-09 for OX plugging For tube ID>> 0.664", Ao>> 11.C58 SG 1.32E-08 for 15X plugging ft, Au>> be9.739uniform.

ft . Plugging is SG (in), ft/gpn'G ft/gpn'.01E-09 tubing loss coefficient, straight section 4 '9E-09 for OX plugging 5.73E.09 for 15X plugging assuned ft, to for tube LD = 0.664", A = 11.C58 Au>> 9.739 ft . Plugging is assumed to be uniform.

tubing loss coefficient, U-bend section, 1.02E-09 for OX plugging For tube ID = 0.664", A = 11.458 ft/gpm'G 1.40E-09 for 15X plugging ft, Au>> = 9.739 ft . Plugging is assuned to be uniform.

tubing Loss coefficient, straight section 4.41E.09 for OX plugging For tube LD = 0.664>>, A,>> 11.458 (out), 6.08E-09 for 15X plugging ft, Au>> 9.739 ft . Plugging is assuned to be uniform.

COLR 28 Cycle 28, Revision 1